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In this thesis we consider the relationship between jump-diffusion processes and 
ARCH models with jump components. In the theoretical financial economics 
literature, jump-diffusion processes in continuous time have been used to model 
financial markets. Most empirical works use either directly discretised jump-diffusion 
processes or ARCH models with jump components to estimate the underlying 
processes. There is, however, no guarantee that those models used in empirical works 
are discrete counterparts of the continuous time jump-diffusion process. 

In Chapter 2, Survey on .lump-Diffusion Processes in Financial Economics, we 
survey the existing literature of jump-diffusion processes. During the 80's and 90's, it 
started to draw more attention as an alternative tool to the ARCH type models. The 
most significant theoretical developments and empirical findings are reviewed. 

In Chapter 3, Approximation of .Tump-Diffusion Processes, we show that a discrete 
time stochastic difference equation (e.g. ARCH with jumps) converged weakly to the 
continuous time stochastic differential equation (e.g. jump-diffusion limit) as the 
length of sampling interval goes to zero. It is shown that, as examples, GARCH(1,1)-
M with jumps and EGARCH with jumps converge to their jump-diffusion limits. 

In Chapter 4, Filtering with Jump-Diffusion Processes, we study the properties of the 
conditional covariance estimates generated by a misspecified model with jumps. We 
show that a misspecified model can consistently estimate the conditional covariance of 
the true data generating process. I.e., the difference between a conditional covariance 
estimate and the true conditional covariance converges to zero in probability as the 
sampling interval of length h goes to zero. 

In Chapter 5, Forecasting with .Tump-Diffusion Processes, we investigate the 
forecasting ability of jump-diffusion processes. It is shown that forecast generated by 
a misspecified model with jumps converges weakly to forecast generated by the true 
data generating process. That is, the difference between the forecasts generated by a 
misspecified model and those generated by the true underlying process becomes zero 
as the length of sampling interval approaches to zero. 

Finally, in Chapter 6, we conclude the thesis by summing up the important features of 
the results. Some further directions for future research are proposed. 
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Chapter 1 

Introduction 

In the financial markets we can easily observe shocks causing market volatilities. 

When important information arrives at the markets, the underlying processes, for 

example, stock prices or foreign exchange rates, are disturbed and jump discretely 

to some other levels. Therefore, it has been an important issue in. the Enancial 

economics literature to find adequate tools to model such behaviour of financial 

markets. Since Press (1967), there has been growing interest in jump-diffusion 

processes during the last three decades or so. Merton (1976o, 6) divides the total 

changes in stock prices into two parts. The first part is normal changes in stock 

prices caused by normal economic activities, such ag temporal imbalance between 

supply and demand, changes in capitalisation rates, changes in economic outlook, 

or other new information causing marginal changes in the values of stock. The 

second part is abnormal changes in stock prices caused by unanticipated shocks to 

markets, such as some important new information causing more than a marginal 

changes in the values of stock. He suggests to model the normal vibration by 

a standard Brownian motion and the abnormal vibration by a Poisson jump 

process. 

Since then, as the solution to a stochastic asset optimisation problem, jump-

diGusion processes are popularly used in the dynamic asset pricing Hterature 



[Amin (1993), Ball and Torons (1983, 1985), Chang (1995), Jarrow and Rosen-

feld (1984), Kim, Oh and Brooks (1994), and OldReld, Rogalski and Jarrow 

(1977)], in foreign exchange rates [Ball and Roma (1993), Jorion (1988), Park, 

Ahn and Fujihara (1993), and Vlaar and Palm (1993)], and in the term structure 

of interest rates [Ahn and Thompson (1988) and Daa (1997)]. 

In the theoretical financial economics hterature, jump-diEusion processes in 

continuous time have been used to model financial markets. The jump-diffusion 

processes in continuous time can be represented by a continuous time stochas-

tic diEerential (integral) equation which is the linear combination of a diffusion 

process and a Poisson jump proc^. Most empirical works use either directly 

discretised jump-diffusion processes or ARCH type models with jump compo-

nents to estimate the underlying processes. However, there is no guarantee that 

the discretised jump-diffusion processes or (AutoRegressive Conditional 

Heteroskedasticity) type models with jump components are the discrete coun-

terparts of the continuous time jump-diffusion processes. So, in this thesis we 

would like to develop the relationship between the continuous time stochastic 

differential equations and the discrete time stochastic difference equations. 

First of all, it is necessary to review the existing literature of the jump-

diffusion processes. Although the literature has initiated earlier than the ARCH 

type models^, the literature is relatively small compared to that of type 

models. Starting Srom Press (1967), Cox and Ross (1975, 1976), and Merton 

(1976o, 6) established the cornerstone of the hterature. Then, duriug the 1980's 

and 90's, it started to draw more attention as an alternative modeling tool to the 

ARCH type models. In Chapter 2, the most significant theoretical developments 

and empirical Sndings are reviewed. 

There, we try to answer the following three questions: 1) Can we use the 

^ Since Engle(1982), the ARCH type models have been extensively used in the financial 
economics literature and the literature has grown massively during the last two decades or so. 
There are a couple of excellent surveys about ARCH type models. Interested readers are 
refered to Bollerslev, Chou and Kroner(1992) and Bollerslev, Engle and Nelson(1994). 
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discrete time stochastic diEerence equation as a discrete time counterpart of the 

continuous time stochastic differential equation? 2) Can the misspecified models 

correctly identify the conditional covariance structure of the true data generating 

process? And 3) how close can a misspeciSed model produce forecasts to the 

forecasts generated by the true data generating process? 

In Chapter 3, to answer the Erst question, we show that a discrete time 

stochastic difference equation converges weakly to the continuous time stochastic 

diSerential equation as the length of samphng intervals goes to zero. Then, 

as examples, we show that 1)-M with jumps and with 

jumps are jump-diffusion approximations. 

Next, as economic models are rough approximations of the real economy, it is 

inevitable that those models are misspecified. We, however, require that these 

misspecified models should enable reasonable understanding of the real economy. 

So, in Chapter 4, we answer the second question by showing that the misspecified 

models can consistently estimate the conditional covariance structure of the true 

data generating process. 

Then, as most market participants would like to predict market behaviour 

in the future so that they can minimise the risk existing in the future, it is 

necessary to raise the third question. In Chapter 5, we show that the misspecified 

models can produce forecasts close to those generated by the true data generating 

process. That is, we derive the forecast functions for the misspeclSed and true 

data generating processes and show that the misspecihed models can produce at 

least consistent forecasts of the true data generating process. 

Finally, we conclude the thesis by summing up the important features of the 

results. Some future directions for further research are proposed. 



Chapter 2 

Survey on Jump-Diffusion 

Processes in Financial 

Econometrics 

2.1 Introduction 

In financial economics, it has been an important issue to find a distribution accu-

rately describing the behaviour of financial time series. Many earlier researchers' 

attempts [such as the Stable Paretian by Mandelbrot (1963), Poisson Mixture of 

lognormal distribution by Press (1967), Scaled ( distribution by Praetz (1972), 

and Subordinate Stochastic process by Clark (1973)] have not been accepted in 

general. However, the work of Black and Scholes (1973) has been accepted as 

one of the most significant developments in the history of financial economics 

and has been extensively used to model financial time series. Yet, their model 

cannot fully describe the behaviour of financial time series, such as fatter tails 

than normal, high concentration of mass near zero, and high volatilities. 

Later, Merton (1976a, b) introduced jump-diffusion processes to model finan-

cial time series. His model allows jumps caused by arrival of important news 



at the market. He decomposed the total changes in stock prices into two parts. 

First, the normal vibration in prices due to a temporary imbalance between sup-

ply and demand, changes in capitalisation rates, changes in economic outlook, or 

other new information causing marginal changes in the values of stock. This kind 

of change can be modelled by a standard geometric Brownian motion. Second, 

the abnormal vibration in prices due to the arrival of important new information 

causing more than a marginal changes in the values of stock. This part of the 

changes can be modelled by a jump process. With a jump-diffusion process, we 

expect to take the empirically observed properties of hnancial time series into 

accoimt more successfully than the Black-Scholes model. 

With the introduction of jump-diffusion processes, there have been quite a 

number of researches on the issues of jump-diSusion processes in financial eco-

nomics. It has been used in the analysis of financial markets, such as stock 

markets, foreign exchange markets, and term structure of interest rates. Much 

empirical work found that the jumps in those financial time series are significant, 

especially when the sampling interval gets smaller. As the ARCH type mod-

els cannot explain alone the stochaatic nature of financial markets, there have 

been several works to incorporate jump processes into framework [Feng 

and Smith (1997), Jorion (1989), and Vlaar and Palm (1993)]. When 

models are used along with jump-diSusion processes, it becomes more powerful 

to describe the volatHistic nature of hnancial time series as well. 

In this survey, we are looking for the extensions and developments of the 

Poisson Mixture of lognormal distribution by Press (1967). In the next section, 

we present the jump-diffusion process developed during the last three decades 

or so. Section 2.3 considers several estimation methods popularly used in the 

literature. In section 2.4, we survey the empirical evidence of jump-diffusion 

process used in the dynamic asset pricing hterature, foreign exchange markets, 

etc. Then, we conclude the survey in section 2.5. 



2.2 Jump-Diffusion Processes 

In this section, we will explore the developments of the jump-diffusion processes in 

the financial economics literature. The development of jump-diffusion processes 

is based on the Poisson mixture of lognormal distribution by Press (1967). Then, 

Cox and Ross (1975, 1976) and Merton (1976 a, 6) estabhshed the cornerstone of 

the literature. 

2.2.1 Development of Jump-Diffusion Processes 

Black and Scholes (1975) assume that changes in the price of the stock, S, are 

governed by a diffusion process of the return 

^ (2.1) 

where W is a Weiner process. This equation can be interpreted as the percent-

age change in the stock price over a smaU interval of time will be given by a 

deterministic drift component, and a random increment which is normally 

distributed with mean zero and variance As (ft gets smaller, will not 

differ much from St- That is, in this diffusion process only local changes in the 

stock price are permitted.^ The arrival of information at a market, however, will 

be in discrete lumps rather than in a smooth How, and assets in such markets are 

likely to have discontinuous jumps in value. So this behavior violates the basic 

assumption of a diffusion process. Price movements of this sort can be captured 

by assuming that the asset follows a jump process rather than a diffusion process. 

Unlike a diffusion process, a jump process is characterized by the property that 

with high probability, approaching 1 as (ft 0, its movement within the interval 

[t, t + dt) will be certain, but with a low and continuing probability it will jump 

^ Within a small interval of time [t, t + dt), St will move in a random fashion, but with high 
probability, approaching 1 as dt —> 0. So St+dt will be in an arbitrary small neighbourhood of 
St. 
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to a new value. 

Press (1967) assumed that the logged price changes are following a Poisson 

mixture of normal distribution. He had shown that the distribution agrees 

with the characteristic of the logged price changes found in empirical work. A 

cumulant matching method is suggested for estimating the hrst four moments of 

the distribution. He assumed that 5' ((), the natural logarithm of the price of 

a security at time f, is stationary and has independent increments whose basic 

mechanism is composed of a compound Poisson process augmented by a Wiener 

process, 

+ + (2.2) 

i=l 

where 5" (0) = C, = 1, . . . A;,... , are the size of jumps mutually independent 

normally distributed with mean 6 and 5^, N (t) is a Poisson counting process with 

parameter At, which represents the number of random jumps occurring in time t, 

and ((), ^ > 0} is independent of and {% (t), t > 0} is a Wiener process 

with mean 0 and variance a'^t. It is assumed that the process has uncorrelated 

increments. 

If we difference S (t) in (2.2) we have 

A^(t) = ^ ( t ) - ^ ( ( - l ) 

= Yt+6(t) (2.3) 
1)4-1 

where e (t) = X (t) — X {t — 1) is the stationary independent normal with mean 

0 and variance <7̂ . He showed that the first four moments of A 5' (̂ ) agree with 

what is found empirically, such as, skewness, leptokurtosis, and thick tailed. 

In the study of the problem of option valuation when the stock follows a jump 

^Here, by differencing S (t), he implicitly assumed that the diffusion component has zero 
drift. 
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process, Cox and Ross(1975) proposed a simple jump process that can be written 

as 

^ + (2.4) 

fidt + A: — 1 with probability Xdt 

/idt with probability (1 — Xdt) 
(2.5) 

where it is a Poisson process and dn takes value 0 with probability 1 — Xdt and 

1 with probability Xdt. The parameter A is called the intensity of the process. 

Therefore, if no jump occurs S (t) moves at the exponential rate /i, but if a jump 

occurs 6" changes by (A: — 1) 5" to 5" (t) + (A; — 1) 5' (t) — (t). They aJso 

showed that the Black and Scholes' diffusion process is simply a hmiting case of 

the jump process, and can be approximated by a jump process [Section 3, Cox 

and Ross (1975)]. 

Cox and Ross (1976) developed several alternative processes to (2.5) to model 

the jump processes. First, they suppose that changes in stock price follow a pure 

birth and death process with > 1 and A" < 1 with respective probability 7r+ 

and 7r~, and that the intensity is proportional to value, S : 

— 1 with probability ir'^XSdt, 

k~ — 1 with probability 7r~XSdt, (2.6) 

0 with probabihty 1 — 

The limit of (2.6) as A:"*" ^ 1, A: —> 1, and A —> oo, is a diffusion with instanta-

neous mean and variance where // and are 

= AE{(A;-l)^}^(ft. 
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So, the stochastic diHerential equation can be written aa 

(2.7) 

Another interesting process is one where the intensity. A, is constant and the 

value of the increment is constant. 

dS = jiSdt + < 

— 1 with probability n^XSdt 

— 1 with probability 7r"A6'd( (2.8) 

0 with probability 1 — XSdt 

The local mean and variance of the process are given by 

= {AÂ  + A [ 7 r + ( A ; + - l ) + 7 r - ( A ; - - l ) ] } a 

Var{dS} = A Itt"*" (A;"̂  — l)^ + tt^ (A:~ — l ) ^ | 

The diffusion limit of (2.8) can be written as 

dS = jiSdt + adz (2.9) 

Merton (1976 a, 6) divided the total change in a stock price into two compo-

nents. The Erst is the normal vibrations due to a temporary imbalance between 

supply and demand, changes in capitalization rates, changes in the economic out-

look, or other information that causes marginal changes in stock's value. The 

second is the abnormal vibrations in price due to the arrival of important new 

information about the stock that has more than a marginal effect on price. The 

normal vibration can be modelled by a standard geometric Brownian motion, and 

the abnormal vibration can be modelled by a jump process. The Poisson driven 

13 



process can be deSned as follows 

Pr [N (i, t + /i) = 0] = 1 — Xh + o (/i), 

Pr [TV (t, t + A) = 1] — AA + o (A), 

Pr[W(^,f + / i )>2 ] = 

where N (t,t + h) is a number of Poisson distributed events per unit time and 

A is the mean number of arrivals of important news per unit time. If S (t) is 

the stock price at time t and Y is the random variable of the drawing from a 

distribution to determine the impact of the information on the stock price, then 

neglecting the continuous part, the stock price at time 5" (( + A,), wiH be the 

random variable 6" (t + A) = 6" (() y, given that one such arrival occurs between 

( and t + /i. The {Y} from successive drawings are assumed independent and 

identically distributed. Then the stochastic differential equation for the stock 

price return is 

(2.10) 

where a is an instantaneous expected return on the stock, cr̂  is the instantaneous 

variance of the return, conditional on no arrivals of important new information, 

(fiy is a standard Wiener process, z is the percentage change in share price 

resulting from a jump,^ and g (t) is a jump process. 

The adW term describes the instantaneous part of unanticipated return due 

to the normal price change and (fg describes the part due to the abnormal price 

changes. If A = 0, then the return dynamics would be the same as given in the 

Black and Scholes (1973). 

^Then, Z = (z + 1) will be the jump amplitude, and InZ ~ N (/i, <5^) 
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A solution for the differential equation in (2.10) is 

^ + s) = 5' ^ (0) Z (1). . . Z (TV) exp { (a - (7^/2) g + , (2.11) 

where s is the time between observed prices S (t + s) and S (t). The number of 

jumps during the interval s is N, and the Z (i) are the jump size where Z (0) = 

1 and Z (i) > 0 for i Dividing (2.11) by S (t) and take natural 

logarithms gives 

In = (o! - (7^/2) s + ^ In Z (%). (2.12) 

i=l 

The first two terms are due to the continuous diffusion process, and the rest 

is due to the jump process. If = 0, then In [5 (i + s) /S" (2)] is normally 

distributed with mean {a — /2) s and variance cr̂ s. If the In Z {i) are assumed 

to be identically distributed with mean ji and finite variance S ,̂ a general form 

of the joint density for In Z (i) can be represented by 

/

OO 

/ ( l i i^ ( l ) , . . . ,b i^ (7V) , lV) (m: (2.13) 
•OO 

with 

E [In Z (%)] = jji for i = 1 , . . . , iV 

Var [In Z (%)] = for i = 1 , . . . , iV 

Ccw[ln.^(2),lii.Z^(|z —j|)] = Pj6^ for_;>0 

where Pj is the correlation between In Z (i) and InZ {\i — j\). The index i rep-

resents the jump number while the index j denotes the number of lags between 

jumps. 
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2.2.2 The Conditional Density 

For iV > 1, the conditional density of In [S {t + s) /S (i)] can be derived with the 

transformation technique using (2.12) and (2.13): 

c I In 
6' (( + s) 

/

oo poo / 

• • • y 4 

oo */ —oo \ 
N 

—a^/sW — ^ yi 

N 

In 
S* (t + s) 

(a — 0^/2) 8 

t=2 

300 

, 2/2,..., M/ I (f2/2 " (2.14) 

where —oo < In [5 {t + s) /S {t)] < oo, = In Z {i), and N > 1. The moments 

of (2.14) can be derived by taking the expectation of (2.12) given N jumps and 

using E {In Z {i)} = JJL and E {W} = 0. 

In 
S {t s) 

# j = (a - (7^/2) 8 + (2.15) 

The first term on the right-hand side of (2.15) represents the contribution to 

the mean due to the diffusion process. The second term is due to the jump 

process. The presence of autocorrelation does not affect the conditional mean. 

The variance of (2.14) can be derived from (2.12) in a similar way: 

var < In 
S (t s) 

AT j = a^s + var ^ In Z (i) N (2.16) 

The variance of the sum of In Z (i) given N can be shown by using mathematical 

induction: 

f ^ 
var < ^ In Z (i) 

N-L 

A r ^ = m ^ + 2g^^(VV-;)^^., for TV >1 . (2.17) 
i=i 
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Substituting (2.17) into (2.16) gives the conditional variance 

var < In 
5" (f + a) 

S(t) 

X N~1 

TV I = ^ (AT - ;) for jV > 1. (2.18) 
J j=i 

There are several important features of the conditional variance in (2.18) that 

should be pointed out. First, the conditional variance of returns is influenced 

by autocorrelation between the jump sizes Second, the portion of the vari-

ance due to the diffusion process and the portion due to the jump process enter 

separately. Thus, if no jump process present, the conditional variance is a linear 

function of the time between transactions. When no diffusion process operates, 

(2.18) reduces to 

var < In 
S {t s) 

N-L 

N 

3=1 

which is a function of the number of jumps during s, but not the length of s. 

Finally, the variance in (2.18) is derived without requiring a specific form for the 

distribution of In Z {i). 

2.2.3 T h e Uncondit ional Dens i ty 

The unconditional density corresponds to the probability function that can be 

used to examine returns over fixed time intervals s where the number of transac-

tions N is variable. This is important because it provides a means of modelling 

daily returns where N varies from day to day but s remains fixed at one day. 

The unconditional density for In [S {t 4- s) /S (t)] is found to be 

h I In 
5' ((-{- s) = E' 

N—Q 

In 
S (t s) 

AT g(Ar), (2.19) 

^Merton(1976) assumes that p j = 0 for all j and the time between jumps Exponentially 

distributed. So, Merton's model is not autocorrelated and N has Poisson density. 
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where q (N) is the probability that N jumps occur during [(, t + s]. The uncon-

ditional mean is the expectation of conditional mean in (2.16) which gives 

(S* (i + s) 
(2.20) 

The unconditional variance is given by 

var < In 

= ^ 2 t'or s In 

S {t + s) 

S {t + s) 

N=0 3 ( 0 
N>q (N) + ij^var {TV} (2.21) 

Now, to specify a specific form for the mean and the variance, we need to 

define a particular density for N. 

Assume that the time intervals between the transactions are independent and 

identically distributed random variables with a gamma density function; 

g (At) = [exp (—AAt)] A {X/\tY ^ /V (r) (2.22) 

with 

^ { A ( } 

var {At} 

r 
A 

—9, for 0 < At < CO, r > 0, and A > 0. 
A 

The gamma random variable At is the continuous amount of time required 

to observe the first jump starting at an arbitrary point in the process, r and A 

represent parameters which determine the shape of a gamma distribution.® For 

a standardised gamma (mean zero and variance one), as r increases the shape of 

the gamma becomes less skewed until in the limit the gamma distribution tends 

® While A is just a scale factor, r indicates the height of the density 
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to a normal density. 

With a density in (2.22) the density for the number of jumps between {t, t + s) 

can be derived. The probability that N jumps occur in [t, t + s] is 

Pr (iV) = Pr (Ati + Afg ~l~ •. • + + s) 

— Pr (Ati 4" Ai2 + . . . + Atjv+i ^ -s), for TV > 1 , (2.23) 

where Ati is time between 2th and (i — l)st jump. So, the probability that N 

jumps occur in [t, t + s] is the probability that at least N jumps occur minus 

the probability that at least (7V+ 1) jumps occur. This requires that the time 

intervals are independent. Using moment generating functions, it can be shown 

that 

g(a) = [eq)(-Aa)] 

with 

j9{o} = 

Nr ^ 
var {a} = — f o r a = Ati and 0 < a < oo. 

i=l 

Substituting (2.24) into (2.23) and integrating gives the density for N steps 

in a time period s : 

where 7 (c, d) is the incomplete gamma function with arbitrary parameters c and 

7 (c, d)= exp [(—«)] u'^ ^du, c > 0. (2.26) 
Jo 

Specific forms of the unconditional density function and moments can now 
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be obtained by substituting the assumed density (2.25) into (2.19), (2.20), and 

(2.21). This gives the unconditional density h (In [S {t + s) /S (t)]) : 

h (In 

N=0 

S(t + s) 

SOO 

5' (( + a) 

r(r) 
c I In 

6" (( + a) 
# = 0 

+E 
N=1 

7 (riV, As) 7 (rN + r, As) 
r ( r # ) r (rW + 7Z) 

c I In 
S(t + s) 

AT (2.27) 

and the unconditional mean and the variance are 

5* (i + s) 
6r(() 

00 

(a - 0-^/2) s + /J, ^ N 
N=1 

7 (rN, As) 7 (rJV + r, As) 
r(rAr) r (rN + r) 

(2.28) 

var < In 

y~] var < In 

S (t + s) 
6r(f) 

S (t + s) 

N=0 

{j\n ' .2 

oo N—1 

N=2 i=l 

TV L g (N) + { # } 

+ 6^^ { # } + {TV} 

7 (rN, As) 7 (rN + r, As) 
T(rN) r(riV + r) 

(2.2GI) 

Both the unconditional mean and variance are functions of time s, not N.^ As s 

increases, both the mean and variance increase. For example, if r = 1, then the 

^Here, note that N is an integer. 
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two unconditional moments are reduced to 

S {t + s) 
S(t) 

^ — (cK — 0 ^ / 2 ) S -(- f l X S j 

and 

var < In 
5' (( + a) 

I = 0^s + [6̂  + As 

+ 2 « ' E 
oo / \ s N N—1 

N=2 
N\ 

«=i 

This is an important property because it implies that the mean and variance of 

returns over longer period of time intervals than transactions are scaled by time 

s. 

2.2.4 Other Issues in Jump-Diffusion Processes 

Bardhan and Chao (1996) studied the nature of equilibrium in a multi-agent 

production exchange economy with jump-diffusion processes. In this study, they 

assume that each agent maximises his/her total utility from consumption over a 

finite time horizon, the market is complete, the agents take prices of securities in 

the market as given, and they solve their optimisation problem. They prove the 

existence and uniqueness of equilibrium in the presence of jumps, while several 

earlier works studied with only diffusion information. 

2.3 Estimation Methods 

2.3.1 Cumulant Matching M e t h o d 

Press (1967), Beckers (1981), and Ball and Torous (1983) used the cumulant 

matching method to estimate the stock prices processes. The method relies upon 
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the theoretical relationship between the population cumulants and the parame-

tars of the distribution. Since the population cumulants are unknown, the cor-

responding sample cumulants are substituted into the system of equations which 

is then solved for the parameter estimates. Although the method of moments 

does not always yield efficient estimators, it is the prime alternative procedure in 

cases in which maximum hkehhood estimation is mathematically cumbersome. 

Since the resulting estimators are consistent, the method is usually acceptable 

when large numbers of observations are available.^ 

Press (1967) derived the first four cumulants of the distribution of AS (t) in 

(2.3) with the a priori assumption that the diffusion component has zero drift 

(a = 0). They are given as: 

= Ag 

7̂ 2 = (7̂  +A (0^ + 6 )̂ 

^3 = Ag(g^ + 36 )̂ 

The kurtosis is 

and the skewness is 

As the leptokurtosig is deSned, "/i is positive. 'y2i the skewness, has the same 

sign as that of Therefore, 'y2 — 0 if and only if ^ = 0, the mean of A;S ((). 

^The relationship between moments and cumulants are dealt in great detail in Kendall and 
Stuart (1969). 
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Now let denote the 2th sample cumulant^ for i = 1,2,3,4. By setting 

for 2 = 1,2,3,4, we have four equations for the unknown parameters 

(A, , which are 

' = f ' 

-2 f> Ki f-2 — Ki9 
a-, = A 2 — I o 

^ \ 3K: 1 

(Jo 
^3 -

3^1 

' 2 ^ / 2^2 

Press (1967) pointed that if the sample size is not large enough, then the 

estimates for those two variances can be negative valued. So, they should be 

zeroed. However, Beckers (1981) paid attention on the fact that Press used 

unconstrained in computing including negative values. The and 6 
-2 

parameters are incompatible in those caaes where is put equal to zero. 

Beckers (1981) imposed restriction on the mean jump being equal to zero 

rather than on the diffusion drifk. It means that he needed up to the sixth 

moments to solve for the four parameter without restriction By solving the 

®If we define the r th sample moments as 

1 ^ 
mr = — ^ [AZ (t)]'', r = 1,..., 4, 

k=l 

then the required relationships between the sample moments and the sample cumulants are 

Ki = mi, 

^2 = "12 - mi, 
K^ = m^ — 3mim2 + 2m\, 

=1714 — 3m| — Amirtiz + 12m\m2 - &m\. 
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following system of equations 

Ki = ar 

7̂ 2 = Cr̂T + AT6̂  

Ks = Ks = 0 

^̂ 4 = 3(̂ '̂ AT 

KQ = 15(5®At, 

the estimators are obtained 

6 = ^1, (2.32) 

2.3.2 Maximum Likelihood Est imation 

The maximum likelihood estimation method for the jump-diSusion processes is 

considered by Lo(1988). He characterised the exact likelihood function of a dis-

crete sample as a solution to a particular functional partial differential equation. 

Suppose that 5" (t) is a stochastic process deSned on a complete probabihty 

space, and satisfies a stochastic diSerential equation given by 

5̂" (t) = a (6", a) (ft + 6 (5', t; /3) + c (5", 3/) (^), 

where is the pure Wiener process, (̂ ) is a Poisson counter o, 6, and c are 

known functions which depend upon (5", t) and an unknown parameter vector ^ = 

[a' Z?' Y]. With some regularity conditions, the stochastic diSerential equation 

has a unique solution. 

Now, suppose 5" (t) is sampled at n, + 1 discrete points in time to, 1̂, - - - , 
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not necessary equally spaced and 6" = (5'o, 6"!,..., 6"̂ ) denote the random sample 

where 5"̂  = 5" (tt) - With the discretely sample data 6" and the stochastic specKi-

cation of S (t), let P (So, •••, Sn ; 0) denote the finite-dimensional distribution of 

5' and let (5'; denote the density representation of f . As % (̂ ) is a Markov 

process, p can be written as the product of conditional densities 

P {S) — PQ (SQ) 22 Pk i^k) ^K I 1; l) • 
k=l 

It is needed to find the transition density function as a solution to a functional 

partial dlGerential equation 

subject to 

A (2.34) 

Pt (;9,4_i| - ^t_i) (2.35) 

where c = 5" + c, Pfc = Pfc (c^ ,̂̂ ) and 6 is the Dirac-delta generalised function 

centered at S"*;-!. 

Having characterised the likelihood function as the solution to (2.34) and 

(2.35), we assume its existence and define the maximum hkehhood estimator as 

(7 (̂ ; 5") 

where n 
G(^; 6") =hi/)o(^o,4) + ^ l n p t )̂ 

k=l 

Since is a true maximum likelihood estimator, it posseses the standard 

properties of consistency and asymptotic normality under appropriate regularity 

conditions. 

He showed that when (2.34) and (2.35) do not have explicit solutions, equally 
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spaced discrete sample data are assumed to be generated by a diEerence equation 

given by 

'S'k+i = + 'y)AgA(W) (2.36) 

where 

AgA(W) = 9 A ( W ) - 9 A ( W , 

tk s kh^ for t = 0 ,1 , . . . , M, h = T/n 

As discretised sample paths are well-known to converge to those of the continuous-

time ltd process S {t) ssh converges to 0, this procedure seems sensible. However, 

the discretized maximum likelihood estimator Op need not be consistent. 

For example, let S (t) denote the lognormal diffusion process on the time 

interval [0,7], 

(() = (() -H (() 

and consider its discretization according to (2.36) is 

Sk+i = OiSkh + (5Sk^Wk^i = aSkh + Sk€k+i, 

where Sk+i is an i.i.d. N (O, random variate. Then, the discretized maxi-

mum likelihood estimator of a and 0^ are 

1 
- 1 — a£)/ i 

Sk-

2 

r = n/i. 

However, with fixed h, 

p lim = Y — l) ^ a, plim/)^ = ^ 
M h t ^ ' rt \ / 
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Although, for smmll A, the asymptotic biaa may be neghgoble, it should be clear 

that for arbitrary coefficient functions a, b, and c the discretized ML estimator is 

generally inconsistent. 

To restore the consistency, we may draw observations more frequently within 

the fixed time span [0, T]. That is, let » 0, as n —» oo so as to keep T = nh 

6xed. Then, converges to in probability by continuous data recording 

whereas converges to a Gaussian variate with mean a and variance 

using functional central limit theory. 

2.3.3 Indirect Estimation 

Jiang (1998) proposed a simulation based indirect estimation method for jump-

diffusion processes. Here is the outline of the proposed estimation method fol-

lowing. In his model 

(/?) + (Tf (/3) + hi 

is assumed to be a stationary Markov process and foUows a lognormal distri-

bution, and % denotes a Poisson process which is i.i.d over time. The basic idea 

of indirect inference method is that when a model leads to a complicated struc-

tural or reduced from and therefore to intractable likelihood functions, estimation 

of original model (Mo) can be indirectly achieved by estimating an instrumental 

or auxiliary model (M )̂ which is constructed as an approximation of the original 

one. There are four steps. 

First, choose an instrumental or auxiliary model. The simple discretisation 

of the original model can be a natural choice. So the M/ is given as 

<%+! = Ai + cr (t̂ ; /)j) A / 6^1 4- 77 (//QJ -t-

with instrumental parameter = (/?^,//oj,'U/,A/) E 8 / , where 5'i = \/%, 
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Ai = fi+i — ^ Md AT (0,1), J = 0,1; t = 0,1, . . . M — 1, and ?? ^Bernoulli 

distribution with P (rj = 1) = A/A, and P (r/ = 0) = 1 — A/A,. Mj and MQ have 

a one-to-one relationship and the parameter space of M/ has the same dimension 

as that of Mo. The conditional density function of given 5'i for is 

fi ('5'i+il Si; 9i) = (1 — A/Ai) (j)i + AjA^^j ('5'i+i) 

where (.) is the pdf of the normal distribution with mean 5'i 4- // (̂ i; A^ and 

variance cr̂  (f,; /5j) A, and (.) is the pdf of the normal distribution with mean 

5": 4- // (til Ai -t- and the variance cr̂  Â  + 

Second, the ML estimator of is given by 

M—1 
= argmax ^ hi/f (5'i+i| 5'̂ ; g;). 

i=0 

Then, thirdly, perform path simulation of the original jump-diffusion process 

and estimation of the instrumental model based on simulated sampling path. 

Since M/ and are misspeciEed, the pseudo maximum likelihood ( f MZ,) ^ i -

mator is generally biased and inconsistent estimator of the true parameter 0. 

Given values of 9 and initial values of St at t = to, simulate the sample path St 

of 5'f, observed at fo, for the original model Mg. Redraw the simulations 
H Js/I 

times. Then, the estimate of the parameter of Mj, can be obtained 

from the observations of the simulated sampling path via ML method 

H M-L 

(g) = a r g n i a x ^ ^ (^) I '^ (^) ! ̂ ;) 
' h=l 1=0 

Finally, an indirect estimator ^ based on M observations of the simulated 

sampling path with drawings, denoted by ^ , is deSned by choosing values 
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of ^ from which and as close as possible. That is, 

& ^ = argn^ (^) - f] (^) — 

were O is a symmetric nonnegative matrix, defining the matrix or the weighting 

scale. 

2.4 Empirical Evidence 

2.4.1 Foreign Exchange Rates 

For the fixed exchange-rate regimes, discontinuities obviously occur when the 

parity values are realigned. But with flexible exchange rates, realignment in cross 

exchange rates, for example, within the European Monetary System (EMS) could 

be reflected in the exchange rate against the dollar. The arrival of important 

"news" in the market can generate jumps in exchange rates as well. 

Jorion (1989) analysed and compared the empirical distribution of returns in 

the stock market and in the foreign exchange market. He compares two classes 

of models and tests whether one is more appropriate than the other. The first 

model considered is the jump-diffusion process which could explain the skewness 

in exchange rate distributions and the second one is a diffusion process with time 

varying parameters, AAC.H' process. The discontinuities are to be identified even 

after allowing for diGusion process with time varying parameters. He used daily 

observations for exchange rates obtained for the period June 1973 to December 

1985. Daily stock market return were taken from the Centre for Research in 

Security Prices (CRSP) database and AMEX stocks. He analysed the weekly 

and monthly data which is usually chosen for tests of asset pricing models and 

of models of exchange rate determination. The weekly $/DM exchange rate 

exhibits more skewness and more excess kurtosis than the monthly observations. 
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The high asymptotic ^-statistics reveal fat-tailed distributions. When the jump-

diGFusion process waa estimated for the hx-rate period, January 1959 to May 1971, 

and the jump component is factored in, the volatility of the remaining diffusion 

process drops dramatically and the drift term becomes much smaller. So, Gxed-

exchange-rate regimes are characterised by discontinuities that can be modelled 

by jump processes. 

He found the simple diffusion process provide an adequate description for 

monthly stock returns. For monthly exchange rates, the hypothesis of pure 

diffusion process is rejected against both the jump-diffusion and ARCH models. 

The Schwarz Criterion (SC) suggests that the ARCH model is a posteriori most 

probable by a small margin over the diffusion process. Overall, these results 

do not present overwhelming evidence against the diffusion model for monthly 

exchange rate movements. 

For weekly data, tests indicate that the jump-diffusion model is a signifi-

cant improvement over the simple diffusion model in both the foreign exchange 

and stock markets. The estimates of the process suggest economically 

important movement in exchange rate volatility. The jump-diffusion process is a 

posteriori more probable than either the diffusion or the ARCH model for weekly 

data. The discontinuities are present in the distribution of weekly exchange rates 

even after explicitly accounting for heteroskedasticity. 

Ball and Roma (1993) examined the EMS mechanism and put forward a 

stochastic model for the affected exchange rates. They model the price movement 

by means of a bivariate structure which incorporates the particular exchange rate 

and the institutional restrictions which governs it. An important feature of the 

model is the explicit inclusion of the central parity into the information evolution 

process. Their model is 

,9̂  = + 
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dit — —cxitdt + /3dWf 

where 

5"* : the logarithm of the exchange rate, 

2̂  : the logarithm of the target value of the exchange rate 

enforced by the central banks, 

if : the percentage change in exchange rate from the central parity, 

: standard Wiener process. 

Here follows an Ornstein-Uhlenbeck (OU) process. This OU process is a 

diffusion with a central restoring tendency. This models the tendency of EMS 

exchange rates, constrained by central banks' intervention, to Euctuate around a 

central parity. 7̂  is assumed to follow a Jump process. If a jump in T occurs, Z 

is restarted randomly and independently around the new value of T. The jump 

in the logarithm of central parity is defined as JT and the simultaneous jump in 

the logarithm of the exchange rate JX' They set the jump size JT to be a linear 

function of displacement from the central parity: 

^ (7) = c7 + 

where c = (a + A) /A, h = ^/X, A is intensity of jump occurring over unit time 

interval, and ^ is constant. 

They used six exchange rates in terms of the Deutsche Mark and time series 

of weekly observations from March 1979 when the EMS began to March 1991. 

The dates of realignments are given and the corresponding new value of the 

bUateral central parity for each exchange rate measured in Deutsche Marks per 

unit currency. For empirical comparison, they compared three processes for the 
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diEusion component: i) the OU process, ii) Brownian motion and iii) Brownian 

motion with reflecting barriers. The first and the third processes are mean 

reverting, which they have the central parity as their long-term mean. In case of 

the Erst model, mean reversion is present even when the exchange rate is away 

from its bilateral limit. In case iii), .the mean reversion is induced by the barrier 

behaviour and will not be significantly evident inside the band. 

They compared the fit of OU and Brownian motion with reflecting barriers by 

means of an empirical maximum likelihood criterion. A simulation analysis was 

performed to assess the p-value of the log likehhood ratio However, 

as the OU process does not respect the barriers, it should be viewed as a statistic 

for indicating generic mean reversion within the EMS bands. For each starting 

point Iq, estimated volatility asu, and time series length, 10000 time series were 

generated with these same characteristics. Reflecting barriers are set at ±2.25 

percent limits (±6 per cent for the Italian Lira). They generated unrestricted 

Brownian motion from its increments which are independent and normally dis-

tributed. The increment for reflected Brownian motion is generated as in the 

unrestricted case except when the new value of the process ^ exceeds the barrier 

b say. In this case, the value of the reflected process becomes b — {X — b), its 

rejection about 6. 

They found that the estimated autocorrelation coe@cient, p, is always below 

1 for regimes lasting more than 40 weeks (77 weeks for the Italian Lira), which 

shows that unrestricted Brownian motion is not an appropriate model. They 

noted that there is broad evidence of fewer realignments as the EMS system 

becomes more established. At the same time for the Erst eight or nine years, the 

Brownian motion with reflecting barriers provides quite a reasonable model flt. 

Vlaar and Pahn (1993) modeled EMS exchange rates. First, to model the 

mean-reversion nature of Exchange Rate Mechanism (ERM) exchange rates, they 

used MA parameters. For the skewness and leptokurtosis, the combination of 

normal and stochastic jump process is introduced. The presence of conditional 
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heteroskedasticity is taken into ELCConnt by using a CAECJif specification. 

For the jump process, they compared Bernoulli and Poisson process, and for 

most currencies, they obtained similar results from the two processes. With-

out considering the stochastic jumps, the MA parameter is not always negative, 

although not significant. However, after jumps are taken into account, the 

MA parameter becomes negative and signiEcant for all ERM currencies and the 

GARCH specification is weakly stationary for all currencies. They found that the 

expected jumps size is positive, which is in accordance with the positive skewness. 

Jiang (1998) estimated weekly observations on the exchange rates of the UK 

pound, German mark, Japanese yen, and French franc against US dollar by using 

indirect inference method. He compared four models, which are Black-Scholes 

diSusion model, Merton's Jump model, with Jump and Mean-Reversion 

ARCH with Jump model. The presence of a jump in the second model is 

tested using likehhood ratio test statistics. The hypothesis for the presence of 

jump, conditional heteroskedagticity, or mean-reversion in the third and fourth 

models are tested based on the test statistics derived in Gouri6roux, Monfort, and 

Renault (1993). He found that jump components are significant in all exchange 

rates even when conditional heteroskedaaticity is considered. Jump frequencies 

are significantly low for models with strongly significant presence of conditional 

heteroskedasticity although the jump size tends to be higher in those models 

confirming that conditional heteroskedagticity can help to remove the volatility 

that leads to mis-identified jump size and frequency. The mean-reversion is not 

significant. While the mean-reversion is an important feature for many financial 

time series, exchange rate processes are essentially not stationary and therefore 

exhibit no unique stable long-run mean or equilibrium level. 

De Jong, Drost, and Werker (1999) develope a relatively simple target zone 

model. The styhsed facts of EMS exchange rat^ in a target zone, which are 

mean reversion within the band, strong heteroskedagticity due to a time-varying 

volatihty of the exchange rates and jumps due to realignment also within the 
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band, are captured. They introduce the model, speciSed by a stochastic dif-

ferential equation, that takes into Euccount most stylized facts. The models are 

with realignment and without realignment. In the former model, they fixed 

the central parity and in the latter, they allowed the central parity to foUow a 

Poisson process with 6xed intensity of jumps. With the reason that maximum 

likelihood estimation can be comphcated and cannot be easily extended to other 

target models, they used the generalised method of moments (GMM) to estimate 

the models. As the result of GMM estimation of the model with realignments, 

they found the large estimates for the jump intensity, which says that number 

of jumps per year is around 2. This may mean that some large changes within 

the band could be taken for realignment. So they calculated a simple frequency 

estimator which is the actual number of realignment divided by the total number 

of observations, and remaining parameters are estimated by GMM considering 

the intensity of jump as given. There is another interesting point. They found 

that a smaller estimated variance values from a model with realignment if the 

jump probability is high than from a model without realignment. This means 

that the jump process accounts for a substantial part of the variance in exchange 

rates. 

2.4.2 Asset Pricing 

As we have mentioned in the earlier section, there have been several estimation 

methods used to estimate jump-diEusion processes. In most estimation, they 

have found that the jump components are signiGcant. However, some of the 

empirical work with data collected in longer sampling period found that jumps 

are signiGcant but less frequent. 

Press (1967) estimated ten of the stocks listed in Dow Jones Industrial average 

by using the cumulant matching method. The data are collected monthly and 

range between 1926 and 1960. The parameters are estimated for three different 
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time periods, (o) 1926-1950, (6) 1926-1955, and (c) 1926-1960, so that he can see 

how much variation in estimates could be attributed to the time span of obser-

vation. In fact the resulting estimates were not clearly close to the population 

value. For example, some of variance estimates turned out to be negative and 

they had to be zeroed. He considered that is caused by not sufficient data set. 

However, according to Beckers(1981), there have been some model speciGcation 

errors. As Beckers pointed out that Press used unconstrained 5 , the variance of 

the jump size, when he calculates 6"̂ , the variance of diSiision part. So, the re-

ported values of those parameters in Press are incompatible in those cases where 

/.2 
6 is put equal to zero. By restricting. A, intensity of jump, to be positive, ft, 

mean of jump size, has been restricted implicitly to be positive. This in turn 
^ 2 — 

forces 5 to be negative whenever KS is negative. 

Ball and Torous (1983) estimated diffusion with Bernoulli jump processes us-

ing the cumulant matching method. They used 47 NYSE listed stocks each with 

500 daily returns. They compared Beckers' cumulant method and Bernoulli 

cumulant estimates, then reported maximum likelihood estimates. Although 

Beckers' cumulant method produced negative variances, 6̂  and in 60% of the 

sampled stocks, it is reduced to 20% by Bernoulli cumulant method. As it is 

expected, the maximum likelihood estimation does not produce any negative vari-

ances. When the cumulant method produces positive variances, the parameter 

estimates are similar to maximum likelihood estimates. The result confirms the 

presence of jump in the majority of the sampled common stock returns as well. 

In their work (1985), they used a sample of daily return to 30 NYSE common 

stocks. The estimation confirms the presence of statistically significant jumps in 

a majority of these returns. But they found there were no significant difference 

between the Black-Scholes and Merton model prices of the caU options written on 

this sample of common stocks. The only significant differences occur when the 

underlying common stock return process is predominated by large jumps which 

occur infrequently. 
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Kremer and Roenfeldt (1992) investigated jtLmp-diGFugion and Blaxjc-Scholes 

models to determine which model provides theoretical values closest to market 

determined warrant prices. As the warrant has longer maturity period, it will 

be more probable that there are arrivals of the important new information caus-

ing a stock price jump than for the option. Beckers' specification of cumulant 

matching method used with data of 1,549 observations on 75 warrants from 71 

companies during the 56-month period. Considering the whole sample, the 

jump-diffusion model does not provide expected improvement over the Black-

Scholes model. When Merton's dividend adjustment is employed, Black-Scholes 

model provides the more efBcient estimates, while jump-diEusion model is the 

least biased. They concluded that large reduction in biaa accompanied by mi-

nor losses in eSciency indicate that the jump-diSusion model probably should 

be considered when valuing out-of-money, noncallable nonsenior security warrant 

with maturities in excess of one year, or warrant with underlying stock exhibiting 

an historically large jump impact. 

OldBeld, Rogalski and Jarrow (1977) investigated a common stock returns. 

The data set they considered is individual transaction information for the 22 trad-

ing days during September 1976 for 20 stocks hsted on NYSE. The time interval 

between transactions appears to be highly peaked around the mean then tails 

oS slowly as the number of minutes increases. The distributions for transaction 

time are strictly positive and highly skewed. The important Sndings of their 

work are: i) the variance of the diSusion part is zero. If so, the geometric Brow-

nian motion process may not be correct over the period sampled, ii) common 

stock returns follow an autoregressive jump process, iii) the gamma distribution 

shows better fit for the time interval between transactions than the exponential 

distribution. And iv) with their data set they could not draw deSnite conclusion 

on the normality of the jump amplitude. 

In the theoretical finance literature, it is assumed that the option prices follow 

diGusion processes with continuous sample paths. Jarrow and Rosenfeld (1984) 
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generalized the assumption to discrete sample paths by extending Merton's (1973) 

intertemporal aaset pricing model, in the special case of a constant investment 

opportunity set, to include discontinuous sample paths for asset prices. The 

constant investment opportunity set assumption is imposed because of obtaining 

sufficient condition under which an instantaneous capital asset pricing model 

(CAPM) results. Jarrow and Rosenfeld (1984) tested the hypothesis whether 

jump risk is diversifiable or not by using two market indices. For the daily 

market index, 2 out of 4,133 observations exhibit a daily return of greater than 

5%, which makes these two observations prime candidate for jumps and for the 

monthly observations, 14 out of 633 observations show larger than 15% movement 

in a given month. This does not indicate a significant jump component for this 

market index. For some daily sample periods, a statistically signiBcant jump 

components were found. This is confirmed by likelihood ratio tests. All the 

daily sample periods reject the nuU of a continuous sample path process at a 

99% significant level. There could be measurement errors that can be induced 

as jumps. But after the correction procedure, the jump components are still 

signiGcaut although the size of jumps for some of the stocks is very low. 

2.4.3 Others 

There are several works investigating jump-diGFusion processes in the areas of 

financial economics other than asset pricing or foreign exchange rates. Some 

of the research is in the literature of terrri structure of interest rates. The 

first recognised attempt in the area is the work by Ahn and Thompson (1988). 

They investigated the effect of jump components of the underlying processes on 

the term structure of interest rates. They found that the Merton's multi-beta 

CAPM do^ not hold in general. The discontinuous movements of the investment 

opportunities cannot be completely captured by a single consumption beta. The 

equilibrium interest rate under jump-diffusion process is strictly lower than one 
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under diEusion process, ceteris paribus. The traditional expectation theory is 

not consistent with the equilibrium models under jump-diffusion processes. This 

is due to the term premium is additionally aEected by the jump risk. Finally, 

the covariability with technological jump changes is priced even in the case of the 

logarithmic utility function under the jump diffusion processes. The consumers 

with logarithmic utility functions would appreciate the hedging service of an asset 

against the uncertain jump changes of the underlying technologies. 

In the literature of commodity future prices, the jump-diffusion processes 

are applied, as the log-return on commodity future prices are not normally dis-

tributed according to the empirical findings. Hilliard and Reis (1999) modelled 

the stochastic process underlying commodity option prices with Bates' (1991) 

European option pricing formula. They collected data for call and put options 

on soybean futures and for the underlying future contracts traded on the Chicago 

Board of Trade. The data consist of the time and price for every transaction 

in which the price changed from the previous transaction for the period July 

1990 until June 1992. As the log-return on commodity future prices not nor-

mally distributed, they compared the out-of-sample performance of diffusion and 

jump-diffusion models. They concluded that the mean-jump size and frequency 

of jumps are consistently positive for all estimation days. By using the pure dif-

fusion model, the put option can be overpriced and the call option underpriced. 

2.5 Conclusion 

In this chapter, we have surveyed most of the literature related to the jump-

diffusion processes in financial economics. As Black-Scholes' diffusion process 

can not fully describe the behaviour of Enancial time series, Merton (1976) m-

troduced the Poisson jump process to model the abnormal changes in the stock 

prices. Since then, the jump-diffusion process have draw attentions from many 

researchers. Many empirical findings show that the 6nancial time series indeed 
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includes jump components. 

At the moment, the research is most focused on the stock market analysis. 

But it is beheved that the underlying processes of foreign exchange rat^ have 

similar characteristic as those of common stocks. Some empirical work on the 

ERM foreign exchange rates had confirmed this fact. This jump-diffusion model 

can be very useful to apply to the commodity future markets as well. 

So far most of the works imposed restrictions on the intensity of the jump, A, 

as a fixed constant. For future research, it might be interesting to find out the 

statistical properties of the intensity of jumps. 
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Chapter 3 

Approximation of 

Jump-DifFusion Processes 

3.1 Introduction 

During the last couple of decades or so, many researchers have found that the 

value of option prices is not continuous with probability one. Cox and Ross 

(1975) assumed that the new information arriving at a market is a Imnp sum 

causing a discrete jump in the values of options and derived the option pricing 

formula by using Poisson jump process. Merton, in his works (1976a, b), decom-

posed the total change in the stock prices into two components: 1) systematic 

risk which is typically modelled by a Brownian motion, 2) nonsystematic risk 

which represents the arrivals of new information, in other word, shock, to the 

market, which can be modelled by the Poisson jump process, and derived the op-

tion pricing formula with jump-diEusion process. After these researches, as the 

solution to a stochastic asset optimization problem, the jump-diffusion process 

is popularly used in the dynamic asset pricing literature [e.g., Oldfield, Rogalski, 

and Jarrow (1977), Ball and Torous (1983,1985), Jarrow and Rosenfeld (1984), 

Amin (1993), Kim, Oh, and Brooks (1994), Chang (1995)] as well as other Enaa-
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cial economic literature such as in the term structure of interest rates [e.g., Ahn 

and Thompson (1988), Das (1997)], in foreign exchange rates [Jorion (1988), BaU 

and Roma (1993), Park, Ahn and Fujihara (1993), Vlaar and Palm (1993)], etc. 

Ball and Torous (1983) considered the Bernoulli process to model the arrivals 

of information in a market and estimate the model with 47 NYSE listed stocks 

each with 500 daily return observations. In their other work (1985), they esti-

mated the Poisson jmnp-diSizaion process with 30 daily common stock returns. 

They found the evidence that jump components are present in a majority of the 

stocks examined. 

Another point we need to consider is that the financial time series is found 

to be highly heteroskedastic over time. There are massive amount of hterature 

documenting the heteroskedastic nature of the financial time series data. With 

A.RCE' models introduced by Engle (1983), the heteroskedastic nature of the 

data is weU explained by the AECTif type models. There are good survey papers 

about the ARCH type models such as, Bollerslev, Chou, and Kroner (1992) and 

BoUerslev, Engle and Nelson (1994). 

In this chapter, we are trying to develop the relationship between the con-

tinuous time stochaatic diSerential equation used in the theoretical literature of 

financial economics and the discrete time difference equation used in the lots of 

empirical works. In section 3.2, we will sketch the main results in weak conver-

gence of a sequence of stochastic difference equation to a jump-diSusion process. 

Section 3.3 will, then, present the ARCH jump-diffusion approximation. We 

show that it can approximate a wide variety of Generalised Ito processes which 

are jump-diffusion processes. We show examples baaed on the A.R (1) Exponen-

tial ARCH model of Nelson (1991). Finally, we will conclude this chapter in 

section 3.4. 

In Appendix A, we show the higher moments up to fourth order for a process 

considered in section 3.3. The higher moments greater than second order for 

continuous diffusion part of the process converge to zero aa the sampling intervals 
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go to zero, while those of Poisson jump part of the process converge to a finite 

limit. Some regularity conditions for a martingale problem are stated in Appendix 

B. These conditions will be useful to prove the results in weak convergence. All 

the proofs of theorems will be presented in Appendix C.l. 

3.2 Weak Convergence of the Processes 

3.2.1 The Main Result in Weak Convergence 

Here we want to show the weak convergence of a discrete time process to a 

jump-diffasion process. That is, we present general conditions for a sequence of 

finite-dimensional discrete time Markov process to converge weakly to 

a jump-diffusion process. The basic theoretical setup is following. 

Let D([0, oo) ,R^) be the space of mappings from [0, oo) into i?" that are 

right continuous having finite left limits and let B (i?") denote the Borel sets on 

i?". With introducing an appropriate Skorohod metric, D ([0, oo), R^) becomes 

a complete metric space.^ For each h > 0, let ^ff^kh be the cr-algebra generated by 

and let be a probability measure on B (.R")). 

For each h > 0, and each A: — 0, 1, 2, . . . , let Ilh,kh (x, ) be a transition function 

on i?". That is, 

i) Uh^kh (a;, •) is a probability measure on (K^, B (i?")) for all x G i?", 

ii) Ilh,kh (•, r) is B (i?") measurable for all F G B {RP-). 

For each A > 0, let Ph be the probability measure on D ([0, oo), R"-) such that 

a e r] = z/k (r) for any r e g , (3.1) 

a -H) /i] = 1, (3.2) 

'See Kushner (1984) Section 4.3 in Chapter 2. 
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[;,X(k+i)k E r I r) almost surely under 
(3.3) 

for all A > 0 and r E g (JT). 

Here, for each h > 0, we specify the distribution of the random starting point by 

(3.1) and form a continuous time process h^t from the discrete time process h-Xkh 

by (3.2) making a step function with jumps at time h, 2h, 3h, and so on. 

(3.3) specifies the transition probabilities of n-dimensional discrete time Markov 

process 

Now, define, for each h> 0, 

= h ^ / (#- iVj ^j} ^h,h[t/h] {p^i dy), (3.4) 

= h-' / (2/.-- Xj^ {Xi dy^, (3.5) 

(2,f) = / is^i dy) • 
J\\y-x\\>e 

(3.6) 

= Xt — lim Xg for s <t 
6— 

(3.7) 

where [t/h] is the integer part oit/h. 

ah {x, t) is a measure of the truncated second moment per unit of time, bh {x, t) 

is a measure of truncated drift per unit of time, and A | (z, t) is a probability 

that the process has magnitude of a jump greater than e per unit of time. We 

define the truncated first and second moment for the process x, since the usual 

conditional moments for the process may not be finite. For example, if Xt — 

exp [exp Wf], where Wt is a Wiener process, Xf is a diffusion process, but there 

exist no moments of any order. And QH {X, U) measures the size of jump per unit 

of time. We suppose that the jumps occur with probability \h o (h) in the 

time interval (t, t + h]. As we assume the process is right continuous with finite 

left limit, there will be only discontinuity of the first kind (i.e., discrete jumps) 

and the jump size will be finite. 
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Now, we state the assumptions which are required to obtain the weak conver-

gence result. Let 5'̂  denote the space of n x n matrices and let 5" denote the 

space of n X n symmetric nonnegative definite matrices. 

Assumption 1. Let a (x, t) : EP x [0, oo) —> 5", b (x, t) : i?" x [0, oo) —> i?" and 

g (x, t) : R"' X [0, oo) —> i?" be continuous measurable mappings which are 

continuous in x for each f > 0. We assume that for all i? > 0, T > 0 and 

g > 0 

lim sup ||ah(a:, t)|| = 0 (3.8) 
''io ||z||<A, o<t<r 

lim sup ||6h(z,() —6(a;, ()|| = 0 (3.9) 
||z||<A, 0<f<T 

sup | |p/ . (z ,()-^(z,t) | | = 0 (3.10) 
l|z||<A, 0<t<r 

lim sup Al (x , t ) = A (3.11) 
||i||<A, o<f<r 

This assumption requires that the second moment, drift, and jumps per unit 

of time converge uniformly on compact sets to well-behaved functions of time and 

the state variables x. The probability of jump of size greater then s converges to a 

constant A. So, the sample paths of the limit process will have only discontinuity 

of the first kind with probability one. 

Assumption 2. Let a (x, t) : [0, oo) x i?" 5'" be a continuous measurable 

mapping such that for all x £ and alH > 0, 

o(a;,t) = (7(a;, t)cr(a;,()'. (3.12) 

This assumption requires that the function a(x,t), the second moment per 

unit of time of the limit process, has a well-behaved matrix square root a (x, t). 

Assumption 3. As h 0, hXo converges in distribution to a random variable 

XQ with probability measure UQ on (i?", B (K^)). 
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This assumption requires that the probability measure of the random start-

ing points to converge to a hmit measure z/Q ^ 0. 

With all the assumptions we made above, we specihed an initial probability 

measure i/Q of the limit process, an instantaneous drift function 6 (z, (), an in-

stantaneous covariance matrix o (a;, t), and a jump amplitude g (z, (). We have 

supposed that the sample path of the proems is discontinuous with probability 

one. However, there is no guarantee that a limit process is finite or is uniquely 

defined. There are a number of works considering the conditions under which z/Q, 

a (z, (), and 6 (z, uniquely de&ne a di&ision hmit process. Especially Strook 

and Varadhan (1979) studied extensively about the diffusion limit process. Ei-

ther and Kurtz (1986) considers the martingale problems with Levy measure. 

The conditions of unique existence of a solution to a jump-diffusion limit process 

can be found in Gihman and Skorohod (1972) The non-exploding condition 

for jump-diffusion limit will be stated in Appendix B. 

Assumption 4. z/g, a (x, t), b {x, t), and g (x, t) uniquely specify the distribution 

of a jump diffusion process Xt with initial distribution UQ, diffusion matrix 

a (x, t), drift vector h (x, t), and jump amplitude g (x, t). 

Theorem 1 Under Assumptions 1 through 4, the sequence of hXt processes de-

6^ (3.1) (o (3 3) oa A —0 procegg 

Xt = X Q f b[Xs,s)ds-\- f a (Xg, s) dWs-\- f f g (Xs-, s) Nx (^ds) (3.13) 
Jo Jo Jo J 

7^ ((fg) (/le coTTzpeagoteii f proceas oa ((fa) = A/" (cfa) — 

ancf w/iere /or o/iy F E B (7^"), f (%o E F) = i/Q (r). 5''ucA OTi proceaa 

^See Chapter 2, Part II in Gihman and Skorohod (1972) for more detail. 
^ ((fg) w a f owaon process, ancf A w a co7is(anf o/yumj) m (Ae f oisson process, 

and A > 0. 
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M 2%M d[M(n6tt(2072 (foea 7io( (fepeTW OM (/̂ e c/io%ce 0/ 

(7 (-, -) ?mWe m âaMm,p(%07Z ,0. FmoZZ%/, viemaina m _̂ m(e ẑ/Tie m(e/T;ok 

almost surely, i. e. for all T > 0, 

P sup ||%t|| < 00 
0<t<T 

1 (&14) 

Proof. See Appendix C.l. H 

Now, we want to make the above result a bit more general. For each i, 

z = 1 ,2 , . . . , n, each 6 > 0, and each h> 0, define 

= 1 ( 2 / ( z , d i / ) , (3.15) 
JR" 

where (y — x)- is the ith element of the vector (y — x). If for some ^ > 0 and all i, 

i = 1 ,2 , . . . ,M, '~ih,i,6 (^) t) is finite, then the following integral will be well-defined 

and finite 

au 

hi (a;,̂ ) = /i ^ / (%/-z) i l k , ( a ; , 
JR^ 

They are the same measures as (•, •), bh{-,-) and gh {•,•), hut integration is 

taken over i?" rather than \y — x\ < 1. 

Assumption 1'. There exist ^ > 0 such that for each R > 0, each T > 0, and 

each 2, z = 1 ,2 , . . . , n, 

sup (3.16) 
0<t<T 

Further, let a{x,t) : R" x [0,00) —+ 6"", b{x,t) : R^ x [0,00) —» i?" and 

g (x,t) : i?" X [0, 00) —> i?" be continuous measurable mappings which are 
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continuous in x for each ( > 0. We assume that for all i? > 0, T > 0 

lim sup \\a\{x,t) — a{x^t)\\ = 0, (3.17) 
^̂ 0 ||%||<B, o<*<r 

lim sup \\bl{x,t) — b{x,t)\\ = 0, (3.18) 
''10 ||zH<R, 0<t<T 

sup ||gh(T,()-p(a;,<)|| = 0, (3.19) 
"iO ||a:||<A, 0<f<r 

lim sup A | {x, t) = X (3.20) 
tkllSA, 0<t<T 

Theorem 2 Under Assumptions 1', and 2 through 4, the conclusions of Theorem 

1 hold. 

Proof. See Appendix C.l • 

As stated in Merton(1990, Ch.3), Assumption 1' implies that the moments 

higher than two vanish to zero at an appropriate rate as h 0. 

3.2.2 Example: GARCH (1,1)-M Model 

In Engle and Bollerslev (1986), they presented the GARCH (1,1)-M process for 

the cumulative excess returns yt on a portfolio. The excess return process is 

== 3/&-1 

= uj + a^ [P + aZ^] . 

where Zt ~iid N (0,1). 

Let us suppose that a stochastic process in discrete time is including the jump 

process as follows; 

Vt ~ Vt-i + IJ'O't + CTtZt + crji-, (3.21) 

^ + CK^f), (3.22) 
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where Zt ^ iid N (0,1) and % ~BernouUi distributed with Pr (% = 0) = 1 — 

\dt + 0 (dt) ^ and Pr (% = 1) = Xdt + o (dt). Here c denotes the jump size of the 

process when a jump occurs. 

Now, we partition the time interval more and more finely and examine the 

properties of the stochastic difference equation system. We allow the parameters 

a, /?, and w to depend on h and make the drift term in (3.21) proportional to h. 

Then we may rewrite the system of stochastic processes (3.21) and (3.22) as 

hUkh — hy{k—l)h h • h^kh h ^ h'^kh ' h^kh 

+ hVkh (% + <t>h hZkh) , (3.23) 

+ kOkA , (3.24) 

Pr [(h%/o, G r] = (r) for any T € B , (3.25) 

and 

where hZkh ^iid N (0,1) and hVkh ^Bernoulli distributed with Pr [hVkh — 0] = 

l — Xh+o(h) and Pr [hVkh ~ 1] = Xh + o{h). Vh satisfies Assumption 3 as A —» 0, 

and for each h> 0, Vh ({yo, CTQ) : ctq > 0) = 1. And we create the continuous time 

processes by 

and = koi/t for /z/i < ( < (t + 1) /i. (3.26) 

We want to find out which sequences {uu, ^h} make the {h(yl,h Vt} process 

converge in distribution a jump-diffusion mixed process as A —» 0. 

Let be the cr-algebra generated by , k2/(t-i);., and kOg, 

^Let / (h) and g (h) be functions of h. f (h) = o (g (h)), if lima^o [ / (h) /g{h)] = 0 and 
/ (A) = O (g (A)), if limh_o [/ (A) /g (/i)] is boimded. 
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ftcr|, . . . , hCTkh- Then the first moment of the process is 

\p' {hVkh hy(k—l)h) h^kh (3.27) 

E ^ - 1)(3.28) 

To satisfy Assumption 1', we require the following limits exist and be finite; 

limft^o h '^ujh = oj (3.29) 

(3.30) 

As it is stated in Bollerslev(1986), it is necessary to require that LOH, % , and 

be nonnegative because should be remain positive with probability one. 

Therefore, w > 0 while 6 could be of either sign. 

Then, 

lim/,-^ E - k2/(k-i)/,) + Ac (3.31) 

limk_m E = w 

The second moment per unit of time is 

E 

(3.32) 

^ {hUkh hy{k—l)h) 

^ (3.33) 

E h -1 / 2̂ 

— A, + A, ^ 
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+A (cKh + — 1) , (3.34) 

E h {hykh hV{k-l)h) {^'^\h+l)h \^kh 

= f̂ h h(̂ lh '̂ h + fJ'h hCrih i^h + — 1) 

+XhChUJh + XhCh h<̂ kh {̂ h +/),) — 1) 

With (3.29) and (3.30) and assuming that 

hm 2h ^al — a , 

exist and is finite.. Also is always greater than 0. Then we have 

(3.35) 

(3.36) 

E 

E 

E 

M + ^ )̂ + o (1), (3.37) 

hO-tA + o (1), (3.38) 

- = o (1) (3.39) h {hUkh hy(k—l)h) 

where if ip (h) — o (1), then ijj (h) = 0. We can show that the third and 

fourth moments of the process h<̂ t exist and converge to zero as A —> 0, and 

those of the process hUt exist and O (h). The detailed calculation is provided in 

Appendix A. 

Then, we can define the coefficients in the jump-diffusion mixed process as 

6 (2/, 
fia"̂  + Ac 

u — 6cr^ 
(3.40) 
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(3/, = 

^ (i/, = 

+ A (ĉ  + 0 

0 CK̂cr'̂  

c 

0 

(3.41) 

(3.42) 

and, if and satis^ the conditions in (3.29), (3.30) and (3.36), then 

Assumption 1' holds. If we suppose that a {•,•) in Assumption 2 is the element-

by-element square root of <% (?/, c^), then Assumption 2 holds as weD. From 

(3.40) - (3.42), we can write the jump-diSusion limit as 

= (//cr̂  + Ac) dt + [(7̂  + A (ĉ  + (;6̂ )] (3.43) 

= ((̂ ^ — ĉr̂ ) (3-44) 

f [(%, (7g) E r] = I/O (r) for any r G B (TẐ ) (3.45) 

where z = 1,2, are independent standard Wiener processes and are also 

independent of the Bernoulli process, %. All those three independent processes 

are independent of the initial values {yo, a^). 

3.3 Jump-Diffusion Approximation 

In this section, we will present that ARCH models can be used as approximation 

of generalized It8 process (i.e., jump-diEusion process). 

3.3.1 ARCH Jump-Diffus ion Approximation 

DejGne the stochastic differential equation system 

= / (2/f, t) + F (z/f, , t) 

+ {A; (i/f, at, t) + (?/t, s*, t) } 6(77̂ , 
(3.46) 
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dat = F (i/f, gf, + G (̂ /t, a*, , (3.47) 

(fWz, 

1 Ol,2 

^2,1 ^2,2 
(3.48) 

0 
c(77f 0' 

Y^dt = Cldt + Adt 

A Oi 2 

02,1 02,2 
dt = Adt, and (3.49) 

(3.50) 

where and A are (n + 1) x (n, + 1) positive semi-de&nite matrices of rank two 

or less, Oi_2, 02,i, Og ^ are (yi x 1) column vector, (1 x n) row vector and, (^ x n) 

matrix of zeros, respectively, St is an n-dimensional vector of unobservable state 

variables, ?/ is an observable scalar process, Wi,* is one dimensional standard 

Wiener process, 14̂  * is an n,-dimengional standard Wiener process, 77̂  is a Poisson 

process with intensity A, /(5t,i/(,(), ^(s(,3/t,(), and A; (s*, ?/(,() are real-valued 

continuous scalar functions, and F(af,2/t,^) and G(at,?/t,^) are real, continuous 

n X 1 and n x n valued functions, respectively. The initial values of the process 

(2/0, ao) is assumed to be random and independent of and and 

W2_f, and are independent of each other. 

DeSne the vector and matrix functions o, 6, and c by 

a(?/,5,f) = 

6(?/,a,() = 

c(^,5,]t) = 

-t- A -|-

(7^2,1^ Gf)2,2G' 

/ + AA: f 

jk 0' 

(3.51) 

(3.52) 

(3.53) 

where 0 is an n, x 1 vector of zeros. Then, 6 (̂ , a, t) and c (^, s, t) are (n + 1) x 1 

vectors and a (^, g, t) is (n + 1) x (n -t-1) matrix. 

Now, we define a sequence of approximating processes that converge to (3.46)-
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(3.48) in distribution as h 0. 

hVkh hy{k—l)h f ijillkh-i h^khj kh^ fl -h Q {hl/khj h^khi kK) h^kh 

^kh {k i^hykht h^khi kK) H ^ (j) {^hUkhi h^khi kK) h^kh) 5 (3.54) 

h^(k+l)h h^kh F i^hUkhi h^khi kllj h G {^hUkhi h^khi kWj (3.55) 

where 

hZkh ~ i.i.d. N (0, h), 

01 hZkh + 7i 

h^kh ~l~ Tn 

\hZkh\ - ( v ) ^ 

03.56) 

(3.57) 

and the coefficients {(9i, 7^ , . . . , 0„, 7„} are selected so that 

E ' * (3.58) 

Now we can convert the discrete time process [hVkh, into a continuous 

time process by defining 

kZ/t = /.gf = /.ath for < t < (t + 1) /i. (3.59) 

Theorem 3 If a(y,s,t), b (y, s, t) and c (y, s, t) satisfy Assumption 4, with x = 

[y,s'],and if the joint probability measures Vh of the starting values {hyo,hSQ) 

converges to the measure fg as h 0, then {hVtih a[) => {yt, sQ as h 0. 

Proof. See Appendix C.l. a 

The proof of this theorem is a direct application of Theorem 2. Here 

- A2/(A:-I)k), (7:a(t+i)A - and are discrete correspondences of (f?/, 

ds, and dt, respectively. The Theorem 3.2 in Nelson (1990) shows that hZkh and 
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are the discrete time coimterpart of dM/i and 

3.3.2 AR(1) Exponential ARCH 

Here we consider a jump-diffusion process with conditional variance following 

an Ornstein-Uhlenbeck process. Those models in Wiggins (1987) and Nelson 

(1990) are variations of the process. Let's deGne a system of stochastic diSerential 

equations 

d (hi5'f) = (̂7̂ (ft + (3.60) 

(hi cr̂ ) — —/) [(hi (T̂ ) — a] (ft 4- (3.61) 

f [(hi5'o, (hi(To)) E r] = "Uo (r) for ajiy T € B (J?̂ ) (3.62) 

where 5"* is the value of a stock at time f, and are Wiener processes 

with 

dt = Q,dt 
1 

^1,2 %,2 

ana &̂ 2,2 ̂  ^1,2; 97̂  is a Poisson process with parameter A and 

(3.63) 

0 
(fz/t 0 

A 0 

0 0 
dt = Adt. 

Then the variance matrix of the system of equation is 

(3.64) 

E(ft = Qdt + Adt. (3.65) 

We want to Gnd a sequence of models converging weakly to (3.60)-

(3.65) by using Theorem 1. As we assume that (Incr̂ ) foUows a continuous time 

(1) process in (3.61), (hi ĉr̂ )̂ in the discrete counterpart of (3.61) wiH also 
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follow an AR (1) process. For each A > 0, we have 

(lll/i'S'fc/i) — (lll?i1)^1) - f " + h^khh^kh 

+%h {kh + hZkh) ) 

o^k+i)k) = (ik) - [(1:1 + ^1,2 

(3.66) 

+ 7 
2h\V2 

f [(In ^0, (In (To)) E r] = uo (F) for any T G B (JẐ ) , 

(3.67) 

(3.68) 

where 7 = [(^2,2 — ^1,2) / (1 — 2/7r)]^^^ and hZkh ~iid N (0, h). Then, we have 

E 
hZkh + "Hkh 

X + ?7ikk ^1,2 + 7 Ih'^khl 
2k \ 1/2 (f) 

1 + A 

^1,2 %,2 
h (3.69) 

E/i 

which is the discrete counterpart of (3.65). As before, we define a continuous 

time step function 

5̂̂  = h'S'kh, for < ( < (A; + 1) /i. 

The discrete time counterparts of d [In 5'], d [In <7̂ ], dWi^t, dW2,t, drjt and dt are 

(liih ,9tk) - (bik 'S'(A:_1);.), 0"^), 77kk, /i, respectively. 

Theorem 4 If the distribution of random starting point, Vh, converges to VQ as 

A —0, (/leM {k'%,k => {<%, of} oa 0. 
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Proof. See Appendix C.l. m 

3.4 Conclusions 

In this chapter, we have shown that a stochastic di%rence equation converges 

weakly to a stochastic diEerential equation with jump component as length 

of sampling interval, /i, goes to zero. We presented that, as an example, 

(1,1)-M process converges weakly to a jump-diGFusion limit as A goes to 

zero. That is, a ARCH type process can be approximated by stochastic jump-

diffusion process. It is shown that ARCH process is a discrete approximation 

of jump-diffusion process with using Exponential ARCH process with Poisson 

jump component. 

Therefore, we may use a discrete time process as an approximation 

of a jump-diffusion process in estimation and forecasting. And we may use 

the jump-diSusion process as an approximation of process when there 

is distributional results available for the jump-diffusion limit of the sequence of 

processes. 

While we show the weak convergence of those processes, we Bxed the jump 

intensity. A, as a constant. This may be extended to a more general case where 

the jump intensity varies over time with some probability structure. 
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Chapter 4 

Filtering with Jump-Diffusion 

Processes 

4.1 In t roduct ion 

In modern financial economics, it has been an important issue to model financial 

time series accurately. Since Press (1967), jump-diffusion processes which are 

the solution to the stochastic asset optimisation problem have been paid atten-

tion and have been used to model financial time series more widely [Cox and 

Ross (1975,1976), Merton (1976a, 6), and etc.].^ During the last two decades 

or so, jump-diEusion processes play signiScant role in the Enancial economics lit-

erature, such as in the dynamic asset pricing literature [e.g., Oldfield, Rogalski, 

and J arrow (1977), Ball and Torous (1983,1985), Jarrow and Rosenfeld (1984), 

Amin (1993), Kim, Oh, and Brook (1994), Chang (1995)], in foreign exchange 

rates [e.g., Jorion (1988), Ball and Roma (1993), Park, Ahn and Fujihara (1993), 

Vlaar and Palm (1993), Jiang (1998)], in the term structure of interest rates [e.g., 

Ahn and Thompson (1988) and Das (1997)]. Merton (1976<i, 6), for example. 

^See the Chaper 2 for more detail in usage of jump-diffusion processes in the financial 
economics literature. 
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decomposed the total changes in the stock prices into two components which were 

systematic risk and nonsystematic risk. The systematic risk can be modelled by 

a Brownian motion while the nonsystematic risk can be modelled by a Poisson 

jump process. This nonsystematic risk occurs mainly due to the arrivals of new 

important information to the market. 

Since Engle (1982), the ARCH models have been used widely to model the 

changes in conditional variances in the financial economic literature. There is no 

doubt that ARCH models are the most useful method to model heteroskedastic 

financial time series data. As far as the reality is concerned, ARCH models with 

jump components become a model describing the real economy more closely than 

ARCH models alone. There have been few empirical researches on this issue 

[Feng and Smith (1997), Jorion (1989), and Vlaar and Palm (1993)]. These works 

found that there have been some improvement in explaining leptokurtic behaviour 

of financial time series with using models with jump components. 

In agset pricing theory, the expected return on the aaset is estimated by using 

its variance and covariance. For example, Black and Scholes (1973), and Ross 

(1976) and many other empirical works have investigated the relationship between 

the risk and return on assets. As the literature has made clear, the variability of 

returns and the degree of co-movement between assets change stochaatically over 

time. Then, many researchers have developed the asset pricing theory within the 

context of the conditional variances and the covariances of returns. We can find 

these works in, for example, Engle, Ng, and Rothschild (1990), Harvey (1989), 

and Merton (1973). 

In this chapter, we study the properties of the conditional covariance esti-

mates generated by misspecified v4.RC.ff models with a jump process. According 

to Nelson (1992), if a process is well approximated by a diffusion, broad classes of 

models provide consistent estimates of the conditional covariances. We 

show that a misspecified with a jump process can still provide a consis-

tent estimates of the conditional covariances. That is, the diference between a 
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conditional covariance estimate and the true conditional covariance converges to 

zero in probability as the sampling interval of length h goes to zero. 

We will briefly state the main frame of the chapter by defining the jump-

diffusion data generating process and the consistent filter in the next section. In 

section 4.3, several assumptions are presented. Some of them are required to 

show the weak convergence of a discrete time process to a jump-diflusion process 

and others will be needed to show the convergence the conditional covariance 

estimate to the true conditional covariance in probability. Section 4.4 contains 

examples. We used GARCH (1,1)-M model and AR (1) Exponential ARCH 

model. In the last section, we briefly summarise and conclude the chapter. 

4.2 Preliminary 

We start from defining the [n x 1) jump-diffusion process {Xt} by a stochastic 

integral equation 

Jo Jo Jo J 

where {Wt} is an n-dimensional standard Brownian motion, independent of XQ, 

and Nx (ds) is the compensated Poisson process defined as Nx (ds) = N {ds)—Xds. 

And h{Xt,t) is a continuous function from i?" to i?", a(Xt,t) is continuous 

function from i?" into the space of n x n matrices and g (Xt-, t) is a continuous 

function from i?" to i?" measuring the size of jump per unit of time.. Under some 

regularity conditions, a (Xt, t) = a (Xt, t) a (Xt, t)' and b (Xt, t) are, respectively, 

instantaneous conditional covariance matrix and instantaneous conditional mean 

per unit of time of increments in the process. XQ is assumed random with 

probability measure VQ and independent of {W t̂}o<t<cx) • 

Now, we assume that the econometricians are never able to observe some 

elements of {Xt}, but are able to observe others directly at discrete time intervals 
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of length only. We pajrtition aa % where consists of 

the Erst g elements of which are observable at time interval of length A, and 

consists of the last n — g elements which are never observable. We 

partition b and cr accordingly. 

For each we want to estimate , which is the instantaneous 

covariance of the increments in the observable variables Xi-q^f The information 

given is very restricted such as the time index t and the history up to time t of the 

process and the smaller information set - - -, , 

the past observed values of Under these assumptions, (X*, is 

unobservable since is not observable and unless t is integer multiple of /i, 

is as well. Therefore, f) is a conditional covariance matrix, but is 

conditional on a larger information set than is possessed by the econometricians. 

Now, we generate conditional covariance estimates {/lOi:,,!:,,*} with a sequence 

of models with jump components, whose coeScient may depend on /i. We 

say that a given sequence of conditional covariance ^timat^ provides 

a consistent Elter as A, 0 if for each t > 0, 

p - l i m [h^l:q,l:q,t ^ ^qy.qt lOr a i l C, 

/i—>0 

where Ogx, is a g x g matrix of zeros. Thus the models consistently 

estimates the true underlying conditional covariance as the length of sampling 

interval, A, goes to zero. Here the term 'estimate' is used the one in the Altering 

hterature rather than the statistics hterature. 
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4.3 Weak Convergence of Markov Processes to 

Jump-Diffusion Processes 

Now, we will show the weak convergence of Markov processes to jump-diSnsion 

processes in this section. We begin by defining the sequence of processes which 

we divide into two pieces: and M x 1 and m, x 1 vector, respec-

tively. {h^t} and {hYt} will be random step functions taking jumps at times h, 

2h, 3h, and so on. With some sufficient conditions given below, we will show 

that {h^t} converges weakly to {Xt\ , where {Xt} is a solution to (4.1). Here, 

represents the underlying stochastic system generating data, while 

represents the diSerence between the true conditional covariance matrix of 

and the estimate generated by an model with jump component. Now, 

we wiU present some conditions that ensure the weak convergence of a Markov 

process to a jump-diffusion process and, for every f > 0, the convergence of 

to m X 1 vector of zeros as 0. That is, we will show that for > 0, a Markov 

process converges to a jump-diGusion and the conditional covariance estimator is 

consistent as 0. 

The formal setup is following: 

Let D ([0, oo), X be the space of mappings from [0, oo) into .R" x jZ'" 

that are right continuous having finite left limits and let B (i?" x i?'") denote 

the Borel sets on x TT". With introducing an appropriate Skorohod metric, 

D ([0, oo), .R" X ji!'") becomes a complete metric space.^ For each > 0, let SOTt/i 

be the cr-algebra generated by - - -, and , 

hYkh, and let Uh be a probability measure on (i2", B (K^ x R^)). For each h > 0, 

and each A; = 0, 1,2, . . . , let (a:, 2/, -) be a transition function on 7̂ " x 

That is, 

i) (3;, 2/, -) is a probability measure on x B (A" x .R"")) for aU z E 

^See [2] Kmihner (1984) Section 4.3 in Chapter 2. 
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ii) Ilh,kh (•) •) r) is B {BP' X R™-) measurable for all T E B {BT- x RT"). 

For each h > Q, let Ph be the probability measure on D ([0, oo), x R"^) 

such that 

e r] = Z/,. (r) for any r e B ( j r x , (4.3) 

Pk < ( < (A + 1) /i] = 1, (4.4) 

P h \ { h X { k + X ) h i h G F I QJtfc/i] 11/1,M { h X k h i h ^ k h i F ) 

almost surely under Ph for all A; > 0 and F E B (i?" x R^) . 

Here, for each /i > 0, we specify the distribution of the random starting point 

[hXa, by (4.3) and form a continuous time process {hXt, hYt) from the dis-

crete time process (hXkh, hYkh) by (4.4) making {hXt, hYt} a step function with 

jumps at time h, 2h, 3h, and so on. (4.5) specifies the transition probabilities of 

(n + m)-dimensional discrete time Markov process {hXkh, hYkh} • 

To ensure that there is no feed back from {hYkh} to {hXkh}, we may need the 

following condition. For every Borel set F̂ ; of and for all A > 0, 

H/i (a:, y, Fg x i?'") is independent of y. (4.6) 

Now, define, for each > 0, 

(2^,^) = h E ^{hX(^k+l)h hXkh^ 

X {hX(k̂ l)h—h hXkh) hXkh — îhYkh — y , (4.7) 

bh (^) — h E ^hX^k+l)h j hXkh Y^h ?/] ; (4.8) 

(̂ 5 () = [| hX(k+i)h — hXkh I > £ I hXkh = x,h Ykh = y] , (4.9) 
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pA = a;* - a;*-, z*- = for s < ( (4.10) 
S— 

where the expectations in (4.7) and (4.8) are taken under Ph- ah (x, t) is a measure 

of the second moment per unit time, and bh (x, t) is a measure of drift per unit 

time, A | (x, t) is a probability that the process has a jump of size greater than 

e, and QH (X, t) is a magnitude of jump, if jump occurs, an (x, t), hh {X, t), and 

A | {x, t) are independent of y by (4.6). 

Now, we need several assumption to achieve the weak convergence results. 

Assumption 1. We assume that for all i? > 0, T > 0 and g > 0, 

lim sup ||a/j (a:,i) — a(a;, t)|| = 0 (4.11) 
||z||<A, o<t<r 

lim sup \\bh{x,t) — b{x,t)\\ = 0 (4.12) 
||z||<A, o<t<r 

sup ||p,t(2;,()-p(a;,<)|| = 0 (4.13) 
''-lo ||z||<A, o<f<r 

lim sup Al{x,t) = A (4.14) 

This assumption requires that the second moment, drift, and jumps per unit 

of time converge uniformly on compact sets to well-behaved functions of time 

and the state variables x. And the probability of jump of size greater then e 

converges to a constant A. So, the sample paths of the limit process will have 

only discontinuity of the first kind with probability one. 

Assumption 2, For every R>0 and all % — 1, 2 , . . . , n. 

lim sup = a: = 0 (4.15) 
||z||<A L J 
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Assumption 3. As A —> 0, converges in distribution to a random 

variable (%o, with probabihty meaaure z/Q on (̂ R", B x . 

This assumption requires that the probabihty measure i/;. of the random start-

ing points to converge to a hmit measure i/Q as ^ 0. 

With all the assumptions we made above, we specihed a initial probabihty 

measure UQ of the limit process, an instantaneous drift function b (x, t), an in-

stantaneous covariance matrix a (x, t), and a jump amplitude g {x, t). We have 

supposed that the sample path of the process is discontinuous with probabihty 

one. However, there is no guarantee that a limit process is finite or is uniquely 

defined. There are a number of works considering the conditions under which z/g, 

a {x, t) , and h {x, t) uniquely define a difi'usion limit process. Especially Strook 

and Varadhan (1979) studied extensively about the diffusion hmit proems. Either 

and Kurtz (1986) considers the martingale problems with Levy measure. Gihman 

and Skorohod (1972) gives the conditions of the unique existence of a solution to 

a jump-diSusion limit. The non-explosion condition for jump-diffusion limit will 

be stated in Appendix B. 

Assumption 4. UQ, a (x, t), b (x, t), and g (x, t) uniquely specify the distribution 

of a jump diffusion process Xt with initial distribution UQ, diffusion matrix 

a (a;, ^), drift vector 6 (z, t), and jump amphtude ^ (a;, ^). 

Theorem 5 Under Assumptions 1-4, {hXt} => {Xt} as h ^ 

Proof. See the proof of Theorem 1 in Appendix C.l. m 

Now, we need to some assumptions to guarantee the convergence of to 

zero as /i ^ 0. Let the following conditional expectations be well-defined: 

(a:, 2/) ^ | = a;,A lit;. = 3/] , (4.16) 
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^ i^h^{k-'rl)h hYkhJ | h^kh ^jh^kh V • (4.17) 

Assumption 5. For some 0 < 6 < 1, and for every R > 0, 

lim sup ||ck,g (a;, 2/) - c (z, y)|| = 0 (4.18) 
ll(a:,l')ll<A 

where for all x G i?", c {x, 0) = 0 and 

lim sup ||(Z,,,g(a;,?/)|| = 0 (4.19) 

We defined the first and second moments of the increments in {hXkh} as O (h). 

In Assumption 5, we defined the drift and second moment of the increments in 

{hYkh} are O (h^) and o (M) , respectively. This implies that operates on 

a faster time scale than {hXt}, since the drift per unit of time of {hYt} grow at 

a faster rate as A ^ 0 than the drift and variance per unit of time of {hXt}. 

Therefore, if is mean-reverting to a vector of zeros, the drift converges to 

zero as well with the increasing speed as /i —̂  0. Another implication is that, 

as A —» 0, the drift of {hYt} dominates the variance of This allows us to 

approximate the behaviour of {hYt} by a deterministic differential equation. 

Assumption 6. For each x E i2", y G -R™, define the differential equation 

d y (t, 2/) = c (%, y ((, z, 2/)), (4.20) 

with initial condition 

y (0,37,2/) = 2/ (4.21) 
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Then Omxi is a globally asymptotically stable solution of (4.20) and (4.21) 

for bounded values of x, y. That is, for every i? > 0, 

lim sup | |y ((, a;,%/)|| = 0 (4.22) 
II WII<A 

This Assumption 6 ensure that the differential equation approximating the 

behaviour of {feYt} is well behaved, pulling back to a vector of zeros. Now, 

we need a condition that {uYt} does not diverge to infinity in finite time. 

Assumption 7. There exist a nonnegative function p{x,y,h), twice differen-

tiable in x and y, and a positive function A (x, h) such that 

lim liminf inf p(x,y,h) = oo, (4.23) 

lim suplim sup M (i?,/i) < oo, (4.24) 
R—*oo h—*0 

lim8upjE'[jo(a%o,A^,/^)] < oo, (4.25) 
h—*0 

and for every R> 0, 

limsup sup 
h-^0 ||(z,y)||<A 

- / ) (z, %/, /i) = a:,/. llkA = 2/] - Af (j?, /i) (a;, ?/, /i) < 0 (4.26) 

Theorem 6 (Ethier-Nagylaki) Let Assumptions 1-7 hold. Then 

hYt —> Otoxi probability as h 0 for every t > 0 (4.27) 

Proof. See Ethier and Nagylaki (1988) Theorem 2.1. a 
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4.4 Examples of Consistent Filters 

In this section, we will show ARCH models can produce a consistent filter when 

(4.1) generates . We wiH use Gv4^Ca'(l, 1)-M, and A^( l ) 

models as examples. For simplicity, we will deal with the univariate cases. The 

extension to a multivariate case wouldn't be a diSicult task. 

4.4.1 (1,1)-M Model 

In Engle and Bollerslev (1986), they presented the GARCH (1,1)-M process for 

the cumulative excess returns on a portfolio. If we suppose that the process 

includes jump components, then the model can be rewritten as follows; 

Xt = Xt-i-\-fieri-\-atZtcr]^, (4.28) 

0-̂ +1 - w + o-^(/3 + Q!Ẑ ) (4.29) 

where Zt ^ i.i.d. N (0,1) and r]^ ^Bernoulli distributed with Pr (% = 0) = 1 — 

Xdt + o (dt) and Pr (% = 1) = Xdt + o (dt). Here c denotes the iumns size of the 

process when a jump occurs. Now, if we partition the time interval more finely, 

then we may rewrite the system of diSerence equations as foUows: 

+ (ck + , (4.30) 

I (4-31) 

and 

Pr [(;i%o, /lO-o) E r] = (r) for any P e B (4.32) 
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where ^ jV (0, /i) and % ̂ Bernoulli distributed with Pr = 0] = 

1 — AA + o (A), and Pr = 1] = AA + o (/i). satishes Assumption 3 as 

+ 0, and for each A > 0, ((%o, ̂ o) : Cg > 0) = 1. 

Then the conditional covariance estimate can be obtained by 

= Wk + ,1%) . (4.33) 

The j in (4.33) are htted residuals obtained by using the drift 

- (4-34) 

For some 6 > 0, 0 < 6 < 1, let 

^, = o(/^-V2), (4.35) 

Wk = o (/̂ '̂ ) , (4.36) 

1 0!k ^ o , (4-37) 

% = + o (/i"̂ ) , (4.38) 

where a is independent of h. Now, we define 

hYt = h(̂ t h^l (4.39) 

This hYt is the estimate error at time t. And 

[ ky(t+i)k - = a;, = Z/] = + O (1) (4.40) 

In this equation, we can observe that {k^} is mean-reverting process. As 

A —̂  0, the difference between ky(A;+i)k and k t̂k converges to zero, and the speed 

of the convergence goes to infinity. The consistency in the Elter can be achieved 



in this way. 

Now we need several conditions on the jump-diffusion (4.1), on the other 

parameters, and the initial value of h^l guaranteeing Assumptions 1-7 hold. Then 

we will be able to apply the Theorem 2 in Chapter 3 to prove the measurement 

error, hXt, converges to zero in probability for each i > 0 as /i —>• 0. 

Condition 1. For each A > 0, (4.1) generates {hXt} , and satisfies Assumptions 

2-4 in section 3. 

Condition 2. For some e > 0, Hmsup E < oo. 

h-^O 

Condition 3. There is a twice differentiable, nonnegative LO (z) and a # > 0 such 

that for every i? > 0, 

lim inf uj{x) = oo 

lim E [w (h%o)] < oo 
h—*(> 

01.41) 

( 4 . 4 2 ) 

lim inf h 
||z||<A 

| w - w ( z ) I I h X k h = z < o o ( 4 . 4 3 ) 

and there is a M > 0 for all x G K^, 

oPw(z) 

i=l :j=l 

+ / / (z -I- ^ (a;, t)) - / (a;) - (z,^) 
2=1 

7f(h) 

< Mct; (3). ( 4 . 4 4 ) 

Condition 4. For every i? > 0, there is an e > 0 such that 

lim sup h E 
''-'0 ||%||<A 

I 2 2 |2+c I v-
0 , ( 4 . 4 5 ) 

6 9 



lim sup h '^E 
h—*0 Izll A 

|4+£ a;| = = 0. (4.46) 

Condition 5. Wh, and satisfy (4.35)-(4.37). And 

lim h ^a\ > 0. 

Theorem 7 Let Conditions 1-5 hold. Then for each t > 0, 0 in 

oa » 0. 

Proof. See Appendix C.2. h 

4.4.2 AR(1) Exponential ARCH Model 

In Nelson (1991), the Exponential ARCH process is introduced. We can write 

the AR (1) Exponential ARCH process as follows; 

hi = li: (/lO-L) - [In - a,,] + g,, 

(4.47) 

+7/, h^kh -(¥) 
1/2 

ii.d. 7/(0,A). 

(4.48) 

(4.49) 

According to Theorem 4 in Chapter 3, if uniformly on compact sets, 

hm/,_o ,9/, = /), 

hni/i_>o CKft, — CK, 

hm/i_,o 

Ihn/i^o 7k = 7, 

(4.50) 
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if the initial values of the processes (kcro)) converges in probabihty, and if 

satisfies some mild regularity condition, then generated by (4.47)-

(4.50) and (4.4) converges weakly to the jump-diGusion as A —0: 

din (cr̂ ) = -/3 [in (<T̂ ) -«]<]!( + 

(4.51) 

(4.52) 

where tVi,* and &re Wiener processes, 77̂  is a Poisson process with intensity 

A, and 14̂ ,* and are independent for % = 1,2. Then 

2t 
dWi^t + Vt dW2,t 

1 + A g 

0 "' + 7 ^ 1 - ; ] 
dt (4.53) 

We suppose that the data are generated by (4.1) and that a misspeciSed 

EG ARCH model is used to produce an estimate of the true underlying con-

ditional variance process {cr^}. We generate Stted conditional variance 

recursively by (4.48) with some initial value and is generated by 

(4.54) 

We require that for some 0 < 6 < 1, 

0 (A-'/'), (4.55) 

0 , (4.56) 

(4.57) 

eh = 0 (/^('-')/') , (4.58) 
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+ o , where "y > 0. (4.59) 

Define a measurement error 

= [In - In (,,(7^)], (4.60) 

then 

c (a;, 2/) = ^ /2,-̂ E [Ay(k+i)A - = a:, = %/] 

= 7 0 j [exp (-2//2) - 1]. (4.61) 

The differential equation of Assumption 6 is 

^ ( - ^ / 2 ) - 1] (4.62) 

If we replace Condition 4 with the following condition, then we can achieve 

the convergence of uYt to zero as /i —> 0. 

Condition 6. For every i? > 0, there is an e such that 

lim sup h |hi (hO'(t+i)k) - 1:1 ( = z = 0. (4.63) 

Theorem 8 Let (4.55)-(4.63) and Conditions 1-3 and 6 hold. Then hYt —> 0 m 

probability for every t > 0 as h 0. 

Proof. See Appendix C.2. H 

4.5 Conclusion 

It has become most important to identify the structure of conditional covariance 

correctly in modern financial economics. With ARCH type models, it has been 
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greatly advantageous to model the heteroskedagtic conditional covariance in a 

natural way. This may be the reason why so many econometriciEms have used 

ARCH type models in modeling financial time series. 

Nelson(1992) stated that if is a jump-diEusion, the consistency of the 

conditional covariance estimates generated by misspeciEed AACff models breaks 

down. However, by introducing the jump process into the ARCH framework, 

we have shown that a misspeci&ed model with jumps can stiU produce 

consistent conditional covariance estimates. That is, we have shown that the 

conditional covariance estimates from misspecified ARCH models with jump 

components converge to the conditional covariance of true data generating process 

as the length of sampling interval, /i, goes to zero. 

In the next chapter, we will investigate the forecasting abilities of the 

models with jump components when the data are generated by the jump-diffusion 

process. 
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Chapter 5 

Forecasting with Jump-Diffusion 

Processes 

5.1 Introduction 

In the two previous chapters, we have shown that an ARCH type model with 

jumps is an approximation of a jump-diffusion limit and that an ARCH type 

model with jumps estimates consistently conditional covariances of the true data 

generating process. As most market participants want to minimise their risk 

existing in the future, the forecasting ability of the model is also an important 

aspect. Now, it seems to be a natural stage to investigate the forecasting ability 

of the ARCH with jumps. 

Many researchers have found that financial time series are non-hnear and 

volatile in nature. Since their introduction by Engle (1982), type models 

have most popularly used in modeling financial time series. Among many other 

characteristics, the non-linearity of type models makes themselves very 

successful candidates in modeling non-linear financial time series. These models 

also assist researchers to expand the ability of modeling heteroskedastic financial 

time series. 
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Recently, there have been a few works to test the predictability of AACTf 

type models with hnancial time series [for example. Brooks and Burke (1998), 

Campa and Chang (1998), Chong, Ahmad and Abdullah (1999), Pranses and 

Dijk (1996), Lamoureux and Lastrapes (1993), Mills (1996), and W%t and Cho 

(1995)]. Nelson (1992) suggested that the success of type models is their 

ability to estimate consistent conditional covariances of the true data generating 

process. Later, Nelson and Foster (1995) developed the conditions under which a 

sequence of misspeciSed type models generate consistent forecasts as well. 

I.e., as the length of samphng interval approaches to zero, the sequence of 

type models not only produces consistent conditional covariance estimates, but 

also generates consistent forecasts of the true data generating proems. 

In this chapter, we investigate the forecasting abihty of type models 

with jumps aa W^t and Cho (1995) suggested that including discrete jumps may 

improve the predictabihty of type models. There have been a number of 

researches conducted on jump-diGusion processes during the last two decades or 

so. Since Cox and Ross (1976) and Merton (1976 a, 6), many researchers apphed 

jump-diffusion processes to model financial time series. Most empirical works 

found that financial time series contain discrete jumps caused by arrival of shocks 

at financial markets. They also found that ARCH type models along with jump 

components may explain the real economy more successfully than alone. 

However, there seem to be few researches investigating the issue of predictability 

of jump-diGFusion processes yet. 

We develop the conditions under which the forecasts generated by a sequence 

of misspeciRed type models with jumps converge to the forecasts gener-

ated by the true underlying process as the length of samphng intervals approaches 

to zero. In the next section, we show that forecasts generated by a misspeci-

hed model with jumps converge weakly to forecasts generated by the 

true data-generating process. In the earlier two chapters, we show that a jump-

diEusion process is a continuous approximation of a discrete model with 
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jump component and that an with jump component can perform Altering 

well. In section 5.3, with an EG ARCH model, we will show that a sequence 

of misspeciSed models can consistently estimate the conditional covariance mar 

trix and produce reasonable forecasts for the true data^generating proems as the 

length of sampling intervals become zero. Then, a summary and concluding 

remarks will be given in section 5.4. 

5.2 Main Se tup 

In this section we develop the conditions under which forecasts generated by a 

sequence of misspeciSed ARCH type models with jumps converge weakly to a 

forecast generated by the true data-generating process as the length of sampling 

intervals goes to zero. 

For each > 0, consider a pair of stochastic processes . We sup-

pose that is an M X 1 directly observable process, and is an m, x 1 

unobservable process. These processes are step functions with jumps only at 

times /i, 2/i, 3A, and so on. Here , which is generated by, for example, a 

stochastic volatility model, is not Markovian. With the introduction of {hUt} , 

which will control the conditional covariance of the increments in the {hXt} pro-

cess, the pair becomes Markovian. We will, therefore, assume that 

the pair {hXt, hUt] is Markovian with probability measure If an ARCH 

model recursively defines in & way that it is a function of hXt-h, and 

then the model assigns a probabihty measure to j 

so that the pair j becomes Markovian. j is also assumed to have 

jumps at times /i, 2/i, 3/i, The variable can be computed &om the pre-

vious values of /iX* and the initial value So, {/iX*, ^^4} can be considered 

as the true Markov process, and /iC/f j is an approximation. 

The main issue of this chapter is how closely the ARCH approximation can 

forecast the true process. That is, how close the forecasts generated under the 
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probability measure, Ph, are to the forecasts generated under the probability 

measure, Ph- To compare the resulting forecasts, we need to bring those two 

processes into the same probability space. If we allow that hUt = hUt a.s. under 

A , then ^hXt, hUt, h&tj- is Markovian under A- As h&t is a function of 

and j is already Markovian under 

Now we will present some conditions that ensure the weak convergence of a 

Markov process to a jump-diffusion process, and, for every r , 0 < r < oo, the 

convergence of ^Ur — HUT a m x 1 vector of zeros as the length of sampling 

interval h goes to zero. In addition to that, we will investigate the conditions 

under which, for every r , 0 < r < oo, j consistently estimates the 

forecast distribution of {hXt, hUt} as ^ 0. 

Let D ([0, oo), i?" X R^'^) be a space of mappings from [0, oo) into i?" x 

that are continuous from right with finite left limits. With the introduction of 

Skorohod metric,^ the space D ([0, oo), i?" x i?^'") becomes a complete metric 

space. Let (B {E) be a Borel set of a metric space E. Let 3)%^^ be the cr-

Geld generated by and ... , and let be 

the (7-Held generated by and /»[7o. Then we denote 071̂ ^ = 

U 1 so that is the natural cr-field for hUt, hUoj Let % 

and Vh be probability measures on 9) (i?" x i?^'")) For each h > 0, 

let IT/i (x, u, u,.) and flh {x, u, u,.) be transition functions on such that for 

^However, we need to note that those probability measures, Ph and Ph, are mutually singular, 

since Ph 1 and, in general, Ph \hUt = ^64, = 0. See Billingsley (1986) 

for the mutually singular measures. 
^For formal definitions, see Ethier and Kurtz(1986), Ch. 3. 

^ ̂ The variable hUt can be computed from the previous values of hXt and a starting value 
hUa, so hUt is measurable with respect to the natural a-field of the h ^ t and hUo- Thus the 
natural a-field for all three processes is the union of the natural cr-fieH for{/jXt, hUt} and the 
natural a-field generated by hUo-

* These measures, % and will be, respectively, the probability measures for the starting 

values (jiXo, hUo, hUo^ under, respectively, the true model and the ARCH approximation. 
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each h> 0 and for all (x,u,u) E 

{u*=:Uh(x*,OC,u)} 

J Ilh{x,u,u,d{x*,u*,u*)) = 1 ( 5 . 1 ) 

{u*=Uh(x*,x,u)} 

Under Vh and n%, u and u are treated as being equal almost surely. So for all 

h> 0 and all (x, u, u) G 

y Oh ((f (a;*, «*,&*)) = 1 

{u*=u*} 

( 5 . 2 ) 

( 5 . 3 ) 

We need to note that no feedback from -j hUkh [ into {hXkh, hUkh}k=o,i,2,... 

is allowed. That is, given a-nd hfTkk, and are independent 

of h&kh under so for any F G ® and all h, 

n,. (a;, 7/, A, r X (a;,O^xi, F x , (5.4) 

where O^xi is an m x 1 vector of zeros. 

For each h> 0, let Ph and Ph be the probability measures on D ([0, oo), i?" x R^'^) 

such that 

Ph 

Ph 

h[/o, e rl = (F) for any F G 0 (5.5) 

h^O, hUo, HUQ ) G F Vh (F) for any F G % (;r+^"') (5.5') 

, tA < ( < (A; + 1) A = 1(5.6) 

78 



and for ail A > 0 and r G % (7^+^""), 

Ph (̂ hX(̂ k+l)hj hU(̂ k+l)h} h&{k+l)h^ G F | X̂flkh — Ok (^h^khi hUkhi hUkhi F^ 

(5J) 
almost surely under and 

Ph (^^{k+l)ht hU(̂ k+l)h> h&(k+l)h^ G F | 'OSt̂ ĥ ft/j (̂ h^kh^ hUkhi hUkhi F^ 

(5.70 
almost surely under Ph-

For each h > 0, (5.5) and (5.5') specify the distribution of the starting point 

{hXo, hUo, h&ô  under Ph and A , respectively. (5.6) and (5.6') form the con-

tinuous time process ^uXt, hUt, hUt^ as a step function with jumps at times h, 

2h, (5.7) and (5.7') specify the transition probabilities for the jumps in 

^hXt, hUt, hUt^ . 

Next we define the forecast functions for {hXt, hUt}- Let A G % (D [0, oo), RP-'̂ '̂ ) 

The conditional probability under Ph that {hXt, hUt}T<t<oo G A is 

a E /I I mtr] 

Ph {hXf̂ h ̂ t}'r<t<oo ^ I hXri hUri hUr a.s. under Ph 

= [{kXf,k [4}T<f<oo ^ ^ I a.s. Under (5.8) 

The first equality holds since ^hXhh, hUkh, h&kh^ is a Markov chain under 

The second equality follows from (5.4), so {hXkh, hUkh} is also a Markov chain 

^Note that not Since we are interested in forecasting {hXt,h Ut} rather than 

^hXt,h Ut,h Ut^ , we use the Markov structure of {hXt,h Ut} under both Ph and Ph to drop 

{kUt}. 
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under Now for every (a;, u,6,T) G defme A,3,̂ ,1-) and ^A,r,u,T) on 

[D ([0, 00), /?"•+'"), % ([0,00), 7?"-+™)) by replacing A , and A; > 0 in (5.6)-

(5.7) and (5.6')-(5.7Q with and A; > [-r/A], and replacing (5.5) 

and (5.5') with 

P{h,x,u,T) hUri hU^ 

P( {h,x,u,T) 

— (x, u,u) = 1 

= {x, u,u) = 1 

(5.53 

(5.5"0 

Since the forecasting generated using these probabilities will regard only the 

future paths of {hXt, hUt} and once hUr is fixed, the value of hUt is irrelevant. 

So, there is no loss of generality to set hUr = HUT — uixi (5.5") and (5.5"'). Now 

we define the forecast functions Fh {A, x, u, r) and Fh (A, x, u, r) by 

(A, a;, It, r) = [{hX*, k[4}.r<f<oo ^ (^-9) 

Ffi{A,X,U,T) = P(^h,x,u,T) k%}T<t<oo ^ "̂ ] (5.10) 

Fh (A, X, u, r ) and Fh {A, x, u, r ) , here, are functions of A, x, u, and r and are not 

random since they are defined in terms of unconditional probabilities rather than 

conditional probabilities. 

Since the aim of this chapter is to make the forecast function (-) close to 

Fh{-), we want to show that, for every ( > 0, 

limf% 
h—*0 

Fk (v4, T) - A A, k X . , , T > C I = 0 (5.11) 

In other words, we first generate, using Ph, the underlying data, namely the 

sample path of {hXt, hUt} • Next we use the ARCH recursive updating formula, 

which is identical in Ph and A , to generate the j - Finally, at some time r , 

we generate fbrecaat for the future path of {hX*, first, using the true state 

80 



variables the forecast function generated by the true probabil-

ity and second, using the estimate [̂4- in place of [̂4- and using 

the forecast function generated by the AECff probabihty measure Then 

we compare the forecasts: if the difference between them converges to zero in 

probability under as > 0 for all well-behaved events, then we say that the 

forecasts generated by the model ^ are asymptotically correct. 

There are three steps involved to prove that ^ consistently estimates the 

forecast distribution for over the interval [T, oo). 

5.2.1 Step 1 

In this step we show that given hUr = hUr, the forecasts generated at time r 

by Ph and Ph become very close as /i —>• 0. That is, for r > 0 and for every 

(a;, w) € (A, z, r) — ^ (A, z, tt, T) 0 as ^ 0. 

The assumptions following will assure that ^^4} and j con-

verge weaMy to limit processes and C/* j under and respec-

tively as A —y 0, where the limit processes and j are generated 

by the stochastic integral equations 

Jo Jo 

+ 2 Y (5.12) 

+ (5.120 

where {Wt} is an (n 4- m) x 1 standard Brownian motion, independent of Uo, 

and ((fg) is a compensated Poisson process deSned as (cfg) = (ds) — 

Adg. We assume that and are independent. Here is the 
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(n 4- m) X 1 instantaneotig drifk per unit time in [/(} and <7̂  is the 

(ft + m) X (yi + m) uistantaneous conditional covariance matrix per unit of time 

of the increments in {X*, Ut} • (%o, UQ) is assumed to be random with a distri-

bution TT.̂  In (5.12'), 6, 6"̂ , and ^ replace 6, and 7r, respectively, fo 

and ^ are the probability measures on D ([0, oo), generated by (5.12) and 

(5.12'), respectively. 

Now, define the first and second conditional moments, for each h> Q, 

6/1 (a;, tt) (h,x,u,kh) 

(h,x,u,kh) 

hU(^k+l)h hUkh 

hU(^k+l)h hUkh 

h^{k+l)h h^kh 

(^; ^ I ̂  £ I h^kh — hUkh — 

(r) = Zt — rr*-, = Hm for a < ( (5.13) 

b}i (x, u) — h E(ji^x,u,kh) 

(^) ~ 

A^(a;,'u) = 

Qh (3;) — 

(h,x,u,kh) 

^kh ^ ^ 

h^(k+l)h h^kh 

h^kh — hUkh — ^ 

, a;̂ - = lim a;̂  for 5 < t 
S— 

(5.13') 

®Here, the initial distribution tt is defined as 

TT ( r ) : / o (r X E"") 

for every V & B . For TT, UQ is replace with DQ. 
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hh {x, u) and bh (x, u) are the conditional drift under probability measures 

Ph and Ph, respectively, and cr| (x, u) and a\ {x, u) are the conditional second 

moments under Ph and respectively. And gu {x) and gu (z) measure the 

magnitude of jumps with intensity of A in the process under Ph and Ph, respec-

tively. Note that each moment is normalised by the length of sampling interval, 

h. 

Now, we state the assumptions which are required to obtain the weak conver-

gence result. 

Assumption 1. Under Ph, hUo, hUoj => UQ, Uoj as h 0 with 

probability measure UQ. Under PH, (HXO, HUO,H =4> (^XQ, UQ, UQ^ as 

h 0 with probability measure PQ. 

This assumption requires that the random starting points hUo,hUo 

converge to those of the limit process under and Ph as h 0. 

Assumption 2. There exist an 5 > 0 such that for every R> 0 and every A>0 , 

lim sup = 0 (5.14) 
||z||<B,||«||<A L J 

for i = 1, 2 , . . . , n, and 

" ' ' = 0 (&15) lira sup A 
||z||<A,lkll<A 

\ TT TT 124-^ \h^i,(k-hl)h h^i^kh | 

a.s. under Ph for alH = 1 ,2 , . . . , m. Further (5.14) and (5.15) hold when 

Eh, Ph, u are replaced by Eh, Ph and u, respectively. 

This assumption puts conditional moment restrictions to guarantee that the 

sample path of the jump-diffusion limit has only first kind discontinuities. That 
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is, the sample paths for the diffusion part of the process are continuous with 

probability one, but for jump part, it allows only first kind (discrete) jumps. 

Assumption 3. There exist continuous (n + m) x 1 functions b (x, u) and b (x, u) 

and (n + m) X (n + rn) continuous positive semi-definite functions cx̂  (z, u) 

and (x, u) such that for every i? > 0, 

lim sup \\bh{x,u)— h{x^u)\\ = 0 
/"-"O ||z||<A||«||<A 

lim sup —0^(2, M)|| = 0 

^ sup | |^hW-p(z ) | | = 0 

lim sup Al{x,u) = A 
||z||<A||u||^ 

(&16) 

lim sup 
||%l|<A||w||<a 

&&(%,%)--6(3,%) 

lim sup ||(t| (X, U) — [x, m) 11 
-̂"0 ||r||<A||ti||<A 

lim sup | |^(a;) -^(z) | | 
h—*Q |z <A|u <A 

lim sup A | (z, u) 
l|z||<A||u||<B 

0 

0 

0 

A (5.16') 

Here, we assume that the second moments, drifts and jumps per unit time 

converge uniformly on compact sets to well-behaved functions of time and state 

variables x. The probability jumps of size greater than e is assumed to converge 

to a constant A. It is also required that b (z, u), b [x, u), (x, u), (x, u), g{x), 

'g{x), VQ, and VQ completely characterise the distributions of the jump-diffusion 

limit [4} and [4 j . 
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Assumption 4. For any choice of ttq and ttq, distributionally unique solutions 

exists to the stochastic integral equations (5.12) and (5.12'). 

Theorem 9 [/hcfer => Tinder oa 0, 

w/iere Â,e vr ^ pzfeM 6^ 

7r(r) = z/o(rxE"'), (5.17) 

/or efen/ F G B (^"+'"). ^ vr oMcf i/Q m (5.17) OTie ?iep/oce6( 61/ ^ a/id vo, 

j ^ j A oa /i —» 0. 

Proof. See the proof of Theorem 1 in Appendix C.l. m 

We have shown that the weak convergence of the pairs of ^C/t} and 

hUt^ to its jump-diffusion limit aa —> 0. Next, we define forecast func-

tions informally for the Markov processes (5.12) and (5.12') ; 

.Po(^,2;,'u,T) = fo(;4|%( = a;, [4 = 16) (5.18) 

T) = = = (5.18') 

where .4 E 93 (D [?-, 00), , and fo ( ) and ^ (-) are the probability measures 

corresponding to (5.12) and (5.12'), respectively. 

Assumption 5. For all {x,u) E b{x,u) = b{x,u), a"^ (x,u) = a'^(x,u), 

^(2;, t̂ ) = ^ (a:,̂ /), and A = A. 

This assumption says that the misspecihed model generating ^ cor-

rectly specific the functional form of the first and second conditional moments 

of hXt and hUt, and the structure of jumps. This assumption is the most impor-

tant one to move from consistent filtering to consistent estimation of the forecast 

distribution. 
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Then with Assumption 5, the conditions of Theorem 9 accomplish the first 

step. I.e., if /tC/f = and if 5 (a;, tt) = 6 (a;, it), (%, = (7̂  (a;, it) = 

g(x,u), and A = A, the forecast distributions generated by Ph and at time 

r become close and both become close to the forecast distribution generated by 

the limit diffusion PQ as h —>• 0. 

5.2.2 Step 2 

In this section, we show that Ph is a consistent filter for at time r . That 

is, hUr — hUr —̂  0 in probability under as A ̂  0. This step is proving the 

properties of a misspecified ARCH models as consistent filter. 

Before we state some additional assumptions, we will define the measurement 

error process {hYt} as, for all A > 0 and all t > 0, = uUt — hUt-

Assumption 6. For every h > 0 and 6 > 0 and every {x, u, u) G the 

following are well-defined and finite 

(a;, tt, 6) = I = a:, 

hUjch — hUkh — ^ (5.19) 

dh,S is^i ^) ~ ^ Efi (^hy{k+l)h h^kh^ (^h^(k+l)h h^kh) | 

h^kh — hUkh — hUkh — ^ (5.20) 

Further, there exists a function c (c, u, u) with c [x, a, w) = 0 whenever u = u 

such that for some 6, 0 < 6 < 1, and for every JR > 0, 

lim sup \\ch,s ix,u,u) — c{x,u,u)\\ = 0 (5.21) 
||z||<A,||«||<A,||6||<R 

and 

lim sup \\dh,6{x,u,u)\\ = Q (5.22) 

^^0 ||a:||<-R,||w||<-R,||«||<-R 
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By (5.21) and (5.22), the drift and second moment of the increments in {uYkh} 

are O (M) and o (M), respectively. This implies that {hYt} operates on a faster 

scale than {hXt}, since the drift per unit of time of {hYt} grow at faster rate 

as h Q than the drift and variance per unit of time of {hXt}. Therefore, if 

{hYt} is mean-revert to a vector of zeros, the drift converges to zero as well with 

increasing rate as A —» 0. Another implication is that, as —>• 0, the drift of 

{hYt} dominates the variance of {uYt}. Thus, the behaviour of {uYt} can be 

approximated by a deterministic differential equation. 

Assumption 7. For each (2:, u, u) G define the ordinary differential 

equation 

(5.23) 

with initial condition Y (0, x,u,u) — u — u. Then 0^x1, an m x 1 vector 

of zeros, is a globally asymptotically stable solution for bounded values of 

{x, u, u). That is, for every R>0, 

lim sup | |y (t, a:, M, «)|| = Of„xi- (5.24) 

This assumption will ensure that the differential equation approximating the 

behaviour of {uYt} is well behaved, pulling {hYt} back to a vector of zeros. The 

next assumption is to guarantee that {hYt} does not diverge to infinity in finite 

time. 

Assumption 8. There exists a nonnegative, twice differentiable function p {x, y, h) 

and a positive function M (R, h) such that 

lim lim inf inf p(x,y,h) — 00, (5.25) 

lim sup lim sup M (i2, A) < 00, (5.26) 
R—nyo h^O 
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lim sup Ek [p (h%o,k A)] < oo, 
h-^Q 

(5.27) 

and for every R> 0 and h > 0, 

sup /i) - ,0 (a;, 6 - it, | 
{x,u,u)\\<R 

h^kh — hUkh — hUkh — ^ M (^, A) /) (z, M — It, A) 

< 0 (5.28) 

Theorem 10 (Ethier-Nagylaki, 1988). Let Assumptions 1-5 and 6-8 hold. 

Then for every r >, 0 < r < oo, | ^ ® consistent filter for {hUt} at time r 

under {Ph} as h Q, where we say that M a consistent filter for {hUt} at 

time r under {Ph} as h 0, if for all e > 0, 

limf% 
h—^O 

hUr hUr > E = 0. (5.29) 

Proof. See Ethier and NagylaM (1988). a 

5.2.3 Step 3 

This step is to show that the forecasts generated by the ARCH model with jumps 

are smooth in the underlying state variables, so that as hUr — HUT approaches to 

zero, the forecasts generated by the ARCH models with jumps converge to the 

forecast generated by the correct model. That is, Fh {A, x,u,T)—Fh {A, x,u,r) 

0 as u u and h 0. 

We need couple of definitions about the consistent estimation of the forecast 

distribution. They are adapted from Nelson(1995). 
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Definition 11 Let dA be the boundary of the set A J Let Mr be the collect of 

sets A such that A € % (D ([r, oo), and Pq [{Xi, Ut}r<t<oo ^ I 

{Xt, Ut) = [x, m)] = 0 for all starting points {x, u). Here PQ can be defined 

analogously as in (5.18), and we treat PQ [• | Ut) = {x,«)] as a function 

of {x, u) rather than a random variable as we did with the forecast functions. 

Definition 12 We say that < hXt.,h Ut > consistently estimates the forecast 
I J T<t<00 

distribution of {hXt, hUt}r<t<:oo time r if for every A e Mr and every 

Ph Fh {A, hXr, hUr, t) — Fh (^A, hXr, hUr,T > e 

as 0. 

Theorem 11 7/ Assumptions 1-8 are satisfied, then for every A G Mr, every 

5 > 0, and every e > 0, there exists anh* > Q such that for every h, 0 < h < h* 

Ph ^ (A, T) - /'A Tj > 6 < 6 

Ph Fh \A, hXr, hUr,TJ — FQ (A, h^r, hUr,T) > 6 < 6 

(5.30) 

h [ 4 , T ) | > e ] < 6 (5.31) 

(5.32) 

Proof. See Appendix C.3. m 

Theorem 12 Let Assumptions 1-4 and 6-8 he satisfied. Then for every e > 0, 

every r > 0, 0 < r < oo, and every A G Mr, 

Ph [l-P/i {A, hXr, hUr, T ) — FQ {A, hXr, hUr, t ) | > s] —> 0, (5.33) 

^The set of all points in I? ([r, CXD) , which are limit points both of A and its 
complement. 
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a A ( A - Fo (A, T) > 6 0. (5.34) 

Proof . See the Appendix C.3. h 

5.3 Example 

In this section we will show an example that a misspecified ARCH model can es-

timate the consistent forecast generated by the true data-generating process. We 

will assume that the true data-generating process is a stochastic volatility model 

and a ARCH with jump components can approximate the stochastic volatility 

data-generating process. We propose an approximation to a stochastic 

volatility model and show that it satisfies Theorem 9, 10, and 13. 

Let St be the price of a non-dividend paying stock at time t. at is its instan-

taneous returns volatility. We assume that 

d [bi = —/) [hi (cr̂ ) — a] (ft + 

(5.35) 

(5.36) 

and are standard Brownian motion with correlation p and 77̂  is a Poisson 

process with intensity of A. c is the magnitude of a jump when a jump occurs. 

We assume that Wi^t and are independent for i = 1, 2. Then 

-t-

dW2± 

1 + A p 

P 1 
dt. (5.37) 

/̂ , A, and a are constants. We allow {iTt} to vary randomly with {hi (cr̂ )} 

following an Omstein-Uhlenbeck proems. 

We assume that we observe {5't} at discrete intervals of length /i, so for every 

. We suppose that % > 0 and crq > 0 to be nonrandom. Because 
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of the continuoug time Markov structure, the discrete time process ^4} is 

also Markov. 

Now consider using a conditional normal AR (1) EG ARCH model by Nelson 

(1991) to forecast when the data are generated by (5.35)-(5.37). The A^(l) 

generated the 6tted conditional variances by the recursive for-

mulae 

In (k4+i)») = to - h [to - a] + (kZi,M)k) , (5.38) 

where /lO-g > 0 is Gxed for all and 

((z) = + "x |z| - (2/?:)̂ ^^ , (5.39) 

_ [hi (h^(t+i)k) - In (h'̂ k/i) - A (^ -

(5.35)-(5.40) completely specif the kcrL; process under Next, 

we construct the Pu measure. Under Ph the recursive updating formulae (5.38)-

(5.40) continue to hold, but (5.35)-(5.37) are replaced with 

In (k'S'(t+l)k) = In (k'5't/i) + (// — /i6-̂ ;̂ /2) + 

+^(t+i);i (c/i + /i'̂ (k+i)k) (5-41) 

- iid7V(0,l), (5.42) 

^ crL Ei.s. under A (5.43) 

The continuous time process will be created by making them 

step functions having jumps at h, 2h, 3h, . . . , as in (5.6) and (5.6'). Here we can 

obtain (5.41) by simply rearranging (5.40) . Under Ph, (5.40) is a definition of 
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Under however, (5.38)-(5.43) deEne the trangition probabilities for 

the process. Note that the condition in (5.43) requires that 

o-Q — ctq under Ph which need not be true under Ph- Consistent filtering is not 

achieved at time 0 if ^ a^. Therefore, we required r > 0 in earlier section. 

Nelson (1992) shows that the main requirement for consistent Altering for this 

model is ^ > 0. For consistent estimation of forecast distributions, however, we 

must match the first two conditional moments of the ARCH model considered 

as a data-generating process to the corresponding moments of the true datar 

generating process (5.35)-(5.37). 

Under the innovation in In (/i&zL, is , which has variance 

+ 7^ (1 — 2/7r)]̂ /̂  . Under the instantaneous correlation of the incre-

ments in hi (a '̂th) and In (kcr̂ ;̂ ) is + 3/̂ (1 — 2/7r)] . We need to match 

the conditional second moments under and which requires that 

+ 7" [1 - 2/7r] = A2 (5.44) 

which is easily accomplished by setting ^ = p-A and 'y = |A| (1 — / (1 — 2/7r)̂ ^̂  

Also the drifts of (5.35) and (5.36) are [(/i — cr^/2) + Ac] and —[3 [In (cr̂ ) — a] re-

spectively. If 6 — a, ^ ^ and c = c, then the drifts in (5.35) and (5.36) 

are equal to the drifts in (5.38) and (5.41). 

5.4 Conclusion 

In this chapter, we have derived that the conditions under which a misspeciBed 

ARCH process with jumps performs well in forecasting as well as filtering. The 

®Note that hZkh are used to generate the probability measure Ph over the stochastic process 
{/I'S'&A, aje not zzWJV (0,1) under when they are obtained recursively. 
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conditions for the consistent forecasting are much stricter than those for consis-

tent Eitering. For example, we require the conditional second moments generated 

under and Ph, to match, although this condition is not required for the consis-

tent filtering. Without this moment matching condition, the forecasts generated 

by A, wiU not approach to the forecasts generated by Nelson (1995) gives 

an example with diffusion limit of processes. 

Although the jump-diSusion processes have been used to model financial time 

series to a degree, there is not much literature about the forecasting ability of 

jump-diffusion processes. Although we need more empirical evidence about the 

forecasting ability of jump-diEusion process, we may expect that with 

jump approximation will produce reasonable forecasts with the results in this 

chapter when the data are generated by jump-diSusion processes. 

To derive the result, we only considered the consistency of the forecasts, not 

the efficiency. This will be left for future research. 
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Chapter 6 

Conclusion 

For the last two decades or so, ARCH type models introduced by Engle(1982) 

have been used rather successfully as a major tool to emalyse financial mar-

kets. The success seems due to the ability of ARCH models to characterise 

heteroskedasticity and non-linearity of financial time series data. Yet, there 

has been another model for analysing the Snancial markets in theoretical Hnan-

cial economics literature, which is the jump-diffusion process. In some empirical 

works, models including jump components are found to be advantageous in terms 

of Btting the Enancial time series data. For example, with jumps seems 

to fit the data better than alone [Jorion(1988)]. E it is the case, it seems 

to be natural to investigate the relationship between ARCH models with jumps 

and their jump-diffusion limits. 

In this thesis, we have dealt with the three econometric issues with jump-

diffusion processes; i) the relationship between jump-diffusion processes in con-

tinuous time and their discrete time counterparts, ii) misspeci^ed model can still 

produce consistent estimates of conditional covariance of the true data generating 

process, and iii) misspeciGed model can generated consistent forecasts of the true 

data generating process. 

For the 6rst issue, we have shown that a sequence of discrete time processes 
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converges weaMy to a jump-diShsion limit as the length of sampling interval goes 

to zero. That is, an ATZCjif model with jump component can be an approxi-

mation of a jump-diGFusion process. So, by including jump components into an 

ARCJ? framework, it is expected to explain the real economy more closely than 

other modeling tools. 

The next issue has arisen from the fact that economic or econometric models 

are rough approximations of the real economy. However closely they explain the 

real economy, they are inevitably misspeciSed. It has been shown that misspec-

ified ARCH models with jumps can estimate the conditional covariance of true 

data generating processes consistently. That is, we have shown that the mea-

surement error between the conditional covariance estimates from a misspecified 

ARCH model with jump and the true conditional covariance converges zero in 

probability as the length of samphng interval approaches to zero. 

Then, the forecasting ability of misspecified ARCH with jumps has been 

dealt with. Since most mazket participants try to minimise their risk existing 

in the future, it would be necessary to investigate the forecasting ability of those 

economic or econometric models. Under some regularity conditions, we have 

shown that the difference between forecasts generated by a misspecified model 

and those generated by true data generating process converges to zero as the 

length of sampling interval goes to zero. 

Some empirical studies found that when the daily data are aggregated to either 

weekly or monthly data, the jump components tend to disappear. It may be 

that measurement error associated with daily data inducing jumps in the process. 

In Jarrow and Rosenfeld(1984), they tested the null hypothesis of continuous 

sample paths for stock prices. After adjusting for weekends and hohdays, the 

null is rejected for daily data with small magnitudes of jumps, but not for the 

weekly and monthly data. This would be the reason that with the weekly and 

monthly data, the inclusion of weekends and hohdays tends to cover up the small 

jump components. To avoid a false determination of a jump process, it might 
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be important how we choose time intervals between observations. With the high 

technology employed in the modem financial markets, the data are collected even 

in second from the market these days. It would be interesting to research further 

to see how frequently we need to observe the markets to approximate models more 

accurately. 

In the previous chapters, we assumed the convergence of the parameters of 

the processes to prove the weak convergence between a discrete time process 

and a continuous time process, when some regularity conditions are satisSed. 

Those regularity conditions are required to achieve the desired convergence. For 

example, in chapter 3, we imposed the conditions for the parameters given in 

Bollerslev(1986), which are mainly for the variance to remain positive. How-

ever, we did not considered how these regularity conditions should be altered 

for different parameter estimators for the approximation or convergence. In 

some cages, we require more restrictive regularity conditions for the parameters 

to achieve a desired approximation or convergence. In other cases, we don't. 

We may extend our results to consideration of these regularity conditions in the 

convergence or the approximation of the processes. 

While proving the weak convergence of ARCH with jumps to its jump-

diffusion limit, we restricted the jump intensity to a fixed constant A for the 

simplicity of the discussion. In reality, this intensity is likely to have a cer-

tain probability structure. It is expected to improve the performance of jump-

dlGFusion process in empirical researches, if the constant restriction on the jump 

intensity is relaxed. For the consistent filtering and forecasting of ARCH models 

with jump, we only considered the consistency of those estimates and forecasts, 

but the efficiency, in the current research. These issues will require future re-

search. 
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Appendix A 

Higher Moments for a 

GARCH 1)-M Process with 

Jumps 

The higher order moments up to fourth order of the process in (3.23) are 

obtained as follow; 

-£• h {hUkh hy(k—l)h^ 

= AO-*;, + 3/̂ ///, 

+A + 3A//;, 

= A (c| + 3c/i0^) + o (1) (A-1) 

E h (^hl/kh ky(k—l)h) 
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+12 + 12 + 12/1̂ /̂ /2̂  

+4/i//k /iCrLc% + kcr̂ k̂ k + 12/1^/iCrLc/i 

+24/̂ /̂̂ //̂  ;,(̂ Lch<Ak + 12/̂ //̂  /.o-Lck̂ Al + 4/1̂ //% /ifrLc/. 

+6A,̂ //̂  kcrLck + 3i;̂ k] 

= (̂ A + + 3^^) + o (1) 

The limits of (^.1) and (v4.2) aa /z goes to zero are 

jpnE - k2/(t-i);i)^ |%h = A (ĉ  + 3c,;6 )̂, 

(A.2) 

and 

limE 
/%,—»0 ^ (/i2/Ak — /i2/(t-i);i) |33Ttk — A (ĉ  + + 3^ )̂ . 

Also the higher moments of the process f̂ o-̂  exist and converge to zero. 

E ^ ((̂ ^+1)/: - l%k 

-B A ^ (w/i + <7̂ ;̂  " l)) l%k 

A, + 3A (a/i + /);, — 1) 

+3/2,;̂ ^w (a/i + ^ 1)̂  

+A' ^ (<̂ /z + ^ 1)̂  

+/!- ^ hO'tk (l4a^ — Gâ  + 60;̂ /)̂ ) 

0(1) (A.3) 



l imE 
h^Q 

A,-»0 

0 (A.4) 

^ A ^ + cr̂ /t (% + 

^ /I'̂ L — 1) 

+/i-^6w^ (O!/. + - 1)̂  

4-A 

+/l-^4w;, /.O-L (o'k + / ) / . - 1)̂  

-/i-^4wk (a^ + /)k - 1) 

—A 4̂L;,i (—3%^^ — 14o!̂  + 6a!̂ ) 

+A;;'̂ u/ (a,. + /); ,- 1) 

+A,);'̂ wcr̂ l2a!/i/9/; (2a,i - 1) 

= o(l) 

lim E 
/i—»0 

= 0 

(A.5) 

(A.6) 

Therefore, the higher moments of the with jump components can be 

decided by the distribution of jump part of the process, not by the diffusion part 

of the process. 
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Appendix B 

Conditions for Non-Explosion 

Theorem 10.2.1 in Strook and Varadhan(1975) provides a non-explosion condition 

for the limit process. This condition ensures that the limit process does not 

explode in finite time. In the theorem, the condition is given for the case of 

diffusion process. Here, we adopt this condition for the jump-diffusion process 

with replacing the infinitesimal operator for a jump-diffusion process with that 

of a diffusion process. 

Suppose that there exists a nonnegative function ^p{x,t) which is twice differ-

entiable with respect to x and differentiable with respect to t such that for 

each T > 0, 

lim inf ip(x,t) = oo (B.l) 

and there exist a positive locally bounded function M (T) such that for 

each r > 0, all a; G R^, and alH, 0 < i < T, 

(j^+Sl,\<p(x,t)<M{T)v(x,t), (B.2) 

where 

(T, ^ 1 ^ ^ (a;, () 
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f r " 
-/ . i=l 

If we assume that Xf — r, (B.2) ensures the instantaneous drift of 

grows linearly with </;(%(,(). Therefore, it guarantees that does not 

explode in finite time. Also (B.l) wiH guarantee that if y? (%t, () does not explode, 

neither will 
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Appendix C 

Proofs of The Theorems 

C . l Proofs of Theorems in Chapter 3 

Proof of Theorem 1 

Proof. Let the infinitesimal operator for the jump-diffusion process be 

i,j=i i=l 

+ + -/(z) 
i=l 

(C.l) 

then, by the Lemma 11.2.1 in Strook and Varadhan(1979) , Assumption 1 is 

equivalent to the condition that for each / E (i?") 

i A / ^ -C/. 

where the inAoitesimal operator for a discrete Markov process is deSned as 

(3=) = / [ / (%/)- / (a:)] ^̂ 2/) -
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Let's define a random process M/ as 

(() = / (a;*) - / (zo) - / -C/ (a;,) (fs. 
JQ 

According to Kushner(1984, Sec. 1.6), if M/ {€) is a martingale, then there exist 

a Wiener process Wt, and a Poisson process N\ [t] with independent increments 

and identically distributed jumps which solve a jump diffusion model 

Xt = Xo+[ b{x,s)ds+ f a {x, s) dW^ + f f g(x,s) Nx (ds) (C.2) 
Jo Jo Jo J 

where g (x, t) is a bounded continuous function and Nx (dt) is a compensated 

Poisson process defined as Nx (ds) = N (ds) — Xds with jump probability of A. 

In Assumption 4, the distribution of Xt is specified by wq, ^ (x, t), b {x, t) and 

g {x, t). As (J (x, t) only enters the equation through a (x, t) function, the distri-

bution of Xt does not depend on the choice of a (x, t) as long as a (x, t) a' (x, t) = 

a (x,t). a 

Proof of Theorem 2 

Proof. By showing that Assumption 1' implies Assumption 1, we can prove 

the theorem, since Theorem 2 follows immediately by Theorem 1. To do so, we 

only need to prove that 

Ikn Y / == 0, (C13) 
Z*-*" |z|<A, 0<t<T V||i/-z||>l 

hoi sup Y / == 0, (C14) 
|z|<A, 0<f<r A y||y-z||>i 

since the conditions for c (x, u) and A | (a;, t) remain same as in Assumption 1. 

103 



By Holder's Integral Inequality, 

\y ^\i^h,h[t/h]isiji dy^ 
\\y-x\\>l 

< [7v,» (^. *)] (C.5) 

By (3.16), there is some (5 > 0 such that for all R, T > 0, the right hand side 

of the inequality vanishes to zero for every s as h 0 uniformly on ||a;|| < R, 

0 <t <T, proving (C.4). Again, by Hdlder's Integral Inequality 

f (%/ - (a;, c(i/) 
^ J\\y—x\\>l 

(C.6) 

which vanishes in the same manner as (C.3) 

Proof of Theorem 3 

Proof. To prove this theorem, we need to show that Assumption 1 and 2 

are satisfied. First we can factor a {y,s,t) into a {y,s,t)a' {y,s,t) which satisfies 

Assumption 2. To show this 

== 
+ A 

G^2,ig GQ.2,2G' 

00.2,19 GQ,2,2G' 
+ 

A Oi,2 

02,1 02,2 

+ 
{k + dt ^f'^vdWi^t) dr]f 

0 

X + (k + dt ^/"^vdWi^t) drit 0' | 
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X 

crcr 

+ (A: + (ft 

pcWit + (A + d,?, 

(C.7) 

Now we must show that Assumption V is satisfied. That is, we need to show 

that (y, g, , 6% (2/, a, , and c/̂  (^, a, t) converges to a (?/, a, , 6 (y, a, t) and 

c (?/, 5, f) respectively, and "X;, ^ g (?/, g, t) converges to zero uniformly on compacts 

aa A —» 0. Since 

(2/, 5, t) = 
y(?/,a,t) +AA; (i/,a,t) 

(2/, a, () 
(C.8) 

(5,2/,^) = ('(5,2/,^)-

A (A;2 + gg/ 
(C.9) 

which will converge to a (y, s, t) a.s h ^ 0, since / , F, g and G are locally bounded. 

Finally, if we choose 6 — 1, then, by stacking elements of ^ (2/,̂ ,̂ ) in a 

vector, we have 

7k,i(2/,a,t) = E 
hf + g hZkh + Vkh {k + h hZkh) 

7* I 

\ /^ 4- A + A 

uniformly on compacts. 
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Therefore, we showed that Assumptions 2 and 1' are satis6ed. M 

Proof of Theorem 4 

Proof. To prove the theorem, we need to show that Assumption 4 is satisfied, 

then the result follows immediately by Theorem 2 and Theorem 3. To do so, 

we need to show that the system of stochastic differential equations has a unique 

solution. 

i)show that the martingale problem for o 6 , and c is well posed, 

ii) show that the hmit process does not explode. 

By Chapter 8 Theorem 3.3 in Ethier and Kurtz (1986) and Theorem 11.2.3 

in Strook and Varadhan (1979) we can prove the statement i). To prove the 

statement ii), deGne for A" > 0, 

y, = ^ + / ( ^ ) | ^ | + / ( y ) e x p ( | y | ) , 

where 

/ (x) = exp , if X = 0, 

= 0, otherwise. 

cp {V, S) is nonnegative, arbitrarily differentiable and satisfies (B.l). Its deriva-

tives are locally bounded, so that positive and M can be chose to satis^ (^ 2) 

on any compact set. For large values of 6" and F^ 

(V; 5") % gzgn (F) exp ( |y |) , 

ypyy(y,^) ^ exp(|y|) . 

^Here, and ^ 
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(^; "S") ^ 0, 

so that with M > 1 + o;/? + + |̂ | + AA:, there exist a Suite satisfying 

(5.2). Then, then result follows by Theorem 2. h 

C.2 Proofs of Theorems in Chapter 4 

To prove Theorem 7, we need the following lemma: 

Lemma CI Let {Ct}[0T] be generated by the stochastic integral equation 

JQ JO JO J 

(C.IO) 

where is Gxed, {M^} is g x 1 standard Brownian motion, (<̂ 5) is 

a compensated Poisson process with jump intensity. A, and and 

A are g x 1- ajid gx g-valued functions, r^pectively, and where (C.IO) 

has a unique weak-sense solution. Next, let --/(t) be a g x 1 function 

satis^ng 

7(t) = o(t^/^) as t —> 0 (C.ll) 

And assume that 'y ((, it) ^ Mcf W (c, f ) . Then, for some M > 0 
r ' /" ( 0 - 7 (t) - (0) AT (0, A (Co, 0) + ^;,) X M as t 0, (C.12) 

where 'Pat represents the second moment from a Poisson Process. Further, 

let / (C, t) be a continuous function from into . Let there exists an 

e > 0 such that 

lunsupE I y (t ((t - ? ( ( ) - Co) , 4 (C.13) 
t—»0 
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Then,if^-Ar(0,A(C(„0)), 

lim E [/ ((* - 7 (̂ ) - Co), 4 ] = [/ ( '̂ < °° 

Proof. If we prove (C.12), then (C.14) follows directly by Billingsley(1986, 

p286-291). To prove (C.12), first note that (t) 0 as t 0 by (C.l l) . 

Next rewrite (CIO) as 

Jo 

+ r ' / : f ( A ' / " (C„ s) - a V 2 {c„, 0)) dw, 
Jo 

(C.15) 

Since ~ N (0, J) and (t) —> 0 as t 0, (C.12) follows if the second 

and the third terms on the right hand side of (C.15) converge in probability to 

zero as t —»• 0. The second term is 

Jo 
< t max |m (Cg, s)| (C.16) 
— 0<a<f' ^ 

which converges to a vector of zeros in probability as t —>• 0. Next consider the 

last term. Define 

it f (A'/" (C, s) - A'/: (Co, 0)) dW. (C.17) 
Jo 

If vanishes in probability to a vector of zeros, the proof of the lemma is 

completed. With I {•), the indicator function, we have 

; (ii&ii < 1) ; (ii&ii > i) (c. is) 
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The second term in ((7.18) vanishes in probability as ( —> 0 since 

l im « [ r ' l ( I 1 4 | | > 1)1 Co] = 0 ( 0 . 1 9 ) 

Since A is continuous, the first term also vanishes. 

Similarly, define 

^ ^ y y ^ (C.20) 

then, we have 

— f < 1) f^ipip' + I > 1) (C.21) 

The first term on the right-hand side will vanish as ^ (Csj s) is continuous, and 

the second term on the right-hand side will converge in probability as 

l i m £ [ r ' / { | I ^ | | > l ) ICo] = A . (C.22) 

The proof is completed, a 

Proof of Theorem 7 

Proof. With Lemma CI proved, the proof of this theorem is almost identical 

to the proof of Theorem 3.1 in Nelson (1992). B 

Proof of Theorem 8 

Proof. With Conditions 1-3, Assumptions 1-4 are satisfied. Proof of The-

orem 7 is implies that Assumption 5 and 7 hold with replace Condition 4 with 

Condition 6. 

From (4.62), 

(ft "'''iTr. 
exp j - 1 
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which has a solution 

"7 f ~ ) ^ 
]^ = 2 1 i i M - e x p + exp (0.23) 

Then, (C.23) satisfies Assumption 6 as long as 7 > 0. • 

C.3 Proofs of Theorems in Chapter 5 

To prove Theorem 13, we need couple of Lemmas. 

Lemma C2 For any r > 0, define to be the probability measure for (hXr,h Ur) 

generated by For any r < oo and for any (5 > 0, there exists a compact 

A (S) C R"-+'^ such that for allh,0<h< h', Ph [{hXr^h Ur) E A (<?)] > 1—<5. 

Proof. The proof will be completed by Theorem 1 in Chapter 3, and Propo-

sition 9.3.4 in Dudley (1989). • 

Lemma C3 Let Assumptions 1-4 be satisfied. Let {xh, Uh) —> (a:, m) as —> 0. 

Then P{Q^XH,UH,T) ^ P{0,X,U,T)I P{h,XH,UH.,T) P{Q,X,U,T)I P{0,XH.,UH,T) P(<),X,U,T)) 

P{H,XU,UH,T) =>- P{O,X,U,T) as —> 0. If Assumption 5 is also satisfied, then 

P{H,XH,UH,R) => P(O,X,U,T) as A —» 0. In each case the convergence is uniform 

on bounded subsets of 

Proof . Theorem 11.2.3 in Strook and Varadhan (1979) together with Chapter 

8 Theorem 3.3 in Ethier and Kurtz (1986) prove the theorem, a 

Proof of Theorem 13 

Proof. By Lemma C2, there exist a compact A (6) and h" (6) > 0 such that 

^[4) G A (f)] > 1 - 6 / 2 where A < A" (<̂ ). ^(4 in probability 
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under Ph as h 0 hy Theorem 10. Therefore, for every f > 0 and <5 > 0, there 

exist an (f, <̂ ) > 0 such that kC/r — ̂ ^4 > f < ^/2 for A < A'" (f, f ) . 

If we choose h as h = min {h" {6), h'" (c, 6)} , then 

Fh (A, h^T, HUTIT) — Fh [A, hXr-, hUriT > 6 

6 6 
< 2 + 2 

+ sup I 
(r,u)6A(g), 
||u—u||<? 

Fh {A, hXri HUtjT) — Fh [A, h^Ti hUrjT > 6 (C.24) 

where I (•) is the indicator function. By Lemma C3, there exist an f (^) > 0 

and an h"" (S, e) > 0 such that Fh (A, h^r, hUr, r) — Fh (^A, hXr, hUr, < e 

whenever {x,u) E A (5) and ||m —mH < q (S) and h < h""{6,e). Thus, if h < 

h! (<$, e) = min {h" {8), h!" (g, S), h"" {8, e)} , (5.30) is proved. 

Next, for h < h" (8), 

[|f% (A, ^[4,1") - fb (A, kf/r, T)| > g] 

< sup ,,[4,T)|>g](C.25) 
^ (x,u)eA(S) 

By Lemma C3, P(h,x,u,r) P{Q,X,U,T) is uniform on compacts. So, the second term 

in the right hand side of (C.25) will vanish uniformly in h. This will prove (5.31). 

Similarly, since P(H,X,U,T) => P(Q,X,U,T) is also uniform on compacts by Lemma C3, 

(5.32) is proved. • 

Proof of Theorem 14 

Proof. By Lemma C3, the convergence of P{h,x,u,T) PiQ,x,u,T) and P(h,x,u,T) => 

P(o,x,u,r) are uniform in h. 8 can be chosen very small in the fashion of h chosen 

in the proof of Theorem 13. Therefore, the theorem is proved, a 
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