UNIVERSITY OF SOUTHAMPTON

Cyclisation Strategies Towards the Synthesis of Natural Products

By

Nicola Ann Newman

A Thesis submitted for the degree of Doctor of Philosophy

Department of Chemistry
Faculty of Science

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SCIENCE

CHEMISTRY

Doctor of Philosophy

Cyclisation Strategies Towards the Synthesis of Natural Products

By Nicola Ann Newman

This thesis is concerned with the development of cyclisation methodologies which have potential in the synthesis of natural products. A palladium catalysed cyclisation is developed and applied to the synthesis of virola indenone. The structure of virola indenone is redefined and two routes to the natural product are described. A one pot synthesis is also developed.

The use of a radical cyclisation methodology utilising thiyl radicals and a bite back strategy to attempt to control the stereoselectivity is studied. Its scope in the synthesis of aryltetralins and other systems is investigated.

A new method of synthesising biaryls and triaryls through an intramolecular ipsosubstitution reaction initiated by the addition of an aryl radical to a benzyl ether is described. A tandem variant of the reaction is also demonstrated.

A literature review of the synthesis of aryl indenones is presented.

Contents

Chapter One Introduction
The Synthesis of Aryl Indenones
1.1 Elimination of Indenones 2
1.2 Friedel Crafts Type Cyclisations 3
1.3 The Use of Transition Metals - Zinc and Copper 5
1.4 The Use of Transition Metals - Nickel 6
1.5 The Use of Transition Metals - Iron 8
1.6 The Use of Transition Metals - Manganese 9
1.7 The Use of Transition Metals - Rhodium 11
1.8 The Use of Transition Metals - Palladium 13
1.9 Use of Grignard Reagents 16
1.10 Miscellaneous Routes 17
1.11 Wittig Type Cyclisations 19
1.12 Conclusions 21
Chapter Two
The Synthesis and Identity of Virola Indenone
2.1 Background 23
2.2 Our Preliminary Synthesis of Virola Indenone 25
2.3 Redefinition of the Structure 29
2.4 Optimisation of the Cyclisation 34
2.5 Our One Pot Approach 37
2.6 Conclusion 38
Chapter Three
Thiyl Mediated Radical Cyclisations in Lignan Natural Product Synthesis
3.1 Background 40
3.2 Radical Cyclisation Reactions 41
3.3 Thiyl Mediated Radical Cyclisations 42
3.4 Application to Lignan Synthesis 45
3.5 Returning to the Methodology 52
3.6 Conclusions 57
Chapter Four
Intramolecular Radical Cyclisations to Aromatic Systems
4.1 Background 59
4.2 Cyclisations onto Pyridines 60
4.3 Extension of the Methodology 61
4.4 Synthesis of Terphenyls 65
4.5 Conclusions 69
Chapter Five
Experimental
5.1 General Experimental 71
5.2 Experimental 73
References 168

Acknowledgements

Thank you to Dr David Harrrowven for his encouragement, advice, training and patience over the last four years.

To Joan Street, John Langley and Julie Herniman for their spectroscopic advice and services.

To all members of the Harrowven Group past and present. These include Joanne Hannam, Graham Sibley, Matthew (SG) Lucas, Jon Wilden, Stifun Mittoo, Nigel Blumire, Peter May, Matt Carpentier, Mike Nunn, Ben Sutton and Mell Tyte for their help, friendship and for putting up with me in the lab! Special thanks to Jo, Jon and Mell for their valued proof reading and to Mike and Matt for technical support. These people have all helped to make my time at Southampton a pleasant and memorable experience.

To my friends Catherine, Emma, Steve and Helen who have put up with being neglected.

To Richard Searson for his contribution to my career choice.

To my family for their support and understanding.

And finally, to Paul Razzell, for being there for the duration.

$$
J_{0} p_{a u}{ }^{2}
$$

with all my love

Abbreviations

Ad	Adamantyl
AIBN	azo-iso-butyronitrile
amu	atomic mass units
APCI	atmospheric pressure chemical ionisation
aq.	aqueous
Ar	aryl
Bn	benzyl
Bu	butyl
CHN	combustion analysis
CI	chemical ionisation
conc.	concentrated
COSY	correlated spectroscopy
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCM	dichloromethane
DMA	N, N-dimethylacetamide
DMF	$N_{\text {; }}$, N -dimethylformamide
DMSO	dimethylsulfoxide
EI	electron impact
eq.	Equivalents
Et	ethyl
FT	Fourier Transform
h	hours
HMPA	hexamethylphosphoramide
HRMS	high resolution mass spectra
IR	infra red
lit.	literature
LRMS	low resolution mass spectra
LDA	lithium diisopropylamide
M	molar
mmol	millimols
Me	methyl
min	minutes

NMR nuclear magnetic resonance

Ph	phenyl
ppm	parts per million
py	pyridine
THF	tetrahydrofuran
TMEDA	tetramethylethylenediamine
UV	ultra violet

Chapter One

Introduction

The Synthesis of Aryl Indenones

Indenones have been used as fungicides, potential oestrogen binding receptors and fermentation activators. ${ }^{1-3}$ They are also useful intermediates in the synthesis of a variety of natural products e.g. steroids and gibberellins. ${ }^{4,5}$ They can be prepared following traditional synthetic methods or by metal mediated reactions. Summarised below are a selection of the methods available for the synthesis of aryl indenones.

1.1 Elimination of Indanones

Perhaps the most logical precursor to an indenone is the corresponding indanone. This method has a long history and most early examples involved the bromination and dehydrobromination of the corresponding indanone. ${ }^{6}$ A typical example is highlighted in Scheme 1.1. ${ }^{7}$

Scheme 1.1

The initial bromination of the indanone 101 resulted in dibromide 102 which was unstable. Immediate heating of $\mathbf{1 0 2}$ provided the aryl indenone $\mathbf{1 0 3}$ in 16% yield. Many examples tell a similar tale of poor yielding reactions. Floyd had more success in the synthesis of indenones via this method, as did House in 1969; however, they did not apply the methodology to 3 -arylindenones. ${ }^{6,8}$

1.2 Friedel-Crafts Type Cyclisations

Work has taken place to develop routes to indenones via intramolecular Friedel-Crafts cyclisations. Early work laid the foundations for application to the 3 -substituted examples. In 1974 Martens effected the synthesis of 2,3-substitued indenones via treatment of acid chloride 104 with 2-butyne 105 , a reaction catalysed by aluminium chloride, to give the intermediate β-chlorovinyl ketone $106 .{ }^{9}$ Further treatment of $\mathbf{1 0 6}$ with AlCl_{3} in DCM gave a 53% yield of indenone 107 (Scheme 1.2).

Scheme 1.2

An alternative approach was developed by Floyd and later improved by Galatsis and Manwell. ${ }^{8,10}$ They found that direct treatment of 108 with the dianion of propanoic acid accomplished transformation to 110 in 89% yield. A Friedel Crafts acylation with concomitant β-elimination was then successfully effected by treatment of the corresponding acid chloride with aluminium trichloride (Scheme 1.3). However, the reaction was only useful when a substituent was present in the 2-position of the indenone.

Scheme 1.3

In 1991 Banerjee showed that 3-arylindenones could be formed by an intramolecular Friedel-Crafts acylation between an arene and an anhydride. ${ }^{4}$ For example, treatment of $\mathbf{1 1 6}$ with alumininum trichloride for 24 h promoted cyclisation to give indenone 117. Unfortunately, the utility of this route is difficult to assess since no yields or experimental details were given.

Scheme 1.4

1.3 Use of Transition metals - zinc and copper

A range of transition metals have been used in the synthesis of 3 -arylindenones. Brunner found that organozinc and copper reagents can undergo conjugate addition to (2-propynylidene) morpholinium triflates and employed this in the synthesis of several 2-acyl-3-arylindenones. ${ }^{12}$ For example, treatment of iodide 118 with activated zinc then CuCN .2 LiCl gave a complex to which was added propyne iminium triflate 120. The intermediate allene 121 cyclised in situ to the vicinal cyano moiety giving indenone $\mathbf{1 2 3}$ on work up. Zinc ions are presumed to initiate addition of the enamine to nitrile (Scheme 1.5).

i) TMEDA
ii) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$

123
$\mathrm{R}=\mathrm{Me} 73 \%$
$\mathrm{R}=\mathrm{Ph} 52 \%$

Scheme 1.5

1.4 Use of Transition Metals - Nickel

Liebeskind investigated reactions of nickel carbonyl with iodobenzene. ${ }^{13}$ Nickel carbonyl reacts with iodobenzene to produce a benzoylnickel complex which decomposes to benzil in aprotic solvents. However in the prescence of an alkyne, the benzoylnickel intermediate is trapped, undergoing addition to the alkyne. Insertion of

CO follows to yield a nickel complex and subsequent decomposition gives organic products.

In an extension of the reaction it was found that o-diiodobenzene gave substituted indenones when treated with 1 equivalent of nickel carbonyl and a substituted alkyne. A number of different substituents were incorporated and some good yields were obtained. When unsymmetrical alkynes were employed both of the possible regioisomers were seen and the reaction was only regioselective when the substituents differed greatly in steric bulk. In such cases the bulkier substituent was found at C-2 of the indenone (Scheme 1.6). This method appears to be a mild and direct route to various substituted indenones. However electron deficient alkynes did not yield any useful products under the reaction conditions.

124
125

$$
\begin{aligned}
& \mathrm{R}^{\prime}, \mathrm{R} \mathrm{R}^{\prime}=\mathrm{Et} 89 \% \\
& \mathrm{R}^{\prime}, \mathrm{R}=\mathrm{Ph} 51 \% \\
& \mathrm{R}^{\prime \prime}=\mathrm{Ph} \mathrm{R}^{\prime \prime}=\mathrm{Me} 67 \%
\end{aligned}
$$

Scheme 1.6

1.5 Use of Transition Metals - Iron.

Butler described the thermal reaction of Fp -Aryl ($\mathrm{Fp}=$ dicarbonyl $-\left(\eta^{5}-\right.$ cyclopentadienyl)iron) with diarylacetylenes to give 2,3-disubstituted indenones. ${ }^{14} 2$ Molar equivalents of aryllithium with diphenyl acetylene in the prescence of TMEDA followed by metathesis with FpI at low temperature gave the alkenyliron compound 130. Heating 130 in decalin at reflux for 10 min under N_{2} gave indenone 131 cleanly and in good yield (Scheme 1.7). A similar reaction conducted at reflux in xylene or toluene with a molar equivalent of triphenylphosphine gave an improvement in yield. The route was also successful with a naphthyl substitutent on the starting alkyne to produce 2-naphthyl-3-arylindenone in 86% yield.

131
54\%
$74-78 \%$ with added phosphine
Scheme 1.7

1.5 Use of Transition Metals -Manganese

Robinson and co-workers reported that reactions of ortho-manganated aryl carbonyl compounds with alkynes provide an efficient route to indenols and indenones. ${ }^{15} \eta^{2}$ -(2-Acetylphenyl)tetracarbonylmanganese $\mathbf{1 3 2}$ reacts with diphenylacetylene in benzene under reflux for 8 h to form 2,3-diphenyl-1-methylinden-1-ol 135 in 97% yield. A similar reaction in methanol also gave $\mathbf{1 3 5}$ in 51% yield. While the reaction of ortho-manganated N, N-dimethylbenzamide 133 , with diphenylacetylene under the same conditions gives the indenone 137 in 56% yield. Similarly, the orthomanganated p-dimethylaminobenzaldehyde 134 gives 138 in 46% yield (Scheme 1.8).

It seems likely that an indenol is the first product formed in the reaction and that the indenone is then formed by oxidation. The proposed mechanism involved an initial insertion of the alkyne into the $\mathrm{Mn}-\mathrm{C}$ bond to give 139. Intramolecular addition across $\mathrm{C}=\mathrm{O}$ then gives 140 , which on protonolysis provides the indenol. When aromatic aldehydes and amides were employed, collapse to an indenone is favoured.

Scheme 1.8

139

140

In 1994 Cambie found that silylated manganese complex 141 and diphenylacetylene in benzene gave 131 in a disappointing 22% yield after photolytic demetallation (Scheme 1.9). ${ }^{16}$

Scheme 1.9

1.7 Use of Transition Metals - Rhodium

Hong reported in 1979 that the reaction of benzene with diphenylacetylene and carbon monoxide could be catalysed by $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$ and gave 2,3-diphenylindenone in 10% yield together with various side products. ${ }^{17}$ The composition of the product mixture varied with the pressure of carbon monoxide, but the yield of the indenone was low in each case studied (Scheme 1.10).

Scheme 1.10

Later, Miura described a much improved route to indenones using rhodium. ${ }^{18}$ Aroyl chlorides are known to react with low valent transition metal species, including rhodium and palladium complexes, to produce the corresponding aroylchlorometalcomplexes. These may be further transformed into arylchlorometal complexes by decarbonylation at elevated temperatures. He observed that aroyl chlorides react with terminal alkynes in the prescence of $[\mathrm{RhCl}(\operatorname{cod})]_{2}$ and triphenylphosphine to give vinyl chloride derivatives in good yield and in a regio- and stereoselective manner (Scheme 1.11).

Scheme 1.11

The reaction of aroyl chlorides with disubstituted alkynes was found to proceed without decarbonylation to produce 2,3-disubstituted indenones. No vinyl chloride derivative was detected and yields up to 76% were seen (Scheme 1.12).

Scheme 1.12

Alkyl and phenyl substituted alkynes were sucessfully employed. Where unsymmetrical alkynes were used a $1: 1$ ratio of regioisomeric 2,3 -disubstituted indenones were formed. Yields varied from moderate to low. The mechanism proposed for the formation of these indenones is outlined in Scheme 1.13. Firstly rhodium inserts into the carbon to chlorine bond. Decarbonylation is followed by insertion of the alkyne. Carbon monoxide then reinserts and a subsequent cyclisation involving elimination of HCl generates the indenone.

Scheme 1.13

1.8 Use of Transition Metals - Palladium

Heck first reported the palladium catalysed formation of diphenyl indenone from o-iodobenzaldehyde 151and diphenylacetylene 128 in 1989. ${ }^{19}$ In 1993 Larock and Doty published a more comprehensive study of the annulation in which the scope and limitations of this chemistry were explored. ${ }^{20}$ A wide range of 2,3-disubstitued indenones were reported.

Scheme 1.14

With only $5 \mathrm{~mol} \%$ of catalyst, an 84% yield of 2,3-diphenylindenone 131 was isolated (Scheme 1.14). The reaction was found to be robust to an increase in scale and changes in substituents. Where regioisomers were possible, less hindered alkynes
such as 1-phenyl-1-propyne tended to produce a 1:1 mixture of regioisomers, whereas alkynes containing more bulky, tertiary alkyl, trimethylsilyl or other hindering groups were shown to be selective, with the more sterically demanding group in the $\mathrm{C}-2$ position. The most likely mechanism proposed involved addition of the C-Pd bond of the vinyl palladium intermediate 153 across the $\mathrm{C}=\mathrm{O}$ bond of the aldehyde, followed by β-hydride elimination (Scheme 1.15).

Scheme 1.15
In 1996 Vicente and co-workers investigated palladium assisted formation of carbon to carbon bonds in the synthesis of indenols and indenones. ${ }^{21}$ They reported the formation of a wide variety of symmetrical and unsymmetrical 2,3-substituted indenones from palladium complexes. They first isolated an o-formylarylpalladium complex 155 which reacted at room temperature with diphenylacetylene to provide the indenone 158 in 77% yield (Scheme 1.16). Again, electron withdrawing groups on the alkyne rendered the reaction unsuccessful while the presence of three donating methoxy groups on the aryl ring gave the most successful results. The reaction was attempted using substoichiometric palladium, but yields were poor. Interestingly, the
only example found to proceed in a regioselective fashion was with 1-phenylpropyne. In this case only 2-phenylindenone was produced. Also, when 1-t-butyl-1-propyne was used, a 1:1 mixture of regioisomers was formed. This was in contrast to the observations of Larock. ${ }^{20}$

158
157
Scheme 1.16
In 1998, Clark required a route to an indenone en route to 163 , an indanone natural product which shows constrictor activity of cardiovascular smooth muscle. ${ }^{22} \mathrm{He}$ successfully performed an intramolecular Heck reaction with enone 161 to give the indenone 162 in 75% yield (Scheme 1.17).

Scheme 1.17

1.9 Use of Grignard Reagents

Indenones can be prepared from benzylidenephthalides. Thus, when benylidenephthalide 164 was treated with phenylmagnesium bromide it was converted directly to 2,3 -diphenylindenone $\mathbf{1 3 1}$ (Scheme 1.18). The method was first introduced by Shriner and Knox, then developed by Manning and often gives good to acceptable yields. ${ }^{23,24}$

Scheme 1.18

Anstead sought an alternative route to 2 - and 3 -arylindenones when synthesising substrates to act as oestrogen receptors. ${ }^{2}$ The method adopted used a double condensation-decarboxylation reaction between 4-methoxyphenylacetic acid 166 and phthalic anhydride 165 as a first step. The resulting indanedione 167 was then allowed to react with 2 equivalents of Gringard reagent to provide the required indanone 168 (Scheme 1.19).

168

Scheme 1.19

1.10 Miscellaneous Routes

Scheinmann utilised an alternative and indirect route to indenones via indenes. ${ }^{25}$ Reaction of N-phenyl-1,1-diphenyl-2-ethylbut-3-ynylamine 169 in 98% formic acid at room temperature (18 h) followed by hydrolysis gave 2-ethyl-1-methylene-3-phenyl$1 H$-indene 173 in 56% yield. This indene was then treated with potassium
permanganate in benzene containing 18 -crown- 6 to effect oxidation of the exocyclic double bond to give indenone $\mathbf{1 7 4}$ in 28% yield (Scheme 1.20).

Scheme 1.20

In a study of poly-lithiated organic compounds, Maerker investigated the reaction of benzylidenecyclopropanes with lithium. ${ }^{26}$ Diphenylmethylenecyclopropane 175 was taken in dry ether at $20^{\circ} \mathrm{C}$ and added to a suspension of excess lithium dust under argon. The resulting dilithium 176 underwent a 1,6 -hydride shift to give $\mathbf{1 7 7}$ - the mechanism of which was indeterminable. Reaction of 177 with carbon dioxide then gave 178 in 19\% yield (Scheme 1.21).

178

Scheme 1.21

1.11 Wittig type cyclisations

In 1989 Vorbruggen developed a Wittig type cyclisation from keto acid 179 which gave 2-chloro-3-phenylindenone 182 in 37% yield (Scheme 1.21). ${ }^{27}$ Although the yield was low the route is simple and direct and may be amenable to optimisation. Presumably, the acid is first converted into acid chloride 180 en route to the indenone 182 (Scheme 1.22).

$179 \quad 182$

Scheme 1.22

Varvoglis and co-workers showed that phenyliodonium bis(phenylsulfonyl)methyllide 185 gives cycloaddition products with alkenes and alkynes. ${ }^{28}$ When performing the reaction with alkynes, the indene skeleton was provided. Reduction of the indene with Na amalgam unexpectedly gave the indenone 131, implicating autooxidation in air (Scheme 1.23). This result was reproducible and a number of examples were successful. Yields were usually in the region of $50-60 \%$.

131

[O]

Scheme 1.23

1.12 Conclusion

To conclude, many approaches to the aryl indenone have been reported. These range from the classical Friedel-Crafts methodologies to the more recent developments using transition metals. Several miscellaneous methods are also available. This review has not been comprehensive but is intended to provide a useful introduction to the area.

Chapter Two

The Synthesis and Identity of Virola Indenone

2.1 Background

Many compounds have been isolated from the fruit of Virola sebifera ${ }^{29}$ and Virola elongata. ${ }^{30}$ Of these a series of arylindenones have attracted particular attention due to their unusual structural features. Most notably, virola indenone 201 is the only reported 3-arylindenone to have been isolated from natural sources and may thus represent the first example of a new class of lignans.

201

202

203

That virola indenone may be an artifact of the isolation process rather than a true natural product has been noted by Whiting. ${ }^{31}$ Thus, loss of acetic acid from 202 provides a plausible route to 201 and this might occur in the fruit or during the extraction process.

Whiting envisioned these compounds as arising through ring contraction of a hypothetical hydroxylated tetralone (Scheme 2.1).

Scheme 2.1
Several reports have appeared in recent years relating to the biological activity of indenones. Klein has investigated the structural requirements for anti-tumour activity in indanone analogues of podophyllotoxin. ${ }^{32}$ His investigations focussed on compounds active against human and murine tumour cell lines and led him to conclude that substitution at the $\mathrm{C}-2$ and $\mathrm{C}-3$ position on an indanone is crucial for activity and that these substituents are conformationally sensitive.

Katzenellenbogen considered 2- and 3 -substituted aryl indenones as ligands for the oestrogen receptor. He found that they display high binding affinities rendering them potential post coital contraceptives. ${ }^{33}$ Hajela then proceeded to investigate this effect in laboratory rats. ${ }^{34}$ Indeed, when the substituted indenones were administered postcoitally to female rats, the occurrence of implantation was inhibited by up to 85%.

2.2 Our Preliminary Synthesis of Virola Indenone

Having considered the literature methods for the synthesis of 3-arylindenones we chose to apply the Heck-Larock annulation to the synthesis of virola indenone 201 as it appeared to be the most direct way of obtaining the natural product. ${ }^{19,20}$ Thus, the palladium coupling of 6-bromopiperonal 204 and aryl alkyne 205 should provide 201 directly, along with the 2 -arylindenone regioisomer.

Scheme 2.2
We obtained the alkyne in four steps as shown in Scheme 2.3. Reaction of the aldehyde 206 with ethylmagnesium bromide followed by oxidation with barium manganate provided ketone 208 in good yield. Conversion of the ketone to the dichloride 209 was achieved using phosphorous pentachloride. Stirring 209 with magnesium provided alkyne $\mathbf{2 0 5}$ in 89% yield. We were now in a position to effect the key step. Stirring a DMA solution of 204 and 205 containing sodium carbonate and $5 \mathrm{~mol} \%$ palladium acetate at $100^{\circ} \mathrm{C}$ provided a 5:1 mixture of indenone 201 and the corresponding regioisomer 210 in 25% yield.

Scheme 2.3

Separation of $\mathbf{2 0 1}$ and $\mathbf{2 1 0}$ was not trivial but could be achieved using a chromatatron or by selective crystallisation from ethanol. Having obtained pure samples of both 201 and 210, the spectroscopic and physical characteristics each displayed were compared with those data reported for virola indenone. Numerous discrepancies were revealed. In particular, we noted that the melting point of our synthetic sample of 201 was $142-144^{\circ} \mathrm{C}$ whereas the reported value was $216^{\circ} \mathrm{C}$. There were also discrepancies in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data while the mass spectra, IR and UV data were in close agreement (Table 2.1).

Table 2.1

Characteristics	201	Natural Product
Appearance	red solid	red solid
m. p. (MeOH)	$142-144^{\circ} \mathrm{C}$	$214-216^{\circ} \mathrm{C}$
m / e (amu)	MH^{+}(APCI) 325	M^{+}(EI) 324
IR	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ 1699,1598,1514,1321 \end{gathered}$	$\begin{gathered} \mathrm{KBr} \\ 1692,1600,1484-1440 \end{gathered}$
UV (MeOH)	$\begin{gathered} 464(700), 335(6400) \\ 268(32000) \end{gathered}$	340 (7600), 265 (32400)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ ArH ArH ArH $2 \times \mathrm{ArH}$ 2 x OMe CMe	300 MHz $7.01-6.92(4 \mathrm{H}, \mathrm{m})$ $6.63(1 \mathrm{H}, \mathrm{s})$ $5.98(2 \mathrm{H}, \mathrm{s})$ $3.98(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s})$ $1.91(3 \mathrm{H}, \mathrm{s})$	60 MHz $7.17(1 \mathrm{H}, \mathrm{s})$ $7.00(3 \mathrm{H}, \mathrm{m})$ $6.69(1 \mathrm{H}, \mathrm{s})$ $6.10(2 \mathrm{H}, \mathrm{s})$ $3.89(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s})$ $1.89(3 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$ CH_{3} CH_{2} CH C	75.5 MHz $56.2,56.1,8.9$ 102.1 $121.3,111.3,111.1,105.1$, 103.6 $196.9,152.9,151.3,149.9$, $149.1,147.1,142.4,129.3$, $129.3,125.3$	20 MHz $55.8,55.7,18.0$ 103.5 $120.8,111.7,108.5,108.0$, 105.9 $208.0,168.6,159.9,151.7$, $149.3,148.2,147.7,132.4$, $128.9,127.9$

We felt sure that our initial synthesis of $\mathbf{2 0 1}$ had proceeded without incident, but thought it wise to secure an alternative route before we drew any conclusions about the identity of virola indenone.

To avoid ambiguity, the new route we adopted followed more traditional lines (Scheme 2.4). It began with 6-bromopiperonal 204 which was treated with ethylmagnesium bromide to give alcohol 211 in 76% yield. The bromoalcohol 211 was then reacted with 2 equivalents of n-butyllithium to form a dilithiated
intermediate which, upon exposure to dimethoxybenzaldehyde 206, gave diol 213. On work up, this material dehydrated to give the THF 214 as a $1: 1$ mixture of diastereoisomers. Oxidation of $\mathbf{2 1 4}$ with barium manganate then provided diketone 215 in 76% yield which when exposed to p-toluenesulfonic acid in chloroform gave 201 in 56% yield.

211
212

215

214

206

201

Scheme 2.4

We were pleased to note that the data for our second sample of 201 agreed with that of our first, showing that there had been no errors in our original synthesis.

2.3 Redefinition of the Structure

The inconsistencies in the data obtained for our synthetic sample of 201 and those attained for the natural product led us to conclude that the structure proposed for virola indenone was incorrect. Thus, we reassessed the published data and concluded that the most likely structure for virola indenone was 216 , in which the arene substituents are interchanged.

216

210

217

Our reasoning for favouring 216 over the isomeric indenones 210 and 217 were as follows. The UV/visible spectra obtained for $\mathbf{2 0 1}$ agreed with the data reported in the isolation paper, suggesting the presence of a similar chromophore. Secondly, the chemical shift of the allylic methyl group in 201 and virola indenone were both δ_{H} 1.89 p.p.m., suggesting attachment at C-2. Thirdly, the biosynthesis of virola indenone proposed by Whiting was equally valid for $216 .{ }^{3}$

We therefore embarked upon a synthesis of 216 following the strategy used successfully for the synthesis of 201 (Scheme 2.5). Though the yields attained were lower in this sequence, we were nonetheless able to obtain the requisite alkyne 222 and cyclise it under the Heck Larock conditions to give an 8:1 mixture of regioisomers 216 and 217.

Scheme 2.5
We also synthesised 216 using the more traditional aldol condensation route. The yields were comparable to those attained in the synthesis of 201, the key cyclisation of 229 to 216 being achieved in 52% yield (Scheme 2.6).

216
Scheme 2.6

A comparison of the data attained for 216 with that reported in the natural product isolation paper was then undertaken. We were pleased to note that the melting points, IR, UV and mass spectra were in agreement. Likewise the anomalies in the ${ }^{1} \mathrm{H}$ NMR data were within experimental limits given that the original data was recorded using unsophisticated equipment.

Major discrepancies were nonetheless noted in the ${ }^{13} \mathrm{C}$ NMR spectral data. ${ }^{13} \mathrm{C}$ NMR data attained from 210 and 217 were also compared and these too showed poor correlation. As the ${ }^{13} \mathrm{C}$ NMR data in question was recorded at 20 MHz , we presume an early NMR instrument had been used to attain the values reported. The discrepancies may therefore be attributed to experimental errors. Notably, to locate the signal at 197 p.p.m. coresponding to the carbonyl moiety, we needed to extend the relaxation time between each scan. Clearly, at 20 MHz this signal would have been hard to detect. Thus the signal reported at 208.0 p.p.m. may have been due to noise. Thus we believe that the actual structure of the natural product is indeed 216 .

Table 2.2 Data for all synthetic samples as compared to the natural product.

	201	Natural product	216	210	217
Appearance	red solid				
$\begin{gathered} \text { m.p. } \\ (\mathrm{MeOH}) \end{gathered}$	$142-144^{\circ} \mathrm{C}$	$214-216^{\circ} \mathrm{C}$	$214-215^{\circ} \mathrm{C}$	$198-200^{\circ} \mathrm{C}$	$187-189^{\circ} \mathrm{C}$
$\begin{gathered} \mathrm{m} / \mathrm{e} \\ (\mathrm{amu}) \end{gathered}$	$\begin{gathered} \mathrm{MH}^{+}(\mathrm{APCl}) \\ 325 \end{gathered}$	$\begin{gathered} \mathrm{M}^{+}(\mathrm{El}) \\ 324 \end{gathered}$	$\begin{gathered} \mathrm{MH}^{+}(\mathrm{APCI}) \\ 325 \end{gathered}$	$\begin{gathered} \mathrm{MH}^{+}(\mathrm{APCI}) \\ 325 \end{gathered}$	$\begin{gathered} \mathrm{M}^{+}(\mathrm{CI}) \\ 324 \end{gathered}$
IR	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ \text { solution } \\ 1699,1598, \\ 1514,1321 \end{gathered}$	KBr 1692,1600, $1484-1440$	neat $\begin{aligned} & 1685,1580, \\ & 1494,1460 \end{aligned}$	neat 1702,1590, 1491,1354	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ \text { solution } \\ 1702,1586, \\ 1487,1344 \end{gathered}$
$\begin{gathered} \mathrm{UV} \\ (\mathrm{MeOH}) \end{gathered}$	$\begin{gathered} 464(700), \\ 335(6400) \\ 268(32000) \end{gathered}$	$\begin{gathered} 340(7600) \\ 265(32400) \end{gathered}$	$\begin{gathered} 462(600) \\ 343(7100) \\ 273(32000) \end{gathered}$	$\begin{gathered} 460(400) \\ 310(3600), \\ 264(21800) \end{gathered}$	$\begin{gathered} 488(700) \\ 314(3100) \\ 274(20400) \end{gathered}$
$\begin{gathered} { }^{1} \mathrm{H} \mathrm{NMR} \\ \left(\mathrm{CDCl}_{3}\right) \\ \mathrm{ArH} \\ \mathrm{ArH} \\ 2 \times \mathrm{ArH} \\ \mathrm{OMe} \\ \mathrm{OMe} \\ \mathrm{CMe} \end{gathered}$	$\begin{gathered} 300 \mathrm{MHz} \\ \delta_{\mathrm{H}} \\ 7.09-6.92 \\ (4 \mathrm{H}, \mathrm{~m}) \\ 6.63(1 \mathrm{H}, \mathrm{~s}) \\ 5.98(2 \mathrm{H}, \mathrm{~s}) \\ 3.98(3 \mathrm{H}, \mathrm{~s}) \\ 3.95(3 \mathrm{H}, \mathrm{~s}) \\ 1.91(3 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 60 \mathrm{MHz} \\ \delta_{\mathrm{H}} \\ 7.17(1 \mathrm{H}, \mathrm{~s}) \\ 7.00(3 \mathrm{H}, \mathrm{~m}) \\ 6.69(1 \mathrm{H}, \mathrm{~s}) \\ 6.10(2 \mathrm{H}, \mathrm{~s}) \\ 3.89(3 \mathrm{H}, \mathrm{~s}) \\ 3.86(3 \mathrm{H}, \mathrm{~s}) \\ 1.89(3 \mathrm{H}, \mathrm{~s}) \end{gathered}$	300 MHz δ_{H} $7.01(1 \mathrm{H}, \mathrm{s})$ $6.95(3 \mathrm{H}, \mathrm{m})$ $6.65(1 \mathrm{H}, \mathrm{s})$ $6.09(2 \mathrm{H}, \mathrm{s})$ $3.88(3 \mathrm{H}, \mathrm{s})$ $3.89(3 \mathrm{H}, \mathrm{s})$ $1.91(3 \mathrm{H}, \mathrm{s})$	$\begin{gathered} 300 \mathrm{MHz} \\ \delta_{\mathrm{H}} \\ 7.05-6.92 \\ (4 \mathrm{H}, \mathrm{~m}) \\ 6.71(1 \mathrm{H}, \mathrm{~s}) \\ 5.99(2 \mathrm{H}, \mathrm{~s}) \\ 3.97(3 \mathrm{H}, \mathrm{~s}) \\ 3.97(3 \mathrm{H}, \mathrm{~s}) \\ 2.28(3 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 300 \mathrm{MHz} \\ \delta_{\mathrm{H}} \\ 7.12(1 \mathrm{H}, \mathrm{~s}) \\ 6.90(3 \mathrm{H}, \mathrm{~m}) \\ 6.75(1 \mathrm{H}, \mathrm{~s}) \\ 5.99(2 \mathrm{H}, \mathrm{~s}) \\ 3.96(3 \mathrm{H}, \mathrm{~s}) \\ 3.93(3 \mathrm{H}, \mathrm{~s}) \\ 2.19(3 \mathrm{H}, \mathrm{~s}) \end{gathered}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ CH_{3} CH_{2} CH C	75.5 MHz δ_{C} $56.2,56.1$, 8.9 102.1 $121.3,111.3$, $111.1,105.1$, 103.6 $196.9,152.9$, $151.3,149.9$, $149.1,147.1$, $142.4,129.3$, $129.3,125.4$	20 MHz δ_{C} $55.8,55.7$, 18.0 103.5 $120.8,111.7$, $108.5,108.0$, 105.9 $208.0,168.6$, $159.9,151.7$, $149.3,148.2$, $147.7,132.4$, $128.9,127.9$	$\begin{gathered} \hline 75.5 \mathrm{MHz} \\ \delta_{\mathrm{C}} \\ 56.4,56.4, \\ 8.7 \\ 101.4 \\ 122.1,108.7, \\ 108.2,107.6 \\ 105.6 \\ 197.6,152.9 \\ 152.4,148.4 \\ 148.3,148.0 \\ 140.2,129.4 \\ 126.7,123.6 \end{gathered}$	$\begin{gathered} 100 \mathrm{MHz} \\ \delta_{\mathrm{C}} \\ 56.3,56.3, \\ 13.1 \\ 102.4 \\ 113.0,111.4, \\ 105.4,102.5, \\ 122.5, \\ 195.9,152.2, \\ 152.1,149.1, \\ 149.0,147.9 \\ 143.1,132.5 \\ 124.7,124.5 \end{gathered}$	$\begin{gathered} \hline 75.5 \mathrm{MHz} \\ \delta_{\mathrm{C}} \\ 56.5,56.5, \\ 12.6 \\ 101.1 \\ 123.4,109.8, \\ 108.3,107.2, \\ 104.3 \\ 196.3153 .1, \\ 152.4,149.0 \\ 147.6,147.1, \\ 140.5,132.0 \\ 128.0,123.4 \end{gathered}$

2.4 Optimisation of the Cyclisation

When we were making our samples of virola indenone and its isomers, we were disappointed with the yields attained in the Heck-Larock annulation (between 25 and 28%). We thus decided to pursue the optimisation of this reaction, confident that a higher yield could be realised. Optimisation was carried out on the model reaction between 204 and 230 (Scheme 2.7).

Scheme 2.7
Various palladium catalysts were examined. It was noted that reactions with palladium chloride were generally cleaner than those employing palladium acetate and that two equivalents of PPh_{3} was optimal. A range of high boiling solvents were tested including benzene, 1.4-dioxane, toluene, DME and DMF. Best results were attained using toluene at $100^{\circ} \mathrm{C}$ for 24 h .

A concentration of 1 mL toluene to every 10 mg of alkyne gave best recovery of product. Surprisingly substituting triethylamine for sodium carbonate led to the production of indanone 233 (Scheme 2.8).

Scheme 2.8
The yield of indenone was improved when sodium hydrogen carbonate was employed as the base. Under these conditions we were pleased to be able to produce a consistent yield of 54% for the annulation step (Scheme 2.9).

Scheme 2.9
We also had the opportunity to conduct these reactions at high pressure. Success was limited and we were unable to improve on the yields attained using traditional techniques.

Scheme 2.10

It should be noted that in the Heck-Larock annulation between 204 and 230 we saw no evidence for the formation of regioisomer 232. Similarly the cyclisation of $\mathbf{2 2 3}$ and $\mathbf{2 3 0}$ provided $\mathbf{2 3 4}$ as the sole product (Scheme 2.10).

Scheme 2.11

We had assumed that the selectivity we observed in the formation of $\mathbf{2 3 1}$ and $\mathbf{2 3 4}$ was governed by the polarisation of the substituted aryl alkyne 230 (Scheme 2.11). However Heck and Larock both reported a $1: 1$ mixture of regioisomers in the cyclisation of $\mathbf{2 3 0}$ and $\mathbf{2 3 6}$. These results suggest that the aryl aldehyde governs the regiochemical outcome of the reaction. When we used the trisubstituted aldehyde 239 for the annulation we saw a 1:1 mixture of regioisomers (Scheme 2.12). Overall, we suggest that the reaction is inclined to be selective for the 3 -arylindenones when electron rich aldehydes are employed. However, a methoxy group adjacent to the bromine increases steric encumbrance en route to $\mathbf{2 4 0}$ significantly and production of 241 then becomes competitive.

Scheme 2.12

2.5 Our One Pot Approach

We were keen to find an alternative to the four step route to aryl alkyne 222. A Sonogashira reaction between aryl bromide 242 and propynylmagnesium bromide led us directly to the arylalkyne in 68% yield. ${ }^{35}$ We then showed that this reaction could be run efficiently in toluene prompting us to try a one pot synthesis of our natural product.

Scheme 2.13

This was achieved, after some optimisation, by warming a toluene solution of aryl bromide 242 and propynylmagnesium bromide in toluene at $60^{\circ} \mathrm{C}$ together with 20 $\mathrm{mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$. After 8 h further PdCl_{2} was added along with aldehyde 223 and NaHCO_{3}. The temperature was raised to $100^{\circ} \mathrm{C}$ and heating continued for 24 h .

Upon cooling and work up we were pleased to isolate an 8:1 mixture of 216 and 217 in 44% yield.

Scheme 2.14

2.6 Conclusion

We have developed two routes to virola indenone and redefined its structure. ${ }^{36}$ We have optimised the Heck Larock annulation for this system and have developed a one pot synthesis of the natural product from commercially available materials.

Chapter Three

Thiyl Mediated Radical Cyclisations in Lignan Natural
Product Synthesis

3.1 Background

Radical cyclisation reactions are valuable for the construction of both carbocyclic and heterocyclic rings. ${ }^{37}$ In the past, radical chemistry has gained a reputation for being capricious and unselective, often giving rise to complex mixtures of products due to their high reactivity. However, the advent of mediators such as tributyltin hydride prompted the development of numerous reactions of synthetic utility. ${ }^{38}$ Indeed, it is now appreciated that radical chemistry has significant advantages over more traditional methods in many instances. In particular, radical reactions are conducted under mild, neutral conditions so a wide range of functionalities are tolerated, avoiding the need for protection. They are also useful for the generation of bonds between sterically crowded centres as radical intermediates are unsolvated and reactions proceed via early transition states.

The use of trialkyltin hydrides as mediators of radical reactions provides the most popular method to effect radical cyclisations. The tin radical is a powerful atom and group abstractor and a wide variety of radical precursors can be used. Although tributyltin hydride is most commonly employed for cyclisations involving nucleophilic (unstabilised) radicals, it may also be used to generate electrophilic (stabilised) radicals. Thus, reactive aryl and vinyl radicals as well as the more stable allyl and benzyl radicals can all be generated from a suitable radical precursor. ${ }^{39}$

Although these reactions exhibit many benefits, there are several drawbacks associated with the use of organotin compounds. Tin hydrides are highly toxic, as are the stoichiometric amounts of organotin residues produced in their reactions. These
residues can be difficult to remove from the reaction medium and often require specialist workup procedures. ${ }^{40}$

In addition a typical radical cyclisation will expend two functional groups to create one new carbon - carbon bond (Scheme 3.1). When cyclic compounds are formed from acyclic starting materials the stereocontrol is often poor. Thus stannane based methodology has largely been restricted to laboratory scale experiments where toxicity, waste and expense are manageable. ${ }^{41}$ Some of these problems are overcome using catalytic variants of the method, though these tend to be less efficient. ${ }^{42}$

Scheme 3.1

3.2 Radical Cyclisation Reactions

In order to conduct a selective radical cyclisation, one requires selective radical generation, cyclisation and quench. The rate of each cyclisation step must be faster than the rate of quenching by the solvent or other radical trap and the method must convert the cyclic radical into a stable product. The key steps normally involve generation of an initial carbon centred radical, then addition of that reactive centre to an unsaturated moiety to effect an intramolecular cyclisation. Finally atom abstraction from a mediator simultaneously furnishes the product and another radical intermediate to propagate the chain reaction.

Radical cyclisations are especially useful for the synthesis of five membered rings since the 5 -exo-trig cyclisation is usually faster than reactions leading to other ring sizes. Where cyclisations lead to the creation of a new stereogenic centre, stereoselectivity is usually modest. The Beckwith transition state model, where the intermediate radical is assumed to adopt a chair like conformation, provides a means of predicting the stereochemical course of 5-exo-trig cyclisation reactions. ${ }^{43}$

3.3 Thiyl Mediated Radical Cyclisations

Previous work in the group had focussed on developing an alternative to trialkyltin hydride in radical cyclisations. The addition of thiyl radicals to alkenes is both fast and reversible. The normal fate of the intermediate carbon centred radical is to revert back to starting materials or to suffer hydrogen atom quench. For 1,6-dienes radical cyclisation is also possible. Such reactions usually result in complex mixtures. A way was envisaged to control these cyclisations using the "equilibration and bite back strategy" outlined in Scheme 3.2.

Scheme 3.2

Addition of a thiyl radical to a 1,6-diene 301 would lead to a radical intermediate 302/ 304. A 5 -exo-trig cyclisation through the favoured chair like transition state 302
would provide 303. A second irreversible 5 -exo-trig cyclisation involving the homolytic displacement of an alkyl radical from sulfur would generate the fused 5,5ring system 306. This fate is not available to the diastereoisomer 305 (derived from cyclisation through conformer 304) as the intermediate carbon centred radical and the sulfur atom cannot come into close proximity. Overall the cyclisation 301 to 306 would be rendered diastereoselective. It was hoped that the cyclisation 304 to 305 would be reversible so that the homolytic displacement at sulfur would channel all of the substrate $\mathbf{3 0 1}$ through to the bicyclic product $\mathbf{3 0 6}$.

When we commenced our work this method had been successfully applied to a number of 1,6 -dienes as highlighted in Scheme 3.3. Photochemical initiation was found to be more efficient than thermal initiation. The use of di-t-butyldisulfide was more effective than other disulfides and thiols (being a poor hydrogen atom donor). Monocyclic side products arising from hydrogen atom quench prior to homolytic displacement at sulfur were minimal under these conditions.

308

309

313

310

314

311

315

Scheme 3.3

The use of dibenzyldisulfide produced significant amounts of monocycle which was attributed to a facile intramolecular hydrogen atom transfer from the benzylic position (Figure 3.1). Use of tert-butyldisulfide increased the yield of co-cyclised product but generation of the monocycle from the trans diastereoisomer was still observed. Presumably the hydrogen atoms of the t-butyl moiety are less prone to abstraction but can participate in a slow elimination reaction, leading to hydrogen atom transfer (Figure 3.2). Bis-(1-adamantyl)disulfide 316 was also investigated as a source of adamantyl thiyl radicals. Abstraction of a hydrogen atom in this case is much less favourable since it would result in the formation of a bridgehead double bond (Figure 3.3). Use of $\mathbf{3 1 6}$ did indeed minimise the formation of monocyclic products but gave virtually no improvement in the yield of bicyclic products. Since $\mathbf{3 1 6}$ is not available commercially, di-t-butyl disulphide was subsequently used.

Figure 3.1

Figure 3.2

Figure 3.3

The long reaction times required (typically 24 h of irradiation) were reduced when triethylborane was added to the solution. Switching from a Pyrex photochemical reactor to a quartz vessel was likewise beneficial. The increase in amount of ultra violet light reaching the reaction mixture was apparent from the reduction in reaction times. Hexane was found to be the solvent of choice in these cyclisation reactions. Acetonitrile extended the reaction times slightly but was a useful alternative when more polar substrates, with poor solubility in hexane, were employed. As would be expected, tetrahydrofuran was found to increase the production of monocyclic products through facile hydrogen atom donation.

3.4 Application to Lignan Synthesis

A logical extension of this work would include application in target oriented synthesis and this was our aim. Our targets included the aryltetralin lignans 317 and 321 isolated from the Myristia Otoba fruits. ${ }^{44} 317$ has also been isolated from Virola Elongata, as have 320 and $322,{ }^{45}$ while otobain 318 has been found in Myristica Otoba fruit and austrobailignan-3 319 was isolated from Austrobaileya Scandens. ${ }^{46,47}$ A range of routes to aryltetralin natural products can be found in the literature and will not be discussed further here.

317

320

318

321

319

322

Our retrosynthetic analysis sought to produce aryltetralin 320 by dehydration of alcohol 323 formed by union of an aryl Gringard reagent with ketone 324. The ketone was to originate from the sulfur mediated radical cyclisation of diene 326 followed by treatment with Raney Nickel (Scheme 3.4).

Scheme 3.4

There were several points of interest within the retrosynthetic analysis. Firstly we were curious to see if our method could be used to effect construction of a six membered ring. Moreover, since one would expect ring closure to favour production of a trans substituted cyclohexane, would co-cyclisation generate a trans-fused product?

Scheme 3.5
We began by following the synthetic route shown in Scheme 3.6. 6-Bromopiperonal 204 was treated with vinylmagnesium chloride to give 327 in 72% yield. Protection of the alcohol with the methoxymethyl protecting group provided 328 in 86% yield. The allyl moiety was next installed via metal-halogen exchange with t-butyllithium, transmetallation with $\operatorname{CuI} . \mathrm{P}(\mathrm{OEt})_{3}$ and union with allyl bromide to give 326 in 86% yield. Irradiation of a hexane solution of $\mathbf{3 2 6}$ at ambient temperature with triethylborane and di-t-butyldisulfide led to a complex and inseparable mixture of products. Notably, no alkene resonances were evident in the proton NMR of the mixture, suggesting that the cyclisation may have proceeded but was unselective. Several regiochemical and stereochemical outcomes can be envisaged and we presume that many are facile (Scheme 3.6).

329

330

332

333

334

Scheme 3.6
We noted that in this example there was no differentiation between the alkenes. Since the sulfur centred radical is electrophilic, it would be expected to attack an electron rich alkene preferentially. With this in mind we aimed to oxidise alcohol 335 to enone $\mathbf{3 3 6}$ in order to direct attack of the sulfur centred radical to the unconjugated alkene and thus render the reaction selective (Scheme 3.7).

Scheme 3.7

Removal of the MOM protecting group from $\mathbf{3 2 6}$ proved troublesome so we amended our approach and employed a THP protecting group. However the allylation was then unsuccessful so an alternative protection strategy was required (Scheme 3.8).

Scheme 3.8
Protection of aldehyde 204 as an acetal and allylation of 339 with $\mathrm{CuCN} . \mathrm{LiCl}$ and allyl bromide gave 340 in 87% yield. Deprotection under acidic conditions to aldehyde 341 and exposure to vinylmagnesium chioride gave 335. However, oxidation of $\mathbf{3 3 5}$ to $\mathbf{3 3 6}$ proved intractable most likely due to polymerisation of the α, β-unsaturated ketone.

Scheme 3.9

We thus chose to utilise a model system to enable us to make a clearer examination of the cyclisation. A Wittig reaction between aldehyde 341 and ylid 342 gave diene 343 . This molecule satisfied our requirements for differentiation between the alkenes - one being conjugated to the ester and electron poor and the other out of conjugation so, in principle, more likely to be attacked by the electrophilic thiyl radical. Exposure of 343 to di- t-butyldisulfide under UV irradiation, as expected led to products derived from attack of the resulting sulfur radical at the more electron rich alkene. (Scheme 3.10).

Due to the planarity of the molecule, we expected the radical 344 to undergo a 6-endo-trig cyclisation to form the six membered ring and our desired skeleton 346. However, in practice the intermediate radical underwent a 5 -exo-trig cyclisation to intermediate radical 347 which then, underwent homolytic substitution at sulfur to form bicyclic product 348 .

We then attempted the cyclisation again using thiophenol as our radical source. A product was given in 37% yield as an inseparable 1:1 mixture of diastereoisomers. A long range NMR correlation spectroscopy confirmed that this product was a mixture of $\mathbf{3 4 9}$ and $\mathbf{3 5 0}$, establishing that the 5 -exo-trig cyclisation dominates in this system.

Scheme 3.11
Further model systems were then investigated in an attempt to bias the reaction towards six membered ring formation. We sought to constrain the diene in a more rigid molecule such as $\mathbf{3 5 4}$. It was hoped that the radical intermediate formed on addition of the thiyl radical to the enone would be better able to effect a 6 -endo-trig cyclisation as the pathway would be less strained.

The α, β-unsaturated ketone 354 was synthesised via the route shown in Scheme 3.12. Acetal 339 was stirred with methyl acrylate under Heck conditions to give $\mathbf{3 5 1}$ in 70\% yield. Deprotection of the acetal under acidic conditions provided $\mathbf{3 5 2}$ in 89% yield. The resulting aldehyde was then treated with vinylmagnesium chloride to give alcohol 353. Though unstable, this alcohol could be used directly in the following transformation, an oxidation with barium manganate, to give 354 in a yield of 48% over the two steps. Unfortunately cyclisation of 354 was unsuccessful polymerisation being more facile than cyclisation in this instance.

Scheme 3.12

3.5 Returning to the Methodology.

As all attempts to effect the synthesis of a six membered ring had met with failure we chose to further investigate the scope and limitations of the cyclisation.

Scheme 3.13

We began by synthesising 358 via the sequence depicted in Scheme 3.13. However, all attempts to effect cyclisation of the aromatic substrates using sulfur mediated radical cyclisations failed. One possible explanation is that the cyclisation step will be slow as the product is strained (the bond angle at \mathbf{a} and \mathbf{b} is less than its preferred
120°). This may cause the reverse reaction to be faster than the forward reaction (Scheme 3.14).

Scheme 3.14

A number of general examples were then attempted to ensure that the method used to conduct the aforementioned experiments did not differ from the original work (Scheme 3.15). The precursors 364, 366 and 368 were prepared by diallylation of a β-dicarbonyl compound with allyl iodide using DBU as base. Diene 369 was obtained from $\mathbf{3 6 4}$ by decarboxylation with NaCl in refluxing DMF. Dienes $\mathbf{3 7 1}$ and $\mathbf{3 7 3}$ were synthesised by the allylation of $\mathbf{3 7 0}$ and $\mathbf{3 7 2}$ respectively using LDA and quenching with three equivalents of allyl bromide. Where monoallylation occurred, the monoallyated product was subjected to the same reaction conditions to give $\mathbf{3 7 1}$ and $\mathbf{3 7 3}$ respectively.

368

Scheme 3.15
Photolysis of each of the dienes $364,366,368$ and 369 in the presence of di-tbutyldisulfide led to the corresponding cis-bicyclic products in modest yields. Interestingly, for ester 369, only one diastereoisomer was given whereas for β ketoester 368, two diastereoisomers were given in equal proportion. We were also able to effect the cyclisation with dienes 371 and 373 . In both cases the cyclisation gave a 1:1 mixture of diastereoisomers in modest yields (Scheme 3.16).

365
376

Scheme 3.15
The method was then extended to six ring closures using diene 383. Here, the products attained were monocycles 384 and 385 . We are unsure why the second cyclisation was disfavoured in this case.

Scheme 3.17
Attempts to cyclise dienes $\mathbf{3 8 6}$ and $\mathbf{3 8 7}$ proved unsuccessful which we presume to be due to steric factors - the alkene being 1,2-disubstituted impedes the addition of di-tdibutyldisulfide considerably. Our failure to effect cyclisation of diene $\mathbf{3 8 8}$ is more puzzling. It may be that the Thorpe-Ingold effect has considerable influence upon the outcome of these reactions. ${ }^{48}$ Most successful cyclisations contain a quaternary carbon within the carbon chain of the 1,6 -diene, while those that failed do not.

386

387

388

Finally, compound 389 was treated with di- t-butyldisulfide. In this case the first cyclisation gave rise to a mixture of cis and trans isomers. A proportion of the cis diastereoisomer then underwent a second cyclisation to give tricycle 393 in 18% yield, while the trans diastereoisomer suffered hydrogen atom quench to yield bicycle 392.

Conducting the reaction with adamantyldisulfide under similar conditions provided a mixture of cis and trans bicycles 394 and 395 in a 5:1 ratio.

Presumably the steric bulk of the adamantyl group prevents adoption of a conformation that would allow an $\mathrm{S}_{\mathrm{H}} 2$ reaction at sulfur to occur. In this case only monocyclic products were given.

Scheme 3.18

3.6 Conclusions

We attempted to construct the aryltetralin skeleton using a thiyl radical cyclisation pioneered in the Harrowven group. ${ }^{49}$ Our failure led us to examine further the scope of this cyclisation method. Our studies have shown it to be tolerant of a range of functional groups. Yields were generally modest with 1,6 -dienes, suggesting that the first radical cyclisation step (e.g 304 to 305) is irreversible.

Chapter Four

Intramolecular Radical Cyclisations to Aromatic Systems

4.1 Background

Biaryl moieties are found in many natural product systems and an efficient synthesis of these would have a wide range of applications. There are a number of well known methods for biaryl synthesis, many of which involve transition metal complexes as intermediates. ${ }^{50}$ Perhaps the most widely used is the Suzuki reaction, a palladium catalysed cross coupling between an aryl halide and a phenylboronic acid. ${ }^{51}$ However these methods are often poor when ortho substituted substrates are employed due to steric hindrance. Recent advances in radical based methodologies, such as the ipso addition of aryl radicals to aromatics, provide useful alternatives. ${ }^{52}$ For example, Motherwell has produced biaryl systems from sulfonamides and sulfonate precursors via an aryl migration reaction conducted under standard radical forming conditions (Scheme 4.1). ${ }^{53}$

Scheme 4.1

The production of $\mathbf{4 0 3}$ was presumed to occur via ipso attack followed by the loss of SO_{2}. The efficiency of ipso attack was greatly influenced by ortho substituents on the radical accepting ring. When $R_{1}=M e$ and $X=N M e$, the only identifiable product was 403 in 57\% yield.

Use of o-bromobenzyl phenyl ethers as precursors to biaryl systems has also been investigated although yields were modest (Scheme 4.2). ${ }^{54}$

Scheme 4.2

More recently silyl ethers and phosphinates have been used as a tether for aryl migrations (Scheme 4.3). ${ }^{55,56}$

411
412

Scheme 4.3

4.2 Cyclisations onto Pyridines

Toddaquinoline 415, a natural product extracted from the root bark of formosan, has been a target in our group. ${ }^{57,58}$ The successful synthesis of this compound prompted further investigation into radical cyclisations onto pyridines (Scheme 4.4).

Scheme 4.4
After some initial failures, treatment of aryl bromides 416 and 419 with tributyltin hydride and AIBN in toluene at $80^{\circ} \mathrm{C}$ for 24 h provided products derived from ipsosubstitution albeit in low yield (Scheme 4.5 and 4.6).

Scheme 4.5

Scheme 4.6

4.3 Extension of the methodology

We felt that this methodology had great potential especially if it could be extended to ipso-substitutions involving phenyl rings. To that end a series of benzyl 2-iodophenyl ethers were prepared from 2-iodophenol and various benzyl halides. These were either commercially available or synthesised from the corresponding benzyl alcohol by treatment with phosphorous tribromide in benzene.

Reaction of 422 with tributyltin hydride and AIBN in toluene provided aryl methyl ether $\mathbf{4 2 3}$ in 73% yield together with a trace of tricycle 424 (Scheme 4.7).

Scheme 4.7

Production of $\mathbf{4 2 3}$ and 424 were presumed to be a result of a 5 -exo-trig cyclisation via ipso attack. Spirocycle 426 then fragments to 427 to re-establish the aromatic ring. A hydrogen atom abstraction from tributyltin hydride gives methyl ether 423. The radical intermediate 427 may also add to the arene via either a 5-exo-trig cyclisation leading back to spirocycle $\mathbf{4 2 6}$ or a slower 6 -endolexo-trig course to $\mathbf{4 2 8}$ providing benzo[c]chromene 424 (Scheme 4.8).

423

427
$+$

424

428

Scheme 4.8
We were pleased to be able to apply the cyclisation to a number of substrates. Thus, ester 429 gave 430 and 431 in moderate yield and we saw cyclisation to the terphenyls 433 and 434 in 16% and 32% respectively (Scheme 4.9 and 4.10). Unfortunately the complete separation of the two products was not possible in these examples.

Scheme 4.9

Scheme 4.10

Methyl substituents at the ortho position were then shown to block the 6 -endo-trig pathway. Hence, exposure of 2,4,6-trimethylbenzyl ether $\mathbf{4 3 5}$ to tributyltin hydride under standard radical forming conditions gave methyl ether 436 in good yield (Scheme 4.11).

Scheme 4.11
We believe that the intermediate radical 438 may abstract a hydrogen atom from a proximal methyl group to give 439 which is then quenched by tributyltin hydride (Scheme 4.11). Intramolecular hydrogen atom abstraction may also occur when one
ortho-methyl substituent is present on the benzyl ether. Thus, o-tolyl ether 440 provided biaryl methyl ether $\mathbf{4 4 1}$ as the major product in 47% yield (Scheme 4.12).

Scheme 4.12

4.4 Synthesis of terphenyls

Terphenyl systems are also present in a number of natural products, including the simple terphenyls $442-444 .{ }^{59}$

442

443

444

We attempted to target this class of compounds using a tandem variant of the reaction. By treating 2,4-diiodo-1,3-diphenol with 4-cyano benzyl bromide 446 we were able to prepare the bis ether 447 which was set up for sequential cyclisation. Unfortunately, we found this compound to be insoluble in all regular solvents. Its molecular weight and melting point were beyond the parameters of our instruments so we were unable to fully characterise the material. Moreover, its insolubility in refluxing toluene or benzene prevented us from taking the compound through the tandem ipso-substitution step (Scheme 4.13).

Scheme 4.13
We were, however, able to effect such a reaction on other substrates. The cyclisation and fragmentation of bis ether 448 appeared to be successful but the resulting mixture of compounds could not be separated. Likewise, the products from the p-methoxy substrate 452 were aiso inseparable. In both cases we were able to use ${ }^{13} \mathrm{C}$ NMR data to confirm the absence of starting material. These data also provided evidence in support of the products 449-451 and 453-454. Furthermore analysis of the product mixture by GC mass spectrometry allowed us to confirm that the molecular weight of each component was in agreement with the assignments made (Scheme 4.14 and 4.15).

Scheme 4.14

Scheme 4.15
The success of the cyclisation of $\mathbf{4 3 2}$ to terphenyls $\mathbf{4 3 3}$ and $\mathbf{4 3 4}$ prompted us to try a tandem version of this cyclisation as it would provide a route to the pentaphenyl moiety, a class of compounds that has found applications as laser dyes. ${ }^{60}$ Thus, we synthesised compound 455 and treated it under our radical forming conditions. The resulting products again proved inseparable by column chromatography but were yellow solids that appeared to fluoresce in solution. Attempts to separate these compounds by recrystallisation also failed. However, GC-MS showed that all three components of the product mixture had molecular masses consistent with 456 - 458 .

Scheme 4.16
As before, the reaction produced only one product when two ortho methyl substituents were present in the benzyl ether. Thus cyclisation of $\mathbf{4 5 9}$ gave terphenyl 460 as the only isolated product in 67% yield (Scheme 4.17).

Scheme 4.17
We had noted that selectivity was poorer when only one ortho-methyl group was present in the benzyl ether (Scheme 4.12). The tandem variant of that cyclisation e.g with 461 , unsurprisingly gave a complex mixture of products attributed to 462 and
463. Again we were unable to effect the complete separation of these compounds though data attained on the mixture helps confirm our assignment (Scheme 4.18).

Scheme 4.18

4.5 Conclusions

We have uncovered a new method of synthesising biaryls and triaryls through an intramolecular ipso-substitution reaction initiated by the addition of an aryl radical to a benzyl ether. ${ }^{61}$ A tandem variant of the reaction has also been demonstrated. Whilst there are some issues relating to the separation of the products, the reaction has much potential in natural product synthesis.

Chapter Five

Experimental

Experimental

5.1 General Experimental

Reactions requiring anhydrous conditions were conducted in flame dried apparatus under a positive nitrogen atmosphere. Dry solvents were prepared by standard methods and where necessary commercial reagents were purified by distillation or recrystallisation prior to use.

Organic extracts were concentrated at aspirator pressure using a Büchi-type rotary evaporator. All reaction mixtures were magnetically stirred and monitored by thin layer chromatography using Machery-Nagel polygram Sii G / U_{254} precoated aluminium sheets, layer thickness 0.25 mm . Compounds were visualised firstly by UV irradiation, then by heating plates exposed to solutions of either phosphomolybdic acid in ethanol or dinitrophenol in sulfuric acid. Column chromatography was performed on 230-400 Mesh 60 H silica gel (Machery-Nagel), slurry packed and run under low pressure. Petrol refers to petroleum ether b.p. $40-60^{\circ} \mathrm{C}$ and ether refers to diethyl ether.

Melting points were determined on a Griffin melting point apparatus and are uncorrected. UV spectra were recorded on a Pye Unicam (PU8800 or SP800) UV-vis spectrometer. Maxima are reported as $\lambda_{\max }(\mathrm{nm})$ followed in parenthesis by the extinction coefficient, $\varepsilon\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.

IR spectra were recorded on a Perkin Elmer 1600 series spectrometer using NaCl cells, or a Nicolet Impact 400 spectrophotometer (1 milliwatt helium neon laser at 633
$\mathrm{nm})$. Details are reported as $v_{\max }\left(\mathrm{cm}^{-1}\right)$ followed by a description using the following abbreviations: $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak and $\mathrm{br}=$ broad .
${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC300 (300 MHz) spectrometer or a DPX $400(400 \mathrm{MHz})$ spectrometer as stated. Chemical shifts are quoted as δ values (p.p.m.) relative to residual $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}}=7.27\right.$ p.p.m.). Multiplicities are described using the abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad and $\mathrm{app}=$ apparent.
${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker $\mathrm{AC} 300(75 \mathrm{MHz})$ spectrometer or a DPX400 (400 MHz) spectrometer as stated. Chemical shifts are quoted as δ values (p.p.m.) relative to residual $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{C}}=77.2\right.$ p.p.m. $)$.

Mass Spectra were recorded under the supervision of Dr. J.A. Ballantine at the EPSRC Mass Spectrometry Centre, University of Wales, Swansea or Dr. G.J. Langley at the University of Southampton using a variety of instruments. Signals are reported as values in atomic mass units followed in parenthesis by the peak intensity relative to the base peak (100%).

1-(3,4-Dimethoxyphenyl)propan-1-ol 207 ${ }^{62}$

Prepared by the method of Roberti. ${ }^{62}$ 3,4-Dimethoxybenzaldehyde $206(5.0 \mathrm{~g}, 30$ mmol) was stirred in THF (60 mL) under N_{2}. Ethylmagnesium bromide (12 mL of a 3M solution) was added via syringe over 10 min . The mixture was left to stir for 1 h . After this time the solution was quenched with water (30 mL) and extracted with ether ($3 \times 20 \mathrm{~mL}$). The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed in vacuo. The product was purified by column chromotography (40% ether in petrol) to give 207 as a clear oil $(4.71 \mathrm{~g}, 24 \mathrm{mmol}, 80 \%)$.
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.80(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.72(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar} H), 4.38$ $(1 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}, \mathrm{CHOH}), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.78$ $(1 \mathrm{H}$, br s, OH$), 1.71\left(1 \mathrm{H}\right.$, app. qd, $\left.J 7.3,6.6 \mathrm{~Hz}, \mathrm{CHHCH}_{3}\right), 1.61(1 \mathrm{H}$, app. qd, $\left.J 7.3,6.6 \mathrm{~Hz}, \mathrm{CH} H \mathrm{CH}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 148.9(\mathrm{C}(\mathrm{Ar})), 148.5(\mathrm{C}(\mathrm{Ar})), 138.6(\mathrm{C}(\mathrm{Ar}))$, 118.7 ($\mathrm{CH}(\mathrm{Ar})$), $110.6(\mathrm{CH}(\mathrm{Ar})), 109.1(\mathrm{CH}(\mathrm{Ar})), 75.7(\mathrm{CHOH})$, $55.9\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 10.3\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat film) 3490 brs, $2836 \mathrm{~s}, 1607 \mathrm{~s}, 1517 \mathrm{~s}, 1483 \mathrm{~s}, 1318 \mathrm{~m}, 1158 \mathrm{~s}$, $1101 \mathrm{~m}, 1027 \mathrm{~s}, 979 \mathrm{~m}, 858 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 279(3500), 238(3000) \mathrm{nm}$.
LRMS (APCI) $196\left([M]^{+}, 11 \%\right), 180(10), 179(100), 166(14) \mathrm{amu}$.
These data were fully consistent with those reported in the literature. ${ }^{62}$

1-(3,4-Dimethoxyphenyl)propan-1-one 208 ${ }^{63}$

Compound $207(3.0 \mathrm{~g}, 15 \mathrm{mmol})$ and $\mathrm{BaMnO}_{4}(19.2 \mathrm{~g}, 75 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were stirred under a nitrogen atmosphere for 48 h . The mixture was then filtered through a plug of celite and the solvent removed in vacuo. The product was purified via column chromatography (10% ether in petrol) to give 208 as colourless crystals ($2.03 \mathrm{~g}, 11$ $\mathrm{mmol}, 70 \%)$.
m.p. $\quad 60-61^{\circ} \mathrm{C}$ (petrol), $1 \mathrm{li}^{63} 59-60^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.54(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 8.2 \mathrm{~Hz}, \mathrm{Ar} H)$, $7.49(1 \mathrm{H}$, br s with fine splitting, $\mathrm{Ar} H), 6.84(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 8.2 \mathrm{~Hz}, \mathrm{Ar} H), 3.87\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 2.91\left(2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $1.17\left(3 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathbf{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 199.5(C=\mathrm{O}), 153.1(\mathrm{C}(\mathrm{Ar})), 149.1(C(\mathrm{Ar}))$, 130.2 ($\mathrm{C}(\mathrm{Ar})), 122.6(\mathrm{CH}(\mathrm{Ar})), 110.2(\mathrm{CH}(\mathrm{Ar})), 110.1(\mathrm{CH}(\mathrm{Ar}))$, $56.1\left(\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{OCH}_{3}\right), 31.3\left(\mathrm{CH}_{2}\right), 8.6\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }($ nujol $) 1667 \mathrm{~s}, 1515 \mathrm{~s}, 1377 \mathrm{~s}, 1280 \mathrm{~s}, 1204 \mathrm{~s}, 1083 \mathrm{~m}, 1017 \mathrm{~m}, 875 \mathrm{~m}$, $798 \mathrm{~s}, 722 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 299(28000), 273(46800), 226(44800) \mathrm{nm}$.
LRMS (APCI) $195\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) \mathrm{amu}$.
These data are fully consistent with those reported in the literature. ${ }^{63}$

(E)-1,2-Dichloro-1-(3,4-dimethoxyphenyl)propene 209 ${ }^{64}$

Prepared by the method of Engler. ${ }^{64}$ Compound 208 ($1.55 \mathrm{~g}, 8.46 \mathrm{mmol}$) was refluxed in toluene (40 mL) together with $\mathrm{PCl}_{5}(3.52 \mathrm{~g}, 16.9 \mathrm{mmol})$ under a nitrogen atmosphere for 48 h . The reaction was diluted with ether (40 mL) and washed with saturated sodium bicarbonate solution $(2 \times 20 \mathrm{~mL})$ and then brine $(2 \times 20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified via column chromatography (5% ether in petrol) to give 209 as a colourless oil $(1.71 \mathrm{~g}, 6.93$ mmol, 82%).
${ }^{1} \mathrm{H} \operatorname{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.06(1 \mathrm{H}, \mathrm{dd}, J 8.4,1.8 \mathrm{~Hz}, \operatorname{Ar} H), 6.99(1 \mathrm{H}, \mathrm{d}, J$ $1.8 \mathrm{~Hz}, \mathrm{Ar} H), 6.86(1 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{ArH}), 3.87\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right)$, $2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C} \mathbf{N M R} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 149.3(C(\mathrm{Ar})), 148.4(C(\mathrm{Ar})), 129.8(C(\mathrm{Ar}))$, $126.9(\mathrm{ArCCl}), 126.2(=\mathrm{CCl}), 122.3(\mathrm{CH}(\mathrm{Ar})), 112.4(\mathrm{CH}(\mathrm{Ar})), 110.7$ $(\mathrm{CH}(\mathrm{Ar})), 56.1\left(\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{OCH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right)$ p.p.m.

Some additional signals attributed to ca. 8% of the cis isomer were also observed.

FT-IR $\quad v_{\text {max }}$ (neat film) 3012s, 2836s, 2589w, 2029w, 1601s, 1464s, 1326m, $1167 \mathrm{~s}, 1027 \mathrm{~s}, 859 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 285(30500), 262(37600), 231 \mathrm{inf} .(31000) \mathrm{nm}$.
LRMS (APCI) $246\left([\mathrm{M}]^{+}, 100 \%\right)$ amu.
These data were fully consistent with those reported in the literature. ${ }^{64}$

1,2-Dimethoxy-4-(prop-1-ynyl)benzene 205 ${ }^{64}$

Prepared by the method of Engler. ${ }^{64}$ Activated magnesium turnings ($737 \mathrm{mg}, 30.4$ mmol) were stirred in THF (40 mL) and 1,2-dibromoethane ($0.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added via syringe. A splution of compound 209 ($1.5 \mathrm{~g}, 6.07 \mathrm{mmol}$) in THF (10 mL). was added via syringe over 10 min and after the initial reaction had subsided, the temperature was increased to reflux for 16 h . The mixture was then filtered, diluted with water (20 mL) and extracted with ether (3 x 20 mL). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The product was purified via column chromatography (2% ether in petrol) to give 205 as colourless crystals ($0.95 \mathrm{~g}, 5.39 \mathrm{mmol}, 89 \%$).
m.p. $\quad 47-48^{\circ} \mathrm{C}$ (petrol), $1 \mathrm{lit}^{64} 49-51^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.96(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 8.4 \mathrm{~Hz}, \mathrm{ArH})$, $6.88(1 \mathrm{H}, \mathrm{s}$ with fine splitting, $\mathrm{Ar} H), 6.74(1 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{Ar} H), 3.85$ ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}$), $1.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathbf{C}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 148.9(C(\mathrm{Ar})), 148.6(C(\mathrm{Ar})), 124.6(\mathrm{CH}(\mathrm{Ar}))$, $116.4(\mathrm{C}(\mathrm{Ar})), 114.4(\mathrm{CH}(\mathrm{Ar})), 111.1(\mathrm{CH}(\mathrm{Ar})), 84.2(\mathrm{C} \equiv \mathrm{C}), 79.7$ $(\mathrm{C} \equiv C), 55.9\left(2 \times \mathrm{OCH}_{3}\right), 4.3\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (nujol) $2032 \mathrm{w}, 1838 \mathrm{w}, 1723 \mathrm{w}, 1600 \mathrm{~s}, 1513 \mathrm{~s}, 1483 \mathrm{~s}, 1377 \mathrm{~m}$, $1212 \mathrm{~s}, 1135 \mathrm{~s}, 863 \mathrm{~s}, 763 \mathrm{~s}, 722 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 278(9300), 283$ (9600), 256 (30900), 223 (16400) nm.
LRMS (APCI) $176\left([M]^{+}, 100 \%\right)$ amu.
These data were fully consistent with those reported in the literature. ${ }^{64}$

7-[3,4-Dimethoxyphenyll-6-methyl-5H-indeno[5,6-d][1,3]dioxol-5-one 201 ${ }^{29}$ and

6-[3,4-Dimethoxyphenyll-7-methyl-5 H -indeno[5,6-d][1,3]dioxol-5-one 210

Prepared by a method analogous to that of Larock. ${ }^{20}$ 6-Bromopiperonal $(0.286 \mathrm{~g}$, 1.24 mmol) was stirred in DMA (20 mL) together with $n-\mathrm{Bu} \mathrm{N}_{4} \mathrm{NBr}(0.805 \mathrm{~g}, 2.5$ $\mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.06 \mathrm{~g}, 0.01 \mathrm{M}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.028 \mathrm{~g}, 0.12 \mathrm{mmol})$ and alkyne 204 $(0.440 \mathrm{~g}, 2.5 \mathrm{mmol})$. The temperature was maintained at $100^{\circ} \mathrm{C}$ and the mixture stirred under a nitrogen atmosphere for 3 h . The solution was diluted with ether (30 mL) and washed with saturated ammonium chloride ($2 \times 45 \mathrm{~mL}$). The organic layer was separated and dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. Components were purified via column chromatography to give $\mathbf{2 0 1}$ and $\mathbf{2 1 0}$ as a 5:1 mixture of red solids which were separable by selective crystallisation from ethanol ([201 85 mg , $0.262 \mathrm{mmol}, 21 \%$], [$21017 \mathrm{mg}, 0.052 \mathrm{mmol}, 4 \%]$).
m.p. $\quad 142-144^{\circ} \mathrm{C}(\mathrm{MeOH}), \mathrm{lit}^{29} 214-216^{\circ} \mathrm{C}(\mathrm{MeOH})$.
${ }^{1} \mathrm{H} \operatorname{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.09-6.92(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ar} H), 6.63(1 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar} H), 5.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $1.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}} 196.9(C=\mathrm{O}), 152.9\left(\mathrm{ArC}=\mathrm{CCH}_{3}\right), 151.3(\mathrm{C}$ (Ar)), $149.9(C(\mathrm{Ar})), 149.1(C(\mathrm{Ar})), 147.1(C(\mathrm{Ar})), 142.4(C(\mathrm{Ar}))$, $129.3(2 \times \mathrm{C}(\mathrm{Ar})), 125.4\left(\mathrm{ArC}=\mathrm{CCH}_{3}\right), 121.3(\mathrm{CH}(\mathrm{Ar})), 111.3(\mathrm{CH}$ (Ar)), $111.1(\mathrm{CH}(\mathrm{Ar})), 105.1(\mathrm{CH}(\mathrm{Ar})), 103.6(\mathrm{CH}(\mathrm{Ar})), 102.1$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 56.2\left(\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{OCH}_{3}\right), 8.9\left(\mathrm{CH}_{3}\right)$ p.p.m.

LRMS $\quad(\mathrm{APCI}) 325\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$.
FT-IR $\quad v_{\max }\left(\mathrm{CDCl}_{3}\right) 2923 \mathrm{~m}, 1699 \mathrm{~s}, 1598 \mathrm{~m}, 1514 \mathrm{~s}, 1321 \mathrm{~m}, 1237 \mathrm{~s}, 1140 \mathrm{~m}$, $1027 \mathrm{~s}, 921 \mathrm{~m}, 758 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV-vis $\quad \lambda_{\max }\left(\mathrm{CHCl}_{3}\right) 464(700), 335(6400), 268$ (32000), 219 (11000) nm.
HRMS (EI $\left.{ }^{+}\right)$Found $324.1004 \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$ requires 324.0998 amu
CHN \quad Found C $69.86 \mathrm{H} 5.13 \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C 70.36 H 4.97 .
Data for $\mathbf{2 1 0}$
m.p. $\quad 198-200^{\circ} \mathrm{C}$ (ethanol)
${ }^{1} \mathbf{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.05-6.92(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ar} H), 6.71(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 5.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.97\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathbf{C} \mathbf{N M R} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 195.9(C=\mathrm{O}), 152.2 \quad(C \quad$ (Ar)), 152.1 $\left(\mathrm{ArC}=\mathrm{CCH}_{3}\right), 149.1(\mathrm{C}(\mathrm{Ar})), 149.0(C(\mathrm{Ar})), 147.9(C(\mathrm{Ar})), 143.1(C$ (Ar)), $132.5(\mathrm{C}(\mathrm{Ar})), 124.7\left(\mathrm{ArC}=\mathrm{CCH}_{3}\right), 124.5(\mathrm{C}(\mathrm{Ar})), 122.5(\mathrm{CH}$
(Ar)), $113.0(\mathrm{CH}(\mathrm{Ar})), 111.4(\mathrm{CH}(\mathrm{Ar}), 105.1(\mathrm{CH}(\mathrm{Ar})), 102.5(\mathrm{CH}$ (Ar$)$), $102.4\left(\mathrm{OCH}_{2}\right), 56.3\left(2 \times \mathrm{OCH}_{3}\right), 13.1\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2947 \mathrm{w}, 2883 \mathrm{w}, 1702 \mathrm{~m}, 1590 \mathrm{~m}, 1491 \mathrm{~s}, 1354 \mathrm{~m}, 1221 \mathrm{~s}$, $1030 \mathrm{~s}, 927 \mathrm{~m}, 808 \mathrm{wcm}^{-1}$.

UV-vis $\quad \lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 460(400), 310(3600), 264$ (21800) nm.
LRMS (APCI) $325\left([M H]^{+}, 100 \%\right)$ amu.
HRMS (EI) Found $324.0999, \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$ requires 324.0998 amu .

1-Benzo[1,3]dioxol-5-yl-propan-1-ol 219^{65}

Prepared by the method of Orcutt. ${ }^{65}$ Piperonal $218(7.0 \mathrm{~g}, 46 \mathrm{mmol})$ was stirred in THF at $0^{\circ} \mathrm{C}$. Ethylmagnesium bromide (15.5 mL of a 3 M solution in ether) was added via syringe over 10 min and the solution was allowed to stir for 1 h . The reaction mixture was diluted with ether (50 mL) and washed with water ($2 \times 20 \mathrm{~mL}$) and brine ($2 \times 20 \mathrm{~mL}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give 219 as a pale yellow oil ($6.27 \mathrm{~g}, 34 \mathrm{mmol}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.74(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar} H), 5.91$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.44(1 \mathrm{H}, \mathrm{t}, J 6.2 \mathrm{~Hz}, \mathrm{CHOH}), 2.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $1.81-1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 147.8(\mathrm{C}(\mathrm{Ar})), 146.9(\mathrm{C}(\mathrm{Ar})), 138.9(\mathrm{C}(\mathrm{Ar}))$, $119.5(\mathrm{CH}(\mathrm{Ar})), 108.1(\mathrm{CH}(\mathrm{Ar})), 106.6(\mathrm{CH}(\mathrm{Ar})), 101.2\left(\mathrm{OCH}_{2} \mathrm{O}\right)$, $75.9(\mathrm{CHOH}), 31.9\left(\mathrm{CH}_{2}\right), 10.3\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat film) $3416 \mathrm{br}, 2969 \mathrm{~s}, 1684 \mathrm{~m}, 1609 \mathrm{~m}, 1506 \mathrm{~s}, 1437 \mathrm{~s}, 1247 \mathrm{~s}$, 1039s, $976 \mathrm{w}, 812 \mathrm{wcm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 286(2800), 239$ (2200) nm.
LRMS (APCI) $180\left(\left[\mathrm{M}^{+}, 6 \%\right), 163(100) \mathrm{amu}\right.$.
These data were consistent with those reported in the literature. ${ }^{65}$

1-(Benzo[1,3]dioxol-5-yl)-propan-1-one 220^{66}

Compound 219 ($4.0 \mathrm{~g}, 22 \mathrm{mmol}$) was stirred in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ together with activated $\mathrm{BaMnO}_{4}(38.2 \mathrm{~g}, 44 \mathrm{mmol})$ for 16 h at ambient temperature. The reaction mixture was filtered through a plug of celite and the solvent removed in vacuo. The product was purified via column chromatography to give 220 as colourless crystals ($1.85 \mathrm{~g}, 0.01 \mathrm{M}, 47 \%$) which were recrystallised from petrol.
m.p. $\quad 33-34^{\circ} \mathrm{C}$ (petrol), lit $^{66} 36-37^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.36(1 \mathrm{H}, \mathrm{dd}, J 8.2,1.6 \mathrm{~Hz}, \mathrm{Ar} H), 7.23(1 \mathrm{H}, \mathrm{d}, J$ $1.6 \mathrm{~Hz}, \mathrm{Ar} H), 6.64(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{ArH}), 5.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 2.74$ $(2 \mathrm{H}, \mathrm{q}, J 7.3 \mathrm{~Hz}, \mathrm{CH}), 1.03\left(3 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C} \mathrm{NMR} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 198.6(\mathrm{C}=\mathrm{O}), 151.5(\mathrm{C}(\mathrm{Ar})), 148.1(\mathrm{C}(\mathrm{Ar}))$, $131.7(C(\mathrm{Ar})), 124.4(\mathrm{CH}(\mathrm{Ar})), 107.7(C H(\mathrm{Ar})), 107.6(C H(\mathrm{Ar}))$, $101.9\left(\mathrm{OCH}_{2} \mathrm{O}\right), 31.4\left(\mathrm{CH}_{2}\right), 8.3\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (nujol) $1882 \mathrm{w}, 1749 \mathrm{w}, 1673 \mathrm{~s}, 1604 \mathrm{~s}, 1441 \mathrm{~s}, 1216 \mathrm{~s}, 1138 \mathrm{~m}$, $1043 \mathrm{~s}, 972 \mathrm{~m}, 827 \mathrm{w} \mathrm{cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 307(11000), 272(10500), 233(10500) \mathrm{nm}$.
LRMS (APCI) $179\left([\mathrm{MH}]^{+}, 100 \%\right) 149$ (28) amu.
These data were consistent with those reported in the literature. ${ }^{66}$

5-I-1,2-Dichloro-1-propenyll-1,3-benzodioxoIe 221

Prepared in accordance with the method of Engler. ${ }^{64}$ Compound 220 ($5.02 \mathrm{~g}, 28$ $\mathrm{mmol})$ was stirred in toluene $(40 \mathrm{~mL})$ at reflux together with $\mathrm{PCl}_{5}(11.7 \mathrm{~g}, 56 \mathrm{mmol})$ for 8 h . The mixture was diluted with ether (40 mL) and washed with saturated sodium bicarbonate solution ($2 \times 20 \mathrm{~mL}$). The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The product was purified via column chromatography to give a 1:1 mixture of cis and trans isomers of 221 as a colourless oil ($1.48 \mathrm{~g}, 6.43 \mathrm{mmol}, 22 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.97(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{x} \mathrm{ArH}), 6.04$ (4 H , s with fine splitting, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 147.9(C(\mathrm{Ar})), 147.7(C(\mathrm{Ar})), 147.5,(C(\mathrm{Ar}))$,
$147.2(C(\mathrm{Ar})), 130.8(C(\mathrm{Ar})), 130.7(C(\mathrm{Ar})), 128.8(=C \mathrm{Cl}), 126.4$
$(=C C l), 123.4(C H(A r)), 123.1(C H(A r)), 109.6(C H(A r)), 109.4$ ($\mathrm{CH}(\mathrm{Ar})$), $108.1(\mathrm{CH}(\mathrm{Ar})), 107.8(\mathrm{CH}(\mathrm{Ar})), 107.8(=\mathrm{CCl}), 106.9$ $(=\mathrm{CCl}), 101.4\left(\mathrm{OCH}_{2} \mathrm{O}\right), 101.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 24.2\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat film) $2899 \mathrm{~m}, 1838 \mathrm{~m}, 1608 \mathrm{~m}, 1503 \mathrm{~s}, 1434 \mathrm{~s}, 1341 \mathrm{~m}, 1248 \mathrm{~s}$, $1099 \mathrm{~m}, 1040 \mathrm{~s}, 936 \mathrm{~s}, 842 \mathrm{w}, 748 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 293(4200), 258(4300), 230(3300) \mathrm{nm}$.
LRMS (APCI) 230 ([M] $\left.{ }^{+}, 100 \%\right) 214$ (23), 196 (37) amu.
HRMS (EI^{+}) Found 229.9898, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires 229.9901 amu .

6-Methyl-7-phenyl-5H-indeno[5,6-d][1,3]-dioxol-5-one 231

Prepared by a modified method of Larock. ${ }^{20}$ Compound 204 ($495 \mathrm{mg}, 2.16 \mathrm{mmol}$), 1-phenylpropene $\mathbf{2 3 0}$ ($500 \mathrm{mg}, 4.32 \mathrm{mmol}$) and sodium hydrogen carbonate (724 mg , 8.63 mmol) were stirred in toluene (30 mL) together with triphenylphosphine (281 $\mathrm{mg}, 1.08 \mathrm{mmol}$) and palladium chloride ($95 \mathrm{mg}, 0.54 \mathrm{mmol}$). The mixture was heated at reflux for 48 h after which time it was diluted with water (40 mL) and extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. Purification by column chromatography (5\% ether in petrol) to gave 231 as a red solid ($615 \mathrm{mg}, 2.33 \mathrm{mmol}, 54 \%$).
m.p. $\quad 162-165^{\circ} \mathrm{C}(\mathrm{MeOH})$
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.42(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}), 7.08(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.59$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{CNMR} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 195.2(C=\mathrm{O}), 152.9(C(\mathrm{Ar})), 151.9(C(\mathrm{Ar}))$, $147.7(C(\mathrm{Ar})), 142.5(C(\mathrm{Ar})), 132.5(C(\mathrm{Ar})), 131.4(C=\mathrm{CAr}), 129.5$ ($2 \times \mathrm{CH}(\mathrm{Ar})), 128.9(2 \times \mathrm{CH}(\mathrm{Ar})), 127.6(\mathrm{CH}(\mathrm{Ar})), 124.5$ $\left(C=\mathrm{CCH}_{3}\right), 104.8(\mathrm{CH}(\mathrm{Ar})), 102.4(\mathrm{CH}(\mathrm{Ar})), 102.1\left(\mathrm{OCH}_{2} \mathrm{O}\right), 12.8$ $\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2903 \mathrm{~m}, 2251 \mathrm{w}, 1709 \mathrm{~s}, 1591 \mathrm{~s}, 1448 \mathrm{~s}, 1379 \mathrm{~m}, 1261 \mathrm{~s}$, $1218 \mathrm{~m}, 1871 \mathrm{~m}, 852 \mathrm{w} \mathrm{cm}^{-1}$.

UV-vis $\quad \lambda_{\max }(\mathrm{MeOH}) 473$ (378), 332 (7900), 296 (22700), 231 (9500), 214 (7600) nm.

LRMS (APCI) $265\left([\mathrm{M}]^{+}, 100 \%\right), 249$ (9), 215 (8), 157 (7) amu.
HRMS (El) Found 264.0780, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{3}$ requires 264.0786 amu .

6-Methyl-7-phenyl-5H-indeno[5,6-d][1,3]-dioxol-5-one 231 and

 rel-(6S, 7S)-6-Methyl-7-phenyl-6,7-dihydro-5H-indeno-[5,6-d][1,3]dioxol-5-one 233

Prepared by a method modified from Larock. ${ }^{20}$ 6-Bromopiperonal ($495 \mathrm{mg}, 2.16$ mmol), 1-phenylpropyne ($500 \mathrm{mg}, 4.3 \mathrm{mmol}$), triethylamine (1.74 g 8.64 mmol) and palladium chloride ($38 \mathrm{mg}, 0.11 \mathrm{mmol}$) were stirred together under reflux in toluene
$(30 \mathrm{~mL})$ for 36 h . The mixture was cooled, diluted with ether (20 mL) and washed with sulfuric acid (30 mL of a 2 M aqueous solution) and then brine ($2 \times 20 \mathrm{~mL}$). The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. Components were separated by column chromatography (5\% ether in petrol) to give 231 as a red solid ($62 \mathrm{mg}, 0.23 \mathrm{mmol}, 11 \%$), data as reported previously, then 233 as a cream solid ($68 \mathrm{mg}, 0.24 \mathrm{mmol}, 12 \%$).
m.p. $\quad 185-187^{\circ} \mathrm{C}$ (petrol).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.38(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{ArH}), 7.23(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH})$, $6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.93(1 \mathrm{H}, \mathrm{d}, J 4.4 \mathrm{~Hz}, \mathrm{ArCH})$, $2.64\left(1 \mathrm{H}, \mathrm{qd}, J 7.3,4.4 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{d}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{C} 205.9(C=0), 154.5(C(\mathrm{Ar})), 153.7(C(\mathrm{Ar}))$, $148.8(C(\mathrm{Ar})), 142.9(C(\mathrm{Ar})), 131.0(C(\mathrm{Ar})), 129.1(2 \times \mathrm{CH}(\mathrm{Ar}))$, $128.0(2 \times \mathrm{CH}(\mathrm{Ar})), 127.3(\mathrm{CH}(\mathrm{Ar})), 105.8(\mathrm{CH}(\mathrm{Ar})), 102.4(\mathrm{CH}$ (Ar)), $102.1\left(\mathrm{OCH}_{2} \mathrm{O}\right), 53.9(\mathrm{CHC}=\mathrm{O}), 53.8(\mathrm{CHAr}), 14.7\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) $2905 \mathrm{~m}, 1791 \mathrm{~s}, 1608 \mathrm{~m}, 1471 \mathrm{~s}, 1294 \mathrm{~s}, 1265 \mathrm{~s}, 1101 \mathrm{w}, 1035 \mathrm{~s}$, $939 \mathrm{~m}, 871 \mathrm{w}, 815 \mathrm{w}, 701 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 317(1800), 268(1600), 234(3300) \mathrm{nm}$.
LRMS (APCI) $267\left([\mathrm{MH}]^{+}, 100 \%\right)$ amu
HRMS (EI $)$ Found $266.0929, \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}$ requires 266.0942 amu.

3-(1,3-Benzodioxol-5-yl)-5,6-dimethoxy-1H-indenone 216 and

2-(1,3-benzodioxol-5-yl)-3-methyl-5,6-dimethoxy-1 H-1-indenone 217

Alkyne 222 ($340 \mathrm{mg}, 1.21 \mathrm{mmol}$), 3,4-dimethoxy-6-bromobenzaldehyde (148 mg , 0.61 mmol) and sodium hydrogen carbonate ($406 \mathrm{mg}, 4.84 \mathrm{mmol}$) were stirred in toluene (30 mL) together with palladium chloride ($53 \mathrm{mg}, 0.30 \mathrm{mmol}$) and triphenylphosphine ($155 \mathrm{mg}, 0.61 \mathrm{mmol}$). The mixture was refluxed for 36 h then cooled, diluted with ether (30 mL) and washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. Separation by column chromotography gave firstly 216 ($102 \mathrm{mg}, 0.32 \mathrm{mmol}$, $52 \%)$ and then $217(11 \mathrm{mg}, 0.03 \mathrm{mmol}, 6 \%)$ both as red solids.

Data for 216

m.p. $\quad 214-215^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.01(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.95-6.79(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}$ $\mathrm{ArH}), 6.65(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.88\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right)$, 1.91 (3H, s, CH3) p.p.m.
${ }^{13} \mathbf{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 197.6(C=\mathrm{O}), 152.9(C(\mathrm{Ar})), 152.4(C(\mathrm{Ar}))$, 148.4 (C (Ar$)$), 148.3 ($C(\mathrm{Ar})), 148.0(C(\mathrm{Ar})), 140.2(C(\mathrm{Ar})), 129.4$ ($C(\mathrm{Ar})$), $126.7(C=\mathrm{CAr}), 123.6\left(C=\mathrm{CCH}_{3}\right), 122.1(\mathrm{CH}(\mathrm{Ar})), 108.7$ ($\mathrm{CH}(\mathrm{Ar})$), $108.2(\mathrm{CH}(\mathrm{Ar})), 107.6(\mathrm{CH}(\mathrm{Ar})), 105.6(\mathrm{CH}(\mathrm{Ar})), 101.4$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 56.4\left(2 \times \mathrm{OCH}_{3}\right), 8.7\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad\left(\mathrm{CDCl}_{3}\right) v_{\max } 2914 \mathrm{~s}, 1685 \mathrm{~m}, 1579 \mathrm{~m}, 1494 \mathrm{~m}, 1460 \mathrm{~s}, 1361 \mathrm{~m}, 1245 \mathrm{~m}$, 1095w, 1016w, 927w cm ${ }^{-1}$.

UV-vis $\quad\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } 462(600), 341$ (7100), 273 (32000).
LRMS (APCI) $325\left([M H]^{+}, 100 \%\right), 162(10), 104$ (25) amu.
HRMS $\left(\mathrm{EI}^{+}\right)$Found $324.1006, \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$ requires 324.0997 amu .

Data for 217
m.p. $\quad 187-189^{\circ} \mathrm{C}$ (ethanol)
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.12(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.92-6.87(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}$ $\mathrm{Ar} H), 6.75(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 5.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathbf{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 196.3(C=\mathrm{O}), 153.1(C(\mathrm{Ar})), 152.4(\mathrm{C}(\mathrm{Ar}))$, $149.0(C(\mathrm{Ar})), 147.6(C(\mathrm{Ar})), 147.1(C(\mathrm{Ar})), 140.5(C(\mathrm{Ar})), 132.0$ $(C(\mathrm{Ar})), 128.0(C=\mathrm{CAr}), 125.3\left(C=\mathrm{CCH}_{3}\right), 123.4(\mathrm{CH}(\mathrm{Ar})), 109.8$ (CH (Ar)), $108.3(\mathrm{CH}(\mathrm{Ar})), 107.2(\mathrm{CH}(\mathrm{Ar})), 104.3(\mathrm{CH}(\mathrm{Ar})), 101.1$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 56.5(2 \mathrm{x} \mathrm{OCH} 3), 12.6\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 2912 \mathrm{~m}, 1702 \mathrm{~m}, 1586 \mathrm{~s}, 1487 \mathrm{~s}, 1344 \mathrm{~m}, 1286 \mathrm{~s}, 1040 \mathrm{~s}$ $934 \mathrm{~m}, 798 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV-vis $\quad \lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 488(700), 314(3100), 274(20400) \mathrm{nm}$.
LRMS (APCI) 325 ([MH] $\left.{ }^{+}, 100 \%\right), 324\left[\mathrm{M}^{+}\right.$(33) amu.
HRMS (EI) ${ }^{+}$Found $324.0987 \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$ requires 324.0997 amu .

5-(1-Propynyl)-1,3-benzodioxole 222^{67}

Compound 242 ($2 \mathrm{~g}, 9.9 \mathrm{mmol}$) was stirred in toluene (40 mL) together with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1.39 \mathrm{~g}, 1.98 \mathrm{mmol})$ and $\mathrm{CuI}(18 \mathrm{mg}, 0.09 \mathrm{mmol})$ and the mixture was heated to $60^{\circ} \mathrm{C}$. Propynylmagnesium bromide was added via syringe and the mixture stirred at this temperature for 15 h . The mixture was diluted with ether (40 mL), washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$. The organic layers were separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The product was purified by column chromotography ($1 \% \mathrm{CHCl}_{2}$ in petrol) to give 222 as a clear oil $(1.097 \mathrm{~g}, 6.85 \mathrm{mmol}, 69 \%)$.
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.19(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar} H), 7.09(1 \mathrm{H}, \mathrm{dd}, J 8.4,1.8$ $\mathrm{Hz}, \mathrm{ArH}), 5.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 147.4(2 \mathrm{x} C(\mathrm{Ar})), 125.9(\mathrm{CH}(\mathrm{Ar})), 117.5(\mathrm{C}$ (Ar)) $111.7(\mathrm{CH}(\mathrm{Ar})), 108.5(\mathrm{CH}(\mathrm{Ar})), 101.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 84.1$

FT-IR $\quad \lambda_{\max }$ (neat) $2916 \mathrm{~m}, 2362 \mathrm{~m}, 1654 \mathrm{~m}, 1489 \mathrm{~s}, 1329 \mathrm{~s}, 1246 \mathrm{~s}, 1213 \mathrm{~s}$, $1101 \mathrm{~m}, 1039 \mathrm{~s}, 936 \mathrm{~m}, 808 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} 299(6600), 261(11900) \mathrm{nm}$.

LRMS (APCI) $161\left(100 \%[\mathrm{M}+\mathrm{H}]^{+}\right), 131$ (14) amu.
These data are consistent with those published in the literature. ${ }^{67}$

5,6-Dimethoxy-2-methyl-3-phenyl-1H-1-indenone 234

Prepared by a modified method of Larock. ${ }^{20}$ Alkyne $230(100 \mathrm{mg}, 0.86 \mathrm{mmol})$ was stirred in toluene (10 mL) together with 3,4-dimethoxy-6-bromobenzaldehyde 223 (104 mg, 0.43 mmol), $\mathrm{PdCl}_{2}(15 \mathrm{mg}, 0.043 \mathrm{mmol})$, triphenylphosphine ($47 \mathrm{mg}, 0.086$ mmol) and sodium hydrogen carbonate ($144 \mathrm{mg}, 1.72 \mathrm{mmol}$). The mixture was heated with stirring at $100^{\circ} \mathrm{C}$ for 24 h . The solution was diluted with ether (10 mL) then washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromotography (20% ether in petrol) gave 234 as a red solid ($62 \mathrm{mg}, 0.221 \mathrm{mmol}, 52 \%$) and a single regioisomer. m.p. $\quad 187-189^{\circ} \mathrm{C}$ (ethanol)
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.47-7.32(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{x} \mathrm{Ar} H), 7.19(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$, $6.76\left(1 \mathrm{H}_{\mathrm{s}} \mathrm{s}, \mathrm{Ar} \mathrm{Ar}\right), 3.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.29(3 \mathrm{H}$, s, CH_{3}) p.p.m.
${ }^{13} \mathbf{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 153.8(C(\mathrm{Ar})), 153.5(C(\mathrm{Ar})), 148.9(C(\mathrm{Ar}))$, $140.8(C(\mathrm{Ar})), 132.8\left(C=\mathrm{CCH}_{3}\right), 131.8(\mathrm{C}(\mathrm{Ar})), 129.5(2 \times \mathrm{CH}(\mathrm{Ar}))$, $128.4(2 \times \mathrm{CH}(\mathrm{Ar})), 127.5(\mathrm{CH}(\mathrm{Ar})), 122.5\left(\mathrm{C}=\mathrm{CCH}_{3}\right), 107.1(\mathrm{CH}$ (Ar)), $104.3(\mathrm{CH}(\mathrm{Ar})), 56.5\left(2 \times \mathrm{OCH}_{3}\right), 12.7\left(\mathrm{CH}_{3}\right)$ p.p.m. A peak corresponding to the carbonyl carbon was not observed in this spectra.

FT-IR $\quad v_{\max }\left(\mathrm{CHCl}_{3}\right) 2838 \mathrm{w}, 1703 \mathrm{~s}, 1589 \mathrm{~s}, 1490 \mathrm{~s}, 1415 \mathrm{w}, 1380 \mathrm{w}, 1292 \mathrm{~m}$, $1122 \mathrm{w}, 1030 \mathrm{~m}, 877 \mathrm{w} \mathrm{cm}^{-1}$.

UV-vis $\quad \lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 464$ (924), 300 (44000), 275 (19000) nm.
LRMS (APCI) 281 ([MH] $\left.{ }^{+}, 100 \%\right), 280\left([\mathrm{M}]^{+}, 19 \%\right)$ amu.
HRMS (EI $)$ Found $280.1111, \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$ requires 280.1010 amu .

2-Methyl-4,5,6-tri(methyloxy)-3-phenyl-1H-indenone 240

3-Methyl-4,5,6-tri(methyloxy)-2-phenyl-I H -indenone 241

Prepared by a modification of a method described by Larock. ${ }^{20}$ Compound 239 (404 $\mathrm{mg}, 1.25 \mathrm{mmol}$), compound 230 ($291 \mathrm{mg}, 2.5 \mathrm{mmol}$), sodium hydrogen carbonate ($840 \mathrm{mg}, 5 \mathrm{mmol}$), triphenylphosphine ($131 \mathrm{mg}, 0.25 \mathrm{mmol}$) and palladium chloride $(44 \mathrm{mg}, 0.12 \mathrm{mmol})$ were stirred together at reflux in toluene $(30 \mathrm{~mL})$ for 48 h . The reaction mixture was diluted with ether $(30 \mathrm{~mL})$ and washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Components were separated by column chromotography (5\% ether in petrol) to give $\mathbf{2 4 0}$ and $\mathbf{2 4 1}$ a red solid ($147 \mathrm{mg}, 0.47 \mathrm{mmol}, \mathbf{3 8 \%}$) comprising an inseparable 1:1 mixture of 240 and 241.
m.p. $\quad 154-157^{\circ} \mathrm{C}(\mathrm{MeOH})$.
${ }^{1} \mathrm{H} \operatorname{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.41(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{ArH}), 7.06(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$, $7.05(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 3.86-3.92\left(15 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{OCH}_{3}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathbf{C}$ NMR $\quad\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 197.3(C=\mathrm{O}), 195.6(C=\mathrm{O}), 156.2(C(\mathrm{Ar})), 155.6$ (C (Ar)) , $154.4(C(\mathrm{Ar})), 153.7(C(\mathrm{Ar})), 149.3(C(\mathrm{Ar})), 148.6(C$ (Ar)), $147.5(\mathrm{C}(\mathrm{Ar})), 147.0(\mathrm{C}(\mathrm{Ar})), 135.5(\mathrm{C}(\mathrm{Ar})), 135.4(\mathrm{CH}(\mathrm{Ar}))$, $134.1(C(\mathrm{Ar})), 132.7(C(\mathrm{Ar})), 131.2(C(\mathrm{Ar})), 131.4(C(\mathrm{Ar})), 130.9$ ($C(\mathrm{Ar})$), $130.7(C(\mathrm{Ar})), 130.4(C H(\mathrm{Ar})), 129.7(C H(\mathrm{Ar})), 128.9(C$ (Ar)), $128.7(\mathrm{CH}(\mathrm{Ar})), 128.4(2 \times \mathrm{CH}(\mathrm{Ar})), 128.2(2 \times \mathrm{CH}(\mathrm{Ar}))$, 127.9 ($\mathrm{CH}(\mathrm{Ar})$), 127.6 (CH (Ar)), 104.9 (CHAr), 104.3 (CHAr), 61.5 $\left(\mathrm{OCH}_{3}\right), 61.3\left(\mathrm{OCH}_{3}\right), 61.2\left(\mathrm{OCH}_{3}\right), 61.1\left(\mathrm{OCH}_{3}\right), 56.6\left(2 \times \mathrm{OCH}_{3}\right)$, $15.5\left(\mathrm{CH}_{3}\right), 8.6\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (nujol) $2361 \mathrm{~s}, 1682 \mathrm{~m}, 1471 \mathrm{~s}, 1372 \mathrm{~s}, 1321 \mathrm{~s}, 1158 \mathrm{w}, 1101 \mathrm{~m} \mathrm{~cm}^{-1}$.
UV-Vis $\quad \lambda_{\max }(\mathrm{MeOH}) 447$ (700), 340 (7200), 325 (7800), 271 (32300), 265 (29250), 223 inf. (17400) nm.

LRMS (APCI) $311\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right), 279$ (13), 263 (31) amu.
HRMS $\quad\left(\mathrm{EI}^{+}\right)$Found $310.1211, \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$ requires 310.1205 amu .

6-Bromo-1-(Benzo[1,3]dioxol-5-yl)-propan-1-ol 211

204
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrO}_{3} 228$

211
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3} 258$

Aldehyde $204(10 \mathrm{~g}, 43 \mathrm{mmol})$ was cooled in THF (100 mL) to $0^{\circ} \mathrm{C}$. Ethylmagnesium bromide (14.3 mL of a 3 M solution in ether) was added via syringe over 5 min and the solution stirred for 1 h . The reaction was diluted with water (20 mL), and extracted into ether ($3 \times 30 \mathrm{~mL}$). The organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give $211(10.914 \mathrm{~g}, 42 \mathrm{mmol}, 98 \%)$ as a colourless solid. m.p. $\quad 92-93^{\circ} \mathrm{C}$ (methanol)
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.11(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.92(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 5.95(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), \quad 4.92(1 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{OCH}), 2.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.78-$ $1.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.98\left(3 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 147.6(C(\mathrm{Ar})), 147.3(C(\mathrm{Ar})), 137.0(C(\mathrm{Ar}))$, $112.3(\mathrm{C}(\mathrm{Ar})), 112.3(\mathrm{CH}(\mathrm{Ar})), 107.2(\mathrm{CH}(\mathrm{Ar})), 101.6\left(\mathrm{OCH}_{2}\right), 74.0$ (OCH), $30.7\left(\mathrm{CH}_{2}\right), 10.2\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (nujol) $2919 \mathrm{~s}, 1503 \mathrm{~s}, 1375 \mathrm{~s}, 1239 \mathrm{~s}, 1312 \mathrm{~m}, 1282 \mathrm{~m}, 1157 \mathrm{~m}$, $1041 \mathrm{~s}, 980 \mathrm{~s}, 839 \mathrm{~s}, 721 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CHCl}_{3}\right) 289(1400), 256(1500) \mathrm{nm}$.
LRMS (APCI) $260\left([\mathrm{M}]^{+},{ }^{81} \mathrm{Br}, 96 \%\right), 258\left([\mathrm{M}]{ }^{+},{ }^{79} \mathrm{Br}, 94 \%\right), 243$ (100), 241 (98) amu.

CHN \quad Found C $46.32 \mathrm{H} 4.21, \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$ requires C 46.36 H 4.28 .

1-[2-Bromo-4,5-dimethoxyphenyl]-propan-1-ol 224

Aldehyde $223(2.0 \mathrm{~g}, 8.1 \mathrm{mmol})$ was stirred in THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Ethylmagnesium chloride (5.83 mL of a 1.4 M solution in hexane) was added via syringe over 2 min . The mixture was stirred at ambient temperature for 1 h . The solution was diluted with water (20 mL) and extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting oil was purified by column chromotography to give 224 as a colourless oil ($1.92 \mathrm{~g}, 7 \mathrm{mmol}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.19(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.92(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 4.89(1 \mathrm{H}, \mathrm{t}$, $J 7.2 \mathrm{~Hz}, \mathrm{OCH}), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.18(1 \mathrm{H}$, brs, OH$\left.), 1.72-1.74(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 0.98(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{CH})_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 148.6(C(\mathrm{Ar})), 148.5(C(\mathrm{Ar})), 135.6(C(\mathrm{Ar}))$, $115.1(\mathrm{CH}(\mathrm{Ar})), 111.7(\mathrm{C}(\mathrm{Ar})), 109.7(\mathrm{CH}(\mathrm{Ar})), 73.9(\mathrm{OCH}), 56.1$ $\left(\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 30.7\left(\mathrm{CH}_{2}\right), 10.1\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR (neat) $v_{\text {max }} 2969 \mathrm{w}, 2916 \mathrm{w}, 1605 \mathrm{~m}, 1499 \mathrm{~s}, 1456 \mathrm{w}, 1378 \mathrm{~m}, 1257 \mathrm{~s}$, 1246s, $967 \mathrm{w}, 870 \mathrm{w}, 793 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 396(1000), 242(3500), 224$ (3900) nm.
LRMS (CI) 274 ([M] $\left.]^{+}, 7 \%\right), 258$ (44), 178 (100) amu.
HRMS (EI) Found $274.0203 \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{79} \mathrm{Br}$ requires 274.0205 amu .

$\underline{214}$

Alcohol $211(2.0 \mathrm{~g}, 7.7 \mathrm{mmol})$ was stirred in THF (50 mL) under N_{2} at $-78^{\circ} \mathrm{C}$. n-butyllithium (7.7 ml of a 1.5 M solution) was added via syringe over 2 min . The mixture was allowed to stir for 1 h after which time aldehyde $206(1.27 \mathrm{~g}, 7.7 \mathrm{mmol})$ was added as a solution in THF (10 mL) via syringe over 1 min . The mixture was allowed to warm to ambient temperature, stirred for 30 min then diluted with water $(20 \mathrm{~mL})$ and extracted into ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (40% ether in petrol) to give 214 as an unstable oil and an inseparable 1:1 mixture of diastereoisomers ($989 \mathrm{mg}, 2.6 \mathrm{mmol}, 62 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.14(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.79(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar} H), 6.75-$ $6.59(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{ArH}), 6.52(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.49(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHAr}), 6.23$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHAr}), 5.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.03-$ $4.97(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHCH} 2), 4.72-4.63(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHCH} 2), 3.73(6 \mathrm{H}, \mathrm{s}, 2$ $\mathrm{x} \mathrm{OCH} 3), 3.67\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 1.93-1.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.77-$ $1.46(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH} H), 1.44-1.41(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 0.92(3 \mathrm{H}, \mathrm{t}, J 6.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 0.71\left(3 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 149.1(2 \times \mathrm{C}(\mathrm{Ar})), 147.9(2 \times C(\mathrm{Ar})), 147.7(2$ $\mathrm{x} C(\mathrm{Ar})), 136.1(2 \times C(\mathrm{Ar})), 135.3(2 \times C(\mathrm{Ar})), 134.8(2 \times C(\mathrm{Ar}))$, $120.2(2 \times \mathrm{CH}(\mathrm{Ar})), 110.9(2 \times \mathrm{CH}(\mathrm{Ar})), 110.8(2 \times \mathrm{CH}(\mathrm{Ar})), 100.9$ $(2 \times C(\mathrm{Ar})), 102.9(2 \times \mathrm{CH}(\mathrm{Ar})), 101.6\left(2 \times \mathrm{OCH}_{2} \mathrm{O}+2 \times \mathrm{CH}(\mathrm{Ar})\right)$, $85.1(2 \times \mathrm{OCHAr}), 83.9\left(2 \times \mathrm{OCHCH}_{2}\right), 56.1\left(2 \times \mathrm{OCH}_{3}\right), 55.9(2 \times$ $\left.\mathrm{OCH}_{3}\right), 28.9\left(2 \times \mathrm{CH}_{2}\right), 9.5\left(2 \times \mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2955 \mathrm{w}, 2929 \mathrm{w}, 2858 \mathrm{w}, 1588 \mathrm{w}, 1521 \mathrm{~m}, 1434 \mathrm{~m}, 1255 \mathrm{~s}$, $1029 \mathrm{~s}, 927 \mathrm{~m}, 860 \mathrm{w}, 756 \mathrm{wcm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 277(5600), 224(9400) \mathrm{mm}$.
LRMS (CI) 328 ([M] $\left.{ }^{+}, 29 \%\right), 299$ (100) amu.
HRMS Found $328.1309, \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}$ requires 328.1311 amu .

5-(3-Ethyl-5,6-dimethoxy-1,3-dihydro-2-benzofuran-1-yl)-1,3-benzodioxole 228

224
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{3} 274$
$+$

226
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{3} 150$

228
$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5} 328$

Alcohol $224(1.09 \mathrm{~g}, 3.9 \mathrm{mmol})$ was stirred in THF (50 mL) under N_{2} at $-78^{\circ} \mathrm{C} . n-$ Butyllithium (7.8 ml of a 1.5 M solution) was added via syringe over 2 min . The mixture was allowed to stir for 1 h after which time aldehyde 226 ($630 \mathrm{mg}, 3.9 \mathrm{mmol}$) was added as a solution in THF (10 mL) via syringe over 1 min . The mixture was allowed to warm to ambient temperature and stirred for 30 min . The mixture was diluted with water (20 mL), extracted into ether ($3 \times 30 \mathrm{~mL}$) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The product was purified by column chromatography (40% ether in petrol) to give 228 as an unstable oil and an inseparable mixture of diastereoisomers ($691 \mathrm{mg}, 2.1 \mathrm{mmol}, 54 \%$).

[^0]FT-IR $\quad v_{\max }$ (neat) $2939 \mathrm{w}, 2847 \mathrm{w}, 1598 \mathrm{w}, 1490 \mathrm{~s}, 1244 \mathrm{~m}, 1224 \mathrm{~s}, 1101 \mathrm{w}$, $1045 \mathrm{~s}, 927 \mathrm{w}, 753 \mathrm{~s} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 294(5600), 241$ (7900) nm.
LRMS (EI) 328 ([M] ${ }^{+}, 27 \%$), 299 (100) amu.

1-(6-\{[3,4-Dimethoxyphenyl|carbonyl\}-1,3-benzodioxol-5-yl)-1-propanone 215

THF 214 ($420 \mathrm{mg}, 1.2 \mathrm{mmol}$) was stirred in DCM (30 mL) together with barium manganate ($1.64 \mathrm{~g}, 6.4 \mathrm{mmol}$) at ambient temperature for 18 h . The heterogeneous mixture was then filtered through a plug of celite, and the residual solids washed with $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$. The combined filtrate and washings were then concentrated in vacuo to give 215 a yellow solid which was recrystallised from CHCl_{3} ($321 \mathrm{mg}, 0.92$ mmol, 76\%).
m.p. $\quad 126-128^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.58(1 \mathrm{H}, \mathrm{s}$ with fine splitting, $\mathrm{Ar} H), 7.28(1 \mathrm{H}$, s with fine splitting, $\operatorname{Ar} H), 7.11(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 6.9 \mathrm{~Hz}$, $\operatorname{Ar} H), 6.85(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.79(1 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, \operatorname{ArH}), 6.15(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.84(2 \mathrm{H}, \mathrm{q}, J 7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 1.07\left(3 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 200.1(C=\mathrm{O}), 195.8(C=\mathrm{O}), 153.4(C(\mathrm{Ar}))$, $150.4(C(\mathrm{Ar})), 149.3(C(\mathrm{Ar})), 148.5(C(\mathrm{Ar})), 137.0(C(\mathrm{Ar})), 132.4$ (C (Ar)), $130.4(C(\mathrm{Ar})), 124.9(C H(A r)), 110.7(C H(A r)), 109.9(C H$ (Ar) $), 108.8(\mathrm{CH}(\mathrm{Ar})), 108.6(\mathrm{CH}(\mathrm{Ar})), 102.6\left(\mathrm{OCH}_{2}\right), 56.2\left(\mathrm{OCH}_{3}\right)$, $56.1\left(\mathrm{OCH}_{3}\right), 33.2\left(\mathrm{CH}_{2}\right), 8.3\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2943 \mathrm{w}, 1680 \mathrm{~s}, 1643 \mathrm{~s}, 1499 \mathrm{~s}, 1441 \mathrm{~m}, 1375 \mathrm{~s}, 1255 \mathrm{~s}, 1177 \mathrm{~s}$, $1029 \mathrm{~s}, 979 \mathrm{w}, 930 \mathrm{~m}, 806 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 296(1100), 262(1200), 218(2900) \mathrm{nm}$.
LRMS (CI) $343\left([\mathrm{M}+\mathrm{H}]^{+}, 2 \%\right), 324$ (100) amu.
HRMS Found 342.1102, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$ requires 342.1103 amu .
CHN \quad Found C 66.53 H $5.25, \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C 66.66 H 5.29.

1-[2-(1,3-Benzodioxol-5-vlcarbonyl)-4,5-dimethoxyphenyl-1-propanone 229

THF 228 ($810 \mathrm{mg}, 2.36 \mathrm{mmol}$) was stirred in DCM (30 mL) together with barium manganate $(2.64 \mathrm{~g}, 10 \mathrm{mmol})$ at ambient temperature for 18 h . The heterogeneous mixture was then filtered through a plug of celite, and the residual solids washed with $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$. The combined filtrate and washings were then concentrated in vacuo to give 229 as a yellow solid which was recrystallised from CHCl_{3} (470 mg , $1.37 \mathrm{mmol}, 58 \%)$.
m.p. $\quad 165-168^{\circ} \mathrm{C}$ (ethanol)
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.21(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.15(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.12(1 \mathrm{H}$, d, $J 7.1 \mathrm{~Hz}, \operatorname{Ar} H), 6.91(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.68(1 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, \operatorname{Ar} H), 5.98$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.78(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.7 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2}\right), 0.99\left(3 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 200.5(\mathrm{C}=\mathrm{O}), 196.1(\mathrm{C}=\mathrm{O}), 152.1(2 \times \mathrm{C}(\mathrm{Ar}))$, $149.7(C(\mathrm{Ar})), 148.6(C(\mathrm{Ar})), 135.2(C(\mathrm{Ar})), 132.7(C(\mathrm{Ar})), 130.8$ ($C(\mathrm{Ar})$), $126.4(\mathrm{CH}(\mathrm{Ar})), 111.7(\mathrm{CH}(\mathrm{Ar})), 111.3(\mathrm{CH}(\mathrm{Ar})), 109.2$ $(\mathrm{CH}(\mathrm{Ar})), 108.2(\mathrm{CH}(\mathrm{Ar})), 102.3\left(\mathrm{OCH}_{2}\right), 56.7\left(\mathrm{OCH}_{3}\right), 56.6$ $\left(\mathrm{OCH}_{3}\right), 33.5\left(\mathrm{CH}_{2}\right), 8.6\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2914 \mathrm{w}, 1676 \mathrm{~m}, 1647 \mathrm{~m}, 1590 \mathrm{w}, 1565 \mathrm{w}, 1363 \mathrm{~m}, 1288 \mathrm{~s}$, $1198 \mathrm{~m}, 1132 \mathrm{w}, 1020 \mathrm{~m}, 872 \mathrm{~m}, 814 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 296(1400), 262(1200), 218(2900) \mathrm{nm}$.
LRMS (CI) 342 ([M] $\left.{ }^{+}, 6 \%\right), 324$ (100) amu.
HRMS Found $3421104, \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$ requires 342.1103 amu .
CHN Found C $66.57 \mathrm{H} 5.32, \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C 66.66 H 5.32 .

1-(6-Bromo-1,3-benzodioxol-5-yl)-2-propen-1-ol 327

A THF solution (30 mL) of 6-bromopiperonal $204(15.0 \mathrm{~g}, 0.065 \mathrm{~mol}$) was stirred under N_{2} at $0^{\circ} \mathrm{C}$ and vinylmagnesium chloride (37.7 mL of a 1.7 M solution in THF) was slowly added via syringe. The solution was warmed to ambient temperature and it was stirred for a further 1 h . The reaction was then diluted with water (30 mL), extracted with ether ($3 \times 30 \mathrm{~mL}$), the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The product was recrystallised from ethanol to give 327 as a white solid (11.8 g, $0.045 \mathrm{~mol}, 70 \%)$.
m.p. $\quad 65-67^{\circ} \mathrm{C}$ (ethanol)
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.03(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.99(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.00$ (2H, s, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.99\left(1 \mathrm{H}\right.$, obs ddd, $\left.J 17.2,8.4,5.1 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right)$, $5.55(1 \mathrm{H}$, dd with fine splitting, $J 5.1,3.3 \mathrm{~Hz}, H \mathrm{COH}), 5.41(1 \mathrm{H}$, d, $J 17.2 \mathrm{~Hz}, \mathrm{CHCH} H), 5.23(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, \mathrm{CHCHH}), 2.08$ $(1 \mathrm{H}, \mathrm{d}, J 3.3 \mathrm{~Hz}, \mathrm{OH})$ p.p.m.
${ }^{13} \mathrm{CNMR} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 147.9(2 \times \mathrm{C}(\mathrm{Ar})), 138.5(=\mathrm{CHCHOH})$, $135.0(\mathrm{C}(\mathrm{Ar})), 115.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 113.0(\mathrm{CBr}(\mathrm{Ar})), 112.6(\mathrm{CH}$ (Ar)), $107.9(\mathrm{CH}(\mathrm{Ar})), 101.9\left(\mathrm{OCH}_{2} \mathrm{O}\right), 73.4(\mathrm{CHOH})$ p.p.m.

FT-IR $\quad v_{\max }$ (nujol) 3208brs, 2916m, 1692w, 1503m, 1468s 1305w, 1241s, $1039 \mathrm{~s}, 922 \mathrm{~m}, 862 \mathrm{w} \mathrm{cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 293$ (20000), 241 (23000), $219 \inf (19000) \mathrm{nm}$

LRMS (APCI) $258\left(\left[\mathrm{MH}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 100 \%\right) 256\left(\mathrm{MH}\left({ }^{79} \mathrm{Br}\right)\right.$, 87) 240 (57), 160 (82), 150 (9), 134 (8) amu.

HRMS (CI) Found $[\mathrm{M}]^{+} 255.9735, \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{Br}$ requires 255.9735 amu .

5-Bromo-6(1-\{[(methyloxy)methylloxy\}-2-propenyl)-1,3-benzodioxole 338

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{Br} 257$

328
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{Br} 301$

Prepared by a method analogous to that of Winkle. ${ }^{68} \mathrm{NaH}$ (144 mg of a 60% dispersion in mineral oil, 6.03 mmol) under a N_{2} atmosphere was washed with petrol ($3 \times 10 \mathrm{~mL}$). Dry ether (25 mL) and DMF (5 mL) were added followed, after 15 min , by a solution of $327(1.55 \mathrm{~g}, 6.03 \mathrm{mmol})$ in ether (5 mL). The reaction mixture was then allowed to stir overnight. The solution was diluted with water (20 mL), extracted into ether ($3 \times 20 \mathrm{~mL}$), the organic layer dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed in vacuo. The product was isolated by column chromatography (15% ether in petrol) to give 328 as a clear oil ($1.21 \mathrm{~g}, 4.01$ $\mathrm{mmol}, 67 \%)$.
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.95(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar} H), 6.01-5.96(2 \mathrm{H} \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.86\left(1 \mathrm{H}\right.$, ddd, $\left.J 16.5,10.3,6.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 5.48(1 \mathrm{H}$, d, $\left.J 6.0 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 5.35(1 \mathrm{H}$, app. d, $J 16.5 \mathrm{~Hz},=\mathrm{CHH}), 5.23$ (1H, app. d $J 10.3 \mathrm{~Hz},=\mathrm{CH} H), 4.70(1 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}$, OC $H \mathrm{HOMe}$), 4.61 ($1 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, \mathrm{OCHHOMe}$), $3.41(3 \mathrm{H}, \mathrm{s}$, OCH_{3}) p.p.m.

${ }^{13} \mathrm{C}$ NMR	(75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 147.9\left(2 \times \mathrm{C}(\mathrm{Ar})\right.$), $136.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$,
	133.3 ($\mathrm{C}(\mathrm{Ar})$), 116.6 $\left(=\mathrm{CH}_{2}\right), 113.3(\mathrm{C}(\mathrm{Ar})), 112.5(\mathrm{CH}(\mathrm{Ar}))$,
	$108.2(\mathrm{CH}(\mathrm{Ar})), 101.9\left(\mathrm{ArOCH}_{2} \mathrm{O}\right), 94.1\left(\mathrm{OCH}_{2} \mathrm{OMe}\right), 76.7$
	$(\mathrm{CHOH}), 55.8\left(\mathrm{OCH}_{3}\right)$ p.p.m.
FT-IR	$v_{\text {max }}$ (neat) $3082 \mathrm{w}, 2890 \mathrm{~m}, 2360 \mathrm{w}, 1607 \mathrm{w}, 1502 \mathrm{~s}, 1476 \mathrm{~s}, 1237 \mathrm{~s}$,
	1150s, $1034 \mathrm{~s}, 980 \mathrm{~m}, 859 \mathrm{wcm}^{-1}$.
UV	$\lambda_{\text {max }}(\mathrm{MeOH}) 294(20100), 241$ (22000), 217 inf (21000) nm.
LRMS	(EI) $303\left(\left[\mathrm{MH}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, \quad 5 \%\right), 302\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 35 \%\right), 301$
	$\left(\left[\mathrm{MH}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 37 \%\right), 300\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 27 \%\right), 270$ (25), 255 (30),
	241 (15), 229 (17), 215 (6), 160 (100), 148 (45) amu.
HRMS	(CI) Found [M] $299.9997, \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{Br}$ requires 299.9997 amu .

5-(1-[\{(Methyloxy)methyl]oxy\}-2-propenyl)-6-(2-propenyl)-1,3-benzodioxole

326

328
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Br} 301$

iii)

$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} 262$

A solution of $\mathbf{3 2 8}$ ($932 \mathrm{mg}, 3.1 \mathrm{mmol}$) in THF (30 mL) was stirred under N_{2} at $-78^{\circ} \mathrm{C}$. t - $\mathrm{BuLi}(3.48 \mathrm{~mL}, 0.89 \mathrm{M}$ solution in pentane) was slowly added to produce a red solution which was stirred for 10 min . A THF (10 mL) solution of $\mathrm{CuI} . \mathrm{P}(\mathrm{OEt})_{3}$ was then added over 10 min giving rise to a pale yellow solution. After 1 h allyl bromide ($0.268 \mathrm{~mL}, 3.1 \mathrm{mmol}$) was added, neat over 5 min producing a dark green solution which was then warmed to ambient temperature. The mixture was diluted with water (20 mL) and washed with ammonia solution
until the washings were no longer blue ($5 \times 20 \mathrm{~mL}$). The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The product was purified by column chromatography (10% ether in petrol) to give 326 as a colourless oil ($700 \mathrm{mg}, 2.67 \mathrm{mmol}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.94(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.65(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.00$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}=\mathrm{CH} \& \mathrm{ArOCH}_{2} \mathrm{O}\right), 5.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOCH}_{2}\right), 5.24$ (1 H , brd with fine splitting, $J 16.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}$), $5.19(1 \mathrm{H}$, brd with fine splitting, $J 11.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 5.07(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 11.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.00(1 \mathrm{H}, \mathrm{d}$ with fine splitting, J $16.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 4.67(1 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, \mathrm{OCHHO}) 4.56(1 \mathrm{H}, \mathrm{d}$, $J 6.6 \mathrm{~Hz}, \mathrm{OCHHO}), 3.39\left(5 \mathrm{H}\right.$, app. s, $\left.\mathrm{OCH}_{3} \& \mathrm{ArCH}_{2}\right)$ p.p.m.
${ }^{13}$ C NMR (75.5 MHz, CDCl_{3}) 147.2 (C (Ar)), 146.6 (C (Ar$)$), 138.1 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 137.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 131.9(\mathrm{C}(\mathrm{Ar})), 131.2(\mathrm{C}(\mathrm{Ar}))$, $116.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 116.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 109.7(\mathrm{CH}(\mathrm{Ar})), 107.6,(\mathrm{CH}$ (Ar)), $101.1\left(\mathrm{ArOCH}_{2} \mathrm{O}\right), 93.6\left(\mathrm{OCH}_{2} \mathrm{OMe}\right), 74.0(\mathrm{ArCH}), 55.6$ $\left(\mathrm{ArCH}_{2}\right), 36.6\left(\mathrm{OCH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2891 \mathrm{~s}, 2316 \mathrm{w}, 1501 \mathrm{~s}, 1407 \mathrm{~m}, 1236 \mathrm{~s}, 1150 \mathrm{~s}, 1033 \mathrm{~s}$, $934 \mathrm{~m}, 869 \mathrm{~m} \mathrm{~cm}^{-1}$. $\lambda_{\max }(\mathrm{MeOH}) 290(24000), 242$ (28300), 220 inf . (23000) nm.

LRMS (APCI) 262 ([M] ${ }^{+}, 100 \%$) amu.
HRMS (CI) Found [M] $262.1205, \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$ requires 262.1205 amu .

1-(6-Bromo-1,3-benzodioxol-5-yl)allyl tetrahydro-2H-pyran-2-yl ether 337

A solution of $327(6.0 \mathrm{~g}, 23 \mathrm{mmol})$ was stirred in dry chloroform (40 mL) together with 3,4-dihydro- 2 H -pyran ($3.36 \mathrm{~g}, 39 \mathrm{mmol}$) and pyridinium paratoluenesulfonate ($1.0 \mathrm{~g}, 3 \mathrm{mmol}$) under a nitrogen atmosphere for 18 h . The mixture was diluted with ether (40 mL), washed with brine ($3 \times 20 \mathrm{~mL}$), the organic layer dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. Purification by column chromatography (5% ether in petrol) gave 337 as a clear oil and a 1:1 mixture of diastereoisomers ($5.65 \mathrm{~g}, 16 \mathrm{mmcl}, 72 \%$).
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.09(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.99(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar} H)$, $6.97(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 5.95\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{ArOCH}_{2} \mathrm{O}\right), 5.96(1 \mathrm{H}$, obs. ddd, $\left.J 17.0,10.3,5.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.73(1 \mathrm{H}$, ddd, $J 17.3,10.1$, $\left.6.9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right) 5.60(1 \mathrm{H}$, app. d, $J 5.1 \mathrm{~Hz}, \mathrm{ArCHO}), 5.45(1 \mathrm{H}$, app. d, $J 6.9 \mathrm{~Hz}$, ArCHO), 5.38 (1H, d with fine splitting, $J 17.1$ $\mathrm{Hz},=\mathrm{CHH}), 5.30(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 17.1 \mathrm{~Hz},=\mathrm{CHH})$, $5.21(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 10.3 \mathrm{~Hz},=\mathrm{CHH}), 5.15(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 10.3 \mathrm{~Hz},=\mathrm{CH} H), 4.86(1 \mathrm{H}, \mathrm{t}, J 2.7 \mathrm{~Hz}$, OCHO), $4.50(1 \mathrm{H}, \mathrm{t}, J 3.2 \mathrm{~Hz}, \mathrm{OCHO}), 3.95$ (1H, ddd, $J 12.6,7.8$, $3.2 \mathrm{~Hz}, \mathrm{OCHH}), 3.72(1 \mathrm{H}$, ddd, $J 11.4,8.8,2.7 \mathrm{~Hz}, \mathrm{OCHH}), 3.59-$ $3.43(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH} H), 1.95-1.41\left(12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCI}_{3}\right) \delta_{\mathrm{C}} 147.9(C(\mathrm{Ar})), 147.9(\mathrm{C}(\mathrm{Ar})), 147.8(C$ (Ar)), $147.6(\mathrm{C}(\mathrm{Ar})), 137.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 136.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 134.3$ $(C(\mathrm{Ar})), 133.5(C(\mathrm{Ar})), 117.0\left(=\mathrm{CH}_{2}\right), 115.5\left(=\mathrm{CH}_{2}\right), 113.9(\mathrm{CBr}$ (Ar)) , $112.6(\mathrm{CBr}(\mathrm{Ar})), 112.4(\mathrm{CH}(\mathrm{Ar})), 112.3(\mathrm{CH}(\mathrm{Ar})), 108.2$ $\left(\begin{array}{llll}(\mathrm{CH} & (\mathrm{Ar})), \quad 108.1 \quad(\mathrm{CH} \quad(\mathrm{Ar})), \quad 101.9 \quad\left(\mathrm{ArOCH}_{2} \mathrm{O}\right), 101.8\end{array}\right.$ $\left(\mathrm{ArOCH}_{2} \mathrm{O}\right), 95.8(\mathrm{ArCH}), 95.6(\mathrm{ArCH}), 76.4(\mathrm{OCHO}), 75.9$ $(\mathrm{OCHO}) 62.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 62.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 30.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $30.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 25.6\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 19.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 19.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) $3426 \mathrm{br}, 2941 \mathrm{~s}, 1724 \mathrm{w}, 1502 \mathrm{~s}, 1476 \mathrm{~s}, 1409 \mathrm{~m}, 1286 \mathrm{~s}$, $1037 \mathrm{~s}, 967 \mathrm{~m}, 933 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 293$ (16100), 242 (17200), 223 inf. (12700) nm.
LRMS (APCI) $342\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 100 \%\right) 340\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 81 \%\right)$ amu.
HRMS (CI) Found $[\mathrm{M}]^{+} 340.0310, \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Br}^{79}$ requires 340.0310 amu .

5-Bromo-6-(1,3-dioxolan-2-yl)1,3-benzodioxole ${ }^{69} 339$

204
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{Br} 229$

339
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{Br} 273$

A solution of 6-Bromopiperonal $204(6.90 \mathrm{~g}, 0.03 \mathrm{~mol}), p$-toluenesulfonic acid $(0.573 \mathrm{~g}, 0.003 \mathrm{~mol})$ and 1,2 -ethanediol $(3.74 \mathrm{~g}, 0.06 \mathrm{~mol})$, in toluene (30 mL) was refluxed under a soxhlet filled with $3 \AA$ molecular sieves. The reaction was continued for 4 h then allowed to cool, diluted with ether (50 mL) and washed with $2 \mathrm{M} \mathrm{NaOH}(2 \times 20 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give 339 as a white solid which was recrystallised from petrol ($6.58 \mathrm{~g}, 0.024 \mathrm{~mol}, 80 \%$).
m.p. $\quad 65-67^{\circ} \mathrm{C}$ (petrol), $1 \mathrm{lit}{ }^{69} 68^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.11(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 5.95$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}), 5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.17-3.98(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 149.1$ ($\left.\mathrm{C}(\mathrm{Ar})\right), 147.6(C(\mathrm{Ar})), 130.1(\mathrm{C}$ (Ar)), $114.0(C(\mathrm{Ar})), 113.3(\mathrm{CH}(\mathrm{Ar})), 107.8(\mathrm{CH}(\mathrm{Ar})), 102.6$ $(\mathrm{OCHO}), 102.1\left(\mathrm{OCH}_{2} \mathrm{O}\right), 65.5\left(2 \times \mathrm{OCH}_{2}\right)$ p.p.m.

The NMR Spectra also show peaks corresponding to ca. 2% of starting material.

FT-IR $\quad v_{\max }($ nujol) $2919 \mathrm{~s}, 1847 \mathrm{w}, 1624 \mathrm{~m}, 1504 \mathrm{~s}, 1247 \mathrm{~s}, 1124 \mathrm{~s}, 951 \mathrm{~s}$, $838 \mathrm{~s}, 721 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 292(2400), 242(3000), 217 \mathrm{inf},(2100) \mathrm{nm}$.
LRMS (APCl$) 274\left(\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 51 \%\right), 273\left(\left[\mathrm{MH}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 100 \%\right), 272$ ($\left.\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 29 \%\right), 271$ (29) amu.

These data are fully consistent with those reported in the literature. ${ }^{69}$

5-Allyl-6-(1,3-dioxalan-2-yl)-1,3-benzodioxole 340

339
$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{Br} 273$

iii)

A solution of $\mathbf{3 3 9}(1.01 \mathrm{~g}, 5.22 \mathrm{mmol})$ in THF (30 mL) was stirred under nitrogen at $-78^{\circ} \mathrm{C}$. t-Butyllithium (6.5 mL of a 1.2 M solution in hexanes) was added dropwise over 5 min producing a yellow solution. After $15 \mathrm{~min} . \mathrm{CuI} . \mathrm{P}(\mathrm{OEt})_{3}$ (1.84 g 5.22 mmol) in THF (5 mL) was added dropwise over 5 min and the mixture was then stirred for a further 15 min . Allyl bromide $(0.8 \mathrm{~mL}, 10.4$ mmol) was added neat over 1 min producing a red black solution which was allowed to stir for 10 min at $-78^{\circ} \mathrm{C}$ before being warmed to ambient temperature. The mixture was diluted with ether (20 mL) and washed with ammonia solution ($6 \times 20 \mathrm{~mL}$) until the washings were no longer blue. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give $\mathbf{3 4 0}$ as cream crystals (1.08 g , $3.96 \mathrm{mmol}, 89 \%$) which were recrystallised from petrol.
m.p. $\quad 52-55^{\circ} \mathrm{C}$ (petrol)
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.09(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 5.95$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.93-5.96\left(1 \mathrm{H}\right.$, obs. $\left.\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.92(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OCHO}), 5.07(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 10.4,=\mathrm{C} H \mathrm{H}), 5.02(1 \mathrm{H}$, d with fine splitting, $J 17.8,=\mathrm{CHH}), 4.20-3.97(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.45(2 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, \mathrm{ArCH} 2)$ p.p.m.

${ }^{13} \mathrm{C}$ NMR	$\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 148.2(C(\mathrm{Ar})$), $146.2(C(\mathrm{Ar})$), 137.3
	$\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 132.6\left(\mathrm{C}(\mathrm{Ar})\right.$), $128.8\left(\mathrm{C}(\mathrm{Ar})\right.$), $116.0\left(=\mathrm{CH}_{2}\right), 110.0$
	$(\mathrm{CH}(\mathrm{Ar})), 106.6(\mathrm{CH}(\mathrm{Ar})), 101.2\left(\mathrm{OCH}_{2} \mathrm{O}+\mathrm{OCHO}\right), 65.3$
	$\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 36.3(\mathrm{ArCH} 2)$ p.p.m.
FT-IR	$v_{\text {max }}$ (nujol) $1847 \mathrm{w}, 1687 \mathrm{w}, 1481 \mathrm{~s}, 1377 \mathrm{~s}, 1320 \mathrm{~m}, 1233 \mathrm{~s}, 1088 \mathrm{~s}$,
	1036s, $9555 \mathrm{~s}, 809 \mathrm{~m}, 713 \mathrm{mcm}^{-1}$.
UV	$\lambda_{\text {max }}(\mathrm{MeOH}) 286$ (12800), 237 (18700), 217 inf . (12400) nm.
LRMS	(APCI) 235 ([MH] ${ }^{+}, 60 \%$) 173 (100) amu.
HRMS	(CI) Found [M] ${ }^{+} 235.0970, \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$ requires 235.0970 amu .

Alternative procedure for synthesis of $\mathbf{3 4 0}$

A solution of compound $339(7.30 \mathrm{~g}, 0.026 \mathrm{~mol})$ in THF $(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was stirred under nitrogen. tert-Butyllithium (17.3 mL of a 1.5 M solution in THF) was added over 10 min and the mixture allowed to stir for 10 min . A preformed solution of $\mathrm{CuCN}(2.41 \mathrm{~g}, 0.026 \mathrm{~mol})$ and $\mathrm{LiCl}(1.09 \mathrm{~g}, 0.026 \mathrm{~mol})$ in THF (10 mL) was then added over 10 min . After a further 10 min allyl bromide $(9.43 \mathrm{~g}$, $0.078 \mathrm{~mol})$ was added as a solution in THF $(10 \mathrm{~mL})$ over 10 min . The solution was stirred for 15 min and then warmed to ambient temperature, poured into water (40 mL) and diluted with ether (30 mL). The organic layer was washed with ammonia solution ($5 \times 20 \mathrm{~mL}$) until the washings were no longer blue. The organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to yield 340 as a white solid ($5.30 \mathrm{~g}, 0.022 \mathrm{~mol}, 87 \%$).

6-(2-Propenyl-1,3-benzodioxole)-5 carbaldehyde 341^{70}

Acetal 340 ($140 \mathrm{mg}, 0.597 \mathrm{mmol}$) was stirred in 10% aqueous acetone (30 mL) together with p-toluenesulfonic acid ($125 \mathrm{mg}, 0.71 \mathrm{mmol}$) for 18 h . The mixture was diluted with water (40 mL) and extracted with ether ($4 \times 20 \mathrm{~mL}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The product was purified by column chromatography (10% ether in petrol) to give 341 as a yellow oil ($91 \mathrm{mg}, 0.57 \mathrm{mmol}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 10.06(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$, $6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.09-5.92\left(1 \mathrm{H}\right.$, obs. m, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.04(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.12(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 10.4 \mathrm{~Hz},=\mathrm{C} H \mathrm{H})$, $4.95(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 17.0 \mathrm{~Hz},=\mathrm{CH} H), 3.71(2 \mathrm{H}, \mathrm{d}, J$ 6.3 Hz, ArCH_{2}) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 189.5(\mathrm{CHO}), 152.6(\mathrm{C}(\mathrm{Ar})), 147.1(\mathrm{C}$ (Ar)), $139.8(C(\mathrm{Ar})), 137.1\left(C H=\mathrm{CH}_{2}\right), 128.5(\mathrm{C}(\mathrm{Ar})), 116.7$ $\left(=\mathrm{CH}_{2}\right), 110.6(\mathrm{CH}(\mathrm{Ar})), 108.4(\mathrm{CH}(\mathrm{Ar})), 102.1\left(\mathrm{OCH}_{2} \mathrm{O}\right), 36.1$ $\left(\mathrm{ArCH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) $2904 \mathrm{~s}, 2627 \mathrm{w}, 2100 \mathrm{w}, 1676 \mathrm{~s}, 1608 \mathrm{~s}, 1482 \mathrm{~s}, 1259 \mathrm{~s}$, $1153 \mathrm{~m}, 996 \mathrm{~m}, 879 \mathrm{~m}, 754 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\lambda_{\max }(\mathrm{MeOH}) 320$ (8360), 280 (7600), 238 (14200) nm.

LRMS (APCI) $190\left(\left[\mathrm{M}^{+}, 100 \%\right), 173\right.$ (22) amu.
These data are fully consistent with those reported in the literature. ${ }^{70}$

1,6-Allyl-(1,3-benzodioxol-5-yl)-2-propen-1-ol 335

A solution of $341(500 \mathrm{mg}, 2.63 \mathrm{mmol})$ in THF (30 mL) was stirred under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$. Vinylmagnesium chloride (2.64 mL of a 1.2 M solution in THF) was added over 10 min and the mixture stirred for 1 h . The solution was poured into water (20 mL), extracted with ether ($3 \times 20 \mathrm{~mL}$), the organic phases were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The product was purified by flash chromotography (20% ether in petrol) to give $\mathbf{3 3 5}$ as a colourless oil ($450 \mathrm{mg}, 2.06 \mathrm{mmol}, 78 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.67(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.08-$ $5.90\left(2 \mathrm{H}\right.$, obs. m., $\left.2 \times \mathrm{CH}=\mathrm{CH}_{2}\right), 5.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.44-$ $5.38(1 \mathrm{H}$, obs. m., $\mathrm{C} H \mathrm{OH}), 5.35(1 \mathrm{H}$, d with fine splitting, $J 17.0$ $\mathrm{Hz},=\mathrm{C} H \mathrm{H}), 5.22(1 \mathrm{H}$, d with fine splitting, $J 10.3 \mathrm{~Hz},=\mathrm{CHH})$, $5.09(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 9.9 \mathrm{~Hz},=\mathrm{CH} H), 5.01(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 16.9 \mathrm{~Hz},=\mathrm{CHH}), 3.41(2 \mathrm{H}$, app. d, $J 5.9 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 1.83(1 \mathrm{H}, \mathrm{d}, J 3.6 \mathrm{~Hz}, \mathrm{OH})$ p.p.m.
${ }^{13} \mathbf{C} \mathbf{N M R} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}} 147.9$ (C (Ar)), 147.1 (C (Ar)), 139.9 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 137.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 133.9(\mathrm{C}(\mathrm{Ar})), 130.8(\mathrm{C}(\mathrm{Ar}))$, $116.1\left(=\mathrm{CH}_{2}\right), 115.0\left(=\mathrm{CH}_{2}\right), 110.1(\mathrm{CH}(\mathrm{Ar})), 107.1(\mathrm{CH}(\mathrm{Ar}))$, $101.1\left(\mathrm{OCH}_{2} \mathrm{O}\right), 71.0(\mathrm{CHOH}), 36.7\left(\mathrm{ArCH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) $3374 \mathrm{br}, 2893 \mathrm{~m}, 1637 \mathrm{~m}, 1502 \mathrm{~s}, 1107 \mathrm{~m}, 1039 \mathrm{~s}, 990 \mathrm{~m}$, $867 \mathrm{~m}, 809 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 287(28100), 242$ (29200), 221 inf . (16500) nm.
LRMS (APCI) $218\left([\mathrm{M}]^{+}, 11 \%\right) 201(79), 173(65), 160(100) \mathrm{amu}$.
HRMS (CI) Found $[\mathrm{M}]^{+} 218.0943, \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$ requires 218.0943 amu.

Ethyl (E)-3-(6-allyl-1,3-benzodioxol-5-yl)-2-propenoate 341

Compound $341(1.09 \mathrm{~g}, 5.73 \mathrm{mmol})$ was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ together with $342(4.00 \mathrm{~g}, 0.011 \mathrm{~mol})$ (which had been prepared by stirring carboethoxymethylenetriphenylphosphonium bromide with 10 equivalents of 2 M NaOH in $30 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) under a nitrogen atmosphere at ambient temperature for 48 h . The solvent was removed in vacuo and the products separated by column chromotography (100% petrol) to give $\mathbf{3 4 3}$ as colourless crystals ($600 \mathrm{mg}, 2.3$ $\mathrm{mmol}, 40 \%)$.
m.p. $\quad 78-80^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.91(1 \mathrm{H}, \mathrm{d}, J 15.8 \mathrm{~Hz}, \mathrm{ArCH}=\mathrm{CH}), 7.07$ $(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.69(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.23(1 \mathrm{H}, \mathrm{d}, J 15.8 \mathrm{~Hz}$, $\mathrm{ArCH}=\mathrm{CH}), 5.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.95-5.75(1 \mathrm{H}$, obs. m, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.08(1 \mathrm{H}$, d with fine splitting, $J 9.9 \mathrm{~Hz},=\mathrm{C} H \mathrm{H}), 5.01$ (1 H , d with fine splitting, $J 15.9 \mathrm{~Hz},=\mathrm{CH} H), 4.26(2 \mathrm{H}, \mathrm{q}, J 7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.46\left(2 \mathrm{H}, \mathrm{d}, J 6.2 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 1.34(3 \mathrm{H}, \mathrm{t}, J 7.2$ $\mathrm{Hz}, \mathrm{CH}_{3}$) p.p.m.

${ }^{13} \mathrm{CNMR}$	(75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 167.3(C=O), 149.6$ (C (Ar$)$), 146.9 (C
	(Ar$)$), $142.5(\mathrm{ArCH}=), 136.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 134.8(\mathrm{C}(\mathrm{Ar})$), $126.7(\mathrm{C}$
	(Ar)), $120.5(\mathrm{ArCH}=\mathrm{CH}), 117.4\left(=\mathrm{CH}_{2}\right), 109.7(\mathrm{CH}(\mathrm{Ar})$), 105.8
	$(\mathrm{CH}(\mathrm{Ar})), 101.5\left(\mathrm{OCH}_{2} \mathrm{O}\right), 60.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 37.6\left(\mathrm{ArCH}_{2}\right), 14.4$
	$\left(\mathrm{CH}_{3}\right)$ p.p.m.
	NMR Spectra contain additional peaks due to presence of ca. 10%
	of the cis isomer.
FT-IR	$v_{\text {max }}$ (nujol) $1687 \mathrm{~s}, 1683 \mathrm{~m}, 1462 \mathrm{~s}, 1258 \mathrm{~s}, 1169 \mathrm{~m}, 1038 \mathrm{~s}, 974 \mathrm{~m}$,
	$854 \mathrm{~m}, 722 \mathrm{~m} \mathrm{~cm}^{-1}$.
UV	$\lambda_{\text {max }}(\mathrm{MeOH}) 332(158000), 293$ (133000), 238 (141000), 220 inf.
	(130000) nm.
LRMS	(APCI) 260 ([M] ${ }^{+}, 100 \%$), 231 (9), 215 (20) 186 (33) amu.
HRMS	(CI) Found $[\mathrm{M}+\mathrm{H}]^{+}$261.1127, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$ requires 260.1049 amu
CHN	Found $\mathrm{C} 69.21 \mathrm{H} 6.24, \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C 69.22 H 6.24 .

Ethyl 4b,7,7a,8-tetrahydro-5H-thieno[3', $\left.\mathbf{4}^{\prime}: 1,2\right]$-inden0-[5,6-d][1,3]dioxole-

5-carboxylate 348

A solution of diene 343 ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$), in acetonitrile (20 mL) containing di-tert-butyl disulfide ($342 \mathrm{~g}, 1.92 \mathrm{mmol}$) and triethylborane (0.385 mL of a IM solution in hexanes) was stirred and irradiated in a quartz photochemical reactor
for 4 h . The solution was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, extracted with ether ($3 \times 20 \mathrm{~mL}$) and washed with brine ($2 \times 20 \mathrm{~mL}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and solvent removed in vacuo. Components were separated by column chromatography (2% ether in petrol) to give 348 as a colourless oil (9 $\mathrm{mg}, 0.065 \mathrm{mmol}, 13 \%)$.
${ }^{1} \mathbf{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.69(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.63(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 5.94$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.24\left(2 \mathrm{H}, \mathrm{q}, J 7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.12(1 \mathrm{H}$, app. d, $J 7.3 \mathrm{~Hz}, \mathrm{CHC}=\mathrm{O}), 3.89(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 3.56(1 \mathrm{H}$, app. dddd, J $\left.11.4,7.3,8.2,4.0 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 3.33(1 \mathrm{H}, \mathrm{dd}, J 11.4,6.9 \mathrm{~Hz}$, ArCHH), $3.15(1 \mathrm{H}, \mathrm{dd}, J 16.0,8.2 \mathrm{~Hz}, \mathrm{C} H \mathrm{HS}), 2.78(1 \mathrm{H}, \mathrm{dd}, J$ $16.0,4.0 \mathrm{~Hz}, \mathrm{CH} H \mathrm{~S}), 2.70(1 \mathrm{H}, \mathrm{dd}, J 11.4,4.0 \mathrm{~Hz}, \mathrm{ArCHH})$, $1.21-1.48\left(3 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.

The spectrum contains some additional signals presumed to be alkane (petrol) residues.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 295$ (8400), $235 \mathrm{inf} .(8200), 217$ (13400) nm.
LRMS (APCI) $292\left([M]^{+}, 53 \%\right), 218$ (100) amu.

Ethyl 2-[6-(phenylthiomethyl)-6,7-dihydro-5 H -indeno[5,6-d][1,3]dioxol-5-yl-
acetate 349350

A solution of $343(330 \mathrm{mg}, 1.27 \mathrm{mmol})$ in acetonitrile (20 mL) containing thiophenol ($838 \mathrm{mg}, 2.54 \mathrm{mmol}$) and triethylborane ($1.27 \mathrm{~mL}, 1.27 \mathrm{mmol}$) was stirred and irradiated in a quartz photochemical reactor for $8 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added and the reaction mixture extracted with ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. Purification by column chromotography (5% ether in petrol) gave a major component ($60 \mathrm{mg}, 0.16 \mathrm{mmol}, 12 \%$) comprising a $1: 1$ mixture of diastereoisomers assigned as $\mathbf{3 4 9}$ and $\mathbf{3 5 0}$.
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.41-7.21(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}), 6.71(4 \mathrm{H}, \mathrm{s}, 4$ $\mathrm{x} \mathrm{ArH}), 5.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.17(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.15\left(2 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.60-3.64(1 \mathrm{H}$, $\mathrm{mCHH}), 3.39-3.44(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 3.24-3.06(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}+$ $\left.\mathrm{CH}_{2}\right), 2.97-2.71\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}+\mathrm{CH}\right), 2.65(2 \mathrm{H}, \mathrm{dd}, J 15.3,6.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 2.52\left(2 \mathrm{H}, \mathrm{dd}, J 6.6,2.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.45(2 \mathrm{H}, \mathrm{dd}, J 15.3$, $\left.8.4, \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.27\left(6 \mathrm{H}, \mathrm{t}, J 6.9 \mathrm{~Hz}, 3 \times \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 172.7(C=\mathrm{O}), 172.5(C=\mathrm{O}), 147.2(C$ (Ar)), $147.0(C(\mathrm{Ar})), 146.8(C(\mathrm{Ar})), 146.7(C(\mathrm{Ar})), 138.2(C$ (Ar)), 137.3 (C (Ar)), 136.7, (C (Ar)), 136.3 ($C(\mathrm{Ar})), 134.8(C$ (Ar)), 134.6 ($\mathrm{C}(\mathrm{Ar})), 129.5(2 \times \mathrm{CH}(\mathrm{Ar})), 129.1(2 \times \mathrm{CH}(\mathrm{Ar}))$, $129.1(2 \times C H(A r)), 129.0(2 \times C H(A r)), 126.2(C H(A r)), 126.0$ (CH (Ar)), $105.5(\mathrm{CH}(\mathrm{Ar})), 105.5(\mathrm{CH}(\mathrm{Ar})), 105.0(\mathrm{CH}(\mathrm{Ar}))$, $104.9(\mathrm{CH}(\mathrm{Ar})), 101.1\left(\mathrm{OCH}_{2} \mathrm{O}\right), 101.1\left(\mathrm{OCH}_{2} \mathrm{O}\right), 60.7(2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 47.0(\mathrm{CH}), 45.1(\mathrm{CH}), 43.3(\mathrm{CH}), 42.8(\mathrm{CH}), 40.1$ $\left(\mathrm{CH}_{2}\right), 38.8\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}\right), 34.9\left(\mathrm{CH}_{2}\right), 34.7$ $\left(\mathrm{CH}_{2}\right), 14.3\left(2 \times \mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) 2903brd, 1728s, 1583w, 1474s, 1438m, 1372m, 1251s, $1147 \mathrm{~m}, 1039 \mathrm{~s}, 909 \mathrm{~s} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 294$ (22200), 254 (23500), 227 inf . (17000) nm.
LRMS (CI) 370 ([M] $\left.]^{+}, 28 \%\right), 325$ (12), 260 (29), 172 (100) amu.
HRMS (EI) Found $[M]^{+} 370.1251, \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$ requires 370.1238 amu .

Prepared in accordance with the procedure of Heck. ${ }^{71}$ Compound $339(2.72 \mathrm{~g}, 10$ mmol) was stirred with heating to $80^{\circ} \mathrm{C}$ under a nitrogen atmosphere together with palladium acetate ($22 \mathrm{mg}, 0.1 \mathrm{mmol}$), methyl acrylate ($1.07 \mathrm{~g}, 12.5 \mathrm{mmol}$), triethylamine ($1.26 \mathrm{~g}, 12.5 \mathrm{mmol}$) and triphenylphosphine ($52 \mathrm{mg}, 0.2 \mathrm{mmol}$). After 8 h the mixture was cooled, diluted with ether $(40 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ and the organic layer separated. The aqueous layer was washed with ether (3 x $30 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The product was purified by column chromotography (10% ether in petrol) to give $\mathbf{3 5 1}$ as white crystals ($1.94 \mathrm{~g}, 6.97 \mathrm{mmol}, 70 \%$).
m.p. $\quad 38-40^{\circ} \mathrm{C}$ (ethanol)
${ }^{1}$ H NMR. $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.02(1 \mathrm{H}, \mathrm{d}, J 15.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 7.12(1 \mathrm{H}$, $\mathrm{s}, \operatorname{Ar} H), 7.05(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.25(1 \mathrm{H}, \mathrm{d}, J 15.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 6.0$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}), 5.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OAr}\right), 4.10(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 167.5(\mathrm{C}=\mathrm{O}), 149.4(\mathrm{C}(\mathrm{Ar})), 148.6(C$ (Ar)), $141.1(\mathrm{ArCH}=\mathrm{CH}), 131.9(\mathrm{C}(\mathrm{Ar})), 127.8(\mathrm{C}(\mathrm{Ar})), 118.2$ $(\mathrm{ArCH}=\mathrm{CH}), 109.2(\mathrm{CH}(\mathrm{Ar})), 107.1(\mathrm{CH}(\mathrm{Ar})), 102.6(\mathrm{OCHO})$, $101.8\left(\mathrm{OCH}_{2} \mathrm{O}\right), 65.5\left(2 \times \mathrm{OCH}_{2}\right), 51.8\left(\mathrm{OCH}_{3}\right)$ p.p.m.

FT-IR $\quad \quad_{\text {max }}$ (nujol) $1716 \mathrm{~s}, 1635 \mathrm{~s}, 1501 \mathrm{~s}, 1461 \mathrm{~s}, 1376 \mathrm{~s}, 1190 \mathrm{~s}, 1093 \mathrm{~s}$, $1035 \mathrm{~s}, 975 \mathrm{~m}, 930 \mathrm{~m}, 858 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 302(18400), 273$ (25700), 229 (34000) nm.

LRMS (CI) $278\left([\mathrm{M}]^{\dagger}, 100 \%\right), 219(100), 205(85), 175$ (86) amu.
HRMS (EI) Found [M] ${ }^{+} 278.0777, \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}$ requires 278.0790 amu .

Methyl (E)-3-(4,5-[methylenedioxy]-2-formylphenyl)propenoate 352 ${ }^{72}$

Acetal 351 ($2.0 \mathrm{~g}, 7.1 \mathrm{mmol}$) was stirred in THF (20 mL) at ambient temperature. Hydrochloric acid (0.5 mL of a 2 M solution) was added and the reaction allowed to stir for 15 min . The precipated product was collected by filtration to give $\mathbf{3 5 2}$ as cream crystals ($1.54 \mathrm{~g}, 6.58 \mathrm{mmol}, 90 \%$).
m.p. $\quad 182-183^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) \mathrm{lit}^{72} 178-180\left(\mathrm{CHCl}_{3} /\right.$ hexane $)$.
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 10.26(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.45(1 \mathrm{H}, \mathrm{d}, J 15.8$ $\mathrm{Hz}, \mathrm{ArCH}=\mathrm{CH}), 7.37(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.06(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.33(1 \mathrm{H}$, d, $J 15.8 \mathrm{~Hz}, \mathrm{ArCH}=\mathrm{C} H), 6.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.84(3 \mathrm{H}, \mathrm{s}$, OCH_{3}) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 188.9(\mathrm{CHO}), 167.1(\mathrm{C}=\mathrm{O}), 152.7(\mathrm{C}$ (Ar)), $149.7(C(\mathrm{Ar})), 139.8(\mathrm{ArCH}=\mathrm{CH}), 133.8(\mathrm{C}(\mathrm{Ar})), 129.7$ $(C(\mathrm{Ar})), 121.9(\mathrm{ArCH}=C \mathrm{H}), 109.2(\mathrm{CH}(\mathrm{Ar})), 106.9(\mathrm{CH}(\mathrm{Ar}))$, $102.6\left(\mathrm{OCH}_{2} \mathrm{O}\right), 52.1\left(\mathrm{OCH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (nujol) $1745 \mathrm{~m}, 1668 \mathrm{~s}, 1607 \mathrm{~s}, 1488 \mathrm{~s}, 1432 \mathrm{~m}, 1239 \mathrm{~m}, 1178 \mathrm{~m}$, $1061 \mathrm{~m}, 975 \mathrm{w}, 866 \mathrm{w}, 787 \mathrm{w} \mathrm{cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 320(51400), 263$ (91200), 234 (94700) nm.

LRMS (APCI) $235\left([\mathrm{M}+\mathrm{H}]^{+}, 18 \%\right), 203$ (100), 175 (78) amu.
These data were consistent with those reported in the literature. ${ }^{72}$

Methyl (E)-3-(6-acryloyl-1,3-benzodioxole-5-yl)-2-propenoate 354

Compound 353 ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) was stirred at ambient temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ together with $\mathrm{BaMnO}_{4}(243 \mathrm{mg}, 0.95 \mathrm{mmol})$ under a nitrogen atmosphere for 7 h . The mixture was filtered through a plug of celite and solvent removed from the filtrate in vacuo. The product was purified by column chromatography to give $\mathbf{3 5 4}$ as cream crystals ($43 \mathrm{mg}, 0.16 \mathrm{mmol}, 87 \%$).
m.p. $\quad 70-72^{\circ} \mathrm{C}$ (ethanol).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.84(1 \mathrm{H}, \mathrm{d}, J 15.6 \mathrm{~Hz}, \mathrm{ArCH}=\mathrm{CH}), 7.08$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.98(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 6.75(1 \mathrm{H}, \mathrm{dd}, J 17.3,10.6 \mathrm{~Hz}$, $\mathrm{C} H=\mathrm{CHH}), 6.22(1 \mathrm{H}, \mathrm{d}, J 15.6, \mathrm{ArCH}=\mathrm{C} H), 6.18(1 \mathrm{H}, \mathrm{d}, J 17.3$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH} H), 6.04(1 \mathrm{H}, \mathrm{d}, J, 10.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 6.05(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 193.7 \quad(\mathrm{ArC}=\mathrm{O}), 167.1 \quad\left(\mathrm{CH}_{3} \mathrm{OC}=\mathrm{O}\right)$, 152.7 (C (Ar$)$), $149.7(\mathrm{C}(\mathrm{Ar})), 142.4(\mathrm{ArCH}=\mathrm{CH}), 136.0$ $(\mathrm{ArCH}=\mathrm{CH}), 133.7(\mathrm{C}(\mathrm{Ar})), 132.0\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 129.9(\mathrm{C}(\mathrm{Ar}))$, $119.0\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 109.1(\mathrm{CH}(\mathrm{Ar})), 106.8(\mathrm{CH}(\mathrm{Ar})), 102.4$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 51.8\left(\mathrm{CH}_{3}\right)$ p.p.m.

The NMR spectra also contain signals relating to compound 352.

FT-IR $\quad V_{\max }$ (neat film) $3019 \mathrm{~s}, 2903 \mathrm{~m}, 1718 \mathrm{~s}, 1610 \mathrm{~s}, 1437 \mathrm{~s}, 1041 \mathrm{~s}$, 1264s, $1176 \mathrm{~s}, 1090 \mathrm{~m}, 972 \mathrm{~m}, 856 \mathrm{w} \mathrm{cm}^{-1}$.

UV $\quad \lambda_{\max }(\mathrm{MeOH}) 320(70400), 236(150900) \mathrm{nm}$.
LRMS (CI) $261\left(54 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 175$ (100) amu.
HRMS (EI) Found [M] ${ }^{+} 260.0677, \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$ requires 260.0685 amu .

Ethyl-3-[2-formylphenyl]-2-propenoate 357^{73}

2-Bromobenzaldehyde 356 ($10 \mathrm{~g}, 54 \mathrm{mmol}$) was stirred with heating to $100^{\circ} \mathrm{C}$ under a nitrogen atmosphere together with palladium acetate ($1.03 \mathrm{~g}, 5.4 \mathrm{mmol}$), ethyl acrylate ($6.49 \mathrm{~g}, 54 \mathrm{mmol}$), triethylamine $(6.54 \mathrm{~g}, 54 \mathrm{mmol}$) and triphenylphosphine $(2.83 \mathrm{~g}, 10.8 \mathrm{mmol})$. After 16 h the mixture was cooled, diluted with ether (50 mL) and water $(50 \mathrm{~mL})$ and the organic layer separated. The aqueous layer was washed with ether ($2 \times 30 \mathrm{~mL}$), the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The product was purified by column chromotography (10% ether in petrol) to give 357 as a colourless oil ($6.23 \mathrm{~g}, 30 \mathrm{mmol}, 56 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 10.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.44(1 \mathrm{H}, \mathrm{d}, J 15.8 \mathrm{~Hz}$, $=\mathrm{CH}), 7.78(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.58-7.42(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH})$, $6.29(1 \mathrm{H}, \mathrm{d}, J 15.8 \mathrm{~Hz},=\mathrm{CH}), 4.18\left(2 \mathrm{H}, \mathrm{q}, J 6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.24$ $\left(3 \mathrm{H}, \mathrm{t}, J 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.

```
\({ }^{13} \mathrm{C}\) NMR \(\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 191.8(\mathrm{CHO}), 166.1(\mathrm{OC}=\mathrm{O}), 140.9(=\mathrm{CH})\),
    136.3 ( \(C\) ( Ar\()\) ), \(133.9(=C H), 133.8(C(\mathrm{Ar})), 133.1(C H(\mathrm{Ar}))\),
    \(132.4(\mathrm{CH}(\mathrm{Ar})), 128.2(\mathrm{CH}(\mathrm{Ar})), 125.6(\mathrm{CH}(\mathrm{Ar})), 60.2\left(\mathrm{CH}_{2}\right)\),
    \(14.2\left(\mathrm{CH}_{3}\right)\) p.p.m.
FT-IR \(\quad v_{\text {max }}\) (neat) \(2981 \mathrm{~s}, 1710 \mathrm{~s}, 1636 \mathrm{~s}, 1481 \mathrm{~s}, 1392 \mathrm{~m}, 1317 \mathrm{~m}, 1281 \mathrm{~s}\),
    \(1034 \mathrm{~s}, 888 \mathrm{~m}, 819 \mathrm{~m}, 764 \mathrm{~m} \mathrm{~cm}^{-1}\).
UV \(\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 293\) (7700), 254 (14000), 221 (22600) nm.
LRMS (APCI) \(246\left(\left[\mathrm{MCH}_{3} \mathrm{CN}^{+}, 100 \%\right), 205\left([\mathrm{MH}]^{+}, 38 \%\right), 120\right.\) (48)
amu.
```

These data were fully consistent with those reported in the literature. ${ }^{73}$

Ethyl 3-(2-[3-ethoxy-3-oxo-1-propenyllphenyl)-2-propenoate 358 ${ }^{74}$

Aldehyde 357 ($4.24 \mathrm{~g}, 27 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ together with ylid 342 ($4.004 \mathrm{~g}, 0.011 \mathrm{~mol}$), (prepared by stirring carboethoxymethylenetriphenylphosphonium bromide with 10 equivalents of 2 M NaOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL)) under a nitrogen atmosphere at ambient temperature for 48 h . The solvent was removed in vacuo and the products separated by column chromotography (20% ether in petrol) to give 358 as yellow crystals ($2.83 \mathrm{~g}, 10 \mathrm{mmol}, 38 \%$).
m.p. $\quad 81^{\circ} \mathrm{C}$ (petrol), $\mathrm{lit}^{74} 74^{\circ} \mathrm{C}$ (hexane)
 These data were consistent with those reported in the literature. ${ }^{74}$

Dimethyl 2,2-diallylmalonate 364^{75}

Allyl bromide ($5.19 \mathrm{~mL}, 60 \mathrm{mmol}$) was stirred in acetone $(50 \mathrm{~mL})$ together with $\mathrm{NaI}(9.1 \mathrm{~g}, 60 \mathrm{mmol})$ for 20 min . Dimethyl malonate $363(2.0 \mathrm{~g}, 15 \mathrm{mmol})$ was then added via syringe and the mixture stirred at ambient temperature for 20 min . DBU ($4.48 \mathrm{~mL}, 30 \mathrm{mmol}$) was then added via syringe and the whole was allowed to stir for 24 h . The mixture was diluted with water (20 mL) and extracted into ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ concentrated in vacuo and purified by column
chromotography (5% ether in petrol) to give 364 as a colourless oil ($1.21 \mathrm{~g}, 5.6$ $\mathrm{mmol}, 37 \%)$.
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.68-5.55(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CH}), 5.09(2 \mathrm{H}, \mathrm{d}, J$ $15.8 \mathrm{~Hz}, 2 \mathrm{x}=\mathrm{CHH}), 5.08(2 \mathrm{H}, \mathrm{d}, J 11.8 \mathrm{~Hz}, 2 \mathrm{x}=\mathrm{CHH}), 3.67$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 2.63\left(4 \mathrm{H}, \mathrm{d}, J 7.3 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right)$ p.p.m.
${ }^{13}$ C NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 171.2(2 \times \mathrm{C}=\mathrm{O}), 132.3(2 \mathrm{x}=\mathrm{CH}), 119.3(2$ $\left.\mathrm{x}=\mathrm{CH}_{2}\right), 57.7\left(\mathrm{CCH}_{2}\right), 52.4\left(2 \times \mathrm{OCH}_{3}\right), 37.0\left(2 \times \mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2951 \mathrm{~m}, 1732 \mathrm{~s}, 1639 \mathrm{~m}, 1436 \mathrm{~mm}, 1325 \mathrm{~m}, 1218 \mathrm{~m}$, $1144 \mathrm{~m}, 1030 \mathrm{w}, 994 \mathrm{w}, 854 \mathrm{wcm}^{-1}$.

LRMS (CI) $213\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$ amu.
These data were consistent with those reported in the literature. ${ }^{75}$

2,2-Diallyl-1,3-cyclohexandione 366^{76}

Allyl bromide ($9.24 \mathrm{~mL}, 106 \mathrm{mmol}$) was stirred in acetone (100 mL) together with $\mathrm{NaI}(12.1 \mathrm{~g}, 106 \mathrm{mmol})$ for 20 min . Dione $365(3 \mathrm{~g}, 26.7 \mathrm{mmol})$ was then added as a solution in acetone (10 mL) via syringe and the mixture stirred at ambient temperature for 20 min . DBU ($7.98 \mathrm{~mL}, 53.4 \mathrm{mmol}$) was then added via syringe and the whole was allowed to stir for 24 h . The mixture was diluted with water $(20 \mathrm{~mL})$ and extracted into ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo
and purified by column chromotography (10% ether in petrol) to give 366 as a colourless oil ($2.75 \mathrm{~g}, 14 \mathrm{mmol}, 53 \%$).
 These data were fully consistent with those reported in the literature. ${ }^{76}$

Ethyl-2-acetyl-2-allyl-4-penteneoate 368^{77}

367
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3} 130$
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} 210$

Allyl bromide ($5.19 \mathrm{~mL}, 60 \mathrm{mmol}$) was stirred in acetone $(50 \mathrm{~mL})$ together with $\mathrm{NaI}(9.1 \mathrm{~g}, 60 \mathrm{mmol})$ for $20 \mathrm{~min} .367(1.95 \mathrm{~g}, 15 \mathrm{mmol})$ was then added via syringe and the mixture stirred at ambient temperature for 20 min . DBU (4.48 $\mathrm{mL}, 30 \mathrm{mmol}$) was then added via syringe and the whole was allowed to stir for 24 h . The mixture was diluted with water (20 mL) and extracted into ether (3 x $30 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried
$\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (5% ether in petrol) to give 368 as a colourless oil ($1.503 \mathrm{~g}, 7.1 \mathrm{mmol}, 47 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.52(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CH}), 5.04(2 \mathrm{H}, \mathrm{d}, J 15.8$ $\mathrm{Hz},=\mathrm{CHH}), 5.01(2 \mathrm{H}, \mathrm{d}, J 11.4 \mathrm{~Hz},=\mathrm{CH} H), 4.12(2 \mathrm{H}, \mathrm{q}, J 7.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.46-2.65\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}\right), 2.11(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 204.1(\mathrm{C}=\mathrm{O}), 171.5(\mathrm{OC}=\mathrm{O}), 132.3(2 \mathrm{x}$ $=\mathrm{CH}), 119.2\left(2 \mathrm{x}=\mathrm{CH}_{2}\right), 63.2\left(\mathrm{CCH}_{2}\right), 61.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 36.1(2 \mathrm{x}$ $\left.\mathrm{CHCH}_{2}\right), 27.0\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) $2949 \mathrm{~m}, 1729 \mathrm{brs}, 1453 \mathrm{~m}, 1433 \mathrm{~s}, 1253 \mathrm{~s}, 1205 \mathrm{~s}, 1161 \mathrm{~m}$, $1084 \mathrm{~m}, 1022 \mathrm{w}, 907 \mathrm{w}, \mathrm{cm}^{-1}$.

LRMS (CI) $211\left(\left[\mathrm{MH}^{+}, 100 \%\right) \mathrm{amu}\right.$.
These data were fully consistent with those reported in the literature. ${ }^{77}$

Methyl 2-allyl-4-pentenoate 368^{78}

Compound 364 ($500 \mathrm{mg}, 2.3 \mathrm{mmol}$) was stirred in DMSO (40 mL) together with $\mathrm{NaCl}(151 \mathrm{mg}, 2.53 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.165 \mathrm{~mL}, 9.2 \mathrm{mmol})$ and the mixture heated to reflux for 28 h . The mixture was diluted with ether (30 mL) and washed with water $(20 \mathrm{~mL})$. The organic layer was washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (10% ether in petrol) to give $\mathbf{3 6 9}$ as a colourless oil ($311 \mathrm{mg}, 2.0 \mathrm{mmol}, 88 \%$).

```
\({ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.74(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CH}), 5.10-4.98(4 \mathrm{H}, \mathrm{m}\), \(\left.=\mathrm{CH}_{2}\right), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.54(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.35(2 \mathrm{H}, \mathrm{ddd}, J\) \(\left.10.1,7.1,6.6 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 2.28(2 \mathrm{H}, \mathrm{ddd}, J 10.1,7.1,6.6 \mathrm{~Hz}\), \(\mathrm{CHCH}_{2}\) ) p.p.m.
\({ }^{13} \mathbf{C} \mathbf{N M R} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 175.5(\mathrm{C}=\mathrm{O}), 135.3(2 \mathrm{x}=\mathrm{CH}), 117.1(2 \mathrm{x}\) \(\left.=\mathrm{CH}_{2}\right), 51.5\left(\mathrm{OCH}_{3}\right), 45.1(\mathrm{CH}), 35.9\left(2 \times \mathrm{CHCH}_{2}\right)\) p.p.m.
FT-IR \(\quad v_{\text {max }}\) (neat) \(2950 \mathrm{~s}, 1738 \mathrm{~s}, 1642 \mathrm{~s}, 1441 \mathrm{~s}, 1369 \mathrm{~s}, 1267 \mathrm{~s}, 1139 \mathrm{~s}\), \(994 \mathrm{~s}, 832 \mathrm{~m} \mathrm{~cm}^{-1}\).
LRMS (CI) \(155\left([\mathrm{MH}]^{+}, 100 \%\right)\) amu.
These data were fully consistent with those reported in the literature. \({ }^{78}\)
```


3-Allyltetrahydro-2-furanone ${ }^{79}$

370
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2} 86$
$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2} 126$

Diisopropylamine ($0.812 \mathrm{~mL}, 10 \mathrm{mmol}$) was stirred in THF (40 mL) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. n - BuLi (13.3 mL of a 1.5 M solution) was added via syringe over 2 min and the mixture allowed to warm to ambient temperature. The solution was then cooled to $-78^{\circ} \mathrm{C}$ and the lactone was added as a solution in THF (5 mL). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and allyl bromide ($3.63 \mathrm{~mL}, 30 \mathrm{mmol}$) added via syringe. After warming to ambient temperature over lh , water (20 mL) was added and the mixture extracted with ether (2×30 mL). The combined organic layers were washed with brine (20 mL), dried
$\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and the product purified via column chromatography to give the monoallylated product as a colourless oil ($510 \mathrm{mg}, 4$ mmol, 41\%).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82-5.66(1 \mathrm{H}, \mathrm{m},=\mathrm{C} H), 5.11(1 \mathrm{H}, \mathrm{d}, J$ $12.5 \mathrm{~Hz},=\mathrm{C} H \mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{d}, J 9.9 \mathrm{~Hz},=\mathrm{CHH}), 4.31(1 \mathrm{H}, \mathrm{app}$. $\mathrm{td}, J 8.8,2.9 \mathrm{~Hz}, \mathrm{OCHH}), 4.21-4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 2.68-2.43$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.39-2.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.07-1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 179.1(\mathrm{C}=\mathrm{O}), 134.5(=\mathrm{CH}), 117.8\left(=\mathrm{CH}_{2}\right)$, $66.7\left(\mathrm{OCH}_{2}\right), 38.9\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 27.9(\mathrm{CH})$ p.p.m.

FT-IR $\quad v_{\text {max }} 2910 \mathrm{~s}, 1771 \mathrm{~s}, 1641 \mathrm{~m}, 1453 \mathrm{~m}, 1374 \mathrm{~s}, 1306 \mathrm{w}, 1212 \mathrm{~s}, 1166 \mathrm{~s}$, $998 \mathrm{~m}, 918 \mathrm{~s} \mathrm{~cm}^{-1}$.

LRMS (CI) $144\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 127\left([\mathrm{MH}]^{+}, 77 \%\right) \mathrm{amu}$.
These data were fully consistent with those reported in the literature. ${ }^{79}$

3,3-Diallyltetrahydro-2-furanone 371 ${ }^{80}$

Diisopropylamine ($0.594 \mathrm{~mL}, 5.5 \mathrm{mmol}$) was stirred in THF (40 mL) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. $n-\operatorname{BuLi}(3.3 \mathrm{~mL}$ of a 1.25 M solution) was added via syringe over 2 min and the mixture allowed to warm to ambient temperature. The solution was the cooled to $-78^{\circ} \mathrm{C}$ and the allyllactone ($347 \mathrm{mg}, 2.75 \mathrm{mmol}$)
was added as a solution in THF (5 mL). After 10 min allyl bromide $(0.714 \mathrm{~mL}$, 7.5 mmol) was added via syringe. The mixture was then warmed to ambient temperature over 30 min and was stirred for a further 1 h . Water (20 mL) was then added and the mixture extracted with ether ($2 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (5% ether in petrol) to give $\mathbf{3 7 1}$ product as a colourless oil ($327 \mathrm{mg}, 1.96 \mathrm{mmol}, 87 \%$).
${ }^{1} \mathbf{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.87-5.71(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CH}), 5.15(2 \mathrm{H}, \mathrm{d}$, $J 15.8 \mathrm{~Hz} 2 \mathrm{x}=\mathrm{CHH}), 5.11(2 \mathrm{H}, \mathrm{d}, J 11.4 \mathrm{~Hz}, 2 \mathrm{x}=\mathrm{CHH}) 4.20$ ($2 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $2.65-2.24\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.16(2 \mathrm{H}$, $\mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{2}$) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 180.6(\mathrm{C}=\mathrm{O}), 132.7(2 \mathrm{x}=\mathrm{CH}), 119.8(2 \mathrm{x}$ $\left.=\mathrm{CH}_{2}\right), 65.5\left(\mathrm{OCH}_{2}\right), 46.2\left(\mathrm{CCH}_{2}\right), 41.0\left(2 \times \mathrm{CH}_{2} \mathrm{CH}\right), 30.5\left(\mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2910 \mathrm{~s}, 1771 \mathrm{~s}, 1374 \mathrm{~s}, 1306 \mathrm{w}, 1212 \mathrm{~s}, 1022 \mathrm{~s}, 955 \mathrm{~m}$, $822 \mathrm{w} \mathrm{cm}^{-1}$.

LRMS
(CI) $184\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 167\left([\mathrm{MH}]^{+}, 93 \%\right) \mathrm{amu}$.

These data were fully consistent with those reported in the literature. ${ }^{80}$

3,3-Diallyltetrahydro-2HI-2-pyranone 373^{80}

Diisopropylamine (4.32 mL , 50 mmol) was stirred in THF (40 mL) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. n - BuLi (34 mL of a 1.4 M solution) was added via syringe over 2 min and the mixture allowed to warm to ambient temperature. The solution was then cooled to $-78^{\circ} \mathrm{C}$ and the lactone ($2.0 \mathrm{~g}, 20 \mathrm{mmol}$) was added as a solution in THF (5 mL). After 10 min allyl bromide $(5.1 \mathrm{~mL}, 60$ mmol) was added via syringe. The mixture was allowed to warm to ambient temperature over 30 min then stimred for 1 h . Water (20 mL) was added and the mixture was extracted with ether ($2 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography to give the bis-allylated product as a colourless oil ($2.84 \mathrm{~g}, 15.7 \mathrm{mmol}, 87 \%$).
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.82-5.66(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CH}), 5.11(2 \mathrm{H}, \mathrm{d}$, $J 9.8 \mathrm{~Hz}, 2 \mathrm{x}=\mathrm{CHH}), 5.10(2 \mathrm{H}, \mathrm{d}, J 18.3 \mathrm{~Hz}, 2 \mathrm{x}=\mathrm{CHH}), 4.31-$ $4.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.54\left(2 \mathrm{H}, \mathrm{dd}, J 13.1,6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.19$ ($2 \mathrm{H}, \mathrm{dd}, J 13.6,8.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=$), $1.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 175.2(\mathrm{C}=\mathrm{O}), 133.3(2 \mathrm{x}=\mathrm{CH}), 119.3(2 \mathrm{x}$ $\left.\mathrm{CH}_{2}=\right), 70.4\left(\mathrm{OCH}_{2}\right), 46.0(\mathrm{CC}=\mathrm{O}), 43.9\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\right), 28.6$ $\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{2}\right)$ p.p.m.

$$
\begin{array}{ll}
\text { FT-IR } & v_{\max } \text { (neat) } 2934 \mathrm{~s}, 1726 \mathrm{~s}, 1638 \mathrm{~m}, 1438 \mathrm{~m}, 1231 \mathrm{~s}, 1166 \mathrm{~s}, 1085 \mathrm{~m}, \\
& 996 \mathrm{~m}, 638 \mathrm{w} \mathrm{~cm}^{-1} . \\
\text { LRMS } & (\mathrm{CI}) 181\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right), 198.2\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 60 \%\right), 139(31) \\
& \mathrm{amu} .
\end{array}
$$

These data were fully consistent with those reported in the literature. ${ }^{80}$

Dimethyl cis-perhydrocyclopentathiophene-5,5-dicarboxylate 374

Compound 364 ($500 \mathrm{mg}, 2.3 \mathrm{mmol}$) was stirred in hexane (90 mL) together with $(t \mathrm{BuS})_{2}(2.27 \mathrm{~mL}, 11.5 \mathrm{mmol})$ under $\mathrm{h} v$ irradiation in a quartz vessel for 36 h. The mixture was partitioned between water (20 mL) and ether (20 mL) and the aqueous phase was extracted further with ether ($2 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (5\% ether in petrol) to give 374 as a colourless oil ($258 \mathrm{mg}, 0.94 \mathrm{mmol}, 46 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $2.93-2.77\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.59-2.44\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.98$ $-1.87(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH})$ p.p.m.
${ }^{13} \mathbf{C} \mathbf{N M R} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 52.8\left(\mathrm{CCH}_{2}\right), 52.7(2 \mathrm{x} \mathrm{OCH} 3), 46.7(2 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 39.9(2 \times \mathrm{CH}), 38.4\left(2 \times \mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) $2934 \mathrm{~m}, 1713 \mathrm{~s}, 1640 \mathrm{~m}, 1442 \mathrm{~m}, 1278 \mathrm{~s}, 1208 \mathrm{~s}, 1096 \mathrm{~m}$, $992 \mathrm{~m}, 921 \mathrm{~s}, 855 \mathrm{wcm}^{-1}$.

LRMS (CI) $262\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 36 \%\right), 245\left([\mathrm{MH}]^{+}, 100 \%\right) 213(76) \mathrm{amu}$.
HRMS (CI) Found $[\mathrm{M}]^{+} 244.0771, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ requires 244.0769 amu .

Methyl cis-perhydrocyclopentathiophene-5-carboxylate 375

Compound 369 ($1 \mathrm{~g}, 6.4 \mathrm{mmol}$) was stirred in hexane (90 mL) together with $(t \mathrm{BuS})_{2}(5.69 \mathrm{~g}, 32 \mathrm{mmol})$ under $\mathrm{h} v$ irradiation for 36 h in a quartz photochemical cell. Water (20 mL) was added and the mixture extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (5% ether in petrol) to give a single diastereoisomer of $\mathbf{3 7 5}$ as a colourless oil ($500 \mathrm{mg}, 2.7 \mathrm{mmol}, 42 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.71\left(3 \mathrm{H} \mathrm{s}, \mathrm{OCH}_{3}\right), 2.87-2.68(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\mathrm{SCHH}+2 \times \mathrm{CH}), 2.68-2.59(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{O}), 2.58-2.51(2 \mathrm{H}$, $\mathrm{m}, 2 \times \mathrm{SCHH}), 2.21-2.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.71-1.58(2 \mathrm{H}, \mathrm{m}$, CH_{2}) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 175.4(\mathrm{C}=\mathrm{O}), 51.7\left(\mathrm{OCH}_{3}\right), 47.5(2 \times \mathrm{CH})$, $45.0\left(\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 38.5\left(2 \times \mathrm{CH}_{2}\right), 36.2\left(2 \times \mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2935 \mathrm{w}, 1723 \mathrm{~s}, 1453 \mathrm{w}, 1258 \mathrm{~m}, 1190 \mathrm{~m}, 1153 \mathrm{~m}$, $1060 \mathrm{w}, 931 \mathrm{w} \mathrm{cm}^{-1}$.

LRMS (CI) $186\left([\mathrm{M}]^{+}, 100 \%\right), 155(79), 126(80) \mathrm{amu}$.
HRMS (EI) Found $\left[\mathrm{M}^{+} 186.0715, \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}\right.$ requires 186.0715 amu .

cis-~Spirol2,2-(perhydrocyclopentathiophene)-5,2'-(-1', 3'-

cyclohexanedionel 376

Compound $365(1.0 \mathrm{~g}, 5.2 \mathrm{mmol})$ was stirred in hexane (90 mL) together with $(t-\mathrm{BuS})_{2}(4.62 \mathrm{~mL}, 25 \mathrm{mmol})$ under $\mathrm{h} v$ irradiation in a quartz vessel for 24 h. Water (20 mL) was added and the mixture extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and by column chromotography (10% ether in petrol) to give 376 as a colourless oil ($407 \mathrm{mg}, 1.8 \mathrm{mmol}, 46 \%$).
${ }^{1} \mathbf{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.91-2.84\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{~S}\right), 2.71-2.48$ ($6 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{CH}+2 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 2.23 (2 H , app. q., J 5.14 Hz , $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.93(4 \mathrm{H}$, app. q, $J 7.7 \mathrm{~Hz}, 2 \times \mathrm{CCH}$) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 208.5(\mathrm{C}=\mathrm{O}), 207.5(\mathrm{C}=\mathrm{O}), 74.4(\mathrm{CC}=\mathrm{O})$, $47.6\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{CH}\right), 38.6\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 38.1\left(2 \times \mathrm{CH}_{2} \mathrm{~S}\right), 37.5(2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 37.3\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 18.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ p.p.m.

NMR Spectra also contain peaks due to petrol residues.
FT-IR $\quad v_{\max }$ (neat) $2959 \mathrm{~m}, 2359 \mathrm{~m}, 1724 \mathrm{~s}, 1633 \mathrm{~s}, 1458 \mathrm{~m}, 1437 \mathrm{~m}, 1276 \mathrm{w}$, $1032 \mathrm{w} \mathrm{cm}^{-1}$.

LRMS (CI) 224 ([M] $]^{+}, 100 \%$) amu.
HRMS (CI) Found $[\mathrm{M}]^{+} 225.0957, \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S}$ requires 225.0949 amu

5-Acetyl-5-carboethoxy-2-thiabicyclo[3.3.0]octane 377, 378

Compound 368 ($500 \mathrm{mg}, 2.3 \mathrm{mmol}$) was stirred in hexane (90 mL) together with $(t \mathrm{BuS})_{2}(2.27 \mathrm{~mL}, 11.5 \mathrm{mmol})$ under $\mathrm{h} v$ irradiation in a quartz vessel for 24 h . Water (20 mL) was added and the mixture was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (10% ether in petrol) to give $\mathbf{3 7 7}$ and $\mathbf{3 7 8}$ as a colourless oil ($250 \mathrm{mg}, 0.94 \mathrm{mmol}, 45 \%$). and a 1:1 mixture of diastereoisomers

${ }^{1} \mathrm{H}$ NMR \quad	$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.24-4.11\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.98-2.71$
	$(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{SCH}), 2.52-2.41\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 2.14(6 \mathrm{H}, \mathrm{s}$,
	$\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 2.0-1.82\left(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CHCH}_{2}\right), 1.36-1.24(6 \mathrm{H}, \mathrm{m}, 2$
	$\left.\times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ p.p.m.

${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 204.1(\mathrm{C}=\mathrm{O}), 203.6(\mathrm{C}=\mathrm{O}), 172.7(\mathrm{OC}=\mathrm{O})$,
$172.1(\mathrm{OC}=\mathrm{O}), 68.6\left(\mathrm{CCH}_{2}\right), 67.8\left(\mathrm{CCH}_{2}\right), 61.6\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$,
$46.8\left(2 \times \mathrm{SCH}_{2}\right), 46.7\left(2 \times \mathrm{SCH}_{2}\right), 38.7\left(2 \times \mathrm{CH}_{2}\right), 38.3\left(2 \times \mathrm{CH}_{2}\right)$, $38.2\left(2 \times \mathrm{C}=\mathrm{OCH}_{3}\right), 26.9\left(2 \times \mathrm{CHCH}_{2}\right), 25.9\left(2 \times \mathrm{CHCH}_{2}\right), 14.1$ ($2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$) p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2974 \mathrm{~m}, 1712 \mathrm{br}, 1444 \mathrm{~m}, 1354 \mathrm{~m}, 1241 \mathrm{~s}, 1197 \mathrm{~s}, 1086 \mathrm{~m}$, $1017 \mathrm{~m}, 859 \mathrm{w} \mathrm{cm}^{-1}$.

LRMS (CI) $260\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 34 \%\right) 243\left([\mathrm{MH}]^{+}, 100 \%\right), 197(85) \mathrm{amu}$.
HRMS (EI) Found [M] $]^{+}$242.9743, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ requires 242.9767 amu .

Spiro](perhydrofuran-2-one)-3.5'-(2'thiabicyclo[3.3.0]octane)] 379, 380

Compound 371 ($385 \mathrm{mg}, 2.3 \mathrm{mmol}$) was stirred in hexane $(90 \mathrm{~mL}$) together with $(t \mathrm{BuS})_{2}(1.9 \mathrm{~mL}, 7.6 \mathrm{mmol})$ under $\mathrm{h} \nu$ irradiation in a quartz vessel for 18 h . Water (20 mL) was added and the mixture was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (5\% ether in petrol) to give firstly $\mathbf{3 7 9}$ as a colourless solid ($80 \mathrm{mg}, 0.4 \mathrm{mmol}, 18 \%$) followed by 380 ($80 \mathrm{mg}, 0.4 \mathrm{mmol}, 18 \%$).

Data for $\mathbf{3 7 9}$
m.p. $\quad 85-87^{\circ} \mathrm{C}$ (ethanol)
${ }^{1} \mathrm{H} \operatorname{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.21(2 \mathrm{H}, \mathrm{t}, J 6.9 \mathrm{~Hz}, \mathrm{OCH} 2), 3.19-3.07$ $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}), 2.89\left(2 \mathrm{H}, \mathrm{dd}, J 12.1,6.6 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 2.49(2 \mathrm{H}, \mathrm{d}$, $J 9.4 \mathrm{~Hz}, \mathrm{SCH}), 2.31-2.19\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CCH}_{2}\right), 1.49(2 \mathrm{H}, \mathrm{dd}, J$ $6.6,6.9 \mathrm{~Hz}, \mathrm{CCH}_{2}$) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 181.9(\mathrm{C}=\mathrm{O}), 66.1\left(\mathrm{OCH}_{2}\right), 50.0\left(\mathrm{CCH}_{2}\right)$, $47.1(2 \times \mathrm{CH}), 41.9\left(2 \times \mathrm{SCH}_{2}\right), 38.8\left(2 \times \mathrm{CCH}_{2}\right), 35.6\left(\mathrm{CCH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) $2935 \mathrm{w}, 1760 \mathrm{~s}, 1450 \mathrm{w}, 1370 \mathrm{~m}, 1115 \mathrm{~m}, 1019 \mathrm{~s}, 910 \mathrm{w}$, $733 \mathrm{~m} \mathrm{~cm}^{-1}$.

LRMS (CI) $216\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 198\left([\mathrm{MH}]^{+}, 64 \%\right) \mathrm{amu}$.
HRMS (EI) Found $[\mathrm{M}]^{+} 198.0712, \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires 198.0715 amu .

Data for $\mathbf{3 8 0}$

m.p. $\quad 85-6^{\circ} \mathrm{C}$ (ethanol)
${ }^{1} \mathrm{H}$ NMR $\left.\quad(300 \mathrm{MHz}, \mathrm{CDCl} 3) \delta_{\mathrm{H}} 4.26(2 \mathrm{H}, \mathrm{t}, J 6.9 \mathrm{~Hz}, \mathrm{OCH})_{2}\right), 2.97-2.78$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}, \mathrm{SCH} H_{2}\right), 2.55\left(2 \mathrm{H}\right.$, app.d, $\left.J 10.3 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 2.07$ ($2 \mathrm{H}, \mathrm{t}, J 6.9 \mathrm{~Hz} \mathrm{CCH} 2$), $2.04-1.77\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right.$) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad(75.5 \mathrm{MHz}, \mathrm{CDCl} 3) \delta_{\mathrm{C}} 180.9(\mathrm{C}=\mathrm{O}), 65.4\left(\mathrm{OCH}_{2}\right), 50.0\left(\mathrm{CCH}_{2}\right)$, $47.1(2 \times \mathrm{CH}), 41.9\left(2 \times \mathrm{SCH}_{2}\right), 38.3\left(2 \times \mathrm{CCH}_{2}\right), 35.4\left(\mathrm{CCH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) $2860 \mathrm{w}, 1760 \mathrm{~s}, 1450 \mathrm{w}, 1371 \mathrm{~m}, 1176 \mathrm{~m}, 1019 \mathrm{~s}, 910 \mathrm{w}$, $733 \mathrm{~s} \mathrm{~cm}^{-1}$.

LRMS (CI) $216\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 26 \%\right), 199\left([\mathrm{MH}]^{+}, 100 \%\right) \mathrm{amu}$.
HRMS (EI) Found [M] ${ }^{+}$198.0713, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires 198.0715 amu .

Spiro[(perhydropyran-2-one)3,5’-(2'-thiabicyclo[3.3.0]octane)] 381, 382

Compound 372 ($524 \mathrm{mg}, 2.8 \mathrm{mmol}$) was stirred in hexane (90 mL) together with $(t \mathrm{BuS})_{2}(2.7 \mathrm{~mL}, 14 \mathrm{mmol})$ under hv irradiation in a quartz photochemical reactor for 24 h . Water (20 mL) was added and the mixture extracted with ether $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (5% ether in petrol) to give 381 (98 $\mathrm{mg}, 0.46 \mathrm{mmol}, 16 \%$) and $\mathbf{3 8 2}$ as colourless oils ($97 \mathrm{mg}, 0.45 \mathrm{mmol}, 16 \%$).

Data for $\mathbf{3 8 1}$

${ }^{1} \mathbf{H} \operatorname{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.33-4.20(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH} 2), 3.14-3.04(2 \mathrm{H}, \mathrm{m}, 2$ x CH), $2.82(2 \mathrm{H}, \mathrm{dd}, J 10.2,7.3 \mathrm{~Hz}, 2 \times \mathrm{CHHS}), 2.47(2 \mathrm{H}, \mathrm{d}, J 10.2 \mathrm{~Hz}, 2$ x CHHS), $2.36(2 \mathrm{H}, \mathrm{dd}, J 12.8,7.7 \mathrm{~Hz}, 2 \times \mathrm{CCHH}), 1.92-1.78(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.1.36-1.23(2H, m, $2 \times \mathrm{CCH} H$) p.p.m.
${ }^{13} \mathbf{C} \mathbf{N M R} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 177.7(\mathrm{C}=\mathrm{O}), 71.7\left(\mathrm{OCH}_{2}\right), 52.4\left(\mathrm{CCH}_{2}\right), 48.8(2$ $\left.\mathrm{x} \mathrm{CHCH}_{2}\right), 46.3\left(2 \times \mathrm{CH}_{2} \mathrm{CH}\right), 40.1\left(2 \times \mathrm{CH}_{2} \mathrm{~S}\right), 35.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 23.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ p.p.m. The spectrum contain an unidentifiable contaminant (ca 10%). Assignments were confirmed by a C-H correlation experiment

FT-IR $\quad v_{\text {max }}$ (neat) $2956 \mathrm{~s}, 2358 \mathrm{w}, 2250 \mathrm{w}, 1731 \mathrm{~s}, 1456 \mathrm{~m}, 1351 \mathrm{~m}, 1268 \mathrm{~m}, 1153 \mathrm{~s}$, $1089 \mathrm{~s}, 982 \mathrm{w} \mathrm{cm}^{-1}$.

LRMS (CI) 213 ([MH] ${ }^{+}, 100 \%$), 113 (52) amu.
${ }^{1} \mathbf{H} \mathbf{N M R} \quad\left(400 \mathrm{MHz}, \mathrm{CDCI}_{3}\right) \delta_{\mathrm{H}} 4.28\left(2 \mathrm{H}\right.$, app. $\left.\mathrm{t}, J 5.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.85-2.76$ $(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}+2 \mathrm{x} \mathrm{CH} H \mathrm{~S}), 2.57(2 \mathrm{H}$, app. d, $J 9.6 \mathrm{~Hz}, 2 \times \mathrm{CHHS})$, $2.03(2 \mathrm{H}, \mathrm{dd}, J 12.5,6.8 \mathrm{~Hz}, 2 \times \mathrm{CCHH}), 1.91(2 \mathrm{H}, \mathrm{dd}, J 12.5,5.2 \mathrm{~Hz}, 2$ x $\mathrm{CCH} H), 1.87-1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.74-1.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 176.2(\mathrm{C}=\mathrm{O}), 70.1\left(\mathrm{OCH}_{2}\right), 50.9\left(\mathrm{CCH}_{2}\right), 46.9(2$ $\mathrm{x} \mathrm{CH}), 44.4(2 \mathrm{x} \mathrm{CH} 2), 38.4\left(2 \times \mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad \nu_{\max }$ (neat) $2948 \mathrm{~m}, 2358 \mathrm{w}, 1722 \mathrm{~s}, 1442 \mathrm{w}, 1344 \mathrm{w}, 1257 \mathrm{~m}, 1155 \mathrm{~s}$, $1104 \mathrm{~m}, 972 \mathrm{w} \mathrm{cm}^{-1}$.

LRMS (CI) $213\left(\left[\mathrm{MH}^{+}, 100 \%\right) \mathrm{amu}\right.$.
HRMS (CI) Found [M] ${ }^{+} 212.0869, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires 212.871 amu .

Ethyl 7-hydroxy-2,8-nonadienoate 383

Aldehyde 383a ($2.0 \mathrm{~g}, 11.8 \mathrm{mmol}$) was stirred in dry $\mathrm{THF}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Vinylmagnesium bromide (15 mL of a 0.79 M solution in hexane) was added via syringe over 5 min and the mixture was allowed to stir for 1 h at ambient temperature. The mixture was then diluted with water (20 mL) and extracted with ether ($4 \times 20 \mathrm{~mL}$).

The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (20% ether in petrol) to provide 383 as a colourless oil ($1.0 \mathrm{~g}, 5 \mathrm{mmol}, 43 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.9\left(1 \mathrm{H}, \mathrm{dt}, J 15.8,6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\right), 5.73-5.91$ ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{CH}=\mathrm{C} H\right), 5.12(1 \mathrm{H}, \mathrm{d}, J 17.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 4.98$ $(1 \mathrm{H}, \mathrm{d}, J 10.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 4.18\left(2 \mathrm{H}, \mathrm{q}, J 6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.10(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHOH}), 2.21-2.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.86(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 1.58-1.52$ (4H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.29\left(3 \mathrm{H}, \mathrm{t}, J 6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta_{\mathrm{C}} \quad 166.8 \quad(\mathrm{C}=\mathrm{O}), \quad 149.1 \quad\left(\mathrm{CH}_{2} \mathrm{CH}=\right), \quad 141.2$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 121.5(\mathrm{CH}=\mathrm{CH}), 114.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 72.7\left(\mathrm{OCH}_{2}\right), 60.3$ $(\mathrm{CHOH}), 36.3\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 32.1\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $3434 b r d, 2980 \mathrm{~s}, 2863 \mathrm{~s}, 1720 \mathrm{~s}, 1445 \mathrm{~s}, 1128 \mathrm{~m}, 1042 \mathrm{~s}, 988 \mathrm{~s}$, $858 \mathrm{w} \mathrm{cm}^{-1}$.

LRMS (CI) $199\left([\mathrm{MH}]^{+}, 28 \%\right), 181$ (100), 153 (12), 135 (31), 107 (73) amu.

Ethyl-2-\{2-[(tert-butylthio)methyl]-3-hydroxycyclohexyl\}acetate 384

Compound 383 ($1.0 \mathrm{~g}, 5 \mathrm{mmol}$) was stirred in hexane (90 mL) together with $(t \mathrm{BuS})_{2}$ ($4.57 \mathrm{~mL}, 25 \mathrm{mmol}$) under hv irradiation in a quartz vessel for 24 h . Water (20 mL) was added and the mixture extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo. and purified
by column chromotography (10% ether in petrol) to give $\mathbf{3 8 4}$ as a colourless oil and as an inseparable mixture of diastereoisomers ($544 \mathrm{mg}, 2.0 \mathrm{mmol}, 40 \%$).
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.30-4.02(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}), 2.53-1.48(14 \mathrm{H}, \mathrm{m}$, $\left.6 \times \mathrm{CH}_{2}+2 \times \mathrm{CH}\right), 1.43-1.25\left(12 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C} \mathbf{N M R} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta_{\mathrm{C}}$ major diastereoisomer $171.9 \quad(\mathrm{C}=\mathrm{O})$, 68.1 $\left(\mathrm{OCH}_{2}\right), 61.5(\mathrm{CHOH}), 48.1\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 45.4\left(\mathrm{CH}_{2} \mathrm{~S}\right), 43.7(\mathrm{SC}), 39.7$ $(\mathrm{CH}), 32.3(\mathrm{CH}), 31.3\left(\mathrm{CH}_{3}\right), 31.0\left(\mathrm{CH}_{3}\right), 30.9\left(\mathrm{CH}_{3}\right), 30.7\left(\mathrm{CH}_{2}\right), 30.1$ $\left(\mathrm{CH}_{2}\right), 19.7\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right)$ p.p.m.

The spectra also contained signals corresponding to other diastereoisomers

FT-IR $\quad v_{\max }$ (neat) $3465 \mathrm{br}, 2959 \mathrm{~s}, 1654 \mathrm{w}, 1724 \mathrm{~s}, 1458 \mathrm{~s}, 1364 \mathrm{~s}, 1266 \mathrm{~m}, 1164 \mathrm{~s}$, $1095 \mathrm{~m}, 912 \mathrm{~m}, 733 \mathrm{~s} \mathrm{~cm}^{-1}$.

HRMS (CI) Found $[M H]^{+}$289.1839, $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{3}$ S requires 289.1837 amu .

1E,6E-Nonadienyl acetate 386

Nonenal $\mathbf{3 8 6 a}$ ($200 \mathrm{mg}, 1.42 \mathrm{mmol}$) was stirred at reflux in isopropenyl acetate (30 mL) together with p - TsOH ($2 \mathrm{mg}, 0.13 \mathrm{mmol}$) for 22 h . The mixture was diluted with ether (30 mL) washed with water $(2 \times 20 \mathrm{~mL})$ and then brine $(2 \times 20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (10% ether in petrol) to give 386 as a colourless oil which deteriorated upon standing (120 mg, $0.65 \mathrm{mmol}, 46 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.90(1 \mathrm{H}, \mathrm{d}, J 6.2 \mathrm{~Hz},=\mathrm{C} H), 5.51-5.25(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}), 4.87(1 \mathrm{H}$, app. q. $J 7.2 \mathrm{~Hz},=\mathrm{C} H), 2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$, 2.22-1.99(6H, m, $\left.3 \times \mathrm{CH}_{2}\right), 1.44\left(2 \mathrm{H}\right.$, app. quin, $\left.J 7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 0.95$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 168.2(\mathrm{C}=\mathrm{O}), 134.3(=\mathrm{CH}), 132.2(=\mathrm{CH}) 128.7$ $(=\mathrm{CH}), 114.1(=\mathrm{CH}), 29.4\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{2}\right)$, $20.7\left(\mathrm{CH}_{2}\right), 14.9\left(\mathrm{CH}_{3}\right)$ p.p.m.

Ethyl (2E,7EZ)-8-methoxy-2,7-octadienoate 387^{81}

The Wittig salt, $\mathrm{MeOCH}_{2} \mathrm{ClPPh}_{3}(1.21 \mathrm{~g}, 3.52 \mathrm{mmol})$ was stirred in dry THF (30 mL) under a nitrogen atmosphere. $t \mathrm{BuOK}$ ($394 \mathrm{mg}, 3.52 \mathrm{mmol}$) was added and the reaction stirred for 1 h giving a bright red solution. Compound 383a ($300 \mathrm{mg}, 1.76 \mathrm{mmol}$) was added dropwise via syringe as a solution in THF (10 mL) and the resulting orange solution to stirred for 1 h . The mixture was poured into water (20 mL) and extracted into ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were then washed with brine (20 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (20% ether in petrol) to give 387 as a colourless oil and an inseparable $3: 2$ mixture of cis and trans isomers ($229 \mathrm{mg}, 1.16 \mathrm{mmol}, 66 \%$).
$\begin{aligned}{ }^{1} \mathrm{H} \text { NMR } & \left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{\mathrm{H}} 7.0-6.81(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CHC}=\mathrm{O}), 6.25(1 \mathrm{H}, \mathrm{d}, J \\ & \left.\left.12.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHOCH}_{3} \text { (trans }\right)\right), 5.85\left(1 \mathrm{H}, \mathrm{d}, J 6.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHOCH}_{3}\right.\end{aligned}$
(cis)), $5.78\left(1 \mathrm{H}, \mathrm{d}, J 15.8 \mathrm{~Hz}, \mathrm{CHCO}_{2} \mathrm{Et}\right), 4.64(1 \mathrm{H}, \mathrm{dt}, J 12.5,7.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}=($ trans $\left.)\right), 4.23\left(1 \mathrm{H}, \mathrm{dt}, J 6.9,6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=(\right.$ cis $\left.)\right), 4.12(2 \mathrm{H}$, q, $\left.J 6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.18$ $\left(2 \mathrm{H}, \mathrm{dt}, J 6.9,6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=(\right.$ cis $\left.)\right), 2.04(2 \mathrm{H}, \mathrm{dt}, J 7.3,6.9 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}=($ trans $\left.)\right) 1.85\left(2 \mathrm{H}, \mathrm{dt}, J 6.9,6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}=\mathrm{O}\right), 1.48(2 \mathrm{H}$, quin, $\left.J 7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, J 6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C} \mathrm{NMR} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 166.7\left(\mathrm{CO}_{2}\right), \quad 149.3\left(\mathrm{CH}=\mathrm{CHCO}_{2}\right), 147.6$ $\left(\mathrm{CH}=\mathrm{CHOCH}_{3}\right), \quad 122.3\left(\mathrm{CHCO}_{2}\right), \quad 102.0 \quad\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHOCH}_{3}\right), \quad 60.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 31.4\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHO}\right) 29.1\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}=\mathrm{O}\right)$, $28.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ p.p.m. ${ }^{13} \mathrm{C}$ NMR spectra also contains signals relating to the trans isomer.

FT-IR $\quad v_{\text {max }}$ (neat) $2932 \mathrm{~m}, 2855 \mathrm{w}, 1718 \mathrm{~s}, 1653 \mathrm{~s}, 1454 \mathrm{w}, 1367 \mathrm{~m}, 1266 \mathrm{~s}, 1136 \mathrm{~s}$, $1042 \mathrm{~m}, 935 \mathrm{~m} \mathrm{~cm}^{-1}$.

LRMS (CI) $199\left(\left[\mathrm{MH}^{+}, 98 \%\right), 184(100), 167(88), 138(32), 75(28) \mathrm{amu}\right.$.
These data are fully consistent with those published in the literature. ${ }^{81}$

Ethyl (2E)-2,7-octadienoate 388 ${ }^{82}$

The Wittig salt $\mathrm{BrCH}_{2} \mathrm{PPh}_{3}(3.15 \mathrm{~g}, 7.5 \mathrm{mmol})$ was stirred in THF (40 mL) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. $n-\operatorname{BuLi}(5.35 \mathrm{~mL}$ of a 1.44 mol solution in hexanes) was added dropwise over 1 min via syringe and the mixture stirred at this temperature for 15 min . The whole was allowed to warm to ambient temperature over 90 min then cooled
to $-78^{\circ} \mathrm{C} . \mathbf{3 8 3 a}(1 \mathrm{~g}, 5 \mathrm{mmol})$ was added as a solution in THF $(10 \mathrm{~mL})$ via syringe over 1 min and the reaction allowed to warm to ambient temperature over 30 min then stirred for 15 h . The mixture was diluted with ether (30 mL), washed with water (30 mL) and brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (5% ether in petrol) to give $\mathbf{3 8 8}$ as a colourless oil ($537 \mathrm{mg}, 3.1 \mathrm{mmol}$, 64%).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.92\left(1 \mathrm{H}, \mathrm{dt}, J 15.4,6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\right), 5.87-$ $5.71\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.02(1 \mathrm{H}, \mathrm{d}, J 17.1 \mathrm{~Hz},=\mathrm{CHH}), 4.97(1 \mathrm{H}$, d, $J 9.9 \mathrm{~Hz},=\mathrm{CH} H), 4.38\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.21(2 \mathrm{H}, \mathrm{dt}, J 7.7$, $\left.6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.07\left(2 \mathrm{H}, \mathrm{dt}, J 7.7,6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.56(2 \mathrm{H}$, app. quin, $\left.\left.J 7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.28(3 \mathrm{H}, \mathrm{t}, J, 7.1 \mathrm{HzCH})_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\left.\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 166.8(\mathrm{C}=\mathrm{O}), 149.1\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 138.1 \mathrm{CH}_{2}=\mathrm{CH}\right)$, $121.6(\mathrm{CH}=\mathrm{CH}), 115.2\left(=\mathrm{CH}_{2}\right), 64.2\left(\mathrm{OCH}_{2}\right), 33.2\left(\mathrm{CH}_{2} \mathrm{CH}\right), 31.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}\right), 27.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2931 \mathrm{~m}, 1720 \mathrm{~s}, 1652 \mathrm{~m}, 1309 \mathrm{~m}, 1264 \mathrm{~s}, 1175 \mathrm{~s}, 1041 \mathrm{~m}, 978 \mathrm{~m}$, $911 \mathrm{~m} \mathrm{~cm}^{-1}$.

LRMS (CI) $186\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 82 \%\right), 169\left([\mathrm{MH}]^{+}, 100 \%\right) \mathrm{amu}$.
These data are consistent with those published in the literature. ${ }^{83}$

tert-Butyl perhydrobenzolblfuran-3-ylmethyl sulfide 392 ,

rel-(2aR,7bS) Perhydro[1]benzothiolo[4,3-bclfuran 393

Compound $389(1.0 \mathrm{~g}, 7.2 \mathrm{mmol})$ was stirred in hexane $(90 \mathrm{~mL})$ together with $(t \mathrm{BuS})_{2}$ ($6.94 \mathrm{~mL}, 36 \mathrm{mmol}$) under hv irradiation in a quartz vessel for 24 h . Water (20 mL) was added and the mixture was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromotography (10% ether in petrol) to give 392 ($590 \mathrm{mg}, 2.5$ mmol, 36%) and 393 ($220 \mathrm{mg}, 1.3 \mathrm{mmol}, 18 \%$) as colourless oils.

Data for 392 a 1:1 mixture of diasteroisomers
${ }^{1} \mathbf{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.12(1 \mathrm{H}$, app.t, $J 5.14 \mathrm{~Hz}, \mathrm{OCH}), 4.02-3.92$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}, \mathrm{OCH}_{2}\right), 3.62-3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.68(1 \mathrm{H}$, app.dd, J $\left.10.2,6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.61-2.47\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}, \mathrm{SCH}_{2}\right), 2.18-$ $2.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 2.01-1.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCH}, \mathrm{CH}_{2}\right), 1.71-1.36$ $\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.33\left(20 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{3}, \mathrm{CH}_{2}\right), 1.21-1.09(2 \mathrm{H}, \mathrm{m}$, CH_{2}) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 78.4(\mathrm{OCH}), 76.3(\mathrm{OCH}), 72.2\left(\mathrm{OCH}_{2}\right), 70.9$ $\left(\mathrm{OCH}_{2}\right), 44.5(\mathrm{CH}), 43.7(\mathrm{CH}), 43.6(\mathrm{CH}), 42.1\left(\mathrm{CCH}_{3}\right), 41.9\left(\mathrm{CCH}_{3}\right)$, $40.1(\mathrm{CH}), 32.4\left(\mathrm{SCH}_{2}\right), 31.1\left(2 \times \mathrm{CH}_{3}\right), 30.9\left(4 \times \mathrm{CH}_{3}\right), 28.5\left(\mathrm{SCH}_{2}\right)$, $28.2\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{2}\right)$, $21.1\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\max } 2928 \mathrm{~s}, 2241 \mathrm{~m}, 1720 \mathrm{w}, 1458 \mathrm{~s}, 1363 \mathrm{~s}, 1239 \mathrm{w}, 1182 \mathrm{~s}, 1120 \mathrm{~m}, 1022 \mathrm{~s}$, $990 \mathrm{~m}^{910} \mathrm{~s} \mathrm{~cm}^{-1}$.

LRMS (CI) $229\left([\mathrm{MH}]^{+}, 33 \%\right), 57(100) \mathrm{amu}$.
HRMS (EI) Found [M] ${ }^{+} 228.1548, \mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OS}$ requires 228.1548 amu .

Data for 393
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.96-3.82(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}, \mathrm{OCHH}), 3.77(1 \mathrm{H}, \mathrm{d}$ with fine splitting, $J 6.9 \mathrm{~Hz}, \mathrm{OCH} H), 3.55-3.48(1 \mathrm{H}, \mathrm{m}, \mathrm{CHS}), 3.15$ (1 H , app.q, $J 6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$), $2.96(1 \mathrm{H}, \mathrm{dd}, J 9.4,5.1 \mathrm{~Hz}$, $\mathrm{CHCHCH}), 2.73(1 \mathrm{H}$, app. d, $J 10.2 \mathrm{~Hz}, \mathrm{SCHH}), 2.63-2.54(1 \mathrm{H}, \mathrm{m} J$ $7.7 \mathrm{~Hz}, \mathrm{SCH} H), 2.17-1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.91-1.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.64-1.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 77.9(\mathrm{OCH}), 75.3\left(\mathrm{OCH}_{2}\right), 50.0(\mathrm{SCH}), 47.7$ $(\mathrm{CH}), 47.3(\mathrm{CH}), 39.8\left(\mathrm{SCH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 15.1\left(\mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\text {max }}$ (neat) $2995 \mathrm{~s}, 1713 \mathrm{~m}, 1442 \mathrm{~m}, 1270 \mathrm{~m}, 1164 \mathrm{w}, 1078 \mathrm{~s}, 1029 \mathrm{~s}, 907 \mathrm{~s}$ cm^{-1}.

LRMS (CI) $171\left([\mathrm{MH}]^{+}, 100 \%\right)$ amu.

Adamantyl rel-(3R,3aR,7aR)-perhydrobenzo[b]furan-3-ylmethyl sulfide 395

Compound $389(1.01 \mathrm{~g}, 7.3 \mathrm{mmol})$ was stirred in hexane $(90 \mathrm{~mL})$ together with (AdS $)_{2}$ (12.1 g , 21.5 mmol) under $\mathrm{h} v$ irradiation in a quartz vessel for 24 h . Water (20 mL) was added and the mixture was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (10% ether in petrol) to give 394 ($1.30 \mathrm{~g}, 4.2$ $\mathrm{mmol}, 58 \%$) and 395 ($260 \mathrm{mg}, 0.84 \mathrm{mmol}, 11 \%$) as colourless oils.

Data for 394
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.04(1 \mathrm{H}$, app. t, $J 7.7 \mathrm{~Hz}, \mathrm{OCH}), 3.78(1 \mathrm{H}, \mathrm{dd}, J$ $9.5,6.1 \mathrm{~Hz}, \mathrm{OC} H \mathrm{H}), 3.42(1 \mathrm{H}, \mathrm{dd}, J 7.7,6.1 \mathrm{~Hz}, \mathrm{OCH} H), 2.50(1 \mathrm{H}, \mathrm{dd}$, $\left.J 9.4,8.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 2.32\left(1 \mathrm{H}, \mathrm{dd}, J 11.1,8.5, \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.06-$ $1.86\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.85-1.63\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.62-1.50(5 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}+3 \mathrm{xCH}\right), 1.49-1.05\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 77.6(\mathrm{OCH}), 72.3\left(\mathrm{OCH}_{2}\right), 44.8(\mathrm{OCHCH}), 44.3$ (SC), $43.7\left(3 \times \mathrm{CH}_{2}\right), 43.7\left(\mathrm{OCH}_{2} \mathrm{CH}\right), 36.4\left(3 \times \mathrm{CH}_{2}\right), 30.0(3 \times \mathrm{CH})$, $29.6\left(\mathrm{SCH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2903 \mathrm{~s}, 2848 \mathrm{~m}, 1448 \mathrm{~m}, 1342 \mathrm{w}, 1299 \mathrm{~m}, 1155 \mathrm{w}, 1043 \mathrm{~s}, 1022 \mathrm{~s}$, $976 \mathrm{w}, 855 \mathrm{w} \mathrm{cm}^{-1}$.

LRMS (CI) 307 ([M] $\left.{ }^{+}, 8 \%\right), 170(10), 135$ (100) amu.
HRMS (EI) Found [M] ${ }^{+} 306.2019, \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OS}$ requires 306.2017 amu .

Data for $\mathbf{3 9 5}$
${ }^{1} \mathrm{H}$ NMR $\quad(300 \mathrm{MHz}, \mathrm{CDCl} 3) \delta_{\mathrm{H}} 4.05-3.91(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}+\mathrm{OCHH}), 3.61-3.52$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH} H), 2.62-2.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}+\mathrm{CHCH}_{2} \mathrm{~S}\right), 2.13-$ $2.00(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}), 1.95-1.82\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.81-1.70(5 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}+3 \times \mathrm{CH}\right), 1.68-1.36\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 78.4(\mathrm{OCH}), 70.9\left(\mathrm{OCH}_{2}\right), 44.2(\mathrm{OCHCH}), 43.9$ (SC), $43.7\left(3 \times \mathrm{xH}_{2}\right), 40.1\left(\mathrm{OCH}_{2} \mathrm{CH}\right), 36.4\left(3 \times \mathrm{CH}_{2}\right), 29.8(3 \times \mathrm{CH})$, $28.6\left(\mathrm{SCH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2903 \mathrm{~s}, 2848 \mathrm{w}, 1448 \mathrm{~m}, 1342 \mathrm{~m}, 1299 \mathrm{~m}, 1155 \mathrm{w}, 1101 \mathrm{w}$, 1022s, $976 \mathrm{w}, 855 \mathrm{wcm}^{-1}$.

LRMS (CI) 307 ([M] $\left.{ }^{+}, 22 \%\right), 171$ (34), 135 (100) amu.
HRMS (EI) Found [M] 306.2019, $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OS}$ requires 306.2017 amu.

4-(2'Iodophenoxy)methylbenzonitrile 422

Benzonitrile 422 was prepared using a modification of the method of Sheppard. ${ }^{83}$ 2Iodophenol $(2.29 \mathrm{~g}, 10.41 \mathrm{mmol})$, potassium carbonate $(1.83 \mathrm{~g}, 13.26 \mathrm{mmol})$ and 4 cyanobenzyl bromide $(2.00 \mathrm{~g}, 10.20 \mathrm{mmol})$ were stirred in acetone $(20 \mathrm{~mL})$ at ambient temperature for 16 h . The mixture was filtered and the solvent removed in vacuo to give 422 as a colourless solid ($3.04 \mathrm{~g}, 9.07 \mathrm{mmol} 89 \%$).
m.p. $\quad 75-77^{\circ} \mathrm{C}$ (EtOH)
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.86(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.75(2 \mathrm{H}, \mathrm{d}, J 8.5$ $\mathrm{Hz}, 2 \times \mathrm{Ar} H), 7.64(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, 2 \times \mathrm{Ar} H), 7.31(1 \mathrm{H}$, app. t, $J 8.5$ $\mathrm{Hz}, \mathrm{Ar} H), 6.83(1 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{Ar} H), 6.81(1 \mathrm{H}$, app.,$J 7.7 \mathrm{~Hz}$, $\mathrm{Ar} H), 5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right)$ p.p.m.
${ }^{13} \mathbf{C}$ NMR $\quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 157.1(C(\mathrm{Ar})), 142.3(C(\mathrm{Ar})), 140.1(C \mathrm{H}(\mathrm{Ar}))$,
$132.9(2 \times C H(\mathrm{Ar})), 129.9(\mathrm{CH}(\mathrm{Ar})), 127.7(2 \times \mathrm{CH}(\mathrm{Ar})), 123.7(\mathrm{CH}$ (Ar$)), 119.1(C \equiv \mathrm{~N}), 112.9(C(\mathrm{Ar})), 112.8(\mathrm{CH}(\mathrm{Ar})), 87.1(C \mathrm{I}(\mathrm{Ar}))$, $70.2\left(\mathrm{OCH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2372 \mathrm{w}, 2339 \mathrm{w}, 2220 \mathrm{~m}, 1734 \mathrm{~m}, 1586 \mathrm{w}, 1476 \mathrm{~m}, 1362 \mathrm{~m}$, $1248 \mathrm{~s}, 1129 \mathrm{~m}, 1014 \mathrm{~s}, 819 \mathrm{~s}, 752 \mathrm{~s} \mathrm{~cm}^{-1}$.

LRMS (CI) 335 ([M] $\left.]^{+}, 29 \%\right), 116$ (100) amu.
CHN \quad Found C $50.05 \mathrm{H} 3.03 \mathrm{~N} 4.16, \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{INO}$ requires C 50.17 H 3.01 N 4.18.

4-(2'-Methoxyphenyl)benzocarbonitrile 423^{84}

6H-benzo[c]chromene-8-carbonitrile 424

$$
\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{INO} 335
$$

$$
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO} 209
$$

$$
\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO} 207
$$

Nitrile 422 ($800 \mathrm{mg}, 2.39 \mathrm{mmol}$), tri- n-butyltin hydride ($1.04 \mathrm{~g}, 3.58 \mathrm{mmol}$) and azo-bis-isobutyronitrile ($60 \mathrm{mg}, 0.36 \mathrm{mmol}$) were stirred in toluene (40 mL) at $85^{\circ} \mathrm{C}$ for 20 h . The mixture was cooled to ambient temperature, aqueous potassium fluoride $(10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL})$ was added and the mixture stirred for 24 h . The mixture was then extracted with ether ($3 \times 20 \mathrm{~mL}$) and the combined organic phases washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (10% ether in petrol) to provide 423 ($364 \mathrm{mg}, 1.74 \mathrm{mmol}, 73 \%$) and 424 ($<4.94 \mathrm{mg},<0.02 \mathrm{mmol},<1 \%$) as colourless oils.

Data for 423
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.72(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} \mathrm{ArH}), 7.46(1 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}$, $\mathrm{ArH}), 7.34(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.14(1 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{ArH}), 7.06$
$(1 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{Ar} H), 3.89\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ p.p.m.
${ }^{13} \mathbf{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 156.4(\mathrm{C}(\mathrm{Ar})), 143.5(\mathrm{C}(\mathrm{Ar})), 131.9(2 \times \mathrm{CH}$
(Ar)), $130.8(C(\operatorname{Ar})), 130.4(C H(A r)), 130.1(2 \times C H(A r)), 128.7(C$
(Ar)), $121.2(\mathrm{CH}(\mathrm{Ar})), 119.3(\mathrm{C} \equiv \mathrm{N}), 111.5(\mathrm{CH}(\mathrm{Ar})), 110.5(\mathrm{CH}$
(Ar)), $55.7\left(\mathrm{OCH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2978 \mathrm{w}, 2835 \mathrm{w}, 2210 \mathrm{~m}, 1600 \mathrm{~m}, 1481 \mathrm{~m}, 1429 \mathrm{w}, 1262 \mathrm{~m}$, $1029 \mathrm{~m}, 824 \mathrm{~m}, 757 \mathrm{~s} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 292(1900), 262(2900), 233$ (3000) nm.
LRMS (CI) $209\left(\left[\mathrm{M}^{+}, 100 \%\right), 194\right.$ (45), 140 (52) amu.
These data were consistent with those reported in the literature. ${ }^{84}$
Data for 424
${ }^{1} \mathbf{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.79(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.75(1 \mathrm{H}, \mathrm{d}, J 8.5$ $\mathrm{Hz}, \mathrm{Ar} H), 7.67(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.47(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.32(1 \mathrm{H}, \mathrm{t}$, $J 7.7 \mathrm{~Hz}, \operatorname{Ar} H), 7.10(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \operatorname{Ar} H), 6.98(1 \mathrm{H}, \mathrm{d}, J 8.1 \mathrm{~Hz}$, $\mathrm{ArH}), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right)$ p.p.m.

This spectra is contaminated with 423 and residual tin compounds.

Methyl 4-[(2'iodophenoxy)methyllbenzoate 429

429
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{IO} 220$
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2} 228$
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3} 368$

Ester 429 was prepared using a modification of the method of Sheppard. ${ }^{83}$ 2Iodophenol ($1.17 \mathrm{~g}, 5.3 \mathrm{mmol}$), potassium carbonate ($1.83 \mathrm{~g}, 13.26 \mathrm{mmol}$) and methyl 4-(bromomethyl)benzoate $(1.95 \mathrm{~g}, 14.12 \mathrm{mmol})$ were stirred in acetone $(20 \mathrm{~mL})$ at ambient temperature for 16 h . The mixture was filtered and the solvent removed in vacuo to give $\mathbf{4 2 9}$ as a colourless solid ($3.04 \mathrm{~g}, 9.07 \mathrm{mmol} 89 \%$).
m.p. $\quad 95-97^{\circ} \mathrm{C}$ (ether)
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.09(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 2 \times \operatorname{Ar} H), 7.82(1 \mathrm{H}, \mathrm{d}, J$ $7.3 \mathrm{~Hz}, \mathrm{Ar} H), 7.60(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 2 \times \mathrm{Ar} H), 7.30(1 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}$, $\operatorname{Ar} H), 6.86(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \operatorname{Ar} H), 6.78(1 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}, \operatorname{Ar} H), 5.18$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ p.p.m.
${ }^{13} \mathbf{C} \mathbf{N M R} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 166.9(C=\mathrm{O}), 156.9(C(\mathrm{Ar})), 141.8(C(\mathrm{Ar}))$, $139.7(\mathrm{CH}(\mathrm{Ar})), 130.1(2 \times \mathrm{CH}(\mathrm{Ar})), 129.7(\mathrm{C}(\mathrm{Ar})), 129.6(\mathrm{CH}$ (Ar)), $126.8(2 \times \mathrm{CH}(\mathrm{Ar})), 123.2(\mathrm{CH}(\mathrm{Ar})), 112.7(\mathrm{CH}(\mathrm{Ar})), 86.8(\mathrm{CI}$ (Ar)), $70.2\left(\mathrm{OCH}_{2}\right), 52.3\left(\mathrm{OCH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2992 \mathrm{w}, 1710 \mathrm{~s}, 1619 \mathrm{w}, 1581 \mathrm{w}, 1486 \mathrm{~m}, 1453 \mathrm{~m}, 1272 \mathrm{~s}$, $1233 \mathrm{~m}, 1100 \mathrm{~m}, 1005 \mathrm{~m}, 738 \mathrm{scm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 260(3000), 220$ (15000) nm.
LRMS (CI) 368 ([M] $\left.]^{+}, 15 \%\right), 149$ (100) amu.
CHN Found C $48.87 \mathrm{H} 3.51, \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{3}$ requires C 48.93 H 3.56 .

Methyl 6 H -benzo[c]chromene-8-carboxylate 430

Methyl 4-(2'-methoxyphenyl) benzoate 431^{85}

Ester 429 ($800 \mathrm{mg}, 2.17 \mathrm{mmol}$), tri- n-butyltin hydride ($1.27 \mathrm{~g}, 4.35 \mathrm{mmol}$) and azobisisobutyronitrile ($50 \mathrm{mg}, 0.31 \mathrm{mmol}$) were stirred in toluene $(40 \mathrm{~mL})$ at $85^{\circ} \mathrm{C}$ for 20 h . The mixture was then cooled to ambient temperature and aqueous potassium
fluoride ($10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL}$) was added. The mixture was stirred for 24 h then extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (20% ether in petrol) to provide a colourless oil comprising of 430 and 431 as an inseparable $1: 1$ mixture ($221 \mathrm{mg}, 0.91 \mathrm{mmol}, 42 \%$).

GC-MS Retention time $12.07 \mathrm{~min}(\mathrm{CI}) 242\left(\left[\mathrm{M}^{+}, 100 \%\right), 211\right.$ (48), 168 (44), 139 (52) amu.

Retention time 12.76 min (CI) 240 ([M] ${ }^{+}, 100 \%$) 209 (11), 181 (24), 152 (72) amu.

4'-[(2'-Iodophenoxy)methyllbiphenyl 432

Benzonitrile 432 was prepared using a modification of the method of Sheppard. ${ }^{83}$ 2Iodophenol ($1.68 \mathrm{~g}, 7.65 \mathrm{mmol}$), potassium carbonate $(1.51 \mathrm{~g}, 10.94 \mathrm{mmol})$ and 4 (bromomethyl)biphenyl ($1.80 \mathrm{~g}, 7.29 \mathrm{mmol}$) were stirred in acetone (20 mL) at ambient temperature for 16 h . The mixture was filtered and the solvent removed in vacuo to give 432 as a colourless solid ($2.08 \mathrm{~g}, 5.39 \mathrm{mmol}, 74 \%$).
m.p. $\quad 99-100^{\circ} \mathrm{C}$ (ethanol).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.91(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.71-7.59(6 \mathrm{H}, \mathrm{m}$, $6 \times \operatorname{Ar} H), 7.53(2 \mathrm{H}$, app. t, $J 7.7 \mathrm{~Hz}, 2 \times \mathrm{Ar} H), 7.42(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$,
$\operatorname{ArH}), 7.30(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.93(1 \mathrm{H}, \mathrm{d}, J 8.1 \mathrm{~Hz}, \operatorname{Ar} H), 6.78(1 \mathrm{H}, \mathrm{t}, J$ 7.7 Hz, ArH$), 5.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 157.4$ (C (Ar)), 140.9 (C (Ar$)$), $139.7(\mathrm{CH}$ (Ar)), $135.7(C(\mathrm{Ar})), 129.6(\mathrm{CH}(\mathrm{Ar})), 129.0(2 \times \mathrm{CH}(\mathrm{Ar})), 127.7(2 \times$ ($\mathrm{CH}(\mathrm{Ar})), 127.5(3 \times C H(\mathrm{Ar})), 127.5(2 \times \mathrm{CH}(\mathrm{Ar})), 127.3(\mathrm{C}(\mathrm{Ar}))$, $123.1(\mathrm{CH}(\mathrm{Ar})), 112.9(\mathrm{CH}(\mathrm{Ar})), 87.1(\mathrm{CI}(\mathrm{Ar})), 70.7\left(\mathrm{OCH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2975 \mathrm{w}, 3032 \mathrm{w}, 1736 \mathrm{~m}, 1547 \mathrm{w}, 1480 \mathrm{~s}, 1378 \mathrm{~s}, 1250 \mathrm{~s}$, $1122 \mathrm{w}, 1065 \mathrm{~m}, 768 \mathrm{~s}, 691 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 272(33000) \mathrm{nm}$.
LRMS (CI) $386\left([\mathrm{M}]^{+}, 2 \%\right), 167$ (100) amu.

8-Phenyl-6H-benzo[c|chromene 433

4'-(2"-Methoxyphenyl)biphenyl 434^{86}

Iodide 432 ($800 \mathrm{mg}, 2.07 \mathrm{mmol}$), tri- n-butyltin hydride ($905 \mathrm{mg}, 3.11 \mathrm{mmol}$) and azo-bis-isobutyronitrile ($60 \mathrm{mg}, 0.37 \mathrm{mmol}$) were stirred in toluene (40 mL) at $85^{\circ} \mathrm{C}$ for 20 h . The mixture was then cooled to ambient temperature and aqueous potassium fluoride ($10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL}$) was added. The mixture was stirred for 24 h then extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column
chromatography (20% ether in petrol) to provide a colourless oil comprising of a $1: 2$ mixture of 433 and 434 ($5.37 \mathrm{mg}, 2.28 \mathrm{mmol}, 48 \%$).

GC-MS Retention time $13.54 \min (\mathrm{CI}) 260$ ([M] $\left.{ }^{+}, 100 \%\right), 215$ (22) amu.
Retention time $14.35 \mathrm{~min}(\mathrm{CI}) 258$ ([M] ${ }^{\dagger}, 100 \%$), 226 (19) amu.

1-[(2'-Iodophenoxy)methyl] $2,4,6$-trimethylbenzene 435

Benzonitrile 435 was prepared using a modification of the method of Sheppard. ${ }^{83}$ 2Iodophenol ($2.74 \mathrm{~g}, 12.45 \mathrm{mmol}$), potassium carbonate ($2.79 \mathrm{~g}, 20.16 \mathrm{mmol}$) and 2,4,6-trimethylbenzyl chloride $(2.00 \mathrm{~g}, 11.86 \mathrm{mmol})$ were stirred in acetone $(20 \mathrm{~mL})$ at ambient temperature for 16 h . The mixture was filtered and the solvent removed in vacuo to give 435 as a colourless solid $(2.54 \mathrm{~g}, 7.23 \mathrm{mmol}, 61 \%)$.
m.p. $\quad 56-58^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.86(1 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.39(1 \mathrm{H}, \mathrm{t}, J 8.1$ $\mathrm{Hz}, \operatorname{Ar} H), 7.05(1 \mathrm{H}, \mathrm{d}, J 8.1 \mathrm{~Hz}, \operatorname{Ar} H), 6.97(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar} H), 6.78$ $(1 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}, \mathrm{Ar} H), 5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 2.46\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.39$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$) p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 158.1$ ($\mathrm{C}(\mathrm{Ar})$), 139.7 (C (Ar)), $139.7(\mathrm{CH}$ (Ar)), $138.4(C(\mathrm{Ar})), 138.3(2 \times C(\mathrm{Ar})), 129.6(C H(\mathrm{Ar})), 129.2(2 \times$

FT-IR $\quad v_{\max }$ (neat) $2963 \mathrm{w}, 2920 \mathrm{w}, 1610 \mathrm{w}, 1457 \mathrm{~m}, 1381 \mathrm{w}, 1276 \mathrm{~m}, 1243 \mathrm{~m}$, $1014 \mathrm{~m}, 990 \mathrm{~m}, 905 \mathrm{~s}, 747 \mathrm{~s} \mathrm{~cm}^{-1}$.

UV
$\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 275(3000), 229(13600) \mathrm{nm}$
LRMS (CI) 352 ([M] ${ }^{+}, 8 \%$), 209 (14), 133 (100) amu.
CHN \quad Found C $54.53 \mathrm{H} 4.82, \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{IO}$ requires C 54.56 H 4.87 .

1-(2'-Methoxyphenyl)-2,4,6-trimethylbenzene 436^{87}

435
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{IO} 352$

436
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O} 226$

Iodide 435 ($800 \mathrm{mg}, 2.27 \mathrm{mmol}$), tri- n-butyltin hydride ($990 \mathrm{mg}, 3.41 \mathrm{mmol}$) and azo-bis-isobutyronitrile ($60 \mathrm{mg}, 0.37 \mathrm{mmol}$) were stirred in toluene (40 mL) at $85^{\circ} \mathrm{C}$ for 20 h . The mixture was then cooled to ambient temperature and aqueous potassium fluoride ($10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL}$) was added. The mixture stirred for 24 h then extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (20 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (20% ether in petrol) to provide 436 as a colourless solid ($405 \mathrm{mg}, 1.79 \mathrm{mmol}, 79 \%$).
m.p. $\quad 48-50^{\circ} \mathrm{C}$ (ethanol)
${ }^{1} \mathrm{H}$ NMR $\quad(300 \mathrm{MHz}, \mathrm{CDCl} 3) \delta_{\mathrm{H}} 7.43-7.35(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.10-7.02(3 \mathrm{H}, \mathrm{m}, 3$ $\mathrm{x} \mathrm{ArH}), 6.98(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{ArH}), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.04\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 156.9(C(\mathrm{Ar})), 136.7(4 \times C(\mathrm{Ar})), 135.4(C$ (Ar)), 131.1 ($\mathrm{CH}(\mathrm{Ar})$), $128.6(\mathrm{CH}(\mathrm{Ar})), 128.1(2 \times \mathrm{CH}(\mathrm{Ar})), 120.8$ $(\mathrm{CH}(\mathrm{Ar})), 110.9(\mathrm{CH}(\mathrm{Ar})), 55.6\left(\mathrm{OCH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 20.6\left(2 \times \mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2968 \mathrm{w}, 2825 \mathrm{w}, 1596 \mathrm{w}, 1505 \mathrm{w}, 1448 \mathrm{~m}, 1376 \mathrm{w}, 1233 \mathrm{~s}$, $1105 \mathrm{~m}, 1062 \mathrm{~s}, 1024 \mathrm{~s}, 790 \mathrm{~s}, 743 \mathrm{~s} \mathrm{~cm}^{-1}$.

UV $\lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 260(2200), 218(3700) \mathrm{nm}$.

1-I(2'-Iodophenoxy)methyl 2-methylbenzene 440

440
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{IO} 220$
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br} 184$
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IO} 324$
Iodide 435 was prepared using a modification of the method of Sheppard. ${ }^{83}$ 2Iodophenol ($2.62 \mathrm{~g}, 11.94 \mathrm{mmol}$), potassium carbonate $(2.79 \mathrm{~g}, 20.16 \mathrm{mmol})$ and 2methylbenzyl bromide $(2.00 \mathrm{~g}, 10.86 \mathrm{mmol})$ were stirred in acetone $(20 \mathrm{~mL})$ at ambient temperature for 16 h . The mixture was filtered and the solvent removed in vacuo to give 440 as a colourless oil ($1.05 \mathrm{~g}, 3.24 \mathrm{mmol}, 21 \%$).
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.82(1 \mathrm{H}, \mathrm{dd}, J 7.7,1.1 \mathrm{~Hz}, \mathrm{Ar} H), 7.59(1 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 7.38-7.21(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} \operatorname{Ar} H), 6.94(1 \mathrm{H}, \mathrm{d}, J 7.3 \mathrm{~Hz}, \mathrm{Ar} H), 6.76$ $(1 \mathrm{H}, \mathrm{t}, J 7.7 \mathrm{~Hz}, \mathrm{Ar} H), 5.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} \quad 157.4(\mathrm{C}(\mathrm{Ar})), 139.7(\mathrm{CH}(\mathrm{Ar})), 136.3(C$ (Ar)), 134.5 ($\mathrm{C}(\mathrm{Ar})$), $130.4(\mathrm{CH}(\mathrm{Ar})), 129.6(\mathrm{CH}(\mathrm{Ar})), 128.3(\mathrm{CH}$ (Ar)), 128.3 ($\mathrm{CH}(\mathrm{Ar})), 126.1(\mathrm{CH}(\mathrm{Ar})), 122.9(\mathrm{CH}(\mathrm{Ar})), 112.6(\mathrm{CH}$ $\mathrm{Ar})$), $86.8(\mathrm{C}(\mathrm{Ar})), 69.5\left(\mathrm{OCH}_{2}\right), 19.2\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2979 \mathrm{w}, 2865 \mathrm{w}, 1471 \mathrm{~s}, 1431 \mathrm{~m}, 1374 \mathrm{w}, 1268 \mathrm{~s}, 1229 \mathrm{~s}$, $1048 \mathrm{~m}, 1021 \mathrm{~m}, 735 \mathrm{~s} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 260(1900), 212(7100) \mathrm{nm}$.

1-(2'-Methoxyphenyl)-2-methylbenzene 441^{88}

Iodide 440 ($800 \mathrm{mg}, 2.46 \mathrm{mmol}$), tri- n-butyltin hydride ($1.24 \mathrm{~g}, 3.69 \mathrm{mmol}$) and azo-bis-isobutyronitrile ($100 \mathrm{mg}, 0.45 \mathrm{mmol}$) were stirred in toluene (40 mL) at $85^{\circ} \mathrm{C}$ for 20 h . The mixture was then cooled to ambient temperature and aqueous potassium fluoride ($10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL}$) was added. The mixture was stirred for 24 h then extracted with ether ($3 \times 20 \mathrm{~mL}$), the combined organic phases were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by column
chromatography (20% ether in petrol) to provide 441 as a colourless oil ($228 \mathrm{mg}, 1.15$ mmol, 47\%).
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.47-7.21(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{Ar} H), 7.18-7.04(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} \quad 138.1(\mathrm{C}(\mathrm{Ar})), 131.6(\mathrm{CH}(\mathrm{Ar})), 130.1$ (C (Ar)), $129.7(\mathrm{CH}(\mathrm{Ar})), 129.2(\mathrm{CH}(\mathrm{Ar})), 128.7(\mathrm{C}(\mathrm{Ar})), 128.3(\mathrm{CH}$ (Ar)), $127.4(\mathrm{CH}(\mathrm{Ar})), 125.6(\mathrm{CH}(\mathrm{Ar})), 125.5(\mathrm{C}(\mathrm{Ar})), 120.5(\mathrm{CH}$ (Ar)), $110.7(\mathrm{CH}(\mathrm{Ar})), 55.5\left(\mathrm{OCH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2935 \mathrm{w}, 2909 \mathrm{w}, 1489 \mathrm{~m}, 1453 \mathrm{~m}, 1308 \mathrm{w}, 1237 \mathrm{~s}, 1167 \mathrm{w}$, $1030 \mathrm{~m}, 999 \mathrm{w}, 876 \mathrm{w}, 743 \mathrm{scm}^{-1}$.

UV $\quad \lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 254(2500), 215(4000) \mathrm{nm}$.
LRMS (CI) $198\left([\mathrm{M}]^{+}, 26 \%\right), 175$ (100) amu.

1,4,-bis-(4-cyanobenzyoxy)-2,5-diiodo benzene 447

Diiodide 447 was prepared using a procedure adapted from Hunig. ${ }^{89}$ 2,5-Diiodohydroquinone ($3.718 \mathrm{~g}, 10.2 \mathrm{mmol}$) was dissolved in $\mathrm{NaOH}(12.8 \mathrm{ml}$ of a 2 M solution) and ethanol (40 mL) then treated with 4 -cyanobenzyl bromide (5.99 g , 30.5 mmol). The mixture was heated at reflux for 1 h then cooled and filtered to give 447 as a pink solid. ($2.891 \mathrm{~g}, 4.8 \mathrm{mmol}, 47 \%$).
m.p. $\quad>270^{\circ} \mathrm{C}$

Due to the high boiling point and insoluble nature of this compound, no further data was obtained.

1,4-bisbenzyloxy-2,5-diiodobenzene 448^{89}

445
448
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}_{2} \mathrm{O}_{2} 362$
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Br} 170$
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{O}_{2} 542$
Diiodide 448 was prepared using the procedure of Hunig. ${ }^{89}$ 2,5-Diiodohydroquinone ($1.5 \mathrm{~g}, 4.1 \mathrm{mmol}$) was dissolved in NaOH (5.1 mL of a 2 M solution) and ethanol (40 mL) and treated with benzyl bromide ($2.1 \mathrm{~g}, 12.3 \mathrm{mmol}$). The mixture was heated at reflux for 1 h then cooled and the precipitated solid filtered. The crude product was recrystallised from toluene to give 448 as a white solid ($1.273 \mathrm{~g}, 2.3 \mathrm{mmol}, 57 \%$).
m.p. $\quad 171-172^{\circ} \mathrm{C}$ (toluene)

```
\({ }^{1} \mathrm{H}\) NMR \(\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.69-7.21(12 \mathrm{H}, \mathrm{m}, 12 \times \mathrm{ArH}), 5.24(4 \mathrm{H}, \mathrm{s}, 2\)
    \(\mathrm{x} \mathrm{OCH} \mathrm{H}_{2}\) ) p.p.m.
\({ }^{13} \mathrm{C}\) NMR \(\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 154.9(2 \times C(\mathrm{Ar})), 137.1(2 \times C(\mathrm{Ar})), 128.7(4\)
    \(\mathrm{xCH}(\mathrm{Ar})), 128.2(2 \times \mathrm{CH}(\mathrm{Ar})), 127.4(4 \times \mathrm{CH}(\mathrm{Ar})), 123.6(2 \times \mathrm{CH}\)
    ( Ar ) \(), 87.3(2 \times \mathrm{Cl}(\mathrm{Ar})), 72.2\left(2 \times \mathrm{OCH}_{2}\right)\) p.p.m.
FT-IR \(\quad v_{\max }\) (neat) \(3441 \mathrm{w}, 1475 \mathrm{~s}, 1444 \mathrm{w}, 1347 \mathrm{~s}, 1219 \mathrm{~s}, 1050 \mathrm{~s}, 1014 \mathrm{~s}, 906 \mathrm{w}\),
    \(845 \mathrm{~s}, 789 \mathrm{~m}, 732 \mathrm{~s} \mathrm{~cm}^{-1}\).
UV \(\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 281(1400), 242(8200) \mathrm{nm}\).
LRMS (CI) \(542\left([\mathrm{M}]^{+}, 4 \%\right), 91\) (100) amu.
```


2'5'-Dimethoxy-p-terphenyl 449

5,12-Dihydrobenzo[c] isochromeno-[3,4-g]chromene 450

2-Methoxy-3-phenyl- 6 H -benzo[c]chromene 451

Diiodide 448 ($273 \mathrm{mg}, 0.5 \mathrm{mmol}$), tri- n-butyltin hydride ($218 \mathrm{mg}, 0.75 \mathrm{mmol}$) and azo-bis-isobutyronitrile ($12 \mathrm{mg}, 0.07 \mathrm{mmol}$) were stirred in toluene $(40 \mathrm{~mL})$ at $85^{\circ} \mathrm{C}$ for 20 h . The mixture was then cooled to ambient temperature and aqueous potassium
fluoride ($10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL}$) was added. The mixture was stirred for 24 h then extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (20% ether in petrol) to provide a coulourless oil comprising of 449 , 450 and $\mathbf{4 5 1}$ as a 1:4:6 mixture ($129 \mathrm{mg}, 0.44 \mathrm{mmol}, 88 \%$).

GC-MS Retention time 6.67 (EI) 290 ([M] ${ }^{+}, 100 \%$), 275 (28) amu
Retention time 7.14 (EI) 288 ([M] ${ }^{+}$, 100\%) 197 (62) amu
Retention time 8.26 (EI) $287\left([\mathrm{M}+\mathrm{H}]^{+}, 33 \%\right) \mathrm{amu}$.

1,4-bis(3-methoxybenzyloxy)-2,5-diiodobenzene 452

Diiodide 452 was prepared using a procedure adapted from Hunig. ${ }^{89}$ Diiodohydroquinone ($2.328 \mathrm{~g}, 6.4 \mathrm{mmol}$) was dissolved in $\mathrm{NaOH}(8.03 \mathrm{ml}$ of a 2 M solution) and ethanol (40 mL) and treated with 3-methoxybenzyl bromide (3.86 g , 19.2 mmol). The mixture was heated at reflux for 1 h then cooled and filtered. The crude product was recrystallised from DCM/petrol to give $\mathbf{4 5 2}$ as a colourless solid ($3.12 \mathrm{~g}, 5.1 \mathrm{mmol}, 81 \%$).
m.p. $\quad 140-141^{\circ} \mathrm{C}$ (DCM/petrol)
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.41-7.27(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ar} H), 7.12(2 \mathrm{H}, \mathrm{s}, 2 \times$ $\mathrm{Ar} H), 7.07(2 \mathrm{H}, \mathrm{d}, J 8.1 \mathrm{~Hz}, 2 \times \mathrm{Ar} H), 6.95-6.36(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH})$, $5.07\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2}\right), 3.86\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 159.9(2 \times C(\mathrm{Ar})), 152.8(2 \times C(\mathrm{Ar})), 137.9(2$ $\mathrm{x} C(\mathrm{Ar})), 129.7(2 \times \mathrm{CH}(\mathrm{Ar})), 123.5(2 \times \mathrm{CH}(\mathrm{Ar})), 119.4(2 \times \mathrm{CH}$ (Ar)), 113.9 ($2 \times \mathrm{CH}(\mathrm{Ar})$), $112.6(2 \times \mathrm{CH}(\mathrm{Ar})), 86.6(2 \times \mathrm{Cl}(\mathrm{Ar}))$, $71.8\left(2 \times \mathrm{OCH}_{2}\right), 55.4\left(2 \times \mathrm{OCH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2960 \mathrm{w}, 2883 \mathrm{w}, 1608 \mathrm{~m}, 1485 \mathrm{~m}, 1367 \mathrm{~m}, 1250 \mathrm{~s}, 1163 \mathrm{~s}$, $1040 \mathrm{~s}, 840 \mathrm{~s}, 789 \mathrm{~s} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 312(1400), 281(1600), 235(4700) \mathrm{nm}$.
CHN Found $\mathrm{C} 43.85 \mathrm{H} 3.30, \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{I}_{4}$ requires C 43.88 H 3.35 .

2',3,3",5-Tetramethoxy-p-terphenyl 453

2,7-Dimethoxy-8-(3-methoxyphenyl)-benzo[c]chromene 454

452

453

$$
\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4} 350
$$

$$
\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} 348
$$

Iodide 452 ($1.242 \mathrm{mg}, 2.0 \mathrm{mmol}$), tri- n-butyltin hydride ($873 \mathrm{mg}, 3.0 \mathrm{mmol}$) and azobisisobutyronitrile ($48 \mathrm{mg}, 0.3 \mathrm{mmol}$) were stirred in toluene $\left(40 \mathrm{~mL}\right.$) at $85^{\circ} \mathrm{C}$ for 20 h . The mixture was then cooled to ambient temperature and aqueous potassium fluoride ($10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL}$) was added. The mixture was stirred for 24 h then extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (20% ether in petrol) to provide a colourless oil comprising of a $2: 3$ mixture of $\mathbf{4 5 3}$ and $\mathbf{4 5 4}$ ($237 \mathrm{mg}, 0.67 \mathrm{mmol}, 33 \%$).

GCMS Retention time 17.07 (CI) 350 ([M] $\left.{ }^{+}, 38 \%\right) 121$ (100) amu.
Retention time 16.81 (CI) 348 ([M] ${ }^{+}, 100 \%$) amu

1,4-bis-p-Biphenyloxy-2,5-diiodobenzene 455

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}_{2} \mathrm{O}_{2} 362$
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br} 246$
$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{I}_{2} \mathrm{O}_{2} 694$

Diiodide 455 was prepared using a procedure adapted from Hunig. ${ }^{89}$ 2,5-Diiodohydroquinone ($2.328 \mathrm{~g}, 6.4 \mathrm{mmol}$) was dissolved in $\mathrm{NaOH}(8.03 \mathrm{ml}$ of a 2 M solution) and ethanol (40 mL) and treated with 4-(bromomethyl)biphenyl (3.98 g , 19.2 mmol). After heating at reflux for 1 h the mixture was then cooled, filtered and the resulting solid recrystallised from DCM/petrol to give $\mathbf{4 5 5}$ as a colourless solid $(2.97 \mathrm{~g}, 4.2 \mathrm{mmol}, 66 \%)$.
m.p. $\quad 236-238^{\circ} \mathrm{C}(\mathrm{DCM} /$ petrol $)$
${ }^{1} \mathbf{H} \operatorname{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.59-7.38(14 \mathrm{H}, \mathrm{m}, 14 \times \mathrm{ArH}), 7.36-7.24$ $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar} H), 7.25-7.16(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar} H), 7.11(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar} H)$ $4.98\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad(100 \mathrm{MHz}, \mathrm{CDCl} 3) \delta_{\mathrm{C}} 154.1(2 \times C(\mathrm{Ar})), 142.2(2 \times C(\mathrm{Ar})), 140.1(2$ $\mathrm{x} C(\mathrm{Ar})), 135.4(2 \times C(\mathrm{Ar})), 129.2(4 \times C H(\mathrm{Ar})), 128.1(4 \times C H$ (Ar)), 127.7 ($5 \times \mathrm{CH}(\mathrm{Ar})$), $127.5(5 \times \mathrm{CH}(\mathrm{Ar})), 124.1(2 \times \mathrm{CH}(\mathrm{Ar}))$, $87.1(2 \times \mathrm{Cl}(\mathrm{Ar})), 72.3\left(2 \times \mathrm{OCH}_{2}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2955 \mathrm{w}, 2863 \mathrm{w}, 1480 \mathrm{~m}, 1449 \mathrm{w}, 1342 \mathrm{~m}, 1193 \mathrm{~s}, 1055 \mathrm{~s}$, $999 \mathrm{~s}, 871 \mathrm{w} 773 \mathrm{~s} \mathrm{~cm}^{-1}$.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 292(1000), 232(9000) \mathrm{nm}$.
CHN Found C $55.71 \mathrm{H} 3.47, \mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{I}_{2}$ requires C 55.35 H 3.48 .
The high molecular weight prevented a satisfactory mass spectra from being obtained.

2",5", Dimethoxypentaphenyl 456

Pentaphenyl 457

8-p-Biphenyl-7-methoxy-3-phenyl-benzo[c]chromene 458

455
$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{I}_{2} \mathrm{O}_{2} 694$

456
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{2} 442$

457
$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{2} 440$

458
$\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{2} 438$

Diiodide 455 ($2.162 \mathrm{~g}, 3.1 \mathrm{mmol}$), tri- n-butyltin hydride ($1.35 \mathrm{~g}, 4.6 \mathrm{mmol}$) and azobisisobutyronitrile ($74 \mathrm{mg}, 0.4 \mathrm{mmol}$) were stirred in toluene $(40 \mathrm{~mL})$ at $85^{\circ} \mathrm{C}$ for 20 h . The mixture was then cooled to ambient temperature and aqueous potassium fluoride ($10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL}$) was added. The mixture was stirred for 24 h then extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (20% ether in petrol) to provide a colourless oil comprising a mixture of $\mathbf{4 5 6}, 457$ and 458 ($532 \mathrm{mg}, 1.2 \mathrm{mmol}, 38 \%$).

LRMS
(EI) $442\left([\mathrm{M}]^{+}, 7 \%\right), 440\left([\mathrm{M}]^{+}, 15 \%\right), 438\left([\mathrm{M}]^{+}, 13 \%\right) 167(100)$ amu.

2,5-bis-(2,4,6-Trimethylbenzyloxy)-1,4-diiodobenzene 459

459
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}_{2} \mathrm{O}_{2} 362$
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{Cl} 168$
$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{I}_{2} \mathrm{O}_{2} 626$

Diiodide 459 was prepared using a procedure adapted from Hunig. ${ }^{89}$ Diiodohydroquinone ($3.0 \mathrm{~g}, 8.3 \mathrm{mmol}$) was dissolved in NaOH (10.3 ml of a 2 M solution) and ethanol (40 mL) and treated with 2,4,6-trimethylbenzyl chloride (2.79 g , $16.6 \mathrm{mmol})$. The mixture was heated at reflux for 1 h then cooled, filtered and the resulting solid recrystallised from (ethanol) to give 459 as a colourless solid. (3.27 g , $5.2 \mathrm{mmol}, 63 \%)$.
m.p. $\quad 230-232^{\circ} \mathrm{C}$ (ethanol)
${ }^{1} \mathrm{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.18(4 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{Ar} H), 6.78(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar} H)$, $4.52\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2}\right), 2.26\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 2.15\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$ p.p.m.
${ }^{13} \mathrm{C}$ NMR $\quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 153.4(2 \times C(\mathrm{Ar})), 138.5(2 \times C(\mathrm{Ar})), 138.4(4$ $\mathrm{x} C(\mathrm{Ar})$), $129.3(2 \times C(\mathrm{Ar})), 129.2(4 \times \mathrm{CH}(\mathrm{Ar})), 123.7(2 \times \mathrm{CH}$ (Ar)), $86.7(2 \times \mathrm{CI}(\mathrm{Ar})), 67.3\left(2 \times \mathrm{OCH}_{2}\right), 21.2\left(2 \times \mathrm{CH}_{3}\right), 19.9(4 \times$ CH_{3}) p.p.m.

FT-IR $\quad v_{\max }$ (neat) $2924 \mathrm{w}, 2842 \mathrm{w}, 1731 \mathrm{~m}, 1454 \mathrm{~s}, 1362 \mathrm{~m}, 1342 \mathrm{~s}, 1198 \mathrm{~s}$, $1055 \mathrm{~m}, 988 \mathrm{~s}, 830 \mathrm{~s}, 763 \mathrm{~m} \mathrm{~cm}^{-1}$.

UV $\lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 302$ (1100), 228 (5000) amu.

$\underline{2^{\prime}, 2^{\prime \prime}, 4^{\prime}, 4^{\prime \prime}, 6^{\prime}, 6^{\prime \prime} \text {-hexamethyl-2',5'-methoxy-p-terphenyl } 460}$

Diiodide 459 ($1.166 \mathrm{~g}, 1.86 \mathrm{mmol}$), tri- n-butyltin hydride ($811 \mathrm{mg}, 2.79 \mathrm{mmol}$) and azo-bis-isobutyronitrile ($44 \mathrm{mg}, 0.3 \mathrm{mmol}$) were stirred in toluene $(40 \mathrm{~mL})$ at $85^{\circ} \mathrm{C}$ for 20 h . The mixture was then cooled to ambient temperature and aqueous potassium fluoride ($10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL}$) was added. The mixture was stirred for 24 h then extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (20% ether in petrol) to provide 460 as a colourless solid (466 mg , $1.2 \mathrm{mmol}, 67 \%)$.
m.p. $\quad 210-212^{\circ} \mathrm{C}$ (ethanol).

${ }^{1} \mathrm{H}$ NMR	(300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.06(4 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{ArH}), 6.73(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{ArH})$,
	3.73 (6H, s, $\left.\left.2 \times \mathrm{OCH}_{3}\right), 2.45\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH} \mathrm{H}_{3}\right), 2.17(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH})^{3}\right)$
	p.p.m.
${ }^{13} \mathrm{C}$ NMR	(75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 150.7(2 \times C(\mathrm{Ar})$), $136.7(4 \times C(\mathrm{Ar})$), 136.6 (2
	$\mathrm{x} C(\mathrm{Ar})$), $135.4(2 \times C(\mathrm{Ar})$), 129.1 ($2 \times C(\mathrm{Ar})$), 128.6 ($4 \times \mathrm{CH}(\mathrm{Ar})$),
	$113.9\left(2 \times \mathrm{CH}(\mathrm{Ar})\right.$), $56.2\left(2 \times \mathrm{OCH}_{3}\right), 21.2\left(2 \times \mathrm{CH}_{3}\right), 20.3\left(4 \times \mathrm{CH}_{3}\right)$
	p.p.m.
FT-IR	$\mathrm{V}_{\max }$ (neat) $2929 \mathrm{w}, 2852 \mathrm{w} .1511 \mathrm{~m}, 1480 \mathrm{~m}, 1378 \mathrm{~m}, 1203 \mathrm{~s}, 1060 \mathrm{~s}$,
	$866 \mathrm{~m}, 845 \mathrm{~s}, 778 \mathrm{~m}, 732 \mathrm{w} \mathrm{cm}^{-1}$.
UV	$\lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 293$ (2400), 222 (5200) nm.
LRMS	(CI) 374 ([M] ${ }^{+}, 100 \%$) amu.
HRMS	Found $374.2249, \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{2}$ requires 374.2245 amu .

1,4-bis-(2-Methylbenzyloxy)-2,5-diiodobenzene 461

445
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}_{2} \mathrm{O}_{2} 362$
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br} 184$
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{I}_{2} \mathrm{O}_{2} 570$
461

Diiodide 461 was prepared using a procedure adapted from Hunig. ${ }^{89}$ 2,5-Diiodohydroquinone ($3.5 \mathrm{~g}, 9.6 \mathrm{mmol}$) was dissolved in $\mathrm{NaOH}(12.8 \mathrm{ml}$ of a 2 M
solution) and ethanol (40 mL) and treated with 2-methylbenzyl bromide ($5.29 \mathrm{~g}, 28.8$ mmol). The mixture was heated at reflux for 1 h then cooled, filtered and the solid recrystallised from DCM/petrol to give 461 as a colourless solid. $(2.97 \mathrm{~g}, 5.2 \mathrm{mmol}$, 54\%).
m.p. $\quad 188-190^{\circ} \mathrm{C}(\mathrm{DCM} /$ petrol $)$.
${ }^{1} \mathrm{H}$ NMR $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.59-7.49(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar} H), 7.37-7.18(8 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar} H), 5.06\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2}\right), 2.46\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$, p.p.m.
${ }^{13} \mathrm{C} \mathrm{NMR} \quad\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 153.1(2 \times C(\mathrm{Ar})), 136.5(2 \times C(\mathrm{Ar})), 135.2(2$ x $C(\mathrm{Ar})), 130.4(2 \times \mathrm{CH}(\mathrm{Ar})), 128.6(2 \times \mathrm{CH}(\mathrm{Ar})), 128.4(2 \times \mathrm{CH}$ $(\mathrm{Ar})), 126.2(2 \times \mathrm{CH}(\mathrm{Ar})), 123.4(2 \times \mathrm{CH}(\mathrm{Ar})), 86.4(2 \times \mathrm{CI}(\mathrm{Ar}))$, $70.2\left(2 \times \mathrm{OCH}_{2}\right), 19.2\left(2 \times \mathrm{CH}_{3}\right)$ p.p.m.

FT-IR $\quad v_{\max }$ (neai) $2960 \mathrm{w}, 2847 \mathrm{w}, 1485 \mathrm{~m}, 1352 \mathrm{~s}, 1219 \mathrm{~s}, 1055 \mathrm{~m}, 840 \mathrm{~m}, 830 \mathrm{~m}$ cm^{-1}.

UV $\quad \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 292(4000), 223$ (10000) nm.

2,2"-Dimethyl-2',5'-dimethoxy-p-terphenyl 462

5-Methyl-7-methoxy-8-(2-methylphenyl)-benzo[c]chromene 463

461
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{I}_{2} \mathrm{O}_{2} 570$

462
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2} 318$
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2} 316$

Diiodide 461 ($1.796 \mathrm{~g}, 3.3 \mathrm{mmol}$), tri- n-butyltin hydride ($1.44 \mathrm{~g}, 4.95 \mathrm{mmol}$) and azo-bis-isobutyronitrile ($79 \mathrm{mg}, 0.5 \mathrm{mmol}$) were stirred in toluene $\left(40 \mathrm{~mL}\right.$) at $85^{\circ} \mathrm{C}$ for 20 h. The mixture was cooled to ambient temperature and aqueous potassium fluoride $(10 \% \mathrm{w} / \mathrm{v}, 20 \mathrm{~mL})$ was added. The mixture was stirred for 24 h then extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and purified by column chromatography (20% ether in petrol) to provide a colourless oil comprising a 2:1 462 and 463 as inseparable colourless oils ($640 \mathrm{mg}, 2.0 \mathrm{mmol}, 61 \%$).

GC-MS Retention time $13.62 \mathrm{~min}(\mathrm{CI}) 318\left([\mathrm{M}]^{+}, 100 \%\right) \mathrm{amu}$ Retention time $15.04 \mathrm{~min}(\mathrm{CI}) 316$ ([M $\left.\}^{+}, 100 \%\right)$ amu.

References

1. G.P. Jourdan, B.A. Dreikorn, R.E. Hackler, H.R.Hall, R. Arnold, Synthesis and Chemistry of Agrochemicals II, ACS Symposium Series, Am. Chem. Soc. Washington D.C. 1991, 566.
2. G.M. Anstead, J.L. Ensign, C.S. Peterson, A. Katzenellenbogen, J. Org. Chem., 1989, 54, 1485.
3. R.L. Frank, H. Eklund, J.W. Richter, C.R. Vannerman, A.N. Vennerberg, J. Am. Chem. Soc., 1944, 66, 1.
4. A. Chatteree, S. Banerjee, Tetrahedron, 1970, 26, 2599.
5. H.O. House, J.K. Larson, J. Org. Chem. Soc., 1968, 33, 448.
6. H.O. House, V. Paragamium, R.S. Ro, D.J. Wluka, J. Am. Chem. Soc., 1960, 82, 1452.
7. J.F. Feeman, J. Am. Chem. Soc., 1950, 72, 1522.
8. M.B. Floyd, G.R. Allen, J. Org Chem., 1970, 35, 2647.
9. H. Martens, G. Hoornaert, Tetrahedron, 1974, 30, 3641.
10. P. Galatsis, J.J. Manwell, J.M. Blackwell, Can. J. Chem., 1994, 72, 1656.
11. G. Gupta, S. Banerjee, J. Indian Chem. Soc., 1991, 68, 362.
12. M. Brunner, G. Maas, Synthesis, 1995, 957.
13. L.S. Liebeskind, M.S. South, J. Org. Chem., 1980, 45, 5426.
14. i. I.R. Butler, J.E. Elliott, J. Houde, Can. J. Chem., 1989, 67, 1308. ii.I.R Butler, W.R. Cullen, W. E. Lindsell, P.N. Preston, S.J. Rettig, J. Chem. Soc. Chem. Commun., 1978, 439.
15. N.P. Robinson, L. Main, B.K. Nicholson, J. Organometal. Chem., 1989, 364, C37.
16. R.C. Cambie, L. Chua MuiMui, P.S. Rutledge, P.D. Woodgate, J. Organometal. Chem., 1994, 464, 171.
17. P. Hong, B.R. Cho, H. Yamazaki, Chem. Letters, 1979, 339.
18. K. Kokubo, K. Matsumara, M. Miura, M. Nomura, J. Org. Chem., 1996, 61, 6941.
19. W. Tao, L.J. Silverberg, A.L. Rheingold, R.F. Heck, Organometallics, 1989, 8, 2550.
20. R.C. Larock, M.J. Doty, S. Cacchi, J. Org. Chem., 1993, 58, 4579.
21. J. Vicente, J.A. Abad, J. Gil-Rubio, Organometallics, 1996, 15, 3509.
22. W. Clark, J. Am. Chem. Soc., 1998, 120, 4550.
23. R.S. Shriner, W.R. Knox, J. Org. Chem., 1950, 16, 1054.
24. C. Manning, M.R. McClory, J.J. McCullough, J. Org. Chern., 1981, 46, 919.
25. J. Ackroyd, K.A. Pover, F. Scheinmann, Tetrahedron Lett., 1982, 23, 5583.
26. A. Maercker, V.E.E. Daub, Tetrahedron, 1994, 50, 2439.
27. H. Vorbruggen, B.D. Bohn, K. Krolikiewicz, Tetrahedron, 1990, 46, 3489.
28. L. Hatjiarapoglu, A. Varvoglis, N.W. Alcock, G.A. Pike, J. Chem. Soc. Perkin Trans. 1, 1988, 2839.
29. L. M. X. Lopes, M. Yoshida, O.R. Gottlieb, Phytochemistry, 1984, 23, 2021.
30. M.J. Kato, M. Yoshida, O.R. Gottlieb, Phytochemistry, 1990, 29, 1799.
31. D.A. Whiting, Nat. Prod. Rep., 1989, 4, 499.
32. L.L. Klein, C.M.Yeung, D.J. Chu, E.J. MacDonald, J.J. Clement, J.J. Plattner, J. Med. Chem., 1991, 31, 1316.
33. i. G.M. Anstead, S.R. Wilson, J.A. Katzenellenbogen, J. Med. Chem., 1989, 32, 2163. ii. G. M. Anstead, R. J. Attenbach, S. R. Wilson, J. A. Katzenellenbogen, J. Med. Chem., 1989, 34, 984.
34. K. Hajela, R.S. Kapil, Indian J. Chem. Sect. B., 1995, 34, 361.
35. K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467.
36. D.C. Harrowven, N.A. Newman, C.A. Knight, Tetrahedron Lett., 1998, 39, 6757.
37. i) B. Giese, B. Kopping, T. Gobel, J. Dickhaut, G. Thoma, K.J. Kulicke, F. Trach, Org. React., 1996, 48, 301. ii) D.P. Curran in Comprehensive Organic Synthesis, ed. B.M. Trost, Pergamon, Oxford, 1991, Vol.4. p. 779.
38. W.B. Motherwell, D Crich, Free Radical Chain Reactions in Organic Synthesis, Academic Press, 1991.
39. J.M. Fang, H.T. Chang, C. Chin, J. Chem. Soc., Chem. Commun., 1988, 1385.
40. See Occupation al Exposure to Organotin compounds, US Department of Health, Education and Welfare, Washington, Nov 1976.
41. M.D. Bachi, E. Bosch, J. Org. Chem., 1992, 57, 4696.
42. i) G. Stork, P.M. Sher, J. Am. Chem. Soc., 1986, 108, 303. ii) B. Giese, T. Linker, R. Muhn, Tetrahedron, 1989, 45, 945.
43. i) A.L.J. Beckwith, C.H. Schiesser, Tetrahedron, 1985, 41, 3925. ii) A.L.J. Beckwith, C.J. Easton, T. Lawrence, A.K. Serelis, Aust.J. Chem., 1983, 36, 545. iii) D.C. Spellmeyer, K.N. Houk, J. Org. Chem., 1987, 52, 959.
44. R. Stevenson, Chem. Ind. (London), 1962, 270.
45. E.J. Murphy, Aust. J. Chem., 1975, 28, 81.
46. S.M. Adjangba, D, Billet, Bull. Soc. Chim. Fr., 1962, 1970.
47. A.P. Fernandes, L.E.S. Barata, P.H. Ferri, Phytochemistry, 1986, 25, 959.
48. i) R.M. Beesley, C.K. Ingold, J.F. Thorpe, J. Chem. Soc., 1915, 107, 1080. ii)
C.K. Ingold, J. Chem. Soc., 1921, 119, 305.
49. D.C. Harrowven, J.C. Hannam, M.C. Lucas, N.A. Newman, P.D. Howes, Tetrahedron Lett., 2000, 41, 9345.
50. M. Sainsbury, Tetrahedron, 1980, 36, 3327.
51. C.J. Matthews, P.J. Smith, T. Welton, J. Chem. Soc. Chem. Commun., 2000, 1249.
52. For recent examples of intramolecular radical ipso-substitution reactions see i) H. Senboku, H. Hasegawa, K. Orito, M. Tokuda, Tetrahedron Lett., 2000, 41, 5699. ii) S. Amrein, M. Bossart, T. Vasella, A. Studer, J. Org. Chem., 2000, 65, 4281. iii) T. Tanaka, R. Wakayama, S. Maeda, H. Mikamiyama, N. Maezakai, H. Ohno, Chem Commun., 2000, 1287. iv) K. Wakabayashi, H. Yorimitsu, H. Shinokubo, K. Oshima, Org. Lett., 2000, 2, 1899. v) E. Bonfand, L. Forsland, W.B. Motherwell, S. Vazquez, Synlett, 2000, 475. vi). vii) A.J. Clark, F. Decampo, R.J. Deeth, R.P. Filik, S. Gatard, N.A. Hunt, D. Lastecoueres, G.H. Thomas, J.B. Verlhac, H. Wongtap, J. Chem. Soc., Perkin Trans I, 2000, 671.
53. M.L.E.N. de Mata, W.B. Motherwell, F. Ujjainwalla, Tetrahedron Lett., 1997, 38, 137.
54. A.N. Rosa, A.M. Lobo, P.S. Branco, S. Prabhakar, Tetrahedron, 1997, 53, 285.
55. A. Studer, M. Bossart, T. Vasella, Org. Lett., 2000, 2, 985.
56. D.L.J. Clive, S. Z. Kang, Tetrahedron Lett., 2000, 41, 1315
57. I.S. Chen, I.L. Tsai, S.J. Wu, W.S. Sheen, T. Ishikawa, H. Ishii, Phytochemistry, 1993, 34, 1449.
58. i) D.C. Harrowven, M.I.T. Nunn, N.J. Blumire, D.R. Fenwick, Tetrahedron Lett., 2000, 41, 6681. ii) D.C. Harrowven, M.I.T. Nunn, Tetrahedron Lett., 1998, 39, 5875.
59. P.V. Divekar, G. Read, L.C. Vining, R.H. Haskins, Can. J. Chem. 1959, 37, 1970.
60. M. Zhao, Y. Cui, M. Samoc, P.N. Prasad, M.R. Unroe, B.A. Reinhardt, J. Chem. Phys., 1991, 95, 3991. ii) S. Lin, W.S. Struve, G.M. Anstead, J. Am. Chem. Soc., 2000, 122, 1175.
61. D.C. Harrowven, M.I.T. Nunn, N.A. Newman, Tetrahedron Lett., 2001, 42, 961.
62. P.C. Roberti, R.F. York, W.S. Macgregor, J. Am. Chem. Soc., 1950, 72, 5760.
63. R. Adams, T.A Geissman, B.R. Baker, H.M. Teeter, J. Am. Chem. Soc., 1993, 58, 4579.
64. T.A. Engler, K.D. Combrink, J.E. Ray, Synth. Comm., 1989, 19, 1735.
65. R.M. Orcutt, M.T. Bogert, J. Am. Chem. Soc., 1936, 58, 2057.
66. E.N. Alesso, D.G. Tombari, G.V. Maltrasio Inglesias, J.N. Agurre, Can. J. Chem., 1987, 65, 2568.
67. R.P. Foulds, R. Robinson, J. Chem. Soc., 1914, 1965.
68. M.R. Winkle, R.C. Ronald, J. Org. Chem. 1982, 47, 2105.
69. J. Arnold, S. M. Mellows, P. G. Sammes, J. Chem. Soc., Perkin Trans. I, 1973, 1266.
70. Y.S. Liu, Chem. Pharm. Bull., 1954, 149.
71. Palladium Reagents in Organic synthesis, R.F. Heck, Ch. 6.7, p.277, Academic Press Ltd. 1985.
72. S.K. Meegalla, R. Rodriga, J. Org. Chem., 1991, 56, 1882.
73. C. Berrier, J.P. Gesson, J.C. Jaquesy, A. Renoux, Tetrahedron, 1983, 40, 4973.
74. A. Spencer, J. Organometal. Chem., 1984, 265, 323.
75. M.E. Kuehne, R.E. Damon, J. Org. Chem., 1977, 42, 1825.
76. C.P. Cheung, T.H.J. Ngoi, Tetrahedron Lett., 1989, 30, 6369.
77. H. Bricout, J.F. Carpentier, A. Mortreaux, Chem Commun., 1997, 15, 1393.
78. S.G. Ornum, J.M. Cook, Tetrahedron Lett., 1996, 40, 7185.
79. R. Walton, B. Fraser-Reid, J. Am. Chem. Soc., 1991, 113, 5791.
80. G.A. Molander, C.R. Harris, J. Am. Chem. Soc., 1995, 117, 3705.
81. K. Weinges, W. Sipos, Angew Chem Intl. Ed., 1987, 11, 1152.
82. Y.T. Lin, K.N. Houk, Tetrahedron Lett., 1985, 21, 2517.
83. G.S. Sheppard, D. Pireh, G.M. Carrera, M.G. Bures, R.H. Heyman, D.H. Steinman, S.K. Davidsen, J.G. Phillips, D.E. Guinn, P.D. May, R.G. Conway, D.A. Rhein, W.C. Calhoun, D.H. Albert, T.J. Magoc, G.W. Carter, J.B.Summers, J. Med. Chem., 1994, 37, 2011.
84. N. Alum, C. Amatore, C. Combellas, J. Pinson, J.M. Saveant, A. Thiebault, J.N. Verpeaux, J. Org. Chem., 1988, 53, 1496.
85. B. Henze, D. Marquis, P. Marseau, M.Cotrait, J.P. Desverque, Tetrahedron Lett., 1996, 37, 5499.
86. G.R. Ames, W. Davey, J.Chem. Soc., 1957, 3480.
87. K. Tamao, A. Minato, H. Miyake, T. Matsuda, Y. Kiso, M. Kumada, Chem. Lett., 1975, 2, 133.
88. D.I.. Davis, C. Waring, J. Chem Soc. C, 1968, 2332.
89. S. Hunig, R. Bau, M. Kemmer, H. Meixheer, T. Metzenthin, K. Peters, K. Sinzger, J. Gulbis, Eur. J. Org. Chem., 1998, 335.

[^0]: ${ }^{1} \mathbf{H} \mathbf{N M R} \quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.93(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{ArH}), 6.91-6.72(7 \mathrm{H}, \mathrm{m}, 7 \mathrm{x}$ $\operatorname{ArH}), 6.69(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.61(1 \mathrm{H}, \mathrm{s}$, OCHAr$), 6.37(1 \mathrm{H}, \mathrm{s}$, OCHAr), $5.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.18-5.11(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCHCH}_{2}\right), 4.86-4.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHCH}_{2}\right), 3.88\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right)$, $\left.3.81(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH})_{3}\right), 2.08-1.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.89-1.62(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH} H), 1.62-1.46(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H), 1.06\left(3 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87$ ($3 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}$) p.p.m.

