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This thesis considers the problem of area estimation from remotely sensed images and, 
in particular, the problem of estimating the proportions of subpixel area occupied by a 
predefined number of target classes based on a pixel's spectrum alone. Estimating cover 
proportions within pixels rather than producing crisp classifications of pixels is often 
seen as a way of increasing the accuracy of land cover maps derived from remotely 
sensed data. Although such improvements have been observed, many practical 
applications demand even greater accuracy since, over a large area, an error as low as 10 
percent in the estimated proportions may represent the misclassification of many 
thousands of square kilometres. Unfortunately, much uncertainty remains as to how 
techniques for subpixel area proportion estimation should be applied and, more 
importantly, how much information pixel spectra can provide about subpixel land cover 
proportions. 

The main contributions of this thesis consist of a novel probabilistic interpretation of 
subpixel area proportions that has a number of important implications: It is used to 
motivate a new probabilistic notation for area proportion information that, due to the 
probabilistic interpretation, is simple and intuitive, to show that certain types of fuzzy 
classifier have an equivalent interpretation as crisp classifiers, a relation that can be used 
to prove that they are capable of producing optimal proportion estimates and which 
suggests a number of enhancements that are shown empirically to improve the fuzzy 
classifiers performance. Finally, the probabilistic interpretation is used to provide 
insights into the application of the cross entropy error function in fuzzy classification 
that are shown to be supported by empirical evidence. 

The thesis also presents a novel analysis of the impact of the sensor point spread 
function on fuzzy classifier performance that shows that the problem of extracting 
subpixel proportion information from pixels' spectral signatures is ill-posed. This is 
used to motivate the use of a new representation for subpixel proportion information -
the spectrum conditional proportion distribution - that overcomes many of the 
limitations of the standard representation. Specifically, the distribution can fully 
represent the proportion information in a pixel's spectral signature, it permits this 
information to be propagated without loss, and it allows different sources of proportion 
information to be optimally combined. A number of techniques for extracting 
proportion distributions are described and empirical results are presented that underline 
the utility of the new representation. 
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2. List of Symbols 

m basis function means in spectral or area proportion space 

// subpixel proportion/fuzzy classification 

C,j label of the n"" class 

//(C„) area of the n"" class 

/7(C„) prior probability of observing class C„ 

P a pixel 

/j{P) the area of pixel P 

fJ.i,Cn\P) the proportion of the subpixel area of P covered by class C„ 

ju(Cn,P) the area of the intersection of class C„ and pixel P 

s pixel spectral signature 

p(s) prior probability of observing spectral signature 5 

piCJs) posterior probability that a pixel with spectral signature s is in class C„ 

p(s\C„) class conditional probability that a pixel in class C„ has spectral 

signature 5 

J number of basis functions 

j basis function index 

pij) prior probability that t h e b a s i s function generates a spectral signature 

p{s\j) probability that the j"' basis function generates a spectral signture 5 

p(j\s) posterior probability that spectral signature s was generated by the 

basis function 

D number of data points 

d data point index 

N number of classes 

n class index 

p{fJ-\s) spectrum conditional area proportion distribution - the probability that 

a pixel has subpixel proportions jx given that it has spectral signature 5 

piO/I) probability that a pixel is in class C given that it has subpixel 

proportions jJ. 

f{s) fuzzy basis function activation as a function of a pixel's spectral 

signature 

p{C\x,y) posterior probabiltiy that the subpixel point (x,y) belongs to class C 

C{x,y) equal to one if subpixel point {x,y) is in C, zero otherwise 

T(.) the sensor point spread function (PSF) 



distance of a subpixel point from the point of maximum PSF sensitivity 



3. Overview 

This thesis presents a detailed examination of the problem of estimating the proportion 

of the subpixel area of remotely sensed (RS) image pixels occupied by different land 

cover types - a process often referred to as the fuzzy classification of pixels. It is shown 

that there is a close relationship between conventional crisp classification and fuzzy 

classification and uses this relationship to derive several new and important results. In 

addition, a novel analysis of the effect of the sensor point spread function is given that 

provides insight into its effect on fuzzy classification accuracy. This analysis is used to 

motivate a new representation for information derived from remotely sensed images 

based on conditional probability distributions and several techniques are presented that 

are capable of deriving such representations. 

The structure of this thesis traces the evolution of the fuzzy classification of RS image 

pixels from more conventional crisp classification - a process outlined in chapter 6. 

Chapter 5 describes a new way of viewing area proportions and hence fuzzy 

classifications as conditional probabilities and uses this interpretation as the basis of a 

probabilistic notation for area proportion information that is used to list the axioms 

governing its behaviour. This information is placed at the beginning of the thesis due to 

the elementary nature of the material it contains. Chapter 6 describes the standard 

approaches to the classification of RS image pixels that are germane to the main subject 

of the thesis. That is, classification techniques from which fuzzy classifiers have been 

derived, or provide useful insight into the problem of fuzzy classification. 

Chapter 7 deals specifically with fuzzy classification algorithms and carefully examines 

their relationship to more conventional crisp classifiers. In particular, a new equivalence 

between fuzzy classifiers and crisp classifiers is established through the probabilistic 

interpretation and a novel analysis of the use of the cross entropy error function in fuzzy 

classifiers is presented. Chapter 8 discusses a number of factors that limit fuzzy 

classifier performance, and introduces terminology that makes it possible to list the 

conditions necessary to get perfect fuzzy classifications. Section 8.4 presents a new 

analytical description of the effect of the sensor point spread function on fuzzy classifier 

performance, which suggests simple ways of improving fuzzy classifier performance, 

but also motivates the use of a new representation for information derived from RS 

spectral data - the spectrum conditional probability distribution. 



Chapter 9 begins by stating the three main advantages of the new representation, namely 

its ability to completely express all proportion information contained in a pixel's 

spectral signature, to facilitate the optimal combination of information from different 

sources, and the propagation of that information without loss. Subsequent subsections 

derive algorithms of increasing complexity for extracting spectrum conditional 

distribution models from sets of exemplars and present results obtained on a real world 

data set. This thesis thus traces the development of fuzzy classification for area 

proportion estimation from its origins in crisp classification to the current state of the 

art, and by examining the limitations of these algorithms, arrives at a new representation 

for proportion information that overcomes many of those limitations. 



3.1. Contributions 

The main focus of this thesis is to examine advanced non-linear techniques for 

performing fuzzy classification of pixels in remotely sensed images. By examining the 

current state-of-the-art and its limitations, this thesis concludes that a more flexible 

representation is required for fuzzy classifications, and that this can be provided by 

existing neural network algorithms. The following list contains the wholly novel 

contributions of this thesis. 

Probabilistic interpretation: 

It is argued that area proportions can be regarded as conditional 

probabilities. This clarifies the relationship between crisp and fuzzy 

classification since it is shown that fuzzy classification is equivalent to 

a crisp classification of subpixel points. 

Probabilistic notation: 

A form of notation for representing area proportions is proposed, which 

makes their conditional probabilistic nature explicit. 

Listing of axioms: 

The new notation is used to list the axioms governing the behaviour of 

area proportions by direct analogy with those of probability theory. In 

particular, traditionally probabilistic constructs, such as Bayes' 

theorem, are shown to be directly applicable to area proportions. 

Equivalence of crisp and fuzzy classification: 

The probabilistic interpretation is used to show that a particular type of 

fuzzy classifier is equivalent to an EM density estimator based crisp 

classifier. This highlights some restrictions of the fuzzy classifier and is 

suggestive of improvements that are shown empirically to produce 

dramatic improvements in performance. The EM density estimator 

based fuzzy classifier is shown to be capable of producing optimal 

fuzzy classifications under ideal circumstances. 

Examination of the relationship between soft and fuzzy classifications: 
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A new perspective on the relationship between softened and fuzzy 

classifications is presented that suggests that softened classifications 

should not be used in place of fuzzy classifications to characterise 

subpixel cover unless fuzzy classifiers cannot be constructed due to a 

lack of a set of suitable exemplars. 

Interpretation of the use of the cross entropy function in training fuzzy classifiers: 

The probabilistic interpretation is used to show that the cross entropy 

function is appropriate for training fuzzy classifiers, and has a specific 

interpretation in terms of classifying subpixel points. 

Examination of the factors limiting fuzzy classifier performance: 

A discussion of the factors limiting fuzzy classification performance is 

presented, which focuses on limits imposed by the characteristics of the 

sensor and the target cover types rather than on the difficulties than can 

arise during the modelling process. This includes a set of axioms that 

describe the conditions classes must satisfy to permit perfect fuzzy 

classification. 

Detailed examination of the ambiguity induced by the sensor PSF: 

A Gaussian model of the sensor PSF is used to show that the PSF 

introduces ambiguity into the fuzzy classification process. In particular, 

the ambiguity is shown to be greatest when pixels are heavily mixed. 

Introduction of the spectrum conditional density representation of proportion 

information: 

A new way of representing fuzzy classifications is proposed that 

provides a complete representation of the ambiguity present in fuzzy 

classifications. The benefits of the new technique are demonstrated on a 

real world remotely sensed data set. 
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3.2. FLIERS - Fuzzy Land Information from Environmental 
Remote Sensing 

The data set used to demonstrate the techniques described in this thesis was generated as 

part of the EU funded research project FLIERS. The aim of the research was to advance 

the state of the art in fuzzy classification through the use of sophisticated non-linear 

statistical modelling techniques such as neural networks. In order to use such 

techniques, it is generally necessary to have a large set of exemplar pixels of known 

fuzzy membership and for the purposes of the FLIERS project, several such data sets 

were prepared by a team at the University of Leicester. The particular data set used 

throughout this thesis covers a region of large scale agriculture to the east of Leicester 

called the Stoughton area and is shown in figure 1. In all, 21,081 pixels from a Landsat 

TM survey were available, and fuzzy memberships were derived using a combination of 

aerial photography and ground surveys. Unfortunately, due to the time required for the 

ground survey, the fuzzy memberships represent land cover at a slightly different date to 

that of the satellite imagery, allowing for the possibility of minor changes in land cover 

in the interim. 

• • • 
Figure 1: The Stoughton area in band 4 (left) showing the validation areas (right). 
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Figure 2: Cereal (left) and tall herb (right) ground truth with the validation areas (inside the small 
squares) shown in context of the entire data set. 

Although there were as many as 26 classes of interest to the FLIERS project generally, 

only two were selected to permit the depth of analysis with the wide range of techniques 

suitable for performing fuzzy classification described in this thesis. The cereal crop and 

tall herb classes are considered in this thesis, and their statistics are given in table 1, 

along with their unconditional proportion distributions in figures 4 and 6. The 

unconditional proportion distributions are a useful way of visualising the distribution of 

proportions that actually occur in the data, and were generated by applying a standard 

Gaussian mixture model density estimator to the area proportion data. The data set was 

divided into three subsets, a training set, a test set and a validation set. The training set 

was used directly by training algorithms to search for the optimal parameters of the 

particular model being trained. The test set was used to prevent over-fitting - producing 

a model that was tailored to specific features in the training set that are not characteristic 

of the process being modelled. The validation set was not used in any way to find the 

optimal model and hence could be used to evaluate the performance of the models when 

applied to new, previously unseen areas. 

Figure 3; Cereal ground truth for the validation areas. 
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Figure 4: Cereal area proportion distribution for pixels in the training set. 

To generate the three subsets of the data, there was a trade-off to be made between 

generating sets that were statistically representative of each other and sets that could be 

visualised as small sub-images. For example, the most easily interpretable form for each 

of the sets is that they consist of large blocks of contiguous pixels. Each set, and hence 

the proportion estimates made by each technique can then easily be assembled into large 

images to provide a clear representation of the estimates. However, spatial non-

stationarity across the survey area causes marked differences in the statistics of the 

training, test and validation sets if they are chosen as contiguous blocks since, on 

average, a pixel in each data set will in the image plane be far from the closest pixel in 

any other data set. Such non-stationarity can have a devastating effect on the 

performance of statistical models, since the statistics they learn from the training set 

may be substantially different from those of the test and validation sets. This is 

essentially the same process that is described in the case of classification in [Friedl:00]. 

Figure 5: Tall herb ground truth for the validation areas. 

The effects of non-stationarity are minimised when pixels are assigned randomly to one 

of the three data sets such that they form three non-overlapping sets, each distributed 

roughly uniformly over the survey area. In this case however, visualisation of the 
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proportion information in each set becomes difficult, because no image can be 

reconstructed from any of the three data sets without containing lots of points for which 

there is no data. To strike a balance between these two concerns, the image of the 

survey area was divided into rectangular blocks of 24x22 pixels. These were sufficiently 

large that they could be displayed as images to allow the estimated proportions to be 

visualised, but also small enough that they "covered" the image and hence limited the 

effects of spatial non-stationarity. The four validation regions are shown in context in 

figure 2 as those regions within the white squares, and in detail in figure 3. 

Density 
PiM) 

0 Area nrooortion u 1 

Figure 6: Tall herb area proportion distribution for pixels in the training set. 

The first of the two classes used in this thesis, the cereal crop class, was a compound 

class composed of the main types of cereal grown in the survey area. Slightly less than 

half of the survey area was covered by cereal crops although most pixels were almost 

pure. This can be seen from the cereal proportion distribution shown in figure 4, which 

has pronounced peaks for fuzzy memberships close to 0 and 1 and a general lack of 

probability mass for most other proportions. This is due to the fact that the typical field 

size in the survey area is larger than the pixel size, resulting in only a small proportion 

of pixels straddling a field boundary. The primary statistics of the training set and the 

validation set are very similar, suggesting that the data subsets are representative of each 

other. The ground truth information - the proportions of the subpixel areas actually 

occupied by cereals is shown in figure 2, where white represents a pixel consisting of 

100 % cereal and black 0 %. The grey squares highlight the areas from which the 

validation data was collected, which are also shown enlarged in figure 3. The chequered 

area indicates a region that was not used due to the absence of ground truth data. 
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Figure 7: Validation areas in band 4. 

The second class, tall herbs, consisted of a large variety of plant types that are 

commonly found at the sides of roads and along river banks. The survey area contained 

only small amounts of the tall herb class, the mean subpixel proportion being only 

around 0.2 % of a pixel. The tall herb area proportion distribution, shown in figure 6, 

also shows that most pixels contained either no tall herb or only very small quantities. 

The statistics of the training and validation areas for the tall herb class are quite 

different, suggesting that they may not be representative of each other and hence that 

statistical models may have problems with this partition of the survey area. The ground 

truth for the tall herb class is shown in figure 2 where, once again, the validation areas 

are highlighted by the grey squares. These areas are shown enlarged and in isolation in 

figure 5 where it is possible to see greater detail. 

Class Data Set Number of Patterns Mean Variance 

Cereals 

Training 16169 0.3007 &1882 

Cereals Test 21795 Not computed Not computed Cereals 

Validation 2117 0.4441 0.2160 

Tall herb 

Training 16169 0.03642 0.01201 

Tall herb Test 2795 Not computed Not computed Tall herb 

Validation 2117 0.05939 0.02437 

Table 1; Summary statistics for the FLIERS data set. 
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4. An Introduction to Fuzzy Classification 

When pixels are crisply classified, they are conventionally assigned the label of one of a 

number of candidate (or target) classes and are thereafter considered to belong to the set 

of pixels in that class. Pixels, in the applications that are of concern here, are classified 

according to their subpixel land cover and the class label assigned to the pixel is 

considered in some sense to represent the subpixel cover. There has long been concern 

over the inadequacy of a single class label as a representation of the often diverse range 

of subpixel cover [Woodcock:00] [Cracknell:98][Fisher:97][Foody:97]. Fuzzy classification 

offers a means of increasing the richness of these representations by assigning pixels 

partial degrees of membership for each of the candidate classes but, despite its 

numerous successes, still often receives little attention (see, for example [Cihlar;00] and 

[Smits;00]). 

The exact meaning of the term fuzzy classification is discussed in detail later, and 

depends on the property of the subpixel cover that the classifications are intended to 

represent. The use of the term fuzzy classification does not imply any rigorous relation 

to the field of fuzzy logic as expounded in texts such as [Klir;95] (and, less formally in 

[Wang;93]), but merely highlights the fact that pixels are assigned partial degrees of 

membership in more than one class. The main situations in which crisp classifications of 

remotely sensed image pixels poorly represent true subpixel cover result from: 

• pixels straddling the boundary of two or more distinct classes 

[Fisher: 90] [Fisher:97], and 

® the presence of classes with boundaries that cannot be clearly delimited 

[Foody:92] [Wood:89]. 

In the first case, the true subpixel cover consists of a number of discrete classes. The 

conventional approach of assigning a single class label to such a pixel (which, in some 

instances may contain very similar proportions of the cover types) seems an inadequate 

representation of the subpixel process. This problem can become particularly severe 

when land cover transitions occur close to, or below the pixel size, since this will lead to 

a high proportion of image pixels containing multiple cover types. The severity of this 

problem thus depends on the interactions between the spatial frequency of transitions in 
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the target cover types, the resolution of the sensor and the sensitivity of the target 

application to the subpixel partition information lost during crisp classification. 

Consider, for example, an image of an area that is mainly agricultural, but which also 

contains small settlements and farm buildings. When a crisp classifier is applied to such 

an area, the crop types will generally be well represented with a moderate resolution 

satellite, since the fields will tend to be large compared with the pixel size. The built 

areas, however, may never contribute significantly to the subpixel area, making it 

possible that no pixels in the image are classified as "built" even though "built" may 

constitute a significant area of the land covered by the classified image. The second 

difficulty with crisp classification arises when a region contains cover types that have a 

tendency to continuously intergrade. This means that although there may be separate 

regions of land cover which may satisfactorily be crisply classified as one of the target 

cover types, between these regions, the cover types may merge continuously, leading to 

land cover with characteristics resembling several different classes. Once again, it seems 

inadequate to represent such land cover by assigning to it the single label of any of the 

individual classes to which it is similar. 

An apparently simple cover type such as forest can be used to illustrate this difficulty, 

which is relatively common when classifying many organic cover types. For example, 

consider a dense region of trees surrounded by open ground. If the region of trees is 

sufficiently large, it seems natural that the forest classification is applicable. If, on the 

other hand, the region of trees is actually rather small, then the forest classification 

seems inapplicable. Between these two extremes, however, it may be difficult to decide 

whether the region represents forest or not, without making a rather arbitrary distinction. 

Even if the region is large enough for a forest classification, tree density may decrease 

towards the forest edge causing difficulty in assigning a precise boundary to the forest. 

In practice, fuzzy classification requires a precise definition of the fuzzy memberships 

that are to be used since, if such a definition is lacking, membership estimates will be 

difficult to interpret and it will not be possible to evaluate the relative accuracies of 

different membership estimates. At first, it may appear as though it is necessary to 

define two incompatible fuzzy memberships, each to address one of the causes of 

mixing outlined earlier. An appropriate definition of fuzzy membership for representing 

the presence of a number of otherwise crisp subpixel classes is to record the proportions 

of the pixel area covered by each of the target classes. Unfortunately, this definition 
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may not be used to tackle the problem of intergrading classes, since such classes do not 

have well defined boundaries and hence do not have well defined areas. 

Another definition of fuzzy membership may be considered in the presence of 

intergrading classes, which represents the similarity of the subpixel cover to each of the 

target cover types. The precise nature of the definition of such a similarity measure will 

not be considered further here, although it will be assumed that the memberships are 

closed world. That is, the sum of the similarity measures over the target classes is unity 

for all subpixel regions. If this condition is satisfied, the mean value of a similarity 

measure of a crisp class is equal to the proportion of the subpixel area occupied by the 

crisp class. The problems of representing subpixel mixing of crisp classes and the 

similarity of subpixel cover to classes which intergrade are thus both the same as 

representing the mean subpixel similarity measure for each of the target classes. 

Since a definition of a similarity measure that is clearly defined and interpretable at 

ground level is generally lacking, the problem of estimating similarity measures is ill-

defined and is hence unlikely to be accessible to solution. For this reason, only the 

problem of estimating the proportions of subpixel area occupied by crisp target classes 

will be considered in this thesis. The following section traces the development of fuzzy 

classification and other concepts relevant to the content of this thesis in the literature. 

4.1. The Evolution of Fuzzy Classification 

In [Horwitz;71] a simple algorithm was derived for obtaining estimates of the 

proportions of cover types within a pixel. Their paper, the first to explicitly address the 

problem of area proportion estimation, made a number of simplifying assumptions such 

as a uniform point spread function within a pixel and Gaussian spectrum conditional 

densities for each class, with the help of which it was possible to show that maximum 

likelihood area proportion estimates could be obtained as a linear function of a pixel's 

spectral signature and in so doing introduced the basic concepts of linear spectral 

mixture modelling used in research that continues until the present day. 

The use of terminology from the theory of fuzzy sets - sets that have poorly defined 

boundaries (see [Zadeh:65]) - in discussions of the mixed pixel problem seems to have 

appeared shortly after the introduction and subsequent popularisation of the fuzzy 

clustering algorithm described in [Bezdek:84], and was used to address the mixed pixel 

problem in [Robinson:85]. Fuzzy clustering is an algorithm that can be used to perform 
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either a supervised or an unsupervised clustering of pixel spectra into a number of fuzzy 

sets. By measuring the degrees of membership of new pixels in the available fuzzy sets, 

information about subpixel composition can be derived. Although the use of fuzzy 

terminology continues to be popular, the use of fuzzy set theory itself is relatively rare. 

This is because fuzzy set theory is only necessary if the subpixel area proportion 

estimation problem is regarded as one of classification. If the idea of imposing 

classifications on pixels is abandoned, the nature of the subpixel area estimation 

problem and its solution can easily be described using probability theory. 

Contemporaneous with the emergence of fuzzy clustering, a new algorithm was 

proposed for training multilayer neural networks. Called back-propagation, it was 

proposed in [Rumelhart:86] (although similar ideas had earlier appeared in [Werbos:74] 

and [Parker:85]), and provided, for the first time, a reliable and efficient way of training 

multilayer artificial neural networks. This new found efficiency combined with the 

weak distributional assumptions made by such networks resulted in their application in 

conventional pixel classification in several papers that were published in the late 

eighties and early nineties. Gradually, it was realised that the raw outputs of neural 

network classifiers - which were shown to be estimates of posterior probabilities of 

class membership in [Baum:87] - and similarly, the outputs of other non-neural 

classifiers, were useful for more than choosing a class label to associate with a pixel 

[Gorte:98][Foody:96b][Foody:96c] [Maselli:96]. 

Although it was clear that there was a relationship between these outputs and subpixel 

composition, it was not obvious as to how the classifiers could be modified to provide 

more information about subpixel composition. In [Foody:95] a modification to the way 

in which classifiers were trained and tested was proposed that would produce fully 

fuzzy classifiers - neural network fuzzy classifiers with outputs that, under ideal 

circumstances (such as an infinite availability of data, and an infinitely flexible neural 

network), would produce optimal estimates of subpixel cover proportions. This synergy 

of the richness of the subpixel area proportion representation and the power and 

flexibility of neural networks has resulted in unprecedented accuracy in the land cover 

information that is currently derived from remotely sensed data. 

Despite these advances many questions still remain about the correct application of 

neural networks in general and whether there are any characteristics of the subpixel area 

proportion estimation problem in particular that have implications for their use 

[Wilkinson;97]. It is these questions that have produced doubts about the current focus of 
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research on improving fuzzy classifier performance and led to proposals for a shift of 

focus towards quantifying the performance limits that are intrinsic to deriving fuzzy 

classifications from remotely sensed data [Wilkinson;96]. This thesis presents detailed 

analyses of a number of established techniques which clarify the conditions under which 

the techniques should be applied, and result in a number of recommendations for 

improving the performance of the proportion estimates they produce. In addition, it is 

argued that pixel spectral signatures alone contain too little information about subpixel 

cover to derive accurate proportion estimates and a new representation for spectrally 

derived proportion information is proposed that is capable of fully representing the 

uncertainty in the proportion estimates caused by the information-poverty of the spectral 

signatures. A number of models for deriving the new representation are presented along 

with results of their application to a real world data set. 
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5. Properties of Area Proportions 

This section presents a novel argument that area proportions can be interpreted as 

conditional probabilities [Manslow;00] and uses this as motivation for an area proportion 

notation that is analagous to the standard notation of probability theory. The new area 

proportion notation is particularly convenient due to its immediate familiarity that 

results from the fact that the standard axioms governing the behaviour of conditional 

probabilities also apply to area proportions. 

5.1. The Probabilistic Interpretation of Subpixel Area 
Proportions 

In order to estimate the proportion of a pixel's area occupied by a class it must be 

possible, in principle, to measure the area of the class given perfect information. 

Consider a single pixel consisting of two cover types: grass and water. When the area is 

remotely observed, a mixed pixel is generated which has spectral contributions from 

both of the subpixel classes. If perfect information was available in the form of the true 

distribution of the two cover types within the pixel area, each point within the pixel 

could be uniquely classified as belonging to one of the cover types, and hence a 

subpixel map of true class membership could conceptually be constructed. 

If a point is chosen at random from a uniform distribution over the conceptual subpixel 

cover map, it will fall within a region occupied by one of the subpixel classes. In the 

limit of an infinite number of such points being chosen, the proportion of points falling 

within each class region will equal the proportion of the subpixel area the region 

occupies, and also equal the probability of an individual point falling within each 

region. This suggests that there is a direct equivalence between these probabilities and 

the subpixel area proportions. It is important to emphasise that this probabilistic model 

does not equate the proportion of the subpixel area occupied by a specific class with the 

posterior probability of class membership of the entire pixel in that class, as would be 

estimated by most classical classification algorithms. Although estimates of these 

probabilities have been used to model subpixel area proportions (see, for example 

[Chittineni:81][Foody:96c][Gorte:98][Maselli:96]) it is shown later that they cannot, in 

general, be optimal estimates. 
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5.2. Area Proportions: Notation and Axioms 

In order to describe the properties of area proportions, it is convenient to introduce a 

compact notation [Manslow:00]: if the area of a pixel P is represented by n(P} and the 

area of the intersection of pixel P and class C„ by /ii(C„,P) then the proportion of P 

occupied by C„ will be denoted by fu(Cn\P)- Here, the equivalence of area proportions 

and (conditional) probabilities is made explicit in the choice of notation. The proportion 

of P occupied by class C„ is found using 

From equation 1 the area proportion equivalent of Bayes' theorem may be derived. This 

can be used to convert quantities of the form 'the proportion of class C„ occupied by 

pixel P' to 'the proportion of pixel P occupied by class C„' as follows: 

Clearly, the total area occupied by any object or class is found by summing the areas of 

its intersections with other classes. Thus, the total areas of a pixel P (where there are N 

classes that form a closed world partition) and of a class C„ (where 'all P' is the set of 

all pixels) are given by 

n=l 

affP 

when no two classes or pixels intersect. For two classes, C„ and with m,n e [1,A^ the 

area of their union may be computed from the sum of their individual areas minus the 

area of their intersection. More concisely, 

M(C, •uCJP) = fl(C„\P) + M(CjP)-)t<.C..CjP) 5 
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A set of classes C„ : 1 < n < iV is considered to be closed world upon the target domain 

Dif 

^ N 
L J c . I p 1 V f e D 

Such a set of classes may trivially be constructed by the addition of a class that contains 

any subpixel region that is not assigned to any other class. Finally, area proportions lie 

in the closed interval [0,1] as stated in equation 7. 

All of these axioms are directly equivalent to those for manipulating probabilities (as 

can be found in [Cox:46][DeGroot:89]). 

The following section describes the way in which land cover information can be derived 

from remotely sensed images by the crisp classification of pixels within such images. 

Although it is now widely recognised that more accurate land cover information can be 

obtained by other means, an examination of crisp classification is provided for the 

following reasons: 

• three important approaches to fuzzy classification (namely parametric fuzzy 

classification, e.g. [Wang:90][Foody:96c], softened classification, e.g. [Foody:96], 

and neural network fuzzy classification, e.g. [Foody:95]) have their origins in more 

conventional crisp classification techniques, and can be seen as extensions and 

modifications of those algorithms, and 

e the probabilistic interpretation indicates that there exists a close relationship 

between fuzzy classification and crisp classification and that many of the concepts 

important in understanding crisp classification are germane to the problem of fuzzy 

classification. 
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Chapter 3 described the real world data set used to illustrate the techniques and concepts 

developed in this thesis and presented an introduction to the ideas behind the use of 

fuzzy classification in extracting information about land cover from remotely sensed 

images. Chapter 4 introduced the basic concept of fuzzy classification and reviewed the 

development of techniques for extracting fuzzy proportion information from remotely 

sensed data by highlighting a number of seminal publications and has indicated how the 

work in this thesis follows from suggestions that continued experimentation with 

existing techniques is likely to prove fruitless unless there is a more detailed 

examination of the factors limiting their performance. Chapter 5 showed that fuzzy 

classification can be thought of as crisp classification of non-location specific subpixel 

points and hence that area proportions can be considered to be a specific type of 

posterior probability - an equivalence that was used to motivate a probabilistic notation 

for area proportion information with which the axioms governing its behaviour were 

listed. 
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6. Crisp Classification 

As described in the introduction, crisp classification - in this case considered to be 

associating a class label with a pixel - was one of the earliest approaches to deriving 

land cover information to make use of flexible modelling techniques such as neural 

networks. Although the class label representation is now widely acknowledged as being 

an inadequate description of subpixel cover, it was some time before the more versatile 

fully fuzzy classification techniques that are currently used emerged. In the interim, the 

posterior probabilities estimated by many standard non-fuzzy classifiers were used to 

provide information on subpixel cover. In this sense, a transition from crisp 

classification to soft classification to fuzzy classification can be traced in the efforts to 

derive information about subpixel cover. Thus, the motivation for describing crisp 

classification here is that it provides a rudimentary mechanism for extracting land cover 

information, and one from which the current state of the art can be considered to have 

evolved. This chapter describes crisp classification and its immediate derivative, soft 

classification, and presents results of their application to the FLIERS data set. Since 

these techniques can no longer be considered state of the art, the results are discussed 

only briefly and are intended to act as a benchmark against which more recent and 

theoretically well founded techniques are compared in later chapters. 

The problem of crisply classifying a pixel is normally considered to be one of assigning 

to it one or more class labels. In most practical applications, the spectral signature of a 

pixel will contain too little information to assign the correct class label to all pixels. The 

class label representation of a classification decision is too poor to represent this 

ambiguity, and is hence usually avoided other than as an aid to interpretation. Instead, 

classification decisions are usually represented by estimates of the posterior 

probabilities that the observed pixel lies in each of the target classes. Thus, if there are N 

classes of interest, the classifier output would be a vector of probabilities of length N, 

which, if the classes are mutually exclusive and closed world, would sum to unity. The 

posterior probabilities contain all the information relevant to classification, since if the 

probability that a pixel with spectral signature s was in class n was piCJs) the class label 

C„ would, on average be correct 100 x piCJs) percent of the time. The class label that 

minimises the misclassification rate is thus the one that maximises the posterior 

probability. The results of the classification experiments described in this section are 

presented in terms of posterior probabilities rather than class labels. This approach to 
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characterising land cover should not be confused with the softened classifications that 

will be considered later in this section. 

Although the results of both crisp and softened classifications can be interpreted as 

posterior probabilities, there are important conceptual differences: crisp classification 

assumes that a particular pixel can be correctly and completely characterised by a class 

label, and the posterior probabilities represent the uncertainty in the classification 

decision due to the lack of information about class membership in a pixel's spectral 

signature. If all such information were available, crisp classifiers would always be able 

to assign the correct class label and all posterior probabilities would be either zero or 

one. Softened classifiers use the posterior probabilities produced by more conventional 

classifiers to provide information about subpixel structure even though there is no 

implicit assumption that it would be meaningful to assign any of the class labels to a 

pixel even if perfect information was available. Consider for example, the cereal class: a 

softened classifier would be trained on a set of pixels consisting either purely of cereal 

or containing no cereal at all. The outputs of such a classifier can be interpreted as 

estimates of the probability that a pixel is composed entirely of cereal, or conversely 

that it contains no cereal at all. Such a classifier will then be applied to pixels that are 

known to belong to neither of the classes with which its was trained. The resulting 

posterior probability estimates - called softened classifications - have been shown to 

contain information about subpixel area proportions [Foody:96]. 

There are essentially two ways of performing crisp classification, each of which has its 

own fuzzy equivalent. The first method constructs models of the way in which a set of 

exemplar pixels of known class membership are distributed in spectral space and uses 

these models to derive estimates of the probability that a new pixel of known spectral 

signature lies in each of the target classes. Since these probabilities are derived 

indirectly from a set of models that are unseen to the user, this technique is referred to 

as the indirect method of classification. The second method of crisp classification uses 

the exemplars to search for a function that can directly map the spectral signature of a 

pixel onto a vector of posterior probabilities of class membership. This method is 

referred to as the direct method of crisp classification since the function derives class 

membership information directly from a pixel's spectral signature. Although this section 

presents detailed discussion of both the direct and indirect means of crisp classification, 

results are presented for the direct approach only since it generally offers superior 

performance. The indirect method is described because of its close relationship with 

parametric fuzzy classification which will be described in section 7.1.1. 
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6.1. Direct Crisp Classification 

The results reported in this section were obtained by training models on a "hardened" 

version of the fuzzy data set. That is, the training targets in the fuzzy data set were 

converted to class labels by classifying a pixel as cereal if at least 50 percent of the 

subpixel area was cereal, and otherwise classifying it as non-cereal. This process created 

a new data set with binary targets; a target of one indicating that a pixel should be 

classified as cereal and a zero indicating it should be classified as non-cereal. The 

unseen validation areas are shown for this hardened data set in figure 8. 

Figure 8: Hardened cereal crop data in the validation areas. 

The spectral data was normalised to zero mean and unit variance before being used to 

train, test or query all the models applied in this thesis. The scaling information was 

calculated from the training pixels and was as follows: 

Band Mean Variance 

1 6&25 17.78 

2 27.73 20.80 

3 55^8 

4 105.96 578.61 

5 6234 233J^ 

7 22.21 111.79 

Table 2 : Summary statistics for the six spectral bands of the FLIERS data set. 

Thus, for the spectral measurement 5, in a data set of N patterns in total, the new 

scaled value /new is computed from the old unsealed value "̂oid using the mean and 

variance of the spectral values for that band, m̂ean and fvariance: 

„« '^old '^mean 
new 

where: 
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•^mean ^ ^ '^old 

1 

and 

1 
^^(•^old '̂ mean) 10 

Scaling inputs in this way has a number of benefits, such as improving the conditioning 

of the optimisation (learning) problem, usually resulting in more stable and efficient 

training [Haykin;94]. 

Three types of models are considered in this section, the linear network, the logistic 

network and the multilayer perceptron, typical examples of which are shown in figures 

10 and 44 (the former showing both the linear and logistic networks since they have 

essentially the same structure). The linear network consists of six input nodes, one 

output node and a bias node. The bias node is held constant at a value of one and is used 

to provide an additive component to the model output that is independent of any of the 

inputs. The value of the weight connecting the bias to the output node is equal to the 

mean of the training targets, and the output of the linear node is simply a weighted sum 

of the spectral inputs and the bias node. For a pixel of spectral signature 5 with spectral 

components sj to sg, the output of the linear network jû st can be expressed as: 

6 

1] 
m=I 

where Wb is the bias weight, and is the weight from the m'^ spectral input to the 

output. The parameters w may be found by matrix inversion, provided that the number 

of training patterns is not too large, or by using iterative optimisation algorithms, such 

as conjugate gradients [Shewchuk:94][Bishop;95][Gill:93][Axelsson:96] (ordered most to 

least accessible), which was used to produce the results described here. 
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Figure 9: First order gradient descent performs well if an error function's contours are circular (left) 
but poorly if they are elliptical (right). 

Conjugate gradients is an iterative algorithm originally designed for finding the solution 

to large systems of linear simultaneous equations. While normal gradient descent 

performs well when minimising functions that have roughly circular contours around 

their minimum, as shown in the left hand side of figure 9, it performs poorly when the 

contours are elliptical, like those in the right hand side of figure 9, as often occurs with 

linear networks when the inputs are correlated and with non-linear networks generally. 

Under such circumstances, steepest gradient descent is not guaranteed to find the 

solution in a finite number of steps and may in fact approach it only very slowly. 

Conceptually, conjugate gradients eliminates the elliptical contours by stretching the 

space in which the optimisation is to occur into one in which the contours around the 

minimum are circular. Locations in this new stretched parameter space are expressed in 

terms of a set of virtual parameters that can easily be mapped to, or mapped from, the 

original parameters using linear operators. The conjugate gradient algorithm performs 

steepest descent in the new space, and transforms the changes made to the virtual 

parameters back into the original parameter space, to derive the optimal changes that 

should be made to the actual weights in the network. 
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Figure 10: A linear or logistic network. 

In practice, the transformation is implicit in the operation of the algorithm and is never 

done explicitly. As steepest descent is guaranteed to find the optimal weights for a linear 

network with M weights in M iterations (provided that the inputs are uncorrelated and 

have equal variances), conjugate gradients is guaranteed to find the optimal weights in 

M iterations under much more general conditions. In practice, conjugate gradients relies 

on a line search to find the minimum of the error function at each of the M steps of the 

algorithm, and hence the amount of computation required to find a solution is more than 

is required for M gradient computations. Conjugate gradients was chosen for the results 

reported here because it was supported by the software used to produce all other results 

in this thesis and, unlike steepest descent, it is likely to find an exact solution in a finite 

amount of time. 

New_Error = Get_Training_Set_Error() 
If ( New_Error > 01d_Error) 
{ 

MLP. Weights = MLP.OldWeights 
MLP.LearningRate = 0.5*MLP.LearningRate 

} 

else 
{ 

MLP.OldWeights = MLP .Weights 
MLP.LearningRate = 
01d_Error = New_Error 

} 

MLP.Do_Descent_Step() 

Figure 11 : Pseudocode for the accelerated backpropagation algorithm. 

The logistic network is essentially identical to the linear network except that the output 

passes through the logistic function. 
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Figure 12: Cereal proportions estimated by a linear network trained using the sum of squares error on 
hardened data. 

Figure 13: Cereal proportions estimated by a logistic network trained using the sum of squares 
error on hardened data. 

Figure 14: Cereal proportions estimated by a softmax discriminant trained using the cross entropy 
error on hardened data. 

Figure 15: Cereal proportions estimated by a 6-5-1 MLP trained using the sum of squares error on 
hardened data. 

Figure 16: Cereal proportions estimated by a 6-5-2 MLP trained using the cross entropy error on 
hardened data. 

Note that in this case the weights lose the simple interpretability that they had in the 

case of the linear network, and much of the advantage of using conjugate gradients to 

find the weights is also lost. Despite these disadvantages, the simple addition of the 

logistic function to the output of the linear network produces a significant improvement 

in the area proportion estimation performance. In particular, the squashing properties of 

the function make it possible for the network to predict much more homogeneous 

regions than the linear network, resulting in a mean squared fuzzy classification errors 

of 0.0556 compared with 0.0824 over the unseen areas. The fuzzy classification 

performance of the crisp classifiers on the validation set was used as a performance 
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measure rather than crisp classification performance since the main concern of this 

thesis is the adequacy of crisp classifiers for extracting land cover information. 

The effect of the squashing function in the logistic network can clearly be seen by 

comparing figures 12 and 13 and the validation set performances in table 3. Figure 14 

shows the proportions estimated by a single layer network trained by minimising the 

cross entropy error function rather than sum of squares. The cross entropy error for a 

proportion estimate jiiest and a true proportion // is given by 

12 

and has much stronger theoretical justification than the sum of squares error when 

performing classification [Bishop:95]. The cross entropy error has also been investigated 

in the context of fuzzy classification in [Foody:95b], which provided good empirical 

evidence that the use of the cross entropy error function may be advantageous in certain 

applications. A new theoretical examination of the justification for the use of the cross 

entropy function in fuzzy classification is presented in section 7.2.1. 

To train the networks using the cross entropy error function it is necessary to use two 

outputs that were constrained using the softmax function such that they summed to 

unity. This was necessary because without this constraint the cross entropy function can 

trivially be minimised by estimating large proportions of crops in all pixels regardless of 

their true composition. The training, testing, and validation sets were processed so that 

they contained two outputs also, one representing "proportion of crops" and the other 

"1-proportion of crops" to produce the required normalisation. From the figures, the 

behaviour of the single layer softmax network that was trained using the cross entropy 

function can scarcely be distinguished from that of the sum of squares trained single 

layer logistic network. 

Next, two neural network classifiers were produced. The first was an MLP with five 

logistic hidden neurons and one output used to indicate membership in the crop class 

and was trained using the adaptive step size backpropagation gradient descent algorithm 

outlined in figure 11 to minimise the sum of squares error function. This algorithm, 

which dynamically adjusts the learning rate parameter according to changes in the 

training error was used to guarantee stability in learning during hours of unmonitored 

training. The second network that was trained was also an MLP with five logistic hidden 

neurons, but had two softmax output neurons indicating membership in the crop class 
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and was trained by minimising the cross entropy function. The results of applying these 

two networks to the validation data is shown in figures 15 and 16. Here it can be seen 

that the choice of error function has a subtle but definite effect on the behaviour of the 

trained networks. For example, compared to the sum of squares network, the cross 

entropy network appears to have improved performance in modelling the top region of 

the upper field in the fourth validation area at the cost of performing slightly worse in 

the lower left of the third region. In general, such differences are difficult to explain 

since they result from a complex interaction of the distribution of the data, the network 

parameterisation and the error function. However, it can be shown that if a sum of 

squares network predicts when the true proportion is //, the derivative of the error 

function is: 

13 

which is dependent only on the size of the difference between the predicted and true 

proportion. For the cross entropy error however, 

3 2 _ 

est f^est 

which means that gradient based learning algorithms that use the cross entropy function 

will be most sensitive to errors when the predicted proportion is close to one or zero. 

This could help to explain some of the differences observed in the results: if at some 

point during training the network tended to produce high estimates for the proportions, 

in the upper field of the fourth area and low estimates, for the area in the lower 

left of region three and if the cross entropy network would sacrifice accuracy in 

the lower left of the third region to improve performance on the field in the upper part of 

the fourth region, thus producing the distribution of errors that is actually observed. 

Finally, its interesting to note that although the increase in flexibility in moving from the 

logistic discriminant to the sum of squares MLP improved performance, the same 

increase in flexibility in moving from the softmax discriminant to the cross entropy 

MLP resulted in poorer performance. This difference is difficult to explain due to the 

interaction between the different model parameterisations, error functions and the 

distributions of the crisp training and test data and the distribution of the fuzzy 

validation data. 

34 



Algorithm Error Function 
Number of Basis 

Functions 
Validation Set 

Error 

Linear discriminant Sum of squares Not applicable 0.08237 

Logistic discriminant Sum of squares Not applicable 0.05556 

Softmax discriminant Cross entropy Not applicable &1473 

MLP Sum of squares 5 0.05201 

" Cross entropy 5 0.1487 

Table 3: Model performances on the hardened data. 

It is clear from these experiments that the outputs of crisp classifiers do contain 

information about subpixel proportions. The value of this information depends on the 

target application and its sensitivity to the errors in the proportion estimates that can be 

obtained from crisp classifiers. The following two sections describe the indirect method 

of obtaining crisp classifications, and the use of the softened classifier - a technique 

similar to that already described but designed explicitly for using a crisp classifier to 

derive proportion estimates. 

6.2. Indirect Crisp Classification 

The alternative to the direct approach to classification that was just described is to use 

pixels of known class membership to construct models of the class conditional 

probability densities for each of the target classes in spectral space. To classify a pixel 

of spectral signature s, one density estimator would be used for each class and would 

produce an estimate of the likelihood that if the pixel were of that class, it would have 

generated the spectral signature that was actually observed. This likelihood, written as 

p(s\Cn) for the n'^ class, can then be used in Bayes' theorem: 

I .y) = 15 

to obtain an estimate of the posterior probability p(CJs) that the pixel belongs to the n' 

class given that it has the observed spectral signature. In principle, this estimate is all 

that is required to perform optimal classification, since the class label that maximises 

the posterior minimises the misclassification rate. 

The prior /?(C„) in equation 15 is the probability of a pixel belonging to class n 

regardless of its spectral signature, and is usually estimated from the set of exemplars by 
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the proportion of exemplars in class n, while the unconditional density p(s) is usually 

ignored in practice, since it is independent of the ordering of the posterior probabilities, 

and hence has no effect on the optimal classification decision. Classifiers based on this 

indirect method often perform poorly in practice because highly parametric models, 

such as single Gaussians, are used to estimate the class conditional densities. It should 

be stressed, however, that this is not an intrinsic limitation of the indirect approach to 

classification since more flexible models of the class conditional densities, such as a 

superposition of Gaussians, can be used, and will, in many cases, lead to improved 

performance. The following section looks at how class conditional probability densities 

can be accurately and efficiently modelled by a superposition of Gaussians. 

6.2.1. Modelling Class Conditional Densities 

To perform indirect classification, the class conditional densities of each class can be 

modelled independently using a separate density estimator for each class. Representing 

the class conditional density for the n"' class as a superposition of J Gaussian basis 

functions. 

j=i 

where p(j) are basis function priors (the probabilities that the basis function generates 

an unspecified spectral signature) and are parameters of the mixture model determined 

during training, and the p(s\j) are the probabilities that the observed spectral signature 

could be generated by the/* basis function, which for Gaussian basis functions, are 

17 
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Figure 17: A mixture model density estimator with five mixture components. 

where of is the variance (width) of the basis function, and rrij is its mean (centre). Such 

a density estimator is referred to as a Gaussian mixture model, since the density is 

modelled as a mixture of independent Gaussian components. Density estimators of this 

form can be visualised as a network structure (as shown in figure 17 for a model with 

five mixture components) where the inputs are the pixel spectral signatures, each hidden 

node corresponds to one of the components in the mixture model, and the hidden node 

activations are equal to the p(s\j) terms. The priors for each of the mixture components 

are given by the hidden to output layer weights and the network output is the probability 

density at the specified point in spectral space. With a suitable choice of error function, 

the density estimator can be "trained" using error backpropagation gradient descent in 

the same way as any other neural network, provided that the priors are constrained to 

sum to unity. 

The basis function priors, means and variances together form the complete set of 

parameters for the mixture model, and must in some way be inferred from a set of 

exemplars. This is done by dividing the available data set of D patterns into N separate 

data sets, the n"' of which contains only pixels belonging to the n"' class. N density 

estimators are then constructed by finding the mixture model parameters that minimise 

the negative log-likelihood of the data set given the density estimates 

E = -^\np(Sj IC„ ) , 
d=\ 

18 
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where p(jJCn) is the output of the density estimator on the d"' exemplar. There are a 

variety of standard ways of minimising equation 18, one of the most efficient of which 

is the expectation maximisation (EM) algorithm. The EM algorithm for finding the 

parameters of a Gaussian mixture model is described in [Bishop:95], and so only an 

outline of its conceptual basis will be given here. Iterative algorithms for finding the 

parameters of any non-linear model proceed by using the current set of model 

parameters, in this case, PoiJj), mf''' and of''', along with some performance metric, to 

derive a new set of parameters, Pnewij), and a"™. The main aim of EM is to find 

the new parameters such that the expected increase in the performance metric achieved 

by changing from the old to the new parameters is maximised. For the Gaussian mixture 

model, it can be shown (see [Bishop:95]) that the decrease in the cross entropy metric 

when changing from an old set of parameters to a new set is always less than: 

d=l y=] 

19 

where Sa) is the probability that the spectral signature of the d"' pixel in the set of 

exemplars was generated by the j"' component in the mixture given the old parameters. 

Minimising the above bound with respect to the model parameters makes it possible to 

derive equations for the new parameters in terms of the old parameters in such a way 

that the minimum expected decrease in the error function is maximised. Thus, for the 

basis function means (the details of the derivation can be found in [Bishop:95]): 

m"'"' = 20 

for the basis function variances. 

J D 

S 
d=\ 

~~D 

Z I J 

^ , 21 

and for their priors: 
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1 ^ 
PnewU)=—Y,PoldU\Sj), 

^ d=\ 
22 

where. 

pU\S^) = — 
17)p ( ; ) 

X I j)pU) 
7=1 

23 

Once the parameters of the density estimators have been set, classification proceeds by 

presenting the spectral signature s of the pixel under consideration to the set of N 

density estimators, to obtain the class conditional densities for each class p{s\Cn)- These 

densities can then be used with Bayes' theorem to derive the posterior probabilities 

upon which optimal classifications can be based: 

pi.c„ I s) 24 

m=l 

p{s I C,) 

Spectral signature s 

Figure 18: Class conditional probability of i given class 1. 
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p(s I C2) 

0, 
0 Spectral signature s 1 

Figure 19: Class conditional probability of s given class 2. 

Although in practical applications the direct and indirect approaches to classification 

may be used interchangeably, the direct approach will often give better performance. 

The reason for this can be seen from figures 18, 19, and 20. Figures 18 and 19 show two 

class-conditional probability densities pis\Ci) and p(s\C2) and figure 20 shows the 

posterior probability of class Cj given a pixel of spectral signature s, piCjb), obtained 

by applying Bayes' theorem and assuming equal priors. The figures show that although 

the class conditionals are quite complex, much of the complexity lies away from the 

boundary between the two classes where the posterior probability makes its transition. 

This means that the posterior probability distribution itself is of a much lower 

complexity than either of the class conditionals, and hence could be described using a 

simpler model. This in turn implies that if the posterior distribution were modelled 

directly, then for a set of exemplars fixed size, the direct approach to classification 

would, on average, produce more accurate classifications [Ripley:96]. 

p(Cj I s) 

0 Spectral signature j 

Figure 20: Posterior probability of class 1 given s. 
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6.3. Softened Classifications 

Soft classifications were first used to derive information about subpixel cover in 

[Foody:96]. The technique is based on using the posterior probabilities estimated by 

some standard classification algorithms as fuzzy classifications, in a similar way to that 

of section 6.1 but with the exception that only pure pixels are used to train the 

classifiers. This omission means that the softened classifications are not identical to the 

posterior probabilities estimated at the outputs of a standard classifier, since softened 

classifier outputs strictly represent probabilities that hypotheses of the form "this pixel 

consists purely of crops" rather than "this pixel contains at least 50 % crops" as would 

more likely be the case with a crisp classifier. 

Algorithm Error Function 
Number Of Basis 

Functions 
Validation Set 

Error 

Linear discriminant Sum of squares Not applicable 0.08469 

Logistic discriminant Sum of squares Not applicable 0.05219 

Softmax discriminant Cross entropy Not applicable 0 1603 

MLP Sum of squares 5 0.05260 
" Cross entropy 5 &1594 

Table 4: Model performances in producing softened classifications. 

This section presents the results of experiments aimed at deriving softened 

classifications from neural network classifiers, and examines the relationship between 

soft and fuzzy classifications in more detail. To produce the soft classifiers used in this 

section, the training and test data sets were pre-processed so that they only contained 

pure pixels - pixels containing either 0 of 100 percent of the target class. Since, of the 

tall herb pixels, only 0.2 percent of the training pixels consisted purely of tall herb, soft 

classification experiments were performed only on the cereal data, for which 13,726 

pixels in the training set were pure. To evaluate the potential of soft classification for 

fuzzy classification, five different models were trained and tested on pure data only. The 

MLPs were trained as though they were to be used as normal classifiers - that is, the test 

set was used to perform early stopping to prevent overfitting by training for a fixed 

period of 16 hours and selecting the parameters from that period that offered the best 

test set performance. These parameters were restored to the model which was then 

applied to the fuzzy validation data in order to evaluate its fuzzy classification 

performance. The results of this process are given in figures 21 to 25 and in table 4. 

41 



Figure 21: Cereal proportions estimated using a softmax discriminant trained using the cross entropy 
error on pure pixels only. 

Figure 22: Cereal proportions estimated using a linear network trained using the sum of squares error 
on pure pixels only. 

In general, the fuzzy classifications obtained by training a network on pure pixels only 

are slightly worse than fuzzy classifications obtained from a network trained on a 

hardened version of the original data set as was presented in section 6.1. The only 

exception to this rule is the logistic discriminant which performs better when trained on 

pure pixels only. As with the peculiarities of the fuzzy classification results generated 

by the crisp classifier, the details of the behaviour of the soft classifiers are difficult to 

explain. As with the crisp classifier, the addition of the logistic function to the output of 

the linear network produces a drastic improvement in performance. For the softened 

classifier however, the roles of the sum of squares and cross entropy function are 

reversed: sum of squares fuzzy classification performance deteriorates when the simple 

logistic discriminant is replaced by the more complex MLP, but cross entropy 

performance improves when the softmax discriminant is replaced. 
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Figure 23: Cereal proportions estimated by a 6-5-2 MLP trained using the cross entropy error on pure 
pixels only. 

Figure 24; Cereal proportions estimated by a logistic network trained using the sum of squares error 
on pure pixels only. 

Figure 25: Cereal proportions estimated by a 6-5-1 MLP trained using the sum of squares error on 
pure pixels only. 

As before, the differences between the techniques used here for performing fuzzy 

classification by soft classification are difficult to explain due to the interaction of 

model parameterisation, error function, and the distributions of the pure only pixels and 

the fuzzy validation data. Rather than discussing the specific features of the techniques' 

behaviour on the specific partition of the data set used in this thesis, the following 

section presents a short theoretical analysis of the relationship between posterior 

probabilities of class membership - the quantities estimated by crisp classifiers 

[Schurmann:96] which represent the most accurate results reported in this thesis thus far 

and the optimal fuzzy classifications, defined in this case as those that minimise either 

the sum of squares or cross entropy error functions over all possible data. 

6.3.1. On the Relationship between Posterior Probabilities and 
Fuzzy Classifications 

Since the softened outputs of conventional classifiers can often be interpreted as 

estimates of the posterior probabilities of class membership [Baum:87][Bishop;95][Cid-

Sueiro;00], it is interesting to consider the relationship between such probabilities and 

the subpixel proportions that they are used to approximate when soft classification is 

employed in land cover mapping. This subsection considers this relationship in detail 

and concludes that although posterior probabilities of class membership of pixels are 
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likely to be positively correlated with subpixel proportions, the two quantities cannot, in 

general, be equal. This suggests that softened classifications should be avoided as a 

means of obtaining information concerning subpixel cover unless more direct means of 

fuzzy classification are not possible due, for example, to a lack of fuzzy membership 

information in the set of exemplar pixels. 

The fuzzy classification that minimises the sum-of-squares and cross-entropy functions 

is equal to the mean of the distribution of subpixel memberships at each point in spectral 

space, as given below: 

I 25 

For the purposes of this discussion, these subpixel memberships will be considered to be 

optimal - a reasonable assumption since they minimise the error functions (and hence 

maximise the equivalent likelihoods) over the true and unknown distribution of subpixel 

memberships. There are thus no alternative estimates that will produce, on average, 

smaller errors. Similarly, the posterior probability of class membership can be written in 

terms of the spectrum-conditional probability pip. I s) as shown below; 

;)(C J f ) = j p (C J 1 26 

In order for posterior probabilities of class membership and fuzzy classifications to be 

equal, it is necessary for equations 25 and 26 to be equal. This is only guaranteed for 

arbitrary p{/x I s) if the posterior probability of class membership given a certain 

subpixel membership is equal to the subpixel membership, i.e. that 

ll = p{C\^) V / / e [ 0 , l ] ^ 27 

If pixel classification is unambiguous given subpixel memberships, the vector of 

posterior probabilities, piCXjJ) will always have a one in the position where 1 < n < 

and zeros in all others, and hence cannot satisfy the above condition. This shows that the 

posterior probability of the membership of pixels in classes where class membership can 

be determined unambiguously from subpixel area proportions cannot be guaranteed to 

equal the optimal subpixel area proportion estimates for all forms of p{ix\s). 
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An alternative approach to understanding this issue is shown for a simple two class case 

in figure 26. This figure shows the distribution of possible subpixel proportions at some 

point s in spectral space. While the optimal fuzzy classification is given by the mean of 

the proportion distribution, the posterior probability of class membership is given by the 

area of the shaded region. Clearly, by modifying the probability distribution for ji < 0.5, 

it is possible to change the distribution's mean, and hence the optimal fuzzy 

classification, without changing the posterior probability of class membership. The 

relationship between these posterior probabilities and the optimal fuzzy classification is 

thus a relatively weak one. 

Probability, 
p{}X I s) 

p{C I s) 

Ijii pin I s)dn 

0.5 1 

Proportion, ji 

Figure 26: An illustration of the relationship between posterior probabilities and optimal fuzzy 
classifications. 

It is interesting to note that the equivalence of posterior probabilities and fuzzy 

memberships does hold for special forms of One such form occurs when all 

pixels with spectral signature s are pure (consist of a single subpixel cover class). Under 

these circumstances, p{n\s) is zero except when f j . has a one in the n"' position where 1 < 

n< N, and zeros in all others. In addition to this, positive correlation between posterior 

probabilities defined in terms of subpixel area and fuzzy classifications, as was observed 

in [Foody:96c], are to be expected. This is because there is always a positive correlation 

between p{C \ju) and jU for pure pixels by virtue of the way in which class membership is 

defined. 
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7. Fuzzy ClassiGcadon 

There are two ways of performing fuzzy classification, each of which is analogous to 

one of the two ways of performing crisp classification: The first approach to crisp pixel 

classification is to use pixels of known class membership to construct density estimators 

for the class conditional distributions in spectral space. When a new pixel is observed, 

the class conditional densities estimated can be used with Bayes' theorem to derive 

estimates of the posterior probabilities of class membership of the pixel in each of the 

target classes upon which crisp classifications can be based. The fuzzy classification 

analogue of this process uses a data set of pixels of known fuzzy membership to place 

fuzzy basis functions in spectral space from which fuzzy memberships are derived by a 

process of normalisation. 

Most such implementations of both crisp and fuzzy classifiers use highly parametric 

forms for the class conditional distributions or fuzzy basis functions and hence usually 

achieve only very limited performance. However, this limitation is not implicit in the 

algorithms but is specific to particular implementations, and significant performance 

benefits can be demonstrated for both crisp and fuzzy classifiers through the use of 

more flexible models. This is well known in the case of crisp classification, but less so 

for fuzzy classification where the ad-hoc choice of highly parametric basis functions 

dominates. The analogy between crisp and fuzzy classification presented here is further 

extended in section 7.1.1, where it is shown that the use of semi-parametric 

representations of fuzzy basis functions is a natural extension of the standard fuzzy 

classifier and that their application can produce drastic improvements in performance. 

The second and most direct way of producing a crisp pixel classifier is to use a set of 

pixels of known class membership to derive a model of the relationship between a 

pixel's spectral signature and its class membership such that when a new pixel is 

observed, the model can be used to derive an estimate of the class membership of the 

pixel. Certain types of these models can be shown to produce approximations to the 

posterior probabilities that a pixel belongs to each of the target classes - a property that 

can be exploited in producing fuzzy classifiers and will be discussed in greater detail 

later. The fuzzy classification equivalent of this direct approach to classification is to 

use a set of pixels of known fuzzy membership to derive a model of the relationship 

between pixel spectral signatures and their fuzzy memberships. When a new pixel with 

unknown fuzzy membership is observed, the model can be used to obtain an estimate of 

its membership. This approach currently dominates the area proportion estimation 
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literature and will be discussed at length in a later section. The following sections return 

to the indirect methods of performing crisp and fuzzy classification by examining two 

algorithms, one a crisp classifier, the other a fuzzy classifier, which are shown to be 

closely related. Table 5 presents a summary of the relationships between direct and 

indirect crisp and fuzzy classifiers. 

Crisp Classification Fuzzy Classification 

Data Requires data of known class 
membership 

Requires data of known fuzzy 
membership 

Indirect 

Model class conditional densities Model fuzzy basis functions 

Indirect Derive posterior probabilities of class 
membership using Bayes' theorem 

Derive fuzzy memberships by 
normalisation 

Direct Model relationship between spectral 
signature and class membership 

Model relationship between spectral 
signature and fuzzy membership 

Table 5: Comparison of crisp and fuzzy classification. 

7.1. Indirect Fuzzy Classification 

As a typical example of a supervised fuzzy classifier, this section considers the 

influential work described in [Wang:89]. The structure of the fuzzy classifier described 

therein allows it to be viewed as a neural network, as shown in figure 27. At the top of 

the figure are the classifier inputs, which usually consist of the spectral signature of the 

pixel to be classified. This information is propagated to a series of non-linear basis 

functions in the network's hidden layer that usually take the form p{\s-m\,cf) where 5 is 

the pixel's spectral signature, m is the basis function's centre, cris a width parameter, 

which controls the rate at which p changes with s, and p{.) is a monotonically decreasing 

function of the difference \s-m\. p(.) therefore contains information about the distance 

between the basis functions' centres and pixels' spectral signatures. 
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Figure 27: A fuzzy classifier with five basis functions. 

One basis function is assigned to each of the target fuzzy classes, and used to represent 

the localisation of those classes in spectral space. The centre of the n"' basis function is 

found using: 

28 

where there are D pixels in the set of exemplars, the pixels have spectral signature s j 

and fuzzy membership in the n"' class of fn(sd)- Thus, the centre of the basis function 

representing class n is the mean of the spectral signatures of all pixels weighted by their 

membership in class n. The widths of the basis functions may be determined in a similar 

way using: 

d=\ 

29 

where, for simplicity, only one spectral band has been assumed. Both of the above 

formulae are independent of the estimated fuzzy memberships, and hence the 

parameters of the fuzzy classifier may be found from a single application of the above 
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equations. This is an important advantage of the fuzzy classifier over neural networks 

such as the MLP, which typically require many thousands of applications of the 

parameter update equations and hence many minutes, if not hours, of training. 

Once the parameters of the fuzzy classifier have been determined, the output of the 

fuzzy classifier fn{s^, which represents the fuzzy membership of the pixel under 

consideration in the n"' class, is found by normalising the output of the n"" hidden layer 

basis function by the sum of the outputs of all basis functions. 

where Pn{s^ is a Gaussian basis function. 

30 

y=i 

2(7! 31 

Fuzzy memberships for all classes of interest may be derived by constructing a separate 

fuzzy classifier for each class. This process is more efficient than it may initially appear, 

since all fuzzy classifiers have the same parameters and differ only in the normalisation 

stage, rendering it unnecessary to duplicate either the training procedure or the input to 

hidden and hidden layer structures. Following the work presented in [Wang:89], the 

basis functions used to generate the fuzzy classifications reported here are Gaussian and 

for simplicity, only one spectral band has been considered. It should be noted that other 

applications of this type of fuzzy classifier have used different basis functions (see, for 

example [Foody:96c][Fisher:90][Robinson:85]), the choices of which are largely arbitrary, 

despite the fact that it constrains the form of the fuzzy partitions that can be realised by 

the classifier. The next section returns to this issue by providing a new analogy between 

the fuzzy classifier and EM density estimator that not only provides a meaningful 

interpretation of the outputs of the basis functions but also motivates the use of non-

parametric substitutes to the forms normally used. 

Figures 28 and 29 show the estimates made by the fuzzy classifier for the subpixel 

proportions on the unseen areas in the Stoughton image. Figure 28 shows the cereal 

proportion predicted by the fuzzy classifier giving a cross-entropy performance of 

0.5161 - considerably worse than that of the softened classifiers considered earlier. The 

performance of the fuzzy classifier on the tall herb data is similarly poor, achieving a 
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cross-entropy error as high as 0.3112. There are essentially two reasons for these 

failures: 

• The fuzzy classifier is highly parametric in the sense that the shape of the basis 

functions, which determine the range of functions the fuzzy classifier can realise are 

determined apriori. Using the fuzzy classifier is rather like using other inflexible 

and highly parametric models such as linear networks and would thus be expected 

to perform poorly on complex modelling problems. 

• The fuzzy classifier contains no priors on the basis functions to adjust for the 

relative proportions of the different classes in an image. This problem is particularly 

pronounced in the case of the tall herb class, where few pixels contain more than a 

very small proportion. This issue is discussed again later in this thesis where it is 

shown that crisp classifiers and fuzzy classifiers, such as the one discussed here, are 

equivalent. 

E J B ' ] 
Figure 28: Cereal proportions predicted by a fuzzy classifier 

Figure 29: Tall herb proportions predicted by a fuzzy classifier. 

The following section uses the novel probabilistic interpretation to highlight the close 

relationship that exists between the indirect approach to fuzzy classification described in 

this section and crisp classification. This equivalence provides new and important clues 

as to how the structure of the fuzzy classifier can be changed to improve its 

performance. The section concludes by presenting a novel analysis of the asymptotic 

behaviour of the fuzzy classifier, which shows that as the quantity of training data and 

flexibility of the classifier are increased, the fuzzy classifications it produces converge 

to the optimal fuzzy classifications. 
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7.1.1. The Equivalence of Fuzzy and Crisp ClassiGers 

This section shows that the fuzzy classifier used in [Wang:90] (and similar to those used 

in [Melgani:00] and [Chittineni:81]) is a special case of a crisp classifier under the 

probabilistic interpretation. In particular, if the crisp classifier uses the indirect method 

and the class conditional density models consist of only a single Gaussian, and the 

priors and posteriors for each Gaussian are unity, i.e. 

X ; ) = l A = l y / : l < _ / < y 32 

the update equations for the basis function parameters (derived in appendix A) reduce 

to: 

D 

new _ (/=1 
" j = D 

I 
( /= ! 
I / ' . 

for their centres, and 

J ) - B 34 

for their variances. Thus, the equations for finding the parameters of an EM density 

estimator used in a crisp classifier are the same as those for the supervised fuzzy 

classifier where 

35 

and the area proportion estimate and posterior probability of class membership of a 

subpixel point in the m"' class C„, is: 

X C , 

/ ! = ] 

where 
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X C n ) - — 3 7 
^ d=\ 

and the fuzzy classifier has once again assumed all priors to be equal. 

In a normal application of the EM algorithm, the re-estimation equations are repeatedly 

applied until the algorithm is considered to have converged. Using the probabilistic 

interpretation however, the posterior probabilities p{C I are the true subpixel 

proportions and are therefore known. Thus, the optimal values of the basis function 

parameters are found from a single application of the re-estimation equations in the 

special case that the class conditional densities are each modelled by a single Gaussian 

as is the case in the equivalence described here. 

The probabilistic interpretation and the comparison of the indirect approach to deriving 

fuzzy memberships with the indirect approach to deriving crisp classifications provides 

useful insight into the operation of the fuzzy classifier, and suggests ways in which it 

may be improved. In terms of interpretation, the similarity between the equations for the 

parameters suggests that the values of the intermediate fuzzy basis functions can be 

interpreted as representing class conditional probability densities. The normalisation 

process can then be seen as an application of Bayes' theorem to convert the class 

conditionals into the pointwise posterior probabilities that, by the probabilistic 

interpretation, are equivalent to area proportions. 

In terms of improving performance, density estimators typically contain priors for each 

class - parameters that are absent from the fuzzy classifier, but which can produce a 

significant improvement in performance, as can be seen by comparing figures 28 and 34, 

figures 29 and 30 and tables 7 and 6. In the case of the tall herb class, the inclusion of 

the prior reduces the validation set error from 0.3112 to 0.1084. In addition to this, EM 

density estimators can be semi-parametric, that is, they use a superposition of a variable 

number of basis functions to model each class conditional density rather than the single 

basis function used by the fuzzy classifier. The derivation of the equations for updating 

the density estimator parameters using EM provided in the appendix is presented in 

these terms, and the results in figures 30 to 37 show that increasing the flexibility of the 

density estimator through the addition of basis functions improves the accuracy of the 

area proportion estimates made far beyond those of the standard fuzzy classifier. Note 

that the EM fuzzy classifier appears to overfit the tall herb data when using 10 basis 
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functions. This problem may be overcome by adding regularisation to the density 

estimators [Bishop;95] or by initialising the density estimator to have low complexity 

(giving the basis functions large variances), using an algorithm that updates the 

parameters more slowly than EM over a larger number of iterations, and using early 

stopping. 

Figure 30: Tall herb proportions predicted by the EM fuzzy classifier with 1 basis function. 

Figure 31; Tall herb proportions predicted by the EM fuzzy classifier with 2 basis functions. 

Figure 32; Tall herb proportions predicted by the EM fuzzy classifier with 5 basis functions. 

Figure 33: Tall herb proportions predicted by the EM fuzzy classifier with 10 basis functions. 

Algorithm Number of Basis Functions Validation Set Error 

Fuzzy classifier Not applicable 0.5161 

EM fuzzy classifier 1 0.4590 
" 2 0.2979 
" 5 0.2204 

" 10 0.2210 

Table 6: Comparison of the standard and EM fuzzy classifiers on fuzzy tall herb data. 
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Figure 34: Cereal proportions predicted by the EM fuzzy classifier with 1 basis function. 

# "WP • % 

• 

Figure 35: Cereal proportions predicted by the EM fuzzy classifier with 2 basis functions. 

• 1 

Figure 36: Cereal proportions predicted by the EM fuzzy classifier with 5 basis functions. 

Figure 37: Cereal proportions predicted by the EM fuzzy classifier with 10 basis functions. 

Algorithm Number of Basis Functions Best Test Set Error 

Fuzzy classifier Not applicable 0.3112 

EM fuzzy classifier 1 0.1084 
" 2 0.1081 
" 5 0.1081 
" 10 0.1055 

Table 7: Comparison of the standard and EM fuzzy classifiers on fuzzy cereal data. 

An important but as yet unanswered question concerning the fuzzy classifier is whether 

its fuzzy classification estimates approach the optimal fuzzy classifications as the 

quantity of training data and the flexibility of the classifier increase. A positive answer 

to such a question would provide some level of confidence that the fuzzy classifier is 

capable, in principle, of performing optimal fuzzy classification and that its outputs can 

reasonably be interpreted as proportion estimates. The following analysis shows that, 

under ideal circumstances, the indirect method of fuzzy classification can indeed 

produce optimal fuzzy classifications. If an unlimited quantity of data were available, 

the error function used to train the EM based fuzzy classifier would be: 
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£ " = - J p{C I s)p(s) In (s I C)ds 38 

where p(C\s) is the average posterior probability that a subpixel point is in class C 

(equivalent to the proportion of the subpixel area of the pixel under consideration 

covered by class Q , given that a pixel has spectral signature s, and pesiislQ is the 

quantity estimated by the density estimator component of the fuzzy classifier - as will 

be shown, this is the probability that the spectral signature s is observed given that a 

subpixel point is in class C. If the density estimator is allowed to become arbitrarily 

flexible, then when pestislC) minimises E, 

= 0 

for all s. I.e. for two points S] and S2 in spectral space, 

aE BE 

But, differentiating equation 38 with respect to and Pest(s2^C) gives: 

dE _ p(C\s^)p(s^) 

and 

9E 

40 

41 

42 

which, when equated give: 

p ( C I J, ) _ ;)(C I f 2 )p(^2) 

Dividing each side by piC\s2)p(s2) and multiplying by gives: 

43 
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which implies that pest{s\C) is proportional to piC\s) 

IC) = 6^(C I 45 

where «• is a constant of proportionality. Fortunately, a can be determined, since the 

choice of Gaussian basis functions guarantees that 

46 

such that 

o r j p{C I s)p{s)ds = 1 47 

which, since jp(Clf)p(f)df=jp(C,f)d^=p(C) implies that 

1 a = 
f(C) 

48 

Thus, 

P(C) 

which shows that the density estimator components of the fuzzy classifier do indeed 

model the class conditional probability densities. Recalling that, in practice, the EM 

fuzzy classifier operates by using two density estimators, their outputs representing 

Pest{s\C) and Pest{s\ —\C) (—iC meaning not class C) and being combined using Bayes' 

theorem; 
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p ( c i y ) = 
I C)p (C) + (f I - , C ) p ( - i C ) 

where the closed world property of C and not C implies that the denominator reduces to 

which leads to: 

which, from Bayes' theorem, implies that: 

I j) = ' J) 52 

In other words, the EM based fuzzy classifier that is trained by minimising equation 38 

produces outputs that can be interpreted as subpixel area proportion estimates, in the 

sense that as the classifier is given increasingly large quantities of data and allowed 

greater flexibility, the estimates it produces converge to the optimal proportion 

estimates. In practice, it is likely that even the augmented fuzzy classifiers described 

here would, on average, perform less well than more direct techniques such as the MLP 

as they suffer from exactly the same problem as the indirect crisp classifiers to which 

they are equivalent - they model the area proportions (equivalent to posterior 

probabilities under the probabilistic interpretation) via potentially complex class 

conditional distributions. 

The following section describes the current state of the art in fuzzy classification - the 

use of complex flexible models such as neural networks to directly estimate proportion 

information from spectral data. The section describes the asymptotic behaviour of 

neural network learning and how it relates to the problem of area proportion estimation. 

It also uses the probabilistic interpretation to present a novel analysis of the role of the 

cross entropy function in training neural networks for fuzzy classification. 

7.2. Direct Fuzzy Classification 

The most successful techniques currently in use for extracting subpixel area proportion 

information are non-linear regression algorithms that use a set of exemplar pixels of 
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known fuzzy membership to leam a function that directly maps a pixel's spectral 

signature to a subpixel proportion estimate. Of the functions used, neural networks have 

been amongst the most popular due to their accessibility and robustness. This section 

presents the results of applying a range of non-linear regression algorithms to the 

FLIERS data set and then considers the question of the appropriate error function for 

fuzzy classification - an issue debated in [Foody:95b]. In particular, the probabilistic 

interpretation is used to provide new insight into the role of the cross entropy function in 

fuzzy classification. 

Direct fuzzy classification consists of two largely independent branches, the first 

typified by the application of linear models to model the relationship between an 

observed spectral signature and subpixel proportions and the second and most important 

as far as this thesis is concerned is the application of flexible non-linear models such as 

neural networks. Although research into linear techniques continues to this day, there is 

good reason to believe that in practice, the relationship between a pixel's spectral 

signature and the optimal fuzzy classification is non-linear. This seems to suggest that 

robust non-linear models should be used, particularly if there are large quantities of 

labelled exemplar pixels available, as is the case with the FLIERS data set. 

Figure 38: Cereal proportions estimated by a linear network trained using the sum of squares error on 
fully fuzzy data. 

Figure 39: Cereal proportions estimated by a logistic network trained using the sum of squares error 
on fully fuzzy data. 

The results of applying single layer linear and logistic networks to the FLIERS data set 

are shown in figures 38 to 43 and table 8. As usual, the simple linear network performs 

poorly due to its inability to suppress input variance in its output. This results in a mean 

squared error rate of 0.08289 as opposed to 0.05092 for the logistic network on the 

cereal data. Although the performance of the single layer logistic network is the best 

yet seen, there is very little obvious difference that can be seen between the images of 
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the predicted proportions in figure 38 and earlier images. This suggests that such images 

can only offer a fairly coarse qualitative indication of performance. 

Figure 40: Tall herb proportions estimated by a linear network trained using the sum of squares error 
on fully fuzzy data. 

Figure 41: Tall herb proportions estimated by a logistic network trained using the sum of squares 
error on fully fuzzy data. 

For the tall herb class, the proportions predicted are all small and little variance in 

predictions can be seen other than in the enhanced images of figures 42 and 43. Each of 

these images, representing the predictions made by the linear and logistic networks 

respectively have broadly similar characteristics: Although the predictions they make 

generally bear little resemblance to the true distribution of tall herb, they are quite 

similar to each other. For example, the absence of tall herb is correctly predicted for the 

lower field in the fourth subimage. This suggests that either the difficulty in predicting 

the proportion of tall herb is due to spectral confusion or neither the linear nor the 

logistic network can accurately predict the proportion of tall herb because they are too 

inflexible to learn the mapping from spectral signature to subpixel proportion. 

Figure 42: Enhanced image of the tall herb proportions estimated by a linear network trained by 
minimising the sum of squares error on fully fuzzy data. 

Figure 43: Enhanced image of the tall herb proportions estimated by a logistic network trained using 
the sum of squares error on fully fuzzy data. 
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The following section looks at neural networks - a class of semi-parametric models that 

are known to be universal approximators and hence theoretically capable of reproducing 

any function to arbitrary accuracy [Ripley;96]. Before applying neural networks to the 

fuzzy classification problem, it is interesting to consider the question of which error 

function should be used [Foody:95b]. This issue is discussed at the beginning of the next 

section, where the probabilistic interpretation is used to provide new insight into the role 

of the cross entropy function in area proportion estimation. 

Network Class Error Function Validation Error 

Linear Cereal Sum of squares 0.08289 

Logistic Cereal Sum of squares 0.05092 

Linear Tall herb Sum of squares 0.02405 

Logistic Tall herb Sum of squares 0.02397 

Table 8: Comparison of fully fuzzy c assifiers with linear and logistic output nodes 

Bias 

Proportion 
estimate, // 

Figure 44: An MLP that uses five hidden neurons to estimate a single proportion from six spectral 
bands. 
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7.2.1. On the Cross Entropy Error and Fuzzy Classification 

In most applications, neural networks are trained by minimising either the sum of 

squares or cross entropy error functions over the training set. While the sum of squares 

error function is normally used for regression problems and the cross entropy function 

for classification it is less clear which function should be used in the fuzzy classification 

of remotely sensed image pixels. This question was considered in detail in [Foody:95b] 

which produced several arguments and some empirical results in favour of the cross 

entropy function. This section uses the probabilistic interpretation to provide a novel 

theoretical justification for the use of the cross entropy function in the fuzzy 

classification of remotely sensed image pixels. 

Consider a set of N classes, C„ : I <n<N where C„ is the label of the n"' class. If this set 

is closed world and the classes are mutually exclusive, the probability distribution of 

class memberships obtained from random sampling of the subpixel area will be 

multinomial; 

p ( C I y) = I X, 53 
n=\ 

where C(x,y) is a vector indicating the class membership of the subpixel point ix,y). For 

example, if (x,y) e C„ then C(x,y) has a one in the n"' position and zeros in all others. 

p(CJx,y) is the posterior probability of membership of the subpixel point (%,);) in class 

C„. The probability of D such points having class membership C where C is now a 

matrix of D rows of vectors each indicating the class membership of one of the D points 

is given by: 

D N 

(/=] n=l 

A neural network would typically be trained to classify such a set of points by using the 

maximum likelihood procedure. That is, the network would model the distribution 

parameters piCn\x,i,yd) so as to maximise the probability that the distribution would 

reproduce the set of training patterns. Using the probabilistic interpretation, the 

distribution parameters are equal to the subpixel area proportions such that: 
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D N 

r/=l M=1 

where jUe,u(C„\P) are the neural network estimates of the distribution parameters. In other 

words, given a set of D subpixel points of class membership Cn(xd, yd), maximum 

likelihood subpixel area proportion estimates may be obtained by finding the area 

proportions which maximise equation 55. It is however, possible to extend this by 

rearranging and considering the case when D becomes infinitely large. As this limit is 

approached, the proportion of the D samples belonging to class C„ approaches the 

proportion of the subpixel area covered by C„. Taking the outer product inside the 

power thus gives: 

n=] 

This makes it possible to simulate the effect of training a neural network on an infinitely 

large number of subpixel samples. To find the maximum likelihood subpixel area 

proportion estimates, it is convenient to minimise the negative logarithm of the 

likelihood given in equation 56 rather than maximise the likelihood itself. The negative 

log-likelihood is given by: 

-- ln | ; , (CI Z))| = I fi? 
n=l 

The multiplicative constant D is independent of the distribution parameters and hence 

does not change the set of parameters that maximises the likelihood. For this reason the 

D term may be ignored when maximising equation 57, such that the problem of finding 

the subpixel area proportions that maximise the likelihood is equivalent to finding the 

values for which minimise: 

jg = IJP) In / / ,„ ( ( : , I jP) 58 
M=] 

which is the same as minimising the cross entropy error between the true and estimated 

subpixel area proportions. Multiple exemplar pixels may easily be accommodated by 

accumulating the expected error over the set of exemplars, so that for D pixels, 
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d—\ n=l 

The above derivation of the cross entropy function indicates that the fuzzy 

classifications that minimise the cross entropy function maximise the probability that a 

large number of samples drawn from a pixel with the subpixel proportions given by the 

fuzzy classification would have the same crisp class memberships as an equal number of 

samples drawn from a pixel with the target subpixel proportions. Alternative discussions 

of the use of the cross-entropy function for fuzzy classification, which focus on its 

information theoretic basis and the interpretability of the resulting error measures may 

be found in [Foody :95b] and [Foody :96c]. 
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Figure 45: Log likelihoods of the validation set given cross entropy and sum of squares trained 
networks. 

Figure 45 shows the results of an experiment conducted to evaluate the performance of a 

sum of squares and a cross entropy trained fuzzy classifier in terms maximising the 

likelihood that a set of subpixel samples from unseen pixels are generated with the 

correct memberships. The analysis of the cross entropy function that was presented 

earlier, suggests that the cross entropy trained fuzzy classifier should offer superior 

performance in this test. Figure 45 shows the results of this experiment in terms of the 

natural log joint probability of the fuzzy classifiers correctly predicting the class 

membership of all subpixel samples where one sample is drawn from each pixel in a 

validation set of 1,658 pixels. As shown, the cross entropy trained fuzzy classifier 

predicted the test set with log probability of approximately -1.48x10'^, whist the sum of 

squares trained fuzzy classifier only achieved a log probability of about -1.52x10^. This 

means that the cross entropy trained fuzzy classifier is roughly 10'"' times more likely to 

assign correct memberships to all the subpixel samples than the sum of squares trained 

fuzzy classifier. 
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Technique Data Set Error Function Structure Validation Set Error 

MLP Cereal Sum of squares 6-2-1 &05011 

" " 6-5-1 0.04897 
" " 6-10-1 0.04779 
" Cross entropy 6-2-1 &1427 
" " 6-5-1 &I379 
" " 6-10-1 0 1319 

Table 9: Comparison MLPs trained with sum o 
on the cereal c 

' squares and cross entropy functions 
ata. 

Tables 9 and 10 and figures 46 to 57 give the results of applying sum of squares and 

cross entropy trained MLP fuzzy classifiers to the FLIERS data set. Note that these 

results are the best yet obtained for both the cereal and tall herb data sets. The minimum 

degree of improvement is around 10 percent for both data sets, with the exception of the 

logistic discriminant, which performs nearly as well as the MLP. This may be because 

the cereal proportions are so tightly clustered around zero and one as was shown in 

figure 4 that an algorithm such as the logistic network will perform well even if it has 

limited ability to model subpixel mixing. It is likely that the performance difference 

between the fully fuzzy neural networks and the other algorithms investigated thus far 

would increase when applied to classes that exhibit a broader distribution of mixing than 

the cereal class. 

Technique Data Set Error Function Structure Validation Set Error 

MLP Tall herb Sum of squares 6-2-1 0.02103 

" 6-5-1 0.02046 
" 6-10-1 0.02016 

Cross entropy 6-2-1 &1052 
" 6-5-1 0.09615 
" 6-10-1 0.09393 

Table 10: Comparison of MLPs trained with sum of squares and cross entropy 
functions on the tall herb data. 

Figures 46 to 48 and figures 49 to 51 show the results of applying MLPs with different 

numbers of hidden neurons to the cereal data set using first the sum of squares error and 

then the cross entropy error. Between the sum of squares and cross entropy MLPs with 

two hidden neurons, there are noticeable differences in the estimated proportions, such 

as the greater homogeneity of the upper field in the fourth subimage predicted by the 

cross entropy network at the expense of making greater errors in predicting the presence 

of a field of cereal in the lower left hand comer of the third subimage. These differences 
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are the result of interactions between the model parameterisations and the characteristics 

of the different error functions as was explained in section 6.1. 

Figure 46: Cereal proportions predicted by a 6-2-1 MLP trained using the sum of squares error on 
fully fuzzy data. 

Figure 47: Cereal proportions predicted by a 6-5-1 MLP trained using the sum of squares error on 
fully fuzzy data. 

Figure 48: Cereal proportions predicted by a 6-10-1 MLP trained using the sum of squares error on 
fully fuzzy data. 

Note that the proportions predicted by the more flexible networks - those with ten 

hidden neurons - are much less dependent on the choice of error function. This is 

because for any pixel the proportion estimates that minimise the expected sum of 

squares and cross entropy errors are the same (being equal to the mean proportions that 

would be observed for that spectral signature), suggesting that an area proportion 

estimator should produce the same estimate regardless of whether it is trained using the 

sum of squares or cross entropy functions. In practice, any particular model will be too 

constrained to reproduce the actual relationship between spectral signature and optimal 

subpixel proportion estimate and will therefore make errors in its proportion predictions 

that result from its parameterisation. It is the distribution of these errors between pixels 

that is adjusted by the choice of error function and leads to differences in behaviour. As 

more flexibility (in this case more hidden neurons) is added to the network, the 

magnitude of the error caused by the parameterisation decreases, reducing the impact of 

the choice of error function on the predictions made by the final model. 
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Figure 49; Cereal proportions predicted by a 6-2-2 MLP trained using the cross entropy error on fully 
fuzzy data. 

Figure 50; Cereal proportions predicted by a 6-5-2 MLP trained using the cross entropy error on fully 
fuzzy data. 

Figure 51; Cereal proportions predicted by a 6-10-2 MLP trained using the cross entropy error on 
fully fuzzy data. 

A similar pattern of convergence of the predictions from sum of squares and cross 

entropy trained networks with increasing network flexibility can be seen for the tall herb 

data: the patterns of prediction and mis-prediction are much more similar for the 

networks with ten hidden neurons than for those with only two. In both cases the 

networks with small numbers of hidden neurons appear to be unable to pick out the 

systematic variance in the tall herb data and hence do little more than model the 

distribution mean leading to the almost uniformly dark estimate images. As more 

flexibility is added to the networks by increasing the number of hidden neurons, the 

proportion estimates display greater variation though never as much as the ground truth 

data, suggesting that some systematic aspects remain unlearned. The actual predictions 

themselves show considerable confusion, particularly between field boundaries with and 

without tall herb. In the fourth subimage for example, both fuzzy classifiers incorrectly 

predict the presence of tall herb for virtually all the field boundaries. 
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Figure 52: Tall herb proportions predicted by a 6-2-1 MLP trained using the sum of squares error on 
fully fuzzy data. 

Figure 53: Tall herb proportions predicted by a 6-5-1 MLP trained using the sum of squares error on 
fully fuzzy data. 

Figure 54; Tall herb proportions predicted by a 6-10-1 MLP trained using the sum or squares error on 
fully fuzzy data. 

The following chapter presents a discussion of the factors that limit the performance of 

fuzzy classification algorithms. In particular, it shows that some of these are 

unavoidable when fuzzy classifications are based on pixel spectral signatures alone. 

Rather than proposing new fuzzy classification algorithms, it is suggested that a new 

representation for fuzzy classifications should be used - the distribution of probable 

fuzzy classifications of a pixel given its spectral signature. 

Figure 55; Tall herb proportions predicted by a 6-2-2 MLP trained using the cross entropy function 
on fully fuzzy data. 

Figure 56: Tall herb proportions predicted by a 6-5-2 MLP trained using the cross entropy function 
on fully fuzzy data. 

Figure 57: Tall herb proportions predicted by an 6-10-2 MLP trained using the cross entropy function 
on fully fuzzy data. 
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8. Performance Limits 

The fuzzy classification literature contains many papers that report results of fuzzy 

classification experiments, but there is much less discussion of the limits of achievable 

fuzzy classification accuracy. It should be a priority to consider in detail what limits 

there are that are intrinsic to the fuzzy classification problem, (in the sense that they 

cannot be overcome by using more sophisticated fuzzy classification algorithms), since 

further experimentation is only justified if these limits have not already been reached 

[Wilkinson;96]. The following sections discuss characteristics of the fuzzy classification 

problem that limit fuzzy classifier performance. The discussion is not intended to be 

exhaustive, but rather focuses on issues that have received little attention in the fuzzy 

classification literature. 

8.1. The Effect of the Number of Classes 

It is well known in the linear mixture modelling community that difficulties arise in 

determining subpixel mixtures when the number of target classes exceeds the number 

of spectral bands [Kent:88][Sohn:97][Bosdogianni:97]. This problem is usually attributed 

to the difficulty of inverting the matrix of end member spectra resulting from its 

singularity, and may be overcome by using a regularised estimator, or mapping the 

original spectral measurements into some high dimensional space [Bosdogianni:97]. 

These solutions only eliminate one of the symptoms of a more serious problem: the 

multiplicity of solutions to the linear mixture model indicates that the spectral data 

contains insufficient information to uniquely identify the subpixel mixture responsible 

for the observed spectrum. If the spectral data is insufficient, an upper bound will be 

placed on the level of performance a fuzzy classifier can achieve, which can only be 

breached by providing the classifier with new information such as contextual 

information from surrounding pixels. 

Unfortunately, it is relatively difficult to determine whether a particular set of spectra is 

sufficient with respect to a particular set of target classes and, if insufficient, the extent 

of the performance bound. The mixing which is likely to be observed in any particular 

application for any set of target classes forms some volume in the space of mixture 

proportions. If, in any region of mixture space, the volume is locally of a higher 

dimension than there are spectral bands, it will not always be possible to unmix the 

target classes with complete accuracy. In practice, it may be difficult to assess the 
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likelihood of this condition arising for a particular set of classes, since most classes 

cannot be guaranteed to interact with all others in the set. One notable example is in the 

case of mapping land cover on a global scale. In such a situation it is reasonable to 

expect that land cover types of, for example, ice and tropical forest would not be found 

within the same pixel. Any set of classes that includes these therefore has at least one 

degree of freedom less than the number of classes. 

Since such detailed information may generally be lacking, it would be desirable to use 

an automated procedure to compute the local dimensionality of the volume of mixtures 

in a set of exemplars. Unfortunately, no algorithm for doing this is currently in common 

use and even if it were, the ultimate aim of analyses with regard to the number of target 

classes and their properties would be to compute the performance bound itself. In 

reality, this is likely to be extremely difficult, since the bound is not only dependent 

upon the local dimensionality of the volume of mixtures, but also on the unknown 

underlying distribution of the mixtures, both of which would have to be estimated from 

exemplars resulting in significant uncertainty in the error bound. 

8.2. The Effect of Spectral Variation 

Virtually all natural and most man-made cover types will exhibit some degree of 

spectral variation. Sources of such variation are many and varied: natural cover types 

may vary spectrally with age, or season. Oil seed rape provides a rather dramatic 

example of lifetime variation, changing from green to bright yellow over a relatively 

short period. More complex classes that are actually composed of a large number of 

simpler cover types, such as the 'urban' class will exhibit significant spectral variation 

due to the changing subpixel proportions of the class components [Thomas:96]. 

Such spectral variation dramatically increases the difficulty in collecting a set of 

exemplar pixels which are representative of both the types of mixtures seen in the 

landscape that the fuzzy classifier will be applied to in application, but also 

representative of the spectral properties of the target classes at the level of mixing 

expected. This type of problem - collecting exemplars that are representative of the 

application area - is ever present in statistical modelling, but is particularly severe in 

remote sensing image classification due to the degree of spatial non-stationarity that is 

present in such data. That is, the land cover statistics (as regards the relative frequency 

and spectral properties of cover types) vary spatially, limiting the accuracy of any 
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classifier that makes classifications on the basis of statistics learnt from a set of 

exemplars drawn from any particular location. 

An additional and more critical problem with classes that exhibit spectral variation 

across all spectral bands is that it becomes impossible to infer subpixel cover 

proportions from pixel spectra without some degree of ambiguity and hence 

performance loss [Horwitz:71]. Including a class that exhibits spectral variation is, as far 

as area proportion estimation is concerned, equivalent to attempting to estimate the 

subpixel proportions of infinitely many classes, which, as was discussed in the previous 

section, cannot be done with complete accuracy. The ultimate goal of any investigation 

into this problem should be to quantify this component of the performance bound - a 

task likely to prove impossible since the bound depends not only on the distribution of 

the spectral variation, but also on how the spectral variation changes when classes mix, 

and on the mixtures likely to be present in any particular application. 

8.3. Primitives and Compounds 

In this section, a new phraseology is developed and used to discuss the conditions 

necessary to maximise the performance bound resulting from the sources of uncertainty 

discussed in the previous sections. The first term to be introduced, primitives, refers to 

the simple cover types from which more complex ones are composed. Typically, for 

example, the 'urban' class would be composed of much simpler classes such as 'slate' 

and 'tarmac' which would be classed as primitives. The 'urban' class itself would be 

described as a compound class, since it is composed of a number of simpler primitives. 

It is also useful to distinguish different types of primitives by their relation to each other 

and to compound classes: Shared primitives are used in the definition of two or more 

compound classes, whereas unshared primitives are used in the definition of only a 

single compound class. The relationship between two primitives is intercompound if the 

primitives appear only in the definition of different compound classes and 

intracompound if they appear in the definition of the same compound class. The 

conditions necessary for maximum fuzzy classification accuracy may thus be 

summarised as: 

• Intracompound primitives should not intersect under the set of measurements to 

be used for area proportion estimation, i.e. for any two primitives Pa and Ph, 

and a set of compound classes C„ : 1 < n < Â , if //(Pa n C„)>0 A FIIPT 

C„)>0 3n : l<n<N then n Ph) =0. 
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• Intercompound primitives should not intersect under the set of measurements to 

be used for area proportion estimation, i.e. for any two primitives Pa and Pb, 

a?i> and any two compound classes C„,C„: 1 < n,m < N, if ju{Pa n C„)>0 A ju(Ph 

n Cm)>0 3n,m : I < n ,m< TV, MXrw then jU(Pa n Pt) =0. 

® Primitives should exhibit no spectral variation. I.e. the probability of observing 

a spectral signature 5 for a primitive P is given by p(s I P)=S{s-sp) where Sp is 

the spectral response of the primitive and 5(.) is a function which returns one 

when its argument is zero and returns zero at all other times. 

• The number of degrees of freedom in the primitives must be equal to or less 

than the number of degrees of freedom in the spectral bands. This is usually the 

case if the total number of primitives is less than or equal to the number of 

spectral bands. 

» Compound classes should be composed of an additive union of primitive 

classes. That is, for a compound C, and intracompound primitives P„ : I < n < 

These constraints are so strict that they are unlikely ever to be satisfied in any practical 

application. The value of these rules is rather that they highlight the ways in which sets 

of classes in particular applications deviate from the ideal and hence provide some 

indication as to specific sources of performance loss. The following section presents a 

novel examination of the impact of the sensor point spread function on the accuracy of 

fuzzy classifications and shows that not only does it limit performance by introducing 

ambiguity but also that the degree of ambiguity depends on the degree of subpixel 

mixing. 
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8.4. The Effect of the Point Spread Function 

When a satellite captures a remotely sensed image, each pixel represents the spectral 

properties of the ground cover within and around the pixel convolved with the spatial 

sensitivity profile of the sensor, the point spread function (PSF). The point spread 

function has a 2-dimensional argument corresponding to the distance from the peak 

sensitivity of the sensor which occurs roughly at the pixel centre. From the pixel centre, 

the sensitivity of the sensor falls off monotonically with roughly circular symmetry and 

continues into the ground area covered by surrounding pixels. Generally, the point 

spread function has a number of approximations, including the Gaussian and the product 

of sines, depending on the degree of accuracy required (see, for example, [Justice:89]). 

Although the effect of neighbouring pixels is not considered here, their contribution to 

the proportion estimation error could be reduced by a procedure similar to that described 

in [Townshend:00]. 

Area proportion /*. Area proportion /fe. 

Spectral 
signature 

y / 1 ^ y 0 Class 1 

: I Class 2 

Figure 58: Two pixels with the same spectral signature but different sub-pixel composition. 

Spectrally, the point spread function magnifies the contribution of land cover placed 

centrally in a pixel to the pixel spectrum and diminishes the contribution from land 

cover towards the pixel perimeter. The point spread function therefore introduces 

ambiguity into the spectral unmixing exercise by allowing different subpixel 

proportions to generate the same spectral signature [ManslowiOOb]. Consider, for 
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example, a pixel that contains equal proportions of two land cover types, the first placed 

centrally, and the second arranged around the pixel perimeter. Spectrally, the pixel will 

appear to be most similar to the first, more centrally placed, cover type. If the locations 

of the cover types are now swapped such that the first cover type lies on the pixel 

perimeter, the spectral properties of the pixel will be most similar to those of the second 

class. This spectral change in the pixel may be counteracted however, by increasing the 

proportion of subpixel cover of the first class. Thus, as shown in figure 58, a pixel of the 

same spectral signature as the original one may be produced, but with different subpixel 

proportions. 

T ( ) 

F i g u r e 5 9 : Gauss ian P S F w i t h c c = l . 

Critically, the magnitude of this effect depends on the proportions of subpixel cover. If a 

pixel consists of a single subpixel cover type, all such pixels would (assuming the class 

has no inherent spectral variation) exhibit the same spectral properties. If a pixel is 

mixed however, the subpixel cover can always be re-arranged to produce alternative 

pixels with different proportions of subpixel cover, but identical spectral signatures. To 

examine this phenomenon in greater detail, consider the case when a pixel consists of 

only two subpixel cover types covering area a, and respectively. We shall assume 

that the classes have spectral responses Sj and S2, which exhibit no spectral variation, 

and that the point spread function \(/(.) is assumed to be Gaussian as given below. 

*P(r) = exp(-CKr^) 60 

where r is the distance from the pixel centre and or is a constant which controls the 

shape of the PSF. The pixel is assumed to have a circular footprint, that is, a point (x,y) 

is considered to be within the pixel area if: 
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r<\ I + 61 

If class 1 is concentrated in the area where the PSF is least sensitive, that is, around the 

pixel perimeter, all points for which 

r (z , y) > / ; r 62 

belong to class 1 and all others belong to class 2. The spectral response of the pixel may 

be written as: 

1 r 

S ^ = j27rr^'(r)s^dr +^2nr l / { r ) s2dr 63 

where 

• -^1 — cî  I k 64 

Now, if the subpixel cover is re-arranged so that class 1 now lies in the region of 

greatest sensitivity of the PSF, in the pixel centre, the spectral response of the pixel will 

change. It is possible, however, to restore the pixel's spectral response to its original 

value by adjusting the subpixel proportions of the two classes. The spectral response of 

a new pixel where class 1 is arranged in the central region is given by 

r 1 
{r)s^dr + {r)s2dr 65 
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Y(.) 

where 

Figure 60: Gaussian PSF with cc=2. 

In 66 

and a]' is the new area occupied by class 1. Sa and Sb are equal if each of the component 

integrals are equal, i.e. when 

j27a'^(r)s-^dr = {r)s^dr 67 

Note that only one pair of integrals needs to be considered, since the pairs are 

equivalent. Substituting for the Gaussian PSF and cancelling multiplicative constants 

yields: 

Jre ^ dr = ^re dr 68 

which gives (see appendix B): 

69 
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Rearranging this makes it possible to compute the alternative subpixel proportions of a 

pixel with the same spectral response as the original under the assumption that in that 

pixel, class 1 was concentrated in the region where the PSF is least sensitive. Using 

a, '=;rr'^ 70 

the alternative area can be shown to be: 

ci, — In 
a 

+1 71 

Assuming class 1 was originally concentrated in the region where the PSF is most 

sensitive, gives an alternative subpixel area of 

r 
Cl^ — 7T 1+—In 

a 
+1 72 

obtained by using 
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F i g u r e 61 ; A m b i g u i t y i n d u c e d b y a P S F w i t h a = l . 
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Poss ib le 

a l t e rna t i ve 

p r o p o r t i o n s 

" O b s e r v e d p r o p o r t i o n 

F i g u r e 62 : A m b i g u i t y i n d u c e d b y a P S F w i t h a = 2 . 

The results derived above indicate that for the Gaussian model of the PSF, there is much 

higher uncertainty involved in predicting the subpixel proportions for pixels that are 

heavily mixed (i.e. the subpixel proportions are similar) than for ones that are more 

lightly mixed (the subpixel area is strongly dominated by a single class), and that the 

greater the range of PSF sensitivity within a pixel, the greater the induced uncertainty. 

The former effect suggests that estimators should model exemplars more closely when 

they represent pure pixels than when they represent mixed pixels since there exist no 

alternative pixels with different subpixel proportions at that point in spectral space. 

Learning lightly and heavily mixed exemplars to the same level of accuracy would 

therefore risk under fitting the nearly pure exemplars and over fitting the heavily mixed 

ones. 

P r o b a b i l i t y 

P(//) 

A r e a p r o p o r t i o n , ji 

F i g u r e 63 ; S m a l l a n d l a rge v a r i a n c e p r o p o r t i o n d i s t r i b u t i o n s i n d i c a t i n g t he w a y i n w h i c h the P S F 

i n t r oduces m o r e u n c e r t a i n t y i n m i x e d p i x e l s t h a n i n a l m o s t p u r e p i x e l s . 
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To illustrate this effect, consider a point in spectral space where a nearly pure and a 

heavily mixed pixel both occur. By the preceding argument, each pixel suggests some 

distribution of alternative pixels with different subpixel cover proportions at the same 

point in spectral space. The nearly pure pixel would be associated with a tight (small 

variance) distribution of alternative proportions, while the mixed pixel would be 

associated with a much broader (larger variance) distribution as shown in figure 63. 

Note that for illustrative purposes, Gaussian distributions have been plotted even though 

the actual distributions are unknown. The following section considers the implications 

of the effects outlined above for area proportion estimators and, in particular suggests 

that it should be possible to use the information derived above to obtain optimal area 

proportion estimators. 

8.4.1. Implications for Proportion Estimation 

The following analysis of the impact of the results outlined in the previous section 

shows, without the aid of distributional assumptions, that proportion estimators are 

likely to achieve greater accuracy if they lay more emphasis on nearly pure exemplar 

pixels than heavily mixed ones in the production of estimates. Consider the case where, 

at a particular point in spectral space, two pixels have been observed, one nearly pure 

pixel with proportion /// and the other heavily mixed with proportion jXj and any other 

area proportion by jx. The proportion // may also be written as /Hi+Ei and //2+^2 where Sj 

and £2 are deviations from the observed subpixel proportions. Using this notation, the 

expected squared error of an area proportion estimate //„, given the two observed pixels 

can be written as; 

"74 

where p(//)=0.5xp(6})+0.5xp(^), assuming that the nearly pure and heavily mixed 

pixels are equally likely. This expected error measure is minimised when the area 

proportion estimate is the mean of the means of the distributions associated with the 

nearly pure and heavily mixed pixels: 

l^opt =ll^\+2f^2 

where the above notation assumes that the observed area proportions lie at the means of 

the distributions. The global mean will be used as the definition of the optimal area 
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proportion estimate in the discussion that follows, since it minimises the expected sum-

of-squares and cross-entropy errors. Now consider a simple estimator /Arc derived from a 

weighted combination of the observed area proportions in the following way: 

/̂ wc - + (1 ~ 76 

where 0 < m < 1 is a weighting factor. It is possible to write down the expected squared 

error of this estimator as follows: 

JC -- /fop, 77 

which, may be rearranged (see [Bishop:95] for this derivation in more conventional 

notation): 

E = (m/z, + (l - - //.p, r + + (l - (̂ 2 

where O} and are the standard deviations of the distributions associated with the 

nearly pure and heavily mixed pixels respectively. In this form, the expected squared 

error of the estimator (its expected generalisation performance) can clearly be seen to be 

a weighted combination of the variances of the alternative area proportion distributions 

associated with each of the observed pixels (the second and third terms) along with an 

additional term dependent upon difference between the actual estimator based on the 

available observations, and the true optimum. Setting the derivative of the above 

equation with respect to the weighting factor m to zero, makes it possible to solve 

directly for the value of m which minimises the expected generalisation error. The 

optimal weighting may thus be shown to be: 

CT, + c r j + ( f t 

which is plotted in figure 64 for different values of O} and It can clearly be seen that 

when o} is small and is large, m is close to unity and the area proportion estimator 

virtually ignores the data point If, on the other hand, O} is large and Cj is small, fXi is 

largely ignored. When the variances are similar, however, the optimal estimator 

combines the data points with roughly equal measure. This seems to imply that subpixel 

area proportion estimators that allocate computational resources more strongly towards 
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less mixed pixels would, on average, achieve higher performance than those that 

distribute the resources evenly. 

Figure 64: m as a function of Oj and 02 with (//r//2)^=0.1. 

In practice, this effect may be difficult to demonstrate for a number of reasons. Firstly, 

the above discussion considered an infinitely flexible estimator operating only at a 

single point in spectral space. Any model that is likely to be useful in practice will 

generally have relatively low effective flexibility due both to the application designer's 

deliberate decision to limit its complexity in order to control its capacity to over fit, but 

also due to the relatively large size of remotely sensed data sets. This limited effective 

complexity will tend to prevent the variance implicit in the observed area proportions of 

heavily mixed pixels resulting in variance in the area proportion estimates made by the 

model. The equation for computing the optimal weighting factor is dependent upon the 

variances of the subpixel proportion distributions associated with each of the observed 

pixels. Unfortunately, these values are unknown, though it is certain that the variances 

increase with the degree of subpixel mixing. It is not therefore possible to calculate the 

optimal weighting factor directly, although it can be stated that the weighting factor 

should be lower for pixels which are highly mixed. 

Finally, there are many sources of uncertainty in remotely sensed data sets that would 

mask any benefit of explicitly considering the effect of the PSF. One important aim of 

future work would be to test the hypothesis that there may be performance benefits in 

weighting pixels in producing models and, if no benefit is observed, to try to determine 

exactly why. It should be noted that the above derivation could also be used to derive an 

upper bound for the uncertainty introduced by the sensor PSF. It is anticipated that this 

bound would be of limited practical use due to the limitations of the Gaussian model of 

the PSF, and should be used for guidance only. The variance of the distribution of 
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alternative proportions induced by the PSF is maximised if all proportions lie along the 

bounds of the distribution as derived earlier, and if proportions are equally likely to lie 

on each bound. This idea could, in principle, be used to derive an upper bound on the 

amount of uncertainty induced by the PSF, but the analysis is not carried out here, since 

it is an approximation of the least useful (the upper) bound. The following section looks 

at the effect of the point spread function from another perspective - that is, instead of 

trying to improve single proportion estimates it examines the possibility of modelling 

the ambiguity introduced by the PSF (and all other sources) in the proportion 

information in a pixel's spectral signature. 

8.4.2. Ill-Posedness and the Representation of Proportion 
Estimates 

A problem is said to be ill-posed if it fails to satisfy one or more of the following 

conditions [Kirsch:96]: 

• there exists a solution to the problem (existence), 

• there is at most one solution (uniqueness), and 

• the solution depends continuously on the data (stability). 

From the preceding discussion, it is clear that the problem of inferring sub-pixel 

proportions from a pixel's spectral signature is ill-posed, since it violates the uniqueness 

condition. That is, for a pixel of spectral signature j with known subpixel proportion {J. 

0 or 1, it will be known that a range of alternative subpixel proportions exist that could 

also have generated the observed spectral signature. Existing algorithms for estimating 

subpixel proportions from spectral signatures implicitly choose to report one of the 

range of possible alternative proportions and generally provide no information as to the 

distribution of the alternatives. This can often be misleading, since the reported 

proportion may be one that could not occur in practice, or could not generate the 

spectral signature that was actually observed. 

The following section discusses a new technique for characterising sub-pixel cover -

that of modelling the probability distribution of possible proportions given the observed 

spectral signature. The conceptual basis of this new approach is to use a much more 

flexible representation for the information derived from the remotely sensed data and in 



particular, one that comes as close as possible to satisfying the principles of minimum 

and maximum uncertainty proposed in [Klir;95]: 

the estimates should contain minimum uncertainty 

the estimates should fully represent the uncertainty that remains. 

I 
Estimate: //=0.3 

Figure 65: Representing area proportion information by a single estimate and error bars. 

The conditional distribution representation cannot easily be compared to the standard 

single estimate in terms of the first principle, since it uses a different representation for 

its predictions. In general, the complexity of the conditional distribution representation 

makes it likely that, on average, it will contain more uncertainty than the single 

proportion estimate since the conditional distribution models are required to extract 

more information from the same number of exemplars. This point is returned to in the 

next section, where the conditional distributions are collapsed into single estimates to 

permit comparison of the performance of the standard single proportion estimation 

models and conditional distribution models. 

It terms of the second principle, the conditional distribution representation is clearly 

superior to the standard single proportion estimate. As shown in figure 65, standard 

algorithms typically provide either no information on the uncertainty in their 

predictions, or summarise the information using error bars or confidence intervals. The 

type of uncertainty summarised by the error bars often only represents the uncertainty in 

the model predictions induced by uncertainty in the model parameters that remains after 

the model has been trained, and neglects the uncertainty due to the ill-posed nature of 

the area proportion estimation problem. The conditional distribution representation, 

shown in figure 66 on the other hand is powerful enough not only to represent 

uncertainty arising from the ill-posedness of the area proportion estimation problem, but 

also the uncertainty resulting from the modelling process itself, even though this is not 

supported by the model used in the next section. Note that the preceding and succeeding 

arguments apply to all information derived from remotely sensed data and not just the 

proportion information considered in detail here. 
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It should be emphasised that the work on the spectrum conditional area proportion 

distribution proposed here is fundamentally different from the distribution modelling 

described in [Shen:92], [Kitamoto:99] and [Erol:00], since [Shen:92] and [ErohOO] construct 

models of the distributions of class spectral signatures as a means to obtaining single 

proportion estimates (in the former case) or class labels (in the latter), rather than 

directly modelling the distributions of proportions themselves and [Kitamoto:99] uses 

fractal models of subpixel class distributions to derive prior area proportion 

distributions, ultimately proposing the Beta distribution also used in [Atkinson:99] and 

[Chittineni;81]. Indeed, the proportion distributions cannot be obtained from the class-

conditional-spectral distribution without also knowing the distribution of proportions 

within pixels of a given classification and the relative frequencies of such 

classifications. Proportion distributions extracted in this way are likely to contain an 

excess of uncertainty since they have effectively been obtained after a conventional 

classification process. 
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Figure 66: A hypothetical area proportion distribution showing its representative power. 
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9. Spectrum Conditional Probability Distributions as a 
Representation of Information Derived from RS Data 

The preceding chapter opened with a discussion of some of the factors that hmit fuzzy 

classifier performance. It presented a detailed analysis of the impact of the sensor PSF 

that provided compelling evidence that the problem of making inferences about subpixel 

processes on the basis of a pixel's spectrum is ill-posed. The section ended by proposing 

a new representation for information pertaining to subpixel processes that has been 

derived from pixel spectra. This new representation - the spectrum conditional 

proportion probability distribution - is desirable for essentially three reasons 

[Manslow:00b]: 

Visualisation: Constructing a model of the spectrum conditional area proportion 

distribution permits complete representation and visualisation of all the area proportion 

information that can be derived from pixel spectral signatures. In contrast, traditional 

techniques that seek the single "optimal" area proportion estimate discard most of the 

information contained in a pixel's spectral signature, and provide only summary 

statistics of the spectrum conditional distributions, usually by estimating their means 

and sometimes also their variances. In many instances, these summary statistics are 

highly inadequate representations of the information in the spectrum conditional 

distributions and can often be misleading. Figure 67, for example, shows the spectrum 

conditional area proportion distribution for a real pixel in the FLIERS data set. The 

proportion being represented is that for the cereal crop class described previously and 

clearly suggests that pixels of the spectral signature given, are likely to consist purely of 

cereal crops, or to contain none at all. This sort of disjunction, that arises from 

multimodal spectrum conditional distributions, cannot easily be represented by a small 

set of summary statistics, and hence cannot be represented by conventional approaches 

to fuzzy classification. 

One potential problem with visualising the spectrum conditional distributions is how to 

represent the distributions for an entire image. Fortunately, this problem may be 

overcome by the following considerations: In general, the standard single "optimal" 

proportion estimate - the distribution mean - will be a reasonable representation of the 

distribution for many pixels, making it unnecessary to visualise the full distributions for 

all pixels. Those pixels for which the single estimate is inadequate can easily be 
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identified, since the expected performance of a single proportion estimate is a 

monotonically increasing function of the variance of the distribution that it summarises. 

Thus, problem pixels may easily and automatically be identified by the large variance of 

their spectrum conditional distribution, and only for problem pixels does the spectrum 

conditional distribution need to be examined. This idea is shown to work well in 

practice for the FLIERS data set in a later section. 

Density 
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Figure 67: A cereal crop area proportion distribution for a real pixel in the FLIERS data set. 

Combination: One of the ways of overcoming the ill-posedness of estimating subpixel 

proportions on the basis of pixel spectral signatures is to combine estimates made on 

this basis with information from other sources. Although many heuristics exist for doing 

this, there are essentially two rigorous probabilistic approaches, marginalisation and 

probabilistic inference using Bayes' theorem. Marginalisation is appropriate when each 

model is considered to be uncertain and the aim of combination is to average over the 

uncertainty in the choice of model. In this way, no model has a veto - if one or more of 

the models in the combination suggests that a particular range of proportions are 

possible, the combination also suggests they are possible. Given M models, Hm'- 1^ m < 

M, the marginalised proportion distribution is obtain from: 

M 
p{li \ ^,s)p{E ^ \D) 80 

m=\ 

where D is the set of exemplar pixels. /?(// \Hm,s) is the spectrum conditional distribution 

predicted by model Hm for spectrum s, and p{HJD) is the probability that if the set of 
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exemplars D is considered to have been generated by one of the M models, it was 

generated by model This term can be difficult to evaluate in practice, since it is 

dependent on the complexity of H,„ and is thus, for simplicity, often assumed to be the 

same for all //„, and ignored. Although marginalisation has here been presented in terms 

of spectrum conditional distributions, the proportion estimate given by the combination 

IJ-comb is simply a weighted average of the estimates given by the M individual sources 

/4l!-

M 

m=l 

A typical application arises when several neural networks are trained on the same data 

set and then combined into a committee such that the output of the committee is a 

weighted sum of the outputs of the individual networks. In this case, a number of 

networks are producing different estimates of the same variable, and marginalisation is 

used to derive a single estimate that is only weakly dependent on any individual model. 

The second probabilistic approach to combining information from different sources is to 

use Bayes' theorem. This method is appropriate when the distributions produced by the 

different models are to be considered to be accurate representations of information 

about the target variable conditioned on different information sources. In this case, any 

one model has the power of veto in that if it suggests that a particular range of 

proportions are impossible, the combination also suggests they are impossible. The 

Bayesian method of combination thus always retains a strong dependence on the 

behaviour of the component models regardless of the number of models present. As 

before, assuming there are M models, Bayes theorem can be written: 

p ( ^ ) [ \ p ( y ^ I A) 82 
/ i=] 

/!=1 

where is the output of the h"' model, pip) is the unconditional probability of 

observing a proportion value jj. and p{K") is the unconditional probability of the m"" 

model outputting /z„,. p(hJjU) is a conditional probability density that may be modelled 

using the technique described in the next section. For each model. 
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such that: 

p ( / / 1 
m=, /?( / / ) 

m=I 

and cancelling gives: 

M 
p(//IA,. . .A^) = p( / / ) ' '"YIp( / / IA^) 85 

m=\ 

where, on the right hand side, /?(// l/i„) is a conditional area proportion distribution, 

which if derived from a pixel's spectral signature is the spectrum conditional area 

proportion distribution /?(// If). This form of Bayes' theorem is, for the current 

application, more convenient than the original since it requires conditional density 

estimation to take place in only the one dimensional area proportion space rather than 

the six dimensional spectral space. This helps to minimise the effects of the curse of 

dimensionality [Bishop:95] and should, on average, produce more accurate results. In 

summary: B ayes' theorem should be used rather than marginal isation when a number of 

different information sources provide different information about subpixel proportions, 

and the use of Bayes' theorem to combine area proportion information derived from a 

pixel's spectral signature with information from other sources without making Gaussian 

approximations requires knowledge of the spectrum conditional distribution. 
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Figure 68: Proportion distributions for a pixel given the spectral signature of the pixel (top) and the 
texture of its neighbourhood (bottom). 

As a more concrete example of how marginalisation and Bayesian combination work, 

consider an application which uses three models, one that estimates spectrum 

conditional area proportion distributions p{ju I s), one that extracts a metric t that 

characterises the texture of a region of an image and another that models the texture 

conditional area proportion distribution, p{fj. 11). Assume that a new unclassified image 

is presented for classification and that, for a particular pixel, the spectrum conditional 

distribution is as shown in the top half of figure 68, and the texture conditional 

distribution is as shown in the bottom half. In this example, the target class could be 

cereal crops, and the texture metric could be distinguishing between urban and rural. 

This would mean that although the proportion of subpixel area covered by crops could 

not be decisively determined from the pixel's spectral signature (hence the high 

variance spectrum conditional distribution in figure 68), the pixel can be fairly 

confidently identified as belonging to an urban area (due to the distinctive texture of 

such areas that results from the high road density). The texture conditional density 

estimator learnt from the trdning set that when the texture classifier indicates that a 

pixel is in an urban area it is very unlikely to contain significant quantities of cereal 

crops and hence produces a distribution tightly centred around zero. 
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Figure 69: Proportion distributions obtained by combining texture information with direct proportion 
estimates using marginalisation (top) and Bayesian inference (bottom). 

When these two distributions are combined using Bayes' theorem, the resulting 

distribution is as shown in the bottom half of figure 69 (where a uniform unconditional 

distribution has been assumed for the area proportions). Note that the distribution 

resulting from the combination of the spectrum and texture conditional distributions 

strongly suggests that the pixel contains either no cereals or only a very small amount. 

Thus, even though the pixel's spectrum contained too little information to determine the 

subpixel proportion with any certainty, the information provided by the texture analysis 

was sufficient to exclude the possibility of the pixel containing significant quantities of 

cereal. If these pieces of information had been combined by marginalisation, the 

resulting distribution would be that shown in the top half of figure 69. Clearly this 

method of combination is inappropriate in this instance, since even though the texture 

analysis effectively excludes the possibility of subpixel cereal crops, this information is 

lost when information from the texture analysis and the spectral analysis are combined 

by marginalisation. 

Propagation: The problem of area proportion estimation is usually considered without 

reference to the final application of the proportion estimates. In practice, proportion 

estimates are often a means to an end rather than an end in themselves, being used as 

inputs to a variety of applications ranging from the monitoring land cover change, to 

estimating biomass. Ignoring the distribution of proportion estimates may be 
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problematic, especially when the application that uses them is non-linear and is 

expected to behave, in some sense, optimally. The reason for this is that, as already 

established, the proportion estimates are characterised by some distribution and so the 

optimal behaviour of the application that uses them is implicitly defined as optimal 

given their distribution. An application that uses only the single proportion estimates 

produced by conventional fuzzy classification algorithms will be unable to account for 

the distribution in the estimates, and hence will be unable to behave optimally given the 

uncertainty in the proportion estimates. 

To illustrate the propagation of area proportion distributions through a target 

application, consider the apparently simple problem of estimating the percentage change 

in land cover from two proportion estimates for the same pixel taken at two different 

times. Assume that the spectral signature of the pixel remains unchanged between the 

two observations, such that the spectrum conditional area proportion distribution is the 

same for each observation, and is given in figure 70. Since the spectral signature of the 

pixel is unchanged between the two observations, a deterministic spectrum based fuzzy 

classifier that estimated a proportion of fx for the first pixel would also estimate jj. for the 

second, which would result in an estimate of 0 percent change in subpixel cover 

between the observations. 

Now consider percentage change computed from the spectrum conditional proportion 

distribution. In this case, no single percentage change estimate will result, since the 

proportion distribution suggests that there are a range of proportions that could have 

covered the pixel, there is a corresponding range of possible percentage changes, as 

shown in figure 71. Although the distribution agrees with the percentage change 

estimate that was produced by the application of the standard fuzzy classifier in the 

sense that it is most likely that subpixel cover did not change between the two 

observations, the percentage change distribution is the most complete representation of 

the percentage change that can be derived from the pixel spectral signatures. In 

particular, the distribution indicates that although it is most likely that there was no 

change in subpixel cover, it is also quite possible that the pixel went from 100 percent to 

0 percent covered by the target class and, in fact, almost any percentage change could 

have taken place between the capture of the two images. 
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Figure 70: A typical area proportion distribution for the cereal class. 
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Figure 71: A percentage change distribution showing the range of possible changes in land cover. 
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9.1. Techniques for Modelling Spectrum Conditional 
Distributions 

This chapter describes three algorithms of increasing complexity for extracting 

spectrum conditional area proportion distributions. The first is a conventional classifier 

that uses a stratification of area proportion space to convert the proportion distribution 

modelling problem into a simpler classification problem. No results are presented for 

the application of this technique since it is included only as a means of introducing the 

more complex techniques. The second technique improves on the first by increasing the 

flexibility of the distribution model and in so doing abandons the implicit static 

stratification used by the first model. Equations that allow efficient gradient based 

searches for the optimal model parameters are derived along with equations for 

summary statistics of the predicted distributions. The third and final algorithm 

considered is essentially the same as the second, but replaces the rectangular basis 

functions with Gaussians to yield the mixture density network described in [Bishop:94] 

and [Bishop;95]. 
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Figure 72: A representation of the spectrum conditional proportion distribution using stratification 
and classification. 
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Figure 73; An MLP classifier with four outputs that can be used as a simple stratified area proportion 
distribution model. 

9.2. Modelling Spectrum Conditional Distributions with a 
Stratified Classifier 

The simplest approach to modelling spectrum conditional distribution information is by 

stratifying area proportion space and producing models that estimate the posterior 

probability that the true area proportion lies each stratified layer. The problem of 

modelling area proportion distributions is thus reduced to the more familiar one of 

classification. Figures 72 and 73 provide a simple example of how the technique would 

be applied in practice when modelling the distribution of the proportions of a single 

cover type. In this example, one soft classifier with four outputs is used with each output 

estimating the posterior probability that the true proportion //true lies within their area 

proportion interval. The area proportion intervals are assigned to each classifier by 

dividing the valid range of area proportions [0,1] into five intervals of equal size, so that 

the first classifier estimates the probability that the true proportion lies in the range [0.0, 

0.2), the second in the range [0.2, 0.4), and the fifth in the range [0.8, 1.0]. 

Such classifiers can easily be produced by replacing the area proportion target 

information in each pattern in the set of exemplars with a five dimensional binary vector 
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that contains a one in the n"* position if the target proportion lies in the n'̂  interval and 

zeros in all others. The posterior probability estimating classifiers can then be produced 

by training a neural network with five outputs as though its was operating on a standard 

classification problem. One of the main limitations of this technique is that much of the 

structure of the model is determined apriori, but in a manner not justified by the 

available prior knowledge. That is, the equal spacing of the intervals in area proportion 

space limit the distribution of complexity in the representation used by the model to be 

uniform across proportion space. This is undesirable because the prior proportion 

distributions given at the beginning of this thesis indicate that most variation in the 

proportion distributions occur towards the extremes of //=0 and //=1, suggesting that 

models that can represent greater complexity in these regions will offer better 

performance. Unfortunately, it will, in general, be insufficient to distribute the 

complexity of the representation "manually" in accordance with the complexity of the 

prior, since the optimal distribution will be dependent on the particular spectral 

signature of the observed pixel. The following section describes a new technique that 

overcomes this difficulty by allowing the model to learn the distribution of complexity 

from the exemplars. 
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Figure 74: A histogram representation of the spectrum conditional proportion distribution. 
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Figure 75: A histogram based spectrum conditional area proportion distribution model with eight 
hidden neurons and four basis functions in the density estimator. 

9.3. Modelling Spectrum Conditional Distributions with a 
Histogram Conditional Density Estimator 

This section introduces a new type of stratified classifier, shown in figure 75, that 

allows the complexity of the histogram representation of the spectrum conditional 

distribution to vary, resulting in a model that achieves a high level of flexibihty with 

minimal additional computation. A typical distribution representation produced by the 

model described in this section is shown in figure 74. Notice that, unlike the previous 

technique, the widths of the basis functions are not fixed and equal, but are determined 

by the model, thus permitting it to use greater complexity in its representation of the 

distribution where it changes rapidly, in this case when the proportion variable is small. 

Rather than dividing the range of valid area proportions into a series of fixed 'bins' and 

estimating the posterior probability that the true area proportion lies in each bin, the 

histogram conditional density estimator uses a series of rectangular basis functions to 

approximate the spectrum conditional area proportion density I 5). The density is 

modelled using a network with the structure shown in figure 75, and uses a 
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superposition of J non-overlapping basis functions pjijii I s ) : \ < j < J, which are 

combined with priors p(j) : I <j < J 

y=i 

where each basis function is controlled by a width parameter wj such that it has unit 

area: 

Pj {jU\s}=— 87 

if ju lies within the support of the basis function and pj(p. I j')=0 otherwise. Since the 

model is acting as a density estimator, it is appropriate to find the model parameters 

using maximum likelihood, or equivalently, minimising the negative log-likelihood 

E = -\np{jU\s) 

which gives 

;=i 

Since both the priors pQ) and the basis function widths Wj must sum to unity, it is 

convenient to define them both in terms of a set of dummy variables yf and yj" 

respectively and derive the true variables using the softmax function 

* = ] 

and 

i-=i 
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In order to minimise the negative log-likelihood, it is efficient to use a gradient based 

optimisation technique that requires the derivatives of the error function with respect to 

the dummy variables. Using the chain rule: 

a c lA a g a * . 22 
I -

and 

BE BE 

where the summations across all basis functions are necessary due to the coupling 

introduced by the softmax functions. Evaluating the second terms gives: 

y* - (^) 94 

and 

and similarly for the first terms 

7 = ()5 

9 2 I 

and 

^ ( ; ) p ( ; ) Wj 

9 2 1 

where the idenitity 

has been used in the second case. These simplify by cancellation to: 

BE 1_ 

9p(./) p W 

and 
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Inserting these results into the compound differentiation formulae gives: 

which simplifies to 

^ 1 , c \ 
101 

102 

and 

BE 

which similarly simplifies to 

= - Z — - x ^ ) ) 103 

^ = 104 

t 

If the dummy variables y / and yi"' are outputs of a model (such as an MLP) with 

spectral signature as input, equations for updating the model parameters by back 

propagation can be derived by dividing the model outputs into two groups, one 

controlling the priors and the other the basis function widths, adding softmax functions 

to each group and replacing the standard equations for the derivative of the error with 

respect to each output with equations 102 and 104. Gradient based optimisation 

algorithms should be used with caution when searching for the parameters of this model 

since the discontinuities in the basis functions result in discontinuities in the error 

surface. 

As mentioned previously, the distributions predicted by spectrum conditional 

distribution models may conveniently be summarised by their mean and variance. The 

mean of any spectrum conditional distribution given by: 

I 105 

which, when substituting the histogram model, becomes 
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which may be re-ordered 

==]/Lf'(;)j/4P', (ff I i()7 
i = i 

The integral is the mean value of // inside the j"' basis function which, due to the flat 

nature of the basis function, is equal to the basis function's centre, such that 

7=1 k=\ 

108 

The variance of a distribution can be computed using: 

/̂ var = j / / I ^)^// - I 109 

where the last term is the square of the distribution's mean: 

110 

The second term has thus already been computed and only the first term will be 

considered in the following steps. Substituting in the histogram model of the distribution 

gives 

j 1 (//1 111 
j=\ 

which may be reordered to give: 

y=l 
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Recalling that the f ' basis function has value zero unless ju lies between and 
k~\ 

, in which case it has value l/wj, the integral may be rewritten as: 
k=\ 

i=i j 0 I '̂=1 J 
113 

which when evaluated symbolically gives: 

TpU) 
V 

k=l J k=l 
J 
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Using these results in the equation for the distribution variance gives: 

/ ^ v a r = Z X ; ) j - T ^ ; + 
1 { V-I ^ 1^ I I •' f 1 

V 
k=\ Jk=\ 

\2 

7=1 k=l 
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To evaluate the performance of the histogram based spectrum conditional density 

model, a model with four basis functions was trained on both the crops data and the tall 

herb data. Images of the means and variances of the distributions predicted for each of 

these problems are shown in figures 76 to 79. Since the density estimator does not 

produce single area proportion estimates, it is not immediately clear how to compare its 

performance with that of more conventional algorithms. Indeed, it is not even clear 

whether it is meaningful to make simple performance comparisons between the 

techniques, since they seek to extract different types of information, the distribution of 

possible proportions in the case of the density estimator as compared with the single 

best proportion estimate for the conventional algorithms. 
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Figure 76: Means of the cereal distributions predicted by the histogram density estimator. 

Figure 77: Variances of the cereal distributions predicted by the histogram density estimator. 

The approach taken here is to propose the mean squared error between the mean of the 

distributions predicted by the density estimator for the validation sets and the actual 

subpixel proportions. The reasoning behind this is that if the distribution modelled by 

the density estimator were correct then the means of those distributions would be the 

optimal proportion estimates in the sense that they would, on average, minimise the sum 

of squares and cross entropy errors. Such a performance measure can be used only as a 

guide however, since it ignores the fact that the density estimator extracts far more 

information from the set of exemplars than do more conventional algorithms, and the 

performance is measured over a finite set of samples - the validation set - and is hence 

subject to variance. This latter point means that it is possible that even the best possible 

area proportion predictor could be outperformed by much worse algorithms on the 

validation set, but not on other data sets in general. 

Figure 78: Means of the tall herb distributions predicted by the histogram density estimator. 

Figure 79: Variances of the tall herb distributions predicted by the histogram density estimator. 

The results in figures 76 to 81 show that the means of the distributions predicted by the 

density estimator are very similar to the proportion estimates produced by other 
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algorithms. This includes the areas where the proportion estimates are poor, chiefly in 

lower left of the third subimage and the upper right of the fourth. The image of the 

distribution variances has the interesting characteristic that regions of high variance 

correspond quite strongly to areas where the distribution means poorly predict subpixel 

proportions. This was a possibility that was hinted at earlier which is now shown to 

occur in practice: in areas where the density estimator cannot predict the subpixel cover 

accurately, it is often able to provide warning of its failure. Most of the field boundaries 

seem to be regions of high variance, suggesting that the network has only a limited 

ability to model the proportions in such regions. This may be because the majority of 

cereal pixels are pure and the training data contains too few mixed pixels to learn the 

relationship between their spectral signature and their subpixel proportions, or it may be 

because mixed pixels with different proportions are spectrally confused and cannot be 

separated using the six spectral bands that are available. Whichever of these is the true 

cause of the observed weakness of the proportion predictions, it is important to 

emphasise that the density estimator, unlike the more conventional alternatives, is able 

to highlight the regions where its predictions are likely to be weak. 

Figure 80: Enhanced images of the means of the tall herb distributions predicted by the 
histogram density estimator. 

Figure 81: Enhanced images of the variances of the tall herb distributions predicted by the 
histogram density estimator. 

The following section describes the mixture density network, a version of the histogram 

based density estimator that replaces the rectangular basis functions with Gaussians. 

This produces two main advantages, firstly the error surface is smooth and continuous 

meaning that efficient gradient based optimisation algorithms can be used with 

confidence and secondly that the density models are likely to be, on average, closer to 

the true spectrum conditional densities. These two advantages come at the cost of higher 

computational complexity both during training and query. 
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Figure 82: A mixture density network with eight hidden neurons and four components in the mixture 
model. 

9.4. Modelling Spectrum Conditional Distributions with a 
Gaussian Mixture Model Conditional Density Estimator 

The mixture density network, as shown in figure 82, is a hybrid structure containing 

both an MLP and a Gaussian mixture model density estimator. The network operates by 

using the MLP to modify the parameters of the Gaussian mixture model (the means, 

variance, and priors of the mixture components), and hence the shape of the conditional 

probability density it represents according to the conditioning variables. In the area 

proportion estimation problem, the conditioning variables are the spectral bands of the 

pixel under consideration, Sj to s ,̂ the conditioned variable is the subpixel area 

proportion //, and hence the density modelled by the network is /?(//1 5), the spectrum 

conditional area proportion distribution. The density models produced by the mixture 

density network are similar to those of the histogram based conditional density 

estimation algorithm described in the previous section except that the mixture density 

models are smooth. This means that, on average, the mixture density network density 

models are likely to be closer to the true distributions and that the parameters of the 

mixture density network may safely be searched for using gradient based techniques. 

Note that the use of this mixture density terminology differs from that sometimes used 

in the area proportion estimation literature since it refers to the probability density in 
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area proportion space rather than spectral space (for examples of the latter usage, see 

[Tubbs76] [Peters:76], etc.). 

To query the mixture density network, the spectral signature of the pixel under 

consideration is input to the MLP, and the information is propagated through the MLP 

in the usual manner. Once the outputs of the MLP have been computed, they are used as 

parameters in a one-dimensional density estimator, the input to which is an area 

proportion estimate. It may at first seem strange that one of the inputs to a model 

designed to estimate area proportions is an area proportion estimate, but the output of 

the model can be thought of as a measure of the consistency of the proportion estimate 

put into it with the spectral signature that was observed. By querying the mixture 

density network with a range of area proportions in the interval [0,1], it is thus possible 

to construct a graph of the spectrum conditional density (or consistency) of a range of 

proportions. The mixture density network therefore has the potential to provide 

information about subpixel cover using a representation powerful enough to describe the 

ambiguity implicit in inferences made about subpixel cover based on remotely sensed 

imagery. 

The spectrum conditional density for an area proportion fJ. given a spectral signature 5 is 

computed by considering each of the Gaussian basis functions in the density estimator 

to be independent generators of pixels with Gaussian distributed area proportion 

distributions. Thus, the predicted spectrum conditional distribution is: 

j=\ 

where there are J components in the mixture model, each with a Gaussian distribution: 

117 

where is the mean of the j* component and is its variance. The terms 

pijls) are the conditional priors for each of the / basis functions, that represent the 

probability that each basis function generates an unspecified proportion. The basis 

function means need to be bounded to lie between zero and one and hence should be 

connected to MLP outputs that use logistic activation functions, while the variances 

must be positive, a condition that can be guaranteed by connecting them to outputs that 
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have exponential activation functions. Finally, the condition that the basis function 

priors must sum to unity can be satisfied by connecting the priors to outputs that are 

constrained by the softmax activation function. 

The mixture density network can be trained in essentially the same way as any other 

neural network; by using error backpropagation gradient descent. The details of the 

derivation of the equations for updating the network weights can be found in [Bishop:94] 

and [Bishop:95], and only an outline will be given here. As with most training 

algorithms, that for the mixture density network is derived by considering the network 

to be generating input-output pairs and then deriving a procedure for finding the 

network parameters that maximise the probability of generating the input-output pairs 

that are actually observed in the training set. Thus, the probability that the mixture 

density network generates the n"* input-output pairing of the training set (/4,5„) is equal 

to the network output and so the probability that the network with parameters w 

generates the entire training set D of N patterns is (assuming independence) the joint 

probability of correctly generating each training pattern: 

= 118 
n=l 

This is the likelihood of the weights given the data and is the quantity normally 

maximised during network training. Maximisation of the likelihood is equivalent to 

minimisation of the negative log-likelihood - a procedure generally preferred since the 

influence of the terms in the likelihood resulting from each individual training pattern 

are decoupled resulting in a simplification of the optimisation problem. The negative 

log-likelihood is normally thought of as the error function that is minimised during 

training and is hence usually labelled E: 

ZT = I ) 119 
n=l 

The networks demonstrated in the following sections were trained using the standard 

gradient descent procedure, normally used for MLPs, with the simple addition of the 

step size adjustment described earlier to ensure the stability of the training procedure. 

More recent experiments have suggested that the "R-Prop" algorithm described in 

[Jervis;93] can produce a significant increase in the speed of training of the mixture 
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density network in particular, and it is strongly suggested that this algorithm be 

considered in all future work. 

Example: Inverting 

In order to demonstrate the operation of the mixture density network, it was trained on a 

simple problem. The network was given a data set based on inverting the equation 

y=x^-\-e where £ is an additive noise component uniformly distributed in the closed 

interval [-0.1,+0.1]. To do this a list of 1,000 numbers were chosen uniformly in the 

closed interval [-1,+1], their corresponding squares were computed, and a small amount 

of noise was added to the result. Thus, the training data set consisted of 1,000 input-

output pairs such as those below: 

Pattern Training Input y Training Target x 

1 0IW2 0UK3 

2 0.688 0.825 

999 0 939 -0.943 

1000 -0.041 0U2O 

Table 11: Some examples of the patterns in the training set for the MDN example. 

The mixture density network was given the task of recovering x from y - & problem that 

is ill-posed in the same sense as that of extracting subpixel information from remotely 

sensed images. The network was trained for a fixed period of 12 hours in the manner 

already described using the target function shown in figure 84 producing a mixture 

density network with the behaviour shown in figure 85. The mixture density network 

was repeatedly tested with combinations of values of x and j and the probabilities p{x\y) 

predicted by the mixture density network recorded and used to produce the contour 

map. 
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Figure 83: The distribution of x predicted by the MDN given that >'=0.5. Note that the MDN correctly 

predicts that x must lie close to ±0.707. 

By comparing figure 84 and 85, it can be seen that the mixture density network has 

captured the overall form of the relationship between x and y, in the sense that it predicts 

high probabilities for valid combinations of x and y and low probabilities for invalid 

combinations. The magnitudes of predictions of x for values of y close to one are 

positively biased due to the asymptotic behaviour of the logistic activation functions 

used in the hidden layer of the MLP component of the mixture denisty network. This 

effect could be relieved by further training. Figure 83 shows the distribution modelled 

by the mixture density network at 7=0.5, for which x could have been ±0.707. The 

mixture density network correctly predicts that for this value of y, x should be around 

either +0.707, or -0.707, the variance in the components of the predicted distribution 

being due to the noise term present in the training data. 
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Figure 84: y=x . 

This simple example provides a clear illustration of the power of the mixture density 

network in extracting complex information from a set of exemplars, and the flexibility 

of using conditional probability densities to represent ambiguity in the solution of 

inverse problems. Most conventional modelling algorithms would be inappropriate for 

solving the type of problem described here since the representations they use are 

incapable of describing the ambiguity implicit in the solutions of such problems. If an 

MLP or SVM (see [Brown:00]) had been applied to this example, they would both have 

predicted that x was always approximately zero for all values of y, since such 

predictions minimise the cost functions that the algorithms use for training. The 

following section presents the results of applying the mixture density network to the 

FLIERS data set. 

Figure 85: Contour plot of the inverse of as modelled by the MDN. 
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9.5. Deriving Spectrum Conditional Proportion Distributions 
from the FLIERS Data Set 

To produce the results described in this section, a mixture density network with five 

hidden neurons in its MLP component and four Gaussian basis functions in its density 

estimator component was applied to the FLIERS data set [ManslowrOOb]. The means and 

variances of the distributions produced by the MDN are shown in figures 86 to 88 for the 

cereal data and figures 92 to 95 for the tall herb data. The mean squared error 

performances of the means of the distributions modelled by the MDNs as single 

proportion estimates were 0.04854 for the unseen cereal data and 0.02093 for the unseen 

tall herb data. Although these are comparable to those for the fully fuzzy MLP, such 

performance measures should be used for guidance only in the case of the MDN, since 

the main strength of the conditional density estimation techniques is that they model the 

distribution of proportions - information that can be of great value even though it is not 

accounted for in any of the standard error measures. 

Figure 86: The means of the distributions predicted by the MDN. 

Figure 87: The variances of the distributions predicted by the MDN. 

Figure 88: The magnitude of the squared errors that result from using the MDN distribution means as 
proportion estimates. 

The mean of the distributions modelled by the MDN are shown in figure 86 and are very 

similar to the proportion estimates made by the fully fuzzy MLP based proportion 

estimators described in section 7.2.1, suggesting that, in terms of the best single 

proportion estimate, the MDN and the more conventional MLP fuzzy classifier are in 

agreement. Figure 87 shows the variances of the distributions modelled by the MDN 
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which, when compared to the magnitudes of the prediction errors made by the 

distribution means in figure 88 indicates that the distribution variances provide useful 

information about the accuracy of the distribution means as proportion estimates. It 

should be noted however that the distribution variances represent the expected sum of 

squares error of the distribution mean as a proportion estimate given that the distribution 

is correct and that for specific pixels the error that is actually observed may be greater or 

less than the distribution variance. As described earlier such variances can be used to 

direct further analysis and visualisation to those pixels where a single proportion 

estimate is unlikely to adequately summarise the possible scenarios of subpixel cover. 

Probability 
p(//l 

U Area proportion, fi 

Figure 89; Distribution predicted by the MDN for a pixel that probably contains no cereal. 

Figures 89, 90, and 91 show spectrum conditional distributions extracted from the 

mixture density network for three different pixels in the validation area. The first 

distribution is from a pixel in the third subimage that is known not to contain any cereal 

whatsoever and clearly shows that the MDN confidently predicts that the pixel contains 

either no cereal or only very small quantities of it. This distribution has low variance 

correctly suggesting that the mean proportion is likely to be accurate and effectively 

summarise the information contained in the distribution. Figure 90 shows the predicted 

distribution for a pixel taken from the fourth subimage that is known to consist purely of 

cereal. Once again, the distribution consists essentially of a pronounced single peak, but 

this time suggesting that the pixel consists purely of cereal. There are two other peaks 

visible in the distributions, one centred at about //=0 and the other at about //=0.85. The 

first of these is rather small in the sense that the volume under the peak is negligible 
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compared to the volume of either of the others. The latter peak is very common for 

pixels where the presence of cereal is predicted. This seems to suggest that it is 

relatively easy to detect the presence of cereal (or, conversely, its absence) but difficult 

to precisely specify the subpixel proportion. 

Probability 
pCu I s) 

" Area proportion, // 1 

Figure 90: Distribution predicted by the MDN for a pixel that contains some cereal and is probably 
pure cereal. 

Finally, figure 91 presents the distribution for a more problematic pixel - one taken 

from the lower left of the third subimage where the distribution mean incorrectly 

predicts the presence of cereals and where the variance is high. In this case, there is 

significant probability mass for all possible area proportions, suggesting that, on the 

basis of the set of exemplars and the pixel's spectral signature, the MDN cannot rule out 

any particular proportion occurring. In particular, four peaks are apparent in the 

distribution, one at //=1, one at //=0, one centred roughly at ju^O.8 and one at //=0.4. The 

largest peaks are those for the pure pixels suggesting that a pixel with the observed 

spectral signature is likely to be pure, most likely purely cereal, but also quite likely to 

contain no cereal at all. Even though the distribution mean is a poor estimate of the 

actual subpixel proportion, the distribution itself suggests that a wide range of 

proportions are possible, and implies that the true proportion is one of the more 

probable. Note that although the standard MLP and the means of the MDN distributions 

predict similar proportions, the MDN variances provide a useful indicato*- of 

problematic pixels - those where the MLP and MDN means are likely to poorly predict 

subpixel cover, which can then be analysed in greater detail by examining the 

distributions of probable subpixel proportions predicted by the MDN. 
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PC"I 
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Figure 91: Distribution predicted by the MDN for a pixel that could contain almost any amount of 
cereal. 

Figures 92 and 93 show the means and variances of the MDN predicted distribution 

means and variances for the validation areas in the tall herb data set. Since these values 

are quite small, enhanced versions of the prediction images are given in figures 94 and 

95. From these images it is clear that the spectrum conditional area proportion 

distribution means poorly predict the actual proportions of subpixel cover. This should 

come as no surprise, since none of the algorithms so far applied have been able to 

predict the subpixel proportions of tall herb to a high degree of accuracy, suggesting that 

a pixel's spectral signature may contain too little information. Figures 96 to 98 show 

spectrum conditional distributions modelled by the MDN for three pixels from the 

validation areas. Figure 96 and 97 show two pixels where the MDN correctly predicts 

the absence and presence of tall herb. Figure 96 shows the predicted proportion 

distribution for a pixel from the third validation subimage known not to contain tall 

herb. The probability mass in the distribution produced by the MDN for this pixel is 

very tightly clustered around //=0 suggesting that the pixel contains no tall herb with 

high probability. Figure 97 shows the predicted proportion distribution for a pixel that 

lies on the river also in the third validation subimage and which contains a substantial 

proportion of tall herb. In this case although the distribution still has a peak at //=0, there 

is a large amount of probability mass for a range of proportions up to about //=0.4 and 

beyond. Thus, although the pixel's spectral signature appears to contain too little 

information for the MDN to precisely predict the subpixel proportion of tall herb, the 
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MDN was able to indicate that it is possible that the pixel contains a range of 

proportions and is, in fact, likely to contain some tall herb. 

Figure 92; MDN estimated tall herb proportion distribution means. 

Figure 93: MDN estimated tall herb proportion distribution variances. 

Figure 94: Enhanced MDN estimated tall herb proportion distribution means. 

Figure 95: Enhanced MDN estimated tall herb proportion distribution variances. 

Figure 98 and 99 show the spectrum conditional distributions for two more difficult 

pixels, one for which the mean of the distribution predicted by the MDN over estimates 

the quantity of tall herb, and the other for which it under estimates it. Figure 98 is 

typical of the distributions produced by the MDN when the distribution mean over 

estimates the true subpixel proportion. The distribution consists of a pronounced peak at 

//=0, the true proportion, but also significant probability mass for greater proportions, 

suggesting that some pixels with the observed spectral signature may contain small 

quantities of tall herb. Figure 99 shows a pixel taken from the third subimage of the 

validation region which is known to contain tall herb, but for which the mean of the 

MDN distribution is small. In this case, the distribution is dominated by a large peak at 

//=0, suggesting that most pixels of the observed spectral signature will contain no tall 

herb, leading to the distribution's low mean. However, the distribution does have 

significant probability mass for proportions right up to around //=0.75, suggesting that 

although unlikely, it is possible that the pixel contains large quantities of tall herb. 
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Area proportion, fi 

Figure 96: Tall herb distribution predicted by the MDN for a pixel containing no tall herb at all. 

This section has shown how the mixture density network can be applied to the problem 

of fuzzy classification and subpixel area proportion estimation to provide new 

information into possible scenarios of subpixel cover. This can be done using extant 

data sets and requires little more time and effort than training other sophisticated non-

linear models such as the MLP. In particular, it has been shown empirically that the 

MDN predicts subpixel proportions with an accuracy on a par with the MLP, that the 

variances of the distributions it models provide useful information as to the likely 

accuracy of its predictions and that when that accuracy is low, the distributions 

themselves can be used to provide insights into which subpixel proportions are most 

likely to occur. The spectrum conditional area proportion distribution representation 

along with the mixture density network that can be used to model it provides an efficient 

means of extracting new and detailed information about subpixel cover from remotely 

sensed data. 
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Figure 97: Tall herb distribution predicted by the MDN for a pixel containing some tall herb. 

Probability 
piM I s) 

0 
0 1 

Area proportion, 

Figure 98: Tall herb distribution predicted by the MDN that has a mean less than the true proportion. 
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Figure 99: Tall herb distribution predicted by a MDN that has a mean greater than the true 
proportion. 

1 
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10. Conclusions 

This thesis has described a number of novel contributions in the field of subpixel land 

cover area proportion estimation. Foremost among these was the interpretation of 

subpixel area proportions as conditional probabilities of class membership of subpixel 

points. This interpretation provided a natural motivation for a new conditional 

probability-like notation for area proportions with which the primary axioms governing 

their behaviour were outlined. The probabilistic interpretation has made it possible to 

show that one of the standard approaches to fuzzy classification is equivalent to a crisp 

classifier that uses a Gaussian class conditional density model with fixed priors and is 

trained using the expectation maximisation algorithm. This equivalence is used to 

justify a number of extensions to the basic fuzzy classifier, including the re-introduction 

of priors, and the use of mixtures of Gaussians for the class conditional density models 

that are shown empirically to produce significant increases in performance. The fuzzy 

classifications produced by the new algorithm are shown theoretically to converge to the 

optimal subpixel proportion estimates as the flexibility of the fuzzy classifier and the 

quantity of training data are increased. 

In addition, the probabilistic interpretation is used to show that the use of the cross 

entropy function in the derivation of subpixel proportion estimates has a specific 

meaning. That is, minimum cross entropy error estimates of subpixel area proportions 

maximise the probability that subpixel samples drawn from exemplar pixels and 

subpixel samples drawn from a set of pixels with area proportions predicted by the 

estimator have the same class membership. The results of an experiment that was 

designed to test this theory in practice showed that the cross entropy based estimator 

produced predictions that were, in this sense, superior to those of a sum of squares error 

based estimator. An analysis was presented of the relationship between posterior 

probabilities of class membership and optimal fuzzy classifications that suggested that 

although posterior probabilities and fuzzy classifications will usually be positively 

correlated, they will not, in general, be equal, even under ideal circumstances, such as 

when an infinite amount of data is available. 

Chapter 8 examined some of the factors that limit the performance of area proportion 

estimation accuracy. The new concepts of primitive and compound classes were 

introduced and used to produce a concise list of the conditions necessary to minimise 
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the performance limit associated with the way in which classes are defined. In 

particular, error free proportion estimates cannot be obtained if there are more classes 

than spectral bands, or the classes exhibit spectral variation. Section 8.4 discussed the 

way in which the sensor point spread function introduces uncertainty into subpixel area 

proportion estimates and, for a simple Gaussian model of the point spread function, new 

bounds on this uncertainty were derived that showed that more ambiguity was induced 

in the estimation of proportions in more heavily mixed pixels. The recognition of the 

impossibility of deriving error free proportion estimates was used to justify the 

introduction of a new representation for proportion information derived from remotely 

sensed data: the spectrum conditional area proportion distribution. 

Chapter 9 discussed the new representation in detail and outlined its three main benefits; 

that it is capable of fully representing the information contained in a pixel's spectral 

signature, that the completeness of the representation allows proportion information 

from a variety of disparate sources to be combined optimally, and that the proportion 

information may fully be propagated through down stream processes. Sections 9.2 to 

section 9.4 consider three increasingly complex approaches to deriving spectrum 

conditional proportion distributions, the first using a stratified classifier to estimate the 

posterior probability that the true subpixel proportion lies in one of a number of 

predefined bins, and the last using an MLP and Gaussian mixture model based 

conditional density estimator to directly estimate the spectrum conditional area 

proportion probability density for a given pixel. Empirical results were presented which 

show that in terms of discrete proportion estimation the means of the distribution 

models are comparable to the performance of a standard MLP. However, it is also 

shown that the distribution variances are useful in identifying pixels for which the 

discrete estimates are likely to be poor and that for such pixels, the full distribution can 

be obtained to provide complete information about the range of possible subpixel cover 

scenarios. 
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11. Future Work 

It is the unique richness of the spectral conditional proportion distribution that makes it 

possible to completely represent, propagate and combine proportion information derived 

from different sources. These new capabilities have implications for a wide range of 

applications that were based on more conventional single estimate representations of 

derived proportion information and are likely to have produced results that are 

suboptimal or misleading. One simple example of the power of the proportion 

distribution is in the problem of computing percentage land cover change that was 

demonstrated in the first section of chapter 9 where it was shown that the area 

proportion distributions induce a distribution over the percentage of land cover change. 

In general, the optimal single percentage change estimate - defined as that which 

minimises the expected squared error over the percentage change distribution - is not 

equal to the percentage change calculated from the optimal area proportion estimates at 

each time. Thus, applications that previously used single proportion estimates to model 

land cover change not only produce an information poor representation - a single 

percentage change estimate - but also information that can be misleading. This simple 

example illustrates how the area proportion distribution representation can produce new 

insights into old problems through the completeness of the representation and the 

potential to propagate information without loss. 

Fuzzy classifier Texture classifier 

pill I s) 

Bayes' theorem 

/?(//1 s, C) 

p{a \ O 

Combined model 

Figure 100: Combining texture information with area proportion information. 
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The capacity of the representation for optimal combination of proportion information 

from different sources was also discussed in the first section of chapter 9 and provides a 

new way of improving proportion estimation performance. For example, as part of the 

FLIERS project, a pixel classifier was produced that classified pixels according to the 

texture of their immediate neighbourhood. Although the classifier itself did not produce 

proportion information, it was possible to extract conditional proportion distributions 

given the classification it produced p{fi I C). This information could be used with Bayes' 

theorem as described in chapter 9 to enhance the spectrum conditional proportion 

information obtained from an MDN, p(//1 s), as illustrated conceptually in figure 100. 

Some preliminary results were obtained that strongly hinted at the utility of such a 

combination. These focussed on a problem that occurred in mapping the distribution of 

cereals in an image containing both urban a rural areas. In particular, it was found that 

small quantities of cereal would be predicted within the urban area suggesting that there 

were features in the urban area which were spectrally confused with cereal crops. Since 

the urban area has a distinctly different texture to the rural area, the texture classifier 

could identify it with a high level of accuracy. In addition the sparsity of cereals in the 

areas identified by the texture classifier as urban areas tended to suppress predictions of 

cereal made by the MDN when the two sources of information were combined using 

Bayes' theorem. Although these initial results show great promise, more work is 

required to fully assess the benefits of the combination and to establish a more complete 

representation of the information extracted by the texture classifier. 

One minor problem with the MDN is that its use of Gaussian basis functions means that 

it always predicts illegal proportions - those less than zero and greater than one - with 

non-zero probabilities. The result of this is that the means of the proportion distributions 

tend to be biased towards //=0.5, and the variances have a slight positive bias. In fact, 

the strict upper bound on the variance of the area proportion distribution (see appendix 

C) no longer applies. Although these effects are relatively minor, they can be overcome 

by mapping the area proportion space to the real line before applying the MDN. This is 

done by computing a set of dummy proportions jUdum from the true proportions jj, using 

the inverse logistic or logit transform: 
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The dummy proportions are used by the density estimator and lie in the interval [-

°o,+oo]. Thus, when the dummy proportions are mapped back to the original area 

proportion space using: 

1 
U — 1 9 c 

1 + e x p ( - / / ) 

all the probability mass lies in the legal range [0,1]. Note that in order to maintain the 

correct shape and normalisation of the distribution, the spectrum conditional distribution 

is computed from that for the dummy variables using: 

/ , ( / j I J) = 12:2 

where pi/J-dum I a ) i s modelled by the MDN, and 

Although this offers a framework for bounding the distribution, it is not clear what level 

of performance improvement would result and whether it would be worth the extra 

computational cost that is necessary to compute the distribution means and variances. 

This can only be determined by further experimentation. This problem with the use of 

Gaussian distributions was also noted in [Chittineni:81] in the context of finding a 

suitable prior (unconditional distribution) for area proportion variables. The proposed 

solution consisted of artificially clipping the probability density to zero outside the 

range [0,1] and re-normalising within it. Although in principle, it should be possible to 

adapt that approach for use with the mixture density network, it is mathematically more 

complex than the technique outlined above which is therefore recommended for initial 

investigation. 

In addition to using the Gaussian as a prior area proportion distribution, [Chittineni:81] 

also uses the Beta distribution [DeGroot:89] as does [Atkinson:99]. This distribution, 

given in below: 
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where Z is a normalisation constant, is very similar to the multinomial-derived 

proportion distribution discussed earlier, and also presented below: 

The clear similarity of these distributions suggests that a relationship must exist between 

them, though it is not immediately obvious what form it should take. In particular, the 

almost arbitrary parameters, b and c of the Beta distribution seem to have no specific 

relation to the "true" proportions, jHest, in the conditional distribution. A detailed 

examination of the relationship between these two expressions may provide useful 

insights into area proportion distributions and yield useful results that provide guidance 

on the proper values for the parameters of the beta distribution. 

Finally, it would be interesting to use the idea of simulating the interactions of the 

sensor PSF with subpixel cover of varying characteristic length scales using techniques 

similar to those described in [Kitamoto:99]. The aim of this work would be to derive 

expressions for the area proportion distribution induced by the PSF that would probably 

be described by a function of the ratio of the characteristic length scale of the cover type 

to the nominal pixel size. Although this uncertainty is implicitly modelled by the 

mixture density network it is mixed in with all the uncertainty from a large number of 

other sources and cannot easily be isolated. A model of the specific shape of the 

proportion distribution induced by the PSF would provide important insights into its 

effect, not least because its variance places an intrinsic limit on proportion estimator 

performance. 
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12. Appendix A: Derivation of Expectation-Maximisation 
Equations from the Kullback-Liebler Divergence 

Consider the error function E measured over D pixels and M subpixel samples: 

^ = 126 

where cjm is an indicator function taking on the value one if the subpixel sample is in 

the class under consideration and zero otherwise and p{sd) is the probability of 

observing the spectral signature sj. As the number of subpixel samples becomes large, E 

can be approximated by: 

^ == 127 
d=\ 

where is the proportion of the pixel covered by the class of interest. The change in 

this error measure when the parameters of the approximating mixture model are updated 

from Pow(/), and to and q/""' is: 

Enew- E'M In 
d=l 

128 

where E^ew and E„ui are the new and old errors, and Pnewisa) and PouisJ) are the estimated 

densities at s j given the new and old parameters. Since 

;=i 

the change in error can be re-written as: 
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I ) E ' ; ) ; 'nny(;) 
i=i 130 

Using Jensen's inequality, which states that for Xj > 0, and Y.jAj=\, 

7=1 7=1 

and substituting Poidj I s) for Xj, 

131 

o y 
^ j E ( ; I ) In 132 

The right hand side of the above equation gives a lower bound on the amount by which 

the error decreases when the mixture model parameters are updated. It seems reasonable 

that the parameters should be changed in such a way as to maximise the minimum 

possible decrease in error suggesting that the right hand side of equation 132 should be 

minimised. Writing the right hand side as; 

D J 

d=1 j=\ 

where the identity 

a 
In — = In fl - In Z? 

b 
134 

has been used, makes it possible to drop terms that do not affect the optimal values of 

the new parameters, that is, terms independent of pnew(sd I j) and Pnewij)'-

D J 

£^=1 j=i 

135 

Specifically for a one dimensional Gaussian mixture model, 
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which gives: 

D y 
6 = In P « . X y ) - i f ) ! " ( < " ) ' + const. 137 

where, once again, terms independent of the parameters have been ignored. The new 

model parameters can now be found by minimising Q - a process most easily achieved 

by setting the derivative of Q with respect to each of the model parameters to zero. 

Thus, for the basis function variances: 

9(0-;"'')" d=\ 2 2 ( 0 - ; ^ ) " 
138 

which, when set to zero and multiplied through by the variance gives: 

d '"-j m r ) ' 139 

such that: 

- D((T;"')" ̂  ( ; I f J = i % ( ; I j )(-y^ - ^ ] 40 
( /= ! 

which shows the optimal estimate of the new variance parameter of the j " basis function 

to be: 

D 
141 

d=\ 

Repeating the same procedure for the basis function means: 
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which, when set to zero gives: 

yyi"™ 
V (cr ;" ' ) : (cr;"')2 

and hence the optimal estimate for the new mean of the j"' basis function is; 

143 

V " D WW 

( /= ! 

A slightly different approach must be taken when determining the basis function priors, 

since they must be subject to the constraint: 

S P...U) = 1 145 
J=1 

This can be achieved using Lagrange multipliers by minimising the Lagrangian: 

6 = ( ; ( ; ) + E ( ; ) - 4 i46 
=̂1 L 7=1 J 

where terms independent of p„ew(j) do not affect the solution and have been ignored. 

Thus, 

new ( y) d =1 Pnew ( V) 

which gives 

= 147 
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Since Pnewij) is independent of n, it may be taken outside of the summation: 

d=\ 

which may further be simplified by summing over the basis functions: 

] D J 

/ ' n - ( ; ) = ) 151 
i=i d=i i=\ 

Since the basis function priors and posteriors both sum to unity, the Langrange 

multiplier can be seen to be: 

D 

151 

The new estimates of the priors are found by substituting this value back into equation 

147 and solving for Pnewij)'-

3 2 152 
^Pnew^J^ d=} Pnew^j^ d=l 

SO that when the derivative is zero, the new estimates of the priors are: 

D 

d=\ 
- 5 153 

S ' . 
( /=! 

It is thus possible to derive a form of the EM algorithm for updating the parameters of a 

Gaussian mixture model density estimator that has exactly the same form as the 

algorithm for finding the parameters of the fuzzy classifier used in [Wang:90]. This 

provides a rigorous basis for the algorithm, suggests a probabilistic interpretation of its 
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operation, and clearly indicates ways in which its flexibility and performance may be 

improved. 
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13. Appendix B: Analytical Convolution of Ground Cover 
with a Gaussian Model of the Sensor PSF 

This section describes in detail how the spectral signature of a pixel is calculated when 

land cover is either concentrated in a circular region at the pixel's centre, or as a ring on 

the pixel's perimeter. To achieve this, the spectral signatures of individual sub-pixel 

points are convolved with the sensor PSF. In the restricted case considered here, this 

may be achieved by solving the following integral: 

6 
I - dr . 154 

Using the substitution 

M = - o r 2 = 155 
dr 

such that: 

dr >-—^du . 156 
2 w 

It is also necessary to calculate new values for the limits, since the integration is now 

over u rather than r. Thus, 

r = a => u =—osa^ ^ 157 

and 

r = b => u =—CXb^ ^ 158 

such that, 

b 1 -oi>^ 
\re ™ dr = \e "du ^^9 

which, when integrated gives: 

129 



Thus, when the cover type of interest is at the pixel centre, 

< 3 = 0 

6 = 

then 

/ = - — 

and when it is on the pixel perimeter, 

a = r 

then 

6 = 1 

7 = 

161 

162 
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14. Appendix C: Bounding the Variance of an Area 
Proportion Distribution by a Function of its Mean 

This appendix shows that the variance of an area proportion distribution with mean 

is always less than or equal to /4,ra„*(l-/4,M„). The highest possible variance area 

proportion distribution has exactly half of its probability mass located at //=0 and the 

other half at //=! as shown in figure 102. 

Probability, 

fC") 

/"O 

Area proportion, jJ. 

Figure 102: The highest variance area proportion distribution. 

The mean of this distribution is computed using: 

= O x / / o + l x / / , 163 

assuming that there is Ho probability mass at //=0 and //, at / /=! and gives: 

^mean - 164 

The variance of a distribution is computed using: 

/ /v . = } ( / / - 165 

which, for this specific distribution simplifies to: 
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but, since and ±us 

/̂ var ^mean^^mean mean^~ mean 167 

which simplifies to: 

/̂ var f^mean^ /"̂ mean̂  168 

which has a maximum values of 0.25 when /4,Mm=0 5. Thus, the variances of area 

proportion distributions are bounded by a simple quadratic function of their means. 
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15. Appendix D: Finding the Optimum Weighting in a Linear 
Combination of Two Sources of Proportion Information 

The expected squared error of a simple proportion estimator that combined proportion 

information from two different sources, with distributions characterised by means //] 

and jXi, and variances a\ and was shown to be 

E = (m//, + (l - + (l - 1^9 

For known means and variances, the optimal estimator can be found by minimising E 

with respect to the amount of weight, m, given to each source. Taking the derivative of 

E with respect to m gives: 

— = + (1 - m)// , - / / )(//, - /Zz) + - 2(1 - 170 
dm 

Multiplying out and collecting terms in m gives: 

^ + 2/z^ (//, - / / ; ) - 2// (//] - / / ; ) + ) - 2(72 171 
dm 

172 

Substituting for 

- — — 2m(//] - liif' + 2 / / , (//, (//, +//2)(/ / i - / / j ) + 2m(<T,̂  +<^2) 
d m " 2 

and multiplying out gives: 

^ = 2m(//, + 2 / / , ( / / i - / / 2 ) + 2m((T,^ +0-^)-2(T2 
am 

173 

which results in a cancellation: 
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dm 
- -/Z2) + > 2̂(/̂ i ~ 1^2)^ -lJ-2) + '2-m{a^ + a l ) - 2 ( j l 174 

and the following simplification: 

= - ( / / , +2m(o-,^ +<T^)-20'2 175 
dm 

The minimum of E with respect to m is found by setting the derivative to zero, and 

collecting terms in m on the left hand side; 

-//2)^+2/M(o',^+cr2) = (//, - / /2 )^+2(T2 176 

Isolating m and dividing throughout by 2 yields the optimum value: 

i ( A - / / 2 ) ' + o ' 2 
m : 

+ ( ( ; " + 0 - 3 ) 
177 
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