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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

A P P L I C A T I O N OF INTELLIGENT SIGNAL PROCESSING T O 

DYNAMIC M E A S U R E M E N T SYSTEMS 

by Seyed Mohammad Taghi Alhoseyni Almodarresi Yasin 

A new method for dynamic measurement is presented. A feature extractor and two-

layer artificial neural network is used to predict the final value of a sensor's response 

while it is still in oscillation. The method permits arbitrary inputs and initial 

conditions and does not make any assumptions about the model of the sensor. It 

also copes with non-linearity defects in primary sensors. Introducing a pre-processor 

as a feature extraction block before the neural network decreases the effect of noise 

and dramatically reduces the required number of neurones. This, in turn, reduces 

the complexity of computation and speeds up the real-time measurement. One 

important advantage of the proposed method is that it can be used in situations 

where the input function is an impulse, i.e. the transducer senses the mea'surand 

for only a very short time interval. This method also allows the possibility of using 

some features of the sensor signal, such as frequency, that are rarely used in other 

methods, despite them having a unique relation with the steady state value of the 

signal. Amplitude noise also has less effect on these characteristics. In addition 

dynamic neural networks are used in a novel way to cancel the interference signals. 

The proposed methods are established by theoretical analysis and justified by means 

of both simulation and measurements on real data. 
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Chapter 1 

Introduction 

Dynamic measurement refers to the ascertainment of the final value of a sensor 

signal while its output is still in oscillation. It is used to speed up the process 

of measurement. Dynamic measurement methods are mainly signal processing 

procedures that are used to tackle the defects of elementary sensors. 

Elementary sensors are one of the most important parts of any measure-

ment system. Their main function is the conversion of a physical or chemical 

parameter to a measurable signal, usually in the electrical domain. Generally, 

the input domain of sensors are considered to be the following types: radiant, 

mechanical, thermal, magnetic and chemical. Five major defects [1] that 

influence dramatically the performance of raw sensors are: 

1. Cross sensitivity 

Ideally, it is expected that a sensor will respond to just one type of 

physical parameter but this is not the case in many practical situations. 

For example, even if the pressure is constant, the output of a pressure 

sensor may change if the temperature fluctuates. 



2. Parameter drift 

The nature of material in a primary sensor is never wholly time-invariant. 

It can slowly change because of different chemical process. Oxidation is a 

case in point. This in turn can cause the variation of offset and sensitivity 

of a primary sensor. Parameter drift points to this problem. 

3. 

Every unwanted signal that contaminates the desired signal is called 

noise. The source of some types of noise are external to the sensor. 

These types of noise corrupt the desired signal by conduction, capacitive 

links, mutual inductance or by radiation. On the other hand, some types 

of noise are produced by the internal material and elements that make 

the sensor. Examples of this type include thermal noise, shot noise and 

J (low frequency) noise. 

4. Non-linearity 

In many cases primary sensors are non-linear i.e. if the physical 

parameter xi produces yi, then a scaled version of the input 

kxi [k is a constant) will not produce a similarly scaled output kyi. 

Graphically, the diagram of the relation between input and output of 

the sensor is not a straight line that passes through the origin. 

5. Memory 

The output of a sensor at any time, may not only depend on the value 

of physical parameter at that instant, but also on the past history of 



the input. This memory effect arises primarily because of stored en-

ergy in the sensor that can not be altered or dissipated instantaneously. 

Energy-storage elements are in the lump of material of every real sen-

sor. They are analogues of capacitance and inductance in an electrical 

system. Having memory also means that a sensor cannot immediately 

follow a change in the physical input parameter. This defect is also called 

the time or frequency defect. 

The effects of these defects can be rejected or dramatically reduced using 

digital signal-processing techniques. With the invention of microprocessors 

the housing of a sensor is able to contain processors running sophisticated 

software [2, 3, 4, 5]. The capability of the processor not only copes with the 

primary sensor defects, but is also used to perform many other difficult tasks 

such as; processing raw data and communicating them in a responsive manner 

to the peripheral environment, self testing and auto-calibration. A sensor that 

has a microprocessor in its housing is called an "intelligent sensor" or "smart 

sensor" [6, 7, 8]. 

1.1 Thesis Overview 

Classical signal processing techniques have been used extensively in dynamic 

measurement [9, 10, 11, 12]. They are largely based on linear, local and sta-

tionary mathematical models. These methods are reviewed in chapter 2. 

Real-world sensors are often non-linear and their structures vary with time. 

The new field of Intelligent Signal Processing (ISP) [13] does not impose a 



simple mathematical model on the sensor. Rather it extracts the structure of 

the sensor using smart learning techniques and signal data. There is no need to 

guess equations to model a complex transfer function of a sensor. Instead the 

intelligent or 'model-free' techniques learn the behaviour of the sensor [14, 15, 

16, 17]. Artificial neural networks(ANNs) are the most important black-box 

tools in ISP [18, 19, 20]. In chapter 3 the basic concepts of artificial neural 

networks are described. 

Chapter 4 presents a new method for dynamic measurement using neural 

networks. To investigate this technique in practice, a special sensor called tri-

beam load cell is used as an example. The details about this sensor are also 

given in this chapter. 

The simulation and experimental results of using the neural network method 

when a sensor is stimulated by an impulse function are presented in chapter 5. 

A new adaptive method for low frequency noise cancellation is described in 

chapter 6. If the frequency spectrum of the noise is within the bandwidth of 

the desired signal then it cannot removed by standard filtering methods, and 

adaptive filtering method should be used. The latter methods, however, are 

applicable when the noise and signal are uncorrected. The method proposed 

in chapter 6 overcomes to this limitation. 

Chapter 7 is dedicated to summarizing the results and conclusion. It also 

contains the suggestions for further work using Intelligent Signal Processing 

in dynamic measurement. 



Chapter 2 

Classical Methods in Dynamic 
Measurement 

2.1 In t roduc t i on 

Dynamic measurement is an important requirement in many situations. The 

application of the measurand to the raw sensor results in a transient output 

waveform that can sometimes take a considerable time to settle sufficiently be-

fore a stable measurement is achievable [21]. Dynamic measurement requires 

the system to determine the final value of the measurand before the transient 

effects have decayed. Several methods for dynamic measurement have been 

proposed. Most of them use system identification or inverse system identifi-

cation techniques, and can be classified in two major categories which will be 

described in the following sections. 



Input 

Sensor 

-> t 

Output 

> t 

Figure 2.1: A typical step response of a primary sensor. 

2.2 Adap t ive Digital Fi l ter ing 

Adaptive digital methods use the basic systems theory. The primary sensor 

is considered as a system with transfer function G{s). A typical response of a 

second order sensor when its input is a step function is illustrated in figure 2.1. 

The general principle for eliminating the transient time is shown in fig-

ure 2.2. A filter having the reciprocal characteristic of the sensor is cascaded 

with it. Therefore, the transfer function of the whole system is "one" which 

means that any changes in the input transfer to the output without any dis-

tortion. This is also referred to as pole-zero cancellation. 

The transfer function of a sensor can change for different measurands. 

For example, the characteristic of any load sensor changes when a load is 

applied to the transducer because the mass of the load contributes to the 

inertial parameters of the system. Therefore the transfer function of the digital 

filter should change accordingly. In practice, an adaptive digital filter is used. 

Adaptive digital filters are linear systems [22, 23] requiring the assumption 



P(s)=G(s).H(s)=] 

-> t -> t 

Figure 2.2: A sensor is cascaded with its inverse system. Inputs appear in the 
output without any distortion. 

L J L J . ] ] = 1 '2L 

Figure 2.3: If the inverse of a system is a linear system, then the system is a 
linear system too. 

that the sensor behaves as a linear system. As a result the adaptive digital 

filtering method cannot be used for non-linear primary sensors. To prove the 

necessity of the above condition; consider the systems shown in figure 2.3. It 

is known that L2 is a Linear system and it is also the inverse of Li. Suppose 

that Xi and X2 are two inputs. yi and 1/2 are defined as: 

3/2 = L2[x2] 

(2 .2 .1) 

(2 .2 .2) 



The characteristic function of the whole system is one; since: 

L2[yi] - (2.2.3) 

Li[y2]=X2 (2.2.4) 

and also if a and b are two arbitrary constants the following equation can be 

applied: 

L2[Li[axi + bx2]] = axi + bx2 (2.2.5) 

The right hand side of the above equation can be rewritten using equations (2.2.3), 

(2.2.4) and linearity properties of 1,2: 

L2[Li[axi + bx2]] = axi + bx2 

= aL2[yi] + 6Z'2 [2/2] 

= 1/2 [ayi] + 1,2 [6^2] 

= L2[ayi + by2] 

= Z , 2 [ o m + 6 i / 2 ] ( 2 . 2 . 6 ) 

The above equation results to: 

Li[axi + bx2] = ayi + by2 (2.2.7) 

Using equations (2.2.1) and (2.2.2) to rewrite the right hand side of the above 

equation: 

1,1 + 6Z2] = + 61/2 

= + 6Z,2[3;2] (2.2.8) 

The above equation shows that Li is a linear system. 



Optimazation 
Procedure 

Digital Filter 

v(m)=[a, <3;... b, 6;...] 

Figure 2.4: Inverse system identification technique is used in off-line mode for 
determination of the digital filter parameters which depend on the measurand. 

Inverse system identification techniques are used to determine the transfer 

function of the digital filter that is mathematically defined as: 

N 

1 = 0 

{s — eg) 

Where A is a constant, N is the order of the system and and bi show the 

zeros and poles of the transfer function respectively. 

It is assumed that this transfer function is the reciprocal of the sensor's 

transfer function i.e.: 

H{s) = 
G{s) 

Figure 2.4 shows the block diagram of the method that is used in off-line 

mode to determine the parameters of H{s). The parameters depend on the 

measurand so the procedure should be repeated for different measurand. The 

sensor is stimulated by signal Xm{t) which excites the sensor into its dynamic 
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transient response. Impulse function, Step function and Ramp function are 

examples of signals that can be used as stimulating signal. Theoretically, 

these function do the same job. Practical limitations, however, determine 

the type of stimulating signal that can be used. Some of the points that 

should be considered are; First, producing ideal impulse and step function is 

impractical because in real world the level of a signal cannot change in zero 

second; therefore there will always be an error due to using these type of 

inputs. The amount of error depends on the sensor specifications. In the case 

of using step function if the transient time constant of the sensor is one order 

greater than the rise time of the step function then the error will be negligible. 

Second, certain type of sensors impair if they are stimulated by an impulse 

function. 

The dynamic transient response of sensor, y{t), feeds the adaptive digital 

filter. If the adaptive digital filter is a perfect inverse of the sensor then its 

output, z{t), is identical to the stimulating function, Xm{t). Optimization 

procedure block compares Xm{t) and z{t) and if they are not the same then 

it alters the parameters of the adaptive digital filter accordingly. Two factors 

dramatically infiuence the efficiency of optimization procedure. First, the rule 

of comparing two signals Xm{t) and z{t). Second, initial parameter values. 

To compare two signals, a cost function is defined. For illustration purpose, 

suppose that the sensor behaves like a second order system and the stimulating 

function is a unit step function. Figures 2.5, 2.6, 2.7 and 2.8 show some exam-

ples of cost functions. The first cost function can be defined mathematically 

aa: 
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z(t)^ 

> t 

Figure 2.5: Cost function based on the area between sensor's response and 
step function (ci). 

N 

Cl Ew 
n=l 

n 11 

Where z{n) shows the samples of Z{t). This cost function calculates the 

shaded area in figure 2.5 which is the area between the step function and the 

sensor response. The second cost function evaluates the area between the first 

peak of the response and the corner of step function. Mathematically it can 

be written as: 

2̂ — I 11 ^ 

The cost function shown in figure 2.7 calculate the distance between the first 

peak and trough i.e.: 

Cg — Zx Zfi 

If the times that of the first peak and trough happen is added to the previous 

cost function the forth cost function results: 
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z(t) A 

>- t 

Figure 2.6; Cost function based on the area between the first peak's response 
and step's corner (cg). 

• t 

Figure 2.7: Cost function based on the distance of the first peak and trough 

(cs)-
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> t 

Figure 2.8; Cost function based on the distance of the first peak and trough 
plus the their occurrence times (c^). 

C3 — (-Zx (tx + in) 

Optimization techniques such as the Steepest Descent method [24, 25] and 

the Simplex method [26, 27] are used to minimize the cost function. The 

selection of cost function is a non-trivial problem. First, the amount of com-

putation will be reduced if the cost function is well behaved, i.e., it descends 

smoothly to the optimal point. Secondly, it will have to be evaluated many 

times over during the search sequence, so even the smallest saving of mathe-

matical complexity can largely decrease the overall computation time. Despite 

the importance of the cost function selection, there is no straightforward way 

to show which cost function should be chosen. Simulation has shown that for a 

second order system, the cost function that is based on the error area between 

the step function and the output of the system (ci) is successful, although it 
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is fairly costly in processing time [26]. 

Beside the cost function, the initial parameters values impact dramatically 

the performance of the optimization procedure. If they are chosen appropri-

ately then the optimization procedure finds the minimum in a smaller number 

of iterations. Furthermore, most of the performance surfaces of cost functions 

have local minima. Some initial values of parameters cause the optimization 

procedure to become trapped in a local minimum instead of finding the global 

minimum. To avoid local minima, the procedure of finding the minimum 

should be repeated a few times with different initial parameters values. The 

procedure, however, can be speeded up using extra information. For example, 

from the output waveform of the sensor the order of the model is guessed. 

If the sensor is a second order system then the zeroes of the adaptive digital 

filter can be approximated by examination of the sensor. Suppose a ± jb and 

c ± jd show the zeroes and poles of the sensor (where a,b, c and d are real 

constants.) then the transfer function of the sensor can be written as; 

[s - (c + ;d)][s - ( c - ; d ) ] 

The response of the sensor to a unit step response is; 

where 

k cos(9) = 
a 2 62 

The constant parameters of poles, c and d can be calculated as; 

, ' " S 
(̂ 1 — h ) / f 
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t 

Figure 2.9: The zeroes of a second order system can be determined from the 
time response. 

TT 
- / d= ^ . 

h — ti 

where / is the sampling frequency of the output and yi,1/2,1/3,^1 and tg are 

constants shown in figure 2.9. Thus the poles of sensor which are the zeroes 

of adaptive digital filter can be calculated. Due to noise they are not accurate 

but they are near the ideal. Other parameters of the adaptive filter are chosen 

arbitrarily. Then the optimum values are found by optimization procedure. 

Assume v is defined as a vector that contains all of the parameters of 

adaptive filter i.e.: 

ai 

0-2 

V 

h 

h 
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Sensor 
Adaptive 

Filter 

Adaptive 
Rule 

Figure 2.10: An adaptive rule is needed for on-line adjustment of the filter 
parameters. 

The elements of v can be calculated for different measurands, m, using the 

above procedure in off line mode. To emphasize that v depends on m, it 

can be written as v{m). Knowing v{m) does not help to speed up the real 

time measurement because m is unknown in the first instance when a new 

measurement begins, so the parameters of the adaptive filter can not be set to 

appropriate amounts in order that the filter behaves as an inverse system and 

the transient time is canceled. Therefore, as figure 2.10 shows, an adaptive 

rule is required to modify the parameters of the adaptive filter according to the 

measurand. This rule is a crucial element but there is not a straightforward 

solution for it. As an example, for a load cell, it is found by simulations [26] 

that the suited filter has got a pair of conjugate zeros, — a± jb, and the 
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Load Cell > H(a +jb) 

Figure 2.11: Block diagram of real time measurement for load cell. 

relationship between them and load can be modelled as two polynomials; 

ki 
a = pi(m) 

6 = P 2 W 

m + rrio 

k-). 
+ 

(2.2.9) 

(2.2.10) 
m + mo (m + mo)^ 

Where mo and m are the masses of the sensor and load respectively; and ki, k2 

and k-i are three unknown constants. If the values of a and h are known for two 

different m then ki, k2, k^ and mo can be calculated from the equations 2.2.9 

and 2.2.10. The inverse system identification procedure that was described 

already is used for this purpose. The sensor is stimulated with two different 

known loads and the zeroes of filter are obtained by optimization technique. 

This procedure should be repeated for each sensor in the calibration phase 

and the results were saved in memories attached to the sensor. The real time 

measurement operation is shown in block diagram of figure 2.11. In this block 

diagram m has been substituted with y since the output of the whole system 
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y is proportional to m. First the zeroes of the filter are set to arbitrary values. 

Then the the output y is calculated. This new value of y is used to calculate 

the zeroes of the filter once again. Repeating these steps results in a rapid 

approach to the steady state value of y. 

In the on-line measurement, one of the most time consuming procedures is 

the calculation of the filter parameters for the new y. It has been suggested 

that a look-up table can be used for all possible rounded static output values. 

This, however, requires a tremendous amount of memory to save the parameter 

values [28]. 

The characteristic function of some sensors are like a low pass filter. Adap-

tive digital filters as an inverse system of the sensor behave like a high pass 

filter. Hence this amplifies the high frequency noise. In order to reduce the ef-

fect of noise without a negative impact on the speed of adaption, a digital low 

pass filter is cascaded to the adaptive filter. The bandwidth of the digital filter 

is chosen to be very wide at the beginning of the adaption process. Therefore 

it will not delay the output reaching the static value. As the output of the 

adaptive filter is close to the static value, however, the band width decreases 

to cancel the effect of noise. The rule for changing the bandwidth of the digi-

tal filter is obtained by simulation. As an example consider the following first 

order low pass filter: 

1—Z-le r 

where T is the sampling period and r is the filter time constant. The time 

constant r bounds the bandwidth of the filter. The lower values of r result in 

a wider bandwidth and vice versa. The adaptive rule for the noise filter can 
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Adaptive Digital Filter Noise Filter 

I\=z(n-l)-z(n-k) 

Load Cell 

Figure 2.12: Adaptive digital method block diagram using Ai. 

be defined as: 

1 
a + ,8A 

where the constants a and /3 depend on the level of noise, and are chosen 

by trial and error. A is a variable that is used to change the value of r and 

consequently the bandwidth of the filter. Two options for A are shown in 

figure 2.12 and 2.13. First definition defines A as; 

Ai = z{n — 1) — z{n — k) (2 .2 .11) 

where z{i) denotes the sample of the system's output. 

In the second option, the difference between the output of the adaptive 

digital filter and the noise filter has been used for definition of A: 

Ac z ( n - 1) 1) (2 .2 .121) 
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Adaptive Digital Filter Noise Filter 

Load Cell 

Figure 2.13: Adaptive digital method block diagram using Ag. 

where y{n — 1) and z{n — 1) show the last samples of the noise filter and 

adaptive digital filter respectively. 

Regardless of defining A as Ai or Ag, it decreases in the steady state 

condition and hence the time constant of the noise filter, r increases. This 

turns out to be a narrowband noise filter that rejects the noise effectively, and 

it is desirable for steady state condition. In the non steady state condition A 

is large, so the time constant of the noise filter, r is small. This means the 

output of the adaptive filter comes out quickly from the output of the noise 

filter. Therefore the adaptive digital rule can rapidly adjust the parameters of 

the adaptive digital filter. 
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2.3 Choice of Low Pass Fi l ter 

This approach focuses on the fact that the process of filtering essentially in-

volves averaging the signal in order to cancel noise and transient variations. 

Systems with different dynamics or noise components require distinct low pass 

filters for optimum processing of their output signals. When the measurand 

or other environmental parameters of the sensor change, the dynamics of the 

sensor or the noise vary. As a result, the optimum filter should be chosen 

according to the circumstance. Finding the optimum filter in each case has 

been done by Tariq using simulation [29]. The differences between optimum 

filters are in the type, order and cutoff frequency. Finite impulse response 

(FIR) filters suppress noise better than infinite impulse response (IIR) filters. 

The required order of the FIR filters, however, is considerably higher. It is 

normally between 50 to 400. In addition, it takes a long time to find optimum 

filters. The result on a weighing system shows that if just 81 different cases 

are considered and a successive approximation technique is used for searching, 

then it takes about 2.5 minutes of simulation time using a PC system. Above 

all, there is no suggestion on how optimum filters should be selected in prac-

tice. The difficulty is due of the fact that during the process of measurements 

the measurand is unknown, on the other hand for choosing the optimum filter 

the measurand should be known. 
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2.4 K a l m a n Fil ter ing 

Sometimes the sensor signal is contaminated with a very low frequency noise 

that is in the main bandwidth of the desired signal. The process of low pass 

filtering removes the transient variation and high frequency noise but does not 

eliminate this noise. The very low frequency noise causes the DC level in the 

output to fluctuate very slowly which decreases the accuracy [30]. A Kalman 

filter is applied to estimate the DC level. The Kalman filtering method requires 

the input function to be precisely described mathematically. In addition, it 

needs a mathematical model that expresses the dynamic behaviour by state 

equations, such as that illustrated below [31, 32]: 

Xt+i = A{t) xt + b ut 

2/t = C^(() Zt + 

Where a? is a vector whose elements record the state of the sensor, and u, y 

and n are the input, output and noise respectively. The subscript j denotes 

to the value of functions at a point in time. A, h and c are identified by 

the specifications of the sensor. A and b depend on the measurand and are 

therefore time dependent. The aim of Kalman filtering is to estimate the state 

vector with each new measurement. In each time period, a new measurement 

is provided by the yt and the estimated state vector Xt is calculated via the 

following recursive process: 

K t , which is commonly described as the Kalman gain, is related to statistical 

specifications of the noise and state variables and also the dynamic behaviour 
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of the sensor [33]. 

2.5 Mode l P a r a m e t e r Es t imat ion 

Another classical method for dynamic measurement is based on model param-

eter estimation. This approach is based on the idea that a parametric model 

can be developed for the sensor from experimental data or by analytical meth-

ods. It is also assumed that the value of the measurand appears directly or it 

can be calculated from the parameters of the model. In each measurement, a 

short duration of the response is used to extract the parameters. The methods 

that use the model parameter approach are different depending on the type of 

model that they choose for the sensor and the procedure that is used to find 

parameters of the model. 

2.5.1 Discrete-Time Model with Recursive Least Squares 

Procedure 

With this method, it is assumed that the sensor can be modeled as a linear 

system. The z-domain model of the sensor with unknown parameters is de-

rived. The parameters are estimated by fitting the model to a short duration 

of the measured sensor signal. The recursive least squares (RLS) procedure is 

used for the estimation of parameters. As an example consider a sensor that 

behaves as a second order system. When its input is a scaled step function, 

Mu{t), the output of the sensor in z-domain, Y, can be written as: 
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Where k,bi,b2,ai and ag are parameters of the system and U{z) is the z-

transform of the step function. 

The measurand M is proportional to the steady state value of y. This can 

be shown mathematically as: 

lim y{nT) = aM 
n—+00 

Where T is the sampling period and a is a constant, a can be obtained 

experimentally by a single static calibration. 

On the other hand the end-value theorem of the z-transform implies: 

lim y{nT) = lim y (z ) 
n—^00 Z—+1 

A; + 61 + 62 

1 + + 0.2 

Therefore: 

M = * + 
Q;(l + fli + 0,2) 

or 

Tkf = r (2.5.2) 

O f ( l + fli + O2) 

where 6 = A: + 61 + 62. 

Consequently the problem of finding the steady state value of the sensor is 

converted to a problem of identifying b, ai and 02, according to the measure-

ments: y(n). The time domain equation for y(n) can be extracted from 2.5.1 

as: 

yiji) = —CLiyiji — 1) — a2^(^ — 2) + 6 , n ^ 2 (2.5.3) 
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This equation and 2.5.2 suggest that, in theory, five sample points from the 

beginning of the sensor output is enough to determine the measurand. The 

existence of the noise, however, requires more samples and using estimation 

procedures for parameter identification. Experimental results show if a third 

order low pass filter is cascaded with the sensor to eliminate the noise effect 

then a recursive least squares procedure needs 200 samples to estimate the 

measurand with an accuracy of ±1% [11]. 

2.5.2 Continuous-Time Model with Non-Linear 

Regression Procedure 

This method is based on the non-linear regression fitting of a time-domain 

model to the output waveform of a sensor. The details of this method can 

be clarified by considering a sensor that behaves as an under damped second 

order system. A parametric model for the output of the sensor is as follows: 

y{t) — 6(j -h e 02 sin[9^t 4- ^4) 

Where ^1, 02, ^3 and 9̂  are the parameters of the model that are related 

to dynamic of the sensor and also to the measurand, M. When Oq is deter-

mined, the steady state value of the sensor can be calculated from the following 

formula: 

M — ki9 — /u2 
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Where ki and k2 are two constant that can be found by off-line calibration. 

To estimate the parameters of the model the vector 6 is defined as: 

01 

02 

03 

04 

Then the output of the sensor can be written as; 

Now, the problem of steady state prediction can be expressed as a non-liner 

regression: Find a set of parameters, 6, that minimize the modeling error, e{t), 

in the least-squares sense. The commonly employed Gauss-Newton iterative 

method can be used for this purpose. The computational complexity of this 

scheme, however, increases as the third power of the number of unknown 

model parameters. The number of parameters can be reduced to one by, 

firstly, determination of two parameters from ofi'-line measurement. Secondly, 

two other parameters can be estimated by polynomial curve fitting, which is, 

a relatively low complexity operation. These latter parameters relate to y{0) 

and j/'(0). If a polynomial of degree N fits y{t) i.e.: 

N 

n=0 

then ao and ai are the estimations for y{0) and y'(0) respectively. 

Simulation results show that for one parameter the non-linear regression 

procedure needs at least 80 samples to converge to the exact value [10]. 
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Sensor 

Controller 
Electromechanical 

System 

Figure 2.14: Block diagram of a controllable sensor. 

2.6 M e t h o d s Applicable For Control lable 

Sensors 

Sensors usually have one input and one output. The input is the physical 

or chemical phenomena that is the subject of the measurement. The sensor 

produces a measurable signal, usually an electrical waveform, which is the out-

put. Certain types of sensor, however, have two inputs. An electromagnetic 

weighcell is an example. One of its inputs is the weight of the load. This 

input moves the position of the beam balance and this movement is sensed 

by a position sensor. The position sensor produces an electrical signal that 

is proportional to the displacement of the beam balance. This signal feeds a 

controller that generates an electrical current. The output of the controller is 

the second input to the electromagnetic weighcell. It creates a compensation 

electromagnetic force in order to return the beam balance to the initial posi-

tion. The output of the controller, as depicted in figure 2.14, is used as the 

output of the electromagnetic weighcell because it is proportional to the input 

load. 
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Sensor 

> 3 ' Controller Filtering 
Electromechanical 

System 

Figure 2.15: Block diagram of the integrated control and filtering method. 

2.6.1 Integrated Control and Filtering 

Although the methods mentioned in the sections 2.2 and 2.3 are usable for 

the controllable sensors, there is some room for further improvements based 

on the idea of the integrated control and filtering method. The system shown 

in figure 2.14 is clearly a position control loop. Control theory indicates that 

there is a contradiction between steady state error and transient time. In 

other words if the transient time reduces in order to speed up the measurement 

process, the accuracy decreases. Integrating control and filtering, as illustrated 

in figure 2.15, and using Linear Quadratic Gaussian methods to design the 

optimal control and filtering can increase both speed and accuracy, subject to 

the mechanical limitation of the dynamics of the sensor system [34]. 

2.6.2 Fuzzy Control 

Traditionally the controller shown in figure 2.14 is a PID (proportional. Inte-

gral, Differential) controller. Its parameters are determined based on a sim-

plified linear model for the sensor. With the fuzzy control method, a fuzzy 

logic technique is used to design the controller. The fuzzy rules are designed 
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according to the desired response for the unit step input to the sensor. This 

method does not use any filter to reduce the effect of noise. The feeding mecha-

nism of the sensor, however, is deliberately designed to prevent the production 

of external noise. It particularly reduces the generation of noise having low 

frequency components [35]. 



Chapter 3 

Neural Networks 

3.1 I n t r o d u c t i o n 

The speed and computing ability of digital computers have progressed dra-

matically during recent years. Nowadays it is trivial to work with personal 

computers that perform a variety of well-defined tasks with a rapidity and 

reliability unrivaled by humans. For example, no human can match the speed 

of an ordinary personal computer for inverting a matrix. Nonetheless, the 

keyboard is still the main means that humans communicate with computers 

because speech and handwriting recognition have not yet been satisfactory 

solved. These tasks are effortlessly carried out by human adults. The brain 

uses billions of neurones that work in parallel to solve complicated problems. 

Two characteristics are common in the problems that are more effectively 

solved by the brain than serial computers. They are generally ill-defined and 

need huge amount of processing. The speed of logic gates in serial comput-

ers is about 10® times of the speed of a neurone in the brain [36] but this 

tremendous amount of processing can be used efficiently if they coordinate to 

solve a problem. This issue, however, is not a simple task. Thus computers are 

30 
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needed that have a natural parallel architecture and work on similar principles 

to those used in the brain. In fact, artificial neural networks were invented to 

mimic the nervous systems of biological creatures. They are not yet an exact 

copy of a nervous system. The main similarity between a nervous system and 

an artificial neural network is that both use a large number of simple elements 

that can learn and work together to solve complicated problems. The sim-

plest element of a neural network is called a neurone. Neurones have difi'erent 

structures. In addition, they are connected to each other in many different 

manners to realize a wide range of artificial neural network classes. Each class 

has its own characteristics and suitable for special applications [37, 38]. In the 

following sections two categories of neural networks that are used for function 

approximations will be discussed and then some learning algorithms that are 

used frequently to train networks will be reviewed. 

3.2 M u l t i Layer P e r c e p t r o n (MLP) 

3.2.1 Neurone Model 

X A 

The basic neurone used in MLP networks is shown in figure 3.1. The vector: 

Xi 

X2 

a; AT 

is the input to the neurone. The components of the input vector are weighted 

by coefficient weights and then the sum is computed. This is called the inter 

product of the weight row vector, A w = Wi W2 WAT 
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Figure 3.1: The basic neurone of MLP networks. 

and input vector, wx. The neurone has a bias b, which is summed with the 

weighted inputs to form; 

s = wx + b 

This sum, s, is the argument of the transfer function / . Here, / is typically 

either a sigmoid or a linear function, that takes the argument s and produces 

the output y: 

2/ = / W 

= f{wx + b) 

Sigmoid functions are monotonically increasing s-shaped functions, such as 

the hyperbolic tangent. Some examples of transfer functions are shown in 

figure 3.2. 



33 

' -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0 6 •0.8 -O.S -0.4 -0.2 0.2 0.4 0.8 0.8 

(a) Linear function: 
y{x) = X 

(b) Sigmoid function; 

y{x) = tanh(3a;) l+e-

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 O.S 0.8 

(c) Sigmoid function; 
y{x)= 1- -

l+e-

Figure 3.2: Examples of linear and sigmoid transfer functions. Sigmoid func-
tions are monotonically s-shaped functions. 
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3.2.2 Architecture 

Figure 3.3 shows a two layer MLP network. The first layer consists of neu-

rones in which the inputs are all N elements of the input vector, x. Typically, 

the number of neurones in the first layer, M^, is not equal to the number of 

elements of input vector, N. The output of the first layer can be calculated 

as: 

= f^{W^x + b^) (3.2.1) 

Where the following definitions apply: 

The superscript denotes the layer's number; 

The vector 

-

Vi 

y\ 

Vmi 

is the outputs of neurones in the first layer; 

The input vector has been shown by: 

X = 

Xi 

X2 

X N 

The matrix 

= 

w 11 

til. 21 

^i2 

^22 

W MU W M^2 

W IN 

W. 2W 
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J 

Figure 3.3: A Multi Layer Perceptron (MLP) network with two layers. 



36 

contains the coefficient weights in the first layer. The element w\j is the weight 

coefficients from the element of the input vector to the the neurones; 

The biases of the neurones in the first layer is displayed by: 

,1 A 

b\ 
% 

The vector consist of the transfer functions of the neurones in the first 

layer: 

f 1 A n 

Ml 

The second layer has the same structure as the first layer unless its inputs are 

the outputs of the first layer. Therefore in the equation 3.2.1 if 

• All of the superscripts are changed to 2 

• cc is substituted for 

then the output of second layer is obtained as: 

(3.2.2) 

In the figure 3.3, the output of the second layer is the output of the neural 

network; So by replacement of with y and combination of equations 3.2.1 

and 3.2.2, the output of the net can be explicitly expressed in terms of the 

input vector as follows: 

y = f { W \ f \ W ^ X + b^) + a f ) ) 
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Figure 3.4: The basic neurone in the first layer of RBF networks. 

3.3 Radia l Basis Funct ion (RBF) 

3.3.1 Neurone Model 

Figure 3.4 shows the basic neurone which is used in the first layer of Radial 

Basis Function networks. The neurone has two inputs: 

The input vector: 

Xi 

A 3̂ 2 
X = 

Xn 

and the weight row vector: 

w Wi W2 

Firstly, the Euclidean distance between the two above vectors are calculated: 

5 = II — z | | = — xiY 

Secondly this distance is multiplied by the neurone's bias, b, and then the 

result is fed into the neurone's transfer function. So the output of neurone is 

y = f{bS) 

= fib\\w'^ - a:ID 
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/ 0.5 -

Figure 3.5: Radial basis transfer function, f{b5) = e when (a) 6 = 1 , 
(b) b = 0.1. 

Here / is defined as: 

Radial transfer functions are shown for two different b values in Figure 3.5. The 

output of a RBF neurones indicates the similarity between the input vector and 

the weight vector. It is one, the maximum, when the two vectors are exactly 

same and it is zero when two vectors are quite different. The neurones' bias 

controls the sensitivity of neurone. When the input to the neurone is a vector 

similar to the weight vector, the Euclidean distance between them, which is 

the input for the RBF transfer function, is zero. When the input of RBF 

transfer function is zero, its output is the maximum i.e. one. As the similarity 

between the input and the weight vector decreases, the Euclidean distance 

between the two vectors increases. As a result a greater value is fed to the 
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RBF transfer function. The RBF Transfer function, however, produces a lower 

value. In an extreme case, when the input vector is different from the weight 

vector and consequently the Euclidean distance tends to infinity, the output 

of the neurone is zero. The parameter b, the bias of the neurone, determines 

the sensitivity or the response width area of the neurone. In figure 3.5 the 

area which the output of the transfer function is greater than 0.5 is shown. 

For smaller b, this area is wider. This means as b decreases the sensitivity of 

neurone to dissimilarity of vectors decreases and the neurone responds to a 

wider range in the input space. 

3.3.2 Architecture 

Figure 3.6 shows a two layer RBF network. The matrix X has been con-

structed from the input vector: 

X2 
X 
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Figure 3.6: A Radial Base Function (RBF) network with two layers. 
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as follows: 

X * X 

The matrix 

W 1 A 

Xi 

Xi 

Xi 

w 

X2 

X2 

X2 

11 W 12 W IN 

W. 21 W. 22 W 2W 

W Afil W Mi2 

contains the weight vectors in the first layer. The row is the weight vector 

of the neuron in the first layer. 

The biases of the neurones in the first layer is displayed by: 

6^ A 2̂ 

The vector consist of the transfer functions of the neurones in the first 

layer: 

" fI 

el A 

Imi 
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The neurones in the second layer have the same structure as neurones in a 

MLP network. Moreover, their transfer functions are linear. Therefore in the 

figure 3.6, the output of the net can be expressed in terms of the input as 

follows: 

3.4 Learn ing Algor i thms 

One important feature of neural networks is their ability to learn from exper-

imental data. This feature makes neural networks very appealing for applica-

tions in which experimental data are readily available, but obtaining a precise 

model is not trivial. The neural network learns the behaviour of the system 

from the experimental data. During the training process, the input patterns 

and corresponding desired responses are presented to the network. An adop-

tion algorithm automatically adjusts the weights so that the output responses 

to the input patterns will be as close as possible to their respective desired 

responses. There are different algorithms for training the networks that can 

be chosen irrespective of the neural network category. 

3.4.1 Least Mean Square (LMS) 

One of the most popular methods for adapting the weight is the LMS (Least 

Mean Square) algorithm. This algorithm minimizes the sum of squares of the 

error signals over the training set. The error signal is defined as the difference 

between the desired response and the output [36]. When the neurone is embed-

ded in a multi-element neural network, however, an error signal is not directly 
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available and more complicated procedures such as the back-propagation pro-

cedure must be used for adapting the weight vectors. 

3.5 Genera l i sa t ion 

After adjusting the weight so that the network responds correctly to the trained 

samples if the network responds correctly to the unseen patterns, it is said 

that generalisation has taken place. Learning and generalisation are among 

the most useful attributes of a neural network. A network can have several 

layers. The two-layer network is surprisingly powerful. With a sufficient num-

ber of hidden elements, a sigmoid network with two layers can implement any 

continuous input-output mapping to an arbitrary accuracy [39]. 



Chapter 4 

The Neural Network Method 

4.1 I n t r o d u c t i o n 

In this chapter first the theoretical basis of using neural network in dynamic 

measurement is established. Then the details of the experimental apparatus 

that is used to justify the theoretical and simulation results are described. 

4.2 Theore t i ca l Analysis 

In the neural network approach, the sensor is considered as a non-linear map-

ping box. Figure 4.1 shows the functional block diagram of the sensing process. 

Variable x refers to the physical property that must be determined by the sen-

sor. Ideally, the effect of the physical phenomenon i.e. mass (for a load cell) 

on the sensor must be constant from the start of the measurement process to 

the end of it. For example, the input to the sensor could be a step function, 

although this is difficult to achieve in practice. For a load cell the input func-

tion not only depends on the shape and type of the load but also on the way 

that the load is put onto the load-weighing platform [41]. The block "feeding 

44 
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Electrical Numerical 
variable Signal variable 

Feeding 
Mechanism Sensor 

Steady State 
Scaling 

Feeding 
Mechanism Sensor 

Steady State 
Scaling 

% X t ) , y X 

Figure 4.1; Block diagram of sensing process. 

mechanism" represents how the constant physical variable x is applied to the 

sensor. Typically this will be a time dependent function x{t). The sensor con-

verts the waveform x{t) to the output waveform y{t). In digital systems, the 

waveforms are shown by their samples and these can be considered as vectors. 

Therefore the two blocks (feeding mechanism and the sensor) map the value x 

to vector y. Mathematically this can be written d& y — G{x), where G shows 

the mapping rule. The mapping rule G is generally a non-linear transform 

and if the inverse of G is found then the value of x can be determined from 

y as shown in figure 4.2. In many cases a small fraction of y has sufficient 

information to determine x. Therefore it is not necessary to wait for all of the 

samples of y{t) and x can be predicted by observing the first few elements of 

y-
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Figure 4.2: Neural network as an inverse system. 

4.3 Expe r imen ta l A p p a r a t u s 

4.3.1 The Tri-beam Load Cell 

A tri-beam load cell is used as a typical sensor [42]. Figure 4.3 shows the 

diagram of this load sensor. It is based on thick-film technology, therefore 

offering all its advantages of cheapness and robustness. The structure is planar 

and produced by inexpensive process of stamping out a steel shape and then 

printing it with gauges and conductors. The cell consists of three beams joined 

and supported at the centre with three pins near their extremities supporting 

the weigh pan. Thick-film strain gauges are screen printed onto the structure 

on both sides of beams. The twelve piezoresistors are connected in series 

and the interconnection is achieved through conducting film. A connection is 

made from one side of the beam to the other by a wire link. The strain gauges 

form a four arm active bridge arrangement. It is shown theoretically that this 

transducer is independent of eccentric loading if the centre of load is anywhere 

inside the circle passing through the three support pins [42]. It is interesting 
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Figure 4.3: Diagram of the tri-beam load cell. The planar cell is supported at 
the centre and pins on the arms support the weigh pan[42]. 

to note that this sensor has a highly resonant structure and it becomes viable 

only with the introduction of intelligent sensor techniques. A photograph of 

tri-load beam cell is shown in figure 4.4. 
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Mode l of The Tri-Beam Load Cell 

The tri-beam load cell's model is used for simulation. It has been shown [9] that 

the general equation for the dynamic response of tri-beam load cell including 

the applied mass m is given by: 

(m 4- mo) = F(t) 

%/(o-) = 0 

&2/(0-) = 0 

(4.3.1) 

Where m is the mass being weighed, mo is the effective mass of the sensor, c 

is the damping factor, k is the spring constant, F{t) is the force function and 

^(0") and are two constants that show the initial position and the 

initial velocity of the platform, respectively. If the load is applied to the load 

cell without any bouncing then: 

F{t) = m - g • u{t) 

Where g is the gravitational constant and u{t) the unit step function. Equa-

tion 4.3.1 can be written as follows for t > 0: 

6 1 / W + + w22/(() = 

y(o~) = yo (4.3.2) 

^2/(0-) = m 

Where a mo+m 
is the damping ratio and is the natural fre-

quency. 

Equations 4.3.2 has the following solution: 

y{t) = 2\ki\e °'*cos(wjt 4- Z&i) -|- % (4.3.3) 
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Where ki = Wj = y / u l - o? and % = §m. 

Wj is the damped frequency. 

From the experimental data and using equation 4.3.3, the constants in equation 

set 4.3.1 were found to be c = 3.5 and k = 27000 [43]. 

4.3.2 Instrumentation Amplifier 

The analogue output of the sensor is converted to a digital signal for further 

processing. The output signal is of the order of few milli volts; hence it cannot 

be used directly to feed the data acquisition card. An amplifier circuit was built 

to boost the signal [44, 45, 46, 47]. The circuit is based on the instrumentation 

amplifier AD525 [48]. This type of amplifier is used to suppress the effect of 

noise, especially the common mode noise. The gain of amplifier is set to 100 

by setting appropriate link on the amplifier chip. 

4.3.3 Data Acquisition Hardware and software 

Data acquisition was achieved using Lab VIEW version 4.1 [49, 50, 51, 52] and 

a data acquisition card, AT_MI0_16E_10[53, 54], manufactured by National 

Instruments. This card is capable of sampling up to 100k samples per second 

with 12 bit resolution. 

4.4 Neu ra l Ne twork Sof tware 

The Neural Network Tool Box of MATLAB is used to implement the neural 

networks on a serial computer. This toolbox adds powerful commands to 
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Figure 4.5; Simulated responses for 100 g and 600 g loads when the initial 
conditions( position and velocity of the platform) are zero. 

MATLAB for implementation, training and simulation of neural networks. 

Different types of neural network and training algorithms can be chosen. In 

addition, it provides the number of training epochs, the performance of the 

network after each epoch and the number of operations that are needed for 

the output calculation. The latter can be used as an index for the time that 

is required in real time processing [55, 56, 57, 58]. 

4.5 Simulat ion Resul t s 

Figure 4.5 shows the simulated responses for applied masses of 100 and 600 g 

when the initial conditions are zero. It is important to note, however, that 

the initial conditions influence the shape of transient part of the response. 

Figure 4.6 shows the response of the sensor for two different initial conditions 
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Figure 4.6: Simulated response for two different initial conditions( position 
and velocity of the platform) when the load is 200 g. 

when m equals 200 g. Figures 4.5 and 4.6 show that the final values can be 

anticipated from the envelope of the waveforms. In fact, if hi,h2 and are 

three successive extreme points ( such as a, b and c in figure 4.6) then it can 

be shown analytically that: 

Up 
hlh^ — /in 

(4.5.1) 
hi — 2/i2 + 

The equation 4.5.1 shows that each three successive extreme points have suf-

ficient information to determine the final value. Therefore, these points were 

chosen as the features of the output signal. In addition, the time intervals be-

tween two successive intersect points of the output signal and the line y = Up 

were added to the features. This extra information increases the immunity of 

the method against noise and also its fault tolerance as will be discussed on 



53 

o signal 
A derivative 

Figure 4.7: The peaks and troughs of the first derivative of the signal corre-
spond to the intersect points of the output signal and the line y — Up. 

page 59 and illustrated in figures 4.13 and 4.14. At the beginning of the mea-

surement Up is unknown but as figure 4.7 illustrates, the peaks and troughs of 

the first derivative of the signal correspond to the desired points. In practice, a 

derivative filter cascaded with a low pass filter was used for obtaining the first 

derivative of the signal. The low pass filter was needed because the derivative 

filter naturally amplified the high frequencies of the input signal more than 

the lower frequencies. Therefore, if the signal was connected to the derivative 

filter directly, the amplitude of the noise was boosted and many fake peaks 

and troughs would appeared. The interval times are equal to half of the damp-

ing period, 27r/wj, and equations 4.3.3 and 4.5.1 show that there is a unique 

relation between them and the final value. Using these features instead of the 

raw samples of output signal, as shown in figure 4.8, causes the number of 

neurones in the neural network to reduce dramatically and hence reduces the 

computation time in the training and operating phases. The feature extractor 

finds the first three extreme points and two intervals time, and then passes 
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Figure 4.8: A feature extractor reduces the number of neurones in the neural 
network. 

them to the neural network. 

A multi-layer perceptron neural network architecture was used for simula-

tion purpose. The network has five input neurones, eleven hidden neurones, 

and one output neurone. The transfer function for the first layer is sigmoid 

but for the second layer, a linear function is chosen because the output can 

exceed beyond [-1,1]. A set of 100 patterns is used for training the neural net-

work. These patterns were generated by choosing masses that were uniformly 

distributed over the range of 100 g to 1000 g. i.e. 100, 200, 300 • • • 1000 g. The 

output for each load was generated for 10 different initial conditions that were 

chosen randomly. For testing purposes, the patterns were generated by choos-

ing masses that were different from that used for training i.e. 150, 350, 550, 750 

and 950 g. In addition, the experimental data shows that the amplitude of the 

electronic noise is about 20 mV peak to peak. Therefore, a random signal with 

uniform distribution over -10 mV to 10 mV is added to the signal. The result 
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Figure 4.9: The output of the neural network, the network error and the 
equation error. 

of the test for load 150, 350, 550, 750 and 950 g are shown in figure 4.9. Again, 

10 patterns for each load were generated by choosing different initial condi-

tions randomly. In this figure, the upper graph shows the values predicted 

by neural network and the middle one shows the absolute error( the actual 

value minus the value predicted by network) for each point. The lower graph 

shows the error if equation 4.5.1 used. It can be seen that the neural network 

predicts the final values to an accuracy of 0.2% of full scale. In addition, the 

error is a random signal whose mean is near zero and its magnitude range is 

consistent with the error range of the mathematical model. Figures 4.10, 4.11 
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Figure 4.10: The output of the sensor and neural network when m=120 g. 

and 4.12 show the time diagram of the sensor and the neural network output 

for loads 120, 570 and 930 g. 

In the above examples, a neural network with 78 parameters used 5 features 

of the signal to calculate the steady state value of the signal. In fact, the final 

value was calculated from the following equation: 

3/ = ^ i x i i ( / i i x i ( ^ A x 6 ^ 5 x i + b i i x i ) + ()') (4.5.2) 

where and are two matrices with 11 and 55 parameters respec-

tively, bJ ix i ^ vector with 11 parameters and 6̂  is a scalar. All of these 

parameters are determined in the neural network training phase, vec-

tor consist of 11 sigmoid functions. The 5 input features is shown by vector 

3^5x1-

On the other hand a rather simpler equation 4.5.1 used just 3 features to 

calculate the final value. It seems that using neural network not only does not 
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Figure 4.11: The output of the sensor and neural network when m=570 g. 
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Figure 4.12: The output of the sensor and neural network when m=930 g. 



58 

have any advantages but also it has drawbacks. The following points, however, 

will show that this is not the case. 

• Equation 4.5.1 is applicable for second order linear time invariant sys-

tems. It may be possible to derive a model for higher order systems but 

this model was chosen because: 

a) This is a simple model whose behaviour has been fully studied so it 

is a good reference to evaluate the new method. 

b) All of the previous dynamic measurements methods [26, 9, 11, 10, 

29, 34], reviewed in chapter 2, have been established using a second 

order system. To make comparison between these techniques and 

the neural network solution possible a second order system was 

used. 

c) The Tri-beam load cell [42] was utilized as a typical sensor for ob-

taining the experimental data. It is a highly resonant system, so 

it presents a very demanding application for the dynamic measure-

ment technique. Shi has modeled it as a second order system [26]. 

Sensors are typically modelled as second order systems, but actually 

some of them have higher order characteristics. The difficulty of deter-

mining a more complicated model, and its parameters, has led to the 

acceptance of a second order model. In addition, the computing com-

plexity of classical dynamic measurement methods increases dramatically 

when the number of parameters of the model rises [10] so that a simple 

model is to be preferred. The tri-beam load cell is a case in point; its 
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output signal is the summation of the three distinct beams. In theory, 

all of the beams are identical, but in practice there are inevitable differ-

ences. Suppose each lever behaves as a second order system, and Gi{s) 

shows its transfer function {i = 1,2,3). Gi{s) can be written as: 

(4.5.5) 

where aj, 6, and Ci(i = 1,2,3) are constants that show the zeros and poles 

of transfer functions. The transfer function of the whole system, G{s), 

obtains as follows: 

G{s) = Gi{s) + G2(s) + G^[s) 

- (4,5.6) 
{s — bi){s — ci) [s — 62) (s — C2) (s — 63) (s — C3) 

The above equation reveals that the tri-beam load cell is at least a sixth 

order system. 

Neural network methods remove the problem of the system identification, 

parameter estimation and adaption of them according to environment 

variations. It also paves the way to use more precise models for sensors. 

• Suppose that the feature extractor fails to present the correct value for 

one of the features. To simulate the new situation, the third feature 

was substituted with a random number taken from noise sequence. Fig-

ure 4.13 shows the effect of this fault on the network and the results 

from the equation 4.5.1. While the latter is like a random signal, the 
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Figure 4.13: The effect of losing one feature. 

neural network followed the inputs, although error is considerable. Fig-

ure 4.14 illustrates the results after the neural network was retrained 

for the new situation. The neural network shows a performance similar 

to the situation that it was fed with 5 features. This example demon-

strates the advantage of neural network method in its ability to adapt 

new conditions and fault tolerance. 

The last example revealed that neural network with 4 inputs could have 

the same performance as with 5 inputs. So it is reasonable to ask what is the 

optimum number of inputs. From equation 4.5.2 it can be concluded that as 

the number of input features and the number of neurones in the hidden layer 

reduce, the size of matrices and vectors in the equation decrease which in turn 

the lower number of arithmetic operations needed, and therefore the online 

operation is faster. It is not, however, very important if a parallel structure or 
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Figure 4.14: The effect of losing one feature after a training phase. 

a fast processor is used for the network implementation. The important factor 

is the number of free parameters that are equal to the number of elements of 

weight matrices and bias vector. This number should be chosen according to 

the complexity of the problem in hand. If a network does not have enough 

free parameters, it cannot learn the behaviour of the system. On the other 

hand, a higher number of free parameters together with the low number of 

training samples could lead to over fitting i.e. the network memorizes the 

training samples and produces a precise output for them but fails to correctly 

answer to the unseen inputs. Therefore it is desirable to minimize the number 

of input features and the number of neurones in hidden layer. 

To minimize the number of input features those features should be selected 

that effectively represent data and retain most of the intrinsic information 

content of the data. The classical procedures are principal factor analysis and 
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components analysis. Both of these methods reduce dimensionality by forming 

a linear combination of the features. The latter reduce the number of features 

by discarding those linear combinations that have small variance and retain 

those terms that have large variances. The object of factor analysis is to find a 

lower dimensional representation that accounts for the correlation among the 

features. Usually, it is more profitable to exploit knowledge of the problem 

domain to obtain more informative features as it was done for the tri-beam 

load cell. The important point is that while including independent features 

helps the accuracy and reliability of the method, the irrelevant( or features 

with no new information ) should be discarded. 

To find the optimum number of neurones in the hidden layer, networks 

with 1 to 17 neurones in hidden layer are trained and tested. The procedure 

was repeated 50 times. For each case the maximum error is recorded. Fig-

ure 4.15 shows the results. Choosing 11 neurones increased the probability 

that the trained network produces less error. It should be pointed out that 

the pattern of figure 4.15 is not unique because of the ill-posedness of any finite 

set of data representing a target function. If the training and testing samples 

change, different patterns result; and the optimum number of neurones varies 

from 6 to 12. For a network to be able to generalize, the number of parameters 

should be less than the number of samples in the training set. As a rule of 

thumb, the number of samples should be 10 times that of the parameters [37]. 

If the samples are limited, an alternative solution is to stop the training before 

the network overfits. In the above example 78 parameters and 100 training 

samples were used but the training phase stopped after 15 epochs. Using 11 
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Figure 4.15: The effect of number of neurones in hidden layer. 

neurones speeds up the training phase and this is of particular importance in 

application when the environment changes, therefore requiring the sensor to 

be retrained. The trained networks was tested by unseen samples to make 

sure over fitting has not happened. Figure 4.16 shows a typical mean square 

error of the network - the average squared error between the network outputs 

and the targets - for 100 epochs. It should be added that to make the train-

ing more efficient, the input and targets were scaled so that they fell in the 

range [-1,1]. Also, the default training algorithm in MATLAB, 'trainlm', was 

used. This algorithm appears to be the fastest method for training moderate-

sized feedforward networks. It requires, however, the storage of some matrices 

which can be quite large for certain problems and therefore more memory is 

needed [56]. 
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4.6 Expe r imen ta l Resul t s 

The final prediction method proposed in the previous sections was verified 

by means of practical experiments. The tri-beam load cell was used as the 

weighing sensor. Two sets of loads, one for producing the training samples and 

the other for testing samples, were chosen. The training load set consisted of 0, 

94.01, 193.10, 291.61, 389.2, 487.3, 584.5, 681.3, 780.5, 878.3 and 975.7 g and 

the testing load set consisted of 148.29, 542.3 and 832.2 g. These loads were 

obtained by a combination of 50 and 100 g masses. The actual values of the 

50 g and 100 g masses differ somewhat from the nominal values. The actual 

value of loads was measured using an Oertling weighing balance. This device 

measures masses below 300 g with an accuracy [59, 60, 61] of 0.01 g and masses 

between 300 to 3000 g with the accuracy of 0.1 g. The masses in training set 

were chosen to cover the range of zero to one kg uniformly. Three masses, near 

the lower, middle and upper range of training loads respectively, were chosen 

for the testing set. The loads in the testing set are different from the loads in 

training set, therefore the generalization property of the trained network can be 

asserted. For each load, 50 samples were captured. A program was developed 

in Lab Window / C VI environment (Ver 3.1) [62, 63, 64, 65] to acquire 1000 

samples of the output of the sensor immediately after stimulating the sensor 

and for future processing write them to a binary file. These were subsequently 

read in to the MATLAB environment for the next step of the process. The 

sampling frequency was 10000 samples per second. In order to avoid problems 

with bounce while putting the load on the sensor, the method described in [9] 

was used. This was performed by firstly attaching the desired load, m, on the 
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Figure 4.17: Typical waveforms used for training the neural network. 

sensor and then putting another mass, rris, on the top of the load m. The 

mass TUs was lifted off instantaneously. In this way, the inverse step response 

corresponding to the load m was obtained. Figures 4.17 and 4.18 show some 

typical waveforms of the training and test samples respectively. 30 samples of 

different masses were used with a backpropagation algorithm to train a neural 

network with eleven hiden neurones and one output neurone. The transfer 

functions of the first layer neurones were sigmoid whereas the output layer had 

a linear transfer function. The training of the neural network was achieved 

in 15 epochs. Figure 4.19 shows the histogram of the percentage error when 

150 unseen samples were used to test the trained network. It is clear from 

the histogram that in this method the maximum of error is below ±1.5%. 

The training procedure was repeated many times with different conditions 

and each time the maximum error was calculated. The results showed that if 

the number of training samples for each class were greater than 30 then the 
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Figure 4.19: Histogram of percentage error. 
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maximum error is less than ±1.5%. In addition, several different structures 

for the neural network were considered by adding a layer and changing the 

number of neurones in each layer. No considerable improvement in respect of 

reducing the maximum error was observed. 



Chapter 5 

Impulse Response 

5.1 In t roduc t ion 

In this chapter a novel method for dynamic measurement is described. This 

method deals with circumstances where the transducer senses the measurand 

for a very short period and the output of the sensor is a highly oscillatory signal 

and its steady state value is zero [66]. Limitation on the sensing time stems 

from the nature of some measurement tasks. Measuring the specifications of 

the coins in a vending machine is a case in point. When a coin is inserted into 

a vending machine it passes through a special route to reach to the decision 

point. There are several sensors throughout the way that measure different 

properties of the coin such as thickness, diameter and electrical conductivity. 

Based on these measurements, the coin will be accepted or rejected. It takes 

about 75 ms for a coin to move from the entering point to the decision point. 

Therefore the sensing duration for each transducer is very short and the final 

value of the sensors should be established in less than 75 ms. 

69 
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Limitation on the sensing time can also arise from the demand for increas-

ing the speed of the process of measurement. For example, consider weighing 

postal parcels when the load sensor is set beneath of a part of the carrier belt. 

The weight of each parcel is determined as it passes from that part of the 

strip. As the speed of the belt increases the available sensing time decreases. 

Similarly, the whole time for determining the final value of the sensor reduces. 

This is the case for any production line which requires measurement. 

In the above applications, the sensor steady state response is zero, irrespec-

tive of the amplitude of its input. Therefore those classical methods which are 

based on the steady state response, such as adaptive digital filtering, can not 

be employed. This chapter shows that neural networks can successfully be 

applied to solve this problem. Firstly, simulation techniques are applied to 

establish the method and to obtain the optimum solution. Then experimental 

data are used to verify the simulation results. 

5.2 Sys tem Analysis 

System simulation was carried out on a tri-beam load cell. The sensor was 

described in section 4.3.1. The general equation for the dynamic response of 

this sensor is given by the equation 4.3.1. If a mass drops onto the load cell 

from a fixed height, h, and bounces clear, so it is in contact with the load for 

a very shot period, then the input function can be written as: 

F( t ) = M6(t) 
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Where M is a constant that depends on m and 5{t) is the unit impulse function. 

Equation 4.3.1 can be written as follows for t > 0 because the impulse function 

is zero for f > 0 and its effect only changes the initial conditions[67]. 

= 0 

%([)+) = 0 (5.2.1) 

^ ~ '"2a 

where mo is the effective mass of the sensor, c is the damping factor, k is the 

spring constant, y{t) is the position of the platform, y(0") and ;^y(0~) show 

the initial position and the initial velocity of the platform respectively and V2a 

is a constant. To calculate the latter constant suppose: 

Vi shows the speed of load just before collision. 

Via shows the speed of load just after collision, 

V2 shows the speed of the sensor plate just before collision, 

V2a shows the speed of the sensor plate just after collision. 

If the load falls from the height of h with zero initial velocity then 

\ / 2 ^ 

where g is the gravitational constant. The sensor plate is at rest initially hence 

V2 = 0. 

Newton's Second law implies: 

m'Ui + = m'Uia 4-

where m shows the mass of the load and mo is the effective mass of the sensor. 
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By definition [68] the restitution coefficient , e, is 

e = 

thus e = 1 refers to an elastic impact ( impact with no energy loss) and e = 0 

indicates inelastic or plastic impact. 

Using this information V2a can be calculated as; 

(1 + e)m 

m + mo 

Knowing V2a, the solution for equation (5.2.1) can be written as 

y{t) = \/2gh — sin(wdt) (5.2.2) 
m + mo Wj 

where a = c/mo, = A:/mo and Wj = — o?. The variables a , Wj and 

ujn show the damping ratio, the damped frequency and the natural frequency 

respectively. 

Equation 5.2.2 shows that the steady state of the output is zero for different 

values of m. Therefore it is impossible to determine the input value from 

the steady state response. The information in the transient time response, 

however, can be exploited for measurement because the amplitudes of peaks 

and troughs only depend on the magnitude of m, if the loads fall from a fixed 

height. The transient time response can be envisaged as a unique pattern that 

is produced by the sensor for each measurand. Thus the measurement process 

can be modeled as a nonlinear mapping or regression problem [69] which can 

be solved effectively by neural networks. Radial Basis Function (RBF) and 

Multi Layer Perceptron (MLP) networks are two appropriate configurations 

for this type of application [37]. 



73 

In the following sections the above proposed method will be investigated 

by means of simulation and experimental data. Firstly the parameters of the 

RBF networks are specified when the number of features of the signal which is 

used to feed the neural networks is fixed but the level of noise is altered. The 

change in the number of the neurones in the networks and the percentage of 

error are considered. The number of neurones in a network is an indication of 

the processing power that is required for implementation of the network. The 

percentage of the error determines the capability of the method coping with 

noise and also if it is suitable for a specific application. Secondly, the level of 

noise is fixed but the number of features of the signal which is used to feed 

the neural networks is changed and its effect on the percentage of the error 

and the number of neurones in the network is observed. These help to find the 

optimum preprocessing method. All the above steps are repeated for the MLP 

configuration. Then the RBF and MLP optimum solutions are compared to 

find out the optimum solution. Finally the results of simulation are utilized 

to design a network using experimental data. 

5.3 Simulat ion Resul ts Using R B F Configura-

t ion 

To train a Radial Basis Function (RBF) neural network a total of 360 patterns 

are used. These patterns were generated by choosing 12 masses that were 

uniformly distributed over the range of 1 to 12 g. For each mass, 30 signals 

were simulated using equation 5.2.2. In reality the signal is corrupted by noise. 
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therefore a random sequence is added to the signal. Then the first peak and 

trough of the signals were extracted as two key features. The features of each 

signal made a vector which was the pattern of that signal. 

For testing purposes patterns were generated in the same way as described 

above with the exception of choosing 7 masses between 1 and 12 g. Most of 

these were different from those used for training. Therefore 210 patterns were 

used to test the trained network. 

5.3.1 Noise and Number of Features 

In the real world, sensor signals are always contaminated with noise and the 

amplitude of noise varies over time. It is important to investigate the capa-

bility of the measurement method to eliminate the effect of noise. For this 

purpose a random sequence was added to the signal. The random entries of 

the sequence was chosen from a uniform distribution in the interval (0.0, b) 

where b determines the level of noise. It was changed from 0.02 to 2 percent of 

the maximum of the sensor's output of the relevant mass. For each b a RBF 

network was trained and tested. Figure 5.1 shows a typical error surface for 

a trained network. The number of neurones in the trained network and the 

maximum error that produced by testing pattern were recorded. This proce-

dure was repeated thirty times. Each time a number was taken from a random 

variable generator that produced numbers uniformly distributed between 0.02 

and 2. This number was scaled according to the maximum of the sensor sig-

nal to obtain the corresponding value for b. For the purpose of comparison 

the results were sorted ascendingly based on the level of the noise. They are 
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Figure 5.1: The distribution of the maximum error of a trained network is nearly a normal 
distribution with expectation equals zero. 
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Figure 5.2: The effect of input noise on the RBF network architecture and the 
output error when two features of the signal are used. 

shown in figures 5.2 to 5.10. These figures show if the level of the input noise 

is less than 2 percent, then only nine neurones in the hidden layer are needed 

to keep the maximum output error less than 1.5 percent. They also show that 

increasing the number of features from 2 to 10 slightly improves the level of 

output error. The results in figure 5.9 is different from others in respect that 

the number of neurones in hidden layer remains fixed at 7, and also the output 

error for all networks is consistently low. For further investigation, first the 

training and testing set was changed, then the case number was increased to 

50 but in both instances the same behaviour was observed. Then the num-

ber of training samples was decreased, the output noise increased but still it 

was nearly the same for all the cases, and also the number of neurones in the 

hidden layer was 7. This unusual behavior merits further investigation. 
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Figure 5.3: The effect of input noise on the RBF network architecture and the 
output error when three features of the signal are used. 
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Figure 5.4: The effect of input noise on the RBF network architecture and the 
output error when four features of the signal are used. 
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Figure 5.5: The effect of input noise on the RBF network architecture and the 
output error when five features of the signal are used. 
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Figure 5.6: The effect of input noise on the RBF network architecture and the 
output error when six features of the signal are used. 
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Figure 5.7: The effect of input noise on the RBF network architecture and the 
output error when seven features of the signal are used. 
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Figure 5.8: The effect of input noise on the RBF network architecture and the 
output error when eight features of the signal are used. 
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Figure 5.9: The effect of input noise on the RBF network architecture and the 
output error when nine features of the signal are used. 
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Figure 5.10: The effect of input noise on the RBF network architecture and 
the output error when ten features of the signal are used. 
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5.4 Simulat ion resul ts Using M L P Configura-

t ion 

The same numbers and procedure that were described in the section 5.3 for 

producing training and testing pattern were used to train and test Multi Layer 

Perception networks. For the RBF networks the number of neurone in the 

hidden layer is determined by the training procedure but for the MLP networks 

this number should be set by the user at the beginning of the training phase. 

Figures 5.7 shows the number of neurones in RBF networks with maximum of 

error less than 0.8 percent is seven. Therefore for the purpose of comparing 

the performance of two configuration the number of neurones in hidden layer 

for MLP configuration was chosen to be seven. In addition to investigate the 

effect of the number of features on the performance of the MLP networks the 

process is repeated when the number of neurones in the hidden layer is set to 

two. 

5.4.1 Noise and Number of Features 

To investigate the effect of noise random sequences were added to the signals. 

The distribution and the range of the numbers of the random sequence was 

same as described in section 5.3.1. Figure 5.11 and 5.12 present the results 

when respectively seven and two features of the signal were used. They show 

if the level of the input noise is less than two percent then MLP networks are 

able to find the impulse response with an error less than 0.8 percent. 
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Figure 5.11: The effect of input noise on the MLP network architecture and 
the output error when seven features of the signal are used. 

te - Output En-c 

2 3 4 5 8 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 8 1 7 18 1 9 2 0 2 1 2 2 2 3 2 4 2 3 2 6 2 7 2 8 2 9 3 0 

Case Number 

Figure 5.12: The effect of input noise on the RBF network architecture and 
the output error when two features of the signal are used. 
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5.5 Compar i son Between R B F and M L P Con-

f igurat ions 

Figures 5.7 and 5.11 show the result of RBF and MLP networks respectively 

when they were trained and tested under the same conditions. The networks 

from both configurations have the same number of neurones in the hidden 

layer. The other important factor is the output error. For RBF networks the 

maximum magnitude of error for all thirty cases is less than 0.6 percent but 

for MLP networks in two cases the maximum exceeds from 0.6 percent. So it 

appears that the RBF configuration has a better performance. Nevertheless 

the maximum error for 60 percent of the MLP networks is less than one percent 

while none of the RBF networks show such performance. This means that if 

the MLP configuration was chosen, it is quite likely to yield a network which 

produces a very low output error although there is a low risk that the training 

algorithm creates a network which could produce an output error more than 

the RBF networks could produce. To investigate this issue, one hundred RBF 

networks and one hundred MLP networks were trained. The level of noise was 

set to two percent and seven features of the input signals were used. Each 

network was tested with thirty signals. The maximum errors produced by the 

networks were recorded. Figure 5.13(a) shows the smooth line histogram of 

the maximum error produced by the RBF networks. The results for MLP 

networks is represented in figure 5.13(b). The main lobe of both histograms is 

like a normal distribution. The mean and variance of the main lobe for MLP 

networks is less than the one for RBF networks. This means that choosing the 
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Figure 5.13: The smooth line histogram of maximum error when the level of 
noise was 2%. 
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MLP configuration network increases the probability of obtaining a network 

with high accuracy. While the probability that the maximum error for a RBF 

network is less than or equal to 0.3 percent is zero. A considerable number 

of MLP networks satisfy this condition. The maximum error of 94% of the 

MLP networks is less than 0.5 percent compared to half of the RBF networks. 

On the other hand, the worst RBF network generates less than one percent 

error, which is nearly half of the amount of that produced by the worst MLP 

network. Nevertheless the probability of getting a MLP network to produce a 

high error is low. This probability can be reduced further if more features are 

used. Figure 5.13(c) shows the results when nine features are used, but other 

conditions do not change. The side lobes dramatically attenuate and also shift 

to a lower error. There is a limit on improvement of the histogram using more 

features. This can be concluded by comparing figure 5.13(c) with figure 5.13(d) 

which shows the results of using nine and eleven features respectively. 
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5.6 Choice of Training P a t t e r n 

The previous networks are trained by a total of 360 signals. These signals 

were generated by choosing 12 points uniformly distributed over the input 

range and producing thirty signals for each point. If the number of the points 

reduces then the process of gathering experimental data, and also the training 

process, speeds up. To investigate this issue the number of points is reduced to 

six that were uniformly distributed over the range of input. The level of noise 

was set to 2 percent and seven features of the input signal were used. Thirty 

signals were produced for each point. Figures 5.14 and 5.15 show the results 

for RBF and MLP networks respectively. They are disappointing because the 

maximum error for all of the RBF networks and most of the MLP networks 

is more than two percent. If these two latter figures are compared with fig-

ures 5.13(a) and 5.13(b) respectively, it shows how reducing the number of 

training points can result in poor networks. In certain circumstances, increas-

ing the number of input features can improve the performance of networks. 

Hence, under the same conditions the number of features were increased to 

eleven and the process of testing and testing networks were repeated. The re-

sults are illustrated in Figure 5.16, revealing that the increase of input features 

can not compensate the decrease of the learning points. 
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Figure 5.14: Effect of decreasing the number of training points on RBF net-
works. 
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Figure 5.15: Effect of decreasing the number of training points on MLP net-
works. 
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Figure 5.16; Increasing the number of features can not compensate the de-
crease of training points. 
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5.7 O u t p u t Deviat ion 

Each measurement system is designed to work under specific conditions such 

as input range, ambient temperature and so on. If it is used beyond the 

designated ranges then the output is not reliable and could be far from the 

real value. It is expected, however, that if an input, in the allowed range, is 

disturbed by the noise or other unwanted factors then the output consistently 

deviates from the actual value. In other words, if the input signal's discrepancy 

is minor then the output deviation is small and vice versa. To investigate the 

capability of the neural network method in this respect, a network for the range 

of 1 to 12 g was designed to function when the level of noise was two percent 

or less. Then one hundred signals for a 6 g load were produced. These signals 

were contaminated with noise. The amplitude of noise changed from two to 

fifteen percent of the maximum of the sensor's output for the 6 g mass. The 

signals were applied to the network. Figure 5.17 shows the level of input noise 

and the output error. It reveals that the output of network is highly erratic 

and is not related to the input when the input noise exceeds the allowed range. 

This cannot arise from the neural network alone. Its response to signals with 

less than two percent noise confirm that it correctly learnt the behaviour of the 

mapping function, and if the load changes around 6 g the response changes ac-

cordingly. Therefore the effect of high level noise is not just changing the level 

of input to the network. Figure 5.18 shows a noisy signal. The preprocessing 

module detects the amplitudes of peaks and troughs of the sensor's signal as 

the features of the signal that passed them to the neural network for process-

ing. The small squares in figure 5.18 show the nine first features of the high 
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Figure 5.17: Output error when the input noise exceeds from the allowed level 
and the signal is not filtered. 
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Figure 5.18: Noisy signal. 
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noisy signal detected by preprocessing module. The high level of noise makes 

such fake peaks and troughs that leads the preprocessing unit to confuse in 

detecting the right peaks and troughs. To prevent this problem, the algorithm 

for finding peaks and troughs was changed by defining the time windows that 

each of them contained one period of the sensor signal. Then the maximum or 

minimum points in each window were found. Figure 5.19 illustrates the result 

of applying one hundred test patterns. Comparing this figure with the previ-

ous figure shows that a considerable improvement has been accomplished. In 

the next step before feature extraction, a Finite Impulse Response (FIR) filter 

of order 50 is added to reduce the power of noise. The frequency response of 

the filter is illustrated in figure 5.20. Figure 5.21 shows the high noisy signal 

after low pass filtering and the peaks and troughs which are founded by feature 

extraction procedures. The result of repeating the previous experiment illus-

trated in figure 5.22 show that the erratic behavior of the output disappeared 

completely. 
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Figure 5.19: Output error when the input noise exceeds from the allowed level 
and the windowing procedure were used for features extraction. 
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Figure 5.20; Frequency response of the low pass filter. 
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Figure 5.21: A noisy signal after filtering. The squares shows the features 
extracted by preprocessing unit. The windowing technique was used. 
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Figure 5.22: Output error when the input noise exceeds from the allowed level. 
Filtering and windowing technique maintain the consistency of the output. 
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5.8 Expe r imen ta l Se tup 

Figure 5.23 shows the system that was set up to obtain the impulse response 

of the tri-beam load cell. To stimulate the sensor by an impulse input, the 

load should contact the transducer for a very short period. Therefore a pillar 

was added to the weigh pan. The pillar is made from polyvinyl chloride (PVC) 

and its diameter is 31 mm . It is fixed to the centre of the weigh pan. The top 

of the pillar is diagonal and its slope from the horizontal is ten degrees. Hence 

when a load falls on the top surface of the pillar it is immediately thrown away 

and a short impact is generated. A ramp was set up to carry the loads from a 

fixed height to the top of the the pillar. From the end of reel, loads freely drop 

on to the pillar surface. The loads are disks of metal with different diameters, 

and are made from aluminum and bronze. The response of the sensor to the 

loads is a very short period signal which is produced after collision. To capture 

this signal, a data acquisition card AT_MI0_16E_10 manufactured by National 

Instruments was used. The necessary software is written in LabWindws/CVI 

(version 5.5) environment. Data acquisition needs to be initiated immediately 

after the load hits the sensor. An infra red transmitter and receiver [70, 71] 

was situated on the route of loads in the ramp and produced a triggering 

signal for the start of data acquisition. The data acquisition card does not 

have hardware triggering facility so the software monitors the triggering signal 

and starts data capturing at appropriate time. 
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5.9 Expe r imen ta l Considera t ion 

The following list gives several experimental considerations that need to be 

adhered in order to achieve accurate and repeatable signals: 

• The height and slope of the ramp, and also its position against the sensor 

should remain constant during the experiments. 

• This is necessary to minimize the friction between the reel and the loads. 

During the experiments it was revealed that covering the surface of the 

route with a solid plastic material improves the repeatability of signals. 

• It is essential that the load starts moving toward the sensor from a fixed 

point. 

• The width of the route in the ramp should match the width of disks, 

otherwise the disk bounces between the wall of the route, which affects 

the repeatability of the signal. 

• The impact of the load on the sensor causes all of the loose parts around 

the experimental set up to vibrate. This produces unwanted signals that 

contaminated the desired sensor signal. Therefore the weigh pan and the 

pillar should be firmly fixed to the rest of the sensing structure. Also 

the whole set of the system should be put on a mounting which does not 

shake easily and can damp the oscillation of the apparatus. 

5.10 Exper imen ta l Resul ts 

Figure 5.24 shows a typical impulse response of the sensor. The details of the 
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Figure 5.24: A typical experimental impulse response. 
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Figure 5.25: The details of first peak and trough of the impulse response which 
is illustrated in figure 5.24. 
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first peak and trough can be seen in figure 5.25 which shows just a small part 

of the previous figure. The signal is noisy and before feature extraction it is 

filtered by the low pass FIR filter whose frequency response has been shown 

in figure 5.20. 

Six loads were used for obtaining experimental data. They were disks with 

the same width but different diameter and material. Their masses were 4.26, 

5.26, 6.26, 7.26, 8.26, 9.26 g respectively. These were measured by an Oertling 

weighing balance with an accuracy 0.01 g. For each load, fifty signals were 

captured. Thirty of them were used for training purpose and twenty of them 

for testing the trained network. Based on the results of simulations, a MLP 

network with seven neurones in the hidden layer was chosen for training. Also 

the first peak and trough of the signal were extracted as two features to feed 

the neural network. The result is illustrated in figure 5.26. The mean of 

the error signal is not zero. This is due to the amplifier drift and the fact 

that the samples for training and testing were captured in different sessions. 

Nevertheless, the maximum error is less than 0.8 percent. The experimental 

results therefore support the simulation results and confirm that the neural 

networks can be successfully employed in impulse response measurement. 
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Figure 5.26: The result from experimental data. 



Chapter 6 

Interference Cancellation 

6.1 In t roduc t i on 

Unwanted signals that contaminate the desired sensor signal can be classified 

in two categories: The first category is that of high frequency noise, which is 

mainly produced by the internal process of the sensor and the electronics used 

for signal conditioning. The frequency band of this type of noise is generally 

out of the frequency band of the main signal, hence it can be removed by an 

appropriate low pass filter as discussed in the previous chapter. The other 

category consists of interference signals that are produced by the devices and 

sources around the sensor. The effect of the 50 Hz mains 'hum' is a an example 

of such noise. Another example is the effect of shaking in a weighing system. 

The electro-motor and other equipment that are needed to rotate the belt 

cause the load cell sensor to oscillate and produce an unwanted signal. 

An interference signal can be modeled as the effects of a disturbance source 

that produces another input to the sensor as shown in figure 6.1. The frequency 

band of the interference signals are in the range of the desired signal and 
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Figure 6.1: Block diagram of sensor system with an interference signal. 

usually vary as a function of time. Consequently standard filtering method 

can not be used and adaptive methods are required. Adaptive methods often 

achieve a degree of noise rejection that would be difficult or impossible to 

achieve by direct filtering 

6.2 Simulat ion of t h e In te r fe rence Signal 

The interference sources which have a repetitive pattern are considered in this 

section. Their effect on the output of the sensor is essentially a periodic signal. 

According to the Fourier theorem periodic signals can be made by combination 

of a series of harmonics of sine and cosine waves. Four different interference 

signals were simulated. Figure 6.2 shows the samples. The first one is 70 

Hz sine wave. The others are combinations of the first signal and its first 

three harmonics. They are produced by choosing different amplitudes for the 

components. 
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Figure 6.2: Interference signals. 
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Figure 6.3: Adaptive method for the cancellation of interference signal. 

6.3 Adap t ive Fil ter M e t h o d 

Adaptive filtering is a variation of optimal filtering that has been successfully 

used in many applications. This method is based on using an extra or refer-

ence sensor located at a point that just picks up the interference signal. The 

output of the reference sensor processed and subtracted from the output of 

the primary sensor containing both signal and interference. As a result, the 

the interference signal is attenuated or eliminated by cancellation. Figure 6.3 

shows a block diagram of the method. The high frequency noise does not show 

in this block diagram for the purpose of simplicity and because the previous 

chapter describes how its effect can be eliminated by a low pass filter. The 

signal dp{t) is the effect of the disturbance source in the output of the primary 

sensor. The adaptive filter adjusts its elements to minimize the error signal e. 

Since its target signal is dp{t) + s{t), it tries to produce this signal, but it only 



109 

• y 

Figure 6.4: Combination of a MLP neural network and a tapped delay line as 
an adaptive linear filter. 

knows about the interference signal and can reproduce dp{t) that is linearly 

correlated with the interference signal. The signal e equals the target signal 

minus the output of the network. In this way the signal e will be closest to 

the signal s{t) which is the output of the primary sensor due to the real input. 

A MLP neural network, which has a linear transfer function, can be com-

bined with a tapped delay line to implement an adaptive filter as shown in 

figure 6.4. The input signal feeds the tapped delay line which provides an 

input vector for the neural network. The elements of the vectors are the input 

signal at the current time and at delays varying from 1 to TV — 1 time steps. 

Figure 6.5 shows a signal contaminated with interference and the output of 

the system using an adaptive filter to cancel the interference. This figure shows 

that the adaptive filter method has not been able to cancel the interference 

signal. In this case the correlation coefficient between the sensor signal and 
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Figure 6.5; The error signal is not like the main signal because the main and 
interference signals are correlated. 

interference signal is 0.19. The high degree of correlation between the sensor 

signal and interference causes the adaptive filter to fail to reproduce just the 

interference signal, so e is not close to the s{t) . In fact, the filter produces 

the signal plus interference as is revealed from the figure 6.6 which shows the 

output of the filter. 

In the next section, a neural network is used in a novel way in order to 

cancel the interference signal irrespective of its correlation with the main sig-

nal. 

6.4 Adap t ive Sys tem Ident i f icat ion M e t h o d 

Figure 6.7 shows the block diagram of the new method. It consists of two 

phases. Phase 1 which begins a short time before the main signal stimulates 
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Figure 6.6; When the main and interference signals are correlated the adaptive 
filter produces signal plus interference. 

the primary sensor, is the system identification phase. In this phase a MLP 

network has inputs connected to the output of the reference sensor and its 

target is the output of the primary sensor. This is trained to mimic the 

behaviour of the primary sensor stimulated by the interference signal. At 

the point that the main signal excites the primary sensor, phase 1 finishes 

and the phase 2 starts. During phase 2 the output of the MLP network is 

equal dp{t) i.e. that part of the primary sensor output which is due to the 

interference signal. The desired signal is obtained by subtracting the outputs 

of the primary sensor and the neural network. 

Figure 6.8 shows the block diagram of the neural network that is used for 

the system identification. The number of neurones in the hidden layers of the 

neural network and the number of inputs or the number of delay units are 
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Figure 6.7: Adaptive system identification method. 



113 

>{g-^ • • 

Figure 6.8: The dynamic neural network is used for interference cancellation. 



114 

6 -0.05 

Signal 
Signal and interference 

• Output 

0.015 

Figure 6.9: The result of using adaptive system identification method for can-
celling the first interference signal shown in figure 6.2. 

determined by trial and error. Figures 6.9 to 6.12 show the results of using 

this method for the interference signals shown in figure 6.2. The interference 

signals have been successfully removed. While the interference signals made 

46% percent error on the features of the signal, after noise cancelling the error 

is less than 0.3%. 

6.5 Dr i f t 

Drift in the amplification circuit can change the DC level of the sensor output 

which in turn causes error. The method described in previous section removes 

the effect of both interference signal and drift. This is illustrated in figure 6.13 

that shows the output of the system when the interference signal is similar to 

one that is used in figure 6.12 except a DC level is added to it. 
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Figure 6.10: The result of using adaptive system identification method for 
cancelling the second interference signal shown in figure 6.2. 
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Figure 6.11: The result of using adaptive system identification method for 
cancelling the third interference signal shown in figure 6.2. 
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Figure 6.12: The result of using adaptive system identification method for 
cancelling the fourth interference signal shown in figure 6.2. 
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Figure 6.13; The adaptive system identification cancel the effect of drift as 
well as the interference signal. 
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It should be pointed out that, in the case of an impulse response, the DC 

level can be easily removed by a coupling capacitor but this is not the case for 

a step response. Thus the adaptive identification method can provide a good 

solution. 

6.6 Training Time 

The neural network training time affects the speed of the measurement. The 

actual time needed for training depends on the hardware and software that 

are used for implementation of the neural network and the training algorithm. 

In this work, the programmes are written in the MATLAB environment and 

run on a PC, hence the number of epochs is used as a measure of time. When 

a neural network is trained for the first time it takes about 70 epochs to 

meet the condition of mean square error less than or equal to 0.001. The 

number of epochs in the subsequence measurements is zero. If the amplitude 

or frequency of interference signal or the level of drift changes by 10% then 

the neural network is trained in less than 5 epochs. 

6.7 In te r fe rence Frequency 

While the parameters of the system are fixed, the frequency of the interfer-

ence signal was changed over a wide range around the damping frequencies 

of the main signal. The output of the system for two frequency are shown 

in figures 6.14 and 6.15. The system copes with interference signals when 

their frequencies are greater or near the frequency of the main signal but it 
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Figure 6.14: The frequency of interference signal is less than the frequency of 
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Figure 6.15: The frequency of interference signal is more than the frequency 
of the main signal. 
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Figure 6.16: Neural network needs enough portion of interference signal for 
successful training. 

deteriorats as the frequency of interference signal falls far from the main signal 

frequency. It is possible to change the parameters such as the number of delays 

in input, the number of layers of the network, the number of neurones in each 

layer and the number of samples before the start of the main signal, to find a 

solution which make the system able to remove the interference signal. Fig-

ure 6.16 shows interference signal in figure 6.14 has been removed by changing 

the parameters. As the parameters mentioned above have lower values, less 

time is needed for processing. Nevertheless, there are trade-offs between most 

of them and the processing speed. The number of samples before the start of 

main signal, however, can not be compensated by other factors. On the other 

hand, the simulation results show that at least the samples of one period of the 

interference signal are needed for system identification phase. Therefore a very 

low frequency interference signal can limit the frequency of the measurement 
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Figure 6.17: Output of the primary sensor. 

although the result of the measurement is ready shortly after the stimulation 

of the sensor. This limitation, however can be overcome using a standard low 

pass filter because in this case the frequency band of the interference is far 

from the signal's spectrum. 

6.8 Exper imen ta l D a t a 

The experimental set described in chapter 5 was used for getting experimental 

data. The power line can produce a considerable interference signal in the 

output of the sensor as shown in figure 6.17. A second sensor was not available, 

therefore 50 sequence of interference signal were captured from the primary 

sensor. These sequences were added to 50 signals of a 4.26 g load that had 

been acquired in the absence of interference signal. Thus the primary signals 

in present of interference were obtained. The adaptive system identification 
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Figure 6.18; Cancellation of interference signal using adaptive system identi-
fication. 

method was tested by these data and the results show that it properly removes 

the interference signal. Figure 6.18 shows the result for one signal. For the 

50 signals, the histogram of error for the first and second features before and 

after using this method are shown in figures 6.19 and 6.20. 

It shows that the percentage of error has been reduced by an order of 10 

and for all of the signals is less than ±1%. Therefore the adaptive system 

identification can be successfully employed in practice. 
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Figure 6.19: Histogram of the percentage of error for the first and second 
features before using adaptive system identification. 
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Figure 6.20: Histogram of the percentage of error for the first and second 
features after using adaptive system identification. 



Chapter 7 

Conclusions 

7.1 Concluding Discussion 

Dynamic measurement is an important need in the modern world. Its main 

aim is to predict the final value of the sensor output without waiting until the 

transient part of the response has decayed. The two significant advantages of 

dynamic measurement are: 

• First, it speeds up the process of measurement. While this increases 

the speed of the whole process in general, it is vital for systems whose 

measurement time is limited. 

• Second, dynamic measurement allows the use of inexpensive sensors hav-

ing a highly oscillatory response. Low cost, accurate and reliable sensors 

have a fundamental significance for many of today's industrial and con-

sumer products [72]. 

There are many different methods used for dynamic measurement. They 

can be classified in two categories: Classical methods and the new proposed 
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method which is based on a neural network. Classical methods include inte-

grated control and filtering, fuzzy control, adaptive digital filtering, choice of 

low pass filter, Kalman filtering and model parameter estimation. The use of 

a method depends on two factors: the type of sensor and the type of measure-

ment process. 

There are generally two types of sensor: controllable and non-controllable. 

Non-controllable sensors have one input and one output, whereas controllable 

sensors have two inputs and one output. The measurand is one input of a 

controllable sensor and the other input is a feedback signal from the output. 

Integrated control and filtering methods as well as fuzzy control are exclusively 

used for controllable sensors. 

In general, there are two main types of measurement process: continuous 

and discrete. Discrete measurement deals with a set of measurands that have 

a fixed value and the sensor indicates these. For example, in some instances 

there is a finite set of loads that may be applied to the sensor. In this case, 

the value of the measurand does not change during the measurement process. 

With continuous measurement, however, the value of the measurand can vary 

with time. Measurement of the pressure of a water tank is a case in point. 

For continuous measurement, an adaptive digital filtering method, which is 

mainly a frequency compensation method, is necessary. With this technique, 

the frequency response of the sensor and the compensation block would be ide-

ally equal to one, or more precisely they perform a delay unit, and the input 

signal appears at the output without any distortion. The Model parameter 
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estimation methods and the neural network method are more suitable for dis-

crete measurement because they predict the final value from a small fraction 

of the beginning of the signal. In fact for a non-noisy signal, the number of 

samples that is required is equal to the number of unknown parameters of the 

model. With the Model parameter estimation methods, when the number of 

parameters in the model increases, the computational complexity of the pa-

rameter procedure estimation increases dramatically. For example, with the 

non-linear regression method, the complexity increases as the third power of 

the number of unknown model parameters [10]. The neural network method 

does not have this problem. In addition, it eliminates the need for system 

identification, sensor modeling and look up tables for non-linearity correction. 

The neural network learns the behaviour of the sensor from the set of training 

patterns. A system that is designed based on neural network method has the 

ability to learn through contact with the environments and adjusts its own 

parameters automatically to adapt itself with the variation in the noise and 

sensor specifications. Moreover its design requires little or no prior knowledge 

of signal or noise characteristic so it can be used Tor a wide range of applica-

tions. In contrast, a system based on classical methods is limited to specific 

applications. Figure 7.1 shows the result of using neural network method on 

a highly oscillatory sensor. It predicted the final value of the sensor signal, 

quite a long time before the oscillation was damped. 

The results of this study show that using a feature extractor can improve 

the efficiency of the neural network method. Firstly, the period of oscillation, 

which is rarely used in other methods, was adopted as a feature. This is 
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Figure 7.1: The output of the tri-beam load cell and neural network when the 
load is equal to 120 g. 

important because it has a unique relation with the final value, and also the 

amplitude noise has less effect on it. Secondly, the number of neurones in the 

neural network reduces dramatically and hence both the training and weighing 

time decrease effectively. Thirdly, by using successive extreme points of the 

output signal, the initial conditions are not important. It was also shown that 

the preprocessing procedure has a great influence on the success or failure of 

the method. If the preprocessing unit could not cope with the noise then the 

response of the neural network will be unpredictable. 

Neural network methods are especially useful in the situation where the 

sensor is stimulated for a short time period i.e. when the input is an impulse 

function. Classical methods such as adaptive digital filtering, however, are 

not applicable because they are based on averaging, and the average of the 

output is zero for each measurand. Although the final value is zero for different 
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Figure 7.2: The adaptive system identification cancel the effect of drift as well 
as the interference signal. 

measurands, initial section is different. Therefore it can be said that, in this 

situation, the neural network acts as a pattern recognizer that maps each 

different pattern to the right class. 

The neural networks were also used in a novel way to cancel interference 

signals and drift effect. The conventional methods are only useful if the in-

terference and sensor signals are uncorrelated. The proposed method in chap-

ter 6, however, cancels the effect of interference even when it is correlated to 

the desired signal as shown in figure 7.2. 

7.2 F u r t h e r Work 

In this study new methods were presented, based on neural networks, for the 

processing of a raw sensor signal and interference cancellation. The versatility 
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and adaption properties of these methods fulfill the whole expectations for an 

intelligent sensor, if they are implemented in the housing of an elementary 

sensor. The following list summarizes the main area which are worthy for 

further investigation: 

• Other input functions 

• Continuous measurement 

• Optimum training algorithm 

• Number of neurones in hidden layer 

• Hardware implementation 

• Using evolutionary artificial neural network 

7.2.1 Other Input Functions 

In this thesis the step and impulse functions responses were fully investigated. 

In many applications, however, the input function may not necessarily be 

that of an ideal step or impulse function. Theoretically, the neural network 

method can cope with any type of input as long as it is repeatable. To find 

the optimum solution for other inputs, further simulations and experiments 

are needed. Experimental data should be acquired using automatic equipment 

for stimulating the sensor in order to satisfy the condition of the repeatability 

of the input. For example, the masses should be put on the tri-beam load cell 

by a mechanical mechanism. 
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7.2.2 Continuous Measurement 

The method proposed in this study is suitable for discrete measurement. To 

use it in continuous measurement, it is suggested that the following modifica-

tion be further investigated. 

The Neural Network as an Inverse Sys tem 

If the measurand does not contribute to the inertial parameters of the sensor 

i.e. the characteristic function of the sensor is independent from the measur-

and, then a dynamic neural network can be cascaded to the sensor. The neural 

network should learn to act as an inverse system of the sensor. 

If it is possible to establish a relation between the parameters of the network 

and the output of the sensor then this method can be improved to use in 

the situations where the measurand changes the characteristic function of the 

sensor. In fact this method would be an analogue of the adaptive digital 

filtering technique with the exception that there is no need for sensor modeling 

and inverse system identification. 

Two Subsys tems 

Figure 7.3 show the block diagram of another system that can be used for 

continuous measurement. The selector block chooses one of the two outputs 

of the subsystems as the system output. In the absence of any quick changes 

in the input of the sensor, the low pass filter output is the best indication of 

the sensor signal because the filter removes the effect of the high frequency 

noise from the steady state response of the sensor signal. When the input of 
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Figure 7.3: A system for continuous measurement. 

the sensor changes rapidly, the neural network method block determines the 

steady state of the signal before the transient part decays. So its output should 

be switched to the output of the system. The selector block has an important 

role and should be designed elegantly. 

7.2.3 Opt imum Training Algorithm 

There are a number of algorithms for neural network training. They are dif-

ferent in respect of the amount of memory they need and the speed of con-

vergence. If the neural network is implemented by a microprocessor in the 

housing of the sensor, certain limitations regarding to the mentioned factors 

should be met. Hence a study of advantages and disadvantages of each train-

ing algorithm when they are used in the processing of the raw sensors signal 

are required. 

7.2.4 Number of Neurones in Hidden Layer 

In the new method described in this thesis, the neural networks were mainly 

used for approximation of a non-linear function. Theoretically any degree of 
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accuracy is achievable if the number of neurones in the hidden layer is suffi-

cient. There is no straightforward way, however, to determine the 'sufficient 

number' in each case. The number is obtained by trial and error. Choosing an 

incorrect number of neurones could result in an overestimate or underestimate 

of networks. Further work should be aimed at developing a technique which 

is capable of finding the optimum number of neurones without external help. 

7.2.5 Hardware Implementation 

The neural networks have an inherently parallel nature. A lot of work has been 

done for implementing neural networks using VLSI technology [73, 74, 75, 76]. 

Some commercial ICs are also available [77]., In this study the neural networks 

are implemented on a PC based on sequential processor. The full advantages of 

a neural network regarding the speed will be obtained if they are implemented 

using suitable hardware with parallel structure. This structure and the sensor 

can be combined later to implement in one chip. 

7.2.6 Using Evolutionary Artificial Neural Network (EANNs) 

Evolutionary artificial neural networks (EANNs) are a special class of neural 

networks that can adapt to an environment as well as changes in environ-

ment [78]. In addition to learning, evolution is another fundamental form of 

adaption in EANN. One distinct feature of EANNs is their adaptability to a 

dynamic environment. Evolutionary algorithms are used to change the weights 

and architecture of the networks, learning rule and input features. The two 

forms of adaption, i.e. evolution and learning in EANNs makes them suitable 
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architectures to use with intelligent sensors. In a broader sense, an EANN 

can be regarded as a general processing unit that can be put in the housing 

of any raw sensor, and it select input features, changes the architecture of the 

networks and learning rule appropriately without human intervention. 
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