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A new method for dynamic measurement is presented. A feature extractor and two-
layer artificial neural network is used to predict the final value of a sensor’s response
while it is still in oscillation. The method permits arbitrary inputs and initial
conditions and does not make any assumptions about the model of the sensor. It
also copes with non-linearity defects in primary sensors. Introducing a pre-processor
as a feature extraction block before the neural network decreases the effect of noise
and dramatically reduces the required number of neurones. This, in turn, reduces
the complexity of computation and speeds up the real-time measurement. One
important advantage of the proposed method is that it can be used in situations
where the input function is an impulse, i.e. the transducer senses the measurand
for only a very short time interval. This method also allows the possibility of using
some features of the sensor signal, such as frequency, that are rarely used in other
methods, despite them having a unique relation with the steady state value of the
signal. Amplitude noise also has less effect on these characteristics. In addition
dynamic neural networks are used in a novel way to cancel the interference signals.
The proposed methods are established by theoretical analysis and justified by means

of both simulation and measurements on real data.
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Chapter 1

Introduction

Dynamic measurement refers to the ascertainment of the final value of a sensor
signal while its output is still in oscillation. It is used to speed up the process
of measurement. Dynamic measurement methods are mainly signal processing
procedures that are used to tackle the defects of elementary sensors.
Elementary sensors are one of the most important parts of any measure-
ment system. Their main function is the conversion of a physical or chemical
parameter to a measurable signal, usually in the electrical domain. Generally,
the input domain of sensors are considered to be the following types: radiant,
mechanical, thermal, magnetic and chemical. Five major defects [1] that

influence dramatically the performance of raw sensors are:

1. Cross sensitivity
Ideally, it is expected that a sensor will respond to just one type of
physical parameter but this is not the case in many practical situations.
For example, even if the pressure is constant, the output of a pressure

sensor may change if the temperature fluctuates.



2. Parameter drift
The nature of material in a primary sensor is never wholly time-invariant.
It can slowly change because of different chemical process. Oxidation is a
case in point. This in turn can cause the variation of offset and sensitivity

of a primary sensor. Parameter drift points to this problem.

3. Nozse
Every unwanted signal that contaminates the desired signal is called
noise. The source of some types of noise are external to the sensor.
These types of noise corrupt the desired signal by conduction, capacitive
links, mutual inductance or by radiation. On the other hand, some types
of noise are produced by the internal material and elements that make
the sensor. Examples of this type include thermal noise, shot noise and

7 (low frequency) noise.

4. Non-linearity
In many cases primary sensors are non-linear i.e. if the physical
parameter z; produces vy;, then a scaled version of the input
kx; (k is a constant) will not produce a similarly scaled output ky;.
Graphically, the diagram of the relation between input and output of

the sensor is not a straight line that passes through the origin.

5. Memory
The output of a sensor at any time, may not only depend on the value

of physical parameter at that instant, but also on the past history of



the input. This memory effect arises primarily because of stored en-
ergy in the sensor that can not be altered or dissipated instantaneously.
Energy-storage elements are in the lump of material of every real sen-
sor. They are analogues of capacitance and inductance in an electrical
system. Having memory also means that a sensor cannot immediately
follow a change in the physical input parameter. This defect is also called

the time or frequency defect.

The effects of these defects can be rejected or dramatically reduced using
digital signal-processing techniques. With the invention of microprocessors
the housing of a sensor is able to contain processors running sophisticated
software [2, 3, 4, 5]. The capability of the processor not only copes with the
primary sensor defects, but is also used to perform many other difficult tasks
such as: processing raw data and communicating them in a responsive manner
to the peripheral environment, self testing and auto-calibration. A sensor that

has a microprocessor in its housing is called an ”intelligent sensor” or "smart

sensor” [6, 7, 8].

1.1 Thesis Overview

Classical signal processing techniques have been used extensively in dynamic

measurement [9, 10, 11, 12]. They are largely based on linear, local and sta-

tionary mathematical models. These methods are reviewed in chapter 2.
Real-world sensors are often non-linear and their structures vary with time.

The new field of Intelligent Signal Processing (ISP) [13] does not impose a



simple mathematical model on the sensor. Rather it extracts the structure of
the sensor using smart learning techniques and signal data. There is no need to
guess equations to model a complex transfer function of a sensor. Instead the
intelligent or 'model-free’ techniques learn the behaviour of the sensor [14, 15,
16, 17]). Artificial neural networks(ANNs) are the most important black-box
tools in ISP [18, 19, 20]. In chapter 3 the basic concepts of artificial neural
networks are described.

Chapter 4 presents a new method for dynamic measurement using neural
networks. To investigate this technique in practice, a special sensor called tri-
beam load cell is used as an example. The details about this sensor are also
given in this chapter.

The simulation and experimental results of using the neural network method
when a sensor is stimulated by an impulse function are presented in chapter 5.

A new adaptive method for low frequency noise cancellation is described in
chapter 6. If the frequency spectrum of the noise is within the bandwidth of
the desired signal then it cannot removed by standard filtering methods, and
adaptive filtering method should be used. The latter methods, however, are
applicable when the noise and signal are uncorrelated. The method proposed
in chapter 6 overcomes to this limitation.

Chapter 7 is dedicated to summarizing the results and conclusion. It also
contains the suggestions for further work using Intelligent Signal Processing

in dynamic measurement.



Chapter 2

Classical Methods in Dynamic
Measurement

2.1 Introduction

Dynamic measurement is an important requirement in many situations. The
application of the measurand to the raw sensor results in a transient output
waveform that can sometimes take a considerable time to settle sufficiently be-
fore a stable measurement is achievable [21]. Dynamic measurement requires
the system to determine the final value of the vmeasurand before the transient
effects have decayed. Several methods for dynamic measurement have been
proposed. Most of them use system identification or inverse system identifi-
cation techniques, and can be classified in two major categories which will be

described in the following sections.



Sensor

Input ———>» G(s) ——» Output

» » !

Figure 2.1: A typical step response of a primary sensor.

2.2 Adaptive Digital Filtering

Adaptive digital methods use the basic systems theory. The primary sensor
is considered as a system with transfer function G(s). A typical response of a

second order sensor when its input is a step function is illustrated in figure 2.1.

The general principle for eliminating the transient time is shown in fig-
ure 2.2. A filter having the reciprocal characteristic of the sensor is cascaded
with 1t. Therefore, the transfer function of the whole system is “ome” which
means that any changes in the input transfer to the output without any dis-
tortion. This is also referred to as pole-zero cancellation.

The transfer function of a sensor can change for different measurands.
For example, the characteristic of any load sensor changes when a load is
applied to the transducer because the mass of the load contributes to the
inertial parameters of the system. Therefore the transfer function of the digital
filter should change accordingly. In practice, an adaptive digital filter is used.

Adaptive digital filters are linear systems [22, 23] requiring the assumption



Sensor Filter

Input G(s) H(s)= G;s) » Output

P(s)=G(s).H(s)=1

» ¢ >t

Figure 2.2: A sensor is cascaded with its inverse system. Inputs appear in the
output without any distortion.

Linear System

X

Input i_} L] y L2 ﬁ—b Output

'
i
P

L,[L[.]]=1

Figure 2.3: If the inverse of a system is a linear system, then the system is a
linear system too.

that the sensor behaves as a linear system. As a result the adaptive digital
filtering method cannot be used for non-linear primary sensors. To prove the
necessity of the above condition; consider the systems shown in figure 2.3. It
is known that L, is a Linear system and it is also the inverse of L;. Suppose

that z; and z, are two inputs. y; and y, are defined as:

y1 = Li[z1] (2.2.1)

Y2 = Lo[zy] (2.2.2)



The characteristic function of the whole system is one; since:
Lg[yl} = I (223)
Li[ya] = 72 (2.2.4)

and also if @ and b are two arbitrary constants the following equation can be

applied:
LQ[Ll{GLEl + bLL‘Q” =ar + bﬂ?g (225)

The right hand side of the above equation can be rewritten using equations (2.2.3),

(2.2.4) and linearity properties of Ly:

Lo[Ly[azy + bxs)] = axzy + bz
= aLy[y1] + bLa[ys]
= La[ay1] + La{by,]
= Lolay: + bys]

= Ly[ay; + bys) (2.2.6)
The above equation results to:
Li[azy + bxg) = ay; + bys (2.2.7)

Using equations (2.2.1) and (2.2.2) to rewrite the right hand side of the above

equation:

Ll[azvl + b.’L‘Q] = ay; + byg

= aLl[xl] + bLQ[ﬂiz] (228)

The above equation shows that L, is a linear system.



A
Sensor (1) Digital Filter
x,(t) L) 1)
Stimulating g g(t) g h(t) -
Function viim)={a,a,.. b, b,...]

A

Optimazation
Procedure

A

Figure 2.4: Inverse system identification technique is used in off-line mode for
determination of the digital filter parameters which depend on the measurand.
Inverse system identification techniques are used to determine the transfer
function of the digital filter that is mathematically defined as:
al (s — a;)
=4 ZI—% (s —b;)
Where A is a constant, N is the order of the system and a; and b; show the
zeros and poles of the transfer function respectively.
It is assumed that this transfer function is the reciprocal of the sensor’s

transfer function i.e.:

Figure 2.4 shows the block diagram of the method that is used in off-line
mode to determine the parameters of H(s). The parameters depend on the
measurand so the procedure should be repeated for different measurand. The

sensor is stimulated by signal z,,(¢) which excites the sensor into its dynamic
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transient response. Impulse function, Step function and Ramp function are
examples of signals that can be used as stimulating signal. Theoretically,
these function do the same job. Practical limitations, however, determine
the type of stimulating signal that can be used. Some of the points that
should be considered are: First, producing ideal impulse and step function is
impractical because in real world the level of a signal cannot change in zero
second; therefore there will always be an error due to using these type of
inputs. The amount of error depends on the senéor specifications. In the case
of using step function if the transient time constant of the sensor is one order
greater than the rise time of the step function then the error will be negligible.
Second, certain type of sensors impair if they are stimulated by an impulse
function.

The dynamic transient response of sensor, y(t), feeds the adaptive digital
filter. If the adaptive digital filter is a perfect inverse of the sensor then its
output, z(t), is identical to the stimulating function, z,,(t). Optimization
procedure block compares z,,(t) and z(t) and if they are not the same then
it alters the parameters of the adaptive digital filter accordingly. Two factors
dramatically infiuence the efficiency of optimization procedure. First, the rule
of comparing two signals z,,(¢) and z(t). Second, initial parameter values.

To compare two signals, a cost function is defined. For illustration purpose,
suppose that the sensor behaves like a second order system and the stimula'ting
function is a unit step function. Figures 2.5, 2.6, 2.7 and 2.8 show some exam-

ples of cost functions. The first cost function can be defined mathematically

as:
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Z(t)A

bk S N = e

e

[

TR i

i

Figure 2.5: Cost function based on the area between sensor’s response and

step function (cy).

e =Y _lz(n) -1

Where z(n) shows the samples of Z(¢). This cost function calculates the

shaded area in figure 2.5 which is the area between the step function and the
sensor response. The second cost function evaluates the area between the first

peak of the response and the corner of step function. Mathematically it can
be written as:
62:Izm—1$ X ty
The cost function shown in figure 2.7 calculate the distance between the first
peak and trough i.e.:
C3 = 2y — Ry,

If the times that of the first peak and trough happen is added to the previous

cost function the forth cost function results:
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»

Figure 2.6: Cost function based on the area between the first peak’s response
and step’s corner (cs).

Z(t) A

[\

»

Figure 2.7: Cost function based on the distance of the first peak and trough

(c3).
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~Y o
Y

t

X n

Figure 2.8: Cost function based on the distance of the first peak and trough
plus the their occurrence times (cq).

C3 = (zz - Zn) + (tz + tn)

Optimization techniques such as the Steepest Descent method [24, 25] and
the Simplex method [26, 27] are used to minimize the cost function. The
selection of cost function is a non-trivial problem. First, the amount of com-
putation will be reduced if the cost function is well behaved, i.e., it descends
smoothly to the optimal point. Secondly, it will have to be evaluated many
times over during the search sequence, so even the smallest saving of mathe-
matical complexity can largely decrease the overall computation time. Despite
the importance of the cost function selection, there is no straightforward way
to show which cost function should be chosen. Simulation has shown that for a
second order system, the cost function that is based on the error area between

the step function and the output of the system (c;) is successful, although it
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is fairly costly in processing time [26].

Beside the cost function, the initial parameters values impact dramatically
the performance of the optimization procedure. If they are chosen appropri-
ately then the optimization procedure finds the minimum in a smaller number
of iterations. Furthermore, most of the performance surfaces of cost functions
have local minima. Some initial values of parameters cause the optimization
procedure to become trapped in a local minimum instead of finding the global
minimum. To avoid local minima, the procedure of finding the minimum
should be repeated a few times with different initial parameters values. The
procedure, however, can be speeded up using extra information. For example,
from the output waveform of the sensor the order of the medel is guessed.
If the sensor is a second order system then the zeroes of the adaptive digital
filter can be approximated by examination of the sensor. Suppose a + jb and
¢ £ jd show the zeroes and poles of the sensor (where a,b, ¢ and d are real

constants.) then the transfer function of the sensor can be written as:

o= (a+3D)is — (a— b))
GO = Tl — (e = Jd)

The response of the sensor to a unit step response is:

a® + b2 a’® + b?

o ct
y(t) = P + o€ cos(d t + 0)
where
a? + b?
kcos(@) = m —

The constant parameters of poles, ¢ and d can be calculated as:

Y1—Ys
Y2—-Ys

(tr —t2)/f

C =
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Figure 2.9: The zeroes of a second order system can be determined from the
time response.

™

d =
ty — t

f

where f is the sampling frequency of the output and v, v, ys,t1 and ¢; are
constants shown in figure 2.9. Thus the poles of sensor which are the zeroes
of adaptive digital filter can be calculated. Due to noise they are not accurate
but they are near the ideal. Other parameters of the adaptive filter are chosen
arbitrarily. Then the optimum values are found by optimization procedure.

Assume v is defined as a vector that contains all of the parameters of
adaptive filter i.e.:

5]

a2

>
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Figure 2.10: An adaptive rule is needed for on-line adjustment of the filter
parameters.

The elements of v can be calculated for different measurands, m, using the
above procedure in off line mode. To emphasize that v depends on m, it
can be written as v(m). Knowing v(m) does not help to speed up the real
time measurement because m is unknown in the first instance when a new
measurement begins, so the parameters of the adaptive filter can not be set to
appropriate amounts in order that the filter behaves as an inverse system and
the transient time is canceled. Therefore, as figure 2.10 shows, an adaptive
rule is required to modify the parameters of the adaptive filter according to the
measurand. This rule is a crucial element but there is not a straightforward
solution for it. As an example, for a load cell, it is found by simulations [26]

that the suited filter has got a pair of conjugate zeros, z; » = a £+ jb, and the
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—>»  Load Cell H(a + jb)

\/

a=p,(y)
b=p,(y)

Figure 2.11: Block diagram of real time measurement for load cell.

relationship between them and load can be modelled as two polynomials:

k
a=pi(m)=— +1m0 (2.2.9)

b:m(m):\/ o ks (2.2.10)

m+mg  (m+mg)?

Where my and m are the masses of the sensor and load respectively; and k4, k2
and ks are three unknown constants. If the values of a and b are known for two
different m then ki, kg, k3 and mg can be calculated from the equations 2.2.9
and 2.2.10. The inverse system identification procedure that was described
already is used for this purpose. The sensor is stimulated with two different
known loads and the zeroes of filter are obtained by optimization technique.
This procedure should be repeated for each sensor in the calibration phase
and the results were saved in memories attached to the sensor. The real time
measurement operation is shown in block diagram of figure 2.11. In this block

diagram m has been substituted with y since the output of the whole system
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y is proportional to m. First the zeroes of the filter are set to arbitrary values.
Then the the output y is calculated. This new value of y is used to calculate
the zeroes of the filter once again. Repeating these steps results in a rapid
approach to the steady state value of y.

In the on-line measurement, one of the most time consuming procedures is
the calculation of the filter parameters for the new y. It has been suggested
that a look-up table can be used for all possible rounded static output values.
This, however, requires a tremendous amount of memory to save the parameter
values [28].

The characteristic function of some sensors are like a low pass filter. Adap-
tive digital filters as an inverse system of the sensor behave like a high pass
filter. Hence this amplifies the high frequency noise. In order to reduce the ef-
fect of noise without a negative impact on the speed of adaption, a digital low
pass filter is cascaded to the adaptive filter. The bandwidth of the digital filter
is chosen to be very wide at the beginning of the adaption process. Therefore
it will not delay the output reaching the static value. As the output of the
adaptive filter is close to the static value, however, the band width decreases
to cancel the effect of noise. The rule for changing the bandwidth of the digi-
tal filter is obtained by simulation. As an example consider the following first

order low pass filter:

_r
Hn(z): 1—e 7

1—z-le™7
where T is the sampling period and 7 is the filter time constant. The time
constant 7 bounds the bandwidth of the filter. The lower values of 7 result in

a wider bandwidth and vice versa. The adaptive rule for the noise filter can
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Adaptive Digital Filter Noise Fi_lter
x . Y Z
—»  Load Cell H,(a + jb) H,(A) >

A=z(n-1)-z(n-k) <

a=p,(y)
b=p,(y)

Figure 2.12: Adaptive digital method block diagram using A;.

be defined as:

_ 1
a4+ BA

where the constants o and S depend on the level of noise, and are chosen
by trial and error. A is a variable that is used to change the value of 7 and
consequently the bandwidth of the filter. Two options for A are shown in

figure 2.12 and 2.13. First definition defines A as:
Ay 2 z(n—1) - z(n — k) (2.2.11)

where z(i) denotes the i** sample of the system’s output.
In the second option, the difference between the output of the adaptive

digital filter and the noise filter has been used for definition of A:

Ay 2 2z(n—1)—y(n-1) (2.2.12)
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Y 4
Adaptive Digital Filter Noise Filter
X . Y z
—>»  Load Cell H,(a +jb) H(h,) >

> A =z(n-1)-y(n-1) i«

a=p,(y)
b=p,(y)

Figure 2.13: Adaptive digital method block diagram using A,.

where y(n — 1) and z(n — 1) show the last samples of the noise filter and
adaptive digital filter respectively.

Regardless of defining A as A; or A, it decreases in the steady state
condition and hence the time constant of the noise filter, 7 increases. This
turns out to be a narrowband noise filter that rejects the noise effectively, and
it is desirable for steady state condition. In the non steady state condition A
is large, so the time constant of the noise filter, 7 is small. This means the
output of the adaptive filter comes out quickly from the output of the noise
filter. Therefore the adaptive digital rule can rapidly adjust the parameters of

the adaptive digital filter.
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2.3 Choice of Low Pass Filter

This approach focuses on the fact that the process of filtering essentially in-
volves averaging the signal in order to cancel noise and transient variations.
Systems with different dynamics or noise components require distinct low pass
filters for optimum processing of their output signals. When the measurand
or other environmental parameters of the sensor change, the dynamics of the
sensor or the noise vary. As a result, the optimum filter should be chosen
according to the circumstance. Finding the optimum filter in each case has
been done by Tariq using simulation [29]. The differences between optimum
filters are in the type, order and cutoff frequency. Finite impulse response
(FIR) filters suppress noise better than infinite impulse response (IIR) filters.
The required order of the FIR filters, however, is considerably higher. It is
normally between 50 to 400. In addition, it takes a long time to find optimum
filters. The result on a weighing system shows that if just 81 different cases
are considered and a successive approximation technique is used for searching,
then it takes about 2.5 minutes of simulation time using a PC system. Above
all, there is no suggestion on how optimum filters should be selected in prac-
tice. The difficulty is due of the fact that during the process of measurements
the measurand is unknown, on the other hand for choosing the optimum filter

the measurand should be known.
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2.4 Kalman Filtering

Sometimes the sensor signal is contaminated with a very low frequency noise
that is in the main bandwidth of the desired signal. The process of low pass
filtering removes the transient variation and high frequency noise but does not
eliminate this noise. The very low frequency noise causes the DC level in the
output to fluctuate very slowly which decreases the accuracy [30]. A Kalman
filter is applied to estimate the DC level. The Kalman filtering method requires
the input function to be precisely described mathematically. In addition, it
needs a mathematical model that expresses the dynamic behaviour by state

equations, such as that illustrated below [31, 32]:

Tyl = A(t) T+ b Ut
ye=c' (t) T +ny

Where x is a vector whose elements record the state of the sensor, and u, ¥
and n are the input, output and noise respectively. The subscript ; denotes
to the value of functions at a point in time. A, b and c are identified by
the specifications of the sensor. A and b depend on the measurand and are
therefore time dependent. The aim of Kalman filtering is to estimate the state
vector with each new measurement. In each time period, a new measurement
is provided by the y; and the estimated state vector x; is calculated via the

following recursive process:
Ty =Ty + Ky, — 'z
Ly = Ty-1 (Y — € Ty1)

K, which is commonly described as the Kalman gain, is related to statistical

specifications of the noise and state variables and also the dynamic behaviour
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of the sensor [33].

2.5 Model Parameter Estimation

Another classical method for dynamic measurement is based on model param-
eter estimation. This approach is based on the idea that a parametric model
can be developed for the sensor from experimental data or by analytical meth-
ods. It is also assumed that the value of the measurand appears directly or it
can be calculated from the parameters of the model. In each measurement, a
short duration of the response is used to extract the parameters. The methods
that use the model parameter approach are different depending on the type of
model that they choose for the sensor and the procedure that is used to find

parameters of the model.

2.5.1 Discrete-Time Model with Recursive Least Squares

Procedure

With this method, it is assumed that the sensor can be modeled as a linear
system. The z-domain model of the sensor with unknown parameters is de-
rived. The parameters are estimated by fitting the model to a short duration
of the measured sensor signal. The recursive least squares (RLS) procedure is
used for the estimation of parameters. As an example consider a sensor that
behaves as a second order system. When its input is a scaled step function,
Mu(t), the output of the sensor in z-domain, ¥, can be written as:

Y(z)

_k+ biz7t + byz 2
T 14 a2z Fagz?

Ul(z) (2.5.1)
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Where k, by, by,a; and a, are parameters of the system and U(z) is the z-
transform of the step function.
The measurand M is proportional to the steady state value of y. This can

be shown mathematically as:

lim y(nT) = aM

n—oo
Where T is the sampling period and « is a constant. « can be obtained
experimentally by a single static calibration.

On the other hand the end-value theorem of the z-transform implies:

lim y(nT) = lim Y (2)

n—00 z—1

_ k -+ by + by
N 1+ a; + as
Therefore:
_ ktbhi+ by
a(l + a; + ag)
or

M = b
OZ(1+G,1 +a2)

(2.5.2)

where b = k + by + bs.

Consequently the problem of finding the steady state value of the sensor is
converted to a problem of identifying b, a; and a9, according to the measure-
ments: y(n). The time domain equation for y(n) can be extracted from 2.5.1

as:

y(n) = —ay(n —1) —agy(n —2) +5b , n > 2 (2.5.3)
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This equation and 2.5.2 suggest that, in theory, five sample points from the
beginning of the sensor output is enough to determine the measurand. The
existence of the noise, however, requires more samples and using estimation
procedures for parameter identification. Experimental results show if a third
order low pass filter is cascaded with the sensor to eliminate the noise effect
then a recursive least squares procedure needs 200 samples to estimate the

measurand with an accuracy of +1% [11].

2.5.2 Continuous-Time Model with Non-Linear

Regression Procedure

This method is based on the non-linear regression fitting of a time-domain
model to the output waveform of a sensor. The details of this method can
be clarified by considering a sensor that behaves as an under damped second

order system. A parametric model for the output of the sensor is as follows:
y(t) = 6y + e 0, sin(fst + 64)

Where 6y, 8, 05,05 and 6, are the parameters of the model that are related
to dynamic of the sensor and also to the measurand, M. When 6, is deter-
mined, the steady state value of the sensor can be calculated from the following

formula:

jM: ku‘)—— kQ
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Where k; and ky are two constant that can be found by off-line calibration.

To estimate the parameters of the model the vector 8 is defined as:

m ]

01
02

2

Then the output of the sensor can be written as:

y(t) = 9(6,1) + (1)

Now, the problem of steady state prediction can be expressed as a non-liner
regression: Find a set of parameters, 6, that minimize the modeling error, £(2),
in the least-squares sense. The commonly employed Gauss-Newton iterative
method can be used for this purpose. The computational complexity of this
scheme, however, increases as the third power of the number of unknown
model parameters. The number of parameters can be reduced to one by,
firstly, determination of two parameters from off-line measurement. Secondly,
two other parameters can be estimated by polynomial curve fitting, which is,
a relatively low complexity operation. These latter parameters relate to y(0)
and y/(0). If a polynomial of degree N fits y(t) i.e.:

N

y(t) = Z a;t’

n==0
then ay and a, are the estimations for y(0) and y'(0) respectively.
Simulation results show that for one parameter the non-linear regression

procedure needs at least 80 samples to converge to the exact value [10].
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Figure 2.14: Block diagram of a controllable sensor.

2.6 Methods Applicable For Controllable
Sensors

Sensors usually have one input and one output. The input is the physical
or chemical phenomena that is the subject of the measurement. The sensor
produces a measurable signal, usually an electrical waveform, which is the out-
put. Certain types of sensor, however, have two inputs. An electromagnetic
weighcell is an example. One of its inputs is the weight ‘of the load. This
input moves the position of the beam balance and this movement is sensed
by a position sensor. The position sensor produces an electrical signal that
is proportional to the displacement of the beam balance. This signal feeds a
controller that generates an electrical current. The output of the controller is‘
the second input to the electromagnetic weighcell. It cfeates a compensation
electromagnetic force in order to return the beam balanée to the initial posi-
tion. The output of the controller, as depicted in figure 2.14, is used as the
output of the electromagnetic weighcell because it is proportional to the input

load.
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Figure 2.15: Block diagram of the integrated control and filtering method.

2.6.1 Integrated Control and Filtering

Although the methods mentioned in the sections 2.2 and 2.3 are usable for
the controllable sensors, there is some room for further improvements based
on the idea of the integrated control and filtering method. The system shown
in figure 2.14 is clearly a position control loop. Control theory indicates that
there is a contradiction between steady state error and transient time. In
other words if the transient time reduces in order to speed up the measurement
process, the accuracy decreases. Integrating control and filtering, as illustrated
in figure 2.15, and using Linear Quadratic Gaussian methods to design the
optimal control and filtering can increase both speed and accuracy, subject to

the mechanical limitation of the dynamics of the sensor system [34].

2.6.2 Fuzzy Control

Traditionally the controller shown in figure 2.14 is a PID (proportional, Inte-
gral, Differential) controller. Its parameters are determined based on a sim-
plified linear model for the sensor. With the fuzzy control method, a fuzzy

logic technique is used to design the controller. The fuzzy rules are designed
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according to the desired response for the unit step input to the sensor. This
method does not use any filter to reduce the effect of noise. The feeding mecha-
nism of the sensor, however, is deliberately designed to prevent the production
of external noise. It particularly reduces the generation of noise having low

frequency components [35].



Chapter 3

Neural Networks

3.1 Introduction

The speed and computing ability of digital computers have progressed dra-
matically during recent years. Nowadays it is trivial to work with personal
computers that perform a variety of well-defined tasks with a rapidity and
reliability unrivaled by humans. For example, no human can match the speed
of an ordinary personal computer for inverting a matrix. Nonetheless, the
keyboard is still the main means that humans communicate with computers
because speech and handwriting recognition have not yet been satisfactory
solved. These tasks are effortlessly carried out by human adults. The brain
uses billions of neurones that work in parallel to solve complicated problems.
Two characteristics are common in the problems that are more effectively
solved by the brain than serial computers. They are generally ill-defined and
need huge amount of processing. The speed of logic gates in serial comput-
ers is about 10° times of the speed of a neurone in the brain [36] but this
tremendous amount of processing can be used efficiently if they coordinate to

solve a problem. This issue, however, is not a simple task. Thus computers are

30
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needed that have a natural parallel architecture and work on similar principles
to those used in the brain. In fact, artificial neural networks were invented to
mimic the nervous systems of biological creatures. They are not yet an exact
copy of a nervous system. The main similarity between a nervous system and
an artificial neural network is that both use a large number of simple elements
that can learn and work together to solve complicated problems. The sim-
plest element of a neural network is called a neurone. Neurones have different
structures. In addition, they are connected to each other in many different
manners to realize a wide range of artificial neural network classes. Each class
has its own characteristics and suitable for special applications [37, 38]. In the
following sections two categories of neural networks that are used for function
approximations will be discussed and then some learning algorithms that are

used frequently to train networks will be reviewed.

3.2 Multi Layer Perceptron (MLP)

3.2.1 Neurone Model

The basic neurone used in MLP networks is shown in figure 3.1. The vector:

I

I3

>

N

is the input to the neurone. The components of the input vector are weighted

by coefficient weights and then the sum is computed. This is called the inter

product of the weight row vector,

A
w = [wl w2 . e wN:|
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Figure 3.1: The basic neurone of MLP networks.

and input vector, wz. The neurone has a bias b, which is summed with the

weighted inputs to form:
s=wx+b

This sum, s, is the argument of the transfer function f. Here, f is typically
either a sigmoid or a linear function, that takes the argument s and produces

the output y:

y = f(s)
= flwz +b)
Sigmoid functions are monotonically increasing s-shaped functions, such as

the hyperbolic tangent. Some examples of transfer functions are shown in

figure 3.2.
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(a) Linear function:
y(z) =2

(b) Sigmoid function:
y(z) = tanh(3z) = i;—z:;
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(c) Sigmoid function:

y(2) =

Figure 3.2: Examples of linear and sigmoid transfer functions. Sigmoid func-
tions are monotonically s-shaped functions.
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3.2.2 Architecture

Figure 3.3 shows a two layer MLP network. The first layer consists of M* neu-
rones in which the inputs are all IV elements of the input vector, . Typically,
the number of neurones in the first layer, M?, is not equal to the number of
elements of input vector, N. The output of the first layer can be calculated

as:
y' = f1{(W'z + b') (3.2.1)

Where the following definitions apply:
The superscript denotes the layer’s number;

The vector

o

1
1A Yy

Va1
is the outputs of neurones in the first layer;

The input vector has been shown by:

I
a | T2
r =
1
The matrix
M1 1 1]
Wy Wy e Win
1 1 1
Way Wy e Wayn

li>

Wl

e L
| Wartr Whng Wy |
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Layer |

Figure 3.3: A Multi Layer Perceptron (MLP) network with two layers
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contains the coefficient weights in the first layer. The element w}; is the weight
coefficients from the j** element of the input vector to the the ** neurones;

The biases of the neurones in the first layer is displayed by:

'S
b3

1
[Oa |
The vector f! conmsist of the transfer functions of the neurones in the first

layer:
fi

o]
The second layer has the same structure as the first layer unless its inputs are

the outputs of the first layer. Therefore in the equation 3.2.1 if

e All of the superscripts are changed to 2
e x is substituted for y!
then the output of second layer is obtained as:
y? = f2 (W3 + b?) (3.2.2)

In the figure 3.3, the output of the second layer is the output of the neural
network; So by replacement of y? with y and combination of equations 3.2.1
and 3.2.2, the output of the net can be explicitly expressed in terms of the

input vector as follows:

y = FAW(fH(W'z +b') +b%))
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Figure 3.4: The basic neurone in the first layer of RBF networks.

3.3 Radial Basis Function (RBF)

3.3.1 Neurone Model
Figure 3.4 shows the basic neurone which is used in the first layer of Radial

Basis Function networks. The neurone has two inputs:

The input vector:

Ty
A | T2
Tr =
TN
and the weight row vector:
-
2o m e w

Firstly, the Euclidean distance between the two above vectors are calculated:

SE|w' —2| &[> (wi—)?

Secondly this distance is multiplied by the neurone’s bias, b, and then the

result is fed into the neurone’s transfer function. So the output of neurone is

y = f(b9)

= f(bllw” — =z|)
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Figure 3.5: Radial basis transfer function, f(bd) = e~®9*, when (a) b = 1,
(b) b=0.1.

Here f is defined as:
f(b6) & &m0

Radial transfer functions are shown for two different b values in Figure 3.5. The
output of a RBF neurones indicates the similarity between the input vector and
the weight vector. It is one, the maximum, when the two vectors are exactly
same and it is zero when two vectors are quite different. The neurones’ bias
controls the sensitivity of neurone. When the input to the neurone is a vector
similar to the weight vector, the Euclidean distance between them, which is
the input for the RBF transfer function, is zero. When the input of RBF
transfer function is zero, its output is the maximum i.e. one. As the similarity
between the input and the weight vector decreases, the Euclidean distance

between the two vectors increases. As a result a greater value is fed to the
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RBF transfer function. The RBF Transfer function, however, produces a lower
value. In an extreme case, when the input vector is different from the weight
vector and consequently the Euclidean distance tends to infinity, the output
of the neurone is zero. The parameter b, the bias of the neurone, determines
the sensitivity or the response width area of the neurone. In figure 3.5 the
area which the output of the transfer function is greater than 0.5 is shown.
For smaller b, this area is wider. This means as b decreases the sensitivity of
neurone to dissimilarity of vectors decreases and the neurone responds to a

wider range in the input space.

3.3.2 Architecture

Figure 3.6 shows a two layer RBF network. The matrix X has been con-

structed from the input vector:

T

Ty

(>

LxN
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Figure 3.6: A Radial Base Function (RBF) network with two layers.



as follows:
1
1
X = x ol
1
L4 (M1x1)
Ty ")
z1 T2
I T9
The matrix
o1 1
W11 Wig
1 1
Wl Y Wy W

1 1
| Warty Wprig
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-

InN
TN
z
N1 (MixN)
1
Win
1
Wa N
1
Warin |

contains the weight vectors in the first layer. The i** row is the weight vector

of the 7** neuron in the first layer.

The biases of the neurones in the first layer is displayed by:

T
b3

lI>

bl

-

1
_le_

The vector f! consist of the transfer functions of the neurones in the first

layer:

1
1

1
2

>

fl

far ]
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The neurones in the second layer have the same structure as neurones in a
MLP network. Moreover, their transfer functions are linear. Therefore in the
figure 3.6, the output of the net can be expressed in terms of the input as

follows:
y = FAWA(FHHIW! = X)) + b%)
3.4 Learning Algorithms

One important feature of neural networks is their ability to learn from exper-
imental data. This feature makes neural networks very appealing for applica-
tions in which experimental data are readily available, but obtaining a precise
model is not trivial. The neural network learns the behaviour of the system
from the experimental data. During the training process, the input patterns
and corresponding desired responses are presented to the network. An adop-
tion algorithm automatically adjusts the weights so that the output responses
to the input patterns will be as close as possible to their respective desired
responses. There are different algorithms for training the networks that can

be chosen irrespective of the neural network category.

3.4.1 Least Mean Square (LMS)

One of the most popular methods for adapting the weight is the LMS (Least
Mean Square) algorithm. This algorithm minimizes the sum of squares of the
error signals over the training set. The error signal is defined as the difference
between the desired response and the output [36]. When the neurone is embed-

ded in a multi-element neural network, however, an error signal is not directly
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available and more complicated procedures such as the back-propagation pro-

cedure must be used for adapting the weight vectors.

3.5 Generalisation

After adjusting the weight so that the network responds correctly to the trained
samples if the network responds correctly to the unseen patterns, it is said
that generalisation has taken place. Learning and generalisation are among
the most useful attributes of a neural network. A network can have several
layers. The two-layer network is surprisingly powerful. With a sufficient num-
ber of hidden elements, a sigmoid network with two layers can implement any

continuous input-output mapping to an arbitrary accuracy [39].



Chapter 4

The Neural Network Method

4.1 Introduction

In this chapter first the theoretical basis of using neural network in dynamic
measurement is established. Then the details of the experimental apparatus

that is used to justify the theoretical and simulation results are described.

4.2 Theoretical Analysis

In the neural network approach, the sensor is considered as a non-linear map-
ping box. Figure 4.1 shows the functional block diagram of the sensing process.
Variable z refers to the physical property that must be determined by the sen-
sor. Ideally, the effect of the physical phenomenon i.e. mass (for a load cell)
on the sensor must be constant from the start of the measurement process to
the end of it. For example, the input to the sensor could be a step function,
although this is difficult to achieve in practice. For a load cell the input func-
tion not only depends on the shape and type of the load but also on the way

that the load is put onto the load-weighing platform [41]. The block “feeding
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G

Figure 4.1: Block diagram of sensing process.

mechanism” represents how the constant physical variable  is applied to the
sensor. Typically this will be a time dependent function z(t). The sensor con-
verts the waveform z(t) to the output waveform y(t). In digital systems, the
waveforms are shown by their samples and these can be considered as vectors.
Therefore the two blocks (feeding mechanism and the sensor) map the value z
to vector y. Mathematically this can be written as y = G(z), where G shows
the mapping rule. The mapping rule G is generally a non-linear transform
and if the inverse of G is found then the value of z can be determined from
y as shown in figure 4.2. In many cases a small fraction of y has sufficient
information to determine z. Therefore it is not necessary to wait for all of the

samples of y(t) and = can be predicted by observing the first few elements of

Y.
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Figure 4.2: Neural network as an inverse system.

4.3 Experimental Apparatus

4.3.1 The Tri-beam Load Cell

A tri-beam load cell is used as a typical sensor [42]. Figure 4.3 shows the
diagram of this load sensor. It is based on thick-film technology, therefore
offering all its advantages of cheapness and robustness. The structure is planar
and produced by inexpensive process of stamping out a steel shape and then
printing it with gauges and conductors. The cell consists of three beams joined
and supported at the centre with three pins near their extremities supporting
the weigh pan. Thick-film strain gauges are screen printed onto the structure
on both sides of beams. The twelve piezoresistors are connected in series
and the interconnection is achieved through conducting film. A connection is
made from one side of the beam to the other by a wire link. The strain gauges
form a four arm active bridge arrangement. It is shown theoretically that this
transducer is independent of eccentric loading if the centre of load is anywhere

inside the circle passing through the three support pins [42]. It is interesting
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Figure 4.3: Diagram of the tri-beam load cell. The planar cell is supported at
the centre and pins on the arms support the weigh pan[42].

to note that this sensor has a highly resonant structure and it becomes viable
only with the introduction of intelligent sensor techniques. A photograph of

tri-load beam cell is shown in figure 4.4.
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Model of The Tri-Beam Load Cell

The tri-beam load cell’s model is used for simulation. It has been shown [9] that
the general equation for the dynamic response of tri-beam load cell including

the applied mass m is given by:

(1 + mo) sy (8) + ey (t) + ky(t) = F (1)

y(07) =0 (4.3.1)

#y(07) =0
Where m is the mass being weighed, my is the effective mass of the sensor, ¢
is the damping factor, & is the spring constant, F(t) is the force function and
y(0~) and £y(07) are two constants that show the initial position and the
initial velocity of the platform, respectively. If the load is applied to the load

cell without any bouncing then:
F(t)y=m-g-u(t)

Where ¢ is the gravitational constant and wu(t) the unit step function. Equa-

tion 4.3.1 can be written as follows for ¢ > O:

2
wy(t) + 205y + Wiy () = Fhmm

mo+m
y(07) = wo (4.3.2)
2y(07) =w
_ _c - - 2 _ _k
Where o = —S— is the damping ratio and w; = % is the natural fre-

quency.

Equations 4.3.2 has the following solution:

y(t) = 2|kile”*cos(wat + Lk1) + yp (4.3.3)
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Where k; = yl—(yo—ggzj(d—a—jwd)’ Wy = /w% “o?and y, = %m
wq 1s the damped frequency.
From the experimental data and using equation 4.3.3, the constants in equation

set 4.3.1 were found to be ¢ = 3.5 and k = 27000 [43].

4.3.2 Instrumentation Amplifier

The analogue output of the sensor is converted to a digital signal for further
processing. The output signal is of the order of few milli volts; hence it cannot
be used directly to feed the data acquisition card. An amplifier circuit was built
to boost the signal [44, 45, 46, 47]. The circuit is based on the instrumentation
amplifier AD525 [48]. This type of amplifier is used to suppress the effect of
noise, especially the common mode noise. The gain of amplifier is set to 100

by setting appropriate link on the amplifier chip.

4.3.3 Data Acquisition Hardware and software

Data acquisition was achieved using LabVIEW version 4.1 [49, 50, 51, 52] and
a data acquisition card, AT_MIO_16E_10[53, 54], manufactured by National
Instruments. This card is capable of sampling up to 100k samples per second

with 12 bit resolution.

4.4 Neural Network Software

The Neural Network Tool Box of MATLAB is used to implement the neural

networks on a serial computer. This toolbox adds powerful commands to
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Figure 4.5: Simulated responses for 100 g and 600 g loads when the initial
conditions( position and velocity of the platform) are zero.

MATLAB for implementation, training and simulation of neural networks.
Different types of neural network and training algorithms can be chosen. In
addition, it provides the number of training epochs, the performance of the
network after each epoch and the number of operations that are needed for
the output calculation. The latter can be used as an index for the time that

is required in real time processing [55, 56, 57, 58].

4.5 Simulation Results

Figure 4.5 shows the simulated responses for applied masses of 100 and 600 g
when the initial conditions are zero. It is important to note, however, that
the initial conditions influence the shape of transient part of the response.

Figure 4.6 shows the response of the sensor for two different initial conditions
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Figure 4.6: Simulated response for two different initial conditions( position
and velocity of the platform) when the load is 200 g.

when m equals 200 g. Figures 4.5 and 4.6 show that the final values can be
anticipated from the envelope of the waveforms. In fact, if hq, hy and hg are

three successive extreme points ( such as a, b and ¢ in figure 4.6) then it can

be shown analytically that:

h1h3 — h,%
Yp =

- (4.5.1)

The equation 4.5.1 shows that each three successive extreme points have suf-
ficient information to determine the final value. Therefore, these points were
chosen as the features of the output signal. In addition, the time intervals be-
tween two successive intersect points of the output signal and the line y =y,
were added to the features. This extra information increases the immunity of

the method against noise and also its fault tolerance as will be discussed on
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Figure 4.7: The peaks and troughs of the first derivative of the signal corre-
spond to the intersect points of the output signal and the line y = y,.

page 59 and illustrated in figures 4.13 and 4.14. At the beginning of the mea-
surement y, is unknown but as figure 4.7 illustrates, the peaks and troughs of
the first derivative of the signal correspond to the desired points. In practice, a
derivative filter cascaded with a low pass filter was used for obtaining the first
derivative of the signal. The low pass filter was needed because the derivative
filter naturally amplified the high frequencies of the input signal more than
the lower frequencies. Therefore, if the signal was connected to the derivative
filter directly, the amplitude of the noise was boosted and many fake peaks
and troughs would appeared. The interval times are equal to half of the damp-
ing period, 27 /wy, and equations 4.3.3 and 4.5.1 show that there is a unique
relation between them and the final value. Using these features instead of the
raw samples of output signal, as shown in figure 4.8, causes the number of
neurones in the neural network to reduce dramatically and hence reduces the
computation time in the training and operating phases. The feature extractor

finds the first three extreme points and two intervals time, and then passes
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Figure 4.8: A feature extractor reduces the number of neurones in the neural
network.

them to the neural network.

A multi-layer perceptron neural network architecture was used for simula-
tion purpose. The network has five input neurones, eleven hidden neurones,
and one output neurone. The transfer function for the first layer is sigmoid
but for the second layer, a linear function is chosen because the output can
exceed beyond [-1,1]. A set of 100 patterns is used for training the neural net-
work. These patterns were generated by choosing masses that were uniformly
distributed over the range of 100 g to 1000 g. i.e. 100,200, 300---1000 g. The
output for each load was generated for 10 different initial conditions that were
chosen randomly. For testing purposes, the patterns were generated by choos-
ing masses that were different from that used for training i.e. 150, 350, 550, 750
and 950 g. In addition, the experimental data shows that the amplitude of the
electronic noise is about 20 mV peak to peak. Therefore, a random signal with

uniform distribution over -10 mV to 10 mV is added to the signal. The result
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Figure 4.9: The output of the neural network, the network error and the
equation error.

of the test for load 150, 350, 550, 750 and 950 g are shown in figure 4.9. Again,
10 patterns for each load were generated by choosing different initial condi-
tions randomly. In this figure, the upper graph shows the values predicted
by neural network and the middle one shows the absolute error( the actual
value minus the value predicted by network) for each point. The lower graph
shows the error if equation 4.5.1 used. It can be seen that the neural network
predicts the final values to an accuracy of 0.2% of full scale. In addition, the
error is a random signal whose mean is near zero and its magnitude range is

consistent with the error range of the mathematical model. Figures 4.10, 4.11
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Figure 4.10: The output of the sensor and neural network when m=120 g.

and 4.12 show the time diagram of the sensor and the neural network output
for loads 120, 570 and 930 g.

In the above examples, a neural network with 78 parameters used 5 features
of the signal to calculate the steady state value of the signal. In fact, the final

value was calculated from the following equation:

y = Wi (Fi1xa(WiixsTsx1 + biivy) +0%) (4.5.2)

where W2, |, and W}, are two matrices with 11 and 55 parameters respec-

tively, b},,, is a vector with 11 parameters and b? is a scalar. All of these
parameters are determined in the neural network training phase. f111x1 is vec-
tor consist of 11 sigmoid functions. The 5 input features is shown by vector
L5x1-

On the other hand a rather simpler equation 4.5.1 used just 3 features to

calculate the final value. It seems that using neural network not only does not
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have any advantages but also it has drawbacks. The following points, however,

will show that this is not the case.

e FEquation 4.5.1 is applicable for second order linear time invariant sys-
tems. It may be possible to derive a model for higher order systems but

this model was chosen because:

a) This is a simple model whose behaviour has been fully studied so it

is a good reference to evaluate the new method.

b) All of the previous dynamic measurements methods [26, 9, 11, 10,
29, 34), reviewed in chapter 2, have been established using a second
order system. To make comparison between these techniques and
the neural network solution possible a second order system was

used.

c) The Tri-beam load cell [42] was utilized as a typical sensor for ob-
taining the experimental data. It is a highly resonant system, so
it presents a very demanding application for the dynamic measure-

ment technique. Shi has modeled it as a second order system [26].

Sensors are typically modelled as second order systems, but actually
some of them have higher order characteristics. The difficulty of deter-
mining a more complicated model, and its parameters, has led to the
acceptance of a second order model. In addition, the computing com-
plexity of classical dynamic measurement methods increases dramatically
when the number of parameters of the model rises [10] so that a simple

model is to be preferred. The tri-beam load cell is a case in point; its
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output signal is the summation of the three distinct beams. In theory,
all of the beams are identical, but in practice there are inevitable differ-
ences. Suppose each lever behaves as a second order system, and G(s)

shows its transfer function (z = 1,2, 3). G;(s) can be written as:

(s —ay)

Gl(S) = (5‘ — bl)(S — Cl) (453)
_ (s — ag)

GQ(S) = (S — b2)($ — 02) (454)

Ga(s) = — 5= %) (4.5.5)

(s —b3)(s — c3)
where a;, b; and ¢;(1 = 1, 2, 3) are constants that show the zeros and poles
of transfer functions. The transfer function of the whole system, G(s),

obtains as follows:

G(S) = G1 (S) + GQ(S) + G3(S)

_ (s —ay) N (s —as) (s — a3)
(s=b1)(s=c1) (s—ba)(s—c2) (s—b3)(s—cy)

The above equation reveals that the tri-beam load cell is at least a sixth

(4.5.6)

order system.

Neural network methods remove the problem of the system identification,
parameter estimation and adaption of them according to environment

variations. It also paves the way to use more precise models for sensors.

Suppose that the feature extractor fails to present the correct value for
one of the features. To simulate the new situation, the third feature
was substituted with a random number taken from noise sequence. Fig-
ure 4.13 shows the effect of this fault on the network and the results

from the equation 4.5.1. While the latter is like a random signal, the
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Figure 4.13: The effect of losing one feature.

neural network followed the inputs, although error is considerable. Fig-
ure 4.14 illustrates the results after the neural network was retrained
for the new situation. The neural network shows a performance similar
to the situation that it was fed with 5 features. This example demon-
strates the advantage of neural network method in its ability to adapt

new conditions and fault tolerance.

The last example revealed that neural network with 4 inputs could have
the same performance as with 5 inputs. So it is reasonable to ask what is the
optimum number of inputs. From equation 4.5.2 it can be concluded that as
the number of input features and the number of neurones in the hidden layer
reduce, the size of matrices and vectors in the equation decrease which in turn
the lower number of arithmetic operations needed, and therefore the online

operation is faster. It is not, however, very important if a parallel structure or
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Figure 4.14: The effect of losing one feature after a training phase.

a fast processor is used for the network implementation. The important factor
is the number of free parameters that are equal to the number of elements of
weight matrices and bias vector. This number should be chosen according to
the complexity of the problem in hand. If a network does not have enough
free parameters, it cannot learn the behaviour of the system. On the other
hand, a higher number of free parameters together with the low number of
training samples could lead to over fitting i.e. the network memorizes the
training samples and produces a precise output for them but fails to correctly
answer to the unseen inputs. Therefore it is desirable to minimize the number
of input features and the number of neurones in hidden layer.

To minimize the number of input features those features should be selected
that effectively represent data and retain most of the intrinsic information

content of the data. The classical procedures are principal factor analysis and
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components analysis. Both of these methods reduce dimensionality by forming
a linear combination of the features. The latter reduce the number of features
by discarding those linear combinations that have small variance and retain
those terms that have large variances. The object of factor analysis is to find a
lower dimensional representation that accounts for the correlation among the
features. Usually, it is more profitable to exploit knowledge of the problem
domain to obtain more informative features as it was done for the tri-beam
load cell. The important point is that while including independent features
helps the accuracy and reliability of the method, the irrelevant( or features
with no new information ) should be discarded.

To find the optimum number of neurones in the hidden layer, networks
with 1 to 17 neurones in hidden layer are trained and tested. The procedure
was repeated 50 times. For each case the maximum error is recorded. Fig-
ure 4.15 shows the results. Choosing 11 neurones increased the probability
that the trained network produces less error. It should be pointed out that
the pattern of figure 4.15 is not unique because of the ill-posedness of any finite
set of data representing a target function. If the training and testing samples
change, different patterns result; and the optimum number of neurones varies
from 6 to 12. For a network to be able to generalize, the number of parameters
should be less than the number of samples in the training set. As a rule of
thumb, the number of samples should be 10 times that of the parameters [37].
If the samples are limited, an alternative solution is to stop the training before
the network overfits. In the above example 78 parameters and 100 training

samples were used but the training phase stopped after 15 epochs. Using 11
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Figure 4.15: The effect of number of neurones in hidden layer.

neurones speeds up the training phase and this is of particular importance in
application when the environment changes, therefore requiring the sensor to
be retrained. The trained networks was tested by unseen samples to make
sure over fitting has not happened. Figure 4.16 shows a typical mean square
error of the network - the average squared error between the network outputs
and the targets - for 100 epochs. It should be added that to make the train-
ing more efficient, the input and targets were scaled so that they fell in the
range [-1,1]. Also, the default training algorithm in MATLAB, ‘trainim’, was
used. This algorithm appears to be the fastest method for training moderate-
sized feedforward networks. It requires, however, the storage of some matrices

which can be quite large for certain problems and therefore more memory is

needed [56].
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4.6 Experimental Results

The final prediction method proposed in the previous sections was verified
by means of practical experiments. The tri-beam load cell was used as the
weighing sensor. Two sets of loads, one for producing the training samples and
the other for testing samples, were chosen. The training load set consisted of 0,
94.01, 193.10, 291.61, 389.2, 487.3, 584.5, 681.3, 780.5, 878.3 and 975.7 g and
the testing load set consisted of 148.29, 542.3 and 832.2 g. These loads were
obtained by a combination of 50 and 100 g masses. The actual values of the
50 g and 100 g masses differ somewhat from the nominal values. The actual
value of loads was measured using an Oertling weighing balance. This device
measures masses below 300 g with an accuracy [59, 60, 61] of 0.01 g and masses
between 300 to 3000 g with the accuracy of 0.1 g. The masses in training set
were chosen to cover the range of zero to one kg uniformly. Three masses, near
the lower, middle and upper range of training loads respectively, were chosen
for the testing set. The loads in the testing set are different from the loads in
training set, therefore the generalization property of the trained network can be
asserted. For each load, 50 samples were captured. A program was developed
in LabWindow/CVI environment (Ver 3.1) [62, 63, 64, 65] to acquire 1000
samples of the output of the sensor immediately after stimulating the sensor
and for future processing write them to a binary file. These were subsequently
read in to the MATLAB environment for the next step of the process. The
sampling frequency was 10000 samples per second. In order to avoid problems
with bounce while putting the load on the sensor, the method described in [9]

was used. This was performed by firstly attaching the desired load, m, on the
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Figure 4.17: Typical waveforms used for training the neural network.

sensor and then putting another mass, ms, on the top of the load m. The
mass m, was lifted off instantaneously. In this way, the inverse step response
corresponding to the load m was obtained. Figures 4.17 and 4.18 show some
typical waveforms of the training and test samples respectively. 30 samples of
different masses were used with a backpropagation algorithm to train a neural
network with eleven hiden neurones and one output neurone. The transfer
functions of the first layer neurones were sigmoid whereas the output layer had
a linear transfer function. The training of the neural network was achieved
in 15 epochs. Figure 4.19 shows the histogram of the percentage error when
150 unseen samples were used to test the trained network. It is clear from
the histogram that in this method the maximum of error is below 41.5%.
The training procedure was repeated many times with different conditions
and each time the maximum error was calculated. The results showed that if

the number of training samples for each class were greater than 30 then the



Figure 4.18: Typical waveforms used for testing the neural network.
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maximum error is less than £1.5%. In addition, several different structures
for the neural network were considered by adding a layer and changing the
number of neurones in each layer. No considerable improvement in respect of

reducing the maximum error was observed.



Chapter 5

Impulse Response

5.1 Introduction

In this chapter a novel method for dynamic measurement is described. This
method deals with circumstances where the transducer senses the measurand
for a very short period and the output of the sensor is a highly oscillatory signal
and its steady state value is zero [66]. Limitation on the sensing time stems
from the nature of some measurement tasks. Measuring the specifications of
the coins in a vending machine is a case in point. When a coin is inserted into
a vending machine it passes through a special route to reach to the decision
point. There are several sensors throughout the way that measure different
properties of the coin such as thickness, diameter and electrical conductivity.
Based on these measurements, the coin will be accepted or rejected. It takes
about 75 ms for a coin to move from the entering point to the decision point.
Therefore the sensing duration for each transducer is very short and the final

value of the sensors should be established in less than 75 ms.

69
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Limitation on the sensing time can also arise from the demand for increas-
ing the speed of the process of measurement. For example, consider weighing
postal parcels when the load sensor is set beneath of a part of the carrier belt.
The weight of each parcel is determined as it passes from that part of the
strip. As the speed of the belt increases the available sensing time decreases.
Similarly, the whole time for determining the final value of the sensor reduces.
This is the case for any production line which requires measurement.

In the above applications, the sensor steady state response is zero, irrespec-
tive of the amplitude of its input. Therefore those classical methods which are
based on the steady state response, such as adaptive digital filtering, can not
be employed. This chapter shows that neural networks can successfully be
applied to solve this problem. Firstly, simulation techniques are applied to
establish the method and to obtain the optimum solution. Then experimental

data are used to verify the simulation results.

5.2 System Analysis

System simulation was carried out on a tri-beam load cell. The sensor was
described in section 4.3.1. The general equation for the dynamic response of
this sensor is given by the equation 4.3.1. If a mass drops onto the load cell
from a fixed height, h, and bounces clear, so it is in contact with the load for

a very shot period, then the input function can be written as:

F(t) = M(t)
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Where M is a constant that depends on m and §(¢) is the unit impulse function.
Equation 4.3.1 can be written as follows for £ > 0 because the impulse function

is zero for ¢ > 0 and its effect only changes the initial conditions[67].

moSzy(t) + cy(t) + ky(t) = 0
y(0t) =0 (5.2.1)
%y(OJ’) — V2
where my is the effective mass of the sensor, ¢ is the damping factor, k is the
spring constant, y(t) is the position of the platform, y(0~) and %y(()‘) show
the initial position and the initial velocity of the platform respectively and vy,
is a constant. To calculate the latter constant suppose:
vy shows the speed of load just before collision,
v1, shows the speed of load just after collision,
vy shows the speed of the sensor plate just before collision,
Vg, shows the speed of the sensor plate just after collision,

If the load falls from the height of A with zero initial velocity then
vy = /2¢h

where g is the gravitational constant. The sensor plate is at rest initially hence
Vg = 0.

Newton’s Second law implies:
muy + Mgl = MUy, + Moloy,

where m shows the mass of the load and mg is the effective mass of the sensor.
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By definition [68] the restitution coefficient , e, is

V2q = V1a
e = —
Uy — V2

thus e = 1 refers to an elastic impact ( impact with no energy loss) and e = 0
indicates inelastic or plastic impact.

Using this information vy, can be calculated as:

Vog = (d+em /2gh

m -+ my
Knowing vy, the solution for equation (5.2.1) can be written as

(1+e)m 1 e .
t) = —— \/2gh — e™° t 5.2.2
o) = S gk L e sinfunt) (5:22)

where o = ¢/my,w? = k/my and wy = \/m. The variables o, wy and
wy, show the damping ratio, the damped frequency and the natural frequency
respectively.

Equation 5.2.2 shows that the steady state of the output is zero for different
values of m. Therefore it is impossible to determine the input value from
the steady state response. The information in the transient time response,
however, can be exploited for measurement because the amplitudes of peaks
and troughs only depend on the magnitude of m, if the loads fall from a fixed
height. The transient time response can be envisaged as a unique pattern that
is produced by the sensor for each measurand. Thus the measurement process
can be modeled as a nonlinear mapping or regression problem [69] which can
be solved effectively by neural networks. Radial Basis Function (RBF) and
Multi Layer Perceptron (MLP) networks are two appropriate configurations

for this type of application [37].
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In the following sections the above proposed method will be investigated
by means of simulation and experimental data. Firstly the parameters of the
RBF networks are specified when the number of features of the signal which is
used to feed the neural networks is fixed but the level of noise is altered. The
change in the number of the neurones in the networks and the percentage of
error are considered. The number of neurones in a network is an indication of
the processing power that is required for implementation of the network. The
percentage of the error determines the capability of the method coping with
noise and also if it is suitable for a specific application. Secondly, the level of
noise is fixed but the number of features of the signal which is used to feed
the neural networks is changed and its effect on the percentage of the error
and the number of neurones in the network is observed. These help to find the
optimum preprocessing method. All the above steps are repeated for the MLP
configuration. Then the RBF and MLP optimum solutions are compared to
find out the optimum solution. Finally the results of simulation are utilized

to design a network using experimental data.

5.3 Simulation Results Using RBF Configura-
tion

To train a Radial Basis Function (RBF) neural network a total of 360 patterns
are used. These patterns were generated by choosing 12 masses that were
uniformly distributed over the range of 1 to 12 g. For each mass, 30 signals

were simulated using equation 5.2.2. In reality the signal is corrupted by noise,
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therefore a random sequence is added to the signal. Then the first peak and
trough of the signals were extracted as two key features. The features of each
signal made a vector which was the pattern of that signal.

For testing purposes patterns were generated in the same way as described
above with the exception of choosing 7 masses between 1 and 12 g. Most of
these were different from those used for training. Therefore 210 patterns were

used to test the trained network.

5.3.1 Noise and Number of Features

In the real world, sensor signals are always contaminated with noise and the
amplitude of noise varies over time. It is important to investigate the capa-
bility of the measurement method to eliminate the effect of noise. For this
purpose a random sequence was added to the signal. The random entries of
the sequence was chosen from a uniform distribution in the interval (0.0, b)
where b determines the level of noise. It was changed from 0.02 to 2 percent of
the maximum of the sensor’s output of the relevant mass. For each b a RBF
network was trained and tested. Figure 5.1 shows a typical error surface for
a trained network. The number of neurones in the trained network and the
maximum error that produced by testing pattern were recorded. This proce-
dure was repeated thirty times. Each time a number was taken from a random
variable generator that produced numbers uniformly distributed between 0.02
and 2. This number was scaled according to the maximum of the sensor sig-
nal to obtain the corresponding value for b. For the purpose of comparison

the results were sorted ascendingly based on the level of the noise. They are
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5.4 Simulation results Using MLP Configura-
tion

The same numbers and procedure that were described in the section 5.3 for
producing training and testing pattern were used to train and test Multi Layer
Perceptron networks. For the RBF networks the number of neurone in the
hidden layer is determined by the training procedure but for the MLP networks
this number should be set by the user at the beginning of the training phase.
Figures 5.7 shows the number of neurones in RBF networks with maximum of
error less than 0.8 percent is seven. Therefore for the purpose of comparing
the performance of two configuration the number of neurones in hidden layer
for MLP configuration was chosen to be seven. In addition to investigate the
effect of the number of features on the performance of the MLP networks the
process is repeated when the number of neurones in the hidden layer is set to

two.

5.4.1 Noise and Number of Features

To investigate the effect of noise random sequences were added to the signals.
The distribution and the range of the numbers of the random sequence was
same as described in section 5.3.1. Figure 5.11 and 5.12 present the results
when respectively seven and two features of the signal were used. They show
if the level of the input noise is less than two percent then MLP networks are

able to find the impulse response with an error less than 0.8 percent.
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f

5.5 Comparison Between RBF and MLP Con-
figurations

Figures 5.7 and 5.11 show the result of RBF and MLP networks respectively
when they were trained and tested under the same conditions. The networks
from both configurations have the same number of neurones in the hidden
layer. The other important factor is the output error. For RBF networks the
maximum magnitude of error for all thirty cases is less than 0.6 percent but
for MLP networks in two cases the maximum exceeds from 0.6 percent. So it
appears that the RBF configuration has a better performance. Nevertheless
the maximum error for 60 percent of the MLP networks is less than one percent
while none of the RBF networks show such performance. This means that if
the MLP configuration was chosen, it is quite likely to yield a network which
produces a very low output error although there is a low risk that the training
algorithm creates a network which could produce an output error more than
the RBF networks could produce. To investigate this issue, one hundred RBF
networks and one hundred MLP networks were trained. The level of noise was
set to two percent and seven features of the input signals were used. Each
network was tested with thirty signals. The maximum errors produced by the
networks were recorded. Figure 5.13(a) shows the smooth line histogram of
the maximum error produced by the RBF networks. The results for MLP
networks is represented in figure 5.13(b). The main lobe of both histograms is
like a normal distribution. The mean and variance of the main lobe for MLP

networks is less than the one for RBF networks. This means that choosing the
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MLP configuration network increases the probability of obtaining a network
with high accuracy. While the probability that the maximum error for a RBF
network is less than or equal to 0.3 percent is zero. A considerable number
of MLP networks satisfy this condition. The maximum error of 94% of the
MLP networks is less than 0.5 percent compared to half of the RBF networks.
On the other hand, the worst RBF network generates less than one percent
error, which is nearly half of the amount of that produced by the worst MLP
network. Nevertheless the probability of getting a MLP network to produce a
high error is low. This probability can be reduced further if more features are
used. Figure 5.13(c) shows the results when nine features are used, but other
conditions do not change. The side lobes dramatically attenuate and also shift
to a lower error. There is a limit on improvement of the histogram using more
features. This can be concluded by comparing figure 5.13(c) with figure 5.13(d)

which shows the results of using nine and eleven features respectively.
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5.6 Choice of Training Pattern

The previous networks are trained by a total of 360 signals. These signals
were generated by choosing 12 points uniformly distributed over the input
range and producing thirty signals for each point. If the number of the points
reduces then the process of gathering experimental data, and also the training
process, speeds up. To investigate this issue the number of points is reduced to
six that were uniformly distributed over the range of input. The level of noise
was set to 2 percent and seven features of the input signal were used. Thirty
signals were produced for each point. Figures 5.14 and 5.15 show the results
for RBF and MLP networks respectively. They are disappointing because the
maximum error for all of the RBF networks and most of the MLP networks
is more than two percent. If these two latter figures are compared with fig-
ures 5.13(a) and 5.13(b) respectively, it shows how reducing the number of
training points can result in poor networks. In certain circumstances, increas-
ing the number of input features can improve the performance of networks.
Hence, under the same conditions the number of features were increased to
eleven and the process of testing and testing networks were repeated. The re-
sults are illustrated in Figure 5.16, revealing that the increase of input features

can not compensate the decrease of the learning points.
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Figure 5.14: Effect of decreasing the number of training points on RBF net-

works.
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Figure 5.16: Increasing the number of features can not compensate the de-

crease of training points.
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5.7 Output Deviation

Each measurement system is designed to work under specific conditions such
as input range, ambient temperature and so on. If it is used beyond the
designated ranges then the output is not reliable and could be far from the
real value. It is expected, however, that if an input, in the allowed range, is
disturbed by the noise or other unwanted factors then the output consistently
deviates from the actual value. In other words, if the input signal’s discrepancy
is minor then the output deviation is small and vice versa. To investigate the
capability of the neural network method in this respect, a network for the range
of 1 to 12 g was designed to function when the level of noise was two percent
or less. Then one hundred signals for a 6 g load were produced. These signals
were contaminated with noise. The amplitude of noise changed from two to
fifteen percent of the maximum of the sensor’s output for the 6 g mass. The
signals were applied to the network. Figure 5.17 shows the level of input noise
and the output error. It reveals that the output of network is highly erratic
and is not related to the input when the input noise exceeds the allowed range.
This cannot arise from the neural network alone. Its response to signals with
less than two percent noise confirm that it correctly learnt the behaviour of the
mapping function, and if the load changes around 6 g the response changes ac-
cordingly. Therefore the effect of high level noise is not just changing the level
of input to the network. Figure 5.18 shows a noisy signal. The preprocessing
module detects the amplitudes of peaks and troughs of the sensor’s signal as
the features of the signal that passed them to the neural network for process-

ing. The small squares in figure 5.18 show the nine first features of the high
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and the signal is not filtered.
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noisy signal detected by preprocessing module. The high level of noise makes
such fake peaks and troughs that leads the preprocessing unit to confuse in
detecting the right peaks and troughs. To prevent this problem, the algorithm
for finding peaks and troughs was changed by defining the time windows that
each of them contained one period of the sensor signal. Then the maximum or
minimum points in each window were found. Figure 5.19 illustrates the result
of applying one hundred test patterns. Comparing this figure with the previ-
ous figure shows that a considerable improvement has been accomplished. In
the next step before feature extraction, a Finite Impulse Response (FIR) filter
of order 50 is added to reduce the power of noise. The frequency response of
the filter is illustrated in figure 5.20. Figure 5.21 shows the high noisy signal
after low pass filtering and the peaks and troughs which are founded by feature
extraction procedures. The result of repeating the previous experiment illus-
trated in figure 5.22 show that the erratic behavior of the output disappeared

completely.
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5.8 Experimental Setup

Figure 5.23 shows the system that was set up to obtain the impulse response
of the tri-beam load cell. To stimulate the sensor by an impulse input, the
load should contact the transducer for a very short period. Therefore a pillar
was added to the weigh pan. The pillar is made from polyvinyl chloride (PVC)
and its diameter is 31 mm . It is fixed to the centre of the weigh pan. The top
of the pillar is diagonal and its slope from the horizontal is ten degrees. Hence
when a load falls on the top surface of the pillar it is immediately thrown away
and a short impact is generated. A ramp was set up to carry the loads from a
fixed height to the top of the the pillar. From the end of reel, loads freely drop
on to the pillar surface. The loads are disks of metal with different diameters,
and are made from aluminum and bronze. The response of the sensor to the
loads is a very short period signal which is produced after collision. To capture
this signal, a data acquisition card AT_MIO_16E_10 manufactured by National
Instruments was used. The necessary software is written in LabWindws/CVI
(version 5.5) environment. Data acquisition needs to be initiated immediately
after the load hits the sensor. An infra red transmitter and receiver [70, 71]
was situated on the route of loads in the ramp and produced a triggering
signal for the start of data acquisition. The data acquisition card does not
have hardware triggering facility so the software monitors the triggering signal

and starts data capturing at appropriate time.
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5.9 Experimental Consideration

The following list gives several experimental considerations that need to be

adhered in order to achieve accurate and repeatable signals:

e The height and slope of the ramp, and also its position against the sensor

should remain constant during the experiments.

e This is necessary to minimize the friction between the reel and the loads.
During the experiments it was revealed that covering the surface of the

route with a solid plastic material improves the repeatability of signals.

e It is essential that the load starts moving toward the sensor from a fixed

point.

e The width of the route in the ramp should match the width of disks,
otherwise the disk bounces between the wall of the route, which affects

the repeatability of the signal.

e The impact of the load on the sensor causes all of the loose parts around
the experimental set up to vibrate. This produces unwanted signals that
contaminated the desired sensor signal. Therefore the weigh pan and the
pillar should be firmly fixed to the rest of the sensing structure. Also
the whole set of the system should be put on a mounting which does not

shake easily and can damp the oscillation of the apparatus.

5.10 Experimental Results

Figure 5.24 shows a typical impulse response of the sensor. The details of the
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first peak and trough can be seen in figure 5.25 which shows just a small part
of the previous figure. The signal is noisy and before feature extraction it is
filtered by the low pass FIR filter whose frequency response has been shown
in figure 5.20.

Six loads were used for obtaining experimental data. They were disks with
the same width but different diameter and material. Their masses were 4.26,
5.26, 6.26, 7.26, 8.26, 9.26 g respectively. These were measured by an Oertling
weighing balance with an accuracy 0.01 g. For each load, fifty signals were
captured. Thirty of them were used for training purpose and twenty of them
for testing the trained network. Based on the results of simulations, a MLP
network with seven neurones in the hidden layer was chosen for training. Also
the first peak and trough of the signal were extracted as two features to feed
the neural network. The result is illustrated in figure 5.26. The mean of
the error signal is not zero. This is due to the amplifier drift and the fact
that the samples for training and testing were captured in different sessions.
Nevertheless, the maximum error is less than 0.8 percent. The experimental
results therefore support the simulation results and confirm that the neural

networks can be successfully employed in impulse response measurement.
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Chapter 6

Interference Cancellation

6.1 Introduction

Unwanted signals that contaminate the desired sensor signal can be classified
in two categories: The first category is that of high frequency noise, which is
mainly produced by the internal process of the sensor and the electronics used
for signal conditioning. The frequency band of this type of noise is generally
out of the frequency band of the main signal, hence it can be removed by an
appropriate low pass filter as discussed in the previous chapter. The other
category consists of interference signals that are produced by the devices and
sources around the sensor. The effect of the 50 Hz mains "hum’ is a an example
of such noise. Another example is the effect of shaking in a weighing system.
The electro-motor and other equipment that are needed to rotate the belt
cause the load cell sensor to oscillate and produce an unwanted signal.

An interference signal can be modeled as the effects of a disturbance source
that produces another input to the sensor as shown in figure 6.1. The frequency

band of the interference signals are in the range of the desired signal and

105



106

n(y)

Input —» Pri s(t)+d (1)
rimary 4
Sensor + ¥

Disturbance ——»

Figure 6.1: Block diagram of sensor system with an interference signal.

usually vary as a function of time. Consequently standard filtering method
can not be used and adaptive methods are required. Adaptive methods often
achieve a degree of noise rejection that would be difficult or impossible to

achieve by direct filtering [36].

6.2 Simulation of the Interference Signal

The interference sources which have a repetitive pattern are considered in this
section. Their effect on the output of the sensor is essentially a periodic signal.
According to the Fourier theorem periodic signals can be made by combination
of a series of harmonics of sine and cosine waves. Four different interference
signals were simulated. Figure 6.2 shows the samples. The first one is 70
Hz sine wave. The others are combinations of the first signal and its first
three harmonics. They are produced by choosing different amplitudes for the

components.
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Figure 6.2: Interference signals.
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Figure 6.3: Adaptive method for the cancellation of interference signal.

6.3 Adaptive Filter Method

Adaptive filtering is a variation of optimal filtering that has been successfully
used in many applications. This method is based on using an extra or refer-
ence sensor located at a point that just picks up the interference signal. The
output of the reference sensor processed and subtracted from the output of
the primary sensor containing both signal and interference. As a result, the
the interference signal is attenuated or eliminated by cancellation. Figure 6.3
shows a block diagram of the method. The high frequency noise does not show
in this block diagram for the purpose of simplicity and because the previous
chapter describes how its effect can be eliminated by a low pass filter. The
signal d,(t) is the effect of the disturbance source in the output of the primary
sensor. The adaptive filter adjusts its elements to minimize the error signal e.

Since its target signal is d,(t) + s(t), it tries to produce this signal, but it only
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Figure 6.4: Combination of a MLP neural network and a tapped delay line as
an adaptive linear filter.
knows about the interference signal and can reproduce d,(t) that is linearly
correlated with the interference signal. The signal e equals the target signal
minus the output of the network. In this way the signal e will be closest to
the signal s(t) which is the output of the primary sensor due to the real input.
A MLP neural network, which has a linear transfer function, can be com-
bined with a tapped delay line to implement an adaptive filter as shown in
figure 6.4. The input signal feeds the tapped delay line which provides an
input vector for the neural network. The elements of the vectors are the input
signal at the current time and at delays varying from 1 to N — 1 time steps.
Figure 6.5 shows a signal contaminated with interference and the output of
the system using an adaptive filter to cancel the interference. This figure shows
that the adaptive filter method has not been able to cancel the interference

signal. In this case the correlation coefficient between the sensor signal and
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Figure 6.6: When the main and interference signals are correlated the adaptive
filter produces signal plus interference.
the primary sensor, is the system identification phase. In this phase a MLP
network has inputs connected to the output of the reference sensor and its
target is the output of the primary sensor. This is trained to mimic the
behaviour of the primary sensor stimulated by the interference signal. At
the point that the main signal excites the primary sensor, phase 1 finishes
and the phase 2 starts. During phase 2 the output of the MLP network is
equal d,(t) i.e. that part of the primary sensor output which is due to the
interference signal. The desired signal is obtained by subtracting the outputs
of the primary sensor and the neural network.

Figure 6.8 shows the block diagram of the neural network that is used for
the system identification. The number of neurones in the hidden layers of the

neural network and the number of inputs or the number of delay units are
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Figure 6.7: Adaptive system identification method.
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Figure 6.8: The dynamic neural network is used for interference cancellation.
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It should be pointed out that, in the case of an impulse response, the DC
level can be easily removed by a coupling capacitor but this is not the case for

a step response. Thus the adaptive identification method can provide a good

solution.

6.6 Training Time

The neural network training time affects the speed of the measurement. The
actual time needed for training depends on the hardware and software that
are used for implementation of the neural network and the training algorithm.
In this work, the programmes are written in the MATLAB environment and
run on a PC, hence the number of epochs is used as a measure of time. When
a neural network is trained for the first time it takes about 70 epochs to
meet the condition of mean square error less than or equal to 0.001. The
number of epochs in the subsequence measurements is zero. If the amplitude
or frequency of interference signal or the level of drift changes by 10% then

the neural network is trained in less than 5 epochs.

6.7 Interference Frequency

While the parameters of the system are fixed, the frequency of the interfer-
ence signal was changed over a wide range around the damping frequencies
of the main signal. The output of the system for two frequency are shown
in figures 6.14 and 6.15. The system copes with interference signals when

their frequencies are greater or near the frequency of the main signal but it
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Figure 6.17: Output of the primary sensor.

although the result of the measurement is ready shortly after the stimulation
of the sensor. This limitation, however can be overcome using a standard low
pass filter because in this case the frequency band of the interference is far

from the signal’s spectrum.

6.8 Experimental Data

The experimental set described in chapter 5 was used for getting experimental
data. The power line can produce a considerable interference signal in the
output of the sensor as shown in figure 6.17. A second sensor was not available,
therefore 50 sequence of interference signal were captured from the primary
sensor. These sequences were added to 50 signals of a 4.26 g load that had
been acquired in the absence of interference signal. Thus the primary signals

in present of interference were obtained. The adaptive system identification






T T T l T T T T
B First feature
[ Second feature
8- g e . e
7;_ ....... ~ P
6- ............................................................................... —

(>)~5._. ................ . U [ N —

E=

[

3

o

]

T 4k FUUUUI | UDUN I DO SUUDE - | | O SISRERRPSRTEE o 4
FRUUUR | DU | UUUON DU SUDDEY ] DUUONR EPRDRIOE | IRDRUORON | R TR N S 4
YU X1 U 1 UUUS I SO SUUNE | DU | BUUN SURUUIN | SN | R R 1IN YIRS .
[N I gl R PRI A i
0 1l i || i |I |H [l il |l il 1 1
-7 -8 -5 -4 -3 -1 0 1 2 3 4 5 6 7

Error (%)

122

Figure 6.19: Histogram of the percentage of error for the first and second
features before using adaptive system identification.
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Figure 6.20: Histogram of the percentage of error for the first and second
features after using adaptive system identification.



Chapter 7

Conclusions

7.1 Concluding Discussion

Dynamic measurement is an important need in the modern world. Its main
aim is to predict the final value of the sensor output without waiting until the
transient part of the response has decayed. The two significant advantages of

dynamic measurement, are:

e First, it speeds up the process of measurement. While this increases
the speed of the whole process in general, it is vital for systems whose

measurement time is limited.

e Second, dynamic measurement allows the use of inexpensive sensors hav-
ing a highly oscillatory response. Low cost, accurate and reliable sensors
have a fundamental significance for many of today’s industrial and con-

sumer products [72].

There are many different methods used for dynamic measurement. They

can be classified in two categories: Classical methods and the new proposed
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method which is based on a neural network. Classical methods include inte-
grated control and filtering, fuzzy control, adaptive digital filtering, choice of
low pass filter, Kalman filtering and model parameter estimation. The use of
a method depends on two factors: the type of sensor and the type of measure-
ment process.

There are generally two types of sensor: controllable and non-controllable.
Non-controllable sensors have one input and one output, whereas controllable
sensors have two inputs and one output. The measurand is one input of a
controllable sensor and the other input is a feedback signal from the output.
Integrated control and filtering methods as well as fuzzy control are exclusively
used for controllable sensors.

In general, there are two main types of measurement process: continuous
and discrete. Discrete measurement deals with a set of measurands that have
a fixed value and the sensor indicates these. For example, in some instances
there is a finite set of loads that may be applied to the sensor. In this case,
the value of the measurand does not change during the measurement process.
With continuous measurement, however, the value of the measurand can vary
with time. Measurement of the pressure of a water tank is a case in point.
For continuous measurement, an adaptive digital filtering method, which is
mainly a frequency compensation method, is necessary. With this technique,
the frequency response of the sensor and the compensation block would be ide-
ally equal to one, or more precisely they perform a delay unit, and the input

signal appears at the output without any distortion. The Model parameter
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estimation methods and the neural network method are more suitable for dis-
crete measurement because they predict the final value from a small fraction
of the beginning of the signal. In fact for a non-noisy signal, the number of
samples that is required is equal to the number of unknown parameters of the
model. With the Model parameter estimation methods, when the number of
parameters in the model increases, the computational complexity of the pa-
rameter procedure estimation increases dramatically. For example, with the
non-linear regression method, the complexity increases as the third power of
the number of unknown model parameters [10]. The neural network method
does not have this problem. In addition, it eliminates the need for system
identification, sensor modeling and look up tables for non-linearity correction.
The neural network learns the behaviour of the sensor from the set of training
patterns. A system that is designed based on neural network method has the
ability to learn through contact with the environments and adjusts its own
parameters automatically to adapt itself with the variation in the noise and
sensor specifications. Moreover its design requires little or no prior knowledge
of signal or noise characteristic so it can be used Tor a wide range of applica-
tions. In contrast, a system based on classical methods is limited to specific
applications. Figure 7.1 shows the result of using neural network method on
a highly oscillatory sensor. It predicted the final value of the sensor signal,
quite a long time before the oscillation was damped.

The results of this study show that using a feature extractor can improve
the efficiency of the neural network method. Firstly, the period of oscillation,

which is rarely used in other methods, was adopted as a feature. This is
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Figure 7.1: The output of the tri-beam load cell and neural network when the
load is equal to 120 g.

important because it has a unique relation with the final value, and also the
amplitude noise has less effect on it. Secondly, the number of neurones in the
neural network reduces dramatically and hence both the training and weighing
time decrease effectively. Thirdly, by using successive extreme points of the
output signal, the initial conditions are not important. It was also shown that
the preprocessing procedure has a great influence on the success or failure of
the method. If the preprocessing unit could not cope with the noise then the
response of the neural network will be unpredictable.

Neural network methods are especially useful in the situation where the
sensor is stimulated for a short time period i.e. when the input is an impulse
function. Classical methods such as adaptive digital filtering, however, are
not applicable because they are based on averaging, and the average of the

output is zero for each measurand. Although the final value is zero for different
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Figure 7.2: The adaptive system identification cancel the effect of drift as well
as the interference signal.

measurands, initial section is different. Therefore it can be said that, in this
situation, the neural network acts as a pattern recognizer that maps each
different pattern to the right class.

The neural networks were also used in a novel way to cancel interference
signals and drift effect. The conventional methods are only useful if the in-
terference and sensor signals are uncorrelated. The proposed method in chap-
ter 6, however, cancels the effect of interference even when it is correlated to

the desired signal as shown in figure 7.2.

7.2 Further Work

In this study new methods were presented, based on neural networks, for the

processing of a raw sensor signal and interference cancellation. The versatility
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and adaption properties of these methods fulfill the whole expectations for an
intelligent sensor, if they are implemented in the housing of an elementary
sensor. The following list summarizes the main area which are worthy for

further investigation:

e Other input functions

Continuous measurement

Optimum training algorithm

Number of neurones in hidden layer

Hardware implementation

Using evolutionary artificial neural network

7.2.1 Other Input Functions

In this thesis the step and impulse functions responses were fully investigated.
In many applications, however, the input function may not necessarily be
that of an ideal step or impulse function. Theoretically, the neural network
method can cope with any type of input as long as it is repeatable. To find
the optimum solution for other inputs, further simulations and experiments
are needed. Experimental data should be acquired using automatic equipment
for stimulating the sensor in order to saﬁisfy the condition of the repeatability
of the input. For example, the masses should be put on the tri-beam load cell

by a mechanical mechanism.
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7.2.2 Continuous Measurement

The method proposed in this study is suitable for discrete measurement. To
use it in continuous measurement, it is suggested that the following modifica-

tion be further investigated.

The Neural Network as an Inverse System

If the measurand does not contribute to the inertial parameters of the sensor
i.e. the characteristic function of the sensor is independent from the measur-
and, then a dynamic neural network can be cascaded to the sensor. The neural
network should learn to act as an inverse system of the sensor.

If it is possible to establish a relation between the parameters of the network
and the output of the sensor then this method can be improved to use in
the situations where the measurand changes the characteristic function of the
sensor. In fact this method would be an analogue of the adaptive digital
filtering technique with the exception that there is no need for sensor modeling

and inverse system identification.

Two Subsystems

Figure 7.3 show the block diagram of another system that can be used for
continuous measurement. The selector block chooses one of the two outputs
of the subsystems as the system output. In the absence of any quick changes
in the input of the sensor, the low pass filter output is the best indication of
the sensor signal because the filter removes the effect of the high frequency

noise from the steady state response of the sensor signal. When the input of
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Figure 7.3: A system for continuous measurement.

the sensor changes rapidly, the neural network method block determines the
steady state of the signal before the transient part decays. So its output should
be switched to the output of the system. The selector block has an important

role and should be designed elegantly.

7.2.3 Optimum Training Algorithm

There are a number of algorithms for neural network training. They are dif-
ferent in respect of the amount of memory they need and the speed of con-
vergence. If the neural network is implemented by a microprocessor in the
housing of the sensor, certain limitations regarding to the mentioned factors
should be met. Hence a study of advantages and disadvantages of each train-
ing algorithm when they are used in the processing of the raw sensors signal

are required.

7.2.4 Number of Neurones in Hidden Layer

In the new method described in this thesis, the neural networks were mainly

used for approximation of a non-linear function. Theoretically any degree of
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accuracy is achievable if the number of neurones in the hidden layer is suffi-
cient. There is no straightforward way, however, to determine the ’sufficient
number’ in each case. The number is obtained by trial and error. Choosing an
incorrect number of neurones could result in an overestimate or underestimate
of networks. Further work should be aimed at developing a technique which

is capable of finding the optimum number of neurones without external help.

7.2.5 Hardware Implementation

The neural networks have an inherently parallel nature. A lot of work has been
done for implementing neural networks using VLSI technology [73, 74, 75, 76].
Some commercial ICs are also available {77]. In this study the neural networks
are implemented on a PC based on sequential processor. The full advantages of
a neural network regarding the speed will be obtained if they are implemented
using suitable hardware with parallel structure. This structure and the sensor

can be combined later to implement in one chip.

7.2.6 Using Evolutionary Artificial Neural Network (EANNs)

Evolutionary artificial neural networks (EANNSs) are a special class of neural
networks that can adapt to an environment as well as changes in environ-
ment [78]. In addition to learning, evolution is another fundamental form of
adaption in EANN. One distinct feature of EANNs is their adaptability to a
dynamic environment. Evolutionary algorithms are used to change the weights
and architecture of the networks, learning rule and input features. The two

forms of adaption, i.e. evolution and learning in EANNs makes them suitable
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architectures to use with intelligent sensors. In a broader sense, an EANN
can be regarded as a general processing unit that can be put in the housing
of any raw sensor, and it select input features, changes the architecture of the

networks and learning rule appropriately without human intervention.
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