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Stratified fluid - panel method

Nomenclature

F, Froude number = -%

g Gravity acceleration = (0,0, —g)

L Characteristic length, for example length of body
N(2) Brunt-Vaisala frequency = —;f;j%f

NE o =52

Ozyz Moving reference coordinate system

T =z—¢

2 =y—7

3 =z-(

-U(t) Translational velocity of body = —{U(¢), V(t), W(¢)}

u(z,y,z,t) Parametric disturbance velocity vector = (u(z, y, z,1), v(z, 3, 2, 1), w(z, y, 7, 1))

V(z,y,z,1) Disturbance velocity vector

x Position vector of the field point (z,y, z)

VL)

T = 1—(%)

T2 = (%)2 —1

7 == 5t

7t = My — )"+ £2)] - N*(C £ 2)?

p(x,y,2,t) Viscosity of fluid medium

" Unit normal pointing outward from the fluid domain = (ny, na, n3)
ng = (n1,n9,0)

plx,y,z,1) Density stratification of fluid medium

3 Position vector of source point (£, 5, ()

p Boundary surface enclosing the fluid domain,
o* = Ml(y —n)® - (£ )7+ N (¢ £ 2)?

0 Fluid domain, z < 0

v =% &%

Va =(Z: %0)
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1 Introduction

In many maritime engineering applications, potential flow theory has proved successful in describing the
behaviour of a body travelling or fixed in an irregular seaway, Faltinsen (1990). Furthermore, potential
flow singularity distribution panel methods, developed from the original approach proposed by Hess and
Smith (1964), have allowed descriptions of the behaviour and interaction mechanisms between arbitrary
shaped bedies and fluid flows. This is achieved by discretising the wetted surface geometry of the body
by panels over which appropriate singularity solutions (or fundamental solutions) of unknown strengths
are distributed. The latter are determined subject to the imposed boundary conditions in the developed
mathematical model.

This report describes a preliminary investigation into the development of a boundary element method
to determine the fluid actions and velocity flow fields associated with an arbitrary shaped body moving
in a fluid exhibiting a prescribed vertical density stratification. The approach is analogous to a potential
flow singularity distribution panel method adopted in problems assuming an ideal fluid of constant density
but now the singularity is replaced by a fundamental solution accounting for the density stratification
and therefore the rotational characteristics of the fluid.

Commencing from the general equations of momentum and conservation of mass, we derive linearised
equations of motion describing the fluid disturbance caused by a body moving with a constant transla-
tional velocity in the horizontal direction. The inclusion of density stratification into the mathematical
model destroys the concept of an ideal fluid and hence irrotational fluid motion but in the present con-
text this influence is conceived to be of far greater importance in the development of the mathematical
model than viscous effects. For this reason, a simplified mathematical model is assumed which neglects
the influence of viscosity but retains a prescriptive description of the vertical stratification of the flui
density. '

" Although a single equation of motion in the vertical velocity component of the fluid disturbance (say)
can be deduced, it is found advantageous from a derivation point of view to treat the individual coupled
equations describing the parameters defining the fluid disturbance separately. When these equations are
expressed in non-dimensional forms, two approximate theories are deduced dependent on the relative
magnitudes of forward speed and the density stratification of the fluid through the Froude number and a
nondimensional Brunt-Viisala frequency respectively. Namely a high speed and a low speed approximation.
Because of practical considerations attention is focused on the low speed approximation although the high
speed approximation and a theory void of any approximation are briefly examined.

A boundary integral identity equation is developed and this was found to simplify by grouping terms
to create fundamental equations from which fundamental solutions are derived. It is these coupled
solutions which replace the singularity solutions in an ideal fluid flow problem and they are functions
of the prescribed forward motion of the body and density stratification. Fundamental solutions to the
fundamental equations-are sought in the presence of-an implusive point action which permits significant
simplification to the integral equation identity. Further refinement and development of this area of study
are required but initial results show that the general proposed approach is feasible and the fundamental
solutions show characteristics associated with internal waves.

This study concentrates on deriving suitable fundamental solutions which exhibit internal wave char-
acteristics exerted by a body moving in a prescribed density stratified fluid. At present, we are interested
in creating a mathematical model which demonstrates the physical fluid structure interaction processes
in a qualitative sense rather than quantitatively. Later, when the proposed approach is developed suffi-
ciently emphasis will be transferred to examinations of the quantitative aspects of a three fluid-structure
interactive process between body, stratified fluid and free surface.

2 Equations of motion

It is assumed that the fluid structure interaction experienced by a rigid, arbitrary shaped body moving
in a prescribed density stratified fluid can be described with reference to a body fixed coordinate system.
For generality this moves with a translational velocity —U(t) = —{U(¢t), V(t), W()} and the equations
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of motion describing the velocity of the fluid disturbance V'(¢) in a stratified fluid with viscosity p and
density p are of the form ( see Batchelor(1967) )
Equalion of momentum

DV [ov L .
0B =0 |G+ (V- VIV] = —Tptpg + V)

1 2 .
—VVii—(V x V)xVp+V(ﬁVoV)+§V(V-V)+§V-VVp+pU (1)

Here p denotes the pressure in the fluid, g = (0,0, —¢) and the variables 8 and i denote the kinematic
viscosity coefficients. An overdot denotes an acceleration and V = (38;, %, %).
Equation of Conservation of Mass or Continuily

Dy % _
Di-l-pV-V_at—l-(V Vip+pV-V =0 (2)

It is assumed that the fluid is incompressible and no heat transfer occurs, that is

V-V=0 (3)
The substitution of equation 3 into equation 1 gives

DV .
PG = ~VPteg+ VHuV) - VViu— (V x V) x Vu+pU (4)

and its substitution into equation 2 gives
a
S+ (V-V)p=0 (5)

Let us assume that the variables describing the fluid structure interaction can be expressed in the
form

p(I,y,Z,t) = pﬂ(zat) + Pl(zay:z:t)
p(w)ysz!t) = p0(27t) + Pl(z:y;z:t) (6)
,u(z,y,z,t) = ﬂO(Z’t) + pl(xxyazst)
Viz,y,z,t) = U@} + wu(z,yz1t)

where p1, py and y; and |u| are all small quantities compared to pg, po and pp and |U| respectively.
Under these assumptions the equation of momentum, equation 4, describing the parametric distur-
bances becomes

DU+ u .
(po + m)(—m—-—) =—=V(po+p1) + (po + p1)g + (po + p1 U
+ V2 [(mo + ma YU + )] = (U + ) V(o + 1) — [V x (U + w)] x V(pg + a1 (7)
from which the first order terms produce
Du ou 2 2
POy = Po 5{+U'v“ ==Vp1+p1g9 + V(pou) ~ Vo — (V x u) x Vg (8)

It is interesting to note that to the chosen order of approximation this equation is not dependent on the
parametric viscosity variation ;.
Similarly equation 5 becomes

6p1

Ta-t“-+U'VP1+‘u-Vpo=0 (9)
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and equation 3 becomes

Vu=0

(10)

Furthermore, for a body travelling horizontally with a steady translational velocity U(t) = U = (U, 0,0)

and assuming po(z,1) = po(2), equation 8 in component form becomes

Po (@—FU@) z—aﬂ+#ovzu+% (@_ﬁ_&w)

ot O 8z 8z \ 8z ' Bz
00 B) =T oy (B )
””(at +U6:5) =T oy TRV TS\t

dw dw\ _ dp 2 Gpp Ow
p0(3t+Uaa:)__ 2 +HoViw = prg +2 z

Equation 9 becomes

and equation 10,

By forming the combination 2 [11] + 5‘% [12], we obtain

Vip — [ﬂJ,éﬁf_w(@Q_u_afL]
BPL= PO | 505t T Bydt 522 " Gzdy

2 — —
+ uoV ( + 92

dr ' 8y
and applying equation 15, we find that

8w 5w fw Bu
2 _ _ _ - 2 (YW oro 20— =
Vip1 = ""( a0t Uc')a:az) woV (32)+ b2 (V**“’

D (B8 (0 O (g
“’“Dt(az)_“"v (az)Jer'(v’*‘”‘W :

whereas the combination % [11] - & [12] gives

D 2 Opo 8] (0n Ov\ _
o om- 48] (5-) -

The substitution of these results into equation 17 gives

D& Oug od
w2 ululNRPES v £-F, W i) — | =
h p1+poLn Ho 3 (w4—az)] 0

du 61)) Opo [ 3y +62w+ v +62_w
028z ° 0z  dydz  Oy?

(11)

(12)

(13)

(14)

(15)

(17)

(18)
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whereas the application of the joint operators % and V2 to equation 13 in conjunction with equations 14
and 17 gives an equation describing the vertical velocity disturbance, w, in the form

D?* s dpo D* (0w 9p0 o2 D oa
g (Vu)+ 5 5 (‘5‘) — 97, Vaw — gy (Vi)
Bpg_D_ 20w &uy D 2 Bpo D 8*w
Qazm(v az) 32 bl (Y W 25, Big =0 (21)

The evaluation of w from this equation allows the remaining variables p;, & and p; to be determined
from equations 14, 19 and 20 respectively.

The inclusion of density stratification into the mathematical model destroys the concept of irrotational
fluid motion and this influence is considered to be of far greater importance than viscous effects in this
linearised theory. For this reason, we shall examine a simplified mathematical model adopting linear
equations in the absence of viscosity, go = 0, but with density stratification po(z) and rotational fluid
motion. In this case, the equations describing the fluid disturbance can be expressed as

[11] and [ 12] o2t +p=0
[13] po e+ 32 +gp1 =0 22)
[15] Dot wipr =0
[19] vie+3e =0

Equation 22 can be written in non-dimensional form using the non-dimensionalising variables L, U,
po and g. That is

$=ULP 1 = polU%p} w=Uuw
(#,9,2)= U= ¥,7) t=4t o =¥ow
2
Vi=(z)" V¥ pL=popy  N*z)= £N™(2)
and
Dir TP =0
B S — N(a)p + B = 0
> (23)

%1:‘% —w'N?(z)=0

Ve + 9% =0

az' /
By eliminating p} and g} and dropping the superscripts in the subsequent analysis but retaining the

understanding that the equations and variables are expressed in non-dimensional form, the following
coupled equations are derived

Vie+ 22 =g
(24)

2
B (0= 22+ M) + (32) w=0

3 Low speed approximation theory

If we let NZ to denote the maximum value of the non dimensional parameter N 2(z) and restrict the
. 2
analysis to the range N2 < 1, F, < 1 such that %@s ~ O(1) then a low speed approximation can be
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2
introduced into the analysis by assuming that %gl > N2 . That is, the variables w and ® can be written
as

w=wy+ NZwy + (N2 2w + ...
® =35+ N23&, + (N2)2®s + ...

Substituting w and ¢ into equation 24 a zero order theory is described by the equations

Vady+ 8 =0

D 2 (25)
W(WU—E&)'%N (Z)UJQZO
whereas a first order theory is based on the equations
Vh¢1 + 'aﬂ’]' =0
D? 2 2 (26)
B (w1 — 52) + N2 (2w = -N*(2) Fke
with additional equations describing higher order contributions.
For the steady state case, % =U -V, we find that the zeroth order approximation becomes
Vido+ 2 =0
(27)
(U - V)z ('U)() — Eu) + NZ(Z)U)[) =0

and

SN ) } (28)

= ~F3(U - V) (wo - B2

where N2(z) = (%%1)2

4 High speed approximation theory

Alternatively, for Fy, > 1, we can introduce a high speed approximation by assuming that <« N2
and, in this case, the variables w and ® can be written as

1 2
w:wg+F—:w1+(J-F.-l-E) w2+
¢ = @()-I- (I)1+( n) $y ...
Substituting w and & into equation 24 a zero order theory is now described by the equations

Vidg+ 8 =9

(29)
Bes (w0 - &2 4+ N2(2)®5) =0
and the first order theory is based on the equations
Vid + 2 =0
(30)

B (w1 — 824 4 N?(2)®) = —N2(z)wg

and additional equations can be derived to describe the higher order contributions.
For the steady state case, Dt =U -V, we find that the zeroth approximation becomes
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Vidy + 3 =0
(31)

(U - V)2 (wo — 282 + N2(2)®) =0
and
pr=—(U - V)2, }
(32)
(U - V)m = N2(z)wo

A simple manipulation of this last equation, gives

V2w — N(z) 3;“ = 0. (33)
If a solution is sought in the form
wolz,y,2) = Wo(z)e"k'z
where k- @ = kyz + kyy and k% =, /k2 + k2 we find that
dszO—N (z )ﬂ-kﬂwozo (34)

which has a Bessel type structure.

5 Integral equation

For the conditions imposed, the low speed approximation theory is applicable to studies describing the
operation of submarines (i.e. F;, € 1) in a density stratified fluid whereas the high speed approximation
theory is more appropriate to examine the behaviour of a torpedo (say) travelling in a similar medium.
For this reason, in the main, we shall focus attention on the low speed approximation theory adopted
. and seek solutions to the coupled equations describing the zeroth order approximant. Namely, solutions
to the equations

ow

vVie+ 5, =0 (35)
(U v)? (wm%?) + N ()w=0 (36)

where, for convenience, the subscript “ ,” present in equation 27 is omitted.

By using Gaussian integral formulae, we can transform equations 35 and 36 into an integral equation.
To do so, we introduce two unknown auxillary functions f() and h(r), where » = @ — ¢ represents the
position of the field point  relative to the source point £. Thus, equation 36 when multiplied by f and
integrated over the fluid domain Q gives,

fﬂf[(uvf (w—%?)+1\72(z)w} dQ:L{w[(U-V)2f+ﬁ2(z)f] +<1>[(U-V)zig]}cm

+ [{w s o) (v-32) - 9@ mpu - v - 9)0) - @ maw - vyl az

(37)
whereas equation 35 when multiplied by k and integrated over £ gives

[v2¢+6w] dQ:/ {cpv?h wah}dﬂ
6 Q az
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+/ {hnp - V3 ® — Ony - Vih + hwng} dE (38)
>

Here, % represents the boundary surface enclosing 2, n = (n1, na, n3) is a unit normal pointing outward
from the fluid domain, iy = (n1,n2,0) and V; = (81:’ aa ,0).

Since the left hand terms of equations 37 and 38 are zero according to equations 35 and 36, the
combination of equations 37 and 38 gives the integral relation

fn{w [(U .V)2f+1v2(z)f%’zi] + o [(U . V)ﬂ-‘;%- vﬁh]}dg

:L{h%_ﬂ:: (U -n)(U - V)af]+hwn3}d2

+/ {(U.V)f[(U-n)w—nsv-vq»]_(u.n)fv -v( ‘;‘f)}dz: (39)
b
So far, f and h are undefined arbitrary functions and we are at liberty to select their forms. In fact,

examination of equation 39 shows that there would be significant simplification to this identity equation
if we let these functions satisfy the following equations

(Ui + B+ Pt = (40)
(U - vf%j;-‘ -Vihi=0 (41)
and
U -V fo+ N2 fo 4+ =2 ahz =0 (42)
)2% —Viha=p (43)

where a and 8 denote point singularity excitations of the form, o = §(x — £) for example.

In effect, fi1, hy, fo and ks are the fundamental solutions whlch cause the left hand side of the integral
relation in equation 39 to simplify. For arbitrary vertical density stratification, N %(z) we could in principle
solve for fi, h1, fa and h; numerically but to gain a fuller understandmg of these solutions let us consider
the simplified case when N?(z) is a constant, N2(z} =

6 Fundamental solutions - N2 constant

The selection of h; = %il allows the elimination of A, from equation 40 using V3 [40] and 2 [41]. A
partial differential equation involving f; only is deduced of the form

ViU -V)2fi + N?Vif = Via
The elimination of f; using (U - V)22 {40] produces the following equation in & only,
VU - V)?hy + N*Vihy = (U - V)’a

and in a similar manner, equations for f> and A, can be determined.
This process allows equations 40 - 43 to be expressed as



Stratified fluid - panel method 11

L(h) = Vi (44)
L(h) = (U V)i« (45)
Lf)=5 (46)
L(h) =~ [T - V) + 1\72] 8 (47)
where the linear operator £( ) is given by
£0) = @ - v3Eve+ B2 () (48)

We are at liberty to take the doublet « = § = (U - V)7, such that equations 44 - 47 can be written
in the matrix form

ol = - 7 (49)
Fo kg U-v - |@vr+ i)
By the application of Fourier transforms, we can rewrite equation 49 into the form
RoR) [-g% -
Ly _ = o . r (50)
Fy Hy ip A
oXx .

where

2 - 2
L()={%+[(ﬁ%) —1] A?}() (51)

and Fy, Hy, F3, H3 and T are the Fourier transforms of f1, By, fa, By and ¥ respectively.
Furthermore, without any loss of generality, we can further assume U has a non-zero component in
the x direction only such that U/ - A = X;. Thus equations 50 and 51 become

oo —'}\—? =t
L} | o (52)
Fz Hy ALI. _1NT_1AL

where

.~y 2
L) = {aa—;+ [(i—\i—) —1] ,\2}() (53)

In particular, in our case, the singularity funciion ¥ can be chosen to have the form

¥ =8(z = ()é(rs) (54)

where (z — () denotes the vertical separation between the singularity and the field point and r; denotes
the relative horizontal distance between the singularity and the field point. The Fourier transform of this
singularity function is given by

if-A
2r

€

I‘:(S(Z—C)
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Let us now examine the equation

82
ot

subject to the boundary conditions

2
(%) - 1] )F} G(A1,hz,2,8) =6(z =€) (55)

G(A1,A2,0;8) =0 and G(Xy, Az, —00;&) bounded for Fy and Hy
_ _ (56)
QEL%?,,EQ =0 and G(A1, A3, —c0;€) bounded for Fy and I
This equation has the following solutions when considering F; and H,
r eM1Me+z) _ 12 (4—=)
291 A 0>Z>C Af)ﬁE
Y1Ae+C) _ oA (s 4D
e = 0>¢>z
z 0>z2>¢ s g
G(A1, A2, 2;€) = « M=N 57
( 1,12, ?e) C 0> C >z 1 ( )
sin Y2 A({+2)—sin vz A({ —2)
27922 0>Z>C } ,\%(1‘\}2
in y2A(z+¢)—sin ¥ A(z—(
| w0 g5 (s
and for Fy and A, we have
- 8111\((+=)+e71‘((—-’-)
o OO Y
eTiA(z+¢) 4 oA (2—¢)
S 0>¢>z
J — 0>z>( . o
G(Al:'\%z;e) = )‘l = N2 (58)
-z 0>(>z2
in yaA(¢+2)+sin yaA((—z
sin yaA( i)h:l:‘r ({—32) 0>z>¢ } < i3
sin 2 Mz 4()+sin 2 Az —¢) 0> C S 2 1
\ — 292

where
& 2
w= - (3)
“ 2
- A{¥Y -4
72—\ X

Note that the function G(A4, Az, 2;€) can be obtained for the case z < { by exchanging z and ¢, this
also confirms continuity in the vertical dimension across the singularity point.

The function G(A;, Az, z;€) can now be used to determine the functions fi, h;, fa and hs by the
application of inverse Fourier transforms. That is

(fl 7'1) 1 f°° /°° -y ik £
2 - : G(A1, A2, 2, €)e™*S M dAdA, (59)
fa hy (2‘.’!’)2 -0 J—0 1r11__ —I.N?;A?

Detailed derivations of functions fy, k1, f2 and hy are given in appendix A.
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7 Summary of antisymmetric fundamental solutions

No radiation condition is included in the derivation of the functions, therefore the solutions display fore
and aft antisymmetry. The structure of each function is organised into singularity and image expressions.

B i — o 1.
.1'122?/‘,Cr 7_—'—— ’)«%——N—;l(ﬁ_N2)(C_z)2KO(\/T)— \/‘YTKI(\/T)l sinry A diy

47rf \/.— [(N2 (¢ —2)*To(v/—v~) - \/_?Jl(\/—y-)} sin ri A dXy

27[.2/ [('\2 N? )(C+z) Kol \/F - ‘/—K1(\/7_+)] sinrphdA;

1"*

\/7)@ l(N2 AN+ )2 To(v—7H) - \/%Jl(\/ —7"‘)] sin ry A1 dAg (60)

where

= Ay—n)’ - (C 2+ N3¢ £ 2)°

A(C-2) 17 N?
hy = 57 |- \/F Ki(\/y~)sinri Apdig

N

87 M3(¢ — 2)y/ N?
_Z; i = = Jl(ﬁ)smrlz\ dA

N —2)?
4,,-[,-% + (C 2)2]§ sin r1ﬂ

1 o AN+ 2)y /A -

2
\/‘r—"' Ky(/vy1)sinridddy

2w Jy
1 PP ¢ 4 2)y /N2 — 2
— "
+47r ; ,__7+ J1( ytysinr AdqdAy

N((+:)
Ar[r} + (¢ + 2)7]3

sinr At (61)



Stratified fluid - panel method

P ©{(-2)
2“2 ; \/7_ Kl(\/—)smrl,\ dXy

L1 87 (¢ — 2)y/ N2 — A2
ym \/:7__ Ji(v/ =y }sinry A dAy

0

|2

+
anfri+ (¢ - 2)7]

sin ™ ﬁ_

1)
2 o o Ki(v/7t)sinrdidAg

BY (¢ +2)y/ N2~

41‘_ A \/:’T_ Jl(\/—'y‘l')smrl/\ dA;

_ |72 . +
4“.[1.% + (C + 2)2]% SN T'lﬁ

hy =
21{_2 \/ NZKO(\/ —)sinr Aydd;
| A
= 2 <
7 Jo N —A%Jo( -——y")sinrl)qd)\l
o w\/ v
2 ~
2“_2]& Al—'NzKQ( ‘/+)SiIlT'1)\1dA1

ﬁ+
1'/ NZ - A%Jﬂ(\/ "-—“f+) sin Tl)\ld)q

14

(62)

(63)
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8 Application of a radiation condition

The functions derived in the previous section obey the fundamental equation 49 subject to the singularity
disturbance v and the imposed boundary conditions. However, due to the symmetry of the operator £
and the right hand side of the fundamental equation, the solutions are antisymmetric about the singu-
larity point. As the body possesses forward motion, it is required that the functions display differential
behaviour upstream and downstream. Observations indicate that the disturbance upstream decays far
more rapidly than the disturbance downstream. Theoretical problems arise from the solution of the
steady state case for the solution does not display uniqueness in the x or y dimensions and contains free
wave solutions which destroy the physical meaning of the mathematical model. Three methods exist
which allow an unique solution to be sought :

(1) Energy considerations. An unique solution is obtained by requiring that the energy is always
radiating away from the disturbance. That is the Sommerfeld radiation condition is applied. This
eliminates the upstream waves travelling away from the body ;

(2) Time dependent solution. An unique solution can always be found if the problem is treated as
time dependent by starting the fluid motion from rest. The required solution is found by taking the limit
of the time term to infinity ;

(2) Artificial damping mechanism. Artificial damping is introduced in the form of a body force,
F = ¢V and a solution sought as ¢ — 0. A simple example of this technique appears in the Ency-
clopaedia of Mathematical Sciences (Volume 13 , III §2.5, page 208, example 9) and is also widely used
by Lighthill(1979 §3.9 page 267 and §4.9 page 363). This approach is the most readily applicable to the
current problem and is now described briefly.

The introduction of damping into the equation of momentum (in the absence of viscosity) modifies
equations 11,12 and 13 to the form

Du 8p1 _
Pu*a'i'ﬁu-i--a—z—-o (64)
Dv 6p1
Pth+w+ay—0 (65)
Dw apl _
Po*Et—+fw+Fz—+9P1—0 (66)

where the terms involving e denote the contribution from the artificial damping.
Equations 14 and 15 remain unchanged. That is

dp1 dp1 3&

E'{-Ua—*’waz =0 (67)
du v Bw
5;4‘(-3;4-52——-0 (68)

Equation 22 becomes
o +ed4+p =0
poe ew+ 8 4 gp =0 .
2ot win =0 (%)

Vid+ 32 =0

and after the non dimensionalising process we have
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D2 ted+p1 =0
%—‘f+ew+§£¥—N2P1+%3:0

Dpy 2 _
B —whN =20

(70)

Vi@—]—g—";’-:[}

By eliminating p, and p; and applying the steady state low speed approximation, the symmetric
nature of the problem posed by equations 35 and 36 is destroyed and these equations now have the form

ow

2g 4 JW _
Vie+ 8z

0 (71)

U.V(U-V+e)(w—g—(f>+l\~’2w:0 (72)

After the application of the integral formulation, equations 40 - 43 become

U-V(U-V—f)f1+]\72f1+%’~:a} -
73
U VU V-6 -Vin=0
and
U-V(U-V—e)f2+ﬁ2f2+%"}=0} (
74)
U. VU V-2 Vi =g
from which the matrix equation 49 is modified to
A Ry ViU -V) (U-VU -V —¢)
cl’ = . (75)
o by U.-v _[(U.V)(U.v_c)+N2](U.V)
where the linear operator £( ) is now given by
LO)=[U VU -V-9vi+ Fv3] () (76)

Applying Fourier transforms and setting U - X = A; we obtain

o H ] _%i—c —id
) = _ ) T (77)
Py H, i i()q N—“)

=T

L

r\]_—ff

where

2 T2
J'J()={53Z—2Jr [————,\1(5_&)—1] Az}() (78)

Let us now examine the equation

2 T2
{%ﬁ""‘ l%m—l] Az}G(}u,Az,Z;E):E(Z_C) (79)

subject to the boundary conditions stated in equation 56. This equation has the following solutions when
the boundary conditions applicable to F, and H, are applied
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A(z+c)\/ o= i A(c—z)\/l—mi‘%.:; 052> ¢
1

224/1 = A . —
XX 1—1¢) e"((“"‘) l_mi\;‘_z_;a_ _ e’\(z_() l_iﬂ%)' 0> C >z
(80)

G(A1,22,2;6) =

and for F» and Hy we have

A(z+()v‘ 1 l-“ A(C—z) l_rl('ﬁ—z—_ﬁf 0>2>(
1
) N4 —
(A —ie) A((-i-z A . ,;,.;“ A(z—() /1__370% 0>(>=z

(81)
The function G(A1, Az, z;€) can be obtained for the z < ¢ case by exchanging z and ¢, exactly as
described in the antisymmetric analysis.
G(A1, Mg, 2; &) can now be used to determine the functions fi, ky, fo and hg by the application of
inverse Fourier transforms. That is

fl El zA —tE _2)‘1 )
' . ey—it-A
(fz o ) (2“ / / ( i - 2] )G(Al”\z’z’ﬂe dadry  (82)

G(/\l,Az,ﬁE) ==

Al-:c

Detailed derivations of the functions fi, ks, fo and hg are described in appendix B.
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9 Summary of asymmetric fundamental solutions

18

The functions below contain terms which do not appear in their counterparts derived in section 7. Their
appearance is due to the radiation condition being satisfied. These additional terms destroy the antisym-

metry of each function and are underlined.

——1- m_._’\%.___ 2 a2 — )2 __L — i
f“zﬂzfﬁ Y_W[("l N - 2)*Ko(v/77) Fffl(\/‘r_)ls 1hdA

1 /ﬂ A% [A2 o —
. (C-—z) Ko(v/7 ) — —=Ki(v/77)| cosriArdA
272 f, - /ﬁﬂ_)ﬂ 0 = 1 1A1dM
LT [ s — P - (/)
rrjo 7+ ﬁE_Af h(N /\1)(C Z) Y'n( Y \/_7},1( Y )J COSf‘lz\ldz\l

1 f# A2 [ o~ ]
el — 2 (N2 = AN (¢ = )2 TS ) = 1 (V-
+ ﬂ,/o - J{ﬂ!_)‘% -( 1)(C ) ( Y \/——")’TJ( Y )-

sinr A dh

1 + 1.
_QF_/. \/—Nz I:()‘z 2) ¢ '|""")2K(J(\/'—YI - \;'y_‘*'Kl(\/TT)_ sinry A dX,

- + T
27r2 jﬁ+ +\/ﬂ [()‘f (4 z)ng(\/‘y—‘l‘) - iﬁKl(ﬁ)- cosry A dA;

1 A a2
wh T |V DY) - Yi(v=r* Ard)
+47r/0 o+ ]\72—,\2 l WC+ 2)°Yol/—1t) \/— (V=7 )] cosri A dhy

g+ 2 .
- é/ﬂ \/A— [(N2 = M)+ 2 To(V 1) - \/j?Jl(\/ —7“’)] sinrp A ddy

(83)
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h =

1 fm”(‘i-z) N _

a7 /. i K1 (V77 ) sinrihidy

N ARC-2)

+2”2 p- \/’Y_‘
/ﬁ A’(g—sz? M, ( )

K1 (V™) cosridndn

cosriA di
4?1'

1P AR =2/ N2 22

=, =

A (\/ZT—) sinr A dA;

___Ng-2
1l + (- 2PP

1 f°° /\2(C+Z)\//\2 Nz

Yy
27[' N

1 NV(C+2)\/N2 *2

211'2 p+

sinr 3~

( 7+)sm riadr

( -y"') cosri A dA

BT A3 (¢ + 2)/N2 - A2
! 1 +2) lYl (\/——7"') cosriAdM

4w Jo \ /_7+
BYANC + 2 /N2 - )«2
( —'r"‘) sinri A dXi;
47r 4\ 1_7+
N 2
N(¢+2) s sinr 3%

4l + (¢ + 213

19

(84)
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©{(—2)

— N2
Ki(vvy~)sinriddA

N C — 2z ,N? 4\2
( ) (:OSf‘l)lld)q

27|'2 -

F7((~2)
47r _-‘}’ Yl(\/ ~Yecosr ArdM

B~ ((—2)\ /N2
_|.:11; i ( )—7 J1(1/—7 }sinri A dAg

[
dn[ri 4 (-2

7] sinry 5~

1 o (C42) /A2 — N2
7 /s s

Ky(v/yt)sinriAdly

1 N+ N -
+2?-/,8+ Ki(v/1t)cosrididry

\/F

Y (¢ + 2 \/N2 A2
( ) Yi(v/—yt)eosriAidMy

471'

st (¢ + z)\/ — A
- A —_'y_ Jl(m)smr]/\ldz\l

|f'zl .
- 47r[r§ n (C " 2)2] sin T1ﬁ+

20

(85)
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| S Rl AP :
hz:—ﬁ/ﬁ A — N2Ko(v/7~)sinr AdjdAy

1 N
~3.7 VN = M Ko(\/7™)cosrididA;
8-

I L
+E A szA%YQ(\/—‘Y_)COSle\ldAl

1 e —
—E A NZ—A%JU( -7—)51nr1A1dA1

1 Rl ~
+§;‘r‘§ . A% — Nng(\l‘T“')Sin?'l/\ldAl
N

1 (N
+ﬁf VN2 — A Ko(\/yt) cosmAidA;
8+

1 3
e A VN2 = A%Yo(v/—7F) cos mhd)g

1 s :
+ i ; N2 = A2Jo(+/—7F)sinry ApdAy (86)



Stratified fluid - panel method 22

10 Utilisation of the fundamental solutions

The solutions obtained in section 9 may now be substituted into equation 39 together with the assumption
previously stated that U = (1,0, 0).
Substitution of the functions subscripted 1 gives

ow o® ohy *f ] of ad 5} 6@) }
a_z_/):{hl [a—nh--f‘H)ﬂs] —@['5';; ﬂ["'—axaz +6__1; ﬂlw—na.a' ﬂ]_f]_ax w 'b? d%
(87)
whilst the substitution of functions subscripted 2 gives

av fi o] 8hs 8%f, Ofq i 0] g o
Bz = L {hz [E&: + wn;;] e [—an—h - ngm} + Bz [nlw— nagx—'} - n1fga—z (w — E)}d}j
(88)

The solution of this pair of simultaneous equations provides the velocity components at specified
points, once the boundary conditions on the body’s surface have been selected.

The appearance of the velocity field can be deduced from the characteristics displayed by the functions
f1, k1, f2 and hy. The figures included in this report represent the disturbance function A produced by
a single translating singularity submerged in a fluid of constant Brunt-Vaisila frequency. The position
of the singularity is indicated by an ‘x’ on each figure.

Figures 1 and 2 are the function calculated on a horizontal plane z = constant. Because the disturbance
is symmetric about the plane y = 0 only half of the wave system is shown. The singularity is moving
towards the bottom of the page.

Figure 1(a) illustrates the antisymmetric nature of the function hy before a radiation condition is
introduced into the analysis. Figure 1(b) shows the equivalent asymmetric solution derived by introducing
an artificial damping mechanism into the mathematical model and letting the artificial damping constant
€ — 0. This solution exhibits the characteristic “v” shape pattern associated with a travelling pressure
source.

The influence of increasing the forward speed of the source is seen when Figures 1(b) and 2(a) are
compared. Namely, as the speed increases the “v” shaped pattern becomes sharper (i.e the angle in the
apex decreases with increasing speed).

The strength of stratification also effects the magnitude of the apex angle. This is demonstrated by
comparing figures 1(b) and 2(b). These figures show that reducing the stratification ( i.e a lower value
of N) causes the apex angle to decrease.

The functions also possess wavelike characteristics in the vertical plane y = constant. Figure 3 is the
function hy calculated on the plane y = 0. The motion of the singularity is towards the left hand side of
the page. The upper horizontal surface of the figure is the plane z = 0, which is the fluid’s surface.

The properties of the functions demonstrated in these figures indicate that a wavelike form of solution
has been obtained and this behaviour will be reflected in the velocity field.

Conclusion

This report describes a non potential method to obtain the velocity field created by a uniformly trans-
lating, arbitrarily shaped body, fully submerged in a stratified fluid. In the case of a fluid of constant
Brunt-Vaisala frequency fundamental solutions are obtained. These solutions demonstrate the properties
which other investigations (constant density layer models) have indicated. The implementation of this
model and comparison with layer models is now being undertaken.
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Figure 1: (a) antisymmetric and (b) asymmetric function hs - horizontal plane. U = 2ms™*, N = 0.10s™"

The disturbance function hs produced by a single translating singularity submerged in a fluid of
constant Brunt-Vaisala frequency. The disturbance is symmetric about the plane y = 0 so only half (the
port side) of the wave system is shown. The location of the singularity is indicated by an ‘x’ on each
figure. The left hand boundary of each figure is the line y = 0,z =constant. The singularity is moving

towards the bottom of the page.
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Figure 2: Asymmetric function h2 - horizontal plane. (a) U = 5ms™!, N = 0.10s~! and (b) U = 2ms~?,
N =0.05s~!

The disturbance function h; produced by a single translating singularity submerged in a fluid of
constant Brunt-Vaisala frequency. The disturbance is symmetric about the plane y = 0 so only half (the
port side) of the wave system is shown. The location of the singularity is indicated by an ‘x’ on each
figure. The left hand boundary of each figure is the line y = 0, z =constant. The singularity is moving
towards the bottom of the page.
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Figure 3: Asymmetric function hs - vertical plane. U = 5ms™!, N = 0.50s~!

X denotes the position the singularity which translates horizontally towards the left hand side of the
page. The wavelike wake in the vertical plane is shown.
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A : Derivation of antisymmetric fundamental solutions

2 1A 1A{(—
(2Tr)2h2 _ /~w /oo _z_N /\— )\% (eT (C+Z;7_:‘T (¢ ZJ) e"‘"[(f—f))‘l+(y—ﬂ))‘?]d)‘2d/\1
N J=ce 1 1

® - . .
+/ joo —iN2 — A2 [sinyaA(¢ + 2) — sinya A(( z)) e—ilE=Entr=-malgy,da,
-NJ-oo A1 272)‘

-N too 2 32 1 A((+z) _ omA((-2) ,
+] / -—iN . AL (e . € )e-—t[(t-&)l\x+(y—n)Az]dA2dA1
oo Jeco 1 1A

oo g2 _y2 @ £ oMMl +2) _ g A((—3)
- f Mo X i f (e € )cosrz)\ztﬂgdx\l
i T A1 0 A

Y g2 _ 2 0 £ — s —
+f __,jN—Ale—l(r—E)’h[ (sm'}’zz\(('-i- z) — sinyaA({ z)) cos radadAgdAy
-N 72/\1 0 A

-5 V2 _ 32 2 £ omAM{+z) _ onA((—z)
. +/ _i—-—-—-_N A e“("f)’\lj (e i )COST‘QAQd/\gd/\l
e T A1 0 A

where rg = y — 7.

This simplification is possible as the exponential e=*"2*2 = cosryAy — isinreAa. The remaining A,
integrand is an even function of Ay so the real part of the integration from —oo to 0o becomes an integral
with limits 0 and oo whilst the imaginary part of the integration is an odd function of A» and is zero.

The integrals

o o= py/ri 4
0 /72 + 72

Re(B)>0 Re(y)>0 a>0, (89)

cos azdzr = Ky (7 a’ 4 ﬂz)

and
™ g 2+ a? .S /% — b2
f Sl—n(p—aicosb:r:d:t:z 70 (a P b) 0<b<p (90)
0 VzZ +a? 0 b>p>0

(see Gradshteyn and Ryzhik (1980) 3.961(2) and 3.876(1) respectively) can be applied to the A, integration
if ko is rewritten as

N2 _ 22 2 ammAl(+z] _ priAl(—z|
(27)?hy = / —'iN——le"(”"'E))”/ ¢ € cos |ra| AzdAad Ay
N T1A1 0 A

- jN _iue-—i(r-f)h /w (Siﬂ‘rzz\lC + z| —sinyAl¢ — 2]
0

e e 3 ) 08 |ra|ApdAzdAy

-N v2 _ 32 00 A+t a2

N A v

+/ —i T A —i(—E)h / (e i ) cos |ra|AzdAad )y
oo T1A1 0 A
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because

M2>0 (£2<0 A=A +A2
thus

1,220 £ 2) = =122l £ 2],

cos rgdg = o8 |ra|As,

siny2 A(¢ £ z) = ~siny2A[¢ £ 2.
The inequality b < p requires the modification of the integration limits for the s integral. That is
Iral = 72I¢ £ 2
which yields

Ng+2) N2

Vs + (¢ £2)? ! NEEYEEE

+ _ __ N+ +
B =~ iy 058

- N(¢~ - Y
pr=-gmdte 0<p <A

If we let

A
20

it follows that

rytha = [ =2 emiemon iy (ot ¢ 71 R+ o7

1

il

WA — N2

g o2 Z2 —
_.72[/ —iN < A e~ g, (\/Nz(( +2)2 = Ry -2+ (C+ 3)2]) Ld/\l

o (V= a7+ = 27— R -2 ih

-5+ 1 Nz = A'f
8~ N2 -2 - )
+g [_ﬁ_ _i—Al 1 e—:(ziE)AIJO (\/N2(C —2)2— A?[(y o2 (C— 2)2]) A—dul

N2 =22

# [ A eeon i (it mr s € - R o)

1

|A1]

VA2 — N2

o (Pl =+ € - 27) - Fig = )] d @

29

1)



Stratified fluid - panel method 30

Another simplification can be applied to hy through an examination of the even and odd behaviour
of the integrands, That is

By = #/: VA2 - 2 {Ko (\/~,_+) — Ko (\/F)] sinr A d)y

1= ,
+E ; VN2 = 2AdJ, (\/ —7+) sinri A1d\;
1 = .
~ A VN2 —A2J, (\/ —7‘) sin r; Aid M (92)

¥ =My - 0+ (£ 2)}] - N £ 2)*

where

and
T1=I—€

Equation 91 can be modified using the appropriate formulation of G(A1, A2, z; £ ) and when applied
into the derivation of h; we obtain the result

~(27)%hy = ./: —idt [Ko (VAF) + Ko (v )] M seengy,

A2 _ N2

x 2t A :

-p+ Nz a2

£ .
I / —i,\lJo( -7—) —!/\—l-l——-e"’(z_f))“dll
2 Nz — X2

+ /_ T [0 (Vo) + 100 (VA7) | -ty Y

% ARV
~anhy = [ 2 [k (V) 4 Ko (V) sinmihu,
+£/’e+ M, (V=) sinridsda
2 )y \/m 0 Y M TiA1dAL
+f/ﬂ_ _A (V=) sinriddn, (94)
2h Jwix

"The required function h; is the partial differential of A; with respect to 2. The integration limits are
a function of z and the partial differential of an integral of this type has the general form
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.l% /::(a) Flz,a)de = (g—z) f(¥(a),a) - (gf_i) f(¢(a), a) + 4,(0: af(;a a)

In particular,
FNr2

+
527 = EFNTIE

g5 [t/ = T )

52 42 2
7z [Potv=%)] = HE—2EE D, (=3

and on completing the differentiation it follows that

XN (¢ +2) z) =N D
—2n%hy = / \/7[ K(\/_) \/___Kl(\/-y—)] 1 hd

Nrim (B+)? '
20rd+ (C2+ 2% [z Jo (\/—TﬂTgﬁ) sinr gt

— (ﬁ+)2

BY A3((¢ + 2
v-é-/n (C \/)? J1(\/—T+)smr1). dXy
Nrim {8~)° o sin g -
T G- e gy (V=7 bms-)sinrat

B 3200 — VTE 30
+g/ﬂ A1(¢ \?? )qu( f_—‘T_)Sinrl)\ld,\l

Using the results

(BF)? _((*2)’

N2 ~ (8+)? oo
Jo (y/=7%In=p2 ) = Jo(0) = 1

simplifies the previous equation giving the expression

2172/ A2y /a2 _ N?-[C” K(\/—)—(f/_ Ki(v/77) | sinrdydd,

31
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N(¢ +2)*

~sinr gt
a3+ (C+2)75
1 at )P(C + z)
—_ —~v+)g
+4ﬂ_ A m Jl(\/ 7t)sinr A dh
T 2
N —2) sinry 8~

] +(C— 2P

1 P A -V =N .
o : e Jl(\/?) sin r1 A1dA;

Equation 93 can be utilised in the derivation of fo. This allows us to write

-2y’ f = ,/1: )\il [Ku (\/’Y_"') + Ky (\/7_‘)] __.l_)f}i___e#(wf)*:d/\l

A2 — N2

_ZE/ L3 (V=) _ Ml —ie-omgy,
- N2

Y.

ﬁ_ .
T ) |A1] i(E—£A
-z —Jo (/-1 ) =M gy
/;ﬁ— A1 ( ) /ﬁQ _ /\%

e [ 5[ (V) + 5o (V)| e ona, "
=

or, after rearrangement,

‘ —27? f2 =

Ko (V7F) + Ko (V4| sinrddhy

f ==
g/ﬁ+ S S (V=) sinridndhy
0 /NZ2_ )‘f

— ] _.)‘_2. ( ) sinry A ddy

Now differentiate f, with respect to z to obtain f; gives

—onfy = _-[,:O . /,\% — N2 [(i/—:_f) K, ( ’}’+) (i/-Y_)KI (\/_)] sin Py ArdAy
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Nr3w 1 / ) . +
EY J -t 1=
+2[r% F(C+ 2)2]a \/]\?2 — 8 0 ( oAl g+ | sinr 3

FY /N2 = A2(C +2)
+g/ i( Ji(v/ =7 )sin r A dd
0

N

Ni"g‘fr 1 - . .
B J, - —g- | sinr
A3+ C— 2715 | [52 — gy o (/=1 Inmg ) sinraf

x [P YNZ=M((-2) -
_Efo L Ji(V/ =7 ) sin ridpd

and on using the result
1 _ i+ {(-2)?
‘/ﬁz__(ﬁi)z Nirs|

we obtain the following expression,

1 e P
fzzﬂgfﬁ VAL —N?

C+2)
vt V-

(\/‘}:) -5 K, (\/F)] sinr; A dAy

' |72 . +
R e D

1 YN =2 ((+2)

_a;r.. __‘Y+ Jl(\/?)sin TlAldA]_

0

|72
4nri + (( — 2)?]

+ sinr 8~

LD |
+Zr- A — Jl(\/—T)smrl,\ld)q

The function f; has to be dealt with slightly more carefully as the integrand has an additional A,
term, as can be seen from the following equation :

o 2 MC+2) _ pMAlC-2
(2m)?fu =]_W-/ _,"\_ eV AEH) . A2 e~ilE=—Or+Hy-mial gy, dx,

N 2 g .
_|_/ /oo _ii_. (Sm 12M¢ + 2) —siny A({ — 2)) e~ e =M+ y~-mAalyy, g,
_NJ-x Al 2‘}'2)\



Stratified fluid - panel method 34

2 1x{C+2) _ 1A{({—=z
/ / _z_ eNMCH2) _ gnA((-2) oMl g,
2‘)’1)\

— f = p—iz—£ TA((+2) _ onA((~2)
/f\'r 1714\1 e fu A (e e ) cos radadAadA;

F oo
+] i e~ =M f A(sinya A({ + z) — siny2A({ ~ z)) cosrpAzdAadd;
8 T2M 0 ,

-N oo
1 ; Y
+j —i——e~E-OM j A (e“)‘(“"’) - e“A(C"’)) cos TaAydAzdA
—o0 71)‘1 0

Equation 89 may be appiied to the Ay integration if it is differentiated twice with respect to 3. This
gives

oo 2
2 2o— BV Y +2? — % 2 2
/0 72 + z?e cos ardz 35 [Ko("}’ a +ﬁ)]
Using the results

%KQ(I) = --Kl (;’B),

7 (srai9) = - K22,

Fi

Kafe) = Kofe) + 2 Kq(z)

(see Abramowitz and Stegun(1970) 9.6.27, 9.6.28, k = 1, » = 1 and 9.6.26, v = 1), we derive the
expression

oQ
] ¥2 + 227V T4+2? s apdr =
0

Ki(vva?+ 6%,

[Tﬁ2Ko(‘r\/az+ﬁ2 —\/__

similarly,
] /2% + aZsin (p 22 + ag) cos brdr = { —("5—” —13 [ap Jo(ar/p? — b2) 2 :bb?-Jl a\/p? - 62)] O<b<p
b>p>0.

Thus we find that

(2#)2]"1 _ /Nm __;' ll\lul . e—i(::—f)A. [(Af—ﬁz)(C-FZ)zKo(\/’f—'*’ _

VAT -

ot
\/7—_]_ Ky ( \/’T_+)] dA

N = ,\g_"

T MM eon [z Ay o _ o -
/ st 0 G- Rl - s o
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A

T p* i
L
2 gt 7+ N2 )|2

L\:|=1

| A1y

o
I

or, after rearrangement,

|A1|A
AZ -

/ﬂ lAllAI
B- ,/ ,\2

rryA - N2

e—ilE—ONn ( Y

N? = AC+ 22 o(v/—7+) -

e ON | (W2 — AB)(C = 2o/ Z7) -
LM | (02 - B¢+ 2P KolVr) -

e—i(z—f)f\l

(Al -

R2)(¢ = 2)* Ko(v/77) — —=
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dXy
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dX;
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AT Jo 4 [Ar a2
TTY N~ A
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4r Jo =4/ N2 = A2

\;‘;__Ki(\/‘y_‘)] sinry A dd
(N2 = AD(C + 2)%Jo(v/—7+) - \/%Jl(\/—7+) sinr A dAg
l(NZ (e z)zJu(\/—'y‘) - J%Jl(\/——'y") sin 1 Ard
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B : Derivation of asymmetric fundamental solutions

36

The derivation of the asymmetric fundamental solutions uses techniques and identities established in

appendix A.
Let

then

=Tl

Ya=41-

N2

A]_(Al — 36)

A =
1 )‘1

3

~ (2n)

— 00

1 /00 i(/\f —N2_ if’\l)e-i(x—f)h

()\1 - ’iE)‘]’3

= (2np?

1 fm ‘i(;\? -_ N2._ ieAl)e—’:(x-E)’\l
oo (A1 —i€)7s

Al

[ (1 B0 ) - Ko (Nl + G- 03 ) | an
(96)

2)‘)’3

N2 ) (BA(HC)TJ — =M=

AT _ oAz 0

) e~ ilE-OM+u-MXal gy dy,

) cos 7‘2:\2 d)tgd)\]_

Now let us examine the behaviour of the constituent parts of the integrand as a function of A; as € — 0.

AL —0—-N|-No—g=| -t =0 0— g% gt~ N N — o
Mlva VTN RN/ YR PN/ CS TR R Y ~iy[N 27 | (- A2
MIVAE+GE£0M | VAE VrE i/—7* —iy/=7E VrE VrE

Table 1: Integrand properties of fig

From the table above and using the property

Ko(:l:iz') = —-% [Yo(:ﬂ) + fJo(.’E)] z>0

(see Abramowitz and Stegun(1970) 9.6.4, ¥ = 0) hy becomes

-N
(2m)*hs = f —iy/ X = N? [Ko(v/7) = Ko(V/77)] e7=- O,
-pt —
R,
-N
_ﬂ— — )
_/ VNS A K(Vym)e T OMay
-N

0
V2 _y2._ T _ : — —i(z—€)A;
+ [ VR =3 [/ + (V)] e Oman,
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0
— [ V= =L [T + i) O,

-f=

Bt — .
+ [7 VR =S (/) - (V) e O an,
o |
[0 VR % =S [T — e/ e O,

0

N
+jﬂ+ A N2 = A2Ko(y/yF)e E- Mgy,

- / j_v A/ N2 = M Ko(y/y™)eiE-0%1q),
+ /: /a2 — N2 [KQ(\/“;'_+) - Ko(\f—F)] e~iE-Oxgy, (97)

- Simplifications can be applied to hz through an examination of the odd and even behaviour of the
integrands. That is

1 ™ . .
hzz-z-ﬁf. VAZ— N2 [Ko(\/'7+ —Ku(\/‘?’_)] sinriArda
N
R A
+ﬁ . N2 )\%K@(\/ 7+) cos riAidAy
8
&
_ﬁf VI = X2Eo(V7=) cos r1 ArdA,
-
N A r e
o N2 — X2Yp(/—yF) cosmh drg
0
I LA e
+E N2 —_ A%Jﬂ( —’y+) SiIl TIAldAI
1]

O LA rer—
+E N2 . A%Yo(\/?)cosrlhd,\l
0

T L o ,
~ ) VN2 = A2Jo(v/ =y~ )sinrp A d)y (98)

Equation 96 can be modified using the appropriate formulation of G(Ay, Ay, 2; & ) and when applied
into the derivation of k; we obtain
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_ 3
~(onyth = [ <illemie-on [Kn (uli T§+(Z+C)27§)+Ko (1«\11 r§+(z—C)27§>] dn,

The introduction of |A;| into the numerator and denominator allows the application of the integrand
properties expressed in table 1. That is

- e Ar]A
—(27)hy = / Il 11:7; ~HE=h [Ko (l/\ﬂ r3+(z +C)2‘Y§) + Ko (Mll ri+(z— ()273)] d)

) /:_mﬁ _i\/%e_i(,,_g)h [Ko (\/—y_‘l') + Ko (\/7__)} dh;

_ N2

-gt
+/ 1 iAlp\l -i(:c-—-f)»\:KU (\/7—4-) dhy

)‘2

_ﬁ_
[T i, (e

N /N2 2

+f-c;+ _i.__])i"lLe—i(z—E-)Al -Z [vo (V=9%) +ido (vV=77)] ax

iy/ N2 — A2

i O e () s (v

1 3\2

+](;ﬂ+ _i—_%eq(z_f)h ) _% [Yo (\/_7) —iJo (ﬁ)] dX;

—iy/N? - A2

+/0,5' _i%e“"(x_ﬂh ) _g [Yn (\/_?) —iJy (\/?)] dX,

—iy/ N2 — X3

N
+/ _5&64(:—6%;{0 (, /7+) di
g+ i/ N ,

—iy/N2 - A2

+f T N eon (V) ax
- —iy/N2 a2
1

A2 — N2

B [ () ()
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Rearrangement of the terms gives

/ W[KU( V) + Ko (

—271'21?31 =

N )‘2
+~/;+ \/ﬁlfo (\,o‘ 'Y+) COST‘lAld)\l
,— dAX A
L_ Nz kz ( ) 1 COSTI AL
xr [ by
__f —r Yo (\/.—F) cos riA1dA;
2 Jo \ /N2 — )2
1
z 2 A2 ) o
+§_./u \/]@2:_)‘%']0 (\/—7 )sm riadA;

) cosryA1dA

__/m(

] ( ) sinriArdA;
/ Py

The function kq is the partial differential of by with respect to z. Noting,

£ Pray=m)] = ALy,

it follows that

202k, = /: Ay /a2 - N2 l%m (\/-F) - (i/'_;__z) K. (\/F)l sin 7y A dA

Ny2

/‘N M+ z)\/m
]

. ( 7"’) cosri A dA

— N} (8~)? - )
r3+(¢ j Z)Z]% e Ko (\/‘m cosr

— (87

\/7_—)] sin ri )y dAg
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cosriAidiy

/N A?(c-z)\/Nz_,\? i (V)

Nrim (8+)? — )
2["2 +(C+ )23 [x2 Yo (\/TF,M-) cosr 3

— (ﬁ+)2

8% X3¢ +2)y /N2 — A2
T 1 1
+..~2 /0- e Y (\/—7"') cosryArdd;

_ Nrim (5)? N C )
T+ Jhs (/=7 Tms- ) cos a8

r (5 )«f((-z)v]ffz—-)\% —
._5/0 — Y, (\/-T) cos P A dA;

_ Nrir (5+)? — ‘
W+ C+ B Jhr gy (V=7 humpt ) sinmis*

Bt A3 + 2:)1'./!\?2 /\2
2/ \/—7__'_ ( —'y"‘) sinry A dA

Nrim (6-)? 7 . e gt
TN o (V=7 g ) st

— (ﬂ—)Z

w27 NG -2y N? - A .
+§fo = J1 (\/—'r )sm riAidA;

40

The terms Kj (\/7I|A1=,@i) and Y, (\/—71|,\1=5i) are undefined as 4% [r,=g¢ = 0. However com-

bining the two terms produces the finite result

T
Ky (\/’riL\l:ﬁﬂ: ) + 'Z-Yo (\/—7i|.\1=,5i | =o0.

Utilising other previous identities, we find that A; becomes

hy = _2_711__5_./;0 )@1 /)‘:1! _ N2 [(C%E)Kl (\/-F) — (—f/;_—_z)Kl (\/—y_—)] sinry A dA,

1 M+ )N -2
~3.3 - o K (\/7_‘*') cos riAdh



Stratified fluid - panel method

PV (S NVALEPY:
+~2—ﬂ_§- - \/F Kl (\,o‘ ‘]’_) cos rl)\ld)q
1 PP A+ 2/ N2 - 2
R — ot
/) \/_? . Y: (\/ ¥ ) cosriArdA
1 (87 (¢ —2n/N2 - N2 _
_|_zl_7.; i — Y] (\/—7 )cos riAidi;
AT 2
N(C+ ?) +sinrm gt

ax(rd + (( + 2)?]=
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+E : ‘/_? 5 (\/——'y"‘) sinry A di
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Anlri + (¢ - 2)%]2
1 5 M —z2)/N2 =22
=/ ! — L7 (\/_?) sinry A d)

In a similar manner f; can be derived. Namely,

—(27)fo = /

i
—o (M1 —i0)7s

& 1

- _A.\/J__T [k

N
1
- ————=Kp(\/7t) cosr1 A1d);
/»;+ VN2 -2
[ oty
- ——=————Ko(v/77 ) cosriA1d);
8- NZ )tf

st 1
+§f ————=Yo(v/—7t) cosriAi1d)
0 /N2 A2

\/"}’T) + Ko(\/‘}’_'")] sin rl)\ldAl
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e—iE=E) [Ko (|A1| r3+(z+ C)%) + Ko (l’“' (e - 02732)] P
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,5+
“‘Ej ”—"I—Jg(\/ —‘[+)Si]11'1/\1d¢\1
2 Jo \ /N2 ,\:f
B 1
+g/ — ==Y (V=77 ) cosr  \ydX;
0 4 fN2 — A%

Jo(\/——'y Ysinry A dig

£

The differentiation of f with respect to z allows f, to be determined and this has the form
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_ Nr3 Koyt a=pt) gt
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i
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Nr"%“’ Yo(/—7 |r,=8-)
+ 3
rZ + (¢ — 2)?)3 \/Nz (B-)2

cosry 8

A= ((—2)y /N2 — X2
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or, after rearranging like terms, we ﬂnd
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—z)\/N2 /\2

Using the derivation of f; detailed in appendix A and the identity

i )sm riddA;

Ki(tiz) = —Z [1(z) FiY1(z)] >0

(see Abramowitz and Stegun(1970) 9.6.4, v = 1) the asymmetric form of f; can be written as
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A
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or, after rearranging, the expression can be written as
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