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by Daniel W. Joyce 

This thesis presents a theory of computational agency. Computational agent theory differs 
from 'classical' artificial intelligence by committing to the view that a computational artifact is 
situated, and that its rationality is limited by the constraints of this 'situatedness'. Contempo-
rary literature is surveyed and models of situated computational agency placed in their philo-
sophical contexts. From this, a critical reconstruction of the notion of an agent is given from 
a phenomenological perspective. It is proposed that everyday routines of activity underpins 
agency and computational implementations of this substrate can take the form of connectionist 
networks. 

The proposal is tested in technical practice on two domains; agents for multimedia content-
based navigation/retrieval, and a simulated environment which explores the key properties of 
the proposed phenomenological agent theory. Recent proposals for goal-directed behaviour in 
connectionist systems (largely from the cognitive and behavioural neurosciences) are critically 
evaluated, and integrated into an agent architecture. This results in an architecture utilising suit-
ably controlled reinforcement learning. The architecture implemented is then evaluated against 
the agent theory, and examples of 'routine behaviour' analysed in stationary and non-stationary 
environments. 

Semiotic analyses are then proposed as an alternative theory of representation, as they are 
compatible with, and simultaneously possess explanatory power at a level beneath, the usual 
sentential/propositional level. 

The thesis contributes a phenomenological theory of agency and gives examples of its 
influence on technical practice. Outlines of connectionist architectures are presented, imple-
mented, and evaluated with respect to the agent theory proposed. 
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This technical report describes the use of Rosenschein and Kaelbling's situated automata 

theory (SAT) in the context of connectionist-based agents. The philosophical commitments 

implicit in the approach adopted in SAT include a strong epistemic constraint; namely that 

information content is defined as internal state correlated with external events, and propositions 

being truth-conditional on this correlation. It is argued that this requires modification for agents 

where internal state is adapted over time. The report concludes by examining solutions to 

problems that arise when automata-based models are used to characterise agents. 
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1. Introduction 

1 Introduction 

There are currently a variety of theoretical constructions predominant in agent theory. For 

example, those grounded in practical reasoning (Rao and Georgeflf, 1995), formal logic and 

"purely reactive" systems e.g. (Brooks, 1986). A more thorough review can be found in 

(Wooldridge, 1999). Arguably, the philosophical commitment underpinning these methods 

(with the exception of Brooks' work) is a formal system of symbolic computation. As Agre 

(1997) argued, this has led to an understanding of agency, intelligence (natural and artificial) 

and behaviour as predicated on assumptions derivative from those in computation; for example, 

optimality, perfect rationality, and internal representation. 

In (Agre, 1995; Agre, 1997), the notion of interactionism as an agent theory was es-

poused. This concept, where agent epistemology is grounded in everyday interactions with the 

environment, has been formalised in the situated automata theory of (Rosenschein and Kael-

bling, 1995). Interactionism is, we might say, pre-ontological; it begins by asking questions of 

the notion of agency that ignore the extant examples of artificial agency. While Agre and others 

then use computational frameworks to realise an instantiation of the agent theory, the resulting 

design process and artefacts have quite different shapes. 

The interactionist approach contrasts with previous agent theories in its explicit attempt to 

locate epistemology across the usual agent/environment divide (rather then in either the agent 

or environment). While the agent and environment are still identified as being demarcated by 

a "physical" boundary, the engineering of agents derivative from such an interactionist stance 

forces the designer to consider minimalist, necessary and functional representations which en-

able action in context, rather than striving for abstractions which generalise to (say) a predicate 

or modal logic. 

As an example, in an imaginary blocks microworld, an interactionist design might find 

that a necessary representational token is t he — red — block — i n — f r o n t . The motivation 

for this token would be that it is necessary for a certain routine interaction (e.g. a regularity 

in the agent/environment coupling). Therefore, it is said to he functional. Agre also describes 

representations which are indexical, meaning that their apparent specificity, they transfer to a 

variety of situations the agent might encounter. In the example above, a primitive indexicality is 

the detachment of the functional representation from a specific temporal location, so whenever 

their is a red block in front of the agent, the same representational token will facilitate routine 

activity. In contrast, the traditional generalisation being to produce a predicate, such as ; 

in — front (a, 6) (1) 

colour (%,))) (2) 

where, to represent the functional token the — red — block — i n — f r o n t the necessary bind-
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ings for the variables would be: 

a = b lock (3) 

b = me (4) 

X = a (5) 

y = r ed (6) 

In this report, it is proposed that interactionism might capture the essential qualities of 

connectionist-based agents (i.e. where the "internal mechanism" of the agent is a connectionist 

network, such as a multi-layer perception or some more sophisticated architecture). This is 

because connectionist (at least prima facie) appears to adhere to the conceptual basis of inter-

actionism rather than the alternative symbolic logic. 

Situated automata theory (SAT) is a valuable tool for reasoning about the properties of 

such agents, but it will be argued, it is philosophically bound to assumptions of symbolic com-

putation; namely, provable properties such as tractability and verifiability. Such properties of 

a formal theory which constrain the implementation are clearly desirable - see for example 

the discussion of (D'Invemo, Fisher, Lomuscio, Luck, De Rijke, Ryan and Wooldridge, 1997). 

The intentions of SAT are that after defining an agent in a broadly interactionist fashion, one 

is able to derive an implementation of the agent (a realisation). The separation of specifica-

tion and executable machine enables a theorist to adopt SAT without actually committing to 

implementation. 

Ideally, SAT would model connectionist agents wholesale, however, the epistemological 

commitments in SAT are too "strong" to enable its use without modification. In modifying SAT 

to cope with connectionist agents (or, more generally, any adaptive system), it is necessary to 

abandon the strong epistemelogical constraints. Notably, this is because of the dynamic nature 

of correlating internal state in connectionist agents. Finally, conclusions will be drawn on the 

utility of modified SAT as an agent theory. 

2 Background 

Recently, Wooldridge (1999) described a framework and overview of intelligent agents. Fur-

ther, he included a typology of agents which includes reactive systems. Throughout, reference 

is made to an abstract agent framework which is broadly similar to those used in reinforce-

ment learning, situated robotics and other areas which (while not mainstream software agents) 

certainly fall under the broad category of agents research. Both Wooldridge (1999) and (Rosen-

schein and Kaelbling, 1995) still attempt to unify knowledge, behaviour and uncertainty in a 

fundamentally symbolic way (using his perception, visibility and knowledge calculus). 

It is for this reason that this technical report begins with an automata-oriented view of 

agency. It then moves on to amplify the relationship between automata, pattern matching and 
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the essential features of reactive behaviour. This may seem far removed from any connec-

tionist or artificial neural network discussion but it is interesting to note that historically, the 

McCulloch-Pitts model was given an automata interpretation by Arbib (1964) and von Neu-

mann's seminal work on reproducing machines (Burks, 1966) (viz. populations in a multi-agent 

system) were also automata-theoretic. The pattern matching ability of connectionist networks 

and the similar ability of a finite state acceptor suggest that this analogy for reactive agency is 

worth pursuing with regards to suitably defined behaviour. 

An agent is often said to perceive and effect actions in the environment. The typical 

"perception-action" or sensory-motor loop engages the agents in a direct relationship with their 

environment (Sharkey and Heemskerk, 1997; Neisser, 1976). Before formalising the details a 

first approximation serves to introduce the central notions. The behavioural details will be 

presented in two parts : 

® distal or extensional details which describe the behaviour of the agent without recourse 

to internal mechanisms (often, in terms of an observer) 

» proximal or intensional descriptions which detail the internal mechanisms of the agent's 

behaviour 

Figure 1 shows the agent A in an environment, where a property of the environment p can 

be sensed by the agent - that is, the agent is suitably equipped to detect the property in a certain 

modality. Extensionally, the agent effects a response R (corresponding to an action) in the envi-

ronment. From such distal observations, we may perhaps predict behavioural regularities based 

on assumed correlations between properties of the environment and observed actions taken by 

the agent. Note that here the observer might employ ascription of properties (McCarthy, 1978) 

and intentional stance (Dennett, 1978; Dennett, 1987) as explanatory tools. Also, there is no 

commitment to internal state or the nature of representations. By analogy with psychological 

behaviourism, we can only rely on our inductive explanation of the agent's behaviour without 

invoking notions of representations of the world or cognitive states. 

If we resort to the intensional or proximal description, we have a causal explanation of the 

relationship between stimuli and elicited responses. One possible method for specifying this 

causal relationship is by positing internal states which (functionally) contribute to the elicitation 

of responses. The acceptance of internal state being causally related to behaviour is compati-

ble with functionalist philosophy (Block, 1980), but still, does not commit to any realisation 

of internal state. For example, qualitatively, we can propose that a state of "disatisfaction" 

drives an agent to change its behaviour without specifying the mechanisms (biological or oth-

erwise) that produce the behaviour we associate with disatisfaction. This enables any number 

of causally inert interpretations to be assigned to the internal state. A differing interpretation 

(in the observer) has no effect on the efficacy of the functional internal state. 

An example of such a commitment to realisation would philosophically correspond to 

representational theories of mind (Fodor, 1998; Heil, 1998) such as the language of thought 
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(sentential-symbolic) and its technical counterpart of formal epistemic logics. Alternatively, a 

connectionist explanation would identify transient patterns of signalling behaviour in artificial 

neurons with world properties. Either is a realisation (or substrate) of internal state. 

The situated automata theory (SAT) complements the model presented here by similarly 

dividing the environment and agent while contributing to the notion of internal state, but mak-

ing no further commitments. 

3 Related Work 

Automata theories can be found (in the context of situated reactive agency) in the work of 

Rosenschein and Kaelbling (1995), where their situated automata theory (SAT) combines both 

models of the environment and the agent as finite (but sometimes nondeterministic) automata. 

A similar approach, but motivated by the philosophy of Heideggarian AI, can be found in the 

work of Agre and Horswill (1997) which concentrates on agent-environment interaction as a 

finite state model, instead of separating agent and environment and modelling them individu-

ally. In both cases, automata are engaged as a means of characterising the agent-environment 

interactions. Wilson (1991) uses a a Mealy machine (identical to the one used here) but in-

verted so that the environment is modelled and the input is the agent's motor action and the 

output is stimuli to the agents perceiving the environment - in essence, behaviour is defined as 

a function of structure in the environment. 

Finite state automata (FSA) feature in earlier work such as Arbib's modular net formali-

sation of the McCulloch-Pitts formal neuron as a FSA (Arbib, 1964). Indeed, Arbib has been 

a keen advocate of the multiple levels of explanation approach to modelling cognition and 

agency; see for example, (Arbib, 1989) and (Arbib, 1995) where he describes control and au-

tomata theory as higher level explanations of fundamental modular units in cognitive processes. 

Brooks (1986) used finite state machines as the fundamental task achieving behaviour modules 

in the subsumption architecture because of their analytical simplicity. This is congruent with 

an automata theory of agency. 

However, connectionist networks possess a significant property which defeat this pro-

posal. If the neuronal model dynamics can be described by FSA, in addition, connectionist 

networks have modifiable connections (weights or idealised synapses) which reconfigure the 

functional relationships between the neurons. 

Agents in modelling and simulation also have a traditional association with automata mod-

els. Here, instead of the models posessing any explanatory power in a conjectured theory (as 

Arbib's automata do), they are convenient models of observed phenomena in artificial settings 

that enable agent or multi-agent experimentation. For example, (MacLennan and Burghardt, 

1994) presents a study of the evolutionary emergence of simple linguistic ability in a multi-

agent system, where each agent (called a simorg) is a finite state automaton. From here on, the 

Mealy automaton will be used, related to SAT and then modified to cope with the demands of 
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Environment 

action 

Agent 

VALUE 

perception 

SAMPLE 

Figure 1: The Agent-Environment Relationship 

connectionist implementations of long-term memory. 

4 A Simple Automaton Model of an Agent 

A suitable first approximation for agent behaviour can be easily visualised as an finite state 

automaton (FSA) such as that shown in Figure 1. We define the following Mealy machine 

(Sampson, 1976) as: 

» a finite set of input states I = {i, | / G N} 

• a finite set of output states 0 = {oj | 7 € N} 

• a finite set of internal states S = {sk\ k £N} 

• a function relating current internal state s{t) E S to s{t + I) as G : S x I ^ S 

• a function relating current internal state s{t) € 5 to an output state o{t) 6 0 a s F : 5 x / - > 

O 

In a SAT context, the agent's internal mechanism could be interpreted from the Mealy 

model above. The set 1 will correspond to a countably finite set of stimuli incident on the agent 

and induced by the environment. The sensor "reporting" the presence of a certain environ-

mental feature consistutes a member of I. The output states O will correspond to actions in 

the environment, for example, a set of action primitives such as "approach food". The internal 

states S will simply be transient states used to functionally correlate the inputs to outputs. 
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However, the two functions G and F are more interesting. They effectively decompose 

the behaviour of the agent into two mechanisms ; G transforms internal state according to 

perception of environmental events, and F maps internal state to actions. We see that internal 

state exists simply as a repository for state that allows a causal association between the input 

and output (collectively, the behaviour) of the agent. This technical definition is philosophically 

compliant with decompositional functionalism cf. (Block, 1995; Block, 1980). 

The technical utility of this model is that it naturally provides for a reactive model of 

agency. The use of the term "function" in its declarative mathematical interpretation (rep-

resenting, in effect, shorthand notation for a relation between two sets) suggests an explicit 

mapping from I to O with some functionally intervening states. Again, we are not forced to 

commit to a purely reactive philosophies. The description afforded by a Mealy machine and 

its relation to pattern matching provides an initial insight into the conjecture that reactive be-

haviour and pattern matching are isomorphic. The entire behaviour of the agent is elegantly 

partitioned by the model. The function G is effectively perception, and the function F action. 

5 Stimuli 

In order to discuss the general notion of behaviour for reactive agents, some working definitions 

must be introduced. No one definition of behaviour, stimulus or response will suffice, and 

terminologies differ depending on discipline. 

Here, the definitions chosen are carefully selected to correspond with the types of mod-

elling activity likely to be engaged in when designing or specifying an agent's behaviour. A 

concise and relatively unambiguous set of definitions is offered by Catania (1992) and congru-

ent with (Arkin, 1998): 

• stimuli : events occuring in the environment 

• response : an action defined in relation to the environment 

« behaviour : a regularly observed causal relationship between a class of stimuli and a 

class of responses 

It is important to note that a behaviour is not an explanation of the causal relation; it is 

simply a label denoting that one exists. 

5.1 Preliminary Definitions 

There are two concerns in defining a stimulus : 

9 structural issues about how events in the environment map to percepts in the agent 

• functional issues concerning the existence criteria for a stimulus with respect to the agent 

and environment 
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Here, we will adopt the "softbot" model (Etzioni, 1993) of an agent. An agent is equipped 

with sensors which transduce physical (or virtual) phenomena incident on the agent. The envi-

ronmental event (e.g. a light source becoming illuminated) produces a change in the environ-

ment (the intensity of ambient light in a region of space increases) which is only accessible to an 

agent if it is equipped with the necessary sensor. The distinction is two fold; an environmental 

event and the transduction of the event's consequences to the agent. 

A structural definition of a stimulus would include the two fold distinction; that is, the 

environmental events exist in some objective world (and therefore, so do stimuli). Their ex-

istence is unquestionable, but the agent may not be equipped to interpret (or receive) them. 

However, such apparent objectivity is phenomenologically unsound as well as being tech-

nically intractable; if an agent cannot sense the modality within which the environment has 

changed (e.g. light intensity) then the agent cannot be aware of this change. This is an instance 

of structural coupling, where the agent and environment are mutually defined by functional 

relationships. This notion of a stimulus defined with respect to the mechanics of the agent's 

perceptual machinery is similar to Dretske's notion of systemic representation - that which is 

produced by a certain environmental event causing activity in an agent's perceptual machinery; 

it has no "content" (primitively, semantics) because it is not functionally in use for a particular 

activity which Dretske argues is the origin of meaning (Dretske, 1995; Dretske, 1985). 

An incident stimulus is transduced by the function G and this representative value might 

reasonably be called a perceptable stimulus if the sensor responds (for example, if the stimulus 

occurs above a threshold level denoting the sensitivity of the sensor in a physical agent (Arkin, 

1998) pp. 91). Therefore, we might reasonably define a stimulus to have occured if and only 

if a sensor has changed in response to a conjectured change in the environment. For the time 

being, we ignore the case of misrepresentation - e.g. see (Dennett, 1987) - where an incorrect 

percept is produced by the agent's perceptual machinery (at least as far as design intentions are 

concerned). 

This functional definition is alluded to in Figure 1 where we define some environmental 

property p. A change Ap is transduced by a suitable sensor on the agent. This results in a 

stimulus being produced i € / which is shown as if it were produced by the agent's sensing 

faculties. This stimulus is then an influence on the function G which yields the next internal 

state (loosely, the agent's perception of the current environment). The function F subsumes all 

other internal mechanisms and state to produce a response. In this scheme, the stimulus exists 

only as an environmentally induced "cue" for an automata-like theory of an agent's internal 

mechanics. This enforces the treatment of stimuh as being functionally inseparable from the 

agent's embodiment (i.e. the arrangment and specification of its sensors). A similar supporting 

definition is given by Rosenschein and Kaelbling (1995) as their correlational definition of 

information. 

Definition 5.1 A perceptable stimulus is defined as i E 1 resulting from the agent sensing the 
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environment where the modality of the sensor corresponds to some property of the environment. 

5.2 Stimuli, Internal State and Correlation 

The assumption in SAT is that some percept induces an internal state which co-occurs with 

the truth-functional semantics of a proposition about the environment. For example, the truth-

functional semantics of a proposition such as "a tree has fallen" is objectively dependent on 

the environment. If an agent can sense this, and there is an internal state s e S that co-occurs 

with the stimulus, then Rosenschein and Kaelbling assert that the agent carries the information 

"a tree has fallen". This is an example of content-ascription semantics, see (Dennett, 1987), 

or "as-if" intentionality (Roy, Petitot, Pachoud and Varela, 1999) i.e. the agent behaves "as if" 

it carried the information. Note this is somewhat different to Dretske's approach, which only 

defines a content-carrying state in the context of its use. So in Dretske's framework, if the agent 

has a sensor and it detects falling trees, and this causes some tree-avoiding behaviour, then the 

sensor is said to systematically represent the motion of objects and the use gives it the acquired 

meaning of detecting tree-falling in the service of avoiding falling trees. 

The model developed here differs from SAT, in that correlational information has a strong 

epistemic condition relating t induced by an environmental event Ap and internal state s. Using 

the definitions developing here, we restate the condition from (Rosenschein and Kaelbling, 

1995% 

Definition 5.2 Strong correlation .• For an environmental property p that undergoes some 

change (i.e. the event) Ap, a proposition about the world $ is true. An agent A with inter-

nal state s carries information (j) iff whenever (j) is true, the agent is in internal state s € S. 

For example: at some time t, if stimulus Ap{t) occurs and corresponds to the proposition 

(j) ="the light is on", then for an agent to carry this information, we must find that: 

3ls'E S \ (^ = true,s{t) = s' (7) 

So, whenever the stimulus Ap{t) occurs we can assert that the agent carries or knows the 

information "the light is on". The property of the environment p is related to internal state 

by the functional relationship G{s,i) which we have coarsely defined as the agent's perceptual 

apparatus. This is shown in Figure 2. Note that ascription is "realised" by an internal state, 

but does not cause the ascription. Effectively, the proposition (j) is causally inert under the 

ascriptional scheme e.g. intentional stance. A similar notion is present in some BDI models. 

For example, (de Lioncourt and Luck, 1999) is an instantiation of a BDI architecture. The 

beliefs, desires and intentions are all ascriptions to lower level mechanisms and equally are 

inert in actually causing actions. That is not to say that the internal state itself is causally 



5. Stimuli 11 

proposition 
relating external 

event to 
information 

external event 

Ap — 

ascription : agent 
carries information 

realises 

I 
causes 

world agent 

Figure 2: Strong Correlation : Causation and 

environment 

ascription shown in relation to agent internal state and 

inert; by functionalism, it must be true that the internal state is causally implicated in causing 

a response. The content is only ascriptional and therefore inert. 

From this, we can partially resolve the apparent conflict between the knowledge-based ap-

proaches of deliberative agency, and the situated reactive approach (as SAT is intended). SAT 

is often described as a model-theoretic approach to engineering agents; that is, using formal 

logic in the Tarskian sense of a "model" following from Frege's notion of sense (Agre, 1997). 

Each statement in a model is assigned a truth interpretation, and the truth of consequent or 

composed sentences (e.g. those built from the original sentences or deduced by the applica-

tion of theorems or axioms) depends on these original truth assignments (compositional and 

truth-functional semantics), (van Gelder, 1990) calls this concatenative compositionality; the 

composition (and truth functional semantics) relies on concatenating atomic propositions such 

as f V Q. 

If we take internal state and the ascription of information such as (|) to be a mentalistic 

property of the agent, then there is an analogy with reductive explanations of the mental and 

the identity theory and co-occurence of physical properties and mental properties see (Smart, 

1959; Chalmers, 1996; Heil, 1998; Block, 1997). However, just as philosophical challenges 

have been made to the identity thesis and reductive explanations, here the strong correlation 

definition must be weakened accordingly. 

In its simplest form, the identity thesis states that a physical property P is a mental state 

M. This is due to the work of (Smart, 1959) in attempting to establish the physical basis of 

mental events. However, it is too simplistic to be plausible. Instead of identifying M with 
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P, attempting to reduce M to a set of properties P requires that there are bridge laws, which 

relate the physical realisers P with actual mental events. (Kim, 1998) pp.218 cites the popular 

example of taking neural activation in certain structures of the brain to be P and the mental 

property to be "in pain". We can either identify P with M (to be "in pain") or attempt to find 

correlations (certain P that co-occurs with M) and then provide bridge laws which explain why 

P gives rise to M. 

A compelling reason to reject the identity and the reductive thesis in the cognitive sciences 

is the notion that such a strong correspondence is impossible to empirically validate because it 

is hard to identify unique physical states which correspond with mental states. An analogy is 

if the internal state f is "pain" caused by the agent impacting on a sharp object, then under the 

identity thesis and the Rosenschein and Kaelbling definition of correlative information, only 

then would the agent carry the information (|) = "sharp object encountered". 

The difference between Smart's project and SAT is that the former attempts to reverse 

engineer a complex system, and the latter to forward engineer a system to undertake certain 

tasks. Our argument is about content-ascription in artificial agents. We must put to one side 

the nature of content (e.g. its origin in artificial systems) because it is controversial; some have 

argued - e.g. (Dennett, 1987) - that if an agent A is complex enough to require another agent 

B to assume intentionality, then this is reason enough to assume the agent A possesses original 

intentionality. Dennett also argues that under his intentional stance, Searle's description of 

original and derived intentionality is artificial. Whether or not an artificial agent can possess 

something like original intentionality is not directly relevant here. 

What remains relevant is how agent epistemology can be grounded without an identity 

thesis-like commitment. The reasons given above (i.e. the locating of unique realising states) 

hold for an adaptive agent. In an adaptive system, such identities will be equally difficult to 

find, not least because the percept coded for by a set of activities over neuron groups (fields or 

pools) are functionally dependent on weights which change over time. Effectively, the kind of 

discretisation necessary to implement strong correlation removes the possibihty of accounting 

for adaptive systems and forces the interpretation of internal states as content-ascriptional. 

Having separated the technical and philosophical use of the idea of correlational informa-

tion, we can procede with the argument for weakening the correlation condition. Intuitively a 

number of states could justify the agent carrying the information (j). This means the agent can 

be in a variety of states {^i each of which can potentially justify the ascription 

of (|). This problem was tackled philosophically by the introduction of not just a single ma-

chine/automaton state realising the agent carrying or knowing (|), but a disjunction of a number 

of states might co-occur in the agent and world. For the model here, we borrow the notion 

of heterogeneous disjunctions e.g. see (Kim, 1998), where a number of distinct states might 

warrant the ascription of (}) to the agent's epistemological state. 

The justification is as follows : If an agent A must always be in internal state 5 simulta-

neously with the environmental state or property p so that the correlational information (|) is 
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Figure 3: Weak Correlation : Causation and ascription shown in relation to agent internal state and 

environment 

implied and carried by A, then how can we account for a non-deterministic agent or one that 

changes it's behaviour as a result of adaptation to an environment, where some new internal 

state s' now co-occurs with or instead o f f ? The information carried by the agent as (|) is 

now no longer a simple correlation. An agent might, therefore, need a kind of heterogeneous 

disjunction which states a weaker kind of correlation. This is shown in Figure 3. 

Definition 5.3 Weak correlation .• An agent carries information (j) whenever the agent's inter-

nal state s{t) € 5' where S' C S and states S' co-occur with (j) = true 

So, the identification of a unique state and information carried by agent is relaxed so that: 

3 / 6 5' I 5' C 5,(j) = true,s{t) = s' (8) 

Note that it is an open question (both in the salvaging of the identity thesis and technically 

for an automata theory of reactive agents) whether or not the disjunction really qualifies as a 

state in itself. 

The philosophical solution of the heterogeneous disjunction is debated because any one 

of the set of states j,- € S could realise the mental state M. The argument halts because this set 

is potentially infinite, and necessarily so, because how can we possibly guarantee that every 

possible realiser of M is captured by the set S ? (Kim, 1998) states that there "isn't likely to be 

a single scientific theory that can deal with the hopelessly heterogeous disjunction ..." pp. 220. 

This diverse debate is a necessary component of the agent theory presented here because 

we wish to explicitly account for adaptive behaviour in sub-symbolic processes like artificial 

neural networks. In this case, SAT cannot be applied as either a conceptual framework or an 

engineering principle (enabling, say, specifications in a model theory and automatic derivation 
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of an automata to produce the required reactive behaviour) because it seems not to cope with 

the heterogeneous disjunction of internal states. In fact, the provable properties of a SAT-based 

model demand strong correlation. 

However, the ascription of (causally inert) propositions using weak correlation is an intu-

itive principle for adaptive agents employing sub-symbolic processes. In fact, it can be argued 

this is precisely the kind of ascription used when (for example) interpreting a neural network 

classifier. The structural interpretation is the weights (artificial idealised synapses) connecting 

nodes (artificial neurons) with certain efficacies or strengths. The transient activities of neurons 

during the processing of an input are analogous to internal states arising as a result of the input 

(stimulus). However, these properties of the system only take on meaning when used in the 

task of assigning classifications to inputs. Therefore, the weights and the nodes of an adaptive 

artificial neural network take on qualitative meaning by ascription in the service of the task of, 

say, classification. 

6 Correlation and Control State 

Recall that the key difference between a classic epistemic representation system (in a formal 

language such as predicate calculus and implementation in an expert system) and an agent is 

its condition of being situated in its environment. 

This suggests recourse to a different but complementary notion of representation. Sloman 

(1996) calls the kind of theory of representation most useful here to be control state. This has 

been alluded to in this technical report, but not explicitly introduced as a means for discussing 

agent internal state. 

What has been described this far is a notion of pragmatics of a control state. The internal 

states mentioned exist and cause the agent to take certain actions. This is the control func-

tion. However, we have (to be compatible with agent theories generally) attempted to usefully 

apply intentional stance and ascriptional properties to these states also. The former control 

function is what Sloman calls the pragmatics of control state. Sloman states that "This notion 

of function or purpose does not require a human designer or any conscious intention" pp. 127. 

However, nearly all agent theories (especially BDI-inspired systems) require something more 

in respect of correspondance of these states with the world. Take a simplistic expert system 

built in Prolog. The control states exist, those intemediate states (e.g. propositions, data struc-

tures such as trees, etc.) which contribute to the process of, say, theorem proving. These are the 

pragmatics of control states. However, some of those states are engineered to stand in a deno-

tative correspondance with the world - hence have some kind of function which maps them to 

concensually agreed (usually, in the culture and language of mathematics) interpretations in an 

epistemic sense. Sloman calls such mappings the syntax or grammar of the states. Similarly, 

Dretske adopts a division which separates mechanical properties of representation from those 

acquired by use. Dretske's acquired representations are historically dependent on the processes 
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that shape them and the use the representing device is put to. Sloman argues that the grammar 

of such acquired states are engineered to correspond in a way meaningful to the designer and 

user of a device. 

Here, then, we have seen the agent's internal state as a pragmatics of functional control 

states. We now attempt to bring a theory of a more syntactic kind to bear on these states. 

7 Example Automata Models 

In the following sections, we explore the implications of automata models of agents and the 

results of applying the weak epistemology of modified SAT. We begin by quantising stimuli 

and responses, and then show the kinds of problems which arise, relating these to other work 

in this area. 

The definition of a perceptable stimulus needs some formal rigour in order to be useful. 

An agent will usually sense the environment through a number of sensors over a number of 

modalities. Hence, a stimulus might be better defined as an ordered tuple. Note that in fol-

lowing this path, already the model becomes tied to a specific, discrete interpretation of the 

agent and its environment. Effectively, in introducing the notion of a formal stimulus we are 

discretising the agent and the environment. 

Definition 7.1 A formal stimulus is a percept de fined over M sensors/modalities as the ordered 

tuple t — {.̂ 1; .̂ 2 5 • • • ; ) 

Each input state i G / now corresponds to a tuple. In binding the stimulus to a specific set 

of sensed modalities, we encounter another problem. Each element of the ordered tuple can 

then be a quantifiable measure and in coixespondance with some aspect of the environment. 

This fact was one of Brooks' concession on representation in AI, that sensor arrangements 

deliver signals that are in some part representations of the environment (Brooks and Stein, 

1993). For example, a force sensor may be represented as an element with nominal values 

such as 0,1 referring to the presence or absence of an object incident with the sensor, or it may 

represent some magnitude of presence in which case it may assume real values (0,1). 

In effect, then, a formal stimulus to an agent is a member of the Cartesian product of all 

possible states of each virtual sensor. Such a stimulus i engages in a causal relationship with the 

internal state which then causes action to be taken. We now consider a geometric interpretation 

which lends itself to probabilistic interpretation, moving the model beyond a discrete, finite 

automata to a model more congruent with connectionism and adaptive behaviour. For general-

ity, no specific connectionist realisation is given - instead, a probabilistic automaton is given. 

Mapping such an automaton to a connectionist implementation is a matter of selecting the cor-

rect training model for a connectionist system (including connectivity of nodes, activation and 

transfer functions for the nodes). 
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We can naturally pair the set-theoretic notion of the set of input states I with a geometric 

interpretation by assuming that each tuple i e / represents some point in a vector space 9t^. 

For example, imagine an agent equipped with two sensors, one sensing light and the other 

moisture in its environment. Assume also that the sensors heavily quantise the environment so 

satisfactory light or moisture is conveyed to the agent as a tuple (xi,X2) such that xi,x2 € {0,1} 

where 1 is satisfactory, 0 requires action. From the phenomenal perspective of the agent, it 

either perceives light or moisture (or a combination of the two) or not. This results in the 

following set of possible input states (including one for "no observation"): 

Input 

State 
Xl %2 

to null null 

ti 0 0 

t2 0 1 

1-3 1 0 

u 1 1 

If the set / as defined above were visualised in 91̂  then we would arrive at a stimulus 

state space as shown in Figure 4. The motivation for this was originally McFarland's notion 

of internal state space (see (McFarland, 1996) for an introduction) and Arkin's independent 

treatement of Stimulus-Response models of reactive behaviour (see (Arkin, 1998) Chapter 3 

on the stimulus plane). Naturally, this can be extended to stimulus state spaces in 31^ and this 

becomes valuable where computational-geometric interpretations of artificial neural network 

systems become a necessity. 

Notice that the set I is suitably enumerated in Figure 4 and the table above. The finite set 

/ can now be used as a basis for a systematic design task to engineer a specific reactive agent 

to solve a certain problem. The assumption is an unchanging environment, yielding a total of 

four different stimuli. It is such assumptions that make this a non-adaptive model of agents -

adaptive behaviour seems to decay assumptions about strictly enumerable stimuli spaces and 

connectionism copes with this by adapting representations according to functional need. 

9 Responses 

Continuous real valued responses are most compatible with a robotic agent having a finite set 

of actuators (e.g. left and right motors) which can be used to control translational velocity. 

However, it is conceivable that a virtual agent might possess such virtual actuators where the 

strength (real value) of the response indicates the weight, gain or "confidence" which with the 

actuators is driven. These actuators are in fact discrete actions. 
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moisture % 

= (l.l) 

(0.1) 

Figure 4: Example Stimuli State Space 

For example, consider a simple agent responsible for maintaining a certain level of mois-

ture and light. The stimulus state space is shown in Figure 4. A corresponding discrete enu-

merated set of atomic actions (primitives) might be {light-off .water — ojf,no —op), where 

no-op signifies do nothing. 

Output Action 

State primitive 

o\ 

02 water — off 

03 no — op 

This would effectively reflect the designers intentions and perception of how the agent 

should interact with the environment while implicitly defining any virtual actuators. This is a 

fairly appropriate paradigm for virtual agents, since the usual constraints on physical actuators 

do not translate to the software domain. In an idealised scenario, the engineer of a software 

agent could specify the reponse set and the corresponding stimulus set. The engineer would 

then design the reactive rules governing mappings from the stimuli to the responses (the be-

havioural specification). 

9.1 Atomic Responses 

In this section, we deal with a definition of a response and a geometric interpretation congruent 

with stimuli state spaces. Note that we define the responses as an enumerated set of discrete 

actions in the virtual agent paradigm; this effectively abstracts us away from a relationship 
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between a response, its strength and the resulting actuation. Also, we situate the definitions in 

automata terminology, thus : 

Definition 9.1 A response is an action taken by the agent in the environment. 

A response set can then be defined : 

Definition 9.2 A finite set of responses or actions O = {01,02,. , Oj} such that each o corre-

sponds to one action executable in the environment in some instantaneous time t. 

Such a definition contains two important limiting assumption: 

® that the time taken to effect any action is instantaneous. This is to say that the time taken 

is negligible in comparison to a sequence of actions taken over an extended period of 

action. This is a similar assumption to assuming that a physical robot is holonomic and 

is therefore able to turn on a singular point and there is no translational latency due to 

motor inefficiency. Such assumptions are obviously incorrect for physical agents, but 

these limitations are not as considerable for virtual agents, except in the case where the 

result of an operant action in the environment does not produce immediate feedback 

indicating the effect of the action. 

• that only one action can be taken - congruent with the Mealy model output function F 

which can be in only one state 

9.2 The Action Selection Problem 

In the previous section, the notion of an atomic set of responses was introduced and the assump-

tion and ramifications buried beneath such a primitive treatment were outlined. The implica-

tions for a theory of reactive agency are that firstly, an agent can only choose one action and 

hence, arbitration of the available responses must be implicit in the output function. Secondly, 

the automata is deterministic - given a stimulus, it always chooses the same single response. 

This raises a difficulty when an internal state arises demanding two actions. As an exam-

ple, consider the case for the light/moisture control agent: if the stimulus is ii then simultane-

ously we can assert the agent carries information pertaining to the fact that "it is both too moist 

and too light". 

This calls for two atomic responses : "water-off" and "light-off". Now, the theory must 

account for the following options: 

1. Sequence the actions: "water-off";"light-off" or vice versa 

2. Define an extra atomic response corresponding to a joint action: "water-off-light-off" 

3. Arbitrate between actions, hoping that effecting one will cause the agent's internal state 

(by virtue of the perception of the new environmental state) to reflect a different state 
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which can then be treated using the another atomic action - hence we pick between 

"water-off" and "light-off", effecting (say) "water-off" hoping that at some time t + 1 

the internal state will correspond to simply "too much light" and no longer "it is both too 

moist and too light". 

The automata theory now converges with features of a deliberative planner, to schedule 

the actions. This may be taken as an indication of the boundary of situated, purely reactive 

behaviour, and we could therefore exclude it from the scope of the research. The argument 

might progress by assuming that the limitations of an automaton are sufficient and necessary 

definitions to prevent the unification of deliberative and reactive agents. However, it is felt that 

some discussion of a resolution is necessary. 

The first option (sequencing actions) is the least desirable : it implies that we effect both 

actions without "resampling" the environment between each action. In this case, sequencing of 

behaviours reduces to the second option. 

The second option contains the implication that all motor systems (virtual actuators) of 

the agent are independent and can be used in parallel to effect an action. This is clearly not 

possible in physical agents - an agent wishing to move forward would invoke a certain set of 

signals causing two motors to produce forward motion, which mutually excludes a comple-

mentary set of signals causing reverse locomotion being activated simultaneously. If forward 

and backwards locomotion are discrete actions, then they must be mutually exclusive. The be-

havioural final common path of McFarland and Sibly (1975) states that at any moment in time 

a single action is effected. This has impliciations for the granularity of actions for an agent so 

adopting McFarland and Sibly's temporal definition also restricts what we might reasonably 

define as an action given a particular environment. 

The third option is to arbitrate, but then in a deteministic automaton, the same action will 

always be picked first. This may be unsatisfactory if the relationship between environmental 

conditions inducing the internal state of the agent are not independant, for example, if some 

kind of heating action was available to the agent, then moisture and light might be depen-

dant on heat. This would suggest some priority to the action affecting the temperature of the 

environment to see if this corrects the problem before effecting "water-off" or "light-off". 

The solution to the third option's dichotomy is to introduce some arbitrating factor and 

preferably, an adaptive one. The choice of effected action depends on the weight assigned to 

the action (a strength or confidence) and arbitration then takes place independently of output 

function F. This requires a more sophisticated notion of a response space and the relaxation of 

determinism in the output function. 

In effect, this is a formal realisation of the action selection (AS) problem (Tyrell, 1993) 

under an automata based theory of reactive agency. Given a choice of available actions, which 

would best satisfy the goals of the agent ? The action selection mechanism (ASM) must resolve 

this problem. As we have described it here, the agent will benefit equally from either action. 
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However, as indicated with the dependancy of environmental factors above, this could be an 

incorrect assumption. 

One of Tyrell's design criteria for any action selection mechanism is that it does not im-

pose a system level winner take all (WTA) function over systems of the behavioural or task 

acheiving modules. The selection of an action from a set of mutually exclusive and exhaustive 

actions depends on a function of each actions "viability" represented as a real-valued number. 

Formally, for an ordered set of actions corresponding to output states in the automata model 

have a corresponding set of real-valued instantaneous viabilities (vi,v2,... ,Vj). The chosen 

action is governed by : 

action = arg maxv; (9) 

This principle, pick the action with the largest viability and ignore the rest, can be realised 

by the well documented "softmax" or normalised exponential function found in neural network 

literature (Bridle, 1990) and (Kohonen, 1997) Chapter 4. The function is typically ; 

Where a crisp winner-take-all function is acheived as A, -> oo. Tyrell (1993) Chapter 10 

suggests this should not be present at the system level, that is, because of the corresponding 

loss of information a WTA function conveys to subsequent or dependent processing modules. 

Here, it is argued that it must be present at the behavioural level, or else responsibility is shifted 

to something which ultimately is beyond the control of the agent. 

Tyrell's observation and it's realisation in equation 10 suggest that atomic behaviours are 

reasonable (as governed by the behavioural final common path) but with a modification that 

enables choices among viable alternatives. This modification is essentially the admittance of 

non-determinism and real-valued weightings for the responses or actions. 

A similar definition to equation 10 is used in (Humphrys, 1997) as a basis for one type of 

reinforcement learning of action selection "viabilities". Humphrys' dealt explicitly with "W-

leaming", where the agent learns the response viability (or weight) and the values of taking 

actions given environment state (loosely, a stimulus in our terminology) using Q-leaming (a 

type of reinforcement learning). In effect, an agent should learn abitration associations as part 

of the sensori-motor loop which engages with the environment. 

One final question that remains open is whether or not the AS problem is just an artefact 

of the modelling approach. A recent paper (Seth, 1998) adopts the view that action selection 

is in fact implicit in a continuous and coherent stream of perception and action. A similar 

'Humphrys ' thesis was concerned with an agent as a member of a decentralised m o d e l of an abstract "mind" in 

the sense Minsky (1986) used the term agent. In this report, an agent is some autonomous actor in its environment 

- its internal mechanisms are composed of what Minsky and Humphrys term agents. 
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notion is embodied in (Braitenberg, 1984) where parsimonious collections of direct sensori-

motor connections enable the agent's behaviour. The answer to this question depends on what 

is being sought. An ethological study of animal behaviour aims to find a model with explantory 

power for observed, codified behaviour such as (Tinbergen, 1951). The act of interpreting the 

behaviour necessarily imposes and divides the continuous locomotive activity (the observable, 

distal behaviour) into discrete actions. So, we might argue that the resulting model of action 

selection is only necessary because of the constraints of the behavioural final common path, 

where the animal or agent selects only one of the available actions after internal arbitration. 

Effectively, in the ethological context, it is possible that the mode of analysis instantiates 

a discrete action selection problem in the explantory model of the animal or agent's behaviour. 

Likewise, the manifestation of the action selection problem has been shown for the situated 

automata approach. 

The above answer is one of biological fidelity in the resulting explanatory model. It could 

be that models resulting from a process as described above are in fact artificially instantiating an 

action selection problem precisely because of the analysis and subsequent modelling approach 

used. However, this is not an issue when considering the engineering of artificial agents, where 

the environment or the actions are necessarily discrete. In this sense, the AS problem is a real 

concern in the context of engineering softbots. Such agents will interact with a discrete world 

and will effect discrete actions and as such, the actual level of the behavioural final common 

path is arbitrary but tied to the agent's environment and design goals. 

In addition, the agent model developed in this thesis has its origins in neural network mod-

els and we have defined the agent in terms of stimuli and responses. We have then discretised 

them and this has introduced the action selection problem. The AS problem manifests itself 

because of the modelling process or analytic framework brought to bear on the problem. Dis-

cretising typical SR models and taking the responses to be actions introduces the problem, as 

does an analysis grounded in ethological theories. 

Congruent with Seth's proposal, AS will be treated here as being implemented by a mu-

tual continuous routine emerging from the dynamics of the environment and the agent's goal 

directed mechanism. 

9.3 Atomic Responses with Real-valued Weighting 

If some notion of response strength or viability is introduced it can be interpreted as a weight 

or confidence in the response or action. This can later be used in response choice arbitration, to 

decide on a singular action to be taken cf. the suppression and subsumption in (Brooks, 1986) 

and behavioural fusion (Arkin, 1998) pp. 111. 

This leads to the response space interpretation, which for a given set of available actions 

O associates a real value indicating a measure of the strength of the response. Note the key 

distinction between this and the definition of a stimuli space : each of the enumerated set 
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of responses O are not tuples containing the strength or presence of a particular actuator (as 

they were for individual sensors). Instead, the actions in O are primitives such as "light-on", 

"forward" or "kick". 

Definition 9.3 A response set is a set of pairs {o, p) where oEO is some action and p = [0,« G 

91] is a measure of confidence or strength of the response where appropriate. 

Further, a response space is functionally dependant on internal state. For each internal 

state s{t) we can expect a corresponding response space (for example, a set of realised ac-

tivations on actuator/output nodes in a neural network). This reflects the dynamics of how 

responses (and therefore behaviour) is different depending on the agent's perception of the 

environment. It is argued here that the limitations of automata models are when such non-

determinism is present in both the environment and the agent's means of behaving in the en-

vironment. The demands of such situations strongly suggest a need for adaptation in reactive 

systems. This is because while an automata model describes a reactive system with some ana-

lytical precision and captures the essential characteristics of reactive behaviour, it cannot fully 

account for the situatedness of the agent and what this means for its behaviour. 

10 An Example of a Reactive Agent using Revised SAT 

Taking the revised SAT model developed thus far, we specify fully the agent from the previous 

sections. The Mealy machine is divided in two and represented diagrammatically as Figure 5 

for the function F (the perceptual machinery of the agent) and Figure 6 for the function G 

(the virtual actuators of the agent). The initial states are shown as double circles and events 

shown alongside the arcs showing allowable state transitions. For convenience, the ascriptions 

are simple propositions and we have defined them as follows : <t)o is a null proposition, $1 

"too much moisture in the environment", <|)2 "too much light in the environment", <j)3 "the 

environment conditions are satisfactory". The final column shows which of these ascriptions 

are true for any internal state. 

The next internal state function is trivial ; irrespective of current state, the next state 

wholly determined by the current input i. Table 1 shows the state transitions for Figure 5. 

We now consider the more difficult case of the output function G. We have already stated 

that the output function will be intrinsically non-deterministic. Figure 6 shows the state transi-

tion diagram for the output function. Each output state (node) o E O corresponds to an action 

or response, and the events on the arcs of the graph are the internal state contingencies. Note 

that more than one internal state can cause an output state to be reached (shown si/sj on the 

diagram) and probabilities for transition when there is non-determinism is shown as {p) de-

noting the probability of the output state being reached. The case where the agent is in state 

S2 presents a dichotomy. Since s j corresponds to the joint observation that there is "too much 
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Figure 5: STD showing agent perception (formally, the function F) - transitions from a state to itself 
are ommitted for clarity 

^4 s. / s^d- v) J , / ^2 (1 - p ) 

/ J , ( P ) 

Figure 6: STD showing agent actions (formally, the function G) 
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Input XI %2 Internal Ascribed 

State State Information (() 

to null null •Sl "no observation" ((|)o) 

ii 0 0 "too much moisture" and "too much light" ((j)i Ai^) 

1-2 0 1 Si "too much moisture" and "light okay" (<|)i) 

13 1 0 54 "moisture okay" and "too much light" (4%) 

14 1 1 S5 "moisture and light satisfactory" (4)3) 

Table 1: Specification for F 

light" and "too much moisture" (<j)i A(t)2 = true we have the action selection problem outlined 

in section 9.2). 

The action selection dichotomy here is whether to effect "light-off" or "water-off", given 

that both are suggested by the current internal state of the agent. The strategy presented in 

section 9.3 was to weight the responses. A complementary approach, most compatible with 

probabilisitic automata and Markov processes, is to define some normative probabilities to the 

output component of the automata entering a state corresponding to the two actions. Take the 

transitions from state 03 in Figure 6. The events that realise state 01 are 54, % and for state 02 

they are 53 and S2. If (while in state 03) the agent's internal state is 53 or 54 then a deterministic 

transition is defined. However, should the agent arrive at internal state S2 then with probability 

p the agent chooses oi and (1 —p) chooses 02. 

The justification for assigning p and 1 — p respectively can come from two sources ; 

1. the agent designer 

2. the agent's own experience due to participation and situation in the environment 

With either option, the agent is now a stochastic entity and no longer wholly determined 

by the internal state transitions. As noted earlier, it is then a matter of defiining a suitable means 

of adapting the probabilities of certain actions when the agent finds itself in certain internal 

states. One method would be to implement a probabilistic function over relative strengths of 

nodes in a connectionist or more generally, any activation spreading system. The structural 

components that then most significantly influence the chosen output are the weights which 

cause activations on nodes. 

11 Conclusion 

This technical report attempted to introduce an automata-theoretic notion of reactive agency. 

Philosophically, this is appropriate because of the pattern recognition / driven nature of reactive 

behaviour and its specification in terms of S-R models. While the automata model has been 
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considered in the agent literature e.g. (Wooldridge, 1999) it has not been specialised to cope 

with reactive or adaptive behaviour explicitly. 

The apparently disparate practices of traditional software agents and reactive automata-

like systems was begun by (Rosenschein and Kaelbling, 1995) in SAT, but was extended here 

to cope with potentially adaptive behaviour. The modification was acheived by relaxing the 

strong constraint on correlational information, and introducing an analogy with multiple real-

isability and heterogeneous disjunctions. Effectively, the mathematically tractable and elegant 

framework introduced in SAT was broken to favour realisable adaptive agents. The notion of 

representation in reactive systems was approached similarly. 

The extensional characteristics of a general reactive agent were proposed with reference 

to Arkin's behaviour-functional formulation. Stimuli and response state space interpretations 

were introduced (to move away from the assumption of finite, enumerated environments) and 

their utility was demonstrated when considering a simple exemplar reactive agent which faced 

an action dichotomy when a certain internal state occurred from its perception of the environ-

ment. 

In conclusion, SAT commits to a strong epistemological constraint which may not hold 

when internal state is adapted. Correlational definitions work only when they can be heteroge-

nous disjunctions of postulated internal states. SAT provides a means of specifiying the agent 

in abstract, and then deriving a working machine to implement it. Behaviour-functional defi-

nitions are a similar model for SR inspired systems such as those given in (Arkin, 1998). To 

realise an adaptive agent defined in a behaviour-functional way requires that simple automaton 

models be abandonded in favour of models which can acquire action probabilities. A simple 

means of achieving this is to enable the agent to acquire these probabilities by experience in 

the environment. Future work will need to explore kinds of mechanisms which are suitable. 

Reinforcement learning methods (Kaebling, Littman and Moore, 1996) have been shown to be 

plausible for this purpose, but it is unclear how they will cope with changes in the environment. 
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ABSTRACT 

This technical report reviews some literature on reinforcement learning and neural net-

works. It juxtaposes the tradition of machine learning with neural modelling techniques which 

reproduce similar phenomena (namely, reinforcement and operant conditioning). The report 

then goes on to describe an implementation of an agent which uses a combination of discrete-

time Gaussian adaptive resonance theory and an Hebbian associative search network to imple-

ment pattern classification. A further experiment is described which attempts to look beyond 

the limitations of the classification agent as a model of situated or embodied agency. The clas-

sification agent lacks some of the requisites to study the continuous interactions between agents 

and their environments (albeit in a simulation). The experiment and a brief outline of two agent 

connectionist architectures (both based on connectionist realisations of reinforcement learning) 

are provided, as are results from the simulations. 
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1. Introduction 

1 Introduction 

This technical report contains a survey of reinforcement learning methods tested and applied 

in an two applications; one connect!onist-based agent for classifications in a multimedia envi-

ronment and another for exploring connectionist implementations of a simple non-stationary 

environment akin to a one-armed bandit. Much of this document supports and details the ex-

perimental work described in the draft document (Joyce, 2001b). 

The report begins by describing some of the history and literature of reinforcement learn-

ing. It then describes the common frameworks of reinforcement learning (as defined in the 

machine learning community) and then describes alternatives originating in neural network 

models of psychological phenomena. The network models described were all used, in some 

way, for the implementations of MAVIS2 (described later) and the simulations of embodied 

activity in a simple virtual agent. 

The report concludes by describing a simulation, briefly describing the kinds of network 

architecture used for agents in the environment and then reproduces the experimental data with 

commentary on the results for the two agent implementations. 
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2 Literature Review: Reinforcement Learning and Conditioning 

Models 

From initial explorations in the MAVIS2 environment, it was decided to undertake a literature 

review of the relationship between automata models, agents and the use of reinforcement learn-

ing techniques. Much of the work conducted by Grossberg and colleagues (Grossberg, 1972a; 

Grossberg, 1972b; Grossberg and Levine, 1987) on neural network models of reinforcement 

phenomena (i.e. those observed by experimental psychologists rather than the machine learning 

definition) implement systems with similar behavior to the machine learning community's def-

initions of reinforcement learning. In terms of observable agent behaviour, the two approaches 

converge despite different implementation methods and lineage. 

After initial work on using drive nodes as reinforcement sources internal to the agent 

(Chang and Gaudiano, 1998) - see also, section 3.3 and section 4 of this report - attention was 

turned to the use of machine learning reinforcement techniques and their realisation utilising 

connectionist models. 

2.1 Stochastic and Learning Automata 

The strong link between agents and automata enables us to connect easily with the learning 

automata models explored in the mathematical psychology of learning (Hilgard and Bower, 

1966). A comprehensive survey of early work (Narendra and Thathachar, 1974) reveals that the 

assumptions are similar to the model presented here. The environment is regarded as a source 

of teaching signals and the agent as a stochastic automaton: that is, an automaton whose output 

function selects actions according to probability assignments. 

2.1.1 Definitions 

A stochastic learning automaton (SLA) is where choice of actions are initially random (each 

has uniform probability of being selected) but as experience accrues, the agent modifies the 

probability of selecting certain actions based on the environment's feedback on their conse-

quences cf. (Dennett, 1996) where the SLA would be a Skinnerian agent with limited percep-

tion. Hence, a learning automaton is fully described by the environment's penalty set (denoting 

consequences), the agent's choice probability vector (indicating the probability of an action) 

and a reinforcement scheme (Narendra and Thathachar, 1974) pp. 326. 

The SLA model can be formalised by simplifying the Mealy automaton model adopted in 

(Joyce, 2001a) as follows: 

® an input set I = {0,1} indicating a reward (implying the agent only ever perceives the 

environment as a state which represents a reward (0) or punishment (1)) 

» a set of internal states 6' = {% | A: 6 N} 
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Environment 

perception 

= i = i ^ E 

Agent 

F(Si^) = o 

Figure 1: Learning Stochastic Automata 

® an action (or output) set O = {oj | j G N} where j < k 

8 a state probability vector P = {pi{t),p2{t),... ,Pk{t)) where pic{t) is probability of the 

agent's internal state being % at time t 

» internal states are identified with actions (e.g. k = j) such that only an output function 

F : S O is required. 

» an algorithm A (reinforcement or updating scheme) which generates p(n+l) from p{n) 

In this context, adaptive behaviour is the modification of the state probability vector under 

the interpretation (cf. behaviour generation) of F and the update algorithm A. This is shown in 

Figure 1. 

The agent-environment interface is the update algorithm A's relationship with the envi-

ronment. The environment is specified as an automaton which takes as input agent actions and 

responds with penalties: 

• an environment input set Ig = O = {oj | j e N} 

® an environment output set % = / = {0,1} 

* the environment's penalty probability vector C = (ci,c2,... ,c^) where cj denotes the 

probability of action j generating a penalty signal (i.e. a member of Oe indicating pun-

ishment) 

The environment's state signal is peculiar in that it only reports a neutral reward or noxious 

penalty cf. reinforcement learning where an environment state is reported along with a reward 

obtained from the last action taken. Also, if the environment's penalty probability vector C(r) = 

C{t+1) then the environment is classed as stationary. That is to say, the probability of an action 

yielding some reward or penalty is time invariant. 
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2.1.2 Adaptive Behaviour in a SLA 

Initially, each internal state (and therefore action) has equal probability Prt(f = 0) = l/k. At 

time t, the agent will possess the state probability vector P which governs its next choice of 

internal state, and action. For a given P at time t the mean penalty can be defined as : 

J 
1 
1=1 

Af(f)== (1) 

assuming that the environments output (and the agent's input) are binary penalty/reward schemes. 

Naturally, &tt = 0 this would correspond to : 

Af(0) = (2) 

A SLA adapts (or learns) if, asymptotically, the average penalty M{t) < M(0) as / —>• oo. 

(Narendra and Thathachar, 1974) also give constraints for optimality of the learning process. 

Essentially, the SLA should minimise the penalty just as for minimisation of the error function 

in supervised neural network learning algorithms, and the definitions of optimality in reinforce-

ment learning. Note that goal directed behaviour is formulated as some optimality criteria, and 

the actual implementation of a behaviour mechanism is then inscribed with this assumption. 

The reinforcement scheme updates the probabilities of a certain action being effected. A 

reinforcement scheme (or algorithm) A is defined as: 

f ( f + l ) = 7[f(f),o(f),i(f)] (3) 

Where P{t), o{t) and i{t) are the action probabilties (state probability vector), action taken 

and input to the agent respectively for some time t. T is an operator that produces P{t + 1) 

from the agent's current state/action and the penalty received. Reinforcement schemes are 

either linear functions of P{t) or non-linear. The issue of reinforcement functions and learning 

rules will be dealt with later. In either the linear or non-linear cases, the principle is that 

the probability of an action increases if it resulted in reward and decreased otherwise cf. the 

Hebbian and anti-Hebbiaii postulate of learning (Hebb, 1949) and (Brown and Chatterji, 1995). 

2.2 Reinforcement Learning 

At this stage, it is more than apparent that the perspectives surveyed here are related to the gen-

eral machine learning approach of re-inforcement learning (RL). In this section, we attempt to 

show that the models presented here (specifically, automata and behaviour-functional methods) 
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are in fact members of a set of techniques which are all reasonably subsumed by the label rein-

forcement learning. The aim here is to show how the formulation of the reinforcement learning 

problem is applicable. 

A survey of reinforcement learning can be found in (Kaebling, Littman and Moore, 1996) 

and the introductory principles in (Ballard, 1997) and (Sutton and Barto, 1998). The field 

is far too broad to be fully considered here, so we will limit the scope of the discussion to 

those techniques under the RL banner which are most similar to the connectionist approach 

(associative reinforcement learning) and the formalisation of the agent in RL. That is, agents 

that use a control policy which is model free and agents must aquire experience of the world 

by sampling it directly. This is related to the RL methods which fall under incremental Monte 

Carlo techniques from mathematical estimation theory. 

Most significantly, the amalgam of associative connectionist techniques with the princi-

ple of reinforcement learning provides a method of i) breaking the supervised teacher-agent 

relationship which exists in the purely supervised learning methods common to feedforward 

connectionist models ii) the requirement to enumerate the entire state-action space in rein-

forcement learning. 

2.2.1 Definitions 

As for SLA, the agent-environment interface is modelled, but the environment state and a re-

inforcement signal are provided. In RL literature, it is convention to talk of the environment 

state as being something that might be considered a stimulus in this thesis. However, the 

direct relationship between the environment state and internal state has been explored in (Joyce, 

2001a), where the output of the perceptual machinery provides the agent with a "cue" for 

responding. At the level of machine learning mechanisms, this is analogous to environment-

state generalisation in RL. For this reason, we will not use the same notation for environment 

state and stimulus here. 

A reinforcement learner is specified as: 

* a finite set of environment states X = {x,- | i G N} representing states of the environment 

as perceived by the agent cf. the output of the perception mechanism 

• a finite set of output states O = {oj | 7 G N} representing actions 

® a policy which is a function relating perceived state to probabilities of actions (x, o) = 

Pr[o(r) = o I x{t) — x] 

» a scalar reward signal r, 6 

So, at some time t an agent will find itself perceiving the environment as state x and will 

take an action a with probability it, {x, o) which will result in a reward or punishment r at time 

^ + 1. 
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One important contribution of the RL formulation is the introduction of the discrete 

Markov property for the environment state - that is, a stochastic process whose past has no 

influence on the future if its present is specified. One immediately obvious limitation of re-

active agents is that all information upon which the agent chooses its response or action must 

be available in the perceived stimuli (Jennings, Sycara and Wooldridge, 1998), although a 

connectionist-based theory of agency appears to defeat this argument. A formalisation of this 

property can be given in terms of a discrete Markov process over the (input) states given the 

agent's last action and reward. The Markov property for a discrete random variable X is; 

Pr[X,+i I X., . . . ,Xi] = Pr[Xt+i | X.] (4) 

So, in terms of the input to the agent (the reward r and stimulus x) and the last action taken o, : 

Pr [xf+i = Y,Tf+i = / I O f ] (5) 

This states that the probability of a certain input x" gX and reward / E 91 at f + 1 given that 

the environment was in state (strictly, in the phenemonological theory, this means the agent 

perceived the environment and arrived at some coded internal state) Xt and action Ot was taken. 

So, the state transition dynamics depend only on the previous state. This promotes the principle 

that the agent must receive sufficient information in its sensing of the environment for it to be 

able to effectively learn and act. Also, we can now state that if the probabilities of state transi-

tions does not change over time, then the environment is stationary. Note that the environment 

is non-deterministic, in that transitions are stochastic, but those probabilities of transitions do 

not change over time. Most RL techniques take as a basic assumption that the environment is 

stationary (Kaebling, Littman and Moore, 1996). 

2.3 Adaptive Behaviour in RL 

Broadly speaking, the categories of RL techniques are : 

1. immediate reward techniques : direct interaction with the environment at time t resulting 

in a contingent reward r at ? + 1 

2. delayed reward techniques : direct interaction with the environment at time t but rewards 

delayed until some later time t + n - effectively, this is a special case of immediate 

reward, except that the rewards are temporally sparse. 

3. model-based learning : possesion of a model of the state transitions probabilities and 

reinforcement function 

4. model-free learning : no possesion of a model of the state transitions probabilities and 

reinforcement function 
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In any case, the aim of a RL algorithm is to find an optimal policy n governing the mapping 

of states to actions for every possible state. Following (Sutton and Barto, 1998) we measure 

the reward obtained over a period of time as the return gained. For example, assume that a 

sequence of actions under some policy k generates the following reward sequence: 

(n = 1, f2 = l , n = 0,r4 = 0,7-5 = l,r6 = 0) (6) 

the reward gained over; = 1.. . 6 = 3. A policy should maximise this return. Assume that the 

above sequence is the expected sequence generated if we follow policy % from time 1 = 0. Tt 

tells us which action to take given the currently perceived input i and we receive the reward 

ri after the action is taken, then follow policy n thereafter. Then, this is one of many possible 

reward sequences. Rewards later in the sequence (e.g. at ? > 1) are considered to be "long 

term" rewards, but not as immediately important as ensuring short term reward. So, future 

rewards are discounted in the calculation of the overall return (Kaebling, Littman and Moore, 

1996) to emphasise that policies should favour immediate reward. 

This is achieved by geometrically discounting the rewards in the sequence by a factor 7 ,̂ 

where 0 < y < 1 and k indexes the rewards, assuming f + &is the kth reward in a sequence. 

Note that this notation, due to (Sutton and Barto, 1998) is to allow for both episodes of activity 

(which terminate) and continuous interactions. Hence, the duration over which the return is 

being measured is T so that an episode can be defined relative to t and the index k runs from 0 

to T. So, the actual return under the discounting system as given by (Sutton and Barto, 1998) 

is: 

(7) 
t=o 

Note that this assumes we are measuring return over a known sequence of actions following 

a policy tt. In applications, this value can rarely be calculated a priori and only in limited 

theoretical cases can this value be used directly to find the best policy in a (simple) environment. 

Typically, a state-value function is also defined, which measures how "useful" a state is to 

the agent attempting to perform in the environment. This is defined by resorting to the expected 

value of the return for a specific policy and defining the state-value function for policy n: 

I = ;c] = E J % / n + t + i 
[ k=0 

% = % > (8) 

where En the expectation operator. Similarly, we need to define a function which yields the 

value of taking a certain action if the environment is in a certain state (e.g. the perceived 
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stimulus for the agent). This is the action-value function and is defined as follows : 

x t = x , 0 i = 0 ^ (9) 

Hence the value function for a policy is related to the Q value by (Ballard, 1997); 

Q (-̂ i o) — [^t I — X, Oi — o\ — E-ji < ^ t+k+1 

o)] (10) 

because the value of a state is determined by the most likely action the agent will take in that 

state under policy tc. Therefore, the central tennet of reinforcement learning is the maximisation 

of V by manipulating the policy 7i. Although analytically elegant, this informs us of little about 

its application in agent learning. It should also be noted that the expected value of the rewards 

in equations 8 and 9 is fundamentally dependant on a stationary environment. 

2.4 Learning under the RL Formulation 

The question of how to acquire a policy n is still open. One method is to use theoretical results 

to derive an optimal policy such that : 

y"* (x) = max [Q(a:, o)] (11) 

where 7X* is the optimal policy that guarantees that the best action to take for any state is that 

with the highest action probability. However, such derivations (see (Sutton and Barto, 1998) 

for examples) only hold in either simple theoretical cases or when dynamic programming can 

be applied. Alternatively, exhaustive sampling of the state-action space by selecting a state, 

which is then used to exhaustively search for the best action given this state. Neither of these 

approaches is particularly useful in agent applications, since they imply off-line training (e.g. 

an agent which is not structurally coupled to its environment). 

An alternative is a derivative of Monte-Carlo based estimation and policy iteration. In this 

approach, the agent samples the space as it encounters it. The danger is that some high reward 

states may not be visited because the agent begins to visit regions of the state space which give 

positive rewards immediately. However, the agent gradually refines 7r: Z —>• O in an attempt to 

maximise V. 

This is described by the algorithm in Figure 7. Note that the update of Q values uses 

the resulting state's best action estimate from that resulting state. This suggests that at each 

update of Q values, rewards are effectively propagated backwards to early visited states. This 

"chaining" of rewards and Q values enables sequences of actions to be learned. 

In agent applications, the agent must explore and act in the environment and acquire es-

timates of Q so that it eventually samples enough of the state space to arrive at a policy that 

yields roughly V^* for all states. The algorithm assumes that a large number of samples will 
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1. Initialise all estimated values Q{x,o) to small random values 

2. Given x is the current state, choose action o according to argmax„ [Q(x,o)] occasionally 

choosing an action which has a lower <2-value (to encourage exploration) 

3. Execute action o 

4. Observe new state y and reward V; 

5. Update Q estimates such that 

= (1 - T l ) G f - i k o ) + ' n ( rf + YmaxGf-iCy,^')) 
V o'eo J 

(12) 

where r| is the learning rate, r, is the reward and y is the state resulting from the action 

in step 3. 

6. Update policy n such that n{x) — argmax„'£o Qtix,o') 

1. Repeat from step 2 until converged 

Figure 2: Algorithm for Iteratively Learning of a Policy while Estimating Q and V (based on 
Q-learning) 

cause the averages to converge on the theoretical values. However, this does not define a mech-

anism to implement the policy or how the policy is iteratively refined. This is a broad field and 

many different approaches have been taken (Kaebling, Littman and Moore, 1996). 

Connection!St models represent one way of implementing policy as implicit action selec-

tion (e.g. softmax functions over the output nodes of a connectionist network) and then updat-

ing the weights according to either a Bellman residual-based error function (for MLP networks 

using back-propagation of errors) or a localist network where individual weights are trained to 

represent the value of actions in a mapping from percepts / internal state to actions. 
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3 Implementing Reinforcement Effects 

This section describes different approaches to implementing reinforcement effects. The tech-

niques described here were used to inform the design of MAVIS2 agents and the simulations 

described later. 

3.1 Temporal Difference Methods 

In (Barto and Sutton, 1981; Barto, Sutton and Anderson, 1983) the notion of eligibihty is 

introduced, to record or code a period of concomittant activity in abutting neurons so that the 

US (unconditioned stimulus) and CS (conditioned stimulus) can be processed associatively 

in the absence of the CS. This is the principle of delayed reinforcement learning - how an 

adaptive neural system can process the relationship between stimuli presented at some temporal 

distance, e.g. how a negative consequence of an action can be associated with some stimulus 

occuring much earlier in training. Sutton (1988) later attempted to unify this as "learning 

to predict" using temporal difference (TD(X)) learning. In this framework, certain classes 

of supervised learning can be viewed as incremental increases in weight towards a desired 

prediction z. Unlike traditional supervised learning, the successive weight updates are based 

on the difference between temporally successive predictions (where a factor 1 weights the value 

of these and all previous errors), instead of the difference between a prediction and the desired 

value z (as in the classic back-propagation supervised algorithm). 

(Levine, 1991) Chapter 7 discusses the role of these techniques in relation to psychologi-

cal principles and control theory. He states that TD learning is a class of incremental supervised 

algorithms which attempt to predict the environment so as to minimise the amount of negative 

reinforcement (in the machine learning sense) received. This fact is emphasised by the treat-

ment given by (Sutton, 1988), where the formulation of weight updates is in terms of the partial 

derivatives of the predictions with respect to the weight vectors (apparently typical of the con-

trol theoretic approach used in the development of the Widrow-Hoff procedure which aims for 

optimality in predictive accuracy). A weight update at time t is given as (Sutton, 1988): 

AH,,Xr) = n (f (f +1 ) - f (f)) % ^ (13) 

where P indicates the prediction made by the learning system. Now, if we wish to discount the 

value of earlier predictions: 

AK'.Xr) = n ( f (f + 1) - f W) i (14) 

It can be shown that the back-propagation and the Widrow-Hoff procedure are specialised 

versions of these general forms (see (Ballard, 1997) Chapters 11 and 8 and (Sutton, 1988) 

section 2). Note that the TD framework has its origin in optimisation theory. The partial 
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derivatives also assume that all nodes have access to the activations or signalling of every other 

node. This shared feature of both TD and back-propagation weight update methods makes 

them less desirable as plausible Hebbian update rules. 

Another much cited example is (Tesauro, 1992; Tesauro, 1995) on TD-gammon. Tesauro 

used temporal difference learning with an MLP to learn to play back-gammon. The success of 

the system was unprecedented. However the difference between Tesauro's work and an agent 

is clear. In equation 14, their is only predictive error measured between successive predictions. 

TD learning, therefore, hinges on the notion of a terminal state in the agent-environment in-

teraction (and this was stated clearly in Sutton's work). The. final value of P is given as the 

final reward (indicating how successful the game play was) for the learning algorithm. This 

can be thought of as a sequence of predictions, computed incrementally, where the ultimate 

prediction is measured against either "win" or "lose" (in the back-gammon example). Hence 

the final update of the network incorporates the discounted sum of all previous prediction error 

derivatives (with respect to the weights) and the value of the final state of the game. 

Such optimisation theoretic approaches limit the possibility for ultimately long-term pl-

asiticity in an agent. If optimisation or predictions is desired, then TD learning is perfectly 

applicable. Sutton (1988) has even shown that TD learning outperforms back-propagation in 

certain tasks. The localised update rule given here is predicated on the desire to enable indi-

vidual, microstructural components of the network to self-organise over time. The measure of 

optimality is less relevant, and probably ill-defined. If the agent's learning algorithm can be 

shown to approach (by gradient descent or ascent) the optimal region of the weight space, then 

we assume one final state of the environment (e.g. a game state) that indicates the optimality 

of the result of the route taken through the space. Such indicators may not be present except 

in temporally localised periods of agent-environment interaction. In a continuous sequence of 

interactions with a dynamic environment, it is too constraining to state that a single terminal 

goal state exists. It is also unreasonable to expect a finer-grained specification of state rewards; 

it is easy to envisage the opposite extreme of Sutton's 'final state yielding a reward' as 'each 

state must have an associated scalar reward value'. The latter, of course, being a model of the 

value function. 

Perhaps a more important factor is the long-term achievement of goals, which is inde-

pendant of the learning algorithm used, such as the amount of resources collected from an 

environment. 

3.2 Related Work on Implementation 

(Sun and Peterson, 1998) used an MLP to approximate the Q function. They use back-

propagation of errors to calculate weight modifications, where the error on the output nodes 
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(which is recursively fed backwards in the MLP previous weight layers) is calculated as: 

I r + ymax' Q{y, a') - Q{x, a) iff a, = a was the chosen action 
grron= < (15) 

[ 0 otherwise 

where error, is used instead of the usual difference between desired and actual output, and the 

remainder of the back-propagation algorithm remains the same. In a similar context to this 

thesis. Sun and Peterson equate TD learning to playback of the complete sequence of events 

the agent encounters during an episode of action (which in the Dyna architecture of (Sutton, 

1991) was equated to "replaying" of the agent's mental plan). 

(Ackley and Littman, 1991) used a bi-partite network intepretation, and then trained it 

using the back-propagation algorithm. There purpose was to provide both input and response 

generalisation. Their system (complimentary reinforcement back-propagation) defined the er-

ror such that weight updates cause the network to search in the opposite direction of the erro-

neous output. For example, if the network output for some node i was 1, and this resulted in 

punishment, the learning rule would try to adjust the weights so that the output moved away 

from 1 (e.g. towards 0). Essentially, there method is a heuristic which attempts to implement 

both a plausible searching method over the action space and generalisation over input and ac-

tion spaces. 

Ackley and Littman's work does represent one of the first methods to fully integrate the 

notions of perception and action generalisation using connectionist principles. Its goals are 

somewhat different to those here since software agents are largely concerned with discrete re-

sponses or actions and generalisation across actions is not necessary. Our approach has been 

to break the problem in two, focusing on the appropriate neuronal and weight update mod-

els to solve the problem of immediate and delayed reinforcement signals in a plausible local 

connectionist network. 

3.2.1 Drives, Goals and W-Learning 

We now turn to the recent work of (Humphrys, 1997)'. Humphrys solves the problem of 

learning and action selection in two parts. Firstly, g-leaming enables the agent to learn its 

behaviour. After this has happened, the so called W-leaming procedure enables continuous 

action selection over the learned behaviour, according to conflicting goals. 

According to the distinction between learning how (to perform certain sequences of ac-

tion) vs learning when such behaviour is appropriate, under goal driven behaviour in the con-

nectionist work of Chang and Gaudiano, 'learning how' versus 'learning when' are temporally 

interactive but structurally separate. However, in the computational reinforcement learning 

work of Humphrys the learning of behaviour is both structurally and temporally separate; that 

' Th i s comparison owes a dcpt to llic anonymous reviewer of the paper (Joyce and Lewis , 1999b) who suggested 

that this similarity be explored 
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is, his agents learn to behave (using Q-leaming) and then learn the action selection problem 

using W-learning. 

Humphrys' work divides the Q-leaming problem into sensory sub-spaces, where a number 

of g-leaming modules use a sub-space of the entire stimulus space and either share the same 

actions or have separate responsibilities for sub-sets of actions (as shown in Figure 3). In 

Humphrys' work, he termed these modules "agents", following (Minsky, 1986). A similar 

approach is implicit in (Chang and Gaudiano, 1998), where the sensors are grouped according 

to the functional relationships between the relevant CS, US and actuators. However, each 

component of Chang and Gaudiano's network is simultaneously active and learning. In effect, 

each (2-learning agent promotes an action (hence, decides on the presence of the action in the 

response space using the interpretation given in (Arkin, 1998; Joyce, 2001a)) with strength W. 

However, learning of the individual behaviours must be performed individually before they are 

allowed to compete in a parallel action selection scheme. 

The learning occuring in each of Humphrys' internal agents is mediated by a localised 

reward function. Hence, for any environment, there will be a group of sensors (corresponding to 

a stimuli sub-space), a Q-leaming component and a corresponding reward function. Potentially, 

this system is scalable provided the local reward functions can be found. However, Humphrys' 

agents require (for one environment) 8 local reward functions. To design such reward functions, 

and to simultaneously choose the necessary learning rate parameters for the Q value estimates 

and any other parameters associated with the multi-layer perceptron used to approximate the 

Q values, Humphrys used a genetic algorithm. After iteratively evolving populations, he found 

a set of reward functions which reflect the relative significance of each reward function to 

another. Note that the actual rewards delivered to each of the individual internal agents must 

reflect the relative importance when considered as a population of agents coping with different 

aspects of the gloabl desired behaviour. 

This perhaps highlights the difference between the two modelling approaches. Purely 

connectionist systems borrow from biological theories of learning, implemented in a way that 

makes no claim or indeed reference to optimality of behaviour. Chang and Gaudiano assessed 

their agent's performance qualitatively, by observing whether or not the agent has learnt the 

desired behaviour. They also only have two goals. 

In contrast, those developed from the machine learning perspective begin with a definition 

of optimal behaviour, then derive necessary models from these basic assumptions. Hence, they 

tend to have artificial constraints such as a distinction between learning behaviour and then 

action selection. Humphry's does make the connection with drive theory, however, arguing 

that the W values are akin to drives in a Hull's systematic theory of behaviour. This is valid, 

but only if the drives are seen as an amalgamation of the whole set of interacting intervening 

variables - see (Hilgard and Bower, 1966) for a description of the complete Hull theory. 
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3.2.2 Learning Action Selection 

(Humphrys, 1997) tested many methods for learning W values. They included: 

® simple majority rule voting options, in which the action for which most agents voted for 

are picked 

8 W value (promotion strength) equals the maximum Q value (that is, the action suggested 

by the agent with the highest Q{x,a) for any state x is picked) 

® learning W values by discrete updates according to the following equation: 

= (] j (16) 

where Wj is the weight promoting action / from a Q-leaming agent observing state x and 

arriving in state y receiving reward r,. Note the similarity to Q learning update rules. 

Humphry's conclusions are somewhat opaque, given that he tested a large variety of meth-

ods and it is not clear if these methods parameters or design space were exhaustively explored. 

However, Humphry's fundamental approach is fruitful because it emphasises the (holistic, sin-

gle) agent learning behaviour and learning when to select appropriate actions. 

The most significant difference to the work presented in this thesis is that we set out to 

avoid the distinction between learning action selection and learning behaviour. Humphrys' 

solution divides them to achieve the necessary functionality in his test environment. 

3.3 Low-Level Theories of Reinforcement and Operant Conditioning 

At this juncture, we pause and consider how other modellers have incorporated reinforcing 

"signals" in neural network models. There is no universally agreed neural mechanism that 

implements the kind of generalised reinforcement spoken of in both machine learning and psy-

chological discourse. However, several workers have taken seminal theories and used them as 

motivation for neural network models. The reason for this digression is that in the machine-

learning view of RL, reinforcement is a composite signal, abstracting a number of causal mech-

anisms into one global indicator of the consequences of actions. This hides the complexity of 

motivation and drives. 

3.3.1 The Response-Selection Method 

Response-selection refers to a neural network model which learns responses according to the 

reinforcement of actions in certain stimuli scenarios. It is the association of reward or punish-

ment given responses and the stimuli configurations causing those responses (see section 3.3.4 

later). 
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We mention Grossberg's approach to this problem (Grossberg, 1972a; Grossberg, 1972b) 

because a goal for this work was to consider motivational mechanisms to produce responses 

in a connectionist setting. Later, this will be considered as a control architecture for an agent 

that enables the integration of goal directed behaviour into an agent employing connectionist 

techniques; the correct motivational mechanism would affect the production of responses in the 

model. The difficulty is reconciling the multiple levels of analysis (e.g. single-neuron models 

through to abstract network models such as the MLP) and the correct technical approach. 

Response-selection methods for operant conditioning have been implemented by others 

such as (Chang and Gaudiano, 1998)^. They presented a connectionist model based on Gross-

berg's theory of operant conditioning which directly incorporates motivations and drives. It 

is from this publication that we draw definitions for the remainder of this work. Initial work 

in this direction was reported in (Joyce and Lewis, 1999a). A simplified view of stimuli and 

reinforcement was used and used as the basis for an architecture which would support this 

type of adaptative behaviour in computational agents. However, learning was implemented 

as associations between state and action nodes using signal correlation Hebbian learning and 

the perceptual machinery was implemented based directly on the model of perception and be-

haviour given in (Page, 2000) and (Usher and McClelland, 1995). It relied on an architecture 

which assumed that some application domain specific module reported the desirability of the 

last action. This then placed the agent's structural coupling at a level in which a designer must 

participate to specify the heurstics which indicate the correct action. It was an agent which 

used supervised learning, but implemented as a real-time neural network using only signal 

correlation Hebbian learning. 

It is worth noting that "purely" connectionist modellers, e.g. the work summarised in 

(Schmajuk, 1997) and (Chang and Gaudiano, 1998) on animal-like behaviour, rarely connect 

with the "purely" reinforcement learning literature such as (Sutton and Barto, 1998). For this 

reason, the connnection sought here is somewhat difficult. Similarly, the notion of the action 

selection problem rarely appears. This seems to support the claim that it is a feature introduced 

by engineering factors or the mode of analysis of behaviour although both problems are still 

pertinent to the software / virtual agents - see (Joyce, 2001a) for further discussion. 

3.3.2 Definitions 

Any given stimulus is either a conditioned (CS) or unconditioned (US) stimulus. Conditioned 

stimuli have no significant consequences for the agent. The unconditioned stimulus has signifi-

cance and gives rise to an unconditioned response (UR). This is akin to a rat being consistently 

shocked (a US) after presentation of a light (CS) causing it to retreat (UR). Eventually, the 

light will cause the UR as the rat begins to anticipate (fear) the onset of the US. This example 

^Chang and Gaudiano claim that neither traditional supervised or reinforcement l ea rn ing mechanisms are suf-

ficiently sophisticated to function in truly unstructured environments. Their 's was a robotic agent in a physical 

environment 



3. Implementing Reinforcement Effects 20 

is classical conditioning because the agent (rat) is being presented with two stimuli, neither of 

which are the result of its actions. Purely associative connectionist algorithms can easily model 

certain aspects of classical conditioning. 

The concern of this section is with uniting reinforcement principles with operant condi-

tioning into a connectionist network implementation, where the connectionist learning rule is 

based on Hebbian associative learning. 

Unconditioned stimuli are treated as stimuli which command an unconditioned response, 

such as retreat. As such, they may be analogised with a kind of generalised reinforcement 

signal if they are combined with a driving mechanism; that is, a node which represents the 

affective (i.e. emotional) character of the US on the learning mechanism (Grossberg, 1972a; 

Grossberg, 1972b). However, they are not as general as the reinforcement signal in traditional 

RL. A US will model a specific event such as shock from a collision. Another may represent 

an appetitive stimulus, such as food. These are treated as different polarities of the same RL 

signal (e.g. the appetitive US would be a r, > 0 whereas the shock would be r, < 0) which then 

modulate learning. 

Fundamentally, in operant or instrumental conditioning the US is presented to the agent 

(by the environment) after the CS and the response have been produced. Hence, any appetitive 

or aversive consequence (US) is a function of the environment and the agent's action. 

3.3.3 Chang and Gaudiano's Avoidance Network 

In Chang and Gaudiano's implementation of Grossberg's response-selection mechanism, un-

conditioned stimuli (such as shocks) are conveyed to a separate reward/punishment module 

which then modulates learning. That is, if the agent collides with something in the environ-

ment, this collision US is conveyed to the reward/punishment module at the same time as the 

CS (e.g. sensory input) is conveyed to the network. The modulation can then be thought of as 

activation of a drive node. If both the drive node (representing the significance of the US) and 

the sensory node (representing the CS) are sufficiently active, the strength of their association 

is strictly increased. All other weights connecting non-active nodes simply decrease over time 

due to decay. 

Figure 4 shows a simple diagram illustrating this arrangement. Note that triangular nodes 

are polyvalent, requiring simultaneous input from more than one source before becoming ac-

tive. Also, note that the input (CS) nodes are connected one-to-one with the field of polyvalent 

nodes to the right (whose activations are denoted %)-

The dynamics of the network reveal how the drive node modulates the learning behaviour. 

Assume some CS has caused activation xn and simultaneously, a US was encountered - the 

subsequent affective state is represented by activation of the drive node. Currently (i.e. before 

learning) the association z\i between the CS node and the drive node will be close to zero. 

Assuming a Hebbian update rule, then we wish to indicate a strong association between this 
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Figure 4: Chang and Gaudiano's Implementation of Grossbergs Theory of Operant Conditioning 

particular CS occuring and a fear-inducing state (caused by collision). 

Formally, the activation of the drive node is: 

(17) 

This implements the requirement that the CS and the US are required for high activation of the 

polyvalent drive node. Ty is simply a suitable threshold that ensures this polyvalency condition 

holds. The activation of the recipient polyvalent node which will eventually cause or inhibit 

certain behaviour (denoted by X2, in the diagram) is determined by the strength of the incoming 

CS (the activation xi,) and the strength of the signal delivered by the drive node. If both are 

high (e.g. indicating presence of the CS and a strong activation of the drive node indicating 

fear) then this node will activate according to: 

where / is: 

1 if y{t) > 0 

0 otherwise 

(18) 

(19) 
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Finally, the only weights which are updated are those from the CS nodes to the drive nodes 

- effectively, they code the association of "fear" with the presence of certain CS as they grow 

larger: 

1) (20) 

where D is the decay rate for the weight and Tj is the learning rate. Hence, the only method 

of increasing the probability of a certain response is by Hebbian decay of the weight from 

the CS to the drive node. Counter-intuitively, this is the opposite rule to the reinforcement 

or associative learning method, where weight increases are associated with promotion of a 

certain response. The weights in the Chang and Gaudiano network simply learn to inhibit by 

associating CS and US contingencies via the CS-drive node weights. 

Different USs can be defined as drive nodes corresponding to goals such as "collect re-

sources". In addition, it is more intuitive for an agent engineering task due to the explicit 

representation of drives which correspond to goals. 

However, we can no longer reasonably discuss reinforcements or punishments which pro-

mote or demote certain actions (as in RL) because they are explicitly represented in the model. 

This is because using Chang and Gaudiano's architecture, weight increments are purely Heb-

bian and only decay can "punish" a certain weight over time. Such decaying of weights then 

indicates (to the agent) that the corresponding CS has no significance; e.g. that high activation 

of a light sensor (a CS) is rarely accompanied by a US (hence, no activation of a fear drive 

node) indicates that the CS is harmless. 

This fundamentally indicates the distinction between low-level neural models and the 

higher level reinforcement learning models. Reinforcement signals are gross simplifications 

of the drive node and US pairing that occurs in Grossberg's usual level of analysis (i.e. the 

neuronal and network realisation of phenomena). 

Figure 5 shows an abstract version of Chang and Gaudiano's network, and illustrates how 

multiple goals (cf. Humphry's W learning model) can be incorporated into the model. Each 

behaviour (approach or avoidance) is produced as continuous activation of the actuators, but is 

shown as two networks which control avoidance or approach behaviour respectively. We can 

(and have) discretised the problem to aid analysis. Assume that the discrete action "approach" 

is represented by one action (in a softbot) and likewise, "avoid" is implemented as another. If 

an action is activated then some other system converts this action to continuous motor action. 

Chang and Gaudiano have implemented these behaviours as two competing systems, each with 

a separate drive system and different CS concerns. Action selection is therefore implemented as 

parallel actions competing using the opponent architecture of the neural network. The system 

they used is a combination of polyvalent nodes, and gated dipole arrangements. 

The agent's sensory faculties are divided into two functional units. Those sensory neurons 

(CS) that are relevant to tlie production of an avoidance behaviour and are naturally paired 

with the "collision" US drive node. Likewise, those associated with a pleasurable or appetitive 
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Figure 5: Chang and Gaudiano's Network for Learning Behaviours using Drive Models and Operant 

Conditioning 

motivation (e.g. food sighted) are paired with the light sensors. 

In effect, we can see that Chang and Gaudiano have partitioned the whole network into 

two discrete, competing networks. Each network has a functional role and responsibility and 

competes with the other. If we reflect upon the design of g-leaming neural net, this suggests 

that a similar division will be necessary. This is because of the following; 

» Drives (low-level) are analogous (but not equivalent) to reinforcement signals (higher-

level) 

• Reinforcement signals relate to single tasks - e.g. the value of a certain action in a certain 

state 

® Multiple goals implies multiple measures of values of actions - e.g. mutliple g-value 

estimates 

B Reinforcement signals cannot represent consequences with respect to multiple goals, the 

values of actions (and states) in achieving those goals and are abstractions upon multiple 

interacting drives 



3. Implementing Reinforcement Effects 24 

To summarise, the reward/punishment module is used as a kind of interpreter which knows 

how to generate an affective response to a US and which then affects or modulates learning. 

These two features together form what is traditionally represented as the bipolar reinforcement 

signal representing reward or punishment in the RL literature. The heursitic critic element 

introduced by (Barto, Sutton and Anderson, 1983) is a similar mechanism which enables the 

modulation of learning given a collective reward or punishment. 

3.3.4 Polemics of Drives and Reinforcements 

Historically, according to Levine (1991) pp. 163, there has been tension surrounding whether 

drive representations (e.g. the USs and drive nodes) are necessary. Grossberg's early work 

posited the existence of a unified mechanism for both classical and operant conditioning, based 

on drives and their representation by unconditioned stimuli causing an artificial neuron to re-

spond with activation. Klopf (and therefore, the unifying theory of temporal differences) pro-

posed that the notion of drive representations are not necessary. A drive is simply equated with 

a sufficiently strong stimulus. Such a strong stimulus could be the reduction in a drive due to 

its satiation. 

Similarly, the notion of optimal behaviour is endemic in Sutton and Klopf's formulation. 

Both use the notion of differences in activation as the empowering mechanism in learning, 

and both use predictive accuracy (e.g. Sutton derives the general TD formula by first showing 

its equivalence to the LMSAVidrow-Hoff linear filter). This implicit behaviour adaptation as 

optimisation assumption has broad ramifications for agent theory. 

The machine learning version of reinforcement is bipolar. Reinforcement which causes 

the agent to more strongly associate a certain percept with a response is rewarding reinforce-

ment. From (Catania, 1992) we find the the psychologist's vocabulary of reinforcement is 

appropriate if: 

1 , a response produces consequences (e.g. the agent's environment reflects its actions) 

2. the response occurs more often than when it does not produce those consequences (e.g. 

the response is more likely to occur if the consequences are present) 

3. and the increased responsing occurs because the response has those consequences 

For example, if the agent takes an action, and is consequently presented with an appetitive 

stimulus such as food, it is more likely to produce that response (given all other factors are 

equal). In effect, the term "reinforcement" refers to a stimulus (debatably separate from the 

sensory sdmuli discussed) which causes the agent to increase responding in a certain way. 

Punishment is the complement of reinforcement in psychological literature. Catania reminds 

us that a stimulus which acts as a reinforcer is a description of its role rather than an explanation 

of how it functions in that role. 
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No matter what implementation strategy is used (neural network, RL, control theory) the 

agent is essentially learning via stimulus-response-stimulus temporal contingencies, where the 

latter stimulus is some indicative of the consequences of a response. In agent terms, some 

stimulus causes a response which is then followed a short time later by either an: 

® appetitive stimulus (rewarding reinforcement) 

o aversive stimulus (punishing reinforcement) 

This corresponds to the biological and behavioural theory of operant conditioning. Ac-

cording to (Schmajuk, 1997) pp. 179, there are two approaches to the explanation of operant 

conditioning. An agent learns to produce responses according to either: 

1. stimulus-approach: agents learn that certain stimulus situations are appetitive (reward-

ing) and they aim to approach such situations 

2. response-selection: agents learn because a particular response is reinforced in the pres-

ence of a particular stimulus situation 

where we may take the stimulus situation to be the combination of a perceptual stimulus im-

pinging on the agent (e.g. the state in RL terminology) and a reinforcing stimulus (or reward 

signal in RL terms). Schmajuk suggests that the approach of (Barto, Sutton and Anderson, 

1983) and Grossberg's theory (Grossberg, 1972a; Grossberg, 1972b) are all response-selection. 

This strongly suggests that the neural nets considered here are also. 

3.4 Outline of a Localist Q-Learning Network 

We summarise the approach developed so far as the diagram in Figure 6. Note the use of a drive 

node which "converts" US traces to a global reinforcement signal which modulates learning in 

the action node population. This represents an outline of the division of "perception" and the 

coding of perceptual categories to responses used in the MAVIS2 agents described in the next 

section. We explicitly define an US, which is then converted into a RL signal. In the MAVIS2 

architecture, a more primitive model was used with a simple Hebbian learning mechanism 

used. This was achieved by presenting the reinforcement as an analogue of the learning rate 

T] which either increases the weight between two active neurons or decreases it. In effect, a 

weight is only strengthened if both the category node and the response node are both active 

(e.g. have not been shut down by inhibition during the response search) and a reward occurs. 

Also, the WTA mechanism is based on pre-synaptic inhibition e.g. (Yuille and Geiger, 

1995) where the building of activation on each node is inhibited by similar activity in other 

nodes in the neuronal population. To explore this mechanism fully, we must consider the real-

time dynamics of such idealised neurons. If one neuron builds activation (potential on the cell 

membrane) faster than others, then it will probably fire first. This firing activity then affects 

other "slower" neurons by inhibiting their further building of potential in preparation to fire. 
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Figure 6: Neural Network model for Reinforcement Learning of Action 

The question which must be addressed relates to Arbib's distinction (Arbib, 1995b; Arbib, 

1989) of levels of analysis. RL techniques attempt to holisitically reconcile the learning of 

behaviour using a single indication of consequence - the reinforcement signal. Alternatively, 

models of operant conditioning based on neural networks and connectionist models (Levine, 

1991; Schmajuk, 1997; Grossberg, 1972a; Grossberg, 1972b; Chang and Gaudiano, 1998) 

use multiple drives to effectively reinforce certain associations between stimuli and responses. 

They effectively partition the responsibility of the global reinforcement signal into multiple 

lower level mechanisms based on modulation of neuronal fields connected to motor actuators. 

The next section of this report details the precise mechanisms used to implement the 

MAVIS2 agent, which is a derivative of the approach describe by Figure 6 above. 
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4 Connectionist Network Design in MAVIS2 

This section describes the mechanics of the networks implemented in MAVIS2. The MAVIS2 

system is described in detail in (Lewis, Davis, Dobie and Hall, 1997; Dobie, Tansley, Joyce, 

Weal, Lewis and Hall, 1999; Joyce, Lewis, Tansley, Dobie and Hall, 2000; Tansley, 2000). It 

continues work undertaken by Radhakrishan and Lewis (1998) by exploring ways of making 

the agents able to adapt to changes in the multimedia environment. 

The agents act as classifiers which map low-level data (basically, multivariate input vectors 

derived from media objects by common feature extraction techniques) to high-level category 

labels (that is to say, human-author assigned catgeories). These labels are used to aid navigation 

in a complex multimedia information space. The techniques described here are concerned only 

with an implementation of the neural networks used as an attempt to make these agents able 

to cope with change in the multimedia information space, for example, change in categories or 

expansion of the available examples in the feature space. 

The basic strategy is to use a modified adaptive resonance theory network (ART) which 

is specialised for Gaussian kernels (so called GART). The observation is that ART reduces 

to something similar to a radial-basis function network which learns local representations of 

the feature space. This is a basic unsupervised learning technique which aims to find and 

adapt clusters which then model regions of the feature space. A discrimination function is 

then defined which "outputs" a declaration of the feature class which most closely matches any 

given input. This is then fed to another network (a simple linear associator trained iteratively) 

which then learns to output class labels from any of the feature-space clusters/categories. What 

follows is a description of the implementations. 

4.1 Modelling the Feature Space with Gaussian ART 

The functioning of GART is similar to other unsupervised clustering techniques but with a 

Gaussian kernel e.g. (Kohonen, 1997). The GART algorithm (WiUiamson, 1996) implements 

an unbounded number of category nodes which are represented by a vector representing the 

mean of the category / j j , a scalar representing the frequency with which the node was the 

chosen category node iij, and its multivariate standard deviation Oj (assumed to be symmetric 

in each dimension, and Oy,- is the deviation in the /th dimension of feature space for node j) 

Williamson's work differs from other ART-based techniques because it uses a continu-

ously differentiable kernel; other ARTs form hyper-rectangular discontinuous regions in the 

feature space (Carpenter, Grossberg and Reynolds, 1991). The major advantage, however, is 

the conceptual ease with which the sometimes awkward ART formulation can be related to 

traditional pattern classification through forming discriminant functions. 
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The probability of an input x belonging to a category coded by node j is: 

where the likelihood p{j | x) is assumed to be Gaussian ^. The prior probability of a node being 

the source of the input vector is given by the normalised frequency of that node being chosen 

previously: 

In calculating Pr[x | j] the denominator of equation 21 is the same for each category node j. 

We can therefore simplify the expression, and form a discriminant function using the log of the 

numerator. Hence, we ignore the scaling factors in the multivariate Gaussian likelihood and 

form the discriminant thus: 

-S"; (x) = - ^ Z W) (^3) 

The best matching node, denoted J, is then: 

/ = arg max Sj (x) (24) 

General ART techniques then decide whether the node is "activated" highly enough. For 

any given winning node J, we know that it is the most probable category, but is it a sufficiently 

good category ? This is controlled by a vigilance parameter (sometimes equated to the notion 

of attention in perceptual processing tasks). The implementation of this principle in GART is 

to check the winning node's match against the Gaussian kernel normalised to unit height; this 

gives an "independent" measure which ignores the fact that category J was the best possible 

match given the current categories, and now compares its absolute match to the category node's 

kernel. If this match is too weak, a new node is created. 

This is necessary because to form the discriminant function, the logarithm (or any con-

tinuous monotonically increasing function) preserves relative magnitudes of Pr[x | 7] for all 

nodes j. However, for computational efficiency, it removes the need to calculate expensive ex-

ponentials and reduces the discriminant function to computation dominated by addition. This 

means that it will decide upon the best possible match, but will not inform us of the closeness 

of the match with the original Gaussian-shaped kernel. Taking logs of the normalised Gaussian 

results in a match value: 

- bi(Priy]) 4-In ][][cr„ (26) 

^The choice of the likelihood function is obviously crucial in determining the accuracy of the model. A Gaussian 

has been used simply because it has been applied generally in a variety of cases, is wel l understood and belongs to 

the more general class of exponential distributions, of which the M L P sigmoidal funct ion is also a member 
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If My < p the vigilance parameter, then the node is said to be reset and a new node is created 

to cope with the new input. It is this technique that permits the neural network to grow. Of 

course, setting the parameter p is a task which must be part of the classifier design process. If 

p -4- 1 then the only the very closest matching categories are sufficient, resulting in most inputs 

causing a new node to be created (effectively over-fitting). If p -> 0 then the network subsumes 

almost every new input into an existing category (resulting in wrongful generalisation). Fuller 

justification (and more complete derivation of the above results) can be found in (Williamson, 

1996; Carpenter and Grossberg, 1987). In the MAVIS2 implementation, the matching test is 

such that if exp (My) < p then a new node is created. Williamson's formulation resulted in 

massive over-fitting for any scalar p € [0,1]. 

When any category is chosen and passes the vigilance test, then the kernels of the winning 

node are modified such that; 

(27) 

'Ji H (28) 
nj 

1 ^ W - -(.y if "y > 1 ^29) 

otherwise 

where y is the initial symmetric radius of all nodes. Note that this parameter can be easily 

determined by ensuring that unit normalised inputs are given to the network and then y = 1. 

During learning, the radius shrinks to fit the data, so if all nodes begin with y = l , they will 

gradually shrink from encompassing the whole feature space to to a local region. 

The above equations describe a Gaussian kernel-based ART network. We can then use a 

technique derived from associative learning theory to build a "prediction module" which maps 

category nodes to the classes. The technique presented is based on a reinforcement learning 

principle e.g. the network searches for outputs, tests them and then receives an indication of 

whether it was correct or not, but is never told the actual classification vector. In practice, 

any linear neural network capable of associating the category nodes and classes is usable. The 

simplest approximation would be to simply store a matrix which associated category nodes with 

classes. A Hebbian-based learning algorithm can then be used to locally modify associations 

between the classes and categories on a per-trial basis. 

4.2 Classification Prediction Module: Mapping Categories to Arbitrary Sym-

bols 

Figure 7 shows the overall agent architecture given in (Joyce, Lewis, Tansley, Dobie and Hall, 

2000). During training, the agent performs categorisation, and the resulting winning category 

node activates one of the rC nodes in the prediction module. The activations are then spread in 

two directions; horizontally via the fully connected weights to the rR nodes, and vertically to 
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Figure 7: Overall Architecture of MAVIS2 Classifer Agents 

the Control Layer which stores an "internal state" indicating the response nodes which should 

be prevented from activating in response to this category choice. This is because the neural 

network employed here was devised as a more generic model suitable for adaptive behaviour 

in agents and is based on the work of (Chang and Gaudiano, 1998) which is based on Gross-

berg's early work (Grossberg, 1972a; Grossberg, 1972b). Therefore, it was chosen to use 

associative-search learning principles to search for the correct response (given an indication of 

the consequence of the previous response, but no indication of the desired correct response) 

instead of the traditional error calculations of the back-propagation learning algorithm (where 

learning is a function of the actual and desired response). The neural network employs local 

representations and the weight learning is inspired by reinforcement learning principles. In 

combination, this enables us to grow the network as new data and class information is made 

available to the agent. The negative repercussions of this design choice is that we must provide 

training data as a data structure simulating an environment which gives positive reinforcement 

only when the agent responds with the correct choice. 

4.2.1 Feedforward Prediction 

The prediction module can be defined formally as follows. The winning category node excites 

the corresponding node rC, in the prediction module. This spreads activation to the control 

layer which we will represent as a "drive node" which evaluates reinforcement provided by the 

training data to indicate a successful or unsuccessful prediction. We denote the activation of 

this node as ao-

The nodes in the rR layer indicate the response chosen. These are then passed to a look-up 
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table which is purely an algorithmic device to report the symbol associated with the node (e.g. 

the text describing the class). The choice of an rR node utilises the notion of feedforward lateral 

inhibition for contrast enhancement in the response nodes. If a node rRj is activated strongly by 

a category rC, then j-Rj forces the activations of all rR^^j nodes down, preventing them from 

becoming significantly activated. This can be algorithmically implemented by softmax-type 

activation functions. Let the signal (output) emanating from the winning rC node be 5/ = 1 and 

Ij and Ej be, respectively, the inhibitory and excitatory input to node rRj. The activation of the 

response nodes rRj is then as follows: 

Ij = SoWDj (30) 

i 
P / . 

Gray = , , , ^ i T (32) 
1 + i-D j Ek - 4 

where So is the activation of the drive node "inhibit incorrect choices". The activation of the 

drive node is determined by a polyvalent activation rule. This means both a reinforcement and 

learning signal must be present for the node to activate. For reinforcement, we denote r = 1 

or r = 0 for incorrect and correct response respectively, and the train/query signal is defined as 

Ld = 1 implies training and Lo = 0 implies query. These signals are provided by the Control 

and Application specific layers of the agent architecture. Only if r — 1 and Ld = I does the 

drive node inhibit previous choices of response nodes rR. Note that during training, the lateral 

inhibition between rR nodes is switched on, forcing the network to choose a response node. 

This arrangement is shown in Figure 8 for one rC node. 

4.2.2 Inhibiting Incorrect Choices 

Denoting weights from every rC node to the drive node as w,x), we can specify the activation 

and signalling of the drive node in response to the category node as: 

Go = rZ,/) (33) 
i 

1 > 0 (34) 
I 0 otherwise 

Effectively, the drive node only affects the response nodes if the response choice was in-

correct. If it is incorrect, and the agent is in training (e.g. L/) = 1) it enters into a cycle of 

searching for the correct answer (e.g. until the reinforcement r = 0). This is effected by quick 

learning of the weights vv/o and wpj which are then reset when a correct response is chosen. 

The full dynamics of such a mechanism to implement this searching process are continuous-

time dynamics over the weights from the category nodes to the drive, and from the drive to the 

response nodes. Such a mechanism enables gradual association of reinforcement with correct 
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Figure 8: Relationship between Choice and Response nodes incorporating reinforcement mechanism 

responses over a number of trials in response to inputs. However, for the MAVIS2 application, 

we accelerate this learning so that this gradual association is supplanted by instantaneous asso-

ciation of reinforcement with response nodes and the category nodes. This is necessary unless 

we are to present the same input a large number of times and wait for the w,x) and wd j weights 

to grow (as, for example, they would in a situated robot). A response node rRj will be selected 

as a result of equations 31 through 34 and category node rC,- being activated at some cycle t. If 

this yields negative reinforcement, then at cycle z + 1 the weights/rom the category node w/o to 

the drive and from the drive to the response node rRj must inhibit rRj being selected activated 

again. This is effected as follows: 

1. Forward propagate choice rC, to drive node (via w,x)) and to response nodes rR (via 

weights 

2. Calculate activations of response nodes: equations 31 through 35 

3. "Winner takes all" selection of most likely response: 

(a) Select highest signal SrRj and call j the winning node 

(b) Set signals on all other nodes k ^ j SrR^ = 0 

4. Assess reinforcement consequence (e.g. if j is the correct classification, then r = 0 else 

r = 1) 
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5. Update weights to drive node; w/d = SoSrQ — 1 so that the weight from chosen category 

node i equals unity 

6. Update weights associating rC and rR nodes, Wij: Wij{t+ 1) = Wij{t) + r\SrRjSrCi, where 

ri = — 1 iff r = 1 and ri = 1 otherwise. 

7. If reinforcement is negative, goto 1. 

The net result of this algorithm is that while learning, the response network suppresses Wij 

where the choice of j is incorrect (e.g. generates negative reinforcement) and increases wtj 

when correct. Step 7 above causes the whole system to cycle until the reinforcement is positive. 

Step 5 guarantees that the last response selection will be inhibited from being selected again 

during this search for the correct response. 

The reader is reminded that this is a specialisation of a generalised architecture for au-

tonomous software agents. Hence, the reinforcement-based algorithm above enables the net-

work to be grown (because of the localisation of weight/node dependencies) and the use of a 

search process. The environment (providing correct classifications and reinforcements) could 

be replaced with a simpler mechanism that learns associations by providing the desired correct 

response node with high activation simultaneously with the GART module providing the cat-

egorisation of the input. We have noted, however, that this algorithm provides no significant 

time performance overheads in the domains tested. 

4.2.3 Final Output Signals 

During both training and query modes, the agent will declare an output based on the winning 

rR node. The final output of the prediction network is governed by each rR node using the 

following rule: 

5'rAy = max {o, (l - exp (-OrA;))} (35) 

Note that during learning (step 3 of the above algorithm) the control layer will suppress 

the activation of all but the winning node j and use lateral inhibition to force a winning node. 

However, during query, all nodes output according to the function above, which merely limits 

the otherwise unbounded activation values into the range [0,1]. 

In order to control the unbounded growth of weights, if the agent architecture detects that 

a period of training has terminated (e.g. the signal Ld transitions from 1 to 0) it normalises the 

weight matrix before the next input (query or training). 

4.3 A Robust M L P Classifier 

MLP networks can be interpreted as approximating the a posteriori probability Pr [Q | x] where 

Q. is the classification given an input vector x (Bishop, 1995; Ruck, Rogers, Kabrisky, Oxley 
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and Suter, 1990): 

The function used to compute the errors which are back-propagated from the output layer 

through the hidden layer shapes the function the network approximates. The resulting classifier 

is dependant on the joint distributions of both the target and feature space (see (Bridle, 1990; 

Bishop, 1995)). For n-layer networks, the classic error back-propagation training rule performs 

non-linear optimisation of the weights W by minimising the sum of sqaures error. 

£H£ = i 2 ;X l | 0 i (x " ) -< l " IP (37) 
n k 

where x" is the nth vector and t" is the corresponding one-of-c classification (or target) vector. 

Implicitly, this training process constrains the feature and target space to be normally dis-

tributed e.g. the form of the likelihood in equation 36 will be Gaussian. (Bishop, 1995) shows 

that such an approach is suitable for the approximation of multivariate real valued functions, 

but not for classification, since the labelling of classifications is typically discrete. For example, 

we use a one-of-c coded vector e.g. (0,0,1,0) that indicates the classification is "class 3". 

Given this, a more appropriate training rule for a general black-box classifier in MAVIS2 

would be one that incorporated this target-space model information. Such a technique involves 

leaving the architecture of the network alone and modifying the training rule. The cross-entropy 

error function (see (Bishop, 1995) chapter 6) enables us to derive a classifier where the implicit 

model is closer to that of discrete classification; 

= (38) 
n k 

and in addition, the signals from the outputs can be interpreted to be the probabilities of class 

membership. 

In addition to the modified error function, it is necessary to alter the activation function 

so that instead of being the logistic sigmoid, it is the softmax function. Fortunately, when this 

new activation function is incorporated into the back-propagation rule, the errors on the output 

nodes are the same as those for sum-of-squares error. The only modification to the network is 

that the output nodes must use softmax activations (requiring knowledge of the other nodes' 

activations) rather than independent sigmoids. 

4.3.1 MLP Learning Parameters 

The parameter space of the MLP techniques is taken to be the number of hidden nodes and 

the learning rate parameter. Tested combinations of 2, 4, 8, 16, 32 and 64 hidden nodes with 

learning rates of 0.01, 0.1, 0.5 and 0.9. In total, both SSE and cross-entropy error functions are 

tested with each one of the 24 possible network configurations. 
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4.3.2 GART-based Network Parameters 

The local network agent has a simpler parameter space, namely the vigilance parameter, which 

dictates how precise categorisation should be. For comparative tests, the vigilance parameter 

was set at ten values in the range [0,1]. Note that because the algorithm is constructive, no 

other parameters need be set by hand. The GART network has a standard deviation parameter 

(or radius) for the Gaussian kernels/category nodes. However, all data was normalised between 

0 and 1, and this parameter set to 1. The GART algorithm then gradually shrinks the kernels 

(rapidly at first) to fit the data as sufficient exemplars have been presented. The learning rate 

for the response network (since it is simply an associative single layer net) can be set according 

to the application domain and in some cases, a fast 'one shot' learning rule might suffice (e.g. 

setting all weight learning to be instant and the learning rate is therefore unity). Here, the 

signal correlation is the strength and direction of the update and a learning rate of unity was 

used. Weight normalisation after periods of learning activity enabled the weights to be kept 

bounded. In principle, both the radius and the learning rate for the associative network can be 

optimised. The vigilance is the only parameter which is varied. The agent must perform even 

in the absence of "good" data which would enable robust classification. An autonomous agent 

should attempt to provide the classification service even when the data is weak. It should be 

capable of learning incrementally, so it can improve if or when more data becomes available. 

For this reason, no attempt was made to optimise the local GART/associative search network 

parameters and it was tested 'as if against the more robust MLP-based classifiers. 

4.3.3 Data Sets 

The data sets chosen were: a) iris data set from UCI(Blake and Merz, 1998) b) HSV-based 

histogram features from a MAVIS2 data set c) RGB-based histogram features from a MAVIS2 

dataset d) 3 clusters of Gaussian distributed data. The rationale was as follows : a) is a standard 

machine learning data set. and is of relatively compact feature dimensionality with adequate 

samples. Both b) and c) are grossly under-determined datasets, each containing 208 samples 

(one per image) of 27 and 96 features respectively - this represents a case where the agent 

must try its best to perform classification in a difficult multimedia problem. The actual data is 

HSV (27 features per image) and RGB (96 features per image) colour histogram feature data 

obtained from the Victoria and Albert image data set, which was used as a test bed application 

for the MAVIS2 system. Test set d) is a simple two-dimensional problem, which contains 

enough samples (150) to train on and is present to test whether the classifiers and agent are 

working as expected. 

4.3.4 Performance Measures and Training Schedule 

Each result presented is the average over 10-fold cross-validation testing (Cohen, 1995); this 

enables us to assess the "memorisation" of the training set and (more significantly) its gen-
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eralisation performance on unseen data. Validation sets are generated from 10 independent 

samplings drawn from the original data and are kept back during training. This ensures that 

generalisation performance on unseen queries is not attributable to fortuitous choice of a hand-

picked validation set. Each data set is shuffled into random order and then divided into 10 

sets (folds). The classifier is trained on 9 of these. The classifier memorisation performance is 

tested by presenting the data from the 9 training folds and generalisation is tested by presenting 

the held back fold. Then, a new classifier is generated and trained and a different fold held back 

for validation. This is repeated for each of the ten sets, and classification performances aver-

aged over these 10 different training conditions. For each setting of MLP learning parameters, 

there are ten classifiers trained and the performances are averaged. 

Performances are measured as follows. For each configuration of folds, the agent is trained 

by passing through the 9 training folds. One pass through each training pair in the 9 folds of 

training data is called a pass through the data set. Training proceeds by propagating errors 

back after each training pair is presented (instead of batch learning where errors are accumu-

lated over the whole pass). An epoch is 50 passes through the training set. After each epoch, 

the 9 training folds and the generalisation test (the held back fold) are presented to the classi-

fier and the classification performance measured on both. This is repeated after each training 

epoch. Performance measures are therefore on actual classification performance, rather than 

any internal error measure (e.g. by summing the output errors over an epoch). Generalisation 

and training performances are continually recorded and the result presented is the best perfor-

mance obtained during the entire training period (which was 50 epochs). 

Naturally, such an exhaustive search of the parameter space and training in the fashion 

described is impractical for an agent in practice, but it reveals the classification performance 

and training properties while also illustrating the difficulty of automatically training classifiers 

in multimedia environments. These tests are to assess the classification performance rather 

than suggest a reasonable method for training MAVIS2 agents in situ. 

We present the results in the table below. The first column indicates the network used; 

cross entropy error (CEE), standard sum-of-squares error (SSE) and the local GART-based 

agent (AG). The second and third columns are best training and validation set performances 

over the whole parameter space tested. The remaining columns report the number of hidden 

nodes and learning rate (or vigilance in the case of the local network technique) which gave the 

best performances, plus the mean number of epochs required to train the networks and finally 

the standard deviation (s.d.) of this value. A low s.d. indicates that almost always, the best 

performance can be achieved in the mean number of iterations, whereas a high s.d. indicates 

a large variation in the number of iterations required over multiple trials. It could be argued 

that for autonomous agents, the training behaviour must be predictable and this value should 

be low. 
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ANN Data BestTS Best VS Hidden Learn Best Performance Standard Deviation 

Set Performance Performance Nodes Rate at epoch of Best Epoch 

CEE Gaussian 100% 100% 64 0.01 1 0 
SSE Gaussian 100% 100% 64 0.01 1 0 

AG Gaussian 98.9% 100% n/a 0.6 1.3 0.4 

CEE iris 94.5% 99.3% 64 0.9 4.4 3.6 

SSE iris 94.7% 98.6% 32 0.01 12.7 9.8 

AG iris 95.5% 99.3% n/a 0.7 3.2 2.2 

CEE HSV 50% 50% 64 0.1 9.5 6.5 

SSE HSV 45% 49% 32 0.01 17.7 12.5 

AG HSV 24.4% 39% n/a 0.2 3.9 3.1 

CEE RGB 28% 46% 8 0.5 20.3 15.3 

SSE RGB 32.6% 45% 32 0.01 9.6 11.9 

AG RGB 29.9% 38% n/a 0.7 3.2 2.2 

4.3.5 Discussion 

The table shows that for all data sets except the artificial pure Gaussian data the standard 

deviation of the best performance epoch is lowest for the GART/associative network technique. 

However, the classification performance of the technique in its present form is below the MLP 

networks and further tuning is required. As expected, all three techniques worked well on the 

simple Gaussian data set. The HSV and RGB features sets indicate that for low numbers of 

features, the vigilance should be low and conversely, high for high numbers of features. For 

multiple-independent attributes and sum of squares error, the learning rate parameters seems to 

be less predictable. 

More importantly, the implications for implementing classification agents in MAVIS2 are 

that despite poorer performance, the local GART-based network with a simple associative map 

is easier and quicker to train in situ. In the prototype implementation of the MAVIS2 system, 

the GART-based agent was implemented because of its ability to perform reasonably and only 

the vigilance parameter needed setting. In responding to queries, the most important problem 

that arose was while classifications were correct, the confidences reported were usually very 

low which would present problems for the future development of a fusing method based on 

probabilistic measures of class membership (if sufficient agents were trained over a variety 

of media types for each class, then voting could be used and this confidence measure is less 

significant). In addition, the prototype of MAVIS2 required agents to train quickly on the data 

available at the moment the system starts. The local network agent trained consistently faster 

in the comparative tests above and even with the arbitrary setting of radius (for the GART 

network) and the learning rate (for the associative learning net) the agents still performed well. 

Future work will need to focus on how an MLP network might be configured to cope with such 

"sufficing" tasks, where good performance can be guaranteed without the exhaustive search 
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Figure 9: Validation and Training Set Performance - Parameter Space for MLP trained using back-
propagation with Cross-Entropy Error Function 

of the parameter space. While the data set available during the development of the MAVIS2 

prototype is believed to be typical (e.g. under-determined in terms of class exemplars) it is 

possible that the GART-based agent performed well in a unique case. The exhaustive testing 

described above was an attempt to refute this claim, and performances obtained would suggest 

that the heuristic approach used to build the agent's classifier might be a fruitful basis for future 

development. 

Further, some diagnostic data was collected to ascertain how difficult picking parameters 

for the MLP or the vigilance parameter for the local-network based agent might be. The dataset 

used for the example presented below was produced from a subset of the Victoria and Albert 

Museum Artifacts image base. This resulted in 100 individual feature vectors (samples) of 23 

features, unevenly distributed amongst 12 classes. Foley's heuristic (Foley, 1972) suggests that 

three times as many samples per class are needed as there are features. Hence, for a well-

determined dataset we seek over 800 samples. However, this serves as an interesting problem 

to examine the conditions of the parameter space which must be searched and is not untypical 

of the scenario we might be presented with in a real multimedia retrieval problem. 

The surface shown in Figure 9 represents the best classification performance on the vali-

dation and training data sets. Note the scale of the Hidden Units axis. Recall that the validation 

performance is a better indicator of the network having learned a model of the data as opposed 

to simply "memorising" the training set (which results in poor performance on unseen inputs). 

The qualitative properties of the surface are that the best results appear to lie at the extreme of 
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Figure 10: Parameter Space for Gaussian ART Network with Local Learning Associative Search Clas-
sification Network 

the parameter space, with the exception of one other peak result at r] = 0.4 and 8 hidden units. 

The surface certainly does not indicate a desirable global maximum, clearly distinguishable 

from the other network configurations. 

This suggests that a further search process (other than exhaustive search) over the space 

of MLP parameters might be difficult (and more so if extensions to back-propagation are used 

such a momentum) due to the lack of obvious maxima in the classification / parameter space 

above. 

A similar parameter space for the localist technique on the same data subset is shown in 

Figure 10. Note that at p = 1 the network is over-fitting, and therefore should be discounted. 

The optimum value would appear to be 0.75 since the network performs equally well on both 

training and validation data. 

The trend in behaviour is more predictable on the same data set. While certainly not 

conclusive, it suggests that on sparse data sets, the relationship between generalisation and 

memorisation of the training set is easier to ascertain. 

Further work would need to focus on improving the classification performance and the 

confidence measures used. For example, if voting is to be used, then large numbers of simple 

classifiers might be used, for example, simple sub-space classifiers might be more applicable 

for training using single-layer networks. Using heuristic methods (such as the combination of 

GART and a linear associative network) achieves some of the design goals of connectionist 

agents, but from initial results, robust statistical performance is compromised. 
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The final contribution was a first attempt at defining a realisable agent architecture which 

enabled "intemalisation" of training e.g. was flexible enough to use associative search or su-

pervised training in the form of complete feature / target vector pairs. The associative search 

network implemented was a first attempt similar to (Chang and Gaudiano, 1998). 
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5 A Simulation Environment 

5.1 Introduction 

In developing the proposals of (Joyce, 2001b), reference was made to situatedness; the em-

bedded, continuous participation of the agent in its environment. In an attempt to study the 

relevant phenomena of situated agency (e.g. the establishing and manifestation of routine ac-

tivity and intentional arcs), a simple environment was designed. This section recapitulates and 

describes that implementation, and concludes by illustrating how this simulation can be used in 

exploring reactive agency. In section 6 and 7, empirical data obtained from experiments with 

the following simulation are presented in their entirety. 

5.2 A Simulated Environment for Reactive Softbots 

Most reactive architectures are designed to cope with goal directed behaviour in spatial, topo-

logical environments. (Brooks, 1997) surveyed 42 papers appearing in the journal Adaptive 

Behaviour between 1992 and 1995. From these papers, he found that 5 papers dealt with 

agents without spatial location or a notion of topology e.g. adjacency, proximity and neigh-

bourhood. Brooks' motive was to demonstrate the lack of "real" situated robotics research. 

However, this equally demonstrates that simulations and environment models which are most 

closely suited to the type of agents considered as software or virtual agents, are also somewhat 

scarce. 

The principles motivating the choice of model are as follows : 

• Absence of spatial topology or environment geometry - softbots may not have spatial 

locations. Imagine a software agent situated in its environment, but (as (Etzioni, 1993) 

illustrates) connected to the environment by discrete actions having no intuitive spatial 

interpretation such that to compute the Euclidean distance between two agents may be 

meaningless. An information retrieval agent will effect actions based on perceptions of 

the environment, although there is no logical interpretation or analogy of spatial context 

for the agent. 

« Adjacency (if any) is arbitrary - softbots will, more than likely, inhabit domains where 

the analog of multi-agent spatial adjacency is defined only through communicative or 

social actions, and the medium for transmitting that information. Only if such media 

exist are agents aware of their peers or social groups. 

» Uncertain and dynamic environments - although in this category, the manifestation of 

uncertainty is different. Firstly, the agent's virtual sensors are unlikely to be noisy. There 

will, however, be uncertainty in the communication medium which might reasonably be 

treated as noise for both the sender and recipient of communicative activity. Environ-

ments "lie" such that an agent might be informed that some action is permissible, but in 
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fact this is an inaccurate reflection of the consequences of that action because of implicit 

latency of the information arriving at the agent's sensing faculties. Dynamic environ-

ments are those which affect and are affected by the agent - this property underpins the 

establishing of routinised activity, since this provides opportunities for sequenced actions 

with utility which can be repeated. 

® Softbots must be situated - the agent's action has an effect on the environment and the 

environment, which is sometimes reflected to the agent. This condition was used by 

(Jennings, Sycara and Wooldridge, 1998) to differentiate GOFAI from agents research. 

(Varela, Thompson and Rosch, 1991) describe this as characteristic of enactive cogni-

tion. However (Maturana and Varela, 1980) encapsulate the notion as structural cou-

pling, being the recursive reproduction of systems (e.g. the relation between agent and 

environment as a couple) which are mutually affective. 

B model simplicity - the environment must be as simple as possible to enable analysis. 

Brooks' criticism of 'toy' environments parallels that of 'micro-worlds' explorations 

criticised by (Dreyfus, 1992). These arguments are not really criticisms of methodology, 

but of the generalisations and illusory abilities of agents which are extrapolated from 

those simulations. Similarly, Agre (1988) used blocks-world simulations. In this respect, 

the simulation presented here enables analysis while containing the necessary features 

of a model enabling the study of reactive agency. To quote: 

"Following the tenets of interactionist methodology, the focus is not on com-

plex new machinery but on the dynamics of a relatively simple architecture's 

engagement with an environment" - (Agre, 1997),pp. 105 

These ideas are not difficult to imagine, particularly in the context of distributed informa-

tion systems. Communication substrates or infrastructures are rarely fault free, so the agent 

must be tolerant to "noise" or uncertainty in the information conveyed to it by such a substrate 

or infrastructure. The source of this noise is irrelevant. The fact remains that either in the 

sensor or the environment, the information used for perception is not completely certain and 

reliable. 

One model which does appear to comply with the principles above is (MacLennan and 

Burghardt, 1994). Their environment is designed to explicitly model evolutionary aspects of 

communication. It is an example of an environment which lacks an explicit topology. The 

model developed here was explicitly tailored to enable the exploration of artificial neural net-

work techniques and architectures, migrated from situated robotic agents research, to be tested 

for viability in the 'virtual' or softbot domain. This can help answer the question of whether 

softbots are actually co-extensive with robotic agents in terms of a general theory of agent 

science as defined by (Huhns and Singh, 1998). 
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5.3 The Environment 

The experiment here is based on the classic Skinner Box conditioning apparatus (Skinner, 

1938) hybridised with the A-armed bandit models used in machine learning studies of rein-

forcement. An agent must learn that acting in a certain way will result in some resource or 

food (an appetitive stimulus) being delivered, but that alternative actions can provide punish-

ment (aversive stimuli). Before further discussion, we note the following terminological points: 

a resource is something the agent is designed or goal-directed to collect or acquire, while a re-

ward is a reinforcement that indicates no aversive consequence of an action. Therefore, this 

agent simulation is concerned with one goal directed behaviour (to acquire resources) while 

actually learning how to use its response/action repertoire to achieve this, and this learning 

process is operant in nature such that the agent can receive rewards and punishments. 

In terms of equipment which can participate in absorbed circumscriptive activity, the agent 

is presented with a button which has toggle-state; it can be on or off. The agent will be goal 

directed by design, and it should try to collect resources from the environment. These resources 

are delivered when the button is depressed (on) and not when it is off. However, the agent has 

no model of the relationship between button states and consequences. 

With this very simple experiment, the agent would (trivially) have to learn that depressing 

the button and leaving it in this state would result in maximal resource collections and, pre-

sumably, it would receive no punishments. This is, perhaps, the simplest stationary determin-

istic environment and easily soluble by traditional reinforcement learning and artificial neural 

network techniques. Similar experimental apparatus were described by Spier and McFarland 

(1998). They additionally tested an outcome-devaluation effect using a Skinner box-like ex-

periment, but were concerned with the relationships between necessary cognitive capacity and 

performance. They also use drive reduction (e.g. a lack of arousal or agitation) as a modulator 

of reinforcement value. 

However, the following changes are made: Whenever the button is depressed (i.e. in the 

'on' state), a resource is returned. However, there are (at any moment in time) a finite number 

of resources available, which is decremented each time the button is in the 'on' state. By 

analogy, imagine a softbot agent trying to secure time on a multi-tasking operating system. 

A finite number of resources (time slices or quanta) exist and one agent, on behalf of a user, 

cannot possess them all despite its requests (the button being in the depressed state). 

The environment avoids being maximally exploited by trivial greedy policies (e.g. press 

and hold the button indefinitely) by delivering both resources as well as rewards/punishments. 

At any moment in time, the environment can deliver a resource, but in addition, will deliver a 

neutral or punishing stimulus (by analogy, the agent might be given a shock in addition to the 

resource). This is governed by a simple rule; as the resources are depleted, the environment is 

more likely to shock the agent to prevent greedy policies from being learned and established 

as routines. Thresholds dictate the levels at which the environment will deliver punishments as 
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Figure 11: A schematic of the simulation environment 

well as resources. 

The level of resources available is reflected to the agent via a communication medium. In 

the Skinner box analogy, it might be a light indicating the level of resources currently available. 

The metaphorical light represents the level of resources in the environment, and the agent 

must learn that it is indicative of the probability of punishment (aversive stimuli), since as the 

consumption of resources increases, the agent is more likely to receive a punishment. 

In the operating systems analogy, in order that the environment (the operating system) is 

not drained of resources, a sustainable number of free quanta are kept available to prevent a 

single task dominating the processor. 

However, as noted before, this 'light' is not entirely reliable, and does not provide deter-

ministic evidence of the chance of aversive stimuli being delivered. Figures 11 and 12 show 

the apparatus of the environment and the "agent requesting" metaphor respectively. 

The fact remains that the agent's action should be informed by a perceptual indicator - the 

light. The probability of a punishment is proportional to the light's state, but with stochasticity. 

This perceptual information is inherently noisy and not necessarily enumerable. If the button is 

on, and the resources are below a threshold, a punishment is delivered. A resource might also 

be delivered, if any remain, but the agent is clearly "told" that this resource came at a price. 

Finally, the environment is regularly refreshed. The original level of resources is replen-

ished and the environment state reflects this, both in terms of what the agent can perceive via 

the 'light' and the punishments delivered along with resources. 
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Figure 12: The traditional "agent metaphor" of resource allocation in an uncertain distributed system 

5.4 Demands of the Environment 

The agent must therefore adapt and learn to exploit the environment to attain its goal. This 

implies that: 

1. the agent must learn relationships between the perceptual information available to it (i.e. 

the light state and the button state) and the consequences of acting 

2. the agent must also learn the 'mechanics' of available equipment. That is to say, the 

button has state and the light reflects probability of punishment 

3. the agent's actions will directly affect the success of a learned policy 

4. the agent establishes routines of regular behaviours which reflect the risks of taking ac-

tions in different environmental states 

5.5 Mechanics of the Simulation 

As stated before, the button is really a switch and has two states; on or off. If the button is on, a 

resource is delivered and if the button is off no resource is delivered. In terms of disembodied 

softbots, we might reasonably see the button as a mechanism which causes a request for a 

resource. The resources are diminished linearly, with every resource dispensed. 

The light or indicator of the resource level state, is given by a function of the resource 

level. Let rs € denote the integer number of resources currently available, Is € [0,m] 

denote the integer-valued light state and Xdanger < '^neutral < %afe E [o, n] denote the thresholds 

such that: 

= / : rf(f) [0,m] (39) 
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where / is a discontinuous function of rs mapping the resource state to the light state according 

to the thresholds, and m denotes the maximum integer indicating the "safe" state of the light 

for example with m — 2 then {[danger,Q), [neutral, 1), [safe,!)). Figure 13 shows an example 

where — 5, "̂ neutral — 10 and > 10, 

The following environmental rule is defined: if the light indicates "safe", then the environ-

ment will almost certainly not deliver a punishment with the resource (analogously, the food 

is delivered with no aversive stimulus). If the light state is "neutral", then the probability of a 

shock being delivered (alongside the unit resource) is approximately 0.5, so an agent would be 

taking a chance if it opted to continue requesting resources when the light shows "neutral". If 

the light state is "danger", the agent will almost certainly receive a punishment and possibly a 

resource (depending on rs). 

This is implemented as sigmoidal function of Is E [0,2]. The implementation is as follows. 

Using a uniform random variable v, and denoting shock (aversive stimulus) as r = 1 and no 

shock as r = 0, the probability of r = 0 being delivered is: 

[ 0 otherwise 

where the function B is a transformed sigmoidal function, and c is a variable indicating the 
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Figure 14: Histogram showing the probabilities of 'no shock' for different certainty values 

certainty of the environment such that as c 0 then: 

Pr[r = 1 I'danger'] — 1 

Pr[r = 1 I'safe'] = 0 

(4% 

(42) 

As c increases, these probabilities shift until the light state reflects very little about the proba-

bility of shocks being delivered for example: 

Pr[r = 1 I'danger'] % 0.5 

Prfr = 1 I 'safe'] 0.5 

(43) 

(44) 

This is implemented as: 

1 

l+e%p 
(45) 

Figure 14 shows the probability of r = 0 against values c — 0.01, 1.0 and 5.0 respectively 

computed from 1000 samples. Note that at c = 5.0, the light state has practically no utility in 

aiding an agent in deciding whether a shock is likely to be delivered, since the probability of 

shocks is practically equal with all light states. 

There is no dispute that this environment is Markov. However, the utility of the light 

can vary, and in addition agent's actions change the probabilities of shocks. An agent must 

therefore assess both the utility of the light with respect to the environment, and then decide 

whether to proceed with resource requests or wait. The probability of getting a reward, given a 

hght state, can also be shifted over time by altering c. Most learning algorithms assume that the 

environment will be stationary. This simulation enables non-stationary qualities to be explored 

by: varying c, changing the thresholds T or altering the operational properties of the equipment 

(the button). 
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5.6 Agent Goals 

We are now in a position to state what the agent's goals are. The agent must establish a set 

of behaviours which enable it to 'survive'. That is, some internal measure of goal completion 

(e.g. energy) which measures how successful it is in negotiating the environment to collect 

resources. Recall that it cannot simply maintain a greedy policy for two reasons. Firstly, this 

will incur a number of punishments. Secondly, we wish to encourage the agent to learn a 

maintainable routine, which might (for example) be something analogous to the proposition: 

"collect resources by holding the button on until the light state indicates (from experience) that 

it is too risky to do so; then adopt a routine which minimises energy loss until the environment 

is refreshed". Further details of how the agent's control architecture needs to be configured are 

given in (Joyce, 2001b). 

5.7 Agent Actions 

The agent is provided with three actions : 

1. NO-OP : take no action 

2. PRESS : activate switch, causing it to be in the "on" state if not already 

3. RELEASE : de-activate switch, causing it to be in the "off" state if not already 

The agent does not understand the relationship of its actions to the environment and equip-

ment state. For example, there is no implicit coded knowledge about the reciprocal relationship 

between the PRESS and RELEASE actions. The agent will also pay a cost for each action. To 

effect either PRESS or RELEASE, incurs some penalty in terms of internal energy, but NO-OP 

costs nothing. The aim of this is to encourage the agent to recognise situations where doing 

nothing is the best policy to preserve internal energy and not incur further punishments. 

5.8 Simulations and Performances 

It is necessary to assess the behaviour as a repeatable phenomenon, since the design goal is 

not to learn and perform in the environment once, but to sustain performance and necessary 

learning during the agent's lifetime. The agent must acquire learned sequences of actions, and 

be able to repeat them as and when appropriate. The agent must minimise punishment, but 

attain its goal of collecting resources. In order for this to happen, the agent will receive some 

punishments, because they are one of the indicators of an action's consequences. However, 

we require a joint measure of performance that includes the punishments received and the 

resources collected. 

Since the agent is attempting to sustain homeostatic state, measures based on optimal-

ity of resource collection are inappropriate. This will be evident when the agent's control 

architecture is explored. Briefly, the agent's internal energy is used as an indicator of goal 
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completion, but to encourage the establishing of routine actions and deter greedy policies, the 

secondary reinforcement (a joint measure of goal attainment and punishment) is modulated 

by an outcome-devaluation mechanism. This means the agent will not quickly learn to adopt 

state/action pairs associated with resource collection when the drive is satiated. Analogously, 

if an organism has just eaten, it is not as motivated to find food. 

A cycle is defined to be a period of time between refresh periods where resources are 

present in the environment to support the agent. For example, if the environment is replenished 

every 100 iterations of the simulation, then a cycle is 100 iterations in length. For each cycle, 

we measure the agents punishments and mean drive/agitation level. These criteria will measure 

both the agent's ability to learn its task while ensuring it does not simply learn the trivial 

solution. The trivial solution will yield a first cycle performance, and then zero punishments 

and zero resources in all subsequent cycles. Also, in assessing agent performance, we may wish 

to discount the first few cycles, since the early exploratory phases of learning and participation 

may skew results. 

In order to test the capabilities of connectionist agents in this environment, two designs 

were built and tested. Full details can be found in (Joyce, 2001b). In summary, the two imple-

mentations are: 

« A localised bi-partite network consisting of a self-organising, constructive perceptual 

system (based on a simplification of ART and specifically, the GART mechanism de-

scribed) and a localised Q-leaming implementation (the configuration of which was in-

spired by motor/action circuitry in mammals -see (Joyce, 2001b) chapters 3,4 and 8). 

This architecture was later exploited to study routine behaviour and the adaptation of the 

agent to shifting environment configurations. 

• A distributed MLP: this network takes the agent's perceptual apparatus (i.e. sensor ar-

rangements) and maps this onto output nodes via an intervening hidden layer of neu-

rons. The network is trained using the Bellman residual, e.g. see also (Sun and Peterson, 

1998). This enables the MLP-based agent to approximate Q values by exploring the 

environment using a traditionally strictly-supervised back-propagation algorithm. 

The MLP has been tested in a variety of situations (see the review in section 3 and 3.2 

earlier) and proven to be stable. The next section describes some analyses of the perceptual 

mechanism for the local network based on ART. Essentially, the percept network uses Gaus-

sian kernels in a way similar to radial basis function networks, but with the scalar vigilance 

parameter of ART. The network was tested by making the agent select actions randomly and 

the effects of this random action taking was statistically controlled over a number of runs. The 

aim of the experiments in the next section is merely to demonstrate the relative stability of the 

stimuli state space mapping produced by such local networks. A variety of vigilance, noise and 

environmental certainties were tested to ascertain the effects of these simulation parameters on 
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the growth of the network. Section 7 describes the comparative tests performed on the MLP-

based agent against the full local network-based agent (e.g. where the Q-leaming network as 

well as the perceptual network was enabled). 
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6 Mapping Stimuli Spaces - Experimental Results 

The following pages show graphical results obtained from the perceptual mechanism of the 

agent. First, three settings of vigilance were tested in order to establish a reasonable basis for 

continued experimentation with the perceptual mechanisms; v = 0.50, v = 0.75 and v = 1.0. 

This revealed that, as expected, the high vigilance produced many more categories than low 

vigilance, and the medium vigilance parameter was chosen. 

This was necessary so that the behaviour of the system could be understood in advance of 

trying to engineer a control architecture for the agent. Figure 15 shows the results in terms of 

catagory node recruitment for the three parameter settings. 

The number of nodes created and the vigilance parameter will all have effects on the 

dynamics of the agent's perceptual novelty estimates. 

Figures 16 through 19 show the results of increasing the sensor noise. Note that Figure 19 

shows results where the level of noise can shift a given stimuli from its 'correct' category (e.g. 

that category node formed to cope with stimuli of that class) to another 'incorrect' category 

resulting in a category error. As expected, the higher the noise, the more probable the agent 

must recruit more nodes to cope with the diversity of noisy stimuli. In each case presented, the 

results show the average over ten runs, the standard deviation (which is often quite large) and 

the vigilance parameter was v = 0.75. 

Figures 20 through 24 show the effects of shifting environmental uncertainty. In each 

case presented, the results show the average over ten runs, the standard deviation (which is 

often quite large) and the vigilance parameter was v = 0.75. As uncertainty rises, the number 

of nodes created in total (e.g. at the point where the curves begin to approach asymptote) grows 

and the recruitments occur at different (usually later) times during the experiment. This is 

attributable to the agent being less able to rely on reward or punishment and the subsequent 

altering of behaviour that results causes the agent to experience different and unfamiliar energy 

states. This requires the recruitment of more category nodes. The important qualitative result 

is that the recruitment behaviour does not radically change under uncertain environments. 
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Figure 15: Low, medium and high vigilance parameter settings 
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Figure 18: Noise constant at 0.15 and certainty held constant; averaged over 10 runs 

Average Category Node Recrultmer# for Noise = 0.20, Environmmt Certainty « 0.00 

s 60 

standard deviation 

300 400 
Iterations 

700 

Figure 19: Noise constant at 0.20 and certainty held constant; averaged over 10 runs 
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Figure 20: Certainty - 0.0 with No Sensor Noise; averaged over 10 runs 
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Figure 21: Certainty = 0.25 with No Sensor Noise; averaged over 10 runs 
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Figure 22: Certainty = 0.50 with No Sensor Noise; averaged over 10 runs 
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Figure 23: Certainty = 0.75 with No Sensor Noise; averaged over 10 runs 
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Figure 24: Certainty = 1.00 with No Sensor Noise; averaged over 10 runs 
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7 MLP and Local Network-based Agent: Simulation Results 

7,1 Introduction 

The local and MLP networks, with a minimal control architecture were tested. The full con-

trol architecture supports plasticity, novelty detection and the use of Q-leaming paramters as 

analogs of modulatory mechanisms in naturally occuring adaptive neural systems. Here, the 

MLP and local networks were tested with an outcome-devaluation mechanism (which reduces 

reward when the agent is in a "satiated" state) to prevent simple, greedy strategies from emerg-

ing. However, no other improvements were made to the agent architecture to control learning 

and attention/vigilance. 

It was decided that to evaluate the local and MLP networks with their various configu-

rations, three experiments would be designed, and the agents tested in each environment with 

varying parameters. This helps establish an empirical basis for the metaleaming theory (see 

(Doya, 1999) and (Joyce, 2001b) for details). The three experiment parameters are given in 

Table 1. The environments are characterised as 'easy', 'moderate' and 'hard', according to the 

perceived difficulty, or 'harshness', of the environment. 

In each environment, the agent was given the goal parameters as follows: 

« The passive decay rate for energy was = 0.1 

« The action costs for PRESS and RELEASE were Cpress = Crelease = 0.2 

® After initial experiments with the localised (RBF/ART-like) network, vigilance and basis-

function radius were both set 0.2 (other values caused the network to behave unpre-

dictably and the results were far worse than the MLP tests) 

« After initial tests, the MLP proved to be most successful with 5 hidden units. This 

strongly suggests that the agent is 'assigning' hidden units to regions of the stimuli space 

in a more localised fashion. Other numbers of hidden units were tested (3 and 7) but the 

resulting performance was more erratic than with 5 units. That is, the gradual increase 

in performance expected after the start of the simulations was slower to be generated. 

» The action-selection temperature was kept constant at 0.01. 

The agents energy decays comparatively slowly, but redundant actions are quite expensive; 

recall, action costs are subtracted from the energy level. 

To obtain trends, the parameter space for the reinforcement learning component was ex-

plored exhaustively. Each trial consisted of setting T| and y at varying levels and testing in the 

environment for 8000 iterations. The parameters were set at a value between 0.15 and 0.95, at 

increments of 0.10, resulting in 9 values for both r] and y which combined to give 81 combi-

nations. Each combination of parameters was repeated five times (totalling 405 experiments), 

and the results presented are averages of these five trials. 



7. MLP and Local Network-based A^ent: Simulation Results 59 

Environment Resources Refresh Danger Neutral 

Hard 25 50 5 15 

Moderate 50 100 10 25 

Easy 100 100 20 40 

Table 1: Environments 

During each trial, the mean drive level (arousal) and mean punishments over each cycle 

(the period of time between refreshes) was measured. This was to enable interpretation of the 

per-cycle performance. The regularity of environmental dynamics were expected to coerce the 

agent into producing a routine activity, and then progressively refining this over subsequent cy-

cles. For each parameter combination, there are 5 'profiles', giving the per cycle performances 

which are averaged to obtain an overall mean per cycle performance for each parameter com-

bination. While providing useful profiling data, a further summary is produced to enable an 

overall assessment of performance for further investigations. Taking each of the 81 averaged 

profiles (one for each parameter combination) the overall mean drive/arousal and punishments 

are derived to represent a 'lifetime performance' statistic. This then enables a parameter sur-

face to be explored. The 'lifetime' summary data and tables can be found in sections 7.2, 8 and 

9 below. 

7.2 Easy Environent 

The results from this environment are not particularly indicative of trends because the agent 

could spend a majority of its time with the button switched in the 'on' state and then only learn 

a real routine when the resources reach neutral and then danger levels. However, they provide 

some evidence that the agent is learning. 

7.3 Local Network 

Figure 25 and Figure 26 show the values of t] and y against the overall (that is, for the whole 

8000 iterations) drive level (arousal) and punishments repsectively. This is taken as an indica-

tive measure of lifetime performance and will be biased by early stages of the simulation when 

the agent attempts to familiarise itself with the environment. These results are averages of the 

5 trials. Note that the contours are set at the lowest level achieved, where punishments should 

ideally be close to 0 as should drive/arousal level. Despite the punishment surface appearing 

irregular, the range of values over all the experiments was between [0, —0.016]. 

Despite low variation in the punishments, the drive/arousal contours (Figure 25) reveal 

that regions of the parameter space are successful in achieving an overall performance, while 

others are not. To expose this fully, Figure 27 shows the t) and y combinations which main-

tained overall drive levels beneath 0.05 (exceptionally low, but see note above concerning the 
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Figure 25: Local Net in Easy Environment: Overall Performance 
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Figure 26: Local net in Easy Environment: Overall Punishments 
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Figure 27: Local net in Easy Environment: Parameter Combinations Achieving Mean Arousal of < 
0.05 

easy environment). From this contour, the summary data was examined which revealed that 

when Tj = 0.95 and y = 0.95 achieved the best result from the candidates which achieved mean 

arousal of 0.05 or less. In effect, almost any value from those indicated with a cross in Figure 27 

would perform well. 

More is revealed if the experiment averages are examined for r| = 0.95 y = 0.95. Figure 28 

shows the mean drive/arousal and mean punishments over the 8000 iterations, averaged over 5 

trials. Note that after initial periods of activity, the agent quickly establishes a 0 punishment, 0 

arousal routine. However, this result is not surprising given that the agent is free to map the en-

tire stimuli space or only regions which recurr. It is easy for the agent to find a few states which 

(by fortuitous exploration in early stages) lead to highly rewarding actions and contingencies, 

causing the agent to repeat actions which means its internal state become 'locked' into a small 

region of the stimuli space and the associated responses are constantly rewarded. The 5 trial 

average aims to prevent such activity, but evidently, with sufficiently high T) and y the agent is 

able to exploit such early regularity and never truly explore the stimuli space (e.g. for very low 

energies and corresponding drive values close to I). 

7.4 MLP Network 

The results for the MLP agent were more defined. Figures 29 and 30 show the drive/arousal and 

punishments respectively. The descriptive statistics used are the same as for the local network. 

Note that the contour for mean arousal/drive at 0.15 isolates only a few selected regions 
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Figure 28: Best Local Net in Easy Environment: r| = 0.95 y = 0.95 
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Figure 29: MLP in Easy Environment: Overall Performance 
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Figure 30: MLP in Easy Environment: Overall Punishments 

of the parameter space, notably, high r) and two regions of y. The best performance occured 

at r| = 0.95 and y = 0.75 although almost all values of T] resulted in mean arousal/drive of 

between [0.12,0.15]. Interestingly, Figure 30 shows that the best (lowest) overall arousal/drive 

levels occurred when the mean punishments were worst, but the magnitude of these results 

suggests that this is unlikely to represent a significant trend because the punishment means are 

so close to zero. 

Finally, the best agent is shown in Figure 31. Note that after initially using the punish-

ments to learn a routine, the agent settles on a marginally higher rate of arousal and practically 

eliminates punishments. 

8 Hard Environment 

The difficulty of this environment is revealed by the results obtained. Firstly, the agent has only 

a short period of 'grace' when resources are delivered with a guarantee of no shock (punish-

ment). However, if the agent settles into a greedy routine quickly, it is soon given punishments 

as the environment has so few resources and the neutral and danger levels are high relative to 

the number of rewards and the refresh rate. In addition, the agent must learn that rewards are 

refreshed infrequently (every 50 iterations) meaning that it must make use the NO-OP action if 
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Figure 31: Best MLP in Easy Environment; T] = 0.95 y = 0.75 

it is to avoid repetitive punishment and not drain its internal energy quickly taking meaningless 

actions. 

8.1 Local Network 

Figures 32 (performance as drive minimisation) and 33 (related punishments) show the same 

data, respectively, as for Figures 25 and 26. 

It is necessary to factor in the punishments when assessing the performance, because of the 

complexity of the contours shown on both diagrams. Note the regions of the parameter space 

separated by the mean arousal levels of 0.1 and 0.2 respectively. To simplify this. Figure 34 

shows a planar representation of the contour, with crosses indicating the r| and y combinations 

which maintained a mean drive level of < 0.1. Note the apparent trade-off between high t] and 

low y. This suggests some kind of reciprocating relationship between these parameters in this 

kind of environment. Also, note the 'ridge' in Figure 32. Parameters which perform best for 

goal attainment (those in the <0.1 contour region) fall in the region with worst punishment (see 

Figure 33). This suggests a necessary amount of punishment must occur to enable learning. 

To confirm this, the best agent's performance profile can be examined. Over the entire region 

of the parameter space for the contour showing <0.1, the mean drive/arousal varied between 

only [0.06,0.08] suggesting that any combination of the parameters in Figure 34 would suffice. 
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Figure 32: Local Net in Hard Environment: Overall Performance 
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Figure 33: Local Net in Hard Environment: Overall Punishments 
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Plot Showing Eta / Gamma Combinations For Local Net on Hard Environment 
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One note on the critical nature of the high T|, low y relationship; if for high T|, y > 0.45 then 

the performance of the agent's goal attainment degrades from around 0.08 to 0.5 for y = 0.95 

(the strong upwards slope at the right-hand edge of Figure 32). 

Figure 35 shows the profile over time of the best local network agent in the hard environ-

ment with T| = 0.85 and y = 0.15. Note how initially (in early cycles of the environment) the 

agent learns the value of avoiding neutral / danger indications in the environment by trial and 

error. Eventually, it settles on a compromise of punishments and goal attainment. With pun-

ishments settled at around -0.2, this indicates that around 10 punishments are received each 

cycle in order that goal attainment is maintained. 

8.2 MLP Network 

Results for the MLP network are shown in Figures 36 and 37. They are quite easy to interpret; 

T) > 0.85 and y > 0.75 provide the best results (as evidenced by the contour 0.15 in Figure 36). 

The punishments similarly fit a decreasing trend as y and T] both approach 1. This contrasts 

with the local net, where there appeared to be a reciprocating relationship between y and T) (see 

Figure 34). 

The best performance was found to be at T| = 0.95 and y = 0.85. This agent was examined 

and its 5 trial average profile is shown in Figure 38. 
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Figure 35: Best Local Net in Hard Environment: T| = 0.85 y = 0.15 
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Figure 36: MLP Net in Hard Environment: Overall Performance 
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Figure 37: MLP Net in Hard Environment: Overall Punishments 
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Figure 38: Best MLP Net in Hard Environment: r| = 0.95 Y= 0.85 
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Figure 39: Local Net in Moderate Environment: Overall Performance 

9 Moderate Environment 

After testing the agents on two extreme environments (easy and hard) it was decided to look at 

the parameter space for a 'moderate' environmet; one deemed to be fair but not easy. 

9.1 Local Network 

Figures 39 and 40 show the parameter space in the usual way. It is interesting to note that the 

same trend as for the local network in the hard environment is displayed; the local network's 

best goal attainment is when the agent accepts punishments as part of the routine of maintaining 

its goal. 

Examining the contours of Figures 39 and 40 also demonstrates that (unlike the MLP 

network) their is no clear winning combination of parameters. At best, there are ranges where 

the performance and punishments are similar. 

9.2 MLP Network 

As before, the overall lifetime performances are given in Figures 41 and 42. The best agent 

performance is easy to isolate; the contours in Figure 41 indicate strong trends in the perfor-

mance / parameter space. A marginally lower drive is found for T) = 0.95 and y = 0.75. The 
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Figure 40: Local Net in Moderate Environment: Overall Punishments 
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Figure 41: MLP Net in Moderate Environment: Overall Performance 
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Figure 42; MLP Net in Moderate Environment; Overall Punishments 

profile for this agent is shown in Figure 43. From this, the clear trend is similar for the hard 

environment. The agent initially has high drive/arousal and low punishments, but over time, 

trades-off punishments to reduce drive/arousal. 

9.3 Trends and Experimental Conclusions 

As stated, no parameter adaptation occured during each of the experiments; T| and y where set 

to one combination of the values stated above. The raw results, averaged over 5 runs, were 

analysed for the local network using the Hebbian interpretation of the Q-leaming rule, and the 

MLP using the Bellman residual as the target vector. From the analyses, it was possible to 

establish the following empirical trends: 

o For the MLP networks, the best performance was always with high T), suggesting the 

agents need to constantly adapt the responses to maintain goals. However, the role of y 

seems to be that in very hard environments, this value should be higher than for moderate 

and easy environments. In latter cases, the variability of y is high for easy environments 

and was more localised in the higher range (towards 1) for the moderate environment. 

« The local networks marginally outperform the MLP networks, but this is most likely due 

to the closer-to-exhaustive mapping of the stimuli space, enabling greater flexibility in 



9. Moderate Environment 72 
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Figure 43: Best MLP Net in Medium Environment: T] = 0.95 y = 0.75 

8000 

constructing appropriate maps from stimuli to desirable actions/outcomes. 

» the reliance on high T| suggests that a/I networks are constantly adjusting (and needing 

to adjust) the response associated to internal state. While not unsurprising, this suggests 

that a more appropriate method might be to encourage exploration while reducing learn-

ing rates (both rj and y in situations which are 'no win' cf. the hard environment and 

when the agent reaches high arousal/drive in the absence of rewards without accompa-

nying punishments (e.g. when the environment is in the 'danger' state). This is in part 

supported by the small regions (isolated by contours) of low t ] and yin the local networks 

- see Figures 25, 32 and 39. 

« For the local networks, an important trend (opposite to the MLPs) is that the balance 

between y and i] appears more critical. In Figures 29, 36 and 41 for MLPs, it is almost 

always the case that the contours suggest that both parameters should be high. The con-

tours are relatively tidy and suggest a strong decreasing performance gradient toward the 

high r|, high y state. However, for local networks, the higher values of y affect the pun-

ishments for approximately similar overall goal attainment (e.g. the overall drive/arousal 

is similar). This is especially true for the moderate environment (see Figures 39 and 40) 

where punishment clearly trades off against performance as r| and y vary. This suggests 
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that future rewards balanced against learning the current outcome are critical and that too 

high Y skews this considerably. For example, in Figure 39 the mean drive/arousal level 

varies from around 0.05 to around 0.5 for high constant r| and variable y. 

While these results are not intended to be conclusive, they aided in deciding how to pro-

ceed in building a control architecture for agents. The above empirical conclusions are carried 

forward into this design process, because the theoretical proposition of (Doya, 1999) remains 

under-constrained. 

For MLPs the trend appears to be to set both parameters high. This suggests that the 

experience of novel situations is overwriting existing, learned patterns. Whereas for the local 

network, the relationship between r) and y is more complex, suggesting a requirement to bal-

ance the two parameters. The purpose of testing was to see if there is any empirical support for 

Doya's proposal that it might be possible to better understand learning, in situated agents, via 

cognitive and neuro-modulatory mechanisms. 

There was also little support for an overall superior technique - the MLP and the local 

network perfomi in different ways (e.g. in how they partition the input space) and while the 

local network might be marginally superior, engineering constraints will most likely decide on 

a choice of network design. In further work (to build a more robust architecture for agents 

which included parts of Doya's meta-leaming theory) the local network was chosen, more 

because of its transparency and separation from perceptual machinery. 
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10 Simulation Experimental Data 

10.1 Introduction 

For completeness, this section reproduces the summary lifetime performances for the agent 

experiments with MLP and local networks. Some of the conclusions drawn from the graphs of 

section 7 are easier to justfiy with reference to the actual tabular data. 

10.2 Easy Environment (Local Net) 

Eta Gamma Mean Drive Mean Punishments 

015 015 0.043345 -0.000150 
015 &25 0.081728 -0.000125 
015 035 0.173435 -0.001150 

015 &45 0.068620 -0.000225 
015 0^5 0.032470 -0.000450 

015 0.65 0.217761 -0.000200 

015 0J5 0.020986 -0.000625 

015 0^5 0.031936 -0.007750 

015 0.95 0.202670 -0.001750 

Eta Gamma Mean Drive Mean Punishments 

&25 015 0.061050 -0.000550 
0.25 025 0.052256 -0.000100 
&25 035 0.050965 -0.000250 

&25 OJ^ 0.163204 0.000000 

025 0^5 0.077429 -0.000275 

&25 0.65 0.106325 -0.000100 

0.25 0.75 0.140557 -0.000050 

&25 0^5 0.035208 -0.001450 
0.25 0.95 0.300342 -0.004450 

Eta Gamma Mean Drive Mean Punishments 

035 015 0IG5131 -0.010025 
&35 025 0.031660 -0.015425 
OJ^ 035 0.033828 0.000000 

035 CW5 0.021781 -0.012675 

035 0.55 0.061790 -0.000250 

035 0.65 0.071164 -0.000400 
035 0J5 0.102405 -0.000500 

035 0.85 0.069725 -0.005450 
035 0.95 0.185060 -0.001575 
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Eta Gamma Mean Drive Mean Punishments 

&45 CU5 0.029943 -0.000025 
&45 0^5 0.109850 -0.000100 
&45 0J5 0.097126 -0.006850 

&45 045 0.089576 -0.008675 
&45 0^5 0.135960 -0.000175 
&45 0.65 0.144864 -0.000150 
&45 0J5 0.063800 -0.015000 

&45 0^5 0.091169 -0.005725 

&45 045 0.168791 -0.000850 

Eta Gamma Mean Drive Mean Punishments 

0^5 015 0.018711 -0.001675 

&55 OJ^ 0.027655 0.000000 

0^5 035 0.080444 -0.010750 

&55 045 0.054039 -0.002175 

0.55 0^5 0.103462 0.000000 

&55 0.65 0.108725 -0.001100 

0^5 0J5 0.027015 -0.001475 

0^5 0.85 0.023462 -0.002625 

0^5 0.95 0.159676 -0.002050 

Eta Gamma Mean Drive Mean Punishments 

&65 CU5 0.028873 0.000000 

0.65 0J5 0.053022 -0.001400 
0.65 0J5 0.092280 0.000000 

0.65 045 0.164895 0.000000 
0.65 0^5 0.076475 0.000000 

0.65 0.65 0.058994 0.000000 

0.65 0J5 0.019809 -0.001125 
0.65 0^5 0.019344 -0.002425 

0.65 045 0.155142 -0.002775 

Eta Gamma Mean Drive Mean Punishments 

0.75 GU5 0.026574 0.000000 

0J5 0.25 0.045085 0.000000 
a75 035 0.069560 0.000000 

0.75 045 0.081375 0.000000 

0J5 0^5 0.062143 -0.000350 

&75 0.65 0.057457 -0.000250 

&75 0J5 0.050849 -0.000150 

0J5 0^5 0.026810 -0.005100 

&75 045 0.066591 -0.005525 



10. Simulation Experimental Data 76 

Eta Gamma Mean Drive Mean Punishments 

&85 0U5 0.033910 0.000000 
&85 0.036582 -0.000675 
0.85 0J5 0.060265 0.000000 
0.85 045 0.057650 0.000000 
0.85 0^5 0.073652 0.000000 
&85 0.65 0.062415 -0.000250 
&85 0J5 0.066116 -0.001075 
0.85 0^5 0.010885 -0.006175 

0.85 045 0.203861 -0.001725 

Eta Gamma Mean Drive Mean Punishments 

0.95 0U5 0.033713 0.000000 
0.95 0J5 0.047744 0.000000 
0.95 0U5 0.050804 0.000000 
0.95 0W5 &045821 -0.000050 

0.95 0^5 0.073099 -0.000825 

0.95 0.65 0.044039 -0.000900 

0.95 0.060502 -0.000075 

0.95 0.85 0.005230 -0.007200 

0.95 0.95 0.007141 -0.003575 

10.3 Easy Environment (MLP Net) 

Eta Gamma Mean Drive Mean Punishments 

OJ^ CU5 0.158375 -0.000975 

0J5 0^5 0.152290 -0.000275 
0J5 035 0.138027 -0.000625 

OJ^ O j j 0.177715 -0.000400 
OJ^ 0^5 0.151(%51 -0.000350 
0.15 0.65 0.181574 -0.000475 

OJ^ 0J5 0.184614 -0.000125 
OJ^ 0^5 0.184643 -0.000450 

OJ^ 045 0.162045 -0.000375 

Eta Gamma Mean Drive Mean Punishments 

&25 0U5 0.198665 -0.000425 
&25 0^5 0.208230 0.000000 

&25 035 0.213857 -0.000050 
&25 045 0.227172 -0.000200 
&25 0^5 0.195080 -0.000025 

&25 0.65 0.209078 -0.000225 

&25 0J5 0.229555 0.000000 

&25 0^5 0.240644 -0.000250 
&25 045 0.233645 -0.000025 
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Eta Gamma Mean Drive Mean Punishments 

035 015 0.200151 -0.000475 
0J5 0.188228 -0.000300 
035 035 0.183003 -0.000950 
&35 O j j 0.179454 -0.001225 
&35 0^5 0.165865 -0.001500 
&35 0.65 0.178697 -0.002200 
&35 0J5 0.184085 -0.001100 
0J5 0^5 0.176942 -0.002175 
035 095 0.189885 -0.002850 

Eta Gamma Mean Drive Mean Punishments 

0^5 CU5 0.222557 -0.000200 
0.45 OJ^ 0.217394 -0.000100 
&45 035 0.211587 -0.000400 
&45 045 0.205249 -0.000325 
&45 0^5 0.227542 -0.000425 

&45 0.65 0.207384 -0.000775 
&45 0J5 0.214403 -0.000225 
&45 0^5 0.227366 -0.000500 

0.45 0.95 0.195229 -0.002100 

Eta Gamma Mean Drive Mean Punishments 

0J5 CU5 0.197308 -0.000725 

&55 0.25 0.236928 -0.000175 
0^5 035 0.184709 -0.000425 

&55 045 0.243865 -0.000250 
0^5 0^5 0.240301 -0.000350 
0.55 0.65 0.239774 -0.000325 
a55 0J5 0.295744 -0.000325 

0.55 0^5 0.218035 -0.000175 

0J5 0.95 0.226636 -0.000225 

Eta Gamma Mean Drive Mean Punishments 

0.65 0U5 0.190710 -0.000225 
0.65 0J5 0.219463 -0.000125 
0.65 035 0.241383 -0.001125 
0.65 045 0.266578 -0.000175 
0.65 0^5 0.200843 -0.000200 
0 65 0.65 0.262327 -0.000525 
0.65 0J5 0.268547 -0.001025 
0.65 0^5 0.314075 -0.000250 
0.65 0.95 0.247319 -0.000175 
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Eta Gamma Mean Drive Mean Punishments 

&75 OJ^ 0.238574 -0.000275 

&75 0.25 0.216365 -0.000350 
&75 0J5 0.219717 -0.000100 
&75 0^5 0.254460 -0.001225 
&75 0^5 0.271601 -0.000950 
&75 0.65 0.235853 -0.000025 
0.75 0J5 0.281634 -0.000625 
&75 0^5 0.279211 -0.000500 
&75 0.95 0.172323 -0.002625 

Eta Gamma Mean Drive Mean Punishments 

0.85 0U5 0.197073 -0.000325 

0.85 0J5 0.198303 -0.002525 
&85 035 0.213210 -0.000100 

0.85 GW5 0.214114 -0.000650 
0.85 0^5 0.199523 -0.000275 

0.85 0.65 0.232294 -0.000700 
0.85 OJ^ 0.175173 -0.003850 
0.85 0.85 0.227885 -0.001425 

0.85 0.95 0.143445 -0.001250 

Eta Gamma Mean Drive Mean Punishments 

0.95 015 0.153758 -0.000225 
0.95 OJ^ 0.157511 -0.001400 

0.95 035 0.138634 -0.002400 
0.95 0.45 0.147048 -0.001150 
0.95 0^5 0.151372 -0.000925 
0.95 0.65 0.204587 -0.000125 

0.95 0J5 0.132562 -0.002700 

0.95 0^5 0.141980 -0.010350 

0.95 0.95 0.232562 -0.000375 

Dnment (Local Net) 

Eta Gamma Mean Drive Mean Punishments 

CU5 0 15 0.161510 -0.140200 

015 0^5 0.151970 -0.170400 
0J5 035 0.155088 -0.179400 

OJ^ 0.45 0.154029 -0.180075 

OJ^ 0^5 0.088825 -0.226900 

OJ^ 0.65 0.257579 -0.150875 

OJ^ 0J5 0.187156 -0.058925 

OJ^ 0^5 0.272144 -0.105050 

0J5 0.95 0.362453 -0.134200 
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Eta Gamma Mean Drive Mean Punishments 

0.25 0.265949 -0.080525 

&25 0^5 0.219324 -0.125800 
&25 035 0.196530 -0.160650 

&25 045 0.279355 -0.072925 
&25 0^5 0.291605 -0.088175 

&25 0.65 0.218666 -0.057075 
&25 0J5 0.195761 -0.075950 
&25 0^5 0.168852 -0.070875 
0.25 0.95 0.203492 -0.099200 

Eta Gamma Mean Drive Mean Punishments 

0^5 015 0.159890 -0.115275 
035 0.25 0.339826 -0.103350 
035 035 0.289410 -0.109750 

035 0.45 0.318753 -0.130450 
035 0^5 0.168042 -0.165275 
035 0.65 0.331277 -0.047375 

035 0J5 0.242328 -0.094475 
035 O^G 0.342433 -0.052525 

035 O^G 0314714 -0.087475 

Eta Gamma Mean Drive Mean Punishments 

&45 0U5 0.128762 -0.117075 

&45 0J5 0.359380 -0.047050 
0.45 035 0.474347 -0.048775 

&45 CW5 0.548682 -0.054000 
&45 0^5 0.565994 -0.051525 
&45 0.65 0.359310 -0.058025 
&45 0J5 0.309597 -0.053500 
&45 0^5 0.306276 -0.080575 
04^ 0.95 0.300856 -0.057000 

Eta Gamma Mean Drive Mean Punishments 

0.55 0 15 0.106719 -0.126300 

0.55 OJ^ 0.217977 -0.084850 

0.55 035 0.393536 -0.041700 

0.55 0.45 0.562757 -0.041350 
0^5 0.55 0.618048 -0.034150 
&55 0.65 0.443583 -0.032725 
0^5 0J5 0.260920 -0.075500 

0.55 0^5 0.286496 -0.104400 

0^5 095 0.362973 -0.036000 
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Eta Gamma Mean Drive Mean Punishments 

0.65 CU5 0.081216 -0.123725 

&65 CU5 0.177355 -0.091125 

0.65 035 0.272050 -0.064575 

0.65 0^5 0.476863 -0.037875 

0.65 0^5 0.428766 -0.038200 
0.65 0^5 0.455420 -0.033250 
0.65 0J5 0.313659 -0.050075 
0.65 0^5 0.379610 -0.045150 
065 045 0.389919 -0.023925 

Eta Gamma Mean Drive Mean Punishments 

&75 0U5 0.080857 -0.138425 
&75 CU5 0.143230 -0.103375 
0J5 035 0.250022 -0.080650 

&75 0^5 0.278869 -0.060325 

&75 0^5 0.350015 -0.048300 

015 0.65 0.408010 -0.041325 

&75 0J5 0.483988 -0.035225 

&75 0^5 0.412216 -0.043525 

&75 0.95 0.479643 -0.010125 

Eta Gamma Mean Drive Mean Punishments 

0.85 0U5 0.063171 -0.197950 

0^# 0.25 0.109473 -0.138650 

0.85 035 0.145657 -0.114150 

0^# 0.45 0.194262 -0.084800 

Oj^ 0^5 0.223698 -0.075400 
0.85 0.65 0.284739 -0.054625 
0^# 0J5 0.383637 -0.041925 
0.85 0^5 0.464653 -0.031850 
Oj# 0.95 0.546246 -0.024325 

Eta Gamma Mean Drive Mean Punishments 

0.95 CU5 0.080386 -0.354750 

0.95 Oj^ 0.076439 -0.258400 

0.95 035 0.088766 -0.172225 
0.95 CW5 0J^6121 -0.136800 

0.95 0^5 0.194538 -0.100525 

0.95 0.65 0.263079 -0.065800 
0.95 0J5 0.293380 -0.063075 

0.95 0^5 0.399257 -0.038900 

0.95 0.95 0.519793 -0.022950 
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10.5 Hard Environment (MLP Net) 

Eta Gamma Mean Drive Mean Punishments 

0.15 OJ^ 0.335268 -0.043925 
0J5 &25 0.327023 -0.043825 
0J5 &35 0.332342 -0.044000 
0J5 &45 0.334091 -0.042875 
OJ j &55 0.337581 -0.041550 

0.65 0.339407 -0.041825 
&75 0.347705 -0.044975 

015 0.85 0.362180 -0.039900 
0.95 0.372919 -0.040775 

Eta Gamma Mean Drive Mean Punishments 

&25 0J5 0.298925 -0.048075 

&25 &25 0.295573 -0.047950 

&25 &35 0.296460 -0.049500 

0.25 045 0.302792 -0.044475 

&25 0^5 0.310358 -0.045775 

&25 0^5 0.309038 -0.045075 

&25 0J5 0.313997 -0.047025 

&25 0^5 0.327825 -0.041950 

&25 0.95 0.313743 -0.044200 

Eta Gamma Mean Drive Mean Punishments 

&35 0J5 0.277755 -0.062900 
035 &25 0.295470 -0.065850 

&35 035 0.288781 -0.059600 

OJ^ 045 0.289258 -0.061675 
&35 &55 0.307250 -0.051900 

035 0.65 0.316495 -0.041325 

035 015 0.323235 -0.042350 

035 0.85 0.345739 -0.038800 
035 0.95 0.349719 -0.038850 

Eta Gamma Mean Drive Mean Punishments 

045 015 0.341336 -0.084400 
045 &25 0317831 -0.083825 

045 035 0.302112 -0.074150 

045 045 0.278233 -0.077350 

045 &55 0.282394 -0.070625 

045 0.65 0.308644 -0.052050 
045 &75 0.295103 -0.050675 

045 0^5 0.331314 -0.041800 
045 0.95 0.320374 -0.045025 
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Eta Gamma Mean Drive Mean Punishments 

&55 OJ^ 0.402497 -0.077225 
0^5 0.366873 -0.079550 
&55 0J5 0.315385 -0.082000 
0.55 045 0.287943 -0.076875 
&55 0^5 0.254410 -0.089400 
0^5 0.65 0.270736 -0.080150 
0^5 0J5 0.288276 -0.072000 
0^5 0^5 0.295149 -0.063025 

&55 0.95 0.339645 -0.048825 

Eta Gamma Mean Drive Mean Punishments 

0.65 0U5 0.367870 -0.082650 
0.65 0J5 0.365886 -0.083300 
0.65 0U5 0.356469 -0.080675 

0.65 045 0.303700 -0.091125 
0.65 0^5 0.304852 -0.090500 
0.65 0.65 0.288232 -0.104675 

0.65 0J5 0.249474 -0.127875 
0.65 0^5 0.229790 -0.117150 
0.65 0.95 0.226971 -0.142500 

Eta Gamma Mean Drive Mean Punishments 

&75 CU5 0.254663 -0.117025 
0J5 0.25 0.268852 -0.118675 

&75 035 0.348753 -0.113075 

0J5 045 0.18115^7 -0.151275 

&75 055 0.256542 -0.121775 
&75 0.65 0.204855 -0.134350 
0J5 0J5 0.215617 -0.135575 

0J5 0^5 0.212224 -0.150725 
&75 0^5 0.161119 -0.165050 

Eta Gamma Mean Drive Mean Punishments 

0.85 0U5 0.258602 -0.114300 

Oj^ 0^5 0.230051 -0.146425 

0.85 035 0.154752 -0.183475 

0.85 045 0.303164 -0.122475 

0.85 0^5 0.188479 -0.149725 
0.85 0.65 0.159257 -0.190075 
0.85 0J5 0.149849 -0.159750 
o^a 0^5 0.141476 -0.189275 
0 j # 0.95 0.172940 -0.129575 
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Eta Gamma Mean Drive Mean Punishments 

0.95 OJ^ 0.171779 -0.168325 
0.95 &25 0.220243 -0.130800 
0.95 035 0.159746 -0.173475 

0.95 0^5 0.194691 -0.141250 
0.95 0J5 0.149490 -0.184600 

0.95 0.65 0.250968 -0.133525 
0.95 0^5 0.187679 -0.168350 
0.95 0^5 0.133540 -0.153775 

0.95 045 0.153252 -0.149600 

environment (Local Net) 

Eta Gamma Mean Drive Mean Punishments 

OJ^ CU5 0.084103 -0.189575 
OJ^ 025 0.152079 -0.090675 

OJ^ 035 0.206224 -0.169775 
OJ^ 045 0.151406 -0.219275 

015 0^5 0.201154 -0.059775 

OJ^ 0.65 0.163783 -0.104700 

0U5 0J5 0.315227 -0.073050 

0J5 0^5 0.176237 -0.171850 

OJ^ 0.95 0.300683 -0.048325 

Eta Gamma Mean Drive Mean Punishments 

0.25 CU5 0.236099 -0.132950 

0.25 OJ^ 0.236738 -0.162800 

0.25 035 0.227450 -0.155150 

&25 045 0.216267 .0J405# 

&25 0^5 0.152024 -0.194875 

&25 0.65 0.105212 -0.125625 

0.25 0J5 0.324559 -0.042950 

&25 0^5 0.153444 -0.091625 

OJ^ 095 0.249039 -0.032725 

Eta Gamma Mean Drive Mean Punishments 

035 CU5 0.209131 -0.067650 
035 0J5 0.256794 -0.094250 

035 035 0.273450 -0.146475 

035 045 0.315240 -0.142275 

035 0^5 0.429820 -0.036400 

035 0.65 0.305853 -0.058875 

035 0J5 0.224819 -0.056150 

035 0^5 0.196383 -0.036150 
035 095 0.359582 -0.025250 
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Eta Gamma Mean Drive Mean Punishments 

0.45 0.15 0.141573 -0.083875 

0.45 0.25 0.247326 -0.040625 

0.45 0.35 0.213825 -0.099750 

0.45 0.45 0.165876 -0.115150 
0.45 0.55 0.520093 -0.061025 
0.45 0.65 0.291071 -0.029875 
0.45 0.75 0.136062 -0.064150 
0.45 0.85 0.248516 -0.044175 
0.45 0.95 0.157766 -0.074750 

Eta Gamma Mean Drive Mean Punishments 

0.55 0.15 0.084229 -0.123100 

0.55 0.25 0.182247 -0.057225 

0.55 0.35 0.251080 -0.045775 

0.55 0.45 0.358332 -0.018150 

0.55 0.55 0.381544 -0.020275 

0.55 0.65 0.230947 -0.109775 

0.55 0.75 0.393454 -0.024750 

0.55 0.85 0.271836 -0.044375 

0.55 0.95 0.382445 -0.005800 

Eta Gamma Mean Drive Mean Punishments 

0.65 0.15 0.089856 -0.096575 
0.65 0.25 0.129290 -0.071025 
0.65 0.35 0.229475 -0.052550 
0.65 0.45 0.278201 -0.031725 
0.65 0.55 0.299631 -0.032550 
0.65 0.65 0.293848 -0.029200 
0.65 0.75 0.328741 -0.021375 
0.65 0.85 0.237497 -0.029275 

0.65 0.95 0.411692 -0.007100 

Eta Gamma Mean Drive Mean Punishments 

0.75 0.15 0.075359 -0.108825 

0.75 0.25 0.127317 -0.080425 
0.75 0.35 0.238172 -0.054100 
0.75 0.45 0.271138 -0.030525 
0.75 0.55 0.269083 -0.040925 

0.75 0.65 0.255615 -0.043700 
0.75 0.75 0.258751 -0.031050 

0.75 0.85 0.308711 -0.030000 

0.75 0.95 0.502500 -0.009825 
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Eta Gamma Mean Drive Mean Punishments 

0.85 OJ^ 0.064330 -0.176700 

OJ^ 0.105268 -0.121975 
CU5 0.127270 -0.096000 

0.85 O j j 0.188284 -0.063750 
Oj# 0^5 0.169668 -0.064100 
0.85 o^a 0.248534 -0.034525 
&85 0J5 0.242013 -0.037575 
0.85 0^5 0.347513 -0.015050 
0.85 0.95 0.471379 -0.013250 

Eta Gamma Mean Drive Mean Punishments 

0.95 CU5 0.106114 -0.304125 

0.95 0.25 0.101742 -0.235050 
0.95 CU5 0.094845 -0.152625 

0.95 045 0.147107 -0.100250 
0.95 0^5 0.159222 -0.073600 
0.95 0.65 0.193398 -0.065750 

0.95 0J5 0.218947 -0.049650 

0.95 Oj^ 0.285720 -0.026675 

0.95 0.95 0.391298 -0.008100 

10.7 Moderate Environment (MLP Net) 

Eta Gamma Mean Drive Mean Punishments 

015 015 0.273188 -0.048375 

OJ^ OJ^ 0.271255 -0.050325 

015 0U5 0.283172 -0.047950 
0.15 045 0.283264 -0.046300 

CU5 0^5 0.272180 -0.049650 

015 0.65 0.291030 -0.043475 

015 0J5 0.282733 -0.050050 
015 0^5 0.292352 -0.046725 
015 0.95 0.295662 -0.045975 

Eta Gamma Mean Drive Mean Punishments 

&25 015 0.242470 -0.068275 

&25 0J5 0.236251 -0.067850 

&25 0^5 0.251340 -0.061200 

OJ^ 045 0.256728 -0.046350 

0.25 0^5 0.271297 -0.048225 

&25 065 0.266590 -0.048650 

0.25 0J5 0.272952 -0.041375 

&25 0^5 0.271882 -0.033300 

0.25 0.95 0.270995 -0.043375 
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Eta Gamma Mean Drive Mean Punishments 

035 OJ^ 0.274911 -0.069550 

0J5 0.25 0.261213 -0.066625 

035 035 0.260285 -0.076675 

035 CW5 0.255892 -0.059150 

035 0^5 0.251034 -0.063575 

035 0^5 0.264118 -0.046775 
035 0J5 0.259463 -0.052350 
035 0^5 0.287025 -0.041675 
035 0^5 0.281455 -0.037925 

Eta Gamma Mean Drive Mean Punishments 

045 CU5 0.270329 -0.077650 
&45 0^5 0.288927 -0.073325 
&45 035 0.282282 -0.079075 

&45 0W5 0.274630 -0.071375 

&45 0J5 0.261735 -0.064250 

&45 065 0.248809 -0.060000 

&45 0J5 0.260668 -0.064975 

&45 085 0.242404 -0.046225 

&45 0.95 0.254584 -0.060800 

Eta Gamma Mean Drive Mean Punishments 

&55 CU5 0.331515 -0.070950 

0^5 0^5 0.296144 -0.070200 

&55 035 0.256294 -0.078925 

0^5 045 0.300324 -0.068425 
0.55 0^5 0.262601 -0.079025 

0^5 0.65 0.261267 -0.080375 
0.55 UJ5 0.266599 -0.072325 

0.55 0^5 0.246314 -0.066500 

0^5 0.95 0.253722 -0.055600 

Eta Gamma Mean Drive Mean Punishments 

0.65 CU5 0312595 -0.080875 

0.65 0J5 0.334592 -0.069875 

0.65 035 0.320217 -0.067475 

0.65 045 0.282496 -0.075600 

0.65 0^5 0.261043 -0.088625 

0.65 0.65 0.260 J 09 -0.094525 
0.65 0^5 0.267517 -0.079825 

0.65 Oj^ 0.193497 -0.105200 
0.65 0.95 0.188624 -0.104725 



10. Simulation Experimental Data 87 

Eta Gamma Mean Drive Mean Punishments 

0J5 015 0.278154 -0.090675 

&75 025 0.271257 -0.088750 

&75 035 0.255664 -0.089650 

&75 &45 0.238830 -0.093800 

&75 0^5 0.294758 -0.094875 

&75 0.65 0.230104 -0.1151(X) 

&75 0^5 0.194804 -0.122025 
&75 0^5 0.156686 -0.118875 

0J5 045 0.194546 -0.112525 

Eta Gamma Mean Drive Mean Punishments 

0.85 0.15 0.229063 -0.098850 

&85 0^5 0.243749 -0.092650 

&85 035 0.276738 -0.085350 

0.85 O j j 0.188700 -0.129875 
0.85 0^5 0.303756 -0.077575 

0.85 0.65 0.226284 -0.111475 

&85 0J5 0.219789 -0.119500 

0.85 0.85 0.196605 -0.104450 
0.85 045 0.155973 -0.118875 

Eta Gamma Mean Drive Mean Punishments 

0.95 CU5 0.160683 -0.140775 

045 0.25 0.326494 -0.097975 

045 035 0.196699 -0.128875 

045 0.45 0J36524 -0.144900 
045 0.55 0.122574 -0.159550 

045 0.65 0J16809 -0.149275 
045 0J5 0.093874 -0.176050 

045 0.85 0J147M -0.145750 

045 045 0.106629 -0.173675 
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