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ABSTRACT 
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USING SURVIVAL ANALYSIS METHODS TO BUILD CREDIT SCORING MODELS 

by Maria Stepanova 

Credit scoring systems were originally built to allow organisations to measure 

how likely an applicant for credit is to default by a certain time in the future. 

In recent years the objectives of credit scoring models have shifted from choosing 

the customers presenting the lowest risk, towards choosing the customers offering 

the highest profitability. This thesis shows how using survival analysis tools from 

reliability and maintenance modelling allows one to build credit scoring models that 

assess aspects of profit as well as default. 

In particular, this thesis looks at a number of extensions of Cox's proportional 

hazards model applied to personal loan data that make this technique a consistent 

and complete method for building a credit scorecard. Firstly, a new way of coarse­

classing of characteristics using survival analysis methods is proposed. Secondly, a 

number of diagnostic methods to check the adequacy of the model fit are tested for 

suitability for use on loan data. 

The inclusion of time-by-characteristic interactions is also proposed in order to 

account for non-proportional hazards and hence, extend the applicability of Cox's 

model. 

Additionally, behavioural scoring models based on the proportional hazards ap­

proach are also developed. In conclusion, this thesis demonstrates how both be­

havioural and application survival analysis based models can be used to estimate 

the expected profit from personal loans, and can therefore be used to help lenders 

to move from default scoring to profit scoring. 
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Chapter 1 

Introd uction 

Credit scoring is one of the most widely used applications of quantitative analysis in 

business. It has an interesting and dynamic history which we briefly discuss followed 

by the current practice in credit scoring in the opening section of this chapter. 

We then talk about the recent change in the perception of the main aim of credit 

scoring. That is the growing awareness among lenders about the advantages of 

scoring for profit rather than risk. A number of authors pointed out the importance 

of estimating a 'lifetime' of a credit to be able to estimate its profitability and hence, 

proposed survival analysis as the new modelling approach for credit scoring. 

The existing literature about suitability of survival analysis for credit scoring 

is not extensive. The final section gives a brief overview of the two key papers 

(Thomas et al. [1999], Narain [1992]). Both authors emphasize the evident need for 

more research into the 'marriage' of survival analysis and credit scoring, which was 

the motivation for this thesis. The overview of the upcoming chapters concludes the 

introduction. 

1.1 Current practice in credit scoring 

Consumer credit is now a fast-growing multi-billion dollar industry. However, until 

the second half of this century the decisions about granting credit were made by 

bankers or shop keepers based on the personal knowledge of their customer, his or 
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her character, capacity and collateral- the so called Three C's of Credit. Nowadays 

few bankers would know the character of their customers, the capacity to repay can 

be estimated from their income and expenditure, however there is no guarantee that 

it is true, and personal loans are normally not secured by any collateral. Thus, the 

system of Three C's stops working if the number of applicants is too large for the 

decision maker to know them all personally. 

After the second World War the demand for credit increased rapidly, so the 

need to automate the decision making process became evident. The finance and 

mail order companies were the first to implement credit scoring systems. They were 

followed by retailers and organizations issuing travel and entertainment cards and 

finally, by credit card companies in the 1970s. Lewis [1992J discusses the history 

and the background of credit scoring in more detail. 

As the growth of the industry continues, these automated decision systems need 

to be constantly improved and made more sophisticated. 

Credit scoring is a term used in the consumer credit industry for a collection of 

statistical or mathematical modelling techniques that aid the decision about granting 

credit to a new applicant. A credit scorecard is an automated decision system. It 

returns either a positive or a negative decision on credit applications based on the 

applicant's characteristics. 

The standard approach to building a credit scorecard is to take a sample of 

past customers - their application forms and the subsequent credit history. Then 

one needs to define which history is 'good' and which is 'bad'. The most common 

definition of 'bad' is accounts which default. Default is normally defined as three 

consecutive payments missed. However, the definition of 'bad' can be related to other 

events such as bankruptcy or early repayment of a loan depending on the aims of the 

scorecard. One then builds a model to identify which characteristics, taken from the 

application form, best separate the 'goods' from the 'bads'. A simplistic example 

in Figure 1.1 shows that if only two characteristics Age and Income are considered, 

then a line Age + Income = 50 separates the two groups of 'bad' and 'good'. 

14 



Income 
G 

£50K G G B 
G 

B G G G G 
BB 

B G 
B 

G 

G B G G 

0 50 Age 

B - 'bad' customer, G - 'good' customer 

Figure 1.1: Separation between two groups. 

Historically linear discriminant analysis was used to solve the problem of sepa­

rating a population into two groups. Hence, it was one of the first methods applied 

to building credit scoring models. Eisenbeis [1977] discusses statistical difficulties 

in the theoretical justification and implementation of discriminant analysis in busi­

ness, finance and economics. One of the major concerns was that an important 

assumption of discriminant analysis is that the variables used to characterize mem­

bers of the groups are multivariate normally distributed. However, this is rarely 

true in credit data, especially since many binary variables are used for the analysis. 

Reichert et al. [1983] have shown that if one attempts to normalize distributions 

of variables with some transformation, it has almost no impact on the predictive 

power of the discriminant model. Hence, the lack of multivariate normality is not 

considered to be a critical pitfall and the technique is a useful and a successful tool, 

(Hand and Henley [1997]'Thomas [1998]). 

Linear regression (1.1) has also been used in credit scoring. It is essentially 

the same as linear discriminant analysis. The probability Pi of an applicant i be­

ing 'good' is expressed as a linear combination of the application characteristics 

(Xl, X 2 , ... ,Xn ) : 
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(1.1) 

The current industry standard is logistic regression (1.2). This seems more ap­

propriate than linear regression since the left hand side of the logistic regression 

equation (1.2) can take any value between minus and plus infinity as opposed to 

left hand side of the linear regression equation(1.1) which has to be between 0 and 

1,(Thomas [1998], Hand and Henley [1997]). 

(1.2) 

In short, all the above techniques try to find the best linear combination of the 

characteristics which explain the probability of being 'good'. Then the resulting 

scorecard is used on the new applicant to predict the applicant's probability of 

being 'good'. If this predicted probability of being 'good' is high, the application is 

approved and the credit is granted. 

Credit scoring is a typical example of a classification problem (Hand [1981, 

1997]), thus many other statistical and operational research based approaches were 

investigated for the use in credit scoring. They include linear programming, neural 

networks, recursive partitioning algorithms, expert systems and genetic algorithms. 

Several authors give a comprehensive overview of these techniques and their com­

parative advantages and disadvantages in relation to credit scoring (Thomas [1998], 

Hand and Henley [1997], Boyle et al. [1992]' Srinivasan and Kim [1987b], Yobas 

and Crook [1997] and Desai et al. [1997]). Table 1.1 shows a comparison of the 

classification accuracy between some of the popular approaches to credit scoring. 

The entries in the table are the percentages of the correctly classified accounts if the 

acceptance percentage is the same for all the methods. The percentages should be 

compared only within rows since different authors used different measures of good, 

and different populations. Recursive partitioning algorithm is the most accurate 

in Henley [1985] and Srinivasan and Kim [1987b]. Linear regression is the most 

accurate according to Yobas and Crook [1997] and Boyle et al. [1992] and logistic 

regression performs best in the Desai et al. [1997] comparison. However, the results 
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are not statistically significant. This means that the choice of one method over oth­

ers should be determined by what other features it adds to the scorecard. As Hand 

[1997] points out, the question one should ask is not "Which is the best type of clas­

sification rule?" but "Which is the best type of classification rule for my problem?". 

The nature of the features required can depend on the definition of 'bad' or in other 

words, on the purpose for which a scoring systems is constructed. The following 

sections discuss the idea of profit scoring and survival analysis as the approach that 

brings valuable additions when a lender is concerned with scoring for profitability. 

Authors Lin.Reg. Log.Reg. RPA LP Neur.Nets GA 

Henley [1985] 43.4 43.3 43.8 - - -

Boyle et al. 77.5 - 75.0 74.7 - -

[1992] 

Srinivasan 87.5 89.3 93.2 86.1 - -

and Kim 

[1987a] 

Yobas and 68.4 - 62.3 - 62.0 64.5 

Crook [1997] 

Desai et al. 66.5 67.3 67.3 - 6.4 -

[1997] 

Table 1.1: A comparison of classification accuracy (% correctly classified accounts 

when the same number of applications is accepted) for different scoring approaches. 

1.2 Profit scoring 

The purpose of credit scoring systems is to aid the decision of whether to grant 

credit to an applicant or not. Traditionally this was done by estimating the proba­

bility that an applicant will default. These objectives are changing in recent years 

towards choosing the customers offering a chance of highest profit rather than lowest 

risk. Oliver and Wells [1999] and Leonard [1997] combine profit and risk measures 
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to achieve a more sensitive scoring system. Leonard [1997] shows on the real life 

example that the relationship between risk and profit is not one-to-one. The 'best' 

of the 'good' customers, i.e. those who were classified as the lowest risk, may incur 

losses for the lender because of the low usage on the account or ability to make large 

non-revolving payments. Customers classified as 'bad' may however bring substan­

tial profits to the lender. It is possible that if time to default is long, the acquired 

interest or fees will compensate or even exceed losses due to default. 

Hence, it now becomes important not only if but when a customer will default, 

Thomas et al. [1999]. If one is able to model the 'lifetime' of an account, it is 

then possible to calculate the likely profit as well as the risk associated with the 

customer. Another factor which affects profitability is when customers close their 

account early, or repay a loan early, by switching to another lender or for other 

reasons. In the case of early repayment the lender loses income from the interest 

that would have been otherwise earned on the loan. So estimating likely time until 

early repayment may aid the decision about the most appropriate loan term at the 

time of application. 

1.3 Survival analysis approach 

It has been shown by Narain [1992] and Thomas et al. [1999] that survival analysis 

can be applied to estimate the time to default or to early repayment. Survival 

analysis is the collection of statistical techniques that deal with the analysis of 

lifetime data. Examples of lifetime data can be found in medical or reliability 

studies, when a deteriorating system is monitored and the time until some event 

of interest is recorded. In credit scoring the lifetime is a 'life' of a loan or of a 

credit card until an event of interest, which can be some level of delinquency, early 

repayment, or any other event such as a purchase or a payment. Hence, the analogy 

between survival of machines or people and 'survival' of credit customers is evident. 

This approach to using survival analysis to estimate time to default has also been 

used to model credit risk in the pricing of bonds and other financial investments. 
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There has been considerable work recently in developing default models to deal with 

credit risk, see the reviews by Cooper and Martin [1996], Lando [1997]' Jarrow and 

Turnbull [2000]. Lando [1994] in his PhD thesis introduced a proportional hazards 

survival analysis model to estimate the time until a bond defaults, the aim being to 

use economic variables as covariates. 

Another relevant application was made by Van den Poel and Leunis [1998]. The 

authors used proportional hazards model to investigate the effect of direct mail 

messages on the times between the last and the next purchase of a financial product 

by a customer. 

The major strength of survival analysis is that it allows censored data to be 

incorporated into the model. Censoring is a feature of any lifetime data, since the 

event of interest can not always be observed. An example from medical studies is 

when a hospital loses contact with a terminally ill patient and hence the time of 

death can not be recorded. In reliability studies a machine may fail due to a cause, 

which was not a cause of interest, resulting in a censored observation. 

Censored data occurs in the consumer credit context when a customer never 

defaults, or never repays early, so one does not observe an event of interest. However, 

it is clear that 'lifetimes' of these 'good' customers should be incorporated into the 

analysis and survival analysis allows that. 

Another advantage of using survival analysis is that there is no need to choose 

a time horizon for a definition of 'bad' like in existing regression methods. 

The principal problem of survival analysis is assessing the dependence of failure 

time on the explanatory variables. Thus, in credit scoring one can look for the 

dependence of a loan lifetime until default, early repayment, or normal completion 

on application characteristics. 

Recall that in consumer credit we are interested in several possible outcomes 

when concerned with profitability: early repayment, default, closure, etc. Survival 

analysis allows modelling of such data with two or more events of interest or types 

of failure. This is called competing risks problem. 

The idea of employing survival analysis for building credit scoring models was 
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first introduced by Narain [1992] and then developed further by Thomas et al. [1999]. 

Narain [1992] applied accelerated life exponential model to 24 months loan data. 

The author showed that the proposed model estimated the number of failures at 

each failure time well. Then a scorecard was built using multiple regression and 

it was shown that a better credit granting decision could be made if the score was 

supported by the estimated survival times. Thus it was found that survival analysis 

adds an additional dimension to the standard approach. The author noted that these 

methods can be applied to any area of credit operations where there are predictor 

variables available and the time to some event is of interest. 

Thomas et al. [1999] compared the performance of exponential, Weibull and 

Cox's non-parametric models with logistic regression and found that survival analy­

sis methods are competitive with and sometimes superior to the traditional logistic 

regression approach. Furthermore, the idea of competing risks was employed when 

two possible outcomes were considered: default and early pay-off. 

It was noted that there are several possible ways of improving the performance 

of the simplest survival analysis models which we are going to explore in this thesis. 

Chapter 2 outlines the theory of methods used in the analysis. Chapter 3 looks 

at the development of the techniques by applying them to the personal loan data. 

One of the suggested improvements is coarse-classing of the characteristic variables 

using survival analysis techniques rather than using the traditional approach. This 

is discussed in Section 3.3. Sections 3.5 and 3.6 apply these methods to prediction 

of early repayment and default respectively. Diagnostics used to test the model 

adequacy are compared in Section 3.7. The addition of a time by covariate inter­

action to the model is an important extension as it allows to decrease or increase 

the effect of a covariate on the predicted time to failure and this is discussed in 

Chapter 4. An approach to building behavioural scorecards using survival analy­

sis is presented in Chapter 5. Chapter 6 concludes the thesis by summarizing the 

techniques researched in the earlier chapters and presenting the main advantage of 

applying survival analysis to credit scoring over other techniques, which is the ability 

to estimate the expected profit from an applicant. 
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Chapter 2 

Some theory of analysis of lifetime 

data 

2.1 Introduction 

The previous chapter has discussed the motivation for applying survival analysis 

techniques to the building of practical credit scoring models. This chapter gives an 

overview of the theory behind the survival analysis and practical aspects relevant 

to the credit scoring purposes. Firstly, the lifetime data is discussed in more detail, 

including several ways of describing its distribution and its main feature - censoring. 

Then we explain Cox's proportional hazards model, concentrating on the situation 

of tied failure times. Ties are likely to occur in credit scoring data and result in a 

very complex likelihood function. So several available likelihood approximations are 

discussed and their practical advantages and disadvantages are compared. 

Furthermore, we talk about competing risks, the idea that helps one to deal 

with the situation of two or more types of failure, for example, default and early 

repayment. 

As for any other model, the fitness of a proportional hazards model has to be 

examined and many graphical and numerical diagnostics methods have been de­

veloped. We discuss several most popular ones, which we will compare later in 

Chapter 3. 

21 



Cox's proportional hazards model is proposed as an alternative to the current 

industry standard, logistic regression. Hence, its performance needs to be compared 

to logistic regression with respect to the traditional task of separating the population 

into two groups. The final section of this chapter discusses different ways of assessing 

classification performance, such as error rate, ROC curves and Gini coefficient. 

2.2 Distribution of failure time data 

Lifetime or failure time data has been briefly introduced in the first chapter. Such 

data may be collected for credit scoring purposes by recording, for example, the 

time from the start of a loan to the end of a loan and the information of why a 

loan ended; was it a case of default, early repayment or normal closure? One can 

then choose the event of interest out of these possible outcomes, and consider the 

lifetimes of loans resulting in all other outcomes censored. 

The basis of the survival analysis techniques needed to analyse such failure time 

data is as follows. 

Let T be the random variable representing time until the repayment of a loan 

ceases, i.e - time until default or early payoff. 

The distribution function is then 

F{t) = P{T ~ t). (2.1) 

However, in survival analysis the distribution of T is usually described by one of 

the three following functions. 

The survival function is defined as 

S{t) = 1 - F(t) = P{T 2: t), (2.2) 

which is the probability that a loan 'survives' past some specified time t. 

Another way to describe the distribution of T is the hazard function, which is 

defined as follows 
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h( ) - z· {P(t ~ T < t + IStlT ~ t)} t - ~m8HO 1St . (2.3) 

This is the probability that a customer defaults, or repays early, at time t, conditional 

on him/her having stayed on the books up to that time. It is sometimes referred to 

as the instantaneous failure rate or the instantaneous default rate. 

And finally, the cumulative hazard function, which relates to the hazard function, 

h(t), by 

H(t) = lot h(u)du. (2.4) 

is widely used, for example, for checking the validity of the assumptions of survival 

models. 

Several useful relationships between hazard and survival functions can be derived 

from (2.3). The conditional probability in the hazard function definition is equal to 

P(t ~ T < t + bt)/ P(T ~ t) = (F(t + 1St) - F(t))/ S(t). Hence, 

h(t) l" {F(t + 1St) - F(t)} 1 
~m8HO 1St S(t) (2.5) 

f(t) 
S(t) , (2.6) 

where f(t) is the density function. This is equivalent to 

d 
h(t) = - dt {log(S(t))}. (2.7) 

By integrating both sides of (2.7) one can obtain the relationship between survival 

and cumulative hazard functions: 

2.3 Censoring 

H(t) 

S(t) 

-log(S(t)), 

exp( -H(t)). 

(2.8) 

(2.9) 

Censoring is an important feature of failure time data that makes methods other then 

survival analysis unsuitable. There are several types of censoring. Right censoring is 
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when the actual unobserved failure time is greater than the observed. For example, 

if default is the event of interest and a loan is repaid normally at time T, default 

could have occurred at T + x. Left censoring is when the unobserved failure time is 

less than the observed censored time, i.e (T - x). This type is very rare. Interval 

censoring is when the actual failure time is inside some time interval, x E (TI, T2)' 

Right censoring can be of Type 1, when a study or data collection is terminated at 

a particular time, or of Type 2, when data collection is terminated upon observing 

a pre-specified number of failures. Alternatively, it can be random if loans are 

completed at any time during the observation period. 

For the purposes of building a relatively simple model with the help of some 

software the only thing one has to be absolutely sure about is that the censoring 

is non-informative. Informative censoring is when censored time is not independent 

from actual unobserved failure time, that is a loan is removed from the data set 

because it was deteriorating in its performance. This normally is not the case in 

credit scoring data. 

It seems that if working with credit data for credit scoring purposes the censoring 

will usually be non-informative, most likely right and random. However, it depends 

on the event of interest. If the event of interest is default and the observation 

period is fixed as in our data set, then early repayment or normal repayment can 

occur at any time and we have right random non-informative censoring. It is right 

censoring because the the unobserved time of default is greater that the observed 

loan's lifetime, i.e the start of a loan is always known however the default date 

may be censored, either because it occurred outside the data collection interval or a 

loan was competed by normal or early repayment. It is random censoring because 

normally data used in credit scoring is some sample of past customers, collected 

during the last two years, for example. During this period of time loans 'leave' the 

data and hence, are censored at any time not only at the time data is taken. 
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2.4 Cox's proportional hazard model 

Suppose now that on each loan one or more further measurements are available 

apart from the failure time, so we have a vector of covariates x, such as application 

characteristics. We want to assess the relationship between the distribution offailure 

time and these covariates. Cox [1972] proposed the following model 

h(t; x) = e(x'(3)ho(t), (2.10) 

where fJ is a vector of unknown parameters and ho(t) is an unknown function giving 

the hazard for the standard set of conditions, when x = O. ho(t) is called the baseline 

hazard function. 

It is called proportional hazards (PH) model because the assumption is that 

the hazard of the individual with application characteristics x can be obtained by 

multiplying the baseline hazard by a function of these characteristics. In other words, 

it is proportional to the baseline hazard. The strength of this model is that we do 

not need to know the parametric form of ho(t) to estimate fJ. Cox [1972] showed that 

one can estimate fJ by using only rank of failure times. So if ttl) < t(2) < ... < t(k) 

are k ordered failure times of individuals with covariates X(i) and R(t(i») is the set 

of individuals at risk, i.e. still on the books, at t(i), then the likelihood function of 

observed data according to Cox's model is 

L(fJ) 
IT P[loan i fails at ti] 
i=l prone loan from R(t(i») fails at t(i) ] 

IT h( t(i) , Xi)6t 
i=l LIER(t(i) h( t(l), XI)6t 

IT exp (x~fJ)ho(t(i») 
i=l LIER(t(i) exp (x(l)fJ)ho(t(l)) 

k exp (x~fJ) g LIER(t(i) exp (x(l)fJ) . 
(2.11) 

Note that the baseline hazard ho(t) has cancelled out from this likelihood, so the 

probability will be the same whatever the form of ho(t) is. 
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Also note that in the case of right censoring the likelihood is the same as 2.11, 

that is the rank vector of censored and failure times is shortened to include only 

failure times. This is achieved by assuming that censoring occurs straight after the 

failure (Leemis [1995]), or by arguing that no information can be contributed about 

f3 by the time intervals in which no failures occur because ho(t) might be identically 

zero in such intervals since it is left unspecified (Cox [1972]). 

Hence, only the observed failures contribute to the numerator of (2.11), censored 

observations do not. However, all the observations contribute to the denominator, 

because all are at risk of failure (Collett [1994]). Kalbfleisch and Prentice [1980] and 

Leemis [1995] give derivations and assumptions for this argument. 

Maximum likelihood estimates of f3 are then found by maximizing the logarithm 

of (2.11) using numerical methods, such as Newton-Raphson algorithm. 

Proportional hazards models assume that hazard functions are continuous. How­

ever, credit performance data is normally recorded only monthly, so several failures 

at one time can be observed. 

These are tied failure times and the likelihood function must be modified because 

it is now unclear which individuals to include in the risk set at each failure time 

t l , t2 , t3 , .... For example, if we have a record of three individuals (iI, i2, i3) failing at 

tk we do not know what the true order of failure was between them, and since there 

are six possible ways to order them, there are six possible risk sets. Hence, the exact 

likelihood function has to include all possible ordering of tied failures (Kalbfleisch 

and Prentice [1980]) and becomes very difficult to compute. 

A number of approximations have been developed. One of these is achieved by 

replacing (2.10) by a discrete logistic model (Cox [1972]) 

h(t; x) = e(x(3) ho(t) , 
1 - h(t; x) 1 - ho(t) 

(2.12) 

where 

h(t, x) = P(t ::; T < t + liT ~ t)). (2.13) 

To show that (2.12) reduces to (2.10) when the time is continuous note that the 
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general form of discrete hazard, replacing 1 by M in (2.13), would be 

h(t, x)M = P(t ::; T < t + MIT ~ t)). (2.14) 

Then (2.12) becomes 

h(t; x)<5t = e(xf3 ) ho(t)M 
1 - h(t; x)M 1 - ho(t)<5t' 

(2.15) 

and taking limit as time interval M tends to zero gives (2.10). 

Let di denote the number of failures at ti and let R(t(i); di ) denote the set of all 

subsets of di individuals taken from the risk set R(t(i))' R E R(t(i); di ) is then a 

set of di individuals who might have failed at t(i)' Let SR = LIERXI be the sum of 

the covariate vectors x over the individuals in the set R. Let Di denote the set of 

di individuals failing at ti and S Di = LIEDi Xl is the sum of the covariate vectors of 

these individuals. 

The likelihood function arising from Cox's model is 

L (/3) 
- Ilk exp (S~i /3) 

Cox - '" ( I /3). 
i=l L...RER(t(i) jdi) exp S R 

(2.16) 

The other popular approximations were proposed by Breslow [1974] and Efron 

[1977]. 

The Efron likelihood is 

L (/3) = IT exp (S~i/3! . 
E i=l rr1~1 [LIER(t(i)) exp (xl/3) - ~ LIEDi exp (xl/3)] 

(2.17) 

The Breslow likelihood is 

L B(/3) = IT exp (s~}) d . 
i=l [LIER(t(i)) exp (xl/3)] , 

(2.18) 

To illustrate the nature of each approximation let ej denote exp(xj/3) and assume 

that we have three subjects all together in the risk set. So if there are no ties, i.e. 

only one failure occurs at a particular time, the probability that a subject 1 was the 

one that failed out of the risk set is 

(2.19) 
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Now consider a tied failure case when two subjects 1 and 2 fail at one particular 

time and that we had three subjects all together in the risk set before that time. 

Then the probability of this happening is the the sum of the probability that subject 

1 fails first and subject 2 fails second, and the probability that subject 2 fails first 

and subject 1 fails second. Note that the risk set corresponding to the subject 

that fails second does not include the subject that has already failed. So the exact 

probability taking into the account all possible ordering of failure is 

For the case of two tied failures there are two terms in this probability corresponding 

to the two possible orderings of failures. For n tied failures there would be n! terms 

since there are n! possible ways to order n failures. Now let us look at the three 

approximations above to this probability for the case of two tied failures. 

The simplest approximation is Breslow's,(2.21-2.22), which does not consider 

different orderings of failure when constructing risk sets and assumes that the two 

subjects failed at the recorded time simultaneously out of the full risk set. So the 

denominator is the same for both failures and is the sum over the full risk set. Hence, 

the two different terms in the exact probability are now replaced by twice the same 

term. 

ele2 ele2 ------ + ------
(el + e2 + e3)2 (el + e2 + e3)2 
2 el e2 

el + e2 + e3 el + e2 + e3 

(2.21) 

(2.22) 

This constant 2, or n! for n ties, can be dropped when estimating parameters of 

a Cox's model since the estimation process involves only maximising the likelihood 

not the exact value. 

Efron's approximation (2.23-2.24) also does not consider different orderings. It 

assumes that the two subjects failed sequentially, the first out of the full risk set 

and the second out of the risk set without the average of the subjects 1 and 2. So 
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the denominator for the second failure is adjusted by taking the average of el and 

e2 out of the sum over the risk set. 

(el + e2 + e3)2 - Hel + e2)(el + e2 + e3) 
2 el e2 

el +e2 +e3 (el +e2 +e3) - Hel +e2)' 

This approximation is closer to the real probability than Breslow's. 

And finally, Cox's probability arising from the discrete time model is 

PCOX 
2 ele2 

el e2 + e2e3 + e3el 
2 ele2 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

where the denominator in (2.25) is the sum of all possible sets of failures that 

might have occurred from the risk set. Hence, in the case of two tied failures and 

three subjects in the risk set the denominator is the sum of the three possible 

failure pairs. An alternative way to write the denominator, as in (2.26), allows 

an easier comparison of this approximation with the exact probability. So if the 

denominator for one of the terms in Pexact is (el + e2 + e3)((el + e2 + e3) - el) = 

((el +e2+e3)2 -ei -ele2 -ele3) the Pcox replaces this with (el +e2+e3)2 -ei -e~ -e~. 

In summary, if there are n tied failures, all three approximations replace n! 

different terms of the exact probability with n! identical terms. The difference 

between them is the form of that one term. 

When there are no ties on the event time, i.e. di = 1 , all the approximations 

reduce to the same expression (2.19). 

2.5 Competing risks 

So far we defined T as the time until failure. When one is concerned with the 

profitability of a credit account, several possible outcomes can be of interest. For 

example, both default on a loan and early repayment of a loan affect profitability. 
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Hence, it is possible that there are two or more possible risks that 'compete' 

to be the cause of the failure of a loan. The idea in survival analysis that allows 

analysis of data with two or more failure types is called 'competing risks', whereby a 

pair (T,J), where T is a lifetime of a loan and J is the cause of failure, is associated 

with each loan. 

One can work with net or crude lifetimes, (Leemis [1995]). Working with the 

crude lifetimes means considering lifetimes conditioned on risk j in the presence of 

all other risks. Here we were only concerned with net lifetimes, i.e. the causes are 

viewed individually, each risk is considered as if it is the only risk present. 

The type-specific hazard function in the context of net lifetimes is then defined 

as 

h .( ) _ z' {P(t ~ T < t + bt, J = j!T '2 t)} 
J t - zmt5t-+O bt . (2.27) 

for j = 1, ... m types of failure. It is interpreted as the instantaneous failure rate of 

type j at time t. 

If net lifetimes are independent the overall hazard function is 

(2.28) 
1 

since S(t) = P[T '2 t] = P[T1 '2 t] ..... P[T1 '2 t] = rrj=l STj (t). 

The assumption of independent lifetimes is common for the reasons of simplicity 

and because it is impossible to test this assumption. A number of authors have 

noted and researched this issue (Cox [1959], David and Moeschberger [1978], Cox 

and Oakes [1984]). It has been shown that different bivariate models can result in 

the same hazard functions h1(t) and h2(t). Specifically, for any model where Tl 

and T2 are dependent there is a model with the same hj(t)s for which Tl and T2 are 

independent (Lawless [1982]). So we feel that assuming time to early repayment and 

time to default are independent is a satisfactory practical approach to the problem. 

Furthermore, Kalbfleisch and Prentice [1980] show that the competing risks data 

has a likelihood function that can be rearranged into separate components for each 
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type of failure. The component for a failure type j is then exactly the same as if all 

other types are regarded as censored. 

Hence, all the estimation methods for one-failure data can be used for a multiple­

failure scenario. This applies to Cox's proportional hazard model as well. 

One can estimate time until default Tl assuming all other observed lifetimes 

to be censored and separately estimate time until early repayment T2 assuming all 

other observed lifetimes to be censored. Hence, survival analysis can be performed 

separately on Tl and T2 assuming they are independent. Then the predicted lifetime 

of a loan is estimated as T = min{Tl' T2 , term of the loan}, (Thomas et al. [1999]). 

2.6 Model diagnostics 

Any modelling procedures, such as logistic or linear regression models, for example, 

are normally followed by the examination of the model's goodness of fit to the data. 

Proportional hazards model is not an exception. 

Residuals are the most popular diagnostic for all modelling approaches including 

survival analysis. They are usually some form of measure of discrepancy between 

fitted and predicted values. So if the model is adequate the plot of residuals should 

not show any unexpected patterns. The simplest residuals are found in linear regres­

sion and are calculated as a difference between predicted and actual values. Their 

plot is expected to be a random scatter about zero, such as shown in Figure 2.2. The 

examination for randomness is made visually. Several approaches to calculate resid­

uals for survival analysis models have been developed. These residuals are more 

complicated than those used in linear regression because they have to cope with 

censoring. 

The issues one wants to address in the diagnostics of proportional hazards credit 

risk models are: 

• does the proportional hazards assumption hold? 

• do any covariates have to be transformed? 
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• are there any outliers - individuals with repayment lifetimes greater than 

expected which might have an unwanted impact on parameter estimates? 

• is the effect of any of the covariates time-dependent? 

Cox-Snell residual,(Cox and Snell [1968]), is defined as follows 

(2.29) 

where Ho(ti) is the estimated cumulative baseline hazard, Hi(ti) is the estimated 

cumulative hazard for the ith individual at time ti and Si(ti ) is the estimated survivor 

function of the ith individual at time ti . 

lt is proven later that -logS(t) has an exponential distribution with unit mean, 

no matter what the form of Set) is. If the model fitted is adequate then the esti­

mated survival function Si(ti ) will be close and will have similar properties to S(ti). 

Hence, -logS(ti ) = rei will be a set of observations from an exponential distribution 

with unit mean. 

If T is the random variable representing the survival time of a subject and 

S(t) is its survival function, then the random variable Y = -logS(T) rv 

Exp(l) 

Proof (Collett [1994]): Using the formula for the probability density 

function (p.d.f.) of a random variable which is a function of another 

random variable (Y = g(X)) 

we obtain the formula for the p.d.f of Y in terms of the p.d.f of T, fT(t): 

Substituting the expression for Y into the dy / dt 

dy = d{ -log S(t)} = h (t) = fT(t) 
dt dt T Set) 
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we can express dy / dt in terms of y: 

dy fT{S-l(e- Y )} 

dt S{S-l(e-Y )} 

By substituting the derivative in the equation (2.30) we obtain p.d.f of 

Y: 

fy(y) = e(-Y) 

which is the p.d.f of an exponentially distributed random variable with 

unit mean. 

To test that the residuals have unit exponential distribution, the product-limit 

estimate (see later, in Section 3.4) of these values is computed. So log( -logS(rcJ) 

is plotted against log(rcJ. A straight line with unit slope and zero intercept (Fig­

ure 2.1) indicates that the fitted model is correct, i.e the estimated survival function 

is close to the true survival function of the data. If the plot shows systematic depar­

tures from the straight line, or the line does not have an approximately unit slope 

and zero intercept, the model has to be modified. For example, one may consider 

including additional covariates. 

Hence, the log plot of the Cox-Snell residuals is used for accessing general ade­

quacy of the model. 
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Figure 2.1: An example of the log plot of the Cox-Snell residuals that indicates an 

adequate model. 
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Martingale residual,(Therneau et al. [1990)), is a transformation of the Cox­

Snell residual: 

(2.31) 

where Oi is a censoring indicator for the ith individual: 0 = 0 for censored observa­

tions and 0 = 1 for non-censored. 

Martingale residual can be interpreted as the difference between the observed 

number of failures for an individual in the interval (0, t i ) and the expected number 

of failures according to the model, or as excess failures. These residuals have some 

properties similar to linear models, such as they sum to zero for any t: 2: rMi = 0 and 

their expected value is zero: E(rMJ = 0 asymptotically, (Therneau et al. [1990]). 

To check for the departures from proportional hazards r Mi is plotted against the 

rank order of time. Ideally it should not exhibit any pattern if the model is adequate 

(Figure 2.2). 

A plot of martingale residuals against values of a particular covariate can be used 

to decide whether the variable needs to be transformed, so if the plot is non-linear 

one may consider replacing the original covariate x by log(x), x2 etc. However, if 

most of the covariates are binary, which is common in credit scoring, these plots are 

not useful. 

Index plots can also be created by plotting the Martingale residuals against the 

observation number. A relatively large value of the residual indicates that the model 

does not fit well to the corresponding observation. 
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Figure 2.2: An example of the Martingale residual plot that indicates an adequate 

model. 

One drawback III the use of martingale residuals is that they have a skewed 

distribution. For Cox's proportional hazard model it has a maximum of 1 and 

a minimum of -00. To check the accuracy of the prediction for the individual 

subjects, i.e. to detect outliers, the transformation of the residual to achieve a more 

normal shaped distribution is desirable. 

The deviance residual is one such transformation of the martingale residual, 

which makes it more symmetrically distributed about zero and hence, their plots 

are sometimes easier to interpret. 

Deviance residual proposed by Therneau et al. [1990J is defined as 

(2.32) 

The log function increases martingale residuals close to one, while the square root 

contracts large negative values, hence normalising the shape of their distribution. 

The sgn function ensures the deviance residual has the same sign as the Martingale 

residual. 

If Xi = (Xii, ... ,Xip)' is a vector of covariates for the ith individual, R(ti ) is the 

risk set, i.e. a set of indices of the individual who are still repaying at time t i , 

then the Schoenfeld residuals, Schoenfeld [1982]' at ti are defined as the vector 
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(2.33) 

So the Schoenfeld residual is the difference between the observed value of the 

covariate Xi and its expected value conditional on the risk set R(ti ). That means 

that individuals who are unlikely to fail relative to the risk set, i.e. their covariate 

value is similar to those in the risk set, will have a small absolute value of the 

residual. Individuals who are likely to fail relative to those at risk will have a large 

absolute value of the residual. 

The main difference of this residual from the others is that it has a vector of 

values for each individual, with a value for every characteristic or covariate of this 

individual. These residuals are uncorrelated with each other and E(ri) ~ 0 if the 

fitted model is adequate. So if the proportional hazards assumption holds the plot 

of the Schoenfeld residuals against the rank order of time for their corresponding 

covariate should be centred on zero. 

Suppose a covariate effect has a time trend g(ti ). Then it was shown by Schoen­

feld [1982] that the sign of E(rik) depends on the the sign of g(ti ). Hence, the plots 

of rik against the rank order of time are used in investigating whether there is an 

indication of time dependency, g( t i ), for a particular covariate. 

It is important to note that none of the above diagnostics make any assumptions 

about the distribution of loan lifetimes. 

We further discuss applications of the above residuals when building a propor­

tional hazards model on a data set in Chapter 3. 

2.7 Comparing survival model with logistic re-
. gresslon 

Assessment of the scorecard performance is an important part of the scorecard build­

ing process. One has to choose the performance measure depending on the objectives 

of the scoring system. 
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We will need to compare systems built using survival analysis both between 

themselves, and with the industry standard logistic regression. Hence, we will be 

comparing the systems in relation to the standard objective of classifying applicants 

into two groups, 'good' and 'bad'. 

There are a number of ways to measure the classifying performance of a model. 

They differ with respect to the sample on which the misclassification rate is calcu­

lated. For example, if one checks the misclassification on the training sample used 

for building the model the result will be better than if the misclassification rate 

is calculated on the sample that was put aside for testing before the model build­

ing. This is because the model has taken into the account particular features of 

the sample it was built on. The testing sample is usually referred to as a hold-out 

sample. 

This method is appropriate when the amount of data is large, so the quality of 

the model is not reduced by splitting the data into the training and the hold-out 

sample. There are also methods which can cope with a limited amount of data, such 

as cross-validation and bootstrapping. 

The cross-validation method involves building a scorecard on all data but one 

observation, then testing the scorecard on this observation and repeating this process 

of leave one out for all of the data in turn. This method is often referred to as the 

leave-one-out method. 

2.7.1 Error rate 

Let us assume that the application characteristics x = (Xl, ... , X2) are continu­

ous, and let f (x) be the distribution of the application characteristics. Denote the 

probability of being 'good' with the application characteristics x as p(Glx) and the 

probability of being 'bad' with x as p(Blx). 

Then the Bayes rate is the optimal error rate given one has a complete knowledge 

of the above distributions: 

e(Bayes) = J min{p(Blx),p(Glx)}f(x)dx. 
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When a credit scoring system is built, say on a sample Y of n customers, the 

probabilities pCBlx) and p(Glx) are estimated and the two regions ofthe values of the 

application characteristics are defined AG and AB. If the applicants characteristics 

fall into AG the applicant is classified as 'good', and if into AB - as 'bad'. 

The true error rate for this system is then 

ey(true) = { f(x)p(Blx)dx + ( f(x)p(Glx)dx. 
JAG JAB 

(2.35) 

ey (true) is the rate of misclassifying the new applicant if the system was applied 

to an infinite test set. However, since we only ever have finite samples we can only 

obtain an estimator of ey(true) using some sample Y*: 

ey(Y*) = { f(x)p(Blx)dx + ( f(x)p(Glx)dx. 
JAGny, JABny, 

(2.36) 

As was mentioned earlier, if one uses the training sample Y to calculate ey(Y) 

the resulting estimate will be optimistically biased because the system has taken 

into the account all the features of the training sample which are not necessarily 

typical of the population. Hence, it is desirable to use some hold-out sample y* 

which is independent of the Y to estimate the actual error rate. The expected value 

of ey(Y*) over the data which excludes Y is equal to the actual error rate ey(true). 

To calculate the ey(Y*) for the credit scoring system that was built on the 

training sample Y we compare the the actual classes of 'good' and 'bad' with the 

predicted classes on the hold-out sample Y*. Then the simplest way to summarise 

the results is to produce a confusion matrix shown in Table 2.1. 

Actual Class 

Good Bad 

Predicted Good a b 

Class Bad c d 

Table 2.1: A Confusion matrix for two groups: Good/Bad. 

The error rate can be estimated from this table, produced using a hold-out 
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sample, by 
b+c 

(2.37) 

Different scorecards can be compared by comparing the number of correctly 

classified accounts, i.e. a or d. Also, misclassified 'bad' and 'good' rates are given 

by b!d and a~c· Their complements are called sensitivity a:c and specificity b~d· 

Note that the confusion matrix method requires specification of a cut-off to 

separate the sample into the two classes of 'good' and 'bad'. This is not always 

desirable. For example, one may want to look at the range of cutoffs to choose the 

appropriate one taking the misclassification rate into the account. 

2.7.2 Separation measures, ROC curves and Gini coefficient 

There are several methods in statistics which can measure how different are the 

characteristics of two populations. These are called separation measures, and in the 

case of credit scoring they can help to get an idea of how good the scorecard is at 

separating populations of 'bad' and 'good'. These measures do not require a choice 

of a specific cut-off. So they are diagnostics concerned with a scoring system in 

general. One such measure is the Kolmogorov-Smirnov statistic given by 

(2.38) 

where Pg(i) and Pb(i) are the cumulative proportions of 'good' and 'bad' with a score 

i respectively. The KS statistic gives the maximum distance between the cumulative 

proportions of 'good' and 'bad' (see Figure 2.3). 

Receiver Operating Characteristics (ROC) curve is another method that does 

not require a choice of a cut-off. A common ROC curve used in the credit scorecard 

construction is a plot of the percentage of 'good' accepted against the percentage of 

'bad' accepted, i.e. correctly classified 'goods' against incorrectly classified 'bads', 

or sensitivity against one minus specificity, for all possible values of a score (Hand 

[1997] and Wilkie [1992]). 
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Figure (2.4) shows an example of ROC curves where the higher, dotted, curve 

indicates the better scorecard. 

1 

o 
Score i 100 

Figure 2.3: The cumulative proportions of 'bad' and 'good' and the KS measure. 

The best possible ROC curve would go up the vertical axes all the way and then 

go parallel to the horizontal axes, so that all the accepted customers were correctly 

classified as good. The ROC curve along the diagonal would correspond to equal 

numbers of correctly and incorrectly classified accounts among the accepts for each 

score, which indicates that a scorecard is not discriminating between 'good' and 

'bad' customers at all. 
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Figure 2.4: An example of ROC curves. 
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One can also summarise the information given by a ROC curve about the per­

formance of a scorecard over all the cut-offs in one number - Gini coefficient. It is 

calculated as twice the area between the ROC curve and the diagonal, so the perfect 

scorecard has a Gini of 1 and the worst scorecard a Gini of O. 

To obtain Gini coefficient from the quantities used in building a ROC curve, first 

the area under the curve can be calculated as 

A = I)Pg(i) + Pg(i - 1)))/2 * (Pb(i) - Pb(i - 1))). (2.39) 
z 

Then the Gini coefficient is G = (A - 1/2) * 2. 

Cox's proportional hazards model gives a relative order of failure, i.e. of becom­

ing 'bad', for a set of applicants. To compare the performance of a PH model with 

that of a logistic regression model we need to transform the estimated ordering into 

the two predicted classes. If the actual number of 'bads' in the sample is B, this can 

be achieved by considering B applicants who are most likely to fail according to the 

estimated survival function as predicted 'bad'. 

Then the confusion matrices and the ROC curves can be constructed as for 

logistic regression. 
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Chapter 3 

Survival analysis techniques 

applied to loan data 

3.1 Introduction 

In the earlier chapters we talked about motivation for using survival analysis as well 

as the theory and formulae needed to understand how to build a Cox's Proportional 

hazards model for the credit scoring purpose, how to examine its fitness and compare 

its performance with a logistic regression model. We now apply these techniques 

to personal loan data from a major UK financial institution. Several improvements 

are suggested over the current application of survival analysis in credit scoring. 

We suggest a method of coarse-classing the characteristics using Cox's proportional 

hazards model. Its advantage over the traditional methods is that it uses time to 

an event rather than a definition of 'bad' with an arbitrary time-horizon. We then 

illustrate the effect of the application characteristics on time to an event by looking 

at the hazard functions for early repayment and default. Two proportional hazards 

models, one predicting time to early repayment, another ~ time to default, are built 

and compared with analogous logistic regressions. The comparison shows that the 

survival analysis model measuring default risk is as good as the existing methods. In 

Chapter 6 we will also show how a PH model can be used to calculate the expected 

profit from a loan which existing default scorecards would not do. 
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Finally, a variety of graphical diagnostics, described in the previous chapter, are 

compared to each other by examining the fitness of the early repayment model. 

3.2 Personal loan data 

The data set was supplied by an anonymous UK financial institution and consisted of 

the application information on 50,000 personal loans together with the repayment 

status for each month of the observation period of 36 months. The application 

characteristics available in the data set are found in the Table 3.1. The status 

variable observed whether they had defaulted, paid off to term, paid off early, or was 

a loan still open. The definition of default used is three or more months delinquent. 

The definition of early repayment used is closure of a loan before its agreed term, 

where the indicator for closure was supplied with the data. The borrowers were all 

UK consumers, who had applied to the bank for a loan. Their repayment terms 

varied from 6 to 60 months and the various purposes for which the loan was needed 

are summarised in Table 3.7. 

No Characteristic No Characteristic 

1 Customer Age 9 Home Phone No Given 

2 Amount of Loan 10 Insurance Premium 

3 Account Closing Date 11 Loan Type (single or joint) 

4 Years at Current Address 12 Marital Status 

5 Years with Current Employer 13 Account Opening Date 

6 Customer Gender 14 Term of Loan 

7 Number of Dep. Children 15 Home Ownership 

8 Frequency Paid 16 Purpose of Loan 

Table 3.1: Application characteristics used in the analysis. 

The 'survival' time of a loan was calculated using the opening and the closing 

dates of the loan available in the data set. Two censoring indicators were created for 

each of the two types of failure under the consideration, default and early repayment, 

using the status of a loan at the end of the observation period: 
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1. CENSOR - the censoring indicator for default, i.e. 3 or more payments missed; 

2. CENSORE - the censoring indicator for early repayment, i.e. the loan is repaid 

at least 1 months before the term. 

The censoring indicator is usually a binary variable that takes the value of 0 if 

the observation is censored and the value of 1 otherwise. So that when estimating 

the risk of default, the survival times of the loans whose status was not default were 

considered censored. When estimating risk of early repayment, the survival times 

of the loans whose status was not early repayment were considered censored. 

Entries with zero survival time were excluded from the analysis as well as entries 

with improbable values of other characteristic. 

For example, the Age of a customer was limited to be between 18 and 85 because 

to get credit you have to be 18 and it is very unusual for people over 85 to apply for 

loans. So the observations with unlikely combinations of the Purpose of a Loan and 

the Age of an Applicant, such as 112 years old and a loan for a motorcycle, were 

deleted from the analysis assuming that the data were entered wrongly. 

3.3 Coarse classing using survival analysis approach. 

To ensure that credit scoring systems are robust, i.e. predictive rather than descrip­

tive of data, continuous characteristics such as Age are usually split into 'bands' 

and the values of discrete characteristics with many values are grouped. This proce­

dure is called coarse classing. Then each 'band' or 'group' is replaced with a binary 

dummy variable to be used as covariates in a model. 

The traditional approaches of finding the suitable splits involve looking at the 

odds to be good, log( odds), or related measures for the different values of a charac­

teristic and then grouping the values with similar odds (Lewis [1992]). Inherent in 

these approaches is the choice of a time horizon, so that defaults before that time 

horizon are 'bad', while ones that default after it or do not default at all are 'good'. 

When using the survival analysis modelling techniques it seems more appropriate 

to use an approach that avoids the need to use such an arbitrary time horizon. It is 
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also the case that if survival analysis models are being built to estimate both default 

and early repayment risk, then one will want to band the variables differently for 

the different risks. For these reasons it seems more appropriate to try and use the 

survival analysis approach in order to coarse classify the variables. 

The following method was used for the continuous characteristics: 

1. Split the characteristic into 15 to 20 equal bands. 

2. Create a binary variable for each band. 

3. Fit Cox's proportional hazards model to these binary variables. 

4. Chart the parameter estimates obtained in step 3 for all bands. 

5. Choose the splits based on similarity of the parameter estimates. 

Example 3.3.1 looks at both the standard and the survival analysis approaches 

by coarse-classing one of the continuous variables. 

For discrete characteristics, such as the Purpose of a Loan, a binary variable 

is created for each attribute of the characteristic and then the method is as for a 

continuous characteristic (Example 3.3.2). 

Note that it is important to do separate splits for every type of failure consid­

ered. Effect of the characteristics on the failure time differs substantially for early 

repayment and default, for example. 

There are a number of statistics that are used to compare coarse groupmgs 

created using different classing methods. We will use these statistics to compare the 

survival analysis classing with the log-odds one in the example below. 

Suppose that a continuous characteristic was coarse classed into a bands with gi 

'good' and bi 'bad' customers in the band i = 1 ... a. Also let 9 and b be the total 

numbers of 'good' and of 'bad' in the sample. Then if one assumes that there is 

no difference in good/bad ratio between a class and the whole population, i.e. the 

classing does not reflect the effect of the characteristic on the good/bad ratio, the 

expected number of 'good' customers in the class is 9i = (gi + bi)g/(g + b) and of 
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'bad' - bi = (gi + bi)b/(g + b). Good classing would separate the values into classes 

which differ the most from one another in the good/bad rate. The X2 statistic is 

designed to measure how different are these good/bad ratios in the different classes: 

(3.1) 

The larger value of the statistic indicates a better split. For a formal significance test 

for a difference between good/bad ratios in the different classes one would use the 

fact that the above X2 statistic has a X2 distribution with a - 1 degrees of freedom. 

F -statistic is defined as follows: 

F = t(9i _ bi) log(gi b). 
i=l 9 b big 

(3.2) 

It measures how different are the p(xJG) and p(xJB), density functions that a 

good/bad has application data x. The larger values of F indicate the larger dif­

ference and hence, a better split. 

To calculate Somer's D Concordance statistic the classes need to be ordered 

with respect to the good/bad ratio, so that the first has the lowest 'good' rate and 

the last - the highest. Then the D-statistic measures how likely is that when you 

pick a 'good' customer from 'goods' and a 'bad' from 'bads' at random, the bad's 

attribute of the characteristic will fall into the lower class of that characteristic than 

the good's attribute: 

D = t (Lj<i bj)gi - (Lj<i gj)bi ). 

i=l gb 
(3.3) 

The higher values of the statistics indicate a better split. 

3.3.1 Example of coarse-classing a continuous characteristic 

To illustrate coarse-classing of a continuous characteristic consider the characteristic 

the Amount of a Loan. It was split into 10 bands with approximately equal number 

of observations in each band. Then a proportional hazards model was fitted to the 

time to early repayment with covariates being binary variables corresponding to 

each band. The histogram of the parameter estimates is shown in Figure 3.1. 
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Looking at the histogram, it seems reasonable to group the first two bands, then 

the next three, the next two, and the last two together. We know the minimum and 

the maximum amounts in each band, so the limits of a class combining several bands 

will be constructed by taking the minimum of the first band and the maximum of 

the last one in the class. Notice that it is desirable to group approximately the same 

number of bands together, so that the resulting classes are of comparable sizes. The 

histogram shows only nine bars because the first split, the fine-classing, is exhaustive 

and hence, the model estimates n - 1 parameters. 

Figure 3.1: 

ment model. 
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Parameter estimates for the Amount of a Loan from the early repay-

class N obs Min (Amount) Max(Amount) 

1 7132 400 800 

2 10350 850 1850 

3 6684 1900 2950 

4 9652 3000 7900 

Table 3.2: Coarse classing of the Amount of a Loan using survival analysis. 

The final split of the Amount (see Table 3.2) is not exhaustive since we left out 

the last decile, which is equivalent to giving this band a parameter of zero in the 

model. 
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To see how the survival coarse-classing approach compares to the standard one, 

the Amount of a Loan was coarse-classed using both methods. The standard method 

involved fine-classing by splitting the values of the Amount of a Loan into 10 intervals 

of similar size. Then the log-odds were calculated for each interval: log (gib/big ) 

where gi and bi are numbers of 'good' and 'bad' cases in the interval i and g and b 

are the total numbers of 'good' and 'bad' respectively. The definition of 'bad' was 

early repayment before the end of a loan. Finally, the intervals with similar log-odds 

values were grouped. The fine-classing histogram of log-odds is shown in Figure 3.2 

and the resulting coarse-classing is in Table 3.3. 

class N obs Min(Amount) Max(Amount) 

1 4241 400 500 

2 8344 550 1000 

3 8889 1050 2000 

4 12345 2050 7900 

Table 3.3: Coarse-classing of the Amount of a Loan using log-odds method. 

It can be seen that the histograms of the PH parameter estimates and the log­

odds are slightly different and may suggest different groupings of the fine-classing 

intervals. 

We can now use the statistics discussed earlier to compare the two alternative 

coarse-classings of the Amount. Table 3.4 gives values of X2
, F and D statistics for 

the two classing options. 

All three statistics have similar values for both groupings, however log-odds 

method values are slightly higher and hence, indicate a better classing. This is 

expected because the log-odds method uses the same good/bad definition as the 

statistics and the survival analysis method does not use a -good/bad definition at 

all. So one should not be discouraged by the difference in the values but encouraged 

by how close the survival analysis is to the traditional method which is designed to 

give the best split. 
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Figure 3.2: Log-odds for the Amount of a Loan for early repayment before the end 

of a loan. 

Method used Statistic 

for classing X2 F D 

Survival Analysis 0.107 0.042 0.107 

Log-odds 0.140 0.046 0.112 

Table 3.4: Statistics comparing the two classing methods for the definition of 'bad': 

early repayment before the end of a loan. 

Method used Statistic 

for classing X2 F D 

Survival Analysis 0.326 0.056 0.123 

Log-odds 0.316 0.049 0.114 

Table 3.5: Statistics comparing two classing methods for the definition of 'bad': 

early repayment in the first 12 months. 

However, if one was to use a different definition of good/bad to that used in the 

log-odds classing, the survival analysis method is expected to perform better while 

the log-odds approach would lose some of its power. In other words, the survival 
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analysis method's performance is not connected to one particular good/bad defini­

tion and this is one of its advantages over the log-odds method. This is demonstrated 

in the Table 3.5, where X2
, F and D statistics were calculated using the following 

definition of bad: 'bad' are those who repaid early in the first 12 months of the life 

of a loan. 

The values of the statistics are higher for the survival analysis based classing 

then for the log-odds classing. As expected, the survival analysis method for coarse­

classing outperforms the log-odds method when the good/bad definition is different 

from the one used in the log-odds classing. 

We have also tested alternative groupings, one based on the survival analysis 

approach and another on the log-odds approach, by fitting two proportional hazards 

model to the time to early repayment and using two alternative sets of binary 

variables, representing the Amount of a Loan, as the covariates. The models were 

of the form: 

where Open is the time to early repayment and Amount1 ... Amount4 are the indica­

tor variables for the different classes of the Amount of a Loan constructed by either 

the survival analysis based coarse-classing or the standard coarse-classing approach. 

The two models were compared using the corresponding values of the -2 Log Like­

lihood statistic, Table 3.6. The values of the statistic are similar, with the survival 

analysis classed model slightly better than the standard one, but not significantly. 

Model -2 Log Lik 

using survival analysis classing 224086.040 

using log-odds classing 224131.596 

Table 3.6: The -2 Log Likelihood statistic for the models using different classing 

methods. 

To summarise, the survival analysis based approach to coarse classing performed 

as well as the standard one based on the log-odds. However, one may prefer using the 

survival analysis based classing when developing a scorecard using survival analysis 
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for the reasons of not having to make the assumption about a time horizon for the 

good/bad definition, and because of the consistency and the convenience of using 

the same software as for the main model building. 

3.3.2 Example of coarse-classing a discrete characteristic 

There are 27 different purposes of loans in the data. Some purposes are very rare 

and hence, have a very few observations in the data set. These were combined 

with the other more frequently occurring purposes, so that the proportional hazards 

model was fitted to 22 binary variables indicating 22 purpose groups (Step 3 of 

the coarse-classing procedure above). Figure 3.3 shows a chart of the parameter 

estimates from the proportional hazards model predicting early repayment for each 

group. Then three binary indicator variables are created, so that one has purposes 

with the highest parameter estimates, i.e. purposes with the highest risk of early 

repayment, second one - purposes with the middle values of parameter estimates, 

and third one - with the lowest values. 
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Figure 3.3: Parameter estimates for the Purpose of a Loan from the early repay­

ment PH model. 
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Fi~ure 3.4: Parameter estimates for the Purpose of a Loan from the default PH 

model 

No Loan Purpose No Loan Purpose 

1 Account Standard, Re- 12 Weddings 

mortgages, Graduate 

Loan, Refinance 

2 Caravan, Motor Caravan 13 Boat, Motor Cycle 

3 New Car 14 Car Over 3 Yr Old 

4 Car Repair 15 Car Under 3 Yr Old 

5 Electrical 16 Furniture 

6 General Living 17 Kitchen Units 

7 Home Improvement 18 Musical Instrument 

8 Honeymoon, Holiday 19 Other Specific 

9 Mixed Purchases 20 Other Vehicles 

10 Others 21 Van 

11 Redecoration 22 not specified 

Table 3.7: Purposes of a personal loan. 

Figure 3.4 shows a chart of the parameter estimates from the proportional haz­

ards regression predicting default for 21 purpose groups. Notice that the most risky 
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purposes for early repayment are not the most risky purposes for default. This 

illustrates the importance of doing coarse classing independently for each failure 

type. 

Coarse-classing of the Term of a Loan 

The same method was used to achieve the best grouping of the values of the Term 

of a Loan. This characteristic was considered for the segmentation of the scorecard 

because it was the most significant one in the preliminary PH regression. Further 

analysis discussed in Section 3.4.1 confirmed that the Term of a loan is best used to 

segment the population. 

The best segmentation for predicting early repayment is to take 6 months term 

by itself, 12 and 18 months terms together, 24 and 30 months terms together and 

more than 30 months terms together. It was found that for the model predicting 

default it is best not to group values of the Term of a Loan and so, the segmenting 

variable has eight values corresponding to eight different terms. 

3.4 Hazard function and how it is affected by co­

variates 

The hazard function which was defined in Chapter 2 is a useful tool for data explo­

ration. Plotting the hazard function shows how the instantaneous default or early 

repayment rate changes over time. Hence, it can be used for getting a general idea 

about default or early repayment patterns in a portfolio as well as looking for the 

effects of marketing campaigns or policy changes on customer attrition. 

Figure 3.5 shows a plot of a default hazard rate against the time on the books. It 

was calculated on the personal loan data described in Section 3.2 using the product­

limit method: if tl < ... < tk are k event times, nj is the number of customers in 

the risk set just prior to tj when dj customers fail, the product limit estimate of the 

hazard function at time tj is 
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(3.5) 

However, most statistical packages including SAS only calculate the product­

limit estimate of the survival function: 

(3.6) 

To get the hazard function estimate from (3.6) one simply needs to divide (3.6) by 

S(tj-l) and solve for dj/nj : 

h(tj) = dj = 1 _ f;(t j ) ; 

nj S(tj- 1) 
(3.7) 

When examining the default hazard rate plot (Figure 3.5), the first three months 

have to be ignored because the definition of default is more than three months 

delinquent. 

The highest default rate is at the beginning of the loans and it then decreases 

with time. This may support the well-known concept that "if they go 'bad' they go 

'bad' early". For this particular data set 'early' means from 18 months to 2 years 

as it can be seen from the plot in Figure 3.5. 

Early repayment hazard, calculated analogously to the default hazard and on 

the same data, is shown on Figure 3.6. It can be seen that the hazard rate of early 

repayment is low at the very beginning, which is sensible because not many people 

repay a loan straight away, then it gradually increases and then flattens out. 

Note that both hazard plots are calculated using the whole sample which was 

not segmented by Term or any other characteristic, so these hazards are averaged 

between the loans of different terms. Hazard plots for the data segmented by the 

Term of a Loan provide additional information about hazard rates for loans of the 

same term and are discussed in the following section. 
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Figure 3.5: Default hazard rate. 
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Figure 3.6: Early repayment hazard rate. 

3.4.1 Segmentation of the hazard rate and the 'reversed' 

time scale 

When data, as in our case, contains loans with a range of terms, from 6 months to 

72 months, it is advisable to look at the hazard rates for each term separately. This 

highlights the features of default or early repayment rates in relation to the start 

and the end of a loan, rather than to the time on the books in general, which were 

otherwise hidden by averaging over all terms. 
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Plots of the default hazard rates for 12, 24 and 36 months loans against time 

are shown in Figure 3.7. All three lines seem to be very similar and show no new 

features to the ones observed on the averaged default hazard rate plot. The 12 

months hazard is very similar to the 24 months hazard 'cut' at 12 months, and the 

36 months hazard also just adds another 12 months to the familiar picture of the 

24 months hazard. However, the 12 months hazard is slightly higher than the 24 

months one because shorter loans would usually be associated with lower amounts 

and hence, would be available for more 'risky' applicants. These plots tell us that 

default hazard rate does not depend on time to the start or to the end of the loan, 

but on time in general. Also, one can see that there is almost no decline in the 

hazard rate for the 12 months loans and a very slight decline for the 24 months 

loans, which gives a more clear idea of what 'early' means for this data from the 

phrase "if they go 'bad' they go 'bad' early". 
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Figure 3.7: Default hazard rate for three different terms of loans. 
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Early hazard rate plots for 12, 24 and 36 months are shown in Figure 3.8. The 

hazard rates for the three different loan terms do not seem to be part of one general 

pattern as for default. Early repayment hazard rate rises through the course of a 

loan, reaching its maximum three to four months before the end of a loan and then 

falls rapidly for all three terms shown. These feature may be seen more easily if the 

time scale is 'reversed', i.e. transformed from time from the start of a loan into time 

left to maturity of a loan. 

Plotting the hazard rates against time left to maturity of a loan (Figure 3.9) made 

the interpretation easier. It can be seen that all the hazards have a peak about three 

to four months to a loan's maturity at the same rate. This high repayment rate is 

believed to be caused by the lenders themselves when they offer a re-financing option 

to their customers at about 3 months to completion. Other peaks at 12, 24 and 36 

months are probably due to the large number of customers repaying at the 1, 2 or 

3 year mark of the duration of a loan. The overall picture is such that the hazard 

rates for 24 and 36 months loans, for example, climb up to some level at about 12 

months to a loan's end and then follow the same pattern till the end. 
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Figure 3.9: Early repayment Hazard rate for different terms of loans, plotted 

against number of months remaining to final repayment 

This idea of the transformed time scale can be used in the graphical exploration 

of data as well as in fitting a survival analysis model. 

Hazard plots against time to maturity in Figure 3.9 suggest that early repayment 

is influenced most by the time left to the maturity of a loan. However, logistic 

regression and proportional hazards are using the time from the start of a loan. If 

one segments the model by term, the time from the start is a linear transformation 

of the time to maturity, hence it is equivalent to fitting the model to the time to 

maturity. Indeed, the time to maturity is the difference between the time from the 

start of a loan and the term of the loan. So if one segments the models by the Term 

of a Loan, the time to maturity is the time from the start minus a constant (Term). 

This is why segmenting by the Term of a Loan is so useful for early repayment in 

this data set. 

3.4.2 Effect of application characteristics on the hazard rate 

We have plotted hazard rates for different terms of loans. In the same fashion one can 

look at the hazard rates for different values of any other characteristic, such as the 

Purpose of a Loan, the Amount, or the Age of an Applicant, etc. This can be a part 
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of pre-modelling data exploration to help in understanding of which characteristics 

are likely to be significant and whether they have a positive or a negative effect on 

the survival time, i.e whether they increase or decrease the hazard rate. 

Figure 3.10 shows that default hazard rate for the high risk purpose group con­

taining refinance is much higher then for all other purposes. Hence, we should expect 

a positive and a significant value of f3 for the corresponding indicator variable in the 

proportional hazards model. 
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Figure 3.10: Default hazard rate for two groups of loan purposes 

40 

Another use of such plots is assessing whether the proportionality assumption -

the assumption needed for Cox's model to be valid, Section 2.4 - holds. So one has 

to check that the hazards do not cross, i.e. proportional to each other. The hazards 

on Figure 3.10 can be assumed to satisfy this assumption. Although they cross and 

then return to the original position at one point at the end of the observation time 

period, the amount of data there is small, so this can be regarded as a random 

fluctuation. 

Other methods of checking the proportionality assumption include various resid­

uals which are discussed in detail in Section 2.6 and time dependent covariates in 

Chapter 4. 
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3.5 Predicting early repayment 

3.5.1 Model construction 

Cox's proportional hazard model was fitted to loans' survival time until early pay-off. 

In line with the competing risk approach discussed in Section 2.5, the lifetimes of the 

loans that are paid off early are considered 'failures' while all others are considered 

censored. 

Models were built on a training sample and tested on a holdout. Tables 3.8, 3.9, 

3.10 show the indicator variables that were included into the early repayment model 

as covariates (or explanatory variables). These indicator variables were created from 

the continuous and the discrete characteristics using the survival analysis based 

coarse classing method from Section 3.3. 

Indicator var Applicants age between 

age01=1 18 and 21 

age02=1 21 and 25 

age03=1 25 and 33 

age04=1 33 and 39 

age05=1 39 and 57 

agem=l missing 

Amount of a loan between 

amountOl=1 500 and 800 

amount02=1 800 and 1850 

amount03=1 1850 and 2950 

amount04=1 2950 and 8000 

Table 3.8: Indicator variables constructed from continuous characteristics, part I. 
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Indicator var Years at current address between 

currad01=1 o and 1.4 

currad02=1 1.4 and 3.8 

currad03=1 3.8 and 7.4 

currad04=1 7.4 and 11.7 

currad05=1 11.7 and 24.2 

curradm=l missing 

Years with current employer between 

currem01=l 0.4 and 2.1 

currem02=1 2.1 and 2.9 

currem03=1 2.9 and 6.6 

currem04=1 6.6 and 12.4 

currem05=1 12.4 and 99 

curremm=l missing 

Insurance premium between 

inprem01=1 27 and 45 

inprem02=1 46 and 105 

inprem03=1 105 and 270 

inprem04=1 270 and 458 

inprem05=1 more that 458 

Table 3.9: Indicator variables constructed from continuous characteristics, part II. 
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Indicator var Purposes of loans 

purpeOl=1 6,10,23,4 

purpe02=1 16,8,12,13,11,24,19,26 

purpe03=1 1,27,3,22,20 

Applicant's Gender 

genderOl=1 female 

Frequency of applicant's salary payment 

freqpaOl=1 weekly 

freqpa02=1 missing 

N umber of dependent children 

depkidOl=1 1 to 3 

depkidOl=1 4 or more 

Home owenership 

homownOl=1 own 

Home telephone 

hometelOl=1 yes 

Loan type 

jointsOl=1 single 

Applicant's marital status 

weddedOl=1 single or divorced 

wedded02=1 married or widowed 

Table 3.10: Indicator variables constructed from discrete characteristics. 

The general form of the proportional hazards model fitted was: 

h(Open) = exp(f31 * Var1 + ... + 13k * Vark) * ho, (3.8) 

where VaT1, ... , Var2 are the indicator variables constructed from application char­

acteristics and loan specifications and (31 ... (3k are the parameters to be estimated. 

All the variables were included in the model to allow for a consistent comparison 

of the PH models between themselves and with a logistic regression model. However, 
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in practice, one may choose to use a selection mechanism, such as provided by 

stepwise, backward or forward options in SAS PHREG procedure, to reduce the 

number of covariates. In the forward selection method the procedure starts with 

finding the most significant covariate and adding it to the model. The process is 

repeated until there are no covariates left which are significant according to the 

specified entry significance level. In the backward selection method the procedure 

starts with all the covariates in the model, then finds the least significant one among 

them and removes it from the model. The process is repeated until there are no 

covariates left in the model with the significance level less than the specified staying 

level. In the forward and the backward selections once the variable is added or 

removed from the model it stays in or out respectively. 

The stepwise selection is similar to the forward selection except that the covari­

ates that have been added to the model can be removed if their significance level 

drops below the staying level. 

SAS PHREG procedure output is shown in Appendix A. It can be seen that the 

Term of a Loan is the most significant of the characteristics. 

Recall that in Section 3.4.1 we have shown that the relationship between early 

repayment and time left to maturity of a loan is much stronger than that between 

early repayment and time from the start of a loan. The time to maturity is the 

difference between the time from the start of a loan and the term of the loan. So if 

one segments the models by the Term of a Loan, the time to maturity is the time 

from the start minus the Term of a Loan (constant). Hence, fitting the segmented by 

term model to the time from the start of a loan to its early repayment is equivalent 

to fitting the model to time from the early repayment of a loan to its maturity. 

The PHREG output showing the parameter estimates for the segmented models 

is in Appendix A. 

The next section compares both the segmented and the non-segmented propor­

tional hazards models to the segmented and the non-segmented logistic regression 

models respectively. 

63 



3.5.2 Comparison of Proportional Hazards models with Lo­

gistic Regression models 

The results presented compare Cox's proportional hazards model (PH) with the 

logistic regression approach (LR) under the two criteria: 

1. Estimating which loans will be paid off early within the first 12 months (Ta­

ble 3.11, 1st year). 

2. Estimating which loans which are still repaying after the first 12 months will 

payoff early within the next 12 months (Table 3.11, 2nd year). 

PH 

LR 

1st year 2nd year 

G-pG G-pB B-pG B-pB G-pG G-pB B-pG 

Actual Nos 11964 0 0 2928 6274 0 0 

Non-segment 9802 2162 2162 766 4843 1431 1431 

Segm by Term 9765 2199 2199 729 4981 1293 1293 

Non-segment 9820 2144 2144 784 4984 1289 1289 

Segm by Term 9768 2196 2196 732 5000 1273 1273 

G-pG - 'good' predicted as 'good'; G-pB - 'good' predicted as 'bad'; 

B-pG - 'bad' predicted as good; B-pB - 'bad' predicted as 'bad'. 

Table 3.11: Predicting early repayment (Personal loan data). 

B-pB 

1825 

394 

532 

536 

552 

Two separate LR models were built for each of these definitions. One PH model 

was fitted to the times until early payoff, considering all other outcomes as censored. 

To compare the LR and the PH models, the latter was measured under the two 

criteria above in the following way: 

1. PH model gives an ordering of the relative likelihood to payoff early, i.e. for 

each customer there is a 'score' which reflects the estimated likelihood to pay 

off early relative to others. 
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2. The cutoff is then chosen in both the PH and the LR models, so that the 

number of predicted 'bads' equals the actual number of 'bads' in some hold­

out sample, i.e. 2928 customers that are most likely to payoff early according 

to the PH model are considered 'bad'. 

3. The numbers of 'bads' and 'goods' correctly classified by the models in the 

hold-out sample are then compared between the models (see Table 3.11). 

In the case of non-segmented models, LR slightly outperforms PH. This is not 

surprising since only one PH model was used to classify loans according to both 

definitions as opposed to two LR models fitted specifically to each definition. Notice 

that the PH model loses a lot of power in the second year. On investigating this 

further, it was realised that the Term of a Loan was a very significant character­

istic that correlated strongly with the other variables including the time to early 

repayment. When the models were segmented by Term, see Table 3.11 and their 

performance compared in the same way as for the non-segmented ones, the results 

for PH model were much better. In the second year in the segmented case the PH 

model performs better than the LR model. This suggests that the time to early 

repayment is strongly affected by the Term of a Loan. This is supported by the 

discussion of Section 3.4.1 and Figure 3.9 which suggest that the critical measure 

for early repayment of a loan is how much longer until maturity, rather than its 

current duration. Thus if one is using the duration of a loan in a PH model, one can 

only translate this into the time until the maturity for a set of loans if they have 

the same maturity. 

To show that these results are not artifacts of the cut-off chosen, ROC curves 

for each scorecard were produced. Figure 3.11 shows the ROC curves for the PH 

and the LR models without segmentation and confirms the poor performance of the 

PH in the second year. Figure 3.12 shows the ROC curve results when the data 

is segmented by term. a) corresponds to loans of 12 and 18 months. Only early 

repayment in the first twelve months can be observed for this segment, since there 

are too few loans with the 18 months term; b) and d) are the results for loans with 
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terms of 24 and 30 months, b) being the ROC curve for early repayment in the first 

year of a loan and d)early repayment in the second year of a loan; c) and e) are the 

similar ROC curves for loans which were to be repaid in 3 or more years. The PH 

and the LR ROC curves are very similar to one another. 
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Figure 3.11: ROC curves for PH and LR predicting early repayment: a) 1st 

year, b) 2nd year 
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Note that the LR segmented model is worse than the non-segmented one. Some­

times this happens because although segmentation should result in a better model, 

since it builds a different model for each segment, it also has much less data for 

each of these models, so the performance may be affected, (Banasik et al. [1996]). 

However, in our case the difference is large enough to deserve an investigation into 

its causes. Note that we will only be concerned with the logistic regression models 

for the 1st year in this investigation. 

The choice of a cutoff based on matching the number of predicted 'bad' to the 

number of real 'bad' for each the term sub-groups can be a cause of the problem if 

the real number of 'bad' in one of the sub-groups in the holdout sample does not 

reflect the expected 'bad' rate for this sub-group. In other words, it seems more or 

less risky than expected. 

Hence, three different methods of choosing a cut-off were tried out: 

1. by matching marginal 'bad' rates between the term sub-groups; 

2. by matching I-specificity (horizontal axes of a ROC curve) ; 

3. by matching sensitivity (vertical axes of a ROC curve). 

However, none of the above cut-offs improved the match rate. 

It was noticed that if one treats the scores from the four segmented models 

as scores on the same scale and chooses the cut-off as in the non-segmented case 

by matching the total number of predicted and actual 'bad' in the whole hold-out 

sample, then the segmented model performs better than the non-segmented. The 

number of correctly classified 'bad' is 792, not 732 as in Table 3.11. If one now looks 

where this cut-off has 'cut' the term sub-groups (Table 3.12), it is clear that the 12 

and 18 months group is very different from the rest. It is much more risky then the 

others, since only about 50 percent of the actual 'good' and 'bad' were accepted as 

opposed to 70 to 98 percent in the other sub-groups, but the actual number of 'bad' 

in the hold-out sample does not reflect this. That is why choosing the cut-off based 

on the actual numbers of 'bad' in the sub-groups resulted in a poor prediction. 
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Term Sub-group I-Specificity Sensitivity 

6 mths 0.732 0.818 

12 and 18 mths 0.501 0.596 

24 and 30 mths 0.875 0.892 

36,48 and 60 mths 0.980 0.983 

Table 3.12: Percentages of accepted 'bad' (i-specificity) and accepted 'good' (sen­

sitivity) in the term sub-groups corresponding to the cut-off chosen by matching the 

bad-rate in the whole hold-out sample. 

Furthermore, if one compares predictive power of the non-segmented model on 

the term sub-groups rather than on the whole sample with the segmented model it 

can be seen they are comparable, see Gini coefficients in Table 3.13. In fact, the 

segmented model wins in three out of the four term sub-groups. 

Girri coefficient 

Term Sub-group Non-segmented Segmented 

6 mths 0.0500 0.1629 

12 and 18 mths 0.1091 0.1272 

24 and 30 mths 0.1042 0.1059 

36,48 and 60 mths 0.1546 0.1443 

Table 3.13: Gini coefficients for the non-segmented and the segmented models 

applied to the term sub-groups. 

Thus the predictive power of both models is worse if they are applied to each of 

the term sub-groups separately rather than the whole sample. This can be explained 

by the fact that a large part of the discrimination is based on discriminating between 

the terms which is only possible if the score is applied to the whole sample. In other 

words, the term sub-groups are very different from one another in terms of risk, 

which can be illustrated by comparing their scores (Table 3.14). 
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Statistic 

Term Sub-group Mean Std. Dev 

6 mths -1.705 0.246 

12 and 18 mths -1.175 0.227 

24 and 30 mths -1.46 0.247 

36,48 and 60 mths -1.846 0.291 

Table 3.14: Moments of the segmented score for different term sub-groups. 

The hold-out method is based on the assumption that there is enough data to 

choose a hold-out sample which would represent the whole population well. When 

a holdout sample is segmented into n sub-samples, then one is hoping to have 

enough data for n holdout samples that are similar to the respective subgroups 

in the population. This is clearly more difficult to achieve than in the case of one 

hold-out sample. It was seen in the case of our data, where the sub-holdout of 12 and 

18 months loans was not representative of the 12 and 18 months loan population. 

This sub-group is riskier than others which is indicated by the lower mean score in 

Table 3.14, but the number of 'bad' in the hold-out is not enough to reflect this. 

In summary, it has been demonstrated that the segmented LR model for early 

repayment in the 1st year performs worse than the non-segmented because the hold­

out sample is not representative of the population for one of the segments. If the 

cut-off is chosen by matching the number of 'bad' on the whole hold-out rather 

than each segment, the segmented model performs slightly better than the non­

segmented. So if the segmented model is to be used in the 1st year, care should 

be taken while choosing the cut-off, alternatively the non-segmented PH and LR 

scorecards can be used for predicting early repayment in the 1st year. However, in 

the 2nd year we would definitely use the segmented PH scorecard since it is much 

better than the non-segmented one. 

SAS statistical software was used to fit both PH and LR models, using the proce­

dures PHREG and LOGISTIC respectively. There are three ways of the treatment 

of ties available in PHREG procedure: 'Breslow', 'Efron' and 'Discrete', which cor­

respond to the three different approximations of the exact likelihood as discussed 
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in Chapter 2. The SAS statistical package recommends 'Discrete' for the data that 

contains a large number of ties. 

-2Log(Likelihood) 

Term Sub-group Discrete Breslow 

6 mths 1111.873 1775.261 

12 and18 mths 28956.193 57041.291 

24 and 30 mths 38374.029 72658.827 

36, 48 and 60 mths 39189.753 70345.125 

Table 3.15: -2Log(Likelihood) statistics from the early repayment models. 

Table 3.15 calculates the log-likelihood values obtained by fitting the proportional 

hazards model to the data (segmented into four groups, terms of 6, 12 and 18 

months, 24 and 30 months and 3 or more years) using the 'Discrete' method and 

Breslow's approximation. The smaller value of the log-likelihood statistic indicates 

a better fit to the data. So these log-likelihood values suggest that the discrete 

approximation has given a much better fit in all four cases, however there was 

almost no difference in the parameter estimates and no difference in the number of 

correctly classified accounts between the two methods. 

R.Peto, who proposed an approximation differing from Breslow's only by a con­

stant, (discussion of Cox [1972]), notes that the differences between his, Cox's and 

the exact probability "is two orders of magnitude less than the random variation 

which is being analysed". In addition, Breslow's approximation is the fastest method 

out of the three and hence, it was used for the majority of the calculations. 

3.6 Predicting default 

Methods analogous to those used to predict early repayment were also used to predict 

default. 

The results presented compare Cox's Proportional Hazards model with the lo­

gistic regression approach again under the two criteria: 
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1. Estimating which loans will default within the first 12 months (Table 3.16, 1st 

year). 

2. Estimating which loans which are still repaying after the first 12 months will 

default within the next 12 months (Table 3.16, 2nd year). 

PH 

LR 

1st year 2nd year 

G-pG G-pB B-pG B-pB G-pG G-pB B-pG 

Actual Nos 14495 0 0 397 7915 0 0 

Non-segment 14145 351 351 46 7747 168 168 

Segm by Term 14149 346 346 51 7752 163 163 

Non-segment 14145 350 350 47 7748 166 166 

Segm by Term 14145 351 351 46 7752 162 162 

G-pG - 'good' predicted as 'good'; G-pB - 'good' predicted as 'bad'; 

B-pG - 'bad' predicted as 'good'; B-pB - 'bad' predicted as 'bad'. 

Table 3.16: Predicting default {Personal loan data}. 

B-pB 

184 

16 

21 

18 

22 

Table 3.16 shows the results on a holdout sample using a cut-off where the 

number of 'bads' predicted agrees with the number of 'bads' in the sample. The 

results suggest there is a little difference between LR and PH in either the first or 

the second year and that the segmentation has a less dramatic improvement on PH 

results under the default criterion that it did under the early repayment criterion. 

The ROC curves in Figures 3.13-3.14 agree with Table 3.16. Figures 3.13 shows 

that without segmenting by the Term of a Loan LR and PH give very similar results 

in both the first , a), and the second, b), years. 

Figure 3.14 shows the ROC curve results when the data is segmented by term, 

for the three most common terms of loans. a) and d) correspond to loans of 24 

months a) being the ROC curve for default in the first year of a loan and d) default 

in the second year of a loan; b) and e) are the similar ROC curves for loans with 

the term of 36 months and c) and f) are the ROC curves for loans which were to 

be repaid in 48 months. It should be noted that segmentation by the Term of a 
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Loan has less effect in predicting default than early repayment because default rate 

is independent of the Term of a Loan and early repayment is not. 
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Figure 3.13: ROC curves for PH and LR predicting default: a) 1st year b) 2nd 

year 
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It seems reasonable that default is a function of present and past conditions, but 

that early repayment also takes into the account how much longer a loan is to exist 

and how much more would be needed to pay it off now. Hence, early repayment has 

a strong relationship with the remaining time to maturity of a loan and thus, with 

the actual term of a loan. This explains why segmentation works so much better for 

early repayment than for default. 

3.7 Comparison of model diagnostic methods 

Martingale and Schoenfeld residuals can be requested as part of the output from 

the PHREG procedure in SAS. 

Cox-Snell residuals were calculated from martingale residuals as discussed in 

Section 2.6. To examine whether Cox-Snell residuals have unit exponential distri­

bution the product-limit estimate of the survivor function S(reJ was obtained and 

log-log transformation of these values was plotted against log of the corresponding 

residual. The -log S(reJ is exponentially distributed with unit mean irrespective 

of the form of S(reJ. So we check that rei also has an exponential distribution 

by plotting 10g(reJ against 10g(-logS(reJ) - the log of the quantity known to be 

exponentially distributed with unit mean. 

Figure 3.15 shows Cox-Snell residual plots for the early repayment model seg­

mented by term, hence there are four plots, one for each term subgroup. Each circle 

or dot represents one observation - a loan lifetime - from the data. This is true for 

all the residual plots which follow. 

The plotted points are close to the straight line with unit slope and zero intercept 

if the observations with the lowest residuals are ignored. There are only a few of 

those and they correspond to the loans with the shortest lifetime - one month. It 

is arguable whether these observation should be considered at all since repayment 

after one month is not necessarily a typical or normal feature of a personal loan 

portfolio. These are likely to be 'dirty' data in that they reflect the loans that were 

never really taken up. If we ignore these observations we can conclude that the 
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model is adequate. 

Martingale residuals for the early repayment model segmented by the Term of a 

Loan were plotted against the rank order of time. The plots corresponding to each 

of the four term subgroups are shown in the Figure 3.16. 

The size of a loan's residual relates to the model accuracy, so that large positive 

value indicates that the loan failed (repaid early) sooner than expected and large 

negative value indicates a failure later than expected from the model. 

The values appear in two bands, one representing uncensored observations, an­

other - censored ones. This is because Martingale residuals are always negative for 

the censored observations. The scatter of the points within a band increases with 

the rank order of time. It is expected that since the calculation of rMi involves 

estimating a survivor function which is close to one for early times, and hence, its 

logarithm is close to zero, then rMi will be clustered around 1 for uncensored and 

around 0 for censored observations. 

There are no clear outliers. Therneau et al. [1990J note that it is almost impos­

sible to detect outliers of the 'failed sooner than expected' type because there are so 

many observations clustered around 1. The deviance residual transformation should 

help to reduce this problem, since it is designed to make the residual distribution 

more normal (Section 2.6). 

Deviance residuals, Figure 3.17, are very similar in appearance to Martingale 

residuals. Still, there appears to be no outliers. 

Since the number of observations is very large, it is doubtful that these plots can 

be as useful in identifying problems with the model as in medical studies, where a 

number of observations is fewer. Because of the large number of observations the 

patterns explained by the nature of the residual are clearly visible and overshadow 

any other systematic features or outliers. 

Schoenfeld residuals were plotted to investigate whether the effect of a covari­

ate on the survival time changes over time, i.e. whether the proportional hazard 

assumption holds. 

Figures 3.18, 3.19 show examples of Schoenfeld residuals plots against the rank 

76 



order of time for two covariates, FREQPAOI and CURRADOl, for the early repay­

ment model segmented by the Term of a Loan. 

Since all the covariates are binary, the residual is either 1 - E(XiIR(ti)) when 

Xi = 1 or -E(XiIR(ti)) when Xi = O. Hence, there are two lines of points on the 

plot. 

This diagnostic is very laborious when the number of covariates is as large as 

in our data, because there is a plot corresponding to every covariate for each term 

subgroup. 

There appears to be an approximately equal number of the Schoenfeld residuals 

at equal distances from o. The plots do not show any signs of time-dependency or 

of non-proportionality. 

However, it is plausible in credit scoring that some characteristics are more im­

portant as predictors of failure at the beginning of a loan and lose their significance 

later. Therefore more diagnostic methods, graphical and numeric, were employed 

to investigate a possibility of a time-dependent covariate effect, (Section 4.1). 

TERM3 = t12_18 TERM3= t3S_48_S0 

"iii 2 "iii 2 
::l ::l 

"U 0 "U 0 .!il .!il 
2! -2 2! -2 ..... ..... 
0 

-4 
0 -4 

N N 

"' -S "' -S .<:: .<:: 

E -8 E -8 
" 0 0 " I -JD I -JD 

bO -S -5 -4 -3 -2 -1 0 bO -S -5 -4 -3 -2 -1 0 
.3 Log of Cox-Snell residual .3 Log of Cox- Snell residual 

TERM3= t24_30 TERM3=tS 

"il 2 "il 1 
D 

::l ::l 0 co 
"U 0 1 / ·m -1 

-2 ..... ..... -2 
0 -4 0 -3 
~ -S ~ -4 .<:: .<:: 

E E -5 
-8 -S 

. 
::l ::l Q 

() co () 

" I -JD I -7 
bO -S -5 -4 -3 -2 -1 0 1 bO -17 -12 -7 -2 
0 0 

...l Log of Cox-Snell residual ...l Log of Cox-Snell residual 
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Figure 3.16: Martingale residuals 

TERM3= t12_E TERM3= t3638_60 

01 01 4 
::s 2 1IIIn I ::s 3 
~ ~ 

I I '3~ 
" 2 

1I.ln 11111111111111118; 
'" '" ... ... 
'" '" 1 
" 0 " fi '1.'111 .111 -~ 0 

....... t ... n 11 111111111111_111 -i -1 ~ -1 
Q 

-2 
Q -2 

0 5000 10000 15000 0 2000 4000 6000 8000 1)000 12000 

Rank of 10 an survial time Rank of 10 an survial time 

TERM3= t24_30 TERM3= t6 

Id 4 Id 4 
::s 3 ::s 

3 • "0 "0 

2 1111 -lit 2 

IIhllllllllllll I 
-lit 

'" '" I ... ... 
'" I II '" 1 • 
" " • I s:: s:: 0 oj 1"11.1111111111 I 

oj Del I I 3 -~ -1 I II -~ -1 
'" '" Q 

-2 
Q 

-2 
0 2000 4000 6000 8000 DOOO 12000 0 100 200 300 400 500 600 700 800 900 

Rank 0 f loan survial time Rank of loan survial time 
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Figure 3.18: Schoenfeld residuals for FREQPAOl 
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Figure 3.19: Schoenfeld residuals for CURRADOl (0-1.5 years at current address) 
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3.8 Conclusions 

This chapter demonstrated how survival analysis can be used to build credit scoring 

models. The summary of the results and conclusions is as follows: 

First, the general conclusions: 

• Proportional hazards coarse-classing of characteristics has a more consistent 

performance over the different definitions of 'bad' than the traditional log­

odds method, because it uses time to an event, rather than a specific 'bad' 

definition. 

• Plots of hazard functions provide a powerful visual tool that allows one to 

examine the probability of an event, such as default, over time, can suggest 

a segmenting characteristic, and provide preliminary assessment of whether a 

proportional hazards model is suitable. 

• Proportional hazards models are competitive in their classification perfor­

mance with logistic regression (see data specific conclusions below). 

• Residual plots should be used to examine model fitness, outliers and possible 

time-dependency. Cox-Snell residual is the most popular in literature and was 

found to be suitable for credit scoring data. Martingale and Deviance residuals 

are not very informative in the case of large data sets and credit data sets are 

normally large enough to cause this problem. Schoenfeld residual is a very 

laborious diagnostic in the case of many characteristics, which is often the 

case in credit data. 

The conclusions specific to the data set (further research is needed to see if these 

are general): 

• The hazard rate of default is almost constant for about two years and then 

decreases slowly. It is consistent with the common notion "if they go 'bad' 

they go 'bad' early" if one believes that two years is 'early'. 
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• Features of the hazard rate of early repayment were seen more clearly after 

segmenting the data by the Term of a Loan. It slowly rises reaching its peak 

at 3 to 4 months to the loan's end and then falls. This suggested that early 

repayment is influenced most by the time left to maturity of a loan and that 

models predicting time to early repayment should be segmented by the Term 

of a Loan. 

• ROC curves showed that the early repayment PH model performs very closely 

to the LR model when predicting early repayment in the first year of a loan. 

However, the segmented model should be used in the second year. 

• In the case of predicting default, the PH and the LR models give very similar 

results. The term-segmented PH outperforms the segmented LR for 36 months 

loans. 

• Residual plots for the early repayment PH model show that the model fits 

data well except for loans with very short repayment times, which might be 

not valid data anyway. There is no indication of either outliers or noticeable 

time-dependency. 
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Chapter 4 

Time-Dependent Effects of the 

Covariates 

In this chapter we return to the model formulation to show one of the extensions 

of Cox's model - time-by-covariate interaction - and to illustrate it on the personal 

loan data set from Chapter 3. Suppose we have just one binary covariate Xl: 

Xl 1 if purpose of a loan is refinance, 

Xl 0 otherwise. 

Cox's model gives the hazard of a customer to default at a time t as a baseline 

hazard multiplied by some function of a covariate value, 

(4.1) 

If the purpose of a loan is not refinance, then Xl = 0, and the hazard is equal to 

the baseline hazard : 

h(t; Xl = 0) = ho(t). (4.2) 

If however the purpose is refinance, then Xl = 1, and the hazard is e1h times 

higher than the baseline: 

(4.3) 

ef31 is called the relative hazard. Notice that it is independent of time under Cox's 

proportional hazards model. So no matter how long a loan stays on the books, if 
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the purpose is refinance, it will always be considered more likely to default when 

compared to other loans. This may not really be the case. To check this a variable 

X2 = Xl t is defined, which represents an interaction of the refinance indicator with 

time. Then this variable is added to the model (4.1): 

(4.4) 

Notice that now the relative hazard for loans on refinance to others is e(fh +!h t ), which 

depends on time and hence, allows for a change in the effect of refinance on default 

over time. 

This approach was proposed by Cox [1972] as a test for the assumption of pro­

portionality. If the time-by-covariate interaction is significant the assumption does 

not hold, since the ratio of the hazards is not constant. Stablein et al. [1981] actually 

fitted the model including a time-by-covariate interaction to a data set to account for 

non-proportional hazard functions. The authors showed that the inclusion of a time­

by-covariate interaction is not only a means for testing for non-proportional hazards 

but also a modelling technique for when hazards are indeed non-proportional. 

4.1 Tests for time-dependency 

In consumer credit data the number of predictor variables, or characteristics, is 

usually large. So before including a time-by-covariate interaction in the model, it 

is desirable to screen all the characteristics for a possible time-dependent effect. A 

large number of graphical and numerical tests were developed for testing for time­

dependency and are discussed in the following two sections. 

4.1.1 Harrel's test and other numerical tests. 

Ng'andu [1997] compares performance of the five most popular numerical tests for 

different scenarios of non-constant hazard ratio: 

1. time-dependent covariate method (described above); 
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2. Harrel's linear correlation test; 

3. weighted residuals score test; 

4. score process; 

5. omnibus test; 

To explain what each of these tests does, let us write down a general form of a 

model including time-dependency as: 

(4.5) 

where {3 + Og(t) can be also seen as one time-dependent coefficient {3(t). 

The idea of the omnibus test is to assume that the unknown functional form of 

time dependency can be represented by a piece-wise constant function (Pettitt and 

Daud [1990]). So that if one chooses n time intervals, then time dependency in (4.5) 

is of the form g(t) = Ck, k = 1 ... n where Ck are unknown constants. Then the 

hypothesis of all Ck = 0 is tested using a specially constructed statistic proposed by 

Moreau et al. [1985]. 

The score process Lij ({3j, t) for a covariate Xj and subject i used for test 4 is con­

structed by taking a derivative of the partial likelihood function (2.11) with respect 

to {3j (jth component of the vector {3) (Therneau et al. [1990]). Then Therneau 

et al. [1990] showed that the assumption of proportionality might be rejected for a 

particular covariate Xj if the supremum of the sum of the score processes for all the 

subjects for this covariate ~ SUPt L.i Lij ({3j, t) ~ has a 'large' value. 

Weighted residual score test (Grambsch and Therneau [1994]) is based on the 

Schoenfeld residuals, see Section 2.6. Grambsch and Therneau [1994] showed that 

if one wants to test for a time-dependent coefficient {3(t), in other words non­

proportional hazards in Cox's model, the function {3(t) can be visualised by smooth­

ing a plot of appropriately scaled Schoenfeld residuals. 

Harrel's test is based on Fisher's Z-transform of the Pearson correlation between 

Schoenfeld residuals of a model under consideration and rank order of time. Fisher's 

Z-transform is a method for normalizing distribution of correlation coefficients. It is 
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used here to construct a normal test statistic from the Schoenfeld residuals, which 

can be requested as an additional output from SAS procedure PHREG. The test 

statistics for testing the hypothesis of p = 0 is 

(4.6) 

where p is the correlation between Schoenfeld residuals and failure time order and 

nu is the total number of uncensored observations. 

So after the Fisher's transformation Z is a normal deviate, hence to test the 

hypothesis one can compare its value with the normal statistic. Recall that the 

sign of the expected value of the Schoenfeld residual depends on the sign of the 

time trend g(t) of the covariate under consideration (Schoenfeld [1982]), Section 

2.6). Hence, if trend is positive, the hazard ratio increases over time: hI (t)/ho(t) = 

exp((3xI + Og(t)Xl) and also, the correlation of the residual with rank order of time 

is positive (p > 0). This means Z tends to be positive if the hazard ratio for the 

covariate increases over time and it tends to be negative if this hazard ratio decreases 

over time. 

The first test, which is the time-dependent covariate method, was discussed at 

the start of this chapter. 

According to Ng'andu [1997], the three best tests are the time-dependent covari­

ate method, the weighted residuals score test and Harrel's linear correlation test. 

Harrel's test was chosen as a screening test for including time-dependent co­

variates because it is close to the time-dependent covariate test in power, Ng'andu 

[1997], and also computationally simple compared to other tests. 

4.1.2 Graphical tests 

There are a number of graphical tests for time-dependency. Hess [1995] has given 

a comprehensive overview of the most popular methods and their variations for 

checking the assumption of Cox's model, that the effect of a covariate does not 

change over time, hence the hazards are proportional. 
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Rewriting the assumption of the proportionality of the hazard functions in dif­

ferent forms suggests a number of possible plots to test for its validity. Table 4.1 

outlines some of the methods reviewed by Hess [1995] together with the relative 

formulae to explain the expected pattern if the assumption holds. 

Plot Formulae Expected Shape 

1 I Hl(t) t og Ho(t) VS log z~m = log( exp((3)) = horizontal line 

(3 

2 hI (t) 
log ho(t) VS t log ~~m = log( exp((3)) = horizontal line 

(3 

3 HI (t)vsHo(t) HI(t) = exp((3)Ho(t) straight line 

with slope 

exp((3) 

4 log Ho(t) and 10gHI(t) = (3 + log Ho(t) two parallel lines 

log Ho(t) vs t 

Table 4.1: Graphical tests for the assumption of proportional hazards. 

All covariates in our data were binary and each was considered one at a time, so 

Cox's proportional hazard model for a particular covariate can be rewritten as: 

hI (t) = exp((3)ho(t) 

or in terms of the cumulative hazard function as: 

exp((3) lot ho(t)du 

exp((3)Ho(t). 

(4.7) 

(4.8) 

(4.9) 

The cumulative hazard function is used in graphical tests more extensively than 

the hazard function because it is a negative logarithm of the survival function, 

hence is simpler to compute. Note that 10g(HI(t)/Ho(t)) = log(hl(t)/ho(t)) = (3 if 

hazards are proportional. However, ifthe proportional hazards assumption does not 
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hold, i.e there is a time-dependency, then log (HI (t)/ Ho(t)) = logJ~ exp f3(t)du but 

log( hI (t) / ho (t)) = f3 (t). Thus the difference between plotting the log of the hazard 

ratio to the log of the cumulative hazard ratio is that the functional form of f3(t) 

can be inferred from the former, but not from the latter graph. 

These tests will be compared and assessed on the example in Section 4.2. 

Apart from the visual examination of the plots one can fit a linear regression to 

the one-line plots which would add a helpful numerical indication that can assist 

comparison of the plots when the number of covariates is large. 

4.2 A model with time-by-characteristic interac­

tions 

A smaller version of the proportional hazards model from Section 3.6 is introduced 

here. It is fitted to the time to default using only ten most significant characteristics 

selected using stepwise procedure as covariates. This model is used to illustrate 

the concept of time-dependency. The parameters from the model together with the 

corresponding X 2 statistics and significance probabilities are shown in Table 4.2 
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Covariate Parameter estimate Wald X 2 Pr > X 2 

PURPOSOI 1.095 330.478 0.0001 

HOMOWN01 -0.431 53.924 0.0001 

FREQPAOI 0.671 145.761 0.0001 

CURRADD04 -0.448 47.859 0.0001 

WEDDED01 0.351 37.562 0.0001 

CUREMP04 -0.770 73.637 0.0001 

CUREMP05 -1.104 51.721 0.0001 

CUREMP03 -0.394 33.044 0.0001 

PURPOS02 0.388 22.981 0.0001 

CURADD05 -0.883 18.163 0.0001 

Table 4.2: Parameter estimates from the proportional hazards model estimating 

time to default. 

The graphical tests and Harrel's test described in Section 4.1 were then applied 

to these characteristics to examine whether their effect on default changes with time. 

Plots 1-4 from Table 4.1 for the binary variable PURPOSOl, which is an indi­

cator for loans on refinance, are shown in Figure 4.1. It can be seen that plots of 

log(HI(t)/Ho(t)) and log(hl(t)/ho(t)) vs t are not horizontal lines as expected un­

der the proportional hazards assumption. However, HI(t) against Ho(t) (H-H plot) 

and the plot of log Ho(t) and log Ho(t) vs t do not suggest any departure from the 

proportional hazards. 

Hess [1995] votes for the plot of log(HI(t)/Ho(t)) against t because it gives a 

direct assessment of the proportional hazards assumption. Also it is preferred to 

the two line plots, such as log HI (t) and log Ho(t) against time, because the visual 
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assessment of the constancy of a single curve is easier than the visual assessment of 

parallelism between two curves. 

Figure 4.2 gives the same four plots for another indicator related to the purpose 

of a loan, PURPOS02, which divides the loans into vehicle related and others. For 

this variable all plots but H-H plot exhibit patterns suggesting violation of the 

proportional hazards assumption: Plots 1 and 2 are clearly not horizontal lines and 

Plot 4 shows that the hazards cross. 

According to the plots we conclude that for both covariates there is an indication 

of a time-by-covariate interaction. Note that the directions of the time-dependencies 

of PURPOS01 and PURPOS02 are different. If loans on refinance become less risky 

as time goes by, since the hazard ratio decreases, vehicle loans become more risky 

since the hazard ratio rises. 

To compare the appearance of the graphs for covariates with and without time de­

pendency consider now covariate CUREMP04 with the graphical diagnostics shown 

in Figure 4.3. CUREMP04 is an indicator variable for 8.5 to 17.49 years with the 

current employer. According to other tests discussed later its effect on default is 

not time-dependent and the graphical tests seem to agree with that. The plot of 

log(Hl(t)/Ho(t)) does not have a trend like for PURPOS01 and PURPOS02 and 

is close to a horizontal line. The peak at the beginning should be ignored since 

the definition of default is 3 or more months delinquent, hence the plots should be 

considered from 3 months onwards. The same can be said about log(hl(t)/ho(t)) 

plot - it does not exhibit a trend. Plots of logs of cumulative hazards are close to 

parallel, ignoring the first three months, and H-H plot is close to a straight line. 

It can be seen that examining all the possible graphical diagnostics visually takes 

a long time when the number of covariates is large. The time-saving alternative to 

the visual examination of the plots is to calculate log(Hl(t)/Ho(t)) for all of the ten 

covariates and use linear regression (4.10) to examine the presence of a trend. 

H 1(t) 
log Ho(t) = a+b*t, where t ~ 4. (4.10) 

One then needs to examine a table of regression estimates instead of ten plots. 

However, the results may be deceptive if there are non-typical very large or very 
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small values that will influence the regression fit. 

The parameter estimates, a and b, from the linear regressions of the form (4.10) 

and their significance for our ten covariates are presented in Table 4.3. 

Covariate a Pr>T b Pr >T 

PURPOS01 1.255 0.0001 -0.015 0.0001 

HOMOWN01 -0.488 0.0001 -0.006 0.0001 

FREQPA01 0.391 0.0001 0.006 0.0001 

CURRADD04 -0.680 0.0001 0.005 0.0001 

WEDDED01 0.725 0.0001 -0.005 0.0001 

CUREMP04 -0.646 0.0001 -0.003 0.0603 

CUREMP05 -1.800 0.0001 0.025 0.0001 

CUREMP03 -0.732 0.0001 0.029 0.0001 

PURPOS02 -0.311 0.0001 0.017 0.0001 

CURADD05 -1.134 0.0001 0.006 0.3971 

Table 4.3: Linear regression parameter estimates fitted to the log (HI (t)/Ho(t)) for 

the ten co variates in the model. 

It can be seen that all the covariates but CURADD05 and CUREMP04 have 

highly significant trends (b coefficients) in the log of the cumulative hazard ratio 

according to these results. However, we know that, for example, the effects of 

PURPOS01 and of CUREMP03 might be time-dependent according to other tests 

(Harrel's test and the time-dependent covariate method which are discussed later in 

the section) and they have larger parameter estimates for the trend, so one should 

judge by the magnitude of the parameter estimate rather than by its significance. 
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Figure 4.3: Graphical diagnostics for CUREMP04 : the indicator for 8.5 to 17.49 years with the current employer. 



Following the comparison of the graphical tests we have performed Harrel's Z-test 

for all the covariates. First, Schoenfeld residuals were obtained when the propor­

tional hazards model (Table 4.2) was fitted. Then the Z-statistic was calculated 

according to (4.6). 

Variable Z-statistic 

PURPOS01 -19.4182 

HOMOWNOl -7.8415 

FREQPA01 7.6008 

CURADD04 6.0507 

WEDDED01 -8.1209 

CUREMP04 -4.7463 

CUREMP05 4.0371 

CUREMP03 17.2405 

PURPOS02 11.9752 

CURADD05 -0.3187 

Table 4.4: Harrel's Z-statistic values for the ten co variates. 

Harrel's Z-test suggested that the hazard ratios for PURPOSOl, HOMOWN1, 

WEDDEDOl and CUREMP03 decrease over time and the hazard ratios for FRE­

QPA01, CURRADD04, CUREMP05, CUREMP03 and PURPOS02 increase over 

time. The larger absolute values indicate a stronger time trend. Examples of a neg­

ative and a positive trend were also illustrated with the graphical tests. It can now 

be seen that graphical tests supply information about the direction and the shape 

of the trend. However, they do not give a clear indication of the trend magnitude 

which can be obtained by comparing values of the Z-statistics from Harrel's test. 
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For the sake of demonstrating the connection between the test results and the 

model with time-dependent covariates we have included a time-dependent covariate 

corresponding to each out of the ten covariates in the original model, so that the 

model has now 20 covariates in total. 

The parameter estimates are shown in Tables 4.5-4.6 

Covariate Parameter estimate Wald X 2 Pr > X 2 

PURPOS01 1.409875 126.33331 0.0001 

PRP01*T -0.028081 8.30476 0.0040 

HOMOWN01 -0.240712 3.93890 0.0472 

HM001*T -0.016224 3.19398 0.0739 

FREQPA01 0.613699 28.56601 0.0001 

FEQ01*T 0.004762 0.30298 0.5820 

CURADD04 -0.504642 14.07506 0.0002 

CRA04*T 0.004795 0.23074 0.6310 

WEDDED01 0.598879 25.06824 0.0001 

WDD01*T -0.021113 5.53145 0.0187 

Table 4.5: Parameter estimates from the PH model with ten covariates and ten 

time-dependent covariates representing interactions of a each covariate with time, 

Part 1. 
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Covariate Parameter estimate Wald X 2 Pr > X 2 

CUREMP04 -0.732291 15.59530 0.0001 

CRE04*T -0.002838 0.04036 0.8408 

CUREMP05 -1.390540 18.19428 0.0001 

CRE05*T 0.023167 1.07541 0.2997 

CUREMP03 -0.836101 32.73235 0.0001 

CRE03*T 0.036467 12.41908 0.0004 

PURPOS02 0.225265 1.75240 0.1856 

PRP02*T 0.013097 1.18913 0.2755 

CURADD05 -0.835429 3.80506 0.0511 

CRA05*T -0.003590 0.01292 0.9095 

Table 4.6: Parameter estimates from the PH model with ten covariates and ten 

time-dependent covariates representing interactions of a each covariate with time, 

Part II. 

Looking at the parameter estimates of the time-dependent covariates and their 

significance one can see that they agree with the trend directions suggested by 

Harrel's test but the covariate with the most significant time trend is CUREMP03, 

which had the second largest value of the Z-statistic. This may be because of 

the correlation between covariates and between time-components influencing the 

significance level when all are included in the model. So if one performs Harrel's 

test one should select a group of covariates of a reasonable size with the largest 

values of the Z-statistic keeping in mind that the order in terms of the time-trend 

significance may not be the same as the order according to the Z-statistic. 
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To illustrate the role of the time-by-covariate interaction, we consider one of the 

covariates, the indicator for the loans with the purpose of refinance, PURPOS01. 

The downward trend in the log(H1 (t)/ Ho(t)) plot, Figure 4.1, is quite clear, 

which means the refinance group is a high risk group in terms of default compared 

to the others at the start of a loan, but becomes less so as time goes on. 

It is interesting to compare parameter estimates from the proportional hazards 

regression predicting default when there are no time-by-covariate interactions, with 

parameter estimates when time-by-covariate interactions are included. 

Consider, for example, PURPOS01, the indicator for the loans with the purpose 

of refinance. Proportional hazards regression gave estimate of (31 = 1.095, i.e. the 

hazard to default for a customer on refinance is el.095 = 2.989 times higher than 

for others. When the time-by-characteristic interaction was added and the model 

refitted, the estimates were (31 = 1.410 and (32 = -0.02. Hence, at t = 1 month into 

a loan the hazard for a customer on refinance is e1.410-0.02 = 4.015 times higher than 

for others. After 18 months, at t = 18, the hazard to default is e(1.410-0.02*18) = 2.858 

times higher for customers on refinance than for others. Hence, it can be seen 

that the parameter estimate from the model without time-dependency represents 

an average indication of the effect of the covariate while the addition of the time-by­

covariate interaction allows for the changing relative hazard and reflects that change 

in the model. 

Consider now CUREMP03, which is an indicator for 4.50 to 8.49 years with a 

current employer, it is one of the five indicators representing the continuous charac­

teristic. It has parameter estimates (31 = -0.836 and (32 = 0.036 in the model which 

includes time-by-characteristic interactions. Note that a 'neighbouring' indicator is 

CUREMP04 with (31 = -0.732 and (32 = -0.003. So after 3 months, for exam­

ple, the hazard to default for those 4.50 to 8.49 years with the current employer 

is e( -0.836+0.036*3) = 0.483 times the hazards for others and the hazard to default 

for those 8.50 to 17.49 years with the current employer is e(-0.732-0.003*3) = 0.477 

times others. So at 3 months into a loan the groups of people 4.5 to 8.49 years 

and 8.5 to 17.49 years with the current employer are similar in terms of risk of 
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early repayment. 12 months into a loan CUREMP03 is notably more risky than 

CUREMP04 (see graph ofrelative hazards in Figure 4.4). In fact, after about a year 

the time-dependent relative hazard is equal to that from the non-time-dependent 

model (shown as dotted and solid lines for CUREMP03 and CUREMP04 respec­

tively in Figure 4.4). 

Thus the inclusion of the time-dependent variables in this case shows that the 

difference in effects of different characteristics increases with time, after a year the 

time-dependent coefficient matches the non-time-dependent one and continues to 

increase or decrease. 

This result relates to the later one, in Chapter 5, where it is shown that an 

application score seems to be important later on in the course of a loan, while 

behavioural information is predictive at the start. 
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Figure 4.4: Time-dependent and non-time dependent parameter estimates for CUREMP03 

and CUREMP04· 

To compare the predictive power of the models with and without time-dependent 

covariates the ROC curves were plotted for the two definitions, (Figure 4.5) : 

• 'bads' are those who defaulted in the first 4 months; 
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• 'bads' are those who survived the first 4 months and defaulted in the next 4 

months. 

However, for this particular data set the time trends are not strong enough to 

make a big difference for the predictive power of the model. 
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Figure 4.5: ROC curves comparing models with and without time-dependent co­

variates in predicting default: a) defaut in the first 4 months; b) survived the first 4 

months, default in the next 4 months. 

To investigate how the performance of the models with and without time-dependent 

covariates differs when a time-by-covariate interaction is larger than in our data a 

data set was simulated. Among two covariates in this data set, one was made to 

have a time-dependent effect on the survival time. The baseline hazard was chosen 

to be constant at 0.2, for simplicity. Then the following two models were fitted to 

the training portion of the data set, one without and one with the time-by-covariate 

interaction: 

h(t; x, y) = exp(ay + bx)ho. (4.11) 

h(t; x, y) = exp(aIY + (b l + cIt)x)ho. (4.12) 

The estimated coefficients are shown in Table 4.7 for model 4.11 and in Table 4.8 

for model 4.12. 
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Covariate Parameter estimate Wald X 2 Pr > X 2 

y 0.819 179.722 < 0.0001 

x 3.397 17097.991 < 0.0001 

Table 4.7: Parameter estimates from Model 4.11. 

Covariate Parameter estimate Wald X 2 Pr > X 2 

y 0.954 2340.862 < 0.0001 

x 1.574 1552.211 < 0.0001 

x*t 0.446 3158.638 < 0.0001 

Table 4.8: Parameter estimates from Model 4.12. 

The predictive power of both models was then investigated on the holdout sam­

ple. A number of good/bad definitions were constructed to cover a period of 24 

months: 

1. 'bads' are those who defaulted in the first 4 months; 

2. 'bads' are those who survived the first 4 months and defaulted in the next 2 

months. 

3. 'bads' are those who survived the first 6 months and defaulted in the next 2 

months. 

11. 'bads' are those who survived the first 22 months and defaulted in the next 2 

months. 

The Gini coefficient plot in Figure 4.6 shows that for the first 10 months the 

models perform very similar to each other, but after that the model allowing for 

the time-by-covariate interaction is predicting better than the ordinary model. The 

difference in performance increases with time. 
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Figure 4.6: Gini coefficients for models 4.11 and 4.12 for the definitions (1 -11). 

The time at which the difference starts to show will depend on the magnitude of 

the time-dependency of the effect of a covariate. 

4.3 Conclusion 

This chapter examined several graphical and numerical tests for time-dependency 

of the effect of a covariate. Harrel's Z-test was found to be the most appropriate. 

Hence, the most significant time-by-characteristic interactions suggested by this test 

were included in the model. It was noted that if one performs the Harrel's test one 

should select a reasonable size group of covariates with the largest values of the 

Z-statistic keeping in mind that the order in terms of the significant time-trend may 

not be the same as the order according to the Z-statistic. 

The model built in this chapter has shown that including time-by-characteristic 

interaction in credit scoring models adds another dimension - flexibility to reflect 

an increase or a decrease of the effect of a characteristic over the duration of a loan. 

The simulation has shown that the model with such interactions predicts better 

than the one without. 
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Chapter 5 

PHAB Scores: Proportional 

Hazards Analysis Behavioural 

Scores 

5.1 Introduction 

Once an application has been approved the lender is interested in monitoring the 

performance and the behaviour of a customer. A behavioural score is constructed 

using the information about the customer's activity, payments, purchases etc, which 

are normally recorded monthly. 

The lender may wish to predict future payment amounts or purchase frequency 

based on the most recent behavioural score. Account management strategies, such 

as marketing campaigns, increase or decrease of credit limit are often driven by 

the behavioural score. At present techniques similar to those applied for the appli­

cation scoring are used for constructing the behavioural scoring systems. Logistic 

regression is the most common technique, and as well as application characteristics 

used in application scoring, performance variables are also used to construct the 

score. We have seen in the earlier chapters that survival analysis can be successfully 

applied to estimate the time to default or to early repayment at the time of appli­

cation. In this chapter we develop techniques based on Cox's proportional hazards 
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model incorporating behavioural data, such as information about monthly balance 

and delinquency, in order to develop survival analysis approaches to behavioural 

scoring. Firstly, we outline the proposed technique for building behavioural scoring 

models in terms of proportional hazards formulae in Section 5.2. The specifics of the 

actual model building process for a proportional hazards analysis behavioural score 

(PHAB score) are explained in Section 5.3. Sections 5.4 to 5.6 present an example 

of building such models on a behavioural data set from a major UK financial in­

stitution. We discuss three PHAB models which use different behavioural variables 

and the PH application score as the covariates to predict default, (Section 5.5) and 

one model which uses the latest available behavioural variables and the previous be­

havioural score as the covariates, hence accumulating the behavioural information 

over time (Section 5.6). We compare the performance of these models with that of 

the application score and between each other. Then two PHAB models, the simplest 

and the best, are compared with the behavioural scores built using logistic regres­

sion (Section 5.7). Finally, we successfully attempt to simplify the PHAB model by 

smoothing the parameter estimates over time without loosing too much predictive 

power in Section 5.B. 

5.2 Proportional hazards model for behavioural 
. scorIng 

In consumer lending a lender has a set of customers on the books with their applica­

tion scores. As information on the performance of the customer becomes available, 

it is then desirable to include this information in the model to improve predictions 

of time to default. Existing behavioural scoring systems based on logistic regression 

do not consider how long a loan has been running. The assumption is that once the 

initial new applicant phase is passed all the information that affects whether a loan 

will default in the next 6 months or 12 months is in the current or recent behaviour 

of a loan. This indicative behaviour is assumed to be independent of how long a 

loan has been running. Thus loans of all ages are lumped together. In the survival 
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analysis approach one is trying to estimate when a loan will default, or rather how 

much longer it will survive. A loan that fails after 9 months has a further lifetime of 

6 months when considered at 3 months into a loan but only 5 months at 4 months 

into a loan. 

Thus survival analysis builds a different behavioural model for each age of a loan, 

using the customer's behaviour up to that month to predict their remaining time to 

default. 

Let h(t) be a hazard rate of default of a loan; x - application data, then the 

proportional hazards model, (Cox [1972]), for the application score is 

hO(t) = exp(x'b(O))h~(t) (5.1) 

where h8(t) is a baseline hazard for the population of applicants; b(O) is a vector of 

unknown parameters. 

s months after the start of a loan a lender has behavioural data y(s) on the 

consumer and the PHABS model estimates the remaining time to failure from s by 

the hazard function 

hS(t) = exp(x'b(s) + y'(s)c(s))h~(t) (5.2) 

where ho(t) is a baseline hazard for the population of customers who are still on the 

books at the period s, i.e. those who defaulted or paid off early or closed normally 

before s are excluded from the population; b(s) and c(s) are vectors of unknown 

parameters. 

Figure 5.1 depicts the case, namely that the behavioural score is built to predict 

the remaining time to default at some point in the course of a loan and incorporates 

application information as well as performance information such as monthly balance 

and any partial delinquency. 
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Figure 5.1: Application and behavioural scores. 

5.3 Modelling approach 

... 

I Default I 
event J 

End of 
the loan 

The modelling process had two model building stages and one diagnostic stage, so 

the data was split into three parts: two training and one holdout samples. 

First, the application score was built using only application characteristics as co­

variates in Cox's proportional hazards model on a first training sample. Model (5.1) 

was fitted to time to default and lifetimes of the customers who did not default were 

considered censored using the approach suggested in Thomas et al. [1999], Thomas 

and Stepanova [1999] and developed further in Chapters 2 and 3. 

The second step was to build a PHAB score for each month of the duration of 

a loan. Now the application information was included in the model in the form of 

the application score from the first step and behavioural information in the form of 

available behavioural data. The dependent variable was remaining time to default 

at the month of observation (Table 5.1). 

The holdout sample was then scored with the application score and all the PHAB 

scores so that their performance may be evaluated and compared. 
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Mth Data Set Response Covariates for Resulting Score 

Models I 

training T application vari- Ascore 

abIes 

4 holdout-D3 T - 4 Ascore + BV AR4 PHABS4 

5 holdout-D4 T - 5 Ascore + BV AR5 PHABS5 

6 holdout-D5 T - 6 Ascore + BV AR6 PHABS6 

... 

36 holdout-D35 T - 36 Ascore + BV AR36 PHABS36 

Di - a set of customers whose loan has ceased (either by default, early or normal 

repayment) by month i; T - time to default; Ascore - application score; PHABS -

Proportional hazards analysis behavioural score; BV ARi - behaviour variables for 

month i. 

Table 5.1: Building PHAB score models. 

5.4 Behavioural Data Set 

We have used data provided by a UK financial institution. It contained 11 500 

customers with their application characteristics and subsequent performance vari­

ables for 36 months. Table 5.2 describes the application data that was available and 

Table 5.3 describes the performance data. 

Expected Month End Balance for month I was calculated by multiplying the 

Loan Instalment by a number of months left to the end of a loan: 

Expected BalanceJ = ((Term - 1) * Loan Instalment). 
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1 Account Opening Date 9 Time with Current Employer 

2 Account Closing Date 10 Residential Status 

3 Amount of Loan 11 Marital Status 

4 Term of Loan 12 Frequency Paid 

5 Purpose of Loan 13 Number of Dep. Children 

6 Loan instalment 14 Age of customer 

7 Total to be repaid 15 Net Income 

8 Time at Current Address 16 Occupation Code 

Table 5.2: Application characteristics in the behavioural data set. 

1 Delinquency balance 

2 Delinquency status 

3 Current Month end Balance 

4 Worst status 

Table 5.3: Performance variables in the behavioural data set. 

Then two variables were constructed for use as predictors of customer behaviour, 

Balance Difference: 

Balance DifferenceJ(BDJ) = BalanceJ - Expected BalanceJ, 

which indicates how far the current balance is from the expected balance. If the 

difference is positive, the customer is behind the schedule in repaying a loan, hence 

may be more likely to default than the one with zero or negative difference. Negative 

differences may occur if the payments are ahead of schedule. 

The second variable constructed was Balance Difference Difference: 
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Balance Difference DifferenceJ(EDDJ) = EDJ - EDJ- 1, 

which indicates if there is any short term trend in Balance Differences. If the value 

is positive, for example, the Balance Difference has increased from one month to 

another, this means that the customer has fallen further behind the schedule in the 

last month. 

We have also used the variable Delinquency Status, DLJ , as is. 

5.5 Three behavioural models 

The data was split into three samples (two training and one holdout) of approxi­

mately equal size. 

Stepwise proportional hazards model, phr [1998], using Breslow likelihood ap­

proximation was used to build an application score on the first sample, which is 

summarised in the Table 5.4. 

Since this was an exploratory analysis to see if PHABS made sense, we did not 

apply any transformations to the variables nor did we coarse-classify the first five 

variables which were continuous. The remaining five variables are binary and are 

attributes that were found to be of importance by the stepwise procedure. 

PHAB scores were then built on the second training sample for each month of 

the duration of a loan, from 4 to 36. The model for the ith month is fitted to the 

remaining time to default (Time to Default-i), e.g if a customer defaulted in month 

12 and the model is for month 4, remaining time to default is 8 months. Predictor 

variables were the application score and the performance variables for the ith month. 
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Variable Name Parameter Estimate Significance 

Amount of Loan 9.98 * 10-5 0.0414 

Term of Loan -0.0278 0.0017 

Months with current Employer -0.0059 0.0005 

Months at Current Address -0.0032 0.0017 

Net Income -0.0004 0.0540 

Living w /Parents or Renting 0.4389 0.0188 

0-1 dependent children -0.3158 0.1204 

Married -0.5479 0.0048 

High Risk Purposes 

(such as Refinance) 0.9014 0.0001 

Low Risk Occupation Code -0.4414 0.0151 

Table 5.4: Application characteristics and their coefficients in the application scor­

ing proportional hazards model. 

Several performance variables and their combinations were tried out as predictors 

in the model to see which ones result in a model with a better fit to the data. The 

following three models will be discussed in this chapter: 
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Dependent Variable Predictors 

Modell Remaining Time to Default Balance Difference (ED[), App. 

Model 2 " 

Model 3 " 

Table 5.5: Three behavioural models. 

Score 

Balance Difference and Balance 

Difference Difference (E D [ , 

EDD[), App. Score 

Last Month Delinquency status 

(DL(I - 1)), App. Score 

The Log-likelihood statistic, which indicates how well a model fits the data, was 

plotted over time for each of the models. Figure 5.2 shows that Model 3 was the 

best, followed by models 2 and 1, which were very close but 2 was slightly better. 
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Figure 5.2: -2 Log-Likelihood statistic for the three models. 
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The third model was expected to be the best because the behavioural covariate 

it is using, Last Month Delinquency Status, is closely related to default which is the 

outcome we are trying to predict (see the default definition in Section 3.2). 

These three models are described in detail in the following sections. We examine 

parameter estimates over time and compare the predictive power of each of the three 

PHAB scores with the proportional hazards based application score over time using 

ROC curves for two different definitions of 'good' and 'bad'. The definitions are 

given in Table 5.6. 

'bad' default in the next 12 months 

Definition 1 
'good' other 

'bad' default before the end of a loan 

Definition 2 
'good' other 

Table 5.6: Good-bad definitions. 

The score that was used in building the ROC curves can be calculated according 

to the proportional hazards model: 

HS(t) = exp(xb(s) +y(s)c(s))Hg(t) (5.3) 

where Ho(t) is nonparametric baseline cumulative hazard obtained together with 

b( s) and c( s) parameter estimates from fitting the model on the training sample. 

This model is equivalent to 2.10 as was shown in Section 4.1.2. 

For Definition 2, H(term) is used as a score, where term is a period of time 

remaining until a loan ends. For Definition 1, in which the forecasting time horizon is 

fixed at 12 months, we are interested in H(12) but as this is monotone in exp(xb(s) + 
y(s)c(s)), it is sufficient to use exp(xb(s) + y(s)c(s)) as the score. 

Only the ROC curves for Definition 2 are shown since the curves for Definitions 

1 and 2 were very similar. 
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5.5.1 Model 1: Application Score and Balance Difference 

Plots of the parameter estimates for Modell are shown in Figures 5.3-5.4. It can be 

seen that the parameter estimate for the balance difference is higher at the beginning 

and then decreases with time after about 22 months while the parameter estimate 

for the application score increases with time. This result appears to show how the 

importance of application and behavioural scores changes over time. 
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Figure 5.3: Parameter estimates for the application score from Modell. 
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Figure 5.4: Parameter estimates for BDi from Modell. 
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As opposed to what would have been expected intuitively, early default could not 

be predicted well by the application score since if it could, these applications would 

be rejected. However, these early defaulters should be identified quite easily using 

behavioural variables as customers with large balance difference, i.e. customers who 

are falling behind at the early stages. 

Therefore application and behaviour information complement each other, but 

their importance changes over time. At the early stages behaviour variables are more 

important and at the later stages application information becomes more predictive. 

Figure 5.5 compares Modell PHAB score with the proportional hazards based 

application score. In this and all other ROC curves figures in this chapter a) corre­

sponds to the results 6 months into a loan, b) to 10 months, c) to 14 months, d) to 

18 months, e) to 22 months and f) to 26 months. 

These ROC curves show that the addition of just one behavioural variable results 

in a definite improvement in the performance over the application score. 

Note that after 10 months or so the PHAB scores are less predictive than the 

application score for the least risky customers (i.e left end of the ROC curve). This 

is probably because behavioural variables tend to be predictive only when there 

is some minimal level of delinquency present. The reason the ROC curve for the 

application score changes is because the population is getting smaller as people 

'complete' a loan one way or another. This is demonstrated in column "Data set" 

of the Table 5.1, which shows that by each month i some number of loans Di has 

ceased because of default, repayment or for other reasons. The same application 

score is used every month but as the holdout sample changes and gets smaller, the 

appearance of the ROC curve also changes. 
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Figure 5.5: ROC curves for Modell. 
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5.5.2 Model 2: Application Score, Balance Difference and 

balance Difference Difference 

Plots of the parameter estimates for Model 2 are shown in Figures 5.6-5.8. It can 

be seen that as in Model 1 the parameter estimate for the balance difference is 

higher at the beginning and then decreases with time while the parameter estimate 

for application score increases with time. This illustrates again the fact that the 

behavioural information is most important earlier on and the application information 

later on. 

However, the argument is slightly more subtle than in the case of Modell because 

of the interaction between BD and BDD. In particular the average coefficient of the 

latter at -0.003 is larger in absolute value than the typical 0.002 coefficient of the for­

mer. One could rewrite 0.002BDt -0.003(BDt -BDt _ 1 ) as 0.003BDt_ 1 -O.OOlBDt . 

Since there are strong correlations between BDt and BDt- 1 this expression is ap­

proximately the 0.002BDt , which is similar to the result in Figure 5.4 of Model l. 

The fact that the actual weighting on BDt in this expression is negative is difficult 

to explain. The peaks in the coefficient of BDDt at 6,11 and 24 months are an 

artifact of the large number of loans completing at these times. 
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Figure 5.6: Parameter estimates for the application score from Model 2. 
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Figure 5.8: Parameter estimates for BDDi from Model 2. 

40 
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Figure 5.9 shows the ROC curves comparing Model 2 PHAB score with the 

proportional hazards based application score. The curves are similar to those from 

Modell, so they support the finding that the PHABS perform better than the 

application score. 

116 



1.0'r------------:==-

........ 
0.8 

g 
" 

0.0 0.2 D •• 0 .• 0.8 1.0 

% Bcd 

b) 
1.0 1 ~j 

.... 
0.81 r ..... · . '-

~ 

o··l ,( .3 
" 

0.0 0.2 0 .• 0 .• 0.8 1.0 

% Bod 

d) e) 

..... AScore 
- eScorelO 

._-_. AScore 
- eSc-ore22 

c) 

f) 

g 
" 

g 
" " 

1,01 ~I 

0.8 : .. , 

0.0 0.2 0.4 0 .• 0.8 1.0 

% Bad 

1.0 

0.8 

0.6 

0.41 J 
0.2 

0.0 

0.0 0.2 0 .• 0 •• 0.8 1.0 

% Bod 

Figure 5.9: ROC curves for monthly behavioural PH models compared with the application PH model from Model 2. 

•.•.. ASeora 
- eSc-ore1A. 

..•.. AScore 
- BScore26 



5.5.3 Model 3: Application Score and Last Month Delin­

quency Status 

The plots of the parameter estimates for the last of the three models (Figure 5.10 

and 5.11) show strong interdependence between the application score and the last 

month delinquency status. The value of the parameter estimate for DLi is much 

larger than those of the behavioural variables from Models 1 and 2. This suggests 

that the DLi is a strong predictor for default. It 'competes' with the application 

score in its importance throughout the duration of a loan since the two plots are 

almost mirror images of each other. Obviously, early on the DLi estimate is low as 

there are few cases with 'bad' status. DLi becomes very important in the second 

year of a loan (months 12 to 24) but as in the first two models the application score 

effect increases over time. 

Figure 5.12 compares Model 3 PHAB score with the application score results. 

The performance of this model is much better than the application score and than 

the other two PHAB scores (Models 1 and 2). However, it is logical to assume that 

most delinquencies, especially the serious ones, do not recover and hence, prediction 

of default using last month delinquency indicator may be pointless as it comes too 

late. 

The detailed comparison of the three models can now be summarised. The best 

model is Model 3, but its usefulness is arguable because the prediction may come 

too late. The next best is Model 2 followed very closely by Modell. Hence, one 

may prefer Modell to Model 2 for its relative simplicity. 

In the sections that follow we use the simplest PHAB score - Model 1 in the 

comparison with an accumulated model and when smoothing the parameter esti­

mates, but both Model 1 and Model 2 are compared with an alternative logistic 

regressions model. 
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Figure 5.10: Parameter estimates for the application score from Model 3. 
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Figure 5.11: Parameter estimates for DLi from Model 3. 
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5.6 Accumulated Model 

The first extension of the PHAB scores described above is the accumulated model. 

The score for the ith month is now built by taking a behavioural score from the 

(i - 1 tt month instead of the application score and a performance variable for the 

ith month as the covariates for the model. This way the score accumulates the 

information from all the previous months and the performance variable adds the 

latest data. This model building approach is summarised in Table 5.8. 

To examine this approach we have built a PHAB score using one behavioural 

variable Balance Difference and the accumulated behavioural score as the covariates. 

It will be referred to as the accumulated model or Model 4: 

Dependent Variable Predictors 

Model4 Remaining Time to Default Balance Difference (EDJ ), PHAB 

score(I-1) 

Table 5.7: The accumulated behavioural model. 

Figure 5.13 compares log-likelihood statistics plots for the accumulated and the 

non-accumulated score models (Models 1 and 4). 

It was found that accumulating behavioural information into one of the covariates 

results in high correlation between the covariates in the model, see the cross-plot of 

the parameter estimates in Figure 5.14, which in turn results in the unstable param­

eter estimates (Figures 5.15 and 5.16) and slightly lower log-likelihood statistics. 

Further comparisons of the accumulated with the non-accumulated model were 

performed using ROC curves, which are shown in Figure 5.18. The accumulated 

model performs better than the non-accumulated in predicting default before the 

end of a loan. However, the plots of Gini coefficients against time for both models 

(Figure 5.17) show that the performance of the accumulated model is less uniform 

during the course of a loan than that of the non-accumulated model. Therefore the 

non-accumulated approach remains the preferred one. 
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Mth Data Set Response Covariates for Resulting Score 

Models II 

training T application vari- Ascore 

abIes 

4 holdout-D3 T - 4 Ascore + BV AR4 Bscore4 

5 holdout-D4 T - 5 Bscore4 + BV AR5 Bscore5 

6 holdout-D5 T - 6 Bscore5 + BV AR6 Bscore6 

... 

36 holdout-D35 T - 36 Bscore35 + BV AR36 Bscore36 

Di - a set of customers who defaulted in month i; T - time to default; Ascore 

- application score; Bscore - behavioural score; BV ARi - behaviour variables for 

month i. 

Table 5.8: Building an accumulated behavioural score. 
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Figure 5.13: The Log-likelihood statistic for Models 1 and 4. 
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Figure 5.16: Parameter estimate for the BDi from Model 4. 

Note that, while the ROC curves suggest that Model 4 is better than Model 1, 

the log-likelihood statistic was higher for Model 1 than for Model 4. This is because 

this statistic was calculated on the training sample, not on the holdout as the ROC 

curves. So the higher value of the log-likelihood statistic simply indicates that Model 

1 was a slightly better fit to the training sample than Model 4. 
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Figure 5.17: Gini coefficients for Modell and Model 4. 

124 

22 24 26 



a) 

d) 

10r---------------~ 

0.8 

"Cl 

8 
t. 0.2 

0.0 0.2 0.4 0.6 0.8 10 

% Bad 

10r-----------~==~ 

0.8 

0.6 

11 8 0.4 

t. 0.2 

0.0 0.2 0.4 0.6 0.8 10 

% Bad 

-BScore6 
....... BScore.Ac6 

-BScorelB 
.....•. BScore.AclB 

b) 

e) 

11 
8 

10r-----------~~~ 

0.8 

0.6 

t. 0.2 

"Cl 
0 

8 
t. 

10 

0.8 

0.6 

0.4 

0.2 

0.0 0.2 0.4 0.6 0.8 10 

% Bad 

0.2 0.4 0.6 0.8 10 

% Bad 

-BScorelO 
....... BScore.AclO 

-BScore22 
....... BScore.Ac22 

c) 

f) 

10 

0.8 

0.6 

"Cl 8 0.4 

t. 0.2 

0.8 

0.6 

] 0.4 

t. 0.2 

0.0 0.2 0.4 0.6 0.8 10 

% Bad 

0.0 0.2 0.4 0.6 0.8 10 

% Bad 

Figure 5.18: ROC curves comparing the accumulated (Model 4) and the non-accumulated (Modell) models. 

- BScore14 
....... BScore.Ac14 

- BScore26 
....... BScore.Ac26 



5.7 Comparison of proportional hazards behavioural 

models to logistic regression models 

An alternative application score and a set of behavioural scores for each month of 

the lifetime of a loan were built using the logistic regression. Two different binary 

responses were used corresponding to the good-bad definitions used earlier for the 

ROC curves for the proportional hazards models. The resulting sets of the logistic 

regression models were then compared with the proportional hazards models using 

ROC curves. 

Figure 5.19 and Figure 5.20 show the ROC curves comparing Models 1 and 2 

respectively with the corresponding LR models using Definition 2. As in Section 5.5 

results for Definitions 1 and 2 were very similar, so only Definition 2 results are 

presented. 

It is expected that the LR scores should perform better than the PH scores 

because the LR models were fitted specifically to the definition of 'good' and 'bad' 

while the PH model is fitted to the time to default. 

Surprisingly it can be seen (Figure 5.19 and 5.20) that the PHAB scores' per­

formance improves over time. After about two years the PHAB scores clearly out­

perform the LR scores. 
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5.8 In search of a more robust model 

In the previous sections we have explored and compared a number of models all 

of which require recalculating PH parameter estimates every month. This may be 

considered as not very practical or not 'user-friendly'. There also may be a danger 

of overfitting the data and hence, building a descriptive rather than a predictive 

model. 

Two approaches of smoothing the parameter estimates, one by taking the average 

of the estimates over the model building time interval (32 months in our case) and 

another by fitting a linear trend to them, are described below. 

5.8.1 Averaged Model 

The first and the crudest simplification of the PHAB score was achieved by taking 

the averages of the parameter estimates from Model 1 for both the application score 

and the behavioural variable over 32 months, so that we have only one model for all 

the months. The average values were 1.0682 and 0.0015 for XB and BD respectively 

(Figures 5.21 and 5.22). This one model was then used to score the holdout sample, 

so that the predictive power of the averaged PHAB score and the original Model 

1 PHAB score can be compared. From the ROC curves (Figure 5.23) we conclude 

that the averaged model is slightly worse than the original PHAB. 
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Figure 5.21: The average value for the XB parameter estimate from Model 1. 
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5.8.2 Linear Smoothed Model 

The comparison of the averaged and the original models above is encouraging in 

the sense that the difference between their performance is not too big. Hence, if we 

improve our smoothing slightly the difference may disappear. 

Linear approximation was chosen as the next simplest smoothing. The trends 

shown in Figures 5.24 and 5.25 were fitted using linear regression on the values of 

the parameter estimates against time. The equations of the trends are: 
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Figure 5.24: Linear trend for the XB parameter estimate from Modell. 
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The holdout sample was then scored using the values of these trends for each 

month to compare the performance of the smoothed model and the original Model l. 

The ROC curves (Figure 5.26) show almost no difference at all between the models. 

One can not say which is better since no one model has the ROC curve consistently 

above the other. 

In summary, the smoothing experiment showed that it is possible to simplify the 

PHAB score to various degrees depending on the aims and the resources of a lender. 

One can trade off the slight loss of the predictive power for the extreme simplicity, 

or choose a bit more laborious linear smoothing to match the performance of the 

original PHAB score. 
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5.9 Conclusion 

This chapter developed techniques for building behavioural scoring systems using 

proportional hazard regression. 

A number of different models were discussed and compared with each other and 

with the application score. It was found that adding only one behavioural variable, 

Balance Difference specifically, results in a definite performance improvement over 

the application score. Also the plots of the parameter estimates for the application 

and the behavioural variables highlighted an interesting relationship between these 

variables, namely that the behavioural information is predictive at the early stages 

and the application information - at the later stages of the course of a loan. 

In addition, a model which accumulated the behavioural information rather than 

using the latest only was discussed and examined. It was found to be slightly better 

but less uniform in its performance than the non-accumulated PHABS. 

The ROC curve analysis has shown that the PHAB scores are competitive with 

the traditional logistic regression scores, especially after about 2 years into the course 

of a loan. 

It was demonstrated on the example of the simplest PHAB model that one does 

not have to use the full set of the parameter estimates for every month of a loan's 

duration. The linear approximation of these parameter estimates is believed to be 

a more robust and simple to use model which matches the original PHAB in its 

performance. 
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Chapter 6 

Conclusion 

The aim of this thesis was to develop and research further the application of survival 

analysis to credit scoring and to demonstrate the advantages of using these new 

techniques and the trade-offs that have to be made by analysing real-life data. This 

concluding chapter summarises the main results of the research and brings us to the 

main advantage of using survival analysis for credit scoring - the ability to estimate 

customer's profit profile. 

6.1 How to build a Proportional Hazards score­

card? 

This thesis identified two developments that improve the present application of Cox's 

proportional hazards model to building of credit scoring models and that make it a 

competitive alternative to logistic regression. 

Firstly, a new coarse-classing approach for characteristics in credit scoring data 

was developed. It uses survival analysis and has an advantage over the traditional 

log-odds method in that it does not require an arbitrary time horizon for the defi­

nition of 'bad'. 

Secondly, we have demonstrated how a number of residual tools can be used 

to examine the fitness of proportional hazards models and we have discussed the 
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advantages and disadvantages of each of these tools. 

6.2 Is Proportional Hazards model as good as Lo­

gistic Regression in risk assessment? 

The ROC curves (Figures 3.11-3.14) showed that the survival analysis model's per­

formance is very close to that of the current industry standard approach, i.e. logistic 

regression, when used for the traditional purpose of classifying applicants into two 

groups. Thus, a lender who will adopt proportional hazards techniques for profit 

scoring will not loose any substantial predictive performance in scoring for risk. 

6.3 How to overcome the restriction of the pro­

portional hazards? 

We have showed that proportional hazards model is a good alternative to logistic 

regression, however its main assumption is that hazards are proportional. It is not 

always the case, since very risky applicants become much less risky if they stay on 

the books for a long enough time. This is normally referred to as an interaction of 

a characteristic with time. 

Several tests designed to detect such interactions in the data set were considered 

and Harrel's Z-test was found to be the most appropriate. We have illustrated the 

concept by building a model which included time-by-covariate interactions. This 

extension made the model much more flexible since it allowed the effect of a covariate 

on the predicted time to failure to increase or decrease as a loan evolves. 

However, the interactions in the data were not large enough to result in a visible 

improvement in the performance or the time-dependent model over the non-time­

dependent one. The analysis of a simulated data set helped to understand this issue 

and showed that the time dependent model performs better than the non-time­

dependent one and that the improvement increases with time. 
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6.4 Are PHAB scores as good as they sound? 

Behavioural scoring is as important as application scoring, especially when lenders 

want to focus on the profitability of the existing customers. 

Proportional hazards behavioural (PHAB) scores were constructed, as an al­

ternative to the logistic regression behavioural scores, using the survival analysis 

techniques applied for application scoring in the first half of the thesis. PHAB 

scores were expected not only to be competitive but to have a significant advantage 

over the traditional behavioural scores. 

The reason for that is that the existing behavioural scoring systems based on 

logistic regression do not consider how long the loan has been running. Thus loans 

of all ages are lumped together. In the survival analysis approach one is trying to 

estimate when a loan will default, or rather how much longer will it survive. Hence, 

survival analysis techniques allow one to build a different behavioural model for each 

age of a loan, using customers' behavioural data up to that month to predict their 

remaining time to default. 

The ROC curve analysis has shown that the PHAB scores are competitive with 

the traditional logistic regression scores, especially after about 2 years into a loan. 

In addition, plots of the PHAB's parameter estimates suggested that the impor­

tance of application and behavioural scores changes over time - behavioural data is 

more important at the beginning and application data is more important later in 

the course of a loan (Figures 5.3-5.4). 

6.5 Profit Calculation using PHAB scores 

The main advantage of using survival analysis in credit scoring is that it enables 

one to estimate the 'survival' probability of a loan over time, i.e. the probability of 

receiving each of the monthly repayments. This allows one to estimate the expected 

profit from a loan, which is an important addition to scoring techniques since lenders 

are now moving from scoring only for risk to scoring for profitability, (Hopper and 

Lewis [1992]' Thomas [1992]' Leonard [1997]). 
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Proportional hazards models estimate survival probability for every customer. 

This was used in Chapter 3 to perform the traditional task of dividing customers in 

two groups of 'goods' and 'bads'. However, there are more uses of the information 

provided by PHAB scores. For example, one may use the survival probability profile 

they give to calculate the expected profit from a loan. At the time of application 

the profit would be: 

where 

T+2 a 
Profit(Application Time) = " Si ( r 2 - L, ~ 1 + r z-

z=3 

(6.1) 

Si is a survival probability to month i, i.e. the probability that a customer is still 

repaying a loan and has not defaulted at month i (estimated using (5.1)); 

a is the monthly repayment amount (instalment); 

L is the amount of a loan; 

T is the term of a loan and r is the monthly interbank lending rate. 

In words, the expected profit from a loan is the sum of the present values of the 

instalments each multiplied by the probability of receiving it (the loan's survival 

probability), less the loan's amount. The summation starts from month 3 because 

the definition of default is 3 or more months delinquent, which is used in the survival 

function estimation. It stops at Term+2 to allow for delinquency starting in period 

T-l. 

The expected profit at month K can be similarly calculated, namely 

T+2-K a T a 
Profit(Month K)* = ~ Si (1 + r)i - (1 + r)K j~ (1 + r,)j - (BK - (T - K)a), 

(6.2) 

where Si is survival probability estimated using (5.2), r' is the monthly interest that 

the customer is paying to the lender and B K is the actual balance at month K. 

The first term is the expected present value of the repayments, where Si is the 

survival probability that a customer will still be repaying a loan at month K + i. 

The second term is the present value of the capital still outstanding. L]=K (1+~/)j 
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is the part of the initial loan amount that is yet to be repaid, priced at the start of 

a loan. The (1 + r)K transforms this into the value K months into the loan. This 

is only correct if repayments are up to date at month K. The third term allows for 

the situation when this is not true. The difference is between the actual balance 

and the expected balance if the repayments were on schedule. So if the repayments 

are behind schedule, more is owed than is expected, and this difference, expressed 

in terms of its value at K, is subtracted from the expected profit. 

The expected profit was plotted against the application score, i.e. x'(3 from (5.1) 

in Figure 6.1. We assumed for simplicity that all loans are up to date and hence, 

ignored the last term in (6.2). Profit increases as x'(3 decreases, i.e. as risk decreases 

which is the expected effect risk would have on the return. 

Figures 6.2-6.4 show similar plots but for time periods 6, 10 and 14 months into 

a loan using ( 6.2). Hence, the PHAB scores are useful as indicators of both risk 

and profit. 

It can be seen that the profit curves for different terms of the loan cross. This 

shows that shorter duration loans are more profitable than longer duration loans 

when given to low scorers and shorter loans are more profitable for high scorers. 

This means that one has to look at both the term of a loan and the score when 

ranking loans of similar amount. 

The formula used to calculate profit can be altered to include a time-dependent 

interest rate and hence, to incorporate economic conditions into the model. Alterna­

tively, the interest rate can be included as a covariate when estimating the survival 

function. This is similar to the approach of Duffie and Singgleton [1999], where the 

interest rate process in pricing of bonds is replaced by a default adjusted process 

incorporating the interest rate and the default hazard function. 
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Figure 6.1: The expected profit from personal loans of £2000 against the appli­

cation score. 
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Figure 6.2: The expected profit from personal loans of £ 2000 against the P HAB 

score for month 6. 
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Figure 6.3: The expected profit from personal loans of £2000 against the PHAB 

score for month 10. 
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Figure 6.4: The expected profit from personal loans of £ 2000 against the PHAB 

score for month 14-
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6.6 Contribution to knowledge 

This thesis has developed a consistent strategy for building application and be­

havioural scoring models based on survival analysis tools, specifically - proportional 

hazards model. All the stages of the model building process, from coarse-classing of 

characteristics through to model diagnostics, can now be done using survival anal­

ysis techniques without borrowing any tools from the traditional approaches, such 

as logistic regression, and hence there is no need for specifying an arbitrary time 

horizon for the outcome. These survival analysis based application and behavioural 

scoring models were shown to be as good as the industry standard logistic regression 

when scoring for risk. However, this is using only a part of the information survival 

model provides. It was also shown that lenders can use the estimated time to an 

event, such as default, to estimate expected profit of a customer and hence to score 

for profit. 

6.7 Suggestions for further research 

Survival analysis is an extensive collection of techniques for analysing lifetime data. 

However, all the techniques were developed for either medical or reliability data. 

Credit scoring data has features that make some techniques non-applicable or not 

particularly useful. For example, a large number of observations makes some resid­

ual diagnostics non-informative. Hence, further research could focus on exploring 

usefulness of other survival models and techniques when applied to credit scoring 

data. Accelerated life models (see, for example, Collett [1994]), assuming some 

parametric form of the baseline hazard other than Wei bull and exponential, can be 

used if data suggests a suitable distribution. Such models would be applicable if the 

proportional hazards assumption does not hold. 

Also, accelerated life models seem to be a suitable framework for incorporating 

economic conditions into the scorecard. They differ from proportional hazards mod­

els in that the effect of the covariates is multiplicative on time rather than on the 

hazard function, so a covariate specifying some economic perturbation can accelerate 
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(or decelerate) the time to default. 

As we mentioned in the conclusion to Chapter 3, early repayment seems to 

depend more on the time left to maturity of a loan rather than the time from the 

start of a loan. Further research is needed to investigate if this is true for other data 

sets and hence, if early repayment models should be fitted to the time to maturity. 

The profit model (6.2), proposed earlier in this chapter, can be made more 

sophisticated by replacing the constant interest rate r by a time series r(t) to reflect 

economic conditions. Another way to include a time-dependent interest rate into 

the model is to use it as a covariate when estimating the survival probability of a 

credit. 
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Appendix A 

Proportional Hazards Regression 
output 

A.I Time to Early Repayment: 
TERM 

---------------------------- TERM3=t12_18 ----------------------------

The PHREG Procedure 

Data Set: CREDITMY.CR97B Dependent Variable: OPEN Censoring 
Variable: CENSORE Censoring Value(s): 0 Ties Handling: BRESLOW 

Total 

12485 

Summary of the Number of 
Event and Censored Values 

Event Censored 

3121 9364 

Percent 
Censored 

75.00 

Testing Global Null Hypothesis: BETA=O 

Without With 
Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 57218.398 57041.291 177.108 with 41 DF 
(p=O.OOOl) Score 
DF (p=O.OOOl) Wald 

181.330 with 41 
179.543 with 

41 DF (p=O.OOOl) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr > Risk 
Variable DF Estimate Error Chi-Square Chi-Square Ratio 

AGE01 1 0.039054 0.10925 0.12779 0.7207 1.040 
AGE02 1 -0.036766 0.09655 0.14501 0.7034 0.964 
AGE03 1 -0.182478 0.08843 4.25853 0.0391 0.833 
AGE04 1 -0.127609 0.09251 1.90270 0.1678 0.880 
AGE05 1 -0.290536 0.08278 12.31806 0.0004 0.748 
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Segmented by 



AGEM 1 
AMOUNTOl 1 
AMOUNT02 1 
AMOUNT03 1 
AMOUNT04 1 
CURRADOl 1 
CURRAD02 1 
CURRAD03 1 
CURRAD04 1 
CURRAD05 1 
CURRADM 1 
CURREMOl 1 
CURREM02 1 
CURREM03 1 
CURREM04 1 
CURREM05 1 
CURREMM 1 
GENDEROl 1 
FREQPAOl 1 
FREQPA02 1 
DEPKID01 1 
DEPKID02 1 
HOMOWNOl 1 
HOMOWN02 1 
HOMTELOl 1 
INPREMOl 1 
INPREM02 1 
INPREM03 1 
INPREM04 1 
INPREM05 1 
JOINTSOl 1 
WEDDEDOl 1 
WEDDED02 1 
PURPEOl 1 
PURPE02 1 
PURPE03 1 

-0.278780 
0.227839 
0.215478 
0.156442 
0.056072 
0.120558 
0.119336 

-0.025337 
-0.015183 
-0.015418 
-0.327385 
-0.023022 
-0.100932 
-0.156289 
-0.053890 
-0.115073 

0.046570 
0.040408 
0.050358 

-0.030717 
0.104999 
0.176585 

-0.071666 
0.077827 

-0.023082 
-0.370264 

0.059008 
0.166285 
0.266927 
0.879638 
0.060568 
0.071533 
0.141289 
0.444302 
0.093074 

-0.043397 

0.40159 
0.56847 

0.48190 
0.16064 

0.56822 0.14381 
0.57102 0.07506 
0.57080 0.00965 
0.07988 2.27773 
0.07987 2.23220 
0.07969 0.10110 
0.08415 0.03255 
0.07769 0.03939 
0.19562 2.80076 
0.07787 0.08740 
0.09950 1.02902 
0.07608 4.22050 
0.08003 0.45346 
0.08457 1.85164 
0.13133 0.12575 
0.03815 1.12161 
0.04010 1.57709 
0.10739 0.08182 
0.04577 5.26286 
0.18393 0.92178 
0.04294 2.78605 
0.07830 0.98805 
0.07478 0.09528 
0.11580 10.22396 
0.04533 1.69480 
0.06282 7.00568 
0.26275 1.03208 
0.56862 2.39311 
0.05032 1.44855 
0.13452 0.28279 
0.13514 1.09301 
0.06104 52.98828 
0.04719 3.88937 
0.10985 0.15608 

0.4876 
0.6886 
0.7045 
0.7841 
0.9217 
0.1312 
0.1352 
0.7505 
0.8568 
0.8427 
0.0942 
0.7675 
0.3104 
0.0399 
0.5007 
0.1736 
0.7229 
0.2896 
0.2092 
0.7748 
0.0218 
0.3370 
0.0951 
0.3202 
0.7576 
0.0014 
0.1930 
0.0081 
0.3097 
0.1219 
0.2288 
0.5949 
0.2958 
0.0001 
0.0486 
0.6928 

0.757 
1.256 
1.240 
1.169 
1.058 
1.128 
1.127 
0.975 
0.985 
0.985 
0.721 
0.977 
0.904 
0.855 
0.948 
0.891 
1.048 
1.041 
1.052 
0.970 
1.111 
1.193 
0.931 
1.081 
0.977 
0.691 
1.061 
1.181 
1.306 
2.410 
1.062 
1.074 
1.152 
1.559 
1.098 
0.958 

---------------------------- TERM3=t24_30 ----------------------------

The PHREG Procedure 

Data Set: CREDITMY.CR97B Dependent Variable: OPEN Censoring 
Variable: CENSORE Censoring Value(s): 0 Ties Handling: BRESLOW 

Total 

10703 

Summary of the Number of 
Event and Censored Values 

Event Censored 

4060 6643 

Percent 
Censored 

62.07 

Testing Global Null Hypothesis: BETA=O 

Without With 
Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 72871.747 
(p=O.OOOl) Score 
DF (p=O.OOOl) Wald 
40 DF (p=O.OOOl) 

72658.827 212.920 with 40 DF 
214.724 with 40 

212.297 with 

Analysis of Maximum Likelihood Estimates 
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Parameter Standard Wald Pr > Risk 
Variable DF Estimate Error Chi-Square Chi-Square Ratio 

AGEOl 1 0.285902 0.10777 7.03754 0.0080 1.331 
AGE02 1 0.233941 0.09597 5.94220 0.0148 1.264 
AGE03 1 0.149551 0.08893 2.82786 0.0926 1.161 
AGE04 1 0.110749 0.09201 1.44867 0.2287 1.117 
AGE05 1 0.013119 0.08310 0.02492 0.8746 1.013 
AGEM 1 -0.661627 0.36791 3.23401 0.0721 0.516 
AMOUNTOl 1 0.133386 0.27382 0.23729 0.6262 1.143 
AMOUNT02 1 0.113633 0.26194 0.18819 0.6644 1.120 
AMOUNT03 1 0.130416 0.26137 0.24897 0.6178 1.139 
AMOUNT04 1 0.058583 0.26231 0.04988 0.8233 1.060 
CURRADOl 1 0.092990 0.07649 1.47797 0.2241 1.097 
CURRAD02 1 0.036063 0.07644 0.22256 0.6371 1.037 
CURRAD03 1 0.025034 0.07614 0.10809 0.7423 1.025 
CURRAD04 1 -0.052179 0.07994 0.42602 0.5139 0.949 
CURRAD05 1 -0.053620 0.07490 0.51254 0.4740 0.948 
CURRADM 1 -0.095882 0.15971 0.36043 0.5483 0.909 
CURREMOl 1 0.115243 0.07174 2.58034 0.1082 1.122 
CURREM02 1 0.082607 0.08780 0.88515 0.3468 1.086 
CURREM03 1 0.054533 0.06993 0.60818 0.4355 1.056 
CURREM04 1 -0.010951 0.07379 0.02202 0.8820 0.989 
CURREM05 1 0.157692 0.07582 4.32585 0.0375 1.171 
CURREMM 1 0.352808 0.12251 8.29372 0.0040 1.423 
GENDEROl 1 -0.028997 0.03486 0.69199 0.4055 0.971 
FREQPAOl 1 0.038246 0.03627 1.11219 0.2916 1.039 
FREQPA02 1 -0.238398 0.09489 6.31184 0.0120 0.788 
DEPKIDOl 1 0.026417 0.03887 0.46197 0.4967 1.027 
DEPKID02 1 0.241710 0.16337 2.18905 0.1390 1.273 
HOMOWN01 1 -0.053614 0.03803 1.98719 0.1586 0.948 
HOMOWN02 1 -0.028322 0.07176 0.15578 0.6931 0.972 
HOMTELOl 1 -0.027243 0.06847 0.15832 0.6907 0.973 
INPREMOl 0 0 
INPREM02 1 -0.077323 0.11333 0.46548 0.4951 0.926 
INPREM03 1 0.015439 0.03883 0.15811 0.6909 1.016 
I NPREM04 1 0.015512 0.06347 0.05973 0.8069 1.016 
INPREM05 1 0.048182 0.13375 0.12978 0.7187 1.049 
JOINTSOl 1 0.075711 0.04056 3.48426 0.0620 1.079 
WEDDEDOl 1 0.129753 0.11282 1.32273 0.2501 1.139 
WEDDED02 1 0.091297 0.11303 0.65241 0.4193 1.096 
PURPEOl 1 0.440902 0.04865 82.13348 0.0001 1.554 
PURPE02 1 0.188839 0.03752 25.33605 0.0001 1.208 
PURPE03 1 -0.062126 0.06049 1.05486 0.3044 0.940 

-------------------------- TERM3=t36_48_60 ---------------------------

The PHREG Procedure 

Data Set: CREDITMY. CR97B Dependent Variable: OPEN Censoring 
Variable: CENSORE Censoring Value(s): 0 Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

10588 3998 6590 62.24 

Testing Global Null Hypothesis: BETA=O 

Without With 
Criterion Covariates Covariates Model Chi-Square 
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-2 LOG L 70550.242 70345.125 205.116 with 40 DF 
(p=O.OOOl) Score 206.633 with 40 
DF (p=O.OOOl) Wald 204.980 with 
40 DF (p=O.OOOl) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr > Risk 
Variable DF Estimate Error Chi-Square Chi-Square Ratio 

AGEOl 1 0.459781 0.12173 14.26727 0.0002 1.584 
AGE02 1 0.246952 0.10368 5.67303 0.0172 1.280 
AGE03 1 0.075780 0.09572 0.62672 0.4286 1.079 
AGE04 1 0.052433 0.09797 0.28642 0.5925 1.054 
AGE05 1 -0.062555 0.09129 0.46958 0.4932 0.939 
AGEM 1 -0.031690 0.27676 0.01311 0.9088 0.969 
AMOUNTOl 1 0.322280 0.24103 1.78786 0.1812 1.380 
AMOUNT02 1 0.267682 0.09679 7.64837 0.0057 1.307 
AMOUNT03 1 0.258824 0.07859 10.84535 0.0010 1.295 
AMOUNT04 1 0.161222 0.06754 5.69885 0.0170 1.175 
CURRADOl 1 0.165079 0.08472 3.79652 0.0514 1.179 
CURRAD02 1 0.130781 0.08467 2.38581 0.1224 1.140 
CURRAD03 1 0.009591 0.08520 0.01267 0.9104 1.010 
CURRAD04 1 0.031313 0.08816 0.12616 0.7224 1.032 
CURRAD05 1 0.035758 0.08453 0.17894 0.6723 1.036 
CURRADM 1 0.081136 0.15990 0.25746 0.6119 1.085 
CURREMOl 1 0.094103 0.07288 1.66703 0.1967 1.099 
CURREM02 1 -0.016489 0.09159 0.03241 0.8571 0.984 
CURREM03 1 -0.025606 0.07013 0.13332 0.7150 0.975 
CURREM04 1 -0.016178 0.07302 0.04909 0.8247 0.984 
CURREM05 1 0.020650 0.07486 0.07610 0.7827 1.021 
CURREMM 1 0.107407 0.13131 0.66903 0.4134 1.113 
GENDER01 1 0.033838 0.03689 0.84162 0.3589 1.034 
FREQPA01 1 -0.031725 0.03817 0.69077 0.4059 0.969 
FREQPA02 1 -0.238427 0.09854 5.85441 0.0155 0.788 
DEPKIDOl 1 0.080638 0.03784 4.54112 0.0331 1.084 
DEPKID02 1 0.104927 0.14537 0.52102 0.4704 1.111 
HOMOWN01 1 0.056836 0.04114 1.90839 0.1671 1.058 
HOMOWN02 1 0.023936 0.07581 0.09968 0.7522 1.024 
HOMTELOl 1 0.065078 0.07966 0.66737 0.4140 1.067 
INPREM01 0 0 
INPREM02 1 0.511307 0.50499 1.02517 0.3113 1.667 
INPREM03 1 0.017560 0.09098 0.03725 0.8469 1.018 
INPREM04 1 0.046206 0.04707 0.96357 0.3263 1.047 
INPREM05 1 0.039157 0.04191 0.87275 0.3502 1.040 
JOINTSOl 1 0.020458 0.03793 0.29093 0.5896 1.021 
WEDDEDOl 1 0.205619 0.12332 2.78017 0.0954 1.228 
WEDDED02 1 0.222456 0.12252 3.29667 0.0694 1.249 
PURPEOl 1 0.261777 0.04813 29.57610 0.0001 1.299 
PURPE02 1 0.163734 0.03977 16.95195 0.0001 1.178 
PURPE03 1 -0.101299 0.04776 4.49815 0.0339 0.904 

------------------------------ TERM3=t6 ------------------------------

The PHREG Procedure 

Data Set: CREDITMY.CR97B Dependent Variable: OPEN Censoring 
Variable: CENSORE Censoring Value(s): 0 Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 
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872 137 735 84.29 

Testing Global Null Hypothesis: BETA=O 

Without With 
Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 1832.668 1775.261 57.407 with 39 DF 
Cp=0.0289) Score 68.980 with 39 
DF Cp=0.0022) Wald 63.646 with 
39 DF Cp=0.0076) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr > Risk 
Variable DF Estimate Error Chi-Square Chi-Square Ratio 

AGEOl 1 -0.526370 0.53421 0.97087 0.3245 0.591 
AGE02 1 -0.712137 0.50559 1.98393 0.1590 0.491 
AGE03 1 -0.338535 0.44890 0.56873 0.4508 0.713 
AGE04 1 -0.263725 0.47906 0.30306 0.5820 0.768 
AGE05 1 -0.150551 0.42813 0.12366 0.7251 0.860 
AGEM 1 -0.285607 1.46207 0.03816 0.8451 0.752 
AMOUNTOl 1 15.386638 2050 0.0000563 0.9940 4812068 
AMOUNT02 1 15.300354 2050 0.0000557 0.9940 4414275 
AMOUNT03 1 14.625705 2050 0.0000509 0.9943 2248345 
AMOUNT04 1 14.768773 2050 0.0000519 0.9943 2594160 
CURRAD01 1 0.208929 0.41066 0.25883 0.6109 1.232 
CURRAD02 1 0.374555 0.40592 0.85143 0.3561 1.454 
CURRAD03 1 -0.063028 0.43357 0.02113 0.8844 0.939 
CURRAD04 1 0.767883 0.39931 3.69794 0.0545 2.155 
CURRAD05 1 0.032393 0.42242 0.00588 0.9389 1.033 
CURRADM 1 1.546056 0.95207 2.63701 0.1044 4.693 
CURREMOl 1 -0.344305 0.29490 1.36315 0.2430 0.709 
CURREM02 1 -0.265023 0.38643 0.47036 0.4928 0.767 
CURREM03 1 -0.475545 0.29174 2.65693 0.1031 0.622 
CURREM04 1 -0.677051 0.34607 3.82757 0.0504 0.508 
CURREM05 1 -0.804698 0.36725 4.80123 0.0284 0.447 
CURREMM 1 -0.767862 0.64335 1.42455 0.2327 0.464 
GENDEROl 1 -0.181897 0.19395 0.87961 0.3483 0.834 
FREQPAOl 1 0.131296 0.20484 0.41084 0.5215 1.140 
FREQPA02 1 0.150790 0.52848 0.08141 0.7754 1.163 
DEPKIDOl 1 0.235765 0.24066 0.95978 0.3272 1.266 
DEPKID02 1 1. 510282 0.57526 6.89259 0.0087 4.528 
HOMOWNOl 1 -0.304488 0.21800 1.95079 0.1625 0.738 
HOMOWN02 1 -0.076861 0.39993 0.03694 0.8476 0.926 
HOMTELOl 1 0.383125 0.36646 1.09304 0.2958 1.467 
INPREMOl 1 0.120926 0.21670 0.31139 0.5768 1.129 
INPREM02 1 0.012892 0.32633 0.00156 0.9685 1.013 
INPREM03 1 1.466409 0.48364 9.19334 0.0024 4.334 
INPREM04 0 0 
INPREM05 0 0 
JOINTSOl 1 0.229898 0.29773 0.59623 0.4400 1.258 
WEDDEDOl 1 -0.188637 0.63797 0.08743 0.7675 0.828 
WEDDED02 1 -0.286707 0.63611 0.20315 0.6522 0.751 
PURPEOl 1 0.679643 0.31083 4.78096 0.0288 1.973 
PURPE02 1 0.267419 0.27232 0.96434 0.3261 1.307 
PURPE03 1 1. 051138 0.47856 4.82441 0.0281 2.861 

A.2 Time to Early Repayment: Non-segmented 

The PHREG Procedure 

Data Set: CREDITMY.CR97B Dependent Variable: OPEN Censoring 
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Variable: CENSORE Censoring Value(s): 0 Ties Handling: BRESLOW 

Summary of the Number of 
Event and Censored Values 

Percent 
Total Event Censored Censored 

34648 11316 23332 67.34 

Testing Global Null Hypothesis: BETA=O 

Without With 
Criterion Covariates Covariates Model Chi-Square 

-2 LOG L 224396.124 223478.131 917.993 with 44 DF 
(p=O.OOOl) Score 941. 088 with 44 
DF (p=O.OOOl) Wald 924.574 with 
44 DF (p=O.OOOl) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr > Risk 
Variable DF Estimate Error Chi-Square Chi-Square Ratio 

AGEOl 1 0.218889 0.06387 11.74447 0.0006 1.245 
AGE02 1 0.113977 0.05597 4.14728 0.0417 1.121 
AGE03 1 -0.004090 0.05150 0.00631 0.9367 0.996 
AGE04 1 -0.007699 0.05328 0.02088 0.8851 0.992 
AGE05 1 -0.124447 0.04851 6.58173 0.0103 0.883 
AGEM 1 -0.335910 0.18890 3.16227 0.0754 0.715 
AMOUNTOl 1 0.235964 0.07476 9.96331 0.0016 1.266 
AMOUNT02 1 0.227027 0.07017 10.46692 0.0012 1.255 
AMOUNT03 1 0.229695 0.06865 11.19378 0.0008 1.258 
AMOUNT04 1 0.145619 0.06443 5.10755 0.0238 1.157 
CURRADOl 1 0.130582 0.04575 8.14844 0.0043 1.139 
CURRAD02 1 0.098864 0.04572 4.67580 0.0306 1.104 
CURRAD03 1 0.008050 0.04579 0.03091 0.8604 1.008 
CURRAD04 1 -0.002141 0.04782 0.00200 0.9643 0.998 
CURRAD05 1 -0.010046 0.04510 0.04962 0.8237 0.990 
CURRADM 1 -0.095104 0.09419 1.01952 0.3126 0.909 
CURREMOl 1 0.056517 0.04218 1.79508 0.1803 1.058 
CURREM02 1 -0.008190 0.05276 0.02410 0.8766 0.992 
CURREM03 1 -0.045744 0.04094 1.24866 0.2638 0.955 
CURREM04 1 -0.038921 0.04300 0.81924 0.3654 0.962 
CURREM05 1 0.017105 0.04445 0.14806 0.7004 1.017 
CURREMM 1 0.186393 0.07249 6.61223 0.0101 1.205 
GENDEROl 1 0.008321 0.02093 0.15802 0.6910 1.008 
FREQPAOl 1 0.021916 0.02177 1.01366 0.3140 1.022 
FREQPA02 1 -0.179293 0.05686 9.94335 0.0016 0.836 
DEPKIDOl 1 0.067611 0.02316 8.51969 0.0035 1.070 
DEPKID02 1 0.190717 0.09194 4.30273 0.0381 1.210 
HOMOWNOl 1 -0.030493 0.02307 1.74673 0.1863 0.970 
HOMOWN02 1 0.014071 0.04300 0.10706 0.7435 1.014 
HOMTELOl 1 0.003352 0.04222 0.00630 0.9367 1.003 
INPREMOl 1 -0.242513 0.09691 6.26236 0.0123 0.785 
INPREM02 1 0.032475 0.03877 0.70178 0.4022 1.033 
INPREM03 1 0.051642 0.02992 2.97965 0.0843 1.053 
INPREM04 1 0.048298 0.03555 1.84533 0.1743 1.049 
INPREM05 1 0.035777 0.03880 0.85015 0.3565 1.036 
JOINTSOl 1 0.058038 0.02406 5.81825 0.0159 1.060 
WEDDEDOl 1 0.133026 0.07020 3.59051 0.0581 1.142 
WEDDED02 1 0.146577 0.07019 4.36124 0.0368 1.158 
PURPEOl 1 0.380527 0.02949 166.53640 0.0001 1.463 
PURPE02 1 0.147643 0.02338 39.86898 0.0001 1.159 
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PURPE03 1 -0.074027 
TERMOl 1 -0.623756 
TERM02 1 -0.863262 
TERM03 1 -1.005892 

0.03501 4.47143 
0.09054 47.45946 
0.09342 85.38486 
0.09583 110.16920 

0.0345 
0.0001 
0.0001 
0.0001 

0.929 
0.536 
0.422 
0.366 

A.3 Time to Default: non-segmented 

The PHREG Procedure 

Data Set: CREDITMY.WKl ,\ Dependent Variable: OPEN \\ Censoring 
Variable: CENSOR \\ Censoring Value(s): 0 \\ Ties Handling: 
BRESLOW\\ 

Total 

34648 

Testing 

Without 
Criterion Covariates 

-2 LOG L 27804.726 

Summary of the Number of 
Event and Censored Values 

Event 

1394 

Censored 

33254 

Percent 
Censored 

95.98 

Global Null Hypothesis: BETA=O 

With 
Covariates Model Chi-Square 

26691.192 1113.533 with 41 DF 
(p=O.OOOl) Score 1152.725 with 41 
DF (p=O.OOOl) Wald 1066.757 with 
41 DF (p=O.OOOl) 

Analysis of Maximum Likelihood Estimates 

Parameter Standard Wald Pr > Risk 
Variable DF Estimate Error Chi-Square Chi-Square Ratio 

AGEOl 1 -0.269382 0.11871 5.14969 0.0233 0.764 
AGE02 1 -0.343628 0.10818 10.08963 0.0015 0.709 
AGE03 1 -0.364341 0.11795 9.54149 0.0020 0.695 
AGE04 1 -0.451764 0.13060 11. 96610 0.0005 0.637 
AGE05 1 -0.608729 0.15481 15.46132 0.0001 0.544 
AGE06 1 -0.618968 0.40281 2.36117 0.1244 0.538 
AMOUNTOl 1 0.178986 0.10015 3.19415 0.0739 1.196 
AMOUNT02 1 0.640693 0.17609 13.23875 0.0003 1.898 
CURADDOl 1 -0.114471 0.09696 1.39389 0.2377 0.892 
CURADD02 1 -0.321211 0.09192 12.21174 0.0005 0.725 
CURADD03 1 -0.425863 0.10586 16.18338 0.0001 0.653 
CURADD04 1 -0.709043 0.09608 54.46244 0.0001 0.492 
CURADD05 1 -1. 027027 0.22311 21.19010 0.0001 0.358 
CURADD06 1 -0.707675 0.23102 9.38353 0.0022 0.493 
CUREMPOl 1 -0.182657 0.09483 3.71044 0.0541 0.833 
CUREMP02 1 -0.392496 0.08769 20.03552 0.0001 0.675 
CUREMP03 1 -0.586363 0.09304 39.71983 0.0001 0.556 
CUREMP04 1 -0.907697 0.11104 66.81988 0.0001 0.403 
CUREMP05 1 -1.163392 0.17000 46.83564 0.0001 0.312 
CUREMP06 1 -0.346176 0.20940 2.73298 0.0983 0.707 
GENDER01 1 -0.100541 0.06095 2.72102 0.0990 0.904 
FREQPA01 1 0.647060 0.06022 115.45990 0.0001 1.910 
FREQPA02 1 0.886438 0.15183 34.08609 0.0001 2.426 
DEPKIDOl 1 0.219537 0.06803 10.41441 0.0013 1.246 
DEPKID02 1 0.346733 0.25797 1.80656 0.1789 1.414 
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HOMOWN01 1 
HOMOWN02 1 
HOMTEL01 1 
INPREM01 1 
INPREM02 1 
INPREM03 1 
INPREM04 1 
INPREM05 1 
JOINTS01 1 
WEDDED01 1 
WEDDED02 1 
PURPOSOl 1 
PURPOS02 1 
PURPOS03 1 
TERMOl 1 
TERM02 1 
TERM03 0 

-0.329396 
-0.220099 
-0.263810 

0.637909 
0.511085 
0.739772 
0.431300 
0.439056 
0.371621 
0.239690 
0.083785 
1. 055140 
0.351996 

-0.035385 
-0.036799 

0.187143 
o 

0.06405 
0.12245 
0.10336 
0.10319 
0.07263 
0.11738 
0.16212 
0.20159 
0.07519 
0.07324 
0.19396 

26.44543 
3.23109 
6.51389 

38.21795 
49.51720 
39.71703 
7.07802 
4.74355 

24.42757 
10.70923 
0.18660 

0.06277 282.56579 
0.08239 18.25177 
0.13821 0.06555 
0.09568 0.14791 
0.14958 1.56523 

0.0001 
0.0723 
0.0107 
0.0001 
0.0001 
0.0001 
0.0078 
0.0294 
0.0001 
0.0011 
0.6658 
0.0001 
0.0001 
0.7979 
0.7005 
0.2109 

0.719 
0.802 
0.768 
1.893 
1.667 
2.095 
1.539 
1.551 
1.450 
1.271 
1.087 
2.872 
1.422 
0.965 
0.964 
1.206 

A.4 Results of the test for time-by-characteristic 
interaction 

OBS _NAME_ _LABEL_ 
42 Zl Z-statistic for AGEOl 
43 Z2 Z-statistic for AGE02 
44 Z3 Z-statistic for AGE03 
45 Z4 Z-statistic for AGE04 
46 Z5 Z-statistic for AGE05 
47 Z6 Z-statistic for AGEM 
48 Z7 Z-statistic for AMOUNTOl 
49 Z8 Z-statistic for AMOUNT02 
50 Z9 Z-statistic for AMOUNT03 
51 Z10 Z-statistic for AMOUNT04 
52 Zll Z-statistic for CURRADOl 
53 Z12 Z-statistic for CURRAD02 
54 Z13 Z-statistic for CURRAD03 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 

Z14 Z-statistic for CURRAD04 
Z15 Z-statistic for CURRAD05 
Z16 Z-statistic for CURRADM 
Z17 Z-statistic for CURREMOl 
Z18 Z-statistic for CURREM02 
Z19 Z-statistic for CURREM03 
Z20 Z-statistic for CURREM04 
Z21 Z-statistic for CURREM05 
Z22 Z-statistic for CURREMM 
Z23 Z-statistic for GENDEROl 
Z24 Z-statistic for FREQPAOl 
Z25 Z-statistic for FREQPA02 
Z26 Z-statistic for DEPKIDOl 
Z27 Z-statistic for DEPKID02 
Z28 Z-statistic for HOMOWNOl 
Z29 Z-statistic for HOMOWN02 
Z30 Z-statistic for HOMTELOl 
Z31 Z-statistic for INPREMOl 
Z32 Z-statistic for INPREM02 
Z33 Z-statistic for INPREM03 
Z34 Z-statistic for INPREM04 
Z35 Z-statistic for INPREM05 
Z36 Z-statistic for JOINTSOl 
Z37 Z-statistic for WEDDEDOl 
Z38 Z-statistic for WEDDED02 
Z39 Z-statistic for PURPEOl 
Z40 Z-statistic for PURPE02 
Z41 Z-statistic for PURPE03 

T12_18 
0.96407 

-2.47498 
-4.54529 
-0.03661 

4.02323 
-0.27564 
-1.71950 
0.39952 
2.39164 

-0.09864 
-3.50615 
-1.20786 
-1.20147 

1.73816 
2.96093 

-0.57851 
-2.08013 

0.56383 
-1. 85181 
0.86218 
2.69784 
2.99812 
1.45055 
3.97853 
0.63266 

-0.60106 
0.13516 

-3.32696 
-0.25164 

1.67806 
1.06259 
2.48734 
2.38192 
1.08687 
1.78992 
0.95138 

-2.12868 
-0.43350 
-0.01285 
-1.35235 

1.66952 
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T24_30 
3.11723 
0.75595 

-3.67380 
-1.80679 

1.96061 
-1. 36400 
-0.48622 
-1. 96234 

1.35059 
0.92095 

-5.61950 
-0.59476 

0.41260 
1. 97402 
3.93291 

-3.78587 
1.05081 

-0.66019 
0.06004 

-0.17344 
-0.29515 

0.24717 
0.20825 
9.00855 

-0.60663 
-1. 62230 
0.87384 

-7.49313 
-1. 56416 
-0.65622 

-1. 20845 
4.99509 
0.84549 
1.39365 
1.62449 

-0.59347 
-0.73637 

0.42922 
-5.55275 

1.12390 

T3638_6 
2.92220 

-1.23693 
0.15197 

-1.26378 
0.99392 

-1. 06867 
-0.28243 
-4.02650 
-1.64540 
3.53058 

-2.55947 
0.18336 
1.34558 

-0.77766 
3.24661 

-3.18673 
0.90232 
0.72723 
0.92253 
0.14129 

-0.62701 
-2.85846 
-0.50683 

6.52022 
-2.17336 

0.23928 
-0.97782 
-3.82417 
-2.41389 
0.71020 

0.01151 
-2.02767 

1.99370 
1.16953 

-2.35678 
-1.16223 
-1. 65420 
0.69987 

-6.18552 
5.86987 

T6 
0.4691 

-0.0038 
-0.9298 
-0.0667 
-0.0952 
-0.2587 

1.8250 
-1. 5428 
-0.4348 
-0.7520 

0.3019 
-0.0065 
0.5172 

-2.0524 
0.7030 
0.6902 

-1.0010 
-0.4235 
0.2113 
0.4570 
0.3786 
1.9192 

-0.7350 
0.1660 
0.8432 

-1.1719 
1. 4186 

-0.8616 
1.6493 

-3.2474 
-0.4495 
-0.1482 
-0.1562 

-14.4456 
-5.7545 
-1.1688 
-1.4504 
0.8701 
0.2439 

-0.6567 
-1. 7228 


