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This Thesis is concerned with the application of analytic theory to the calculation of the
properties of thermotropic nematic liquid crystals based on their molecular structure.
For these studies we employ the molecular field approximation, which has been shown
to give a good qualitative and semi-quantitative understanding of liquid crystalline
properties. In the first chapter we give an introduction to liquid crystals and their
properties as it pertains to the theoretical studies of later chapters. In the next chapter
we lay the necessary foundations in statistical mechanics and introduce the molecular
field approximation as a theoretical framework within which we develop the molecular
field theories which we employ subsequently. We begin our studies by considering
the application of an electric field to a nematic monodomain, a procedure that has
potential applications in the production of non-linear optical devices. The idea is that
by polarising a nematic rather than an ordinary liquid, the polarisation is augmented.
Thus we seek to probe the theoretical basis of this by estimating the response of the
order parameters to the field using molecular field theory. In the next chapter we move
on to consider the composition dependence of order parameters in binary mixtures
where the solute is less anisotropic than the solvent. This is to investigate the validity of
extrapolation procedures commonly used in experiment to obtain values for properties
of non-mesogenic compounds intrinsic to the compound in question, in a hypothetical
pure nematic state. In the final chapter we undertake to predict the properties of liquid
crystal dendrimers, a fascinating new class of highly flexible mesogenic molecule. Here
the problem of the very great conformational flexibility is addressed and a solution is
presented involving a hybrid methodology that draws on both molecular field theory

and Monte Carlo computer simulation techniques.
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Chapter 1: Liquid Crystals

1.1 Introduction

For centuries scientists have classified matter into three different states, namely solid,
liquid and gas. At sufficiently low temperatures and high densities, all substances
exist as solids, at somewhat higher temperatures and lower densities as liquids and
at higher temperatures and lower densities still as gases. In the case of liquids and
gases we are assuming that chemical decomposition does not occur before these states
of the original substance are realised. Thus, with this caveat in place, liquids are
generally obtained upon heating solids, and gases upon heating liquids. In more modern
times we also have the notion of the plasma as another state of matter, where at
even higher temperatures a gas may become ionised and exist as a mixture of gaseous
ions and electrons. There will be a variety of transitions to plasmas consisting of
particles that have been multiply ionised to an increasing extent co-existing alongside
an increasing amount of electron gas. In addition to such esoteric states as plasmas
at high temperatures, we have also had the concept of a class of states of matter
collectively known as mesophases, which were initially discovered as intermediate states
of matter that seemed to occur between the solid and the liquid on the temperature axis
of the phase diagram of some substances, meso meaning between. Liquid crystals are
the most common type of mesophase and their discovery is normally attributed to the
Austrian botanist Reinitzer [1] who, in 1888, observed colour changes and turbidity
upon cooling molten cholesteryl benzoate or acetate. His observations and line of
enquiry paved the way for further investigation by Lehmann [2] using a polarising

microscope who coined the term liquid crystals to refer to the fluid mesophases he



observed, because they appeared to be liquids but with optical properties reminiscent
of crystals. We now discuss in general, but more physical, terms the relationship of

mesophases to the more familiar states of matter.

1.2 States of Matter

Consider a solid of a pure substance at equilibrium, that is, a crystal. At a given
temperature the constituent particles librate about fixed equilibrium positions and (if
the particles are not single atoms) orientations, in space. Thus, there is long range
order in every degree of freedom at the molecular (or atomic) level. There are three
of these for translations involving the centre of mass positions (for instance, cartesian
x, y and z coordinates) and three for the particle orientations (for instance, the Euler
angles—see section 1.8), giving six in all. If we consider a flawless crystal, we see
that this ordering can persist over essentially infinite distances. It is this ordering that
results in the characteristic feature of crystals of possessing anisotropic properties.
That is, any property that is a non-scalar quantity and is measured with respect to
certain directions will be found in general to exhibit different values depending on the
direction chosen. This obtains because the structure of the crystal confers on it its own
internal directionality and so different directions are physically non-equivalent. From a
theoretical standpoint, the crystal is best viewed as an example of a system exhibiting
a broken symmetry [3]. That is, compared to a higher temperature state of matter, the
symmetry is lower since the ordering in one or more degrees of freedom has to some
extent destroyed, or broken, the symmetry in the less ordered state. This imposes on
the system certain special direction(s), such as exist in a crystal for instance. We also
note that it is the long range persistence of the lattice (ie, the translational order)
that results in the rigidity of the structure. In other words, it is solid—meaning it can
maintain itself indefinitely against a shear stress, provided that it is not above some

finite threshold (above which the crystal is destroyed).



As the temperature is increased, the molecular librations become progressively more
vigorous, with the excursions from the equilibrium coordinates at that temperature
becoming more extreme. At some temperature, the long range order in one or more
degrees of freedom is completely destroyed and we observe a change of state to one of
higher symmetry and with less overall order. Usually, this temperature corresponds to
one at which it is no longer possible for the system to maintain the lattice structure
and the whole structure breaks down abruptly, destroying all long range positional and
orientational order completely. The resulting state of isotropy (complete long range
disorder in all degrees of freedom) is the normal or isotropic liquid; every direction is
equivalent and, in the language of symmetry, there is full translational and rotational
symmetry, at least at the macrosopic level. On passing through the phase transition,
the thermal energy has overcome that associated with maintaining specific particles in
specific locations and orientations. The victory is not, however, a total one, since the
thermal energy of the system is still competing with the attractive interaction energies
that persist at short range. Thus the density of the liquid is of roughly the same order

of magnitude as that of the solid.

With further increase in temperature, however, the kinetic energy eventually predom-
inates over the intermolecular potential energy. At this temperature the particles of
the fluid become widely separated so that on average this separation is essentially in-
finite (by comparison with atomic or molecular dimensions), particles interacting only
weakly, except during brief collisions. This is the gaseous state, and the transition
to it from the liquid is marked by a sudden decrease in density of several orders of

magnitude.

It is clear that the crystal and the isotropic liquid represent extremes as measured
on the scale of increasing symmetry and decreasing numbers of degrees of freedom
with long range order. It should be pointed out, however, that this scale is not a
sliding, continuous one. A particular symmetry element is either present or absent (or

equivalently, on a molecular scale, there is either long range ordering in a particular



degree of freedom or there is not); there can be no intermediate case [4]. However,
within a particular phase, we may wish to characterise the degree of order distinguishing
the phase, this being the measure of how the ordering within the degree(s) of freedom
involved changes as the transition to the state of next highest symmetry is approached.
In quantifying the degree of order of a certain kind that distinguishes one phase from
another, we would like to have a measure that vanishes if the symmetry feature to
which it is related (ie, the ordering in the degree of freedom involved) also vanishes. A
quantity that has this property, whether it be defined or measured at the molecular or
macroscopic level, is termed an order parameter. [Incidentally, the case of the transition
from liquid to gas then presents something of a problem, in the sense that the normal
liquid already has maximal symmetry at long range. What then, is to be the parameter
that serves as the indicator of the transition to the gaseous state 7 Clearly we might try
to construct the analogue of an order parameter, identifying the density as the basic
measure. To be sure, it would not be the same kind of symmetry-related tensor order
parameter of which we have been speaking earlier; in particular, it would be a scalar.
To conform to the requirement of vanishing at the phase transition, we would take the
difference between the density of the liquid at the temperature in question at some
given pressure and the density of the gas at the transition temperature at this same
pressure.] We should also make the point that experiment cannot always distinguish a
small non-zero order parameter from zero, whereas by definition a symmetry element

is either present or absent.

1.3 Definition of Mesophases and Liquid Crystals

Having said all this, the normal process of melting a solid to yield a liquid involves
a transition from a system with complete long range order in all degrees of freedom
to one in which there is none in any. Therefore there is much scope in principle (ie,
there are enough degrees of freedom) for there to exist a whole variety of states of

matter which, in terms of symmetry and long range ordering, are intermediate to the



normal solid and the normal liquid. Transitions could then occur to such a state from
(say) the crystal, as a function of some thermodynamic state variable, for instance the
temperature. We usually use the term state (as we have just done here) to refer to
the thermodynamic variables that together define the bulk properties of a system at
equilibrium. Therefore, to avoid ambiguity, we refer to the various forms of matter
with their characteristic symmetries as phases rather than states of matter. Phases,
then, that are intermediate in terms of their long range ordering characteristics and
symmetry are referred to as mesophases. Substances which are able to form mesophases
are called mesogens and are often referred to as mesogenic. If the disordering transition
from the solid is to a phase in which the disorder is in one or more orientational
degrees of freedom, but full positional order is retained, then the phase will still be
solid (in the sense defined earlier). It is, therefore, still regarded as a crystal of some
sort, albeit a rather special kind, and is referred to as a plastic crystal. Usually,
however, mesophases do not possess full long range translational order (although they
may retain ordering in some translational degrees of freedom), but are fluid. That is,
like a normal liquid, they cannot withstand shear stresses no matter how small, but
flow in response to them. This confers on such mesophases the unique combination of
properties that accounts for their importance in materials applications, namely, their
anisotropic properties—a characteristic normally associated with crystals—while at the
same time retaining fluidity like a liquid. This combination has then given rise to the
(somewhat oxymoronic) term of reference liguid crystal. A liquid crystal, then, is a
fluid mesophase. The characteristic feature that all liquid crystals have in common at
the molecular level is long range orientational order; they may or may not possess one

or two degrees of translational order.

1.4 Thermotropic and Lyotropic Mesophases

For the moment, we have been considering simply heating a crystal through to the

isotropic liquid (that is, the changes in symmetry as a function of temperature), with



there being the possibility of other kinds of phases, namely mesophases, to occur in
between. Since the thermodynamic state variable being used to change the phase
behaviour is the temperature and the mesophases are generated thermally with respect
to the crystal, they are referred to as thermotropic mesophases, or most often simply
as thermotropics. Phases of such intermediate symmetries do not arise only in systems
composed of a single pure compound as a function of temperature, however. They
can also occur in certain multicomponent systems (solutions, mixtures), where the
transitions to and between such phases may be observed at a given temperature as
a function of the composition of the system. Since in this case the state variable
governing the observed thermodynamic phase is now not only the temperature, but

the mole fraction of solvent, such mesophases are referred to as lyotropic mesophases,

or simply lyotropics.

There are also systems which are lyotropic in the sense just defined, but the nature of
the mesophase behaviour is quite different from a mixture of two different low molar
mass components one or both of which is a thermotropic mesogen. These systems are
composed of a solution of amphiphillic molecules, usually in water. Here the solvent
is actively involved in causing the mesophase structure in the sense that it induces
aggregation of the amphiphiles into micelles, which are themselves then capable of
aggregating into other structures with long range order. Thus the role of the solvent is
not simply to dissolve the solute, and so disperse the mesogenic molecules. This solvent-
driven self-organising behaviour is sufficiently different to low molar mass mixtures or
solutions that it seems appropriate to regard these amphiphillic systems as a separate

class of mesophases.

In addition to thermotropic, lyotropic and amphiphillic systems there is yet another
way in which mesophases can manifest, namely colloidal suspensions of anisometric
particles, such as certain virus particles [5] and minerals [6]. These systems, due to the
macroscopic nature of the colloidal particles, behave in many ways as systems of hard

particles. That is, the long range ordering results essentially entirely from excluded



volume effects without the subtlety of attractive forces. Thus they potentially provide
real-world models of the hard particle systems studied as conceptual and theoretical
points of reference in statistical mechanical theories [7] and computer simulations [8].

It is to be noted, however, that such systems are relatively rare in nature.

In this Thesis we shall be concerned solely with thermotropic systems, including mix-
tures of particles which are themselves all considered potentially thermotropic at both
the theoretical and pragmatic levels. Therefore we shall not pursue any further the

topic of other kinds of mesophases such as those formed by amphiphillic or colloidal

systems.

1.5 Classification of Thermotropic Mesophases

As far as thermotropic liquid crystalline phases are concerned, various schemes have
been suggested for their classification. It is clear that for a single compound there are
six degrees of freedom in which there can be long range order, and so there should be
a definite number of possible phases with characteristic symmetries, depending on the
possible combinations of long range ordering. Herrman [9] argued, on purely geomet-
rical grounds, that there should be 18 possible phases of differing symmetry between
the crystal and the isotropic liquid. Later, Boccara [10] applied group theoretical ar-
guments to this problem and came to similar conclusions. In practise, however, the
most widely used classification is that of Friedel [11], who, incidentally, introduced
mesophases as a more general term to replace liguid crystals (although this change did
not find favour), and it is his scheme, based on their properties, that we shall follow. He
identified three major subgroups of thermotropic mesophase (besides plastic crystals):

nematic, cholesteric and smectic. In this Thesis we shall be almost entirely concerned

with nematic liquid crystals.



1.5.1 The Nematic Phase (N)

The simplest and least ordered thermotropic liquid crystalline phases are the nematic
phases. They possesses long range orientational order only, having full translational
symmetry (ie, they are macroscopically translationally isotropic). In the simplest kind
of nematic, the phase is optically uniaxial, meaning that there is one direction in which
plane polarised light may be directed through it, without its plane of orientation being
rotated. If the refractive index is measured along this direction it has one value, and
if measured orthogonal to this direction it has another, the latter being independent
of which orthogonal direction is chosen. Materials such as nematics that have two

different refractive principal indices are known as birefringent.

The phase would appear to have, then, cylindrical (or uniazial) symmetry, and is
the normal, or uniaxial, nematic. In addition, the phase is not polar with respect to
the symmetry axis (or any other axis) of the phase, and thus has a mirror plane of
symmetry orthogonal to the symmetry axis. The nematic phase would appear from
optical characterisation, then, to have D.;, symmetry. Strictly speaking all we can
say, however, is that the phase has D,; symmetry with n > 3. This is because the
refractive index, which we have used to characterise the symmetry, is related to the
dielectric anisotropy, which is a tensorial quantity of rank 2. In other words the phase
symmetry is Dj;, or higher; in practise, however, nematics are normally assumed to

have full D, symmetry.

The symmetry axis of the phase is known as the director and is commonly denoted
as the direction (ie, the unit vector) i. We note that since the phase is non-polar,
the sense of the unit vector is unimportant, so that while the director is commonly
represented as a unit vector, in apolar phases it is in reality the pseudovector i = —1l.
The molecules in a nematic phase are usually calamitic (elongated or rod-like), but
are sometimes also flattened, or disc-like. Thus, the molecules can be approximated to

rods or discs and in either case will have a near-symmetry axis, that is, an approximate



axis of cylindrical symmetry. It is normally assumed that the symmetry axes of the
molecules tend to align with the director with a distribution such that the density
of probability is greatest in that direction. This is an assumption, however, since the
probability density could be peaked at an angle away from the director, but be uniform
around the cone corresponding to this constant angle in three dimensions, and still yield
the same phase symmetry. However, it is common informally to think of the director as
being the direction along which the near symmetry axes of the molecules preferentially
align. This is illustrated in figure 1.1. Thus we regard the system as having one degree
of long range orientational order. In the most common case of prolate or rod-like
molecules we have the normal, calamitic nematic. In the case of oblate or disc-like
molecules, again the symmetry axes tend to align with the director to give what is
known as a discotic nematic (Np). From the point of view of macroscopic symmetry,

however, there is no distinction between N and Np phases.

Figure 1.1: Schematic representation of molecular ordering in the nematic phase show-

ing a view perpendicular and parallel to the director [12].

In reality, however, most molecules deviate somewhat from cylindrical symmetry, that
is, they are biazial. In principle then, it is possible for more than one molecular axis to
align to give long range orientational order in more than one degree of freedom, at least
at some temperature where the corresponding interaction energies can assert them-

selves. Such phases would be referred to as biaxial nematics, and have been observed,



but only in amphiphillic systems [13]. A number of claims have been made to have
discovered biaxial thermotropic nematics [14, 15], but have not been proven [16, 17]. In
the limit of long range order in all orientational degrees of freedom, there will be three
directors, I, h and A, orthogonal to each other. The major director fi corresponds to
the preferred direction of alignment of the major molecular symmetry axis (as in the
uniaxial nematic) and two minor directors correspond to the directions of alignment of
the minor axes. We note that in practise it may be difficult to define major and minor
axes unless the size of principal values of some property are used, but even then, there

is the possibility of ambiguity, since this may depend on the property chosen.

Strictly, as with the uniaxial nematic, the term biaxial comes from its optical char-
acterisation in the sense that there will be two directions, orthogonal to each other,
in which plane polarised light can pass through the phase without having its plane of
polarisation rotated. (Although neither of these, it turns out, correspond to any of the
symmetry axes of the phase.) We are not interested in biaxial phases in this Thesis

and so we shall not pursue the topic any further.

1.5.2  Chiral Nematic (Cholesteric) Phases (N*)

The chiral nematic phase, as its name suggests, is really a kind of nematic, at least
locally. We define a nematic as a mesophase with long range orientational order, but no
translational order (or simply a liquid crystal with no long range translational order),
and this is true of the chiral nematic phase. As the term suggests, it is a nematic phase
in which there is macroscopic (or phase or form) chirality resulting ultimately from
the chirality of the molecules whose interactions somehow propagate over long range.
It is thus consistent with the general (von Neumann) principle that a phase should
reflect the symmetry of the consituent molecules (in its most ordered form) and so has
lower symmetry than the normal nematic. The term cholesteric originates from the
fact these phases were first observed in cholesterol derivatives such as those studied by

Reinitzer. Since then these phases have been observed in other types of compounds

10



and the common feature is that the molecules are chiral, so it is preferable to use the
more accurate (and informative) name chiral nematic. We have included it simply for
completeness, since in this Thesis we do not have any need to focus on chiral nematics,

and so we shall say no more about them.

1.5.3 Smectic Phases (Sm : SmA, SmB, ..., SmL)

In the smectic phases (Sm), not only is there long range orientational order, but also
some long range order in one or more of the translational degrees of freedom. There are
a variety of smectic phases, only one of which we are interested in here, and that is the
smectic A phase (SmA), so named because it was the first smectic phase discovered. It
is the simplest form of smectic phase, with ordering in the least number of translational
degrees of freedom. The molecules in smectic phases tend, not only to align parallel to
each other and to a common direction, but also form layers. In the case of the smectic
A, the phase is optically uniaxial, and the directors of the layers are parallel to the
layer normal and to its axis of assumed cylindrical symmetry, as illustrated in figure

1.2.

1.6 The Molecules That Form Liquid Crystals

From the variety of mesogenic molecules it should be possible to identify and distinguish
those features of molecular structure that are necessary for liquid crystal formation,
those that are simply desirable and those which are largely irrelevant. Gray [18, 19]
has given a number of empirical rules describing the influence of various aspects of the
molecular structure upon thermotropic phase behaviour. The most basic requirement
is one or more rigid moieties which should be either prolate (elongated or rod-like)
or oblate (flattened or disc-like). In addition, they may have flexible alkyl chains,
as terminal substituents of the mesogenic groups, as interconnecting bridges between

them or as lateral substituents (or possibly some combination of these).

11



Figure 1.2: Schematic representation of molecular ordering in the smectic A phase

(view perpendicular to the director).

The alkyl chains may be connected to the mesogenic groups via any of various linkage
groups. The rigid moieties generally consist of aromatic or saturated cyclic rings,
which may be connected via a linkage group. These rigid groups are usually made up
of phenyl rings. Also, the molecules often in practise possess polar groups. This is
thought to help stabilise liquid crystalline phases, although as in the case of flexible
chains, this is not a requirement for liquid crystalline phase behaviour, as evidenced

by, for instance, quinquephenyl which has a high T;. Some examples of mesogenic

molecules are shown in figure 1.3.

It would appear that the main factor driving the formation of liquid crystalline phases
is the anisometric shape of the molecules. In other words, the molecules forming

liquid crystals are ones that deviate significantly from spherical symmetry. It is the

12



anisotropy in the properties of the molecules which consequently propagates over long
range to give rise to liquid crystalline order and hence macroscopically anisotropic
fluids of various forms. In the light of this it might seem surprising that there are not
more mesogenic compounds than there are, since the number of molecules that are
spherically symmetric must surely be in the minority. It is thought that the reason for
this is that the compound typically crystallises at a temperature above that at which
it would otherwise exhibit a transition to a liquid crystalline phase. The liquid crystal
transition temperature of such a compound is thus said to be wvirtual. If the molecule
is made more anisometric, however, the transition temperature is raised, and is thus
more likely to be exceed that of crystallisation, all other things being equal. To have a
good chance of designing a mesogenic molecule then, we should first make sure it has
a high anisometry and also try to include modifications (such as adding or lengthening

flexible chains) which lower the melting point.

To a first approximation, mesogenic molecules can be thought of as rigid, cylindri-
cally symmetric rods (or possibly discs, depending on the molecule). Indeed some of
the theoretical studies in the earlier chapters work within this assumption. In reality,
however, most molecules deviate to some extent from cylindrical symmetry, most meso-
genic molecules being lath-like. It is possible to take this into account by constructing
measures, based on second rank properties (say), to describe this deviation, giving the
notion of molecular biaxiality (as opposed to uniaxiality). When built into theories
the molecular biaxiality can in principle result not only in a uniaxial phase, but also a
biaxial nematic phase. This could be a phase with with no orientational preference of
one minor molecular axis, or a biaxial phase with order in all orientational degrees of

freedom, although we shall not be interested in such possibilities here.
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Figure 1.3: Examples of the chemical structures of some typical mesogens and their

nematic-isotropic transition temperatures [12].
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In addition to allowing for molecular biaxiality, we should note that, even though a
rigid, anisometric region of the molecule is a prerequisite for liquid crystal formation, in
practise in most cases there are also flexible components. Treating the molecule as rigid
then is also an approximation. Moreover, it is also common to deliberately incorporate
flexible chains as well as the required rigid (mesogenic) group(s) into molecules. This
enhances the liquid crystallinity of the compound in that it lowers the melting point,
thus extending the liquid crystalline temperature range. Clearly then, it is desirable
not only to include the effects of deviation from cylindrical symmetry, but also those
due to flexibility of, for instance, alkyl chains (which also cause the molecule to deviate
from cylindrical symmetry). To this end various workers have attempted to allow for
molecular flexibility in developing theories of liquid crystals [20, 21]. We shall apply
some of these ideas in the last chapter where we describe a methodology for modelling
nematic phases consisting of molecules which may exhibit an extremely high degree of

flexibility.

1.7 Phase Transitions

A thermotropic mesogen may exhibit one or a more mesophases. As the temperature
is increased the translational and orientational order generally decreases, with the
system potentially passing from the crystal through a variety of smectic phases to the
smectic A, then the nematic and finally the isotropic. These phases may not always
occur, however, and some compounds in addition exhibit re-entrant phase behaviour
in which, a higher symmetry phase recurs as a transition from a lower symmetry
one. The transitions between these phases are traditionally characterised using the
Ehrenfest scheme. In this scheme a transition is said to be nth order if the first n — 1
temperature derivatives of the free energy are analytic across the transition, but the
nth is non-analytic. In this context, analytic and non-analytic are conventionally taken
to mean continuous and discontinuous, although it strictly refers to whether or not the
form can be expanded as a Taylor series. The first derivative of the free energy with

respect to temperature is essentially the entropy of the system, in this case the entropy
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either side of the transition. That is,

3, - (), - o

so that if the transition is first order, the entropy changes abruptly from one side of the
transition to the other, giving rise to a non-zero transitional entropy change. If, on the
other hand, the first derivative is continuous (that is, the transitional entropy change
is zero), we should investigate the second derivative, which is essentially the specific

heat capacity. That is, given that we are considering systems at constant volume,

_(dgy\ _ (0U
ov = (), = (&7, (1-2)
and
dU = dg — pdV  (no additional work)
=TdS — pdV (at equilibrium). (1.3)
Therefore,
TdS — pdV o8]
- — ) =72 1.4
Cv ( dT >v T(aT)v (14)

Now as we have already seen

5= _<g_;>v' (1:5)
Hence,
2
cv=1(Z(-2),),=-7(52), o

A similar analysis follows using the Gibbs free energy for the specfic heat capacity at

constant pressure. That is,

= (),- (), =

and

dH = d(U + pV) = dU + pdV + Vdp
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=TdS +Vdp (equilibrium, no additional work), (1.8)

giving
o= (=), =7(57), (1)
But
S = —(g—g)p, (1.10)
so that
o =-1(57(57),), = (57%), (1)

In the case of a first order transition, we might ask what is the variation of the specific
heat capacity through the transition. Since the first derivative is discontinuous, it
is theoretically an infinitely sharp spike going to infinity. The free energy and its
temperature derivatives through first and second order transitions are illustrated in

figure 1.4.

It is found that the melting transitions from crystal to isotropic liquid and liquid crys-
tal are first order, as are the clearing transitions (liquid crystal to isotropic liquid).
[We note, however, that the theoretical biaxial nematic-isotropic transition is excep-
tional in that it is predicted to be second order.] Since the predominant contribution
to the entropy of a fluid is that associated with disorder in translational degrees of
freedom, the entropy change (or equivalently at constant volume the latent heat) is
much larger (AS/R ~ 10) at the melting transitions than at the clearing transitions
(AS/R ~ 0.1). The former are correspondingly referred to as strongly first order and
the lafter as weakly first order. Transitions between different liquid crystalline phases,
such as between different kinds of smectic phase or from smectic to nematic (or even
hypothetically between different nematic phases) are generally even weaker, or second

order.
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Figure 1.4: The Ehrenfest classification of how the free energy, entropy and heat ca-
pacity change with temperature in the neighbourhood of first and second order phase

transitions for a constant volume system.
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As an addendum we note that when this concept of order in relation to the free energy
through a transition was first introduced by Ehrenfest, it was thought that it would
prove to be of fundamental significance. It turns out that this is not the case, however.
While third order and higher transitions do occur, it is now accepted that transitions
are most usefully characterised as either phase transitions of the first kind or phase
transitions of the second kind. Phase transitions of the first kind are those in which
the entropy is discontinuous across the transition, and so are also called discontinuous
transitions; they correspond to first order transitions in the Ehrenfest scheme. Phase
transitions of the second kind are those in which the entropy is continuous across the
transition; they are also called continuous transitions and correspond to second order

and higher transitions in the traditional scheme [3].

1.8 Orientational Order in the Nematic Phase

1.8.1 Defining the orientation of a molecule in a monodomain

The orientation of a rigid molecule is described with respect to a cartesian coordinate
system set in an external laboratory frame of reference via the three Euler angles o, 8
and 7. A simple (although formally incomplete) illustration of the Euler angles is
given in figures 1.5¢ and 1.6c. It is then customary and convenient for uniaxial liquid
crystals to define the laboratory z axis as coincident with the director. This picture is
incomplete because strictly the angle v is not formally defined. We can, however, define
~ precisely by means of a reference frame set in the molecule. That is, if the angles o and
(3 are as in the figures, then the angle between the z-axis of the molecular frame and that
of the laboratory frame is obviously 8. However, the azimuthal angle of the laboratory
z-axis in the molecular frame is then (7 —+). This gives an intuitive (although still not
complete) understanding of the Euler angles sufficient for our purposes. A full, formal

definition of the Euler angles is given in Appendix 1A.
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There is also an alternative way of representing the orientation of a molecule and that
is by using direction cosines. Whilst the use of direction cosines is in many cases cum-
bersome, they lead to particularly simple, physically understandable transformations

in the case of uniaxial phases of biaxial particles involving the Saupe ordering matrix.

1.8.2 Uniaxial Phase of Uniaxial Molecules

For a cylindrically symmetric molecule all angles v are energetically equivalent and for
a cylindrically symmetric phase all angles a are energetically equivalent (see figure 1.5¢)
so that the distribution does not depend on them. The orientation of a given molecule
is then specified by a single angle, 3, the angle between the molecular symmetry axis
and the director. In the nematic phase the molecules prefer, on average, to lie parallel
to the director with 0 = 0, 7. At finite temperatures, however, thermal motion prevents
perfect alignment with respect to the director and the molecules are thus distributed
over the continuum of possible angles § with § = 0, 7 being assumed to have identically
the highest probability density. This probability density is that pertaining to the
orientations of individual molecules, rather than of simultaneous orientations of more
than one molecule; it is a single molecule (singlet) property. Strictly, it is the singlet
orientational probability density distribution function, but is usually referred to simply
as the singlet orientational distribution function, denoted f(Q2) (Q = «,8,7). It is
conventional then in the case of uniaxial phases of assumed uniaxial molecules to remove
the redundant variables o and -, and so the distribution is denoted f(3). We also note
that in this case it is by convention f(f) that is assumed to be normalised, rather than

f(€) itself. In other words,
| 1© sinpas=1 (1.12)

so that the distribution in B space alone may be interpreted probabilistically in the

sense that it integrates to unity.
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[12]. Schematic rep-

Figure 1.5: Cylindrically symmetric molecule in a uniaxial phase [12]

resentation of the molecular alignment &) perpendicular to the director and b) paraliel
to the director. Diagram c) illustrates that only one Euler angle 3 is required to define

the orientation of the molecule with respect to the director.
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Figure 1.6: Biaxial molecule in a uniaxial phase [12]. Schematic representation of
the molecular alignment a) perpendicular to the director and b) parallel to the direc-
tor. Diagram c) illustrates that two Euler angles 8 and o are required to define the

orientation of the molecule with respect to the director.




This function, f(8) [22], provides the most complete description of the single molecule
orientational order available. We note that since the phase is non-polar, it has a plane
of symmetry orthogonal to the director, which imposes the constraint that the single
molecule orientational probability density at 8 must be the same as that at 7 — 3 so
that f(8) = f(m—p). For polar phases, however, such as those produced by application
of an electric field (see later), the symmetry of the phase is lowered to Cyov, and then,

due to the lack of symmetry orthogonal to the director, f(3) is no longer equal to

f(m— D).

It is clearly important to be able to write down some expression to attempt to encapsu-
late the singlet orientational distribution function. This may be achieved by means of
a series expansion in a basis of continuous well-behaved functions, which in the case of
a non-polar phase must have the same apolar character, that is be even about 7/2 (this
constraint is relaxed for polar phases) and span the space. A good mathematical choice
of basis functions is the Legendre polynomials (see Appendix 1B). One reason for this
is that, for any arbitrary curve, they provide the best least squares fit of any power
series up to any given desired order [23]. When Legendre’s equation is solved by the
Frobenius series method, the solutions, the Legendre polynomials, Pp(x) are obtained
as two fundamentally different series—the even order and the odd order series. Even
order Pr(z) are polynomials containing terms in all even powers of z from a term in
z% down to a zeroth term. Odd order Py (z) contain all odd order terms from a z*
term down to a linear term. Thus Pj(z) is an even function for L even and an odd
function for L odd. For a nematic we require a function that is even about § = 7/2
and periodic in 7 and we note that x must be bounded and periodic on (—1,1). We
may then employ the even rank Pp(z) by careful choice of the functional dependence
of the argument, z, on the polar angle. We require the argument, z, of the Legendre
polynomials to be a circular function which is zero at § = /2 (since Pr(z) (L even) is
even about about z = 0) and such that the magnitude of the circular function is also

even about f = 7/2, a maximum at 0, 7 and periodic in 7. Such a function is provided
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by the cosine of the polar angle. The Legendre series for f(f) is then written
0
fB)= > frPr(cosp). (1.13)
L{even)=0

Now cos [ is the projection of the molecule, treated as a vector, onto the director and
normalised with respect to the molecular length (i.e. it is the projection of a unit vector
along the molecular axis onto 7). Thus cos™ § (where n = 1,2,...) is a measure of the
extent to which a given molecule is aligned with the director; this measure is apolar
for n even, polar for n odd. The observation that the Pp(qq) are linear combinations of
cos™ B (n odd) suggests that one can allow for the situation where the nematic phase
becomes polarised by removing from (1.13) the constraint upon L to take only even
values. Furthermore, it might be thought that quantities of the form cos™ § averaged
over all molecules would provide various measures of the extent of the single molecule
orientational order, that is, serve as some kind of order parameters. It is convenient and
conventional, however, to define an order parameter such that it is unity in the limit of
perfect ordering of the type described by it and to vanish when there is no such order.
This is not in general the case for the ensemble averages of all cos™ 4, so an alternative
is required. Now the Pp(even)(cos 3) are linear combinations of cos™ § (n even) and the
Ppoaa)(cos ) are linear combinations of cos™ 8 (n odd). The solutions obtained from
the Frobenius method are normalised such that the value of a Pr(z) is unity when its
argument, z, is unity. Hence in the limit of perfect non-polar order PL(even)(cos g) is
unity for all molecules and so its ensemble average is also unity. Similarly in the limit
of perfect polar order _P_L(odd) is also unity. In the limit of complete isotropy (non-
polar/polar) the ﬁL(even/odd) are zero. Thus, another useful feature of the Legendre
polynomials is that the ensemble averages of the Pp(cos ), denoted by Py, furnish a
convenient set of order parameters. These are defined as averages of the Pr(cos () over

the distribution function,
Py, :/ Pr(cosB) f(B) sinf dp, (1.14)
0

thus giving a measure of the single molecule orientational order. A further useful

feature of the Legendre polynomials is that, in addition to forming a complete set of
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basis functions (which ensures that in principle the function being expanded may be
completely encapsulated), they are also an orthogonal set. Thus
1
/ Pr(z) Pp(z) de =0 (1.15)
-1
for all L # L'. This enables us to find the expansion coefficients f7 in equation (1.13)
and hence to obtain the set of order parameters in a more formal, sophisticated manner,
as we shall now demonstrate. To find a particular coefficient f;; we multiply (1.13) by
Pr/(cos f) and integrate over the whole range of the argument cos (8
1 1
/ f(B) Pp(cosfB) dcosf = / (PL/(COS B) Z JrPr(cos ﬁ)) dcosf.  (1.16)
-1 -1 L even
All the terms in the summation over L of integrals vanish except for the term where

L = I'. The left hand side of (1.16) is by definition Pz, and so

1
Py = fL:/ Ppi(cos 8)* dcos 3. (1.17)
-1
Now using the fact that
! 2
P Pr d = Orr 1.18
| Paleos3) Pusfeos ) deos p = 52 o (1.18)
we have
Pp=—t f (1.19)
V=o' '

Hence for any given value of L,

20+1 =
fo=——"F1. (1.20)
Equation (1.13) then becomes
= 2L+1
f(8) = ) z:)_o 2+ PP (cos 3). (1.21)

The order parameters are thus seen to be essentially the coefficients of the different
moments of the expansion of f(), and to form a complete, orthogonal set. Knowledge

of the entire set of order parameters thus completely defines the singlet orientational
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distribution function. A complete set of order parameters is not available for real
mesogens, however. Only P, and Py are routinely measurable and even then measuring
Py is difficult, although, in principle, neutron scattering can give the complete set.
The expansion (1.13,1.21) turns out to be slow to converge in general, at least for
single component or other systems with relatively high orientational order. That is,
it is generally found that systems have a Maier-Saupe-like distribution function (see
Chapter 2) and for such a distribution its Legendre polynomial expansion is slow to
converge when the largest orientational order parameter, P, > ca. 0.2. Hence it is

usually a poor approximation when truncated at the second or fourth rank term.

A better expansion in such cases may be obtained as follows. Assuming f(J) is well-

behaved we may write it as the exponential of a different function g(g),

f(8) = exp(g(8)). (1.22)

We may then proceed to expand this new function g(f) in the same manner as we
expanded f(f). This is clearly consistent with the expected Boltzmann distribution,
so long as the expansion of g(3) contains a zeroth term leading to a constant multiplier

the reciprocal of which is analogous to a partition function. Therefore we write

9(8) = arPy(cos ), (1.23)

L=0
where for a non-polar phase L is restricted to even values only. The distribution
function f(f) is then
o0
f(B) = exp (Z ar,Pr(cos ﬁ)), (1.24)
L=0

which we can also write, by factoring out a zeroth term, as

F(8) = exp(ao) exp(g'(8)), (1.25)
where exp (ag) = Z~! (Z being a partition function) and
g(B)=>_ arPr(cosf). (1.26)
L#0
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The distribution function is then

16) = 27 exp (3 awPuleos ),

L#£0

Z:/exp <§:aLPL(cosﬂ)> sin £ dg. (1.27)

L#0

The justification for this procedure is ultimately pragmatic. We know that the distri-
bution, when represented by the exponential of a Legendre series expansion, generally
converges much more rapidly, as evidence by, for instance, f(() as determined from
computer simulations. That is, in the Maier-Saupe theory (see Chapter 2), f(f) is
Boltzmann-like and the exponent has the form of the expansion (1.26) truncated at
the first term. Moreover, we find that the singlet orientational distribution function
from computer simulation (using, for instance, the Gay-Berne potential [24]) is indeed
well-represented (ie, almost quantitatively) by an exponential function with a single
term in Pp(cos3) in the exponent. Furthermore, upon inclusion of an extra term in
Py(cos ) with a relatively small coeflicient (a4/as ~ 0.1), the functional form then

does become quantitative.

We know from the physics that if we have a single molecule orientational density
distribution f(8) then we can define a corresponding single molecule orientational
potential energy function U(f) over which the system is distributed in accordance

with the Boltzmann distribution. Thus we should have

f(B)=Z " exp (~U(B)/ksT),

Zz/exp(—U(,B)/kBT) sin B dg. (1.28)

The quantity U(f) is formally referred to as the potential of mean torque and has a
central importance in molecular field theories (of which the Maier-Saupe theory is a

prototype) as we shall see in Chapter 2. Equation (1.28) is then strictly the defining
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equation for the potential of mean torque. We are also able to make the identification

U(B) = —ksTq'(B). (1.29)

Whilst for many distributions the exponential of a Legendre series expansion is more
rapid to converge, we note that the coefficients of the Legendre series no longer have
any physical significance (unlike the Legendre series for f(3) itself where they are the
order parameters, Py). They do, however, determine the order parameters, albeit

indirectly.

In addition to these formal ways of obtaining general expansions for f(f) there is an-
other, more pragmatic, way of obtaining the distribution in specific instances where,
for some system, certain order parameters have been determined by experiment. This
is by appeal to information theory [25] and the maximum entropy principle [26]. The
general approach is as follows. For some arbitrary system we assume a probability den-
sity distribution function, p = p{X}, where {X} represents all the variables (degrees
of freedom of the system) on which p depends. We then proceed to obtain the least
biased distribution consistent with the information we have about the system. This

involves maximising the Boltmann entropy

S = —ky / (X} In p{X} d{X} (1.30)

of the system, subject to certain constraints, these being the specific information we
have about the system. In many theories, S is a measure of the information content
of a system and in this present context, where we focus on single particle orientational
quantities, becomes the expression for the single particle orientational entropy. The
constraints are the measured values of the order parameters obtained from experiment.
Thus, if we have measured values for one or more order parameters Py, then the
constraints are that the order parameters take their measured values. Maximising S
with respect to the distribution p{X} = f(8) subject to these constraints gives the

singlet orientational distribution function as [27, 28]

f(B) =271 exp (ZGLPL(COS ﬂ)),
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Z = /07r exp (ZL:QLPL(cosﬂ)> sin 3 dp3. (1.31)

We note the similarity of this expression to that obtained earlier by expansion of g(5)

(equation (1.27)).

1.8.3 Uniaxial Phase of Biaxial Molecules

The molecules forming liquid crystalline phases and the conformations of alkyl chains
will not in reality possess cylindrical symmetry and will tend to be more lath-like.
If the phase is uniaxial, then a biaxial molecule will require specification of the two
angles  and o to define its orientation with respect to the director of the phase (see
figure 1.6¢). For uniaxial phases, however, it is more convenient to define the orientation
of the director in a molecular frame, that is in terms of the Euler angles 3 and v (see
Appendix 1A). The singlet orientational distribution function is now a function of these
two angles 8 (0 < f < 7) and v (0 < < 27). Thus we need to generalise the approach
of section 1.8.2. We require a set of functions with similar properties to the Legendre
polynomials, but which are functions now of two angles and which span the required
space. Both the spherical harmonics and the modified spherical harmonics (which are
simply related to each other) provide such a set. They are defined on the surface of
a sphere and span the space of any function of two angles where one has a range of
0 — 7 and the other 0 — 27. Each set of functions is complete in this space. The
functions are also orthogonal so that the integral of the product of two with differing
rank over the entire angular space vanishes, thus analogously furnishing a method of
determining the expansion coeflicients, and thence a complete, independent set of order
parameters. For convenience, we choose the modified (or Racah) spherical harmonics,

CrLm(B,7) [22](see Appendix IB), as the basis for the expansion of f(8, ). We write

f(ﬁ: fY) = Z fL,m Cz,m(ﬁv 7)7 (132)

L(even),m
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where the coefficients f, ., are related to the orientational order parameters by

2L +1
m = m- 1.

Again this expansion may be slow to converge and under these circumstances a better
one can be obtained by assuming an exponential function for f(f,7) and expanding
the exponent, as before. This yields
1879 =27 exp (3 a1m CronlB), (1.34)
L,m

where the normalisation factor is now

2w Fis
2= [ [ exp (S anm Cinl6,) sing sy (1.35)
=0 (=0 L,m
which is analogous to a partition function. Here, m takes values —L,—~L +1,..., L,

hence there are 2L 4 1 values for each L. Thus, if we truncate the expansion at second
order we have L = 2 and so there are five second rank order parameters corresponding
to m = 0,41,£2. In a principal axis system this simplifies so that only two order
parameters, Csg and Coy, are required. As before, information theory and the principle
of maximum entropy may be brought to bear on a particular system for which some of
the order parameters are known. This yields an expression for the distribution function

of that system which is of a similar form.

In addition to forming a uniaxial phase, it is possible in principle for a phase of biaxial
molecules to exhibit a correspondingly biaxial phase, in which the molecules orient
preferentially with respect to a second minor director. In this case all three Euler

angles are required to define the orientation of the molecule with respect to the phase.

1.9 Molecular Models of Liquid Crystallinity

The long range orientational order characteristic of liquid crystal phases indicates that

it is the anisotropy in the intermolecular potential which is essential for their existence.
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As to the nature of these forces it has long been held that in simple liquids it is
predominantly the repulsive forces that are responsible for determining their structure
with the attractive forces serving to maintain a high density. It also seems reasonable
to assert that this is true for orientationally ordered fluids. Such a view was first
developed by Onsager who believed that it is the short range repulsive forces between
anisometric particles that result in their orientational order [7]. On the other hand
there there is the model proposed by Maier and Saupe [29, 30, 31] which assumed,
at least in its original derivation, that the long range anisotropic attractive forces are
responsible for the formation of the nematic phase. There have also been attempts at
a compromise and to bring the two approaches together [32], which appears reasonable
as both anisotropic repulsive and attractive forces should play a role in stabilising
the liquid crystal phase. Indeed, the attractive forces must be important because the
transitions are thermally driven. (We should note, however, that at constant pressure
the density also changes as a function of temperature so that the phase behaviour is

at least in part still density driven.)

In fact it turns out that in modern derivations of the Maier-Saupe theory based on
the pair potential or variational approaches (see Chapter 2) it is not necessary to
make any assumptions about the relative importance of the roles of attractive and
repulsive forces; both are implicitly included. Computer simulations have made it
possible to concentrate on the essential features of the model rather than the statistical
mechanical approximations and thus to explore the role of repulsive and attractive
forces in determining liquid crystal phase behaviour. For example, simulations of hard
ellipsoidal shaped molecules have shown that nematic-isotropic transitions do occur on
changing the density provided the length : breadth ratio is greater than about 3 : 1 [33].
From these results it seems, therefore, that anisotropic repulsive forces could play a role
in the creation of the nematic phase. Such ellipsoidal systems can, however, only form a
nematic phase (and in addition the transitions are only driven by a change in the density
of the system). No smectic A phase is formed. To develop a model which exhibits other

phases such as smectic phases it is necessary to change the shape of the particles or
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introduce attractive forces. So, for instance, hard spherocylinders are found to exhibit
a smectic A phase and the phase transition is density driven. To develop a model that
shows thermally-driven phase behaviour it is necessary to introduce attractive forces.
An example is the Gay-Berne potential [24], which is a single-site potential with both
attractive and repulsive anisotropic forces. This potential is found to give thermally
driven phase behaviour and to result in smectic phases and columnar phases (for discs),
as well as the nematic phase. Simulations of the nematic phase formed by the Gay-
Berne mesogen show that the form of the singlet orientational distribution function
is essentially identical to that predicted by the Maier-Saupe theory. It seems clear,
therefore, that the Maier-Saupe theory, although originally derived assuming purely
attractive anisotropic forces, also describes the liquid crystal behaviour for mesogens

where both shape and attractive anisotropies are important.

1.10 Liquid Crystal Properties and Theoretical Modelling

In attempting to construct theories of liquid crystalline behaviour, it is clearly germane
to give some attention to the properties we would like the theories to predict. That is,
some properties are clearly better indicators than others of the liquid crystalline state
of the system. Properties such as the heat capacity and the isothermal compressibility
are not significantly different in the liquid crystal to the isotropic liquid and as such are
relatively poor candidates for any serious attempts at modelling the distinctive features
of, say, the nematic phase. On the other hand, there are readily measureable properties
that are distinctive features of liquid crystalline phases. For instance, the defining fea-
ture of a liquid crystal is the non-zero values of the order parameters that characterise
its order and distinguish it from less ordered phases. For example, for a nematic phase
this could be taken to be the second rank orientational order parameter characterising
its long range orientational order. The point at which the order parameter becomes
non-zero then reflects the transition temperature on the phase diagram, and given that

it also defines the difference between the ordered and disordered phases, most interest
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attaches to this transitional region. A distinctive feature that would provide a fairly
crude test of any theory would then be the nature of the second rank orientational
order parameter profile around the transition. To begin with the theory should be
correct in its qualitative predictions. That is, it should predict the N — I transition
and its order. If the theory succeeds at this first hurdle, and the N — I transition is
correctly predicted to be first order, the next test is to predict the N — I transitional

value of the second rank orientational order parameter, P-.

Some theories clearly fare better than others in these matters. For instance the On-
sager theory of nematics we have alluded to in section 1.9 predicts (correctly) that
there should be a first order NV — [ transition, but the predicted transitional second
rank orientational order parameter (0.8) is far in excess of that found experimentally
(ca. 0.35). The transition is predicted to be very much stronger than is found in real-
ity, to the extent that order parameters of this magnitude are not normally found in
nematics—the system would have long since undergone transition to a smectic phase or
simply crystallised. The Maier-Saupe theory, on the other hand, predicts a weak first
order transition, with roughly the correct transitional orientational order parameter,
although we note that the transitional entropy (the measure of the “strength” of the

transition), albeit small, is still significantly too high.

Having said this, however, it is found, to a reasonable approximation that the order
parameter is a universal function of the reduced temperature for a wide variety of
mesogens. Thus, once a theory has passed the first distinctive test by predicting
the approximate value of the orientational order parameter at the N — I transition,
and by predicting universality in broadly correct terms, terms, the orientational order
parameter then becomes a somewhat blunter tool for probing the success of a theory,
sincein a sense there is nothing more to test. However, the temperature dependence of
P, does differ between real mesogens, particularly in the neighbourhood of the N — I

transition (eg, strong or weak) so it still could does provide a testing ground theories.

From the point of view of the theory, to predict strict universality there will necessarily
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be just one parameter related to the structure. (This could be used to scale the temper-
ature and would then cancel upon constructing a reduced temperature scale.) However,
the behaviour of real mesogens is not absolutely universal, and so predicting the tem-
perature variation would really be concerned with distinguishing between them on the
basis of their structure. Indeed, no one-parameter theory could predict anything other
than strict universality, so to go beyond this and distinguish between real mesogens
would require further parameters relating to aspects of molecular structure. However,
for such theories, there is then scope for testing their validity by comparison with the
different ways in which the orientational order parameter varies with temperature for

mesogens of different structure.

A much more severe test of the theory would be provided by other readily measurable
properties that are related to the transition between the phases, and that are found, in
practise, to be strongly related to the molecular structure. An good example would be
the N —1 transition temperature, which depends exquisitely on the molecular structure.
However, the Maier-Saupe theory does not give the scaling parameter required to
convert the scaled transition temperature to an absolute temperature. It is therefore the
orientational order parameter (primarily P;) and the N — I entropy change, ASy;/R,
which do not depend on the scaling parameter which provide the best contact with

experiment.
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1.11 Summary of Contents

We begin, in the following chapter, by sketching the essential background in statistical
mechanics for the theoretical treatments and applications that follow. We then apply
this to the electric field polarisation of nematics, where, for the purposes of producing
non-linear optical materials, there has been interest in the induced polarisation that
can be attained with a given field strength. This is then followed by application of the
Humphries-James-Luckhurst theory of binary nematic mixtures to probe order param-
eters beyond the limits of miscibility of the mesogen since the solutes in real systems do
not form liquid crystals. This is to investigate the validity of the linear extrapolations
commonly performed by experimentalists to the pure compound to produce compara-
tive measures of their properties. Finally, we combine the Marcelja-Luckhurst theory
with Monte Carlo simulation to provide a hybrid methodology for modelling nematics

composed of molecules of arbitrary flexibility with continuous torsional potentials.
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Appendix 1A: Definition of the Euler angles

In defining the Euler angles we are in effect addressing the problem of how to relate the
orientation of one cartesian axis system (say, a laboratory frame) to that of another
(say, a molecular frame). In other words, we need to define the rotation that takes one
frame of reference into coincidence with the other. The Euler angles, o, f and vy are
defined by performing the rotation of the cartesian frame of reference in three steps
(ie, three successive rotations). Let XY Z denote the fixed laboratory frame and UVW
the rotated (ie, molecular) frame. A positive rotation about an axis is taken to be one
such that a right handed screw would advance in the positive direction of that axis.

The three successive rotations are as follows (see figure 1A.1):

1. rotate positively by an angle o (0 < o < 2m) about the Z-axis, thereby bringing
XY Z into position X'Y'Z’;

2. rotate by an angle § (0 < § < ) about the new Y axis Y’, thereby bringing
X'Y'Z'" into position X"Y"Z":
[It can now be seen that these angles clearly correspond precisely to those simi-

larly denoted in figures 1.5 and 1.6.]

3. rotate by an angle v (0 < v < 27) about the new Z-axis Z”, thereby bringing
the X"Y"Z" system into the final position X"Y"Z"" = UVW.

The polar coordinates of W (the molecular Z-axis) in the XY Z (laboratory) system
are (8, a) and the polar coordinates of Z (the laboratory Z-axis) in UVW (molecular)
system are (G, 7 — v). We note that for the special case of a cylindrically symmetric
molecule with the W axis along the line of molecular symmetry, only the two angles
(8, @) are necessary; in this case the third Euler angle v is redundant and can be put

equal to zero.
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Figure 1A.1: The Euler angles «, ,y and the three Euler rotations that carry the

initial z,y, z axis system into the final z",y", 2" system [35, 36].
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Figure 1A.2: The polar coordinates of W in the XYZ axis system and. the polar

coordinates of Z in the UVW system [36].
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Appendix 1B: Legendre polynomials and spherical harmonics
Here we give explicit expressions for the first six Legendre polynomials Pp(cos 3)
and for the modified (Racah) spherical harmonics of second degree Coyy,(w) where

m=-2-1,...,2

1. Legendre polynomials.

Py(cosfB) = 1 (1B.1)
Py(cosf) = cosf3 (1B.2)
Py(cos ) = ?2:(3 cos? § — 1) (1B.3)
Ps(cos ) = %(5 cos® 8 — 3cos §) (1B.4)
Py(cos8) = -;-(35 cos* B — 30 cos® 8 + 3) (1B.5)
Ps(cos B) = %(63 cos® B — 70 cos® B + 15 cos §) (1B.6)
Ps(cos ) = Z%(693 cos® 8 — 945 cos® B + 315cos® f — 15).  (1B.7)

2. Modified spherical harmonics.

Cos(B,v) = \/gsin2 [ e 2 (1B.8)
Co1(8,v) = \/gsinﬁcosﬂ e (1B.9)
Co(B,7) = Pa(cosp) (1B.10)
Con(B,y) = —\/gsinﬁcosﬂ e (1B.11)
Cw(B,v) = \/gsinQ G e*. (1B.12)
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Chapter 2: The Statistical Mechanics and Molecular
Field Theory of Nematics Composed of Rigid Molecules

2.1 Introduction

In this chapter we lay the foundations of the necessary background in statistical me-
chanics from which to describe one of the most successful classes of molecular theories
of liquid crystals, namely molecular field theories. These are the theories that we
shall employ subsequently in later chapters. We then describe the molecular field
approximation from which these theories arise and its relationship to the single parti-
cle distribution function and Helmholtz free energy. We then discuss the application
of molecular field theory to uniaxial phases composed of uniaxial particles, including
the seminal Maier-Saupe theory, its derivation, some necessary generalisations of it
in preparation for later studies and its predictions. Finally, we turn our attention to
uniaxial phases composed of biaxial particles, deriving the theory and discussing its

implications.

2.2 Introduction to Statistical Mechanics

Within the framework of classical statistical mechanics it is possible, in principle,
to describe a system completely at any given time by specifying the momenta and
positional coordinates associated with each of its constituent molecules. Thus the
state of a system of N particles is defined by specifying (p;,Ps, - .. ,py) = p%) and

(X1, X5,...,Xy) = XW) where p; is the momentum vector of particle 7, X; is
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the set of positional coordinates associated with particle ¢ and ¢ = 1,2,...,N. If the
molecules concerned are considered to be rigid then we may write X; as X;(r;, Q)
where 7; is the position vector of some physically convenient point in the molecule
(e.g. the centre of mass) and (2 stands for the Euler angles («, 3,7) of a frame set in

molecule 7 with respect to an external laboratory frame of reference.

The discipline of statistical mechanics makes the transition from an unwieldy number
of microscopic variables (N may be of the order 10% for an experimental sample) to a
small number of macroscopic properties, namely the bulk thermodynamic properties of
the system. A straightforward approach to this discipline is to develop the concept of a
many- dimensional phase space, each dimension representing the value of a component
of the momentum, or centre of mass position, vector of a molecule or the value of
one of its Euler angles. Thus for a system of N rigid molecules the phase space is
9N dimensional and the entire system at any instant in time is represented by a single
point in this space. Over time the system will trace out a trajectory in phase space and
the value of any bulk thermodynamic property of the system will be the time average,
< A >;, of its instantaneous value, A(¢). That is, the average over the phase space

trajectory which may be written
1 {
Agps = < A>;= lim <_/ A(p(N),X(N), S) dS), (21)
t—oo \ 1t Jj

where s is the particular instant in time in question in the range 0 —¢. It was argued by
the founders of statistical mechanics that the straightforward time averaging approach
to the discipline would be utterly impossible. An alternative approach was, therefore,
put forward by Gibbs: rather than average the properties of one system over time, we
imagine that we have a huge number of replicas of the system, identical in their bulk
properties; we then average the property of interest over the ensemble of replicas at
one instant in time. This alternative gains us nothing unless we know the distribution
of states (hence the instantaneous values of the property) in the ensemble. It is this at
which Gibbs guessed and which forms the fundamental axiom of statistical mechanics—

the so-called principle of equal a priori probabilities. It asserts that the probability of
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occurrence of a given state of the system depends only on the energy of the state (ie,

all states of the same energy are equally probable).

Using this principle we can define, for any given ensemble, a phase space density, which
is in fact a probability density distribution function for possible states of the system
in phase space. The normalisation factor that appears as the proportionality coeffi-
cient in the expression for this probability density is the partition function for that
ensemble. This partition function is a multidimensional integral over all phase space
of the expression to which the probability density (the distribution function) is pro-
portional. Such a definition of the distribution function manifestly depends on the
principle of equal a priori probabilities in terms of the proportionality and its normal-
isation. In this development of statistical mechanics it turns out that the partition
function is a crucial quantity, the evaluation of which enables calculation of all the
averages that determine the bulk thermodynamic properties of systems. A convenient
and conventional ensemble in the statistical mechanics of the nematic phase is that
under conditions of constant volume (V'), temperature (7') and number of particles
(N), that is, the canonical ensemble. For a system of N indistinguishable particles the

corresponding (ie, canonical) partition function is written as

Qnvr = —557\,1% /exp(—E(p(N),X(N))/kBT) d{p"™} a{ X}, (2.2)
where F is the total internal energy, kp is the Boltzmann constant and A is the Planck
constant. This is the classical analogue of the sum over discrete states representation

Quvr = Y exp(—E(p™, X)) /kpT). (2.3)

states
The factor of 1/(h*") in (2.2) preserves the fundamental quantum mechanical nature
of the phase space seen in (2.3) and makes the partition function dimensionless so
that a logarithm may be obtained. The factor of 1/N! is a correction factor to take
account of the overcounting of the potential energy in the integration over positional
coordinates, and is a good approximation at all but very low temperatures. Within

classical statistical mechanics the positions and momenta of the rigid molecules are
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uncorrelated. The Hamiltonian for the system (E) is then the sum of the kinetic and
potential energies, the kinetic energy, K (p")), being a function of momenta only (both
translational and orientational) and the potential energy, U(X v )), being a function

of positions only. Hence

Qvr = g [ S ™) + UX D) kT) ap™afx ™) (24)

which after integration over the momenta gives

A—3N
Gnvr = Arot“NT‘/eXp(“U(X(N))/kBT) dx™

A—BN
= Arot—N!—ZNV% (2.5)

where A = (h%/2mmkpT)"/? is the thermal de Broglie wavelength, m being the particle
mass, and Zyyr is known as the configurational partition function. (Note: some work-
ers include the factor 1/N! in the definition of Zyyr.) The quantity Ao is the kinetic

rotational partition function resulting from integration over the angular momenta and

is given by

1/2
A, = l {QIG kg1 21, kT 21.kgT (2.6)

h2 h2 hQ !
where o is the symmetry number of the particle and I, I, I, are the principal compo-

nents of its inertial tensor. For a system of rigid particles equation (2.5) becomes

—-3N

Qnvr = Arot‘“jv—,—/eXp(“U(r(N)a QM) /kpT) dr™) dQt), (2.7)

where dQ(N) = dQldQQ ce dQN and dQZ = sin ﬂz dﬁz dOzi d’}’z [Z = 1, 2, R ,N]

2.3 The Equilibrium Free Energy

An important quantity to be able to calculate is the free energy since it defines the

position of equilibrium of the system at finite temperatures. For a generalised ensemble,
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the thermodynamic driving force, D, to the equilibrium position is related to the

relevant partition function via the relation
D=—-kgTInQ. (2.8)

Thus we may obtain the equilibrium Helmholtz free energy from the canonical partition

function as
A= —k)BTID QNVT- (29)
Qnyr may be decomposed as in (2.5) so that

A= —kgT{In(A™*"/N) +1In Zyvr}

- (—kBT In QK) + (_/fBT In ZNVT)- (2.10)

Thus the total free energy associated with the total Hamiltonian may be considered
the sum of a part associated with the kinetic energy (momenta) and a part associated

with the potential energy (configuration):
A=Ak + Ay. (2.11)

We may then write the free energy associated with the thermodynamic potential energy

as

AU - —-/{,‘BT In ZNVT- (212)
2.4 The Molecular Field Approximation
It is not possible to evaluate the partition function (2.5) from which we obtain the ther-
modynamic properties exactly analytically, at least for any system of interest. There-

fore we need some kind of approximation to render the integral Zyyr more mathemat-

ically tractable (or something equivalent). Therefore we introduce an approximation,
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known as the molecular field approximation, to enable the calculation of the thermo-
dynamic properties. There are various ways of introducing this approximation [1]. One
procedure involves the more or less intuitive averaging of the anisotropic pair potential
over the coordinates of one particle [2] while a more rigorous approach starts with the
partition function which is then factored into positional and orientational contribu-
tions [3, 4]. This latter approach is the one we shall take in this section. Later (section
2.8.3) we shall also give the variational derivation due to de Gennes [5] in which the
many body distribution function is assumed to be factored into a product of single
body distributions to give a generic single body distribution (as the geometric mean).
This is then the foundation for constructing the entropy contribution to the free energy,
the internal energy contribution being constructed from other single-body quantities,
namely the order parameters. The free energy is then made stationary by applica-
tion of the calculus of variations (see Appendix 2A) to obtain the singlet orientational
distribution function and then the corresponding potential energy function, which is
the central feature of theories based on the molecular field approximation. There are a
couple of alternative derivations that are worth mentioning in passing. One is based on
a solution of the Kirkwood integral equations for the spatial and orientational distribu-
tion functions [6]. Another approach, advocated by Woo and co-workers [7] develops
the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations for the distribution

functions [8].

Here, however, as we have stated, we shall proceed to decompose the partition function.
We suppose that the total potential energy may be approximately represented by a sum
of effective single particle energies. That is, we invoke a rescaling of the single body

potential energy contribution to the infinite series expansion for U(r™), Q)
Ulr®™ ™) = U (¢™, QM) + Uy (@™, Q) 4 U (™) Q) 00 (2.13)

to attempt to encapsulate the total potential energy U(r®™), Q). Here, U, (r{V), QM)
is the total potential energy arising from n-body interactions and is a sum of n-body

interaction terms. We note that the energy arising from two body (pair) interactions
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is dominant, the three-body (triplet) energy is small (but not insignificant) and the

single body energy in real systems normally vanishes. We write the single body term

Uy (¢ QW) as

U™, ™y =3 "U(r;, Q), (2.14)

where from now on we suppress the subscript 1 for simplicity. The approximation we
have made in effect envisages any single molecule interacting independently with the
projected out positional coordinates of all the other molecules; the molecule thus ex-
periences an overall mean or molecular field due to all the others. The approximation
will be good only if the strength of the field experienced by any particular molecule
is insensitive to the coordinates of every molecule except that being considered. Or
strictly, if it is insensitive to the detailed structure as opposed to the global structure as
represented by the director. It thus ignores all short range correlations since it assumes
that the pair correlation can be written as the product of two single particle distribu-
tions. Given that the essential feature of nematics we are trying to describe is their
long range orientational order, however, it is expected that the approach will never-
theless provide a reasonable description of the essential features of the nematic phase.
The justification, however, is ultimately a posteriori by comparison with experiment

or simulation. We may now write the configuration integral as

ZNVT = /exp ( — Z Ui(ri, Qz)/kBT> d’l”(N) dQ(N)

_ /exp ( - ZUi(ri,Qi)/k‘BT> dridry ... dry dSdSs ... dSy. (2.15)

The integration over dr;d(?; is now uniquely associated with particle ¢ and its potential

energy U; (which is a function only of r; and ;) and hence

N
ZNVT = H/exp (——Ui(ri, QZ)/kBT) d’l"i dQZ (216)

Within the foregoing approximation each integral of the product is identical and so the

sum of N single particle energies may be written as N times one representative single
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particle energy. We write
: N
ZNVT = { / €Xp (-—U(‘T‘, Q)/kBT) dr dQ} = Z{\XI/T7 (217)

where Zyyr is the single molecule partition function. The assumption that the total
configurational energy may be approximated as a sum of single particle energies, thus
allowing decomposition of the total partition function in (2.5) or (2.7) into the product
of N single particle partition functions, is known within statistical mechanics gener-
ally as the mean field approximation. Within liquid crystal theory, however, we refer
to it as the molecular field approximation to retain contact with the terminology of
Maier-Saupe type theories which focus explicitly on the molecular interactions. The
configurational partition function may be further decomposed by noting that the single

molecule potential energy is composed of an isotropic and an anisotropic part:
UlVT - Uiso('r) + Uaniso(r, Q) (218)

Uiso 1s a function only of the centre of mass position, r, of the test molecule whereas

Usaniso 15 @ function of both the position and the Euler angles. Hence
ZIVT - / €xXp ("Uiso(r)/kBT) d"'/ €xp (_Uaniso(ry Q)/kBT) dQ) = Ziso Zaniso- (219)

Zaniso, Usually denoted simply by Z, may be simplified in the case of nematic phases,
since then the anisotropic part of the thermodynamic potential energy is no longer a
function of ». A further simplification arises in the case of uniaxial particles comprising
a uniaxial phase. For uniaxial particles Us,pniso can have no dependence on the angle of
rotation about the molecular symmetry axis. Furthermore, if we define the z axis of the
laboratory frame of reference as the nematic director then making the usual assumption

that the phase has Dy, symmetry rules out any azimuthal angle («) dependence. Thus

Z = /27r /27r /7r exp(—Uaniso (e, B,77)/kpT) sin B df da dry (2.20)
a=0J F=0

./7:0
becomes, upon performing the integration,
2= 11" | exp(-Uuia( )/ 1) sin pd8, (2.21)
0

where Uppiso(3) is the anisotropic (orientational) part of the single molecule potential

energy, the so-called potential of mean torque, and is usually denoted U(5).
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2.5 Distribution Functions and the Molecular Field Approximation

We can clearly invoke the molecular field approximation to decompose the total many
particle distribution function

exp(=E(p™), X)) /k5T) (2.22)

p(p™, X M) =
QNVT

in a manner analogous to that applied to the partition function itself. Within classical
statistical mechanics the p@®) and the X™) are decoupled and hence

exp(—(K +U)/ksT)
= [ dp™ exp(~K/kpT) [ dX™) exp(~U/kpT)

p(p(N):X(N)) - A 3N

where QU - ZNVT- Now

exp {—K/ksT}/Qx = p(p™) (2.23)
and
exp{—U/kgT}/Znvr = p(XM). (2.24)
Hence
p(™, X)) = p(p!™) p(X ). (2.25)

Within liquid crystal theory it is customary to denote p(X v )), the many body configu-

rational distribution function, as P(X™)). Invoking the molecular field approximation

we have

exp(= >, Ui/ksT)

(N)y _
P = [dX™ exp(— >, Ui/ kpT)’

_ exp(—U;(X;)/kgT)
H de<N>exp U;(X;)/ksT)’

o1



:< exp(=U(X)/kgT) )N
[ aX exp(~U(X)/ksT))

= {/(X)}", (2.26)

where f(X) is the single particle (configurational) distribution function. Again, in an
exactly analogous manner to the decomposition of Z;y 1, within the molecular field

approximation, we may write the single molecule distribution function as

_ exp(— (Uiso (1) + Uaniso (7, 2)) / k5T
f(X) - fexp(~(Uiso(T') + Uaniso(ra Q))/kBT) dr dQ,

= exp(—Uiso(7)/k5T) exp(—Uaniso(T, Q) /ksT)
J exp(=Usso(r)/k5T) dr [ exp(Uaniso(r, ) /kpT) dr d’

_ exp(=Uiso(r)/kBT) exp(—Usniso(7,2) /k5T)

- 3

Ziso Z aniso

= fiso(r) faniso('ra Q) (227)

In the case of a nematic faniso(7,§2) becomes faniso(€2), which then defines a single
molecule orientational distribution function f(£2), more commonly known as a singlet
orientational distribution function. For a uniaxial phase of uniaxial particles f() is
independent of « and v so that

_ exp(—U(e, 8,7)/ksT)
T 2w 2 T ' (228)
ffy:() fa:O fﬂ:O eXp(*U(Oﬁ,ﬁ,’Y)/kBT) Slﬂﬁdﬁ da d’)’

f(9)
becomes, on removal of the redundant variables,

o= I ex§?§&g§72£§§€ilgdﬁ = Z ' exp(=U(f)/k&T). (2.29)

The function f(8) is then the singlet orientational distribution function for the nematic.

Equation (2.29) is strictly the defining equation for the potential of mean torque, at
least in the sense that f(0) is in principle a measurable quantity or one that may be

obtained from computer simulation.
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2.6 Helmholtz Free Energy within the Molecular Field Approximatior

From (2.12) it is tempting to write the molar free energy as
A= —kgTIn(ZNt) = —NakpTIn Z;yr. (2.30)

Equation (2.30) is incorrect within the molecular field approximation, however, since
the potential energy, U, in A = U — T'S is counted twice due to the fact that each
molecule can be considered to be both experiencing and generating the molecular field
(this is intuitive reasoning based upon the implicit assumption that the energy is a
sum of effective pair energies). Note that we cannot simply introduce a factor of
1/2 into the exponent of (2.15), (2.16) and (2.17) giving Zyyr = Ziyr™V? = Ay =
—(N/2)kgT In Zyyp, since the entropy given by (2.30) is correct as it stands; such a
manipulation would only contain half the entropy. Hence we retain (2.30) to yield the

correct entropy and subtract from this expression the potential energy:
AU = —NAU—NAkBTlIlZlVT, (231)

where U is the average potential energy per molecule (so that N,U = U is the molar

thermodynamic potential energy). Using (2.18),(2.19) we obtain

AU - _jVA (Uiso + _Ua.niso) - NAkBT ln(ZisoZauniso)
= (=NaUiso — NakpT In Ziso) + (= NaUuniso — NakpT In Zaniso),

AU - AU,iso + AU,aniso- (232}

The free energy associated with the anisotropic part of the thermodynamic potential
energy is then written as

A= —NAU—NAk‘BTan, (233)

where the subscripts U and aniso are now suppressed for simplicity. From here on then

(with the exception of the next section) the notations used for the properties should

be taken to have their normal meanings, except that we shall be implicitly referring to

the orientational configurational analogues only.
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2.7 An Alternative Development of the Helmholtz Free Energy

We may also develop the free energy within the molecular field approximation from

the singlet orientational distribution function as follows. The Boltzmann definition of

the entropy is
S = —hs [ pp™, X1 1n p(p), XN) dp ax ) (2.34)
so that within classical statistical mechanics we may write

Sr = ~ha( [ ptp™)p(X ) n(p(p™)p(X ) dp™ ax ),
= —ka( [ pp%) (X)) 1n(p(p™) dpt™ a1
+ [ o6 pXN) 1n(p(X ) dpt™ ax0),
= —kp( / p(®") In(p(p™) ap™ / p(X ) ax ™

T / P(XM) In(p(X ) X ™) / o(p™) dp™), (2.35)

where Sy is the total entropy. Now p(X®) and p(p™)) are normalised probability

density distribution functions and so
Sr=S(E™M) +5(x™M). (2.36)

Hence the total entropy is separable into a sum of kinetic and configurational parts.

The configurational entropy is then
Scont = —kp / P(X™"In P(XM)y dX ™), (2.37)

where p(X™) is now denoted by P(X™)). Within the molecular field approximation
(2.37) becomes

Sconf:—/c3</.../f1fg...f]v (fifs- .. fn) XmdXQ...dXN>,
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:‘—k3</f1f2...f]v 1nf1 XmdXQdXN—i-/flfoN lnfngldXQdXN—{—
+/f1f2~--f1v In fy Xmng...dXN>,

:—k3</f11nf1XmffngQ.../fNdXN+/f21nf2dXQ/fngg.../fN dXy+

+/fN1an dXN/fN—l dXN—l). (2.38)
Each of these integrals is identical and so
Sunt = =Naka [ £0X)1n £(X) dX), (2.39)
where
S = —kB/f(X) In f(X)dX (2.40)

is the configurational entropy per molecule. The configurational free energy is then

written

AU - NU - TSconﬁg

= NU + NkBT/f(X) In f(X) dX (2.41)
and U may now be defined as

= 1
U=5{UX)yx)

1
=3 / U(X)f(X) dX, (2.42)

where U(X) = U(f) and <>f(X) indicates averaging over the distribution function
f(X). The factor of 1/2 is included to take account of the double counting of the

contributions to the potential energy due to the molecular field approximation. Hence

AU - NU -+ NkBT/ZWT"“l exp(U(X)/kBT) h’l(ZlVTnl exp(—U(X)/kBT)) dX,
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= NU + NksT (In(Zr ™" exp(=U(X)/ET))) 1 5,
= NU + NkgT < hl(ZIVT_l - U(X)/kBT>f(X)>

= NU + NkgT(In Zyr™' = < U(X)/kpT >x))- (2.43)
But (U(X)/kgT) fx) = 2U /kpT and so

Ay = NU + NkgTIn(Zyyr ') — 2NT,

= —NU — NkgTn Zyyr, (2.44)

which is just (2.31) as we had derived previously. Now the general distribution function
f(X) = f(r,Q) simplifies in the case of a nematic, since it is no longer a function of

position but of orientation only, so f(X) o f(£2). That is,
F(X) =cf(Q), (2.45)
where ¢ is a constant. The configurational entropy is then

Seont = — Nk / () In (cf(Q)) dr O,
_ _-Nk;B</cf(Q)lncdrdQ+/cf(Q)lnf(Q) ar d2),
- —Nk:3</clncdr/f(9) dQ+/f(Q)lnf(Q) dQ/cdr),

= (—NkB/clnc dr) + (—-NkB/f(Q) In £ () dQ) (2.46)
Hence

Seonf = Stlrans + S{)rien: (247)
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where f(§2) is for a uniaxial phase of uniaxial particles f(f3). The configurational

entropy per particle is then
S = Sconf/N = Strans + Sorien; (248)
where Sirans 1S the configurational translational entropy per particle and Sorien 1S the

configurational orientational entropy per particle. The latter is of interest to us here

and, written explicitly, is

Soten = ~ka [ (6) In1(6) sin 9 dp. (2.49)
Ay is then
AU - NAU - TSconfa
= NA { (Uiso -+ Uaniso) - T (Strans + Sorien) }7 (250)
where

1
Uaniso = 5 <U(ﬁ)>f(‘5)7

1

=3 U6 10) singas, (2:51)

the factor of 1/2 again taking account of the overcounting of the contributions to the

energy. Therefore,
Ay = (Na (Uiso = T'Sirans) ) + (Na (Uaniso — T'Sorien) ) (2.52)
and so
Avaien = NiTizo + NaksT [ F(6) In(6) sinfid,
= NaUaniso + NakpT /07r f(B) In (Z7 exp (=U(B)/ksT) ) sinfdp,
= NaUaniso + NakpT (In (Z 7 exp (-U(B)/ksT)) >f(ﬁ)’
= NaUaniso + NakpT In Z — 2N 4U aniso,

= —NUaniso — NakpTIn Z, (2.53)

which is just equation (2.33) that we developed intuitively from the partition function.
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2.8 Molecular Field Theories—Uniaxial Phase Composed of Uniaxial

Rigid Particles

2.8.1 Maier-Saupe Theory

The pioneering theory of Maier and Saupe for nematics [9, 10, 11] was originally derived
by analogy with the mean field theory of ferro(/antiferro)magnetism [12, 13]. In a solid
state system of magnetic spins an individual lattice spin site is treated as if acted upon
by a mean magnetic field (“mean field”) resulting from all of the other spins. In
an infinite system all sites are equivalent and so a mean field at a generalised spin
site is obtained by evaluating the net magnetisation at a single central site in the
limit of infinite extent. Similarly in a nematic we have a tightly coupled many body
problem (due to the fact that the density is high—about that of a typical liquid) and
rather than attempting to evaluate all the molecular interactions explicitly Maier and
Saupe introduced the concept of a generalised representative molecule experiencing an
analogous mean field. This mean field is now not the net combined effect of all the
surrounding magnetic spins, but of the surrounding molecules. The mean field is no
longer a magnetic field but a so-called molecular field. It turns out that we do not need
to pursue too deeply the precise nature of this field; we need only the concept of the
field. Using this concept then, Maier and Saupe were able to write down a generalised
single particle orientational potential energy function, U(8), which forms the basis of
their theory. This U(f) is the potential of mean torque and is related to the singlet

orientational distribution function encountered in the previous section by
f(8) = Z " exp(=U(B)/ksT). (2.54)

Here we derive U(f) in an intuitive, semi-formal manner; it can also be derived in a

more formal way via the variational analysis of de Gennes [5] (see also section 2.8.3).

From the symmetry of the phase and hence f(3) we require that U(8) = U(r — §) and

that U(F) will be a minimum at § = 0,7, a maximum at § = /2 and periodic in 7.
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We require an angular dependence with such properties.

All of the even order polynomials have this property. Noting the similarity between
the required properties of the angular dependence to those of f(g) it is clear that
U(B) may be similarly expanded in a basis set of Legendre polynomials in cos . For
a non-polar phase the summation must be restricted to even order polynomials due to
the symmetry of the phase. A polar phase, however, will require terms which are both
odd and even in rank and, in addition, if the phase is being polarised by an external
field, terms relating to the direct effect of the field on the energy of the test molecule.
Systems capable of forming polar phases and those polarised by electric fields are not
part of the Maier-Saupe theory per se, however, and so we postpone full discussion of

these sophistications until section 2.8.2 and Chapter 3.

Here, in the Maier-Saupe theory we consider just the first term of the expansion in

even polynomials in a non-polar phase. Thus we can write
U(8) = —X Fy(cos §), (2.55)

where X is essentially just a proportionality coefficient, and is referred to as a strength
parameter. The coefficient of P,(cos 8) is expected to be overall negative so that the
orientations # = 0, m are global minima; hence X is defined to be positive. In addition
it is required that X vanish in the isotropic phase. It seems reasonable, then, that the
strength of the molecular field should be related to the orientational ordering present
in the system; we assume the simplest case X o< Py (see 2.8.2 and 2.8.3 for further
discussion). Then X = ¢P, where ¢ is an intrinsic coefficient that is expected to vary
between materials; it is a measure of the molecular anisotropy and has the dimensions

of energy. The potential of mean torque is then
U() = —¢P»Py(cos ), (2.56)

which is the central feature of the Maier-Saupe theory of nematics.
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2.8.2 Expansion of U(f) in a basis set of Legendre polynomials

The anisotropic potential energy of a molecule in a liquid crystal may be represented as
an infinite series expansion in some appropriate basis function. For reasons already ex-
plained in Chapter 1 in relation to expanding f(43), the functions of choice are Legendre

polynomials in the cosine of the polar angle. For a non-polar phase we write

UB)=— > upPucosf) [L#0] (2.57)

L(even)

where the restriction to L even is due to the plane of symmetry orthogonal to the
director as already explained in relation to f(8) and the — sign appears so that the
leading coefficient is positive. If we wish to develop a molecular field theory for sys-
tems capable of forming a polar phase (as we shall in Chapter 3 on the electric field
polarisation of nematics), then we must include the odd rank (polar molecular field)

terms so that (2.57) becomes, in the absence of external fields,
UB)=—> ujPrcosf) [L#0]. (2.58)
L

Since a polar nematic has never been observed these terms are usually ignored in
mean field theory of nematics in the absence of external electrical fields. We certainly
cannot ignore the influence of polar molecular fields when an external polarising field
is applied, however, as we shall require in Chapter 3. Indeed, the object of applying
the field is to induce a high polar order, that is, non-zero values of the polar (odd
rank) order parameters. For the case where an electric field is polarising a nematic,
however, equation (2.58) is incomplete and requires further terms relating to the direct
interaction between the electric field and the test molecule; we shall discuss this in
Chapter 3. The expansion coefficients in (2.57) can be made more explicit by separating
the non-angular functions in the terms (strength parameters) into the product of an

order parameter and an intrinsic coefficient (the latter having dimensions of energy):

us) =- Z u PP (cos 3). (2.59)

L even
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This may be understood intuitively in that one would expect the strength of the molec-
ular field to be related to the degree of ordering already present in the system; a simple
case scenario is a proportional relationship. That which is not so readily understood
in this manner is the concept that the total coefficient of each term should contain the
orientationally-averaged Legendre function of the same rank as the Legendre polyno-
mial describing the angular dependence. The formal justification of equation (2.59) is
either by the pair potential approach of the Humphries-James-Luckhurst theory [2] or
by the variational analysis of de Gennes [5] extended to higher rank order parameters
(see 2.8.3). In an exactly analogous manner we can re-express (2.58) as

Up) =- Z urPrPp(cos ) — Z ur, P, Pp(cos ). (2.60)

L even L odd

It should be noted at this point, however, that in the pair potential approach, the
averaging over the intermolecular vector orientation dependence of the potential would
imply that all permanent electrostatic terms should vanish identically. Thus, strictly,
if we were to use a pair potential derivation of molecular field theory, any term in the
potential of mean torque which is representing a permanent electrostatic interaction
should vanish, that is, its coefficient should be zero. Given that these terms are in
general non-zero we are forced to conclude that there is a problem with this averag-
ing. This is related to the assumed spherical distribution of the intermolecular vector,
whereas for uniaxial particles it is in reality highly anisotropic, at least for neighbouring
molecules. Strictly, then, we ought to use a variational derivation which includes polar

order parameters.

Inclusion of polar molecular fields in practice means that their coefficients must be
sufficiently small as to only give rise to “virtual” polar phases, that is, polar phases at
temperatures below which a real nematogen would certainly have crystallised. Thus
the non- existence of an observed polar nematic-non-polar nematic transition, at least
to date, means that we cannot obtain the specific values of the odd rank coefficients
but are able only to place upper values on them. This is an important point which we

take up further in Chapter 3.

61



The expansion (2.57) is generally believed to be quite rapidly convergent since, except
in the high order limit, Py > P4 > Pg ... and hence may be truncated at the second or
fourth rank term to a good approximation. It is thus seen that U(8) in the Maier-Saupe
theory is simply the first term in this expansion; taking it to the fourth rank term gives
some improvement in the quantitative results predicted by the theory as compared with
experiment but it may be that the extra term is compensating for errors introduced by
the molecular field approximation [16]. There is little improvement beyond the second

term in (2.57).

2.8.3 Variational Derivation of the Maier-Saupe Theory

We now proceed to give the formal, variational derivation of the Maier-Saupe theory
of nematic liquid crystals [5]. This derivation involves, as one component, the calculus
of variations and the concept of functional differentiation. An explanation of these

concepts and their relationship to molecular field theories is given in Appendix 2A.

First, we identify the dominant order parameter of the system, which here we take as
P, in accord with the experimental values for the order parameters near the nematic-
isotropic transition. We then construct the anisotropic internal potential energy per
molecule from the order parameter. We assume that the internal energy is quadratic
in the order parameter since, strictly, liquid crystal order parameters are second rank
tensors and the energy is a scalar. That is, the internal energy can only contain scalar
invariants of the tensor order parameter, which must be formed from it by using,
rather than negating, its tensorial nature. The lowest order scalar invariant that can
be formed from a second rank tensor is the quadratic. In addition the internal energy
is predominated by pair energies, and since the order parameter is a single molecule
property, this suggests that the energy should be quadratic in the order parameter.

Hence we write

U « Po.
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Inserting an arbitrary coefficient, €, we have
¢P,, (2.61)

where ¢ is defined to be positive so that U is overall negative and the factor of 1/2 is
included to preserve the connection with the Maier-Saupe theory. The orientational

entropy per molecule is, within the molecular field approximation
S =~k [ 1(6) 0 f(8) sinpdp. (2.62)
The orientational Helmholtz free energy per molecule is then
A=U-TS,

=2

-2 kT [ £(6)1n£(8) sinpds. (2.63)

We now minimise the free energy with respect to fluctuations §f(3) in f(8) (see Ap-

pendix 2A on the calculus of variations) to obtain the equilibrium distribution:

5,4—"65 +/<:BT/6 B)In f(B)] sin BdB = 0,
— P25y + kT / [67(6)In £(8) + 67(6)] sin B B,

— PPy + kT / 57(6)[1n £(8) + 1] sin B dB. (2.64)

We must take into account the constraint that prevents us from taking any arbitrary

distribution function, namely
[ t@singas =1, (2.65)
and in terms of the fluctuations

/(5f(ﬁ) singdg = 0. (2.66)
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The constraint equation (2.66) is now added to the main variation equation, having

first been multiplied by a Lagrange undetermined multiplier, to obtain
—ePy6 Py + kBT/(Sf(ﬁ) [Inf(B) +1]sinBdB + A/(Sf(ﬁ) sinfdg=0. (2.67)
Now
5P, = / Py(cos 8) 6£(B) sin B d8. (2.68)
Hence, combining the integrals and factoring out ¢ (),
/5f(5) ( — €PyPy(cos B) + ksT[In f(8) + 1] + A) sin #dg = 0. (2.69)

Now (2.69) must hold for any arbitrary fluctuation ¢ f(5). To see what this means we

consider the generalised integral

I= /  H@)gle) dz = 0, (2.70)

where g(z) is a given unknown function and f(z) is completely arbitrary. For (2.70)
to hold for any f(z), g(x) must vanish. Otherwise we could pick f(z) to be positive
where g(z) is positive and negative where g(z) is negative giving I # 0; thus we have

proof by contradiction. Hence from (2.69)
—€PyPy(cos B) + kgT [In f(B) + 1] + A = 0, (2.71)
from which we obtain

In f(8) = (1/kpT)(eP2Py(cos B) = A) — 1,
f(B) = exp (ePyPy(cos §) kT — M kgT — 1),

f(B) = exp (€PyPa(cos B)/kpT) exp (=A/kpT — 1). (2.72)

We know from the Boltzmann distribution and its normalisation that the distribution

is proportional to the Boltzmann factor exp (—U(8)/kgT’) in the energy, with the
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coefficient of proportionality being the inverse partition function (see equation (2.29)).

So then, from
f(B) < exp (=U(B)/ksT) (2.73)
we may write the singlet orientational distribution as
f(B) = Z7" exp (ePyPy(cos 8)/kpT) (2.74)
if we identify the inverse partition function as
77V = exp (=A/kgT — 1) (2.75)

and the angular dependent exponent in (2.72) as the angular dependent exponent
=U(B)/kpT in (2.73) and (2.29). By inspection then,

U(ﬁ) = _G—PQPQ(COS ﬁ), (276)

which is just the standard Maier-Saupe result. The factor exp (—1—\/kpT) is therefore
identified as Z~!; we do not then need to find X since Z is defined via the normali-
sation condition. If we identify all the order parameters P;, as important (noting the

restriction on L to be even in some cases, as already discussed in (2.8.2)) then we

obtain

U(,B) = - Z GLFLPL(COS ﬁ) (277)

2.8.4 Predictions of the Maier-Saupe Theory

The order parameter P, appearing in the potential of mean torque is defined as an

average over the singlet orientational distribution function

P, = / Py(cos 8) £(8) sin 8dB. (2.78)

The distribution function is obtained from the variational analysis in terms of the order

parameter itself

f(B) = Z7 exp (ePyPy(cos B) /kpT),

65



Z = /exp (ePyPy(cos B)/kpT) sin 5 dg. (2.79)

It is clear that substitution of the singlet distribution (2.79) into the expression for the
order parameter (2.78) results in an expression in which the order parameter occurs self-
consistently on the left and right of the equation. Thus, in the case of the Maier-Saupe
theory, we have a single self-consistency equation. We can solve this numerically fairly

simply by defining a quantity which we shall refer to as the scaled strength parameter
GFQ

X' = 2.80
Pt (2.80)

which upon substitution into the self-consistency equation gives
Py=27"1 /Pg(cos B) exp (X*Py(cos 3)) sin B dS. (2.81)

We note that this relationship strictly results from minimising the free energy with
respect to the order parameter, so that it is guaranteed to be an equilibrium expression.
We can then calculate the order parameter, using numerical integration, for a range
of scaled strength parameters X* corresponding to non-trivial solutions (ie, X* # 0).
The ratio of each value of the order parameter calculated to the corresponding scaled
strength parameter then gives a corresponding scaled temperature 7% = kgT'/e, since

by rearranging equation (2.80) for X* we obtain
ksT P
e X

The nematic-isotropic phase transition occurs where the free energy difference between

(2.82)

isotropic and nematic phases is zero. That is, the vanishing of AA yields a value for
X% from which Fiv " and hence T%; can be determined. The molar Helmholtz free
energy is given by

. NAE_P-QQ
2

In the isotropic phase Ps is zero so the first term vanishes and the second term becomes

A — NukpTIn Z. (2.83)

—NakpT In2. The difference in free energy between the nematic and isotropic phases
is then given by

- 2
NaeP A
AA]N = _A_%__g_ — NA]CBTIH “2—]\17 (284)
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where Z is the rotational partition function in the nematic phase and Z; = 2 is that in
the isotropic phase. It is not necessary to specify the order parameter dependence of the
scaled strength parameter (as given in equation (2.80)) to determine the transitional

values of the properties, since (2.84) can be written in terms of X* as
AA X*P. Z
N 2 _mmZX (2.85)
NakgT 2 2

This must vanish at the N — I transition and so the transitional values of X* and P,

can be obtained from a plot of AA;N/NakgT against X* where the graph cuts the
line AA;y/NakpT = 0. The entropy change, ASy; = Sy — 57, can be found from the

: —=NI .
value of X ; and the corresponding value of P, since

ASNI — AUNI
ks ksl
= X3,/ 2. (2.86)

We now give the results of the Maier-Saupe theory calculations. Figures 2.1 and 2.2
show the order parameter and the scaled I — N free energy difference AArn/NakgT
respectively as a function of X*. The graph of Py(X*) is a sigmoidal curve starting
at the origin, taking a limiting value of unity. We note that P, is defined for all
values of X*, whether or not these values for the order parameter represent thermo-
dynamically stable states (see below). The graph of AA;y(X*)/NakpT begins at the
origin, increases with increase in X*, passes through a maximum, decreases and then
passes through zero to become negative. The point where AA;y is zero defines the
transitional value of the scaled strength parameter, X}, from which other transitional
properties may be found. At lower values of X* the isotropic phase is more stable and
AA;y is positive whereas at higher values AA;y is negative and the nematic phase is

more stable.

In figures 2.3a and 2.3b we show the order parameter P, and the scaled free energy
difference AA;y/N4kgT respectively as a function of scaled temperature kgT'/e. The
N—1 transition is found to occur a scaled temperature of 0.22029 (providing the volume

is constant) with corresponding values of Py = 0.429, Py = 0.120 and ASy;/R = 0.418.
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Figure 2.1: The second rank orientational order parameter, P,, as a function of the

scaled strength parameter, X*, in the Maier-Saupe theory [4].
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We note that there are three branches of the temperature profile of the order param-
eter. First of all, there are the trivial solutions, that is, P, = 0 is a solution of the
self—consistenéy equations at all values of scaled temperature and corresponds to the
isotropic phase. This will only be the thermodynamically stable phase provided its
free energy is less than that of the nematic at the same temperature, that is, when
AA;y > 0. Thus there is a stable nematic phase where AA;y < 0 upto the transition
at kgT'/e = 0.22029. At scaled temperatures in excess of this, the isotropic solution be-

comes thermodynamically stable. In addition to these two branches there is a third one
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Figure 2.2: The molar orientational free energy as a function of the scaled strength

parameter in the Maier-Saupe theory [4].
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(dotted). Upon iﬁcreasing the temperature above the transition the nematic (P, # 0)
branch continues as a set of metastable solutions. The curve bends back on itself so
that there is a maximum temperature on this curve beyond which the nematic phase
is absolutely unstable; this is referred to as the limit of metastability. In this case it

corresponds to the superheating limit.

On cooling from the isotropic phase to below the transition, the metastable regime
of the isotropic solution can be realised. This terminates at the limit of supercooling

metastablility at a scaled temperature of 0.2. Below this, the isotropic solutions are
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unstable solutions (ie, they correspond to maxima in the free energy). At the super-
cooling limit a second order nematic-isotropic transition would occur, if there were
no first order transition. This can be shown by performing a perturbation-bifurcation
analysis to locate the point at which the nematic solution branches away from the
isotropic solution continuously. That is, the exponentials in the expression for the or-
der parameter are expanded in the low order limit and truncated after the second (ie,
first order) term. Using the orthogonality properties of the Legendre polynomials to

simplify the expression thus obtained yields

— J1+ (€Py/kpT)Py(cos B)) Ps(cos B) sin BdS3 P,
D, = i _ - . (2.87)
[ (1 + (eP2/ksT)Py(cos 8)) sin 3df3 5kgT
Thus,
— EFQ .
T 5kpT
— €
P, (1 - 5k3T> —0. (2.88)

This implies two possibilities, one of them clearly being P = 0. The other possibility
implies that P, is allowed to become non-zero in the vanishingly small order parameter

limit when

€
1— = 0. 2.89
S5kpT (2.89)

This implies that

kel )5 (2.90)

€

which represents the bifurcation point on the abscissa, kg7™*/e = 0.2, where T is

known as the divergence temperature.
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Figure 2.3: The temperature dependence of a) the second rank orientational order

parameter and b) the difference in free energy between the isotropic and nematic phase

(Majer-Saupe) [14].
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We note that the set of thermodynamic solutions over the entire temperature range is
a unique curve with a unique scaled transition temperature. We have, however, scaled
the temperature with the unknown intrinsic coefficient, which is taken to vary from
material to material. To remove this dependence and make contact with experiment,
we invoke the concept of reduced temperature, (kgT'/€)/(kgTnr/€) = T/Tnr and so
the phase transition of any substance occurs at the same point on the abscissa. Clearly,
then if the order parameter is plotted as a function of reduced temperature, we can
see that the Maier-Saupe theory predicts that the order parameter of a nematic is a
universal function of reduced temperature. Experimental investigations find that for a
wide variety of materials, the results do indeed scatter about a common curve close to

that predicted by the Maier-Saupe theory (see figure 2.4).

Another major feature of the theory is that the entropy change at the transition is
independent of the form assumed for the dependence of the strength parameter on the
order parameter. This is to be contrasted with the latent heat at constant volume
which clearly does require specification of this relationship. The entropy change is
also predicted to be independent of the molecular structure; this is in broad general

agreement with experiment.

The question does arise, however, as to the source of any disagreements between the
properties of real nematogens and the predictions of the Maier-Saupe theory. The are
two major elements to the Maier-Saupe theory. The first is the molecular field approx-
imation and the second is the form of the potential energy within that approximation.
Any disagreements could arise from either of these assumptions. This is where the
utility of computer simulations makes itself felt, for one key feature of computer sim-
ulations is that they can provide essentially exact results for a given model (ie, pair
potential). Thus we are able to set up a model that conforms to that of Maier-Saupe
theory, and compare the results to those of the theory. Any discrepancies between the
simulation results and the predictions of the theory are then due to the molecular field

approximation itself.
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Figure 2.4: The temperature dependence of P, at constant pressure, for a variety of

mesogenic compounds. The curve is predicted by the Maier-Saupe theory. [1]
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If these are significant, it means that the severity of the molecular field approximation
renders theory based upon it quantitatively inadequate. Thus Lebwohl and Lasher [15]
proposed a computer model with which to test the Maier-Saupe theory. In their model,
cylindrically symmetric molecules are placed on the sites of a simple cubic lattice. These
molecules then interact with nearest neighbours through a pair potential of the same
form as that from which the Maier-Saupe theory can be considered to be derived (ie,

in the pair potential approach, using the spherical harmonic addition theorem [2}).
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—=NI

/CBTNI/G ASN[/R P2

Maier-Saupe || 0.22 0.42 0.43
Monte Carlo || 0.19 0.05 0.27

Table 2.1: A comparison of the predictions of the Maier-Saupe theory with Monte

Carlo simulation results for the Lebwohl-Lasher model [15].

Table 2.1 shows a comparison of the results of the Monte Carlo simulation of Lebwohl

and Lasher with the predictions of the Maier-Saupe theory.

The transition temperature is overestimated by Maier-Saupe theory by about 20 %
and the value of the order parameter is overestimated by about 25%. More serious
is the discrepancy in the entropy of transition which is grossly overestimated, that is
by a factor of about eight. It is to be concluded, therefore, that the errors are caused
by the molecular field approximation itself rather than the model. Consequently any
theory which assumes the molecular field approximation is likely to be quantitatively
inadequate, but may be successfully employed, however, to give qualitative insight and
semi-quantitative results. We can obtain further insight by looking to results from ex-
periments based on systems that closely resemble the Maier-Saupe model. Thus PAA,
which is a rigid molecule that conforms closely to the ideal of cylindrical symmetry (see
chapter 1) and exhibits a nematic phase, provides a useful comparison with both theory
and simulation. The value of € is not readily obtainable from experiment [16], and so it
is not possible to give a comparison of the scaled transition temperatures kgTny/e. The
transitional entropy change AS/R is found to be 0.17. This is not directly comparable
with the Maier-Saupe value, since the latter refers to the transition at constant volume
and the experimental value is at constant pressure. The experimental entropy change
at constant volume can, however, be estimated from that at constant pressure [17] and
is found to be about 0.05, that is, essentially the same value obtained in the simulation.
This confirms the extremely poor status of the theory in predicting the entropy of tran-
sition quantitatively. The predicted constancy of the entropy of transition is, however,
in broad qualitative agreement with experiment. The transitional order parameter is
found to be 0.4, just slightly less than the value predicted by the Maier-Saupe theory.
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2.8.5 Numerical Methodologies in Molecular Field Theory

There are three main ways of obtaining the temperature profiles of the order parameters
that appear in the potential of mean torque in a molecular field calculation. We
illustrate them here with reference to the Maier-Saupe case for simplicity. The first
is to use the non-iterative, non-minimisation approach which we have illustrated in
section (2.8.4) in the Maier-Saupe calculation. This method is applicable if there is
only one independent parameter, as in the Maier-Saupe theory itself or some variant
where all parameters appearing are ultimately controlled by one parameter. In such
cases the potential(s) of mean torque can be written in terms of a single strength

parameter analogue.

The second way is solving the self-consistency equations. That is, there is a defining
equation for each order parameter in the potential of mean torque involving the distri-
bution function. In the Maier-Saupe theory we have just P, and from (2.78, 2.79) its

equation is
Py =2 / Py(cos B) exp (€PPy(cos B) /ksT) sin Bd. (2.91)

Thus the order parameter occurs self-consistently on the right and the left; we have
a self-consistency equation. One way of solving the self-consistency equations is an
iterative method where a guess (or “seed”) value of each order parameter is input
into the equation defining it, the result is evaluated by numerical integration, and
these numbers input again. Depending on the seeds chosen, the numbers going in and
coming out should converge to constant values. This is then repeated for a number
of different scaled temperatures. This method is probably best suited to situations
where there are few parameters, although in the case where there is just one as in the
Maier-Saupe theory parameter its utility is dubious, since the non-iterative method
discussed in section (2.8.4) is far better. Another way is by minimising the sum of
the squared differences between the order parameters and their defining equations,
treating the order parameters on both sides of these equations as fitting parameters.

At the minimum of this function there will be a combination of order parameters that
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solve all the self-consistency equations simultaneously. Not only should the function be
minimised, but the function value at the minimum should also be zero. This technique
is of general applicability and is particularly useful when there are multiple order
parameters in the potential of mean torque. It is also indispensible in certain situations

where other methods cannot be brought to bear as we shall see later.

The final way of obtaining the order parameters is that of minimising the orientational
configurational free energy of the system with respect to the order parameter(s) [18].
This is the methodology of choice where it is applicable, since if a global minimum
is found, we know by definition we have the thermodynamic solution (ie, the order
parameters for the stable states only). This contrasts with solving the self-consistency
equations, which will give all the solutions to the equations, but some of them will
be thermodynamically metastable (or even unstable) solutions (although these could
be of interest). These solutions will, in general, need sorting through (by calculation
of the corresponding free energies) to determine which is the thermodynamic one at
cach state point. Moreover, the number of numerical evaluations of integrals in the
free energy minimisation methodology is less because the free energy contains only one
integral, the partition function. The self-consistency equations (or, more precisely, the
error function obtained from them) contains n + 1 integrals, where n is the number
of order parameters. The only problems with free energy minimisation come about in
two ways, one way relatively trivial, the other more fundamental. The first way is that
the free energy may not be so easy to minimise as the expression for the error in the
self-consistency equation approach. The more fundamental one is that there are some
cases where the free energy minimisation may be inapplicable even in principle, as we
shall see later. In certain instances this problem may be remediated by casting the
free energy in a different form; in others this cannot be done. We shall discuss these

problems in depth later in Chapters 3 and 4.
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2.9 Uniaxial Phase of Rigid Biaxial Particles

2.9.1 Variational Derivation of the Distribution Function and the Potential

of Mean Torque

In section (2.8.3) we derived the distribution function and potential of mean torque for
a uniaxial (ie, cylindrically symmetric) particle in a uniaxial phase within the molecular
field approximation. In general, however, liquid crystal molecules are not cylindrically
symmetric but tend to be more lath-like in shape. We say they are biaxial, that is, all
axes perpendicular to the near-symmetry axis of the molecule are not equivalent. The
means for specifying the orientation of the molecule and hence the order parameters
is then more complicated. This is exacerbated by the fact that, away from uniaxial
symmetry, the symmetry axes of a molecule in general depend upon which molecular
tensorial property is being considered. Thus we have to choose a particular second
rank property as the definition. The one that is chosen is the Saupe ordering matrix

which is given as
Sap = (31aly — 6ap) /2, (2.92)

where [, is the direction cosine between the director and the direction of the ¢ molecular
axis increasing (with a = z,y,2z = 1,2, 3) and the bar indicates a molecular average.
Here we are assuming an arbitrary cartesian axis system set in the molecule. The
principal axes of this real symmetric tensor are then used to define the orientation of
the molecule. It is conventional to label the axis (ie, eigenvector) corresponding to the
largest eigenvalue z so that the eigenvalue is S,,. The next largest eigenvalue is taken
to be Sz, and the smallest Sy, (so that Syp — S,y is positive) which then defines the
x and y axes of the principal molecular frame. The quantity S,, is referred to as the
magjor order parameter and (Sz; — Sy,) as the biazial order parameter. Now we have
defined the molecular symmetry axes we may proceed to the theoretical definition of

molecular orientation that we require. Now, two Euler angles, which we shall refer to
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as # and v, are employed to define the orientation of the director of the phase with

respect to the molecular axis system (see Chapter 1).

The orientational order of the system is then completely described by an infinite set
of tensor order parameters of all even orders. By analogy with the Maier-Saupe the-
ory, if we assume that the most important interactions are second rank in nature (ie,
they dominate the single particle internal energy) then the orientational order of the
system may be taken to be described by a matrix of second rank order parameters.
The internal energy is assumed to be a function of the scalar product of two second
rank ordering tensors to give a quadratic expression as in the Maier-Saupe theory.
The second rank ordering tensors each have five components Cy,, (m = 0,%1,£2)
in irreducible form and the strength parameter now takes the form of a second rank
supertensor with 5% elements. To construct the internal energy we assume that pair
interactions predominate and so we take the scalar product of the second rank tensor
order parameter of the first molecule of the pair with that of the second molecule. In
addition, we expect that the coefficient should itself be a molecular property, and so in
the case of biaxial molecules it should also be a second rank tensorial property related
to the interaction between the two molecules. Thus, if we denote the first molecule by
m and the second by n we form the single molecule internal energy as a scalar invariant
from the tensor order parameters Capm,, Ca, for the pair of molecules and the second
rank supertensor ug,,, describing the interations between the molecules. As in the case
of uniaxial phases composed of uniaxial particles, we include a factor of 1/2 to retain
consistency with pre-existing notation. The internal energy is then assumed to have

the form
1 =
U= *i;gumn Com Con. (2.93)

The entropy within the molecular field approximation is again found from the singlet
orientational distribution function, but this time using the analogue f(w) involving the

two angles 3,7 = w, as

S =—kp / flw)In f(w) dw. (2.94)
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The Hemlholtz free energy per molecule is then
1 —
A= -§ZZu2manmC’2n+k3T/f(w) In f(w) dw. (2.95)

We now proceed to minimise the free energy with respect to fluctuations in the distri-

bution function in a manner analogous to section (2.8.3), that is, we require that
A = 0. (2.96)

Now

SA = _%Z;um” (6 Com Con + Copm 8 Cay) +/€BT/5f(W)[1nf(W)+1] dw,

m

(2.97)

where the 6 Cy, are the variations in the ordering tensor components
§Cyy = / Con(w) 6 f (w) dw. (2.98)
The variation in the free energy is then
5A = / (= 32 s Ci Con(w) + ko T[1n () 1] ) 6 () do. (2.99)
m 7
We must take account of the constraint that the distribution is normalised, that is,
/5f(w) dw = 0. (2.100)

To form the complete variational equation we multiply the constraint equation by the

Lagrange undetermined multiplier A and add the result to the variation (2.96) in A to

obtain
/ ( =3 tamn Com Con(w) + kT [In f(w) + 1] + ,\) §f(w)dw=0. (2.101)
This result must hold for any fluctuation J f(w) and so we require that

=t Com Con(w) + kT [In f(w) + 1] + A = 0. (2.102)
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The single particle orientational distribution is then
fw)=2"exp (323 tzna Com Con(w) /T ) (2.103)
and the potential of mean torque for a biaxial particle in a uniaxial phase is

Uw) ==Y tizmn Com Con (w). (2.104)

m n

We note that this same form of potential has also been derived from the pair potential

by Luckhurst, Zannoni, Nordio, and Segre [19].
In the principal axis system of the ordering tensor the Cl,, simplify as
—O‘Q:H — O —622 - 62_2. (2105)

The uom, also simplify, although the reasons for this are not quite so clear. If we
suppose for the moment that the predominant interaction contributing to the g,
is dispersion forces then we might write the interaction between the two molecules in

terms of their polarisability tensors in irreducible form as

Ugmn = Qam Qizn- (2.106)
Then
Ugo = Qg0 (¥20- (2.107)
Also, since
Qo9 = (Quy — Qyyy) /2 £ 1200 (2.108)

and we are by definition dealing with a principal axis system
Q99 = (¥9..9. (2109)

Then the ugy,, simplify as

Ugo0 = Ugp2 = U220 = U20—2 Ugg = Ugp—2 = Ug—22 = Uz-2-2. (2'110)
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Therefore only three elements of the intrinsic interaction tensor are required, namely
U200, Uszo and g, and only two of the order parameters, namely Cyy and Cys. The

potential of mean torque can then be written

U(w) = —{(U220 620 + 2 ugg —0—22) 02—2(60) + (200 520 + 2 U990 6722) Coo(w)

+(tg20 Cao + 2 uggg Caz) Caa(w) }. (2.111)

This can be rewritten in terms of the Euler angles o and f by substituting explicit

expressions for the Cy(8,7), Coxra(B, ) (see Appendix 1B) as

_ _ 3 . _ _
U(B,7v) = —{(u20 Cao + 2 uges Ca2) \/;SHIQﬂ e (ugog Cag + 2 Uggg Caz) Pa(cos )

_ _ 3 .
+(UQ20 CQO + 2 U999 022) \/gSiITR /6 6227} (2112)

which simplifies to
U(/@, "y) = ——{(UQOQCQO + 2U220022)P2(COS ,8) + 2 (U,QQQ CQQ + 2 U999 022) \/;SIHQ ﬁCOS 2’}’}
(2.113)

The number of adjustable parameters ug,,, may be further reduced by invoking a geo-
metric mean approximation for ugg, in other words s = (g0 Ugz2)'/?, and rewriting

equation (2.113) in terms of a molecular biaxiality parameter A = (ugs/tz00)"/? as

U(B,7) = —{uz0(Cao + 2X Cas) Pa(cos ) + 2 U00(Ca0 + 2) Cag) sin? B cos 2}
(2.114)

We note that the geometric mean approximation for usg is only exact for dispersion
forces, however. Since uggg (Cao + 2 Clyy) is a common factor the potential of mean

torque can be further simplified by defining

X0 = uggo (Cag + 22 Caz) (2.115)
giving

U(B,7) = —Xa { Py(cos B) + 2 Asin® B cos 2 }. (2.116)
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It is also conventional to define
X22 = )\XQ(). (2117)

Invoking the geometric mean approximation for uggg thus renders the ratio Xoo/Xoo (= )

temperature-independent. The potential of mean torque is then finally written as
U(B,v) = —{ XagPo(cos B) + 2X a9 sin® B cos 2y }. - (2.118)

We note that in the limit that the molecular biaxiality is zero (ie, A = 0) this reduces

to
U(,@) = —Xg() PQ(COS,B) = —XPQ(COS ﬁ), (2119)

which is just the Maier-Saupe potential for a uniaxial particle in a uniaxial phase, as

expected.

2.9.2 Predictions of the Theory

From the expression for the potential of mean torque we can calculate the orientational

order parameters as averages over the associated distribution function. That is,
Co =271 // Py(cos ) exp (Xo Py(cos B) + 2X,5 sin® Bcos 2v) sin fdfdy (2.120)
and

Co=2"" // sin? 8 cos 2 exp (Xo5 Py(cos B) + 2X,5 sin® B cos2y) sin fdB dy,
(2.121)

where here the superscript * denotes division by kg7 rather than complex conjugation

and the rotational partition function is

7 = // exp (Xq5 Py(cos B) + 2X,5 sin® Bcos2y) sin BdS dy. (2.122)
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The double integrals may be evaluated as one dimensional integrals involving modified
Bessel functions of the first kind. That is, an nth order modified Bessel function is

written (in its integral representation) as
™
L(z) =771 J/ cos ny exp (@ cos 7y) dy (2.123)
0
and the integrals may be written

Cyo = 21771 / ' Py(cos B) Iy (2Xss sin® B/kpT) exp (Xao Py(cos §)/kpT) sinfdf
0
(2.124)

Coy =21271 /7r sin® B I1(2X 9, sin® 8/kpT) exp (Xag Py(cos 3)/kpT) sin3df
: (2.125)
with
Z = 27r/[0 (2X4 sin? B/kpT) exp (Xog Py(cos B)/kpT) sin Bdg. (2.126)
The orientational partition function and order parameters are thus evaluated using

one dimensional numerical integrations for given values of X3, (= Xu/ksT) and

X3, (= Xop/kpT) but with their ratio constant.

Again, as in the case of uniaxial particles, the order parameters at the transition are
obtained as those for which the difference in the free energy between isotropic and

nematic phases is zero. We have from the potential of mean torque that the single

particle internal energy is
N4 — —
U= _—Q‘(XQOCQO + QXQQCQQ) (2.127)
and the orientational entropy is
Ny — —
S = ——T—'“(XQOCQO -+ 2X22022) + NAkB In Z. (2128)

The molar orientational Helmholtz free energy is, therefore,

N —_— —
A= (XaCn +2XC) ~ NakpTIn Z. (2.129)
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Now in the isotropic phase the order parameters are zero and the rotational parti-
tion function reduces to 4m. The free energy difference, A A;y, between isotropic and

nematic phases is then given by

N — — VA
AAIN = AN - A] - ——2£(X20020 + QXQQC’QQ) — NA:ZCBT ln Zg— (2130)

This expression must vanish at the N — I transition which can therefore be located
in an analogous way to that of uniaxial particles. Alternatively, the transitional order
parameters could be obtained as those corresponding to the the values of X5y, X3,
which satisfy the equation

X5 O +2X3,Co _ 1) 2 (2.131)
2 47

As in the case of uniaxial particles, there is always an isotropic solution in which the
order parameters are zero. In the nematic phase, however, there is no unique solution,

but a set of solutions depending on the value of A taken, which must therefore be

specified.

The nematic-isotropic transition temperature is then obtained from

kTwi _ T '+ 20T (2.132)

NT
U200 X3

with A = X3,/ X35,
From the values of X3,™!, X3"' and the corresponding transitional order parameters,
the entropy change at the transition is calculated as

ASyr
R

— _ 4
= X5V T + 2X3,M T 4 (2.133)
NI

The values of the order parameters, transition temperatures and entropies of transition
for a range of biaxialities as calculated by this procedure are given in table 2.2. In
addition, in figure 2.5 we show the biaxial order parameter plotted against the major
order parameter for four different biaxialities, namely 0.1, 0.2, 0.3 and 0.4. Figure 2.5
also shows the solutions to the self-consistency equations for the order parameters at

the N — [ transition.
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A UzoNI Cas N ksTni/ua0 | ASns/R
0.000 |} 0.429 | 0.000 | 0.220 0.418
0.050 || 0.424 | 0.009 | 0.221 0.410
0.100 || 0.409 | 0.017 | 0.222 0.384
0.150 || 0.382 | 0.026 | 0.224 0.338
0.200 || 0.341 | 0.034 | 0.228 0.276
0.250 || 0.284 | 0.040 | 0.233 0.198
0.300 |} 0.208 | 0.041 | 0.240 0.113
0.350 || 0.115 | 0.032 | 0.250 0.038
0.400 || 0.016 | 0.006 | 0.264 0.008

Table 2.2: The order parameters, scaled temperature and entropy change at the

nematic-isotropic transition for different values of the biaxiality parameter A.

We show results only for positive values of A since reversing the sign of the value of A
simply corresponds to an interchange of the definitions of  and y axes. We see that the
scaled temperature of the NV — I transition increases as a function of increasing molec-
ular biaxiality. This seems somewhat surprising initially, but may be understood as
follows. We have that for a given value of uqp the transition temperature is increasing
with increasing A. But for a constant value of usgg, increasing A increases the overall
anisotropy of the molecule by increasing uqo9 and ug,. The orientational internal en-
ergy therefore becomes more negative and leads to an increase in the nematic range.
The transitional value of the second rank order parameter —C’—QIXI is seen to decrease with
increasing molecular biaxiality. Thus, for a rod-like molecule with uniaxial symmetry,
the order parameter of the long axis (which in this case is the molecular symmetry axis)
is high and the biaxiality is zero. If the molecular biaxiality is now increased the order
parameter of this axis decreases until at A = 1/v/6 the molecule becomes disc-like. At
this point the molecule would tend to align orthogonal to the director with a negative

order parameter, except that the axes have now changed such that the biaxiality is by
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Figure 2.5: The order parameter Cy plotted against the biaxial order parameter Cas,
calculated from the molecular field theory of uniaxial phases of biaxial particels, for

biaxiality values of 0.1,0.2,0.3 and 0.4. The values of the order parameters at the N—J

transition are also indicated on the plot. [14]
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definition a maximum at /6. The near-symmetry axis of the molecule then still tends
to align with the director (the symmetry axis of the phase) with an order parameter
that is again positive. If the molecular anisotropy continues to change such that the
disc-like molecule becomes increasingly uniaxial about the near-symmetry axis, then
the biaxiality begins to decrease from the maximum value of /6. There is é concomi-
tant increase in the order parameter of the axis, with the same values being obtained
as for rod-like molecules of the equal biaxiality. This continues until, at A = 0, the

R : . NI . . :
molecule is again perfectly uniaxial and C,, again takes on its maximum value, but
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now for the uniaxial symmetry axis of the disc. The order parameter —C’—gl is a measure
of the molecular biaxiality and increases as the the value of the biaxiality parameter
is increased. The entropy of transition ASy;/R decreases markedly with increasing
molecular biaxiality due to the reduction in _C’_QIXI. Increasing the molecular biaxial-
ity parameter is also found to affect the temperature dependence of the second rank
order parameter, particularly the slope of the curve in the neighbourhood of the tran-
sition [16]. The degree of molecular biaxiality thus clearly makes a large difference to
the transitional properties. Consequently any theory of the nematic mesophase based
on the assumption of cylindrical symmetry of the nematogenic molecules is likely to be

quantitatively inadequate.
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Appendix 2A: The Calculus of Variations

2A.1 Introduction

The solution to a great many problems in physics can be stated in terms of some quan-
tity taking its minimum value. In ordinary calculus we find the turning (or stationary)
points of a function by differentiating with respect to the independent variable and
setting the result equal to zero. We then rely on the physics or further mathematical
tests to characterise the stationary points if necessary. In the calculus of variations
we wish to know which function (as opposed to which value of a variable) makes sta-
tionary (eg, a minimum) some quantity that is a function of this arbitrary function.
Rather than being a function of a variable, the quantity is a function of a function
and is known as a functional. Thus we have, effectively, to differentiate with respect
to the unknown arbitrary function rather than a variable; the procedure is known as
functional differentiation. We then similarly set the result equal to zero. This is saying
that the variation in the quantity with respect to variations in the function is zero and
the quantity is functionally stationary. In the calculus of variations problems are often
stated by asserting that a certain quantity is to be minimised. Thus we often talk
of functional minimisation. What we actually always do in practise, however, is the
functional analogue of setting the derivative equal to zero. The question of whether we
actually have a minimum, maximum or neither is, in general, a difficult mathematical
problem [21]. Fortunately, however, making the relevant quantity stationary is usually
all that is necessary. This is particularly true in the major theoretical underpinnings
of mathematical physics and in view of the links between these areas provided by such
stationary functionals, the concept has the status of a fundamental unifying princi-
ple. For instance, in the propagation of electromagnetic radiation we have Fermat’s
principle of “least” time, which becomes exact in the short wavelength limit where
electrodynamics reduces to linear optics. This principle went on to be used in the his-

torical development of quantum mechanics, appearing as the particle-wave analogue,
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the principle of least phase length, which lead to the development of the Schroedinger
equation. Again, in classical mechanics we have the concept that a system behaves in
such a way that the integal of the Lagrangian between any two arbitrary points in time
(the action integral) is a stationary quantity. This is Hamilton’s principle (of least
action) and leads directly to the Lagrangian form of the equations of motion. Under
a canonical transformation with the introduction of the concept of momentum, these
become the somewhat more tractable canonical or “Hamiltonian” equations of motion.
However, for reasons already alluded to, the Lagrangian is to be viewed ultimately as

the more fundamental quantity as a matter of principle.

2A.2 The Problem

The general calculus of variations problem, then, may be stated more precisely as
follows. Given an integral of the form

I= /QE2 F(z,y,y) dz (v' = dy/dz), (2A.1)

1

the limits z1, 25 and the form of F, we are required to find the curve (function) y(x)
that makes the integral have the smallest possible value (or stationary value). In a more
general case F' might be a function F(z, {y}, {y'}) of a set of dependent variables {y}.
For example, the Lagrangian is L(t, ¢;, ;) (where the ¢; are the cartesian components
of the position vectors of the particles ¢ of the system) and so the action integral to be
made stationary is

ta

I= /t L(t, q;,q;) dt. (2A.2)

1
In other cases, there may be a single dependent variable, but with a set of independent
variables {z} (see later) and so then we have

{z},
r= [ e} v)) dls). (24.3)

{z},
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In the most general possible case we might in principle have a set of independent and
dependent variables and so the integral would then be

{I}z
I:/‘<muhwhw%dw} (24.4)
{z

h

Let us now see more precisely and in greater detail what we really mean by making
an integral stationary with respect to a function and how we go about doing this. For
the moment it will be sufficient for our purposes, given our concern with molecular
field theory, to illustrate it by reference to a system with one independent and one
dependent variable. The integral in (2A.1) is to be made stationary with respect to
fluctuations in the “path” between z; and zo, that is, in the functional form of y(z).
Until now we have been using y(z) to denote all the varied paths from z1 to z, with
respect to which the integral is to be made stationary, with just the one particular y(x)
being the solution we require. This path corresponds to the extremum and is referred
to as the eztremal. For the moment we shall change our notation slightly for sake of
convenience and precision. If we now denote the arbitrary function by Y then we can

construct the varied paths Y (z) as
Y(2,€) = y(a) + en(a), (24.5)

where y(x) is now strictly the desired extremal and e is a parameter that controls the
relative contribution of the function n(z) to the varied paths. Here n(z) is any arbitrary

function that has a continuous second derivative and that obeys the constraints
n(z1) = n(z2) =0 (2A.6)
so that at the endpoints x1, 25 of the path we necessarily have

Y(zy,€) = y(21)

Y(CITQ, 6) = y(:CQ) (2A7)

as required. Then we have

I(e) = / ” Pla,Y,Y") da. (2A.8)

Z1
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The most important thing to note now is that when € = 0, Y (z,0) = y(z). We are
now in a position to state precisely what we mean by making the quantity I stationary
with respect to fluctuations in the dependent variable function in the integrand. What
we require is that the derivative of I(e) with respect to the fluctuation parameter e of
the varied paths is zero when this parameter is itself zero, for any arbitrary fluctuation

function n(z). That is,

for any arbitrary fluctuation n(x). Since ¢ is not a function of the variable of integration,

(Z—i)ezo - / (dF(:z:, Y, Y’)/de)ezo dz (2A.10)
-G Fa)at Gra)oe e
Now z is not a function of € so that dz/de = 0 giving
()= [ 1) GEE) o enr
Also, from (2A.5),
% = n(z) (2A.13)
and
ddi' = () (2A.14)
so that
()= [ [Gr 1)+ @) L e a9
But, at € = 0, as we have already noted, ¥ = y and so
(%)= [ (5 ) + 5 @] do. (24.16)
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The required solutions are then obtained by setting
oF oF
il il =0. 2A.1
/ [ay n(z) + oy " (:v)} dz =0 (24.17)
If 4" is continuous, we can integrate the second term by parts as
2 9F oF 2 2 d OF
— 1z d:z::[——— x] —/ —<~—-> dz. 2A.18
o ay/ n ( ) ay, ( ) o o dz ay, 77('1:) X ( )
The integrated term is zero because 7n(x) is by definition zero at z; and z5 and so we

obtain

/ {@_ _ i?f:]n(x) dz = 0. (2A.19)

The integral must vanish for any arbitrary fluctuation n(z) and so the remaining factor

in the integrand must vanish, giving the well-known Euler-Lagrange equation

%gg _ %5_ ~0 (2A.20)
This is the standard equation we have in principle to solve in any calculus of variations
problem. In many cases, however, there may be constraints or relationships in the
physics of the situation that need to be somehow included (eg boundary conditions)
without which satisfactory solution of the equation may not be possible. For instance
it may simply be insoluble (most likely when boundary conditions need to be imposed)
or it may be that any arbitrary y(z) will satisfy (due to physical relationships between
certain quantities that have not been built in). In such cases we apply the method
of undetermined multipliers due to Lagrange. This method is generally applicable to
variational-type problems whether involving ordinary minimisation or functional min-
imisation and proceeds as follows. We identify the constraints and write equations
expressing those constraints. We then manipulate each of these constraint equations
into the form that some expression is equal to zero. Clearly, if we now add this ex-
pression to the main variational expression the sum is still equal to zero. However,
this would also be true if we added the constraint expression multiplied by any ar-

bitrary constant. So in general the solution requires the inclusion of this unknown
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multiplier (commonly referred to as the Lagrange undetermined multiplier), one for
each constraint. The resulting equation can then be solved as a purely mathematical
exercise confident that any constraints and interrelationships are fully accounted for.
The Lagrange multiplier(s) may then be determined at the end if desired, although in

many cases it turns out not to be necessary.

Strictly, in the case of the calculus of variations, we should say that we include the
constraint with its Lagrange multiplier in the integral to be made stationary. That is,
we write each constraint  as an integral over the same range(s) of the same variable(s)

in the form
T2
z1

where k; is a constant. The differential with respect to e of this integral is then zero
and so we can add the integral to the main variational equation (after multiplying by
the Lagrange undetermined multiplier A;). The total integral to be made stationary

would is then

]:/mz( (z,y,y +Z)\ cz> dz. (2A.22)

1
The total variational equation with constraints included is then just (2A.9) with I as in
(2A.22). The formal analysis proceeds just as before but with F replaced by F'+ Asc;,

ultimately giving for the Euler-Lagrange equation in the presence of constraints

(P Ao Yae) =0 oA

We note, however, that in certain cases we can write this in another, simpler way, as

we shall see later.

2A.3  Variational Notation

There is an older more traditional notation for the calculus of variations involving

the symbol 6. It is the one most commonly employed in practise in applications,
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particularly in the theory of liquid crystals (at various length scales), and it is therefore
the one we shall adopt. We shall now therefore define it in terms of the foregoing
notation. The symbol ¢ is used to denote essentially what we have hitherto referred to
as differentiation with respect to the fluctuation parameter €. Instead of saying that
the required condition is that [ is stationary, we say that the wvariation of I is zero.

That is,

51 =0, (2A.24)

where

5T = (%)620% (2A.25)

is the variation of I. So the symbol § when applied to the integral denotes differentiation
with respect to the parameter ¢ of the fluctuation term, evaluated at ¢ = 0. Just as

before, € is not a function of the variable of integration and so
5/F(x, V,Y') dz = /5F(x, Y,Y") dz, (2A.26)

where

§F(z,Y,Y") = (%g—%)ezode + (—g—;%)ézode + (gf;, d;:l:ode‘ (2A.27)

Again, x is not a function of € and so the meaning of §F" is then

/
—gggld—j—)ﬁﬂdE - (5}}:/ ch )ezodé’

§F(z,Y,Y") = (

(D)) G (e

We note that the total derivative dY is

dY (z,¢) = % dx + aa—}; de. (2A.29)

Now z and € are independent variables, so

dy _oYds oY de
de Oz de = Oe de’
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dy oy
— = (2A.30)

So we see that (2A.28) is just the total differential dF' = (OF/0¢).—q de of the function
F(z,Y(z,€),Y'(z,€)) at € = 0 with € considered as the only variable. That is,

oF oF
dF = — dY + — dY"’
5y ay + EVE ay’,

_oroy OF oY,
T oY o T ey ae ¢©

oF dY oF dY'’

We note that in (2A.28) and (2A.31) terms appear in Y and Y’ of the same form as in
the definition (2A.25) of 6. So, using the ¢ notation consistently to mean the variation

in some quantity, we can rewrite this as

SF(z,Y,Y") = (-g;)e:oay + (35,)62055/’. (2A.32)

Now € = 0 is completely synonymous with saying ¥ = y so this simplifies to

OF oF
sF =25 5y 4+ 25 sy 9A.33
oy O T oy (24.33)
But
dy
§Y = (_de )62046 = &y (2A.34)
SO
OF OF
5F =25 5y 4+ 25 5y, 9A.35
3 OV + o OV ( )

The variation in the dependent variable can then be defined severally as
Sy = (ﬂ) de= Y e = n(a) de. (2A.36)

So we see that the variation in the dependent variable is essentially just the fluctuation

in it. As with the integrand F' its variation can be considered to be just the total
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differential (in this case dY (€)) with e considered as the only variable. The meaning of

0y’ is similarly defined as

dy”’ oY’
I = e — /
oy = (5-) _de= — de =1/ (z) de. (24.37)

We also note, in passing, that this is identical to

£ (64) = - (n(a) de) = (@) de, (24.39)

so that d and 0 commute. The application of § to a quantity may be compared with

_0f 4 OF 9
df (a,b,c,...) = P da + 5 db+8c de+ ... (2A.39)
and
5f(a,b,c,...)~—ai5a+§iéb+a—f6c—|—..., (2A.40)

~ da b dc

where here § takes its usual mathematical meaning as a small but non-inflnitessimal

change.

The ¢ notation can be thought of intuitively as the total derivative (but using the
same symbol as its counterpart for small non-infinitessimal changes), except that it
should be remembered that we are really differentiating with respect to the fluctuation
parameter ¢ only (ie, considering e to be the sole variable) and evaluating at ¢ = 0.
Normally, however, it can be used fairly simply and intuitively as a pseudo-differential
operator with the usual properties of § in mathematics (but noting that it is exact). We
just need to know in any given problem at hand what quantities involved are affected
by a non-zero variation in the dependent variable y and thence suffer a non-vanishing
variation themselves. This will be made clearer in the next section where we discuss
some general classes of problems including that within which falls the elaboration

employed in molecular field theory.
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2A.4 Application to Multivariate Problems

In this section we consider problems with multiple variables. To begin with we analyse
the case where there is one independent variable and multiple dependent ones. Such a
case is well-illustrated by application of Hamilton’s principle to obtain the Lagrangian
equations of motion. The single independent variable (ie, the variable of integration)
is t, the time, and the dependent variables are the ¢;, the cartesian components of the

particle positions. The stationary variational condition is

and the integral to be made stationary is that given in (2A.2), where the Lagrangian
is
and 7T here is the kinetic energy. Now 47 is

6/L(t,q7;,q'i) dt = /5L(t, 0, d;) dt (2A.43)

and 0L is

. oL oL
OL(t i i) = 2 3. 00+ 5o 04 (2A.44)

This we may simplify by considering for the moment just the terms in d¢;. From

section 2A.3 (equation (2A.38)) we have that d and § commute. Alternatively we can

see this by writing

d
g; + 0¢; = @(Qi + 0¢;) (2A.45)
from which we obtain
d
0¢; = —(¢; +9q; — @),
q dt(q +0¢; — @)
5, = Lsg, (2A.46)
q; = a0t qi- .

97



In any case each of the d¢; terms may be written

oL oL d
=2 sa 2A.
o Sdidt = | 52 o daidt, (2A.47)

which we can integrate by parts

oL d oL _ 12 d 1oL
_ 2A.4
B, at (H = [6qi 5%]“ /t dt[c‘? }5% dt. (24.48)

Now since t; and ty are the end-points of integration at which, by definition, any
variations are zero, the first term on the right hand side of (2A.48) must vanish. Then

all the terms (integrals) involving d¢; take the form of the second term, that is,

oL 2 g roL
2A 4
e O dt = /tdt[a]aqzdt (2A.49)

1

The variational equation

to
/ Z aqz 5%] dt =0 (2A.50)

is rewritten by taking the negative as

t2 L
/ Z a oL 5%] dt = 0. (2A.51)
~ 9g;
We then substitute for the —(0L/8¢;) d¢; integrals from (2A.49) giving
2 oL
= 2A.52
/ Z dt aqz " g, 5‘]’] dt =0, (24.52)
which simplifies to
e d (LN OL
222 — 2 s0- di = 0. 2A.53

This equation must hold for any arbitrary variation d¢; in any of the ¢;. It turns out
that this requires each individual term in the summation over 4 to vanish. In other

words we must have

d /0L oL
(=) - 22 = ' 2A.54
dt (6%) 8qi =0 VZ, ( )

98



thus giving rise to a set of coupled second order differential equations—a set of Euler-
Lagrange equations. In this specific and very important case these equations are re-

ferred to as the Lagrangian equations of motion.

Next, we consider the general case where there are multiple variables of integration
and one dependent variable. The stationary variational condition is (2A.41) as before,

but §7 is now

5 [ Flaho ) dls) = [ 6F (o), '}) dfa} (2A.55)
and 0F is

(2A.56)

§F ({z},y,{y'}) = —5y+za ,

where y, = dy/dz; and i labels the independent variables. This we may simplify by

considering for the moment just the terms in dy,. Again we recall that d and 6 commute:

] 7 d
y; + 0y = %(y{w} + dy{=}),

byl = d%@{z} + by{a) — y{a)),

d

- 2A.57
o= (2A.57)

Each of the dy, terms is then written
(SyZ d{z} = /8}7’ d , (2A.58)

which we integrate by parts
aF d OF {m}2 el g roF

- d{x}. 2A.59

Again, since {yr:}1 and {z}, are the end-points of integration the first term on the right

hand side of (2A.59) vanishes and so all the integrals involving the dy; take the form

or e} ¢ aF
S 2A.60
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We then substitute (2A.60) into the variational equation

{x}z
/ [ % +Z 5%} d{z} =0 (2A.61)
{zh
giving
[ Goov=5 (5] e = oA c2)
which simplifies to
tehs d /aF OF
/{z}l [Z o\ ) ]511 d{z} = 0. (2A.63)

This equation must hold for any arbitrary fluctuation dy and so in the absence of any
constraints the Euler-Lagrange equation would be the condition that the remaining

factor in the integrand vanish. That is,

d (OF\ OF
> I (—537) -5, =0 (2A.64)

In the presence of constraints, each constraint j is written in the form (2A.21) and the

integral to be made stationary is of the form (2A.22), namely in this case
{z}, ,
1= [ 7 (Pt D+ Yhe) dlz) (24.65)
z} j

At this point we could simply write the Euler-Lagrange equation in the earlier form

(2A.23), substituting '+ 3 Ajc; for F'. However, if the constraints

5/cj d{z} = /5cj d{z} =0 (2A.66)
can be written in the form
/sj dy d{z} =0 (2A.67)
(where dc¢; = s;0y) then equation (2A.61) becomes
ek roF OF
/{x}l {ay (5y+ 5 O +Z/\ sjay] d{z} =0 (2A.68)
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giving
/{x}l {—B_yéy - Z da, ( 5y )5?/ + Z Az sjéy} d{z} =0, (2A.69)

which simplifies to

/{{z}2 {Z di <_6£_> _OF zj: Y 3]} dy d{z} =0, (2A.70)

T}

The Euler-Lagrange equation is then

Zd%(é )—-——ZA s; = 0. (2A.71)

It turns out that this method of including constraints is the one that is more useful for

our purposes and the one employed in molecular field theory.

Finally we note that in the most general multivariate case we could possibly have
(multiple independent and dependent variables), we obtain a set of Euler-Lagrange

equations of the form (2A.64) or (2A.71), one for each dependent variable.

2A.5 Application to Distribution Functions in Statistical Mechanics

Apart from the formal underlying basis of theoretical mechanics/electromagnetics we
can also apply the same mathematical technique in classical statistical mechanics to
obtain the equilibrium distribution functions of systems. In fact, this application turns
out to be just a limiting case of the many independent variable, single dependent vari-
able case already discussed. That is, the equilibrium distribution of a system over the
degrees of freedom available to it is by definition that which minimises the thermody-
namic potential function. In the familiar canonical ensemble this is the Helmholtz free
energy. This suggests that we should make the free energy stationary with respect to
fluctuations in the distribution function. To do this, we must be able to write the free
energy in such a way as to conform to the structure of the problem already given. In

a system with one degree of freedom we would have to be able to write the free energy
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in the form (2A.1) with y = y(z) being the distribution function over the single degree
of freedom z. More generally, in a system with multiple degrees of freedom {z} we
would have to be able to write the free energy in the form (2A.3) with the distribution
function now being y = y{z}, a many-body distribution. That this is always possible

can be seen as follows. The bulk internal energy, U, is
U=<U{z} >p} (2A.72)
where P{z} is the many-body distribution function, and the entropy is
S = —Naks / P{z}In P{z} d{z}. (2A.73)
Thus the Helmholtz free energy is
A=TU + NaksT / P{z}In P{z} d{z}. (2A.74)

However, since U is averaged over P{z}, it is not a function of the variables of in-
tegration. In addition, kg and T are not functions of the degrees of freedom either.
Therefore the free energy can be written as a single integral

{z},

[=A= <U/X + k5T P{z}n P{z}) d{s}, (2A.75)
{z}
where
{W}Q
X = d{z}. (2A.76)
{m}l

Alternatively we can use the fact that the definition of < U{z} >p(s},
{z},
< Ufa} >ppay= / U{z}P{z} d{z}, (2A.77)
{z}:

involves integration over the same ranges of the same variables, and write the free
energy as

A= / - (U{m}P{m} + kBTP{a:}lnP{x}> d{z}. (2A.78)

1

While the latter would appear to be the most straightforward, both manipulations will

turn out to be useful.
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We can obtain the FEuler-Lagrange equation in this instance as follows (although as we
shall see later this is not actually necessary in this class of problems). The stationary
variational condition is, of course, (2A.41) as before. The integrand in (2A.75) is thus
identified with that in the general definition of the problem given in (2A.3), and so in

this case we would have in principle
F = F({z}, P{z},{P'}). (24.79)
Then 61 would be
5 [ Fla),Plah, (PY) dia} = [ 6F (s}, Plab, (P alz} (2480

with ¢ F as

6P ({s}, P{a} {P}) = 3 gfx} 5Pz} + SIZ §P;, (2A.81)

where P! = dP/dz; and i labels the degrees of freedom. The analysis would then

)

proceed as for the many independent variable case with P{z} replacing y, {F/{z}}

replacing {y.} and a single constraint, namely that the distribution be normalised.

The latter is expressed in the form (2A.21) simply as
/ Pz} d{z} =k, (24.82)
where & = 1. In other words the variation (2A.66,2A.67) in the integral must be zero
5 / Pz} d{z} = / 5P{z)} d{z} =0, (2A.83)

where ¢; = ¢ = P{z} and s; = s = 1. This would then be added to the main variational

equation, inserting the Lagrange multiplier A,
5 / Fd{z) + Ao / P d{z} = 0. (2A.84)
The integral (2A.75) to be made stationary is then

7= / (F + \P) d{z}, (2A.85)
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where I'+ AP now replaces F'. The variational condition (2A.41) is then
/ S(F + \P) d{z} = / (6F + \6P) d{z} =0, (2A.86)

which ultimately becomes the same as the analogue of (2A.62) but modified with the

constraint as

o, 15 i (oo )ore - g or - vopta] sy <o, aam

giving

/{{}}2 [Z d%(agi}) B agfx} - A} oP{z} d{z} = 0. (24.88)

The Euler-Lagrange equation with the constraint would then be obtained as

d oF oF
—— — -A=0. 2A.89
EZ_: dz; (8P{I}) oP{z} ( )
However, the analysis in the case where the integral to be made stationary is the
free energy simplifies from the completely general formal case, since the integrand
F' is not explicitly a function of the gradients {P'} of the distribution, and so the

partial derivatives with respect to them vanish. Therefore the Euler-Lagrange equation

simplifies to

oF
=0. 2A.90
ap{x}+/\ 0 ( )

Indeed, the situation simplifies even further in this class of problems since, as we men-
tioned earlier, proceeding with this analysis all the way to the Euler-Lagrange equation
is not actually necessary. Fortunately, we are able to obtain the distribution function in
terms of relationships between physically meaningful quantities without having to cast
the problem in its most general form and then solve the resulting differential equation

explicitly.

The crucial feature in the statistical physics that enables us to obtain the distribution

with such ease is the known relationship between the internal energy contribution to
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the free energy and the distribution function we are trying to find. This may either
be a direct relationship, or, in certain approximations of the statistical mechanics,
through some parameter relating to the system which is itself an average over the
distribution, thereby again providing the required relationship, albeit indirectly. 1t is
the latter situation which obtains in the the molecular field theory of nematics, and the
distribution function-related parameter from which the internal energy is constructed
is the order parameter. We note that in such approximate treatments there may be

more than one parameter, depending on the level of the theory.

In the general case of the many body distribution the analysis proceeds as follows. The
free energy is U — T'S where U is given by (2A.72) and S is given by (2A.73). If we
write the free energy first of all as in (2A.78) then

5T =G4 = / (U{e} 5Pz} + koT 5[P{z} In P{e}] ) dfz)
_ / (U{e} 6P (e} + ks [6P{x} In Pa} + Pz} 8 (in Ps}) ] ) dfa)

= / ( U{z} 0P{z} + kgT [ 6P{z} In P{z}) + 6 P{z} | ) d{z}. (2A.91)

We now take account of the constraint

/ P{a} d{z} =1, (24.92)

which we write as,
5 / Pz} d{z} = 0 (2A.93)

to give

/ (U{e} 6P{a} + ksT [3P(c}in P(s}) + 6Pz} ] ) d{a} + A6 / P{z} d{z} =0,
(2A.94)

which reduces to
/ (Uf{s} + ks [ InPla}) + 1]+ ) 6P{z} d{a} = 0. (2A.95)
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This has to be true for any arbitrary §P{z} so we must have
U{z} + kT [In P{z}) +1] + A =0, (2A.96)
which we solve to obtain the distribution as
P{z} =exp[—(U{z} + ) /kgT — 1]. (2A.97)
But this is just the Boltzmann distribution
Pl{z} =exp(—-U{z}/ksT ) exp (=A/kgT — 1) xxexp ( =U{z}/kgT)  (2A.98)

if we identify the constant of proportionality as the normalising inverse partition func-

tion. That is,
P{z} = Z Vexp (-U{xz}/ksT), (2A.99)
where
Z'=exp(—AkpgT —1). (2A.100)

In this case the variational analysis has not afforded us anything other than what we
already know—that the distribution P{z} over the states {z} is just the Boltzmann
distribution for the corresponding energies U{z}. This situation changes, however,
in approximations of the statistical mechanics in which we are able to construct U
in terms of some parameter(s) which are themselves averages over the distribution
function, rather than in terms of the distribution directly. In these cases we obtain an
explicit form for the function U{z} (where {z} may now represent one or more degrees
of freedom) in terms of the parameters and their non-ensemble averaged counterparts.
We shall now demonstrate how this comes about. We imagine that there is some
function p{z}, the ensemble average of which is p (or in general p,{z} and p; where
i labels the functions and corresponding parameters). We assume that the energy U
can be written as some power of p for which the most general expression would be ap™
(where a is an arbitrary coefficient) or, for more than one parameter, » . a;p;". Of

course, the contribution from each parameter might be better represented by a power
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series, rather than a single term of given order, but that does not affect the essentials

of the analysis presented here.

Staying with a single parameter p for the moment, we see that if the energy is other than
linear in the parameter then we are unable to combine energy and entropy integrals in
the straightforward manner of (2A.78). Instead, the integral to be made stationary can
be made to conform to the formal definition by integrating U itself and renormalising
as in (2A.75). However, once we have established that the free energy can be written
in this way, the fact that this integral is equal to the free energy which is equal to the
sum of two separate terms, and that ¢ is distributive over addition means that we may

write

§A = SU(p) — TS

= §[(p)"] + ks T / 5 [P{z}In P{z}] d{z} (2A.101)

= d'n(@)"6p+ ksT / [1+In P{c}] 6P{z} d{a}. (2A.102)

The fact that we do not yet have this expression in the form of a single integral is not, in
itself, critical. The feature that is critical in these analyses, however, is having the final
equation for the variation in the quantity (here the free energy) as a single integral.
Only then can we factor out the fluctuation in the distribution from the integrand and
assert that the remainder vanishes to obtain the distribution, and thence the energy

function. To achieve this, we invoke the definition of 7 in terms of the distribution

function
p= /p{fl?} P{z} d{z} (2A.103)
which implies that

55 / p{z} 5P{z} d{z). (2A.104)
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Thus we may write

A /a,nﬁn—lp{;c} 5P{z)} d{z} + kT / [1+In P{a}] 6P{a} d{z}.

_ / (@™ 'p{s} 6P{a} + ksT[1 + 10 P{a)] 3P{z} ) dfa} =0,  (24.105)

where @ = a'n. We now take into account the constraint that the distribution is

normalised,
/ 5P{z} d{z} = 0, (2A.106)
which we add to the equation inserting the Lagrange multiplier A to give
/ (ap"'pz} 6P{a} + ksT[1 +In P{x}] 6P{a} + A6P{a} ) dfa} =0. (2A.107)
The stationary variational condition is then
/ ( ap"'p{z} + kpT[1+In P{z}] + A ) §P{z} d{z} =0, (2A.108)
which implies
ap" 'p{z} + kgT[1 + In P{z}] + A =0, (2A.109)
solution of which yields
P{z} = exp(—ap™ 'p{z}/kpT) exp(—1— A/kgT). (2A.110)
If we identify the constant of proportionality in the Boltzmann distribution, Z7, as
77V =exp(=1— M\ kgT) (2A.111)
then the energy function in the Boltzmann factor is
U{z} = ap" 'p{z}. (2A.112)

Thus the variational analysis has given us the energy of a state as a function of the

degree(s) of freedom of the system.
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In the case where multiple parameters are taken to be important in determining the

bulk thermodynamic energy, the analysis is the same except that we now have

6U{p;} = Z a; 6 [p;"]

= > o, (2A.113)
where a; = ajn;. Then for each §p; we have
57, = / pi{z) 6P{} diz} (2A.114)
so that
SU{p;} = / (Zai@""‘lpi{x}) SP{z} d{z}. (2A.115)

This equation for §U and the constraint equation are then combined with the entropy

term integral to give
/ (Z a; 5" ' pi{z} + ksT[1 + In P{z}] + A) §P{z} d{z} = 0. (2A.116)
This implies
> ap  pifz} + ksT[1 +In P{z}] + A =0, (2A.117)
from which we obtain the distribution as
P{z} = exp ( — Zai@"i_lpi{m}//ﬂBT) exp(—1 — A/kgT) (2A.118)
and the energy function as
Ufe} =3 ap™ " pifal (2A.119)

A similar kind of analysis obtains whether we consider many parameters to be impor-
tant taken to the same or differing order, or one parameter in a power series or some

combination of all of these.
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In the molecular field theory of nematics the parameters are the order parameters,
functions of the angular variables of interest averaged over the corresponding distri-
bution function. In the case of uniaxial phases of uniaxial particles, we have only one
degree of freedom, (3, the polar angle. The angular functions are then the Pp(cos ()
and the parameters are the averages of these, the Pr. According to de Gennes [5] the
orientational configurational internal energy of a liquid crystal is quadratic in the order

parameter(s), and so we take n; = n = 2 Vi.

In the variational derivation of the Maier-Saupe theory, the second rank order param-
eter, Py, is taken to predominate the internal energy. The coefficient we have been
calling @’ is written as —e/2 so that with n = 2 we have a = a/n = —e. The distribution,

which we now write as f(8), is then

f(B) = exp (¢PaPy(cos ) /ksT) exp (=1 — A/kpT), (2A.120)
that is,
F(B) = Z7" exp (eP2Ps(cos 8)/kpT) (2A.121)
with
Z7' = exp (=1 — M/ kgT). (2A.122)

The energy function here is the rotational analogue of the potential of mean force, that

is, the potential of mean torque
U(B) = —ePyPy(cos ), (2A.123)
which is the Maier-Saupe result.

A more general variational derivation is obtained by considering all the P; to be
important in principle in determining the internal energy. In this case we have

a, = —€r,/2 and a; = a;n = —e¢g, thus giving the distribution as

f(B) = exp (ZGL?LPL(cosﬁ)/kBT> exp (—1 — A/kgT)
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= Z lexp (ZGL?LPL(COS ,B)//CBT). (2A.124)
L
The potential of mean torque is then
U(ﬁ) = —ZEL?LPL(COSﬁ). (2A125)
L

So we see that the Maier-Saupe result is really a limiting case in which we take only

the first term in the generalised molecular field theory potential.
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Chapter 3: Electric Field Polarisation of Nematic
Liquid Crystals: A Molecular Field Theory

3.1 Aims and Rationale

In the absence of external fields, a nematic liquid crystal is a non-polar, non-ferroelectric
phase; however, there is interest in making polarised systems because of their potential
non-linear optical properties. One way that has been conceived for achieving this is
to polarise (or pole) a nematic and then lower the temperature into a glassy nematic
phase, hoping that the induced polarisation is preserved. It turns out that a nematic
is more readily polarised by an electric field than a normal isotropic liquid [1], which
would seem to confer a definite advantage on the technique. A polarised nematic glass
is obtained via application of a static external field to a nematic liquid crystal polymer;

with the field still being applied, the temperature is then lowered below that of its glass

transition, Thhgn.

The aim of this study is to quantify the benefit of poling a nematic in terms of the long
range polar order induced in the liquid crystal phase as a function of the electric field
strength at a specified temperature. We would like to estimate the poling fields required
and to investigate what factors influence the poling of nematics at a molecular level.
The relevant choice of temperature is Ty,y, the temperature at which the induced
polarisation (and nematic order) becomes frozen into the glass. There have been a
number of previous attempts to develop a theory for this; the most complete of these
appears to be that of Picken and van der Vorst [2], the Maier-Saupe-van der Vorst-
Picken (MSVP) theory. Their theory, however, has certain deficiencies, as we shall see

and we seek to rectify these here.
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3.2 Formal Development of the Theory

In Chapter 2 we obtained the potential of mean torque for a uniaxial nematic in the
absence of external fields. We must now make this complete in the context of the
problem at hand and introduce the terms in the energy which arise from the direct

interaction of the field with the test molecule.

The energy of interaction of the molecule with the electric field has two contributions.
First, we have an energy resulting from the fact that the molecule has an anisotopic
polarisability, hyperpolarisability, second hyperpolarisability and so on. The electric
field interacts with these to induce electrical multipole moments which then interact
with the field, giving rise to an energy. Secondly, there is also an energy coming
from the interaction of the electric field with the permanent multipole moments of
the molecule that result from the unevenness (anisotropy) in the molecular charge
distribution. Assuming that the electric field-induced dipole interaction is dominant

then the induction energy is
Uina = —AaE?Py(cos ) — ABE*Ps(cos ) — AYE*Py(cos 8) — ..., (3.1)

where E is the magnitude of the electric field, the angular dependence of the anisotropic
potential energy terms being represented by the corresponding Legendre polynomials.
Here A« is the anisotropy in the polarisability, AS is that in the first hyperpolarisabil-

ity, A is that in the second hyperpolarisability and so on.

The energy due to the interaction of the permanent electrical moments of the molecule

with the field is given by the sum of contributions from each of the electrical multipoles.

That is,

Uperm = —uEPy(cos B) — QE?Py(cos 3) — OE*Ps(cos 8) ... , (3.2)

where the electric charge dipole is

n=2 6 (3.3)
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(¢ here being the charge at a distance r; from some point of origin 7), the quadrupole

is
Q=> ar, (3.4)

the octopole is

0= Zqirf (3.5)

and so on. The total energy of interaction of the molecule with the electric field is then
Uelec = Uipa + Uperm: (36)
which we can rewrite in a simple general form as

Uetec = — ZwLELPL(COS ﬁ) (37)
L

Thus it can be seen that the permanent electric dipole alone contributes to z;, the
electric quadrupole and the polarisability anisotropy are both included in the coeffi-
cient xo multiplying the quadratic term, the octopole and the first hyperpolarisability

anisotropy contribute to x3 multiplying the cubic term, and so on.

Combining this with the general result derived in Chapter 2 (with allowance for non-
zero odd rank order parameters) the complete, formally exact expression for the po-
tential of mean torque for a nematic monodomain in the presence of a uniform static
electric field is then

Uug) =- Z up, P Pp(cos 3) — Z ur, PP (cos B) — Z:vLE Pr(cosf). (3.8)

L even L odd
The expansion (3.8) is believed to converge quite rapidly except for the molecular field
summations in the high order limit, since, except in the limit of high order, the order
parameters normally diminish rapidly with increasing rank. If we assume, in a manner
similar to the Maier-Saupe theory, that to a good approximation the summations may

be truncated at the first term then equation (3.8) becomes

U(B) = —{eaPyPy(cos §) 4 €1 P1 Py (cos ) + uEPy(cos 6)}, (3.9)
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which is the potential of mean torque we have used and where the u; are now the
€7, by convention. We note that if the potential of mean torque (in the absence of a
field but acknowledging the existence of odd rank order parameters) is obtained from
a variational analysis then e and €; are just arbitrary coefficients bearing no definite
relationship to the molecular structure. However, clearly there physically must be a
relationship and we need to understand the molecular factors determining their values.
In the case of the coeflicient ¢5 of the second rank term that appears in the Maier-Saupe
theory, it is understood to reflect the anisotropy of the molecule or, more strictly, the
anisotropy in the intermolecular potential. In other words €, is should contain contri-
butions from all anisotropic intermolecular interactions that are quadrupolar (second
rank) in form. Similarly, €; will contain contributions from all anisotropic interactions
of first rank polar (ie, dipolar) character, whether this be the first moment of the
charge distribution (electric dipole) or of the mass distribution (shape dipole) or some

combination of the these.

3.3 Methodological Application

In this section we apply the theoretical development given in section 3.2 and discuss
the methodology we have employed, comparing it to the previous theoretical studies
undertaken by Picken and van der Vorst [2]. To do this, let us recapitulate briefly
that which we require from the Maier-Saupe theory and extend it to the problem at
hand. As we have already seen (see Chapter 2) the potential of mean torque of the
Maier-Saupe theory for a molecule of D, symmetry in a necessarily non-polar phase

is
U(8) = —ea Py Py(cos f3). (3.10)

According to the Maier-Saupe theory the system undergoes a first order transition

between the nematic and isotropic phases. The transition temperature is related to
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the intrinsic strength parameter e, by
TNI = 0.2203 62//€B. (311)

In the poling experiment, the molecule is now of Cy, (rather than D) symmetry; to
maximise the polarisation achieved it has a substantial electrical dipole moment. To
allow for the influence of the poling field van der Vorst and Picken [2] added two terms

to this potential; these were
1
Uelee = —{puE Pi(cos ) + gAaEQPg (cosP)}, (3.12)

where Ac is the anisotropy in the molecular polarisability (oq — 1), || and L here
referring to parallel and perpendicular to the molecular symmetry axes (not the direc-
tor). The effect of the electric field in inducing polar order is reflected predominantly
by the first rank order parameter, P;. The existence of this non-vanishing order pa-
rameter generates a polar molecular field to which the molecule can couple; to leading

order within the molecular field approximation this demands the addition of the term
—e, PPy (cos ), (3.13)
to the total potential of mean torque.

In fact, even in zero field this term should be included for a system of particles with

Cwv symmetry [3]. The potential of mean torque then takes the form
U(B) = —{eaPyPs(cos B) + e1P1 Py (cos 8)}. (3.14)

The molecular field coefficients (e; and e;) are defined to be positive. The positive
sense of the z axis (director) is then defined as that of the polarisation so that the
polar order parameter P; is necessarily positive. Molecular field calculations [3] based
on this potential show that the system may exhibit a polar nematic (/V,) phase (P, #
0, Py # 0), a non-polar nematic (N) phase (P; = 0, P, # 0) and an isotropic phase
(P, = 0,P; = 0). Whether it exhibits all these phases, and at what temperatures

the transitions between them occur, is determined by the ratio €;/e;, that is, on the
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relative importance of the first rank to the second rank term in the potential for the
material. Depending on this ratio the system will undergo a second order transition
from the polar to the non-polar nematic phase followed by a first order transition to
the isotropic phase at a higher temperature. As the relative importance of the first
rank term is increased the temperature of the N, — N transition increases towards that
of the N — I transition, so that the non-polar nematic range is progressively reduced.
For sufficiently large values of €; /es the transition from the polar nematic overtakes the
N — I transition and there is a first order transition directly from the polar nematic to
the isotropic phase [3]. In modelling the behaviour of real nematics, however, the polar
molecular field term is usually ignored, even if (as is the case with most real nematics)
the molecules possess a significant dipole moment. This neglect can be justified for two
main reasons, to which we have already alluded in Chapter 2. One is that in a molecular
field analysis starting from a pair potential the intermolecular vector is usually assumed
to have a spherically symmetric probability density distribution function. As a direct
result of the symmetry assumed for the distribution of the intermolecular vector all
electrostatic contributions to the single particle potential necessarily vanish [4]. In
real nematics, to be sure, the intermolecular vector has an anisotropic distribution and
so electrostatic contributions will make a contribution [5]. One way in which they
can be accounted for is to employ a variational derivation of the potential of mean
torque [6]. Then provided that the order parameters P; and Pj provide the dominant
contributions to the anisotropic internal potential energy, the potential of mean torque
is that given in (3.14) but the molecular significance of ¢; and ez is lost. The other main
reason why the polar molecular field is often ignored is that no polar nematic phase
has been observed for real nematics; the theoretical effect of the dipolar contribution
only occurs at temperatures outside their nematic range. This observation enables us

to place an upper limit on the ratio €; /e, as we shall see.

While the foregoing observation implies that, within molecular field theory, the dipo-
lar contribution may be safely ignored in the absence of a poling field the situation

changes dramatically when an electric field is applied. This is due to the lowering of
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the symmetry of the phase which inevitably results from the field-induced generation
of polar order (see previous discussion in section 2.8.2). The polar molecular field con-
tribution is necessarily non-vanishing due to the non-zero value of P; induced by the
applied field. Formally, therefore, it is incorrect to exclude the term in P; from the
single molecule potential as van der Vorst and Picken have done [2]. At a pragmatic
level, however, their neglect of its effects may be justifiable. To see if this is so, we
have investigated the electric field dependence of the order parameters P;, Py and Ps.
We have included the evaluation of the third rank order parameter in the calculations
because it is related to the non-linear optical coefficient and is therefore important for
one of the main potential applications of these polarised systems. The total potential
of mean torque which we have employed (and which we have already derived in a more

formal way in section 3.2) is
U(B) = —{eaPyPy(cos B) + €, P1 P (cos B) + uEP;(cos B)}. (3.15)

The quadratic term in the electric field (see equation (3.8)), which van der Vorst
and Picken chose to represent via the polarisability only, excluding the quadrupolar
contribution [2], has been suppressed. This simplification is justified because the term
does not contribute significantly to the polarisation of the nematic. It is only important
when calculating the coefficient of Py(cosf3), and hence P, which does not directly

influence on P;.

3.4 The Free Energy

The orientational part of the configurational Helmholtz free energy of the system may

be obtained by the means described in Chapter2. In this case, we have that the internal

energy is

N _ _
U=NyU = -——; <61P1P1(0085) + €2 P3P, (cos 5)>f(ﬁ)

N o —
= -——-2—4 <<€1P1P1(COS /6)>f(,g) + <€2P2P2(COS 'B)>f(ﬁ))
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Nyt =2 —2
= ——2'“<€1P1 -+ EQPQ). (316)

Thus the free energy is given by

A=—-NuU = NskgTInZ

N . —
=22 @Pf + 62P§> ~ NukgTln Z, (3.17)
with Z as

7Z = /exp ({eQ?QPQ(cos B) + (e,Py + pE) Py (cos ﬂ)}/kBT> sin Bdp. (3.18)

3.5 Evaluating the Orientational Order Parameters

The order parameters for any given temperature and field strength were obtained by

minimising the molar orientational Helmholtz free energy
A=Ny(aP, +&P,)/2-RT'InZ (3.19)

with respect to the two degrees of freedom of the system, namely the two order param-
eters P, and P,. Having obtained the order parameters that occur in the potential of
mean torque (and hence the free energy), the third rank order parameter was obtained

from the distribution function as
Py = 7! / Py(cos B) exp(—U(8)/ksT) sin BdB, (3.20)
0

with U(f) is as given in equation (3.15).

3.6 Results and Discussion

In order to investigate the significance of the polar molecular field we have calculated

the electric field dependence of the order parameters employing the same choice of
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parameters used in the original calculation by Picken and van der Vorst [2]. Thus the
temperature of the system was set to 380 K, which is taken to be the glass transition
temperature, while the N — I transition temperature, T was set to either 420 K or
340 K so that the calculations would correspond to an initially nematic or initially
isotropic phase, respectively. The coeflicient, €5 was calculated from the transition
temperatures using the Maier-Saupe result given in Section 2.8.4. Realistic values of
€; were obtained as follows. Since the molecular field theory based on the potential of
mean torque given in (3.14) reveals that Ty _y, is determined by the ratio e;/e; [7, 3],
the value of €; could be found if this temperature were known. No polar nematics have
ever been observed, however, and so we are only able to place an upper limit on the
reduced temperature for this transition and hence on the ratio €;/e;. Assuming the
nematic range to be less than 100 K the reduced transition temperature will be ca.
0.76 or higher based on Tx; = 420 K; consequently we estimate that ¢;/e; < ca. 0.2.
We have performed the calculations for €;/¢; equal to the upper limit, 0.2, and also
half this value, namely 0.1. The range of electric fields employed was that used when
poling liquid crystal side chain polymers, namely 0 — 10° Vm™! [2], and the dipole

moment was set to 7 D, an appropriate value for such materials [2].

We begin the discussion of our results with the effect of the field on the non-polar
order parameter, P,. Figure 3.1 shows the electric field dependence of P, for an
initially nematic sample, for three values of €; /ey, namely, 0.2,0.1 and 0. In all cases,
P, increases with the field strength although its response is rather weak. With €;/es
set to zero the calculations essentially reproduce the results of the MSVP theory [2]
which implies that the polarisability contribution to the quadratic term plays only a
minor role. For €,/e; # 0, Py grows more rapidly with increasingly field, the rate of
increase being higher the greater this ratio. The effect, however, is relatively small and
the interpretation of its origin subtle. Even though the field induced growth of polar
order stabilises molecular orientations less than 7/2 it destabilises those greater than
this by the same amount (see equation (3.15)) so the overall effect on the potential of

mean torque is zero. However, the net effect on the distribution function favours those
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Figure 3.1: The dependence of the non-polar order parameter, P,, on the electric field,
E, for three values of the ratio €;/€; of 0 (---), 0.1 (- - -) and 0.2 (—) for a nematogen

with its N — I transition above the glass transition.
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Figure 3.2: The dependence of the non-polar order parameter, P,, on the electric field,

E, for three values of the ratio e;/e; of 0 (--+), 0.1 (- - -) and 0.2 (—) for a nematogen

with its N — I transition below the glass transition.
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orientations parallel to the axis of polarisation more than those which are antiparallel,
so that there is a small increase in Pj, the rate of which depends on €;/e;. For the
realistic values of this ratio which we have employed the polar molecular field in the
potential of mean torque has a clear but only minor effect on the response of the second
rank order parameter to the electric field when the system is already ordered. From a
more formal point of view the initial response of P, is seen to be a second order effect,

which can be seen by expanding the expression for Py [7](see also Appendix 3A).

This is not the case, however, when the system is initially isotropic as can be seen
in figure 3.2. For small fields the induced polar order is very small, a result that
can be shown, via a perturbation analysis, to have its origins in the orthogonality
of Pi(cos ) and Py(cosf3) (see Appendix 3A) [7]. Around a certain threshold field,
however, there is a dramatic acceleration in the rate of increase of P,. This behaviour
is attributed to a field induced increase in T; so that as Ty exceeds Tj the system
becomes progressively more nematic. This effect leads to a much larger influence of

the field and of the value of €; /¢y on the second rank order parameter.

We now consider the ability of the polar molecular field to aid in the induction of
the odd rank order parameters P; and P by an electric field, begining with P;.
Figure 3.3 shows the numerically estimated field dependence for a system initially in
its nematic phase for the same values of €;/es as before. In all cases, P; increases,
initially linearly, with the field. The initial response is expected from a perturbation
analysis (see Appendix 3A) [7]. With further increase in the field P; tends to an upper
limiting value of ca. 0.9 which is independent of €;/e;. This ratio does have a large
influence on the initial rate of growth of P; with the field, however. Thus, the field at
which P; reaches half its limiting value decreases from 15.0 x 107 Vm~! to 5.0 x 107
Vm~! as €1/€s increases from 0 through 0.1 to 0.2. This reduction in the field required
to generate a given polar order, caused by the polar molecular field, has beneficial
implications for the use of nematics in non-linear optics which have thus so far been
overlooked, at least in their production. The practical benefit here is the lowering of

the intensity of the electric field required to generate essentially limiting polar order.
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Figure 3.3: The electric field dependence of the first rank polar order parameter, P,
calculated for three values of the ratio e/e; of 0 (- ), 0.1 (- - -) and 0.2 (—) for a

nematogen with its N — I transition above the glass transition.
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Figure 3.4: The electric field dependence of the first rank polar order parameter, P,
calculated for three values of the ratio ¢;/e; of 0 (---), 0.1 (- - -) and 0.2 (—) for a

nematogen with its N — I transition below the glass transition.
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A similar influence of €;/e; is predicted for an initially isotropic system, as we see
in figure 3.4. At relatively low electric fields, since we are considering only a small
perturbation to the isotropic phase, the ability of the electric field to induce polar
order is weak. Even though the small applied field is assisted by a polar molecular field,
the latter is also weak because it is a feedback mechanism generated by the external
field itself, and so the effect of the electric field is relatively insensitive to €/€2. As
we go to higher fields, however, a threshold field is reached where Ty, exceeds Tign;
P, then grows rapidly with increasing field. The threshold field is found to decrease
with increasing €; /ep; the threshold decreases from 12 x 107 Vm~! through 10 x 107
Vm~! to 7 x 107 Vm~! as we increase the ratio from 0 through 0.1 to 0.2. As for the
initially nematic system, P; reaches a plateau at a limiting value of ca. 0.9 which is
independent of €;/e;. Clearly, even above Ty, quite reasonable values of this ratio

significantly augment the predicted polarising power of the applied field.

Finally, we turn to the influence of the electric field on the third rank order parameter
Ps. The results for a system originally in its nematic phase, employing the same values
of the ratio €; /e, are shown in figure 3.5. Again we find an initial linear response, as
expected from the perturbation analysis (see Appendix 3A) [7], the gradient of which
increases significantly with increasing €;/e;. Beyond the linear regime the field-induced
Ps continues to be enhanced by a greater value of this ratio, although to a progressively
lesser extent with further increase in the field, until eventually Ps tends to a limiting
value of ca. 0.7 which is insensitive to the ratio €;/e2. The value of the field at which
Pj attains half its limiting value is strongly dependent on this ratio and decreases from
19.5 x 10" Vm~! through 13.5 x 10" Vm™ to 6.5 x 107 Vm™" as ¢ /¢, is increased
from 0 through 0.1 to 0.2. Again, we find that for an orientationally ordered system,
the inclusion of a polar molecular field of realistic strength brings about a significant
reduction in the predicted field required to pole a sample. A similar advantage is
predicted even for systems not originally in an orientationally ordered state, however,
as can be clearly seen from figure 3.6. Relatively weak ficlds are unable to generate any
Pj order, a result that has its origins in the orthogonality of Pi(cos () and Ps(cos 3)
(see Appendix 3A) [7].
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Figure 3.5: The variation of the third rank polar order parameter, P, with the electric
field strength, calculated for three values of the ratio €; /e, of 0 (---), 0.1 (- - -) and

0.2 (—) for a nematogen with its N — I transition above the glass transition.
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Figure 3.6: The variation.of the third rank polar order parameter, Ps, with the electric
field strength, calculated for three values of the ratio e;/e; of 0 (---), 0.1 (- - -) and

0.2 (—) for a nematogen with its N — I transition below the glass transition.
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Above the threshold field, at which Ty, becomes equal to Ty, P grows rapidly, how-
ever, and the value of the third rank order parameter is again higher for a given applied
field the greater the value of €, /e;. At high fields P; tends to a limiting value of ca. 0.6
which is insensitive to € /e;. Again, it is clear that, for quite realistic values of €; /e,
the introduction of the polar molecular field term into the potential of mean torque
results in a significant reduction in the strength of the electric field required to generate
a specified degree of long range polar order (e.g. that required in a non-linear optical

material).

3.7 The Problem of an Inhomogeneous Ground State

In the foregoing treatment the ground state of the system (achieved in the low tem-
perature limit) is necessarily homogeneous, that is, ferroelectric. However, in reality
this is not the most likely preferred ground state arrangement of the molecular electric
dipoles, depending on the spatial arrangement of the molecules. Given the shape of ne-
matogenic molecules and steric considerations an inhomogeneous ground state (ie, one
in which there is not just one dipolar orientation throughout the system) is more likely
because on average a molecule is likely to be surrounded by a higher number of others
in a side to side configuration than end-to-end, and the former to have their dipoles
oriented oppositely. In this case the ground state will be antiferroelectric. As we have
already mentioned, however, the nature of the ground state does depend on the spatial
arrangement of the molecules. If the molecules were at the sites of a face-centred cubic
lattice, for instance, even though any given molecule has more neighbours side-to-side,

in an infinite lattice the ground state of an array of dipoles will be antiferroelectric.

It is not possible to use the equations for a single molecule interacting with a molec-
ular fleld (single site cluster molecular field theory) in a single component system to

adequately describe electric field poling of a nematic that exhibits an inhomogeneous

ground state.
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This obtains because a single site cluster treatment, by definition, assumes that there is
a single representative orientational potential function for the entire system and hence
all molecules will adopt the same preferred orientation in the low temperature limit.

Thus the ground state is necessarily homogeneous.

It might be thought that we could simply reverse the sign of the first rank molecular
field coefficient in (3.15) to attempt to model the effect of antiferroelectric coupling
between the molecules. As we have already stated, the single potential of mean torque
means that there is just one molecule within the molecular field approximation that
is somehow representative of all molecules. This then also applies to its preferred
orientation and so the ground state cannot be correctly modelled. However, persisting
with this concept, let us see might see what it would mean. In the absence of a field,
first of all, the effect would be to cause the polar order parameter to be the same in
magnitude, but opposite in sign. But this is physically indistinguishable from the case
e; > 0 and given that we might as well use the sense of the polarisation to define the
first rank order parameter positively, we are then free to define ¢; to be positive. In
the case of an applied field an analogous situation would obtain if we were to reverse
the overall sign of the total coefficient of Pi(cos ) in the potentials of mean torque.
However, if we were to simply reverse the sign of ¢; alone, this would introduce into
the first rank molecular field term a preference for the dipole to be oriented against
the sense not of the surrounding molecules but of the director (or equivalently the
field). This would oppose the effect of the electric field term itself and detract from it.
To this extent, then, it would model antiferroelectric coupling, but in a fashion that
physically is highly dubious. The potential models the energy of a single molecule, on
average, as a function of orientation with respect to the director—it is an effective single
body property—not between pairs or higher body interactions. Given that we have a
system with a homogeneous ground state, we have to regard the polar molecular field
term as a necessarily positive feedback mechanism for polar order. A negative odd rank
coefficient ¢; would imply that, as polar order were induced, there were some negatively

cooperative mechanism by which this induced order inhibited the process generating
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it. This mechanism would be somehow operating at the single molecule level, leading
to a lower degree of induced polar order than if there were no polar molecular fields
present. Thus the case €; < 0 represents a physically impossible situation. This can
also be seen from a consideration of the internal energy as one approaches the ground
state (in zero field) at low temperatures. That is, the contribution to the orientational

internal energy per molecule from the first rank interaction

Ul - —61—Pf/2, (321)

which is overall negative if ¢; is positive. If €; < 0 then the energy from the first rank
interaction in the dipolar phase is overall positive and higher than in the isotropic
phase (where it is zero); moreover, the contribution increases towards its maximum
value as we lower the temperature into the ground state at absolute zero. This is not
considered to be physically reasonable because as we approach 0 K the thermodynamic
potential function becomes increasingly accurately represented by the internal energy;
one would expect the polar contribution to be lower than that in the isotropic fluid
since the dipolar phase would certainly be expected to be thermodynamically more
stable. These pathological features are all artefacts that result from attempting to
model couplings between molecules with a single effective potential energy function
with respect to a single direction, the electric field-director. In addition, the free energy
in this case does not possess a minimum with respect to the order parameters in the
potential of mean torque. This could also be regarded as symptomatic of underlying
pathology in this parameterisation of the theory. On the other hand, it may be that
there are cases where the theory is correct, but the free energy still exhibits this feature.

We shall postpone discussion of this possibility for the moment.

This situation, then, clearly represents a much more challenging theoretical problem,
one which is beyond previous theories of poling to deal with. The effect of having
antiferroelectric coupling between the molecular dipoles (or at least between the ma-
jority of them) should be such that field-induced polar order feeds back negatively and

detracts from the overall polarisation and so the benefit of poling a nematic will be
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somewhat less than on the basis of the MSVP theory, which is completely devoid of
polar couplings. Here we present a molecular field model for poling of nematics with
a predominantly antiferroelectric-type coupling, together with results of calculations

based upon it.

3.8 The Theory

As we have already seen, the ground state arrangement of the molecular dipoles depends
on the geometrical disposition of the dipoles. Therefore we have to invoke some kind
of model that is reasonably plausible and accessible to physical intuition. In this spirit,
we take the simple cubic lattice to provide such a model. The question now is how

to treat this (or any other) model of the ground state theoretically within a molecular

field theory.

An appropriate theoretical treatment of the antiferroelectric problem may be achieved
by describing the phase as a mixture. That is, molecules comprising the different
components of the mixture are identified by their dipolar orientations in the hypo-
thetical ground state—dipole “up” particles being considered as one component and
dipole “down” particles the other. Alternatively, we can conceptualise the different
components to be identified by their lattice sites since the dipoles can switch. In the
ground state there will be equal numbers of each and hence the components could each
be considered to occupy one of two equivalent degenerate sub-lattices. We note that,
with this identification, the nature of the interactions between neighbours on the same
or different sub-lattices is different. That is, between neighbours on the same sub-

lattice the coupling is ferroelectric, that between neighbours on different sub-lattices is

antiferroelectric.

We now have to devise a way of describing this within the framework of a molecular
field theory. We have chosen to treat the system with the Humphries-James-Luckhurst

(HJL) theory of binary nematic mixtures [9], which we shall introduce in section 3.9
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below (see also Chapter 4 for a formal derivation). In the absence of external fields the
phase will have no overall dipolar order, as measured by the odd rank order parameters,
at any temperature. There will be a transition temperature above which there will be
complete randomisation of the dipole sense of both sub-lattices and below which there
is no overall polar order but the odd rank order parameters of the individual sub-
lattices (with respect to a common laboratory frame of reference) will be equal and
opposite. At all temperatures the even rank order parameters will be identical for
both sub-lattices and so at some higher transition temperature, both sets of even rank
order parameters will vanish giving an overall isotropic phase. The application of an
electric field along the nematic director of the phase then acts as a perturbation to this
situation so that if, at the temperature of interest, the two sub-lattices have non-zero
equal and opposite odd rank order parameters, the field will destabilise the dipolar
arrangement of one sub-lattice and stabilise that of the other. We shall now sketch the
required HJL theory of binary nematic mixtures by way of introduction before showing

how to apply it to describe a nematic with a predominantly antiferroelectric dipolar

coupling.

3.9 Introduction to the Humphries-James-Luckhurst Theory of

Binary Nematic Mixtures

The HJL theory of mixtures [9] is an extension of the Maier-Saupe theory of nematics to
systems of two components of differing anisometry. Here we give an intuitive extension
of the Maier-Saupe theory; the equations we shall derive can also be obtained from a

variational analysis (see Chapter 4).

We begin by writing down the potentials of mean torque, U4 (8) and Ug(f3), for each of
the chemical species A and B. Each potential of mean torque will have contributions

arising from both the molecular field generated by like particles and that from unlike
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particles. We write

Ua(B) = Uaa(B) + Uan(8), (3.22)

with an analogous expression for Up(f). For a system of pure A we would write down

the standard Maier-Saupe potential
U(8) = —ePPy(cos B), (3.23)
which in this case we can rewrite more suggestively as

Ua(B) = —eaaPoaPa(cos B),

- UAA(/8>) (324)

where the subscripts on the coefficient € indicate that the intrinsic strength parameter
is that associated with the interaction between particles of type A and there is an
analogous expression for Ug(f) = Upp(f) in a system of pure B. In a mixture of A
and B, Us(f) now has a contribution Usp (). For a test particle A immersed in pure

B
Uap(B) = —eapPapPs(cos ), (3.25)

where e4p is the intrinsic strength parameter for the interaction between unlike parti-
cles. We must now take into account the influence of the composition on the molecular
field contributions from A and B to the total potential of mean torque of a test par-
ticle A. We expect that the molecular field experienced by a test particle due to a
particular molecular type to be related to the number of such molecules in its vicinity,
which will be proportional to the number of these molecules around it. If we assume a
simple proportional relationship (ie, random mixing) then the molecular field will be
proportional to the number density and hence to the total number of particles, N4 or
Ng, of the given type. It seems reasonable to suppose then that we can take account
of the composition by introducing composition proportionate weighting factors into

equations (3.24) and (3.25) (which give the contribution of particles A or B in pure A
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or pure B respectively) such that in the limits (3.24) or (3.25) obtains. Given that we
must regain (3.24) and (3.25) in the composition limits we require that the weightings
be normalised. It would thus seem sensible to divide N4 or Np by the total number

of particles, (N4 + Ng), so that the weightings become mole fractions. Therefore,

Ua(B) = Usa(B) + Uap(B)
= —{NA/(NA -+ NB)} GAAP-QAPQ(COSIB) —_ {NB/(NA -+ NB)} EABF2BP2(COS,6)

= —{(1 — 2) €4aP2a + T€apPop}Ps(cos B), (3.26)

where x is the mole fraction of component B. The analogous expression for Ug(f) is

then
Up(8) = —{zeppPap + (1 — x) eapPaa} Pa(cos ). (3.27)

The weightings thus represent normalised probabilities that a given intermolecular
interaction with the test particle will be with a particle of a given type assuming
random mixing. Equations (3.26) and (3.27), then, form the starting point of the
theory. The free energy within the molecular field approximation may be obtained

either from the partition function or distribution function (see sections 2.6, 2.7) and is

written as

=2 = == =2
A=1{(1~2)%€anPyys +22(1 — 2)eapPoaPop + 2%eppPyg}/2
—(1 = 2)kgTInZ4 — zkpT In Zp,

Zy= /”exp(—UA(ﬂ)/kBT)sin,Bdﬁ, Zp = /ﬂexp(—UA(ﬁ)/kBT)smgdﬁ, (3.28)
0 0

It is to be noted, however, that the free energy expression we have developed ignores

phase separation. We shall now adapt this mixture theory to the problem at hand.
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3.10 Adaptation of the HJL Theory to Model Nematics with
Predominantly Antiferroelectric Coupling

We now extend the HJL theory to include both first and second rank interactions

in addition to the direct interaction of the electric field, consistent with the formal

demands of the molecular field theory. The potentials of mean torque for the molecules

on the two sub-lattices are given by

Ua(B) = —{(e244P24 + €945 P2p) Ps(cos B) + (€14aP1a + €145P1p + nE)Pi(cos 8)}/2

Us(B) = —{(e285 P25 + €245 Pap) P2(cos B) + (€1 P15 + €1aP1a + pnE)Pi(cos )} /2,
(3.29)

where eopp = €244 and €1pp = €144 since the molecule types A and B are chemically

identical. The free energy per molecule of sub-lattice A is then

—9 —_— = —9 —_ —
As = {e2uaPs s + €24pP2aPop + €14aP i p614a8P14P15}/2 — kgTIn Zy,

Za = / exp(—Ua(B)/ksT) sin B dp. (3.30)
0
The corresponding equation for sub-lattice B is

—2 —_ —9 —_ =
Ap =A{e244Pyp + €2apP2aPop + €144P 1 + €145P1aP15}/2 — kT In Zp,

Zp :/ exp(=Ug(B)/ksT) sin f dg. (3.31)
0
The total orientational free energy per particle of the whole phase is then

A= (1 — CL')AA +£UAB = (AA +AB)/2,
A= [ {€2AA(—p—§A +F;B> + 262,43?52/1—]323 + GIAA(ﬁ?A +F?B) + 2€1AB_P_1AF13}/2

—kgTInZs—kgTInZg | /2. (3.32)
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In order to obtain reasonable values of the molecular field coefficients appearing in
the free energy we need to invoke some model for the mutual spatial disposition of the
dipoles in the ground state. Here, as stated earlier, we envisage that the molecules oc-
cupy the sites of a simple cubic lattice. In the ground state any given molecule will have
four nearest neighbours with opposite dipole sense to its own and two with the same
sense. If we imagine that only the nearest neighbours interact then ;44 = €245/2 and
€144 = —€145/2. That is, there are twice as many A — B interactions as A — A interac-
tions and, in the case of the first rank coefficients, not only this, but the A— A coupling is
ferroelectric as in the homogeneous system (ie, €; 44 is positive) and the A— B coupling
is antiferroelectric (ie, €145 is negative). We scale the temperature using the dominant
interaction, €;4p (ie, the scaled temperature is 7% = kp7'/es45) and then express the
other coefficients scaled with e;4p. Thus e;aa/€245 = 0.5, €145/€245 = —0.2 or —0.1,
say, and then €144/€245 = (€144/€148)(€1a8/€248) = —0.1 or —0.05. The electric field
is then also scaled as uF/eaap. This choice of scaling retains the connection, through
the bona-fide mixtures theory, to the Maier-Saupe-like theory for homogeneous sys-
tems developed previously (section 3.2). The actual choice of values then preserves the
correspondance with the values of the parameters employed there and in the MSVP
theory. We note, however, that we have invoked a model to obtain particular nu-
merical relationships between the molecular field coefficients. These relationships are
model-dependent and are then really parameters themselves. That is, the most general
system of equations within this theoretical framework would have the numerical factors
included implicitly in the molecular field coefficients and then any model could be ac-
counted for by varying the parameters. We are thus able to set up a theory to describe
the antiferroelectric ground state nematic, but at the expense of model dependency
(or, equivalently, further parameterisation). If we wish we may include next nearest
neighbour interactions (or even further coordination shells) from the numbers of such
neighbours A and B, the proportionate extra distance from the test particle and the
likely distance dependence of the interaction (inverse sixth power for second rank and
inverse third power for first rank). Likewise, we may decide to change to a different

lattice. The need to pursue such possibilities is not so clear, however.
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3.11 Methodology

As we have already seen in Chapter 2, there are a variety of methodologies for ob-
taining the order parameters in molecular field calculations. The two main ones are
minimisation of the equilibrium free energy over the order parameters and solution of

the self-consistency equations.

3.11.1 Minimisation of the Free Energy

It was our intention to minimise the free energy (3.32) with respect to the order param-
eters P4, Pig, P24 and P,p. This would be done at the same temperatures and over
the same range of electric fields as before, employing the scaled parameters consistent

with the model outlined above in which there are only nearest neighbour interactions.

We were, however, unable to find a minimum numerically in the free energy hypersur-

face A(P14, P1p, Poa, Pop) for any values of the applied field and at any temperature.

We hypothesised that there may be, in fact, no minimum to be found. To investigate
this possibility, we removed the second rank terms from the equations to leave the
free energy as a function of the two order parameters which are most essential for our
purposes in studying the polar order, namely the polar order parameters P4 and P;p.
Even though the removal of the second rank terms is quantitatively incorrect, it should,
it was hoped, preserve the essential qualitative features of the free energy surface that
are of interest in investigating the odd rank order parameters. Exhaustive calculations
of the surface of such a simplified system for an extensive range of scaled temperatures

and fields revealed that there is invariably no true minimum in the surface, in fact, but

rather a saddle point.

We then proceeded to explore a variety of other models (with both first and second
rank interactions) within the same general theoretical structure we have just given,

attempting to minimise the free energy over the order parameters appearing in the
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potentials. This corresponds to changing the parameterisation of the intrinsic molecular
field coefficients to correspond to whatever model is desired. Even after an exhaustive
search we were unable to obtain the order parameters by this means for any arbitrary

model for the interparticle couplings, for any field or temperature.

It would appear then, that whilst the free energy minimisation methodology works
successfully in the case of the molecular field theory for single component systems (and
hence homogeneous ground states), there are clearly cases, such as these, where it is
inapplicable in its usual formulation. We now turn our attention to the origins of
this feature of the adaptation of binary mixture theory to antiferroelectric coupling in

nematics.

In some cases it is possible to see analytically that the surface cannot possess a mini-
mum. Specifically, if we consider a system in which there are no “like” interactions it is
possible to show from the structure of the free energy that the surface cannot contain a
minimum with respect to the order parameters in the potentials. However, this result
is not capable of being generalised to models with an arbitrary mixture of “like” and

“unlike” interactions [7].

A more general possibility is that in cases where the approach fails the order parame-
ters being treated as separate variational parameters are not truly independent. That,
is unless the free energy function is written in terms of a minimum number of degrees
of freedom (ie, order parameters) the corresponding surface will not possess a mini-
mum [8]. If so, then the problem would appear to revolve around the correct definition
of a minimum number of independent order parameters of the system. In the case of
the system of interest here we may glean some clue regarding the minimum number of
independent order parameters and how they relate to those appearing in the potential
of mean torque by considering limiting cases. Specifically, in the simplified model (first
rank interactions only) under conditions of zero field, Pig = —Pj4, so that there is
only one independent order parameter rather than two. In the full model we have in

addition Pyp = Pay, so that again there are only half the number of independent order
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parameters as appear in the potentials of mean torque, that is, only one independent
order parameter for each of first and second rank. If we make the explicit substitutions
Pyp = Py, and P = — P, into the the free energy expression to obtain A(P14, Pys)
we find that indeed the surface possesses a global minimum. Minimisation then yields
the equilibrium order parameters P14 and Pyy from which any other required order pa-
rameters may thence be obtained. Indeed this is the technique we employed to obtain

the zero field phase diagram for the system (see section 3.12 for results and discussion).

It might have initially been assumed that for non-zero values of the electric field the
effect of the field would be to destroy any such relationship between the order param-
eters rendering all the order parameters in the potentials independent. Clearly this is
not the case, however. While the simple relationships between the order parameters of
the same rank in the two sub-lattices will obviously no longer hold, there may still be
only the same number of independent order parameters, with these relationships being
obtained in the low field limit. It seems likely that an analogous situation still obtains
in which both sub-lattice order parameters of the same rank are still related, but now
in a more complicated way through the field. If this were the case, we might presume
to substitute this relationship into the the free energy expression in an analogous way
to the case in zero field and obtain the order parameters similarly. Unfortunately, how-
ever, it is not possible to obtain an analytic relationship, since the integrals defining
the order parameters are non-analytic. So if a relationship does exist, we could only
obtain approximations to it, even assuming such manipulations to be applicable in
this case. A perturbation analysis shows that the order parameters of given rank in
the two sub-lattices are related to their zero field values. Given that their zero field
values are clearly related to each other, as we have seen, it follows that the values for
non-zero fields must be related to each other also [7]. It would also appear that this
result obtains to whatever order the perturbation expansions are taken in the field,
increasing order giving approximations valid to higher and higher fields. Not only are
the order parameters related to each other through the field, and that in a non-analytic

way, but the required range of fields extends into the very high field regime, where any
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manageable number of terms in the expansion would be utterly inadequate. Thus we
cannot express the relationship between the sub-lattice order parameters of the same
rank analytically in a way that is satisfactory for our purposes. Therefore we cannot
even in principle rewrite A(P14, Pip, Paa, P2p) as A(P14, Pyy). This constitutes a
fundamental flaw in the free energy minimisation methodology in this type of molecu-
lar field theory, one that is not susceptible to any straightforward simple reformulation
of the free energy expression. We are forced then, to look to another methodology, that
of next choice being solution of the self-consistency equations, or something equivalent

(see section 3.11.2 below).

3.11.2 Solution of the Self-Consistency Equations

The self-consistency equations here are

Pus= 23" [ Pileos ) expl(~Ua(9)/ksT)sin 55,
0

Pis= 25" /O " Pi(cos B) exp(—Us(8)/k5T) sin B df,

Pyy=27" /07r Py(cos B) exp(—=Un(B)/kpT) sin BdB,

_PQB = Zgl \/7r PQ(COS ,8) exp(—UB(ﬂ)/kBT) smﬂdﬁ (333)
0

These are to be solved simultaneously. The integrals are non-analytic so numerical
solutions must be sought. In practise, this was achieved by minimising the sum of the
squares of the differences between the left and right sides of the equations. At the

minimum with respect to P14, Pig, P24, Pop the function is zero.

3.12 Results and Discussion

We begin discussion of the results by presenting the zero field phase diagram (see

figure 3.7). We find a second order transition between a non-polar antiferroelectric ne-
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matic and a non-polar non-antiferroelectric nematic (which one would expect is prob-
ably the type of nematic normally observed experimentally). The transition occurs at
a scaled temperature T* = kg7 /eaqp of 0.1667 and is second order due to the vector
nature of the order parameter involved [10]. The scaled transition temperature is con-
sistent with a perturbation-bifurcation analysis. We also see a first order transition at

T = 0.2203, as expected from the Maier-Saupe theory.

Figure 3.7: The order parameters Pos (——) and P14 (- - -) as a function of scaled

temperature, T, in zero field.
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We now turn our attention to the system at a temperature below the second order
transition in the presence of the field (see figure 3.8). It is to be noted that the
extreme high field limit of the abscissa in scaled units in figures 3.8-3.12 is the same
as that in the ferroelectric poling case, which corresponds to 100 x 107 Vm™! in the
MSVP theory [2]. As we go to high fields we find that the symmetry of the sub-lattice
order parameters of the same rank is gradually lost, albeit a negligible effect for those

of second rank. Ff grows, whilst Ff diminishes in magnitude until it passes through
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zero to become positive and from then on continues to increase. As the field continues
to increase the order parameters begin to approach one another again, Ff beginning
to decrease and Ff increasing, these effects occuring at an accelerating rate, until
they reach a common value. From then on they remain together and increase, initially
linearly, before reaching a plateau of ca. 0.9 in the limit of high field. We note that the
behaviour of the first rank order parameters around the transition is consistent with
the Landau theory of second order phase transitions [10]. That is, whilst the order
parameter itself changes continuously, P(E*) is not everywhere smooth. Rather than
the gradient changing continuously through the transition as one might have expected,
its magnitude increases without limit as we approach the transition from below until,

at the transition itself, it suffers an infinite jump discontinuity down to some finite

value.
Figure 3.8: The order parameters Pyy (——), Pap (—— —), Pia (---) and Pig (-++)
as a function of scaled electric field, E* = uE /ey, at a scaled temperature T* of 0.15.
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The effect on the second rank order parameter is rather diminutive; the second rank
order of the A sub-lattice increases whilst that for the B sub-lattice decreases. At the
point where the P; order parameters begin to come together the P, order parameters
also begin to come back together and reach a common value coincident with the tran-
sition in the P; order parameters. After this the second rank order parameters remain

together increasing only very slightly with the field.

We seem to have found a second order transition between a system wherein the odd
rank order parameters on the sub-lattices are different and one in which they are the
same. What are we to call these phases 7 The terms ferroelectric and antiferroelec-
tric are usually used to refer to interactions, that is, the orientation preference of a
pair of dipoles in their ground state. Ferroelectric coupling denotes a preference for
parallel alignment with respect to each other and the intermolecular vector, whilst an-
tiferroelectric coupling refers to an antiparallel mutual disposition and an orthogonal
alignment with respect to the intermolecular axis. In this document we have already
been extending this terminology somewhat intuitively to refer to bulk configurations
of dipoles, but we shall now, to remove ambiguity, make this more precise in the par-
ticular case of our model where we treat the system as of there were two sub-lattices
identified by the hypothetical ground state dipolar orientations. We define (for our
system) ferroelectric to mean a phase in which the polar order in the two sub-lattices
is the same and antiferroelectric to mean a phase in which it is different. Thus we have

a field-induced antiferroelectric-ferroelectric transition.

Now we note that it is generally assumed that we do not have long-range antiferroelec-
tric ordering in nematics, even though both an intrinsically antiferroelectric nematic
phase and a non-dipolar nematic will have no overall polarisation in zero field. Thus
we ought to perform the calculations at a higher temperature, above the second order
transition on the phase diagram. Indeed, the values of scaled temperature comparable
to those employed in the previous study [2] and in the initial homogeneous ground

state theory in this Thesis are well above the temperature of this transition. So we
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now consider this temperature regime to facilitate comparison with previous work and
experimental regimes. Figures 3.9 and 3.10 show the two lowest order odd rank order
parameters as a function of poling field strength at the glass transition temperature
of 380 K for three values of the relative strength of the polar couplings, namely those
analogous to €; /€2 = 0,0.1 and 0.2 in the initial study (ie, on systems with a ferroelec-
tric ground state). The connection between the parameterisations of the two theories
is as follows. Given that we have scaled the temperature with es45 by default, since it
is the largest second rank coefficient, the other coefficients are all scaled by it. Then,
to compare like with like, the analogue of €;/e; has to be €;4p/€245, which should
then be set to magnitudes of 0,0.1 and 0.2. Since €145 is negative and of opposite
sign to €; > 0, strictly we might say that we are really performing the calculation for
€1/€2 = 0,—0.1 and —0.2. The figures 3.9 and 3.11 show the results of the calculation
assuming a Ty of 420 K (ie, the system is initially in the nematic phase before poling)
whilst 3.10 and 3.12 show those assuming a Ty; of 340 K (ie, initially isotropic). It
is to be noted that, above the transition to the non-dipolar phase, order parameters
of the same rank are identical between the two sub-lattices over the whole field range
and for all ranks. The forms of all the graphs are the same as for the previous study
of the homogeneous ground state system with ferroelectric coupling, but the response
of the order parameters is muted. In addition, the effect of the polar coupling is seen
to be much smaller than in the previous study, where it was enhancing, rather than
detracting from the field. We also note the faster response of the initially nematic

phase by comparison with the initially isotropic phase.

Thus for P; in the initially nematic phase we have an initial linear response before
tailing off to a plateau in the limit of high field. The influence of steadily increasing
the strength of the polar coupling is to steadily decrease the polar order for a given
field until we reach the high field limit, which is insensitive to the polar coupling. We
note that the largest response is when ¢;/e; = 0, as in the MSVP theory [2]. P; in
the initially isotropic phase, as before, shows an initial, but shallower, linear response

followed by a fairly sudden rise as Ty, which has been raised by the field, overtakes
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Figure 3.9: The first rank order parameter as a function of the scaled electric field,

L, for an initially nematic sample for three values of the relative strength of the polar

couplings, namely e, /e =0 (--+), 0.1 (- - -) and 0.2 (—).
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Figure 3.10: The first rank order parameter as a function of the scaled electric field,

E*, for an initially isotropic sample for three values of the relative strength of the polar

couplings, namely €, /e =0 (---), 0.1 (- - -) and 0.2 (—).
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the glass transition temperature. It then attains a limiting value, independent of the
polar coupling strength. Again the response is less sensitive to the inclusion of € /€y

but is still somewhat diminished by it.

The response of P; (figures 3.11 and 3.11) also shows this decreased sensitivity to the
polar coupling by comparison, while still retaining the same form as before. In the
initially isotropic phase it shows a zeroth response initially (this has its origins in the
orthogonality of Legendre polynomials of differing ranks) and then a sharp rise as the
field-induced elevation of T; begins to take effect, eventually reaching a high field
limiting value independent of €;/e5. In the initially nematic case we have qualitatively

the same behaviour as before; the high field limit of the order is simply lower.

Figure 3.11: The third rank order parameter as a function of the scaled electric field,
E*, for an initially nematic sample for three values of the relative strength of the polar

couplings, namely ¢;/e; =0 (--+), 0.1 (- - -) and 0.2 (——).
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Figure 3.12: The third rank order parameter as a function of the scaled electric field,

E™, for an initially isotropic sample for three values of the relative strength of the polar

couplings, namely €,/e; =0 (---), 0.1 (---) and 0.2 (——).
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3.13 Conclusions

For a nematic where the polar couplings are ferroelectric in nature, the initial study
we have undertaken shows that they have a significant beneficial effect on the polar
order induced by a given field by comparison with the MSVP theory [2]. If, however,
the polar coupling is predominantly antiferroelectric in nature then the polar order
generated is diminished by comparison. Just how predominant the antiferroelectric
coupling is will determine the size of this effect and in our model there is not total
dominance of the antiferroelectric coupling and so the effect of the inclusion of odd rank
molecular field terms in the single particle potential is apparent, but not as significant

as for the ferroelectric coupling case. Our model for the anti-coupling is, however,
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physically reasonable. Thus we would predict that the polarisation obtained from a
real nematic will be very significantly less than on the basis of the ferroelectric coupling
model, and still somewhat less than on the basis of a model completely devoid of polar
couplings [2]. Of the two possibilities, it would seem that antiferroelectric coupling is
much more likely to be the norm for nematics than ferroelectric coupling and so we
are forced to conclude that, by comparison with our initial single component theory
for homogeneous ground states and the work of others [2], the potential advantage

of poling nematics, even in principle, has now to be regarded as less than has been

previously suggested.
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Appendix 3A: Proofs and Derivations

1. Perturbation analysis for the order parameters P; of a polarised ferroelectric
ground state system initially in the nematic phase.
The essence of a perturbation analysis is to identify a dominant contribution to
some quantity of interest (if there is one) and factor it out to leave the smaller
remaining factor. The dominant quantity is normally identified with some known
quantity or standard theoretical point of reference about which the actual situa-
tion is a perturbation. The small remaining factor is expanded and there will be
some regime in which this expansion may be truncated to a good approximation.

In this case we require the order parameter which is by definition

1
P, = Z_1/ Pp(cos ) exp ({EQFQPQ(COS B) + (LE + €, P1)Pi(cos ,B)}/kBT>,

Z = /_1 exp ({eQFQPQ(cos B) + (LE + e, P,) Py (cos ﬁ)}/kBT>. (3A.1)

1
Now in a non-polar nematic in the absence of external fields the dominant order
parameter is P, and the dominant term in the potential of mean torque is the
Maier-Saupe contribution. Thus, if the electric field is weak then we may write

the partition function as

Z = /exp (EQFQPQ(COS ﬂ)/k:BT> exp ({ME + eJD—l}Pl (cos ﬁ)/kBT> dcos 3
(3A.2)

and expand the second exponential as

Z = /exp (GQﬁQPQ(COS ﬂ)/kBT) [1 + (LE + € P1) Py (cos B) /kgT + .. ] dcosf.
(3A.3)

If the electric field is small enough then to a good approximation we may truncate

the expansion at first order to obtain
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Z o~ /exp <€Q_P—2P2(COS,6>/]€BT) dcosf3

1

(BT |

T » P (cos 3) exp <€2P2P2(COS ﬂ)/kBT) dcos 3.

(3A.4)

The integral in the second term is of the form

/_a T exp {b(3x2 — 1)/2} dx,

a

that is, the integrand is an odd function and the range of integration is symmetri-
cal about zero so the integral must vanish. Therefore the first order perturbation

approximation for the partition function is

7z ~ /exp (eg—Png(cosﬂ)/kBT> d cos 3.

If we then approximate P, to that where the ordering is dictated by the Maier-

Saupe potential then
Z ~ Z, (3A.5)

the partition function for the unperturbed nematic. Equation (3A.1) can then

be written approximately as

Py~ Z;t /PL(cos 3) exp (ezﬁng(cos ﬂ)/kBT)

X exp ({uE + €1.P1} Py (cos ﬂ)/kBT) dcosf. (3A.6)

If we now expand the second exponential in a manner consistent with the treat-

ment of the partition function then this becomes

Py~ Z5t /PL(COS 3) exp (eg—Png(cos ﬁ)/kBT>

X [1 + (ﬁg]ﬁ-—!—p—{)ﬂ(cosﬂ)} dcosf
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= z;! { /PL(cos B) exp (EQJ_D_QP2<COS ﬁ)/kBT> dcos 3

€2P2 Py (cos f3)

(%%E) /Pl(cosﬁ)PL(cosﬂ) exp( T ) dcos 3 } (3A.7)

Now for all L of odd parity the first term here vanishes by symmetry. As an

example we consider the case where L = 1. Here,

5 _ (pE+ e Py 2 €3.P2 P5(cos f3) A
Py~ Z <-————-kBT )/Pl(cosﬂ) exp< T )dcosﬁ. (3A.8)

From the properties of the Legendre polynomials and Clebsch-Gordan coupling

(or otherwise) we can write

P (cos 6)2 = %Pg(cos B) + % (3A.9)
so that
5 1 (BE +aPy z 2Py P (cos )
P~ 7t ( ksT >{3/P2<C°Smexp< kT ) deoss
1 EZ—FQPQ(COS ,5)
= _— 3A.10
+ 3/exp( kT > dcosﬂ} ( )

: : L= . =0 .
Again, approximating P, as that for the unperturbed nematic, P,, (and assuming
that the potential of mean torque is also approximately that for the unperturbed

nematic)

Py~ (LAl 2p0, L)

kgT 3 3
pE + e P1y , —o0
= —— (2P, +1 3A.11
( 3]€BT )( 2 + )7 ( )
which rearranges to
— 3kgT
Py ~ ukE — - . 3A.12
1 H /{2P2 1 61} ( )

Thus an initial linear response of P; to the field is predicted to first order in the

perturbation analysis.
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A similar analysis for the other rank order parameters can give rise to some kind
of field dependence to first order, although it is to be noted that, as we consider
higher fields, the perturbation analysis would have to be taken to higher order
for it to be a good approximation, and thus in higher field regimes the predicted

dependence changes.

As another example of relevance we could consider P3. The order parameter is of
odd rank so the first term in (3A.7) vanishes. The dependence on the field that
we obtain from the second term then depends on the nature of Py (cos 3)P3(cos 3).
The product of two Legendre polynomials may be written as a Clebsch-Gordan
series as

Pr(cos B) P (cos B) = Z C(LL', J00)*P;(cos B), (3A.13)
J

where J = |L—L'|,|L—L'|+1,...,|L+L'| and C(LL', J00) is a Clebsch-Gordan
coefficient. Here the Clebsch-Gordan coupling yields a linear dependence of P
on the field. The same is not true of the second rank order parameter, P,
however. In this case both terms of (3A.7) survive, but the first is identified
as just the Maier-Saupe P, and the second involves Clebsch-Gordan coupling
between P;(cos ) and Py(cos §), which gives only odd rank polynomials (so the
Clebsch-Gordan coefficient of the Py(cos ) term in the series vanishes). These
give rise to quantities that are identified as the Maier-Saupe values of P; and P,

which are zero and thus we obtain simply
Py =TP,, (3A.14)
and a zeroth dependence on the field.

. Perturbation analysis for the order parameters P; of a polarised ferroelectric

ground state system initially in the isotropic phase.

A pertubation analysis is also available for the case of poling an initially isotropic
material. Here there is no dominant interaction to factor out, but we know from

experiment that the order parameters induced in an isotropic fluid by a weak (or
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even a fairly strong) field are very small. Hence we can expand the total Boltz-
mann factor (ie, the Boltzmann factor for the total anisotropic potential energy)
and truncate the expansion at the linear term to obtain a good approximation of

the field dependence in the low field regime. Here then

7 ~ / [1 + (GQﬁQPQ(COS B) + (WE + € P1) Py (cos ﬁ))/kBT] dcosf

=/dcosﬂ+ (%E%Ji) /Pl(cosﬂ)dcosﬂ—i— ZZE /Pg(cosﬂ)dcosﬁ
(3A.15)

Therefore,

Z ~ 2 (3A.16)

that is, the value obtained by setting all the Py, and the field to zero, the isotropic

partition function. Therefore,

1

P, ~ —j{/PL(cosﬂ) dcosf + Z—P;/PQ(Cosﬂ)PL(cosﬁ) dcos 3

(uE + €, P1)

kol )/H(Cosﬂ)PL(cos B) dcosﬁ}

- %{O + 223 <2L2+ 1)5‘” + (MEZB;E)) (21:2+ 1)51“ (34.17)

where 077 is a Kronecker delta. Thus, for all L > 2 then all terms vanish and so

all corresponding P, are predicted to show no response to the field.

For L =1 we have

_— 1 /,I,E + €1P1 2
Py~ = = 3A.18
2 ( kT ) 3’ (3A.18)
which rearranges to
Py~ pE/(3kpT — €). (3A.19)
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We note that this is the result obtained by setting P, = 0 in the analogous
expression for P; in the case of a material in a nematic phase prior to poling.
Thus, for the initially isotropic phase too, a linear initial dependence of the first

rank order parameter on the field is predicted.

For the case L. = 2 we obtain

—_ 1 62?2 2 B 62—}32

2V 2 %ksT 5 Bkpl’ (34.20)
which implies
Py{1l — e2/5kpT} ~ 0. (3A.21)
Provided that e, # 5kgT then
Py~ 0, (3A.22)

and so, as with the P (L > 2), there is a zeroth initial response to the electric

field.

To summarise, then, it would seem that to first order in the perturbation and
with only first and second rank terms in the potential of mean torque, only P,
order can be induced in an isotropic fluid at low electric fields. Some induction
of higher rank order parameters may be obtained, however, if the perturbation
expansion is taken to higher order. In addition, dependence of higher rank order
parameters may also be obtained, even at first order in the perturbation, if the

expansion for the potential of mean torque is taken to higher order.
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Chapter 4: A Molecular Field Theoretic Study of

Order Parameters in Binary Nematic Mixtures

4.1 Introduction

In a liquid crystal display device it is necessary to optimise a range of properties.
Pertinent considerations would include a large nematic range around room tempera-
ture, low viscosities, appropriate values of the elastic constants and large dielelectric
anisotropy and birefringence. It turns out that it is very difficult to achieve this using a
single nematogenic compound as the liquid crystalline material. However, it has been
found that the use of a mixture of compounds which exhibits a nematic state is a very

powerful technique in achieving functional display devices.

In a typical liquid crystal display device a range of dopants are added to a nematic
liquid crystal to form a multicomponent mixture. In order for a liquid crystal display
to work, a low threshold voltage is required for switching, which in turn necessitates a

large dielectric anisotropy Ae™*t. Now

Ae™ = 3" 1;A¢ P, (4.1)
i

where 7 labels the components and z;, A¢; and ?; are the mole fractions, dielectric
anisotropies and order parameters of the components 4, respectively. If we assume that

the dielectric anisotropies of the components 7 are all equal (Ae, say) then

Ae™* = Ae Z ziﬁ; (4.2)
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and since

>y = Py (43)
i
the dielectric anisotropy of the mixture is seen to vary as the order parameter of the
mixture
AEmiXt N -p-mixt
2

Moreover, in order to achieve a good contrast a large birefrigence is required, but the

birefringence An is also related to the dielectric anisotropy of the medium as
(Anmixt)Q o ermixt7

TR, . —mixt .
and as we have seen, A¢™** is expected to be proportional to P, . For this reason

also then, we require a high value of Py .

It is clearly desirable to investigate the suitability of a variety of compounds for appli-
cation in devices. Whilst the nematic mixture in a display device may contain many
individual components, to test each component separately they are studied individ-
ually in a given nematic solvent. This is then more convenient for devising ways of
obtaining standardised measures for a variety of properties of the potential additives.
The way that this is most commonly employed at present is to measure the property of
interest for mixtures of the test compound in a standard nematic solvent as a function
of composition of the mixture, at a given absolute temperature. For a wide variety of
properties it is generally found that the graph obtained from this procedure is linear;
this probably results because the accessible range of compositions is very narrow due
to the limits of miscibility of the test compounds. Nevertheless, this linear graph is
then extrapolated to the limit of pure solute and the value there is taken to yield a
hypothetical value for the property intrinsic to the pure solute [1]. This is assumed
to give a measure that is somehow intrinsic to the additive itself and independent of
the solvent. This manipulation clearly assumes continued linearity across the whole

of the composition range. Here, the experimental interest focusses on the problem of
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achieving good contrast (and low threshold voltages) and hence on measures of the
power of the potential dopants to induce birefringence, or nematic ordering, in the
mixture. Thus, the birefringence of mixtures is measured, at a given temperature,
across the accessible part of the composition range. The extrapolation is taken to yield

a measure of the hypothetical birefringence of the pure solute in the nematic state.

The aim of this research, then, is to investigate from a theoretical standpoint to what
extent this extrapolation is valid and to what the limiting value really corresponds. For
our purposes in performing molecular field calculations the nematic order parameter of
the mixture serves as a convenient surrogate to the birefrigence and is the quantity we
shall focus on calculating. Such investigations have the advantage that the theory only
concerns itself with the essential features that give rise to liquid crystalline behaviour.
Thus we are able to probe composition regimes that are inaccessible practically due to
the limits of solubility of the components. The variant of molecular field theory that
we have employed for this purpose is the Humphries-James-Luckhurst (HJL) theory of
binary nematic mixtures [2] that we have developed in an intuitive way and used in
the studies of poling of nematics in Chapter 3. We now give a more formal derivation

and apply it to the problem at hand.

4.2 Variational Derivation of the HJL Theory of Binary Nematic

Mixtures

First we identify the dominant order parameters, which for cylindrically symmetric
particles we take as Py4 and Pyp. We then construct the internal energy on the basis

that pair interactions are predominant as
— 1 = 2 = = — 2
U= —3 (n%eaaPaa +2nanpeapPaaPap + neppPas ), (4.4)

where n4 is the number of particles of component A, ¢4p is the intrinsic interaction

parameter for interaction of particle type A with B and Pay4 is the second rank orien-
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tational order parameter for component A. The internal energy per mole is then

U

1 o _— 2 —_— = —_ 92
== P 2¢(1 — PyaP —z)? 4.5
. 2(96 €aaPaus” +2z(1 — 2)eapP2aPsp + (1 — z)%ppP2s ), (4.5)

where z is the mole fraction of A. This form for U assumes random mixing of the two
components A and B and the equality of their molar volumes. (If the molar volumes
are not approximately equal then the mole fractions should be replaced by volume

fractions.) Within the molecular field approximation the entropy is additive, that is
S=ua54+ (1 - ZZT)SB (46)

This obviously ignores the entropy of mixing which is valid as long as phase separation is
not allowed. Within the molecular field approximation the entropy of each component

is related to the singlet orientational distribution function for that component in the

usual way,

Sy = —ks / F4(6)1n fa(B) sin B dB,

S5 = —ks / 75(8)In f5(8) sin 3 dB. (4.7)
The total molar Helmholtz free energy is then

— = = — 2
A= -—{(1 — CC)QGAAPQAQ -~ 2.’11‘(1 — iE)EABPgAPgB ~+ $2633P23 }/2

+kBT{(1 —x)/fA(,B) In f4(0) sinﬁdﬁ—#x/fﬂﬁ) In f5(6) sinﬁdﬁ}. (4.8)

The variation in A (which we set to zero) is then

0A = —*{ (1 - $)2€AA2]_32A (5?2,4 + 21‘(1 —.’Ij) €AB (ﬁgA (5?23 ’f‘-ﬁgg (5—]32,4)
+$QEBB 2?—2]3 5?23 }/2

+kBT{(1~:v)/ 0f4(8) [In fa(B) +1] sinﬁd5+x/ 5f5(B) [In f5(8) +1] sinﬁdﬂ}.
(4.9)
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Now the variations § Pgu,d Pop in the two order parameters Py, Pop are related to

the fluctuations in the distribution functions

§Pon = / Py(cos 8) 6/4(6) sin B d,

Pon = [ Pulcos )5f2(6) sin B df, (4.10)
and so

54 = ~{ (1~ 2)%esnPas / Py(cos §) 6£a(6) sin §dB

+z(1 —x)eAB<752A/P2(cosﬁ) §fs(B) sin fdf + _FQB/PQ(COS/B) dfa(B) sinﬂdﬂ)

+$2633ﬁ2B/P2(005ﬁ) 6fe(B) sinﬁdﬂ}

shaT{(1-2) [ 644(6) [10 a(9)+1] singap+3 [ 31a(B) [Ina(s) +1] sinfds).
(4.11)

This may be written as a single integral

0A = / {5fA(/3) [ — (1 = 2)*eanP2aPy(cos f) — x(1 — z)eap PapPa(cos f)
+(1 — 2)ksT [In fa(6) + IH

+6f5(5) [ — (1 — 2)eapPaaPy(cos B) — z*eppPap Py(cos B) + zksT [In f5(6) + IH } sin 3 df3
(4.12)

We must now take account of the constraints, namely that the two distribution func-

tions f4(68), fe(8) are normalised. Thus

[ 314(8) singas =, (4.13)
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/6f3(ﬁ) sin8dg = 0. (4.14)

We multiply (4.13) by the Lagrange multiplier A; and (4.14) by ), and add them to

the main equation (4.12) to give

/ { 674(8) | = (1= 2)%e4aP2aPa(c03 B) = o(1 — 3)ea5Pas Pa(cos )
+(1 = 2)kpT[In f4(B) + 1] + Al}
+515(8) [ — (1 — 2)eanPaaPa(cos B) — 12e s Pap Po(cos §)

+akpT[In f5(8) +1] + Ag} } sin8dg = 0. (4.15)

This equation must hold for any arbitrary ¢ fa(8) and & fp(8). Here we have an
integrand composed of a sum of two terms, one in which the variation in one distribution
is a factor and the other in which that in the other distribution is a factor. Under such
circumstances (see Appendix 2A) it turns out that the remaining factor in each term
must vanish, giving a vanishing expression for each distribution, which we may then

solve for that distribution. Thus we have

~(1- x)QfAAﬁzAPﬂCOS B) — (1 - $)6ABFQBP2(COS )
+(1 = 2)kgT[In fa(B) + 1] + M = 0,
—2(1 — 2)espPaaPa(cos B) — 2%egpPap Py(cos B)

+zkpT[In f5(6) + 1] + A2 = 0, (4.16)

which yield as the singlet orientational distribution functions

[(1 - *T)QEAA—P—QAPQ(COS B) + (1 - z)eAB—FQBPZ(COS B)— M

Ja(B) = exp (1— 2)ksT
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_ (1 = z)eanPoaPs(cos B) + x eapPap Pa(cos f) At 3
= e | kT }GXP{“W 1]
(4.17)
and
. $2€BB?QBP2(COS ,6) -+ .’L'(l - x)eAB—.P_QAPQ(COS ,6) - )\2
o(8) = exp | ThpT ~1]

T EBB.FQBPQ(COS IB) -+ (1 - LL‘)GAB—P_QAPQ(COS ,8) )\2
- —1]. (4.18
k5T ] exp [ skyT } (4.18)

= exp [
The distributions are then

fa(B) = Z,Zl €Xp ({(1 — z)eaaPaa + «’UGABFQB}PQ(COS /H)/k'BT>>

f8(B) = Z5" exp ({33 eppPap + (1 — z)eapPaa } Pa(cos ﬁ)/kBT>, (4.19)

if we identify the inverse partition functions as

e :eXp[—ZT:):z\:l)—ka_l}’
Z51 = exp [-— xk)\;T . 1]. (4.20)

Accordingly, the potentials of mean torque for the particle types A and B of the mixture

are then

Ua(B) = —{(1 — z) €44P2a + T €apP2p } Ps(cos f),

Us(B) = —{zeppPop + (1 — ) eanPaa } Pa(cos ), (4.21)
respectively.
4.3 Application

Here we take B to be the additive so that its mole fraction is z; that of the liquid

crystal solvent is then 1 — z. The coefficients €y in the potentials of mean torque
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represent the intrinsic molecular field interaction coefficients for a particle of type M
in the molecular field generated by a particle of type V. We note that eyny = €nnr S0

that ep4 = €4p. We construct the Helmholtz free energy as follows. The free energy

of component A is
Ax={(1 = %) €aaPoa” + weapPaaPas}/ 2 — kgTIn Z4 (4.22)
and that of component B is
Ap = {zeppPap’ + (1 — 7) eapPaaPap}/ 2 — kpTln Zp. (4.23)
The total orientational Helmholtz free energy of the mixture is then
A=(1—-2)As+zA5, (4.24)
that is,

—_— 9 . — 9
A:{(l—LU)QGAAPQA +2$(1—ZE) EABPQAPQB—I-IQGBBPQB }/2

—(1=2)kgTInZs — zkpTn Zp. (4.25)

Thus we have three arbitrary parameters, €44, €ap and egg. One of these (say €44)
will be taken out as a common factor and used to scale the temperature to give the
scaled temperature T* = kgT'/es4. The other parameters then end up scaled by (in
this case) €44 and these ratios form the remaining input parameters. The Boltzmann

factors are then constructed from the potentials of mean torque as

Ua(B)/ksT = -g-g% (1-2)Poa+a e—A—B—PzB}za cos ),
1
= (1-2)Pop+2z EEPQB}PQ (cos B) (4.26)

T*

and
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1 . ——
= _‘T:{m)\PQB‘*‘(l‘“m) EAB—PQA}PQ(COS,B), (427)
€AA

where 7™ is the scaled temperature and A is the ratio epp/es4 which is equal to the
ratio of the transition temperatures 7%, /T%;. We now introduce the geometric mean
approximation for e,p in order to reduce the number of arbitrary parameters in the

theory. In other words, we assume

)2 (4.28)

€AB = <€AA €BB

b

so that there are only two independent parameters, €44 and egp, one of these (€44)
being used to scale the temperature. The geometric mean approximation is exact
for dispersive forces, so that it is correct to the extent that the intermolecular forces
between particles of type A and B are dispersive or dispersive-like. This occurs because
the anisotropic dispersion force between two identical molecules varies as the square of

the anisotropy in the polarisability, that is
€aa Uiip ~ Aai - AQ/AAO(A. (429)

If this is assumed to hold when the molecules are not identical then the strength
parameter is given by
ean ~ USSP ~ AayAog (4.30)
and so is equal to the geometric mean for the strength parameters of the pure compo-
nents
(Ac? Aak)? ~ (canepp)'/?. (4.31)

Within the geometric mean approximation the ratio e45/€44 appearing in (4.26, 4.27)

is

1/2
€ap/€an = <€iiz]233> =2 (4.32)
Equations (4.26, 4.27) then become
Val) _ 1{(l—x)ﬁzr+xAlﬂf%B}Rxamﬁ) (4.33)

kgT ~— T
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and

Us(B) = ——Tl—;{:c/\ﬁw +(1-2x) A2 —PQA}PQ(COS,B).

kT

We note that

U A2 — —
ki(ﬁ) =~ {z M2Pop+ (1 - 1) Poa}Py(cos f)

so that if we write

then

U 1 *

(4.34)

(4.35)

(4.36)

(4.37)

Thus we see that within the geometric mean approximation the ratio Xj5/X3% = Al/2

is constant and that for a given value of A everything is controlled by the single scaled

strength parameter X}. The scaled free energy is then written

A 1 (
kgT — T+
—(1—z)InZs —zlnZp,

with
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1-— 517)2?2/;2 -+ 217(1 - :17) Al/Q—PQAFQB —+ xQAFQBQ }/2

(4.38)
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4.4 Methodology for Solving the Molecular Field Equations

The methodology of choice to obtain the order parameters would be minimisation of
the equilibrium free energy (see Chapter 2). It would be natural and straightforward
to assume that this minimisation should be performed with respect to the order pa-
rameters appearing in the potential of mean torque and hence using the free energy
expression (4.25). Minimising the free energy in this way is not possible, however,
because the free energy surface will not possess a minimum with respect to the two or-
der parameters P, and P, when treated as independent variational parameters. This
was confirmed by calculation, visual representation and inspection of a wide variety of
free energy surfaces [3]. This situation obtains because these order parameters are not
independent; only if the free energy is expressed as a function of the minimum number
of independent degrees of freedom of the system can it possess a global minimum [4].
It turns out that within the geometric mean approximation for the mixed interaction
parameter (which we are using) the free energy expression can be rewritten in terms

of a single, composite order parameter [2]
P=(1-2)ean? Py +wepp? Py, (4.40)

this representing the single independent order parameter. We note that such a manip-
ulation is not possible outside of the geometric mean approximation, which thus rep-
resents a special, limiting case. Indeed, outside of the geometric mean approximation
attempts to minimise (4.25) using the standard methodology always yield solutions [3].

Using the composite order parameter, then, we write the free energy as
P2
A= 7 - (1 - CE)/{,‘BTIH ZA - CE/{,‘BTln ZB;

1/2

Zy= /exp (EQQT PPz(cosﬁ)> sin B dg,

Zp

/ex (6331/2 PPy(cos ,8)) sin B df (4.41)
Pk T ' '
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The question now arises as how best to scale the free energy for the purposes of com-
puting the solutions. It is usual in molecular field calculations to scale the free energy
with kgT'. Normally this manipulation would enable the quantity A/kgT to be written
in terms of kT divided by one of the molecular field coefficients (thus furnishing a
scaled temperature), with the other molecular field coefficients being scaled by that
coefficient. These scaled quantities are then the input parameters to the calculation.

In this case we would have

A P2
m: 2k:BT———<1——$)1nZA—-CL'1DZB, (442)

which does not allow us to write the function to be minimised with the desired minimum
number of input parameters due to the explicit appearance of kg7 in the molecular

field correction to the free energy. However, if we write the composite order parameter

as
_ 1/2 -4 1/2 B
P=¢esp " {(1=2)Py +x X" Py} (4.43)

the molecular field correction becomes

P2 EAA

- =5 {0- )2 P, g 22(1 — 2) N2 Py P, + 22\ P, }. (4.44)
Then if we define a new composite order parameter
Po= L (1) o PR (4.45)
€A
so that
P?={(1-22 P 421 - o) NPPLPE + 222y } (4.46)

we may now scale the free energy with kg7 as

A P2
1—2)lnZs—zlnZ 4.47
0T o T @mZa—alnZp. (447)

The partition functions may be expressed explicitly in terms of the new composite

order parameter, since the scaled potentials of mean torque (4.33, 4.34) may now be

written

1
pop = e LePa(cos ),
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1/2 _ —
Ug(B) _ A {x A2 Pyp+ (1 —2) Pou} Py(cos ),

kgT T+
Ug(B) A2
T T P.Py(cos ). (4.48)

There is also another possible scaling of the free energy using this new composite order

parameter, and this is by scaling the free energy with respect to the coefficient €4 4.

This gives
A P?
= (- Zy~oT" InZp (4.49)
AA

with the partition functions as indicated previously, that is

4= /exp (%;PEPQ(COS ﬂ)) sin 8dg

Zp = / exp (%—QPEPQ(COS 5)) sin 3 dg. (4.50)
The value of P, for any given mixture is thus obtained by minimising the scaled free
energy with respect to it for given values of the scaled temperature, mole fraction
of dopant and the ratio A. The scaled temperatures employed were calculated from
consideration of the reduced temperature (with respect to the solvent) at which the
experiments are normally performed. That is, the reduced temperature of the mixture
is in the range 0.8 — 1.0 at most, more likely in practise 0.9 — 1.0. The free energy was
therefore minimised at scaled temperatures corresponding to reduced temperatures 7,
of 0.8, 0.9 and 0.95, for a range of compositions spanning the whole range and taking
A to be either 0.75 or 0.5. In addition, for comparison some very low reduced tempera-
tures, far outside the experimentally accessible range, namely, 0.4, 0.45, 0.60 and 0.68,
were also used to generate results. The values of A (= TE,/T%,) employed span the
likely range of anisotropies of the dopants relative to the solvent. The dopants are usu-
ally less anisotropic than the nematogenic solvent, so generally we expect A < 1.0. The

order parameters of the individual components were calculated from the corresponding
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singlet orientational distribution functions once the composite order parameter had

been determined as

75; =77 / P, (cos B) exp(P.Py(cos 8)/T™) sin 5 d3,

P, =75 /Pg(cos B) exp(A\/2P.Py(cos B) /T*) sin B d. (4.51)

The order parameter of the mixture is then given by the mole fraction weighted average

of those of the components,
P, = (1-12)P, +2Py. (4.52)

This is similar in form to P, (see equation (4.45)), which in fact becomes equal to it in

limz — 0. In addition, in limz — 1, P, = \1/2 —]Sf.

4.5 Results and Discussion

Figures (4.1)-(4.8) show the order parameters as a function of composition at various
very low reduced temperatures (ie, much lower than is ever achieved experimentally)

for two values of A, namely 0.75 and 0.5.

In figure (4.1) we see a weak, linear dependence of the order parameters on the com-
position. This dependence is due to the very low temperature of the system and the
relatively high anisotropy of the solute, which ensures that the order parameters are
always high and near to the limiting values across the entire composition range. In the
limit of low temperature the order parameters would be unity across the range and so
there would be no dependence and the graphs would be perfectly linear. As we have
seen, the order parameter P, at x = 1 is related to the order parameter of the additive

by a factor of AY/2, so that in this case it is v/0.75 ~ 0.87 times the value of ?QB.
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Figure 4.1: Second rank orientational order parameters ’P;“"’“ (—), 759 =-), ?5 (--)

and P, (...) as a function of composition at a reduced temperature of 0.40 with

A =0.75.
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Figure 4.2: Second rank orientational order parameters Py e (—), "P;l (——), ?f (--)

and P. (....) as a function of composition at a reduced temperature of 0.40 with A = 0.5.
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In figure (4.2) we have the same temperature but the anisotropy of the solute is con-
siderably less and P, = /0.5 Ff ~ 0.71 —Pf , so that the larger difference between P,
and -]55 is due to the smaller value of A. We find that nevertheless, due to the tem-
perature, the order parameters are still sufficiently high that the graphs of component

and mixture order parameters are still quite linear.

In figures (4.3) and (4.4) we have the results for A = 0.75,0.5 as before, but now
at a slightly higher reduced temperature of 0.45. For A = 0.75 the high anisotropy
of the solute ensures that even though the temperature is slightly higher, the order
parameters of the pure components (ie, the order parameters at the extremes of the
range) are still sufficiently high and similar that the dependence remains weak and
linear. When we consider the graphs for A = 0.5, however, we begin to see deviation
of the order parameters from linearity and concomitantly a stronger dependence of the

order parameters on the composition.

In figures (4.5) and (4.6) we have the same solutes but at a somewhat higher reduced
temperature. For the more anisotropic solute the dependence is slightly stronger,
but the order parameters are still essentially linear in the composition. This contrasts
strongly with the other solute, however. At this temperature the less anisotropic solute
is not liquid crystalline, so that somewhere between the pure solvent at x = 0 and the
pure dopant at x = 1 there is a solvent-induced phase transition. The associated
transitional order parameter of the mixture is about 0.43. This does not occur for
A = 0.75 since the more anisotropic dopant is nematic at this temperature within
the theory. We note that in the case of the solvotropic phase transition the order
parameters of the components and the mixture do not come together to become equal at
the transition. This is simply because within the ordered phase these order parameters
can only become equal at © = 1. Therefore the inequality of the order parameters at

the transition will always be observed where there is a solvent-induced transition.
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Figure 4.3: Second rank orientational order parameters Py (—), By (——), Py (--)

and P, (....) as a function of composition at a reduced temperature of 0.45 with

A =0.75.
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Figure 4.4: Second rank orientational order parameters ﬁ;nm —), —P; (—-), Pf (--)

and P, (....) as a function of composition at a reduced temperature of 0.45 with A = 0.5.
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Figure 4.5: Second rank orientational order parameters F;nm (—), —P; (=), 7523 (- -)

and P, (....) as a function of composition at a reduced temperature of 0.6 with A = 0.75.

1.0

Py
0.8 =

0.6 1

0.4 -

0.2 -

0.0 : : : ;
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.6: Second rank orientational order parameters Py " (—), Py (—-), P, (--)

and P, (....) as a function of composition at a reduced temperature of 0.6 with A = 0.5.
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Figure 4.7: Second rank orientational order parameters ﬁ;nm (—), -]5;4 --), —PQB (--)

and P, (....) as a function of composition at a reduced temperature of 0.68 with

A =0.75.
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In figures (4.7) and (4.8) we see the results at a yet higher temperature still. In the
case of A = 0.75 the order parameters are slightly lower and there is a slightly stronger
mole fraction dependence, but still quite linear. In contrast, for A = 0.5 we again have
a solvotropic transition. This time however, it is at lower mole fraction, since at higher
temperature a greater proportion of the highly anisotropic solvent is required for the
mixture to remain nematic. The transitional order parameter is again seen to be about

0.43.
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Figure 4.8: Second rank orientational order parameters F;nm —), 1_5; --), 755 (--)

and P, (....) as a function of composition at a reduced temperature of 0.68 with A = 0.5.
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Figures (4.9)-(4.14) show analogous results for reduced temperatures in the range
0.8 — 0.95 (ie, nearer that typically encountered in experiment). In figure (4.9) we
see that now even with a highly anisotropic solute at a reduced temperature which
for a real experiment is very low indeed, there is a solvotropic phase transition. The
order parameters are now strongly temperature-dependent and deviate greatly from
linearity. In figure (4.10) we have the same features, but more pronounced, with the

transition occurring at an even lower mole fraction. This trend now continues for both

A =0.75,0.5 with increasing temperature.
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Figure 4.9: Second rank orientational order parameters Py (—), Py (=), P; (--)

and P, (....) as a function of composition at a reduced temperature of 0.8 with A = 0.75.
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Figure 4.10: Second rank orientational order parameters P, t (—), P; =), Py (--)

and P, (....) as a function of composition at a reduced temperature of 0.8 with A = 0.5.
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Figure 4.11: Second rank orientational order parameters P;nm (—), ﬁ; (--), FQB (--)

and P, (....) as a function of composition at a reduced temperature of 0.9 with A = 0.75.
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It is clear that whilst the order parameter of the mixture is initially linear as expected,
significant deviations from linearity may occur at higher mole fractions of solute. It
would seem that this deviation is due to the fact that T for the mixture falls with
increasing mole fraction, x, of solute, simply due to the size of the order parameters. If
the mixture transition temperature falls to the temperature T,y of the mixture within
0 < z <1 then the order parameter of the mixture shows a first order transition to
zero rendering the extrapolation unacceptable. Deviation from linearity is thus seen to
occur if and when 725 falls to anywhere near Texpt Within the physically meaningful
range of 2. We note that this effect is more pronounced for small values of A and at

high reduced temperatures of the solvent.
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Figure 4.12: Second rank orientational order parameters P;HIXt (—), —PQA (——), PQB (--)

and P, (....) as a function of composition at a reduced temperature of 0.9 with A = 0.5.
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At very low temperatures the P, ** line is almost linear for A = 0.75 up to a reduced
temperature of a little under 0.60. Above T, = ca. 0.60, however, we begin to see
deviation. If A is now decreased to 0.5 we begin to observe a deviation from linearity
even at the lowest T, investigated, namely 0.40. At more realistic temperatures the de-
viation from linearity is very great and the present experimental method of estimating
solute birefringence power is thus manifestly unacceptable. The only circumstances
under which the ’153”“ line is seen to be sufficiently linear even for values of A at least
as large as those encountered experimentally (ie, T, /T5; > ca. 0.75) is for values of

T, that are so low as to be well outside of the experimental regime (ie, 7, < ca. 0.6).
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Figure 4.13: Second rank orientational order parameters F;nm (—), FQA (—-), _PQB (- -)

and P, (....) as a function of composition at a reduced temperature of 0.95 with

A =0.75.
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Figure 4.14: Second rank orientational order parameters F;nm (—), F; (—=), FQB (--)

and P, (....) as a function of composition at a reduced temperature of 0.95 with A = 0.5.
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Given that the extrapolated value does not, within the reduced temperature regimes
accessible to experiment, even remotely correspond to the extrapolated order parameter
of the pure dopant, the question arises as to what this value corresponds in terms of
the theory. To address this question we need to obtain the gradient of the curve
P iXt(:1:) in the limit that x — 0. Then from the equation of the straight line with
this gradient through the known point (the intercept of P,™**(z) on the ordinate) we
have the equation of the extrapolation line. The value of the ordinate where this line

intercepts the line z = 1 can then be found. This is then the extrapolated hypothetical

order parameter of the mixture.

4.5.1 Analysis of the meaning of the extrapolated value for the order

parameter of the dopant in the pure phase

First, we require an analytic expression for the gradient of —]52m iXt(m) at x = 0. The

order parameter of the mixture is
P = (1-2)P, + 2Py, (4.53)

The gradient of this with respect to the composition is then

d — mixt d —A d .
B3 HA d —4 d —B
— e T —T) 7 —P,. 4.54
Py =P+ (1=0)g Py 4oy P, (454)
Hence the limiting gradient we require is
d — mixt —B —A d —a
<EEP2 )mo == (P2 )x:o - (PQ)I:O + (EEPQ )I:O. (4.55)

The search for an analytic expression for (dPy e /dx)z—p then reduces to a search for an

: . - o —A . s
analytic expression for (dP; /dz),—p. The derivative of P, with respect to composition

is, in general (ie, irrespective of making the geometric mean approximation)

%Fﬁ = %{Zj/‘z Py(cos 5) exp{((l — ) eAAﬁf +zeABFf)P2(cosﬂ)/kBT} dcosﬁ]

(4.56)
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= -7 % Py(cos 8) exp(—Ua(B)/kpT) dcos 3

+Z;! / 4 [Pg(cosﬂ) exp { ((1 - 1) eAA?; + xeABF28> Pg(cosﬁ)/kBTH dcosf3

dz
(4.57)
5 dp; —A 4B —B APy
-7 [ it (7)) (4 )
x exp(—Ua(8)/ksT) dcosﬂ/Pg(cosﬁ) exp(—Ua(B)/ksT) dcos
dP, P, dP,
+ ZZI/PQ(cosﬁf/kBT[eAA(—ﬁ — (FQA t d:cQ )) +eqp (Ff + E@%)J
x exp(=Ua(B)/ksT) dcos B (4.58)

The quantity

l/kBT[EAA<% - <?§ +$%§>) tean (755 + %”

appearing in both terms of (4.58) is not a function of the space of integration as it
contains only constants and non-angular variables (quantities that are already inte-
grated over the space). For the sake of convenience we call this quantity I". Then the

derivative Is

2Py =1 { 22 [ Pifoos ) exp(-U(8) ksT) dcos ]

- Z;! /Pg(cosﬂ)QeXp(~UA(ﬁ)//cBT) dcos } (4.59)
But

23" | [ Patcos ) exp(-Ua(9) k) dcos ]
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= 22" [ Patcos ) exp(-Ua(9)/hsT) dcos ] = P (4.60)

and
23" [ Pacos ) exp(-Us(8)/aT) dcos 6 = B (461)
S0
d—=A ([ 5a2 A2
—P, =T (P -7, ). (4.62)

— a2 —
We note that the quantity Pj\> — P, = [ Pf(cos B) — P, ]?, the fluctuation quantity

in P,(cos ) for component A. We require the limit  — 0, in other words

iy = [ o { ean(0 =952 = P2) s (PY %2 }], o
giving
lim T = éf {eAA(% = “f) +eapPy } (4.64)

where all the quantities involving the order parameters here are implicitly evaluated at

z = 0. We can now collect the terms in dﬁQA /dx and solve for the gradient. Multiplying

out we obtain

—A —A
Py _ (GAA dPy fAA-P—A €4B B )(};ﬁ_?g&?)

dr  \kgT dz kgT kpT 2
_ €aa dP 2 1 =B ( paz _ A2
= T (P _ P ) kBT[eAAP eABPQ](P2 P, ) (4.65)
Then
AP,  cas dP, oA FA2>— i{ P -PB](FE_FM)
dz kT dx( N €Aal’y = €ABiTy 2 2
—A
dp, €AA (52 A2 __1 5B ( paz _ B
Ao [1_/{,‘BT<P2 —P2 )] - m[EAAP EABPQ}(PQ P2 > (466)
and so
_ — —B\,—A2 —3
dP? B (1/kBT)(€AAP§—€ABPQB)(P? *PzAQ) (4.67)
de 542 a2 ‘ ‘
1+(€AA/I€BT)(P2 —P2 )
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We reiterate that here all of the orientationally-averaged quantities are implicitly eval-

uated at z = 0. Written in terms of the scaled quantities we would have
—A —B - A2 —5
P, (GAA//fBT)<P2 — (ean/€an) Py > (P; - f2>

_AQ _—
dz 1+ (ean/kgT) ( Pl PQAQ)

3

B (F; - (ﬁAB/EAA)—PzB> (]_3.2/12 _}522'2')/71*
- 1+(?§2—}}—§)/T*

=4 =B\ /542 a2
:(PQ_(GAB/GAA)PQ)(Pz — B ) (4.68)

T+ (PY — BAY)

Within the geometric mean approximation for e4p equation (4.68) becomes

Py _ (PL-2eP) (P - F) (469)
dz T*+(F;2—P2A2)

We note the unusual combination of different kinds of quantities (ie, the fluctuation
quantities and order parameters on the one hand and the scaled temperature on the

other), the physical interpretation of which is far from clear.

To calculate this gradient numerically we are clearly required to calculate the additional

quantity PA%, which is evaluated either as

PAT = 71 / Py(cos B)? exp(~Ua(B)/ksT) sin fdB (4.70)

or by noting that Py(cos ) can be written in terms of P;(cos 8) and a Clebsch-Gordan

coefficient and substituting this for Py(cos 8)* in (4.70).

The gradient of the order parameter of the mixture in the low concentration limit (see

equation (4.55)) is then

(Lpp) = @), - (P

| _((?ﬁ—»/fﬁf)(fﬂ?-ﬁﬁﬁ) |
dz #=0 z=0

T (P - T
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remembering that in general (ie, outside of the geometric mean appoximation) the
quantity A/2 can be replaced by (e4p/€a4). This gives us the equation of the straight
line we require. In other words, if we write the equation of a straight line in the usual
way as y = maz + ¢ then the independent variable z is simply the composition z and
the dependent variable y(z) is P, iXt(:z:), The gradient m is then clearly the gradient
(dﬁ;ﬁm/dz)z:o and the y-axis intercept c is ?Qmm(:r: = 0), which by (4.53) is equal to

P)(z =0) and so

== mix d — mix =
P, t(gz:) = <—~P2 t) + P; (0). (4.72)
dz 20
We are required to find for this straight line P, iXt(:c = 1). Thus the extrapolated
point is (1, Fgmm(l)) where
_ —B\, 5  —A2
s (P =NEP)) (R -P))
P, — —— . (4.73)
T+ — (P#" =P, ) 2=0

This expression is found to give complete agreement with the results of extrapolating

P =

the graphs by hand, as would be expected. It was thought that knowing what the data
from the experimental studies represents might possibly provide a clue as to how to
manipulate pre-existing results to provide a better way of comparing potential dopant
compounds. However, the significance of the extrapolated point would still seem to
be far from clear. In particular, the physical interpretation of the expression for the

gradient (4.71) is not obvious, although we can look at some limiting cases.

We note that the gradient can be written in terms of the order parameter at the

extrapolated point simply as

(%Fzm m)wzo = P, (1) - P, (0), (4.74)

where ?f (1) is the hypothetical ordinate of the extrapolated point on the straight line.
In the limit of high order we might be tempted to set the third term in (4.71) equal to

zero and note that the resulting equation

(2?5?;1 iXt>x:0 = P, (0) - P, (0) (4.75)
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is similar to (4.74). This would imply that P, (1) = Pr(0), which seems initially
strange. However, as the limit is approached the order parameters become increasingly
linear and nearer to being equal to the same constant value (unity) over the composition
range, so that it does in fact become a good approximation for highly ordered systems.
This analysis of the limit may seem flawed because the high order limit occurs only
in the limit of low temperature and it is not clear that the denominator in the third
term of (4.71) does not render the limiting gradient indeterminate. However, we know
that in the limit of high order the mixture order parameter is a constant, so that the

gradient it zero; given that the first two terms cancel, the third must vanish.

The other limit we can explore is that A — 0, that is, the solute is spherical. In this

limit the gradient is

( d — mixt § P§(cos ) (4.76)

—=A
P = -Pj0)|1
dz” % Ja=o 2()[ * T*— & Pit(cos ) |
where ¢ Ps*(cos ) is the fluctuation in P,(cos ) for component A. We see that the
gradient is now a function only of the order parameter and fluctuation for the solvent

and the temperature, as expected.

This still does not seem to provide much enlightenment as to what physical meaning to
attach to values obtained from the experimental extrapolations and what, if anything,
can be gleaned from the pre-extant experimental data. The values obtained from exper-
iment refer to a hypothetical pure nematic state beyond the experimental regime, but
it turns out that this state does not, under most circumstances in these experiments,
exist. The technique also assumes that by extrapolating to the pure solute we obtain
a property that is intrinsic to the solute and independent of the solvent. However, the
intercept obtained is clearly determined by (in this case) the order parameter of the
pure solvent and the slope at infinite dilution, which also contains quantities pertain-
ing to the solvent. The solvent dependence in each of these contributing factors does
not disappear upon evaluation of the intercept at z = 1 and so the order parameters
obtained are manifestly related to the nature of the solvent—Dboth its order parameter

and the fluctuations in Py(cos £). It has been suggested [5] that a better experimental
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procedure would be to measure the birefringence as a function of composition, but
always at the same reduced temperature with respect to the mizture rather than the
solvent. The order parameter profile is then expected to remain linear in the compo-
sition across the entire range, thus enabling the concept of linear extrapolation to be

retained in a manner that is valid, although clearly more difficult experimentally.
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Chapter 5: Liquid Crystals Formed from Highly Flexible

Molecules

5.1 Introduction

In addition to the standard classes of mesogenic molecule (see Chapter 1), in recent
years it has been found that highly flexible dendritic structures (dendrimers) are also
capable of mesophase formation [1, 2, 3]. The first demonstration of this was by
de Jeu [1]. Dendromesogens (see figures 5.1, 5.2, 5.3) as they are called thus form a
new class of mesogenic compounds consisting of a central core attached to which are
flexible chains, which may branch a number of times, terminated in rigid mesogenic
units such as cyanobiphenyl moities. These structures generally do not for nematics
but only smectic phases. The molecules may exhibit several levels of branching, the
number of branching levels being known as the generation number. A dendrimer with
n branching levels is known as a Gn dendrimer. In addition, it is common to place the
standard abbreviation for the mesogenic unit (with linking group) afterwards. Thus, a
dendrimer with just a central core and chains which do not branch is a zeroth generation
(G0) dendrimer, and if the mesogenic groups are ether-linked cyanobiphenyl groups
(for instance) then we have a GOOCB dendrimer. Zeroth generation dendrimers are
also commonly called multipodes. In spite of the above generalisation about phase
behaviour, some examples of multipodes do form a nematic phase, notably those with
cyanobiphenyl groups attached laterally to the chains; the analogues with the groups
attached terminally, however, form only smectic phases. The term ‘flexible’ here refers

to the large range of conformational states the molecule may adopt.
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Figure 5.1: Examples of the first liquid crystal dendrimers [1]
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Figure 5.2: Another early example of a liquid crystal dendrimer [2]
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Figure 5.3: A more recent example: Structural formula of a fifth genera-

tion carbosilane dendrimer with 128 terminal cyanobiphenyl groups G-5(Und-CB)
[Und = undecanoyl] [3]
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In this chapter we describe a study which is a starting point for the theoretical modelling
of liquid crystal dendrimers. For simplicity, we shall focus solely on zeroth generation
dendrimers (multipodes) in which the central core is simply a quarternary carbon atom
and the mesogenic groups are cyanobiphenyl moities. We shall consider the case where
the cyanobiphenyl groups are attached terminally and also that where they are attached
laterally to the chains via ether linkages (see figures 5.4 and 5.5). In accordance with
the results of experimental studies (such as X-ray diffraction) on ether-linked flexible
liquid crystal dimers, the torsional angle around the bond between the phenyl ring
and the ether linkage is kept fixed at 0° in these calculations. Again, for simplicity,
we shall focus just on nematic behaviour as a convenient starting point. Thus the
calculations on the lateral multipodes allow contact with real systems which form
nematic phases. Also, for comparison we have performed the calculations on flexible
liquid crystal dimers, which are in a sense analogous to the terminal dendrimers, and
also form nematic phases. The calculations have been performed on a homologous
series for each type of molecule (flexible dimer, terminal and lateral dendrimers). This
facilitates validation of the methodology using the dimer series (by comparison with
experiment and previous application of the methodology to dimers [4]) and permits
comparison between the different series to compare features of interest. There is then
the possibility of finding in the multipodes odd-even effects analogous to those obtained
for flexible dimers. In addition, we are able to explore the effect of conformational-
orientational synergy on the transitional order parameter, an important phenomenon

in flexible liquid crystal dimers.
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Figure 5.4: Structure of a typical zeroth generation ether-linked cyanobipheny! den-

drimer, G-00OCB, as used in the theoretical calculations. Here, the cyanobiphenyl

groups are attached to the chain terminally.
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Figure 5.

5: Structure of a typical zeroth generation ether-linked cyanobiphenyl den-
drimer, G-00CB, as used in the theoretical calculations. Here, the cyanobiphenyl

groups are attached to the chain laterally.
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5.2 Theoretical Background and Methodology

5.2.1 General introduction to the problem

We take as the starting point of the treatment the molecular field theory of liquid crys-
tals composed of flexible molecules first proposed by Marcelja [5] and subsequently ex-
tended by Luckhurst [6]. The theory treats the conformations available to the molecule
resulting from the chain flexibility using the rotameric isomeric state (RIS) model of
alkanes proposed by Flory [7]. In the RIS model the only conformations that are

deemed to exist are those corresponding to the torsional potential minima.

The main problem in applying the theory to molecules with a very high degree of
conformational flexibility, such as dendrimers, is the inherently huge number of con-
formational states available to them. In the RIS model, there are 3¥~2 conformations
for an alkyl chain containing N methylene units. The RIS-based theory generates all
possible conformers (even if some are eventually rejected because overlaps of atoms
occur), a task that in the case of dendrimers is beyond all possible developments in
conventional computing power. For example, for the largest multipode we have studied
(which is only a “zeroth generation” dendrimer) this gives something of the order of
3% ~ 3.6 x 10! conformers. If conformers were to be generated and dealt with at a
rate of 10* per second the entire calculation (apart from final calculations at the end

of the algorithm) would require over 100 159 728 years.

There is also another kind of problem, and that concerns the validity of the RIS model
of the physical situation itself. In reality, at and around ambient temperature, flexible
molecules librate in the well minima of the torsional potentials. This contrasts with
the RIS model in which only the minima exist and so that in, say, a flexible liquid
crystal dimer, the mesogenic group axes are always either collinear or at some fixed
angle to each other and so are correlated. When there are fluctuations in the well

minima, the extent of these correlations is reduced—to an extent that depends, for
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a given temperature, on the length of the chain, since in longer chains the effect of
these fluctuations accumulates until in the limit, all correlations between the mesogenic
groups are lost. Thus in reality, in the limit of a long chain length, we effectively have
orientationally isolated uncorrelated mesogenic groups in a sea of liquid alkyl chain,
and we should recover the Maier-Saupe results. (Note: This is not strictly true if we
decide to include within the theory anisotropic interactions coming from the chains.)
The effect of removing the RIS restriction on the possible conformational states on the
mesogenic orientational correlations is therefore expected to be relatively insignificant
at short chain lengths but progressively more significant for increasing chain lengths.
Thus we expect that the deviation of the RIS-based theory from experimental findings
will increase as we consider more flexible systems with larger numbers of chains of
greater length—precisely the sort of systems we are interested in, in fact. Indeed,
application of the RIS model to flexible liquid crystal dimers and comparison of the
results with those of experiment reveals this increasing discrepancy of the RIS-based
theory as the chain length is increased, although this deficiency is partially ameliorated
when conformers containing steric overlaps are excluded from the calculation [4]. Given
the numbers and lengths of flexible chains present in the kinds of molecules we are
hoping to study, this would seem to mitigate against invoking the RIS approximation
and favour employing continuous torsional potentials instead. After all, this would
be preferable in any case if it can be achieved with modern computing power, simply

because it models much more closely the real physical situation.

Clearly then, we require a new methodology to deal with such systems, since there are
no analytic or semi-analytic solutions (the required total integrals are numerical and
of high dimensionality) and the RIS model-based theory is seen to be inadequate. We
obviously need some kind of sampling scheme to generate discrete conformers within
the conformational space. It would seem that the most appropriate strategy would
be to adopt some kind of random (“stochastic”) sampling scheme. The most obvious
candidate is that employed in stochastic-type computer simulations where points in

phase space are sampled according to their importance based on the Boltzmann fac-
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tors for their energies, namely the form of “Monte Carlo” sampling first suggested by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller [8]. In addition, given that in
principle we can just as easily apply the “Metropolis” sampling protocol to the whole
conformational space as to the RIS subspace, it makes sense to apply the Metropolis
sampling scheme to the whole space, which allows us to employ continuous torsional
potentials. With this decided, the sampling protocol then becomes entirely equivalent
to performing the requisite multi-dimensional integrations exactly (within, we should
note, the tacit assumption that the multiple integral may be treated with the ap-

proximation that the total torsional energy may be represented as a sum of effective

single-torsional energies).

We could use this approach to sample all of the variables whose values determine
the classical Hamiltonian of the system—not only the conformational coordinates but
also the orientational ones. The required integrations over orientational variables can,
however, be performed exactly by a combination of analytic and simple numerical in-
tegration in just the same manner as in the previous RIS-based theory for flexible
systems. (This is just the same as for the theory of uniaxial phases of biaxial rigid
particles described in Chapter 2.) Sampling on the whole phase space would then seem
unnecessary and computationally inefficient, and so we choose to perform Metropo-
lis Monte Carlo sampling on the conformational variables only and obtain the usual

orientational integrals exactly as in standard molecular field theory.

The subtlety here in applying the molecular field theory to the orientational part of
the state space and the Monte Carlo procedure to the conformational part is in how
we combine these two approaches when obtaining the ensemble averages over the sim-
ulation. As we shall see, it turns out that because conformers are accepted or rejected
solely on the basis of their conformational potential energy, we have to include in each
contribution to the average a weighting factor that reflects the orientational bias com-
ing from the molecular field, that is, the fact that we are modelling an orientationally

ordered fluid [9]. The weighting factor that we must build in for each accepted (or
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reaccepted) conformer is its orientational partition function. In addition this accumu-
lated quantity must be normalised at the end of the simulation by a factor which is
just the sum of these partition functions. This corresponds essentially to the “umbrella

sampling” technique (see section 5.2.2).

5.2.2 Formal Aspects of the Molecular Field Calculation

The starting point of the molecular field calculation is an effective single molecule
potential energy. This energy is taken to be the sum of two contributions, an in-
tramolecular contribution and an orientational contribution. The former is a function
only of the internal coordinates of the single molecule and is in a sense exact within
whatever approximate deconvolution is assumed for calculating it. Here we implicitly
assume the validity of a Born-Oppenheimer-type deconvolution of the total energy into
separate contributions associated exclusively with assumed independent degrees of in-
ternal freedom, these being bond lengths, bond angles and dihedral (torsional) angles.
We then proceed to ignore the dependence upon bond lengths and angles and assume
that the intramolecular potential energy may be faithfully represented simply by the
torsional energy alone which is itself assumed to be a sum of effective single-torsion
energies. The second contribution is the anisotropic part of the thermodynamic poten-
tial energy (the “potential of mean torque”) and is a function of both the conformation
(internal degrees of freedom) of the molecule and its orientation defined by the ori-
entational variables; these are denoted collectively by w(= a, ), the spherical polar
angles of the nematic director in the molecular frame of reference. The potential of
mean torque construction replaces the many body interactions with a single molecule
interacting with an average (or “mean”) field, referred to as the “molecular field”, and
is an effective single particle potential energy function, or strictly speaking, just the

orientationally-varying part of it. We write

Utot({d)}; w) - Umt({¢}) + Uext({gb}: w): (51)
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where {¢} denotes the collective set of torsional angles which define a given conforma-
tional state. The single molecule orientational potential energy is assumed to take the

same form as that described in Chapter 2, namely,

Ui ({8}, w) = = Y (=) Xom({9}) Com(w), (5.2)
m
where m = =2, —1,...,2, Xop, is the molecular interaction tensor expressed as a second

rank irreducible spherical tensor and Cy,, (w) is a spherical harmonic. (See Appendix 1B

for the functional form of the Cy,(w).)

As in the previous theories for flexible molecules the molecular interaction tensor is
taken to be a sum of segmental interaction tensors from whatever parts of the molecule
are deemed to contribute. The strengths and weaknesses of this construction assumed

for the molecular interaction tensor have been discussed elsewhere [10].

As in any simulation or theoretical calculation the main aim is to obtain the bulk
thermodynamic averages of the system in the ensemble under consideration. Ultimately
what is required is to be able to flnd the ensemble average of any property B of interest

that we might choose, and this is defined formally by
< B > = / B{X} P{X} d{X}, (5.3)
{x}

where { X'} denotes the collective set of degrees of freedom, x1, %2, .. ., xy, of the system
and P{X} is the total probability density distribution function of the system over all

its degrees of freedom. This is defined by

P{X} = exp (<U{X}/kT) / /{X} exp (~U{X}/ksT) d{X}.  (5.4)

Within the theoretical framework of this present study, these equations become
<B>a = [ [BU8Hw P6},0) dodis), (55)
{¢} Jw
with
P({¢}7w) = €Xp ("Utot({¢}>w)/kBT) /Agb} / €xXp (_Utot({¢}>w)/kBT) dw d{¢}
(5.6)
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There is then the problem of how to perform the integrations. Given that we cannot
expect to perform them analytically, we clearly need to invoke some kind of discre-
tised approximation. Standard numerical integration techniques form a class of such
approximations but are inadequate to deal with the very high dimensionality of the
spaces we are considering, as we have already mentioned. The RIS model, where we
assume that the only conformational states that exist are those corresponding to the
torsional potential minima, could also be considered in this way but, as we have seen,
is also inadequate to deal with the range of systems we wish to study. (If we view
the RIS model as equivalent to numerical integration then the integrals are replaced
by summations over the states of the model of the quantities represented by the in-
tegrands.) Alternatively, at the other extreme, we could sample discrete states from
the total conformational space at random. If we sample stochastically from a uniform
distribution then we retain the exact form of the integrands and the integrals are then
replaced by summations giving us and expression exactly analogous to the RIS model-
based one—except that this time the summations are over the stochastically-sampled
states (ie, other kinds of conformational states are sampled). If we sample from a
non-uniform distribution then we still have a summation over sampled states, but the
integrands must be modified to take account of the fact that we have sampled from
a biased distribution. More specifically they must be multiplied by the inverse of the
distribution from which we are sampling. That is, if the quantity we require is in

general
< B> = /B{X} exp (-U{X}/kgT) d{X}//exp(—U{X}/kBT) d{X}
(5.7)

then unbiased sampling gives < B >¢;5 as the limit

<B>eps = lim {ZNB{Xi} exp (—U{Xi}/ksT) / ZNexp(—U{Xi}/kBT)},

i=1 =1

(5.8)

where N — oo is interpreted to mean that N can be as large as is necessary to obtain

convergence of the quantity. If we now introduce stochastic sampling on the {X} from
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the biased distribution P{X} given by (8.4) then this expression becomes modified as

< B >eps = ]\}1_{20 {;NB{Xz} / ;Nl}

= lim
N0

{ziil B{X;} exp (~U{X:}/ksT) [exp (~U{X;}/ksT)/Q]™" }
SN exp (~U{X;}/kpT) [exp (~U{X,}/ksT)/Q]"!

:NIE%O{;NB{XZ-}/N} , (5.9)

where

Q= / exp (—U{X}/kpT) d{X}. (5.10)

Given that we have already rejected the RIS model in favour of allowing the torsional
angles to vary continuously, the question that presents itself is whether it is more ef-
ficient (in terms of rate of convergence over iterations to the true value < B >¢p) to
employ unbiased stochastic sampling or stochastic sampling from a non-uniform distri-
bution. In the field of computer simulation of liquids it is generally asserted that direct
evaluation of the thermodynamic averages via unbiased sampling is quite infeasible and
that achieving convergence is beyond all possible developments in conventional com-
puter power. This is because a very high proportion of states generated in a uniform
random distribution will contain elements of the system (particles, non-bonded atoms)
that are very close to each other, giving rise to a very high potential energy. This
means that the Boltzmann factor for the energy will be vanishingly small, and so give
a negligible Boltzmann weighting in the numerator of (5.8) for the corresponding value
of the property in question. For the same reason the constant scaling factor in (5.8),
which for the sample taken is just the sum of the Boltzmann factors (ie, the simulation
estimate of the partition function) is also then composed almost entirely of very small
contributions. The remainder of the space itself not sampled will also be overwhelm-
ingly dominated (in number) by such contributions. Such a sampling scheme would
be prohibitively inefficient, since almost all states sampled make virtually no contribu-

tion to the average being computed. Thus, straightforward random sampling from an
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unbiased distribution is not usually regarded as a viable way in practise of obtaining

ensemble averages.

One of the most important forms of Monte Carlo sampling is “importance” sampling,
the most widely used of which is the sampling protocol devised by Metropolis et al.
mentioned earlier, and it is this one which we have chosen to employ. The Metropo-
lis protocol [8, 18] is as follows. A new configuration is generated (by changing on
or more degrees of freedom by some random amount) and the change in energy AE
between the new and old configurations is calculated. If the energy of the system has
decreased (AE < 0) then the move is accepted. If the energy has increased (AE > 0)
then the move has a chance of being accepted, the probability being proportional to
the Boltzmann factor for the energy difference. That is, a random number is gener-
ated uniformly on (0, 1). If the random number is smaller than the Boltzmann factor
exp(—AE/kpT) then the move is accepted. If the random number is greater than the
Boltzmann factor the move is rejected and we return to the old configuration which,
we note, is to be reaccepted (ie, counted as the next configuration in the set over which
averages are to be computed). Thus, AE > 0 moves are accepted with a probability
proportional to the Boltzmann factors for the corresponding energy differences. The
Metropolis sampling scheme ensures that the limiting distribution of the simulation
over the variables {X} so sampled will be P{X}. This occurs because the algorithm
sets up a Markov chain of states of the system in phase space and from the theory of
random processes it can be shown that, with the Metropolis criteria for acceptance or
rejection of trial moves, this chain has a limiting distribution pyy7 which is the P{X'}
encountered previously [18]. Thus we obtain the desired distribution over which we
wish to average automatically and indirectly through the sampling mechanism itself.
Then, bearing in mind our earlier comments about the modification of the calculation
of averages required when sampling from a biased distribution, we obtain the ensemble
average of a property from (5.9) with N being the total number of trials (ie, states

included in the average).
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The situation we are trying to deal with here, however, is somewhat more involved,
because although we could apply the Metropolis Monte Carlo procedure to all the
degrees of freedom, it is not necessary, as we have already stated. (Indeed, to do so
would preclude location of the N —I phase transition.) Rewriting the formal expression

for < B >eps in terms of semi-analytic integrations and leaving the conformational

space for Monte Carlo sampling we obtain

f{¢} < B{¢} >, Qext{¢} €xXp (—Uint{¢}/kBT) d{<b}

< e = f{qs} exp (~Uini{#}/kBT) Qexi{@} d{o} (511)

3

where
<B>,= Qext—I/B(w, {¢}) exp (=Uext(w, {¢})/ksT) dw (5.12)
and
Qext = /exp(~Uext(w,{q5})/kBT) dw. (5.13)

Performing Metropolis sampling on the {¢} ensures that the limiting distribution is

P{} = exp (~Uini {6} /kaT) / /{ | e (Uil g} /kT) (9],

— Cgint—_1 exXp (—[];nt{d)}/kBT) . (514)

Thus the simulation average is computed as

SN, B¢} Qext{qz}}
Z,;V:1 Qext{¢i} 7

< B>ug = lim {

N—ooo

- < B{¢i} Qext{0i} >trials / < Qext 1 0i} >trials} (5.15)

where now B{¢;} = < B{¢;} >..
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5.2.3 Details of the Molecular Field Calculation

We shall now discuss in detail the form of the molecular field calculations. We begin
by turning our attention to the total interaction tensor of the molecule. As already
discussed (see Chapter 2) the potential of mean torque is assumed to be dominated
by second rank tensorial quantities to the extent that it is appropriate to consider
only these to obtain all the qualitative features and essential physics of nematic liquid
crystalline systems. The quantitative aspects that one might think could be obtained
by extending the theory to higher order are in any case unobtainable, a feature that
results from the severity of the molecular fleld approximation itself, that is, the fact
that we assume an effective single particle orientational potential. To obtain better
than semi-quantitative information the first step we would have to take would be to
look beyond the potential of mean torque concept itself. Thus the essential qualitative
physics is taken to be completely encapsulated by a single molecular interaction tensor
of second degree. The total interaction tensor, X, (or its cartesian analogue) is taken
to be the (tensorial) sum of individual tensors in some way related to various parts of

the molecule that are assumed to contribute, although there are other possible schemes

for constructing Xo,, [19, 20].

Here we have assumed that only the highly anisometric mesogenic regions contribute
and that their tensors are cylindrically symmetric about their long axes when referred
to the principal frames of the mesogens (ie, their para axes, since the mesogenic groups
are of the biphenyl or terphenyl type). The predominant driving force to form liquid
crystalline phases, in terms of intermolecular interactions, is thus identified with the
mesogenic groups and in this study we are neglecting the influence of the chains. This
is not unreasonable, since the formation of the phase is dependent upon the presence
of rigid, elongated units, which is indeed why they are referred to as “mesogenic”’—

mesophase-inducing.

The strength of the orienting molecular field is set by a parameter, the scalar strength
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parameter, X. This input parameter determines the components of the cartesian in-

teraction tensor for each mesogenic group in its own principal axis system as follows:

- Y((Sz'j (7';] = 17273 and (27-7) 7é (373))

X
meso __ 2

i (5.16)
X (i=j=3),

where the local principal z axis is taken as the assumed cylindrical symmetry axis of the
mesogenic group. The total cartesian interaction tensor is obtained by transforming

the mesogenic interaction tensors into a common frame and taking the tensorial sum.

The irreducible analogue, Xy, , of the total interaction tensor is obtained by diagonali-
sation of the cartesian tensor matrix to obtain a principal axis system (represented as a
set of eigenvectors) with only diagonal elements surviving as non-vanishing, these being
the eigenvalues associated with their corresponding eigenvectors. The appropriate lin-
ear combinations of the principal components of the total cartesian interaction tensor

are then taken to form the components of the irreducible spherical tensor analogue as
XQO - )(zz/\/6 X2:i:1 =0 X2j:2 = (Xz‘x - ny)/2 (517)

The rotational partition function for the accepted conformer {¢;} in question is then

computed as

Que{ds} = / exp(~Unet(w, {61})/ksT) dv

2n T
= / i //: exp (—Uexi (w, {¢:})/kBT) sinf df do , (5.18)
a= =0

with Uexi(w, {#}) given by (8.2) and Xo,,{¢} as obtained already. From Xy, (or hence
equivalently Ue(w, {¢}), which gives the “external” partition function), all the other
properties follow. Within the theoretical framework of the molecular field approxima-

tion, the molecular order parameters for this conformer {¢;} are given by

Com = Qext_I/CQm(W) exp (—Uet (W, {0})/ksT) dw Vm (m=-2,-1,...,2).
(5.19)
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The averages < B >¢ns of quantities B(w, {¢}) may now be computed at the end of

the simulation as

< B >ens = < B{qs’} >tria,lsi / < Qext{gbi} >trialsi ’ (52())
where
B{o} = / B(w, {6:}) exp (—Usa (w0, {$}) ks T) dov (5.21)
(Note:
B{é:} = Qo / Blw, {#1)) exp (~Ua(w, {6:})/ksT) dw  (5.22)
so that
B{6i} = Qes Qo™ [ Blw, {¢:)) exp (=i (w, {$i})/k5T) doo
= Que{0} B{:) (5.23)
and

<B >ens = < B{¢z} Qext{¢i} >trials / < Qext{¢i} >trials ) (5‘24)

Quantities that we compute which are averages over the orientational space must be
multiplied by the rotational partition function before accumulating—or rather, inte-
grated with the Boltzmann factor in the orientational energy and not normalised by
the partition function in the first place. Where a quantity is not a function of w, then it
is accumulated without any need of integration, simply multiplication by the partition
function. The simulation average is then simply this accumulator divided by the sum
of the rotational partition functions, since the number of configurations pertaining to

the averages in the ratio (see equations (5.20, 5.24)) is the same in each case.

Properties Calculated

The average properties we wish to calculate in the simulation are the second rank

orientational order parameters, < P, >, of the mesogenic groups, the scaled Helmholtz
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free energy difference, AArN/kpT, between isotropic and nematic phases and the scaled

entropy difference, ASy;/kg, between the phases.

The order parameters of the mesogenic groups are calculated as follows. For each ac-
cepted conformer, the calculated irreducible spherical tensor order parameter of the
molecule is used to form the Saupe ordering matrix in the principal axis system ac-

cording to
— 1/= 3 — C
Szz = Cy Syy = —"2’ <020 =+ 5 CZZ) Smm = _(Syy + Szz) Sij =0 (Z 7“‘ .7) (525)
and this is then transformed back into the local frame of each mesogenic group in turn

to obtain the corresponding second rank orientational order parameter. This requires

a double reverse transformation.

We first transform back into the common BOSS frame by making use of the rotation
matrix obtained from diagonalising the interaction tensor, since this specifies the for-
ward transformation that takes the BOSS frame into the current, principal frame. The

elements F;; of the rotation matrix R in the transformation
T" = RTR" (5.26)

that takes the matrix T of cartesian tensor components in the BOSS frame into the
corresponding matrix 7" in the rotated (principal) frame are in fact the direction cosines
a;; that appear in the equivalent general transformation law for second order cartesian

tensors under rotation of the axis system
_7{l = Z Qij Akl Tik, (527)
ik

where Ty is a second order cartesian tensor in some arbitrary original frame (in this
case the BOSS frame) and T}, is the tensor referred to some arbitrary rotated frame
(in this case the principal frame). Since the above transformation law is completely
general and the original and rotated frames to which if refers are arbitrary, we may

write for the reverse transformation

Ty = Z Gy Ak T]{I = Z Qi5 Akl Tj{l' (5.28)
ji 51
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We note that the sense of the rotation in either direction is contained not in the individ-
ual direction cosines themselves (which by definition can have no inherent directional-
ity) but in the indices over which summation is taken in the transformation law. Since
in this case we are transforming from a principal axis system (ie, S}l =0V j#1as
we have already indicated) all terms for which j # [ vanish so that the transformation

simplifies to
Sz'/g = L ajz- ik S;j - Z Qij akj S}j) (5.29)
J J
giving a sum of just three terms for each Sy.

The next step is to transform the Saupe ordering tensor in the BOSS frame back into
the local frames of each of the mesogenic groups in turn. Since the local frame is
by definition a principal frame and the mesogenic group is taken to be cylindrically
symmetric, we only need calculate S,, in the local principal frame to construct the
entire Saupe ordering tensor in this frame. In fact we only require S,, anyway, since
we simply wish to find the order parameter P, of the assumed symmetry axis which is

by definition S,,. We write for the ordering tensor in a given local mesogenic frame
y/'l = Z Gij Qg Sik, (530)
ik
which, given that Sj; = 0V j # [, simplifies to

S;j = Zaij 4391 SZ (531)

ik

from which we require
3 = ZCLZB a3 S = Py (5.32)
ik

We have the S;; and so only require direction cosines of the form a;3 for each mesogenic
group, but these are simply the direction cosines between the mesogenic group z-axes
and the axes of the BOSS frame—which we already have and indeed will have been
used to transform the local interaction tensors into the BOSS frame at the very start

of the molecular field calculations on the current accepted conformer.
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To calculate the simulation averages of the order parameters of the mesogenic groups,
the order parameter of each group is accumulated over the accepted conformers, having
first been weighted by the rotational partition function, and the partition functions are
also accumulated over accepted conformers. Then, at the end of the simulation, the

ensemble averages are computed by taking the ratio of these accumulated quantities

in accordance with equation 5.24, that is,

<Py = BN D Qe (5.33)

The free energy difference, AA;y/RT, between isotropic and nematic phases is also
calculated at the end of the simulation as

AAry/RT = —% <UL Qb >/ <Qly > — ln{ <Qly>/ 47r}

N
= Y U Qe /D Qe — m{ D@ Sfar),  (539)
¢ i i=1
where the angle brackets <> here denote a straightforward arithmetic mean.

We also, at this stage, calculate the N — I entropy difference at the phase transition,

which is by definition (at constant volume)

AUyr  <U>;—=<U>y (5.35)

ASNr = —7— = T

Now the (average) internal energies of each of the respective phases have two contribu-
tions, the intramolecular contribution, < Uy, >, and the intermolecular contribution,

< Uyt >, so that the quantity we require

ASyi/R = [ (KUt >1+ <Uext >1) — (< Ui >n + < Uext >n) ] / RT

= [(<Um >1 = < U >n) + (< Uext >1 — < Ut >n)) | /| RT

AR | AUSS

. 5.36
RT RT (5.36)
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Thus we may write
ASyi/R = ASLM/R + AS S¥r/R, (5.37)

where

ASRT = AUW/T (5.38)

is the conformational entropy change and
ASY, = AURS/T (5.39)

is the orientational entropy change. The quantity < Uy, > in equation (5.36) is given

by the unweighted average of the intramolecular potential energies
<Up> = <Um> = Z i (5.40)
whereas < Uiy, >pn is given by the orientational partition function weighted average

< Z]int >N = < (]int Qext > / < Qext > - Z nthxt ZQext (541)

Thus

Conf/R - RT[Z mn Z nthxt/ ZQext] (5.42)

where the value of T is the absolute temperature at which the BOSS Monte Carlo
algorithm is sampling the conformational space. The orientational contribution to
the total entropy change is similarly calculated from the averages in the isotropic and
nematic phases of the orientational intermolecular energy, the main difference being
that this energy is zero in the isotropic phase regardless of conformation, so there is no
need to calculate the average. The other difference is that these energies are calculated
already automatically scaled by RT so that

< Uext = Z U:xtz éxt / Z Qext (543)

%

(with the asterisk denoting division by RT) and so

ASE /R = —<Ul, >n. (5.44)
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5.3 Computational Technique

Monte Carlo sampling of the conformational space of the single molecule is achieved
using the program BOSS (Biochemical and Organic Simulation System) 3.8 [11], which
has been suitably modified to obtain a model potential consistent with previous applica-
tion of this methodology [4]. That is, the intramolecular potential energy is calculated
as a sum of effective single-torsion energies for the various torsions present, these being
modelled by a Ryckaert-Bellemans-type potential [12] suitably parameterised for each
torsion type in question. The form of the Ryckaert-Bellemans potential used in the

BOSS code is

V($) =Vo+ %[1 +cos(g + f1)] + %[1 — cos(2¢ + f2)] + %[1 + cos(3¢ + f3)]

(5.45)
That is, it is in its most general form the expansion
V(g) = Vil + (=1)"* cos(né + f)] (5.46)
n=0
so that the Vj term becomes
Vo1 = cos(0¢ + fo)] = V5[1 = cos(fo)] = Vo (5.47)
and is thus invariant with respect to ¢. The V/ term is then
, Vi
Vi1 + cos(g + fi)] = oH[1 + cos(6 + )] (5.48)
and so in general for all V! with n > 0 the V,, term is
Va
VI + (=1)"* cos(ng + fr)] = S+ (=1)"** cos(ng + fa)] (5.49)
with
m:%, (5.50)

The quantities f, are phase shift angles and for our purposes they are all zero (except

for fo). The expansion is taken upto third order as indicated in equation (5.45). The
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Figure 5.6: The form of the Ryckaert-Bellemans potential employed in the BOSS united

atom forcefield for the standard alkane torsion
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parameters required to calculate expression (5.45) are from the united-atom version of
the BOSS potential and are to be found in the BOSS file oplsua.par. The Ryckaert-
Bellemans potential is illustrated in figure 5.6 As far as the non-bonded interactions are
concerned, the atoms were modelled as hard spheres with diameters of 2.6 A so that
moves that introduce steric clashes are always rejected. The value of 2.6 A was chosen
as it is close to the “size” of the methylene combined atom (e, ¢ in its Lennard-Jones
potential) and is consistent with that used in previous applications of this methodol-
ogy [4]. All attractive forces between non-bonded atoms have been removed, since the
molecule will otherwise tend to fold up, which, while realistic for the environment in
which it finds itself (effectively a vacuum), one would think physically unrealistic in
the bulk isotropic liquid where it is surrounded by many other identical molecules. It is
only the orienting tendency of the nematic environment that is being modelled by the
molecular field, not the intermolecular interactions in the isotropic phase, so we should

choose a potential model that is reasonable for the isotropic phase, given that we have
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chosen to model only a single molecule explicitly. In addition to these modifications
the molecular field calculations were also implemented in the BOSS code to simulate
the anisotropic environment. The input to this part of the code consists of a set of
scaled strength parameters, X* = X/kpT, that determine the strength of the nematic
orienting field in comparison to the thermal energy of the system. These values are
used to construct the tensors z;; for the individual mesogenic groups having the same

form as the z5°*° in equation (5.16), namely

—X265; (1,7 =1,2,3 and (4,7) # (3,3

Tt = 27 (.7) # (3.3)) (5.51)
X* (i=7=23).

These tensors are then transformed into the common molecular (BOSS) frame using

the direction cosines of the mesogenic group axes in that frame:
zo' = X" (3laly — 0av) /2, (5.52)

where 27, are the components of the scaled mesogen interaction tensor in the molecular
(ab) frame, X* is the scaled strength parameter and [, is the direction cosine between
the mesogenic group long axis and the a axis of the molecular frame. The calculation
continues as described in the previous section, but using these scaled quantities rather

than the unscaled interaction parameter and tensor components directly.

This is standard technique in molecular field calculations, but within this particular
hybrid methodology leads to subtlety not encountered in calculations that are solely
molecular field or solely Monte Carlo in nature, and that concerns the concept of tem-
perature. In the Monte Carlo part of the calculation, BOSS operates with a “real” (ie,
unscaled) temperature, input to it in °C. The molecular field calculation, on the other
hand, works with a scaled temperature, the value of which we do not actually know
until the end of the simulation, since we do no actually input the scaled temperature
directly, but rather the scaled strength parameter, which determines the values of the
order parameters. The scaled temperature is the ratio of the order parameter (which
in this case will be the arithmetic mean of the simulation averages of the order param-

eters of the mesogenic groups) to the scaled strength parameter. Thus we have two,
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in general different, temperature scales. The question then arises as to how to ensure
that the the temperatures operating in the two parts of the calculation are reasonably
consistent, rather than widely disparate. The most straightforward way is by making
use of prior knowledge and to set the BOSS temperature to a value which is our best
estimate of that at which the V— I transition is likely to occur. The temperature scales
will then be most closely consistent in precisely the molecular field scaled temperature
regime that attracts our primary interest, namely the region in the neighbourhood of
the transition. We know that for mesogenic systems in general, and for the systems
most closely related to dendrimers for which we have experimental data in particular
(ie, liquid crystal dimers), this temperature is in the region of 400 K. This suggests
that we should employ this temperature within BOSS.

However, here we encounter another subtlety, and that relates to the fact that, for
convenience, we have ignored contributions to the interaction tensor arising from the
flexible chain regions of the molecule. In setting up the molecular field calculations we
have included only the mesogenic group contributions explicitly as they are expected
to be the dominant contribution. In the previous application of this methodology [4]
and in molecular field theories where chain interactions are included explicitly [9] the
relative strength of the contribution from a chain segment is a fraction of that asso-
ciated with the mesogenic groups. The effect of this weaker interaction coming from
each torsional segment is to create an additional contribution to the effective energy
difference between the gauche and trans forms of each such segment. This could be
equivalently conceptualised as a reduction in the effective temperature at which the
torsional space is being sampled. This suggests that we may calculate the interaction
energy coming from a single butane link in both gauche and trans forms and obtain
the difference between the two in order to estimate the size of this effect. By equating
the Boltzmann distribution between gauche and trans forms with this chain contril:)u-
tion to the gauche-trans energy difference at a real temperature of some 400 K with
the distribution at some lower artificial temperature where the chain contribution is

taken as zero, we can calculate this lower effective temperature at which the effect of
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the chain interactions may be included implicitly. We performed the simulations using
for convenience, by default, a BOSS temperature close to room temperature, namely
25 °C. It turns out [17] that, based on a transition temperature of 400 K and assuming
a strength parameter of unity for each torsional segment, the effective temperature
which models most closely the influence of the interactions arising from these segments
is in the neighbourhood of 40 °C , which on an absolute scale, seen in reduced terms,

is essentially the temperature we have employed.

It is also worth noting that since the conformers are accepted or rejected solely on the
basis of the intramolecular energy, which is independent of the molecular field energy,
it is inefficient to run the simulation multiple times, each time for a different scaled
strength parameter, since the conformations sampled by Monte Carlo will be the same
and so this part of the calculation would be repeated over and over again. Thus, the
input to the molecular field part of the program consists of a set of (scaled) strength
parameters. The molecular field calculations for the various values of X* are performed

together during the same run.

Every 500 conformations the instantaneous values and cumulative averages of the in-
tramolecular potential energy and order parameters for the mesogens are written to
file. At the end of the simulation the average quantities (for each value of X*) are
computed and also written to file, these averages being the Helmholtz free energy and
entropy differences between the isotropic and nematic phases and the order parame-
ters for the mesogens. The entropy difference is composed of an orientational and a

conformational contribution, both of which are also output.

The other inputs to the program are those required by BOSS itself and those that we
have to concern ourselves with here are mainly the Z-matrix, which defines the starting
conformation (ie, the molecule being modelled and its geometry) and the parameter file,
which enables us to change the conformational temperature, the frequency with which
the molecular coordinates are output to file and the maximum number of torsional

angles altered in a Monte Carlo attempted move. A complete specification of the
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various files required to run BOSS and their contents is given in the BOSS manual [11].

The starting conformation chosen for the molecules was the all-trans, as this has the
lowest intramolecular energy, and ground state conformations are a standard starting
point in Monte Carlo simulations of small numbers of flexible molecules at finite tem-
perature. The sampling protocol was as follows. The maximum number of torsional
angles altered in a single Monte Carlo attempted move was set to 5. The number of
torsions moved is then an integer in the range 1 — 5, chosen randomly. This number
of torsions are then altered, the actual torsional angles changed to make up this com-
plement of moves themselves being selected at random. There are two types of move
employed for any given torsional angle. One is the standard type and involves a move
of up to a certain maximum displacement, the size of the move being chosen randomly
with uniform probability over the allowed range specified. The maximum displacement
we have chosen is 20°. The other type of move is a large move of exactly +120°; this
gives the system a chance of jumping between adjacent torsional minima. The proba-
bilities of the different move types are chosen so that on average the standard moves
occur 90 % of the time and the large moves the remaining 10 % of the time. This gives
an acceptance rate of approaching 30 %. It is clear that the acceptance rate will be
influenced by the kinds of moves that are attempted. If the proportion of large moves
is increased or if for the standard-type moves the maximum displacement is increased,
the acceptance rate will fall. We would obviously like to optimise the progress of the
system in sampling phase space as a function of the number of attempted moves (or,
more exactly, as a function of computer time). If we have a very high proportion of the
large moves and also make the maximum displacements for the ordinary moves very
large, then almost no moves will be accepted. At the other extreme, almost all the
moves will be accepted, but they will be so small that the system will be essentially
stationary. Somewhere between these extremes will be the optimum we seek, and it
has become common to look upon a 50 % acceptance rate as being this optimum. It
should be said, however, that the basis of this rule of thumb is certainly questionable;

indeed, for some systems acceptance rates of considerably less than the “ideal” value
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of 50 % (even as low as 10 %) have been shown to produce the greatest rate of pro-
gression through phase space, at least by the measures employed, suggesting that a
small number of large moves is most cost effective [18, 21]. The protocol we have used
may have an acceptance rate of somewhat less than 50 % (which could clearly be “im-
proved” by reducing the proportion of large moves and the maximum displacement),

but nevertheless seems to be fairly well-optimised.

It is customary in Monte Carlo simulations to divide the process into two distinct stages,
namely an “equilibration” stage followed by a “production” stage. In the former, the
system is allowed to evolve from the starting configuration and allowed to settle down
so that the instantaneous properties oscillate about a mean value which is does not
show any further systematic variation with continued progess of the simulation. Then,
from a point assumed to be representative of the state of the system at equilibrium,
the simulation is continued and data to be used in calculating the bulk properties
of the system are collected. This is the production stage, which is made as long as
necessary such that the cumulative simulation estimates of the properties of interest
have converged to constant values. Strictly speaking, of course, this two stage procedure
is not actually necessary. All Monte Carlo simulations could in principle be started from
any configuration and one could take the cumulative estimates of the properties after
a sufficiently long “time” that the the distribution of states had reached the limiting
distribution of the Markovian chain, regardless of the starting configuration. However,
if the initial configuration is highly unrepresentative of the system at the state point
in question (ie, its Boltzmann probability is very low), this could be a very, very long
time indeed from a human perspective, since the simulation would have to generate a
sufficiently large number of configurations that the appearance of the initial set of highly
unrepresentative ones had become progressively less unrepresentative until ultimately
they had occurred no more frequently than would be consistent with the Boltzmann
distribution. The way around this, then, is to run the simulation until there is no
longer any systematic trend in the fluctuations of the instantaneous properties when

viewed on a “human” scale of, say, tens to hundreds of thousands of configurations,
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so that what is observed is a Poisson distribution around a constant value. Then,
the simulation can be restarted from the last accepted configuration from the initial,
equilbration, stage, and a further simulation, the production stage, can be performed

over which the bulk properties of the system are computed.

In the case of the simulations presented here, the equilibration stage is almost a mere
formality, since we are just sampling the torsional degrees of freedom of a single
molecule, and the starting conformation (the all-trans) is one whose conformational
energy is sufficiently close to the mean value at equilibrium as to be within the range
of the likely oscillation arising from Boltzmann sampling of states at the BOSS tem-
perature employed (ie, room temperature). To illustrate this, figures 5.7 and 5.8 show
the instantaneous values of the intramolecular potential energy as a function of the

conformer number. It can be seen that from essentially the start of the simulation

Figure 5.7: Instantaneous intramolecular energy over the first one hundred thousand

conformers.
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the energy oscillates about a constant mean value and that the energy of the initial

221



Figure 5.8: Instantaneous intramolecular energy over the first million conformers.

125000
Ui/ RT

100000 H

75000

50000

25000 -

0 200000 400000 600000 800000 1000000
N

conformer is well within this oscillation, suggesting that the starting conformation is
just as representative (on the length scale of practical simulations) as those accepted
by the Boltzmann sampling scheme in the system at equilibrium. The properties of
the system, which are all simulation averages of one form or another, are computed
from the total number of conformations included in the averaging, which should clearly
be performed over a sufficiently large number of them that the cumulatives as a func-
tion of the number of conformers have converged to constant values. In this study,
convergence of the simulation averages was generally achieved after about one million
conformations, as evidenced by the cumulative averages of the intramolecular potential
energy (see figures 5.9 and 5.10) and the mesogenic group order parameters (see figures
5.11 and 5.12). We have an additional check of convergence in the case of the order
parameters in that not only should each mesogenic group order parameter converge to

a constant value, but it should also converge to the same constant value as that of all

the others.
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Figure 5.9: Cumulative average intramolecular energy during the first hundred thou-

sand conformers of the production run.
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It can be seen that convergence of the order parameter (the quantity thought to be
the most sensitive marker of convergence in these calculations) occurs within about
one million attempted moves. The value of X* corresponding to the N — I transition
was located as the point where the graph of AA;y(X*)/RT cuts the abscissa. The
values of the simulation averages corresponding to this value of X* are then the N -7
transitional values. So from the range of X* we have the temperature dependence of the
properties (ie, part of the phase diagram) and from the value of X* at the transition,
X3, we have the transitional properties. These calculations were performed not only
for the zeroth order dendrimer multipodes of various chain lengths, but also for the

multipodes with laterally attached mesogenic groups.

Treatment of Errors

We should remember in performing these simulations that, in part, it is an idealised

computer experiment, and that like an experiment, this aspect will be subject to er-
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Figure 5.10: Cumulative average intramolecular energy during the production run.
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ror. The size of the statistical errors associated with the results may be estimated by
means of performing a typical production run subdivided into a number of blocks. The
simulation average quantities for each of these blocks is then obtained, in addition to
the overall averages and this is used to provide information about the likely statistical
error in the quantities. The number of blocks should be chosen such that the length
of each block is short enough that there are a reasonable number of blocks available
to yield sub-averages, but not so short that the averages within each block are highly
correlated (ie, so they are statistically independent). These data are then analysed to
give an indication of the likely errors in the following way. The standard deviation in
the simulation-calculated value X of some property of the system, obtained in such a
simulation run is given by [13]

o(X) = \/ N@v—l__f)' SO - X2, (5.53)

i

where N is the number of blocks and X; is the value of the property obtained from

block 7 alone. We have chosen to take N = 10 so that we divide a typical production
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Figure 5.11: Cumulative average order parameters of the four mesogens during the first

hundred thousand conformers of the production run.
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run of 10° configurations into ten blocks of 10° configurations each. In addition, the
properties obtained as averages for each of the individual blocks may be analysed to see
if there is any systematic drift in the values rather than a Poisson distribution of values

about the overall average. The latter indicates the system is indeed at equilibrium,

whereas the former implies the opposite.

5.4 Results and Discussion

5.4.1 Determination of the Transitional Properties

We have seen previously how we may calculate a variety of properties of interest for
various strengths of the molecular field. We now turn our attention to the problem of

how to locate the nematic-isotropic phase transition and thereby determine the NV — 1
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Figure 5.12: Cumulative average order parameters of the four mesogens during the

production run.
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transitional values of these properties. The N — I phase transition occurs, by defini-
tion, where the free energies of the N and I phases become equal, that is, when the
difference in the free energies between the two phases vanishes. From the simulation
we obtain the value of this difference, AA;y/RT, for each value of the scaled strength
parameter for which the calculations are performed. Figures 5.13 and 5.14 show the
quantity AA;y/RT as a function of the scaled strength parameter for a typical ter-
minal dendrimer and a typical lateral dendrimer respectively. It can be seen that
AA;n(X*)/RT has the same form as in the standard Maier-Saupe theory, rising from
zero, passing through a maximum and then decreasing and passing through zero at
the transition to become negative in the nematic phase, with the region around the
transition being approximately linear. To locate the N — I transition precisely, the
simulations were restarted from the last accepted configuration and another produc-
tion run performed using a smaller range of strength parameters centred around the

approximate location of the transition (ie, the linear region). Then, the value of X* at
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Figure 5.13: The scaled free energy difference as a function of the scaled strength

parameter for a medium sized terminal dendrimer
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the transition, X}, is obtained by linear interpolation between the points most closely
straddling the transition. That is, if we write the gradient of the straight line as
m = (y2 — 1)/ (x2 — 1), (5.54)

where (z1,41) and (z9,y2) are the points either side of the transition, then the value
of the scaled strength parameter for which the free energy difference is zero may be

found by setting y = 0 and solving for z in the equation of the straight line written as
Y — Yo = m(z — o) (5.55)

(where g, yo are either z1,y; or zs,y2) to yield
T = ~yo/m + o, (5.56)

thus giving us X3;.
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Figure 5.14: The scaled free energy difference as a function of the scaled strength

parameter for a medium sized lateral dendrimer
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To obtain the properties corresponding to this value of X* we perform a similar inter-
polation procedure on the graph of the property as a function of the scaled strength
parameter. That is, we find the value of the ordinate of the point corresponding to
X3 on the straight line between the two points straddling the transition. Thus, using
our previous notation, if the points either side of the transition are (z1,y;) and (z2,¥2),

then the value of the property at the transition is

y = m(z — o) + Yo, (5.57)
where z = X};;.
Figures 5.15 and 5.16 show the average mesogenic group order parameters as a function
of the scaled strength parameter for a typical terminal dendrimer. Figure 5.15 shows
the order parameters over the same range of X* as in the free energy curve 5.13. Within

this range the order parameters are seen to be approximately linear in X* and are well

converged. Figure 5.16 shows the order parameters over a much greater range of the
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scaled strength parameter, so as to encapsulate as near to the total range of the order
parameters as possible. As expected, we obtain a curve similar to the Maier-Saupe
result—a sigmoid curve beginning at zero, rising monotonically with an approximately
linear central region and finally becoming shallower and forming a plateau as it rises

near to its ultimate limiting value of unity, reached in the limit that X* — oc.

Figure 5.15: The order parameter as a function of the scaled strength parameter in the

transitional region for the terminal dendrimer of figure 5.13
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Figure 5.16: The order parameter as a function of the scaled strength parameter for

the terminal dendrimer of figure 5.13
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Figures 5.17 and 5.18 show the free energy difference AA;y/RT as a function of the
scaled temperature T* =< P, > /X* for the terminal and lateral dendrimers featured
in figures 5.13 and 5.14 respectively. We note that the form of the graphs is as expected
for the curve AA(T)/RT in general on passing through a weakly first order phase
transition, and is very similar to the Maier-Saupe case encountered previously. That
is, the curve rises from a negative value with a positive gradient, which is rapidly
diminishing, and it looks as though it may join the line AA/RT = 0 smoothly without
a sharp change in gradient, but instead it just cuts this line (so that passing to the
line AA/RT = 0 would involve a discontinuity in gradient) and then changes its own
gradient abruptly, turning back on itself to fall to zero smoothly and continuously from

the right.
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Figure 5.17: The scaled N — I free energy difference as a function of scaled temperature

for the terminal dendrimer of figure 5.13
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Figure 5.18: The scaled N — I free energy difference as a function of scaled temperature

for the lateral dendrimer of figure 5.14
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Figures 5.19 and 5.20 show the mesogenic group order parameters as a function of the
scaled temperature for the terminal and lateral dendrimers featured in the free energy
curves respectively. We note the Maier-Saupe-like form of < P, > (T'), in particular its
multiple-valuedness in certain temperature regimes due to the order parameter curve
bending back on itself, a feature we have already discussed in relation to the Maier-

Saupe theory in Chapter 2.

Figure 5.19: Mesogenic group order parameters as a function of scaled temperature for

the dendrimer of figure 5.13
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Figure 5.20: Mesogenic group order parameters as a function of scaled temperature for

the dendrimer of figure 5.14
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5.4.2 Statistical Errors

The likely statistical errors in the various properties calculated in the simulation were
obtained by the method already described (see section 5.3), taking a terminal dendrimer
of intermediate size as being a typical system. The errors in the simulation averages
were found to be as follows. The accuracy with which the N — I transition is located
as a function of the scaled strength parameter was to within 1.5 %, the error in the
transitional order parameter was 1.7 %, that in the scaled transition temperature is
0.39 % and that in the transitional entropy change was 4.1 %. Similarly the pre-extant
results for the dimers had associated with them errors of 0.76 %, 0.62 %, 0.88 % and
2.6 % in the values of X}, < Py > T, and ASyr/R respectively.
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It is clear that in the main the errors in the properties calculated are small. It will
be noticed, however, that the statistical error in the entropy change is considerably
greater than for the other properties. This clearly deserves some comment. We might
tentatively hypothesise that the reason for this is that the statistical sampling of the
N —1 entropy difference is somehow poorer than for the other properties, this being due
to the way it is calculated (see section 5.2.3) as a difference between two sampled quan-
tities, such that this difference is small in comparison to the order of magnitude of the
quantities. That is, whilst the orientational contribution to the entropy difference is es-
sentially a single sampled quantity (the rotational partition function weighted average
molecular field energy) since the isotropic orientational energy is zero, the conforma-
tional contribution is a difference between the non-weighted (isotropic) and rotational
partition function weighted (nematic) averages of the intramolecular potential energies.
In this case, we may be calculating a property that is a relatively small difference be-
tween the averages of two relatively large quantities—in which case one would expect
the sampling to be relatively poor. In addition we might speculate that a significant
contribution to the total difference could be coming from a relatively small number of
very large contributions to this difference, the larger contributions being progressively

more rarely sampled. To see this we might rewrite equation (5.36) as

N N N
TASEE =3 U/N = 3 Uk Qo / > Qi (5.58)
i=1 i=1 i=1

and then manipulate it as follows:

Ot Uty - NS UL O
TASE:VO?f — (Zz Qext) (Z;V[jlzm)Qz Zz int % ext
3 wext

:;Uiint I:(;Qéxt) _NQéxt}/Nzi:Qéxt

- {ZUiint [ < Qext > — Qi }}/ Zngt. (5.59)

Thus we see that the conformational entropy difference is related to the sum of the

differences between the mean rotational partition function and the rotational partition
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function for the individual conformers, since the denominator is a constant. Obviously
this is something of an oversimplification since the differences are also scaled by the
intramolecular energies of the same conformers, and so the argument only holds if
there is no simple systematic cancellation of effects. Even so, we do not know if rarely
sampled, large contributions coming from very large partition functions are sufficiently
large to be significant in relation to their frequency of occurrence to make them a

significant contribution. It is in principle a subtle balance of effects.

The final clarification would be to calculate the simulation éstimate of the total entropy
difference as a function of the number of conformers to look at how quickly it converges
so that we can compare its rate of convergence to that of other properties. This we
have done (see figure 5.21) and it is clear that the total entropy change converges much
more slowly than the order parameter (see figures 5.11, 5.12), which may at first seem
surprising, since in molecular field theories the entropy change is normally thought of
as being quadratically related to the order parameter. However, it is the orientational
entropy difference that is related to the order parameter—not the conformational con-
tribution. When we look at the total entropy change in relation to the convergence of
its component contributions (see figure 5.22), the source of the effect becomes clear.
The orientational entropy change converges very quickly in a manner that mirrors the
order parameter, whereas the conformational contribution is quite poor, indeed we
would say that it has not converged; it is this contribution, superimposed on the orien-
tational part, that produces the poor convergence of the total. This confirms that it is
primarily the sampling of the conformational entropy difference that is the root cause

of the relatively large statistical error in the calculated transitional entropy change.

Indeed, the foregoing analysis is supported by the fact that for the dendrimers the
statistical error in the conformational contribution to the total entropy change, is
found to be much greater (17 %) than the orientational contribution (3.1 %), so even
though the former is in general found to be a small contribution to the total (see later)

it is subject to rather large statistical noise, thus significantly increasing the error in
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Figure 5.21: Simulation estimate of the scaled N — I entropy difference as a function

of the number of attempted moves
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the total. The results for the dimers were similar with the error in the orientational

contribution at 1.1 % and that in the conformational contribution at 36 %.

5.4.3 The Transitional Properties

We turn now to the predictions obtained from the production runs for the transitional
properties of the multipodes and, for comparison, to results for liquid crystal dimers

obtained using the same methodology.

First, we consider the variation of the scaled transition temperature, Ty, the en-
tropy change at the transition, ASy;/R, and the order parameter at the transition,
< P, >M! for the analogous dimers as a function of the number of units, n, in the
flexible spacer (including the linkage group) joining the two mesogenic groups. These

data were generated using the same methodology and essentially the same model as
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Figure 5.22: Scaled N — I entropy difference (—) and its orientational (—=) and

conformational (- -) contributions as a function of the number of attempted moves
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the one we have employed so as to facilitate comparison with systems that, unlike the

multipodes themselves, do in fact exhibit nematic phases.

Figure 5.23 shows the variation of Ty, with n for the ether-linked dimers. We note the
marked odd-even effect, becoming rapidly attenuated as the spacer length increases, the
odd members having lower values than the adjacent even members of the series. The
values for the even members decrease across the series, whereas those for odd dimers
increase, both sets eventually converging to a constant long chain limit approximately
equal to the Maier-Saupe value, the even dimers approaching the limit from above,
the odd ones from below. In the limit of short spacer length and complete correlation
of the mutual orientations of the mesogens we would expect Tj; to take on a value
equal to twice that of a system of Maier-Saupe rods, namely, 0.4406. We then expect
to see a decrease towards the Maier-Saupe value in the limit of long spacer length.

This is indeed what we observe for the even dimers. For the odd dimers there must
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Figure 5.23: Scaled N — I transition temperature of ether-linked dimers as a function

of spacer length

Tnr o 040 -

0.36 -

0.32 |

0.28 1

0.24 -

0.20 g T T T T T T
0 5 10 15 20 25 30 35 40

be some additional effect. The strong influence of the parity of the spacer is usually
rationalised in the following way. Even dimers have a shape that on average is much
more linear that odd dimers. This is because for the even dimers there is a much
larger proportion of linear conformers with sufficiently low intramolecular energy to
be thermally accessible than for the odd ones. (The only way an odd dimer can have
a linear conformer within the RIS model is to have at least two gauche links.) That
is, for odd dimers the vast majority of the conformers (in the RIS model) that are
(in practise) available are bent (some 90 %), whereas only half the conformers of even
dimers are bent. This depresses the scaled transition temperature of the odd dimers
with respect to even ones of similar spacer length, giving rise to the characteristic odd-
even alternation of flexible dimers. In the limit that the spacer is sufficiently long that
all correlations between the orientations of the mesogenic groups are lost, the value
of T%, then becomes independent of the parity or length of the spacer and takes on

approximately the Maier-Saupe value of 0.2203.
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Another consideration in molecular field calculations as regards N — I transition tem-
peratures is the volume of the system. It is possible to take into account the effect of the
volume of the system on the transition temperature and here it is more pressing to do
so because of the need to compare between systems with different molecular volumes.
The manner in which this may be achieved has been given by Luckhurst [6, 22] and is
consistent with the analysis of Cotter [23] who showed that for statistical mechanical
consistency the volume dependence in a molecular field theory based (as it will be) on
the canonical ensemble must be inverse linear. We write the molecular field strength

parameter in this case as
X =ne¢pv ! Py, (5.60)

where n is the number of mesogenic groups, v is the volume of one mesogenic group
and ¢ is the volume fraction of one mesogenic group. This clearly simplifies to

nePq
’
Vmol

X = (5.61)

where Vi, 1s the total molecular volume. We take out a factor of nv from the denom-

inator
néﬁg 6?2
X = = 5.62
nv(Vimo/nv)  v(Vige/v) ( )
so that

T k5T v (Vi /rv)
where {¢/kpT}~' = T*' is the scaled temperature. We rearrange this for the scaled

temperature and put 7% = T3 to obtain the scaled transition temperature as

NI * *
T*’ — P2 /XNI — TNI (564)
Ny (Vo /1) (Vi /)’

where T3, = _P—;v ! /X% is the scaled transition temperature without allowing for vol-
ume effects. The purpose of scaling the molecular volume as we have done is so that

we may then rescale the new scaled transition temperature with the volume of the
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mesogenic group so that the quantity we are calculating to compare to the real experi-
mental values remain dimensionless for convenience. That is, the quantity we actually
calculate is

Trr

m. (5-65)

Thrv =
For instance, in the case of the dimers we have the total volume of the molecule as
Vinol = nv + new, Ve, + 2Vo (5.66)
and we factor out and scale with nv as

|
NiCH VCHQ -+ ——Q, (5.67)
1% v

Vinol/nv =1+

leaving the denominator of (5.64), when itself scaled by the volume v of the mesogenic
group as in (5.65), dimensionless. An analogous procedure was followed for the other
molecule types in this study. The results of this process as applied to the ether-linked
dimers are shown in figure 5.24 and we note the remarkable similarity to the qualitative

form of the corresponding experimental results (see figure 5.25).

Figures 5.26 and 5.27 show the variation of ASy;/R and < P, >™! with n respectively.
Again we see a clear alternation with parity, with the even members having higher
values than their adjacent odd member homologues. In the long spacer limit the values
of the odd and even members begin to converge to a constant value, which in the case
of ASyr/R would appear to be about twice the Maier-Saupe value of 0.417, namely
about 0.8, and which in the case of < P, >"! would appear to be approximately the

Maier-Saupe value itself, namely about 0.4.

It is important to notice that, contrary to the intuitive assumption of many, the order
parameter at the transition does not necessarily reflect the value of Th;. In other words,
one might have assumed that dimers with a relatively high 7%, also have a relatively
high < P, >™! and that these two transitional properties may be usefully thought
of as directly related in some simple physical way. If this were the case, dimers that

are on average more anisotropic would have a higher T5%; and this would be assumed
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Figure 5.24: Scaled N — I transition temperature of ether-linked dimers as a function

of spacer length, taking into account the effect of molecular volume
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to lead physically by proxy in some way to a higher value of < P, >, Indeed, this
would seem to fit in well with the basic observation that T%; and < Py >N appear to
alternate in sympathy with each other, with the even members taking the higher values.
However, if the presence of bent conformers depresses T, with respect to its upper
limit (which occurs when the mesogenic groups are totally correlated at short chain
lengths) of twice the Maier-Saupe value (thus corresponding to a rigid, linear molecule)
then we would be lead to expect this to be reflected in order parameters of transition
lower than the corresponding value in the same physical limit (ie, 0.429). This is
clearly not necessarily the case, however, as evidenced by the even dimers which have a
considerably higher value of < P, >"7 than this for spacer lengths significantly different
from both the extremes (which correspond to the limits of completely correlated and
completely uncorrelated mesogenic groups). To understand this intriguing phenomenon
of transitional order parameters in excess of the Maier-Saupe value in the case of the

even-spacer dimers, we consider the isotropic phase and what happens when on cooling
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Figure 5.25: Experimental N — I transition temperature of ether-linked dimers as a

function of spacer length
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it undergoes a transition to the nematic phase. That is, there is a large proportion of
bent conformers in the isotropic phase, which nevertheless have energetically low-lying
linear conformations available, so that when the transition occurs to the nematic phase,
linear conformers are considerably more favoured by the nematic environment and the
energetic cost of converting bent conformers to linear ones is less than the energy
reduction by virtue of being in the ordered phase. Thus the probability of occurence
of linear conformers rises and that of bent ones falls and so the preponderance of
linear conformers increases to a higher value than it would otherwise be expected to
be if there were no change in the conformational distribution. The phase can thus be
considered to be at an effective temperature much less than its actual temperature—
or alternatively that it has an effective transition temperature much higher than the
actual temperature at which the order parameter increases discontinuously from zero.
Thus the nematic phase at the transition temperature is behaving like a nematic at

a much lower reduced temperature (ie, much further into the nematic on the phase
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Figure 5.26: Scaled N — I entropy difference of ether-linked dimers (¢) and its orien-

tational (+) and conformational ( O) contributions as a function of spacer length
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diagram). Hence the order parameter reflects this and is elevated above the Maier-
Saupe value. In the case of the odd dimers this effect does not operate because the
energy required to straighten out the odd dimers is so high that the proportion of
conformers with a high anisotropy is essentially unchanged at the phase transition. In
consequence there is no substantial change in the conformational distribution in going
from the isotropic to the nematic phase. The foregoing analysis of the unusually high
order parameters of the even dimers in contrast to the odd ones is based upon energetic
arguments alone and is strictly speaking incomplete and non-rigorous, since it ignores
entropic effects. The conformational distribution in the ordered phase compared to the
isotropic phase is also determined by the relative entropies of the two phases, not only
the conformational entropies, but also the orientational ones, since the orientational
entropy is also affected by the conformational distribution (ie, if the conformational

distribution changes, so does the orientational entropy).
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Figure 5.27: Orientational order parameter of the mesogenic groups of dimers at the

N — I transition as a function of spacer length
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Similar arguments can be constructed to rationalise the variation of ASyr/R with
spacer length. The entropy change at the transition is expected to correlate well
with the order parameter, since the latter is a measure of the orientational order just
before entering the isotropic phase. The higher the order parameter, the higher the
associated entropy change is expected to be. The correlation will not be exact, since
strictly the correlation will be with the change in orientational entropy rather than
the total entropy change; however, the orientational contribution is, for the most part,
predominant. In the limit of long spacers we expect ASy;/R to take on twice the
Maier-Saupe value (since there are two mesogenic groups which act independently),
namely 0.834, which is indeed approximately what we find. If the entropy change
does indeed tally with the order parameter then in the absence of the conformational-
orientational synergy discussed earlier we would have expected an odd-even effect,
attenuated, but perhaps not as rapidly as that in T%,, with the overall trend being

one of rising to the long chain limit from below. However, this synergistic effect of
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bent conformers being converted to linear ones in the nematic phase causes many of
the even dimers (ie, ones other than those near the spacer length extremes) to have
orientational order parameters and hence, entropies, higher than that found at the
long spacer limit where the mesogenic groups are uncorrelated. Thus the higher than
expected order parameters ultimately lead to higher than expected overall entropies of
transition. In addition, one might have thought that we could obtain support for the
concept of the operation or otherwise of this synergistic effect in different systems by
looking to the change in conformational entropy as a proxy, since the conformational
entropy in each phase is related to its conformational distribution. Thus we find that
the magnitude of the conformational contribution is somewhat larger relative to the
dominant orientational contribution for the even dimers than the odd ones. However,
the conformational entropy change for the odd ones is still not insignificant, and we
surmise that the straightening out of bent conformers is simply a contribution to this
entropy change for some systems, and that the issue is somewhat more subtle than
equating significant changes in conformational entropy with significant conformational-
orientational synergy in the system. The conformational entropy change (on going from
the nematic to the isotropic phase) in the case of the even dimers is positive, suggesting
that the system becomes conformationally more disordered on passing into the isotropic
phase, which is what we might intuitively expect. However, we note that in the case
of the odd dimers this entropy change is not just smaller in magnitude, but negative,
revealing that the system becomes more conformationally ordered on passing into the
isotropic phase, which would seem counter-intuitive. It may be that for odd dimers,
for whom the vast majority of available conformers are non-linear, the influence of
orientational order in the nematic phase on the conformational distribution actually
drives it to be more diverse and access a greater range of states (an odd dimer in the
trans conformation requires at least two gauche links to become linear) to attempt to
conform with the orientationally ordered environment and so the system has increased
order in orientational degrees of freedom at the expense of that in the conformational

degrees of freedom in the nematic compared to the isotropic phase. In any case, the
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problem of finding simple ways of understanding the changes in the conformational
distribution and relating these to the conformational entropy change may turn out to

be far from straightforward, as we shall see later with regard to the multipodes.

We now turn our attention to the multipodes (zeroth generation dendrimers, G-00CB)
with terminal and lateral attachments and consider how their transitional properties
vary with the lengths of the flexible chains. In the case of dimers the term “chain
length” is clearly to be interpreted as the number of links in the flexible spacer con-
necting the two mesogenic groups. In the case of the multipodes we take the defining
chain length, n, to be the number of units in the chain (including the linkage group)
connecting the mesogenic group to the central quarternary carbon atom. The ques-
tion then arises as to how comparison should be made between dimers and multipodes
of various sizes. It would seem clear that the dimer most closely related to a given
multipode would be the one whose spacer contained one more than twice the number
of units in the dendrimer’s characteristic chain length. The multipodes, then, are en-
visaged as two dimers superimposed at the mid-point of the spacer. As a result, the

dimer analogue of any given dendrimer will always have an odd spacer length.

Figure 5.28 shows the result of plotting Tx; against n (now the dendrimer chain length,
not the dimer spacer length) for the terminal and lateral multipodes, with the analogous

dimer results plotted on the same graph for sake of comparison.

As can be seen the dimer results when compared in this way no longer appear to
exhibit an odd-even effect—an inevitable consequence of the fact that this comparison
selects only the odd membered dimers for inclusion. The value of Ty, for the dimers
rises with increasing chain length from a very small value to a limit close to that of
the Maier-Saupe value of 0.2203. This suggests that for short spacers the molecule
has a high biaxiality, but that as the spacer length grows, the additional flexibility in
conjunction with the continuous torsional potentials, allows the mesogenic groups to
mutually arrange themselves in a manner more in keeping with the liquid crystalline

environment, and so the molecule becomes less biaxial and more anisotropic. In the
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Figure 5.28: Scaled N — I transition temperatures of ether-linked terminal (¢) and

lateral (+) dendrimers and dimers ( O) as a function of chain length

Thr 0304 )
0.26 -
022 =
0.18 -
0.14 . . . |
2 4 6 8 10 12

long chain limit we expect all orientational correlations between the mesogenic groups

to be lost and so to obtain the Maier-Saupe result, as indeed we have found.

In the case of the terminal multipodes, there is clear evidence of some form of odd-even
effect—even though the dimer analogues of these molecules all have odd spacers. The
effect is rapidly attenuated along the series. In this case it is the odd members which
have values higher than a curve fitted through the points, although the distinction
between odd and even is in this case somewhat arbitrary, depending as it does on the
definition of the chain length. The Ty, values rise from below the Maier-Saupe limit
at the short chain extreme to a value close to this limit at the long chain extreme. We
surmise that as the chains become longer the additional flexibility allows the mesogenic
groups to align into more anisotropic mutual orientations, as a result of the mesogenic
group orientations becoming less correlated, until in the limit, the system is Maier-

Saupe-like. The lateral multipodes, by contrast, exhibit in many ways completely the
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opposite behaviour—almost the mirror image of the terminal case. There is again an
odd-even effect in 7%, but here it is the even members that have higher than expected
values. There is also an attenuation of the effect of similar rapidity, superimposed
on an overall trend going towards the same, Maier-Saupe, limit—except that here
the trend is a falling one, decreasing from values considerably higher than the Maier-
Saupe value. In this case we have to speculate that the lateral multipodes with short
chains are, on average inherently anisotropic, that is, that with very few flexible links
they are constrained geometrically, to a semi-rigid, anisotropic shape. In the case
of the dimers and terminal multipodes it was this effect that conferred an average
geometry inherently low in anisometry, but that with increasing number of flexible
links, the mesogenic groups became less correlated and the molecule less like a semi-
rigid constrained low-anisometry object and able to adopt more anisotropic shapes in
the presence of the orienting molecular field. Here we have the opposite situation; the
short chain molecules are on average quite anisometric, but as we pass to higher chain
lengths the orientational correlation of the mesogenic groups is gradually lost, so that
the Maier-Saupe limit is approached from above rather than below. We also make
the observation that, the dimers and the dendrimers reach the same long chain limit,
as expected, but that for dendrimers the limit is reached at greater chain lengths. In
addition, we note that the terminal dendrimers have lower values than the comparative
dimers, so that even though both series reach the same limit from below, the dendrimer
curve appears shifted to the right by comparison with the dimer curve. This implies
that not only are the terminal dendrimers inherently less anisotropic than the lateral
ones at chain lengths where the mesogens are correlated—they are also somewhat less
anisotopic than the related dimers. This is taken to be due to the more tetrahedral

shape of the terminal dendrimers in the short chain limit.

We now turn our attention to the variation of the transitional values of the second
rank orientational order parameter with chain length, the results for which are shown
in figure 5.29. We see, for the short chain dimers, a rapid increase with increasing

chain length. The curves then become shallower fairly rapidly and finally reach a
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Figure 5.29: N — I transitional value of the mesogenic group orientational order pa-
rameters of ether-linked terminal (¢) and lateral (+) dendrimers and dimers (0) as a

function of chain length
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plateau; the long chain limit would appear to be approximately the Maier-Saupe value
of 0.429. For the terminal dendrimers we see a clear odd-even effect superimposed
on a general trend that falls rapidly from a very high order parameter to about the
Maier-Saupe value in the long chain limit, with the odd-even effect becoming rapidly
attenuated as we pass along the series. The lateral dendrimers, on the other hand, do
not exhibit an unambiguous odd-even effect (although there is just the hint of some kind
of alternation with parity), but simply fall—again to approximately the Maier-Saupe
value in the limit. This limit of < P, >"! for the various molecule types results from
the fact that in the limit of long chains there is sufficient overall molecular flexibility and
freedom through the continuous nature of the torsional potentials that the mesogenic
group orientations are completely uncorrelated. However, there is an additional feature,
namely that the value of < P, >™! for the multipodes starts at such a high value—

higher than the Maier-Saupe value—at short chain lengths, and the Maier-Saupe limit
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is reached from above for both “odd” and “even” multipodes. We might speculate
that, in a manner somewhat analogous to the similar phenomenon seen in even spacer
dimers, there is a significant proportion of anisotropic conformers that are low in energy.
When the transition occurs to the nematic phase, however, a significant proportion of
the conformers may then become converted to ones with a higher anisotropy, since this
is now favoured by the orienting environment and outweighs the small energetic cost of
undergoing the conversion. This confers on the nematic phase an effective temperature
significantly less than the phase transition temperature, elevating the order parameter

above the normal upper limit.

Figure 5.30: Scaled N — I transitional entropy change of ether-linked terminal (o) and

lateral (+) dendrimers and dimers ( O) as a function of chain length
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We now turn our attention to the entropy change at the N — I transition (see fig-
ure 5.30). In the case of the (odd) dimers we see a curve rising from a very small
value and reaching a plateau at about twice the Maier-Saupe value of 0.417, namely,

ca. 0.8. In the case of the terminal multipodes, we see a clear odd-even effect su-
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Figure 5.31: Scaled N — I transitional entropy change (¢) and its orientational (+) and

conformational ( O) contributions as a function of chain length for terminal dendrimers
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perimposed on a falling trend which starts at a very high value (ca. eight times the
Maier-Saupe value), passes through a minimum of ca. 1.3 at a chain length of seven
and finally levels off at a limit for long chains of about twice that for dimers, that is,
four times the Maier-Saupe limit or about 1.6. Here the even parity members take on
the high values and the odd-even effect is rapidly attenuated. The lateral multipodes
also show a falling trend, superimposed on a much more muted odd-even effect, from a

similar very high value down to approximately the same limit of about four times the

Maier-Saupe value.

The limits attained by the dimers and multipodes at long chain lengths are consistent
with the increase in flexibility as the chain length is increased and the resulting loss of
orientational correlations of the mesogenic groups. In the limit of complete decoupling
we expect the value of AS/R to be twice the Maier-Saupe value for the dimer series and

four times the Maier-Saupe value for the dendrimers. This is in fact what we observe
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Figure 5.32: Scaled N — I transitional entropy change (¢) and its orientational (+) and

conformational ( O) contributions as a function of chain length for lateral dendrimers
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at the long chain extreme of the range studied. The general trends in the values can
be explained on the basis that the transitional entropy change essentially reflects the
order parameter at the transition. This can be understood intuitively in the sense that
the transitional order parameter is obviously a measure of (orientational) order in the
system just before it undergoes transition to the isotropic phase, where it takes on a
fixed value. Thus, the higher the orientational order at the transition, the higher the
associated entropy change is expected to be when the system becomes isotropic. We
should note, however, that the associated entropy change is strictly the orientational
contribution to the total. More precisely, the orientational entropy change is quadratic
in the order parameter. Nevertheless, the orientational entropy change is the dominant
contribution to the total and so to a first approximation we would expect a reasonable

correlation, and this is indeed what we find.

So, given that the overall trend in the dendrimer entropy changes is from a very high
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value twice that expected in the limit that the system is Maier-Saupe-like decreasing
down to that limit, it seems logical to rationalise these results in the following way.
The higher-than-limiting values of AS/R of the multipodes are taken to be due to the
synergy between the conformational distribution and orientational ordering (which we
invoked to explain the similarly elevated transitional order parameters) and the decline

of the values to the long chain limit we take to be a decorrelation effect.

In addition to these general trends there is an intriguing comparison to be made between
the lateral and terminal multipodes with regard to the entropies of transition and their
contributions. The lateral multipodes, for the most part, have the higher entropies
of transition, especially for the odd members. This stems from the fact that the
conformational contribution to the entropy change is positive, whereas for the terminal
ones it is negative. Indeed, the dominant, orientational contribution to the total in
the case of the lateral dendrimers is, for the most part, somewhat less than for the
terminal dendrimers, however, the terminal dendrimers have a conformational entropy
considerably larger in magnitude than the lateral ones, and also negative. Thus in the
terminal case the overall entropy change is composed of a huge orientational entropy
change, mitigated by a somewhat smaller, but still significant conformational entropy
change. This is to be contrasted with the lateral case, where we have a negligible
conformational contribution and so the total entropy change is composed essentially
entirely of the orientational contribution, the size of which is comparable to the total
change in the terminal case. This seems to indicate that while the overall values for
both sets of dendrimers are roughly the same, the underlying reasons may be somewhat

different.

In a similar manner to the case of the dimers we may try to relate the conformational
entropy changes to orientational-conformational coupling in the systems. The terminal
multipodes have a relatively large, conformational entropy change at the transition,
which would seem to correlate with transitional order parameters in excess of the

Maier-Saupe limit. The values are, however, opposite in sign to that in the case of the
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even dimers, which also exhibit the synergistic coupling. In addition, they are then
negative, which is counter-intuitive, since it shows that the nematic is conformationally
disordered with respect to the isotropic liquid. Furthermore, the lateral dendrimers also
must exploit this synergistic coupling, since their transitional order parameters (and
total entropy changes) are of about the same magnitude (or greater) and yet their
conformational entropy changes are very small, and positive. To add to the confusion,
the odd dimers do not appear to exhibit this coupling and whilst their conformational
entropy changes are smaller than the even ones in magnitude, they are larger than
for the lateral dendrimers and also negative in sign. It would appear, then, that
the conformational-orientational synergy that is the vehicle allowing the transitional
order parameter to exceed the Maier-Saupe value does not necessarily impact on the
conformational distribution in such a way as to cause a dramatic or even well-defined

change in the conformational entropy.

It may be that, due to the enormous complexity of conformational states available
to systems with this degree of molecular flexibility, there is no easy understanding of
all the effects on the conformational distribution of passing into the orientationally
ordered phase and how this relates to conformational-orientational coupling. Indeed
we cannot even predict the sign of the change in systems in which we believe this effect
to operate, let alone what its magnitude should be in relation to systems for which
the effect is believed to be negligible. This is surely in part because it is far from
clear what are the analogues of “linear” and “bent” as limiting conformation types
in the case of the G-00CB dendrimers (assuming such concepts could be defined at
all) and to what extent the situation changes when we change the kind of dendrimer
(eg, in this study, the mode of attachment of the mesogenic group and its size). It
may be that the effect of the difference in this case is such that there is plenty of
scope, energetically speaking, for conversion of conformers to more anisotropic forms
on going into the nematic phase, but that this still occurs in some cases at the expense
of decreasing order in conformational degrees of freedom. In addition it may also be

that the intuitive notion of entropy as the degree of disorder is just too simplistic here,
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bearing in mind the formal definition of entropy

Seont = —k / P{6} m(P{6}) d{¢} (5.68)

in terms of the distribution P{¢} of states {¢} and their considerable complexity in
this case. These factors may all conspire to preclude any easy explanation or under-
standing of the effect of conformational-orientational coupling on the conformational

distributions and entropy changes.

FURTHER VALIDATION

In addition to validating the methodology we may also seek to investigate the efficacy of
the sampling of the conformational states by the BOSS Monte Carlo algorithm. This we
can do by averaging the cartesian interaction tensor (ie, averaging its corresponding
components) referred to the common molecular (BOSS) frame over the conformers
sampled. Symmetry dictates that the components when averaged in a local frame

should vanish. The extent to which they do so is a measure of how good is the sampling.

We note that this is not supposed to occur as a pragmatic consequence of accidental
cancellation—it is a requirement of symmetry. Having said this, BOSS does not sample
by sequentially and systematically generating sets of conformers whose interaction
tensor components automatically cancel—it is a stochastic algorithm. So in practise
cancellations are to that extent ‘accidental’. The extent to which these ‘accidental’
cancellations ultimately reproduce the non-accidental cancellation that must occur by
symmetry constraints is a measure of how well BOSS is sampling the conformational

space as regards our purposes in performing molecular field calculations.

To test this, we performed a simulation run of ~ 700 000 conformers on a medium-
sized terminal dendrimer and averaged the cartesian interaction tensor components

xh,/X* = x4p/X referred to the local frame over the conformers.
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The result was

—0.022835 -0.001792 0.005233
—0.001792 0.018848 0.001430
0.005233  0.001430 0.003986

Given that the components of the tensors take values of the order of unity it can be
seen that they average to zero to within 1 — 2% (at worst), thus indicating that the

BOSS sampling of the conformational space is indeed effective for our purposes.

AVERAGE SHAPES OF DENDRIMERS AND THEIR TRANSITION TEMPERATURES

It has become common to think of dendrimers as “being spherical” due to the tetrahe-
dral symmetry (or some other cubic symmetry which is spherical at the level of second
rank) of the core of the molecule to which the chains are attached. In addition this has
been used as an argument that they should not exhibit liquid crystalline phases. The
idea here is that having “a” shape of such low anisometry the transition temperature
should be very low, and therefore so should the propensity of such materials to show
orientationally ordered phases in practise. There then seems to be genuine surprise

when it turns out that the materials are in fact mesogenic.

This state of affairs warrants some close scrutiny. The first, and rather obvious, point
is that these molecules do not have “a” shape at all, but rather a huge range of shapes,
so that clearly the concept being held in mind, if only tacitly, is that of some kind
of average structure. Persisting with this concept of the average structure, then, we
see from the calculation in the previous section that on average the molecule is indeed
spherical (although, we should say, strictly at the second rank level). That is, to arrive
at some kind of representation of an average structure we must average some tensorial
quantity related to the molecular structure in a common molecular frame. Here, we
have averaged the cartesian interaction tensors of the conformers in this fashion. These
tensors are of second rank and therefore must average to zero by symmetry, and indeed,

this is what we see. There is nothing surprising about this.
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However, to focus on the average structure of a flexible molecule for the purpose of
assessing its transition temperature (ie, its likelihood of being mesogenic) is misleading.
The N —1I transition temperature for some set of molecules (eg, conformers or molecular
structures) is not determined by their “shape” (ie, average shape) but by the weighted
average of the transition temperatures of the component structures of the set. To
illustrate this we have calculated histograms of the X3,/ X* = Xy,,/X (m = 0,2) for
the same simulation run that produced the results for the average interaction tensors
in the local frame in the previous section (see figures 5.33, 5.34). The Xy, are the
quantities that go into the calculation of the liquid crystalline properties, not the
tensor components referred to the local frame. The set of X5, for each conformer is
the equivalent of the z,, but referred to its own principal frame. The histogram of
Xoo (which is a basic measure of the anisotropy of the conformers) does not, then,
show a distribution centred on zero and rapidly falling off either side. Rather it shows
a maximum at some non-zero positive value and a relatively broad, almost gaussian,
distribution. It reveals that there is a high proportion of very anisotropic conformers
contributing to elevating the transition temperature above that of a spherical rigid
particle (ie, zero). It is therefore not at all surprising, then, that dendrimers readily

form liquid crystals.

This reinforces the basic concept in statistical mechanics that the correct way to cal-
culate the properties is to regard the fluid as a mixture of structures (conformers in
this case) and to calculate the properties of the components. The weighted average of
the properties of the components over the corresponding probability distribution then
yields the properties of the fluid (mixture). This is in contrast to taking a distribution
weighted average of some property reflecting the structure and computing the prop-
erties of the average structure. It shows that, contrary to popular wisdom, the shape
that a flexible molecule has on average is fundamentally irrelevant in determining its

transition temperature and its liquid crystalline behaviour.
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Figure 5.33: Histogram of Xy for a medium-sized terminal dendrimer over ~ 700 000

BOSS-generated conformers
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Figure 5.34: Histogram of Xy, for a medium-sized terminal dendrimer over ~ 700 000

BOSS-generated conformers
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