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This Thesis is concerned with the application of analytic theory to the calculation of the 

properties of thermotropic nematic liquid crystals based on their molecular structure. 

For these studies we employ the molecular field approximation, which has been shown 

to give a good qualitative and semi-quantitative understanding of liquid crystalline 

properties. In the first chapter we give an introduction to liquid crystals and their 

properties as it pertains to the theoretical studies of later chapters. In the next chapter 

we lay the necessary foundations in statistical mechanics and introduce the molecular 

field approximation as a theoretical framework within which we develop the molecular 

field theories which we employ subsequently. We begin our studies by considering 

the application of an electric field to a nematic monodomain, a procedure that has 

potential applications in the production of non-linear optical devices. The idea is that 

by polarising a nematic rather than an ordinary liquid, the polarisation is augmented. 

Thus we seek to probe the theoretical basis of this by estimating the response of the 

order parameters to the field using molecular field theory. In the next chapter we move 

on to consider the composition dependence of order parameters in binary mixtures 

where the solute is less anisotropic than the solvent. This is to investigate the validity of 

extrapolation procedures commonly used in experiment to obtain values for properties 

of non-mesogenic compounds intrinsic to the compound in question, in a hypothetical 

pure nematic state. In the final chapter we undertake to predict the properties of liquid 

crystal dendrimers, a fascinating new class of highly fiexible mesogenic molecule. Here 

the problem of the very great conformational fiexibility is addressed and a solution is 

presented involving a hybrid methodology that draws on both molecular field theory 

and Monte Carlo computer simulation techniques. 



Acknowledgements 

I would like to thank Professor Geoffrey Luckhurst for all his help, understanding and 

patience throughout the duration of my PhD studies here in Southampton. I would 

also like to thank Dr Steve Roskilly for his help initially when I first arrived and the 

many members of the department, both past and present, who have helped me in many 

ways both great and small, during my time here. 

Special thanks have to go to my family, without whose unSagging support it would 

never have been possible and also to Francesca Castiglione and Marina Carravetta for 

the strength of their friendship through thick and thin. 

I would like to thank all the people of computing services for their assistance, in 

particular Ian Hardy, for bearing the dubious privilege of managing iris02, almost, it 

seems, just for me, with such grace. 

I am also grateful to the Engineering and Physical Sciences Research Council for fund-

ing through a studentship. 



To My Family 



C h a p t e r 1 Liquid Crys ta ls 1 

1.1 Introduction 1 

1.2 States of Matter 2 

1.3 Definition of Mesophases and Liquid Crystals 4 

1.4 Thermotropic and Lyotropic Mesophases 5 

1.5 ClassiScation of Thermotropic Mesophases 7 

1.5.1 The Nematic Phase (//) 8 

1.5.2 Chiral Nematic (Cholesteric) Phases (AT*) 10 

1.5.3 Smectic Phases S 'mB, . . . , 11 

1.6 The Molecules That Form Liquid Crystals 11 

1.7 Phase Transitions 15 

1.8 Orientational Order in the Nematic Phase 19 

1.8.1 Defining the orientation of a molecule in a monodomain 19 

1.8.2 Uniaxial Phaae of Uniaxial Molecules 20 

1.8.3 Uniaxial Phase of Biaxial Molecules 29 

1.9 Molecular Models of Liquid Crystallinity 30 

1.10 Liquid Crystal Properties and Theoretical Modelling 32 

1.11 Summary of Contents 35 

lA Appendix lA: Dehnition of the Euler Angles 36 



IB Appendix IB: Legendre polynomials and spherical harmonics 39 

C h a p t e r 2 T h e Stat is t ical Mechanics and Molecu l a r Field Theory of 

Nemat i c s Composed of Rigid Molecules 4 3 

2.1 Introduction 43 

2.2 Introduction to Statistical Mechanics 43 

2.3 The Equilibrium Free Energy 46 

2.4 The Molecular Field Approximation 47 

2.5 Distribution Functions and the Molecular Field Approximation 51 

2.6 Helmholtz Free Energy within the Molecular Field Approximation . . . 53 

2.7 An Alternative Development of the Helmholtz Free Energy 54 

2.8 Molecular Field Theories—Uniaxial Phase Composed of Uniaxial Rigid 

Particles 58 

2.8.1 Maier-Saupe Theory 58 

2.8.2 Expansion of [/(/)) in a basis set of Legendre polynomials . . . . 60 

2.8.3 Variational Derivation of the Maier-Saupe Theory 62 

2.8.4 Predictions of the Maier-Saupe Theory 65 

2.8.5 Numerical Methodologies in Molecular Field Theory 75 

2.9 Uniaxial Phase of Rigid Biaxial Particles 77 

2.9.1 Variational Derivation of the Distribution Function and the Potential 

of Mean Torque 77 



2.9.2 Predictions of the Theory 82 

2A Appendix 2A: The Calculus of Variations 88 

2A.1 Introduction 88 

2A.2 The Problem 89 

2A.3 Variational Notation 93 

2A.4 Application to Multivariate Problems 97 

2A.5 Application to Distribution Functions in Statistical Mechanics 101 

C h a p t e r 3 Elect r ic Field Polar i sa t ion of N e m a t i c Liquid Crystals : A 

Molecular Field Theory 114 

3.1 Aims and Rationale 114 

3.2 Formal Development of the Theory 115 

3.3 Methodological Application 117 

3.4 The Free Energy 120 

3.5 Evaluating the Orientational Order Parameters 121 

3.6 Results and Discussion 121 

3.7 The Problem of an Inhomogeneous Ground State 131 

3.8 The Theory 134 

3.9 Introduction to the Humphries-James-Luckhurst Theory of Binary Nematic 

Mixtures 135 



3.10 Adaptation of the HJL Theory to Model Nematics with Predominantly 

Antiferroelectric Coupling 138 

3.11 Methodology 140 

3.11.1 Minimisation of the Free Energy 140 

3.11.2 Solution of the Self-Consistency Equations 143 

3.12 Results and Discussion 143 

3.13 Conclusions 150 

3A Appendix 3A: Proofs and Derivations 152 

C h a p t e r 4 A Molecular Field Theore t ic S tudy of Orde r P a r a m e t e r s in 

B ina ry N e m a t i c Mix tu r e s 159 

4.1 Introduction 159 

4.2 Variational Derivation of the HJL Theory of Binary Nematic Mixtures 161 

4.3 Application 165 

4.4 Methodology for Solving the Molecular Field Equations 169 

4.5 Results and Discussion 172 

4.5.1 Analysis of the meaning of the extrapolated value for the order 

parameter of the dopant in the pure phase 183 

C h a p t e r 5 Liquid Crys ta l s Formed f rom Highly Flexible Molecules 191 

5.1 Introduction 191 

5.2 Theoretical Background and Methodology 198 



5.2.1 General introduction to the problem 198 

5.2.2 Formal Aspects of the Molecular Field Calculation 201 

5.2.3 Details of the Molecular Field Calculation 207 

5.3 Computational Technique 214 

5.4 Results and Discussion 225 

5.4.1 Determination of the Transitional Properties 225 

5.4.2 Statistical Errors 233 

5.4.3 The Transitional Properties 236 



Chapter 1: Liquid Crystals 

1.1 Introduction 

For centuries scientists have classified matter into three different states, namely solid, 

liquid and gas. At sufficiently low temperatures and high densities, all substances 

exist as solids, at somewhat higher temperatures and lower densities as liquids and 

at higher temperatures and lower densities still aa gases. In the case of liquids and 

gases we are assuming that chemical decomposition does not occur before these states 

of the original substance are realised. Thus, with this caveat in place, liquids are 

generally obtained upon heating solids, and gases upon heating liquids. In more modern 

times we also have the notion of the plasma as another state of matter, where at 

even higher temperatures a gas may become ionised and exist as a mixture of gaseous 

ions and electrons. There will be a variety of transitions to plasmas consisting of 

particles that have been multiply ionised to an increasing extent co-existing alongside 

an increasing amount of electron gas. In addition to such esoteric states as plasmas 

at high temperatures, we have also had the concept of a class of states of matter 

collectively known as mesophases, which were initially discovered as intermediate states 

of matter that seemed to occur between the solid and the liquid on the temperature axis 

of the phase diagram of some substances, meso meaning Liquid crystals are 

the most common type of mesophase and their discovery is normally attributed to the 

Austrian botanist Reinitzer [1] who, in 1888, observed colour changes and turbidity 

upon cooling molten cholesteryl benzoate or acetate. His observations and line of 

enquiry paved the way for further investigation by Lehmann [2] using a polarising 

microscope who coined the term /zguzcZ to refer to the fluid mesophases he 



observed, because they appeared to be liquids but with optical properties reminiscent 

of crystals. We now discuss in general, but more physical, terms the relationship of 

mesophases to the more familiar states of matter. 

1.2 States of Matter 

Consider a solid of a pure substance at equilibrium, that is, a crystal. At a given 

temperature the constituent particles librate about fixed equilibrium positions and (if 

the particles are not single atoms) orientations, in space. Thus, there is long range 

order in every degree of freedom at the molecular (or atomic) level. There are three 

of these for translations involving the centre of mass positions (for instance, cartesian 

X, y and z coordinates) and three for the particle orientations (for instance, the Euler 

angles—see section 1.8), giving six in all. If we consider a Hawless crystal, we see 

that this ordering can persist over essentially infinite distances. It is this ordering that 

results in the characteristic feature of crystals of possessing anisotropic properties. 

That is, any property that is a non-scalar quantity and is measured with respect to 

certain directions will be found in general to exhibit different values depending on the 

direction chosen. This obtains because the structure of the crystal confers on it its own 

internal directionality and so different directions are physically non-equivalent. From a 

theoretical standpoint, the crystal is best viewed as an example of a system exhibiting 

a broken symmetry [3]. That is, compared to a higher temperature state of matter, the 

symmetry is lower since the ordering in one or more degrees of freedom has to some 

extent destroyed, or broken, the symmetry in the less ordered state. This imposes on 

the system certain special direction(s), such as exist in a crystal for instance. We also 

note that it is the long range persistence of the lattice (ie, the translational order) 

that results in the rigidity of the structure. In other words, it is solid—meaning it can 

maintain itself indehnitely against a shear stress, provided that it is not above some 

finite threshold (above which the crystal is destroyed). 



As the temperature is increased, the molecular librations become progressively more 

vigorous, with the excursions from the equilibrium coordinates at that temperature 

becoming more extreme. At some temperature, the long range order in one or more 

degrees of freedom is completely destroyed and we observe a change of state to one of 

higher symmetry and with less overall order. Usually, this temperature corresponds to 

one at which it is no longer possible for the system to maintain the lattice structure 

and the whole structure breaks down abruptly, destroying all long range positional and 

orientational order completely. The resulting state of isotropy (complete long range 

disorder in all degrees of freedom) is the normal or isotropic liquid; every direction is 

equivalent and, in the language of symmetry, there is full translational and rotational 

symmetry, at least at the macrosopic level. On passing through the phase transition, 

the thermal energy has overcome that associated with maintaining specific particles in 

specific locations and orientations. The victory is not, however, a total one, since the 

thermal energy of the system is still competing with the attractive interaction energies 

that persist at short range. Thus the density of the liquid is of roughly the same order 

of magnitude as that of the solid. 

With further increase in temperature, however, the kinetic energy eventually predom-

inates over the intermolecular potential energy. At this temperature the particles of 

the fluid become widely separated so that on average this separation is essentially in-

finite (by comparison with atomic or molecular dimensions), particles interacting only 

weakly, except during brief collisions. This is the gaseous state, and the transition 

to it from the liquid is marked by a sudden decrease in density of several orders of 

magnitude. 

It is clear that the crystal and the isotropic liquid represent extremes as measured 

on the scale of increasing symmetry and decreasing numbers of degrees of freedom 

with long range order. It should be pointed out, however, that this scale is not a 

sliding, continuous one. A particular symmetry element is either present or absent (or 

equivalently, on a molecular scale, there is either long range ordering in a particular 



degree of freedom or there is not); there can be no intermediate case [4]. However, 

within a particular phase, we may wish to characterise the degree of order distinguishing 

the phase, this being the measure of how the ordering within the degree(s) of freedom 

involved changes aa the transition to the state of next highest symmetry is approached. 

In quantifying the degree of order of a certain kind that distinguishes one phaae from 

another, we would like to have a measure that vanishes if the symmetry feature to 

which it is related (ie, the ordering in the degree of freedom involved) also vanishes. A 

quantity that has this property, whether it be dehned or measured at the molecular or 

macroscopic level, is termed an order [Incidentally, the case of the transition 

from liquid to gas then presents something of a problem, in the sense that the normal 

liquid already haa maximal symmetry at long range. What then, is to be the parameter 

that serves as the indicator of the transition to the gaseous state ? Clearly we might try 

to construct the analogue of an order parameter, identifying the density as the basic 

measure. To be sure, it would not be the same kind of symmetry-related tensor order 

parameter of which we have been speaking earlier; in particular, it would be a scalar. 

To conform to the requirement of vanishing at the phase transition, we would take the 

difference between the density of the liquid at the temperature in question at some 

given pressure and the density of the gas at the transition temperature at this same 

pressure.] We should also make the point that experiment cannot always distinguish a 

small non-zero order parameter from zero, whereas by de6nition a symmetry element 

is either present or absent. 

1.3 Definition of Mesophases and Liquid Crystals 

Having said all this, the normal process of melting a solid to yield a liquid involves 

a transition from a system with complete long range order in all degrees of freedom 

to one in which there is none in any. Therefore there is much scope in principle (ie, 

there are enough degrees of freedom) for there to exist a whole variety of states of 

matter which, in terms of symmetry and long range ordering, are intermediate to the 



normal solid and the normal liquid. Transitions could then occur to such a state from 

(say) the crystal, as a function of some thermodynamic state variable, for instance the 

temperature. We usually use the term (as we have just done here) to refer to 

the thermodynamic variables that together dehne the bulk properties of a system at 

equilibrium. Therefore, to avoid ambiguity, we refer to the various forms of matter 

with their characteristic symmetries as pAoaeg rather than states of matter. Phases, 

then, that are intermediate in terms of their long range ordering characteristics and 

symmetry are referred to as meaopAagea. Substances which are able to form mesophases 

are called meaopeMS and are often referred to aa If the disordering transition 

from the solid is to a phase in which the disorder is in one or more orientational 

degrees of freedom, but full positional order is retained, then the phase will still be 

solid (in the sense dehned earlier). It is, therefore, still regarded aa a crystal of some 

sort, albeit a rather special kind, and is referred to as a plastic crystal. Usually, 

however, mesophases do not possess full long range translational order (although they 

may retain ordering in some translational degrees of freedom), but are Euid. That is, 

like a normal liquid, they cannot withstand shear stresses no matter how small, but 

flow in response to them. This confers on such mesophases the unique combination of 

properties that accounts for their importance in materials applications, namely, their 

anisotropic properties—a characteristic normally associated with crystals—while at the 

same time retaining Suidity like a liquid. This combination haa then given rise to the 

(somewhat oxymoronic) term of reference liquid crystal A liquid crystal, then, is a 

fluid mesophase. The characteristic feature that all liquid crystals have in common at 

the molecular level is long range orientational order; they may or may not possess one 

or two degrees of translational order. 

1.4 Thermotropic and Lyotropic Mesophases 

For the moment, we have been considering simply heating a crystal through to the 

isotropic liquid (that is, the changes in symmetry as a function of temperature), with 



there being the possibility of other kinds of phases, namely mesophases, to occur in 

between. Since the thermodynamic state variable being used to change the phase 

behaviour is the temperature and the mesophases are generated thermally with respect 

to the crystal, they are referred to as thermotropic mesophases, or most often simply 

as thermotropics. Phases of such intermediate symmetries do not arise only in systems 

composed of a single pure compound as a function of temperature, however. They 

can also occur in certain multicomponent systems (solutions, mixtures), where the 

transitions to and between such phases may be observed at a given temperature as 

a function of the composition of the system. Since in this case the state vEiriable 

governing the observed thermodynamic phase is now not only the temperature, but 

the mole fraction of solvent, such mesophases are referred to as lyotropic mesophases, 

or simply lyotropics. 

There are also systems which are lyotropic in the sense just de6ned, but the nature of 

the mesophase behaviour is quite different from a mixture of two di&rent low molar 

mass components one or both of which is a thermotropic mesogen. These systems are 

composed of a solution of amphiphillic molecules, usually in water. Here the solvent 

is actively involved in causing the mesophase structure in the sense that it induces 

aggregation of the amphiphiles into micelles, which are themselves then capable of 

aggregating into other structures with long range order. Thus the role of the solvent is 

not simply to dissolve the solute, and so disperse the mesogenic molecules. This solvent-

driven self-organising behaviour is sufBciently different to low molaj mass mixtures or 

solutions that it seems appropriate to regard these amphiphillic systems as a separate 

class of mesophases. 

In addition to thermotropic, lyotropic and amphiphillic systems there is yet another 

way in which mesophases can manifest, namely colloidal suspensions of anisometric 

particles, such as certain virus particles [5] and minerals [6]. These systems, due to the 

macroscopic nature of the colloidal particles, behave in many ways as systems of hard 

particles. That is, the long range ordering results essentially entirely from excluded 



volume ejects without the subtlety of attractive forces. Thus they potentially provide 

real-world models of the hard particle systems studied as conceptual and theoretical 

points of reference in statistical mechanical theories [7] and computer simulations [8]. 

It is to be noted, however, that such systems are relatively rare in nature. 

In this Thesis we shall be concerned solely with thermotropic systems, including mix-

tures of particles which are themselves all considered potentially thermotropic at both 

the theoretical and pragmatic levels. Therefore we shall not pursue any further the 

topic of other kinds of mesophases such as those formed by amphiphillic or colloidal 

systems. 

1.5 Classification of Thermotropic Mesophases 

As far as thermotropic liquid crystalhne phases are concerned, various schemes have 

been suggested for their classification. It is clear that for a single compound there are 

six degrees of freedom in which there can be long range order, and so there should be 

a definite number of possible phases with characteristic symmetries, depending on the 

possible combinations of long range ordering. Herrman [9] argued, on purely geomet-

rical grounds, that there should be 18 possible phases of differing symmetry between 

the crystal and the isotropic liquid. Later, Boccara [10] applied group theoretical ar-

guments to this problem and came to similar conclusions. In practise, however, the 

most widely used classification is that of Friedel [11], who, incidentally, introduced 

meaopAoaeg as a more general term to replace (although this change did 

not And favour), and it is his scheme, based on their properties, that we shall follow. He 

identihed three major subgroups of thermotropic mesophase (besides plastic crystals): 

nematic, cholesteric and smectic. In this Thesis we shall be almost entirely concerned 

with nematic liquid crystals. 



1.5.1 The Nematic Phase (# ) 

The simplest and least ordered thermotropic liquid crystalline phases are the nematic 

phases. They possesses long range orientational order only, having full translational 

symmetry (ie, they are macroscopically translationally isotropic). In the simplest kind 

of nematic, the phase is optically uniaxial, meaning that there is one direction in which 

plane polarised light may be directed through it, without its plane of orientation being 

rotated. If the refractive index is measured along this direction it has one value, and 

if measured orthogonal to this direction it has another, the latter being independent 

of which orthogonal direction is chosen. Materials such as nematics that have two 

different refractive principal indices are known as birefringent. 

The phase would appear to have, then, cylindrical (or symmetry, and is 

the normal, or uniaxial, nematic. In addition, the phase is not polar with respect to 

the symmetry axis (or any other axis) of the phase, and thus has a mirror plane of 

symmetry orthogonal to the symmetry axis. The nematic phase would appear from 

optical characterisation, then, to have Doo/, symmetry. Strictly speaking all we can 

say, however, is that the phase has Dn/i symmetry with n > 3. This is because the 

refractive index, which we have used to characterise the symmetry, is related to the 

dielectric anisotropy, which is a tensorial quantity of rank 2. In other words the phase 

symmetry is Dg/, or higher; in practise, however, nematics are normally assumed to 

have full Doo/i symmetry. 

The symmetry axis of the phase is known as the director and is commonly denoted 

as the direction (ie, the unit vector) n. We note that since the phase is non-polar, 

the sense of the unit vector is unimportant, so that while the director is commonly 

represented as a unit vector, in apolar phases it is in reality the pseudovector n s —n. 

The molecules in a nematic phase are usually calamitic (elongated or rod-like), but 

are sometimes also flattened, or disc-like. Thus, the molecules can be approximated to 

rods or discs and in either case will have a near-symmetry axis, that is, an approximate 



ELxis of cylindrical symmetry. It is normally assumed tha t the symmetry axes of the 

molecules tend to align with the director with a distribution such that the density 

of probability is greatest in that direction. This is an assumption, however, since the 

probability density could be peaked at an angle away from the director, but be uniform 

around the cone corresponding to this constant angle in three dimensions, and still yield 

the same phase symmetry. However, it is common informally to think of the director as 

being the direction along which the near symmetry axes of the molecules preferentially 

align. This is illustrated in figure 1.1. Thus we regard the system as having one degree 

of long range orientational order. In the most common case of prolate or rod-like 

molecules we have the normal, calamitic nematic. In the case of oblate or disc-like 

molecules, again the symmetry axes tend to align with the director to give what is 

known as a discotic nematic (A^). From the point of view of macroscopic symmetry, 

however, there is no distinction between and Wg phases. 

Figure j.l.- Schematic representadon of mojecuJar ordermg m the nemadc phase show-

jug a view peipendjcuJar and paraJiej to the director 
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In reality, however, most molecules deviate somewhat from cylindrical symmetry, that 

is, they are In principle then, it is possible for more than one molecular Eixis to 

align to give long range orientational order in more than one degree of freedom, at least 

at some temperature where the corresponding interaction energies can assert them-

selves. Such phases would be referred to as biaxial nematics, and have been observed, 



but only in amphiphillic systems [13]. A number of claims have been made to have 

discovered biaxial thermotropic nematics [14,15], but have not been proven [16, 17]. In 

the limit of long range order in all orientational degrees of freedom, there will be three 

directors, 1, m and n, orthogonal to each other. The major director n corresponds to 

the preferred direction of alignment of the major molecular symmetry axis (as in the 

uniaxial nematic) and two minor directors correspond to the directions of alignment of 

the minor axes. We note that in practise it may be difficult to define major and minor 

axes unless the size of principal values of some property are used, but even then, there 

is the possibility of ambiguity, since this may depend on the property chosen. 

Strictly, as with the uniaxial nematic, the term biaxial comes from its optical char-

acterisation in the sense that there will be two directions, orthogonal to each other, 

in which plane polarised light can pass through the phase without having its plane of 

polarisation rotated. (Although neither of these, it turns out, correspond to ajiy of the 

symmetry axes of the phase.) We are not interested in biaxial phases in this Thesis 

and so we shall not pursue the topic any further. 

1.5.2 Chiral Nematic (Cliolesteric) Phases (#*) 

The chiral nematic phase, as its name suggests, is really a kind of nematic, at least 

locally. We define a nematic as a mesophase with long range orientational order, but no 

translational order (or simply a liquid crystal with no long range translational order), 

and this is true of the chiral nematic phase. As the term suggests, it is a nematic phase 

in which there is macroscopic (or phase or form) chirality resulting ultimately from 

the chirality of the molecules whose interactions somehow propagate over long range. 

It is thus consistent with the general (von Neumann) principle that a phase should 

reflect the symmetry of the consituent molecules (in its most ordered form) and so has 

lower symmetry than the normal nematic. The term cholesteric originates from the 

fact these phases were first observed in cholesterol derivatives such as those studied by 

Reinitzer. Since then these phases have been observed in other types of compounds 

10 



and the common feature is that the molecules are chiral, so it is preferable to use the 

more accurate (and informative) name cAzroZ We have included it simply for 

completeness, since in this Thesis we do not have any need to focus on chiral nematics, 

and so we shall say no more about them. 

1.5.3 Smectic Phases , 5'mZ/) 

In the smectic phases (6'm), not only is there long range orientational order, but also 

some long range order in one or more of the translational degrees of freedom. There are 

a variety of smectic phases, only one of which we are interested in here, and that is the 

smectic A phase (5'mA), so named because it was the first smectic phase discovered. It 

is the simplest form of smectic phase, with ordering in the least number of translational 

degrees of freedom. The molecules in smectic phases tend, not only to align parallel to 

each other and to a common direction, but also form layers. In the case of the smectic 

A, the phase is optically uniaxial, and the directors of the layers are parallel to the 

layer normal and to its axis of assumed cylindrical symmetry, as illustrated in hgure 

1.2. 

1.6 The Molecules That Form Liquid Crystals 

From the variety of mesogenic molecules it should be possible to identify and distinguish 

those features of molecular structure that are necessary for liquid crystal formation, 

those that are simply desirable and those which are largely irrelevant. Gray [18, 19] 

has given a number of empirical rules describing the inAuence of various aspects of the 

molecular structure upon thermotropic phase behaviour. The most basic requirement 

is one or more rigid moieties which should be either prolate (elongated or rod-like) 

or oblate (flattened or disc-like). In addition, they may have flexible alkyl chains, 

as terminal substituents of the mesogenic groups, as interconnecting bridges between 

them or as lateral substituents (or possibly some combination of these). 

11 



Figiire 12; Scheznatic represeatadozi of inoJecujar ordering in the gmecdc A phase 

(view perpendicular to t i e director^. 

i 
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The alkyl chains may be connected to the mesogenic groups via any of various linkage 

groups. The rigid moieties generally consist of aromatic or saturated cyclic rings, 

which may be connected via a linkage group. These rigid groups are usually made up 

of phenyl rings. Also, the molecules often in practise possess polar groups. This is 

thought to help stabilise liquid crystalline phases, although aa in the case of Sexible 

chains, this is not a requirement for liquid crystalline phase behaviour, as evidenced 

by, for instance, quinquephenyl which has a high Some examples of mesogenic 

molecules are shown in 6gure 1.3. 

It would appear that the main factor driving the formation of liquid crystalline phases 

is the anisometric shape of the molecules. In other words, the molecules forming 

liquid crystals are ones that deviate signi^cantly from spherical symmetry. It is the 

12 



anisotropy in the properties of the molecules which consequently propagates over long 

range to give rise to liquid crystalline order and hence macroscopically anisotropic 

Suids of various forms. In the light of this it might seem surprising that there are not 

more mesogenic compounds than there are, since the number of molecules that are 

spherically symmetric must surely be in the minority. It is thought that the reason for 

this is that the compound typically crystallises at a temperature above that at which 

it would otherwise exhibit a transition to a liquid crystalline phage. The liquid crystal 

transition temperature of such a compound is thus said to be mviuoA If the molecule 

is made more anisometric, however, the transition temperature is raised, and is thus 

more likely to be exceed that of crystallisation, all other things being equal. To have a 

good chance of designing a mesogenic molecule then, we should first make sure it has 

a high anisometry and also try to include modihcations (such as adding or lengthening 

Aexible chains) which lower the melting point. 

To a first approximation, mesogenic molecules can be thought of as rigid, cylindri-

cally symmetric rods (or possibly discs, depending on the molecule). Indeed some of 

the theoretical studies in the earlier chapters work within this assumption. In reality, 

however, most molecules deviate to some extent from cylindrical symmetry, most meso-

genic molecules being lath-like. It is possible to take this into account by constructing 

measures, baaed on second rank properties (say), to describe this deviation, giving the 

notion of molecular biaxiality (as opposed to uniaxiality). When built into theories 

the molecular biaxiality can in principle result not only in a uniaxial phase, but also a 

biaxial nematic phase. This could be a phase with with no orientational preference of 

one minor molecular axis, or a biaxial phase with order in all orientational degrees of 

freedom, although we shall not be interested in such possibilities here. 

13 



Fig-ure 13; Examples of the chezmcaJ structures of some typical mesogecs and their 

neznatic-isotropic transition temperatures 
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In addition to allowing for molecular biaxiality, we should note that, even though a 

rigid, anisometric region of the molecule is a prerequisite for liquid crystal formation, in 

practise in most cases there are also Eexible components. Treating the molecule as rigid 

then is also an approximation. Moreover, it is also common to deliberately incorporate 

flexible chains as well as the required rigid (mesogenic) group(s) into molecules. This 

enhances the liquid crystallinity of the compound in that it lowers the melting point, 

thus extending the liquid crystalline temperature range. Clearly then, it is desirable 

not only to include the effects of deviation from cylindrical symmetry, but also those 

due to flexibility of, for instance, alkyl chains (which also cause the molecule to deviate 

from cylindrical symmetry). To this end various workers have attempted to allow for 

molecular flexibility in developing theories of liquid crystals [20, 21]. We shall apply 

some of these ideas in the last chapter where we describe a methodology for modelling 

nematic phases consisting of molecules which may exhibit an extremely high degree of 

flexibility. 

1.7 Phase Transitions 

A thermotropic mesogen may exhibit one or a more mesophases. As the temperature 

is increased the translational and orientational order generally decreases, with the 

system potentially passing from the crystal through a variety of smectic phases to the 

smectic A, then the nematic and Bnally the isotropic. These phases may not always 

occur, however, and some compounds in addition exhibit re-entrant phase behaviour 

in which, a higher symmetry phase recurs as a transition from a lower symmetry 

one. The transitions between these phases are traditionally characterised using the 

Ehrenfest scheme. In this scheme a transition is said to be nth order if the first n — 1 

temperature derivatives of the free energy are analytic across the transition, but the 

nth is non-analytic. In this context, and are conventionally taken 

to mean and although it strictly refers to whether or not the 

form can be expanded as a Taylor series. The first derivative of the free energy with 

respect to temperature is essentially the entropy of the system, in this case the entropy 
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either side of the transition. That is, 

so that if the transition is first order, the entropy changes abruptly from one side of the 

transition to the other, giving rise to a non-zero transitional entropy change. If, on the 

other hand, the hrst derivative is continuous (that is, the transitional entropy change 

is zero), we should investigate the second derivative, which is essentially the specific 

heat capacity. That is, given that we are considering systems at constant volume. 

and 

= (fg — pcfy (no additional work) 

= TcZS" — pdy (at equilibrium). (1.3) 

Therefore, 

Now as we have already seen 

Hence, 

A similar analysis follows using the Gibbs free energy for the specEc heat capacity at 

constant pressure. That is, 

and 

= (f ( [ / + p y ) = dc/+pczy + 
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giving 

But 

TdS + ydp (equilibrium, no additional work), (1.8) 

so that 

In the case of a hrst order transition, we might ask what is the variation of the speciGc 

heat capacity through the transition. Since the hrst derivative is discontinuous, it 

is theoretically an inhnitely sharp spike going to inhnity. The free energy and its 

temperature derivatives through hrst and second order transitions are illustrated in 

figure 1.4. 

It is found that the melting transitions from crystal to isotropic liquid and liquid crys-

tal are first order, as are the clearing transitions (liquid crystal to isotropic liquid). 

[We note, however, that the theoretical biaxial nematic-isotropic transition is excep-

tional in that it is predicted to be second order.] Since the predominant contribution 

to the entropy of a fluid is that associated with disorder in translational degrees of 

freedom, the entropy change (or equivalently at constant volume the latent heat) is 

much larger (A6'/A ^ 10) at the melting transitions than at the clearing transitions 

{AS/R ~ 0.1). The former are correspondingly referred to as strongly first order and 

the latter as weakly Erst order. Transitions between different liquid crystalline phases, 

such as between diEerent kinds of smectic phase or from smectic to nematic (or even 

hypothetically between different nematic phases) are generally even weaker, or second 

order. 
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Figure The Ehren^st of how the A-ee energy; entropy and heat ca-

pacity change with temperature in the neighbourhood of 5rat and second order phase 
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As an addendum we note that when this concept of order in relation to the free energy 

through a transition was hrst introduced by Ehrenfest, it wag thought that it would 

prove to be of fundamental significance. It turns out that this is not the case, however. 

While third order and higher transitions do occur, it is now accepted that transitions 

are most usefully characterised as either pAoae 0/ (/le Amd or pAoge 

0/ (Ae Amd. Phase transitions of the Erst kind are those in which 

the entropy is discontinuous across the transition, and so are also called 

transitions; they correspond to first order transitions in the Ehrenfest scheme. Phase 

transitions of the second kind are those in which the entropy is continuous across the 

transition; they are also called transitions and correspond to second order 

and higher transitions in the traditional scheme [3]. 

1.8 Orientational Order in the Nematic Phase 

1.8.1 DeAning the orientation of a molecule in a monodomain 

The orientation of a rigid molecule is described with respect to a cartesian coordinate 

system set in an external laboratory frame of reference via the three Euler angles a, 

and 7. A simple (although formally incomplete) illustration of the Euler angles is 

given in Sgures 1.5c and 1.6c. It is then customary and convenient for uniaxial liquid 

crystals to deAne the laboratory z axis as coincident with the director. This picture is 

incomplete because strictly the angle 7 is not formally defined. We can, however, dehne 

7 precisely by means of a reference frame set in the molecule. That is, if the angles a and 

are as in the figures, then the angle between the z-axis of the molecular frame and that 

of the laboratory frame is obviously 0̂. However, the azimuthal angle of the laboratory 

z-axis in the molecular frame is then (tt — 7). This gives an intuitive (although still not 

complete) understanding of the Euler angles suScient for our purposes. A full, formal 

dehnition of the Euler angles is given in Appendix lA. 
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There is also an alternative way of representing the orientation of a molecule and that 

is by using direction cosines. Whilst the use of direction cosines is in many cases cum-

bersome, they lead to particularly simple, physically understandable transformations 

in the case of uniaxial phases of biaxial particles involving the Saupe ordering matrix. 

1.8.2 Uniaxial Phase of Unicixial Molecules 

For a cylindrically symmetric molecule all angles 'y are energetically equivalent and for 

a cylindrically symmetric phase all angles a are energetically equivalent (see hgure 1.5c) 

so that the distribution does not depend on them. The orientation of a given molecule 

is then speciSed by a single angle, the angle between the molecular symmetry axis 

and the director. In the nematic phase the molecules prefer, on average, to lie parallel 

to the director with /? = 0, tt. At finite temperatures, however, thermal motion prevents 

perfect alignment with respect to the director and the molecules are thus distributed 

over the continuum of possible angles with = 0,7r being assumed to have identically 

the highest probability density. This probability density is that pertaining to the 

orientations of individual molecules, rather than of simultaneous orientations of more 

than one molecule; it is a single molecule (singlet) property. Strictly, it is the singlet 

orientational probability density distribution function, but is usually referred to simply 

aa the singlet orientational distribution function, denoted /(r^) (̂ ^ = a , ' y ) . It is 

conventional then in the case of uniaxial phases of assumed uniaxial molecules to remove 

the redundant variables CK and 'y, and so the distribution is denoted /(/)). We also note 

that in this case it is by convention /(/)) that is aasumed to be normalised, rather than 

f{Q) itself. In other words, 

/ /(/)) s in^ d/? — 1 (1-12) 

Jo 

so that the distribution in ^ space alone may be interpreted probabilistically in the 

sense that it integrates to unity. 
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Fjgizre 1.5; CyiindricaUy symmetric moiecuje in a uniaziaj phase Schemadc 

resezztatiozi of the mojecuiar aiignmect a;) perpendiciifar co the director and bj parage] 

to the director. Diagram cj iHuatrateg that oiUy one Ea^er angje is regiiired to de6ie 

the orientation of the moiecuJe with respect to the director. 
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Figiire 1.6.- Biajdaf moiecuie in a imiazzaJ p6ase /i2/. Schemadc repregentatioc of 

tiie moiecWar ajignmeDt a j pei^^endicuiar to the director and bj paraiiei to t ie direc-

tor. Diagram cj iiiuatrates tiiat two Euier angies /) aad a are required to de6ae tiie 

orientation of t6e moiecuie witA respect to t i e director. 
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This function, / ( ^ ) [22], provides the most complete description of the single molecule 

orientational order available. We note that since the phase is non-polar, it has a plane 

of symmetry orthogonal to the director, which imposes t he constraint that the single 

molecule orientational probability density at must be t he same as that at TT — so 

that /(/)) = /(?[—/)). For polar phases, however, such as those produced by application 

of an electric held (see later), the symmetry of the phase is lowered to Cooy, and then, 

due to the lack of symmetry orthogonal to the director, / ( /)) is no longer equal to 

/(TT - /)). 

It is clearly important to be able to write down some expression to attempt to encapsu-

late the singlet orientational distribution function. This may be achieved by means of 

a series expansion in a basis of continuous well-behaved functions, which in the case of 

a non-polar phase must have the same apolar character, t h a t is be even about 7r/2 (this 

constraint is relaxed for polar phases) and span the space. A good mathematical choice 

of basis functions is the Legendre polynomials (see Appendix IB). One reason for this 

is that, for any arbitrary curve, they provide the best least squares ht of any power 

series up to any given desired order [23]. When Legendre's equation is solved by the 

Frobenius series method, the solutions, the Legendre polynomials, fc(3;) are obtained 

as two fundamentally different series—the even order and the odd order series. Even 

order f^(2;) are polynomials containing terms in all even powers of a; from a term in 

down to a zeroth term. Odd order ^^(2;) contain all odd order terms from a 

term down to a linear term. Thus Pl{^) is an even function for L even and an odd 

function for L odd. For a nematic we require a function tha t is even about /) = 7r/2 

and periodic in tt and we note that x must be bounded and periodic on (—1,1). We 

may then employ the even rank fi(a;) by careful choice of the functional dependence 

of the argument, a;, on the polar angle. We require the argument, a;, of the Legendre 

polynomials to be a circular function which is zero at = 7r/2 (since f i(a;) (Z, even) is 

even about about a; = 0) and such that the magnitude of the circular function is also 

even about /3 = 7r/2, a maximum at 0, tt and periodic in TT. Such a function is provided 
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by the cosine of the polar angle. The Legendre series for / ( ^ ) is then written 

00 

/ ( / ? ) = Y , (1.13) 

Z/(even)=0 

Now cos is the projection of the molecule, treated as a vector, onto the director and 

normalised with respect to the molecular length (i.e. it is the projection of a unit vector 

along the molecular axis onto a). Thus cos" (where n = 1 , 2 , . . . ) is a measure of the 

extent to which a given molecule is aligned with the director; this measure is apolar 

for n even, polar for n odd. The observation that the fL(odd) &re linear combinations of 

cos" (3 (n odd) suggests that one can allow for the situation where the nematic phase 

becomes polarised by removing from (1.13) the constraint upon to take only even 

values. Furthermore, it might be thought that quantities of the form cos" averaged 

over all molecules would provide various measures of the extent of the single molecule 

orientational order, that is, serve as some kind of order parameters. It is convenient and 

conventional, however, to define an order parameter such that it is unity in the limit of 

perfect ordering of the type described by it and to vanish when there is no such order. 

This is not in general the case for the ensemble averages of all cos" so an alternative 

is required. Now the -F^(even)(coS;0) are linear combinations of cos"/3 (^ even) and the 

-F^(odd)(cos/)) are linear combinations of cos"/) (^ odd). The solutions obtained from 

the Probenius method are normalised such that the value of a f^(a;) is unity when its 

argument, a;, is unity. Hence in the limit of perfect non-polar order fL(even)(cos/)) is 

unity for all molecules and so its ensemble average is also unity. Similarly in the limit 

of perfect polar order f (̂odd) is also unity. In the limit of complete isotropy (non-

polar/polar) the f z,(even/odd) zero. Thus, another useful feature of the Legendre 

polynomials is that the ensemble averages of the f^(cos/3), denoted by f f , , furnish a 

convenient set of order parameters. These are defined as averages of the f^(cos/)) over 

the distribution function, 

/ f^ (cos^) / ( /3)s in / )c ( / ) , (1.14) 

thus giving a measure of the single molecule orientational order. A further useful 

feature of the Legendre polynomials is that, in addition to forming a comp/e(e set of 
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basis functions (which ensures that in principle the function being expanded may be 

completely encapsulated), they are also an set. Thus 

-1 
fL'(z) (fa; = 0 (1 15) 

for all ^ ^ This enables us to And the expansion coefficients /i, in equation (1.13) 

and hence to obtain the set of order parameters in a more formal, sophisticated manner, 

as we shall now demonstrate. To End a particular coefEcient /f,/ we multiply (1.13) by 

(cos ;^) and integrate over the whole range of the argument cos 

/ ( / ) ) f ^ , ( c o s / ) ) d c o s / ) = / ffL,(cos^) ^ y z , f ^ ( c o 8 / ) ) ) d c o s ; 0 . (1.16) 
^ ^ L even 

All the terms in the summation over Z, of integrals vanish except for the term where 

L = V. The left hand side of (1.16) is by definition PL' and so 

y f^ , (cos^)^dcos/) . (117) 

Now using the fact that 

PT fnns /?! PTAC.CIR R) d nns B = 
2L + 1 

1 2 
^ ( cos / ) ) f^,(coS;9) dcos^ = (1.18) 

we have 

Hence for any given value of L, 

= w T i '''• 

h = PL- (1 20) 

Equation (1.13) then becomes 

f W = E ^ ^ P M c o s / } ) ^ (1.21) 
L(even)=0 

The order parameters are thus seen to be essentially the coefficients of the different 

moments of the expansion of /(,9), and to form a complete, orthogonal set. Knowledge 

of the entire set of order parameters thus completely de&nes the singlet orientational 
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distribution function. A complete set of order parameters is not available for real 

mesogens, however. Only f 2 and f 4 are routinely measurable and even then measuring 

^4 is difRcult, although, in principle, neutron scattering can give the complete set. 

The expansion (1.13,1.21) turns out to be slow to converge in general, at least for 

single component or other systems with relatively high orientational order. That is, 

it is generally found that systems have a Maier-Saupe-like distribution function (see 

Chapter 2) and for such a distribution its Legendre polynomial expansion is slow to 

converge when the largest orientational order parameter, f 2 ^ ca. 0.2. Hence it is 

usually a poor approximation when truncated at the second or fourth rank term. 

A better expansion in such cases may be obtained as follows. Assuming /(;8) is well-

behaved we may write it as the exponential of a different function ^(/)), 

/(/)) = exp(^(/3)). (1.22) 

We may then proceed to expand this new function (̂̂ <3) in the same manner as we 

expanded /(/)). This is clearly consistent with the expected Boltzmann distribution, 

so long as the expansion of ^(/)) contains a zeroth term leading to a constant multiplier 

the reciprocal of which is analogous to a partition function. Therefore we write 

00 
= (1-23) 

L = 0 

where for a non-polar phase Z, is restricted to even values only. The distribution 

function /(/)) is then 

00 

/(/))== e x p ^ ^ o z , f ^ ( c o s / ) ) ^ , (1.24) 
L = 0 

which we can also write, by factoring out a zeroth term, as 

/(/)) exp(ao) exp(y(/))), (1.25) 

where exp (oo) = ( ^ being a partition function) and 

00 

y(/3) = ^ o ^ f ^ ( c o s / ) ) . (1.26) 
L^O 
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The distribution function is then 

00 

/(/)) = Z '^exp ^ ^ a z , f ^ ( c o s / ) ) y 

Z,f60 

/ oo 
e x p ^ ] ^ a i , f ^ ( c o s / ) ) j sin^gd^. (127) L^O 

The justification for this procedure is ultimately pragmatic. We know that the distri-

bution, when represented by the exponential of a Legendre series expansion, generally 

converges much more rapidly, as evidence by, for instance, /(;^) as determined from 

computer simulations. That is, in the Maier-Saupe theory (see Chapter 2), /(/)) is 

Boltzmann-like and the exponent has the form of the expansion (1.26) truncated at 

the hrst term. Moreover, we find that the singlet orientational distribution function 

from computer simulation (using, for instance, the Gay-Berne potential [24]) is indeed 

well-represented (ie, almost quantitatively) by an exponential function with a single 

term in f2(cos/)) in the exponent. Furthermore, upon inclusion of an extra term in 

f4(cos/)) with a relatively small coefBcient (G4/02 0 1), the functional form then 

does become quantitative. 

We know from the physics that if we have a single molecule orientational density 

distribution /(/3) then we can define a corresponding single molecule orientational 

potential energy function [/(^) over which the system is distributed in accordance 

with the Boltzmann distribution. Thus we should have 

/(/)) = ^ - ' e x p ( - [ / ( / 3 ) / A : B r ) , 

Z = y e x p ( - [ / ( / ; ) / A ; g T ) s in/)d^. (1.28) 

The quantity (/3) is formally referred to as the 0/ mean Morgue and has a 

central importance in molecular held theories (of which the Maier-Saupe theory is a 

prototype) as we shall see in Chapter 2. Equation (1.28) is then strictly the defining 
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equation for the potential of mean torque. We are also able to make the identihcation 

[/(/)) = (1.29) 

Whilst for many distributions the exponential of a Legendre series expansion is more 

rapid to converge, we note that the coefhcients of the Legendre series no longer have 

any physical signiScance (unlike the Legendre series for / ( / ) ) itself where they are the 

order parameters, Pf,). They do, however, determine the order parameters, albeit 

indirectly. 

In addition to these formal ways of obtaining general expansions for /(/)) there is an-

other, more pragmatic, way of obtaining the distribution in specihc instances where, 

for some system, certain order parameters have been determined by experiment. This 

is by appeal to information theory [25] and the maximum entropy principle [26]. The 

general approach is as follows. For some arbitrary system we assume a probability den-

sity distribution function, p = where {X} represents all the variables (degrees 

of freedom of the system) on which p depends. We then proceed to obtain the least 

biased distribution consistent with the information we have about the system. This 

involves maximising the Boltmann entropy 

^ y lnp{X} (1.30) 

of the system, subject to certain constraints, these being the specihc information we 

have about the system. In many theories, 5" is a measure of the information content 

of a system and in this present context, where we focus on single particle orientational 

quantities, becomes the expression for the single particle orientational entropy. The 

constraints are the measured values of the order parameters obtained from experiment. 

Thus, if we have measured values for one or more order parameters then the 

constraints are that the order parameters take their measured values. Maximising 5" 

with respect to the distribution = /(,9) subject to these constraints gives the 

singlet orientational distribution function as [27, 28] 

/(/)) = exp ^ ^ G ^ f ^ ( c o s 
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Z = y sin/^cf/). (131) 

We note the similarity of this expression to that obtained earlier by expansion of g(/)) 

(equation (1.27)). 

1.8.3 Uniaxial Phase of Biajcial Molecules 

The molecules forming liquid crystalline phases and the conformations of alkyl chains 

will not in reality possess cylindrical symmetry and will tend to be more lath-like. 

If the phase is uniaxial, then a biaxial molecule will require specihcation of the two 

angles and a to define its orientation with respect to the director of the phase (see 

hgure 1.6c). For uniaxial phases, however, it is more convenient to define the orientation 

of the director in a molecular frame, that is in terms of the Euler angles and 'y (see 

Appendix lA). The singlet orientational distribution function is now a function of these 

two angles (0 < ^ < 7r) and 'y (0 < 'y < 27r). Thus we need to generalise the approach 

of section 1.8.2. We require a set of functions with similar properties to the Legendre 

polynomials, but which are functions now of two angles and which span the required 

space. Both the spherical harmonics and the modified spherical harmonics (which are 

simply related to each other) provide such a set. They are de6ned on the surface of 

a sphere and span the space of any function of two angles where one has a range of 

0 — TT and the other 0 — 27r. Each set of functions is complete in this space. The 

functions are also orthogonal so that the integral of the product of two with differing 

rank over the entire angular space vanishes, thus analogously furnishing a method of 

determining the expansion coefBcients, and thence a complete, independent set of order 

parameters. For convenience, we choose the modified (or Racah) spherical harmonics, 

?) [22](see Appendix IB), as the basis for the expansion of / ( ^ , 7). We write 

f{P,7)= E (1.32) 
Z,(even),m 
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where the coeHicients are related to the orientational order parameters by 

or I 1 
— C'l/.m- (1.33) 

Again this expansion may be slow to converge and under these circumstances a better 

one can be obtained by assuming an exponential function for 'y) and expanding 

the exponent, as before. This yields 

/(/), -y) - exp ^ ̂  ? ) ) , (1 34) 
L,m 

where the normalisation factor is now 

(1.35) 

which is analogous to a partition function. Here, m takes values ——Z/ + 1 , . . . , Z,, 

hence there are + 1 values for each Z,. Thus, if we truncate the expansion at second 

order we have Z, — 2 and so there are Eve second rank order parameters corresponding 

to m = 0 ,±1 ,±2 . In a principal axis system this simplifies so that only two order 

parameters, C20 and C22, are required. As before, information theory and the principle 

of maximum entropy may be brought to bear on a particular system for which some of 

the order parameters are known. This yields an expression for the distribution function 

of that system which is of a similar form. 

In addition to forming a uniaxial phase, it is possible in principle for a phaae of biaxial 

molecules to exhibit a correspondingly biaxial phase, in which the molecules orient 

preferentially with respect to a second minor director. In this case all three Euler 

angles are required to define the orientation of the molecule with respect to the phase. 

1.9 Molecular Models of Liquid Crystallinity 

The long range orientationai order characteristic of liquid crystal phases indicates that 

it is the anisotropy in the intermolecular potential which is essential for their existence. 
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As to the nature of these forces it has long been held that in simple liquids it is 

predominantly the repulsive forces that are responsible for determining their structure 

with the attractive forces serving to maintain a high density. It also seems reasonable 

to assert that this is true for orientationally ordered Guids. Such a view was Erst 

developed by Onsager who believed that it is the short range repulsive forces between 

anisometric particles that result in their orientational order [7]. On the other hand 

there there is the model proposed by Maier and Saupe [29, 30, 31] which assumed, 

at least in its original derivation, that the long range anisotropic attractive forces are 

responsible for the formation of the nematic phase. There have also been attempts at 

a compromise and to bring the two approaches together [32], which appears reasonable 

as both anisotropic repulsive and attractive forces should play a role in stabilising 

the liquid crystal phase. Indeed, the attractive forces must be important because the 

transitions are thermally driven. (We should note, however, that at constant pressure 

the density also changes as a function of temperature so that the phase behaviour is 

at least in part still density driven.) 

In fact it turns out that in modern derivations of the Maier-Saupe theory based on 

the pair potential or variational approaches (see Chapter 2) it is not necessary to 

make any assumptions about the relative importance of the roles of attractive and 

repulsive forces; both are implicitly included. Computer simulations have made it 

possible to concentrate on the essential features of the model rather than the statistical 

mechanical approximations and thus to explore the role of repulsive and attractive 

forces in determining liquid crystal phase behaviour. For example, simulations of hard 

ellipsoidal shaped molecules have shown that nematic-isotropic transitions do occur on 

changing the density provided the length : breadth ratio is greater than about 3 : 1 [33]. 

From these results it seems, therefore, that anisotropic repulsive forces could play a role 

in the creation of the nematic phase. Such ellipsoidal systems can, however, only form a 

nematic phase (and in addition the transitions are only driven by a change in the density 

of the system). No smectic A phase is formed. To develop a model which exhibits other 

phases such as smectic phases it is necessary to change the shape of the particles or 
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introduce attractive forces. So, for instance, hard spherocylinders are found to exhibit 

a smectic A phase and the phase transition is density driven. To develop a model that 

shows thermally-driven phase behaviour it is necessary to introduce attractive forces. 

An example is the Gay-Berne potential [24], which is a single-site potential with both 

attractive and repulsive anisotropic forces. This potential is found to give thermally 

driven phase behaviour and to result in smectic phases and columnar phases (for discs), 

as well as the nematic phase. Simulations of the nematic phase formed by the Gay-

Berne mesogen show that the form of the singlet orientational distribution function 

is essentially identical to that predicted by the Maier-Saupe theory. It seems clear, 

therefore, that the Maier-Saupe theory, although originally derived assuming purely 

attractive anisotropic forces, also describes the liquid crystal behaviour for mesogens 

where both shape and attractive anisotropics are important. 

1.10 Liquid Crystal Properties and Theoretical Modelling 

In attempting to construct theories of liquid crystalline behaviour, it is clearly germane 

to give some attention to the properties we would like the theories to predict. That is, 

some properties are clearly better indicators than others of the liquid crystalline state 

of the system. Properties such as the heat capacity and the isothermal compressibility 

are not significantly different in the liquid crystal to the isotropic liquid and as such are 

relatively poor candidates for any serious attempts at modelling the distinctive features 

of, say, the nematic phase. On the other hand, there are readily measureable properties 

that are distinctive features of liquid crystalline phases. For instance, the deAning fea-

ture of a liquid crystal is the non-zero values of the order parameters that characterise 

its order and distinguish it from less ordered phases. For example, for a nematic phase 

this could be taken to be the second rank orientational order parameter characterising 

its long range orientational order. The point at which the order parameter becomes 

non-zero then rejects the transition temperature on the phase diagram, and given that 

it also defines the difference between the ordered and disordered phases, most interest 
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attaches to this transitional region. A distinctive feature that would provide a fairly 

crude test of any theory would then be the nature of the second rank orientational 

order parameter proSle around the transition. To begin with the theory should be 

correct in its qualitative predictions. That is, it should predict the N — I transition 

and its order. If the theory succeeds at this Rrst hurdle, and the — 7 transition is 

correctly predicted to be first order, the next test is to predict the f transitional 

value of the second rank orientational order parameter, f g. 

Some theories clearly fare better than others in these matters. For instance the On-

sager theory of nematics we have alluded to in section 1.9 predicts (correctly) that 

there should be a Erst order A/̂  — f transition, but the predicted transitional second 

rank orientational order parameter (0.8) is far in excess of that found experimentally 

(ca. 0.35). The transition is predicted to be very much stronger than is found in real-

ity, to the extent that order parameters of this magnitude are not normally found in 

nematics—the system would have long since undergone transition to a smectic phase or 

simply crystallised. The Maier-Saupe theory, on the other hand, predicts a weak hrst 

order transition, with roughly the correct transitional orientational order parameter, 

although we note that the transitional entropy (the measure of the "strength" of the 

transition), albeit small, is still significantly too high. 

Having said this, however, it is found, to a reasonable approximation that the order 

parameter is a universal function of the reduced temperature for a wide variety of 

mesogens. Thus, once a theory has passed the Erst distinctive test by predicting 

the approximate value of the orientational order parameter at the A/̂  — 7 transition, 

and by predicting universality in broadly correct terms, terms, the orientational order 

parameter then becomes a somewhat blunter tool for probing the success of a theory, 

sincein a sense there is nothing more to test. However, the temperature dependence of 

P2 does differ between real mesogens, particularly in the neighbourhood of the N — I 

transition (eg, strong or weak) so it still could does provide a testing ground theories. 

From the point of view of the theory, to predict strict universality there will necessarily 
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be just one parameter related to the structure. (This could be used to scale the temper-

ature and would then cancel upon constructing a reduced temperature scale.) However, 

the behaviour of real mesogens is not absolutely universal, and so predicting the tem-

perature variation would really be concerned with distinguishing between them on the 

basis of their structure. Indeed, no one-parameter theory could predict anything other 

than strict universality, so to go beyond this and distinguish between real mesogens 

would require further parameters relating to aspects of molecular structure. However, 

for such theories, there is then scope for testing their validity by comparison with the 

different ways in which the orientational order parameter varies with temperature for 

mesogens of different structure. 

A much more severe test of the theory would be provided by other readily measurable 

properties that are related to the transition between the phases, and that are found, in 

practise, to be strongly related to the molecular structure. An good example would be 

the N—I transition temperature, which depends exquisitely on the molecular structure. 

However, the Maier-Saupe theory does not give the scaling parameter required to 

convert the scaled transition temperature to an absolute temperature. It is therefore the 

orientational order parameter (primarily f 2) aiid the TV — 7 entropy change, 

which do not depend on the scaling parameter which provide the best contact with 

experiment. 
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1.11 Summary of Contents 

We begin, in the following chapter, by sketching the essential background in statistical 

mechanics for the theoretical treatments and applications that follow. We then apply 

this to the electric field polarisation of nematics, where, for the purposes of producing 

non-linear optical materials, there has been interest in the induced polarisation that 

can be attained with a given field strength. This is then followed by application of the 

Humphries-James-Luckhurst theory of binary nematic mixtures to probe order param-

eters beyond the limits of miscibility of the mesogen since the solutes in real systems do 

not form liquid crystals. This is to investigate the validity of the linear extrapolations 

commonly performed by experimentalists to the pure compound to produce compara-

tive measures of their properties. Finally, we combine the Marcelja-Luckhurst theory 

with Monte Carlo simulation to provide a hybrid methodology for modelling nematics 

composed of molecules of arbitrary flexibility with continuous torsional potentials. 
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Appendix lA: DeEnition of the Euler angles 

In defining the Euler angles we are in effect addressing the problem of how to relate the 

orientation of one cartesian axis system (say, a laboratory frame) to that of another 

(say, a molecular frame). In other words, we need to define the rotation that takes one 

frame of reference into coincidence with the other. The Euler angles, a, and 'y are 

dehned by performing the rotation of the cartesian frame of reference in three steps 

(ie, three successive rotations). Let denote the fixed laboratory frame and [ /y iV 

the rotated (ie, molecular) frame. A positive rotation about an axis is taken to be one 

such that a right handed screw would advance in the positive direction of that axis. 

The three successive rotations are as follows (see hgure lA . l ) : 

1. rotate positively by an angle a (0 < a < 27r) about the Z-axis, thereby bringing 

X r Z into position X T Z ' ; 

2. rotate by an angle (0 < /) < vr) about the new y axis Y', thereby bringing 

X ' r Z ' into position 

[It can now be seen that these angles clearly correspond precisely to those simi-

larly denoted in figures 1.5 and 1.6.] 

3. rotate by an angle (0 < "y < 27r) about the new Z-axis Z", thereby bringing 

the X"Y"Z" system into the final position x"'Y"'Z"' = UVW. 

The polar coordinates of W (the molecular Z-axis) in the XYZ (laboratory) system 

are (/), a) and the polar coordinates of Z (the laboratory Z-axis) in C/ypK (molecular) 

system are (/), 7r — 'y). We note that for the special case of a cylindrically symmetric 

molecule with the axis along the line of molecular symmetry, only the two angles 

(/), a) are necessary; in this case the third Euler angle 'y is redundant and can be put 

equal to zero. 
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Fig-ure l A J ; The FuJer angjes a , / ) , 7 and the three EWer rotationg that carry the 

initW a;, z axza gystem into the 6]a7 2/''', 2/'' system /SJ, 3^ . 

/ . / 

ib) (c) 
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FigTjre ]A.2; The poJar coordinates of T/p in the axis gj/stem and the pojar 

coordinates of Z in the C/FW system ^36/. 
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Appendix IB: Legendre polynomials and spherical harmonics 

Here we give explicit expressions for the Erst six Legendre polynomials f^ (cos^) 

and for the modihed (Racah) spherical harmonics of second degree QmW) where 

TTl — —2, — 1 , . . . ,2. 

1. Legendre polynomials. 

fb(cos,8) = 1 (IB.l) 

fi(co8/)) = cos^ (IB.2) 

f2(cos/3) = ^ ( 3 c o s ^ / ) - l ) (IB.3) 

f3(cos/)) = ^(Scos^/) —Scos/)) (IB.4) 

f4(cos/)) = ^(35cos^^ —30co8^^ + 3) (IB.5) 

f5(cos/3) = ^(63co8^,8 —70cos^,8 + 15cos,9) (IB.6) 

f6(cos/)) = ^(693cos^/ ) — 945cos'^;8 + 315cos^/) —15). (IB.7) 

2. Modified spherical harmonics. 

^2-2 (A?) = Y ^ s i n ^ ^ e (1B.8) 

C2-I (/),?) = sin/)cos/) (1B.9) 

G20 (/),?) = f2(cos^) (IB.IO) 

(^21(^,7) = sin/)cos/) (IB.l l ) 

C22(A7) - i /^sin^/)e^ 'T. (1B.12) 
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Chapter 2: The Statistical Mechanics and Molecular 

Field Theory of Nematics Composed of Rigid Molecules 

2.1 Introduction 

In this chapter we lay the foundations of the necessary background in statistical me-

chanics from which to describe one of the most successful classes of molecular theories 

of liquid crystals, namely moZectiZor (Aeonea. These are the theories that we 

shall employ subsequently in later chapters. We then describe the molecular held 

approximation from which these theories arise and its relationship to the single parti-

cle distribution function and Helmholtz free energy. We then discuss the application 

of molecular held theory to uniajdal phases composed of uniaxial particles, including 

the seminal Maier-Saupe theory, its derivation, some necessary generalisations of it 

in preparation for later studies and its predictions. Finally, we turn our attention to 

uniaxial phases composed of biaxial particles, deriving the theory and discussing its 

implications. 

2.2 Introduction to Statistical Mechanics 

Within the framework of classical statistical mechanics it is possible, in principle, 

to describe a system completely at any given time by specifying the momenta and 

positional coordinates associated with each of its constituent molecules. Thus the 

state of a system of N particles is dehned by specifying (Pi,P2i - - iPjv) — 

where is the momentum vector of particle z, is 
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the set of positional coordinates associated with particle % and % = 1 ,2 , . . . , TV. If the 

molecules concerned are considered to be rigid then we may write A'i as 

where r i is the position vector of some physically convenient point in the molecule 

(e.g. the centre of mass) and 0 stands for the Euler angles (a, /), 'y) of a frame set in 

molecule % with respect to an external laboratory frame of reference. 

The discipline of statistical mechanics makes the transition from an unwieldy number 

of microscopic variables (TV may be of the order 10^̂  for an experimental sample) to a 

small number of macroscopic properties, namely the bulk thermodynamic properties of 

the system. A straightforward approach to this discipline is to develop the concept of a 

many- dimensional phase space, each dimension representing the value of a component 

of the momentum, or centre of mass position, vector of a molecule or the value of 

one of its Euler angles. Thus for a system of TV rigid molecules the phase space is 

9N dimensional and the entire system at any instant in t ime is represented by a single 

point in this space. Over time the system will trace out a trajectory in phase space and 

the value of any bulk thermodynamic property of the system will be the time average, 

< A >t, of its instantaneous value, A(^). That is, the average over the phase space 

trajectory which may be written 

^063 = < / ! > , - lim (2.1) 
t-̂ oo \ r ^0 / 

where 5 is the particular instant in time in question in the range 0 — It waa argued by 

the founders of statistical mechanics that the straightforward time averaging approach 

to the discipline would be utterly impossible. An alternative approach was, therefore, 

put forward by Gibbs: rather than average the properties of one system over time, we 

imagine that we have a huge number of replicas of the system, identical in their bulk 

properties; we then average the property of interest over the of replicas at 

one in time. This alternative gains us nothing unless we know the distribution 

of states (hence the instantaneous values of the property) in the ensemble. It is this at 

which Gibbs guessed and which forms the fundamental axiom of statistical mechanics— 

the so-called principle of equal a priori probabilities. It asserts that the probability of 
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occurrence of a given state of the system depends only on the energy of the state (ie, 

all states of the same energy are equally probable). 

Using this principle we can dehne, for any given ensemble, a phase space density, which 

is in fact a probability density distribution function for possible states of the system 

in phase space. The normalisation factor that appears as the proportionality coefR-

cient in the expression for this probability density is the for that 

ensemble. This partition function is a multidimensional integral over all phase space 

of the expression to which the probability density (the distribution function) is pro-

portional. Such a dehnition of the distribution function manifestly depends on the 

principle of equal a priori probabilities in terms of the proportionality and its normal-

isation. In this development of statistical mechanics it turns out that the partition 

function is a crucial quantity, the evaluation of which enables calculation of all the 

averages that determine the bulk thermodynamic properties of systems. A convenient 

and conventional ensemble in the statistical mechanics of the nematic phase is that 

under conditions of constant volume (y) , temperature (T) and number of particles 

(TV), that is, the cononzcoZ For a system of AA indistinguishable particles the 

corresponding (ie, canonical) partition function is written as 

j e x p ( - E ( p m , X ' ^ ' j / k s T ) d{p<")} (2.2) 

where ^ is the total internal energy, Ag is the Boltzmann constant and A is the Planck 

constant. This is the classical analogue of the sum over discrete states representation 

^ exp(-E(pM,X(^)) /A;gT) . (2.3) 
states 

The factor of 1/(A^^) in (2.2) preserves the fundamental quantum mechanical nature 

of the phase space seen in (2.3) and makes the partition function dimensionless so 

that a logarithm may be obtained. The factor of 1/N! is a correction factor to take 

account of the overcounting of the potential energy in the integration over positional 

coordinates, and is a good approximation at all but very low temperatures. Within 

classical statistical mechanics the positions and momenta of the rigid molecules are 
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uncorrelated. The Hamiltonian for the system (E) is then the sum of the kinetic and 

potential energies, the kinetic energy, being a function of momenta only (both 

translational and orientational) and the potential energy, being a function 

of positions only. Hence 

Qmr = J exp(-( i f (p( ' ' ) ) + U{X' ' '^ ) ) /ksT) d{p'-"^} (2.4) 

which after integration over the momenta gives 

A-37V r 

Qjvyr = A r o t - ^ y exp(-[/(A:(^))/A:Br) 

= Arot (2.5) 

where A — is the thermal de Broglie wavelength, m being the particle 

mass, and is known as the conhgurational partition function. (Note: some work-

ers include the factor 1/7V! in the definition of ) The quantity A^t is the kinetic 

rotational partition function resulting from integration over the angular momenta and 

is given by 

A 
^̂ rot — ^ 

a 

2Ii,kBT 2IckBT 
1/2 

(2.6) 

where a is the symmetry number of the particle and 7^, -̂ c are the principal compo-

nents of its inertia! tensor. For a system of rigid particles equation (2.5) becomes 

A —SN P 

= A r o t - ^ y exp(-[ / ( r (^) , n(^))/A:gr) (2.7) 

where = dOidHg . . . and dH, = s i n ( f / ) , dcKi [2 = 1 ,2 , . . . , TV]. 

2.3 The Equilibrium Free Energy 

An important quantity to be able to calculate is the free energy since it defines the 

position of equilibrium of the system at hnite temperatures. For a generalised ensemble. 

46 



the thermodynamic driving force, D, to the equilibrium position is related to the 

relevant partition function via the relation 

D = -A:BTlnQ. (2.8) 

Thus we may obtain the equilibrium Helmholtz free energy from the canonical partition 

function as 

A = —k^T In Qjyyt- (2.9) 

QyvyT may be decomposed as in (2.5) so that 

A = -A;BT{ln(A-^^/Ar!) + InZ^^yr} 

= In Qjc) -h (—ksT In Z/^Yx)- ( 2 .10 ) 

Thus the total free energy associated with the total Hamiltonian may be considered 

the sum of a part associated with the kinetic energy (momenta) and a part associated 

with the potential energy (conGguration): 

v4 = v4^ + v4[/̂ . (2 11) 

We may then write the free energy associated with the thermodynamic potential energy 

as 

An = — kj^T In Zj\[yT- (2 .12) 

2.4 The Molecular Field Approximation 

It is not possible to evaluate the partition function (2.5) from which we obtain the ther-

modynamic properties exactly analytically, at least for any system of interest. There-

fore we need some kind of approximation to render the integral more mathemat-

ically tractable (or something equivalent). Therefore we introduce an approximation, 
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known as the molecular Held approximation, to enable the calculation of the thermo-

dynamic properties. There are various ways of introducing this approximation [1]. One 

procedure involves the more or less intuitive averaging of the anisotropic pair potential 

over the coordinates of one particle [2] while a more rigorous approach starts with the 

partition function which is then factored into positional and orientational contribu-

tions [3, 4]. This latter approach is the one we shall take in this section. Later (section 

2.8.3) we shall also give the variational derivation due to de Gennes [5] in which the 

many body distribution function is assumed to be factored into a product of single 

body distributions to give a generic single body distribution (as the geometric mean). 

This is then the foundation for constructing the entropy contribution to the free energy, 

the internal energy contribution being constructed from other single-body quantities, 

namely the order parameters. The free energy is then made stationary by applica-

tion of the calculus of variations (see Appendix 2A) to obtain the singlet orientational 

distribution function and then the corresponding potential energy function, which is 

the central feature of theories based on the molecular field approximation. There are a 

couple of alternative derivations that are worth mentioning in passing. One is based on 

a solution of the Kirkwood integral equations for the spatial and orientational distribu-

tion functions [6]. Another approach, advocated by Woo and co-workers [7] develops 

the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations for the distribution 

functions [8]. 

Here, however, as we have stated, we shall proceed to decompose the partition function. 

We suppose that the total potential energy may be approximately represented by a sum 

of elective single particle energies. That is, we invoke a rescaling of the single body 

potential energy contribution to the inEnite series expansion for 

O^^^) + . . . , (2.13) 

to attempt to encapsulate the total potential energy 0^^)). Here, (7n(r(^), 

is the total potential energy arising from n-body interactions and is a sum of n-body 

interaction terms. We note that the energy arising from two body (pair) interactions 

48 



is dominant, the three-body (triplet) energy is small (but not insignificant) and the 

single body energy in real systems normally vanishes. We write the single body term 

[ / i ( rW,n(^ ) ) as 

[ / ( r ( ^ ) , f ] W ) = ^ [ / ( n , [ ] , ) , (2.14) 
i 

where from now on we suppress the subscript 1 for simplicity. The approximation we 

have made in effect envisages any single molecule interacting independently with the 

projected out positional coordinates of all the other molecules; the molecule thus ex-

periences an overall mean or JzeZd due to all the others. The approximation 

will be good only if the strength of the field experienced by any particular molecule 

is insensitive to the coordinates of every molecule except that being considered. Or 

strictly, if it is insensitive to the detailed structure as opposed to the global structure as 

represented by the director. It thus ignores all short range correlations since it assumes 

that the pair correlation can be written as the product of two single particle distribu-

tions. Given that the essential feature of nematics we are trying to describe is their 

long range orientational order, however, it is expected tha t the approach will never-

theless provide a reasonable description of the essential features of the nematic phase. 

The justiRcation, however, is ultimately a by comparison with experiment 

or simulation. We may now write the configuration integral as 

- y exp ( - ^ [/^(n, n^)/AgT) 

= / exp ^ ^^2 ' ' ' "^^2 ' ' ' (215) 

i 

The integration over is now uniquely associated with particle % and its potential 

energy Ui (which is a function only of r , and Oj) and hence 
N 

^ n / ^]i)/AgT) d n cffZi. (2.16) 

Within the foregoing approximation each integral of the product is identical and so the 

sum of N single particle energies may be written as N times one representative single 
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particle energy. We write 

^ A r y r = ^ ^ y e x p ( - [ / ( r , ^ ] ) / A ; g T ' ) d r d ^ j (2.17) 

where is the single molecule partition function. The assumption that the total 

conhgurational energy may be approximated as a sum of single particle energies, thus 

allowing decomposition of the total partition function in (2.5) or (2.7) into the product 

of N single particle partition functions, is known within statistical mechanics gener-

ally as the mean field approximation. Within liquid crystal theory, however, we refer 

to it as the molecular field approximation to retain contact with the terminology of 

Maier-Saupe type theories which focus explicitly on the molecular interactions. The 

configurational partition function may be further decomposed by noting that the single 

molecule potential energy is composed of an isotropic and an anisotropic part: 

= %o(r) + [/ani8o(r,f]). (2.18) 

(Tiao is a function only of the centre of mass position, r , of the test molecule whereas 

C/aniao is a function of both the position and the Euler angles. Hence 

= y exp(-[;iso(r)/ABT)G(r yexp(-[/aniso(r,f^)/A;gT)(fn = ZisoZaniso. (2.19) 

'̂ aniao, usually denoted simply by Z, may be simplihed in the case of nematic phages, 

since then the anisotropic part of the thermodynamic potential energy is no longer a 

function of r . A further simplification arises in the case of uniaxial particles comprising 

a uniaxial phase. For uniaxial particles f/aniso can have no dependence on the angle of 

rotation about the molecular symmetry axis. Furthermore, if we deSne the z axis of the 

laboratory frame of reference as the nematic director then making the usual assumption 

that the phase has Doo/; symmetry rules out any azimuthal angle (a) dependence. Thus 
f2-K r^-K p-K 
/ / / exp(-[/aniso(a,/),7)/^BT')sin^(f/)da!c('y (2.20) 

J 7=0 J 0=0 J P=0 

becomes, upon performing the integration, 

Z = 47 r^ / exp(-[/aiii8o(;^)/^B?')sin^d/), (2.21) 
Jo 

where [/amao(/)) is the anisotropic (orientational) part of the single molecule potential 

energy, the so-called potential of mean torque, and is usually denoted [/(/3). 
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2.5 Distribution Functions and the Molecular Field Approximation 

We can clearly invoke the molecular Geld approximation to decompose the total many 

particle distribution function 

in a manner analogous to that applied to the partition function itself. Within classical 

statistical mechanics the and the are decoupled and hence 

/ M exp(-(7ir + [/)/A;BT') 

^ / ( / p W e x p ( - j r / A ; g r ) y d A : ( ^ ) e x p ( - [ / / W 

where Qc: — Now 

exp (2.23) 

and 

exp (2.24) 

Hence 

p(p(^\ X(^)) = p(p(^)) (2.25) 

Within liquid crystal theory it is customary to denote the many body configu-

rational distribution function, as Invoking the molecular field approximation 

we have 

; exp ( - E , ' 

A e x p ( - [ / ^ ( X j ) / W 

exp(-[/ ,(X^)/ABr) 

N 
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exp(- [ / (X) /AgT) 

J" dXexp(-[/(X)/A:BT) 

= { / ( X ) r , (2.26) 

where f { X ) is the single particle (configurational) distribution function. Again, in an 

exactly analogous manner to the decomposition of Zn/T', within the molecular Held 

approximation, we may write the single molecule distribution function as 

^ exp(-([/i8o(r) + 

/ e x p ( - ( % o ( r ) + [/aniso(r,f^))/A:gT) 

^ exp(-%o(r)/A;gT) exp(-[/aniso(r, 

J 'exp(-[/!go(r)/Agr) (fr /exp([/aniso(r,f^)/A;BT') 

^ exp ( - Uiao (r) /AgT) exp ( - [/aniso (r, f]) //cBT) 

^iso ^aniso 

= /iso(r) yani8o(r, (2.27) 

In the caae of a nematic /am8o(?", ̂ ) becomes /aniBo(^), which then defines a single 

molecule orientational distribution function / ( f i ) , more commonly known as a singlet 

orientational distribution function. For a uniaxial phase of uniaxial particles / (f i ) is 

independent of a and -y so that 

/ ( [ ] ) = ^ 2 exp(- [ / (a ,^ ,7) /A;Br) 

H o JjgLo exp( - [ / (a , 7)//=^?") sin /) do: 

becomes, on removal of the redundant variables. 

The function /(/)) is then the singlet orientational distribution function for the nematic. 

Equation (2.29) is strictly the dehning equation for the potential of mean torque, at 

least in the sense that / ( ^ ) is in principle a measurable quantity or one that may be 

obtained from computer simulation. 
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2.6 Helmholtz Free Energy within the Molecular Field Approximatior 

Prom (2.12) it is tempting to write the molar free energy as 

^ = —A:gT'ln(Zj^) — — ( 2 . 3 0 ) 

Equation (2.30) is incorrect within the molecular Eeld approximation, however, since 

the potential energy, [/, in A = [/ — is counted twice due to the fact that each 

molecule can be considered to be both experiencing and generating the molecular held 

(this is intuitive reasoning based upon the implicit assumption that the energy is a 

sum of effective pair energies). Note that we cannot simply introduce a factor of 

1/2 into the exponent of (2.15), (2.16) and (2.17) giving = 

— (N/2)A;gT'lnZiy{r, since the entropy given by (2.30) is correct as it stands; such a 

manipulation would only contain half the entropy. Hence we retain (2.30) to yield the 

correct entropy and subtract from this expression the potential energy: 

Ajj = —NaJJ — In ZivT y (2.31) 

where is the average potential energy per molecule (so that TV/iC/ = (7 is the molar 

thermodynamic potential energy). Using (2.18),(2.19) we obtain 

= — A/^([/iao + C/ajiiao) — 

= — NAksT In Ziso) + (—A^A(/aniso ^ Ill ^aniso), 

Au = Ajĵ igQ + [̂/̂ aniso- (2.32) 

The free energy associated with the anisotropic part of the thermodynamic potential 

energy is then written as 

In Z, (2.33) 

where the subscripts U and aniso are now suppressed for simplicity. From here on then 

(with the exception of the next section) the notations used for the properties should 

be taken to have their normal meanings, except that we shall be implicitly referring to 

the orientational configurational analogues only. 
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2.7 An Alternative Development of the Helmholtz Free Energy 

We may also develop the free energy within the molecular Beld approximation from 

the singlet orientational distribution function as follows. The Boltzmann definition of 

the entropy is 

^ y lnp(p(^), (2.34) 

so that within classical statistical mechanics we may write 

y in(p(p(^)) 

ln(p(X(^)) 

+ /p (X(^) ) ln (p (X(^) ) (2.35) 

where S'r is the total entropy. Now p(A^(^)) and p(p(^)) are normalised probability 

density distribution functions and so 

5":̂  = 5'(p(^)) + 5(A:(^)). (2.36) 

Hence the total entropy is separable into a sum of kinetic and conHgurational parts. 

The conGgurational entropy is then 

&onf = y f (X(^)) I n f (X(^)) (2.37) 

where /)(A^(^)) is now denoted by P(A'(^)). Within the molecular field approximation 

(2.37) becomes 

I^CONF = —KS F • •. F FIH • • • IN LN(/I/2 • • • JN) DXI DX2 • • • DXJV J , 
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^3(^1 /1/2 • • • In In fi dXidX2 • • • d X + f /1/2 • • • /at In /g dXidX2 • • • dXj\f + .. 

+ J /1/2 • • • /N In /jv dXidX2 • • • dXN'J , 

= —KS (y j / i In / i dXi J f2dX2... J dXjsi + J / s In /g dX2 J / s dX^... J IN dX 

+ J fNlnfj^dXpf J /yv_i . (2.38) 

Each of these integrals is identical and so 

&onf = / / ( X ) In / ( X ) dA: ) , (2.39) 

where 

^ = -Ag / / ( X ) In / ( X ) d X (2.40) 

is the configurational entropy per molecule. The conhgurational free energy is then 

written 

— NC/ - T '̂conSg 

== ATF + y / ( % ) In / ( X ) cgA: (2.41) 

and (7 may now be deEned as 

= 1 1 U{X}f(X) dX, (2.42) 

where [ / ( ^ ) = (/(;^) Eind Oy^x) i^^^icates averaging over the distribution function 

/(A"). The factor of 1/2 is included to take account of the double counting of the 

contributions to the potential energy due to the molecular Held approximation. Hence 

- ATF + y Z i y r " ' exp([/(A:)/A;gr) ln(ZiyT- ' exp( - [ / (X) /A;aT)) 
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= TVF + m g r ( ln (Z iy r - ' exp(-[/(A:)/A:gT)))^(^^, 

= 7VF + m B r ( l n ( ^ i y T - ' -

= N n + m g r Q n Z i y r " ^ - < [/(X)/A;gT >/(%)). (2.43) 

But = 2!7/A:BT and so 

v4[/ = Arn + m g T l n ( Z i y r " ^ ) - 2^17, 

= - jVF - In ZiyT, (2.44) 

which is just (2.31) as we had derived previously. Now the general distribution function 

/ ( ^ ) = / ( r , 2̂) simpli6es in the case of a nematic, since it is no longer a function of 

position but of orientation only, so / ( % ) oc / ( f l ) . That is, 

f i x ) = c/(!J), (2.46) 

where c is a constant. The con6gurational entropy is then 

'S'conf = / c/(f2) In (c/(r))) d r 

= —NkBl^ J cf{Q) In cdrdri + J c/(fi) ln / ( f2) drdQj, 

= —NkB(^J clncdr J f{Q) dfl + J/(O) l n / ( 0 ) J cdr^, 

= ( - m a y clnc d r ) 4- ( - y /(f^) ln / ( f ] ) . (2.46) 

Hence 

'5'conf = 'S'trana + 'S'onen, (^'4'^) 
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where / (O) is for a uniaxial phase of uniaxial particles The conhgurational 

entropy per particle is then 

S = 'S'conf/-^ — 'S'trans "̂ orien; (2.48) 

where '̂trans is the conhgurational translational entropy per particle and 5'orien is the 

conhgurational orientational entropy per particle. The latter is of interest to us here 

and, written explicitly, is 

"̂ orien = ^ l n / ( ; 8 ) sin/^d/). (2.49) 

Au is then 

A[/ = jVx - '̂'S'conf, 

= { ((^ISO + aniso) — ^ ('S'trana + 'S'onen) }, (2.50) 

where 

(̂ aniso — g (^(/^))/(^)) 

^ "̂̂  [/(/))/(/)) sin/?d^, (2.51) 
2 vo 

the factor of 1/2 again taking account of the overcounting of the contributions to the 

energy. Therefore, 

Ac; = ( - T^trans) ) + ( ( Z/aniso ' T;9oHen) ), (2-52) 

and so 

/̂ [/.aniso = ACiC/aniso + / /(/)) In / ( / ) ) sin /) d/), 

= / /(;g) In ( Z " ' exp ( - [ / (^) /A:gT)) s in^ 
Jo 

= N^Haniso + Nyi/jgT ( In ( e x p (-[ /(^)/A:BT)) 

= A//l(/aniso + A^AgTlnZ — 2A{^[/ajiigo, 

= -AT^Z/aniso " AT^AgTlnZ, (2.53) 

which is just equation (2.33) that we developed intuitively from the partition function. 
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2.8 Molecular Field Theories—Uniaxial Phase Composed of Uniaxial 

Rigid Particles 

2.8.1 Maier-Saupe Theory 

The pioneering theory of Maier and Saupe for nematics [9, 10, 11] was originally derived 

by analogy with the mean field theory of ferro(/antiferro)magneti8m [12, 13]. In a solid 

state system of magnetic spins an individual lattice spin site is treated as if acted upon 

by a mean magnetic held ("mean held") resulting from all of the other spins. In 

an infinite system all sites are equivalent and so a mean held at a generalised spin 

site is obtained by evaluating the net magnetisation at a single central site in the 

limit of infinite extent. Similarly in a nematic we have a tightly coupled many body 

problem (due to the fact that the density is high—about that of a typical liquid) and 

rather than attempting to evaluate all the molecular interactions explicitly Maier and 

Saupe introduced the concept of a generalised representative molecule experiencing an 

analogous mean field. This mean field is now not the net combined effect of all the 

surrounding magnetic spins, but of the surrounding molecules. The mean held is no 

longer a magnetic held but a so-called molecular held. It turns out that we do not need 

to pursue too deeply the precise nature of this held; we need only the concept of the 

held. Using this concept then, Maier and Saupe were able to write down a generalised 

single particle orientational potential energy function, [/(/3), which forms the basis of 

their theory. This (,0) is the potential of mean torque and is related to the singlet 

orientational distribution function encountered in the previous section by 

/ ( ^ ) = exp(-[/(^)/ABT). (2.54) 

Here we derive U{(3) in an intuitive, semi-formal manner; it can also be derived in a 

more formal way via the variational analysis of de Gennes [5] (see also section 2.8.3). 

From the symmetry of the phase and hence /(/)) we require that [/(/)) = [/(vr — ^) and 

that U{I3) will be a minimum at /3 = 0,7r, a maximum at /5 = 7r/2 and periodic in tt. 
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We require an angular dependence with such properties. 

All of the even order polynomials have this property. Noting the similarity between 

the required properties of the angular dependence to those of /(/)) it is clear that 

(/)) may be similarly expanded in a basis set of Legendre polynomials in cos For 

a non-polar phase the summation must be restricted to even order polynomials due to 

the symmetry of the phase. A polar phase, however, will require terms which are both 

odd and even in rank and, in addition, if the phase is being polarised by an external 

Held, terms relating to the direct effect of the held on the energy of the test molecule. 

Systems capable of forming polar phases and those polarised by electric helds are not 

part of the Maier-Saupe theory per se, however, and so we postpone full discussion of 

these sophistications until section 2.8.2 and Chapter 3. 

Here, in the Maier-Saupe theory we consider just the first term of the expansion in 

even polynomials in a non-polar phase. Thus we can write 

[/(;g) = - X f 2 ( c o s ^ ) , (2.55) 

where % is essentially just a proportionality coe@cient, and is referred to as a strength 

parameter. The coefhcient of f2(cos^) is expected to be overall negative so that the 

orientations = 0, vr are global minima; hence X is dehned to be positive. In addition 

it is required that vanish in the isotropic phase. It seems reasonable, then, that the 

strength of the molecular Seld should be related to the orientational ordering present 

in the system; we assume the simplest case % oc f g (see 2.8.2 and 2.8.3 for further 

discussion). Then % = e fg where e is an intrinsic coefhcient that is expected to vary 

between materials; it is a measure of the molecular anisotropy and has the dimensions 

of energy. The potential of mean torque is then 

[/(/)) = -6f2f2(cos / ) ) , (2.56) 

which is the central feature of the Maier-Saupe theory of nematics. 
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2.8.2 Expansion of [/(/)) in a basis set of Legendre polynomials 

The anisotropic potential energy of a molecule in a liquid crystal may be represented eis 

an inSnite series expansion in some appropriate basis function. For reasons already ex-

plained in Chapter 1 in relation to expanding /(/)), the functions of choice are Legendre 

polynomials in the cosine of the polar angle. For a non-polar phase we write 

= - Z < f ^ ( c o s / ) ) (2.57) 
L(even) 

where the restriction to Z, even is due to the plane of symmetry orthogonal to the 

director aa already explained in relation to and the — sign appears so that the 

leading coefhcient is positive. If we wish to develop a molecular Seld theory for sys-

tems capable of forming a polar phase (as we shall in Chapter 3 on the electric held 

polarisation of nematics), then we must include the odd rank (polar molecular held) 

terms so that (2.57) becomes, in the absence of external 6elds, 

= - ^ 4 f & ( c o s ^ ) [i: f 0]. (2.58) 
L 

Since a polar nematic has never been observed these terms are usually ignored in 

mean held theory of nematics in the absence of external electrical helds. We certainly 

cannot ignore the inhuence of polar molecular helds when an external polarising held 

is applied, however, as we shall require in Chapter 3. Indeed, the object of applying 

the held is to induce a high polar order, that is, non-zero values of the polar (odd 

rank) order parameters. For the case where an electric field is polarising a nematic, 

however, equation (2.58) is incomplete and requires further terms relating to the direct 

interaction between the electric held and the test molecule; we shall discuss this in 

Chapter 3. The expansion coefhcients in (2.57) can be made more explicit by separating 

the non-angular functions in the terms (strength parameters) into the product of an 

order parameter and an intrinsic coehBcient (the latter having dimensions of energy): 

= - Z ^^z,P^f^(coS;9). (2.59) 
L even 
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This may be understood intuitively in that one would expect the strength of the molec-

ular field to be related to the degree of ordering already present in the system; a simple 

case scenario is a proportional relationship. That which is not so readily understood 

in this manner is the concept that the total coefRcient of each term should contain the 

orientationally-averaged Legendre function of the same rank as the Legendre polyno-

mial describing the angular dependence. The formal justification of equation (2.59) is 

either by the pair potential approach of the Humphries-James-Luckhurst theory [2] or 

by the variational analysis of de Gennes [5] extended to higher rank order parameters 

(see 2.8.3). In an exactly analogous manner we can re-express (2.58) as 

- E ^z,Pz,Pi(cos^) - ?/^Pz,f^(cos/)). (2.60) 
L even L odd 

It should be noted at this point, however, that in the pair potential approach, the 

averaging over the intermolecular vector orientation dependence of the potential would 

imply that all permanent electrostatic terms should vanish identically. Thus, strictly, 

if we were to use a pair potential derivation of molecular 6eld theory, any term in the 

potential of mean torque which is representing a permanent electrostatic interaction 

should vanish, that is, its coe&cient should be zero. Given that these terms are in 

general non-zero we are forced to conclude that there is a problem with this averag-

ing. This is related to the assumed spherical distribution of the intermolecular vector, 

whereas for uniaxial particles it is in reality highly anisotropic, at least for neighbouring 

molecules. Strictly, then, we ought to use a variational derivation which includes polar 

order parameters. 

Inclusion of polar molecular fields in practice means tha t their coefficients must be 

sufficiently small as to only give rise to "virtual" polar phases, that is, polar phases at 

temperatures below which a real nematogen would certainly have crystallised. Thus 

the non- existence of an observed polar nematic-non-polar nematic transition, at least 

to date, means that we cannot obtain the specific values of the odd rank coefficients 

but are able only to place upper values on them. This is an important point which we 

take up further in Chapter 3. 
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The expansion (2.57) is generally believed to be quite rapidly convergent since, except 

in the high order limit, f 2 3> f 4 f g - - and hence may be truncated at the second or 

fourth rank term to a good approximation. It is thus seen tha t [/(/)) in the Maier-Saupe 

theory is simply the hrst term in this expansion; taking it to the fourth rank term gives 

some improvement in the quantitative results predicted by the theory as compared with 

experiment but it may be that the extra term is compensating for errors introduced by 

the molecular held approximation [16]. There is little improvement beyond the second 

term in (2.57). 

2.8.3 Variational Derivation of the Maier-Saupe Theory 

We now proceed to give the formal, variational derivation of the Maier-Saupe theory 

of nematic liquid crystals [5]. This derivation involves, as one component, the calculus 

of variations and the concept of functional differentiation. An explanation of these 

concepts and their relationship to molecular held theories is given in Appendix 2A. 

First, we identify the dominant order parameter of the system, which here we take as 

f 2 ill accord with the experimental values for the order parameters near the nematic-

isotropic transition. We then construct the anisotropic internal potential energy per 

molecule from the order parameter. We assume that the internal energy is quadratic 

in the order parameter since, strictly, liquid crystal order parameters are second rank 

tensors and the energy is a scalar. That is, the internal energy can only contain scalar 

invariants of the tensor order parameter, which must be formed from it by using, 

rather than negating, its tensorial nature. The lowest order scalar invariant that can 

be formed from a second rank tensor is the quadratic. In addition the internal energy 

is predominated by pair energies, and since the order parameter is a single molecule 

property, this suggests that the energy should be quadratic in the order parameter. 

Hence we write 

2-
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Inserting an arbitrary coefRcient, 6, we have 

U = - ^ i P l (2.61) 

where e is dehned to be positive so that [/ is overall negative and the factor of 1/2 is 

included to preserve the connection with the Maier-Saupe theory. The orientational 

entropy per molecule is, within the molecular held approximation 

= -Aa y /(/)) ln/( / ; ) sin^(f/3. (2.62) 

The orientational Helmholtz free energy per molecule is then 

A = 17 -

+ y / ( / ) ) l n / ( / ; ) s i n ^ d ^ . (2.63) 

We now minimise the free energy with respect to fluctuations ^/(/)) in /(;9) (see Ap-

pendix 2A on the calculus of variations) to obtain the equilibrium distribution: 

L [/(/)) In / (^ ) ] sin cf/) = 0, 

= -H AgT y [(^/(;g) ln/(/)) + (^/(/))] sin^d^g, 

- - e f 2 + AaT y (^/(;8) [In / ( ^ ) + l ] sin /3 (2.64) 

We must take into account the constraint that prevents us from taking any arbitrary 

distribution function, namely 

y(/))sin/)d/) = l , (2.65) 

and in terms of the fluctuations 

6/(,0) sin = 0. (2.66) 
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The constraint equation (2.66) is now added to the main variation equation, having 

Erst been multiplied by a Lagrange undetermined multiplier, to obtain 

+ y (^/(/))[ln/(;g) + l]sin/)(/;8 + Ay ^/(;9)sin/)d,8 = 0. (2.67) 

Now 

(^p2 = yf^(cos^)(^/ ( ;8) sin/3 d/). (2.68) 

Hence, combining the integrals and factoring out (^/(/3), 

(^/(^) ( - 6^2^2(008^) + Agr[ln/( /3) + 1] + A ) sin/3(^/3 = 0. (2.69) 

Now (2.69) must hold for any arbitrary Euctuation 6/(/3). To see what this meEins we 

consider the generalised integral 

rx2 
7 = / /(a;)^(3;) (fa; = 0, (2.70) 

j XI 

where ^(a;) is a given unknown function and /(a;) is completely arbitrary. For (2.70) 

to hold for GM!/ /(a;), ^(a;) vanish. Otherwise we could pick /(a;) to be positive 

where ^(a;) is positive and negative where p(z) is negative giving 7 ^ 0 ; thus we have 

proof by contradiction. Hence from (2.69) 

-ef2f2(co8/3) + A:gT[ln/(/3) + l] + A = 0, (2.71) 

from which we obtain 

l n / ( ^ ) = (l/A:gr)(6p2f2(cos^) - A) - 1, 

/(/?) - exp (6p2f2(cos/;)/ABT - A/AgT - 1), 

/ ( ^ ) = exp (ep2f2(cos/3)/ABr) exp (-A/AigT - 1). (2.72) 

We know from the Boltzmann distribution and its normalisation that the distribution 

is proportional to the Boltzmann factor exp(—[/(/))/AgT') in the energy, with the 
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coefBcient of proportionality being the inverse partition function (see equation (2.29)). 

So then, from 

/ ( / ) ) o c e x p ( - [ / ( ^ ) / W (2.73) 

we may write the singlet orientational distribution as 

/(/?) = exp (ep2f2(co8 /))/A:BT) (2.74) 

if we identify the inverse partition function as 

= exp (-A/AgT - 1) (2.75) 

and the angular dependent exponent in (2.72) as the angular dependent exponent 

—[/(/))/A;gT' in (2.73) and (2.29). By inspection then, 

[/(/)) = - 6 p 2 f 2 (cos ̂ ), (2.76) 

which is just the standard Maier-Saupe result. The factor exp (—1 —A/ZugT) is therefore 

identihed as we do not then need to find A since Z is deSned via the normali-

sation condition. If we identify all the order parameters as important (noting the 

restriction on Z/ to be even in some cases, as already discussed in (2.8.2)) then we 

obtain 

£/(/?) = - ^ e t P i P t ( c o s / ? ) . (2.77) 
L 

2.8.4 Predictions of the Maier-Saupe Theory 

The order parameter f 2 appearing in the potential of mean torque is defined as an 

average over the singlet orientational distribution function 

= / f 2 ( c o s ^ ) / ( ^ ) sin/)d/). (2.78) 

The distribution function is obtained from the variational analysis in terms of the order 

parameter itself 

/(/)) = ^-^exp ( e p 2 f 2 ( c o s / ; ) / W , 
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Z — y exp ( e f 2 ^ 2 ( 0 0 8 ( 2 . 7 9 ) 

It is clear that substitution of the singlet distribution (2.79) into the expression for the 

order parameter (2.78) results in an expression in which the order parameter occurs self-

consistently on the left and right of the equation. Thus, in the case of the Maier-Saupe 

theory, we have a single self-consistency equation. We can solve this numerically fairly 

simply by defining a quantity which we shall refer to as t h e scaled strength parameter 

(2.80) 
KB! 

which upon substitution into the self-consistency equation gives 

^2 = -F2(coS;8) exp(X*f2(cos/))) sin/)c(;0. (2 81) 

We note that this relationship strictly results from minimising the free energy with 

respect to the order parameter, so that it is guaranteed to be an equilibrium expression. 

We can then calculate the order parameter, using numerical integration, for a range 

of scaled strength parameters corresponding to non-trivial solutions (ie, ^ 0). 

The ratio of each value of the order parameter calculated to the corresponding scaled 

strength parameter then gives a corresponding scaled temperature T* — AgT/e, since 

by rearranging equation (2.80) for we obtain 

(2.82) 
6 

The nematic-isotropic phase transition occurs where the free energy diEerence between 

isotropic and nematic phases is zero. That is, the vanishing of AA yields a value for 

from which 1 

energy is given by 

from which and hence can be determined. The molar Helmholtz free 

— 2 

^ In Z. (2.83) 

In the isotropic phase f 2 is zero so the hrst term vanishes and the second term becomes 

—NAksTln2. The difference in free energy between the nematic and isotropic phases 

is then given by 

AA;;v = - //AA^gTln (2.84) 

66 



where Z'jv is the rotational partition function in the nematic phase and Z/ = 2 is that in 

the isotropic phase. It is not necessary to specif the order parameter dependence of the 

scaled strength parameter (aa given in equation (2.80)) to determine the transitional 

values of the properties, since (2.84) can be written in terms of X* as 

2 2 

This must vanish at the W — 7 transition and so the transitional values of and f g 

can be obtained from a plot of against where the graph cuts the 

line = 0. The entropy change, = 5"̂ ^ — 5"/, can be found from the 

value of and the corresponding value of f since 

A5'iv/ A[/jvj 

kg Ag 

X - f „ P " ' / 2 . (2.86) 

We now give the results of the Maier-Saupe theory calculations. Figures 2.1 and 2.2 

show the order parameter and the scaled 7 — free energy difference AA/jv/JV/iAiBT' 

respectively as a function of %*. The graph of f2(-^*) is a sigmoidal curve starting 

at the origin, taking a limiting value of unity. We note that f 2 is de&ned for all 

values of whether or not these values for the order parameter represent thermo-

dynamically stable states (see below). The graph of AA///^(%*)/W,iA;gT' begins at the 

origin, increases with increase in %*, passes through a maximum, decreases and then 

passes through zero to become negative. The point where Av4f;\̂  is zero dehnes the 

transitional value of the scaled strength parameter, from which other transitional 

properties may be found. At lower values of the isotropic phase is more stable and 

Av4f;v is positive whereas at higher values Av4/^ is negative and the nematic phase is 

more stable. 

In Egures 2.3a and 2.3b we show the order parameter 7^2 and the scaled free energy 

diSFerence AA/jxr/A/ytAgT' respectively as a function of scaled temperature A;gT'/6. The 

N—7 transition is found to occur a scaled temperature of 0.22029 (providing the volume 

is constant) with corresponding values of P2 = 0.429, P4 = 0.120 and ASNI/R = 0.418. 
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f igure 2.J; TJie second razik orientationa] order parameter, f 2 , as a Amcdon of tAe 

scaled strength parameter, %*, m the Maier-Saupe theory 

0 8 

R 

0 2 

We note that there are three branches of the temperature proEle of the order param-

eter. First of all, there are th6 (nmoZ solutions, that is, f 2 = 0 is a solution of the 

self-consistency equations at all values of scaled temperature and corresponds to the 

isotropic phase. This will only be the thermodynamically stable phase provided its 

Aree energy is less than that of the nematic at the same temperature, that is, when 

> 0. Thus there is a stable nematic phase where < 0 upto the transition 

at AgT/e = 0.22029. At scaled temperatures in excess of this, the isotropic solution be-

comes thermodynamically stable. In addition to these two branches there is a third one 
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Figure 2.2; TTie znoMr 6-ee energy aa a Ainction of tiie scaJed strength 

parameter m the Maier-Saupe theory 

100 AAjr;V 
na^bt 

(dotted). Upon increasing the temperature above the transition the nematic (^2 7̂  0) 

branch continues as a set of metastable solutions. The curve bends back on itself so 

that there is a maximum temperature on this curve beyond which the nematic phase 

is absolutely unstable; this is referred to as the limit of metastability. In this case it 

corresponds to the superheating limit. 

On cooling from the isotropic phase to below the transition, the metastable regime 

of the isotropic solution can be realised. This terminates a t the limit of supercooling 

metastablility at a scaled temperature of 0.2. Below this, the isotropic solutions are 
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unstable solutions (ie, they correspond to maxima in the free energy). At the super-

cooling limit a second order nematic-isotropic transition would occur, if there were 

no first order transition. This can be shown by performing a perturbation-bifurcation 

analysis to locate the point at which the nematic solution branches away from the 

isotropic solution continuously. That is, the exponentials in the expression for the or-

der parameter are expanded in the low order limit and truncated after the second (ie, 

Rrst order) term. Using the orthogonality properties of the Legendre polynomials to 

simplify the expression thus obtained yields 

P ^ J(1 + {cP2/kBT)Pi(cosD))P2(cosP) Sin P dp ^ 

'' f ( l + (ep2/kbt)p2{cos0))sm0dp sket' 

Thus, 

p. (1 - = 0. (2.88) 

This implies two possibilities, one of them clearly being f 2 = 0. The other possibility 

implies that f 2 is allowed to become non-zero in the vanishingly small order parameter 

limit when 

This implies that 

1/5, (2.90) 

which represents the bifurcation point on the abscissa, = 0.2, where T* is 

known as the divergence temperature. 
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Fjgnre 2.3; The temperature dependence of a) the secoad ran^c orientationaJ order 

parameter and bj the diference in free energy between the igotropic and nematic phase 

f'Maier-Saupe) 
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We note that the set of thermodynamic solutions over the entire temperature range is 

a unique curve with a unique scaled transition temperature. We have, however, scaled 

the temperature with the unknown intrinsic coefhcient, vyhich is taken to vary from 

material to material. To remove this dependence and make contact with experiment, 

we invoke the concept of reduced temperature, and so 

the phase transition of any substance occurs at the SEime point on the abscissa. Clearly, 

then if the order parameter is plotted as a function of reduced temperature, we can 

see that the Maier-Saupe theory predicts that the order parameter of a nematic is a 

universal function of reduced temperature. Experimental investigations hnd that for a 

wide variety of materials, the results do indeed scatter about a common curve close to 

that predicted by the Maier-Saupe theory (see figure 2.4). 

Another major feature of the theory is that the entropy change at the transition is 

independent of the form assumed for the dependence of the strength parameter on the 

order parameter. This is to be contrasted with the latent heat at constant volume 

which clearly does require specification of this relationship. The entropy change is 

also predicted to be independent of the molecular structure; this is in broad general 

agreement with experiment. 

The question does arise, however, as to the source of any disagreements between the 

properties of real nematogens and the predictions of the Maier-Saupe theory. The are 

two major elements to the Maier-Saupe theory. The hrst is the molecular held approx-

imation and the second is the form of the potential energy within that approximation. 

Any disagreements could arise from either of these assumptions. This is where the 

utility of computer simulations makes itself felt, for one key feature of computer sim-

ulations is that they can provide essentially exact results for a given model (ie, pair 

potential). Thus we are able to set up a model that conforms to that of Maier-Saupe 

theory, and compare the results to those of the theory. Any discrepancies between the 

simulation results and the predictions of the theory are then due to the molecular field 

approximation itself. 
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Figure 2.4; Tie temperature depezideuce of ^2, at coustaat preasure, A)r a variety of 

znesogeuic compoimds. T2ze curve is predicted by t i e Maier-Saupe tAeoiy. 
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If these are siguiEcant, it means that the severity of the molecular Held approximation 

renders theory based upon it quantitatively inadequate. Thus Lebwohl and Lasher [15] 

proposed a computer model with which to test the Maier-Saupe theory. In their model, 

cylindrically symmetric molecules are placed on the sites of a simple cubic lattice. These 

molecules then interact with nearest neighbours through a pair potential of the same 

form as that from which the Maier-Saupe theory can be considered to be derived (ie, 

in the pair potential approach, using the spherical harmonic addition theorem [2]). 
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kstni/e 2 

Maier-Saupe 0.22 0.42 0.43 

Monte Carlo 0.19 0.05 0.27 

Ik We A comparjgon of tAe predjctioDS of the Maier-Saupe theory with Monte 

CaHo giznujadon regu^tg for t2ie I/ebwohj-LagAer mode] 

Table 2.1 shows a comparison of the results of the Monte Carlo simulation of Lebwohl 

and Lasher with the predictions of the Maier-Saupe theory. 

The transition temperature is overestimated by Maier-Saupe theory by about 20% 

and the value of the order parameter is overestimated by about 25 %. More serious 

is the discrepancy in the entropy of transition which is grossly overestimated, that is 

by a factor of about eight. It is to be concluded, therefore, that the errors are caused 

by the molecular held approximation itself rather than the model. Consequently any 

theory which assumes the molecular held approximation is likely to be quantitatively 

inadequate, but may be successfully employed, however, to give qualitative insight and 

semi-quantitative results. We can obtain further insight by looking to results from ex-

periments based on systems that closely resemble the Maier-Saupe model. Thus PAA, 

which is a rigid molecule that conforms closely to the ideal of cylindrical symmetry (see 

chapter 1) and exhibits a nematic phase, provides a useful comparison with both theory 

and simulation. The value of e is not readily obtainable from experiment [16], and so it 

is not possible to give a comparison of the scaled transition temperatures The 

transitional entropy change A S / ^ is found to be 0.17. This is not directly comparable 

with the Maier-Saupe value, since the latter refers to the transition at constant volume 

and the experimental value is at constant pressure. The experimental entropy change 

at constant volume can, however, be estimated from that at constant pressure [17] and 

is found to be about 0.05, that is, essentially the same value obtained in the simulation. 

This confirms the extremely poor status of the theory in predicting the entropy of tran-

sition quantitatively. The predicted constancy of the entropy of transition is, however, 

in broad qualitative agreement with experiment. The transitional order parameter is 

found to be 0.4, just slightly less than the value predicted by the Maier-Saupe theory. 
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2.8.5 Numerical Methodologies in Molecular Field Theory 

There are three main ways of obtaining the temperature proEles of the order parameters 

that appear in the potential of mean torque in a molecular held calculation. We 

illustrate them here with reference to the Maier-Saupe case for simplicity. The first 

is to use the non-iterative, non-minimisation approach which we have illustrated in 

section (2.8.4) in the Maier-Saupe calculation. This method is applicable if there is 

only one independent parameter, as in the Maier-Saupe theory itself or some variant 

where all parameters appearing are ultimately controlled by one parameter. In such 

cases the potential(s) of mean torque can be written in terms of a single strength 

parameter analogue. 

The second way is solving the self-consistency equations. That is, there is a dehning 

equation for each order parameter in the potential of mean torque involving the distri-

bution function. In the Maier-Saupe theory we have just f 2 and from (2.78, 2.79) its 

equation is 

= f2(co8/3)exp(ef2-F2(cos^)/A;g[r) sin/)d/). (2.91) 

Thus the order parameter occurs on the right and the left; we have 

a self-consistency equation. One way of solving the self-consistency equations is an 

iterative method where a guess (or "seed") value of each order parameter is input 

into the equation dehning it, the result is evaluated by numerical integration, and 

these numbers input again. Depending on the seeds chosen, the numbers going in and 

coming out should converge to constant values. This is then repeated for a number 

of diEerent scaled temperatures. This method is probably best suited to situations 

where there are few parameters, although in the case where there is just one aa in the 

Maier-Saupe theory parameter its utility is dubious, since the non-iterative method 

discussed in section (2.8.4) is far better. Another way is by minimising the sum of 

the squared differences between the order parameters and their dehning equations, 

treating the order parameters on both sides of these equations as fitting parameters. 

At the minimum of this function there will be a combination of order parameters that 
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solve all the self-consistency equations simultaneously. Not only should the function be 

minimised, but the function value at the minimum should also be zero. This technique 

is of general applicability and is particularly useful when there are multiple order 

parameters in the potential of mean torque. It is also indispensible in certain situations 

where other methods cannot be brought to bear as we shall see later. 

The hnal way of obtaining the order parameters is that of minimising the orientational 

conhgurational free energy of the system with respect to the order parameter(s) [18]. 

This is the methodology of choice where it is applicable, since if a global minimum 

is found, we know by dehnition we have the thermodynamic solution (ie, the order 

parameters for the stable states only). This contrasts with solving the self-consistency 

equations, which will give all the solutions to the equations, but some of them will 

be thermodynamically metastable (or even unstable) solutions (although these could 

be of interest). These solutions will, in general, need sorting through (by calculation 

of the corresponding free energies) to determine which is the thermodynamic one at 

each state point. Moreover, the number of numerical evaluations of integrals in the 

free energy minimisation methodology is less because the free energy contains only one 

integral, the partition function. The self-consistency equations (or, more precisely, the 

error function obtained from them) contains n 4- 1 integrals, where n is the number 

of order parameters. The only problems with free energy minimisation come about in 

two ways, one way relatively trivial, the other more fundamental. The Erst way is that 

the free energy may not be so easy to minimise as the expression for the error in the 

self-consistency equation approach. The more fundamental one is that there are some 

cases where the free energy minimisation may be inapplicable even in principle, as we 

shall see later. In certain instances this problem may be remediated by casting the 

free energy in a different form; in others this cannot be done. We shall discuss these 

problems in depth later in Chapters 3 and 4. 
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2.9 Uniaxial Phase of Rigid Biaxial Particles 

2.9.1 Variational Derivation of the Distribution Function and the Potential 

of Mean Torque 

In section (2.8.3) we derived the distribution function and potential of mean torque for 

a uniaxial (ie, cylindrically symmetric) particle in a uniaxial phase within the molecular 

held approximation. In general, however, liquid crystal molecules are not cylindrically 

symmetric but tend to be more lath-like in shape. We say they are biaxial, that is, all 

axes perpendicular to the near-symmetry axis of the molecule are not equivalent. The 

means for specifying the orientation of the molecule and hence the order parameters 

is then more complicated. This is exacerbated by the fact that, away from uniaxial 

symmetry, the symmetry axes of a molecule in general depend upon which molecular 

tensorial property is being considered. Thus we have to choose a particular second 

rank property as the definition. The one that is chosen is the Saupe ordering matrix 

which is given as 

'S'ob = (3 ZoZ;, - (^a6)/2, (2.92) 

where Zg is the direction cosine between the director and the direction of the o molecular 

axis increasing (with o = = 1,2,3) and the bar indicates a molecular average. 

Here we are assuming an arbitrary cartesian axis system set in the molecule. The 

principal axes of this real symmetric tensor are then used to dehne the orientation of 

the molecule. It is conventional to label the axis (ie, eigenvector) corresponding to the 

largest eigenvalue z so that the eigenvalue is 5"̂ .̂ The next largest eigenvalue is taken 

to be and the smallest (so that — 5";/̂  is positive) which then defines the 

a; and axes of the principal molecular frame. The quEmtity is referred to as the 

mojor order parameter and (S'̂ z — S",,;,) as the order parameter. Now we have 

dehned the molecular symmetry axes we may proceed to the theoretical dehnition of 

molecular orientation that we require. Now, two Euler angles, which we shall refer to 

77 



aa and "y, are employed to deAne the orientation of the director of the phase with 

respect to the molecular axis system (see Chapter 1). 

The orientational order of the system is then completely described by an inGnite set 

of tensor order parameters of all even orders. By analogy with the Maier-Saupe the-

ory, if we assume that the most important interactions are second rank in nature (ie, 

they dominate the single particle internal energy) then the orientational order of the 

system may be taken to be described by a matrix of second rank order parameters. 

The internal energy is assumed to be a function of the scalar product of two second 

rank ordering tensors to give a quadratic expression as in the Maier-Saupe theory. 

The second rank ordering tensors each have Ave components C2m (m = 0, ±1,^:2) 

in irreducible form and the strength parameter now takes the form of a second rank 

supertensor with 5̂  elements. To construct the internal energy we assume that pair 

interactions predominate and so we take the scalar product of the second rank tensor 

order parameter of the Erst molecule of the pair with that of the second molecule. In 

addition, we expect that the coefficient should itself be a molecular property, and so in 

the case of biaxial molecules it should also be a second rank tensorial property related 

to the interaction between the two molecules. Thus, if we denote the first molecule by 

m and the second by n we form the single molecule internal energy as a scalar invariant 

from the tensor order parameters Cgm, C'zn for the pair of molecules and the second 

rank supertensor describing the interations between the molecules. As in the case 

of uniaxial phases composed of uniaxial particles, we include a factor of 1/2 to retain 

consistency with pre-existing notation. The internal energy is then assumed to have 

the form 

^ — 2 '"2mn C2m ^2n• (2.93) 

The entropy within the molecular field approximation is again found from the singlet 

orientational distribution function, but this time using the analogue f{io) involving the 

two angles /), 'y = w, as 

6" = — / ( w ) l n / ( w ) ( L ' . (2.94) 
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The Hemlholtz free energy per molecule is then 

A = U2mn C2m C2n + AgT / f (oj) In f (u) du. (2.95) 
m n 

We now proceed to minimise the free energy with respect to fluctuations in the distri-

bution function in a manner analogous to section (2.8.3), tha t is, we require that 

= 0. (2.96) 

Now 

5A = — - U2mn C2mC2n C2m ^ C2n) + ^bT / 6f {ui) [in f (u) + l] du), 
m n 

(2.97) 

where the <5 Cgn are the variations in the ordering tensor components 

= y C2^(w) (^/(w) dw. (2.98) 

The variation in the free energy is then 

/ ( - ^ I ] ^ 2 m n C 2 ^ C 2 » ( w ) + A:gr[ ln/ (w) + l ] ) (^ / (w)dw. (2.99) 
m n 

We must take account of the constraint that the distribution is normalised, that is, 

6/(w) (Zw = 0. (2.100) 

To form the complete variational equation we multiply the constraint equation by the 

Lagrange undetermined multiplier A and add the result to the variation (2.96) in A to 

obtain 

f ^ ^ ] '̂ 2mn C2m C'zm (^) + k s T [ In / (w) + l] + <^/(w) du) — 0. (2.101) 
m n 

This result must hold for any fluctuation Sf{Lo) and so we require that 

— U2mn C2m Cgm (<̂ ) + AgT [ In /(w) + l] + A = 0. (2.102) 
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The single particle orientational distribution is then 

/(w) = exp ( ^ ^ (2.103) 
m 71 

and the potential of mean torque for a biaxial particle in a uniaxial phase is 

U(w) = — U2mn ^2,1 (^) • (2.104) 

m n 

We note that this same form of potential haa also been derived from the pair potential 

by Luckhurst, Zannoni, Nordio, and Segre [19]. 

In the principal axis system of the ordering tensor the C2m simplify as 

Czii - 0 C22 = C2_2. (2.105) 

The M2mn ako simpli^, although the reasons for this are not quite so clear. If we 

suppose for the moment that the predominant interaction contributing to the M2mn 

is dispersion forces then we might write the interaction between the two molecules in 

terms of their polarisability tensors in irreducible form as 

2̂mn — (2.106) 

Then 

1̂ 200 — O:20CK20- (2.107) 

Also, since 

CKgjzZ ((^XX Olyy) /1 ^ ilCXxy ( 2 . 1 0 8 ) 

and we are by dehnition dealing with a principal axis system 

CK22 = Q!2-2. (2.109) 

Then the ^2^71 simplify as 

2̂20 = 2̂02 = ^2-20 = 'U20-2 1(222 = '̂ 22-2 = ^2-22 = 1(2-2-2. (2.110) 

80 



Therefore only three elements of the intrinsic interaction tensor are required, namely 

'̂ 200, 1(220 and 1/222, and only two of the order parameters, namely C20 and C22. The 

potential of mean torque can then be written 

[/(w) = —{(̂ 220 (̂ 20 + 2 2/222 (̂ 22) C'2-2((^) + (̂ 200 (̂ 20 + 2 2/220 (̂ 22) C'2o(^) 

+(2/220 (̂ 20 + 2 2/222 (̂ 22) C'22(^)}- (2.111) 

This can be rewritten in terms of the Euler angles a and /) by substituting explicit 

expressions for the C2o(/), 7), C2±2( / ) , ( s ee Appendix IB) as 

(^(;^; 7) — {(^220 C20 + 2 2/222 (̂ 22) sin^ ^ e 2:7 _j_ Cgo + 2 2/220 (^22)^2 (cos ̂ ) 

which simplihes to 

+(2(220 (̂ 20 + 2 2/222 (̂ 22) 1/0 sin^ /) (2.112) 

13 
(^(^,7) — —{('̂ 200(̂ 20 + 22/220(^22)^2(^08^) + 2 (2/220 C20 + 22/222(^22) )/ y sin /?cos2'y}. 

(2.113) 

The number of adjustable parameters 2/2^0 may be further reduced by invoking a geo-

metric mean approximation for 2(220, in other words 2(220 = (̂ 200 ̂ (222)̂ ^̂ , and rewriting 

equation (2.113) in terms of a molecular biaxiality parameter A = (2/222/'(/20o)̂ '̂ ^ as 

C/{p, 7 ) = ~{'̂ 200(C'20 + 2 A (722)^2(^08p) + 2 A 2/200((̂ 20 + 2A c22) sin^ p cos 27}. 

(2.114) 

We note that the geometric mean approximation for 2/220 is only exact for dispersion 

forces, however. Since 2/200 ((̂ 20 + 2A C22) is a common factor the potential of mean 

torque can be further simplified by defining 

X20 = 2/200 ((^20 + 2A C22) (2.115) 

giving 

[/(^.'y) = -%2o{f2(cos/)) + 2Asin^/) 00827}. (2.116) 
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It is also conventional to define 

X22 = A%20' (2.117) 

Invoking the geometric mean approximation for 11220 thus renders the ratio X22/^20 (= A) 

temperature-independent. The potential of mean torque is then finally written as 

(^(/^,7) = -{^2o-F2(cos/)) + 2Z22 8in^/)cos2'y}. (2.118) 

We note that in the limit that the molecular biaxiality is zero (ie, A = 0) this reduces 

to 

[/(;g) = -%2o;^(cos;g) = - X f ^ ( c o s ^ ) , (2.119) 

which is just the Maier-Saupe potential for a uniaxial particle in a uniaxial phase, as 

expected. 

2.9.2 Predictions of the Theory 

Prom the expression for the potential of mean torque we can calculate the orientational 

order parameters as averages over the associated distribution function. That is, 

C20 = / / f^(cos^) exp(;^2* f^(cos/?) + 2X2; sin^/?cos2o') sin/^d^d'y (2.120) 

and 

C22 = / / sin^ cos 2'y exp (X20 ^2(008 ̂ ) 4- 2%22 sin^ ^ cos 2'y) sin d'y. 

(2.121) 

where here the superscript * denotes division by /c^T rather than complex conjugation 

and the rotational partition function is 

Z = exp (X20 -F2(cos /)) + 2%22 sin^ cos 2'y) sin d'y. (2.122) 
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The double integrals may be evaluated as one dimensional integrals involving modified 

Bessel functions of the Srst kind. That is, an Mth order modiEed Bessel function is 

written (in its integral representation) aa 

c-K 
-1 7^(2;) =7r / cosM'yexp(a;co8'y)d'y (2.123) 

Jo 

and the integrals may be written 

C20 = 27rZ"^ / f!2(co8^) 7o(2%22 sin^^/AgT) exp(v)r2o-F2(coS;0)/AgT') sin^gd^ 
Jo 

(2.124) 

C22 = 27rZ-^ / sin''/) A(2X22 sin"^/AgT) exp (X20 f2(coS;g)/A:BT) sin/^cf/) 
Jo 

(2.125) 

with 

Z=:27ry^ 70(2X22 sin^/^/ZcBT) exp (%2of2(co8/))//i;gT) sin/)d;^. (2.126) 

The orientational partition function and order parameters are thus evaluated using 

one dimensional numerical integrations for given values of Xgo (= -^20/^B^) 

X22 (= X22/A;B!r) but with their ratio constant. 

Again, as in the caae of uniaxial particles, the order parameters at the transition are 

obtained as those for which the difference in the free energy between isotropic and 

nematic phases is zero. We have from the potential of mean torque that the single 

particle internal energy is 

u = — — { x 2 0 c 2 0 + 2X22(^22) (2.127) 

and the orientational entropy is 

s = —^(-^20(^20 + 2x22c22) + naks^t^ z . (2.128) 

The molar orientational Helmholtz free energy is, therefore, 

A = :^(%2oC2o + 2X22^22) - TV^AigTlnZ. (2.129) 



Now in the isotropic phase the order parameters are zero and the rotational parti-

tion function reduces to 47r. The free energy diEerence, between isotropic and 

nematic phases is then given by 

AAjtv = Ajq — Aj = ~^{X2oC2o + 2X22C22) — In ——. (2.130) 

2 47r 

This expression must vanish at the — 7 transition which can therefore be located 

in an analogous way to that of uniaxial particles. Alternatively, the transitional order 

parameters could be obtained as those corresponding to the the values of X201-^22 

which satisfy the equation 
+ 2X^CJ2 (2,131) 
2 47r 

As in the case of uniaxial particles, there is always an isotropic solution in which the 

order parameters are zero. In the nematic phase, however, there is no unique solution, 

but a set of solutions depending on the value of A taken, which must therefore be 

specified. 

The nematic-isotropic transition temperature is then obtained from 

^200 A'go 

with A = 

(2.132) 

From the values of -^22^^ the corresponding transitional order parameters, 

the entropy change at the transition is calculated as 

^ + I n ^ . (2.133) 
k zjni 

The values of the order parameters, transition temperatures and entropies of transition 

for a range of biaxialities as calculated by this procedure are given in table 2.2. In 

addition, in figure 2.5 we show the biaxial order parameter plotted against the major 

order parameter for four different biaxialities, namely 0.1, 0.2,0.3 and 0.4. Figure 2.5 

also shows the solutions to the self-consistency equations for the order parameters at 

the N — I transition. 
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A 7? (-'20 ^ TV/ 
O22 2̂00 r 

0.000 0.429 0.000 0.220 0.418 

0.050 0.424 0.009 0.221 0.410 

0.100 0.409 0.017 0.222 0.384 

0.150 0.382 0.026 0.224 0.338 

0.200 0.341 0.034 0.228 0.276 

0.250 0.284 0.040 0.233 0.198 

0.300 0.208 0.041 0.240 0.113 

0.350 0.115 0.032 0.250 0.038 

0.400 0.016 0.006 0.264 0.008 

TkWe 2.2; T6e order parameters, scaled temperature ami entropy cAange at the 

uematic-isotropic transition for di&rent vafues of the biaxiajity parameter A. 

We show results only for positive values of A since reversing the sign of the vzilue of A 

simply corresponds to an interchange of the de6nitions of a; and ^ axes. We see that the 

scaled temperature of the N — 7 transition increases as a function of increasing molec-

ular biaxiality. This seems somewhat surprising initially, but may be understood as 

follows. We have that for a given value of 7/200 the transition temperature is increasing 

with increasing A. But for a constant value of M200, increasing A increases the overall 

anisotropy of the molecule by increasing U220 and 2̂ 222- The orientational internal en-

ergy therefore becomes more negative and leads to an increase in the nematic range. 
— TV/ 

The transitional value of the second rank order parameter Cgo is seen to decrease with 

increasing molecular biaxiality. Thus, for a rod-like molecule with uniaxial symmetry, 

the order parameter of the long axis (which in this case is the molecular symmetry axis) 

is high and the biaxiality is zero. If the molecular biaxiality is now increased the order 

parameter of this axis decreases until at A = 1/\ /6 the molecule becomes disc-like. At 

this point the molecule would tend to align orthogonal to the director with a negative 

order parameter, except that the axes have now changed such that the biaxiality is by 
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Figure 2.5; The order parameter C20 plotted against the biaxiaJ order parameter C22, 

caiciifated from the moiecuiar f eM tAeoiy of imiaxiaJ j^Aases of biaxzaJ pardceJg, A)r 

biaxiaUty vafueg of 0.1,0.2,0.3 and 0.4. The vaJues of the order parameters at the N— f 

transition are ako indicated on the piot. 

dehnition a maximum at VS- The near-symmetry axis of the molecule then still tends 

to align with the director (the symmetry axis of the phase) with an order parameter 

that is again positive. If the molecular anisotropy continues to change such that the 

disc-like molecule becomes increasingly uniaxial about the near-symmetry axis, then 

the biaxiality begins to decrease from the maximum value of ^/6- There is a concomi-

tant increase in the order parameter of the axis, with the same values being obtained 

as for rod-like molecules of the equal biaxiality. This continues until, at A = 0, the 

molecule is again perfectly uniaxial and again takes on its maximum value, but 
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now for the uniaxial symmetry axis of the disc. The order parameter is a measure 

of the molecular biaxiality and increases as the the value of the biaxiality parameter 

is increased. The entropy of transition decreases markedly with increasing 

molecular biaxiality due to the reduction in CgQ . Increasing the molecular biaxial-

ity parameter is also found to affect the temperature dependence of the second rank 

order parameter, particularly the slope of the curve in the neighbourhood of the tran-

sition [16]. The degree of molecular biaxiality thus clearly makes a large difference to 

the transitional properties. Consequently any theory of the nematic mesophase based 

on the assumption of cylindrical symmetry of the nematogenic molecules is likely to be 

quantitatively inadequate. 
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Appendix 2A: The Calculus of Variations 

2A.1 Introduction 

The solution to a great many problems in physics can be stated in terms of some quan-

tity taking its minimum value. In ordinary calculus we And the turning (or stationary) 

points of a function by differentiating with respect to the independent variable and 

setting the result equal to zero. We then rely on the physics or further mathematical 

tests to characterise the stationary points if necessary. In the calculus of variations 

we wish to know which (as opposed to which value of a variable) makes sta-

tionary (eg, a minimum) some quantity that is a function of this arbitrary function. 

Rather than being a function of a variable, the quantity is a function of a function 

and is known as a Thus we have, effectively, to differentiate with respect 

to the unknown arbitrary function rather than a variable; the procedure is known as 

We then similarly set the result equal to zero. This is saying 

that the variation in the quantity with respect to variations in the function is zero and 

the quantity is gWmnon/. In the calculus of variations problems are often 

stated by aaserting that a certain quantity is to be minimised. Thus we often talk 

of What we actually always do in practise, however, is the 

functional analogue of setting the derivative equal to zero. The question of whether we 

actually have a minimum, maximum or neither is, in general, a difficult mathematical 

problem [21]. Fortunately, however, making the relevant quantity stationary is usually 

all that is necessary. This is particularly true in the major theoretical underpinnings 

of mathematical physics and in view of the links between these areas provided by such 

stationary functional, the concept has the status of a fundamental unifying princi-

ple. For instance, in the propagation of electromagnetic radiation we have Fermat's 

principle of "leaat" time, which becomes exact in the short wavelength limit where 

electrodynamics reduces to linear optics. This principle went on to be used in the his-

torical development of quantum mechanics, appearing as the particle-wave analogue. 



the principle of least phase length, which lead to the development of the Schroedinger 

equation. Again, in classical mechanics we have the concept that a system behaves in 

such a way that the integal of the Lagrangian between any two arbitrary points in time 

(the m(egmZ) is a stationary quantity. This is Hamilton's principle (of least 

action) and leads directly to the Lagraugian form of the equations of motion. Under 

a canonical transformation with the introduction of the concept of momentum, these 

become the somewhat more tractable canonical or "Hamiltonian" equations of motion. 

However, for reasons already alluded to, the Lagrangian is to be viewed ultimately as 

the more fundamental quantity as a matter of principle. 

2A.2 The Problem 

The general calculus of variations problem, then, may be stated more precisely as 

follows. Given an integral of the form 

rx2 
7 = / F(a;,i/,2/')dT (?/' = c(%//(fa;), (2A.1) 

j xi 

the limits a;i,a;2 and the form of F , we are required to Snd the curve (function) 2/(a;) 

that makes the integral have the smallest possible value (or stationary value). In a more 

general case F might be a function F(a;, {?/'}) of a set of dependent variables 

For example, the Lagrangian is Z/(̂ , %,%) (where the % are the cartesian components 

of the position vectors of the particles z of the system) and so the action integral to be 

made stationary is 

7 = / Z,(t,%,%)o((. (2A.2) 

jti 

In other cases, there may be a single dependent variable, but with a set of independent 

variables {a;} (see later) and so then we have 

/ = / F({a;}, 2/, {%/'}) (2A.3) 
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In the most general possible case we might in principle have a set of independent and 

dependent variables and so the integral would then be 

7 = / (2A.4) 

Let us now see more precisely and in greater detail what we really mean by making 

an integral stationary with respect to a function and how we go about doing this. For 

the moment it will be sufEcient for our purposes, given our concern with molecular 

held theory, to illustrate it by reference to a system with one independent and one 

dependent variable. The integral in (2A.1) is to be made stationary with respect to 

Suctuations in the "path" between a;i and arg, that is, in the functional form of 

Until now we have been using ^(2;) to denote all the paf/ig from to with 

respect to which the integral is to be made stationary, with just the one particular ^(3;) 

being the solution we require. This path corresponds to the extremum and is referred 

to as the For the moment we shall change our notation slightly for sake of 

convenience and precision. If we now denote the arbitrary function by Y then we can 

construct the varied paths y(a;) as 

y(a;, 6) = + e7;(a;), (2A.5) 

where 2/(2;) is now strictly the desired extremal and e is a parameter that controls the 

relative contribution of the function 7/(3;) to the varied paths. Here 7y(a;) is any arbitrary 

function that has a continuous second derivative and that obeys the constraints 

77(3:1) = 7;(a;2) = 0 (2A.6) 

so that at the endpoints 3:1, a;2 of the path we necessarily have 

y(3;i,6) = 

^(a;2,c) = 3/(3:2) (2A.7) 

as required. Then we have 

rx2 
/(e) = / f ( 3 ; , y , r ) d 3 ; . (2A.8) 
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The most important thing to note now is that when 6 = 0, y(3;, 0) = We are 

now in a position to state precisely what we mean by making the quantity 7 stationary 

with respect to fluctuations in the dependent variable function in the integrand. What 

we require is that the derivative of /(c) with respect to t h e Suctuation parameter e of 

the varied paths is zero when this parameter is itself zero, for on?/ 

function ri{x). That is, 

dl 
= 0 (2A.9) 

dc j 6=0 

for any arbitrary Euctuation Since e is not a function of the variable of integration. 

V (ie / e=o / £ = 0 

I 
\ oa; 06 ),=« l a y de A . o l a y & /e=oJ 

(fa;. 

Now a; is not a function of 6 so that cfa /̂cfe = 0 giving 

& / 6=0 
( ^ • k \ 

. \ & / 6=0 \ / 6=0. 
(fa;. 

Also, from (2A.5), 

and 

( fy 

( f r 

= 77(37) 

= 77'(a;) 

so that 

d6 ) E—0 6 = 0 -
(fa;. 

But, at e = 0, as we have already noted, Y = ?/ and so 

f ~ ) = 
\ 6̂ 6 / 6=0 

(fa;. 

(2A.10) 

(2A.11) 

(2A.12) 

(2A.13) 

(2A.14) 

(2A.15) 

(2A.16) 
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The required solutions are then obtained by setting 

1 
77(3;) + ^ d i = 0. (2A.17) 

L ^3/ a?/' 

If 1/" is continuous, we can integrate the second term by parts as 

w -I'M dx = [ - "W 

The integrated term is zero because ?y(a;) is by definition zero at a;i and and so we 

obtain 

da; ̂ 2/'. 
77(3;) da; = 0. (2A.19) 

The integral must vanish for any arbitrary Suctuation 77(2;) and so the remaining factor 

in the integrand must vanish, giving the well-known Euler-Lagrange equation 

i s - i " 

This is the standard equation we have in principle to solve in any calculus of variations 

problem. In many cases, however, there may be constraints or relationships in the 

physics of the situation that need to be somehow included (eg boundary conditions) 

without which satisfactory solution of the equation may not be possible. For instance 

it may simply be insoluble (most likely when boundary conditions need to be imposed) 

or it may be that any arbitrary 2/(1) will satisfy (due to physical relationships between 

certain quantities that have not been built in). In such cases we apply the method 

of undetermined multipliers due to Lagrange. This method is generally applicable to 

variational-type problems whether involving ordinary minimisation or functional min-

imisation and proceeds as follows. We identify the constraints and write equations 

expressing those constraints. We then manipulate each of these constraint equations 

into the form that some expression is equal to zero. Clearly, if we now add this ex-

pression to the main variational expression the sum is still equal to zero. However, 

this would also be true if we added the constraint expression multiplied by any ar-

bitrary constant. So in general the solution requires the inclusion of this unknown 
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multiplier (commonly referred to as the Lagrange undetermined multiplier), one for 

each constraint. The resulting equation can then be solved as a purely mathematical 

exercise conhdent that any constraints and interrelationships are fully accounted for. 

The Lagrange multiplier(s) may then be determined at the end if desired, although in 

many cases it turns out not to be necessary. 

Strictly, in the case of the calculus of variations, we should say that we include the 

constraint with its Lagrange multiplier in the integral to be made stationary. That is, 

we write each constraint % as an integral over the same range (s) of the same variable (s) 

in the form 

/ Q = A;,, (2A.21) 
j XI 

where /ci is a constant. The differential with respect to e of this integral is then zero 

and so we can add the integral to the main variational equation (after multiplying by 

the Lagrange undetermined multiplier A )̂. The total integral to be made stationary 

would is then 

/
x2 , . 

+ (2A.22) 

The total variational equation with constraints included is then just (2A.9) with 7 as in 

(2A.22). The formal analysis proceeds just as before but with F replaced by F + AiQ, 

ultimately giving for the Euler-Lagrange equation in the presence of constraints 

d d / „ , \ d 
+ ( F + Y ^ A ^ c ^ ) - 0 . (2A.23) 

We note, however, that in certain cases we can write this in another, simpler way, as 

we shall see later. 

2A.3 Variational Notation 

There is an older more traditional notation for the calculus of variations involving 

the symbol 5. It is the one most commonly employed in practise in applications, 
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particularly in the theory of liquid crystals (at various length scales), and it is therefore 

the one we shall adopt. We shall now therefore deSne it in terms of the foregoing 

notation. The symbol is used to denote essentially what we have hitherto referred to 

as diH'erentiation with respect to the Auctuation parameter e. Instead of saying that 

the required condition is that 7 is stationary, we say tha t the 0/ 7 is zero. 

That is, 

(̂ 7 = 0, (2A.24) 

where 

51 
06 / 6=0 

(2A.25) 

is the variation o f f . So the symbol ^ when applied to the integral denotes differentiation 

with respect to the parameter 6 of the fluctuation term, evaluated at e = 0. Just aa 

before, e is not a function of the variable of integration and so 

y F(a;, y, y ' ) 0(3; = y y, y ' ) da;. 

where 

(fe / E=o \ ^ y & / 6=0 

Again, a; is not a function of c and so the meaning of is then 

We note that the total derivative c(y is 

, a y ^ a y ^ 
d i l x , e) — —— dx H — - — dt. 

03; ae 

Now z and e are independent variables, so 

y a y cfa; a y dc 

(Ze aa; & ae de' 

(2A.26) 

(2A.29) 
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So we see that (2A.28) is just the total diEerential c/F = (9^ /&)(=o of the function 

^"(2;, y(a;, e), y(a; , e)) at 6 = 0 with 6 considered as the only variable. That is, 

dFdY , OF dY' 

We note that in (2A.28) and (2A.31) terms appear in F and F ' of the same form as in 

the definition (2A.25) of ^7. So, using the notation consistently to mean the variation 

in some quantity, we can rewrite this as 

m-.y,y') = { § ) , j y + { § , ) ^ j r ' - pA.32) 

Now 6 = 0 is completely synonymous with saying Y = ^ so this simplifies to 

(^F = — + — (^y. (2A.33) 

But 

6Y = f—7—) de = 5y (2A.34) 
\ de J £=0 

so 

^ F a F 
(^F = ^ ^ (̂ 7/'. (2A.35) 

The variation in the dependent variable can then be defined severally as 

/ r / y \ i9y 
(̂ 1/ = ( -T" ) = 7̂(3;) (2A.36) 

\ oe / e=0 oc 

So we see that the in the dependent variable is essentially just the 

in it. As with the integrand F its variation can be considered to be just the total 
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differential (in this case dy(6)) with e considered as the only variable. The meaning of 

(5 '̂ is similarly defined as 

<9y' 
(̂ 2/' = (-7—) (2A.37) 

\ OE /e=o ae 

We also note, in passing, that this is identical to 
^((^2/) = ^ (2A.38) 

so that and ^ commute. The application of 6 to a quantity may be compared with 

df[a, 6, c , . . . ) = 7^ da H—^ db H—-— dc + • • • (2A.39) 
OG 00 OC 

and 

6, c, . . . ) ;% ^ & + . . . , (2A.40) 
00 00 ac 

where here takes its usual mathematical meaning as a small but non-inEnitessimal 

change. 

The notation can be thought of intuitively aa the total derivative (but using the 

same symbol as its counterpart for small non-inSnitessimal changes), except that it 

should be remembered that we are really differentiating with respect to the Euctuation 

parameter e only (ie, considering e to be the sole variable) and evaluating at e = 0. 

Normally, however, it can be used fairly simply and intuitively as a pseudo-differential 

operator with the usual properties of ^ in mathematics (but noting that it is exact). We 

just need to know in any given problem at hand what quantities involved are affected 

by a non-zero variation in the dependent variable y and thence suffer a non-vanishing 

variation themselves. This will be made clearer in the next section where we discuss 

some general classes of problems including that within which falls the elaboration 

employed in molecular field theory. 

96 



2A.4 Application to Multivariate Problems 

In this section we consider problems with multiple variables. To begin with we analyse 

the case where there is one independent variable and multiple dependent ones. Such a 

caae is well-illustrated by application of Hamilton's principle to obtain the Lagrangian 

equations of motion. The single independent variable (ie, the variable of integration) 

is the time, and the dependent variables are the %, the cartesian components of the 

particle positions. The stationary variational condition is 

^ 0 (2A.41) 
\ 06 / 6=0 \ GE / E=0 

and the integral to be made stationary is that given in (2A.2), where the Lagrangian 

is 

(2A.42) 

and T here is the kinetic energy. Now 51 is 

y = y (2A.43) 

and 5L is 

^ ^ (2A.44) 

This we may simplify by considering for the moment just the terms in 5qi. From 

section 2A.3 (equation (2A.38)) we have that d and commute. Alternatively we can 

see this by writing 

% + % ^ (2A.45) 

from which we obtain 

% = - %), 

6% = (2A.46) 
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In any cage each of the terms may be written 

r % 
y % 

which we can integrate by parts 

/ ^ f ^ ^ (2A.47) 

% ^ 
r 

2̂ (2 d r a ^ i 
(2A.48) 

V(i 

Now since (i and 2̂ &re the end-points of integration a t which, by dehnition, any 

variations are zero, the first term on the right hand side of (2A.48) must vanish. Then 

all the terms (integrals) involving 6qi take the form of the second term, that is, 

/ ^ (ft = 
t2 d 

(ft 
(2A.49) 

The variational equation 

L E i w , 
dt = 0 (2A.50) 

is rewritten by taking the negative as 

t2 

E 
S i , 9 i , . 
n o • dt = 0. (2A.51) 

We then substitute for the — (8Z,/%) integrals from (2A.49) giving 

^ r d / gZ, \ , 

tl 
dt = 0, (2A.52) 

which simplifies to 

az. 
dt — 0. (2A.53) 

This equation must hold for any arbitrary variation 6% in any of the %. It turns out 

that this requires each individual term in the summation over i to vanish. In other 

words we must have 

d az, 
0 Vz, (2A.54) 
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thus giving rise to a set of coupled second order diEerential equations—a set of Euler-

Lagrange equations. In this speciGc and very important case these equations are re-

ferred to as the Lagrangian equations of motion. 

Next, we consider the general case where there are multiple variables of integration 

and one dependent variable. The stationary variational condition is (2A.41) as before, 

but 51 is now 

{3/'}) = y {%/'}) (2A.55) 

and 5F is 

6F({];}, {/, {y}) = ^ ^ ^ (2A.56) 

where and z labels the independent variables. This we may simplify by 

considering for the moment just the terms in Again we recall that d and commute: 

Each of the terms is then written 

which we integrate by parts 

7 (̂ 3/ 
{3:}2 

(2A.57) 

(2A.58) 

(2A.59) 
Wi 

Again, since and {a;}^ are the end-points of integration the 6rst term on the right 

hand side of (2A.59) vanishes and so all the integrals involving the take the form 

f 7 ^ 
(f 

Ml c(a;i 
(̂ 2/ (f{a;}. (2A.60) 
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We then substitute (2A.60) into the variational equation 

giving 

{i} 

{a:}; 

Wz r g F 1 
(2A.61) 

{zli 
^ y - T . i ^ J y % y v ] 4 4 = 0 (2A.62) 

which simplifies to 

(f / g F x a F a / or \ 

Ml 9?/ 
^{a;} = 0. (2A.63) 

This equation must hold for any arbitrary Huctuation and so in the absence of any 

constraints the Euler-Lagrange equation would be the condition that the remaining 

factor in the integrand vanish. That is, 

(2A.64) 
/ a?/ 

In the presence of constraints, each constraint j is written in the form (2A.21) and the 

integral to be made stationary is of the form (2A.22), namely in this caae 

/ (^({3:}, 3/, {2/'}) + ^ AjCj) d{:r}. (2A.65) 
/ M l ^ T ^ 

At this point we could simply write the Euler-Lagrange equation in the earlier form 

(2A.23), substituting F -\- for F. However, if the constraints 

(2A.66) 6 / Cj = / 6cj c({2;} = 0 

can be written in the form 

gj (̂ 2/ c({a;} = 0 (2A.67) 

(where then equation (2A.61) becomes 

a F 

81/ 
^QF dF ! r 1 ,r 1 n 

{1} 
(2A.68) 
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givmg 

+ 4 4 = 0, (2A,69) 

which simplifies to 

[ E s - y - a ^ - E V , ] ^ . d W = o, (2A.70) 

The Euler-Lagrange equation is then 

( 2 . 7 1 , 

It turns out that this method of including constraints is the one that is more useful for 

our purposes and the one employed in molecular held theory. 

Finally we note that in the most general multivariate case we could possibly have 

(multiple independent and dependent variables), we obtain a set of Euler-Lagrange 

equations of the form (2A.64) or (2A.71), one for each dependent variable. 

2A.5 Application to Distribution Functions in Statistical Mechanics 

Apart from the formal underlying basis of theoretical mechanics/electromagnetics we 

can also apply the same mathematical technique in classical statistical mechanics to 

obtain the equilibrium distribution functions of systems. In fact, this application turns 

out to be just a limiting caae of the many independent variable, single dependent vari-

able case already discussed. That is, the equilibrium distribution of a system over the 

degrees of freedom available to it is by definition that which minimises the thermody-

namic potential function. In the familiar canonical ensemble this is the Helmholtz free 

energy. This suggests that we should make the free energy stationary with respect to 

Suctuations in the distribution function. To do this, we must be able to write the free 

energy in such a way as to conform to the structure of the problem already given. In 

a system with one degree of freedom we would have to be able to write the free energy 
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in the form (2A.1) with %/ = being the distribution function over the single degree 

of freedom a;. More generally, in a system with multiple degrees of freedom {a;} we 

would have to be able to write the free energy in the form (2A.3) with the distribution 

function now being y = y{x}, a many-body distribution. Tha t this is always possible 

can be seen as follows. The bulk internal energy, [/, is 

u —< u{x^ ^p{x}i 

where P{x} is the many-body distribution function, and the entropy is 

S = -NAks [ P{x}lnP{x} d{x}. 

Thus the Helmholtz free energy is 

(2A.72) 

(2A.73) 

A = [/ 4- y f {a;} In f {a;} (2A.74) 

However, since (7 is averaged over f {a;}, it is not a function of the variables of in-

tegration. In addition, Ag and T are not functions of the degrees of freedom either. 

Therefore the free energy can be written as a single integral 

7 = 
Ml 

+ A;gTf{a;}lnf{a;} Gg{a:}, (2A.75) 

where 

X 
{z}i 

(2A.76) 

Alternatively we can use the fact that the definition of < U{x} >p{x}, 

(2A.77) 

involves integration over the same ranges of the same variables, and write the free 

energy as 

A = / |[/{a;}f{a;} + ABTP{a;}lnf{a;}) (f{a;}. (2A.78) 

While the latter would appear to be the most straightforward, both manipulations will 

turn out to be useful. 
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We can obtain the Euler-Lagrange equation in this instance as follows (although as we 

shall see later this is not actually necessary in this class of problems). The stationary 

variational condition is, of course, (2A.41) as before. The integrand in (2A.75) is thus 

identihed with that in the general dehnition of the problem given in (2A.3), and so in 

this case we would have in principle 

F = F({3;} , f{a;} ,{r}) . (2A.79) 

Then 51 would be 

y f ({3;}, f {3;}, ( f ' } ) d W = y f {2;}, { f ' } ) (2A.80) 

with as 

-P{i}. { f } ) = spm + Z ^ PA.s i ) 

where and % labels the degrees of freedom. The analysis would then 

proceed as for the many independent variable case with f {z} replacing ?/, {^^{3;}} 

replacing and a single constraint, namely that the distribution be normalised. 

The latter is expressed in the form (2A.21) simply as 

f {a;} = /c, (2A.82) 

where A; = 1. In other words the variation (2A.66,2A.67) in the integral must be zero 

6 = 0, (2A.83) 

where Cj = c = f {2;} and = s = 1. This would then be added to the main variational 

equation, inserting the Lagrange multiplier A, 

y F + A 6 y f d{a;} - 0. (2A.84) 

The integral (2A.75) to be made stationary is then 

7 = / ( F + A f ) (2A.85) 
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where F + Af now replaces F . The variational condition (2A.41) is then 

+ A f ) + A = 0, (2A.86) 

which ultimately becomes the same as the analogue of (2A.62) but modified with the 

constraint as 

givmg 

/"Nz d / 8 F \ 8 F 1 
[ Z ^ 4 : r } = 0. (2A.88) 

The Euler-Lagrange equation with the constraint would then be obtained as 

= (2A.89) 

However, the analysis in the case where the integral to be made stationary is the 

free energy simplifies from the completely general formal case, since the integrand 

F is not explicitly a function of the gradients {P'} of the distribution, and so the 

partial derivatives with respect to them vanish. Therefore the Euler-Lagrange equation 

simplifies to 

J ^ + A = 0. (2A.90) 

Indeed, the situation simplifies even further in this class of problems since, as we men-

tioned earlier, proceeding with this analysis all the way to the Euler-Lagrange equation 

is not actually necessary. Fortunately, we are able to obtain the distribution function in 

terms of relationships between physically meaningful quantities without having to cast 

the problem in its most general form and then solve the resulting differential equation 

explicitly. 

The crucial feature in the statistical physics that enables us to obtain the distribution 

with such ease is the known relationship between the internal energy contribution to 
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the &ee energy and the distribution function we are trying to find. This may either 

be a direct relationship, or, in certain approximations of the statistical mechanics, 

through some parameter relating to the system which is itself an average over the 

distribution, thereby again providing the required relationship, albeit indirectly. It is 

the latter situation which obtains in the the molecular field theory of nematics, and the 

distribution function-related parameter from which the internal energy is constructed 

is the order parameter. We note that in such approximate treatments there may be 

more than one parameter, depending on the level of the theory. 

In the general case of the many body distribution the analysis proceeds as follows. The 

free energy is [/ — TS" where is given by (2A.72) and 5" is given by (2A.73). If we 

write the free energy first of all as in (2A.78) then 

(̂ 7 = 6A = y ^ [/{z} {a;} + 6 [ f {a;} In P{T}] ) 

[/{a;} M + AgT [ {a;} I n f {z} + f {a;} ( I n f {a;}) ] ) 

= y ^ {a;} + AaT [ {a:} In f {a;}) + {z} ] ) d{a;}. (2A.91) 

We now take account of the constraint 

y f {a;} (̂ {a;} = 1, (2A.92) 

which we write as, 

f {3:} c({a;} = 0 (2A.93) 

to give 

[/{a;} {a;} + /jgT [ {a;} I n f {a;}) + {a;} ] ^ o({a;} + A f {3:} = 0, 

(2A.94) 

which reduces to 

[/{a;} + [ In f {a;}) + 1 ] + A ) {z} d{a;} = 0. (2A.95) 
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This has to be true for any arbitrary {a;} so we must have 

[/{3:} + A : g T [ l n f W ) + l ] + A = 0, (2A.96) 

which we solve to obtain the distribution as 

f {a:} = exp [ -([/{a;} + A)/A;gT - 1 ]. (2A.97) 

But this is just the Boltzmann distribution 

f {z} = exp ( —[/{zj/ZcgT) exp (— A/AB?" — 1) oc exp ( —[/{a;}/A:g!r) (2A.( 

if we identify the constant of proportionality as the normalising inverse partition func-

tion. That is, 

f {z} = exp ( ), (2A.99) 

where 

Z-^ = e x p ( - A / A ; B T - l ) . (2A.100) 

In this case the variational analysis has not afforded us anything other than what we 

already know—that the distribution P{x} over the states {a:} is just the Boltzmann 

distribution for the corresponding energies U{x}. This situation changes, however, 

in approximations of the statistical mechanics in which we are able to construct 

in terms of some parameter(s) which are themselves averages over the distribution 

function, rather than in terms of the distribution directly. In these cases we obtain an 

explicit form for the function U{x] (where {x} may now represent one or more degrees 

of freedom) in terms of the parameters and their non-ensemble averaged counterparts. 

We shall now demonstrate how this comes about. We imagine that there is some 

function the ensemble average of which is p (or in general and where 

z labels the functions and corresponding parameters). We assume that the energy 

can be written as some power of p for which the most general expression would be 

(where o is an arbitrary coefficient) or, for more than one parameter, Of 

course, the contribution from each parameter might be better represented by a power 
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series, rather than a single term of given order, but that does not affect the essentials 

of the analysis presented here. 

Staying with a single parameter p for the moment, we see t h a t if the energy is other than 

linear in the parameter then we are unable to combine energy and entropy integrals in 

the straightforward manner of (2A.78). Instead, the integral to be made stationary can 

be made to conform to the formal definition by integrating itself and renormalising 

as in (2A.75). However, once we have established that the free energy can be written 

in this way, the fact that this integral is equal to the free energy which is equal to the 

sum of two separate terms, and that is distributive over addition means that we may 

write 

- 7 6 ^ 

= o' [(p)"] + [ f {3;} I n f {3;}] (̂ {2;} (2A.101) 

= o' M + AgT" y [1 + In f {a;}] d{a;}. (2A.102) 

The fact that we do not yet have this expression in the form of a single integral is not, in 

itself, critical. The feature that is critical in these analyses, however, is having the hnal 

equation for the variation in the quantity (here the free energy) as a single integral. 

Only then can we factor out the fluctuation in the distribution from the integrand and 

assert that the remainder vanishes to obtain the distribution, and thence the energy 

function. To achieve this, we invoke the dehnition of p in terms of the distribution 

function 

p = / p{2;} f {3;} (2A.103) 

which implies that 

^p = {z} (2A.104) 
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Thus we may write 

{z} + AgT[1 + In f {a;}] {2;} ) ^{2;} = 0, (2A.105) 

where o = o'n. We now take into account the constraint that the distribution is 

normalised, 

y aP{a;} = 0, (2A.106) 

which we add to the equation inserting the Lagrange multiplier A to give 

+ + + (2A.107) 

The stationary variational condition is then 

( [l + In f {a;}] + A ) {a;} d{a;} = 0, (2A.108) 

which implies 

op""^p{a;} + A:BT'[l + lnf{a;}] + A = : 0 , (2A.109) 

solution of which yields 

f {a;} = e x p ( — e x p ( — 1 — A/ZzBT). (2A.110) 

If we identify the constant of proportionality in the Boltzmann distribution, as 

= e x p ( - l - A/AgT) (2A.111) 

then the energy function in the Boltzmann factor is 

[/{a;} = op""^p{a;}. (2A.112) 

Thus the variational analysis has given us the energy of a state as a function of the 

degree(s) of freedom of the system. 
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In the case where multiple parameters are taken to be important in determining the 

bulk thermodynamic energy, the analysis is the same except that we now have 

(2A.113) 

where = a-nj. Then for each 5p^ we have 

= y {a;} d{a;} (2A.114) 

so that 

(2A.115) 

i 

This equation for <̂ (7 and the constraint equation are then combined with the entropy 

term integral to give 

/ ( ^ O i P r ' " ^ P i M + A:gr[l + l n f M ] + A ) 6 P M d { a : } = 0. (2A.116) 
i 

This implies 

+ A;gT[l + I n f M ] + A = 0, (2A.117) 
i 

from which we obtain the distribution as 

f{a;} = exp ^ e x p ( - l - A/AjgT) (2A.118) 
i 

and the energy function as 

= (2A.119) 

A similar kind of analysis obtains whether we consider many parameters to be impor-

tant taken to the same or differing order, or one parameter in a power series or some 

combination of all of these. 
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In the molecular Aeld theory of nematics the parameters are the order parameters, 

functions of the angular variables of interest averaged over the corresponding distri-

bution function. In the case of uniaxial phases of uniaxial particles, we have only one 

degree of freedom, /?, the polar angle. The angular functions are then the f i (cos/ ) ) 

and the parameters are the averages of these, the f According to de Gennes [5] the 

orientational conHgurational internal energy of a liquid crystal is quadratic in the order 

parameter (s), and so we take M = 2 Vz. 

In the variational derivation of the Maier-Saupe theory, the second rank order param-

eter, f g , is taken to predominate the internal energy. The coefficient we have been 

calling o' is written as —e/2 so that with n = 2 we have a = o'M = — e. The distribution, 

which we now write as is then 

- exp (ef2f2(cos/))/A;gT) exp ( - 1 - A/A;gT), (2A.120) 

that is, 

/(/)) - Z-^exp(ep2f2(cos^)/A;gr) (2A.121) 

with 

= exp ( - 1 - A/AgT). (2A.122) 

The energy function here is the rotational analogue of the potential of mean force, that 

is, the o/ meazi 

[/(/)) = -6p2f2(cos/)) , (2A.123) 

which is the Maier-Saupe result. 

A more general variational derivation is obtained by considering all the f f , to be 

important in principle in determining the internal energy. In this case we have 

a[ = —e^/2 and o, = a[n = — cl, thus giving the distribution as 

/(,9) = exp e x p ( - l - A / A ; g T ) 
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= Z - ' e x p (2A.124) 

The potential of mean torque is then 

^(/^) = - ^ 6 ^ P ^ f ^ ( c o s / ; ) . (2A.125) 
L 

So we see that the Maier-Saupe result is really a limiting case in which we take only 

the first term in the generalised molecular Reld theory potential. 

111 ^ 



References 

[1] G. R. Luckhurst in TAe MoZecuZar 0/ JLzgMW Cr^a(ok, edited by G. R. 

Luckhurst and G. W. Gray, Academic Press, London, Chapter 3 (1979). 

[2] R. L. Humphries, P. G. James and G. R. Luckhurst, J . CAem. 6'oc. faracfo?/ (Zi-ana. 

77, 68, 1031 (1972). 

[3] T. D. Schultz in edited by G. H. Brown and M. M. Labes, Gordon 

and Breach, p. 263 (1972). 

[4] G. Zannoni, PhD thesis. University of Southampton (1975). 

[5] P. G. de Gennes and J. Prost, TAe f Ag/azca 0/ Iz'gwzcf second edition. 

Clarendon Press, Oxford (1993). 

[6] A. Wulf, J. Chem. Phys., 55, 4512 (1971). 

[7] L. Shen, H. K. Sim, Y. M. Shih and C.-W. Woo, Mol. Cryst. Liq. Cryst., 39, 229 

(1977); M. A. Lee and C.-W. Woo, A, 16, 750 (1977); V. T. Rajan and 

C.-W. Woo, zAzW. 17, 382 (1978). 

[8] J. P. Hansen and I. R. McDonald, TAeon/ o/j'zmp/e MttzcZa, Academic Press (1976). 

[9] W. Maier and A. Saupe, Z. Naturforsch., 13a, 564 (1958). 

[10] W. Maier and A. Saupe, Z. 14a, 882 (1959). 

[11] W. Maier and A. Saupe, Z. 15a, 287 (1960). 

[12] L. Neel, 203, 304 (1936). 

[13] J. S. Smart, Am. J. Phys., 23, 356 (1955). 

[14] S. J. Roskilly, PhD Thesis, University of Southampton (1994). 

[15] P. A. Lebwohl and G. Lasher, Phys. Rev. A., 6, 426 (1972). 

112 



[16] See, for example, G. R. Luckhurst in TAe MoJectfZar f 0/ Cr̂ /ĝ oZg, 
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Chapter 3: Electric Field Polarisation of Nematic 

Liquid Crystals: A Molecular Field Theory 

3.1 Aims and Rationale 

In the absence of external fields, a nematic liquid crystal is a non-polar, non-ferroelectric 

phaae; however, there is interest in making polarised systems because of their potential 

non-linear optical properties. One way that haa been conceived for achieving this is 

to polarise (or pole) a nematic and then lower the temperature into a glassy nematic 

phase, hoping that the induced polarisation is preserved. It turns out that a nematic 

is more readily polarised by an electric field than a normal isotropic liquid [1], which 

would seem to confer a deAnite advantage on the technique. A polarised nematic glass 

is obtained via application of a static external held to a nematic liquid crystal polymer; 

with the field still being applied, the temperature is then lowered below that of its glass 

transition, 

The aim of this study is to quantify the benefit of poling a nematic in terms of the long 

range polar order induced in the liquid crystal phase as a function of the electric held 

strength at a specified temperature. We would like to estimate the poling fields required 

and to investigate what factors infiuence the pofing of nematics at a molecular level. 

The relevant choice of temperature is the temperature at which the induced 

polarisation (and nematic order) becomes frozen into the glass. There have been a 

number of previous attempts to develop a theory for this; the most complete of these 

appears to be that of Picken and van der Vorst [2], the Maier-Saupe-van der Vorst-

Picken (MSVP) theory. Their theory, however, has certain deficiencies, as we shall see 

and we seek to rectify these here. 
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3.2 Formal Development of the Theory 

In Chapter 2 we obtained the potential of mean torque for a uniaxial nematic in the 

absence of external fields. We must now make this complete in the context of the 

problem at hand and introduce the terms in the energy which arise from the direct 

interaction of the Eeld with the test molecule. 

The energy of interaction of the molecule with the electric field has two contributions. 

First, we have an energy resulting from the fact that the molecule has an anisotopic 

polarisability, hyperpolarisability, second hyperpolarisability and so on. The electric 

Seld interacts with these to induce electrical multipole moments which then interact 

with the Seld, giving rise to an energy. Secondly, there is also an energy coming 

from the interaction of the electric field with the permanent multipole moments of 

the molecule that result from the unevenness (anisotropy) in the molecular charge 

distribution. Assuming that the electric field-induced dipole interaction is dominant 

then the induction energy is 

[/ind = - A a E ^ f 2 ( c o s ^ ) - A/3E^f3(cos^) - A'yE^f^(coS;g) - . . . , (3.1) 

where ^ is the magnitude of the electric field, the angular dependence of the anisotropic 

potential energy terms being represented by the corresponding Legendre polynomials. 

Here A a is the anisotropy in the polarisability, A/) is that in the first hyperpolarisabil-

ity, A7 is that in the second hyperpolarisability and so on. 

The energy due to the interaction of the permanent electrical moments of the molecule 

with the field is given by the sum of contributions from each of the electrical multipoles. 

That is, 

[/perm = -; /Efi(cOS/)) - ^^^^^(cOS/)) - 0^^f3(cOS/)) . . . , (3.2) 

where the electric charge dipole is 

// = (3.3) 
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(% here being the charge at a distance from some point of origin %), the quadrupole 

is 

Q = (3.4) 

the octopole is 

O = ^ (3.5) 

and so on. The total energy of interaction of the molecule with the electric held is then 

Uelec — ^ind "i" ̂ permi (3.6) 

which we can rewrite in a simple general form as 

C/eiec = - ^ a ; ^ E ^ f L ( c o s / ) ) . (3.7) 
L 

Thus it can be seen that the permanent electric dipole alone contributes to the 

electric quadrupole and the polarisability anisotropy are both included in the coefR-

cient 372 multiplying the quadratic term, the octopole and the hrst hyperpolarisabihty 

anisotropy contribute to 2:3 multiplying the cubic term, and so on. 

Combining this with the general result derived in Chapter 2 (with allowance for non-

zero odd rank order parameters) the complete, formally exact expression for the po-

tential of mean torque for a nematic monodomain in the presence of a uniform static 

electric held is then 

^(/^) = - Z %2^fLf^(cos^) - ^ ^/z,P^f;,(cos^) - ^ a ; ^ E ^ f ^ ( c o s / ) ) . (3.8) 
L even L odd L 

The expansion (3.8) is believed to converge quite rapidly except for the molecular held 

summations in the high order limit, since, except in the limit of high order, the order 

parameters normally diminish rapidly with increasing rank. If we assume, in a manner 

similar to the Maier-Saupe theory, that to a good approximation the summations may 

be truncated at the hrst term then equation (3.8) becomes 

[/(/)) = -{e2f2f2(cos^) + eiPif i (cos/)) + / ,^f i (cos/?)}, (3.9) 
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which is the potential of mean torque we have used and where the i/z, are now the 

by convention. We note that if the potential of mean torque (in the absence of a 

held but acknowledging the existence of odd rank order parameters) is obtained from 

a variational analysis then eg and are just arbitrary coefhcients bearing no definite 

relationship to the molecular structure. However, clearly there physically must be a 

relationship and we need to understand the molecular factors determining their values. 

In the case of the coelEcient 62 of the second rank term tha t appears in the Maier-Saupe 

theory, it is understood to reHect the anisotropy of the molecule or, more strictly, the 

anisotropy in the intermolecular potential. In other words eg is should contain contri-

butions from all anisotropic intermolecular interactions that are quadrupolar (second 

rank) in form. Similarly, ei will contain contributions from all anisotropic interactions 

of hrst rank polar (ie, dipolar) character, whether this be the hrst moment of the 

charge distribution (electric dipole) or of the mass distribution (shape dipole) or some 

combination of the these. 

3.3 Methodological Application 

In this section we apply the theoretical development given in section 3.2 and discuss 

the methodology we have employed, comparing it to the previous theoretical studies 

undertaken by Picken and van der Vorst [2]. To do this, let us recapitulate briefly 

that which we require from the Maier-Saupe theory and extend it to the problem at 

hand. As we have already seen (see Chapter 2) the potential of mean torque of the 

Maier-Saupe theory for a molecule of Doo/. symmetry in a necessarily non-polar phase 

is 

[/(/)) = -€2p2f2(cOS/;). (3.10) 

According to the Maier-Saupe theory the system undergoes a hrst order transition 

between the nematic and isotropic phases. The transition temperature is related to 
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the intrinsic strength parameter 62 by 

% = 0.2203 62/A;g. (3.11) 

In the poling experiment, the molecule is now of (rather than Doo/i) symmetry; to 

maximise the polarisation achieved it has a substantial electrical dipole moment. To 

allow for the inHuence of the poling held van der Vorst and Picken [2] added two terms 

to this potential; these were 

%ec = — {/ii?Pi(cos/3) + - A a E ^ P2{cos P)}, (3.12) 

where Aa is the anisotropy in the molecular polarisability (a|| — aj_), || and J_ here 

referring to parallel and perpendicular to the molecular symmetry axes (not the direc-

tor). The effect of the electric field in inducing polar order is rejected predominantly 

by the hrst rank order parameter, f %. The existence of this non-vanishing order pa-

rameter generates a polar molecular held to which the molecule can couple; to leading 

order within the molecular held approximation this demands the addition of the term 

- 6 i f i f i ( c o s / ) ) , (3.13) 

to the total potential of mean torque. 

In fact, even in zero field this term should be included for a system of particles with 

Cooy symmetry [3]. The potential of mean torque then takes the form 

[ / ( ^ ) = - { 6 2 f 2 f 2 ( c O S / ) ) + 6 i P i f i ( c O S / ) ) } . (3.14) 

The molecular field coefhcients (ei and 62) are defined to be positive. The positive 

sense of the z axis (director) is then defined as that of the polarisation so that the 

polar order parameter P i is necessarily positive. Molecular field calculations [3] based 

on this potential show that the system may exhibit a polar nematic (jVp) phase ( f 1 ̂  

0 ,^2 7̂  0), a non-polar nematic (A )̂ phase (Pi =0,7^2 ^ 0) and an isotropic phase 

(Pi = 0, P2 = 0). Whether it exhibits all these phases, and at what temperatures 

the transitions between them occur, is determined by the ratio €1/62, that is, on the 
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relative importance of the Erst rank to the second rank term in the potential for the 

material. Depending on this ratio the system will undergo a second order transition 

from the polar to the non-polar nematic phase followed by a hrst order transition to 

the isotropic phaae at a higher temperature. As the relative importance of the first 

rank term is increased the temperature of the jVp — jV transition increases towards that 

of the jV — 7 transition, so that the non-polar nematic range is progressively reduced. 

For sufBciently large values of ei/62 the transition from the polar nematic overtakes the 

— 7 transition and there is a hrst order transition directly from the polar nematic to 

the isotropic phase [3]. In modelling the behaviour of real nematics, however, the polar 

molecular field term is usually ignored, even if (as is the case with most real nematics) 

the molecules possess a significant dipole moment. This neglect can be justiEed for two 

main reasons, to which we have already alluded in Chapter 2. One is that in a molecular 

Held analysis starting from a pair potential the intermolecular vector is usually aasumed 

to have a spherically symmetric probability density distribution function. As a direct 

result of the symmetry assumed for the distribution of the intermolecular vector all 

electrostatic contributions to the single particle potential necessarily vanish [4]. In 

real nematics, to be sure, the intermolecular vector has an anisotropic distribution and 

so electrostatic contributions will make a contribution [5]. One way in which they 

can be accounted for is to employ a variational derivation of the potential of mean 

torque [6]. Then provided that the order parameters f 1 and f 2 provide the dominant 

contributions to the anisotropic internal potential energy, the potential of mean torque 

is that given in (3.14) but the molecular significance of Ci and 62 is lost. The other main 

reason why the polar molecular Aeld is often ignored is that no polar nematic phase 

has been observed for real nematics; the theoretical effect of the dipolar contribution 

only occurs at temperatures outside their nematic range. This observation enables us 

to place an upper limit on the ratio 61/cg, ag we shall see. 

While the foregoing observation implies that, within molecular field theory, the dipo-

lar contribution may be safely ignored in the absence of a poling field the situation 

changes dramatically when an electric field is applied. This is due to the lowering of 
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the symmetry of the phase which inevitably results from the field-induced generation 

of polar order (see previous discussion in section 2.8.2). The polar molecular Eeld con-

tribution is necessarily non-vanishing due to the non-zero value of f i induced by the 

applied held. Formally, therefore, it is incorrect to exclude the term in f % from the 

single molecule potential as van der Vorst and Picken have done [2]. At a pragmatic 

level, however, their neglect of its eEects may be justiEable. To see if this is so, we 

have investigated the electric field dependence of the order parameters P i ,P2 and P3. 

We have included the evaluation of the third rank order parameter in the calculations 

because it is related to the non-linear optical coefRcient and is therefore important for 

one of the main potential applications of these polarised systems. The total potential 

of mean torque which we have employed (and which we have already derived in a more 

formal way in section 3.2) is 

[/(/)) = -{e2f2-F2(cos/)) + e i f i f i ( cos / ) ) / /Efi(cos/))}. (3.15) 

The quadratic term in the electric held (see equation (3.8)), which van der Vorst 

and Picken chose to represent via the polarisability only, excluding the quadrupolar 

contribution [2], has been suppressed. This simplification is justified because the term 

does not contribute significantly to the polarisation of the nematic. It is only important 

when calculating the coefiRcient of f2(cos/)), and hence which does not directly 

infiuence on f 1. 

3.4 The Free Energy 

The orientational part of the configurational Helmholtz free energy of the system may 

be obtained by the means described in Chapter2. In this case, we have that the internal 

energy is 

(7 = / e i f i f i ( c o s ^ ) €2^*2^2 (cos ^ ) \ 
Z \ / /(p) 

= ^ ((^1-^l-Fl(COS^))y^^^ + (62^2^^(008 
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(3.16) 

Thus the free energy is given by 

a. = —n^u — n^kbtlxiz 

= ^ ( e i f ^ + egfg) - AAyiABTlnZ, (3.17) 

with Z ag 

Z = /exp^{62f2f2(cos,9) + (eif i+/ . iE)fi(coS;^)}/A:g!rj sin^d/). (3.18) 

3.5 Evaluating the Orientational Order Parameters 

The order parameters for any given temperature and Reld strength were obtained by 

minimising the molar orientational Helmholtz free energy 

/l = 7 V ^ ( 6 i P i + 6 2 f 2 ) / 2 - E r i n Z (3.19) 

with respect to the two degrees of freedom of the system, namely the two order param-

eters f 1 and f 2- Having obtained the order parameters tha t occur in the potential of 

mean torque (and hence the free energy), the third rank order parameter wag obtained 

from the distribution function as 

TT 
f a = / f^(cos/?) exp(-[/(/))/A:gr) sin/^d^, (3.20) 

Jo 

with [/(/)) is as given in equation (3.15). 

3.6 Results and Discussion 

In order to investigate the signihcance of the polar molecular field we have calculated 

the electric field dependence of the order parameters employing the same choice of 
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parameters used in the original calculation by Picken and van der Vorst [2]. Thus the 

temperature of the system was set to 380 which is taken to be the glass transition 

temperature, while the jV — 7 transition temperature, waa set to either 420 ^ or 

340 k so that the calculations would correspond to an initially nematic or initially 

isotropic phase, respectively. The coefBcient, 62 was calculated from the transition 

temperatures using the Maier-Saupe result given in Section 2.8.4. Realistic values of 

El were obtained as follows. Since the molecular held theory baaed on the potential of 

mean torque given in (3.14) reveals that is determined by the ratio €1/62 [7, 3], 

the value of ei could be found if this temperature were known. No polar nematics have 

ever been observed, however, and so we are only able to place an upper limit on the 

reduced temperature for this transition and hence on the ratio 61/62. Assuming the 

nematic range to be less than 100 TiT the reduced transition temperature will be ca. 

0.76 or higher based on = 420 A'; consequently we estimate that 61/(2 < ca. 0.2. 

We have performed the calculations for ei/62 equal to the upper limit, 0.2, and also 

half this value, namely 0.1. The range of electric helds employed waa that used when 

poling liquid crystal side chain polymers, namely 0—10® Vm~^ [2], and the dipole 

moment was set to 7 D, an appropriate value for such materials [2]. 

We begin the discussion of our results with the effect of the field on the non-polar 

order parameter, ^2- Figure 3.1 shows the electric field dependence of ^2 for 

initially nematic sample, for three values of 61/62, namely, 0.2,0.1 and 0. In all cases, 

^2 increases with the field strength although its response is rather weak. With 61/62 

set to zero the calculations essentially reproduce the results of the MSVP theory [2] 

which implies that the polarisability contribution to the quadratic term plays only a 

minor role. For 61/62 ^ 0, ^2 grows more rapidly with increasingly field, the rate of 

increase being higher the greater this ratio. The effect, however, is relatively small and 

the interpretation of its origin subtle. Even though the field induced growth of polar 

order stabilises molecular orientations less than 7r/2 it destabilises those greater than 

this by the same amount (see equation (3.15)) so the overall efiFect on the potential of 

mean torque is zero. However, the net efiFect on the distribution function favours those 
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Figure 3 J ; The dependence of tAe non-po7ar order parameter, fg , on the eJectdc feM, 

Ar tizree values of tAe ratio ei/ez of 0 C - - j, 0.1 - - j and 0.2 A)r a nematogen 

with itg AT — 7 transition above tie giaas transition. 

80 100 

E/10^ Vm-' 
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figure 3.2; The dependence of the non-po]ar order parameter, Pg, on the electric ^eM, 

Ar three vaJues of the ratio ei/cg of 0 C- -j, 0.1 - - j and 0.2 C—) Ar a nematogen 

with its TV — f transition beiow the gZaas transition. 

100 

E/10^ V m " 

124 



orientations parallel to the axis of polarisation more than those which are antiparallel, 

so that there is a small increase in f 2, the rate of which depends on 61/62. For the 

realistic values of this ratio which we have employed the polar molecular Eeld in the 

potential of mean torque has a clear but only minor effect on the response of the second 

rank order parameter to the electric held when the system is already ordered. Prom a 

more formal point of view the initial response of f 2 is seen to be a second order effect, 

which can be seen by expanding the expression for ^2 [7] (see also Appendix 3A). 

This is not the case, however, when the system is initially isotropic as can be seen 

in figure 3.2. For small fields the induced polar order is very small, a result that 

can be shown, via a perturbation analysis, to have its origins in the orthogonality 

of fi(coS;8) and f2(cos/)) (see Appendix 3A) [7]. Around a certain threshold held, 

however, there is a dramatic acceleration in the rate of increase of f g- This behaviour 

is attributed to a held induced increase in so that as 7 ^ / exceeds 2^ the system 

becomes progressively more nematic. This effect leads to a much larger influence of 

the held and of the value of 61/62 on the second rank order parameter. 

We now consider the ability of the polar molecular held to aid in the induction of 

the odd rank order parameters f i and f a by an electric field, begining with f i . 

Figure 3.3 shows the numerically estimated field dependence for a system initially in 

its nematic phase for the same values of 61/62 as before. In all cases, f i increases, 

initially linearly, with the field. The initial response is expected from a perturbation 

analysis (see Appendix 3A) [7]. With further increase in the field P i tends to an upper 

limiting value of ca. 0.9 which is independent of 61/62- This ratio does have a large 

influence on the initial rate of growth of pi with the field, however. Thus, the field at 

which f 1 reaches half its limiting value decreases from 15.0 x 10^ Vm"^ to 5.0 x 10^ 

Vm"^ as 61/62 increases from 0 through 0.1 to 0.2. This reduction in the field required 

to generate a given polar order, caused by the polar molecular held, has beneficial 

implications for the use of nematics in non-linear optics which have thus so far been 

overlooked, at least in their production. The practical benefit here is the lowering of 

the intensity of the electric field required to generate essentially limiting polar order. 
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figure 3.3; The eiecWc heM depecdecce of the &st raojc poiar order parameter, P i , 

caJcidated Ar three vaJues of the ratio ei/cg of 0 (- - - 0.1 j and 0.2 (—j ibr a 

nematogen with its - 7 tranaition above the giaaa transition. 

80 100 
E/10^ Vm-^ 
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Figure 3.4; T6e electric feM dependence of tie ^rst ran^k poJar order parameter, Pi, 

caJcWated &r three vaiues of the ratio ei/e^ of 0 ^ ' A 0 1 f 0 2 ) for a 

nematogen with its TV — f transition beiow the giagg tranqftfnn. 

80 100 

E/10^ Vm-: 
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A similar inSuence of ci/eg is predicted for an initially isotropic system, aa we see 

in Rgure 3.4. At relatively low electric fields, since we are considering only a small 

perturbation to the isotropic phaae, the ability of the electric Held to induce polar 

order is weak. Even though the small applied Seld is assisted by a polar molecular field, 

the latter is also weak because it is a feedback mechanism generated by the external 

field itself, and so the effect of the electric field is relatively insensitive to Ci/e2. As 

we go to higher fields, however, a threshold field is reached where 7^^/ exceeds Ir/gjv; 

pi then grows rapidly with increasing field. The threshold field is found to decrease 

with increasing ei/eg; the threshold decreases from 12 x 10^ Vm"^ through 10 x 10^ 

Vm~^ to 7 X 10^ Vm~^ as we increase the ratio from 0 through 0.1 to 0.2. As for the 

initially nematic system, P i reaches a plateau at a limiting value of ca. 0.9 which is 

independent of ei/e2. Clearly, even above 2^/ , quite reasonable values of this ratio 

significantly augment the predicted polarising power of the applied field. 

Finally, we turn to the infiuence of the electric field on the third rank order parameter 

f 3. The results for a system originally in its nematic phase, employing the same Vcilues 

of the ratio 61/62, are shown in figure 3.5. Again we find an initial linear response, as 

expected from the perturbation analysis (see Appendix 3A) [7], the gradient of which 

increases significantly with increasing 61/62. Beyond the linear regime the field-induced 

f 3 continues to be enhanced by a greater value of this ratio, although to a progressively 

lesser extent with further increase in the field, until eventually f 3 tends to a limiting 

value of ca. 0.7 which is insensitive to the ratio 61/62. The value of the field at which 

P3 attains half its limiting value is strongly dependent on this ratio and decreases from 

19.5 X 10^ Vm"^ through 13.5 x 10^ Vm^^ to 6.5 x 10^ as 61/62 is increased 

from 0 through 0.1 to 0.2. Again, we find that for an orientationally ordered system, 

the inclusion of a polar molecular field of realistic strength brings about a significant 

reduction in the predicted field required to pole a sample. A similar a^ivantage is 

predicted even for systems not originally in an orientationally ordered state, however, 

as can be clearly seen from figure 3.6. Relatively weak fields are unable to generate any 

^3 order, a result that has its origins in the orthogonality of fi(cos/3) and f3(cos/)) 

(see Appendix 3A) [7]. 
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Figure 3.5; The variation of the third rankpoJar order parameter, P3, mth the eiectric 

5eM strength, caicu^ated &r three vaiues of the ratio ci/cg of 0 f'- - 0.1 C j and 

0.2 C—j Ar a nematogen with its jV - f transition above the giass transition. 

80 100 

E/10^ Vm ' 
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Figure 3.6; The variation of tAe tAird rank poiar order parameter, f s , with the eiectric 

5eid strengtii, caicWated Ar three vaiues of tAe ratio ei/eg of 0 C" J , 0.1 - and 

0.2 ibr a nematogen witA its TV — 7 transition be7ow t6e giaas trAnmiYinn. 

100 
E/10^ Vm" 
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Above the threshold Held, at which 2^ / becomes equal to Tg, f 3 grows rapidly, hovy-

ever, and the value of the third rank order parameter is again higher for a given applied 

held the greater the value of 61/62- At high helds f 3 tends to a limiting value of ca. 0.6 

which is insensitive to Ci/gg- Again, it is clear that, for quite realistic values of Ci/eg, 

the introduction of the polar molecular field term into the potential of mean torque 

results in a signihcant reduction in the strength of the electric held required to generate 

a specihed degree of long range polar order (e.g. that required in a non-linear optical 

material). 

3.7 The Problem of an Inhomogeneous Ground State 

In the foregoing treatment the ground state of the system (achieved in the low tem-

perature limit) is necessarily homogeneous, that is, ferroelectric. However, in reality 

this is not the most likely preferred ground state arrangement of the molecular electric 

dipoles, depending on the spatial arrangement of the molecules. Given the shape of ne-

matogenic molecules and steric considerations an inhomogeneous ground state (ie, one 

in which there is not just one dipolar orientation throughout the system) is more likely 

because on average a molecule is likely to be surrounded by a higher number of others 

in a side to side configuration than end-to-end, and the former to have their dipoles 

oriented oppositely. In this case the ground state will be antiferroelectric. As we have 

already mentioned, however, the nature of the ground state does depend on the spatial 

arrangement of the molecules. If the molecules were at the sites of a face-centred cubic 

lattice, for instance, even though any given molecule has more neighbours side-to-side, 

in an inhnite lattice the ground state of an array of dipoles will be antiferroelectric. 

It is not possible to use the equations for a single molecule interacting with a molec-

ular field (single site cluster molecular field theory) in a single component system to 

adequately describe electric held poling of a nematic that exhibits an inhomogeneous 

ground state. 
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This obtains because a single site cluster treatment, by definition, assumes that there is 

a single representative orientational potential function for the entire system and hence 

all molecules will adopt the same preferred orientation in the low temperature limit. 

Thus the ground state is necessarily homogeneous. 

It might be thought that we could simply reverse the sign of the hrst rank molecular 

field coefficient in (3.15) to attempt to model the effect of antiferroelectric coupling 

between the molecules. As we have already stated, the single potential of mean torque 

means that there is just one molecule within the molecular Beld approximation that 

is somehow representative of all molecules. This then also applies to its preferred 

orientation and so the ground state cannot be correctly modelled. However, persisting 

with this concept, let us see might see what it would mean. In the absence of a Held, 

first of all, the effect would be to cause the polar order parameter to be the same in 

magnitude, but opposite in sign. But this is physically indistinguishable from the case 

El > 0 and given that we might as well use the sense of the polarisation to define the 

first rank order parameter positively, we are then free to define to be positive. In 

the case of an applied field an analogous situation would obtain if we were to reverse 

the overall sign of the total coe@cient of f i ( cos^ ) in the potentials of mean torque. 

However, if we were to simply reverse the sign of 6i alone, this would introduce into 

the first rank molecular 6eld term a preference for the dipole to be oriented against 

the sense not of the surrounding molecules but of the director (or equivalently the 

field). This would oppose the effect of the electric field term itself and detract from it. 

To this extent, then, it would model antiferroelectric coupling, but in a fashion that 

physically is highly dubious. The potential models the energy of a single molecule, on 

average, as a function of orientation with respect to the director—it is an effective single 

body property—not between pairs or higher body interactions. Given that we have a 

system with a homogeneous ground state, we have to regard the polar molecular held 

term as a necessarily positive feedback mechanism for polar order. A negative odd rank 

coefficient would imply that, as polar order were induced, there were some negatively 

cooperative mechanism by which this induced order inhibited the process generating 
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it. This mechanism would be somehow operating (z( (Ae amp/g moZecWe leading 

to a lower degree of induced polar order than if there were no polar molecular Eelds 

present. Thus the case 6% < 0 represents a physically impossible situation. This can 

also be seen from a consideration of the internal energy as one approaches the ground 

state (in zero 6eld) at low temperatures. That is, the contribution to the orientational 

internal energy per molecule from the first rank interaction 

F i = -61P1/2, (3.21) 

which is overall negative if €1 is positive. If < 0 then the energy from the first rank 

interaction in the dipolar phase is overall positive and higher than in the isotropic 

phase (where it is zero); moreover, the contribution increases towards its maximum 

value as we lower the temperature into the ground state at absolute zero. This is not 

considered to be physically reasonable because as we approach 0 K the thermodynamic 

potential function becomes increasingly accurately represented by the internal energy; 

one would expect the polar contribution to be lower than that in the isotropic fluid 

since the dipolar phase would certainly be expected to be thermodynamically more 

stable. These pathological features are all artefacts that result from attempting to 

model couplings between molecules with a single effective potential energy function 

with respect to a single direction, the electric field-director. In addition, the free energy 

in this case does not possess a minimum with respect to the order parameters in the 

potential of mean torque. This could also be regarded as symptomatic of underlying 

pathology in this parameterisation of the theory. On the other hand, it may be that 

there are cases where the theory is correct, but the free energy still exhibits this feature. 

We shall postpone discussion of this possibility for the moment. 

This situation, then, clearly represents a much more challenging theoretical problem, 

one which is beyond previous theories of poling to deal with. The effect of having 

antiferroelectric coupling between the molecular dipoles (or at least between the ma-

jority of them) should be such that field-induced polar order feeds back negatively and 

detracts from the overall polarisation and so the benefit of poling a nematic will be 
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somewhat less than on the basis of the MSVP theory, which is completely devoid of 

polar couplings. Here we present a molecular field model for poling of nematics with 

a predominantly antiferroelectric-type coupling, together with results of calculations 

based upon it. 

3.8 The Theory 

As we have already seen, the ground state arrangement of the molecular dipoles depends 

on the geometrical disposition of the dipoles. Therefore we have to invoke some kind 

of model that is reasonably plausible and accessible to physical intuition. In this spirit, 

we take the simple cubic lattice to provide such a model. The question now is how 

to treat this (or any other) model of the ground state theoretically within a molecular 

field theory. 

An appropriate theoretical treatment of the antiferroelectric problem may be achieved 

by describing the phase as a mixture. That is, molecules comprising the different 

components of the mixture are identiGed by their dipolar orientations in the hypo-

thetical ground state—dipole "up" particles being considered as one component and 

dipole "down" particles the other. Alternatively, we can conceptualise the different 

components to be identified by their lattice sites since the dipoles can switch. In the 

ground state there will be equal numbers of each and hence the components could each 

be considered to occupy one of two equivalent degenerate sub-lattices. We note that, 

with this identihcation, the nature of the interactions between neighbours on the same 

or different sub-lattices is different. That is, between neighbours on the same sub-

lattice the coupling is ferroelectric, that between neighbours on different sub-lattices is 

antiferroelectric. 

We now have to devise a way of describing this within the framework of a molecular 

held theory. We have chosen to treat the system with the Humphries-James-Luckhurst 

(HJL) theory of binary nematic mixtures [9], which we shall introduce in section 3.9 
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below (see also Chapter 4 for a formal derivation). In the absence of external Gelds the 

phase will have no overall dipolar order, as measured by the odd rank order parameters, 

at any temperature. There will be a transition temperature above which there will be 

complete randomisation of the dipole sense of both sub-lattices and below which there 

is no overall polar order but the odd rank order parameters of the individual sub-

lattices (with respect to a common laboratory frame of reference) will be equal and 

opposite. At all temperatures the even rank order parameters will be identical for 

both sub-lattices and so at some higher transition temperature, both sets of even rank 

order parameters will vanish giving an overall isotropic phase. The application of an 

electric field along the nematic director of the phase then acts as a perturbation to this 

situation so that if, at the temperature of interest, the two sub-lattices have non-zero 

equal and opposite odd rank order parameters, the Held will destabilise the dipolar 

arrangement of one sub-lattice and stabilise that of the other. We shall now sketch the 

required HJL theory of binary nematic mixtures by way of introduction before showing 

how to apply it to describe a nematic with a predominantly antiferroelectric dipolar 

coupling. 

3.9 Introduction to the Humphries-James-Luckhurst Theory of 

Binary Nematic Mixtures 

The HJL theory of mixtures [9] is an extension of the Maier-Saupe theory of nematics to 

systems of two components of differing anisometry. Here we give an intuitive extension 

of the Maier-Saupe theory; the equations we shall derive can also be obtained from a 

variational analysis (see Chapter 4). 

We begin by writing down the potentials of mean torque, [/yi()^) and %(/)) , for each of 

the chemical species a and b. Each potential of mean torque will have contributions 

arising from both the molecular field generated by like particles and that from unlike 
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particles. We write 

= (3.22) 

with an analogous expression for [/B(/?). For a system of pure /I we would write down 

the standard Maier-Saupe potential 

[/(/)) = -6:P2f!2(cOS^), (3.23) 

which in this case we can rewrite more suggestively as 

(/A(/)) = — /̂1A-P2A-F2(C0S/)), 

= (/AA(^), (3.24) 

where the subscripts on the coe&cient 6 indicate that the intrinsic strength parameter 

is that associated with the interaction between particles of type A and there is an 

analogous expression for [/B(/3) = C/8B(^) in a system of pure B. In a mixture of A 

and B, UA{P) now has a contribution UAB{P)- For a test particle A immersed in pure 

B 

[/AB(/)) = -6Aap2Bf2(c08/)), (3.25) 

where is the intrinsic strength parameter for the interaction between unlike parti-

cles. We must now take into account the influence of the composition on the molecular 

field contributions from A and B to the total potential of mean torque of a test par-

ticle A. We expect that the molecular held experienced by a test particle due to a 

particular molecular type to be related to the number of such molecules in its vicinity, 

which will be proportional to the number of these molecules around it. If we assume a 

simple proportional relationship (ie, random mixing) then the molecular field will be 

proportional to the number density and hence to the total number of particles, Na or 

of the given type. It seems reasonable to suppose then that we can take account 

of the composition by introducing composition proportionate weighting factors into 

equations (3.24) and (3.25) (which give the contribution of particles yl or B in pure A 
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or pure B respectively) such that in the limits (3.24) or (3.25) obtains. Given that we 

must regain (3.24) and (3.25) in the composition limits we require that the weightings 

be normalised. It would thus seem sensible to divide or by the totEil number 

of particles, (jV/i + A^g), so that the weightings become mole fractions. Therefore, 

[/A(,g) = [/AA(,8) + [/AB(/)) 

= —{-/yA/(A/A + A/g)} C/l/lf2y4f2(c08/)) — {A/g/(A//i + A^g)} e,^Bf2Bf2(cOS/)) 

= —{(1 — 3;)6AAf2/l + 3;e/igf2B}f2(cOS/)), (3.26) 

where x is the mole fraction of component B. The analogous expression for %(/)) is 

then 

UB{P) — ^{x CbbPIB + (1 E/lgf 2A}f2(c08 /?). (3.27) 

The weightings thus represent normalised probabilities that a given intermolecular 

interaction with the test particle will be with a particle of a given type assuming 

random mixing. Equations (3.26) and (3.27), then, form the starting point of the 

theory. The free energy within the molecular field approximation may be obtained 

either from the partition function or distribution function (see sections 2.6, 2.7) and is 

written as 

A = {(1 — a;)̂ €Xy4-F'2yl + ^^(1 ^ 3;)e/igf2Af2B + 3:^^35-^23}/^ 

— (1 — a;)A:BTlnZ/^ — 2;A;gTlnZg, 

/ exp(-[/;i(/))/A;BT')sin/)(f;9, Z B = / exp(-[/A(/))/AgT')sin/)d^. (3. 
Jo Jq 

It is to be noted, however, that the free energy expression we have developed ignores 

phase separation. We shall now adapt this mixture theory to the problem at hand. 
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3.10 Adaptation of the HJL Theory to Model Nematics with 

Predominantly Antiferroelectric Coupling 

We now extend the HJL theory to include both first and second rank interactions 

in addition to the direct interaction of the electric 6eld, consistent with the formal 

demands of the molecular field theory. The potentials of mean torque for the molecules 

on the two sub-lattices are given by 

ig + /2^)fi(C0S^)}/2 

%(/ ) ) = —{((253^25 + ^2Aaf2B)f2(cOS/)) + (EiBgf ig + + /^E')fi(c0S^)}/2, 

(3.29) 

where 6253 = E2/1/1 and Eigg = since the molecule types A and B are chemically 

identical. The free energy per molecule of sub-lattice v4 is then 

a-a = {^2aap2a + ^2abp2ap2b + ^iaapia^iabpiapib} — kst in za, 

/ exp(-[/4(/))//:BT')sin^c(/). (3.30) 
Jo 

The corresponding equation for sub-lattice b is 

= {^2Av4f2B + ^2/15^2/1^2^ + 4- lB}/2 — / jgTlnZg, 

TT 
Z g = / exp(-%(/)) /A:gT)sin^d/) . (3.31) 

Jo 

The total orientational free energy per particle of the whole phase is then 

a = [1 — x)aa + xab = {aa + /^g)/2, 

[ {(2AA(-P2A + ^25) + 262,43^2^^25 + ^1X^(^1/1 + -F'lg) + 

- A g T In - AgT In Zg ] / 2. (3.32) 
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In order to obtain reasonable values of the molecular Geld coeScients appearing in 

the free energy we need to invoke some model for the mutual spatial disposition of the 

dipoles in the ground state. Here, aa stated earlier, we envisage that the molecules oc-

cupy the sites of a simple cubic lattice. In the ground state any given molecule will have 

four nearest neighbours with opposite dipole sense to its own and two with the same 

sense. If we imagine that only the nearest neighbours interact then 62 /̂1 = and 

= —^iAB/2. That is, there are twice as many A — B interactions as /I — 4̂ interac-

tions and, in the case of the first rank coefhcients, not only this, but the A—vl couphng is 

ferroelectric as in the homogeneous system (ie, 61,̂ ^ is positive) and the yl —B coupling 

is antiferroelectric (ie, is negative). We scale the temperature using the dominant 

interaction, eg/ta (ie, the scaled temperature is T* = A:gT'/e2/ig) and then express the 

other coefhcients scaled with 62^3- Thus 62^^/^2x3 = 0.5, = -0 .2 or -0 .1 , 

say, and then 61AA/E2/IB = (ciAA/eiAg) (61^5/(2/13) = - 0 . 1 or -0.05. The electric held 

is then also scaled aa //E/cgAa- This choice of scaling retains the connection, through 

the bona-hde mixtures theory, to the Maier-Saupe-like theory for homogeneous sys-

tems developed previously (section 3.2). The actual choice of values then preserves the 

correspondance with the values of the parameters employed there and in the MSVP 

theory. We note, however, that we have invoked a model to obtain particular nu-

merical relationships between the molecular held coe^cients. These relationships are 

model-dependent and are then really parameters themselves. That is, the most general 

system of equations within this theoretical framework would have the numerical factors 

included implicitly in the molecular held coefRcients and then any model could be ac-

counted for by varying the parameters. We are thus able to set up a theory to describe 

the antiferroelectric ground state nematic, but at the expense of model dependency 

(or, equivalently, further parameterisation). If we wish we may include next nearest 

neighbour interactions (or even further coordination shells) from the numbers of such 

neighbours a and b, the proportionate extra distance from the test particle and the 

likely distance dependence of the interaction (inverse sixth power for second rank and 

inverse third power for hrst rank). Likewise, we may decide to change to a different 

lattice. The need to pursue such possibilities is not so clear, however. 
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3.11 Methodology 

As we have already seen in Chapter 2, there are a variety of methodologies for ob-

taining the order parameters in molecular field calculations. The two main ones are 

minimisation of the equilibrium free energy over the order parameters and solution of 

the self-consistency equations. 

3.11.1 Minimisation of the Free Energy 

It was our intention to minimise the free energy (3.32) with respect to the order param-

eters fgB- This would be done at the same temperatures and over 

the same range of electric Relds as before, employing the scaled parameters consistent 

with the model outlined above in which there are only nearest neighbour interactions. 

We were, however, unable to find a minimum numerically in the free energy hypersur-

face lyt, f i g , f 2A, f 2g) for any values of the applied Geld and at any temperature. 

We hypothesised that there may be, in fact, no minimum to be found. To investigate 

this possibility, we removed the second rank terms from the equations to leave the 

free energy as a function of the two order parameters which are most essential for our 

purposes in studying the polar order, namely the polar order parameters f a n d f i g . 

Even though the removal of the second rank terms is quantitatively incorrect, it should, 

it was hoped, preserve the essential qualitative features of the free energy surface that 

are of interest in investigating the odd rank order parameters. Exhaustive calculations 

of the surface of such a simpliHed system for an extensive range of scaled temperatures 

and fields revealed that there is invariably no true minimum in the surface, in fact, but 

rather a saddle point. 

We then proceeded to explore a variety of other models (with both first and second 

rank interactions) within the same general theoretical structure we have just given, 

attempting to minimise the free energy over the order parameters appearing in the 
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potentials. This corresponds to changing the parameterisation of the intrinsic molecular 

held coefficients to correspond to whatever model is desired. Even after an exhaustive 

search we were unable to obtain the order parameters by this means for any arbitrary 

model for the interparticle couplings, for any held or temperature. 

It would appear then, that whilst the free energy minimisation methodology works 

successfully in the caae of the molecular held theory for single component systems (and 

hence homogeneous ground states), there are clearly cases, such as these, where it is 

inapplicable in its usual formulation. We now turn our attention to the origins of 

this feature of the adaptation of binary mixture theory to antiferroelectric coupling in 

nematics. 

In some cases it is possible to see analytically that the surface cannot possess a mini-

mum. Specihcally, if we consider a system in which there are no "like" interactions it is 

possible to show from the structure of the free energy that the surface cannot contain a 

minimum with respect to the order parameters in the potentials. However, this result 

is not capable of being generalised to models with an arbitrary mixture of "like" and 

"unlike" interactions [7]. 

A more general possibility is that in caaes where the approach fails the order parame-

ters being treated as separate variational parameters are not truly independent. That, 

is unless the free energy function is written in terms of a minimum number of degrees 

of freedom (ie, order parameters) the corresponding surface will not possess a mini-

mum [8]. If so, then the problem would appear to revolve around the correct definition 

of a minimum number of independent order parameters of the system. In the case of 

the system of interest here we may glean some clue regarding the minimum number of 

independent order parameters and how they relate to those appearing in the potential 

of mean torque by considering limiting cases. Specihcally, in the simpliSed model (first 

rank interactions only) under conditions of zero held, f i g = —-Pi/i, so that there is 

only one independent order parameter rather than two. In the full model we have in 

addition ^23 = so that again there are only half the number of independent order 
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parameters as appear in the potentials of mean torque, tha t is, only one independent 

order parameter for each of first and second rank. If we maJte the explicit substitutions 

f 23 = f 2A and f IB = - f lA into the the free energy expression to obtain f g/i) 

we find that indeed the surface possesses a global minimum. Minimisation then yields 

the equilibrium order parameters pia and p2a from which any other required order pa-

rameters may thence be obtained. Indeed this is the technique we employed to obtain 

the zero field phase diagram for the system (see section 3.12 for results and discussion). 

It might have initially been assumed that for non-zero values of the electric field the 

effect of the field would be to destroy any such relationship between the order param-

eters rendering all the order parameters in the potentials independent. Clearly this is 

not the case, however. While the simple relationships between the order parameters of 

the same rank in the two sub-lattices will obviously no longer hold, there may still be 

only the same number of independent order parameters, with these relationships being 

obtained in the low held limit. It seems likely that an analogous situation still obtains 

in which both sub-lattice order parameters of the same rank are still related, but now 

in a more complicated way through the field. If this were the caae, we might presume 

to substitute this relationship into the the free energy expression in an analogous way 

to the case in zero field and obtain the order parameters similarly. Unfortunately, how-

ever, it is not possible to obtain an analytic relationship, since the integrals dehning 

the order parameters are non-analytic. So if a relationship does exist, we could only 

obtain approximations to it, even assuming such manipulations to be applicable in 

this case. A perturbation analysis shows that the order parameters of given rank in 

the two sub-lattices are related to their zero field values. Given that their zero field 

values are clearly related to each other, as we have seen, it follows that the values for 

non-zero fields must be related to each other also [7]. It would also appear that this 

result obtains to whatever order the perturbation expansions are taken in the field, 

increasing order giving approximations valid to higher and higher fields. Not only are 

the order parameters related to each other through the field, and that in a non-analytic 

way, but the required range of fields extends into the very high field regime, where any 
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manageable number of terms in the expansion would be utterly inadequate. Thus we 

cannot express the relationship between the sub-lattice order parameters of the same 

rank analytically in a way that is satisfactory for our purposes. Therefore we cannot 

even in principle rewrite 1^,-^2/1,-^25) as ^(-^1^,-^2^). This constitutes a 

fundamental flaw in the free energy minimisation methodology in this type of molecu-

lar field theory, one that is not susceptible to any straightforward simple reformulation 

of the free energy expression. We are forced then, to look to another methodology, that 

of next choice being solution of the self-consistency equations, or something equivalent 

(see section 3.11.2 below). 

3.11.2 Solution of the Self-Consistency Equations 

The self-consistency equations here are 

f lA = / fi(coS;g) exp(-[/yi(,8)/A;BT') s in^ 

-PiB = / -Pi(cos/)) exp(-[/B(/))/A:gT') sin^gcf^g, 
ja 

-P2/i = '̂ A^ / f^(co8/))exp(-[/A(/))/A;gT')sin/3o(^, 
jq 

P2B = Zg ' / f2(cos^) exp( -%( / ) ) /A;gr ) s in / )d^ . (3.33) 
vo 

These are to be solved simultaneously. The integrals are non-analytic so numerical 

solutions must be sought. In practise, this was achieved by minimising the sum of the 

squares of the differences between the left and right sides of the equations. At the 

minimum with respect to f i A , f i 8 , f 2 A , f 2 B the function is zero. 

3.12 Results and Discussion 

We begin discussion of the results by presenting the zero field phaae diagram (see 

hgure 3.7). We find a second order transition between a non-polar antiferroelectric ne-
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matic and a non-polar non-antiferroelectric nematic (which one would expect is prob-

ably the type of nematic normally observed experimentally). The transition occurs at 

a scaled temperature T* = AgT/egyta of 0.1667 and is second order due to the vector 

nature of the order parameter involved [10]. The scaled transition temperature is con-

sistent with a perturbation-bifurcation analysis. We also see a Arst order transition at 

T* = 0.2203, as expected from the Maier-Saupe theory. 

FjgTire 3.7; The order parameters f 2A ( 9 j as a Amction of scaJed 

temperature, T*, m zero AeM. 
1.0 

(^ = 1,2) 

0.00 0.05 0.10 0.15 0.20 0.25 

We now turn our attention to the system at a temperature below the second order 

transition in the presence of the field (see figure 3.8). It is to be noted that the 

extreme high field limit of the abscissa in scaled units in figures 3.8-3.12 is the same 

as that in the ferroelectric poling case, which corresponds to 100 x 10^ Vm~^ in the 

MS VP theory [2]. As we go to high fields we find that the symmetry of the sub-lattice 

order parameters of the same rank is gradually lost, albeit a negligible effect for those 

of second rank, f ^ grows, whilst f ^ diminishes in magnitude until it passes through 
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zero to become positive and from then on continues to increase. As the Seld continues 

to increase the order parameters begin to approach one another again, f ^ beginning 
— b 

to decrease and f ^ increasing, these eSFects occuring a t an accelerating rate, until 

they reach a common value. From then on they remain together and increase, initially 

linearly, before reaching a plateau of ca. 0.9 in the limit of high held. We note that the 

behaviour of the first rank order parameters around the transition is consistent with 

the Landau theory of second order phase transitions [10]. That is, whilst the order 

parameter itself changes continuously, is not everywhere smooth. Rather than 

the gradient changing continuously through the transition as one might have expected, 

its magnitude increases without limit as we approach the transition from below until, 

at the transition itself, it suffers an inhnite jump discontinuity down to some hnite 

value. 

Figure 3.8; The order parameters f g/i ( f ga f lA f j f iB ( " j 

aa a Amcdon of scaled eJectric E'* = at a scaVed temperature T* of 0.15. 
1.0 

PLM 

(L = 1, 2; m = a, b) 

0.6 -

-0.6 4 

e* 
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The eEect on the second rank order parameter is rather diminutive; the second rank 

order of the A sub-lattice increases whilst that for the B sub-lattice decreases. At the 

point where the f i order parameters begin to come together the f 2 order parameters 

also begin to come back together and reach a common value coincident with the tran-

sition in the f 1 order parameters. After this the second rank order parameters remain 

together increasing only very slightly with the field. 

We seem to have found a second order transition between a system wherein the odd 

rank order parameters on the sub-lattices are different and one in which they are the 

same. What are we to call these phases ? The terms ferroelectric and antiferroelec-

tric are usually used to refer to interactions, that is, the orientation preference of a 

pair of dipoles in their ground state. Ferroelectric coupling denotes a preference for 

parallel alignment with respect to each other and the intermolecular vector, whilst an-

tiferroelectric coupling refers to an antiparallel mutual disposition and an orthogonal 

alignment with respect to the intermolecular axis. In this document we have already 

been extending this terminology somewhat intuitively to refer to bulk conhgurations 

of dipoles, but we shall now, to remove ambiguity, make this more precise in the par-

ticular case of our model where we treat the system as of there were two sub-lattices 

identified by the hypothetical ground state dipolar orientations. We define (for our 

system) /erroe/ec^nc to mean a phase in which the polar order in the two sub-lattices 

is the same and on^z/eTToe/ec^nc to mean a phase in which it is different. Thus we have 

Now we note that it is generally assumed that we do not have antiferroelec-

tric ordering in nematics, even though both an intrinsically antiferroelectric nematic 

phase and a non-dipolar nematic will have no overall polarisation in zero held. Thus 

we ought to perform the calculations at a higher temperature, above the second order 

transition on the phase diagram. Indeed, the values of scaled temperature comparable 

to those employed in the previous study [2] and in the initial homogeneous ground 

state theory in this Thesis are well above the temperature of this transition. So we 
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now consider this temperature regime to facilitate comparison with previous work and 

experimental regimes. Figures 3.9 and 3.10 show the two lowest order odd rank order 

parameters as a function of poling Held strength at the glass transition temperature 

of 380 K for three values of the relative strength of the polar couplings, namely those 

analogous to 61/62 = 0,0.1 and 0.2 in the initial study (ie, on systems with a ferroelec-

tric ground state). The connection between the parameterisations of the two theories 

is as follows. Given that we have scaled the temperature with 62AB by default, since it 

is the largest second rank coefBcient, the other coefRcients are all scaled by it. Then, 

to compare like with like, the analogue of 61/62 has to be 61/IB/62AB, which should 

then be set to magnitudes of 0,0.1 and 0.2. Since 61,̂ ^ is negative and of opposite 

sign to 61 > 0, strictly we might say that we are really performing the calculation for 

61/62 = 0, —0.1 and —0.2. The figures 3.9 and 3.11 show the results of the calculation 

assuming a of 420 K (ie, the system is initially in the nematic phase before poling) 

whilst 3.10 and 3.12 show those assuming a of 340 K (ie, initially isotropic). It 

is to be noted that, above the transition to the non-dipolar phase, order parameters 

of the same rank are identical between the two sub-lattices over the whole field range 

and for all ranks. The forms of all the graphs are the same as for the previous study 

of the homogeneous ground state system with ferroelectric coupling, but the response 

of the order parameters is muted. In addition, the efî ect of the polar coupling is seen 

to be much smaller than in the previous study, where it was enhancing, rather than 

detracting from the field. We also note the faster response of the initially nematic 

phase by comparison with the initially isotropic phase. 

Thus for P i in the initially nematic phase we have an initial linear response before 

tailing off to a plateau in the limit of high field. The inEuence of steadily increasing 

the strength of the polar coupling is to steadily decrease the polar order for a given 

field until we reach the high field limit, which is insensitive to the polar coupling. We 

note that the largest response is when 61/62 = 0, as in the MSVP theory [2]. f 1 in 

the initially isotropic phase, as before, shows an initial, but shallower, linear response 

followed by a fairly sudden rise as which has been raised by the field, overtakes 
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Figure 3.9; The hrst raujc order parameter as a functioc of the scafed efectric heJd, 

E*, for an mitiaJjy nematic sample for three vaJues of the relative strength of the pofar 

couphngs, namejy ei/cg = 0 0.1 - - j and 0.2 ( 
1.0 

Pi 

E* 

Figure 3.10; The ^rst ranic order parameter as a function of the scaJed eiectric iSefd, 

F*, for an initiaiiy isotropic sampie for three values of the relative strength of the poiar 

coupiings, nameiy 6i/e2 = 0 0.1 j and 0.2 ( 
1.0 

Pi 



the glass transition temperature. It then attains a limiting value, independent of the 

polar coupling strength. Again the response is less sensitive to the inclusion of ei/eg 

but is still somewhat diminished by it. 

The response of f s (hgures 3.11 and 3.11) also shows this decreased sensitivity to the 

polar coupling by comparison, while still retaining the same form as before. In the 

initially isotropic phase it shows a zeroth response initially (this has its origins in the 

orthogonality of Legendre polynomials of differing ranks) and then a sharp rise as the 

field-induced elevation of begins to take eEect, eventually reaching a high Held 

limiting value independent of 61/^2. In the initially nematic case we have qualitatively 

the same behaviour as before; the high field limit of the order is simply lower. 

Figure The third ranA order parameter as a function of the gcajed electric ^eM, 

F ' , for an initiaffy nematic sampfe for three vafueg of the refative strength of the pofar 

coupffngs, namefy ei/e2 = 0 0.1 ( j and 0.2 ^ 

1.0 
p . 

e* 
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Figure 3 J 2; The third r an t order parameter as a fuuctioD of the gcaJed electric ^eM, 

E*, ibr au iujtiafjy isotropic gampie ^br three vaiueg of the relative gtreugth of the pojar 

couphugg, nameiy Ei/e2 = 0 (" - %), 0.1 (- - aud 0.2 ^ 
1.0 

3.13 Conclusions 

For a nematic where the polar couplings are ferroelectric in nature, the initial study 

we have undertaken shows that they have a signihcant benehcial e%ct on the polar 

order induced by a given held by comparison with the MS VP theory [2]. If, however, 

the polar coupling is predominantly antiferroelectric in nature then the polar order 

generated is diminished by comparison. Just how predominant the antiferroelectric 

coupling is will determine the size of this effect and in our model there is not total 

dominance of the antiferroelectric coupling and so the effect of the inclusion of odd rank 

molecular field terms in the single particle potential is apparent, but not as significant 

as for the ferroelectric coupling case. Our model for the anti-coupling is, however. 
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physically reasonable. Thus we would predict that the polarisation obtained from a 

real nematic will be very significantly less than on the basis of the ferroelectric coupling 

model, and still somewhat less than on the basis of a model completely devoid of polar 

couplings [2]. Of the two possibilities, it would seem that antiferroelectric coupling is 

much more likely to be the norm for nematics than ferroelectric couphng and so we 

are forced to conclude that, by comparison with our initial single component theory 

for homogeneous ground states and the work of others [2], the potential advantage 

of poling nematics, even in principle, has now to be regarded aa less than has been 

previously suggested. 
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Appendix 3A: Proofs and Derivations 

1. Perturbation analysis for the order parameters Pf, of a polarised ferroelectric 

ground state system initially in the nematic phase. 

The essence of a perturbation analysis is to identify a dominant contribution to 

some quantity of interest (if there is one) and factor it out to leave the smaller 

remaining factor. The dominant quantity is normally identified with some known 

quantity or standard theoretical point of reference about which the actual situa-

tion is a perturbation. The small remaining factor is expanded and there will be 

some regime in which this expansion may be truncated to a good approximation. 

In this case we require the order parameter which is by definition 

f z , = f^(cos/))exp ^{62f2f2(cos^) + (/^E + cifi)fi(cos;8)}/A;BT^, 

Z == y exp ^(€2^2^2(008/)) + (//E + € i f i ) f i (cos / ) )} /A;gTy (3A.1) 

Now in a non-polar nematic in the absence of external 6elds the dominant order 

parameter is f 2 înd the dominant term in the potential of mean torque is the 

Maier-Saupe contribution. Thus, if the electric field is weak then we may write 

the partition function as 

Z = y exp |^62f2f2(cos/))/A;BTj exp ^ / ^ E + eif i}f i(cos/)) /A;gT' j dcos;^ 

(3A.2) 

and expand the second exponential as 

exp ^ 6 2 ^ 2 ^ 2 ( 0 0 8 l + ( /^E- | -6if i ) f i (co8^)/AgT' + . . . c(cos/3. 

(3A.3) 

If the electric field is small enough then to a good approximation we may truncate 

the expansion at first order to obtain 
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exp |^e2f2f2(cos,9)/ABT'j dcos/) 

Pi (cos/3) / fi(cos/3)exp^62f2f2(cos/3)/Ag!r^dcos/3. 

(3A.4) 

The integral in the second term is of the form 

a 
2 

—o 
zexp<6(32; — l ) /2^da ; 

that is, the integrand is an odd function and the range of integration is symmetri-

cal about zero so the integral must vanish. Therefore the Erst order perturbation 

approximation for the partition function is 

/ exp ^62f2f2(cos/3)/AgT'^ (fcos/). Z -

If we then approximate p2 to that where the ordering is dictated by the Maier-

Saupe potential then 

Z - Zo, (3A.5) 

the partition function for the unperturbed nematic. Equation (3A.1) can then 

be written approximately as 

f z , y f^(cos/3) exp ^62^2^2(008 

X exp^{/zE + 6ifi}fi(cos^)/A:gT'^ c(co8^. (3A.6) 

If we now expand the second exponential in a manner consistent with the treat-

ment of the partition function then this becomes 

f z , ^0 y fL(cos/3) exp ^62^2^2(008 

X 1 + ^ ^ ' ^ ^ ^ ^ ^ ^ f i ( c o s , 0 ) dcos/) 
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= j yf^(cos/))exp^e2f2f2(cos/3)/A:gTj(fcoS;8 

+ y f i ( c o s ^ ) f L ( c o s / ) ) e x p ^ ^ ^ ^ ^ ^ ^ ^ ^ ) ( f c o s ; g j . (3A.7) 

Now for all of odd parity the Arst term here vanishes by symmetry. As an 

example we consider the case where 2 , - 1 . Here, 

Pi ~ 2o"' y"p . (cos /? )^xp dcos/3, (3A.8) 

Prom the properties of the Legendre polynomials and Clebsch-Gordan coupling 

(or otherwise) we can write 

fi(cos/;)" = ^f2(cos/)) + ^ (3A.9) 

so that 

~ d.os^ 

+ i / ' = " p 

Again, approximating f 2 as that for the unperturbed nematic, f g, (and assuming 

that the potential of mean torque is also approximately that for the unperturbed 

nematic) 

which rearranges to 

Thus an initial linear response of P i to the field is predicted to first order in the 

perturbation analysis. 
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A similar analysis for the other rank order parameters can give rise to some kind 

of field dependence to first order, although it is to be noted that, as we consider 

higher helds, the perturbation analysis would have to be taken to higher order 

for it to be a good approximation, and thus in higher Geld regimes the predicted 

dependence changes. 

As another example of relevance we could consider f 3. The order parameter is of 

odd rank so the first term in (3A.7) vanishes. The dependence on the held that 

we obtain from the second term then depends on the nature of f i(cos ^0)^3 (cos /)). 

The product of two Legendre polynomials may be written as a Clebsch-Gordan 

series as 

fz,(cos/3);^,(cos/)) = J00)^fj(cos;g), (3A.13) 

j 

where J = |Z/ —Z,'|, —Z,'| + l , . . . , and JOO) is a Clebsch-Gordan 

coefficient. Here the Clebsch-Gordan coupling yields a linear dependence of f 3 

on the Held. The same is not true of the second rank order parameter, f z , 

however. In this caae both terms of (3A.7) survive, but the first is identihed 

as just the Maier-Saupe f 2 and the second involves Clebsch-Gordan coupling 

between fi(coS;9) and f^(cos^), which gives only odd rank polynomials (so the 

Clebsch-Gordan coe&cient of the f2(co8/)) term in the series vanishes). These 

give rise to quantities that are identified as the Maier-Saupe values of f 1 and f 3, 

which are zero and thus we obtain simply 

P2 = P2, (3A.14) 

and a zeroth dependence on the held. 

2. Perturbation analysis for the order parameters of a polarised ferroelectric 

ground state system initially in the isotropic phase. 

A pertubation analysis is also available for the caae of poling an initially isotropic 

material. Here there is no dominant interaction to factor out, but we know from 

experiment that the order parameters induced in an isotropic fluid by a weak (or 
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even a fairly strong) Seld are very small. Hence we can expand the total Boltz-

mann factor (ie, the Boltzmann factor for the total anisotropic potential energy) 

and truncate the expansion at the linear term to obtain a good approximation of 

the 6eld dependence in the low field regime. Here then 

1 + ê2-P2-P2 (cos/5) + (/i-B + eiPi)Pi (cos/?)J//c^T dcos(5 

3 + y f i ( c o 8 ^ ) d c o 8 / ) + ^ ^ y f 2 ( c o s ^ ) d c o s / ) 

(3A.15) 

Therefore, 

Z rx, 2, (3A.16) 

that is, the value obtained by setting all the f f, and the 6eld to zero, the isotropic 

partition function. Therefore, 

f z , fl(coS;g)(icos/) + y f^ (cos /3 ) f^ (cos ,8 )dcos / ) 

+ _ /^ i (cos^)f^(cos /3) dcoS;gj 

where 6^^' is a Kronecker delta. Thus, for all Z, > 2 then all terms vanish and so 

all corresponding f f, are predicted to show no response to the Seld. 

For Z, = 1 we have 

which rearranges to 

f 1 rx, /^E/(3A;gT - ei). (3A.19) 
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We note that this is the result obtained by setting f 2 = 0 in the analogous 

expression for f 1 in the case of a material in a nematic phase prior to poling. 

Thus, for the initially isotropic phase too, a linear initial dependence of the Erst 

rank order parameter on the field is predicted. 

For the case = 2 we obtain 

which implies 

f 2 ^ 1 — Gg/SAjgT'j ~ 0. (3A.21) 

Provided that 62 SAgT then 

P2 - 0, (3A.22) 

and so, as with the (Z/ > 2), there is a zeroth initial response to the electric 
field. 

To summarise, then, it would seem that to first order in the perturbation and 

with only first and second rank terms in the potential of mean torque, only P i 

order can be induced in an isotropic Suid at low electric fields. Some induction 

of higher rajik order parameters may be obtained, however, if the perturbation 

expansion is taken to higher order. In addition, dependence of higher rank order 

parameters may also be obtained, even at first order in the perturbation, if the 

expansion for the potential of mean torque is taken to higher order. 

157 



References 

[1] G. R. Meredith, J. G. van Dusen and D. J. Williams, Mocromo/., 15, 1385 (1982). 

[2] C. P. J. M. van der Vorst and S. J. Picken, J. 5'oc. B, 7, 320 (1990). 

[3] T. J. Krieger and H. M. James, J. CAem. 22, 796 (1954). 

[4] See, for example, G. R. Luckhnrst in T/ie f/iyszcg o/ Cn/sitoZa, 

Chapter 4, Edited by G. R. Luckhurst and G. W. Gray, Academic Press, London 

(1979). 

[5] A. P. J. Emerson, R. Hashim and G. R. Luckhurst, Mol. Phys., 76, 241 (1992). 

[6] P. G. de Gennes and J. Prost, TAe f Ag/azca o/ Cn/a^oZa, second edition. 

Clarendon Press, Oxford (1993). 

[7] T. H. Payne, unpublished notes. 

[8] G. R. Lnckhnrst, C. Zannoni, personal communications. 

[9] R. L. Humphries, P. G. James and G. R. Luckhurst, Symp. Farad. Soc., 5, 107 

(1971). 

[10] L. D. Landau, Collected Papers of L. D. Landau, edited by D. ter Haar, Gordon 

and Breach, New York (1965). 

158 



Chapter 4: A Molecular Field Theoretic Study of 

Order Parameters in Binary Nematic Mixtures 

4.1 Introduction 

In a liquid crystal display device it is necessary to optimise a range of properties. 

Pertinent considerations would include a large nematic range around room tempera-

ture, low viscosities, appropriate values of the elastic constants and large dielelectric 

anisotropy and birefringence. It turns out that it is very di&cult to achieve this using a 

single nematogenic compound as the liquid crystalline material. However, it has been 

found that the use of a mixture of compounds which exhibits a nematic state is a very 

powerful technique in achieving functional display devices. 

In a typical liquid crystal display device a range of dopants are added to a nematic 

liquid crystal to form a multicomponent mixture. In order for a liquid crystal display 

to work, a low threshold voltage is required for switching, which in turn necessitates a 

large dielectric anisotropy Now 

= (4.1) 
% 

where z labels the components and Ae, and are the mole fractions, dielectric 

anisotropies and order parameters of the components respectively. If we assume that 

the dielectric anisotropies of the components % are all equal (Ae, say) then 

A6™'̂  = A 6 ^ a ; j p 2 (4.2) 
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and since 

= P ™ " (4.3) 

i 

the dielectric anisotropy of the mixture is seen to vary as the order parameter of the 

mixture 

_ pmixt 

Moreover, in order to achieve a good contrast a large birefrigence is required, but the 

birefringence Am is also related to the dielectric anisotropy of the medium as 

and as we have seen, Ac™^̂  is expected to be proportional to f For this reason 

also then, we require a high value of f 

It is clearly desirable to investigate the suitability of a variety of compounds for appli-

cation in devices. Whilst the nematic mixture in a display device may contain many 

individual components, to test each component separately they are studied individ-

ually in a given nematic solvent. This is then more convenient for devising ways of 

obtaining standardised measures for a variety of properties of the potential additives. 

The way that this is most commonly employed at present is to measure the property of 

interest for mixtures of the test compound in a standard nematic solvent as a function 

of composition of the mixture, at a given absolute temperature. For a wide variety of 

properties it is generally found that the graph obtained from this procedure is linear; 

this probably results because the accessible range of compositions is very narrow due 

to the limits of miscibility of the test compounds. Nevertheless, this linear graph is 

then extrapolated to the limit of pure solute and the value there is taken to yield a 

hypothetical value for the property intrinsic to the pure solute [1]. This is assumed 

to give a measure that is somehow intrinsic to the additive itself and independent of 

the solvent. This manipulation clearly assumes continued linearity across the whole 

of the composition range. Here, the experimental interest focusses on the problem of 
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achieving good contrast (and low threshold voltages) and hence on measures of the 

power of the potential dopants to induce birefringence, or nematic ordering, in the 

mixture. Thus, the birefringence of mixtures is measured, at a given temperature, 

across the accessible part of the composition range. The extrapolation is taken to yield 

a measure of the hypothetical birefringence of the pure solute in the nematic state. 

The aim of this research, then, is to investigate from a theoretical standpoint to what 

extent this extrapolation is valid and to what the limiting value really corresponds. For 

our purposes in performing molecular Geld calculations the nematic order parameter of 

the mixture serves as a convenient surrogate to the birefrigence and is the quantity we 

shall focus on calculating. Such investigations have the advantage that the theory only 

concerns itself with the essential features that give rise to liquid crystalline behaviour. 

Thus we are able to probe composition regimes that are inaccessible practically due to 

the limits of solubility of the components. The variant of molecular held theory that 

we have employed for this purpose is the Humphries-James-Luckhurst (HJL) theory of 

binary nematic mixtures [2] that we have developed in an intuitive way and used in 

the studies of poling of nematics in Chapter 3. We now give a more formal derivation 

and apply it to the problem at hand. 

4.2 Variational Derivation of the HJL Theory of Binary Nematic 

Mixtures 

First we identi^ the dominant order parameters, which for cylindricaily symmetric 

particles we take as and We then construct the internal energy on the bEisis 

that pair interactions are predominant as 

(7 = — - 2A + 2 Tig Eylgf 2B + ^35^2^ ) , (4 4) 

where is the number of particles of component a, cab is the intrinsic interaction 

parameter for interaction of particle type a with b and p2a is the second rank orien-
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tational order parameter for component /I. The internal energy per mole is then 

— = --{x^CaaP iA + 2z(l — x)eABP2AP2B + (1 — xYesBPiB ), (4.5) 
Ua + Mg Z 

where x is the mole fraction of A. This form for U assumes random mixing of the two 

components 4̂ and B and the equality of their molar volumes. (If the molar volumes 

are not approximately equal then the mole fractions should be replaced by volume 

fractions.) Within the molecular field approximation the entropy is additive, that is 

5" = + (1 — a;)5'g. (4.6) 

This obviously ignores the entropy of mixing which is valid as long as phase separation is 

not allowed. Within the molecular Held approximation the entropy of each component 

is related to the singlet orientational distribution function for that component in the 

usual way, 

= y /A(/))ln/A(j9) sin/)d/), 

= y yg(/;)ln/g(/?) s in^d/ ) . (4.7) 

The total molar Helmholtz free energy is then 

A = —{(1 — xYeAAP2A + 2x(l — x)eABP2AP2B + }/2 

+ A B 7 ' { ( l - a ; ) ^ / A ( ^ ) l n A ( , ^ ) sin^gcf/^ + a ; ^ / g ( ^ ) l n / a ( ^ ) sin/^cg^sj. (4.8) 

The variation in A (which we set to zero) is then 

= - { (1 - 2 ̂ 2/1 + 2a;(l - a;) 6,̂ ^ ( f 2A <^^23 + f 2g (̂ -̂ 2,1) 

+ 2 f 2B 2B } / 2 

J SJA{P) [ I N M f i ) + 1] smfld/^ + x / 5/b{)9) [ I n / s W + 1] sin 

(4.9) 
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Now the variations in the two order parameters f 2/1,^25 are related to 

the fluctuations in the distribution functions 

< -̂P2A= /f2(cos/))^/ , t( ;g) sin/)d/), 

(̂ -̂ 23 = y f^(cos/))(^/B(,9) sin/)c(/), (4.10) 

and so 

= ( l -a ; )^6AAf2Ayf2(cos / ) )^ / / i (^ ) sin/^cf/) 

+ a ; ( l -a ; )eABff2A / f^(cos^)(^ /g( / ) ) sin/3d/)+ ^25 / f^(cos/))J /A()9) sin/3d/) 

+ 37^633^23 yf2(cOS/))(^/g(^) sin 

+ A g T j ( l - a ; ) y + sin^cf^g + a; y a /g( /3) [ lnya(^) + l] sin 

(4.11) 

This may be written as a single integral 

M = -(l-a;)^6AAf2A-F2(cos/))-a;(l-a;)e/igf2g-F2(cos/)) 

+(1 — x)kbt\\n fa{p) + 1] 

+(^yg(/^) -z(l-3;)€ABf2Af2(cos/3)-2;^€ggP2Bf2(cos,g)+a;A;g7'[ ln/g(^) + l] j sin/3d^ 

(4.12) 

We must now take account of the constraints, namely tha t the two distribution func-

tions /a(/5),/b(/9) are normalised. Thus 

,^A(/?) sin/)d/) = 0, (4.13) 
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^/g(/))sin/9d;^ = 0. (4.14) 

We multiply (4.13) by the Lagrange multiplier Ai and (4.14) by A2 and add them to 

the main equation (4.12) to give 

^/A(^) ^ (1 2/1^2(^08^) — 2;(1 — 2;)e,tgf2^^2(008^) 

+( l -a ; )AaT[ln /y i ( / ) ) + l ] + A i 

+(^/B(/^) — ^(1 — 3;)e/igf2A-F2(co8/3) — 3;̂  e g g f 25-^2(^08^) 

+TA;BT[lnyg(/)) + l ] + A 2 ] } 8 i n ^ d / ) = 0. (4.15) 

This equation mu8t hold for any arbitrary (^/^(;8) and (^/g(/)). Here we have an 

integrand composed of a sum of two terms, one in which the variation in one distribution 

is a factor and the other in which that in the other distribution is a factor. Under such 

circumstances (see Appendix 2A) it turns out that the remaining factor in each term 

must vanish, giving a vanishing expression for each distribution, which we may then 

solve for that distribution. Thus we have 

- ( 1 - 2;)^6AA-P2Af2(cos/;) - a;(l - a;)e;igf2B-F2(c0S;g) 

+(1 - a;)A;BT[ln//i(^) + l] + Ai = 0, 

-a;(l - z)e,tBf2Af2(cos/3) - a;^EBgf2Bf2(cos^) 

+xkbt^\n f s l p ) + i j + x2 = 0, (4.16) 

which yield as the singlet orientational distribution functions 

(1 - z)^e/ i^P2Af2(cos^) + a;(l - z )e , ta f2B-F2(cos^) - Ai 
A ( ^ ) = exp 

(1 - a;)A;aT 
- 1 
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exp 
(1 - 37)6/1,1^2^^2(008/)) + 37 G/iaf 25^2(008/)) 

exp 
Ai 

(1 — a;)A;gT 

and 

/B(/)) ^ exp 
a;^eggf2Bf2(co8/)) + ^ ( 1 - a;)eABf2Af2(co8/)) - A2 

(4.17) 

exp 
^ £BBP2BP2{COS P) + (1 — x)eABP2AP2{cOS P) 

exp 
A; 

xkst 

The di8tributions are then 

if we ident i^ the inverse partition functions as 

^ = exp 
Ai 

(1 — x)kBT 

(4.18) 

/,t(/)) = Z^^exp ^{(l-a;)6AAf2A + 3;6ABf2g}f2(co8;8)/A;BT'j, 

/B(^) = ^B^exp ^{a;6BgF2B + (l —3;)e/iaf2A}f2(co8/))/AgT'^, (4 19) 

= exp 
Ao 

- 1 (4.20) 
a;A;gT 

Accordingly, the potentials of mean torque for the particle types a and b of the mixture 

are then 

UA{P) — ~{(1 ~ ^ ) ^AAP2A + ^ ^ABP2B} P2ICOS P), 

ub{p) = — E g g f 2B + (1 — 3;) cabP2A}P2{cos P), (4.21) 

respectively. 

4.3 Application 

Here we take B to be the additive so that its mole fraction is x] that of the liquid 

crystal solvent is then 1 — x. The coefficients cmn in the potentials of mean torque 
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represent the intrinsic molecular 6eld interaction coefBcients for a particle of type M 

in the molecular held generated by a particle of type TV. We note that so 

that cg/i = We construct the Helmholtz free energy as follows. The free energy 

of component A is 

= {(1 — ^ 2 — AgTln^yi (4.22) 

and that of component B is 

^ B = { x ^ bbP2B + (1 — ^) 2 — AgTlnZg. (4.23) 

The total orientational Helmholtz free energy of the mixture is then 

A. = (^1 — x^Aji + xAj^, (4.24) 

that is, 

A = { ( 1 — xYeAAP2A + 2 x ( l — x) ^abP2aP2B + x^^bbP2b } / 2 

— (1 —a;)A;gnnZ/i —zAgTlnZg. (4 25) 

Thus we have three arbitrary parameters, and Egg. One of these (say e/i^) 

will be taken out as a common factor and used to scale the temperature to give the 

scaled temperature T* = The other parameters then end up scaled by (in 

this case) and these ratios form the remaining input parameters. The Boltzmann 

factors are then constructed from the potentials of mean torque aa 

C / x ( / J ) / A b T = - ^ { { 1 - x)P2A+ x'-^P2B}P2{cOSff), 

= — — {(1 — a;) ^2/1 + a; -^ f2B}-F2(cos /? ) (4.26) 
-t ^AA 

and 

%(,g)/A:BT = — P g g + (1 - a;) —^2^)^2(008 / ) ) 
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= - ^ { x \ P 2 B + (1 - x) '-^P2a}P2{cosP), (4.27) 
-l ^aa 

where T* is the scaled temperature and A is the ratio which is equal to the 

ratio of the transition temperatures We now introduce the geometric mean 

approximation for in order to reduce the number of arbitrary parameters in the 

theory. In other words, we assume 

= (4.28) 

so that there are only two independent parameters, and egg, one of these 

being used to scale the temperature. The geometric mean approximation is exact 

for dispersive forces, so that it is correct to the extent t h a t the intermolecular forces 

between particles of type vl and B are dispersive or dispersive-like. This occurs because 

the anisotropic dispersion force between two identical molecules varies as the square of 

the anisotropy in the polarisability, that is 

— Aa^Ao!/!. (4.29) 

If this is assumed to hold when the molecules are not identical then the strength 

parameter is given by 

tAB ~ ^ Aa^^OiB (4.30) 

and so is equal to the geometric mean for the strength parameters of the pure compo-

nents 

(Aa^ AcKg)̂ /̂  (c/i/i (4.31) 

Within the geometric mean approximation the ratio 6,43/6^/1 appearing in (4.26, 4.27) 

is 

= (4.32) 

Equations (4.26, 4.27) then become 

™ = - ^ { ( 1 +I^A'/^P3B}P2(cos/3) (4.33) 
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and 

+ (1 - x) P.x}P2(cos/3). (4.34) 

We note that 

+ (1 - x) P , 4 P , ( COS /?) 

AV2 
A:gT ' 

(4.35) 

so that if we write 

-%:f2(cos^) , 

%(/)) 
-X;f2(cos/)) (4.36) 

then 

% ( ^ ) 
A;gT = -A^/^X;^f2(coS;8). (4.37) 

Thus we see that within the geometric mean approximation the ratio 

is constant and that for a given value of A everything is controlled by the single scaled 

strength parameter The scaled free energy is then written 

{ (1 - a;)" + 2a;(l - z) A P P g a + z^A Pgg ' }/2 

•(1 — a;) In^A — x In Zb, (4.38) 

with 

Z/i = / exp 
IT 

{(1 - a ; ) f 2 A + a;A^/^f2B}f2(cos/)) sin^gd/), 

Za ^ y exp 
r 1 

T* 
{3;Af2B + ( l -2 ; )A^/^f2A}f2(cos / ) ) sin^cf/g. (4.39) 
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4.4 Methodology for Solving the Molecular Field Equations 

The methodology of choice to obtain the order parameters would be minimisation of 

the equilibrium free energy (see Chapter 2). It would be natural and straightforward 

to assume that this minimisation should be performed with respect to the order pa-

rameters appearing in the potential of mean torque and hence using the free energy 

expression (4.25). Minimising the free energy in this way is not possible, however, 

because the free energy surface will not possess a minimum with respect to the two or-

der parameters f ^ and when treated as independent variational parameters. This 

waa confirmed by calculation, visual representation and inspection of a wide variety of 

free energy surfaces [3]. This situation obtains because these order parameters are not 

independent; only if the free energy is expressed as a function of the minimum number 

of independent degrees of freedom of the system can it possess a global minimum [4]. 

It turns out that within the geometric mean approximation for the mixed interaction 

parameter (which we are using) the free energy expression can be rewritten in terms 

of a single, composite order parameter [2] 

f = (1 - T) + a; P f , (4.40) 

this representing the single independent order parameter. We note that such a manip-

ulation is not possible outside of the geometric mean approximation, which thus rep-

resents a special, limiting case. Indeed, outside of the geometric mean approximation 

attempts to minimise (4.25) using the standard methodology always yield solutions [3]. 

Using the composite order parameter, then, we write the free energy as 

p 2 

a = — (1 — x^kgt In z— xkst In 

= y exp Pf^(cos/))^ sin/)(f;g, 

= y exp ff^(cos;9)^ sin^d^g. (4.41) 
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The question now arises aa how best to scale the free energy for the purposes of com-

puting the solutions. It is usual in molecular held calculations to scale the free energy 

with Normally this manipulation would enable the quantity v4/A;gT' to be written 

in terms of AgT divided by one of the molecular Held coefhcients (thus furnishing a 

scaled temperature), with the other molecular held coefficients being scaled by that 

coefhcient. These scaled quantities are then the input parameters to the calculation. 

In this case we would have 

which does not allow us to write the function to be minimised with the desired minimum 

number of input parameters due to the explicit appearance of in the molecular 

held correction to the free energy. However, if we write the composite order parameter 

as 

P = {(1 - 3;)P^ + T (4.43) 

the molecular held correction becomes 

^ ^ { (1 - ^ f P f + 2z(l - X) + x ' X p f ] , (4,44) 

Then if we dehne a new composite order parameter 

^ = {(1 - o;)?^ + a; A P f } (4.45) 

SO that 

P / = { (1 - xf p f + 2 i ( l - x) X'/' Pi p f + f A p f } (4.46) 

we may now scale the free energy with /cgT" as 

A € 
AgT 2T* - 3;) In - a; In Zg. (4.47) 

The partition functions may be expressed explicitly in terms of the new composite 

order parameter, since the scaled potentials of mean torque (4.33, 4.34) may now be 

written 

[/A(^) 1 
-f^f^(cos;0), 
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L -^2^ + (1 - -^2^4)^2(cos/)), 
AgT T 

%(/ ) ) AV2 
f^f2(cos/)). (4.48) 

AgT T* 

There is also another possible scaling of the free energy using this new composite order 

parameter, and this is by scaling the free energy with respect to the coefBcient Cyiyi. 

This gives 

A 
- (1 - a;)]"* In In Zg (4.49) 

with the partition functions aa indicated previously, that is 

= y exp ^ ^ f ^ f ^ ( c o s / ) ) ^ sin/)d/) 

/ /A ' \ 
e x p ( - ^ f ^ f 2 ( c o S ; g ) j s i n / ) d / ) . (4.50) 

The value of for any given mixture is thus obtained by minimising the scaled free 

energy with respect to it for given values of the scaled temperature, mole fraction 

of dopant and the ratio A. The scaled temperatures employed were calculated from 

consideration of the reduced temperature (with respect to the solvent) at which the 

experiments are normally performed. That is, the reduced temperature of the mixture 

is in the range 0.8 — 1.0 at most, more likely in practise 0.9 — 1.0. The free energy was 

therefore minimised at scaled temperatures corresponding to reduced temperatures T). 

of 0.8, 0.9 and 0.95, for a range of compositions spanning the whole range and taking 

A to be either 0.75 or 0.5. In addition, for comparison some very low reduced tempera-

tures, far outside the experimentally accessible range, namely, 0.4, 0.45, 0.60 and 0.68, 

were also used to generate results. The values of A(= employed span the 

likely range of anisotropies of the dopants relative to the solvent. The dopants are usu-

ally less anisotropic than the nematogenic solvent, so generally we expect A < 1.0. The 

order parameters of the individual components were calculated from the corresponding 
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singlet orientational distribution functions once the composite order parameter had 

been determined aa 

Pg / f2(co8)9)exp(f^f^(cos^)/T")sin/)(f/), 

/ ]^(cos/))exp(A^/^f^f2(cos/))/T*)sin/)Gg/). (451) 

The order parameter of the mixture is then given by the mole fraction weighted average 

of those of the components, 

(1 _ (4.52) 

This is similar in form to (see equation (4.45)), which in fact becomes equal to it in 

lima; -4 0. In addition, in lima; 1, 

4.5 Results and Discussion 

Figures (4.1)-(4.8) show the order parameters as a function of composition at various 

very low reduced temperatures (ie, much lower than is ever achieved experimentally) 

for two values of A, namely 0.75 and 0.5. 

In Ggure (4.1) we see a weak, linear dependence of the order parameters on the com-

position. This dependence is due to the very low temperature of the system and the 

relatively high anisotropy of the solute, which ensures tha t the order parameters are 

always high and near to the limiting values across the entire composition range. In the 

limit of low temperature the order parameters would be unity across the range and so 

there would be no dependence and the graphs would be perfectly linear. As we have 

seen, the order parameter at a; = 1 is related to the order parameter of the additive 

by a factor of A /̂̂ , so that in this case it is \/0.75 ^ 0.87 times the value of f 
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Figure 4.1; Second ranA: orientationai order parameters f g (""A - j 

and ('....j aa a function of composition at a reduced temperature of 0.40 witA 

A = 0.75. 

p, 

X 

Figure 4.2; Second ranic orientationai order parameters f —j , ^2 (" 

and ("....j aa a function of composition at a reduced temperature of 0.40 with A = 0.5. 

1.0 

po 



In Bgure (4.2) we have the same temperature but the anisotropy of the solute is con-

siderably less and ^ 0.71 so that the larger difference between 

and f ^ is due to the smaller value of A. We End that nevertheless, due to the tem-

perature, the order parameters are still sufBciently high tha t the graphs of component 

and mixture order parameters are still quite linear. 

In figures (4.3) and (4.4) we have the results for A = 0.75,0.5 as before, but now 

at a slightly higher reduced temperature of 0.45. For A = 0.75 the high anisotropy 

of the solute ensures that even though the temperature is slightly higher, the order 

parameters of the pure components (ie, the order parameters at the extremes of the 

range) are still sufRciently high and similar that the dependence remains weak and 

linear. When we consider the graphs for A = 0.5, however, we begin to see deviation 

of the order parameters from linearity and concomitantly a stronger dependence of the 

order parameters on the composition. 

In figures (4.5) and (4.6) we have the same solutes but at a somewhat higher reduced 

temperature. For the more anisotropic solute the dependence is slightly stronger, 

but the order parameters are still essentially linear in the composition. This contrasts 

strongly with the other solute, however. At this temperature the less anisotropic solute 

is not liquid crystalline, so that somewhere between the pure solvent at a; = 0 and the 

pure dopant at a; = 1 there is a solvent-induced phase transition. The associated 

transitional order parameter of the mixture is about 0.43. This does not occur for 

A = 0.75 since the more anisotropic dopant is nematic at this temperature within 

the theory. We note that in the case of the solvotropic phase transition the order 

parameters of the components and the mixture do not come together to become equal at 

the transition. This is simply because within the ordered phase these order parameters 

can only become equal at a; = 1. Therefore the inequality of the order parameters at 

the transition will always be observed where there is a solvent-induced transition. 
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f igure 4.3; Second ranA: orientationa] order parameters f f g (—j , (- - j 

and (^....j as a Amctioc of composition at a reduced temperature of 0.45 with 

A = 0.75. 

p2 

fig-ure 4.4; Second ranjc orientationaJ order parameters f ^ — j , f 2 (" "j 

and ('....j as a function of composition at a reduced temperature of 0.45 with A = 0.5. 

1.0 

p2 

X 
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Figure 4.5; Second rani; orientationaj order parameters 

and (....j as a function of composition at a reduced temperature of 0.6 witA A = 0.75. 
1.0 

po 

Figure 4.6; Second r an t orientationai order parameters F ^ V 

and (....) as a function of composition at a reduced temperature of 0.6 witfi A = 0.5. 
1.0 

Fo 
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Figure 4.7; Second ranA: orientadona] order parameters —j, (- J 

and ('...J ag a Aincdon of composition at a reduced temperature of 0.68 mti i 

A = 0.75. 

po 

In Egures (4.7) and (4.8) we see the results at a yet higher temperature still. In the 

case of A — 0.75 the order parameters are slightly lower and there is a slightly stronger 

mole fraction dependence, but still quite linear. In contrast, for A — 0.5 we again have 

a solvotropic transition. This time however, it is at lower mole fraction, since at higher 

temperature a greater proportion of the highly anisotropic solvent is required for the 

mixture to remain nematic. The transitional order parameter is again seen to be about 

0.43. 
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Figure 4.8." Second ranjc orjeutatioiia] order parameters — j , (- - j 

and ("... J aa a Azucdou of composjtioD at a reduced temperature of 0.68 with A = 0.5. 
1.0 

to 

X 

Figures (4.9)-(4.14) show analogous results for reduced temperatures in the range 

0.8 — 0.95 (ie, nearer that typically encountered in experiment). In figure (4.9) we 

see that now even with a highly anisotropic solute at a reduced temperature which 

for a real experiment is very low indeed, there is a solvotropic phase transition. The 

order parameters are now strongly temperature-dependent and deviate greatly from 

linearity. In 6gure (4.10) we have the same features, but more pronounced, with the 

transition occurring at an even lower mole fraction. This trend now continues for both 

A = 0.75,0.5 with increasing temperature. 
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f igure 4.9; Second ranjc orientationaf order parameters f g (- - j 

and (...J aa a Ainction of composition at a reduced temperature of 0.8 wit6 A = 0.75. 
1.0 

p-? 

X 

f igure 4.10; Second ranA orientationai order parameters f f ^ (- J 

and (....j as a function of composition at a reduced temperature of 0.8 with A = 0.5. 
1.0 

Po 
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Figure 4.H: Second raujc oriectationaj order parameters —j, f g ( " — f g f- - j 

and (...J as a funcdou of compogition at a reduced temperature of 0.9 with A = 0.75. 

—A 

po 

It is clear that whilst the order parameter of the mixture is initially linear as expected, 

significant deviations from linearity may occur at higher mole fractions of solute. It 

would seem that this deviation is due to the fact that 7}// for the mixture falls with 

increasing mole fraction, a;, of solute, simply due to the size of the order parameters. If 

the mixture transition temperature falls to the temperature Texpt of the mixture within 

0 < X < 1 then the order parameter of the mixture shows a first order transition to 

zero rendering the extrapolation unacceptable. Deviation from linearity is thus seen to 

occur if and when 7]^*^ falls to anywhere near within the physically meaningful 

range of a;. We note that this effect is more pronounced for small values of A and at 

high reduced temperatures of the solvent. 
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Fjgure 4.12; Second ran t orjentatjonaj order parameters (—j , f g (- - j 

and C-.. J as a function of composition at a reduced temperature of 0.9 wit6 A = 0.5. 
1.0 

Po 

At very low temperatures the f line is almost linear for A = 0.75 up to a reduced 

temperature of a little under 0.60. Above 7^ = ca. 0.60, however, we begin to see 

deviation. If A is now decreased to 0.5 we begin to observe a deviation from linearity 

even at the lowest 2^ investigated, namely 0.40. At more realistic temperatures the de-

viation from linearity is very great and the present experimental method of estimating 

solute birefringence power is thus manifestly unacceptable. The only circumstances 

under which the f line is seen to be sulBciently linear even for values of A at least 

as large as those encountered experimentally (ie, > ca. 0.75) is for values of 

T). that are so low as to be well outside of the experimental regime (ie, 7} < ca. 0.6). 
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f igure 4 J 3 ; Second ranjc orjentatjonaJ order parameters 

and (...J as a function of composition at a reduced temperature of 0.95 witfi 

A = 0.75. 

p2 

f igure 4. Second rank orientationai order parameters f —j , f ^ ( — j , (- - j 

and (....) as a function of composition at a reduced temperature of 0.95 with A = 0.5. 
1.0 

Po 



Given that the extrapolated value does not, within the reduced temperature regimes 

accessible to experiment, even remotely correspond to the extrapolated order parameter 

of the pure dopant, the question arises as to what this value corresponds in terms of 

the theory. To address this question we need to obtain the gradient of the curve 

f in the limit that a; -4̂  0. Then from the equation of the straight line with 

this gradient through the known point (the intercept of on the ordinate) we 

have the equation of the extrapolation line. The value of the ordinate where this line 

intercepts the line z = 1 can then be found. This is then the extrapolated hypothetical 

order parameter of the mixture. 

4.5.1 Analysis of the meaning of the extrapolated value for the order 

parameter of the dopant in the pm-e phase 

First, we require an analytic expression for the gradient of f at a; = 0. The 

order parameter of the mixture is 

f (1 _ (4.53) 

The gradient of this with respect to the composition is then 

- P i + ( l - x ) - ^ P ^ + x - ^ P l (4.54) 
^ (fa; z 

Hence the limiting gradient we require is 

pmixt\ ^ / A 

The search for an analytic expression for (dF™'^/da:)z=o then reduces to a search for ah 

analytic expression for (d f g/c(a;)a;=o. The derivative of f ^ with respect to composition 

is, in general (ie, irrespective of making the geometric mean approximation) 

f2(cos / ) )exp^^( l - a ; ) e , t A f ^ + a;Eyigf^^f2(co8/))/AgTj dcos^ 

(4.56) 

d d 
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= - 'Z>\ - 2 f2(co8/3)exp(-(7;i(/^)/A:aT) dcos^ 

: i p, ̂ (cos,9) exp j ^(1 - z) + a7eyigf^^f^(cos;8)/A;gr (f cos/) 

(4.57) 

/ f2(cos/))/A:gT CAAl 
\ da; 

-Pn + X-
dz 

+ ^ a b ( p 
F—B DP 

B 

da; 

xexp(-(7A(/))//:sT')dcos;3 / f2(coS;8)exp(-[/y4(^)/A:gT')dcoS;0 

+ / P2(cos^)'/A;gT 
B 

X exp(-[/yi(/))/A;gT') dcos/) (4.58) 

The quantity 

1/A;BT 
/ d p ; 

ÂA I-
A 9 

PO + X + (AB ( f 2 + 
Z-B DP 

B 

dz V ^ da; / / ^ ' da; 

appearing in both terms of (4.58) is not a function of the space of integration as it 

contains only constants and non-angular variables (quantities that are already inte-

grated over the space). For the sake of convenience we call this quantity F. Then the 

derivative is 

p - - = - F { /f2(cos^)exp(-C/^(/^)/A;BT) dcos^ 

But 

-̂ A / f2(co8/)) exp(-(7A(/))//:BT') dcos;g 

- 2 f2(cOS/)) exp(-[/A(/))/AB?') dcos/) 

(4.59) 
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/f2(cos/))exp(-[/^(/))/A;gT)(:fcos/? P. 
•A2 

(4.60) 

and 

/ f2(co8/))^exp(-(7yi(/))/A:gT)(fco8/) — (4.61) 

so 

(fz 
Po r B a2 p •A 2 

-A2 

(4.62) 

We note that the quantity — Pg = [ f^(coSj8) — f 2 ] , the fluctuation quantity 

in f2(co8;0) for component A. We require the limit a; -4̂  0, in other words 

lim r =: lim 
a:—>0 a;~->0 

1 r / f g 
(4.63) 

givmg 

lim r == 
x—)-o kj^t 

{ - ( f p^\ + (4.64) 

where all the quantities involving the order parameters here are implicitly evaluated at 
^ 

a; = 0. We can now collect the terms in cZf g /da; and solve for the gradient. Multiplying 

out we obtain 

da; 
(AA 2 _ ÂA pA —g 

da; AgT ^ ^ 
B a2 p a2 

,-̂ A 
CAA 
/ugiT dz 

- Po CAAfz p.f - p . 
•a2 

(4.65) 

Then 

d ^ _ e ^ d ^ / ^ 

dz A;gT' da; ^ 
p. A2 

6AAf ̂  - GAgf f p. a2 p a2 

da; A:BT 
EAAf B A2 P (4.66) 

and so 

dP^ _ ( \ / k s T ) - eABPt) ( P f - P f ) 

da; l + (iaa/kbt)(pf - p f ) 
(4.67) 
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We reiterate that here all of the orientationally-averaged quantities are implicitly eval-

uated at a; = 0. Written in terms of the scaled quantities we would have 

( Pt - (^ABhAA) P" ) ( p f - W 
2 _ ' " \ 

l + {eAAlkBT)[pf - p f 

pt - (^ab/iaa) p2 ) ( p f - ~ p f ) / t -

1+ ( F ^ - P f ) / T -

{n-(^ableaa)p!)(pf - p f ) 

Within the geometric mean approximation for C/ig equation (4.68) becomes 

(4.68) 

-A / -prA . 1 /n -pr-B \ / 
# = (4.69) 
da; 2"* + ( f ^ ) 

We note the unusual combination of different kinds of quantities (ie, the Euctuation 

quantities and order parameters on the one hand and the scaled temperature on the 

other), the physical interpretation of which is far from clear. 

To calculate this gradient numerically we are clearly required to calculate the additional 

quantity which is evaluated either ag 

y j^(co8^)^exp(-[/^(/3)/A:gT) sin/)d/) (4.70) 

or by noting that f2(cos/))^ can be written in terms of f4(cos /)) and a Clebsch-Gordan 

coefRcient and substituting this for f2(coS;8) in (4.70). 

The gradient of the order parameter of the mixture in the low concentration limit (see 

equation (4.55)) is then 

/ pmixA _ ^ b ^a f ( p i - > ~ ' ' ' p ° ) { p f - p f ) 
' x=0 

t ' - ( p f ~ p ; ) 

(4.71) 
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remembering that in general (ie, outside of the geometric mean appoximation) the 

quantity can be replaced by (c/ia/eyiyi). This gives us the equation of the straight 

line we require. In other words, if we write the equation of a straight line in the usual 

way aa 1/ — ma; + c then the independent variable a; is simply the composition z and 

the dependent variable is f The gradient m is then clearly the gradient 

and the ?/-axis intercept c is f = 0), which by (4.53) is equal to 
^ 

f 2 (a; = 0) and so 

We are required to And /or /me f = 1). Thus the extrapolated 

point is ^1, where 

T - - ( p f - p f ) / . . . 

This expression is found to give complete agreement with the results of extrapolating 

the graphs by hand, aa would be expected. It was thought that knowing what the data 

from the experimental studies represents might possibly provide a clue as to how to 

manipulate pre-existing results to provide a better way of comparing potential dopant 

compounds. However, the signiGcance of the extrapolated point would still seem to 

be far from clear. In particular, the physical interpretation of the expression for the 

gradient (4.71) is not obvious, although we can look at some limiting cases. 

^mixt, f r x i ) = I ̂ 2 - ' ' ' I . (4.73) 

We note that the gradient can be written in terms of the order parameter at the 

extrapolated point simply as 

d — mixt \ - = 5 , _ \ , 
( M _ = (4.74) 

rB , where f g (1) is the hypothetical ordinate of the extrapolated point on the straight line. 

In the limit of high order we might be tempted to set the third term in (4.71) equal to 

zero and note that the resulting equation 
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is similar to (4.74). This would imply that f ^ ( l ) = -Pf (0), which seems initially 

strange. However, as the limit is approached the order parameters become increasingly 

linear and nearer to being equal to the same constant value (unity) over the composition 

range, so that it does in fact become a good approximation for highly ordered systems. 

This analysis of the limit may seem Sawed because the high order limit occurs only 

in the limit of low temperature and it is not clear that the denominator in the third 

term of (4.71) does not render the limiting gradient indeterminate. However, we know 

that in the limit of high order the mixture order parameter is a constant, so that the 

gradient it zero; given that the Grst two terms cancel, t he third must vanish. 

The other limit we can explore is that A —̂  0, that is, the solute is spherical. In this 

limit the gradient is 

(^B^(cos^) 
1 + 

T* — 6 fy^(cos /)) 
(4.76) 

where ^ f^ (cos / ) ) is the Euctuation in fig (cos/)) for component .4. We see that the 

gradient is now a function only of the order parameter and Auctuation for the solvent 

and the temperature, as expected. 

This still does not seem to provide much enlightenment as to what physical meaning to 

attach to values obtained from the experimental extrapolations and what, if anything, 

can be gleaned from the pre-extant experimental data. The values obtained from exper-

iment refer to a hypothetical pure nematic state beyond the experimental regime, but 

it turns out that this state does not, under most circumstances in these experiments, 

exist. The technique also assumes that by extrapolating to the pure solute we obtain 

a property that is intrinsic to the solute and independent of the solvent. However, the 

intercept obtained is clearly determined by (in this case) the order parameter of the 

pure solvent and the slope at infinite dilution, which also contains quantities pertain-

ing to the solvent. The solvent dependence in each of these contributing factors does 

not disappear upon evaluation of the intercept at a; = 1 and so the order parameters 

obtained are manifestly related to the nature of the solvent—both its order parameter 

and the Suctuations in f2(cos^). It has been suggested [5] that a better experimental 
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procedure would be to measure the birefringence as a function of composition, but 

always at the same reduced temperature with respect to the mWure rather than the 

solvent. The order parameter profile is then expected to remain linear in the compo-

sition across the entire range, thus enabling the concept of linear extrapolation to be 

retained in a manner that is valid, although clearly more di&cult experimentally. 
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Chapter 5: Liquid Crystals Formed from Highly Flexible 

Molecules 

5.1 Introduction 

In addition to the standard classes of mesogenic molecule (see Chapter 1), in recent 

years it has been found that highly flexible dendritic structures (dendrimers) are also 

capable of mesophase formation [1, 2, 3]. The hrst demonstration of this was by 

de Jeu [1]. Dendromesogens (see Agures 5.1, 5.2, 5.3) as they are called thus form a 

new class of mesogenic compounds consisting of a central core attached to which are 

flexible chains, which may branch a number of times, terminated in rigid mesogenic 

units such as cyanobiphenyl moities. These structures generally do not for nematics 

but only smectic phases. The molecules may exhibit several levels of branching, the 

number of branching levels being known as the generation number. A dendrimer with 

M branching levels is known as a Gn dendrimer. In addition, it is common to place the 

standard abbreviation for the mesogenic unit (with linking group) afterwards. Thus, a 

dendrimer with just a central core and chains which do not branch is a zeroth generation 

(GO) dendrimer, and if the mesogenic groups are ether-linked cyanobiphenyl groups 

(for instance) then we have a GOOCB dendrimer. Zeroth generation dendrimers are 

also commonly called multipodes. In spite of the above generalisation about phase 

behaviour, some examples of multipodes do form a nematic phase, notably those with 

cyanobiphenyl groups attached laterally to the chains; the analogues with the groups 

attached terminally, however, form only smectic phases. The term 'Sexible' here refers 

to the large range of conformational states the molecule may adopt. 
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figure 5.]; Exampjes of tAe Zigmd crygtaJ decdnmers 

CH2OOCR 
L-CH2OOCR 

R C O O H 2 C C H 2 OOCR 

a R is ( 0 1 4 2 ) 3 

b R i s — ( C H 2 ) 3 — 

c R i s — C H 2 - ^ ^ ^ — 

. R . J r \ J ^ 5 ^ 1 1 
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fig-ure 5.2." Another earJy example of a 7jqujd cjygW dendrimer 
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In this chapter we describe a study which is a starting point for the theoretical modelling 

of liquid crystal dendrimers. For simplicity, we shall focus solely on zeroth generation 

dendrimers (multipodes) in which the central core is simply a quarternary carbon atom 

and the mesogenic groups are cyanobiphenyl moities. We shall consider the case where 

the cyanobiphenyl groups are attached terminally and also that where they are attached 

laterally to the chains via ether linkages (see figures 5.4 and 5.5). In accordance with 

the results of experimental studies (such as X-ray diEraction) on ether-linked Sexible 

liquid crystal dimers, the torsional angle around the bond between the phenyl ring 

and the ether linkage is kept fbced at 0° in these calculations. Again, for simplicity, 

we shall focus just on nematic behaviour as a convenient starting point. Thus the 

calculations on the lateral multipodes allow contact with real systems which form 

nematic phases. Also, for comparison we have performed the calculations on Sexible 

liquid crystal dimers, which are in a sense analogous to the terminal dendrimers, and 

also form nematic phases. The calculations have been performed on a homologous 

series for each type of molecule (flexible dimer, terminal and lateral dendrimers). This 

facilitates validation of the methodology using the dimer series (by comparison with 

experiment and previous application of the methodology to dimers [4]) and permits 

comparison between the different series to compare features of interest. There is then 

the possibility of Ending in the multipodes odd-even effects analogous to those obtained 

for flexible dimers. In addition, we are able to explore the effect of conformational-

orientational synergy on the transitional order parameter, an important phenomenon 

in flexible liquid crystal dimers. 
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Figure 5.4; Structure of a typical zeroth geaeratjon ether-jinked cyaaobipAecyi den-

drimer, G-OOCB, aa used m the theoreticaJ cafcuiatiozis. Here, the cyanobipAenyj 

groups are attached to the chair terminaUy. 
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Figure 5.5.- Structure of a typicai zeroth geueratioc etiier-iiaied cyanobipAeuyi den-

dzimer, G-OOCB, as used m the theoretical caicuiatioas. ffere, the cyanobiphecyi 

groups are attached to the chain jateraZJy. 
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5.2 Theoretical Background and Methodology 

5.2.1 General introduction to the problem 

We take aa the starting point of the treatment the molecular field theory of liquid crys-

tals composed of Sexible molecules first proposed by Marcelja [5] and subsequently ex-

tended by Luckhurst [6]. The theory treats the conformations available to the molecule 

resulting from the chain flexibility using the rotameric isomeric state (RIS) model of 

alkanes proposed by Flory [7]. In the RIS model the only conformations that are 

deemed to exist are those corresponding to the torsional potential minima. 

The main problem in applying the theory to molecules with a very high degree of 

conformational flexibility, such aa dendrimers, is the inherently huge number of con-

formational states available to them. In the RIS model, there are 3^"^ conformations 

for an alkyl chain containing N methylene units. The RIS-based theory generates all 

possible conformers (even if some are eventually rejected because overlaps of atoms 

occur), a task that in the case of dendrimers is beyond all possible developments in 

conventional computing power. For example, for the largest multipode we have studied 

(which is only a "zeroth generation" dendrimer) this gives something of the order of 

3 % 3.6 X 10 conformers. If conformers were to be generated and dealt with at a 

rate of 10^ per second the entire calculation (apart from Gnal calculations at the end 

of the algorithm) would require over 100 159 728 years. 

There is also another kind of problem, and that concerns the validity of the RIS model 

of the physical situation itself. In reality, at and around ambient temperature, flexible 

molecules librate in the well minima of the torsional potentials. This contrasts with 

the RIS model in which only the minima exist and so tha t in, say, a flexible liquid 

crystal dimer, the mesogenic group axes are always either collinear or at some fixed 

angle to each other and so are correlated. When there are Euctuations in the well 

minima, the extent of these correlations is reduced—to an extent that depends, for 
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a given temperature, on the length of the chain, since in longer chains the e^ect of 

these Suctuations accumulates until in the limit, all correlations between the mesogenic 

groups are lost. Thus in reality, in the limit of a long chain length, we effectively have 

orientationally isolated uncorrelated mesogenic groups in a sea of liquid alkyl chain, 

and we should recover the Maier-Saupe results. (Note; This is not strictly true if we 

decide to include within the theory anisotropic interactions coming from the chains.) 

The eSFect of removing the RIS restriction on the possible conformational states on the 

mesogenic orientational correlations is therefore expected to be relatively insignificant 

at short chain lengths but progressively more significant for increasing chain lengths. 

Thus we expect that the deviation of the RIS-based theory from experimental findings 

will increase as we consider more Sexible systems with larger numbers of chains of 

greater length—precisely the sort of systems we are interested in, in fact. Indeed, 

application of the RIS model to flexible liquid crystal dimers and comparison of the 

results with those of experiment reveals this increasing discrepancy of the RIS-based 

theory as the chain length is increased, although this deficiency is partially ameliorated 

when conformers containing steric overlaps are excluded from the calculation [4]. Given 

the numbers and lengths of Eexible chains present in the kinds of molecules we are 

hoping to study, this would seem to mitigate against invoking the RIS approximation 

and favour employing continuous torsional potentials instead. After all, this would 

be preferable in any case if it can be achieved with modern computing power, simply 

because it models much more closely the real physical situation. 

Clearly then, we require a new methodology to deal with such systems, since there are 

no analytic or semi-analytic solutions (the required total integrals are numerical and 

of high dimensionality) and the RIS model-based theory is seen to be inadequate. We 

obviously need some kind of sampling scheme to generate discrete conformers within 

the conformational space. It would seem that the most appropriate strategy would 

be to adopt some kind of random ("stochastic") sampling scheme. The most obvious 

candidate is that employed in stochastic-type computer simulations where points in 

phase space are sampled according to their importance based on the Boltzmann fac-
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tors for their energies, namely the form of "Monte Carlo" sampling Erst suggested by 

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller [8]. In addition, given that in 

principle we can just as easily apply the "Metropolis" sampling protocol to the whole 

conformational space as to the RIS subspace, it makes sense to apply the Metropolis 

sampling scheme to the whole space, which allows us to employ continuous torsional 

potentials. With this decided, the sampling protocol then becomes entirely equivalent 

to performing the requisite multi-dimensional integrations exactly (within, we should 

note, the tacit assumption that the multiple integral may be treated with the ap-

proximation that the total torsional energy may be represented as a sum of effective 

single-torsional energies). 

We could use this approach to sample all of the variables whose values determine 

the classical Hamiltonian of the system—not only the conformational coordinates but 

also the orientational ones. The required integrations over orientational variables can, 

however, be performed exactly by a combination of analytic and simple numerical in-

tegration in just the same manner as in the previous RIS-based theory for Sexible 

systems. (This is just the same as for the theory of uniaxial phases of biaxial rigid 

particles described in Chapter 2.) Sampling on the whole phase space would then seem 

unnecessary and computationally inefBcient, and so we choose to perform Metropo-

lis Monte Carlo sampling on the conformational variables only and obtain the usual 

orientational integrals exactly as in standard molecular held theory. 

The subtlety here in applying the molecular field theory to the orientational part of 

the state space and the Monte Carlo procedure to the conformational part is in how 

we combine these two approaches when obtaining the ensemble averages over the sim-

ulation. As we shall see, it turns out that because conformers are accepted or rejected 

solely on the basis of their conformational potential energy, we have to include in each 

contribution to the average a weighting factor that reflects the orientational bias com-

ing from the molecular Geld, that is, the fact that we are modelling an orientationally 

ordered fluid [9]. The weighting factor that we must build in for each accepted (or 
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reaccepted) conformer is its orientational partition function. In addition this accumu-

lated quantity must be normalised at the end of the simulation by a factor which is 

just the sum of these partition functions. This corresponds essentially to the "umbrella 

sampling" technique (see section 5.2.2). 

5.2.2 Formal Aspects of the Molecular Field Calculation 

The starting point of the molecular held calculation is an effective single molecule 

potential energy. This energy is taken to be the sum of two contributions, an in-

tramolecular contribution and an orientational contribution. The former is a function 

only of the internal coordinates of the single molecule and is in a sense exact within 

whatever approximate deconvolution is assumed for calculating it. Here we implicitly 

assume the validity of a Born-Oppenheimer-type deconvolution of the total energy into 

separate contributions associated exclusively with assumed independent degrees of in-

ternal freedom, these being bond lengths, bond angles and dihedral (torsional) angles. 

We then proceed to ignore the dependence upon bond lengths and angles and assume 

that the intramolecular potential energy may be faithfully represented simply by the 

torsional energy alone which is itself assumed to be a sum of effective single-torsion 

energies. The second contribution is the anisotropic part of the thermodynamic poten-

tial energy (the "potential of mean torque") and is a function of both the conformation 

(internal degrees of freedom) of the molecule and its orientation dehned by the ori-

entational variables; these are denoted collectively by cj(= a , ,^), the spherical polar 

angles of the nematic director in the molecular frame of reference. The potential of 

mean torque construction replaces the many body interactions with a single molecule 

interacting with an average (or "mean") held, referred to as the "molecular field", and 

is an effective single particle potential energy function, or strictly speaking, just the 

orientationally-varying part of it. We write 

[ / , , , (W,W) = [/mt({4) + [ /ext(W,w), (5.1) 

201 



where denotes the collective set of torsional angles vyhich deHne a given conforma-

tional state. The single molecule orientationai potential energy is assumed to take the 

same form as that described in Chapter 2, namely, 

= (5^2) 

where m — — 2 , — i s the molecular interaction tensor expressed as a second 

rank irreducible spherical tensor and C2m(w) is a spherical harmonic. (See Appendix IB 

for the functional form of the C2m{^)-) 

As in the previous theories for Eexible molecules the molecular interaction tensor is 

taken to be a sum of segmental interaction tensors from whatever parts of the molecule 

are deemed to contribute. The strengths and weaknesses of this construction assumed 

for the molecular interaction tensor have been discussed elsewhere [10]. 

As in any simulation or theoretical calculation the main aim is to obtain the bulk 

thermodynamic averages of the system in the ensemble under consideration. Ultimately 

what is required is to be able to End the ensemble average of any property B of interest 

that we might choose, and this is defined formally by 

< B P { X } (5.3) 
V{x} 

where {%} denotes the collective set of degrees of freedom, 2:2,..., of the system 

and P{X} is the total probability density distribution function of the system over all 

its degrees of freedom. This is defined by 

f {X} = exp / / exp ( - [ / { X } / ^ ^ ^ ) (5.4) 

/ 
Within the theoretical framework of this present study, these equations become 

< B >en8 = / / ^({<6},w)f({(^},Cj) (5.5) 
j {</>} j w 

with 

f({<;;!»},w) = exp(-[/(^t({(;6},w)/A;gT') / / / exp(-[/to(({9!'},(^)/^B^) 
Vw 

(5.6) 
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There is then the problem of how to perform the integrations. Given that we cannot 

expect to perform them analytically, we clearly need to invoke some kind of discre-

tised approximation. Standard numerical integration techniques form a class of such 

approximations but are inadequate to deal with the very high dimensionality of the 

spaces we are considering, as we have already mentioned. The RIS model, where we 

assume that the only conformational states that exist are those corresponding to the 

torsional potential minima, could also be considered in this way but, as we have seen, 

is also inadequate to deal with the range of systems we wish to study. (If we view 

the RIS model as equivalent to numerical integration then the integrals are replaced 

by summations over the states of the model of the quantities represented by the in-

tegrands.) Alternatively, at the other extreme, we could sample discrete states from 

the total conformational space at random. If we sample stochastically from a uniform 

distribution then we retain the exact form of the integrands and the integrals are then 

replaced by summations giving us and expression exactly analogous to the RIS model-

based one—except that this time the summations are over the stochastically-sampled 

states (ie, other kinds of conformational states are sampled). If we sample from a 

non-uniform distribution then we still have a summation over sampled states, but the 

integrands must be modified to take account of the fact that we have sampled from 

a biased distribution. More specifically they must be multiplied by the inverse of the 

distribution from which we are sampling. That is, if the quantity we require is in 

general 

< B > e „ . = y B { X } e x p { - U { X ] l k B T ) d { X } j J e x p { - U { X } / k B T ) d { X } 

(5.7) 

then unbiased sampling gives < B >en8 the limit 

j i ^ exp ( - [ / { % , } / W / ^ ' ^ e x p ( - [ / { X j / w j , 
^ 2=1 ' i=l ^ 

(5.8) 

where jV —> oo is interpreted to mean that N can be as large as is necessary to obtain 

convergence of the quantity. If we now introduce stochastic sampling on the {%} from 
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the biased distribution f {%} given by (8.4) then this expression becomes modified as 

^ Z=1 ' 1=1 ^ 

lim 
E t i B{X,} exp(-C/{Xj}/*;j,r) [exp (-Lf{X..}/AflT)/0|- ' 

[ E f = i exp (-C/{A'.}/AbT) |exp ( -U[Xi ] lkBT)IQ]-^ 

= B { X , } j N ] , (5.9) 

where 

0 = / exp c({X}. (5.10) 

Given that we have already rejected the RIS model in favour of allowing the torsional 

angles to vary continuously, the question that presents itself is whether it is more ef-

hcient (in terms of rate of convergence over iterations to the true value < B >ena) to 

employ unbiased stochastic sampling or stochastic sampling from a non-uniform distri-

bution. In the field of computer simulation of liquids it is generally asserted that direct 

evaluation of the thermodynamic averages via unbiased sampling is quite infeasible and 

that achieving convergence is beyond all possible developments in conventional com-

puter power. This is because a very high proportion of states generated in a uniform 

random distribution will contain elements of the system (particles, non-bonded atoms) 

that are very close to each other, giving rise to a very high potential energy. This 

means that the Boltzmann factor for the energy will be vanishingly small, and so give 

a negligible Boltzmann weighting in the numerator of (5.8) for the corresponding value 

of the property in question. For the same reason the constant scaling factor in (5.8), 

which for the sample taken is just the sum of the Boltzmann factors (ie, the simulation 

estimate of the partition function) is also then composed almost entirely of very small 

contributions. The remainder of the space itself not sampled will also be overwhelm-

ingly dominated (in number) by such contributions. Such a sampling scheme would 

be prohibitively inelEcient, since almost all states sampled make virtually no contribu-

tion to the average being computed. Thus, straightforward random sampling from an 
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unbiased distribution is not usually regarded aa a viable way in practise of obtaining 

ensemble averages. 

One of the most important forms of Monte Carlo sampling is "importance" sampling, 

the most widely used of which is the sampling protocol devised by Metropolis et al. 

mentioned earlier, and it is this one which we have chosen to employ. The Metropo-

lis protocol [8, 18] is as follows. A new conhguration is generated (by changing on 

or more degrees of freedom by some random amount) and the change in energy 

between the new and old configurations is calculated. If the energy of the system has 

decreased ( A ^ < 0) then the move is accepted. If the energy has increased (AE > 0) 

then the move haa a chance of being accepted, the probability being proportional to 

the Boltzmann factor for the energy difference. That is, a random number is gener-

ated uniformly on (0,1). If the random number is smaller than the Boltzmann factor 

exp(—AE/AgT) then the move is accepted. If the random number is greater than the 

Boltzmann factor the move is rejected and we return to the old conhguration which, 

we note, is to be reaccepted (ie, counted as the next configuration in the set over which 

averages are to be computed). Thus, AE' > 0 moves are accepted with a probability 

proportional to the Boltzmann factors for the corresponding energy differences. The 

Metropolis sampling scheme ensures that the limiting distribution of the simulation 

over the variables {%} so sampled will be f {^} . This occurs because the algorithm 

sets up a Markov chain of states of the system in phase space and from the theory of 

random processes it can be shown that, with the Metropolis criteria for acceptance or 

rejection of trial moves, this chain haa a limiting distribution which is the f 

encountered previously [18]. Thus we obtain the desired distribution over which we 

wish to average automatically and indirectly through the sampling mechanism itself. 

Then, bearing in mind our earlier comments about the modification of the calculation 

of averages required when sampling from a biased distribution, we obtain the ensemble 

average of a property from (5.9) with N being the total number of trials (ie, states 

included in the average). 
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The situation we are trying to deal with here, however, is somewhat more involved, 

because although we could apply the Metropolis Monte Carlo procedure to all the 

degrees of freedom, it is not necessary, as we have already stated. (Indeed, to do so 

would preclude location of the N — I phase transition.) Rewriting the formal expression 

for < B >ena in terms of semi-analytic integrations and leaving the conformational 

space for Monte Carlo sampling we obtain 

where 

< g >w = Qext"^ / g(w, {< }̂) exp (5.12) 
V W 

and 

Qext = / exp(-[/ext(w, {(?!'})/A:BT)dw. (5.13) 
*/ (J 

Performing Metropolis sampling on the {0} ensures that the limiting distribution is 

f = exp (-[/mt{.^}/A:Br) / / exp (-[/int{<^}/A:aT) , 

= Qint"' exp (-[/mt{.?^}/A:Br) . (5.14) 

Thus the simulation average is computed as 

]3 ^Pns — lim 
I E f e l 

= ( f l W O e a W i } ) , (5^15) 
\ / trials / \ / trials 

where now >w. 
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5.2.3 Details of the Molecular Field Calculation 

We shall now discuss in detail the form of the molecular field calculations. We begin 

by turning our attention to the total interaction tensor of the molecule. As already 

discussed (see Chapter 2) the potential of mean torque is assumed to be dominated 

by second rank tensorial quantities to the extent that it is appropriate to consider 

only these to obtain all the qualitative features and essential physics of nematic liquid 

crystalline systems. The quantitative aspects that one might think could be obtained 

by extending the theory to higher order are in any case unobtainable, a feature that 

results from the severity of the molecular Aeld approximation itself, that is, the fact 

that we assume an eAFective single particle orientational potential. To obtain better 

than semi-quantitative information the hrst step we would have to take would be to 

look beyond the potential of mean torque concept itself. Thus the essential qualitative 

physics is taken to be completely encapsulated by a single molecular interaction tensor 

of second degree. The total interaction tensor, %2m, (or its cartesian analogue) is taken 

to be the (tensorial) sum of individual tensors in some way related to various parts of 

the molecule that are assumed to contribute, although there are other possible schemes 

for constructing [19, 20]. 

Here we have assumed that only the highly anisometric mesogenic regions contribute 

and that their tensors are cylindrically symmetric about their long axes when referred 

to the principal frames of the mesogens (ie, their para axes, since the mesogenic groups 

are of the biphenyl or terphenyl type). The predominant driving force to form hquid 

crystalline phases, in terms of intermolecular interactions, is thus identified with the 

mesogenic groups and in this study we are neglecting the inSuence of the chains. This 

is not unreasonable, since the formation of the phase is dependent upon the presence 

of rigid, elongated units, which is indeed why they are referred to as "mesogenic"— 

mesophase-inducing. 

The strength of the orienting molecular field is set by a parameter, the scalar strength 
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parameter, This input parameter determines the components of the cartesian in-

teraction tensor for each mesogenic group in its own principal axis system as follows: 

meso (%,; = 1,2,3 and (3,3)) 
= < (5.16) 

( 2 = j = 3), 

where the local principal z axis is taken as the assumed cylindrical symmetry axis of the 

mesogenic group. The total cartesian interaction tensor is obtained by transforming 

the mesogenic interaction tensors into a common frame and taking the tensorial sum. 

The irreducible analogue, , of the total interaction tensor is obtained by diagonali-

sation of the cartesian tensor matrix to obtain a principal axis system (represented as a 

set of eigenvectors) with only diagonal elements surviving as non-vanishing, these being 

the eigenvalues associated with their corresponding eigenvectors. The appropriate lin-

ear combinations of the principal components of the total cartesian interaction tensor 

are then taken to form the components of the irreducible spherical tensor analogue as 

^20 — = 0 -%̂ 2±2 = (-^zz — (^1^) 

The rotational partition function for the accepted conformer {<̂ }̂ in question is then 

computed as 

— J exp( Uexti^•) {^i})/ksT) du> 

27r p2Tv 

/ exp ( - [ / e x t ( w , { < ; 6 j ) / / j g T ) da , (5.18) 

a=0 J f3=0 

with L/ext(̂ t;, {(^}) given by (8.2) and %2m{<^} obtained already. From %2m (or hence 

equivalently [/ext(w,{(^}), which gives the "external" partition function), all the other 

properties follow. Within the theoretical framework of the molecular field approxima-

tion, the molecular order parameters for this conformer {<^i} are given by 

C 2 m = Qext ^ / (72m(c(;) Gxp ( - [ / e x t ( w , { ( 6 } ) / A ; g T ) (fw V m ( m = - 2 , - 1 , . . . , 2) . 

(5.19) 
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The averages < B >ens of quantities B(w, may now be computed at the end of 

the simulation as 

(5.20) 

where 

/ B(w, exp(-[/ext(w, (5.21) 

(Note: 

= Qext"' / B(W, {,^J) exp (-[/ext(c^, {<?^i})/AgT) (fw (5.22) 

so that 

= Qext Qext ^ y B(w, {9l)i}) exp (-[/ext(cu, {^i})/^^^) dw 

= (5.23) 

and 

^ B >ens ^ Qext{0i} ^trials / ^ Qeyx{4'i} ^trials •) (5.24) 

Quantities that we compute which are averages over the orientational space must be 

multiplied by the rotational partition function before accumulating—or rather, inte-

grated with the Boltzmann factor in the orientational energy and not normalised by 

the partition function in the first place. Where a quantity is not a function of w, then it 

is accumulated without any need of integration, simply multiplication by the partition 

function. The simulation average is then simply this accumulator divided by the sum 

of the rotational partition functions, since the number of conEgurations pertaining to 

the averages in the ratio (see equations (5.20, 5.24)) is the same in each cage. 

The average properties we wish to calculate in the simulation are the second rank 

orientational order parameters, < >, of the mesogenic groups, the scaled Helmholtz 
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free energy difference, between isotropic and nematic phases and the scaled 

entropy difference, between the phases. 

The order parameters of the mesogenic groups are calculated as follows. For each ac-

cepted conformer, the calculated irreducible spherical tensor order parameter of the 

molecule is used to form the Saupe ordering matrix in the principal axis system ac-

cording to 

Szz = C20 Syy = — - + - 6*22̂  Sxx = ~{Syy + S^ z) Sij = Q {l ^ j) (5.25) 

and this is then transformed back into the local frame of each mesogenic group in turn 

to obtain the corresponding second rank orientational order parameter. This requires 

a double reverse transformation. 

We first transform back into the common BOSS frame by making use of the rotation 

matrix obtained from diagonalising the interaction tensor, since this speciSes the for-

ward transformation that takes the BOSS frame into the current, principal frame. The 

elements of the rotation matrix .R in the transformation 

r = ^ r (5.26) 

that takes the matrix T of cartesian tensor components in the BOSS frame into the 

corresponding matrix T" in the rotated (principal) frame are in fact the direction cosines 

Gij that appear in the equivalent general transformation law for second order cartesian 

tensors under rotation of the axis system 

(5-27) 
ik 

where 7^* is a second order cartesian tensor in some arbitrary original frame (in this 

case the BOSS frame) and is the tensor referred to some arbitrary rotated frame 

(in this case the principal frame). Since the above transformation law is completely 

general and the original and rotated frames to which if refers are arbitrary, we may 

write for the reverse transformation 

(5.28) 
ji 
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We note that the sense of the rotation in either direction is contained not in the individ-

ual direction cosines themselves (which by deEnition can have no inherent directional-

ity) but in the indices over which summation is taken in the transformation law. Since 

in this case we are transforming from a principal axis system (ie, S'j, = 0 V j ^ Z aa 

we have already indicated) all terms for which j ^ / vanish so that the transformation 

simplifies to 

Sik — ^ ^ Gji Qjfc S j j = ^ ^ CLjj Clj^j S j j , (5.29) 
j j 

giving a sum of just three terms for each Sik-

The next step is to transform the Saupe ordering tensor in the BOSS frame back into 

the local frames of each of the mesogenic groups in turn. Since the local frame is 

by de&nition a principal frame and the mesogenic group is taken to be cylindrically 

symmetric, we only need calculate in the local principal frame to construct the 

entire Saupe ordering tensor in this frame. In fact we only require 5"̂% anyway, since 

we simply wish to End the order parameter 7̂ 2 of the assumed symmetry axis which is 

by dehnition We write for the ordering tensor in a given local mesogenic frame 

Sji — ^ ] cijj ciki Sjk) (5.30) 
ik 

which, given that 5̂ ^ = 0 V j ^ simplihes to 

Sjj — ^ Ojkj Sik (5.31) 
ik 

from which we require 

% = (5.32) 

ik 

We have the 5"̂ * and so only require direction cosines of the form 0̂ 3 for each mesogenic 

group, but these are simply the direction cosines between the mesogenic group z-axes 

and the axes of the BOSS frame—which we already have and indeed will have been 

used to transform the local interaction tensors into the BOSS frame at the very start 

of the molecular held calculations on the current accepted conformer. 
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To calculate the simulation averages of the order parameters of the mesogenic groups, 

the order parameter of each group is accumulated over the accepted conformers, having 

first been weighted by the rotational partition function, and the partition functions are 

also accumulated over accepted conformers. Then, at the end of the simulation, the 

ensemble averages are computed by taking the ratio of these accumulated quantities 

in accordance with equation 5.24, that is, 

< ? r ° > « = (6.33) 
i i 

The free energy diEerence, AAfyv/jn", between isotropic and nematic phases is also 

calculated at the end of the simulation as 

AA,^/RT = ~ l < > / < QL > - In { < QU > / 

1 1 ^ 
= (6.34) 

i i i=l 

where the angle brackets < > here denote a straightforward arithmetic mean. 

We also, at this stage, calculate the TV — 7 entropy difference at the phase transition, 

which is by definition (at constant volume) 

A 5 „ = ^ = < U > . - ^ < U > « (5.3S) 

Now the (average) internal energies of each of the respective phases have two contribu-

tions, the intramolecular contribution, < U\-at >, and the intermolecular contribution, 

< >, so that the quantity we require 

^ S n i / R = [ (< Uijit >J + < Uext >/) — (< Uint >N + < t4xt >N) ] / RT 

[ (< C/int > / — < >Ar) + (< C/ext >7 " < Ĉ ext >7\f)) ] / 
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Thus we may write 

(5.37) 

where 

A^^f^ = A[/j^}/T (5.38) 

is the conformational entropy change and 

A;9^, = A % / r (5.39) 

is the orientational entropy change. The quantity < [/mt > / in equation (5.36) is given 

by the unweighted average of the intramolecular potential energies 

< C/int >f = < ^ (5.40) 
i 

whereas < >;v is given by the orientational partition function weighted average 

< t^int >N = < f^int Qext ^ < Qext > = ^LtQext / Qext' (5-41) 

i 

Thus 

a s ^ 7 7 - R = - E / E « « ] • (5-42) 
% % 

where the value of T is the absolute temperature at which the BOSS Monte Carlo 

algorithm is sampling the conformational space. The orientational contribution to 

the total entropy change is similarly calculated from the averages in the isotropic and 

nematic phases of the orientational intermolecular energy, the main diSFerence being 

that this energy is zero in the isotropic phase regardless of conformation, so there is no 

need to calculate the average. The other diiference is that these energies are calculated 

already automatically scaled by .RT so that 

/ Z Q L (5.43) 
% 

(with the asterisk denoting division by ^ZT) and so 

A ^ - / E = (5.44) 
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5.3 Computational Technique 

Monte Carlo sampling of the conformational space of the single molecule is achieved 

using the program BOSS (Biochemical and Organic Simulation System) 3.8 [11], which 

has been suitably modiSed to obtain a model potential consistent with previous applica-

tion of this methodology [4]. That is, the intramolecular potential energy is calculated 

as a sum of effective single-torsion energies for the various torsions present, these being 

modelled by a Ryckaert-Bellemans-type potential [12] suitably parameterised for each 

torsion type in question. The form of the Ryckaert-Bellemans potential used in the 

BOSS code is 

^(<6) = li) + y [1 + cos(^ + /i)] + y [1 - cos(2(^ + /2)] + y [1 + cos(3<;6 + /a)] 

(5.45) 

That is, it is in its most general form the expansion 

+ (-1)"+^ cos(M,̂  + /n)] (5.46) 
n = 0 

SO that the ^ term becomes 

V ;̂[l - cos(0^ + /o)] = V ;̂[l - C08(/o)] = (5.47) 

and is thus invariant with respect to The 1/̂ ' term is then 

1/̂ '[1 + cos((^ + /i)] = y [1 + cos(,^ + / i )] (5.48) 

and so in general for all with n > 0 the term is 

V%[1 + (-1)"+^ cos(n(^ + /n)] = y [1 + (-1)"^^ cos(M(^ + A)] (5.49) 

with 

= y . (5.50) 

The quantities are phase shift angles and for our purposes they are all zero (except 

for /o)' The expansion is taken upto third order as indicated in equation (5.45). The 
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Figure 5.6." The form of the Rycicaert-BejjemaDg potentia] empJoyed m the BOSS united 

atom A)rce^eM for the standard aJAane torsion 

int \ 

parameters required to calculate expression (5.45) are from the united-atom version of 

the BOSS potential and are to be found in the BOSS Hie oplsua.par. The Ryckaert-

Bellemans potential is illustrated in Bgure 5.6 As far as the non-bonded interactions are 

concerned, the atoms were modelled as hard spheres with diameters of 2.6 A so that 

moves that introduce steric clashes are always rejected. The value of 2.6 A was chosen 

as it is close to the "size" of the methylene combined atom (ie, cr in its Lennard-Jones 

potential) and is consistent with that used in previous applications of this methodol-

ogy [4]. All attractive forces between non-bonded atoms have been removed, since the 

molecule will otherwise tend to fold up, which, while realistic for the environment in 

which it finds itself (effectively a vacuum), one would think physically unrealistic in 

the bulk isotropic liquid where it is surrounded by many other identical molecules. It is 

only the orienting tendency of the nematic environment tha t is being modelled by the 

molecular field, not the intermolecular interactions in the isotropic phase, so we should 

choose a potential model that is reaaonable for the isotropic phase, given that we have 

215 



chosen to model only a single molecule explicitly. In addition to these modiGcations 

the molecular held calculations were also implemented in the BOSS code to simulate 

the anisotropic environment. The input to this part of the code consists of a set of 

scaled strength parameters, X* = that determine the strength of the nematic 

orienting 6eld in comparison to the thermal energy of the system. These values are 

used to construct the tensors for the individual mesogenic groups having the same 

form as the in equation (5.16), namely 

2 4 (%,; = 1,2,3 and (z,;) ^ (3,3)) 
^ij — ̂  (5.51) 

(i = ; = 3). 

These tensors are then transformed into the common molecular (BOSS) frame using 

the direction cosines of the mesogenic group axes in that frame: 

z : / = X % 3 U 6 - W / 2 , (5.52) 

where the components of the scaled mesogen interaction tensor in the molecular 

(ab) frame, is the scaled strength parameter and Zg is the direction cosine between 

the mesogenic group long axis and the a axis of the molecular frame. The calculation 

continues as described in the previous section, but using these scaled quantities rather 

than the unsealed interaction parameter and tensor components directly. 

This is standard technique in molecular field calculations, but within this particular 

hybrid methodology leads to subtlety not encountered in calculations that are solely 

molecular held or solely Monte Carlo in nature, and that concerns the concept of tem-

perature. In the Monte Carlo part of the calculation, BOSS operates with a "real" (ie, 

unsealed) temperature, input to it in °C. The molecular field calculation, on the other 

hand, works with a scaled temperature, the value of which we do not actually know 

until the end of the simulation, since we do no actually input the scaled temperature 

directly, but rather the scaled strength parameter, which determines the values of the 

order parameters. The scaled temperature is the ratio of the order parameter (which 

in this case will be the arithmetic mean of the simulation averages of the order param-

eters of the mesogenic groups) to the scaled strength parameter. Thus we have two, 
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in general different, temperature scales. The question then arises as to how to ensure 

that the the temperatures operating in the two parts of the calculation are reasonably 

consistent, rather than widely disparate. The most straightforward way is by making 

use of prior knowledge and to set the BOSS temperature to a value which is our best 

estimate of that at which the N — I transition is likely to occur. The temperature scales 

will then be most closely consistent in precisely the molecular field scaled temperature 

regime that attracts our primary interest, namely the region in the neighbourhood of 

the transition. We know that for mesogenic systems in general, and for the systems 

most closely related to dendrimers for which we have experimental data in particular 

(ie, liquid crystal dimers), this temperature is in the region of 400 K. This suggests 

that we should employ this temperature within BOSS. 

However, here we encounter another subtlety, and that relates to the fact that, for 

convenience, we have ignored contributions to the interaction tensor arising from the 

flexible chain regions of the molecule. In setting up the molecular held calculations we 

have included only the mesogenic group contributions explicitly as they are expected 

to be the dominant contribution. In the previous application of this methodology [4] 

and in molecular field theories where chain interactions are included explicitly [9] the 

relative strength of the contribution from a chain segment is a fraction of that asso-

ciated with the mesogenic groups. The effect of this weaker interaction coming from 

each torsional segment is to create an additional contribution to the effective energy 

difference between the gauche and trans forms of each such segment. This could be 

equivalently conceptualised as a reduction in the effective temperature at which the 

torsional space is being sampled. This suggests that we may calculate the interaction 

energy coming from a single butane link in both gauche and trans forms and obtain 

the difference between the two in order to estimate the size of this effect. By equating 

the Boltzmann distribution between gauche and trans forms with this chain contribu-

tion to the gauche-trans energy difference at a real temperature of some 400 K with 

the distribution at some lower artificial temperature where the chain contribution is 

taken as zero, we can calculate this lower effective temperature at which the effect of 
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the chain interactions may be included implicitly. We performed the simulations using 

for convenience, by default, a BOSS temperature close to room temperature, namely 

25 °C. It turns out [17] that, based on a transition temperature of 400 K and assuming 

a strength parameter of unity for each torsional segment, the eH'ective temperature 

which models most closely the influence of the interactions arising from these segments 

is in the neighbourhood of 40 °C , which on an absolute scale, seen in reduced terms, 

is essentially the temperature we have employed. 

It is also worth noting that since the conformers are accepted or rejected solely on the 

baais of the intramolecular energy, which is independent of the molecular held energy, 

it is inefhcient to run the simulation multiple times, each time for a different scaled 

strength parameter, since the conformations sampled by Monte Carlo will be the same 

and so this part of the calculation would be repeated over and over again. Thus, the 

input to the molecular held part of the program consists of a set of (scaled) strength 

parameters. The molecular Held calculations for the various values of are performed 

together during the same run. 

Every 500 conformations the instantaneous values and cumulative averages of the in-

tramolecular potential energy and order parameters for the mesogens are written to 

file. At the end of the simulation the average quantities (for each value of X*) are 

computed and also written to hie, these averages being the Helmholtz free energy and 

entropy difl"erences between the isotropic and nematic phases and the order parame-

ters for the mesogens. The entropy difference is composed of an orientational and a 

conformational contribution, both of which are also output. 

The other inputs to the program are those required by BOSS itself and those that we 

have to concern ourselves with here are mainly the Z-matrix, which defines the starting 

conformation (ie, the molecule being modelled and its geometry) and the parameter file, 

which enables us to change the conformational temperature, the frequency with which 

the molecular coordinates are output to hie and the maximum number of torsional 

angles altered in a Monte Carlo attempted move. A complete specification of the 
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various files required to run BOSS and their contents is given in the BOSS manual [11]. 

The starting conformation chosen for the molecules wag the all-trans, as this has the 

lowest intramolecular energy, and ground state conformations are a standard starting 

point in Monte Carlo simulations of small numbers of Sexible molecules at finite tem-

perature. The sampling protocol was as follows. The maximum number of torsional 

angles altered in a single Monte Carlo attempted move was set to 5. The number of 

torsions moved is then an integer in the range 1 — 5, chosen randomly. This number 

of torsions are then altered, the actual torsional angles changed to make up this com-

plement of moves themselves being selected at random. There are two types of move 

employed for any given torsional angle. One is the standard type and involves a move 

of up to a certain maximum displacement, the size of the move being chosen randomly 

with uniform probability over the allowed range specified. The maximum displacement 

we have chosen is 20°. The other type of move is a large move of exactly ±120°; this 

gives the system a chance of jumping between adjacent torsional minima. The proba-

bilities of the different move types are chosen so that on average the standard moves 

occur 90 % of the time and the large moves the remaining 10 % of the time. This gives 

an acceptance rate of approaching 30 %. It is clear that the acceptance rate will be 

infiuenced by the kinds of moves that are attempted. If the proportion of large moves 

is increased or if for the standard-type moves the maximum displacement is increased, 

the acceptance rate will fall. We would obviously like to optimise the progress of the 

system in sampling phase space as a function of the number of attempted moves (or, 

more exactly, as a function of computer time). If we have a very high proportion of the 

large moves and also make the maximum displacements for the ordinary moves very 

large, then almost no moves will be accepted. At the other extreme, almost all the 

moves will be accepted, but they will be so small that the system will be essentially 

stationary. Somewhere between these extremes will be the optimum we seek, and it 

has become common to look upon a 50 % acceptance rate as being this optimum. It 

should be said, however, that the basis of this rule of thumb is certainly questionable; 

indeed, for some systems acceptance rates of considerably less than the "ideal" value 
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of 50 % (even as low as 10 %) have been shown to produce the greatest rate of pro-

gression through phase space, at leaat by the measures employed, suggesting that a 

small number of large moves is most cost effective [18, 21]. The protocol we have used 

may have an acceptance rate of somewhat less than 50 % (which could clearly be "im-

proved" by reducing the proportion of large moves and the maximum displacement), 

but nevertheless seems to be fairly well-optimised. 

It is customary in Monte Carlo simulations to divide the process into two distinct stages, 

namely an "equilibration" stage followed by a "production" stage. In the former, the 

system is allowed to evolve from the starting configuration and allowed to settle down 

so that the instantaneous properties oscillate about a mean value which is does not 

show any further systematic variation with continued progess of the simulation. Then, 

from a point assumed to be representative of the state of the system at equilibrium, 

the simulation is continued and data to be used in calculating the bulk properties 

of the system are collected. This is the production stage, which is made as long as 

necessary such that the cumulative simulation estimates of the properties of interest 

have converged to constant values. Strictly speaking, of course, this two stage procedure 

is not actually necessary. All Monte Carlo simulations could in principle be started from 

any configuration and one could take the cumulative estimates of the properties after 

a sufficiently long "time" that the the distribution of states had reached the limiting 

distribution of the Markovian chain, regardless of the starting configuration. However, 

if the initial configuration is highly unrepresentative of the system at the state point 

in question (ie, its Boltzmann probability is very low), this could be a very, very long 

time indeed from a human perspective, since the simulation would have to generate a 

sufficiently large number of configurations that the appearance of the initial set of highly 

unrepresentative ones had become progressively less unrepresentative until ultimately 

they had occurred no more frequently than would be consistent with the Boltzmann 

distribution. The way around this, then, is to run the simulation until there is no 

longer any systematic trend in the fiuctuations of the instantaneous properties when 

viewed on a "human" scale of, say, tens to hundreds of thousands of configurations. 
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so that what is observed is a Poisson distribution around a constant value. Then, 

the simulation can be restarted from the last accepted conEguration from the initial, 

equilbration, stage, and a further simulation, the production stage, can be performed 

over which the bulk properties of the system are computed. 

In the case of the simulations presented here, the equilibration stage is almost a mere 

formality, since we are just sampling the torsional degrees of freedom of a single 

molecule, and the starting conformation (the all-trans) is one whose conformational 

energy is sufBciently close to the mean value at equilibrium as to be within the range 

of the likely oscillation arising from Boltzmann sampling of states at the BOSS tem-

perature employed (ie, room temperature). To illustrate this, figures 5.7 and 5.8 show 

the instantaneous values of the intramolecular potential energy as a function of the 

conformer number. It can be seen that from essentially the start of the simulation 

Figure 5.7; Ingtantaneous intramojecujar energy over tAe ^rgt one hundred thougand 

confbrmerg. 
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the energy oscillates about a constant mean value and that the energy of the initial 
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Figure 5.8: fnstantaneous intramojecujar energy over the ^rgt miDion confbrmerg. 
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conformer is well within this oscillation, suggesting that the starting conformation is 

just as representative (on the length scale of practical simulations) as those accepted 

by the Boltzmann sampling scheme in the system at equilibrium. The properties of 

the system, which are all simulation averages of one form or another, are computed 

from the total number of conformations included in the averaging, which should clearly 

be performed over a suHiciently large number of them that the cumulatives as a func-

tion of the number of conformers have converged to constant values. In this study, 

convergence of the simulation averages was generally achieved after about one million 

conformations, as evidenced by the cumulative averages of the intramolecular potential 

energy (see hgures 5.9 and 5.10) and the mesogenic group order parameters (see figures 

5.11 and 5.12). We have an additional check of convergence in the case of the order 

parameters in that not only should each mesogenic group order parameter converge to 

a constant value, but it should also converge to the same constant value as that of all 

the others. 
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Figure 5.9; Cumujadve ayerage mtramo^ecu^ar eriergy during the ^rst hundred thou-

sand con&rmerg of the production run. 
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It can be seen that convergence of the order parameter (the quantity thought to be 

the most sensitive marker of convergence in these calculations) occurs within about 

one million attempted moves. The value of X* corresponding to the N — I transition 

was located aa the point where the graph of cuts the abscissa. The 

values of the simulation averages corresponding to this value of are then the TV — Z 

transitional values. So from the range of we have the temperature dependence of the 

properties (ie, part of the phase diagram) and from the value of at the transition, 

we have the transitional properties. These calculations were performed not only 

for the zeroth order dendrimer multipodes of various chain lengths, but also for the 

multipodes with laterally attached mesogenic groups. 

We should remember in performing these simulations that , in part, it is an idealised 

computer experiment, and that like an experiment, this aspect will be subject to er-
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Figure 5JO; Cumulative average mtramojecuW energy durmg the producdon run. 
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ror. The size of the statistical errors associated with the results may be estimated by 

means of performing a typical production run subdivided into a number of blocks. The 

simulation average quantities for each of these blocks is then obtained, in addition to 

the overall averages and this is used to provide information about the likely statistical 

error in the quantities. The number of blocks should be chosen such that the length 

of each block is short enough that there are a reasonable number of blocks available 

to yield sub-averages, but not so short that the averages within each block are highly 

correlated (ie, so they are statistically independent). These data are then analysed to 

give an indication of the likely errors in the following way. The standard deviation in 

the simulation-calculated value X of some property of the system, obtained in such a 

simulation run is given by [13] 

a (%) 
1 

(5.53) 
- 1) 

where TV is the number of blocks and X, is the value of the property obtained from 

block 2 alone. We have chosen to take = 10 so that we divide a typical production 
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Figure 5 J ]; Cumuiative average order parameters of the four mesogeus durmg the 5rgt 

jiuudred tAousaud coufbrmers of tfze production run. 
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run of 10^ configurations into ten blocks of 10^ conRgurations each. In addition, the 

properties obtained aa averages for each of the individual blocks may be analysed to see 

if there is any systematic drift in the values rather than a Poisson distribution of values 

about the overall average. The latter indicates the system is indeed at equilibrium, 

whereas the former implies the opposite. 

5.4 Results and Discussion 

5.4.1 Determination of the Transitional Properties 

We have seen previously how we may calculate a variety of properties of interest for 

various strengths of the molecular field. We now turn our attention to the problem of 

how to locate the nematic-isotropic phase transition and thereby determine the TV — f 
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Figure Cumulative average order parameters of t6e four mesogeug durmg tAe 

production run. 
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transitional values of these properties. The N — I phase transition occurs, by defini-

tion, where the free energies of the N and I phases become equal, that is, when the 

difference in the free energies between the two phases vanishes. Prom the simulation 

we obtain the value of this diSerence, AA/yy/.RT', for each value of the scaled strength 

parameter for which the calculations are performed. Figures 5.13 and 5.14 show the 

quantity AAjn/RT as a function of the scaled strength parameter for a typical ter-

minal dendrimer and a typical lateral dendrimer respectively. It can be seen that 

has the same form as in the standard Maier-Saupe theory, rising from 

zero, passing through a maximum and then decreasing and passing through zero at 

the transition to become negative in the nematic phase, with the region around the 

transition being approximately linear. To locate the TV — f transition precisely, the 

simulations were restarted from the last accepted conhguration and another produc-

tion run performed using a smaller range of strength parameters centred around the 

approximate location of the transition (ie, the linear region). Then, the value of X* at 
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Figure 5.1 J; The geared A-ee ejiergy djgerecce aa a Aicction of the gcaJed gtrengtA 

parameter for a medium sized terminal dendrimer 
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the transition, is obtained by linear interpolation between the points most closely 

straddling the transition. That is, if we write the gradient of the straight line as 

= (2/2 -m)/(3;2 (5.54) 

where (2:1,3/1) and (2:2,2/2) are the points either side of the transition, then the value 

of the scaled strength parameter for which the free energy difference is zero may be 

found by setting 1/ = 0 and solving for a; in the equation of the straight line written as 

1/ - 2/0 = m(2; - a;o) (5.55) 

(where a;o, ?/o are either aii, ?/i or 2:2,2/2) to yield 

3; = -3/0//M + 270, (5.56) 

thus giving us X^j . 
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Figure The scaled A-ee energy digerecce as a funcdon of the scaled gtrength 

parameter for a medium sized JateraJ dendrimer 
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To obtain the properties corresponding to this value of X* we perform a similar inter-

polation procedure on the graph of the property as a function of the scaled strength 

parameter. That is, we find the value of the ordinate of the point corresponding to 

on the straight line between the two points straddling the transition. Thus, using 

our previous notation, if the points either side of the transition are (zi, ?/i) and (a;2, ^2), 

then the value of the property at the transition is 

2/ = - a;o) + 2/o, (5.57) 

where x = X 

Figures 5.15 and 5.16 show the average mesogenic group order parameters as a function 

of the scaled strength parameter for a typical terminal dendrimer. Figure 5.15 shows 

the order parameters over the same range of as in the free energy curve 5.13. Within 

this range the order parameters are seen to be approximately linear in and are well 

converged. Figure 5.16 shows the order parameters over a much greater range of the 
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scaled strength parameter, so aa to encapsulate as near to the total range of the order 

parameters as possible. As expected, we obtain a curve similar to the Maier-Saupe 

result—a sigmoid curve beginning at zero, rising monotonically with an approximately 

linear central region and finally becoming shallower and forming a plateau as it rises 

near to its ultimate limiting value of unity, reached in the limit that > oo. 

f igure 5 J 5; The order parameter aa a Amction of the gcaJed gtrengti parameter in the 

trangitionai region for the terminal dendrimer of ^gure 5.13 
0.50 

< : R > 

0.8 1.0 1.2 1.4 1.8 2.0 

229 



Fjgure 5 J 6; The order parameter ag a of the scajed gtrength parameter fbr 

the terminaj dendrimer of ^gure 5.13 
1.0 

< : R > 

Figures 5.17 and 5.18 show the free energy difference as a function of the 

scaled temperature T* = < f g > /%* for the terminal and lateral dendrimers featured 

in hgures 5.13 and 5.14 respectively. We note that the form of the graphs is as expected 

for the curve AA(!r)/.R!r in general on passing through a weakly Erst order phase 

transition, and is very similar to the Maier-Saupe case encountered previously. That 

is, the curve rises from a negative value with a positive gradient, which is rapidly 

diminishing, and it looks as though it may join the line Av4/7ZT' = 0 smoothly without 

a sharp change in gradient, but instead it just cuts this line (so that passing to the 

line AA/RT = 0 would involve a discontinuity in gradient) and then changes its own 

gradient abruptly, turning back on itself to fall to zero smoothly and continuously from 

the right. 
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FigTjfe 5. i 7; The scaJed AA—7 A-ee energy di^rence aa a Aznction of scafed temperature 

for the terminal dendrimer of figure 5.13 
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Figure 5 J 8; The gcaJed TV —f A-ee energy di&rence as a function of scaled temperature 

for tAe Jatera] dendrimer of ^gizre 5 J 4 
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Figures 5.19 and 5.20 show the mesogenic group order parameters as a function of the 

scaled temperature for the terminal and lateral dendrimers featured in the free energy 

curves respectively. We note the Maier-Saupe-like form of < f particular its 

multiple-valuedness in certain temperature regimes due to the order parameter curve 

bending back on itself, a feature we have already discussed in relation to the Maier-

Saupe theory in Chapter 2. 

Figure Mesogenic group order parameters as a funcdoc of gcaJed temperature A)r 

the dendrimer of ^gure 5. 
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Figure 5.20; Megogenic group order parameters ag a Aiactioii of gcafed temperature for 

tAe dendrimer of ^gure 5.14 
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5.4.2 Statistical Errors 

The likely statistical errors in the various properties calculated in the simulation were 

obtained by the method already described (see section 5.3), taking a terminal dendrimer 

of intermediate size as being a typical system. The errors in the simulation averages 

were found to be as follows. The accuracy with which the TV — f transition is located 

as a function of the scaled strength parameter was to within 1.5 %, the error in the 

transitional order parameter was 1.7 %, that in the scaled transition temperature is 

0.39 % and that in the transitional entropy change was 4.1 %. Similarly the pre-extant 

results for the dimers had associated with them errors of 0.76 %, 0.62 %, 0.88 % and 

2.6 % in the values of f 2 and respectively. 
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It is clear that in the main the errors in the properties calculated are small. It will 

be noticed, however, that the statistical error in the entropy change is considerably 

greater than for the other properties. This clearly deserves some comment. We might 

tentatively hypothesise that the reason for this is that the statistical sampling of the 

7 entropy difference is somehow poorer than for the other properties, this being due 

to the way it is calculated (see section 5.2.3) as a difference between two sampled quan-

tities, such that this difference is small in comparison to the order of magnitude of the 

quantities. That is, whilst the orientational contribution to the entropy difference is es-

sentially a single sampled quantity (the rotational partition function weighted average 

molecular field energy) since the isotropic orientational energy is zero, the conforma-

tional contribution is a difference between the non-weighted (isotropic) and rotational 

partition function weighted (nematic) averages of the intramolecular potential energies. 

In this case, we may be calculating a property that is a relatively small difference be-

tween the averages of two relatively large quantities—in which case one would expect 

the sampling to be relatively poor. In addition we might speculate that a signihcant 

contribution to the total difference could be coming from a relatively small number of 

very large contributions to this di%rence, the larger contributions being progressively 

more rarely sampled. To see this we might rewrite equation (5.36) as 

AT AT W 
TAS™' = ^ UtJN - ^ f/LOL./ E (5-58) 

2=1 2 = 1 i = l 

and then manipulate it as follows; 

r A cconf _ Qlxt) ^ Hi ^LtQlxt 

'ext 

= { E > - « « ] } / E « » • (5 59) 
t % 

Thus we see that the conformational entropy diSFerence is related to the sum of the 

differences between the mean rotational partition function and the rotational partition 
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function for the individual conformers, since the denominator is a constant. Obviously 

this is something of an oversimpliScation since the di^rences are also scaled by the 

intramolecular energies of the same conformers, and so the argument only holds if 

there is no simple systematic cancellation of effects. Even so, we do not know if reirely 

sampled, large contributions coming from very large partition functions are sufficiently 

large to be significant in relation to their frequency of occurrence to make them a 

significant contribution. It is in principle a subtle balance of effects. 

The final clarification would be to calculate the simulation estimate of the total entropy 

difference as a function of the number of conformers to look at how quickly it converges 

so that we can compare its rate of convergence to that of other properties. This we 

have done (see figure 5.21) and it is clear that the total entropy change converges much 

more slowly than the order parameter (see Hgures 5.11, 5.12), which may at first seem 

surprising, since in molecular field theories the entropy change is normally thought of 

as being quadratically related to the order parameter. However, it is the orientational 

entropy difference that is related to the order parameter—not the conformational con-

tribution. When we look at the total entropy change in relation to the convergence of 

its component contributions (see hgure 5.22), the source of the eSFect becomes clear. 

The orientational entropy change converges very quickly in a manner that mirrors the 

order parameter, whereas the conformational contribution is quite poor, indeed we 

would say that it haa not converged; it is this contribution, superimposed on the orien-

tational part, that produces the poor convergence of the total. This confirms that it is 

primarily the sampling of the conformational entropy difference that is the root cause 

of the relatively large statistical error in the calculated transitional entropy change. 

Indeed, the foregoing analysis is supported by the fact that for the dendrimers the 

statistical error in the conformational contribution to the total entropy change, is 

found to be much greater (17 %) than the orientational contribution (3.1 %), so even 

though the former is in general found to be a small contribution to the total (see later) 

it is subject to rather large statistical noise, thus signihcantly increasing the error in 
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the total. The results for the dimers were similar with the error in the orientational 

contribution at 1.1 % and that in the conformational contribution at 36 %. 

5.4.3 The Transitional Properties 

We turn now to the predictions obtained from the production runs for the transitional 

properties of the multipodes and, for comparison, to results for liquid crystal dimers 

obtained using the same methodology. 

First, we consider the variation of the scaled transition temperature, 7%^̂ , the en-

tropy change at the transition, and the order parameter at the transition, 

< P2 , for the analogous dimers as a function of the number of units, n, in the 

Sexible spacer (including the linkage group) joining the two mesogenic groups. These 

data were generated using the same methodology and essentially the same model aa 
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Figure 5.22: Scaled N — I entropy difference (—) and its orientational (—) and 

coD^brmadonaJ contributions as a fuuctiou of the uumber of attempted moves 
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the one we have employed so as to facilitate comparison with systems that, unlike the 

multipodes themselves, do in fact exhibit nematic phases. 

Figure 5.23 shows the variation of with a for the ether-linked dimers. We note the 

marked odd-even effect, becoming rapidly attenuated as the spacer length increases, the 

odd members having lower values than the adjacent even members of the series. The 

values for the even members decrease across the series, whereas those for odd dimers 

increase, both sets eventually converging to a constant long chain limit approximately 

equal to the Maier-Saupe value, the even dimers approaching the limit from above, 

the odd ones from below. In the limit of short spacer length and complete correlation 

of the mutual orientations of the mesogens we would expect 7%; to take on a value 

equal to twice that of a system of Maier-Saupe rods, namely, 0.4406. We then expect 

to see a decrease towards the Maier-Saupe value in the limit of long spacer length. 

This is indeed what we observe for the even dimers. For the odd dimers there must 
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be some additional eEect. The strong inSuence of the parity of the spacer is usually 

rationalised in the following way. Even dimers have a shape that on average is much 

more linear that odd dimers. This is because for the even dimers there is a much 

larger proportion of linear conformers with sufRciently low intramolecular energy to 

be thermally accessible than for the odd ones. (The only way an odd dimer can have 

a linear conformer within the RIS model is to have at least two gauche links.) That 

is, for odd dimers the vast majority of the conformers (in the RIS model) that are 

(in practise) available are bent (some 90 %), whereas only half the conformers of even 

dimers are bent. This depresses the scaled transition temperature of the odd dimers 

with respect to even ones of similar spacer length, giving rise to the characteristic odd-

even alternation of flexible dimers. In the limit that the spacer is sufficiently long that 

all correlations between the orientations of the mesogenic groups are lost, the value 

of 7]^^ then becomes independent of the parity or length of the spacer and takes on 

approximately the Maier-Saupe value of 0.2203. 
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Another consideration in molecular Held calculations as regards TV — 7 transition tem-

peratures is the volume of the system. It is possible to take into account the effect of the 

volume of the system on the transition temperature and here it is more pressing to do 

so because of the need to compare between systems with diEerent molecular volumes. 

The manner in which this may be achieved has been given by Luckhurst [6, 22] and is 

consistent with the analysis of Cotter [23] who showed tha t for statistical mechanical 

consistency the volume dependence in a molecular Eeld theory based (as it will be) on 

the canonical ensemble must be inverse linear. We write the molecular held strength 

parameter in this case as 

(5.60) 

where M is the number of mesogenic groups, z/ is the volume of one mesogenic group 

and 4> is the volume fraction of one mesogenic group. This clearly simplifies to 

% = (5J1) 
^mol 

where is the total molecular volume. We take out a factor of Mz/ from the denom-

inator 

% = ,v^] . = . (5-62) 

SO that 

X- = ^ = (5.63) 

where = T*' is the scaled temperature. We rearrange this for the scaled 

temperature and put T*' = 7^} to obtain the scaled transition temperature as 

where 7%^ = f is the scaled transition temperature without allowing for vol-

ume effects. The purpose of scaling the molecular volume as we have done is so that 

we may then rescale the new scaled transition temperature with the volume of the 
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mesogenic group so that the quantity we are calculating to compare to the real experi-

mental values remain dimensionless for convenience. That is, the quantity we actually 

calculate is 

For instance, in the case of the dimers we have the total volume of the molecule as 

Knoi = nv + ncH2^CH2 + 2Vo (5.66) 

and we factor out and scale with nz/ as 

= 1 + (5.67) 

leaving the denominator of (5.64), when itself scaled by the volume z/ of the mesogenic 

group as in (5.65), dimensionless. An analogous procedure was followed for the other 

molecule types in this study. The results of this process as applied to the ether-linked 

dimers are shown in hgure 5.24 and we note the remarkable similarity to the qualitative 

form of the corresponding experimental results (see hgure 5.25). 

Figures 5.26 and 5.27 show the variation of and < ^2 with a respectively. 

Again we see a clear alternation with parity, with the even members having higher 

values than their adjacent odd member homologues. In the long spacer limit the values 

of the odd and even members begin to converge to a constant value, which in the case 

of would appear to be about twice the Maier-Saupe value of 0.417, namely 

about 0.8, and which in the case of < would appear to be approximately the 

Maier-Saupe value itself, namely about 0.4. 

It is important to notice that, contrary to the intuitive assumption of many, the order 

parameter at the transition does not necessarily reflect the value of T^j. In other words, 

one might have assumed that dimers with a relatively high T^j also have a relatively 

high < f g that these two transitional properties may be usefully thought 

of as directly related in some simple physical way. If this were the case, dimers that 

are on average more anisotropic would have a higher and this would be assumed 

240 



Figure 5.24; ScaJed jV — 7 trangitioc temperature of ether-jjnted dimerg aa a fuDctioc 

of gpacer takiiig into account tiie e&ct of mojecuiar volume 
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to lead physically by proxy in some way to a higher value of < f2 Indeed, this 

would seem to fit in well with the basic observation that 7%̂ ^ and < Pg appear to 

alternate in sympathy with each other, with the even members taking the higher values. 

However, if the presence of bent conformers depresses with respect to its upper 

limit (which occurs when the mesogenic groups are totally correlated at short chain 

lengths) of twice the Maier-Saupe value (thus corresponding to a rigid, linear molecule) 

then we would be lead to expect this to be reflected in order parameters of transition 

lower than the corresponding value in the same physical limit (ie, 0.429). This is 

clearly not necessarily the case, however, as evidenced by the even dimers which have a 

considerably higher value of < than this for spacer lengths significantly different 

from both the extremes (which correspond to the limits of completely correlated and 

completely uncorrelated mesogenic groups). To understand this intriguing phenomenon 

of transitional order parameters in excess of the Maier-Saupe value in the case of the 

even-spacer dimers, we consider the isotropic phase and what happens when on cooling 
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Figure 5.25; ExperimeDW W — 7 transition temperature of ether-iinJced dimers as a 

function of spacer iengtii 
300 

it undergoes a transition to the nematic phase. That is, there is a large proportion of 

bent conformers in the isotropic phase, which nevertheless have energetically low-lying 

linear conformations available, so that when the transition occurs to the nematic phase, 

linear conformers are considerably more favoured by the nematic environment and the 

energetic cost of converting bent conformers to linear ones is less than the energy 

reduction by virtue of being in the ordered phase. Thus the probability of occurence 

of linear conformers rises and that of bent ones falls and so the preponderance of 

linear conformers increases to a higher value than it would otherwise be expected to 

be if there were no change in the conformational distribution. The phase can thus be 

considered to be at an effective temperature much less than its actual temperature— 

or alternatively that it has an effective transition temperature much higher than the 

actual temperature at which the order parameter increases discontinuously from zero. 

Thus the nematic phase at the transition temperature is behaving like a nematic at 

a much lower reduced temperature (ie, much further into the nematic on the phase 
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Figure 5.26; Scaled — 7 entropy dj&rence of ether-dinted dimerg (oj and its orien-
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diagram). Hence the order parameter reSects this and is elevated above the Maier-

Saupe value. In the case of the odd dimers this eEect does not operate because the 

energy required to straighten out the odd dimers is so high that the proportion of 

conformers with a high anisotropy is essentially unchanged at the phase transition. In 

consequence there is no substantial change in the conformational distribution in going 

from the isotropic to the nematic phase. The foregoing analysis of the unusually high 

order parameters of the even dimers in contrast to the odd ones is based upon energetic 

arguments alone and is strictly speaking incomplete and non-rigorous, since it ignores 

entropic effects. The conformational distribution in the ordered phase compared to the 

isotropic phase is also determined by the relative entropies of the two phases, not only 

the conformational entropies, but also the orientational ones, since the orientational 

entropy is also affected by the conformational distribution (ie, if the conformational 

distribution changes, so does the orientational entropy). 
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f igure 5.27; Onentadonaj order parameter of tjie mesogenic groups of dimers at the 

— f tracsidon aa a AzDction of spacer jength 
0.46 

0.42 -

0.38 -

0.34 

0.30 

0.26 
0 10 15 20 25 30 35 40 

n 

Similar arguments can be constructed to rationalise the variation of with 

spacer length. The entropy change at the transition is expected to correlate well 

with the order parameter, since the latter is a measure of the orientational order just 

before entering the isotropic phaae. The higher the order parameter, the higher the 

associated entropy change is expected to be. The correlation will not be exact, since 

strictly the correlation will be with the change in orientational entropy rather than 

the total entropy change; however, the orientational contribution is, for the most part, 

predominant. In the limit of long spacers we expect A S n i / R to take on twice the 

Maier-Saupe value (since there are two mesogenic groups which act independently), 

namely 0.834, which is indeed approximately what we find. If the entropy change 

does indeed tally with the order parameter then in the absence of the conformational-

orientational synergy discussed earlier we would have expected an odd-even effect, 

attenuated, but perhaps not as rapidly as that in T^j, with the overall trend being 

one of rising to the long chain limit from below. However, this synergistic effect of 
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bent conformers being converted to linear ones in the nematic phase causes many of 

the even dimers (ie, ones other than those near the spacer length extremes) to have 

orientational order parameters and hence, entropies, higher than that found at the 

long spacer limit where the mesogenic groups are uncorrelated. Thus the higher than 

expected order parameters ultimately lead to higher than expected overall entropies of 

transition. In addition, one might have thought that we could obtain support for the 

concept of the operation or otherwise of this synergistic effect in different systems by 

looking to the change in conformational entropy as a proxy, since the conformational 

entropy in each phaae is related to its conformational distribution. Thus we End that 

the magnitude of the conformational contribution is somewhat larger relative to the 

dominant orientational contribution for the even dimers than the odd ones. However, 

the conformational entropy change for the odd ones is still not insignificant, and we 

surmise that the straightening out of bent conformers is simply a contribution to this 

entropy change for some systems, and that the issue is somewhat more subtle than 

equating significant changes in conformational entropy with signihcant conformational-

orientational synergy in the system. The conformational entropy change (on going from 

the nematic to the isotropic phase) in the case of the even dimers is positive, suggesting 

that the system becomes conformationally more disordered on passing into the isotropic 

phase, which is what we might intuitively expect. However, we note that in the case 

of the odd dimers this entropy change is not just smaller in magnitude, but negative, 

revealing that the system becomes more conformationally ordered on passing into the 

isotropic phase, which would seem counter-intuitive. It may be that for odd dimers, 

for whom the vaat majority of available conformers are non-linear, the inHuence of 

orientational order in the nematic phase on the conformational distribution actually 

drives it to be more diverse and access a greater range of states (an odd dimer in the 

trans conformation requires at least two gauche links to become linear) to attempt to 

conform with the orientationally ordered environment and so the system has increased 

order in orientational degrees of freedom at the expense of that in the conformational 

degrees of freedom in the nematic compared to the isotropic phase. In any case, the 
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problem of finding simple ways of understanding the changes in the conformational 

distribution and relating these to the conformational entropy change may turn out to 

be far from straightforward, as we shall see later with regard to the multipodes. 

We now turn our attention to the multipodes (zeroth generation dendrimers, G-OOCB) 

with terminal and lateral attachments and consider how their transitional properties 

vary with the lengths of the flexible chains. In the case of dimers the term "chain 

length" is clearly to be interpreted as the number of links in the flexible spacer con-

necting the two mesogenic groups. In the case of the multipodes we take the deflning 

chain length, n, to be the number of units in the chain (including the linkage group) 

connecting the mesogenic group to the central quarternary carbon atom. The ques-

tion then arises as to how comparison should be made between dimers and multipodes 

of various sizes. It would seem clear that the dimer most closely related to a given 

multipode would be the one whose spacer contained one more than twice the number 

of units in the dendrimer's characteristic chain length. The multipodes, then, are en-

visaged aa two dimers superimposed at the mid-point of the spacer. As a result, the 

dimer analogue of any given dendrimer will always have an odd spacer length. 

Figure 5.28 shows the result of plotting 7%; against n (now the dendrimer chain length, 

not the dimer spacer length) for the terminal and lateral multipodes, with the analogous 

dimer results plotted on the same graph for sake of comparison. 

As can be seen the dimer results when compared in this way no longer appear to 

exhibit an odd-even effect—an inevitable consequence of the fact that this comparison 

selects only the odd membered dimers for inclusion. The value of for the dimers 

rises with increasing chain length from a very small value to a limit close to that of 

the Maier-Saupe value of 0.2203. This suggests that for short spacers the molecule 

has a high biaxiality, but that as the spacer length grows, the additional flexibility in 

conjunction with the continuous torsional potentials, allows the mesogenic groups to 

mutually arrange themselves in a manner more in keeping with the liquid crystalline 

environment, and so the molecule becomes less biajdal and more anisotropic. In the 
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long chain limit we expect all orientational correlations between the mesogenic groups 

to be lost and so to obtain the Maier-Saupe result, as indeed we have found. 

In the case of the terminal multipodes, there is clear evidence of some form of odd-even 

elfect—even though the dimer analogues of these molecules all have odd spacers. The 

effect is rapidly attenuated along the series. In this case it is the odd members which 

have values higher than a curve fitted through the points, although the distinction 

between odd and even is in this case somewhat arbitrary, depending as it does on the 

definition of the chain length. The 2%^ values rise from below the Maier-Saupe limit 

at the short chain extreme to a value close to this limit at the long chain extreme. We 

surmise that as the chains become longer the additional Eexibility allows the mesogenic 

groups to align into more anisotropic mutual orientations, aa a result of the mesogenic 

group orientations becoming less correlated, until in the limit, the system is Maier-

Saupe-like. The lateral multipodes, by contrast, exhibit in many ways completely the 
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opposite behaviour—almost the mirror image of the terminal case. There is again an 

odd-even effect in but here it is the even members that have higher than expected 

values. There is also an attenuation of the e%ct of similar rapidity, superimposed 

on an overall trend going towards the same, Maier-Saupe, limit—except that here 

the trend is a falling one, decreasing from values considerably higher than the Maier-

Saupe value. In this case we have to speculate that the lateral multipodes with short 

chains are, on average inherently anisotropic, that is, that with very few flexible links 

they are constrained geometrically, to a semi-rigid, anisotropic shape. In the case 

of the dimers and terminal multipodes it was this effect that conferred an average 

geometry inherently low in anisometry, but that with increasing number of flexible 

links, the mesogenic groups became less correlated and the molecule less like a semi-

rigid constrained low-anisometry object and able to adopt more anisotropic shapes in 

the presence of the orienting molecular field. Here we have the opposite situation; the 

short chain molecules are on average quite anisometric, but as we pass to higher chain 

lengths the orientational correlation of the mesogenic groups is gradually lost, so that 

the Maier-Saupe limit is approached from above rather than below. We also make 

the observation that, the dimers and the dendrimers reach the same long chain limit, 

as expected, but that for dendrimers the limit is reached at greater chain lengths. In 

addition, we note that the terminal dendrimers have lower values than the comparative 

dimers, so that even though both series reach the same limit from below, the dendrimer 

curve appears shifted to the right by comparison with the dimer curve. This implies 

that not only are the terminal dendrimers inherently less anisotropic than the lateral 

ones at chain lengths where the mesogens are correlated—they are also somewhat less 

anisotopic than the related dimers. This is taken to be due to the more tetrahedral 

shape of the terminal dendrimers in the short chain limit. 

We now turn our attention to the variation of the transitional values of the second 

rank orientational order parameter with chain length, the results for which are shown 

in Sgure 6.29. We see, for the short chain dimers, a rapid increase with increasing 

chain length. The curves then become shallower fairly rapidly and finally reach a 
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plateau; the long chain limit would appear to be approximately the Maier-Saupe value 

of 0.429. For the terminal dendrimers we see a clear odd-even effect superimposed 

on a general trend that falls rapidly from a very high order parameter to about the 

Maier-Saupe value in the long chain limit, with the odd-even eEect becoming rapidly 

attenuated as we pass along the series. The lateral dendrimers, on the other hand, do 

not exhibit an unambiguous odd-even effect (although there is just the hint of some kind 

of alternation with parity), but simply fall—again to approximately the Maier-Saupe 

value in the limit. This limit of < P2 for the various molecule types results from 

the fact that in the limit of long chains there is sufBcient overall molecular Sexibility and 

freedom through the continuous nature of the torsional potentials that the mesogenic 

group orientations are completely uncorrelated. However, there is an additional feature, 

namely that the value of < ^2 for the multipodes s tar ts at such a high value— 

higher than the Maier-Saupe value—at short chain lengths, and the Maier-Saupe limit 
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is reached from above for both "odd" and "even" multipodes. We might speculate 

that, in a manner somewhat analogous to the similar phenomenon seen in even spacer 

dimers, there is a significant proportion of anisotropic conformers that are low in energy. 

When the transition occurs to the nematic phase, however, a signihcant proportion of 

the conformers may then become converted to ones with a higher anisotropy, since this 

is now favoured by the orienting environment and outweighs the small energetic cost of 

undergoing the conversion. This confers on the nematic phase an effective temperature 

signiEcantly less than the phase transition temperature, elevating the order parameter 

above the normal upper limit. 

Figure 5.30; ScaJed — 7 transitionaJ entropy change of ether-Jinjced terminal (oj and 

Patera] ("+ j dendrimerg and dimers O j as a Aincdon of chain length 
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We now turn our attention to the entropy change at the N — I transition (see fig-

ure 5.30). In the case of the (odd) dimers we see a curve rising from a very small 

value and reaching a plateau at about twice the Maier-Saupe value of 0.417, namely, 

ca. 0.8. In the case of the terminal multipodes, we see a clear odd-even effect su-
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perimposed on a falling trend which starts at a very high value (ca. eight times the 

Maier-Saupe value), passes through a minimum of ca. 1.3 at a chain length of seven 

and finally levels off at a limit for long chains of about twice that for dimers, that is, 

four times the Maier-Saupe limit or about 1.6. Here the even parity members take on 

the high values and the odd-even eEect is rapidly attenuated. The lateral multipodes 

also show a falling trend, superimposed on a much more muted odd-even effect, from a 

similar very high value down to approximately the same limit of about four times the 

Maier-Saupe value. 

The limits attained by the dimers and multipodes at long chain lengths are consistent 

with the increase in flexibility as the chain length is increased and the resulting loss of 

orientational correlations of the mesogenic groups. In the limit of complete decoupling 

we expect the value of A ^ / A to be twice the Maier-Saupe value for the dimer series and 

four times the Maier-Saupe value for the dendrimers. This is in fact what we observe 
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Figure 5.32; ScaJed jV —7 traagitiouaf eutropy cAange (oj and its orieutadonai (+) and 
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at the long chain extreme of the range studied. The general trends in the values can 

be explained on the basis that the transitional entropy change essentially reflects the 

order parameter at the transition. This can be understood intuitively in the sense that 

the transitional order parameter is obviously a measure of (orientational) order in the 

system just before it undergoes transition to the isotropic phase, where it takes on a 

fixed value. Thus, the higher the orientational order at the transition, the higher the 

associated entropy change is expected to be when the system becomes isotropic. We 

should note, however, that the associated entropy change is strictly the orientational 

contribution to the total. More precisely, the orientational entropy change is quadratic 

in the order parameter. Nevertheless, the orientational entropy change is the dominant 

contribution to the total and so to a hrst approximation we would expect a reasonable 

correlation, and this is indeed what we find. 

So, given that the overall trend in the dendrimer entropy changes is from a very high 
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value twice that expected in the limit that the system is Maier-Sanpe-like decreasing 

down to that limit, it seems logical to rationalise these results in the following way. 

The higher-than-limiting values of A6'/A of the multipodes are taken to be due to the 

synergy between the conformational distribution and orientational ordering (which we 

invoked to explain the similarly elevated transitional order parameters) and the decline 

of the values to the long chain limit we take to be a decorrelation effect. 

In addition to these general trends there is an intriguing comparison to be made between 

the lateral and terminal multipodes with regard to the entropies of transition and their 

contributions. The lateral multipodes, for the most part, have the higher entropies 

of transition, especially for the odd members. This stems from the fact that the 

conformational contribution to the entropy change is positive, whereas for the terminal 

ones it is negative. Indeed, the dominant, orientational contribution to the total in 

the case of the lateral dendrimers is, for the most part, somewhat less than for the 

terminal dendrimers, however, the terminal dendrimers have a conformational entropy 

considerably larger in magnitude than the lateral ones, and also negative. Thus in the 

terminal case the overall entropy change is composed of a huge orientational entropy 

change, mitigated by a somewhat smaller, but still signiScant conformational entropy 

change. This is to be contrasted with the lateral case, where we have a negligible 

conformational contribution and so the total entropy change is composed essentially 

entirely of the orientational contribution, the size of which is comparable to the total 

change in the terminal caae. This seems to indicate that while the overall values for 

both sets of dendrimers are roughly the same, the underlying reasons may be somewhat 

different. 

In a similar manner to the case of the dimers we may try to relate the conformational 

entropy changes to orientational-conformational coupling in the systems. The terminal 

multipodes have a relatively large, conformational entropy change at the transition, 

which would seem to correlate with transitional order parameters in excess of the 

Maier-Saupe limit. The values are, however, opposite in sign to that in the case of the 
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even dimers, which also exhibit the synergistic coupling. In addition, they are then 

negative, which is counter-intuitive, since it shows that the nematic is conformationally 

disordered with respect to the isotropic liquid. Furthermore, the lateral dendrimers also 

must exploit this synergistic coupling, since their transitional order parameters (and 

total entropy changes) are of about the same magnitude (or greater) and yet their 

conformational entropy changes are very small, and positive. To add to the confusion, 

the odd dimers do not appear to exhibit this coupling and whilst their conformational 

entropy changes are smaller than the even ones in magnitude, they are larger than 

for the lateral dendrimers and also negative in sign. It would appear, then, that 

the conformational-orientational synergy that is the vehicle allowing the transitional 

order parameter to exceed the Maier-Saupe value does not necessarily impact on the 

conformational distribution in such a way as to cause a dramatic or even well-dehned 

change in the conformational entropy. 

It may be that, due to the enormous complexity of conformational states available 

to systems with this degree of molecular flexibility, there is no easy understanding of 

all the effects on the conformational distribution of passing into the orientationally 

ordered phase and how this relates to conformational-orientational coupling. Indeed 

we cannot even predict the sign of the change in systems in which we believe this effect 

to operate, let alone what its magnitude should be in relation to systems for which 

the effect is believed to be negligible. This is surely in part because it is far from 

clear what are the analogues of "linear" and "bent" as limiting conformation types 

in the case of the G-OOCB dendrimers (assuming such concepts could be defined at 

all) and to what extent the situation changes when we change the kind of dendrimer 

(eg, in this study, the mode of attachment of the mesogenic group and its size). It 

may be that the effect of the difference in this case is such that there is plenty of 

scope, energetically speaking, for conversion of conformers to more anisotropic forms 

on going into the nematic phase, but that this still occurs in some cases at the expense 

of decreasing order in conformational degrees of freedom. In addition it may also be 

that the intuitive notion of entropy as the degree of disorder is just too simplistic here, 

254 



bearing in mind the formal definition of entropy 

.̂ conf = -Ag / f ln( f d{,^} (5.68) 

in terms of the distribution of states and their considerable complexity in 

this case. These factors may all conspire to preclude any easy explanation or under-

standing of the effect of conformational-orientational coupling on the conformational 

distributions and entropy changes. 

F U R T H E R VALIDATION 

In addition to validating the methodology we may also seek to investigate the e&cacy of 

the sampling of the conformational states by the BOSS Monte Carlo algorithm. This we 

can do by averaging the cartesian interaction tensor (ie, averaging its corresponding 

components) referred to the common molecular (BOSS) frame over the conformers 

sampled. Symmetry dictates that the components when averaged in a local frame 

should vanish. The extent to which they do so is a measure of how good is the sampling. 

We note that this is not supposed to occur as a pragmatic consequence of accidental 

cancellation—it is a requirement of symmetry. Having said this, BOSS does not sample 

by sequentially and systematically generating sets of conformers whose interaction 

tensor components automatically cancel—it is a stochastic algorithm. So in practise 

cancellations are to that extent 'accidental'. The extent to which these 'accidental' 

cancellations ultimately reproduce the non-accidental cancellation that must occur by 

symmetry constraints is a measure of how well BOSS is sampling the conformational 

space as regards our purposes in performing molecular held calculations. 

To test this, we performed a simulation run of ̂  700 000 conformers on a medium-

sized terminal dendrimer and averaged the cartesian interaction tensor components 

referred to the local frame over the conformers. 
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The result was 

^-0.022835 -0.001792 0.005233^ 

-0.001792 0.018848 0.001430 

y 0.005233 0.001430 0.003986y 

Given that the components of the tensors take values of the order of unity it can be 

seen that they average to zero to within 1 — 2% (at worst), thus indicating that the 

BOSS sampling of the conformational space is indeed effective for our purposes. 

AVERAGE SHAPES OP DENDRIMERS AND THEIR TRANSITION TEMPERATURES 

It has become common to think of dendrimers as "being spherical" due to the tetrahe-

dral symmetry (or some other cubic symmetry which is spherical at the level of second 

rank) of the core of the molecule to which the chains are attached. In addition this has 

been used as an argument that they should not exhibit liquid crystalline phases. The 

idea here is that having "a" shape of such low anisometry the transition temperature 

should be very low, and therefore so should the propensity of such materials to show 

orientationally ordered phases in practise. There then seems to be genuine surprise 

when it turns out that the materials are in fact mesogenic. 

This state of affairs warrants some close scrutiny. The hrst, and rather obvious, point 

is that these molecules do not have "a" shape at all, but rather a huge range of shapes, 

so that clearly the concept being held in mind, if only tacitly, is that of some kind 

of average structure. Persisting with this concept of the average structure, then, we 

see from the calculation in the previous section that on average the molecule is indeed 

spherical (although, we should say, strictly at the second rank level). That is, to arrive 

at some kind of representation of an average structure we must average some tensorial 

quantity related to the molecular structure in a common molecular frame. Here, we 

have averaged the cartesian interaction tensors of the conformers in this fashion. These 

tensors are of second rank and therefore must average to zero by symmetry, and indeed, 

this is what we see. There is nothing surprising about this. 
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However, to focus on the average structure of a Hexible molecule for the purpose of 

assessing its transition temperature (ie, its likelihood of being mesogenic) is misleading. 

The jV—7 transition temperature for some set of molecules (eg, conformers or molecular 

structures) is not determined by their "shape" (ie, average shape) but by the weighted 

average of the transition temperatures of the component structures of the set. To 

illustrate this we have calculated histograms of the (?7i = 0,2) for 

the same simulation run that produced the results for the average interaction tensors 

in the local frame in the previous section (see figures 5.33, 5.34). The X^m are the 

quantities that go into the calculation of the liquid crystalline properties, not the 

tensor components referred to the local frame. The set of for each conformer is 

the equivalent of the but referred to its own principal frame. The histogram of 

X20 (which is a basic measure of the anisotropy of the conformers) does not, then, 

show a distribution centred on zero and rapidly falling off either side. Rather it shows 

a maximum at some non-zero positive value and a relatively broad, almost gaussian, 

distribution. It reveals that there is a high proportion of very anisotropic conformers 

contributing to elevating the transition temperature above that of a spherical rigid 

particle (ie, zero). It is therefore not at all surprising, then, that dendrimers readily 

form liquid crystals. 

This reinforces the basic concept in statistical mechanics that the correct way to cal-

culate the properties is to regard the Huid aa a mixture of structures (conformers in 

this caae) and to calculate the properties of the components. The weighted average of 

the properties of the components over the corresponding probability distribution then 

yields the properties of the Guid (mixture). This is in contrast to taking a distribution 

weighted average of some property reflecting the structure and computing the prop-

erties of the average structure. It shows that, contrary to popular wisdom, the shape 

that a flexible molecule has on average is fundamentally irrelevant in determining its 

transition temperature and its liquid crystalline behaviour. 
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Figure 5.33; Higtogram of X20 Ar a medium-gized terminaf dendrimer over 700 000 

BOSS-generated cocfbrmerg 
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Figure 5.34; Histogram of X22 A)r a medium-sized terminaJ dendrimer over 700 000 

BOSS-generated confbrmerg 
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