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1 Introduction

Classical laminated plate theory(CLPT) does not consider the influence of trans-
verse deformation. The theory assumes that shear strains v,, = v,. = 0. However,
plates or shells made of FRP(Fibre Reinforced Plastics) composite materials are I'Illl((‘;]’l
weaker in their transverse directions. They are susceptible to failures through the
thickness because their effective shear moduli G,. and G, are significantly smaller
than their Young’s moduli E, and E,. Thus, CLPT by itself is inadequate for FRP
composites.

In the available finite element programs, for example, ANSYS and NISA, the most
widely used displacement based theory is the first-order shear deformation theory
[1] to account for the influence of the transverse deformation. In this theory shear
deformation is constant through the thickness of the plate. This leads to an anomaly
in that the top and bottom surfaces, although not subjected to shear, still are shown
to have shear strain values. In order to correct this anomaly, various factors are
introduced into the first-order theory leading to higher-order shear deformation
theories. In this paper Reddy’s higher-order shear deformation theory [2] [3] will be

used to derive the stiffness matrix of an 8-node laminated plate element.



2  Stress-Strain Relation

Consider a laminated plate element of N layers with thickness h, length 2a, and
width 2b, as shown in F'zg.1 . Each layer is taken to be macroscopically homogeneous

and orthotropic.

[\
f— B~ —»

Figure 1

Based on the Duhamel — Neumann law, the stress-strain relation of the kth

layer is

o1 Qu Q12 Qi O 0 o €1
o2 Qiz2 Q22 Q23 O 0o 0 €2
o3 Qizs Q23 Qaz 0 0 O €3

4 > = g > (1)
O23 0 0 0 Qu O 0 Y23
13 0 0 0 0 Qs O “Y13

| o1z | i 0 0 0 0 0 Qe | 712

where

Qi = El/(l - j'—’12'/21)



Q12 =

Q22 =

Q44 =

Q55 =

Qza =

vi2 By /(1 — vizva:) = va1 B /(1 ~ vigvm) = Qs

E, /(1 — vyavs) (2)
G2a

G2 = G1z = Qge

V23E2/(1 —_ Vga) = U32E3/(1 b ng)

In the derivation of Eq. (1), the stresses and strains are defined in the principal

material directions for that orthotropic lamina. However, in angle-ply laminated

plates the principal directions of orthotropy of each individual lamina do not coincide

with the geometrical coordinate frame. It is necessary to use the transformed reduced

stiffness

\

/

Qn Q2 Qs O 0 -Qw €

Qi Qi Q o 0 626 €y

Qs Qa2 Qs 0 0 636 €
= { d (3)

0 0 0 Qu Q4y O Yy=
0 0 0 Q45 st 0 Yz

Q6 626 636 0 0 ase ey

- - . By

The thirteen constants @Q;; are related to the nine Q;; through the following trans-

formation formulae

611 =
612 =

Qum* 4 2(Q12 + 2Qes)m?n® + Qqpn?

(Qu1 + Q22 — 4Qgs)m*n? + Q12(m* + n*)
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where

Qi1am? + Qz3n?

(Qu ~ Q1z — 2Qes)m*n + (Q12 — Qa2 + 2Qes)mn®
Qun* + 2(Q1z + 2Qes)m’n® + Qzzm*.

Qian” + Qzym?

Q33

(Qu — @iz — 2Qes)mn® + (Q12 — Q22 + 2Qee)m’n
(Qis — Qu)mn

Qaam® + Qysn?

(Qus — Qus)mn

Qssm? + Quqn’

(Qu + Q22 — 2Q12)m*n? + Qge(m? — n?)?

m = cosl;, mn = sinl, (see Fig.2)

(4)

(5)



3 Reddy’s Higher-Order Shear Deformation Theory

Generally speaking, the displacement components of a laminated plate are of the

form

w5 = e,y + 3 fus'
v(e,y,2) = vo(w,y)-i-Zd)z;z‘ (6)

w@,9,2) = wol,p) + 3 duis
If terms of higher order than z* are neglected

u(z,y,z) = uo(x,y) + 2¢11 + 2%p12 + 23
v(x,y,2) = vol(x,y) + zd21 + 2%az + 2°¢p23 (7)

w(z,y,2) = wol(x,Y) + 2da1 + 2 3z + 2°¢s
Assuming that €, = 0 then
@31 = P32 = ¢33 = 0 (8)

For a symmetrical laminated plate, the assumption ¢p12 = ¢22 = 0 is exactly

satisfied. If the laminated plate is not symmetrical, we always approximately assume

P12 R P2 = 0 (9)

If the shear stresses ¢ ,and &, in the top surface and bottom surface are zero,



we have

8'[0[_]

P13 = 3h2 (‘3511 S )
_ B'wg 10
23 = 3h2 a3 (@ + By ) (10)

Substituting Eqgs. (8),(9),(10) into Eq.(7) we obtain the deformation components of

Reddy’s higher-order shear deformation theory

Ow
u(z,y,2) = uo(z,y)+ zdu(z,y) — 2’:2‘[4’11( »Y) + _]

W@32) = e 9) + bm(en) - slonE@n) + o] (1)

w(z,y,z) = wo(z,y)
where ug, vo, wp are associated midplane displacements, and ¢y, and ¢3; are the
rotations of the transverse normal in the zz and yz planes. The coordinate frame is
chosen in such a way that the zy plane coincides with the midplane of plate.

Based on the strain-displacement equations of linear elasticity, we have

42 81
0 1 Tz
€, = € zk — —
e T 28 3h? Ox
3 1
€, = €4z 1__42 a‘sz
v v y 3h? By
e, = 0
4z3 ,.Yl 371
0 1 yz Tz
’Y Yy 73:!, xy 3h2( am + 8'y ) ( )
42°
— 1
Yz = 722(1 - hz)



where

{} =

{rK'} =

{¥'} =

(13)

(14)

(15)

Substituting Eq.(12) into Eq.(3) ,one has the stresses expressed in terms of mid-

plane strains {€°},and rotations of transverse normal {k'} ,and {+'} .

o, =
(@i
o, =
(@
o, =
- @y

+ Qm_)‘)’m

-+ st_)’)’zz] —

-+ Qas

)‘r;‘,.,]z”
y

3h?

3h2

3h?

]z - _[(le

[(sz

[(Qza

61150 + _Qmufo + 616723. +Quk 2z + 612k1z + kal z

+ Qw_)‘}’yz]z

61260 + azzG + st'Y + leklz + azzklz + Qzak;yz

+ st

@1350 + 623'E + Qse'Yzy + Qw’c z+ azaklz + Qaek ~

)'}'jz]z"

+ st""‘)'fyz]z



— 4z°2 _ 422

Ty = Q447;z(1 - F) + Q457;z(1 - _h_z) (16)
_ 422 _ 422

O, = Q457:,z(1 - ";;2“) + Q5. (1 — ",‘LT)

Oy = 61660 + thzsfo + 666'723, + _Q-mklz + azaklz +—Q—66k1 <

3h?

3h2[(Q16 + Qsa )’Y;z]za —[(st + st'—)'sz] z*
9y

The stress resultants and moment resultants are defined as

N, o,
N 2k+1
{N} = { N, Zf o, (dz (17)
k=1"*k
N:t:y Ty

,

Q:L' Zk41
{Q} = | Z[ * dz (18)

\ Q'y k=1 Ty
M, o
N Zp41
M} = { M, >:zj Yo, ¢ 2dz (19)
k=1"%k
Mry a::y

. E . E

where the geometrical notation is as shown below:

ZN+1
1 +11Z] _rz

1 <2

Figure 3



Substituting Eq. (16) into Eqs. (17}, (18) , (19) , we have

N

M

Qo
Qy

where

N1 N!

M? M!

M3 M3 .

. ,
¢+ <
M
@ |
= el
Q, |
Ajr Az Aje
Ajp Azz Agg
A Az Ags
Bi1 Bz B
B,z Bj; By
| Bis Bzs Bes
£, Eie Es
E,, Ei; FEai
Eis FEge FEge
Fy, Fie Fig
Fi, Fo Fy
| Flﬁ Fﬁﬁ F66
Ass Ags
Agys Ay

N3

1
7::2

1
Yyz

Bay; Bag

B26 BBG

D22 D26

D26 DGG

(20)

(21)

(22)



Q3
@

>
[l
M=

=
fl

4 Interpolation Function

et

GO | = |

(23)
Dss Dy "Y;z

Dy Dyy ‘Y;z

_Q_Z-(Zk+1 — 2x)

Q.-,-(Z;?.H - 7')::) (24)

We adopt Serendipity 8-node element with five degrees of freedom for each node.

The total number of degrees of freedom for the element is 40. The natural coordinate

system (€, i) as shown in Fig.4 is taken to define the element geometry. The element

has sides £ = 1 and # = *1 (see Fig.4). For the element of side 2a by 2b

13

n

(z —=z.)/a

(v —y.)/b (25)

where (@, y.) are the coordinates at the centre of the element . Thus we have

3
dx

dn
dy

. (26)

10



and the element area of the rectangular element is given as
dedy = abdfdn (27)

To integrate any function f(x,y) over the element we transform to the natural coor-

dinate system, so that

[ [ f@ydedy = [ [ §(&n) abded (28)
fy)dedy = | [ f(&m n
—a a4
4 7 3
| 2 L 4 @ ?
I'L b
8 46
1 (mca 'yc) ¢ _b*
y L & & J’
1 5 2
L.,
Figure 4

For the 8-node Serendipity element shown in Fig.4 the interpolation function has

the following forms for the corner and midside nodes:

1. for the corner nodes

b = [+ +mm)E&Hom—1) i = 1,2,3,4  (29)

2. for the midside nodes
E.z 'q.z :
P = —é’"(l +&&)(1—7%) + ?'(1 +9m)(1—-¢€*) ¢ = 5,6,7,8 (30)

11



According to the values of 8 node coordinates we have from Eqs.(29) and (30) the

interpolation functions for each node as follows :

b= —x1-O—ME+n+1)

¥ = Z0+OA—E-n—1)

bo = A+OU+ME+n-1)

b = 20O +n)(~E+n-1)

¥ = S(—m(1-€) (31)
Yo = 1+ )

b = S0+nA-&)

b = (-1 -n)

The derivatives of the interpolation functions are as follows :

1. for the corner nodes

oY, 1
E:Z = Z&(l + n:) (26€ + )
O, 1
By = 2L+ £6) (2mm; + €6)
o _ 1
agf = S&€@1+mm) (32)
& 1, .
oz = 37 (14 &&)

&Y, Oy 1 _ .

12



2. for the midside nodes

%‘l;i = .;.53(1 —~ %) — (1 + gm)é

%‘f_’;’i — —;—nf(l — &) - +&6)m

‘12 ;’2" = —n2(1 + o) (33)
Th = —ga+es)
09 _ DW _ gy e

BEdn ndE
Note that the polynomial terms contained in this element are 1, z, v, 2%, zy, y2, %y,

2y? . For this element, the interpolation functions have satisfied the conditions
D tilén) =1 (34)

and
1 ife=3
vilgm;) = (35)
0 1#j
The displacement components are approximated by the product of the interpola-

tion function matrix [%;] and the nodal displacement vector {q¢} = [wo; vo; wo; P1: P27,

le.

8
{4} = S wo [ = Z}[i/J;]{QF} (36)
1
. ¢2 7

13



the superscript e of {g¢} denotes these variables are defined on the element and need

to be determined . Note that ¢¢1 = 11,02 = 21 .

5 The Stiffness Matrix of an 8-Node Laminated Plate Ele-

ment

Finite element models developed for plate theory can be grouped into three major

categories:

1. displacement models based on the principle of virtual displacements;

2. mixed and hybrid models based on the modified or mixed variational statements
of the plate theories;

3. equilibrium models based on the principle of virtual forces.

Among the three types of models, the displacement finite element models are most
natural and commonly used in commercial finite element programs.
In this paper we will use the displacement models to derive the stiffness matrix of

an 8-node rectangular layered plate element.

By means of the principle of virtual displacement, we have

8N, &8N,
/ + Youpdedy = 0
¢ Yy

- 9x | B
8N,, 6N,
/E—( . + By Yévodedy = O
oQ, &
f —( @ + < + g)6wodzdy = 0 (37)
e Oz Oy

14



M, oM.,
fo—(=+ — Q.)6¢dzdy = 0

Oz oy

oM, OM
[ —(2+ 22— Q,)6¢udedy = 0
e Ox Oy

Recall that Ng, Ngy, .oy My, are fun(_:tions of the derivatives of the displace-
ment Ug, Vo, Woy P1, P2. To reduce the differentiability of the interpolation functions
used in the finite element approximation of wg, vg, wo, @1, P2 the differentiation on
Nzy Ngyyoooy My, is treated to weight function duo, dve,6we, §¢1,8¢2 by using

integration-by-parts

o6 86
.5 2N, + 2N, )dzdy — f N,bugds = 0
oy
86 o6
G- PN,y + =2 N, dzdy — j Np,bvods = 0
Oy
86 o8
(S22Qe + o 2Q, — abwo)dady — [ Qubwods = 0 (38)
f2¢ ay e
36 880
(5 ¢‘ M; + - ZIIM,, + Q,6¢,)dedy — / M,é¢:ds = 0
66 88
e~ ¢2 M., + quzM + Qu8¢)dwdy — ] M, b¢2ds = 0
where
Ire the boundary edge of the element domain §2°;
Qe the element domain;

N, N, — the stress resultants at the boundary edge of the element;

Qn

the transverse shear force at the boundary edge of the element;

M,, M, — the moment resultants at the boundary edge of the element.

15



Substituting duwe = ¥y, dvo = i, dwo = Y., 8¢ = 1; and §¢p2 = 7; into

Eqgs. (38) , we have

. (W'N + a'l"N,,y)dzdy — [ Nuwds = 0
(8"}bi a¢:N )dmdy / anwl s — 0
81/), _
( ay Q, — q¥i)dzdy —/re Q.pids = 0 (39)
(81‘bt T’bisz-Fin/J;')dwd'y —'j M¥.ds = 0
By .
8 i E
( "b z'y+ l‘b M +Qy¢:)d3d’y—/ Mns¢td3 =0

Substituting Eq.(36) for e, vo, wo, P1, and ¢2) into Eqs.(13), (14), (15), we ob-
tain {€°}, {k*} and {4} represented by interpolation functions and nodal displace-
ments. Then substituting {€°}, {k'} and {4'} into Eqs. (20), (21) , we have
stress resultants, moment resultants and transverse shear forces {IN}, {M } and {Q}
represented by interpolation functions and node displacements . After substituting
{N}, {M} and {Q} represented by interpolation functions and node displacements
into Eq.(39) we obtain the finite element model of the higher-order shear deformation

theory

8 5
S KFPAP-F =0 (a=1,2,..,5) (40)

i=1p8=1

[K]{a} = {F°} (41)

16



where the variables A? , the stiffness and force coefficients are defined by

A:‘ = Uop; A? = voj A? = Wy,
Aj‘ = ¢1; A? = ¢2; (42)
o 811),, o - 8¢1 o T
Ky = [ l5o (NG + Ny + By (Ng; + Ny,)]dedy
) Bt 0 O
o 81/): o —==or 8¢1 o =
K@ = _/‘)C[B;(Qlj +Qy;) + a(sz + Q;;)]dzdy (43)
4o 6'4’; @ —o a'ﬁb: o ot o -
Ky = [ (5 (M +M5) + E(MGJ- + M) + ¥:(Qf; + Q) |dedy
Bo 8¢| @ ] 3¢: o =] o —x
K§ = oLy (Ms + Moj) + 5 SMG; + M) + 9i(Q5; + Q) ldedy

The coefficients N%,W?PM‘?J-,HZ,QE and Q?j fora = 1,2,...,5 and I =

1,2, 6 are given by

Ni; = Bll%ﬁj +Bls%ij Ny, = Blzaatj +B16(‘9alij
N‘a’lj = Alz?;ij +A25?91§J szj = Azz%ii +Azs‘?9tj (44)
Ny = Bu‘?ij +326?;zj NS, = Bzz?;ij +Bzﬁ‘?9'i"
Ng; = Am‘?ij +Ass?:: NZ = Azeaaﬁj +A66‘?9’i’



A

N(L
~a,

2

A

2

o W
.

J

O, oY — o o
Ey 311;] + Eis ‘;;J ij = Ey ;:j + Ey¢ (‘;ij
%y, &Y; O*;
E 2E E d
125 + 2L 2oy + Erp 5y?
ap; Y — . b
Eyy aﬁJ + Eae aﬁj 2 = En 6‘:3 + Eae a‘i’
&9, O?; O,
FE 2 E
165 2 + Eﬁamay + E2s 5y
91, Op; — O .
Eq6 61:3 + Egs ByJ N:j = Ez 8? +Ess%
8, o,
Ass 8:::] + Ay ayj i‘j = Agsp, ng = Aust;
. 8%,
Ags 3; +A44‘3;3 Q3 = Ast; Q= Aud;
4 B, 8. 4
= _*’;’;(Dss 5 > + Dy 6yj) G:j = Tz 550,
4
= _§D45¢J
4 B, 8, 4
— —ﬁ(D“"’ Baj + Dy, ayj) Q. = uﬁpﬁ%
4
= “§D44¢J
O, a; 9, 0v;
Bu——+ B M: = B I 4 Big—2
g 16 oy 1 12 By 65
OY; 9Y; 8Y; 8Y;
D L+ D d MS = D ! 7
g 16 oy 1 12 By + Dss .
O 9Y; O, O;
B B M? = J J
125 26 By 2 By, ay + Bgg s
oY; O, aY; 9;
D D Ms. = D _7 D 4
125 + D2s By 2; 22 By + Dzq B
8, 8, oY, 8,
Bis—. + B J M2 = B b B J
165 + Bss By oy 26 oy + Des D
Y, 9Y; O, Y
Dyg—" + Dgg—— 5= ! J
16 33 + 66 6'9' MGJ D26 By + D66 ax
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(45)

(46)

(47)

(48)



+ Fiz
Y

x oy?
) 9; 9Y; —5 Op; 0Y;
. = F F; . = F F,
M, 1, + Fig ay 15 12 By 16 5
— 24 8%, %Y
M, = Fq &c; + 2Fy0 a; + Py B'y; (49)
9, 9Y; 5 9 8Y;
a7t b J _ 7 F]
M, = Fi T + Fa By sz = Fy By + Fy Ba
_ 824p,; 824p,; 824
sz = Fie 8::[;1 +2Fsaﬁ+F26“§};‘{
ot 0v; O, 55 8Y; Otp;
Msj = Fi B + Fée By M, = Fy oy + Fge 9z
F! = [ 4iN.ds
re
F? = [ ¢Nods
F o= [ qpidedy+ [ #Quds (50)

F? = / ¢iMnds
I\e

FP = /r Y:Mds

All other coeflicients are zero.

Equation (43) represents the stiffness factors of an 8-node laminated plate element
based on Reddy’s higher-order shear deformation theory.If we set Eqs. (45), (47), (49)
equal to zero , we obtain the stiffness factors of an 8node laminated plate element

based on first shear deformation theory{4] from Eq.(43).
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