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This thesis considers the problem of area estimation from remotely sensed images and,
in particular, the problem of estimating the proportions of subpixel area occupied by a
predefined number of target classes based on a pixel’s spectrum alone. Estimating cover
proportions within pixels rather than producing crisp classifications of pixels is often
seen as a way of increasing the accuracy of land cover maps derived from remotely
sensed data. Although such improvements have been observed, many practical
applications demand even greater accuracy since, over a large area, an error as low as 10
percent in the estimated proportions may represent the misclassification of many
thousands of square kilometres. Unfortunately, much uncertainty remains as to how
techniques for subpixel area proportion estimation should be applied and, more
importantly, how much information pixel spectra can provide about subpixel land cover
proportions.

The main contributions of this thesis consist of a novel probabilistic interpretation of
subpixel area proportions that has a number of important implications: It is used to
motivate a new probabilistic notation for area proportion information that, due to the
probabilistic interpretation, is simple and intuitive, to show that certain types of fuzzy
classifier have an equivalent interpretation as crisp classifiers, a relation that can be used
to prove that they are capable of producing optimal proportion estimates and which
suggests a number of enhancements that are shown empirically to improve the fuzzy
classifiers performance. Finally, the probabilistic interpretation is used to provide
insights into the application of the cross entropy error function in fuzzy classification
that are shown to be supported by empirical evidence.

The thesis also presents a novel analysis of the impact of the sensor point spread
function on fuzzy classifier performance that shows that the problem of extracting
subpixel proportion information from pixels’ spectral signatures is ill-posed. This is
used to motivate the use of a new representation for subpixel proportion information —
the spectrum conditional proportion distribution — that overcomes many of the
limitations of the standard representation. Specifically, the distribution can fully
represent the proportion information in a pixel’s spectral signature, it permits this
information to be propagated without loss, and it allows different sources of proportion
information to be optimally combined. A number of techniques for extracting
proportion distributions are described and empirical results are presented that underline
the utility of the new representation.
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2. List of Symbols

m basis function means in spectral or area proportion space

Y7, subpixel proportion/fuzzy classification

C, label of the n™* class

u(C,) area of the n” class

p(Cy) prior probability of observing class C,

P a pixel

H(P) the area of pixel P

HC,IP) the proportion of the subpixel area of P covered by class C,

HC,,P) the area of the intersection of class C, and pixel P

s pixel spectral signature

ps) prior probability of observing spectral signature s

P(C,ls) posterior probability that a pixel with spectral signature s is in class C,
p(siC) class conditional probability that a pixel in class C, has spectral

signature s

J number of basis functions

j basis function index

16)] prior probability that the j* basis function generates a spectral signature
p(sl) probability that the j” basis function generates a spectral signture s
p{jls) posterior probability that spectral signature s was generated by the j”

basis function

D number of data points

d data point index

N number of classes

n class index

p(uls) spectrum conditional area proportion distribution ~ the probability that
a pixel has subpixel proportions x4 given that it has spectral signature s

p(Cl probability that a pixel is in class C given that it has subpixel
proportions y

£ fuzzy basis function activation as a function of a pixel’s spectral
signature

p(Clx,y) posterior probabiltiy that the subpixel point (x,y) belongs to class C

C(x,y) equal to one if subpixel point (x,y) is in C, zero otherwise

Y() the sensor point spread function (PSF)



distance of a subpixel point from the point of maximum PSF sensitivity



3. Overview

This thesis presents a detailed examination of the problem of estimating the proportion
of the subpixel area of remotely sensed (RS) image pixels occupied by different land
cover types — a process often referred to as the fuzzy classification of pixels. It is shown
that there is a close relationship between conventional crisp classification and fuzzy
classification and uses this relationship to derive several new and important results. In
addition, a novel analysis of the effect of the sensor point spread function is given that
provides insight into its effect on fuzzy classification accuracy. This analysis is used to
motivate a new representation for information derived from remotely sensed images
based on conditional probability distributions and several techniques are presented that

are capable of deriving such representations.

The structure of this thesis traces the evolution of the fuzzy classification of RS image
pixels from more conventional crisp classification — a process outlined in chapter 6.
Chapter 5 describes a new way of viewing area proportions and hence fuzzy
classifications as conditional probabilities and uses this interpretation as the basis of a
probabilistic notation for area proportion information that is used to list the axioms
governing its behaviour. This information is placed at the beginning of the thesis due to
the elementary nature of the material it contains. Chapter 6 describes the standard
approaches to the classification of RS image pixels that are germane to the main subject
of the thesis. That is, classification techniques from which fuzzy classifiers have been

derived, or provide useful insight into the problem of fuzzy classification.

Chapter 7 deals specifically with fuzzy classification algorithms and carefully examines
their relationship to more conventional crisp classifiers. In particular, a new equivalence
between fuzzy classifiers and crisp classifiers is established through the probabilistic
interpretation and a novel analysis of the use of the cross entropy error function in fuzzy
classifiers is presented. Chapter 8 discusses a number of factors that limit fuzzy
classifier performance, and introduces terminology that makes it possible to list the
conditions necessary to get perfect fuzzy classifications. Section 8.4 presents a new
analytical description of the effect of the sensor point spread function on fuzzy classifier
performance, which suggests simple ways of improving fuzzy classifier performance,
but also motivates the use of a new representation for information derived from RS

spectral data — the spectrum conditional probability distribution.



Chapter 9 begins by stating the three main advantages of the new representation, namely
its ability to completely express all proportion information contained in a pixel’s
spectral signature, to facilitate the optimal combination of information from different
sources, and the propagation of that information without loss. Subsequent subsections
derive algorithms of increasing complexity for extracting spectrum conditional
distribution models from sets of exemplars and present results obtained on a real world
data set. This thesis thus traces the development of fuzzy classification for area
proportion estimation from its origins in crisp classification to the current state of the
art, and by examining the limitations of these algorithms, arrives at a new representation

for proportion information that overcomes many of those limitations.



3.1. Contributions

The main focus of this thesis is to examine advanced non-linear techniques for
performing fuzzy classification of pixels in remotely sensed images. By examining the
current state-of-the-art and its limitations, this thesis concludes that a more flexible
representation is required for fuzzy classifications, and that this can be provided by
existing neural network algorithms. The following list contains the wholly novel

contributions of this thesis.

Probabilistic interpretation:

It is argued that area proportions can be regarded as conditional
probabilities. This clarifies the relationship between crisp and fuzzy
classification since it is shown that fuzzy classification is equivalent to

a crisp classification of subpixel points.

Probabilistic notation:
A form of notation for representing area proportions is proposed, which

makes their conditional probabilistic nature explicit.

Listing of axioms:
The new notation is used to list the axioms governing the behaviour of
area proportions by direct analogy with those of probability theory. In
particular, traditionally probabilistic constructs, such as Bayes’

theorem, are shown to be directly applicable to area proportions.

Equivalence of crisp and fuzzy classification:
The probabilistic interpretation is used to show that a particular type of
fuzzy classifier is equivalent to an EM density estimator based crisp
classifier. This highlights some restrictions of the fuzzy classifier and is
suggestive of improvements that are shown empirically to produce
dramatic improvements in performance. The EM density estimator
based fuzzy classifier is shown to be capable of producing optimal

fuzzy classifications under ideal circumstances.

Examination of the relationship between soft and fuzzy classifications:
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A new perspective on the relationship between softened and fuzzy
classifications is presented that suggests that softened classifications
should not be used in place of fuzzy classifications to characterise
subpixel cover unless fuzzy classifiers cannot be constructed due to a

lack of a set of suitable exemplars.

Interpretation of the use of the cross entropy function in training fuzzy classifiers:

The probabilistic interpretation is used to show that the cross entropy
function is appropriate for training fuzzy classifiers, and has a specific

interpretation in terms of classifying subpixel points.

Examination of the factors limiting fuzzy classifier performance:

A discussion of the factors limiting fuzzy classification performance is
presented, which focuses on limits imposed by the characteristics of the
sensor and the target cover types rather than on the difficulties than can
arise during the modelling process. This includes a set of axioms that
describe the conditions classes must satisfy to permit perfect fuzzy

classification.

Detailed examination of the ambiguity induced by the sensor PSF:

A Gaussian model of the sensor PSF is used to show that the PSF
introduces ambiguity into the fuzzy classification process. In particular,

the ambiguity is shown to be greatest when pixels are heavily mixed.

Introduction of the spectrum conditional density representation of proportion

information:

A new way of representing fuzzy classifications is proposed that
provides a complete representation of the ambiguity present in fuzzy
classifications. The benefits of the new technique are demonstrated on a

real world remotely sensed data set.

11



3.2. FLIERS - Fuzzy Land Information from Environmental
Remote Sensing

The data set used to demonstrate the techniques described in this thesis was generated as
part of the EU funded research project FLIERS. The aim of the research was to advance
the state of the art in fuzzy classification through the use of sophisticated non-linear
statistical modelling techniques such as neural networks. In order to use such
techniques, it is generally necessary to have a large set of exemplar pixels of known
fuzzy membership and for the purposes of the FLIERS project, several such data sets
were prepared by a team at the University of Leicester. The particular data set used
throughout this thesis covers a region of large scale agriculture to the east of Leicester
called the Stoughton area and is shown in figure 1. In all, 21,081 pixels from a Landsat
TM survey were available, and fuzzy memberships were derived using a combination of
aerial photography and ground surveys. Unfortunately, due to the time required for the
ground survey, the fuzzy memberships represent land cover at a slightly different date to
that of the satellite imagery, allowing for the possibility of minor changes in land cover

in the interim.

Figure 1: The Stoughton area in band 4 (left) showing the validation areas (right).
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squares) shown in context of the entire data set.

Although there were as many as 26 classes of interest to the FLIERS project generally,
only two were selected to permit the depth of analysis with the wide range of techniques
suitable for performing fuzzy classification described in this thesis. The cereal crop and
tall herb classes are considered in this thesis, and their statistics are given in table 1,
along with their unconditional proportion distributions in figures 4 and 6. The
unconditional proportion distributions are a useful way of visualising the distribution of
proportions that actually occur in the data, and were generated by applying a standard
Gaussian mixture model density estimator to the area proportion data. The data set was
divided into three subsets, a training set, a test set and a validation set. The training set
was used directly by training algorithms to search for the optimal parameters of the
particular model being trained. The test set was used to prevent over-fitting — producing
a model that was tailored to specific features in the training set that are not characteristic
of the process being modelled. The validation set was not used in any way to find the
optimal model and hence could be used to evaluate the performance of the models when

applied to new, previously unseen areas.

Figure 3: Cereal ground truth for the validation areas.
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Area proportion y 1

Figure 4: Cereal area proportion distribution for pixels in the training set.

To generate the three subsets of the data, there was a trade-off to be made between
generating sets that were statistically representative of each other and sets that could be
visualised as small sub-images. For example, the most easily interpretable form for each
of the sets is that they consist of Iérge blocks of contiguous pixels. Each set, and hence
the proportion estimates made by each technique can then easily be assembled into large
images to provide a clear representation of the estimates. However, spatial non-
stationarity across the survey area causes marked differences in the statistics of the
training, test and validation sets if they are chosen as contiguous blocks since, on
average, a pixel in each data set will in the image plane be far from the closest pixel in
any other data set. Such non-stationarity can have a devastating effect on the
performance of statistical models, since the statistics they learn from the training set
may be substantially different from those of the test and validation sets. This is

essentially the same process that is described in the case of classification in [Friedl:00].

Figure 5: Tall herb ground truth for the validation areas.

The effects of non-stationarity are minimised when pixels are assigned randomly to one
of the three data sets such that they form three non-overlapping sets, each distributed

roughly uniformly over the survey area. In this case however, visualisation of the

14



proportion information in each set becomes difficult, because no image can be
reconstructed from any of the three data sets without containing lots of points for which
there is no data. To strike a balance between these two concerns, the image of the
survey area was divided into rectangular blocks of 24x22 pixels. These were sufficiently
large that they could be displayed as images to allow the estimated proportions to be
visualised, but also small enough that they “covered” the image and hence limited the
effects of spatial non-stationarity. The four validation regions are shown in context in

figure 2 as those regions within the white squares, and in detail in figure 3.

Density}

p(u)

S—

0 Area prooortion 1 1

Figure 6: Tall herb area proportion distribution for pixels in the training set.

The first of the two classes used in this thesis, the cereal crop class, was a compound
class composed of the main types of cereal grown in the survey area. Slightly less than
half of the survey area was covered by cereal crops although most pixels were almost
pure. This can be seen from the cereal proportion distribution shown in figure 4, which
has pronounced peaks for fuzzy memberships close to 0 and 1 and a general lack of
probability mass for most other proportions. This is due to the fact that the typical field
size in the survey area is larger than the pixel size, resulting in only a small proportion
of pixels straddling a field boundary. The primary statistics of the training set and the
validation set are very similar, suggesting that the data subsets are representative of each
other. The ground truth information — the proportions of the subpixel areas actually
occupied by cereals is shown in figure 2, where white represents a pixel consisting of
100 % cereal and black 0 %. The grey squares highlight the areas from which the
validation data was collected, which are also shown enlarged in figure 3. The chequered

area indicates a region that was not used due to the absence of ground truth data.
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Figure 7: Validation areas in band 4.

The second class, tall herbs, consisted of a large variety of plant types that are
commonly found at the sides of roads and along river banks. The survey area contained
only small amounts of the tall herb class, the mean subpixel proportion being only
around 0.2 % of a pixel. The tall herb area proportion distribution, shown in figure 6,
also shows that most pixels contained either no tall herb or only very small quantities.
The statistics of the training and validation areas for the tall herb class are quite
different, suggesting that they may not be representative of each other and hence that
statistical models may have problems with this partition of the survey area. The ground
truth for the tall herb class is shown in figure 2 where, once again, the validation areas
are highlighted by the grey squares. These areas are shown enlarged and in isolation in

figure 5 where it is possible to see greater detail.

Class Data Set Number of Patterns | Mean Variance
Training 16169 0.3007 0.1882

Cereals Test 2795 Not computed | Not computed
Validation | 2117 0.4441 0.2160
Training 16169 0.03642 0.01201

Tall herb Test 2795 Not computed | Not computed
Validation | 2117 0.05939 0.02437

Table 1: Summary statistics for the FLIERS data set.
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4. An Introduction to Fuzzy Classification

When pixels are crisply classified, they are conventionally assigned the label of one of a
number of candidate (or target) classes and are thereafter considered to belong to the set
of pixels in that class. Pixels, in the applications that are of concern here, are classified
according to their subpixel land cover and the class label assigned to the pixel is
considered in some sense to represent the subpixel cover. There has long been concern
over the inadequacy of a single class label as a representation of the often diverse range
of subpixel cover [Woodcock:00] [Cracknell:98][Fisher:97][Foody:97]. Fuzzy classification
offers a means of increasing the richness of these representations by assigning pixels
partial degrees of membership for each of the candidate classes but, despite its

numerous successes, still often receives little attention (see, for example [Cihlar:00] and

[Smits:00]).

The exact meaning of the term fuzzy classification is discussed in detail later, and
depends on the property of the subpixel cover that the classifications are intended to
represent. The use of the term fuzzy classification does not imply any rigorous relation
to the field of fuzzy logic as expounded in texts such as [Klir:95] (and, less formally in
[Wang:93]), but merely highlights the fact that pixels are assigned partial degrees of
membership in more than one class. The main situations in which crisp classifications of

remotely sensed image pixels poorly represent true subpixel cover result from:

e pixels straddling the boundary of two or more distinct classes

[Fisher:90][Fisher:97], and

o the presence of classes with boundaries that cannot be clearly delimited

[Foody:92] [Wood:89].

In the first case, the true subpixel cover consists of a number of discrete classes. The
conventional approach of assigning a single class label to such a pixel (which, in some
instances may contain very similar proportions of the cover types) seems an inadequate
reprecentation of the subpixel process. This problem can become particularly severe
when land cover transitions occur close to, or below the pixel size, since this will lead to
a high proportion of image pixels containing multiple cover types. The severity of this

problem thus depends on the interactions between the spatial frequency of transitions in
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the target cover types, the resolution of the sensor and the sensitivity of the target

application to the subpixel partition information lost during crisp classification.

Consider, for example, an image of an area that is mainly agricultural, but which also
contains small settlements and farm buildings. When a crisp classifier is applied to such
an area, the crop types will generally be well represented with a moderate resolution
satellite, since the fields will tend to be large compared with the pixel size. The built
areas, however, may never contribute significantly to the subpixel area, making it
possible that no pixels in the image are classified as “built” even though “built” may
constitute a significant area of the land covered by the classified image. The second
difficulty with crisp classification arises when a region contains cover types that have a
tendency to continuously intergrade. This means that although there may be separate
regions of land cover which may satisfactorily be crisply classified as one of the target
cover types, between these regions, the cover types may merge continuously, leading to
land cover with characteristics resembling several different classes. Once again, it seems
inadequate to represent such land cover by assigning to it the single label of any of the

individual classes to which it is similar.

An apparently simple cover type such as forest can be used to illustrate this difficulty,
which is relatively common when classifying many organic cover types. For example,
consider a dense region of trees surrounded by open ground. If the region of trees is
sufficiently large, it seems natural that the forest classification is applicable. If, on the
other hand, the region of trees is actually rather small, then the forest classification
seems inapplicable. Between these two extremes, however, it may be difficult to decide
whether the region represents forest or not, without making a rather arbitrary distinction.
Even if the region is large enough for a forest classification, tree density may decrease

towards the forest edge causing difficulty in assigning a precise boundary to the forest.

In practice, fuzzy classification requires a precise definition of the fuzzy memberships
that are to be used since, if such a definition is lacking, membership estimates will be
difficult to interpret and it will not be possible to evaluate the relative accuracies of
different membership estimates. At first, it may appear as though it is necessary to
define two incompatible fuzzy memberships, each to address one of the causes of
mixing outlined earlier. An appropriate definition of fuzzy membership for representing
the presence of a number of otherwise crisp subpixel classes is to record the proportions

of the pixel area covered by each of the target classes. Unfortunately, this definition
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may not be used to tackle the problem of intergrading classes, since such classes do not

have well defined boundaries and hence do not have well defined areas.

Another definition of fuzzy membership may be considered in the presence of
intergrading classes, which represents the similarity of the subpixel cover to each of the
target cover types. The precise nature of the definition of such a similarity measure will
not be considered further here, although it will be assumed that the memberships are
closed world. That is, the sum of the similarity measures over the target classes is unity
for all subpixel regions. If this condition is satisfied, the mean value of a similarity
measure of a crisp class is equal to the proportion of the subpixel area occupied by the
crisp class. The problems of representing subpixel mixing of crisp classes and the
similarity of subpixel cover to classes which intergrade are thus both the same as

representing the mean subpixel similarity measure for each of the target classes.

Since a definition of a similarity measure that is clearly defined and interpretable at
ground level is generally lacking, the problem of estimating similarity measures is ill-
defined and is hence unlikely to be accessible to solution. For this reason, only the
problem of estimating the proportions of subpixel area occupied by crisp target classes
will be considered in this thesis. The following section traces the development of fuzzy

classification and other concepts relevant to the content of this thesis in the literature.

4.1. The Evolution of Fuzzy Classification

In [Horwitz:71] a simple algorithm was derived for obtaining estimates of the
proportions of cover types within a pixel. Their paper, the first to explicitly address the
problem of area proportion estimation, made a number of simplifying assumptions such
as a uniform point spread function within a pixel and Gaussian spectrum conditional
densities for each class, with the help of which it was possible to show that maximum
likelihood area proportion estimates could be obtained as a linear function of a pixel’s
spectral signature and in so doing introduced the basic concepts of linear spectral

mixture modelling used in research that continues until the present day.

The use of terminology from the theory of fuzzy sets — sets that have poorly defined
boundaries (see [Zadeh:65]) — in discussions of the mixed pixel problem seems to have
appeared shortly after the introduction and subsequent popularisation of the fuzzy
clustering algorithm described in [Bezdek:84], and was used to address the mixed pixel

problem in [Robinson:85]). Fuzzy clustering is an algorithm that can be used to perform
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either a supervised or an unsupervised clustering of pixel spectra into a number of fuzzy
sets. By measuring the degrees of membership of new pixels in the available fuzzy sets,
information about subpixel composition can be derived. Although the use of fuzzy
terminology continues to be popular, the use of fuzzy set theory itself is relatively rare.
This is because fuzzy set theory is only necessary if the subpixel area proportion
estimation problem is regarded as one of classification. If the idea of imposing
classifications on pixels is abandoned, the nature of the subpixel area estimation

problem and its solution can easily be described using probability theory.

Contemporaneous with the emergence of fuzzy clustering, a new algorithm was
proposed for training multilayer neural networks. Called back-propagation, it was
proposed in [Rumelhart:86] (although similar ideas had earlier appeared in [Werbos:74]
and [Parker:85]), and provided, for the first time, a reliable and efficient way of training
multilayer artificial neural networks. This new found efficiency combined with the
weak distributional assumptions made by such networks resulted in their application in
conventional pixel classification in several papers that were published in the late
eighties and early nineties. Gradually, it was realised that the raw outputs of neural
network classifiers — which were shown to be estimates of posterior probabilities of
class membership in [Baum:87] — and similarly, the outputs of other non-neural
classifiers, were useful for more than choosing a class label to associate with a pixel

[Gorte:98][Foody:96b][Foody:96c] [Maselli:96].

Although it was clear that there was a relationship between these outputs and subpixel
composition, it was not obvious as to how the classifiers could be modified to provide
more information about subpixel composition. In [Foody:95] a modification to the way
in which classifiers were trained and tested was proposed that would produce fully
fuzzy classifiers — neural network fuzzy classifiers with outputs that, under ideal
circumstances (such as an infinite availability of data, and an infinitely flexible neural
network), would produce optimal estimates of subpixel cover proportions. This synergy
of the richness of the subpixel area proportion representation and the power and
flexibility of neural networks has resulted in unprecedented accuracy in the land cover

information that is currently derived from remotely sensed data.

Despite these advances many questions still remain about the correct application of
neural networks in general and whether there are any characteristics of the subpixel area
proportion estimation problem in particular that have implications for their use

[Wilkinson:97]. It is these questions that have produced doubts about the current focus of
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research on improving fuzzy classifier performance and led to proposals for a shift of
focus towards quantifying the performance limits that are intrinsic to deriving fuzzy
classifications from remotely sensed data [Wilkinson:96]. This thesis presents detailed
analyses of a number of established techniques which clarify the conditions under which
the techniques should be applied, and result in a number of recommendations for
improving the performance of the proportion estimates they produce. In addition, it is
argued that pixel spectral signatures alone contain too little information about subpixel
cover to derive accurate proportion estimates and a new representation for spectrally
derived proportion information is proposed that is capable of fully representing the
uncertainty in the proportion estimates caused by the information-poverty of the spectral
signatures. A number of models for deriving the new representation are presented along

with results of their application to a real world data set.
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S. Properties of Area Proportions

This section presents a novel argument that area proportions can be interpreted as
conditional probabilities [Manslow:00] and uses this as motivation for an area proportion
notation that is analagous to the standard notation of probability theory. The new area
proportion notation is particularly convenient due to its immediate familiarity that
results from the fact that the standard axioms governing the behaviour of conditional

probabilities also apply to area proportions.

5.1. The Probabilistic Interpretation of Subpixel Area
Proportions

In order to estimate the proportion of a pixel’s area occupied by a class it must be
possible, in principle, to measure the area of the class given perfect information.
Consider a single pixel consisting of two cover types: grass and water. When the area is
remotely observed, a mixed pixel is generated which has spectral contributions from
both of the subpixel classes. If perfect information was available in the form of the true
distribution of the two cover types within the pixel area, each point within the pixel
could be uniquely classified as belonging to one of the cover types, and hence a

subpixel map of true class membership could conceptually be constructed.

If a point is chosen at random from a uniform distribution over the conceptual subpixel
cover map, it will fall within a region occupied by one of the subpixel classes. In the
limit of an infinite number of such points being chosen, the proportion of points falling
within each class region will equal the proportion of the subpixel area the region
occupies, and also equal the probability of an individual point falling within each
region. This suggests that there is a direct equivalence between these probabilities and
the subpixel area proportions. It is important to emphasise that this probabilistic model
does not equate the proportion of the subpixel area occupied by a specific class with the
posterior probability of class membership of the entire pixel in that class, as would be
estimated by most classical classification algorithms. Although estimates of these
probabilities have been used to model subpixel area proportions (see, for example
[Chittineni:81][Foody:96¢][Gorte:98][Maselli:96]) it is shown later that they cannot, in

general, be optimal estimates.
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5.2. Area Proportions: Notation and Axioms

In order to describe the properties of area proportions, it is convenient to introduce a
compact notation [Manslow:00]: if the area of a pixel P is represented by y(P) and the
area of the intersection of pixel P and class C, by (C,P) then the proportion of P
occupied by C, will be denoted by u(C,|P). Here, the equivalence of area proportions
and (conditional) probabilities is made explicit in the choice of notation. The proportion

of P occupied by class C, is found using

U ,P) 1
C | P) =t
MO ==y

From equation 1 the area proportion equivalent of Bayes’ theorem may be derived. This
can be used to convert quantities of the form ‘the proportion of class C, occupied by

pixel P’ to ‘the proportion of pixel P occupied by class C,’ as follows:

(P1C))

U
C 1P)= C
u(C, 1 P) (P) H(C,)

Clearly, the total area occupied by any object or class is found by summing the areas of
its intersections with other classes. Thus, the total areas of a pixel P (where there are N
classes that form a closed world partition) and of a class C, (where ‘all P’ is the set of

all pixels) are given by

N
H(P) = u(C,,P) 3
H(C,) =D u(C,,P) 4

allP

when no two classes or pixels intersect. For two classes, C, and C,, with m,n € [1,N] the
area of their union may be computed from the sum of their individual areas minus the

area of their intersection. More concisely,

P) s

J(C, UC, 1 P) = u(C,|P)+ u(C,|P)- u(C,.C,
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A set of classes C,, : 1 < n < N is considered to be closed world upon the target domain

Dif
N

| JCc,1P|=1 VPeD
=]

Such a set of classes may trivially be constructed by the addition of a class that contains
any subpixel region that is not assigned to any other class. Finally, area proportions lie

in the closed interval [0,1] as stated in equation 7.
u(C 1P)el0]] Vn:1sn<N 7

All of these axioms are directly equivalent to those for manipulating probabilities (as

can be found in [Cox:46][DeGroot:89]).

The following section describes the way in which land cover information can be derived
from remotely sensed images by the crisp classification of pixels within such images.
Although it is now widely recognised that more accurate land cover information can be
obtained by other means, an examination of crisp classification is provided for the

following reasons:

e three important approaches to fuzzy classification (namely parametric fuzzy
classification, e.g. [Wang:90][Foody:96¢c], softened classification, e.g. [Foody:96],
and neural network fuzzy classification, e.g. [Foody:95]) have their origins in more
conventional crisp classification techniques, and can be seen as extensions and

modifications of those algorithms, and

e the probabilistic interpretation indicates that there exists a close relationship
between fuzzy classification and crisp classification and that many of the concepts
important in understanding crisp classification are germane to the problem of fuzzy

classification.
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Chapter 3 described the real world data set used to illustrate the techniques and concepts
developed in this thesis and presented an introduction to the ideas behind the use of
fuzzy classification in extracting information about land cover from remotely sensed
images. Chapter 4 introduced the basic concept of fuzzy classification and reviewed the
development of techniques for extracting fuzzy proportion information from remotely
sensed data by highlighting a number of seminal publications and has indicated how the
work in this thesis follows from suggestions that continued experimentation with
existing techniques is likely to prove fruitless unless there is a more detailed
examination of the factors limiting their performance. Chapter 5 showed that fuzzy
classification can be thought of as crisp classification of non-location specific subpixel
points and hence that area proportions can be considered to be a specific type of
posterior probability — an equivalence that was used to motivate a probabilistic notation
for area proportion information with which the axioms governing its behaviour were

listed.
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6. Crisp Classification

As described in the introduction, crisp classification — in this case considered to be
associating a class label with a pixel — was one of the earliest approaches to deriving
land cover information to make use of flexible modelling techniques such as neural
networks. Although the class label representation is now widely acknowledged as being
an inadequate description of subpixel cover, it was some time before the more versatile
fully fuzzy classification techniques that are currently used emerged. In the interim, the
posterior probabilities estimated by many standard non-fuzzy classifiers were used to
provide information on subpixel cover. In this sense, a transition from crisp
classification to soft classification to fuzzy classification can be traced in the efforts to
derive information about subpixel cover. Thus, the motivation for describing crisp
classification here is that it provides a rudimentary mechanism for extracting land cover
information, and one from which the current state of the art can be considered to have
evolved. This chapter describes crisp classification and its immediate derivative, soft
classification, and presents results of their application to the FLIERS data set. Since
these techniques can no longer be considered state of the art, the results are discussed
only briefly and are intended to act as a benchmark against which more recent and

theoretically well founded techniques are compared in later chapters.

The problem of crisply classifying a pixel is normally considered to be one of assigning
to it one or more class labels. In most practical applications, the spectral signature of a
pixel will contain too little information to assign the correct class label to all pixels. The
class label representation of a classification decision is too poor to represent this
ambiguity, and is hence usually avoided other than as an aid to interpretation. Instead,
classification decisions are usually represented by estimates of the posterior
probabilities that the observed pixel lies in each of the target classes. Thus, if there are N
classes of interest, the classifier output would be a vector of probabilities of length N,
which, if the classes are mutually exclusive and closed world, would sum to unity. The
posterior probabilities contain all the information relevant to classification, since if the
probability that a pixel with spectral signature s was in class n was p(C,ls) the class label
C, would, on average be correct 100 X p(C,ls) percent of the time. The class label that
minimises the misclassification rate is thus the one that maximises the posterior
probability. The results of the classification experiments described in this section are

presented in terms of posterior probabilities rather than class labels. This approach to
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characterising land cover should not be confused with the softened classifications that

will be considered later in this section.

Although the results of both crisp and softened classifications can be interpreted as
posterior probabilities, there are important conceptual differences: crisp classification
assumes that a particular pixel can be correctly and completely characterised by a class
label, and the posterior probabilities represent the uncertainty in the classification
decision due to the lack of information about class membership in a pixel’s spectral
signature. If all such information were available, crisp classifiers would always be able
to assign the correct class label and all posterior probabilities would be either zero or
one. Softened classifiers use the posterior probabilities produced by more conventional
classifiers to provide information about subpixel structure even though there is no
implicit assumption that it would be meaningful to assign any of the class labels to a
pixel even if perfect information was available. Consider for example, the cereal class: a
softened classifier would be trained on a set of pixels consisting either purely of cereal
or containing no cereal at all. The outputs of such a classifier can be interpreted as
estimates of the probability that a pixel is composed entirely of cereal, or conversely
that it contains no cereal at all. Such a classifier will then be applied to pixels that are
known to belong to neither of the classes with which its was trained. The resulting
posterior probability estimates — called softened classifications — have been shown to

contain information about subpixel area proportions [Foody:96].

There are essentially two ways of performing crisp classification, each of which has its
own fuzzy equivalent. The first method constructs models of the way in which a set of
exemplar pixels of known class membership are distributed in spectral space and uses
these models to derive estimates of the probability that a new pixel of known spectral
signature lies in each of the target classes. Since these probabilities are derived
indirectly from a set of models that are unseen to the user, this technique is referred to
as the indirect method of classification. The second method of crisp classification uses
the exemplars to search for a function that can directly map the spectral signature of a
pixel onto a vector of posterior probabilities of class membership. This method is
referred to as the direct method of crisp classification since the function derives class
membership information directly from a pixel’s spectral signature. Although this section
presents detailed discussion of both the direct and indirect means of crisp classification,
results are presented for the direct approach only since it generally offers superior
performance. The indirect method is described because of its close relationship with

parametric fuzzy classification which will be described in section 7.1.1.
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6.1. Direct Crisp Classification

The results reported in this section were obtained by training models on a “hardened”
version of the fuzzy data set. That is, the training targets in the fuzzy data set were
converted to class labels by classifying a pixel as cereal if at least 50 percent of the
subpixel area was cereal, and otherwise classifying it as non-cereal. This process created
a new data set with binary targets; a target of one indicating that a pixel should be
classified as cereal and a zero indicating it should be classified as non-cereal. The

unseen validation areas are shown for this hardened data set in figure 8.

4.

Figure 8: Hardened cereal crop data in the validation areas.

The spectral data was normalised to zero mean and unit variance before being used to
train, test or query all the models applied in this thesis. The scaling information was

calculated from the training pixels and was as follows:

Band Mean Variance
1 63.25 17.78

2 27,713 20.80

3 24.89 55.58

4 105.96 578.61

5 62.34 233.12

7 22.21 111.79

Table 2 : Summary statistics for the six spectral bands of the FLIERS data set.

Thus, for the n™ spectral measurement s, in a data set of N patterns in total, the new
scaled value s",., is computed from the old unscaled value 5”4 using the mean and

variance of the spectral values for that band, $;ean and Syagiance:

n
n_ sold — smean

Shew — [ 8
svariance

where:
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Smean = z So]d 9

and

s . =
variance N(N 1) z( Sod ™ mean 10

Scaling inputs in this way has a number of benefits, such as improving the conditioning
of the optimisation (learning) problem, usually resulting in more stable and efficient

training [Haykin:94].

Three types of models are considered in this section, the linear network, the logistic
network and the multilayer perceptron, typical examples of which are shown in figures
10 and 44 (the former showing both the linear and logistic networks since they have
essentially the same structure). The linear network consists of six input nodes, one
output node and a bias node. The bias node is held constant at a value of one and is used
to provide an additive component to the model output that is independent of any of the
inputs. The value of the weight connecting the bias to the output node is equal to the
mean of the training targets, and the output of the linear node is simply a weighted sum
of the spectral inputs and the bias node. For a pixel of spectral signature s with spectral
components s; to s, the output of the linear network 4, can be expressed as:

6
Al’lest :wb+zwmsm 11

m=1

where w, is the bias weight, and w,, is the weight from the m™ spectral input to the
output. The parameters w may be found by matrix inversion, provided that the number
of training patterns is not too large, or by using iterative optimisation algorithms, such
as conjugate gradients [Shewchuk:94][Bishop:95][Gill:93][Axelsson:96] (ordered most to

least accessible), which was used to produce the results described here.
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Figure 9: First order gradient descent performs well if an error function’s contours are circular (left)
but poorly if they are elliptical (right).

Conjugate gradients is an iterative algorithm originally designed for finding the solution
to large systems of linear simultaneous equations. While normal gradient descent
performs well when minimising functions that have roughly circular contours around
their minimum, as shown in the left hand side of figure 9, it performs poorly when the
contours are elliptical, like those in the right hand side of figure 9, as often occurs with
linear networks when the inputs are correlated and with non-linear networks generally.
Under such circumstances, steepest gradient descent is not guaranteed to find the
solution in a finite number of steps and may in fact approach it only very slowly.
Conceptually, conjugate gradients eliminates the elliptical contours by stretching the
space in which the optimisation is to occur into one in which the contours around the
minimum are circular. Locations in this new stretched parameter space are expressed in
terms of a set of virtual parameters that can easily be mapped to, or mapped from, the
original parameters using linear operators. The conjugate gradient algorithm performs
steepest descent in the new space, and transforms the changes made to the virtual
parameters back into the original parameter space, to derive the optimal changes that

should be made to the actual weights in the network.
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Fuzzy Membership, u

Figure 10: A linear or logistic network.
In practice, the transformation is implicit in the operation of the algorithm and is never
done explicitly. As steepest descent is guaranteed to find the optimal weights for a linear
network with M weights in M iterations (provided that the inputs are uncorrelated and
have equal variances), conjugate gradients is guaranteed to find the optimal weights in
M iterations under much more general conditions. In practice, conjugate gradients relies
on a line search to find the minimum of the error function at each of the M steps of the
algorithm, and hence the amount of computation required to find a solution is more than
is required for M gradient computations. Conjugate gradients was chosen for the results
reported here because it was supported by the software used to produce all other results
in this thesis and, unlike steepest descent, it is likely to find an exact solution in a finite
amount of time.
New_Error = Get_Training_Set_FError()
If ( New_Error > Old_Error )
MLP.Weights = MLP.OldWeights
MLP.LearningRate = 0.5*MLP.LearningRate

else

MLP.OldWeights = MLP.Weights
MLP.LearningRate =

Old_ErrE)r = New_Erro}
}
MLP.Do_Descent_Step()

Figure 11 : Pseudocode for the accelerated backpropagation algorithm.

The logistic network is essentially identical to the linear network except that the output

passes through the logistic function.
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Figure 12: Cereal proportions estimated by a linear network trained using the sum of squares error on
hardened data.

Figure 13: Cereal proportions estimated by a logistic network trained using the sum of squares
error on hardened data.

*
.

Figure 14: Cereal proportions estimated by a softmax discriminant trained using the cross entropy

error on hardened data.
o 2

™ Bl -

Figure 15: Cereal proportions estimated by a 6-5-1 MLP trained using the sum of squares error on
hardened data.

‘ g
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Figure 16: Cereal proportions estimated by a 6-5-2 MLP trained using the cross entropy error on
hardened data.

"y
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"y

Note that in this case the weights lose the simple interpretability that they had in the
case of the linear network, and much of the advantage of using conjugate gradients to
find the weights is also lost. Despite these disadvantages, the simple addition of the
logistic function to the output of the linear network produces a significant improvement
in the area proportion estimation performance. In particular, the squashing properties of
the function make it possible for the network to predict much more homogeneous
regions than the linear network, resulting in a mean squared fuzzy classification errors
of 0.0556 compared with 0.0824 over the unseen areas. The fuzzy classification

performance of the crisp classifiers on the validation set was used as a performance
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measure rather than crisp classification performance since the main concern of this

thesis is the adequacy of crisp classifiers for extracting land cover information.

The effect of the squashing function in the logistic network can clearly be seen by
comparing figures 12 and 13 and the validation set performances in table 3. Figure 14
shows the proportions estimated by a single layer network trained by minimising the
cross entropy error function rather than sum of squares. The cross entropy error for a
proportion estimate t4,,, and a true proportion  is given by

E=ulny,, 12

and has much stronger theoretical justification than the sum of squares error when
performing classification [Bishop:95]. The cross entropy error has also been investigated
in the context of fuzzy classification in [Foody:95b], which provided good empirical
evidence that the use of the cross entropy error function may be advantageous in certain
applications. A new theoretical examination of the justification for the use of the cross

entropy function in fuzzy classification is presented in section 7.2.1.

To train the networks using the cross entropy error function it is necessary to use two
outputs that were constrained using the softmax function such that they summed to
unity. This was necessary because without this constraint the cross entropy function can
trivially be minimised by estimating large proportions of crops in all pixels regardless of
their true composition. The training, testing, and validation sets were processed so that
they contained two outputs also, one representing “proportion of crops” and the other
“1-proportion of crops” to produce the required normalisation. From the figures, the
behaviour of the single layer softmax network that was trained using the cross entropy
function can scarcely be distinguished from that of the sum of squares trained single

layer logistic network.

Next, two neural network classifiers were produced. The first was an MLP with five
logistic hidden neurons and one output used to indicate membership in the crop class
and was trained using the adaptive step size backpropagation gradient descent algorithm
outlined in figure 11 to minimise the sum of squares error function. This algorithm,
which dynamically adjusts the learning rate parameter according to changes in the
training error was used to guarantee stability in learning during hours of unmonitored
training. The second network that was trained was also an MLP with five logistic hidden

neurons, but had two softmax output neurons indicating membership in the crop class
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and was trained by minimising the cross entropy function. The results of applying these
two networks to the validation data is shown in figures 15 and 16. Here it can be seen
that the choice of error function has a subtle but definite effect on the behaviour of the
trained networks. For example, compared to the sum of squares network, the cross
entropy network appears to have improved performance in modelling the top region of
the upper field in the fourth validation area at the cost of performing slightly worse in
the lower left of the third region. In general, such differences are difficult to explain
since they result from a complex interaction of the distribution of the data, the network
parameterisation and the error function. However, it can be shown that if a sum of

squares network predicts 4, when the true proportion is g, the derivative of the error

function is:

OE _, _
aﬂest ﬂeS[ ﬂ 1 3

which is dependent only on the size of the difference between the predicted and true

proportion. For the cross entropy error however,

oE _ M —H

= 14
a:uest Moy (1 ~H.y )

which means that gradient based learning algorithms that use the cross entropy function
will be most sensitive to errors when the predicted proportion is close to one or zero.
This could help to explain some of the differences observed in the results: if at some
point during training the network tended to produce high estimates for the proportions,
Uy, in the upper field of the fourth area and low estimates, g3, for the area in the lower
left of region three and if 1-g,<t; the cross entropy network would sacrifice accuracy in
the lower left of the third region to improve performance on the field in the upper part of
the fourth region, thus producing the distribution of errors that is actually observed.
Finally, its interesting to note that although the increase in flexibility in moving from the
logistic discriminant to the sum of squares MLP improved performance, the same
increase in flexibility in moving from the softmax discriminant to the cross entropy
MLP resulted in poorer performance. This difference is difficult to explain due to the
interaction between the different model parameterisations, error functions and the
distributions of the crisp training and test data and the distribution of the fuzzy

validation data.
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Algorithm Error Function Number (?f Basis | Validation Set
Functions Error
Linear discriminant Sum of squares Not applicable 0.08237
Logistic discriminant Sum of squares Not applicable 0.05556
Softmax discriminant Cross entropy Not applicable 0.1473
MLP Sum of squares 5 0.05201
* Cross entropy 5 0.1487
Table 3: Model performances on the hardened data.

It is clear from these experiments that the outputs of crisp classifiers do contain
information about subpixel proportions. The value of this information depends on the
target application and its sensitivity to the errors in the proportion estimates that can be
obtained from crisp classifiers. The following two sections describe the indirect method
of obtaining crisp classifications, and the use of the softened classifier — a technique
similar to that already described but designed explicitly for using a crisp classifier to

derive proportion estimates.

6.2.  Indirect Crisp Classification

The alternative to the direct approach to classification that was just described is to use
pixels of known class membership to construct models of the class conditional
probability densities for each of the target classes in spectral space. To classify a pixel
of spectral signature s, one density estimator would be used for each class and would
produce an estimate of the likelihood that if the pixel were of that class, it would have
generated the spectral signature that was actually observed. This likelihood, written as

p(siC,) for the n™ class, can then be used in Bayes’ theorem:

siC C
p(CnlS):p( P 15
p(s)
to obtain an estimate of the posterior probability p(C,ls) that the pixel belongs to the n™
class given that it has the observed spectral signature. In principle, this estimate is all
that is required to perform optimal classification, since the class label that maximises

the posterior minimises the misclassification rate.

The prior p(C,) in equation 15 is the probability of a pixel belonging to class n

regardless of its spectral signature, and is usually estimated from the set of exemplars by
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the proportion of exemplars in class n, while the unconditional density p(s) is usually
ignored in practice, since it is independent of the ordering of the posterior probabilities,
and hence has no effect on the optimal classification decision. Classifiers based on this
indirect method often perform poorly in practice because highly parametric models,
such as single Gaussians, are used to estimate the class conditional densities. It should
be stressed, however, that this is not an intrinsic limitation of the indirect approach to
classification since more flexible models of the class conditional densities, such as a
superposition of Gaussians, can be used, and will, in many cases, lead to improved
performance. The following section looks at how class conditional probability densities

can be accurately and efficiently modelled by a superposition of Gaussians.
6.2.1. Modelling Class Conditional Densities

To perform indirect classification, the class conditional densities of each class can be
modelled independently using a separate density estimator for each class. Representing
the class conditional density for the n” class as a superposition of J Gaussian basis

functions,

p(s1C,) =2 p(sl HpQj) 16

Jj=1

where p(j) are basis function priors (the probabilities that the j basis function generates
an unspecified spectral signature) and are parameters of the mixture model determined
during training, and the p(slj) are the probabilities that the observed spectral signature

could be generated by the j* basis function, which for Gaussian basis functions, are

, 1 (s—m,)*
p(slj)= 2)1/2 €Xp| — zj ’ 17

(270 ; 20;
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p(s)

Figure 17: A mixture model density estimator with five mixture components.

where o;z is the variance (width) of the basis function, and m; is its mean (centre). Such
a density estimator is referred to as a Gaussian mixture model, since the density is
modelled as a mixture of independent Gaussian components. Density estimators of this
form can be visualised as a network structure (as shown in figure 17 for a model with
five mixture components) where the inputs are the pixel spectral signatures, each hidden
node corresponds to one of the components in the mixture model, and the hidden node
activations are equal to the p(slj) terms. The priors for each of the mixture components
are given by the hidden to output layer weights and the network output is the probability
density at the specified point in spectral space. With a suitable choice of error function,
the density estimator can be “trained” using error backpropagation gradient descent in
the same way as any other neural network, provided that the priors are constrained to

sum to unity.

The basis function priors, means and variances together form the complete set of
parameters for the mixture model, and must in some way be inferred from a set of
exemplars. This is done by dividing the available data set of D patterns into N separate
data sets, the " of which contains only pixels belonging to the n” class. N density
estimators are then constructed by finding the mixture model parameters that minimise

the negative log-likelihood of the data set given the density estimates

D
E=-YInp(s,1C,), 18
d=l
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where p(s/C,) is the output of the n” density estimator on the d"” exemplar. There are a
variety of standard ways of minimising equation 18, one of the most efficient of which
is the expectation maximisation (EM) algorithm. The EM algorithm for finding the
parameters of a Gaussian mixture model is described in [Bishop:95], and so only an
outline of its conceptual basis will be given here. Iterative algorithms for finding the
parameters of any non-linear model proceed by using the current set of model
parameters, in this case, p,.(j), mj”l‘l and o;-”’d, along with some performance metric, to
derive a new set of parameters, p,..(j), m" and ¢"". The main aim of EM is to find
the new parameters such that the expected increase in the performance metric achieved
by changing from the old to the new parameters is maximised. For the Gaussian mixture
model, it can be shown (see [Bishop:95]) that the decrease in the cross entropy metric

when changing from an old set of parameters to a new set is always less than:

19

J
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d=1 j=1

where p,.(jl s4) is the probability that the spectral signature of the 4" pixel in the set of
exemplars was generated by the j” component in the mixture given the old parameters.
Minimising the above bound with respect to the model parameters makes it possible to
derive equations for the new parameters in terms of the old parameters in such a way
that the minimum expected decrease in the error function is maximised. Thus, for the

basis function means (the details of the derivation can be found in [Bishop:95]):

D
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for the basis function variances,
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and for their priors:
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Once the parameters of the density estimators have been set, classification proceeds by
presenting the spectral signature s of the pixel under consideration to the set of N
density estimators, to obtain the class conditional densities for each class p(slC,). These
densities can then be used with Bayes’ theorem to derive the posterior probabilities

upon which optimal classifications can be based:
(s1C,)p(C,)
p(C, 15)=—L P
2, p(s1C,)p(C,)
m=1
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Figure 18: Class conditional probability of s given class 1.
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Figure 19: Class conditional probability of s given class 2.

Although in practical applications the direct and indirect approaches to classification
may be used interchangeably, the direct approach will often give better performance.
The reason for this can be seen from figures 18, 19, and 20. Figures 18 and 19 show two
class-conditional probability densities p(siC;) and p(sIC;) and figure 20 shows the
posterior probability of class C; given a pixel of spectral signature s, p(Cjls), obtained
by applying Bayes’ theorem and assuming equal priors. The figures show that although
the class conditionals are quite complex, much of the complexity lies away from the
boundary between the two classes where the posterior probability makes its transition.
This means that the posterior probability distribution itself is of a much lower
complexity than either of the class conditionals, and hence could be described using a
simpler model. This in turn implies that if the posterior distribution were modelled
directly, then for a set of exemplars fixed size, the direct approach to classification

would, on average, produce more accurate classifications [Ripley:96].

p(Cils)

0 Spectral signature

Figure 20: Posterior probability of class 1 given s.
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6.3. Softened Classifications

Soft classifications were first used to derive information about subpixel cover in
[Foody:96]. The technique is based on using the posterior probabilities estimated by
some standard classification algorithms as fuzzy classifications, in a similar way to that
of section 6.1 but with the exception that only pure pixels are used to train the
classifiers. This omission means that the softened classifications are not identical to the
posterior probabilities estimated at the outputs of a standard classifier, since softened
classifier outputs strictly represent probabilities that hypotheses of the form “this pixel
consists purely of crops” rather than “this pixel contains at least 50 % crops” as would

more likely be the case with a crisp classifier.

Algorithm Error Function Number Qf Basis | Validation Set
Functions Error

Linear discriminant Sum of squares Not applicable 0.08469
Logistic discriminant Sum of squares Not applicable 0.05219
Softmax discriminant Cross entropy Not applicable 0.1603
MLP Sum of squares 5 0.05260
“ Cross entropy 5 0.1594

Table 4: Model performances in producing softened classifications.

This section presents the results of experiments aimed at deriving softened
classifications from neural network classifiers, and examines the relationship between
soft and fuzzy classifications in more detail. To produce the soft classifiers used in this
section, the training and test data sets were pre-processed so that they only contained
pure pixels — pixels containing either O of 100 percent of the target class. Since, of the
tall herb pixels, only 0.2 percent of the training pixels consisted purely of tall herb, soft
classification experiments were performed only on the cereal data, for which 13,726
pixels in the training set were pure. To evaluate the potential of soft classification for
fuzzy classification, five different models were trained and tested on pure data only. The
MLPs were trained as though they were to be used as normal classifiers — that is, the test
set was used to perform early stopping to prevent overfitting by training for a fixed
period of 16 hours and selecting the parameters from that period that offered the best
test set performance. These parameters were restored to the model which was then
applied to the fuzzy validation data in order to evaluate its fuzzy classification

performance. The results of this process are given in figures 21 to 25 and in table 4.
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Figure 21: Cereal proportions estimated using a softmax discriminant trained using the cross entropy

error on pure pixels only.
" A

Figure 22: Cereal proportions estimated using a linear network trained using the sum of squares error
on pure pixels only.

In general, the fuzzy classifications obtained by training a network on pure pixels only
are slightly worse than fuzzy classifications obtained from a network trained on a
hardened version of the original data set as was presented in section 6.1. The only
exception to this rule is the logistic discriminant which performs better when trained on
pure pixels only. As with the peculiarities of the fuzzy classification results generated
by the crisp classifier, the details of the behaviour of the soft classifiers are difficult to
explain. As with the crisp classifier, the addition of the logistic function to the output of
the linear network produces a drastic improvement in performance. For the softened
classifier however, the roles of the sum of squares and cross entropy function are
reversed: sum of squares fuzzy classification performance deteriorates when the simple
logistic discriminant is replaced by the more complex MLP, but cross entropy

performance improves when the softmax discriminant is replaced.
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Figure 23: Cereal proportions estimated by a 6-5-2 MLP trained using the cross entropy error on pure

pixels only.
oy

Figure 24: Cereal proportions estimated by a logistic network trained using the sum of squares error
on pure pixels only.

1. "

Figure 25: Cereal proportions estimated by a 6-5-1 MLP trained using the sum of squares error on
pure pixels only.

|

As before, the differences between the techniques used here for performing fuzzy
classification by soft classification are difficult to explain due to the interaction of
model parameterisation, error function, and the distributions of the pure only pixels and
the fuzzy validation data. Rather than discussing the specific features of the techniques’
behaviour on the specific partition of the data set used in this thesis, the following
section presents a short theoretical analysis of the relationship between posterior
probabilities of class membership — the quantities estimated by crisp classifiers
[Schurmann:96] which represent the most accurate results reported in this thesis thus far
and the optimal fuzzy classifications, defined in this case as those that minimise either

the sum of squares or cross entropy error functions over all possible data.

6.3.1. On the Relationship between Posterior Probabilities and
Fuzzy Classifications

Since the softened outputs of conventional classifiers can often be interpreted as
estimates of the posterior probabilities of class membership [Baum:87][Bishop:95][Cid-
Sueiro:00], it is interesting to consider the relationship between such probabilities and
the subpixel proportions that they are used to approximate when soft classification is
employed in land cover mapping. This subsection considers this relationship in detail

and concludes that although posterior probabilities of class membership of pixels are
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likely to be positively correlated with subpixel proportions, the two quantities cannot, in
general, be equal. This suggests that softened classifications should be avoided as a
means of obtaining information concerning subpixel cover unless more direct means of
fuzzy classification are not possible due, for example, to a lack of fuzzy membership

information in the set of exemplar pixels.

The fuzzy classification that minimises the sum-of-squares and cross-entropy functions
is equal to the mean of the distribution of subpixel memberships at each point in spectral

space, as given below:
Mo = [ p(u) $)dp 25

For the purposes of this discussion, these subpixel memberships will be considered to be
optimal — a reasonable assumption since they minimise the error functions (and hence
maximise the equivalent likelihoods) over the true and unknown distribution of subpixel
memberships. There are thus no alternative estimates that will produce, on average,
smaller errors. Similarly, the posterior probability of class membership can be written in

terms of the spectrum-conditional probability p(u | s) as shown below:
p(C, 15)= [ p(C, | ) p(u1 s)du 26

In order for posterior probabilities of class membership and fuzzy classifications to be
equal, it is necessary for equations 25 and 26 to be equal. This is only guaranteed for
arbitrary p(u | s) if the posterior probability of class membership given a certain

subpixel membership is equal to the subpixel membership, i.e. that
u=p(Clu) Vue[0,11Y 27

If pixel classification is unambiguous given subpixel memberships, the vector of
posterior probabilities, p(Clg) will always have a one in the n* position where 1 <n <N
and zeros in all others, and hence cannot satisfy the above condition. This shows that the
posterior probability of the membership of pixels in classes where class membership can
be determined unambiguously from subpixel area proportions cannot be guaranteed to

equal the optimal subpixel area proportion estimates for all forms of p(uls).
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An alternative approach to understanding this issue is shown for a simple two class case
in figure 26. This figure shows the distribution of possible subpixel proportions at some
point s in spectral space. While the optimal fuzzy classification is given by the mean of
the proportion distribution, the posterior probability of class membership is given by the
area of the shaded region. Clearly, by modifying the probability distribution for x < 0.5,
it is possible to change the distribution’s mean, and hence the optimal fuzzy
classification, without changing the posterior probability of class membership. The
relationship between these posterior probabilities and the optimal fuzzy classification is

thus a relatively weak one.

[up(u! s)du

Probability,
p(uls)

Proportion, y

Figure 26: An illustration of the relationship between posterior probabilities and optimal fuzzy
classifications.

It is interesting to note that the equivalence of posterior probabilities and fuzzy
memberships does hold for special forms of p(uls). One such form occurs when all
pixels with spectral signature s are pure (consist of a single subpixel cover class). Under
these circumstances, p(uls) is zero except when # has a one in the n” position where 1 <
n < N, and zeros in all others. In addition to this, positive correlation between posterior
probabilities defined in terms of subpixel area and fuzzy classifications, as was observed
in [Foody:96¢], are to be expected. This is because there is always a positive correlation
between p(C ) and u for pure pixels by virtue of the way in which class membership is

defined.
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7. Fuzzy Classification

There are two ways of performing fuzzy classification, each of which is analogous to
one of the two ways of performing crisp classification: The first approach to crisp pixel
classification is to use pixels of known class membership to construct density estimators
for the class conditional distributions in spectral space. When a new pixel is observed,
the class conditional densities estimated can be used with Bayes’ theorem to derive
estimates of the posterior probabilities of class membership of the pixel in each of the
target classes upon which crisp classifications can be based. The fuzzy classification
analogue of this process uses a data set of pixels of known fuzzy membership to place
fuzzy basis functions in spectral space from which fuzzy memberships are derived by a

process of normalisation.

Most such implementations of both crisp and fuzzy classifiers use highly parametric
forms for the class conditional distributions or fuzzy basis functions and hence usually
achieve only very limited performance. However, this limitation is not implicit in the
algorithms but is specific to particular implementations, and significant performance
benefits can be demonstrated for both crisp and fuzzy classifiers through the use of
more flexible models. This is well known in the case of crisp classification, but less so
for fuzzy classification where the ad-hoc choice of highly parametric basis functions
dominates. The analogy between crisp and fuzzy classification presented here is further
extended in section 7.1.1, where it is shown that the use of semi-parametric
representations of fuzzy basis functions is a natural extension of the standard fuzzy

classifier and that their application can produce drastic improvements in performance.

The second and most direct way of producing a crisp pixel classifier is to use a set of
pixels of known class membership to derive a model of the relationship between a
pixel’s spectral signature and its class membership such that when a new pixel is
observed, the model can be used to derive an estimate of the class membership of the
pixel. Certain types of these models can be shown to produce approximations to the
posterior probabilities that a pixel belongs to each of the target classes — a property that
can be exploited in producing fuzzy classifiers and will be discussed in greater detail
later. The fuzzy classification equivalent of this direct approach to classification is to
use a set of pixels of known fuzzy membership to derive a model of the relationship
between pixel spectral signatures and their fuzzy memberships. When a new pixel with
unknown fuzzy membership is observed, the model can be used to obtain an estimate of

its membership. This approach currently dominates the area proportion estimation
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literature and will be discussed at length in a later section. The following sections return
to the indirect methods of performing crisp and fuzzy classification by examining two
algorithms, one a crisp classifier, the other a fuzzy classifier, which are shown to be
closely related. Table 5 presents a summary of the relationships between direct and

indirect crisp and fuzzy classifiers.

Crisp Classification Fuzzy Classification
Requires data of known class Requires data of known fuzzy
Data . .
membership membership
Model class conditional densities Model fuzzy basis functions
Indirect Derive posterior probabilities of class | Derive fuzzy memberships by
membership using Bayes’ theorem normalisation
. Model relationship between spectral Model relationship between spectral
Direct | ~. . . .
signature and class membership signature and fuzzy membership
Table 5: Comparison of crisp and fuzzy classification.

7.1.  Indirect Fuzzy Classification

As a typical example of a supervised fuzzy classifier, this section considers the
influential work described in [Wang:89]. The structure of the fuzzy classifier described
therein allows it to be viewed as a neural network, as shown in figure 27. At the top of
the figure are the classifier inputs, which usually consist of the spectral signature of the
pixel to be classified. This information is propagated to a series of non-linear basis
functions in the network’s hidden layer that usually take the form p(ls-ml,0) where s 1s
the pixel’s spectral signature, m is the basis function’s centre, ¢ is a width parameter,
which controls the rate at which p changes with s, and p(.) is a monotonically decreasing
function of the difference Is-ml. p(.) therefore contains information about the distance

between the basis functions’ centres and pixels’ spectral signatures.
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Fuzzy membership

Figure 27: A fuzzy classifier with five basis functions.

One basis function is assigned to each of the target fuzzy classes, and used to represent

the localisation of those classes in spectral space. The centre of the »” basis function is

found using:

D

fn (sd )Sd
_ d=1 28

m_._.._——

n D

PWACH)
d=1

where there are D pixels in the set of exemplars, the pixels have spectral signature s,
and fuzzy membership in the n” class of f,(s,). Thus, the centre of the basis function
representing class » is the mean of the spectral signatures of all pixels weighted by their

membership in class n. The widths of the basis functions may be determined in a similar

way using:

D
Y fo(s)(s,—m,)’

o =42 29

n D
DWACH)
d=1

where, for simplicity, only one spectral band has been assumed. Both of the above
formulae are independent of the estimated fuzzy memberships, and hence the

parameters of the fuzzy classifier may be found from a single application of the above
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equations. This is an important advantage of the fuzzy classifier over neural networks
such as the MLP, which typically require many thousands of applications of the

parameter update equations and hence many minutes, if not hours, of training.

Once the parameters of the fuzzy classifier have been determined, the output of the
fuzzy classifier f,(s;), which represents the fuzzy membership of the pixel under
consideration in the n” class, is found by normalising the output of the n™ hidden layer

basis function by the sum of the outputs of all basis functions,

ACH S ACHE 30

N

27,0

where p,(s,) is a Gaussian basis function,

1 (s, —mn)2
§,)=———exp| — L2
P, (50) Qro )" P 207 31

Fuzzy memberships for all classes of interest may be derived by constructing a separate
fuzzy classifier for each class. This process is more efficient than it may initially appear,
since all fuzzy classifiers have the same parameters and differ only in the normalisation
stage, rendering it unnecessary to duplicate either the training procedure or the input to
hidden and hidden layer structures. Following the work presented in [Wang:89], the
basis functions used to generate the fuzzy classifications reported here are Gaussian and
for simplicity, only one spectral band has been considered. It should be noted that other
applications of this type of fuzzy classifier have used different basis functions (see, for
example [Foody:96¢][Fisher:90][Robinson:85]), the choices of which are largely arbitrary,
despite the fact that it constrains the form of the fuzzy partitions that can be realised by
the classifier. The next section returns to this issue by providing a new analogy between
the fuzzy classifier and EM density estimator that not only provides a meaningful
interpretation of the outputs of the basis functions but also motivates the use of non-

parametric substitutes to the forms normally used.

Figures 28 and 29 show the estimates made by the fuzzy classifier for the subpixel
proportions on the unseen areas in the Stoughton image. Figure 28 shows the cereal
proportion predicted by the fuzzy classifier giving a cross-entropy performance of
0.5161 — considerably worse than that of the softened classifiers considered earlier. The

performance of the fuzzy classifier on the tall herb data is similarly poor, achieving a
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cross-entropy error as high as 0.3112. There are essentially two reasons for these

failures:

e The fuzzy classifier is highly parametric in the sense that the shape of the basis
functions, which determine the range of functions the fuzzy classifier can realise are
determined apriori. Using the fuzzy classifier is rather like using other inflexible
and highly parametric models such as linear networks and would thus be expected

to perform poorly on complex modelling problems.

e The fuzzy classifier contains no priors on the basis functions to adjust for the
relative proportions of the different classes in an image. This problem is particularly
pronounced in the case of the tall herb class, where few pixels contain more than a
very small proportion. This issue is discussed again later in this thesis where it is
shown that crisp classifiers and fuzzy classifiers, such as the one discussed here, are

equivalent.

= -
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B

Figure 29: Tall herb proportions predicted by a fuzzy classifier.

The following section uses the novel probabilistic interpretation to highlight the close
relationship that exists between the indirect approach to fuzzy classification described in
this section and crisp classification. This equivalence provides new and important clues
as to how the structure of the fuzzy classifier can be changed to improve its
performance. The section concludes by presenting a novel analysis of the asymptotic
behaviour of the fuzzy classifier, which shows that as the quantity of training data and
flexibility of the classifier are increased, the fuzzy classifications it produces converge

to the optimal fuzzy classifications.
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7.1.1. The Equivalence of Fuzzy and Crisp Classifiers

This section shows that the fuzzy classifier used in [Wang:90] (and similar to those used
in [Melgani:00] and [Chittineni:81]) is a special case of a crisp classifier under the
probabilistic interpretation. In particular, if the crisp classifier uses the indirect method
and the class conditional density models consist of only a single Gaussian, and the

priors and posteriors for each Gaussian are unity, i.e.
p()=1 A~ p@ls)=1 Vil j<J 32

the update equations for the basis function parameters (derived in appendix A) reduce

to:

D
zsd:ud 33

new __ d=l

J

Z,Ud

D
d=1

for their centres, and

D
w2
3 it s~
new\2 __ d=1
(O-j ) - D 34

for their variances. Thus, the equations for finding the parameters of an EM density

estimator used in a crisp classifier are the same as those for the supervised fuzzy

classifier where
H; = f j (Sd) 35

and the area proportion estimate and posterior probability of class membership of a

subpixel point in the m™ class C,, is:

C,.)pC
p(C 1s,)= Np(Sdl w)P(C,) y

2. p(s4|CHP(C,)

where
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l D
p(C)=—=> 1,(C,), 37
D45

and the fuzzy classifier has once again assumed all priors to be equal.

In a normal application of the EM algorithm, the re-estimation equations are repeatedly
applied until the algorithm is considered to have converged. Using the probabilistic
interpretation however, the posterior probabilities p(C | s,) are the true subpixel
proportions and are therefore known. Thus, the optimal values of the basis function
parameters are found from a single application of the re-estimation equations in the
special case that the class conditional densities are each modelled by a single Gaussian

as is the case in the equivalence described here.

The probabilistic interpretation and the comparison of the indirect approach to deriving
fuzzy memberships with the indirect approach to deriving crisp classifications provides
useful insight into the operation of the fuzzy classifier, and suggests ways in which it
may be improved. In terms of interpretation, the similarity between the equations for the
parameters suggests that the values of the intermediate fuzzy basis functions can be
interpreted as representing class conditional probability densities. The normalisation
process can then be seen as an application of Bayes’ theorem to convert the class
conditionals into the pointwise posterior probabilities that, by the probabilistic

interpretation, are equivalent to area proportions.

In terms of improving performance, density estimators typically contain priors for each
class — parameters that are absent from the fuzzy classifier, but which can produce a
significant improvement in performance, as can be seen by comparing figures 28 and 34,
figures 29 and 30 and tables 7 and 6. In the case of the tall herb class, the inclusion of
the prior reduces the validation set error from 0.3112 to 0.1084. In addition to this, EM
density estimators can be semi-parametric, that is, they use a superposition of a variable
number of basis functions to model each class conditional density rather than the single
basis function used by the fuzzy classifier. The derivation of the equations for updating
the density estimator parameters using EM provided in the appendix is presented in
these terms, and the results in figures 30 to 37 show that increasing the flexibility of the
density estimator through the addition of basis functions improves the accuracy of the
area proportion estimates made far beyond those of the standard fuzzy classifier. Note

that the EM fuzzy classifier appears to overfit the tall herb data when using 10 basis
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functions. This problem may be overcome by adding regularisation to the density
estimators [Bishop:95] or by initialising the density estimator to have low complexity
(giving the basis functions large variances), using an algorithm that updates the

parameters more slowly than EM over a larger number of iterations, and using early

stopping.

Figure 30: Tall herb proportions predicted by the EM fuzzy classifier with 1 basis function.

Figure 31: Tall herb proportions predicted by the EM fuzzy classifier with 2 basis functions.

Figure 32: Tall herb proportions predicted by the EM fuzzy classifier with 5 basis functions.

Figure 33: Tall herb proportions predicted by the EM fuzzy classifier with 10 basis functions.

Algorithm Number of Basis Functions Validation Set Error
Fuzzy classifier Not applicable 0.5161
EM fuzzy classifier 1 0.4590
“ 2 0.2979
“ 5 0.2204
“ 10 0.2210

Table 6: Comparison of the standard and EM fuzzy classifiers on fuzzy tall herb data.
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Figure 35: Cereal proportions predicted by the EM fuzzy classifier with 2 basis functions.

Sy ] T

Figure 36: Cereal proportions predlcted by the EM fuzzy classifier with 5 basis functions.

Figure 37: Cereal proportions predlcted by the EM fuzzy classifier with 10 basis functions.

Algorithm Number of Basis Functions Best Test Set Error
Fuzzy classifier Not applicable 0.3112
EM fuzzy classifier 1 0.1084
“ 2 0.1081
. 5 0.1081
= 10 0.1055

Table 7: Comparison of the standard and EM fuzzy classifiers on fuzzy cereal data.

An important but as yet unanswered question concerning the fuzzy classifier is whether
its fuzzy classification estimates approach the optimal fuzzy classifications as the
quantity of training data and the flexibility of the classifier increase. A positive answer
to such a question would provide some level of confidence that the fuzzy classifier is
capable, in principle, of performing optimal fuzzy classification and that its outputs can
reasonably be interpreted as proportion estimates. The following analysis shows that,
under ideal circumstances, the indirect method of fuzzy classification can indeed
produce optimal fuzzy classifications. If an unlimited quantity of data were available,

the error function used to train the EM based fuzzy classifier would be:
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E= —J. p(Cls)p(s)Inp,, (sl C)ds 38

where p(Cls) is the average posterior probability that a subpixel point is in class C
(equivalent to the proportion of the subpixel area of the pixel under consideration
covered by class C), given that a pixel has spectral signature s, and p.{sIC) is the
quantity estimated by the density estimator component of the fuzzy classifier — as will
be shown, this is the probability that the spectral signature s is observed given that a
subpixel point is in class C. If the density estimator is allowed to become arbitrarily

flexible, then when p,(sIC) minimises E,

oE
—=0 39
ap,,(s1C)
for all s. Le. for two points s; and s, in spectral space,
oE oE
= 40
apest (sl l C) apest (SZ I C) .
But, differentiating equation 38 with respect to p,..(s;/C) and p,(s,IC) gives:
oE _ p(Cls)p(s))
Pou(5,1C) puy(s,10) 4
and
oE _ p(Cls,)p(s,) 42
apest (SZ I C) pest (Sz l C) ,
which, when equated give:
p(Cls)p(s,) _ p(Clsy)p(s,) i

pest (Sl i C) pest (SZ I C)

Dividing each side by p(Cls;)p(s;) and multiplying by p..(s,IC) gives:
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p(Cls)p(s)) _ P (8, 10)

PC1$)P(sy)  Puy(5,1C) 4
which implies that p,.(sIC) is proportional to p(Cls)
P (s1C)=0p(Cls)p(s) 45

kd

where ¢ 1is a constant of proportionality. Fortunately, & can be determined, since the

choice of Gaussian basis functions guarantees that

[P (s1C)ds =1 46

>

such that

afp(C I s)p(s)ds =1 47

?

which, since fp(C!s)p(s)dszfp(C,s)ds=p(C) implies that

g=— 48
p(C)
Thus,
p(Cls)p(s)
|cy= P 19ps) 49
PuS1O="2000

which shows that the density estimator components of the fuzzy classifier do indeed
model the class conditional probability densities. Recalling that, in practice, the EM
fuzzy classifier operates by using two density estimators, their outputs representing
Pes(SIC) and p.y (sl =C) (—C meaning not class C) and being combined using Bayes’

theorem:
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P ($1C)p(C)
D, (s1C)p(C)+ p,, (s1=C) p(—=C) ’
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D, (Cls)=

where the closed world property of C and not C implies that the denominator reduces to

Pesi{(SIO) P s (s C)=p,.(s), which leads to:

1 CYyp(C
pexr(CIS)Zpeﬂ(S )p( ) 51
Py (8)
which, from Bayes’ theorem, implies that:
P..(Cls)=p(Cls) 32

In other words, the EM based fuzzy classifier that is trained by minimising equation 38
produces outputs that can be interpreted as subpixel area proportion estimates, in the
sense that as the classifier is given increasingly large quantities of data and allowed
greater flexibility, the estimates it produces converge to the optimal proportion
estimates. In practice, it is likely that even the augmented fuzzy classifiers described
here would, on average, perform less well than more direct techniques such as the MLP
as they suffer from exactly the same problem as the indirect crisp classifiers to which
they are equivalent — they model the area proportions (equivalent to posterior
probabilities under the probabilistic interpretation) via potentially complex class

conditional distributions.

The following section describes the current state of the art in fuzzy classification — the
use of complex flexible models such as neural networks to directly estimate proportion
information from spectral data. The section describes the asymptotic behaviour of
neural network learning and how it relates to the problem of area proportion estimation.
It also uses the probabilistic interpretation to present a novel analysis of the role of the

cross entropy function in training neural networks for fuzzy classification.
7.2.  Direct Fuzzy Classification
The most successful techniques currently in use for extracting subpixel area proportion

information are non-linear regression algorithms that use a set of exemplar pixels of
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known fuzzy membership to learn a function that directly maps a pixel’s spectral
signature to a subpixel proportion estimate. Of the functions used, neural networks have
been amongst the most popular due to their accessibility and robustness. This section
presents the results of applying a range of non-linear regression algorithms to the
FLIERS data set and then considers the question of the appropriate error function for
fuzzy classification — an issue debated in [Foody:95b]. In particular, the probabilistic
interpretation is used to provide new insight into the role of the cross entropy function in

fuzzy classification.

Direct fuzzy classification consists of two largely independent branches, the first
typified by the application of linear models to model the relationship between an
observed spectral signature and subpixel proportions and the second and most important
as far as this thesis is concerned is the application of flexible non-linear models such as
neural networks. Although research into linear techniques continues to this day, there is
good reason to believe that in practice, the relationship between a pixel’s spectral
signature and the optimal fuzzy classification is non-linear. This seems to suggest that
robust non-linear models should be used, particularly if there are large quantities of

labelled exemplar pixels available, as is the case with the FLIERS data set.

Figure 38: Cereal proportions estimated by a linear network trained using the sum of squares error on
fully fuzzy data.

"y

Figure 39: Cereal proportions estimated by a logistic network trained u;ing the sum of squares error
on fully fuzzy data.

The results of applying single layer linear and logistic networks to the FLIERS data set
are shown in figures 38 to 43 and table 8. As usual, the simple linear network performs
poorly due to its inability to suppress input variance in its output. This results in a mean
squared error rate of 0.08289 as opposed to 0.05092 for the logistic network on the
cereal data. Although the performance of the single layer logistic network is the best

yet seen, there is very little obvious difference that can be seen between the images of
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the predicted proportions in figure 38 and earlier images. This suggests that such images

can only offer a fairly coarse qualitative indication of performance.

Figure 40: Tall herb proportions estimated by a linear network trained using the sum of squares error
on fully fuzzy data.

Figure 41: Tall herb proportions estimated by a logistic network trained using the sum of squares
error on fully fuzzy data.

For the tall herb class, the proportions predicted are all small and little variance in
predictions can be seen other than in the enhanced images of figures 42 and 43. Each of
these images, representing the predictions made by the linear and logistic networks
respectively have broadly similar characteristics: Although the predictions they make
generally bear little resemblance to the true distribution of tall herb, they are quite
similar to each other. For example, the absence of tall herb is correctly predicted for the
lower field in the fourth subimage. This suggests that either the difficulty in predicting
the proportion of tall herb is due to spectral confusion or neither the linear nor the
logistic network can accurately predict the proportion of tall herb because they are too

inflexible to learn the mapping from spectral signature to subpixel proportion.

Figure 42: Enhanced image of the tall herb proportions estimated by a linear network trained by
minimising the sum of squares error on fully fuzzy data.
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Figure 43: Enhanced image of the tall herb proportions estimated by a logistic network trained using
the sum of squares error on fully fuzzy data.
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The following section looks at neural networks — a class of semi-parametric models that
are known to be universal approximators and hence theoretically capable of reproducing
any function to arbitrary accuracy [Ripley:96]. Before applying neural networks to the
fuzzy classification problem, it is interesting to consider the question of which error
function should be used [Foody:95b]. This issue is discussed at the beginning of the next
section, where the probabilistic interpretation is used to provide new insight into the role

of the cross entropy function in area proportion estimation.

Network Class Error Function Validation Error
Linear Cereal Sum of squares 0.08289
Logistic Cereal Sum of squares 0.05092
Linear Tall herb Sum of squares 0.02405
Logistic Tall herb Sum of squares 0.02397

Table 8: Comparison of fully fuzzy classifiers with linear and logistic output nodes

51 S Bias
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Figure 44: An MLP that uses five hidden neurons to estimate a singls proportion from six spectral
bands.
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7.2.1. On the Cross Entropy Error and Fuzzy Classification

In most applications, neural networks are trained by minimising either the sum of
squares or cross entropy error functions over the training set. While the sum of squares
error function is normally used for regression problems and the cross entropy function
for classification it is less clear which function should be used in the fuzzy classification
of remotely sensed image pixels. This question was considered in detail in [Foody:95b]
which produced several arguments and some empirical results in favour of the cross
entropy function. This section uses the probabilistic interpretation to provide a novel
theoretical justification for the use of the cross entropy function in the fuzzy

classification of remotely sensed image pixels.

Consider a set of N classes, C, : 1 <n < N where C, is the label of the n™ class. If this set
is closed world and the classes are mutually exclusive, the probability distribution of
class memberships obtained from random sampling of the subpixel area will be

multinomial:

N
p(Clx,y)= H p(C, 1x, y) e 53

n=l

where C(x,y) is a vector indicating the class membership of the subpixel point (x,y). For
example, if (x,y) € C, then C(x,y) has a one in the n” position and zeros in all others.
p(C,lx,y) is the posterior probability of membership of the subpixel point (x,y) in class
C,. The probability of D such points having class membership C where C is now a
matrix of D rows of vectors each indicating the class membership of one of the D points

is given by:

D N
pCI1DY=TTT]nP(C, 1%, ) 54

d=1 n=l

A neural network would typically be trained to classify such a set of points by using the
maximum likelihood procedure. That is, the network would model the distribution
parameters p(C,lx,;ys) so as to maximise the probability that the distribution would
reproduce the set of training patterns. Using the probabilistic interpretation, the

distribution parameters are equal to the subpixel area proportions such that:
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D N
p(C1D) =] [[ T4 (C, 1 PYT 0 55

d=1 n=l

where u,,{C,|P) are the neural network estimates of the distribution parameters. In other
words, given a set of D subpixel points of class membership C,(x; y;, maximum
likelihood subpixel area proportion estimates may be obtained by finding the area
proportions which maximise equation 55. It is however, possible to extend this by
rearranging and considering the case when D becomes infinitely large. As this limit is
approached, the proportion of the D samples belonging to class C, approaches the
proportion of the subpixel area covered by C,. Taking the outer product inside the

power thus gives:

N
p(C1D)= H u,,(C, 1 PP 56

n=l1

This makes it possible to simulate the effect of training a neural network on an infinitely
large number of subpixel samples. To find the maximum likelihood subpixel area
proportion estimates, it is convenient to minimise the negative logarithm of the
likelihood given in equation 56 rather than maximise the likelihood itself. The negative

log-likelihood is given by:
N
—In[p(C1D)| == Du(C, 1 P)Iny,,(C, | P) 57
n=l

The multiplicative constant D is independent of the distribution parameters and hence
does not change the set of parameters that maximises the likelihood. For this reason the
D term may be ignored when maximising equation 57, such that the problem of finding
the subpixel area proportions that maximise the likelihood is equivalent to finding the
values for t,,(C,|P) which minimise:

N
E=-> u(C,1P)Iny,,(C,|P) 58

n=l

which is the same as minimising the cross entropy error between the true and estimated
subpixel area proportions. Multiple exemplar pixels may easily be accommodated by

accumulating the expected error over the set of exemplars, so that for D pixels,
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D N

E=-Y% u(C,1P)nu,,(C,I|P) 39

d=1 n=1

The above derivation of the cross entropy function indicates that the fuzzy
classifications that minimise the cross entropy function maximise the probability that a
large number of samples drawn from a pixel with the subpixel proportions given by the
fuzzy classification would have the same crisp class memberships as an equal number of
samples drawn from a pixel with the target subpixel proportions. Alternative discussions
of the use of the cross-entropy function for fuzzy classification, which focus on its
information theoretic basis and the interpretability of the resulting error measures may

be found in [Foody:95b] and [Foody:96c].
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Figure 45: Log likelihoods of the validation set given cross entropy and sum of squares trained
networks.

Figure 45 shows the results of an experiment conducted to evaluate the performance of a
sum of squares and a cross entropy trained fuzzy classifier in terms maximising the
likelihood that a set of subpixel samples from unseen pixels are generated with the
correct memberships. The analysis of the cross entropy function that was presented
earlier, suggests that the cross entropy trained fuzzy classifier should offer superior
performance in this test. Figure 45 shows the results of this experiment in terms of the
natural log joint probability of the fuzzy classifiers correctly predicting the class
membership of all subpixel samples where one sample is drawn from each pixel in a
validation set of 1,658 pixels. As shown, the cross entropy trained fuzzy classifier
predicted the test set with log probability of approximately —1.48x10°, whist the sum of
squares trained fuzzy classifier only achieved a log probability of about -1.52x10°. This
means that the cross entropy trained fuzzy classifier is roughly 10* times more likely to
assign correct memberships to all the subpixel samples than the sum of squares trained

fuzzy classifier.
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Technique Data Set Error Function Structure Validation Set Error

MLP Cereal Sum of squares 6-2-1 0.05011

«“ « « 6-5-1 0.04897

“ “ “ 6-10-1 0.04779

“ « Cross entropy 6-2-1 0.1427

“ «“ “ 6-5-1 0.1379

“ “ “ 6-10-1 0.1319
Table 9: Comparison MLPs trained with sum of squares and cross entropy functions

on the cereal data.

Tables 9 and 10 and figures 46 to 57 give the results of applying sum of squares and
cross entropy trained MLP fuzzy classifiers to the FLIERS data set. Note that these
results are the best yet obtained for both the cereal and tall herb data sets. The minimum
degree of improvement is around 10 percent for both data sets, with the exception of the
logistic discriminant, which performs nearly as well as the MLP. This may be because
the cereal proportions are so tightly clustered around zero and one as was shown in
figure 4 that an algorithm such as the logistic network will perform well even if it has
limited ability to model subpixel mixing. It is likely that the performance difference
between the fully fuzzy neural networks and the other algorithms investigated thus far

would increase when applied to classes that exhibit a broader distribution of mixing than

the cereal class.

Technique Data Set Error Function Structure Validation Set Error
MLP Tall herb Sum of squares 6-2-1 0.02103
“ « “ 6-5-1 0.02046
“ “ “ 6-10-1 0.02016
* “ Cross entropy 6-2-1 0.1052
“ “ “ 6-5-1 0.09615
“ “ “ 6-10-1 0.09393

Table 10: Comparison of MLPs trained with sum of squares and cross entropy
functions on the tall herb data.

Figures 46 to 48 and figures 49 to 51 show the results of applying MLPs with different
numbers of hidden neurons to the cereal data set using first the sum of squares error and
then the cross entropy error. Between the sum of squares and cross entropy MLPs with
two hidden neurons, there are noticeable differences in the estimated proportions, such
as the greater homogeneity of the upper field in the fourth subimage predicted by the
cross entropy network at the expense of making greater errors in predicting the presence

of a field of cereal in the lower left hand corner of the third subimage. These differences
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are the result of interactions between the model parameterisations and the characteristics

of the different error functions as was explained in section 6.1.

: o
Figure 46: Cereal proportions predicted by a 6-2-1 MLP trained using the sum of squares error on
fully fuzzy data.

: ‘ . ".
Figure 47: Cereal proportions predicted by a 6-5-1 MLP trained using the sum of squares error on
fully fuzzy data.
| ‘f
Figure 48: Cereal proportions predicted by a 6-10-1 MLP trained using the sum of squares error on
fully fuzzy data.

"y

Note that the proportions predicted by the more flexible networks — those with ten
hidden neurons — are much less dependent on the choice of error function. This is
because for any pixel the proportion estimates that minimise the expected sum of
squares and cross entropy errors are the same (being equal to the mean proportions that
would be observed for that spectral signature), suggesting that an area proportion
estimator should produce the same estimate regardless of whether it is trained using the
sum of squares or cross entropy functions. In practice, any particular model will be too
constrained to reproduce the actual relationship between spectral signature and optimal
subpixel proportion estimate and will therefore make errors in its proportion predictions
that result from its parameterisation. It is the distribution of these errors between pixels
that is adjusted by the choice of error function and leads to differences in behaviour. As
more flexibility (in this case more hidden neurons) is added to the network, the
magnitude of the error caused by the parameterisation decreases, reducing the impact of

the choice of error function on the predictions made by the final model.
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Figure 49: Cereal proportions predicted by a 6-2-2 MLP trained using the cross entropy error on fully

fuzzy data.
"y

Figure 50: Cereal proportions predicted by a 6-5-2 MLP trained using the cross entropy error on fully

fuzzy data.

Figure 51: Cereal proportions predicted by a 6-10-2 MLP trained using the cross entropy error on
fully fuzzy data.

"y

A similar pattern of convergence of the predictions from sum of squares and cross
entropy trained networks with increasing network flexibility can be seen for the tall herb
data: the patterns of prediction and mis-prediction are much more similar for the
networks with ten hidden neurons than for those with only two. In both cases the
networks with small numbers of hidden neurons appear to be unable to pick out the
systematic variance in the tall herb data and hence do little more than model the
distribution mean leading to the almost uniformly dark estimate images. As more
flexibility is added to the networks by increasing the number of hidden neurons, the
proportion estimates display greater variation though never as much as the ground truth
data, suggesting that some systematic aspects remain unlearned. The actual predictions
themselves show considerable confusion, particularly between field boundaries with and
without tall herb. In the fourth subimage for example, both fuzzy classifiers incorrectly

predict the presence of tall herb for virtually all the field boundaries.
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Figure 52: Tall herb proportions predicted by a 6-2-1 MLP trained using the sum of squares error on
fully fuzzy data.

Figure 53: Tall herb proportions predicted by a 6-5-1 MLP trained using the sum of squares error on
fully fuzzy data.

Figure 54: Tall herb proportions predicted by a 6-10-1 MLP trained using the sum or squares error on
fully fuzzy data.

The following chapter presents a discussion of the factors that limit the performance of
fuzzy classification algorithms. In particular, it shows that some of these are
unavoidable when fuzzy classifications are based on pixel spectral signatures alone.
Rather than proposing new fuzzy classification algorithms, it is suggested that a new
representation for fuzzy classifications should be used — the distribution of probable

fuzzy classifications of a pixel given its spectral signature.

Figure 55: Tall herb proportions predicted by a 6-2-2 MLP trained using the cross entropy function
on fully fuzzy data.

Figure 56: Tall herb proportions predicted by a 6-5-2 MLP trained using the cross entropy function
on fully fuzzy data.

Figure 57: Tall herb proportions predicted by an 6-10-2 MLP trained using the cross entropy function

on fully fuzzy data.
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8. Performance Limits

The fuzzy classification literature contains many papers that report results of fuzzy
classification experiments, but there is much less discussion of the limits of achievable
fuzzy classification accuracy. It should be a priority to consider in detail what limits
there are that are intrinsic to the fuzzy classification problem, (in the sense that they
cannot be overcome by using more sophisticated fuzzy classification algorithms), since
further experimentation is only justified if these limits have not already been reached
[Wilkinson:96]. The following sections discuss characteristics of the fuzzy classification
problem that limit fuzzy classifier performance. The discussion is not intended to be
exhaustive, but rather focuses on issues that have received little attention in the fuzzy

classification literature.

8.1. The Effect of the Number of Classes

It is well known in the linear mixture modelling community that difficulties arise in
determining subpixel mixtures when the number of target classes exceeds the number
of spectral bands [Kent:88][Sohn:97][Bosdogianni:97]. This problem is usually attributed
to the difficulty of inverting the matrix of end member spectra resulting from its
singularity, and may be overcome by using a regularised estimator, or mapping the
original spectral measurements into some high dimensional space [Bosdogianni:97].
These solutions only eliminate one of the symptoms of a more serious problem: the
multiplicity of solutions to the linear mixture model indicates that the spectral data
contains insufficient information to uniquely identify the subpixel mixture responsible
for the observed spectrum. If the spectral data is insufficient, an upper bound will be
placed on the level of performance a fuzzy classifier can achieve, which can only be
breached by providing the classifier with new information such as contextual

information from surrounding pixels.

Unfortunately, it is relatively difficult to determine whether a particular set of spectra is
sufficient with respect to a particular set of target classes and, if insufficient, the extent
of the performance bound. The mixing which is likely to be observed in any particular
application for any set of target classes forms some volume in the space of mixture
proportions. If, in any region of mixture space, the volume is locally of a higher
dimension than there are spectral bands, it will not always be possible to unmix the

target classes with complete accuracy. In practice, it may be difficult to assess the
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likelihood of this condition arising for a particular set of classes, since most classes
cannot be guaranteed to interact with all others in the set. One notable example is in the
case of mapping land cover on a global scale. In such a situation it is reasonable to
expect that land cover types of, for example, ice and tropical forest would not be found
within the same pixel. Any set of classes that includes these therefore has at least one

degree of freedom less than the number of classes.

Since such detailed information may generally be lacking, it would be desirable to use
an automated procedure to compute the local dimensionality of the volume of mixtures
in a set of exemplars. Unfortunately, no algorithm for doing this is currently in common
use and even if it were, the ultimate aim of analyses with regard to the number of target
classes and their properties would be to compute the performance bound itself. In
reality, this is likely to be extremely difficult, since the bound is not only dependent
upon the local dimensionality of the volume of mixtures, but also on the unknown
underlying distribution of the mixtures, both of which would have to be estimated from

exemplars resulting in significant uncertainty in the error bound.
8.2.  The Effect of Spectral Variation

Virtually all natural and most man-made cover types will exhibit some degree of
spectral variation. Sources of such variation are many and varied: natural cover types
may vary spectrally with age, or season. Oil seed rape provides a rather dramatic
example of lifetime variation, changing from green to bright yellow over a relatively
short period. More complex classes that are actually composed of a large number of
simpler cover types, such as the ‘urban’ class will exhibit significant spectral variation

due to the changing subpixel proportions of the class components [Thomas:96].

Such spectral variation dramatically increases the difficulty in collecting a set of
exemplar pixels which are representative of both the types of mixtures seen in the
landscape that the fuzzy classifier will be applied to in application, but also
representative of the spectral properties of the target classes at the level of mixing
expected. This type of problem — collecting exemplars that are representative of the
application area — is ever present in statistical modelling, but is particularly severe in
remote sensing image classification due to the degree of spatial non-stationarity that is
present in such data. That is, the land cover statistics (as regards the relative frequency

and spectral properties of cover types) vary spatially, limiting the accuracy of any
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classifier that makes classifications on the basis of statistics learnt from a set of

exemplars drawn from any particular location.

An additional and more critical problem with classes that exhibit spectral variation
across all spectral bands is that it becomes impossible to infer subpixel cover
proportions from pixel spectra without some degree of ambiguity and hence
performance loss [Horwitz:71]. Including a class that exhibits spectral variation is, as far
as area proportion estimation is concerned, equivalent to attempting to estimate the
subpixel proportions of infinitely many classes, which, as was discussed in the previous
section, cannot be done with complete accuracy. The ultimate goal of any investigation
into this problem should be to quantify this component of the performance bound — a
task likely to prove impossible since the bound depends not only on the distribution of
the spectral variation, but also on how the spectral variation changes when classes mix,

and on the mixtures likely to be present in any particular application.
8.3. Primitives and Compounds

In this section, a new phraseology is developed and used to discuss the conditions
necessary to maximise the performance bound resulting from the sources of uncertainty
discussed in the previous sections. The first term to be introduced, primitives, refers to
the simple cover types from which more complex ones are composed. Typically, for
example, the ‘urban’ class would be composed of much simpler classes such as ‘slate’
and ‘tarmac’ which would be classed as primitives. The ‘urban’ class itself would be
described as a compound class, since it is composed of a number of simpler primitives.
It is also useful to distinguish different types of primitives by their relation to each other
and to compound classes: Shared primitives are used in the definition of two or more
compound classes, whereas unshared primitives are used in the definition of only a
single compound class. The relationship between two primitives is intercompound if the
primitives appear only in the definition of different compound classes and
intracompound if they appear in the definition of the same compound class. The
conditions necessary for maximum fuzzy classification accuracy may thus be

summarised as:

e Intracompound primitives should not intersect under the set of measurements to
be used for area proportion estimation. i.e. for any two primitives P, and P,
a#b and a set of compound classes C, : 1 £ n <N, if (P, N C,)>0 A Py N
C)>03n:1<n< Nthen (P, N Pp) =0.

70



s Intercompound primitives should not intersect under the set of measurements to
be used for area proportion estimation. i.e. for any two primitives P, and P,
a#b and any two compound classes C,,,C,;: 1 Snm < N, if (P, N C,)>0 A (P,

N C)>0dn,m : 1 <n,m< N, n#m then (P, N Py) =0.

e Primitives should exhibit no spectral variation. Le. the probability of observing
a spectral signature s for a primitive P is given by p(s | P)=&s-sp) where sp is
the spectral response of the primitive and &(.) is a function which returns one

when its argument is zero and returns zero at all other times.

s The number of degrees of freedom in the primitives must be equal to or less
than the number of degrees of freedom in the spectral bands. This is usually the
case if the total number of primitives is less than or equal to the number of

spectral bands.

e Compound classes should be composed of an additive union of primitive

classes. That is, for a compound C, and intracompound primitives P, : 1 < n <

N, il(C)=%,, ((P,).

These constraints are so strict that they are unlikely ever to be satisfied in any practical
application. The value of these rules is rather that they highlight the ways in which sets
of classes in particular applications deviate from the ideal and hence provide some
indication as to specific sources of performance loss. The following section presents a
novel examination of the impact of the sensor point spread function on the accuracy of
fuzzy classifications and shows that not only does it limit performance by introducing
ambiguity but also that the degree of ambiguity depends on the degree of subpixel

mixing.

71



8.4. The Effect of the Point Spread Function

When a satellite captures a remotely sensed image, each pixel represents the spectral
properties of the ground cover within and around the pixel convolved with the spatial
sensitivity profile of the sensor, the point spread function (PSF). The point spread
function has a 2-dimensional argument corresponding to the distance from the peak
sensitivity of the sensor which occurs roughly at the pixel centre. From the pixel centre,
the sensitivity of the sensor falls off monotonically with roughly circular symmetry and
continues into the ground area covered by surrounding pixels. Generally, the point
spread function has a number of approximations, including the Gaussian and the product
of sines, depending on the degree of accuracy required (see, for example, [Justice:89]).
Although the effect of neighbouring pixels is not considered here, their contribution to
the proportion estimation error could be reduced by a procedure similar to that described

in [Townshend:00].

Area proportion ;. * Area proportion /4.
Spectral D Class 1
signature
. :. Class 2

Figure 58: Two pixels with the same spectral signature but different sub-pixel composition.

Spectrally, the point spread function magnifies the contribution of land cover placed
centrally in a pixel to the pixel spectrum and diminishes the coutribution from land
cover towards the pixel perimeter. The point spread function therefore introduces
ambiguity into the spectral unmixing exercise by allowing different subpixel

proportions to generate the same spectral signature [Manslow:00b]. Consider, for
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example, a pixel that contains equal proportions of two land cover types, the first placed
centrally, and the second arranged around the pixel perimeter. Spectrally, the pixel will
appear to be most similar to the first, more centrally placed, cover type. If the locations
of the cover types are now swapped such that the first cover type lies on the pixel
perimeter, the spectral properties of the pixel will be most similar to those of the second
class. This spectral change in the pixel may be counteracted however, by increasing the
proportion of subpixel cover of the first class. Thus, as shown in figure 58, a pixel of the

same spectral signature as the original one may be produced, but with different subpixel

proportions.

¥()

Figure 59: Gaussian PSF with o=1.

Critically, the magnitude of this effect depends on the proportions of subpixel cover. If a
pixel consists of a single subpixel cover type, all such pixels would (assuming the class
has no inherent spectral variation) exhibit the same spectral properties. If a pixel is
mixed however, the subpixel cover can always be re-arranged to produce alternative
pixels with different proportions of subpixel cover, but identical spectral signatures. To
examine this phenomenon in greater detail, consider the case when a pixel consists of
only two subpixel cover types covering area a; and a, respectively. We shall assume
that the classes have spectral responses s; and s,, which exhibit no spectral variation,

and that the point spread function y(.) is assumed to be Gaussian as given below,

Y(r)= e:xp(—ozr2 ) 60

where r is the distance from the pixel centre and ¢ is a constant which controls the
shape of the PSF. The pixel is assumed to have a circular footprint, that is, a point (x,y)

is considered to be within the pixel area if:
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r<l I r=4/x>+y? 61

If class 1 is concentrated in the area where the PSF is least sensitive, that is, around the

pixel perimeter, all points for which

r(x,y)2Jl1-a,/x 62

belong to class 1 and all others belong to class 2. The spectral response of the pixel may

be written as:

i r
S, = [ 2 ¥ (r)sdr + [ 20 (r)s,dr 63
r 0

where

r=4l-a/x 64

Now, if the subpixel cover is re-arranged so that class 1 now lies in the region of
greatest sensitivity of the PSF, in the pixel centre, the spectral response of the pixel will
change. It is possible, however, to restore the pixel’s spectral response to its original
value by adjusting the subpixel proportions of the two classes. The spectral response of

a new pixel where class 1 is arranged in the central region is given by

Sp =

D Sy 3

2P (r)s,dr + j 277 (r)s,dr 65
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Figure 60: Gaussian PSF with o=2.

where

r=.a’ln 66

and a;’ is the new area occupied by class 1. S, and Sp are equal if each of the component

integrals are equal, i.e. when

r’ 1
j 2 (r)s,dr = [ 270 (r)s,dr 67
0 r 5

Note that only one pair of integrals needs to be considered, since the pairs are

equivalent. Substituting for the Gaussian PSF and cancelling multiplicative constants

yields:

r’ 1

jre"”zdr = J.re_"”zdr 68
0 r ,
which gives (see appendix B):
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Rearranging this makes it possible to compute the alternative subpixel proportions of a
pixel with the same spectral response as the original under the assumption that in that

pixel, class 1 was concentrated in the region where the PSF is least sensitive. Using

al 7: 7Z7,72 70
the alternative area can be shown to be:
w _ 2
a,’z—-—-]ne“—em +]' 71
o

Assuming class 1 was originally concentrated in the region where the PSF is most

sensitive, gives an alternative subpixel area of

a, =7Z'(1+l1n
o

e+ IU 72

obtained by using

a, =, —m’ 73

Possible
alternative
proportions

0 Observed proportion

Figure 61: Ambiguity induced by a PSF with o=1.
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Possible
alternative
proportions

0 Observed proportion

Figure 62: Ambiguity induced by a PSF with o=2.

The results derived above indicate that for the Gaussian model of the PSF, there is much
higher uncertainty involved in predicting the subpixel proportions for pixels that are
heavily mixed (i.e. the subpixel proportions are similar) than for ones that are more
lightly mixed (the subpixel area is strongly dominated by a single class), and that the
greater the range of PSF sensitivity within a pixel, the greater the induced uncertainty.
The former effect suggests that estimators should model exemplars more closely when
they represent pure pixels than when they represent mixed pixels since there exist no
alternative pixels with different subpixel proportions ar that point in spectral space.
Learning lightly and heavily mixed exemplars to the same level of accuracy would
therefore risk under fitting the nearly pure exemplars and over fitting the heavily mixed

ones.

Probability
p(u)

0 Area proportion, 4 1

Figure 63: Small and large variance proportion distributions indicating the way in which the PSF
introduces more uncertainty in mixed pixels than in almost pure pixels.
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To illustrate this effect, consider a point in spectral space where a nearly pure and a
heavily mixed pixel both occur. By the preceding argument, each pixel suggests some
distribution of alternative pixels with different subpixel cover proportions at the same
point in spectral space. The nearly pure pixel would be associated with a tight (small
variance) distribution of alternative proportions, while the mixed pixel would be
associated with a much broader (larger variance) distribution as shown in figure 63.
Note that for illustrative purposes, Gaussian distributions have been plotted even though
the actual distributions are unknown. The following section considers the implications
of the effects outlined above for area proportion estimators and, in particular suggests

that it should be possible to use the information derived above to obtain optimal area

proportion estimators.
8.4.1. Implications for Proportion Estimation

The following analysis of the impact of the results outlined in the previous section
shows, without the aid of distributional assumptions, that proportion estimators are
likely to achieve greater accuracy if they lay more emphasis on nearly pure exemplar
pixels than heavily mixed ones in the production of estimates. Consider the case where,
at a particular point in spectral space, two pixels have been observed, one nearly pure
pixel with proportion £; and the other heavily mixed with proportion 4, and any other
area proportion by . The proportion 4 may also be written as £;+&; and f+&, where &
and & are deviations from the observed subpixel proportions. Using this notation, the
expected squared error of an area proportion estimate £, given the two observed pixels

can be written as:

E = [(tt,, — )" p(w)du 74

where p(1)=0.5xp(&)+0.5%p(&,), assuming that the nearly pure and heavily mixed
pixels are equally likely. This expected error measure is minimised when the area

proportion estimate is the mean of the means of the distributions associated with the

nearly pure and heavily mixed pixels:
ll'l()])t :%ﬂl +%ﬂ2 75

where the above notation assumes that the observed area proportions lie at the means of

the distributions. The global mean g, will be used as the definition of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>