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In recent theories of cochlear mechanics, it has been proposed that spontaneous, transiently 

evoked and stimulus frequency otoacoustic emissions originate from scattering of a "tall 

and broad" travelling wave (TW) with a random spatial distribution of cochlear 

inhomogeneities. In contrast, in an earlier theory, it was proposed that scattering arises 

from inhomogeneities in the form of regular spatial corrugations. Both these theories 

successfully predict the existence of quasi-periodic frequency variations in the spectra of 

these otoacoustic emissions. However, they invoke very different cochlear mechanical 

properties to explain the frequency spacing commonly characterised by a parameter known 

as its periodicity. In the first theory, the periodicity is determined predominantly by the 

wavelength of the TW near its peak amplitude, whilst in the second it is determined by the 

spatial period of the corrugations, and is therefore largely independent of TW wavelength. 

The aim of this thesis is to test these two rival theories in humans by attempting to induce 

changes in the TW wavelength through ipsilateral acoustic suppression, whilst measuring 

any accompanying changes in the periodicity of stimulus frequency otoacoustic emissions 

(SFOAE). 

For both theories, a one-dimensional longwave model of cochlear mechanics was 

developed including representations of the two scattering mechanisms and of nonlinear 

cochlear active processes. Detailed predictions of the changes in SFOAE periodicity under 

conditions of self-suppression and high-side, two-tone suppression were then made from 

both models. In the model with random inhomogeneities, the periodicity clearly increased 

with the extent of self-suppression, and decreased with the extent of two-tone suppression. 

In sharp contrast, in the model with regular spatial corrugations, no change in periodicity 

occurred in either case. This result provides a means for differentiating between the two 

theories experimentally. Experiments were performed in 20 human subjects with normal 

hearing to measure any changes in SFOAE periodicity during self-suppression and two-

tone suppression. 

The experimental results were in broad agreement with the theoretical predictions of 

the model with random irregularities: SFOAE periodicity generally increased with the 

extent of self-suppression and decreased with the extent of high-side, two-tone 

suppression. This result was interpreted as strong evidence favouring the theory of 

spatially random inhomogeneities over the rival theory of regular spatial corrugations, 

thereby enhancing understanding of the mechanism for generation of otoacoustic 

emissions. 
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1. Introduction 

1.1 The Anatomy and Physiology of the Human Cochlea 

In this section the anatomy and physiology of the cochlea are briefly described. A 

detailed review of our current knowledge of the human cochlea is reported in Pickles 

(1988) andDallos et al. (1996). 

The cochlea comprises three fluid filled channels, or scalae, called the scala vestibuli, 

the scala media and the scala tympani. These are about 35 mm in length and are coiled 

into a spiral of approximately 2.5 turns about a bony core called the modiolus. The spiral 

structure is embedded in the temporal bone, which forms part of the outer wall of the three 

scalae. The scala media is separated from the scala vestibuli by Reissner's membrane, and 

from the scala tympani by the basilar membrane (BM). All three scalae contain fluids 

whose mechanical properties are similar to water and whose ionic composition is important 

in cochlear function. The scala vestibuli and scala tympani are connected to each other by 

a small port called the helicotrema, located at the apex of the spiral, whilst the scala media 

is closed at the apex, and is not directly connected to the other two scalae. Acoustic 

vibrations in the outer ear canal are transmitted by the middle-ear ossicles to a membrane 

at the basal end of the scala vestibuh called the oval window. The scala tympani is closed 

by a membrane called the round window, which faces the middle cavity. 

The BM comprises radial fibres which are connected at their inner end to a bony 

ledge projecting from the modiolus called the osseous spiral lamina. The outer ends of the 

fibres connect to a structure called the spiral ligament. The stiffness of these fibres is 

important in determining the mechanical behaviour of the cochlea. 

From a cochlear mechanical viewpoint, the spiral shape of the cochlea is unimportant 

and it is therefore often treated as though it were unwound into a long, straight structure. 

The cochlea shows the following variations in its dimensions and properties along its 

length. Firstly, the BM becomes broader, and mechanically more compliant from base to 

apex. Secondly, both the width of the osseous spiral limbus and the cross section of the 

scala media taper in the opposite direction to the BM, becoming narrower from base to 

apex. These variations form the basis of the mechanical frequency analysis that occurs in 

the cochlea in which stimulus frequency is mapped to location on the BM. 

Acoustic stimuli in the ear canal cause vibrations of the oval window which generate 

a hydromechanical wave involving transverse motion of the BM. The wave, known as the 

travelling wave (TW) travels along the BM carrying energy from base to apex. For a pure 

tone stimulus, the TW amplitude response varies with position along the BM, peaking at a 
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point which is dependent on the stimulus frequency. The location of the peak in the 

response is near the apex of the cochlea for low frequency stimuli, and moves towards the 

base for progressively higher frequency stimuli. 

The BM supports a cellular structure called the organ of Corti, which comprises 

support cells and two types of sensory cells; the inner and outer hair cells (IHC and OHC 

respectively). Above these is a gelatinous structure called the tectorial membrane, which is 

attached at its inner edge and which runs along the length of the cochlea. A bundle of hairs 

called the stereocilia projects from the top of each hair cell towards the tectorial 

membrane, with the tips of the OHC stereocilia being embedded in its underside. In 

response to vibrations of the BM, the stereocilia deflect, thereby modulating the rate of 

flow of ions from the surrounding cochlear fluid into the hair cells. 

In the IHCs, this flow of ions into the cell initiates nerve impulses which travel along 

the auditory nerve to the brainstem. In this way, the vibration of a point on the BM 

becomes encoded as a neural signal. 

The role of the OHCs is quite different from that of the IHCs: rather than detecting 

BM vibration, the OHCs actively amplify the vibration, thus enhancing the sensitivity of 

the auditory system. This amplification mechanism is not well understood, but according 

to the most widely accepted theories, a deflection of their stereocilia causes the OHCs to 

undergo length changes, thereby applying excitation forces to the BM and injecting energy 

into the passing TW. Since these length changes are both initiated by, and have an 

influence on the passing TW, a feedback loop exists involving mechanical to electrical 

transduction by the stereocilia, followed by electrical to mechanical transduction in the 

body of the OHC. The entire system is known as the cochlear amplifier, and is powered by 

a metabolic energy supply which maintains the ionic composition of the cochlear fluids. 

The action of the cochlear amplifier not only increases the sensitivity of the cochlea, but 

also improves frequency selectivity by sharpening the peak of envelope of the TW 

response. The cochlear amplifier is physiologically vulnerable, and its impairment is 

implicated in most cases of sensorineural hearing loss. 

The mechanical response of the cochlea shows a strong compressive nonhnearity 

such that the ratio of amplitude of the BM vibration to the that of the acoustic stimulus 

reduces with increasing stimulus level. This nonlinearity greatly complicates the 

mechanical response since the response at any given frequency may be influenced by many 

frequency components in the stimulus, not just the component at the response frequency. 

It is thought that this nonlinearity arises predominantly from the transduction processes in 

the OHCs. 



1.2 Otoacoustic Emissions 

Otoacoustic Emissions (OAE) are low level acoustic signals that are generated in the 

cochlea, propagate through the middle ear and appear in the ear canal where they can be 

measured using a probe microphone (Kemp, 1978). The mechanism of their generation is 

thought to involve the cochlear amplifier, and consequently OAEs provide a clinically 

useful noninvasive tool for assessing the state of health of the cochlea. 

OAEs are usually divided into two main classes: spontaneous OAEs and evoked 

OAEs. Spontaneous OAEs (SOAE) are sounds measured in the ear canal in the absence of 

any external stimulation. They appear as one or more narrow band spikes in the power 

spectrum of the ear canal sound pressure, which can be measured with a miniature 

microphone sealed into the ear canal. 

Evoked OAEs only arise when an external sound stimulus is presented to the ear. 

These are usually measured using a probe in the ear canal which houses both a microphone 

and an earphone. Evoked OAEs are usually further divided into three subclasses: 

transiently evoked, stimulus frequency, and distortion product OAEs, abbreviated to 

TEOAE, SFOAE and DPOAE respectively (Probst et al., 1991). This subdivision is based 

purely on the type of the evoking stimulus and is not intended to imply differences in the 

generation mechanisms. TEOAEs are evoked using a transient stimulus such a chck, tone-

burst or chirp and appear as echo-like signals after the stimulus. SFOAEs are evoked using 

a continuous pure tone stimulus, and appear themselves as continuous pure tones at the 

same frequency as the stimulus. DPOAEs are evoked by the presentation of two or more 

continuous pure tone stimuli and appear as continuous pure tones at intermodulation 

frequencies. SFOAEs and TEOAEs are sometimes referred to as 'simultaneously evoked' 

and 'delayed evoked' otoacoustic emissions respectively though this terminology will not 

be used here. 

SFOAEs in humans are the main subject of this project. TEOAEs are also briefly 

discussed, since they are thought to be closely related to SFOAEs. DPOAEs are more 

complicated and will not be discussed in any detail. 

1.3 Overview of the Project 

The purpose of this project is to investigate the mechanisms by which SFOAEs are 

generated in the cochlea. The current leading theory of SFOAE generation was proposed 

by Shera and Zweig (1993b). According to this theory, SFOAEs arise by a process in 

which the TW in the cochlea is both amplified by active processes and reflected by an 
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array of reflection sites distributed randomly along the length of the BM. An earlier theory 

developed by Strube (1989) postulated that the reflection sites were distributed with 

approximate spatial periodicity along the BM. 

One consequence of Shera and Zweig's theory is that certain features of the SFOAE 

frequency spectrum should vary with variations in TW response. These features are 

related to the group delay of the OAE signal which in turn is related to a quantity known as 

the periodicity of the SFOAE spectrum. Specifically, Shera and Zweig's theory predicts a 

relationship between the periodicity of the SFOAE and both the wavelength of the TW 

near its peak, and the sharpness of the TW envelope. In contrast, Strube's theory predicts 

that the periodicity in the SFOAE is independent of the TW shape, being determined only 

by the spatial periodicity in the reflection sites. 

The main aim of this project is to look for experimental evidence for or against Shera 

and Zweig's theoretical prediction. The approach that was adopted was to induce changes 

in the TW response whilst looking for corresponding changes in the SFOAE frequency 

functions. Because of the nonlinearity of cochlear responses, manipulation of the acoustic 

input stimuli induces changes in the TW response. Two different manipulations were 

used. In the first, the level of the a pure tone stimulus is varied, leading to the phenomenon 

known as 'self-suppression'. In the second, two tones are presented simultaneously, 

leading to a nonlinear interaction known as 'two-tone suppression'. 

This investigation has three main parts. First, cochlear models were developed, 

tested, and then used to generate theoretical predictions of the changes in SFOAEs that 

occur during self-suppression and two-tone suppression. Second, a signal processing 

method was developed for analysing SFOAE signals in terms of physical quantities in 

Shera and Zweig's theory of SFOAE generation. Third, experimental measurements of 

SFOAEs were made in human subjects, and comparisons made with theory. 

In the first part, the objective was to obtain testable prediction of the SFOAE 

behaviour predicted both by Shera and Zweig's theory, and by Strube's theory. Several 

different cochlear models based on the 1-dimensional longwave formulation were 

assembled from elements of existing published models, and were then implemented on a 

PC. These elements included models of the cochlear amplifier and BM impedance 

inhomogeneities, which act as reflection sites for the TW. In order to test the sensitivity of 

the model predictions to arbitrary assumptions in the models, two different variants of the 

cochlear amplifier were implemented; the first due to Neely and Kim (1986) and the 

second due to Zweig (1991). Two different spatial distributions of BM impedance 

inhomogeneities were also modelled: first, the random distribution postulated in Shera and 

Zweig's theory (1993b); second, the periodic distribution postulated in Strube's theory 



(1989). A nonlinear analysis technique (the 'quasilinear' method) due to Kanis and 

de Boer (1993b) was also included in the models in order to allow self-suppression and 

two-tone suppression to be modelled. 

The major theoretical results of interest are as follows. Models based on Shera and 

Zweig's theory predict that the SFOAE periodicity should show specific changes during 

self-suppression and two-tone suppression. No such change in periodicity is predicted by 

models based on Strube's theory. These results provide a means of testing the two theories 

experimentally. Also, qualitatively similar results are obtained regardless of the different 

assumptions made in the model, such as the details of the cochlear amplifier 

characteristics. This is in agreement with Zweig and Shera's assertion (1995) that 

SFOAEs will arise whenever a 'tall-and-broad' TW encounters a random array of 

reflection sites. 

In the second part, a signal processing method for accurately quantifying the SFOAE 

periodicity was developed. This is required because, in general, neither measured nor 

predicted SFOAE spectra show perfect spectral periodicity. Instead they exhibit a degree 

of random amplitude and phase modulation with frequency. In Zweig and Shera's 

cochlear model, this arises from the underlying random nature of the reflection sites on the 

BM. It can be shown that, as a consequence of this random element, the changes in 

periodicity predicted by Zweig and Shera's cochlear model are difficult to discern using 

previously published methods. For cochlear models, this random element can be removed 

by performing averaging across an ensemble of models, each with a different realization of 

the random reflection sites. This yields the parameters which describe the population from 

which the realizations were drawn. However, performing the corresponding ensemble 

averaging process is not possible for experimental data, where the ensemble would have to 

be formed from different subjects. The problem there is that, in contrast to the ensemble of 

cochlear models, different subjects differ in many more ways than simply their 

distributions of reflections sites. Therefore a method is required for estimating the 

periodicity of a single SFOAE spectrum. The method developed in this project is based on 

parametric spectral analysis. In this method, called the 4-parameter model, the measured 

SFOAE function is treated as if it arose from a random process with two main controlling 

parameters. The first of the four parameters, called here the ^centre value is used to 

define the SFOAE periodicity in this thesis. The second parameter, called here the 

(^bandwidth, is related to the spread of periodicities in the SFOAE signal. The 4-

parameter model was tested against the results from averaging across an ensemble of 

cochlear models, and was found to be capable of detecting the changes in periodicity (or 



^centre value) predicted by Shera and Zweig's model. Furthermore, its performance was 

significantly better than that of alternative estimators. 

In the third part, experiments were designed and conducted to measure the behaviour 

of the SFOAE periodicity during self-suppression and two tone suppression. SFOAEs 

were recorded in 20 subjects with normal hearing under varying degrees of self-

suppression and two-tone suppression. Where SFOAEs could be measured with sufficient 

accuracy, the 4-parameter model described earlier was used to estimate the periodicity. 

These results were then compared with theoretical predictions from the cochlear models. 

The experimental results show that the SFOAE periodicity is altered both during 

self-suppression and two-tone suppression. Furthermore, the measured relationship 

between the periodicity and levels of the acoustic stimuli closely resembles the predictions 

of cochlear models based on Shera and Zweig's theory (1993b). In contrast, the 

experimental results contradict the predictions of models based on Strube's theory (1989). 

This general result holds for several different variants of cochlear model, indicating that 

the result is not dependent on the exact details of the models. It is concluded that the 

experimental results provide strong support for Shera and Zweig's theory (1993b). 

1.4 Project Motivation and Scope 

The two very basic questions "How does the cochlea work?" and "How are OAEs 

generated?" have still not been fully answered at the macromechanical level. Although 

plausible theories have been developed to answer these questions, these theories have yet 

to be fully substantiated. One motivating factor for this project comes from the desire to 

test these theories experimentally. 

A related question is "What do OAEs tell us about the cochlea?". The answer to this 

question has implications not just for basic hearing science, but also for clinical audiology. 

Although OAEs have become a useful clinical tool in determining the state of health of the 

cochlea, exactly what information is contained in OAE signals remains unclear. 

Consequently, current clinical procedures use the most basic features of OAE signals, such 

as the overall level of the emission. Thus, the motivation for this project comes not just 

from basic hearing science, but also from clinical audiology. Though in this project no 

direct clinical application is sought, it is hoped that the further understanding of the 

cochlear mechanisms of OAE generation that is gained will lead to the development of 

improved clinical techniques. 

In particular, this thesis is motivated by the predictions of Shera and Zweig's theory 

(1993b), that SFOAE periodicity is related to the shape of the TW. This prediction 
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differentiates the theory from an earher theory due to Strube (1989) and thus provides a 

possible means of testing the two theories experimentally. Also, if the prediction is 

correct, it provides a link between cochlear mechanical behaviour and OAE signal 

characteristics. 

The potential benefits of this work are in three areas. Firstly, at the purely 

phenomenological level, it may lead to improved methods of characterising measured 

OAEs, thereby revealing new patterns in OAE traces. Secondly, at the cochlear 

mechanical level, it tests some aspects of the leading theories of the OAE generation in 

humans, where there is a dearth of experimental data. Thirdly, it may point to ways of 

extracting useful information about a particular cochlea (such as the width of the auditory 

filter) from measurements of OAEs. 

The scope of this investigation has been limited to SFOAEs. The reason for this is 

that the theoretical treatment of SFOAEs at the cochlear mechanical level is simpler than 

that of other OAEs. This is because the cochlea is nonlinear, and therefore frequency 

components in the stimulus (or in the response) can potentially interact with each other. 

As SFOAEs arise from a single pure tone stimulus, nonlinear effects are minimised. 

According to current theories, SFOAEs share their origins with other OAEs. Therefore, 

the investigations carried out in this project may provide insight into the generation 

mechanisms of other OAEs. This is important, since current clinical procedures use 

TEOAEs and DPOAEs. 

1.5 Overall Aims and Objectives 

1.5.1 Aims 

The general aim of this project is to further the understanding of cochlear mechanics 

by exploring the link between measurable characteristics of OAEs and current 

macromechanical theories of OAE generation. In particular, the aim is to answer the 

following questions: 

1. What predictions do the theories of Shera and Zweig (1993b) and of Strube (1989) 

make about the variation of SFOAE periodicity during self-suppression and two-tone 

suppression, and how can these variations be qualified? 

2. How does the SFOAE periodicity measured in human ears vary during self-suppression 

and two-tone suppression? 

3. Do the experimental data concur with the predictions of the theories of either Shera and 

Zweig or of Strube? 
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1.5.2 Deliverables 

As part of the process of answering these questions, the aim is to deUver: 

1. cochlear models which capture the essential features of the two theories, and which are 

capable of predicting SFOAEs during self-suppression and two-tone suppression, 

2. appropriate predictions from the cochlear models, 

3. a signal processing method for quantifying SFOAE periodicity, 

4. experimental measurements of SFOAEs during self-suppression and two-tone 

suppression. 

1.5.3 Objectives 

The project can be broken down into the following objectives: 

1. To develop and implement macromechanical cochlear models in Matlab, which capture 

the essential features of both Shera and Zweig's theory and of Strube's theory. These 

models must be capable of the showing the effects of self-suppression and two-tone 

suppression both on the TW envelope and on SFOAEs. 

2. To examine the performance of various versions of the models in detail, in order to 

assess the sensitivity of the results to various modelling assumptions. The effects of 

differences in the formulation of the middle ear model, in the properties of the BM, and 

in the characteristics of the cochlear amplifier are all investigated. 

3. To use the cochlear models to make predictions of the effect on SFOAE spectra of self-

suppression and of two-tone suppression. 

4. To develop a signal processing method for quantifying the periodicity of SFOAE 

spectra. Problems arise in quantifying SFOAE periodicity because of the complexity of 

the SFOAE spectra predicted by Shera and Zweig's model. The signal processing 

method is to be designed to extract meaningful parameters from the SFOAE spectra 

predicted by Shera and Zweig's model, in order to allow comparisons to be made with 

measured data. 

5. To design and carry out experiments to measure the effect on SFOAEs in humans of 

self-suppression and of two-tone suppression. 

6. To use the signal processing method to quantify both the measured and theoretical 

variations in SFOAE periodicity during self-suppression and two-tone suppression. 



7. To refine the cochlear models and signal processing methods further where necessary, 

based on the experimental results. 

1.6 Structure of the Thesis 

This thesis is broken into four parts. In the first part, the published literature is 

reviewed on the measurement of SFOAEs and on the theories of SFOAE generation. In 

the second part, the development of a cochlear model, and of a signal analysis method are 

described, leading to the generation of testable theoretical predictions. In the third part the 

experiments are described and comparisons are made between the experimental results and 

the theoretical predictions. Finally, in the fourth part the overall implications of the results 

are discussed. 



P A R T I : LITERATURE REVIEW 

2 Experimental Findings on OAEs 

2.1 Definition of OAEs 

OAEs are defined by Probst et al. (1991) as 'acoustic energy produced by the 

cochlea and recorded in the outer ear In the case of SOAEs, this definition is 

unproblematic. However, in the case of evoked OAEs the application of this definition is 

not straightforward. This is because the pressure in the ear canal comprises several 

components: the direct wave from the external stimulus, reflections originating from the 

eardrum or middle ear, plus the desired OAE originating in the cochlea. This is a 

particular problem for TEOAEs and SFOAEs, where the OAE and stimulus signals overlap 

in both the time and the frequency domains. One way of defining an evoked OAE (at least 

conceptually) is as the additional acoustic signal in the ear canal that arises as a results of 

the active processes in the cochlea. Practical methods of measuring TEOAEs and SFOAEs 

are discussed later. 

SFOAEs are the main subject of this project. Recall that SFOAEs are continuous 

pure tones evoked using a continuous pure tone stimulus at the same frequency. Due to 

cochlear nonlinearity, a single pure tone stimulus will evoke not only a pure tone response 

at the stimulus frequency, but also pure tone responses at other frequencies, such as integer 

multiples of the stimulus frequency. These components are not classed as SFOAEs (and 

are in any case generally quite small). 

2.2 A Review of the Theory and Analysis of Reflections 

Before reviewing the experimental data on OAEs, it is useful to consider some very 

simple reflection phenomena. This anticipates the "reflection hypothesis" which was 

introduced by Kemp (1978) to explain the generation of OAEs, and which is reviewed in 

more detail later. In this section, some of the basic physics of reflections, together with 

some useful signal processing techniques are introduced. 

Fig. 2.1, panel (a) shows a simple arrangement for generating a simple reflection in a 

duct. A loudspeaker generates a single click, which travels as a one-dimensional wave 

along the duct, is reflected at the right hand wall, travels back down the duct and is 

completely absorbed at the left hand wall. 
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Fig 2.1. A single reflection in an acoustic cavity. Time and frequency domain representations of the 
microphone response arising from a single reflection. The microphone, loudspeaker and reference plane in 
panel (a) are all coincident with the left hand wall of the duct, but are drawn separated for clarity. The 
microphone signal, panel (h), can be represented as the sum of two components: the "Stimulus" component, 
panel (b), and the "Echo" component, panel (e). The stimulus component may be defined as the microphone 
response which would have been measured had the right-hand duct termination been completely non-
reflecting. In this example, the magnitude of the reflectance, R\ ( / ) , is broad band, peaking at 0.6, and the 
time delay, is 4 ms. Middle panels (c), (f) and (i) show the magnitude of the Fourier transforms of the left 
hand panels (b), (e) and (h) respectively. The right hand panels, (d), (g) and (j) show the phase of the Fourier 
transforms of the left hand panels (b), (e) and (h), respectively. The echo and stimulus are related in the 
frequency domain via the (complex) reflectance: FECHO ( / ) = Pstimuius ( / ) ^ ( / ) • 
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Here it is assumed that the combination of the loudspeaker, microphone and left-

hand termination is non-reflecting, that the system is linear, that the side-walls are rigid 

and that only plane waves propagate in the duct. Also, the right hand wall is assumed to 

reflect all incident waves in a broad frequency band between about 0.25 and 1.75 kHz, 

without introducing any significant delay\ whilst the passage of the wave along the duct 

introduces delay, but with no significant change in amplitude. The click passes the 

microphone twice before being absorbed, giving rise to two pulses in the microphone 

pressure signal, panel (h). This signal can be split into two components: the stimulus 

component and the echo component. The two components of the microphone signal are 

shown in panels (b) and (e), and their Fourier transforms are shown to the right of these. 

The stimulus is a very short click at zero time, whose Fourier transform therefore has a 

constant magnitude and zero phase over a wide frequency band. The Fourier transform of 

the echo component has a broad band magnitude arising from the reflection characteristics 

of the right hand wall, and a linear phase arising from the transmission delay. 

To a good approximation, the sound field in the duct satisfies the simple one-

dimensional wave equation. From this equation, it can be shown that any arbitrary sound 

field in the duct can be represented as the superposition of a right and a left going wave, 

referred to here as the forward and backward waves respectively. Consequently, it is 

useful to define a quantity known as the reflectance (or reflection coefficient), which, at 

any frequency, is defined as the ratio of the complex amplitude of the reflected wave to 

that of the incident wave. In panel (a) the reflectance at the plane of the microphone 

looking in the forward direction is given by: 

Reflectance, R ( / ) = Psackward i f ) I Pporward ( / ) [2.1] 

where symbols in bold typeface are used to denote complex quantities, and where PBackward 

and Pporward are the complex pressures at the microphone due to the backward and forward 

components. For this simple case, the forward going wave is simply the stimulus wave, 

whilst the backward going wave is simply the echo component. This leads to the following 

simple relationship: 

^Mic ~ ^Stimulus ^Echo ~ ^Stimulus (1 + [2.2] 

where all quantities are assumed to be complex functions of frequency. 

Because the Fourier transform of the stimulus is uniform (i.e., independent of 

frequency) (panels c and d), the reflectance is identical in shape to the Fourier transform of 

the echo, shown in panels (f) and (g). The magnitude of the reflectance thus is related to 

' In order for this broad band filtering to be physically realizable, there must be some non-zero delay, but 

this can be very small compared to the transmission delay. 
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the broad band filtering that occurs between the incident and the reflected waves, whilst 

the phase is related to the delay. The linearity of the phase indicates that there is no 

dispersion: all frequency components are delayed by the same time. The slope of the phase 

indicates the actual time delay: 

= = [2-31 

where TGD is the delay in seconds (known formally as the group delay), <9 is the phase angle 

in radians, and / i s the frequency in Hz. In this case TGD is independent of frequency and is 

denoted T\. 

Though it is conceptually useful, the reflectance is not directly measurable. Instead, 

measurements yield only Puic for a given loudspeaker input voltage. However, given 

knowledge of the loudspeaker source impedance^, Pstimulus could be calculated from this 

input voltage, and hence the reflectance can be solved from [2.2] (Keefe, 1997). 

In addition to the reflectance, it is useful to examine the transfer function given by 

PMic / Pstimuius • The form of this function resembles the frequency response shown in 

panels (i) and (j). Here, the echo causes a ripple pattern to be superposed onto the 

magnitude spectrum of the microphone pressure (panel i). The ripple spacing is related to 

the delay between the stimulus and the echo, by = 1 / A / , where A / i s the frequency 

interval in Hz between adjacent ripple peaks. Physically, these ripples arise from the 

interference between the stimulus and echo at the location of the microphone. This can be 

understood with reference to fig. 2.2, which shows the complex phasor representations of 

the stimulus and echo components for a single frequency. (See Kemp and Chum, 1980a, 

fig 1. and Randall, 1987, fig 8.2) The phasor representing the echo pressure lies at an 

angle of 2nfTi relative to the real axis, and therefore rotates anticlockwise with increasing 

frequency. The length of the phasor changes only slowly with frequency. This causes a 

roughly periodic change in the length and angle of the microphone phasor, corresponding 

to ripples in the magnitude and phase spectra of the microphone signal, shown in panels (i) 

and (j). 

A more complicated situation arises when the left hand wall is reflecting, as is shown 

in fig. 2.3, panel (a). Again the loudspeaker, microphone, reference plane and left hand 

wall are coincident. Two reflectances are now defined at the reference plane: R ( / ) for 

incident waves approaching in the forward direction, and r ( / ) for those approaching in 

^ It is assumed that the loudspeaker acts as a volume velocity source (proportional to voltage) shunted by an 

acoustic impedance. To achieve a reflectionless termination, this acoustic impedance must equal the 

characteristic impedance of the medium (scaled appropriately with the cross sectional area of the duct). 
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the backward direction. This leads to a pressure pulse travelling back and forth, being 

reflected at each encounter with the termination (e.g., Keefe, 1997). 

Imag Axis 

Echo pressure 

Microphone 
Pressure 

Stimulus 
Pressure 

Real Axis 

Fig 2.2. Phasor representation of the stimulus and echo components for a simple reflection, based on Kemp 

and Chum, 1980a, fig 1, by permission of D. T. Kemp and Delft University Press. 

As before, it is convenient to spht the microphone signal in panel (h) into the 

stimulus and echo components, shown in panels (b) and (e), where the stimulus component 

is defined as the pressure signal that would have been measured had the right hand wall 

been non-reflecting. The echo component is simply defined as the microphone signal 

minus the stimulus. Now the forward and reverse pressure components no longer 

correspond to the stimulus and echo components, because the echo component is made up 

of forward as well as reverse waves (the stimulus component comprises only the first 

forward wave). This means that the echo spectrum in panels (f) and (g) no longer 

resembles the reflectance, R ( / ) . It can be shown^ that the following relationship holds 

This can be verified by noting that the ratio of the forward to the reverse echo component in [2.4] equals 

r ( / ) , whilst the ratio of the reverse echo component to the sum of forward echo component and the stimulus 

component equals R ( / ) . 
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between the echo and stimulus components: 

= Ps...,.sm+rR + (rRf+... (reverse) 

+ " (forward) 

where explicit dependence on frequency has been omitted. The binomial expansion of the 

denominator emphasises the interpretation of the echo signal as a sum of multiple 

reflections. The value of r ( / ) depends only on the source impedance. When r = 0, [2.4] 

simplifies to the single reflection case described earlier. For simplicity, r ( / ) has been 

assumed real and constant in the example shown in fig 2.3. 

Unlike the single reflection case, the spectrum of the echo component in panels (f) 

and (g) now shows a ripple pattern, which arises from the periodicity in the time domain 

signal in panel (e). In fact the ripple peaks correspond to the acoustic natural frequencies 

of the system, which occur as a series of harmonics. The fundamental frequency, and the 

spacing between the higher harmonics are given by the reciprocal of the time interval 

between successive reflections. The width of these peaks is inversely related to the decay 

time of the envelope of the pulse train seen in panel (e), which is determined by the 

damping in the system. A large value of the product | r /? | gives rise to a slow decay of the 

pulse train, and therefore sharper ripples in the frequency domain. Note also that the 

simple phasor diagram (fig. 2.2) no longer strictly applies, since the echo component is 

now made up of an infinite sum of phasors, each one rotating (as frequency increases) at a 

different rate, depending on its delay. 

The ripple patterns in the spectra of the echo (panel (f)) and microphone (panel (i)), 

resemble each other because the time delay between multiple reflections is the same as that 

between the stimulus and the first reflection. This arises because the loudspeaker and the 

left hand wall are coincident, and because r ( / ) has zero phase. 

Another quantity of interest is the acoustic impedance looking forwards at the plane of the 

microphone, which is defined as the complex ratio of the acoustic pressure to the volume 

velocity. A standard result relating the impedance, Z ( / ) , to the reflectance is: 

Zod + jg) 
[2.5] 

l-R 

where ZQ is the characteristic impedance of the medium. Z ( / ) is independent of the 

reflectance, r ( / ) , since it depends only on the system to the right of the reference plane. 
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Fig 2.3. Multiple Reflections in an acoustic cavity. Panels (a)-(j) are as in fig 2.1, but with a reflecting left 
hand wall. The "stimulus" component in panel (b) is defined as the microphone response that would have 
been measured had the right-hand duct termination been completely non-reflecting. For the reflectance 
looking right, the magnitude, R ( / ) is broad band with a peak value of 0.6, and the time delay, Tj = 4 ms. For 
the reflectance looking left, the magnitude, r ( / ) = 0.8, and the phase angle, d i f ) = 0 for a l l / . Middle 
panels (c), (f) and (i) show the magnitude of the Fourier transforms of the left hand panels (b), (e) and (h) 
respectively. The right hand panels, (d), (g) and (j) show the phase of the Fourier transforms of the left hand 
panels (b), (e) and (h), respectively. The echo and stimulus are related in the frequency domain via the two 
(complex) reflectances: 

( / ) = ( / ) ( / ) [ 1 + r ( / ) ] / [ 1 - r ( /)!((/)] . 
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Now the transfer function between the microphone output and the loudspeaker input 

will approximate this acoustic impedance, provided that r ( / ) ~ 1, as is the case here. This 

can be seen by setting r ( / ) = 1 in [2.4], and by noting that, for a high impedance 

loudspeaker"^, the volume velocity is proportional to the voltage input. This means that the 

spectrum shown in panels (i) and (j) closely resembles the acoustic impedance seen at the 

microphone. Therefore the peaks in the ripple pattern correspond closely to antiresonances 

of the system, defined as frequencies where the input resistance is large. 

Summarising the main points from these two simple cases; 

1. For the single reflection case, the transfer function between echo and stimulus signals 

equals the reflectance at the transducers, looking forwards. The slope of the phase of 

the reflectance is determined by the time delay between stimulus and echo. 

2. For the single reflection case, the transfer function between microphone and 

loudspeaker shows a ripple pattern whose spacing is determined by the time delay 

between stimulus and echo. 

3. For the multiple reflection case, the transfer function between echo and stimulus is no 

longer simply the reflectance looking forwards. Ripples appear in both its the 

magnitude and phase. The average slope of the phase of the reflectance is still 

determined by the time delay between stimulus and echo. 

4. For the multiple reflection case, the transfer function between microphone and 

loudspeaker closely resembles the acoustic impedance at the microphone, provided that 

the source impedance is high, such that the reflectance looking backwards has a value 

close to 1. 

5. To recover the reflectance from measurements of PMW a knowledge of the loudspeaker 

source impedance is required. 

It should be noted that in both cases, the presence of ripples in the PMC spectrum 

does not imply that the reflectance at the right hand wall is higher at the frequencies of the 

ripple peaks. Instead, the ripple peaks indicate constructive interference between two or 

more temporally separated components in the signal. 

2.3 A Qualitative Description of Measured TEOAE and SFOAE Signals 

TEOAEs were first measured by Kemp (1978). He presented a click to the ear canal 

via an earphone, and then measured the resulting acoustic pressure in the ear canal using a 

The impedance must be high for r to approach 1. A similar equation to [2.5] can be written relating r to 

the source impedance. 
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miniature microphone. In fact, in order to improve the signal-to-noise ratio, a train of 

clicks was presented, and then synchronous averaging performed. The TEOAE appeared 

in the microphone signal as an echo-like component typically lasting around 20 ms. Kemp 

(1978) proposed that TEOAEs originate in the cochlea, and that they involve active 

cochlear processes. This has since been verified by a large body of evidence reviewed by 

Probst et al. (1991) and discussed later. 

The TEOAE signal has several characteristics that are different from those of the 

simple echoes discussed in section 2.2. Of particular importance here are 'frequency 

dispersion' and 'compressive nonlinearity'. Frequency dispersion means that the different 

frequency components in the TEOAE have different delays, such that higher frequency 

components appear before lower frequency components (Kemp, 1978). This means that, 

unlike the simple echoes in section 2.2, the shape of the TEOAE waveform is quite 

different from that of the stimulus. Compressive nonlinearity means that the slope of the 

input-output function, defined by plotting the rms amplitude of the TEOAE waveform 

against that of the evoking click, is less than 1 dB/dB (Kemp, 1978). Again this is unlike 

the simple behaviour of acoustic reflections in a duct (though this cannot be seen simply by 

examining the single waveforms in section 2.2). Both these phenomena are discussed 

further in part II in the context of cochlear macromechanical models. 

Shortly after Kemp's discovery of click evoked OAEs, it was reported that pure tone 

stimuli also evoked emissions (Kemp and Chum, 1980a; Wilson, 1980a). These are 

referred to here as SFOAEs. They are seen most readily in a normally hearing subject by 

exciting the ear canal with a continuous low-level pure tone stimulus using an earphone 

with a high impedance, and then measuring the resulting ear canal pressure. As the 

stimulus frequency is varied, a ripple is observed in the amplitude of the frequency 

spectrum of the ear canal pressure. Kemp and Chum (1980a) attributed these ripples to 

alternate constructive and destructive interference between the (pure tone) stimulus wave 

and the delayed OAE wave. This is the same interference mechanism that gave rise to the 

ripple patterns seen in the spectra shown in figs. 2.1(i) and 2.3(i), and represented by the 

phasor diagram in fig. 2.2. As will be discussed later, SFOAEs also exhibit frequency 

dispersion and compressive nonlinearity. 

If the generating mechanism for OAEs were entirely linear then there would be no 

theoretical need to define SFOAEs independently of TEOAEs. This is because the Fourier 

transform of the click evoked OAE would be identical to the pure tone evoked OAE. 

Since both TEOAEs and SFOAEs show nonlinearity, as seen in their input-output 

functions, SFOAEs cannot be predicted from TEOAEs (or vice versa). Nevertheless, the 
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two classes of OAE do share many properties, including frequency dispersion and 

compressive nonlinearity (Kemp and Chum, 1980a), which will be discussed further. 

2.4 The Evidence for Active Processes 

In section 2.1, an OAE was defined as the component in the signal arising from 

active cochlear processes. It has also been stated the ripples seen in the spectrum of the ear 

canal impedance indicate the presence of echo-like components. However, whether or not 

these components arise from active processes, and therefore qualify as OAEs, cannot be 

established from observations of the signals alone. In fact, there is now extensive 

experimental evidence, reviewed by Probst et al. (1991), to show that the ripples arise from 

active processes. Most notable is the fact that no ripples are measured in ears with known 

cochlear hearing loss exceeding about 30 dB HL (Probst et al., 1991). Another important 

experimental observation is the that the ripple exhibits a compressive nonlinearity such that 

the amplitude of the ripple pattern reduces as the stimulus level increases, until at around 

60 dB SPL it is barely noticeable (Kemp and Chum, 1980a). Such compressive 

nonlinearity is also seen in other types of OAEs in humans (Probst et al., 1991) and in in 

vivo measurements of cochlear mechanical responses in animals (e.g., Sellick et al., 1982). 

It is generally believed that the passive cochlear mechanics are virtually linear and that the 

compressive nonhnearity arises from saturation of the cochlear amplifier (Dallos, 1996). 

In addition to this experimental evidence, theoretical considerations suggest that the 

passive cochlea will be reflectionless^, and would not give rise to the observed ripples 

(de Boer, 1996; Shera and Zweig, 1991a, 1991b, 1993a). 

2.5 Frequency Dispersion of SFOAEs 

As for the simple case of an echo seen in fig. 2.1(1), the ripple spacing in the 

magnitude of the ear canal pressure frequency spectrum depends on the time delay of the 

SFOAE component with respect to the stimulus component. Measurements show that the 

peaks in the ripples become more widely spaced as the stimulus frequency is increased 

" Note that the term "reflectionless" here means that the reflectance measured at the base of the cochlea 

looking apically is zero. This reflectance is defined in terms of forward and backward cochlear TWs, and 

should not be confused with the reflectance of the eardrum. The cochlea, whether passive or active, has an 

impedance which loads the eardrum via the middle cochlea, leading to an impedance mismatch between the 

air in the ear canal and the eardrum. This means that reflections will occur even for a "reflectionless" (i.e., 

passive) cochlea. This is discussed further in section 2.9, and in part II of this thesis. 
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(Kemp and Chum, 1980a; Zwicker and Schloth, 1984; Dallmayr, 1987), indicating that 

higher frequencies have shorter delays than lower frequencies (cf., frequency dispersion in 

TEOAEs above). In fact, to a first approximation, it has been found that the ripple spacing 

is roughly proportional to the stimulus frequency (e.g., Wilson, 1980a; Zwicker and 

Schloth, 1984; Kemp, 1986; Dallmayr, 1987; Zweig and Shera, 1995). This holds over a 

frequency range of 0.5 to at least 4 kHz (Zweig and Shera, 1995). Kemp and Chum 

(1980a) used SFOAE phase measurements to derive the group delay, defined in [2.3], 

which gives a direct measure of the delay of each frequency component in the signal. This 

quantity also revealed dispersion similar to that indicated by the ripple spacing. 

2.6 Analysis of an Idealised OAE Signal 

It is useful at this point to consider a highly idealised phenomenological model of the 

middle ear and cochlea which has been contrived to generate SFOAEs with the property 

that the ripple spacing is proportional to the stimulus frequency. This idealisation, shown 

in fig. 2.4, is similar to Strube's analysis (1989) of a system with a group delay inversely 

proportional to frequency. 

In fig. 2.4 the idealised cochlea is characterised by a reflectance at its base, looking 

forwards (i.e., apically). This has a constant magnitude given by Ri , and has a phase angle 

in radians given by 0i ( / ) = -A lege {flfnef) where A and fRef are constants. The idealised 

middle ear is assumed to be reflectionless and to pass all frequencies in a broad band from 

0.5 to 1.5 kHz. The middle ear transmission coefficient (i.e., the ratio of transmitted wave 

pressure to incident wave pressure) is given by T { f ) , and for simplicity has been assumed 

wholly real and identical in both directions. The ear canal is assumed to be very short, 

such that delays are negligible compared to delays arising in the cochlea. The ear canal 

termination is assumed to be reflectionless. In order to illustrate the correspondence 

between the ripple spacing in the frequency domain and delays in the time domain, the 

system is assumed to be linear. The SFOAE is then related to the stimulus by: 

( / ) 4r(jr). 

It must be stressed that this model is designed only to illustrate how the basic 

SFOAE ripple pattern is related to two properties of the system: a phase angle with a 

logarithmic variation, and a roughly constant magnitude over a broad band frequency band. 

It should also be noted that use of reflectance does not imply that the mechanism for OAE 

generation is passive reflection. It merely characterises the relationship between acoustic 

input and output waveforms (at a point in space) at a phenomenological level. The 

reflectance (also called the reflection coefficient) has been used in a similar way by several 
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Fig 2.4. OAEs from an idealised ear, in the absence of multiple reflections. Panel (a) shows a highly 
idealised ear canal, middle ear and cochlea. The ear canal is closed at its left-hand end with a non-reflecting 
termination. The idealised middle ear is perfectly non-reflecting, though not perfectly transparent. It has a 
broad band transmission coefficient characterised by the attenuation function, T ( / ) . This applies to both left 
and right travelling signals, giving rise to the magnitude spectrum shown in panel (f). Phase changes 
introduced by the middle ear are neglected. The idealised cochlea has a highly simplified reflectance, R ( / ) , 
whose magnitude is constant and whose phase varies logarithmically with frequency. The parameters in 
panel (a) are Ri ( / ) = 0.3 and A = 271x10 (giving a periodicity of approximately 10%). The OAE and 
stimulus are related in the frequency domain by: P&Ao ( / ) = Pstimuius i f ) T i f f ' R i f ) . The ear canal 
pressure is the sum of the stimulus and echo components. The stimulus component, panel (b), is defined as 
the microphone response which would have been measured were the cochlea completely non-reflecting. 
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authors (e.g., Kemp, 1980; Strube, 1989; Shera and Zweig, 1993a; Zweig and Shera, 

1995). A further point to note is that the reflectance only gives a complete characterisation 

of the input-output relationship for a linear system. However, it may be usefully extended 

to give a partial characterisation of nonlinear systems (see section 4.11). More realistic 

phenomenological and physiological models are discussed in part II of this thesis. 

For the idealised ear in fig. 2.4 panel (a), the SFOAE magnitude spectrum (panel f) 

shows a broad band characteristic which arises from the middle ear transmission 

coefficient, whilst the SFOAE phase spectrum (panel g) shows the logarithmic variation 

which arises from the cochlear reflectance. The ear canal magnitude and phase spectra 

(panels i and j) show the ripple pattern with a ripple spacing proportional to frequency. 

In the time domain, panel (e) (which corresponds to an idealised TEOAE), different 

frequency components have different delays. As before, the delay of a particular 

frequency component can be quantified by the group delay, TGD ( / ) , defined as the slope of 

the phase spectrum: 

where Tgd is in seconds, 6\ is in radians, and / i s the stimulus frequency in hertz. 

Physically, the group delay of a system gives a measure of the delay between energy being 

delivered to the system and energy appearing at the output. This is best understood by 

considering the input as a tone burst signal described by a sinusoidal carrier signal of 

frequency,/, multiplied by a pulse shaped envelope. The output of the system is then also 

a tone burst signal of carrier frequency,/, but whose envelope is delayed by TGD i f ) with 

respect to the input envelope^. 

Equation [2.6] shows that the group delay of the idealised SFOAE is inversely 

proportional to the frequency. The effect of this in the time domain is seen in panel (e), 

where high frequency components appear before low frequency components. The peak in 

the envelope of the waveform in panel (e) appears at a time determined by the delay of the 

dominant frequency component (in this case those around 1 kHz, as determined by the 

middle ear transmission). The onset time of the envelope is determined by the highest 

frequencies present (those around 1.5 kHz), since these have the shortest delay. 

In the idealisation in fig. 2.4, where the middle ear and ear canal termination are 

reflectionless, the phase of the SFOAE relates directly to the phase of the reflectance. In 

reality, however, both the ear canal termination and the middle ear will be significantly 

reflecting. A complete analysis of this more complex case is given by Shera and Zweig 

In general, the shape of the output envelope differs from that of the input. 

22 



(1993a) and reviewed in part 11. The intermediate case in which the ear canal termination 

is reflecting, but the middle ear is not, is shown in fig. 2.5. The purpose of this is to 

illustrate how multiple reflections manifest themselves in some of the signal 

representations that have been used to characterise SFOAEs. Because of dispersion, the 

presence of multiple discrete reflection components in the OAE signal is not immediately 

obvious in the time domain (panel e). However, compared to the single reflection case, 

fig. 2.4(e), it can be seen that the OAE waveform is distorted, and decays more slowly. 

Also, multiple reflections introduce ripples into the OAE magnitude and phase spectra (fig. 

2.5 f and g). Apart from the middle ear transmission coefficient, the relationship between 

the idealised OAE and the stimulus given in equation [2.7] is identical to that for the 

multiple reflection case in equation [2.4]. 

= P^..,.J'R(l+rr-R + (rr-Rf +... (reverse) ,7] 

r s« . .^ . rT^-m + r T ' R + { r T ' R f +... (forward) 

In summary, for both of these two idealised models of the ear, a ripple pattern arises 

in the magnitude spectrum of the ear canal pressure signal. This arises from the delay 

between the OAE and the evoking stimulus which is determined by the phase spectrum of 

the idealised cochlear reflectance. There is no ripple pattern in the magnitude of the 

reflectance, which has here been assumed to be independent of frequency. In the following 

sections, the similarities between these idealised results and actual experimental data will 

be discussed. 
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Fig 2.5. OAEs in an idealised ear including multiple reflections. Panel (a) shows a highly idealised ear 
canal, middle ear and cochlea. The ear canal is closed at its left-hand end with a reflecting termination. The 
idealised middle ear is perfectly non-reflecting, and has a broad band transmission coefficient, characterised 
by the attenuation function, T ( / ) . This applies to both left and right travelling signals, giving rise to the 
magnitude spectrum shown in panel (f). Phase changes introduced by the middle ear are neglected. The 
idealised cochlea has a highly simplified reflectance, R ( / ) , whose magnitude is constant, and whose phase 
varies logarithmically with frequency. The parameters in panel (a) are R\ ( / ) = 0.3 and A = 271X10 (giving 
a periodicity of approximately 10%). The OAE and stimulus are related in the frequency domain by: 

= [ 1 +r ( / ) ] / [ 1 - r m 
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2.7 Experimental Measurements of the Cochlear Reflectance 

In the previous section, an idealised phenomenological model of OAEs was 

described which showed how the periodic ripple pattern that can be seen in the ear canal 

pressure might be explained by the form of the phase of the cochlear reflectance. This 

explanation was first put forward by Kemp (1978, 1980). However, it is conceivable that 

the ripples could arise from a periodic variation in the strength of the cochlear amplifier 

with position along the BM (e.g., Manley, 1983). In contrast to the idealised results 

presented above, this would manifest itself as spectral periodicity in the amplitude of the 

cochlear reflectance. Shera and Zweig (1993a) investigated the form of the amplitude and 

phase of the cochlear reflectance using SFOAEs. They made detailed measurements of the 

SFOAE signal characteristics and compared these with predictions from a model that 

included the characteristics of the OAE probe, the ear canal, the middle ear and the 

cochlear reflectance. Their results confirmed Kemp's hypothesis that the ripple pattern 

arises from the variation in the phase of the cochlear reflectance. They also showed that 

the magnitude of the cochlear reflectance varies relatively slowly with frequency, showing 

none of the spectral periodicity seen in measurements of the ear canal pressure. Thus to a 

first approximation these experimental results agree with those from the idealised models 

presented earlier. 

The ways in which measured SFOAEs depart from the idealisation are also worth 

noting. Three main ways can be identified (e.g., Shera and Zweig, 1993a). Firstly, they 

are nonlinear, except perhaps at very low stimulus levels (section 3.5). Secondly, the 

cochlear reflectance is not perfectly constant, but instead shows a slow, random fluctuation 

with frequency. Thirdly, the middle ear is far from reflectionless, leading to a more 

complicated series of multiple reflections than that seen in fig. 2.5. This is discussed 

further in part II. 

2.8 Alternative Definitions of SFOAEs 

Confusingly, in the literature, the term 'SFOAE spectrum' does not have a consistent 

meaning. In some papers (e.g., Talmadge et al., 1998), it means the spectrum of the total 

ear canal pressure response (i.e., stimulus signal plus the echo-like component), which then 

shows a strong pattern of ripples in its magnitude. This corresponds to panels (i) and (j) in 

figs. 2.4 and 2.5. Elsewhere, however, the term 'SFOAE' is used to mean the spectrum of 

the echo-like component alone, which does not necessarily show the same regular pattern 

of ripples in its magnitude (e.g., Kemp and Chum, 1980a). This corresponds to panels (f) 
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and (g) in figs. 2.4 and 2.5. In this thesis, the term 'SFOAE' refers to the echo-like 

component only, whilst the term 'ear canal pressure spectrum' is used to refer to the total 

spectrum recorded by the microphone. Thus the ear canal pressure spectrum is the 

(complex) sum of the stimulus component and the SFOAE component. 

2.9 Measurement Methods for SFOAEs 

In the idealised spectra shown in figs. 2.4(1) and 2.5(1), the ear canal pressure signal 

can be easily split into the stimulus and SFOAE components, because the stimulus 

component is a known signal (in this case entirely uniform). The situation is less simple in 

the case of real OAEs. Two issues are addressed in this section. Firstly how to define the 

stimulus component conceptually and secondly how to measure it. 

Recall that in fig. 2.5(a) the stimulus component was defined as the acoustic pressure 

due to the initial forward going wave, and the OAE component was then defined simply 

the remainder of the ear canal signal. Because the idealised middle ear was non-reflecting, 

this was a convenient definition, since the resulting OAE component originated entirely in 

the cochlea. However, in reality, the middle ear is reflecting. This means that multiple 

reflections will occur in the ear canal, whether or not the cochlea has a non-zero 

reflectance. Therefore, it is useful to modify the definition of the stimulus component from 

that used previously, such that it excludes signals originating from backward TW in the 

cochlea, but includes reflections from the eardrum^. The stimulus component is therefore 

redefined as the pressure signal that would have arisen had the cochlea been entirely non-

leGecdng^ 

Using this new definition, the typical characteristics of the stimulus component will 

now be considered. Assuming the eardrum is approximately 10 mm from the loudspeaker, 

the forward going wave from the loudspeaker will be partially reflected after about 

0.03 ms. Thus, on striking the eardrum, the initially forward going wave splits into two 

components. The first is a transmitted wave which goes on to enter the cochlea^ where it 

' These reflections are dependent on the properties of the passive (or reflectionless) cochlea, as these affect 

the eardrum impedance. 

® The question of what is meant by a 'non-reflecting' or 'reflectionless' cochlea will be addressed more fully 

in part II of this thesis. Here it is simply noted reflectionless means that a forward cochlear TW propagating 

along the BM does not give rise to a backward TW. 

' For simplicity in this explanation, the ossicular chain has been treated as rigid linkages. In reality there 

will be reflections not only from the eardrum, but also from other points in the ossicular chain. However, 

since these are separated by extremely short delays, they may be treated as a single reflection. 
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generates a forward TW on the BM which in turn elicits an OAE. The second is a 

reflected wave which then reverberates in the ear canal, until it decays away typically over 

about 3 ms. Each time a forward waves strikes the eardrum it further splits into two 

components. The stimulus component is equal to the initial forward wave, plus the first 

reflection from the eardrum, plus subsequent reflections between eardrum and ear canal 

termination. In fact, because of the short delays between these reflections, all these 

components add up constructively for the frequencies that are of interest to us here (i.e., 

less than 4 kHz), such that the stimulus wave is larger than the initial forward going wave 

component. In addition to the effect of reflections within the ear canal, the transient 

response of the loudspeaker also influences the stimulus component for any given voltage 

input signal. Thus overall, the stimulus component depends on the dynamic properties of 

the loudspeaker, the ear canal termination, the ear canal itself, the middle ear and the 

passive (or reflectionless) cochlea. Since many of these properties are unknown, it is 

impossible to calculate the stimulus component just from knowledge of the voltage input to 

the loudspeaker. Practical methods of estimating the stimulus component are now 

discussed. 

First consider the measurement of TEOAEs. For an ideal voltage click, the stimulus 

component rings on for around 3 ms, obscuring any early TEOAE components. However, 

because the OAE delays are typically much longer than the decay time for the stimulus (it 

is common for TEOAEs to remain measurable up to and beyond 25 ms (Probst et ai, 

1991), the majority of the TEOAE remains unobscured. A common method of separating 

TEOAEs from the stimulus is simply to discard the first few milliseconds of the ear canal 

pressure signal. 

This same situation can also be considered in frequency domain (cf., fig. 2.5(e)-(g)). 

For a pure tone input, the effect of the reverberation is to cause an amplitude and phase 

shift of the stimulus pressure component relative to the voltage input. However, this shift 

varies only very slowly with frequency, because of the very short time delays. For 

example, the ripple pattern associated with the ear canal reverberation discussed above 

would have a peak-to-peak frequency spacing of 1/0.06 ms = 17 kHz. This compares with 

a ripple spacing seen for SFOAEs of around 0.06 kHz at 1 kHz. Thus, in the frequency 

domain, the ear canal ripple is not superimposed onto a perfectly uniform background line, 

as it was in the idealised case in fig. 2.5(i). Instead the background slowly fluctuates with 

frequency, due to the frequency response of the passive system. However, because this 

fluctuation in the frequency domain is relatively slow, the phasor diagram in fig. 2.2 

showing a rapidly rotating OAE component plus a slowly varying stimulus component is 

still a useful one. One method of estimating the SFOAE component uses the fact that the 
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spectral ripples due to the OAE component have a much shorter frequency interval than the 

slow variation due to the stimulus. A spectral smoothing technique which removes the 

ripples, leaving the underlying stimulus component is reported by Shera and Zweig 

(1993a). Having obtained the stimulus component, it is then subtracted from the ear canal 

pressure signal to give the OAE component. (Note that all three are complex.) In fact, 

smoothing in the frequency domain is equivalent to windowing (or truncation) in the time 

domain. Thus this technique is equivalent to inverse Fourier transforming the ear canal 

pressure, rejecting the early part (as for TEOAEs above), and then Fourier transforming 

back again. It should be borne in mind that the SFOAE is not obtained from a linear 

system and therefore the inverse Fourier transform of the SFOAE is not the same as the 

TEOAE (it may not even be perfectly causal). The optimum truncation may therefore be 

different for the two classes of OAE. 

Two other practical methods of obtaining the stimulus component are the self-

suppression and two-tone suppression techniques. These make use of nonlinear acoustic 

suppression, where it is assumed that measured suppressed cochlear responses are 

approximately equal to passive cochlear responses. The self-suppression method makes 

use of the compressive nonlinearity. Here an estimate of the slowly varying stimulus 

spectrum is obtained by measuring the (complex) ear canal pressure at a high stimulus 

level (say 70 dB SPL), where the ripple pattern is relatively weak (Kemp and Chum, 

1980a). The two-tone suppression method estimates the slowly varying stimulus spectrum 

by introducing a high level suppressor tone to suppress the ripple (Kemp and Brown, 1983; 

Kemp et ah, 1990). Having obtained an estimate of the (complex) stimulus spectrum 

alone, it is then subtracted from the (complex) unsuppressed ear canal spectrum, yielding 

the SFOAE component alone. Note that analogous methods relying on compressive 

nonlinearity are also used for the measurement of TEOAEs to remove so called click 

artefacts (Probst et al, 1991; Molenaar et al, 2000). 

In general, these three methods appear to yield very similar results, indicating that 

the spectrally smoothed ear canal pressure is approximately linear^" and therefore 

unaffected by level changes or suppressor tones (Shera and Zweig, 1993a). The 

correspondence of the spectral smoothing technique and the acoustic suppression technique 

is consistent with theoretical predictions, discussed in part II, that the passive component is 

essentially both linear and of short latency, while the active component is both nonlinear 

and predominantly of long latency. In this project the two-tone suppression method has 

A theoretical analysis of the validity of this approximation and of the differences between these three 

methods is given by Talmadge et al. (2000). 
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been adopted. 

Note that both the SFOAE component and the stimulus component are affected by 

the acoustic impedance of the OAE probe that that is sealed into the ear canal. This is 

because the reflections (whether passive or active) reverberate in the ear canal, which is 

closed at its outer end by the OAE probe. It is possible to measure the impedance of the 

probe using hard walled cavities, and therefore to obtain a (level dependent) measure of the 

impedance looking into the ear canal. This is then independent of the probe characteristics 

(Jurzita and Hemmert, 1992). An alternative approach to eliminating the effect of the 

probe characteristics in which the probe reflectance is measured is reported by Keefe 

(1997). However, provided that the source impedance of the loudspeaker is high, the 

effect of the probe is only secondary and there is little advantage in using these methods in 

this thesis. 

2.10 Experimental Data on the Group Delay of SFOAEs 

In the idealised ear in figs 2.4 and 2.5 it was shown that the logarithmic variation of 

phase gave rise to a 1 / / variation of group delay. This is illustrated in figs. 2.6 a and b 

(ignoring the ripples seen in fig 2.6b). An approximate 1 I f variation has been found in 

experimental measurements of group delay. Averaging across seven ears, Kemp and 

Chum (1980a) found the group delay varied with frequency from about 18 ms at 0.6 kHz 

to about 10 ms at 1.4 kHz. Similar results were reported by Wilson (1980a) who used tone 

burst stimuli of 5 or 8 cycles, and estimated the latency of the envelope in the time domain. 

The ripples in the group delay of the idealised data fig. 2.6(b) illustrate one of the 

properties of the group delay of a signal. Recall that the group delay can be interpreted as 

the delay of the envelope of a tone burst response to tone burst excitation. This 

interpretation must be applied carefully in cases where multiple reflections are present, 

such as those illustrated in figs 2.3 and 2.5. In these cases, a tone burst input would give 

rise to multiple tone bursts in the response, each with its own delay. However, the 

calculation of group delay yields only a single value of delay for any given frequency. To 

interpret the group delay correctly in these cases, we must consider the excitation to be a 

very long tone burst, such that its envelope is much longer than the decay time for the train 

of multiple reflection components. Then in the response, these multiple components 

interfere with each other, and form one single tone burst whose envelope latency can be 

determined. The result of this is that the interference between components causes ripples 

in the group delay as seen in fig. 2.6. Note, however, that when averaged over frequency 

such that the ripples disappear, the group delay gives the delay of the first (and strongest) 

29 



component, rather than a weighted average of the delays of all the components. As is 

discussed later, this does not always give a measure of delay which is physically useful. 

The group delays reported in the literature are commonly estimated by fitting a straight line 

to the phase curve over a significant frequency interval, thus effectively performing a form 

of frequency averaging which will remove any ripples. This also avoids the problem that 

any point estimate of the slope would be highly sensitive to the signal to noise ratio. Kemp 

and Chum (1980a) estimated the group delay by averaging over a frequency region that 

gave a monotonic drop in phase of about half a cycle. Kemp and Brown (1983) used a 

frequency interval of about half an octave. 
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Fig 2.6. Signal processing of the idealised OAE pressure component shown in fig 1.4. Panel (a) shows 
the phase of the frequency spectrum of the OAE component, given by 9i ( / ) = -A log, ( / / frej)- Panel (b) 
shows the group delay, defined by Tqd ( / ) = - ( V d d\ ( / ) / d / . This approximates to A / (2 7 t / ) , shown 
by the dashed line. Panel (c) shows the real part of the frequency spectrum, with two adjacent spectral peaks 
marked b y a n d / 2 . Panel (d) shows the imaginary part of the frequency spectrum. Panels (e), (g) and (h) 
show the functions in (a), (c) and (d) evaluated against the logarithmic frequency variable, 
rjoct = logzC// 1 kHz ). Panel (f) shows - ( V %%) d ^ ( r]oa) / d Tjoa which equals the group cycle delay, 
multiplied by loge (2). This evaluates to: log, (2) x (PQCD ( Voa) = A log, (2) / (2 7t) = 6.9 cycles/octave 
(shown by the dashed line). Panel (i) shows the magnitude of the cp-spectrum, defined as the inverse Fourier 
t r a n s f o r m of PQAE i v ) -
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2.11 Spectral Periodicity of SFOAEs 

Rather than measure the group delay, many researchers have characterised the ripple 

pattern due to the SFOAE in terms of the ripple spacing in the frequency domain. The 

"ripple frequency interval". A / , is defined simply as: 

Ajf = /z - j f , [2.8] 

where f \ and /a are the frequencies of adjacent ripple peaks, as shown in fig. 2.6(c) for the 

idealised ear" . 

As discussed in section 2.5, the ripple spacing is, to a first approximation, 

proportional to the frequency (Kemp and Chum, 1980a; Wilson, 1980a; Zwicker and 

Schloth, 1984; Dallmayr, 1987; Zweig and Shera, 1995). Consequently, it is common to 

quantify the ripple spacing for a pair of ripple peaks using a quantity called here the 

"single-ripple spectral periodicity", Y , defined as the ripple frequency interval divided by 

the geometric mean frequency,/GMF, of the two peaks: 

[2.9] 
foMF -yj f l f l 

(e.g., Zweig and Shera, 1995). SFOAE measurements show that the spectral periodicity, 

T , is roughly constant over a frequency range from 0.5 to 4 kHz, and is equal to about 

1/15, or 7% (Zwicker and Schloth, 1984; Dallmayr, 1987; Zweig and Shera, 1995). Note 

that the invariance of Y is only a first approximation - several authors report that Y 

reduces somewhat with increasing frequency (e.g., Zweig and Shera, 1995; p. 2036). 

It is shown in the following analysis that a constant single-ripple spectral periodicity 

corresponds to equal ripple spacing on a logarithmic frequency scale. Two logarithmic 

scales are used in this thesis. The first is the octave scale, denoted 7]oct, which is 

convenient due its familiarity, and the second is the natural logarithm of frequency, 

denoted 7 ] , which has theoretical advantages that will become apparent later. These are 

defined by: 

()%)!= k)g2(jr/ y*,/) 

jfa,/ = 1 kHz 

and 

77 (jT) / j^ ) ) [2.11] 

" The ripple spacing in the real part of the OAE spectrum is the same as that in the ear canal pressure 

magnitude. 
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where (following Zweig and Shera, 1995)/o is defined as the characteristic frequency at 

the very base of the cochlea. The minus sign in [2.11] is included for compatability with 

Zweig and Shera (1995), and leads to simplifications later on. 

Given the two frequencies,/i and/2 , used to define the periodicity, we can define 

the "ripple natural logarithmic frequency interval". A;;, as J] if 2)- Then 

manipulating equations [2.9] and [2.11], we obtain the following relationship between A.?] 

and the periodicity, T : 

A;/ = 21ogg(^y/2 + Vl + T ^ / 4 
361 

or [212] 

Arj for T « 1 

The approximation in [2.12] is a very close one for typical T values, which are around 

1/15. The corresponding relationship for the "ripple octave interval", A d e f i n e d as 

( / i ) - %cr ( / i ) is: 

==1 /Mcry for ty<xi [2.i3] 
log,(2) 

Thus, [2.12] and [2.13] show that a constant periodicity implies a constant ripple spacing 

on a logarithmic frequency scale. For the idealised OAE, fig 2.6 shows how transforming 

to an octave scale, rjoct, leads to a linear phase curve in panel (e), and equal ripple spacing 

in the real and imaginary parts of the Fourier transform of the OAE in panels (g) and (h). 

The linear phase curve, in fig. 2.6(e), suggests a second way of characterising the 

ripple periodicity. Consider the quantity which we will call the "group cycle delay", 

denoted ^gcd ( f ] ) , and which is defined in a similar way to the group delay in equation 

[2.6], but now using the logarithmic frequency. Thus we define: 

, . 1 d 2 1 _ 1 . . . . 
c ; ) - ^ 3 ^ = — = A c . ( / ) p . 14] 

There is a useful physical interpretation of ĜCD which follows from [2.14], and which has 

been reported by several authors (Wilson, 1980a; Kemp, 1986; Zweig and Shera, 1995). 

Recall that the ordinary group delay indicates the delay in units of time of the envelope of 

a tone burst signal. Multiplying the ordinary group delay of the tone burst by its carrier 

frequency, as in [2.14], converts the delay in units of time to a delay measured as a number 

of cycles of the carrier signal. Note that this interpretation holds for any arbitrary 

frequency response, not just for the OAE signals analysed here. However, for OAE 

signals, (pocD is roughly constant over frequency. This follows from the definition of A7 in 

[2.12] , which implies that: 
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(z !bcD=l /A;7=l /Y [2.15] 

for an idealised cochlear reflectance. For measured OAE signals, the fact that Y, and 

therefore <zbcD, are found to be roughly independent of frequency means that the delay 

between the peaks in the envelopes of the input and output tone bursts is roughly a constant 

number of carrier wave cycles. The number of cycles equals the reciprocal of the 

periodicity, and is thus typically between 12 and 15 cycles (Wilson, 1980a; Kemp, 1986; 

Zweig and Shera, 1995). 

Fig 2.6(f) shows the gradient of the phase curve on the rjoct scale for the idealised 

ear, given in units of cycles per octave. This is proportional to ^CD i v ) - The ripples seen 

in this curve arise from the presence of multiple reflections. A single reflection would give 

the constant value shown by the dashed line. Note that in this idealisation, we have 

defined 6= d\~-A loge ( / / fRej), which gives = A / In . The actual value in the 

fig. 2.6 is 10 cycles, corresponding to a periodicity of 0.1, or about 6.93 cycles per octave. 

(This periodicity is somewhat higher than the value of 0.07 commonly found in the 

literature.) 

A third method that has been used to characterise periodicity is to apply the Fourier 

transform to the spectrum of the SFOAE, after it has been transformed onto the logarithmic 

frequency axis as in figs. 2.6 (e)-(h) (e.g., Zweig and Shera, 1995; Lutman and Deeks; 

1999). A simple justification for this is that this transformed SFOAE spectrum has a 

roughly periodic ripple pattern, which will show up as lines in the Fourier transform. A 

better physical interpretation of this can be gained by noting that the spectrum of the 

idealised OAE in the logarithmic frequency domain shown in figs. 2.6 (g) and (h) 

resembles the spectrum in the ordinary frequency domain of the echo in the multiple 

reflection case shown in figs 2.3 (f) and (g). Now taking the inverse Fourier transform of 

this latter spectrum yields the time domain signal in fig. 2.3 (e). Similarly, taking the 

inverse Fourier transform of figs 2.5 (g) and (h) would yield a series of lines in the 

"1 / /7ocf-domain". A closely related function is illustrated in fig. 2.5 (i), which represents 

the signal in the "1 / -domain" rather than the "1 / 770^-domain". This figure was 

obtained by first replotting the spectrum in figs 2.5 (g) and (h) against the t] variable, and 

then taking the forward Fourier transform'^. Following Zweig and Shera (1995), the 

It is a general result that, for any arbitrary signal, x ( r ) , the forward Fourier transform of x (?) yields the 

same result as the inverse Fourier transform ofx{-t) (where both transforms are taken w.r.t. the t variable). 

It follows from the definitions of r]oa and rj, that the inverse transform from the domain is simply a 

scaled version of the forward transform from the rj domain. 
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1 / -domain will henceforth be referred to as the ^domain. By analogy with fig. 2.3 (e), 

the value of (j) for a given line in the ^domain indicates the delay of that OAE component, 

but measured in units of cycles rather than time. The dominant line in the ^domain lies at 

the (ZbcD (which is 1 / Y ) , which is 10 cycles in fig. 2.5. The ^domain then represents the 

OAE response to a click in which the 1 I f - dispersion has been "undone" by an 

appropriate transformation, such that the frequency components all coincide to form a 

single impulse (or a series of impulses in the case of multiple reflections). 

To summarise, the SFOAE periodicity arises from the time delay between the 

stimulus signal and the OAE signal. For the idealised SFOAE considered here, three ways 

of characterising the SFOAE periodicity have been introduced: the single-ripple 

periodicity, T ; the group cycle delay, ^CD; and the peak in the ^domain. The 

approximate independence of frequency of the periodicity corresponds to a dispersive 

group delay, TGD, which shows a 1 / / frequency dependence. This implies a constant 

group cycle delay, ^CD, equal to 1 / Y. Transforming the SFOAE spectrum onto a 

logarithmic frequency scale, t], hnearises the phase relationship, thereby "undoing" the 

effect of the dispersion. The group cycle delay can also be estimated from the inverse 

Fourier transform of the SFOAE spectrum from the //-domain to the ^domain. This also 

reveals the presence of multiple reflection components in the SFOAE. Note that these 

three characterisations of periodicity are only exactly equivalent for the idealised SFOAEs 

generated in figs. 2.4 and 2.5. In real SFOAEs they may still be closely related to each 

other, but cannot be used interchangeably. 

A final point to note is that instead of characterising the SFOAE ripple pattern using 

a logarithmic frequency transformation, a measure based on critical bandwidth is 

sometimes reported (e.g., Zwicker and Schloth, 1987; Dallmayr, 1987; Zwicker, 1988). 

Such a measure typically gives the interpeak frequency spacing as 0.4 Bark. This measure 

is based on Zwicker and Schloth's observation (1987), that the shape of the graph of ripple 

frequency interval, A / , against centre frequency,/GMF, more closely follows a curve of 

critical band width against frequency than a straight line. This measure has not been 

adopted for this project, since the stimulus frequencies of interest are all above 1 kHz 

where the Bark scale differs little from a purely logarithmic frequency scale. 

2.12 Practical Methods of Quantifying the SFOAE Periodicity 

In this project, it is necessary to obtain a measure of the average periodicity seen in 

the SFOAE signal over a certain stimulus frequency range. Measured SFOAE signals 
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differ substantially from the idealised OAE signals shown in fig. 2.6, making estimates of 

the SFOAE more problematic. Two differences are important here. Firstly, the periodicity 

varies systematically with frequency (Zweig and Shera, 1995). Secondly, the ripple 

pattern is much less regular than the virtually pure sinusoid seen in the idealisation. This 

irregularity often leads to frequency regions where the ripple pattern disappears below the 

measurement noise floor. Thus rather than the SFOAE showing one clear periodicity, it 

often appears that a distribution of periodicities is present in the signal. To address this 

problem, more realistic phenomenological models of the SFOAE signal will be discussed 

more fully in parts II and III. In this section, some of the different methods for estimating 

the periodicity that have been reported in the literature are reviewed. 

In the literature, several different methods have been used to quantify the periodicity 

of a measured SFOAE frequency spectrum. A common method is to directly measure the 

frequency intervals between adjacent peaks in the ripples pattern seen in the magnitude of 

the ear canal pressure frequency spectrum. If the peak-to-peak interval, A/ , is plotted 

against the peak-to-peak centre frequency then the points lie roughly on a straight line 

whose gradient gives a direct measure of the average single-ripple periodicity over the 

measured frequency range (Dallmayr, 1987; Zwicker and Schloth, 1987; Zwicker, 1990; 

Zwicker and Peisl, 1990; Lonsbury-Martin et al, 1990). A problem with this method is 

that the peaks in the spectrum are not always clear. Therefore, some form of peak 

identification algorithm must be used which ignores very small ripples which may be due 

to noise. 

A second method of quantifying the periodicity is to measure the slope of the phase 

of the SFOAE frequency spectrum. This gives a measure of the group delay (in units of 

time) of the SFOAE (Kemp and Chum, 1980a; Wilson, 1980a; Kemp and Brown, 1983). 

For the idealised system, the group delay, TGD ( / ) , and the single-ripple periodicity, Y, are 

related via equations [2.14] and [2.15]. Thus, fitting a straight line to a plot of TGD against 

1 If will yield a measure of periodicity (cf., fig. 2.6b). A related method of obtaining a 

periodicity value is to plot the phase of the SFOAE frequency spectrum against the 

logarithm of stimulus frequency, t], in order to straighten out the phase curve (cf., fig. 

2.6f). The gradient of the best-fit straight line then directly yields a measure of the group 

cycle delay, (pccD ( / / ) , and therefore, from [2.15], a measure of periodicity. Wilson 

(1980a) reported a group cycle delay equal to about 15 cycles, over a frequency range of 

0.5 to 5 kHz. Kemp and Brown (1983) demonstrated a group delay in humans varying 

with stimulus level from about 18 cycles down to about 8 cycles for a stimulus range from 

10 to 70 dB SPL. 
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One problem with the group delay (or group cycle delay) method (at least for the 

purposes of this project) is that the phase of the SFOAE becomes hard to measure when the 

magnitude is small. A second problem is that any averaging over frequency takes no 

account of the SFOAE magnitude. Thus contributions from regions where the SFOAE is 

weak (and therefore where the group delay is unreliable) receive the same weight as 

contributions from regions where the SFOAE is strong. A third and more serious problem 

is that, unlike the idealised SFOAEs in fig 2.6g, real SFOAE signals do not resemble a sine 

wave, but instead appear as a "bandpass" signal^^. This means that a number of 

components of different periodicity are present in a single SFOAE spectrum. In the time 

domain, this can be interpreted as multiple bursts of OAEs with the same carrier frequency, 

but with different envelope d e l a y s S i n c e the group delay can only yield one overall 

envelope delay per carrier frequency, some sort of averaging must occur. As a 

consequence, it turns out that the way in which the group delay quantifies the periodicity 

does not correspond very well to the physical quantities in Shera and Zweig's theory. This 

will be discussed more fully later 

A third method of characterising the periodicity is reported by Zweig and Shera 

(1995). Here, the complex SFOAE pressure is first plotted as a function of the logarithm 

of frequency, T], such that the ripple pattern appears roughly periodic (for constant 

periodicity). The resulting waveform is then (either forward or inverse) Fourier 

transformed and the location of the peak of the magnitude of this transform is used as a 

measure of the average periodicity (cf., fig. 2.6(i)). A similar method was used by Lutman 

and Deeks (1999) who plotted the amplitude of the ear canal pressure (rather than the 

complex SFOAE) on a log frequency scale before Fourier transforming. (A related method 

of processing TEOAE spectra is reported by Wit et al. (1994), but they omit the 

logarithmic transformation thus leaving the effect of dispersion unchanged from that seen 

in the time domain.) These methods have the practical advantage that areas where the 

SFOAE is weak (and less reliable) contribute less strongly to the average periodicity. 

More importantly, Zweig and Shera's method yields a periodicity measure which can be 

related quantitatively to other parameters of interest via their own theory of SFOAE 

generation. For this reason, a periodicity measure based on this approach has been 

developed for this project. These methods are discussed further in part II. 

Bandpass here means that the SFOAE plotted against the r| variable resembles the more familiar bandpass 

time series, obtained by passing white noise through a bandpass filter. 

Consider, for example, the result of adding two idealised OAE signals, each resembling that in fig 2.4, but 

each with a slightly different value of A. See also the discussion in section 2.10. 
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2.13 Linearity and Causality of SFOAE Signals 

The ideahsed OAEs in figs. 2.3, 2.4 and 2.6 were generated from a linear, causal 

system. The question of whether real measured SFOAEs show either of these properties 

was addressed by Shera and Zweig (1993a). They found that the amplitude of SFOAEs 

grew linearly with stimulus levels for levels between 0 dB SL and 5 dB SL. This suggests 

that a low level linear regime exists for SFOAEs which is important since it allows results 

from a linear theory to be applied. As already discussed, it is known that at higher levels 

SFOAEs are far from linear. Instead they show a compressive nonlinearity which greatly 

complicates both the theory and any signal processing. 

Shera and Zweig (1993a) also found that the SFOAEs in the linear regime were 

consistent with the response of a causal system, indicating that the OAE response always 

occurs after the evoking stimulus. This result contradicted earlier results published by 

Zwicker and Schloth (1984) which had shown SFOAE signal characteristics which where 

inconsistent with those of a causal system. This had prompted speculation that, for a pure 

tone input, the brain might anticipate the input signal, and modify the cochlea^^ (Shera and 

Zweig, 1993a) such that the SFOAE response appeared acausal. 

For any given frequency response function, a simple way to test for causality (for a 

linear system) is to inverse Fourier transform the signal to give the time domain impulse 

response, and then to check that this response is approximately zero for all negative times. 

An equivalent way of doing this entirely within the frequency domain is to use the Hilbert 

transform. It is useful to consider this method here as it reveals an important property of 

SFOAEs that will be used later on in parts II and III. This method is best understood by 

first noting that any time series x{t), can be split into the sum of even and odd 

components ,XE(t) a n d x o i t ) : 

xj,(t) = j x ( t ) + -^x(-t) [2.16] 

This is useful since the Fourier transform of an even signal is purely real whilst that of an 

odd function is purely imaginary. Thus the real and imaginary parts of the Fourier 

transform of x ( r ) are given by the Fourier transform of the even and odd components in 

Such a system would not be truly acausal in that the evoking stimulus must still preceed any response. 

However, the system might quickly adapt nonlinearly to a prolonged stimulus in such a way that, after having 

adapted, the system appeared to behave linearly but acausally. In Shera and Zweig's data (1993a), no 

acausality was found. 
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[2.16]. Now for a causal system it can easily be shown that the odd and even part are not 

independent, but are related by: 

= %g(f)sgn(f) 

where 

sgn(f) = - 1 for f < 0 [2.17] 

+ 1 for f > 0 

x^{t) = ^x{t) for f > 0 

This means that the real and imaginary parts of the Fourier transform are also not 

independent, but are related via a convolution with the Fourier transform of signum 

function, sgn {t). This latter operation can be shown to be identical to the Hilbert 

transform (Randall, 1987). Thus: 

-^Re ( / ) = (f)} 

Xiin ( / ) = (f)}/1 
r T 

= X R , ( / ) ® F { s g n ( 0 } / / 

= -Hi lb{XR,( / )} 

where XRe and denote the real and imaginary parts of the Fourier transform of %(f); 

F { } denotes the Fourier transform; ® denotes convolution and Hilb { } denotes the 

Hilbert transform. It can be shown that the Hilbert transform operation acts as an all-pass 

filter which delays the output signal by 90° relative to the input. For example, the Hilbert 

transform of a cosine wave is a sine wave of the same frequency. This behaviour can be 

seen in fig. 2.6(c) and (d) where the imaginary part lags the real part by 90°. Shera and 

Zweig (1993a) showed that, for their measurements, the real and imaginary parts did 

indeed form a Hilbert transform pair, implying that the system relating the SFOAE to the 

evoking stimulus is causal. In fact they showed that the system was not only causal, but 

also minimum phase, which is characteristic that is commonly found in physical systems. 

For a causal minimum phase system, not only the real and imaginary parts, but also the 

magnitude and phase of the transfer function are related via the Hilbert transform (Randall, 

1987). 

2.14 Relationships between SFOAEs and other Phenomena in Hearing 

In the previous sections, some of the characteristics of measured SFOAE signals 

were discussed. Some of these characteristics are also seen in other phenomena in hearing. 

The spectral periodicity seen in SFOAEs is also seen in the spectra of click- and tone burst 

evoked TEOAEs, in the fine-structure of DPOAEs, in the distribution of the frequency 
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spacing between SOAEs, and in the audiometric microstracture (Elliot, 1958; Kemp, 1979; 

Probst et ah, 1986; Schloth, 1983; Zwicker and Schloth, 1984; Dallmayr, 1987; He and 

Schmiedt, 1996, 1997; Kapadia and Lutman, 1999; Lutman and Deeks; 1999). Since all 

these phenomena appear to be related, the development of a theory of SFOAE generation 

must form part of a more general theory of cochlear mechanics which accounts for all 

these phenomena. Furthermore, effects that show up in SFOAE measurements may also 

appear in these related phenomena. Thus in the following sections, the discussion will not 

be limited to SFOAEs. 

SFOAEs also share several general characteristics with the other classes of OAE, 

with certain psychoacoustic phenomena, and with cochlear mechanical responses measured 

in animals. These characteristics include saturation at high levels, two-tone suppression 

effects, and vulnerability to ototoxic drugs such as aspirin (e.g., Long and Tubis, 1988; 

Karlsson et al., 1991; and reviewed in Probst et al, 1991). As with other OAEs, SFOAEs 

are strongly related to hearing threshold levels, and are not generally measurable in 

subjects with a hearing loss exceeding about 30 dB. These phenomena are relevant since 

they involve changes in TW shape. 

2.15 Effect of Stimulus Level on OAEs (Self-suppression) 

Several researchers have investigated the effect on SFOAEs and TEOAEs of 

increasing stimulus level. For pure tones below about 5 dB above the threshold of hearing, 

SFOAEs grow approximately linearly with stimulus level (Shera and Zweig, 1993a). 

However, as the stimulus level is increased further, they show compressive nonlinearity 

(Kemp and Chum, 1980a; Zwicker and Schloth, 1984; Zwicker, 1990; Dallmayr; 1987). 

Compressive nonlinearity is of particular importance to this thesis, since both cochlear 

models (e.g., Kanis and de Boer, 1993b) and direct measurements (e.g., Rhode, 1971) 

indicate that, as the stimulus level increases, the peak of the TW envelope becomes 

broader, and the TW wavelength^® in the peak region increases. According to Shera and 

Zweig's theory, these changes should be accompanied by an increase in spectral 

From theoretical considerations of their cochlear model, which exhibits the minimum phase property, 

Zweig and Shera (1995) demonstrate that the TW wavelength and the width of the envelope are not 

independent. 
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periodicity of SFOAEs (or equivalently, a reduction in the latency of TEOAEs)' ' . In 

addition, the 'bandwidth' of the periodicity should reduce with stimulus level (see part II). 

Several authors have measured SFOAEs at different stimulus levels, without 

reporting any effect of level on spectral periodicity (e.g., Kemp and Chum, 1980a; Zwicker 

and Schloth, 1984; Zwicker, 1990). Dallmayr (1987, fig. 8b) explicitly stated that stimulus 

level did not affect the SFOAE phase spectrum (related to the spectral periodicity). These 

results suggest that the effects predicted by Shera and Zweig's theory are either absent or 

difficult to detect. In contrast, Zweig and Shera (1995, fig. 13) remark that they have 

recorded changes in the spectral periodicity of SFOAEs with level which match the 

predictions of their cochlear models. However, no measured data were presented and no 

quantitative analysis was attempted. 

Prior to the development of Shera and Zweig's theory (1993b), Kemp and Brown 

(1983) measured SFOAEs in human and gerbil ears at various stimulus levels. They 

measured the group delay (i.e., the slope of the phase spectrum) and reported a reduction in 

latency with increasing level, as is now predicted by Shera and Zweig's theory. However, 

no detailed investigation of the effect was performed and nor was any attempt made to 

compare the results with theoretical predictions from cochlear models. A further point to 

note is that the group delay method of detecting level effects is not well suited to testing 

Shera and Zweig's theory (see part II). 

Wilson (1980a) measured group delays at a few frequencies using tone burst stimuh, 

rather than pure tones. He also reported a reduction in group delay with increasing 

stimulus level. However, quantitative results were not reported. A comprehensive 

investigation of tone-burst evoked OAEs, in which latency was measured using a 

correlation technique, was reported by Norton and Neely (1987). They too reported a 

reduction in latency with increasing stimulus level. They interpreted their results in terms 

of the speed of the TW (Neely et al, 1988), and suggested that the latency was consistent 

with measures of ABR latency made at comparable stimulus levels. This interpretation is 

based on the assumption that the OAE latency depends on the TW propagation time to and 

from a single place-fixed reflection site. According to Shera and Zweig's theory, this is an 

oversimplification which nevertheless leads to reasonably accurate predictions. This will 

be discussed further in section 3.3.3 and in part II. 

Recently, Talmadge et al. (2000) have presented an analysis of Shera and Zweig's theory based on 

nonlinear cochlear models which suggests that this simple qualitative prediction cannot always be made. 

This is because, in some cases, an additional effect of nonlinearity is to disrupt the simple relationship 

between TW shape and SFOAE periodicity (see section 3.5 for a fuller discussion). 
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Some researchers have looked for a direct relationship between the amplitude of 

OAEs and the sharpness of the auditory filter (measured psychophysically), both of which 

are thought to be related to the shape of the TW. Leeuw and Dreschler (1998) found 

significant correlation between these two quantities within subjects on varying the stimulus 

level. Micheyl and Collet (1994) found a correlation looking across subjects at a constant 

stimulus level. However these experiments examined the relationship of TW shape to 

SFOAE amplitude, rather than to SFOAE periodicity, and therefore are not directly related 

to the aims of this project. Avan et al. (2000) looked at differences in the periodicity of 

TEOAE spectra between normally hearing adults and adults with mild noise-induced 

hearing loss. It would be expected from Shera and Zweig's theory that the latter group 

would show increased periodicity due to the reduction in sharpness of the TW envelope 

that accompanies cochlear hearing loss. However, in practice, the periodicity proved 

difficult to measure in this group. 

In summary it appears that changes in SFOAE periodicity with stimulus level 

predicted by Shera and Zweig's theory are either absent or difficult to detect with the 

signal processing methods previously used. Though some experimental evidence that 

supports this theoretical prediction has been reported (Wilson, 1980a; Kemp and Brown; 

1983; Zweig and Shera; 1995), no systematic attempt to relate measurements and theory 

has been published. Also, no attempt to measure the effect of stimulus level on the 

bandwidth of the spectral periodicity, rather than the centre value of the periodicity, has 

previously been reported. These are two of the effects that are investigated in this thesis. 

2.16 Effect of Suppressor Tones on OAEs 

As with stimulus level, the effect of introducing a suppressor tone is expected to alter 

the shape of the TW (Kanis and de Boer, 1994). Shera and Zweig's theory predicts that 

these changes should be accompanied by a change in spectral periodicity of SFOAEs. 

Many authors have studied the effects of suppressor tones on OAEs (e.g., Kemp and 

Chum, 1980a; 1980b; Brass and Kemp, 1993; Zwicker and Wesel, 1990; Sutton, 1985; 

Dallmayr; 1987; Tavartkiladze et al., 1994). However no experiments have looked for, or 

reported, a change in OAE spectral periodicity with suppressor level. It should be noted 

that with two tones the acoustic parameters define a four dimensional parameter space 

(stimulus frequency x stimulus level x suppressor frequency x suppressor level), but only 

experiments in a small subset of this space would be able to detect the predicted effect: 

those where stimulus frequency and suppressor frequency are swept together in a roughly 

constant ratio. Though this has been done (e.g., Kemp and Chum, 1980a) no change in 
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periodicity was reported. The effect of suppressor tones on SFOAE periodicity is a further 

effect that is investigated in this thesis. 

2.17 Effect of Contralateral Noise, Ototoxic Drugs and Acoustic Overstimulation 

on OAEs 

The ingestion of ototoxic drugs, the presentation of contralateral noise, and 

prolonged ipsilateral overstimulation are all thought to disturb the normal functioning of 

the active processes in some way, and therefore could, according to Shera and Zweig's 

theory, be accompanied by a change in spectral periodicity of SFOAEs. 

Several authors have investigated the effect of ototoxic drugs on SFOAEs and 

TEOAEs (e.g.. Long and Tubis, 1988; Karlsson et al, 1991; Brown et al. 1993); of 

contralateral acoustic stimulation on OAEs (e.g.. Collet et al., 1994; Lind, 1994; and 

Giraud et al., 1996); and of acoustic overstimulation on TEOAEs and SOAEs (Kemp, 

1986). Whilst some clear changes in OAE characteristics have been induced, no changes 

in OAE periodicity have been reported. 

3. Theories of OAEs 

3.1 Cochlear Mechanics 

The mechanical behaviour of the cochlea is still not fully understood. The 

development of theories of the cochlea has had several influences, including results from 

mathematical models of cochlear mechanics; results from direct mechanical measurements 

made in animal experiments; results from OAE experiments and results from 

psychoacoustic experiments. Direct measurements in the cochlea are difficult because the 

cochlea comprises complex and delicate structures embedded in bone, and because 

representative mechanical behaviour can only be measured in a living and undamaged 

cochlea. Also, the cochlear structures show a complex pattern of motion in three 

dimensions, whilst measurements of the motion are usually limited to only a few points. 

Consequently, measurements alone have so far been unable to completely elucidate the 

functioning of the cochlea. However, despite these difficulties, a consensus has been 

reached on the basic mechanisms of the cochlea. This is reviewed in Pickles (1988), 

Patuzzi (1996) and Dalles (1996), and a brief summary is presented here. 
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3.1.1 The Passive Travelling Wave 

It has already been mentioned in section 1.1 that an acoustic stimulus in the ear canal 

generates TWs on the BM, which propagate along the cochlea from base to apex. The 

passive TW refers to the TW that results in those cases where the active processes are 

absent, or where their effects are insignificant, such as at high stimulus levels. 

The passive structures of the BM, when uncoiled to lie along a linear axis, can be 

compared to a xylophone in that they behave as a series of beams, each with a different 

natural frequency. Although in the BM the "beams" are joined together to form a single 

membrane, the structural coupling between beams is thought to be very weak such that the 

beams can be treated as structurally independent. They are, however, mechanically 

coupled to each other by the motion of the cochlear fluid and it is this coupling that allows 

passive TWs to propagate along the BM. This passive TW wave propagation involves 

transfers of mechanical energy between a spatially distributed store of kinetic energy (in 

this case the cochlear fluids) and a spatially distributed store of potential energy (in this 

case the BM compliance). In this way it is physically similar to other mechanical wave 

motions such as surface water waves (Lighthill, 1981; Patuzzi, 1996). 

The passive TW motion exhibits two interesting phenomena: frequency dispersion 

and spatial nonuniformity. Frequency dispersion, which results from the hydrodynamics 

of the system, means that the wave speed varies with frequency. Spatial nonuniformity 

means that the wave speed varies with position along the cochlea. This property, which 

arises from the variation along the cochlea of the structural properties of the BM forms the 

basis of passive frequency analysis performed by the cochlea. For any single frequency 

stimulus, there is a point along the cochlea where the natural frequency of the BM equals 

the stimulus frequency. As the TW approaches this point (known as the characteristic 

place for a given stimulus frequency), its speed of propagation falls off towards zero, and 

its amplitude rises to a peak. This leads to a peak in the mechanical (and consequently the 

neural) response in this region of the BM. In this way the cochlea maps stimulus 

frequency to position along the BM, with high frequency stimuli peaking near the base of 

the cochlea, and low frequency stimuli peaking near the apex. A more rigorous treatment 

of this behaviour based on the analysis by Lighthill (1981) and de Boer (1996), will be 

presented in part II. 

Note that for a single stimulus frequency, the mechanics of the passive TW response 

involve both a wave motion along the BM and resonance phenomenon in a small region of 

the BM. This behaviour is far more complex than simple resonance at a point. Instead, the 

BM response arises from the propagation of a TW through a medium whose characteristic 
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impedance varies both with frequency and place, approaching zero at the point of 

resonance. In contrast to the simple second order filter obtained from a single degree of 

freedom resonator (which would arise if each point on the BM were coupled directly to the 

stapes), the TW response leads to a frequency response functions (at a given point) that has 

both a steeper high frequency cut-off and a much greater high frequency phase lag (3 to 5 

cycles compared to 0.5 cycles). It was von Bekesy's observation of this property of the 

cochlear response that led to the rejection of Helmholtz's resonance theory in favour of the 

travelling wave theory (Patuzzi, 1996). 

3.1.2 The Cochlear Amplifier 

It is currently believed that the propagation of the TW is enhanced by active 

processes involving the OHCs in the organ of Cord. The theory of an active mechanical 

amplification by some biological processes was first suggested by Gold^^(1948), though it 

was largely forgotten until being revived by Kemp (1978). 

As was mentioned in section 1.1, current theory holds that the OHCs respond to an 

incoming TW by applying additional excitatory forces to the BM. Though this OHC 

motility is not well understood, it is believed that force generation arises from length 

changes in the OHCs. This system, known as the cochlear amplifier, greatly increases the 

TW amplitude thereby improving both the sensitivity and frequency selectivity of the ear. 

The cochlear amplifier can be viewed as creating a region of negative damping on the BM 

such that TWs propagating through this region (in either direction) acquire rather than 

dissipate energy. For a given stimulus frequency, this region is not thought to extend along 

the entire BM, but is instead located at and basal to the peak of the TW (de Boer, 1996). It 

follows that the location of this region is frequency dependent. As well as greatly 

improving the performance of the cochlea, the cochlear amplifier is also responsible for the 

generation of OAEs. 

3.1.3 Nonlinearity in the Cochlear Amplifier 

One important feature of the cochlea is that its response is strongly nonlinear. It is 

believed that the nonlinearity originates mainly in the cochlear amplifier, and is caused by 

Gold proposed active processes in order to explain the sharply tuned performance of the cochlea as a 

mechanical frequency analyzer. He also predicted the existence of SOAEs, though failed to measure these, 

probably because of equipment limitations. 
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saturation of certain processes in the OHCs (de Boer, 1996). Two manifestations of this 

are important in this project; the first will be termed self-suppression, and the second two-

tone suppression. In self-suppression, a single pure tone is presented to the ear. As its 

level increases it is found that the BM vibration progressively approaches that of a fully 

passive (or dead) cochlea (e.g.. Cooper and Rhode, 1992). (The passive cochlear response 

is thought to be approximately linear at moderate levels of stimulation.) In two-tone 

suppression (sometimes called 'mutual suppression') two tones of different frequency are 

presented simultaneously to the ear . The response of the BM at the frequency of the first 

tone is found to be reduced by the presence of the second tone (e.g., Rhode and Cooper, 

1993) and vice-versa. 

3.2 Development of Theories of SFOAE Generation 

In the following sections, the development of the current theory of SFOAE 

generation due to Zweig and Shera (1995) is outlined. Theories of TEOAE and SOAE 

generation are also described, since, according to current theory, these are closely related 

to SFOAEs. Some alternative theories of SFOAE generation are also briefly discussed. 

DPOAEs are not covered in any depth as they are more complicated (Probst et al, 1991; 

Shera and Guinan, 1999). 

The discovery of OAEs and the demonstration of their cochlear origin (Kemp, 1978, 

1979; Wilson, 1980a) raised several questions about cochlear mechanics. The presence of 

OAEs indicates both a source of energy within the cochlea, and a backward propagation of 

this energy. However, no such backward propagation of energy is seen in a large class of 

cochlear models when excited at the stapes. This remains the case even for models which 

include active processes and which show realistic BM mechanical responses (de Boer, 

1996). A possible explanation for the failure of these cochlear models to predict OAEs 

arises from the reflection hypothesis, proposed by Kemp (1978), which is described in the 

next section. 

3.3 The Reflection Hypothesis 

In the reflection hypothesis, Kemp (1978) proposed that OAEs arise from an initially 

forward TW that is reflected at discontinuities in the BM mechanical impedance, thereby 

generating a backward TW which appears in the ear canal as an OAE. Kemp further 

proposed that the active processes play an essential role in OAE generation. At the time of 

its original suggestion, the theory was far from complete. For example, satisfactory 
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characterisations of both the cochlear amplifier and the putative discontinuities were still 

required. In this section, the main theories of OAE generation are reviewed. Most of these 

are directly descended from the reflection hypothesis in that they contain two essential 

elements: active processes and some form of reflection mechanism. Shera and Zweig's 

theory (1993b) and Strube's theory (1989) both fall into this category. The role of cochlear 

nonlinearity and multiple reflections of the TW in the cochlea are also discussed. Note that 

here the term 'reflection' covers more than simply passive reflection: it also covers the 

case where a forward TW stimulates an active source to generate or emit a backward TW. 

It is first necessary to define the terms 'apical' and 'basal' TW reflection. A forward 

TW which encounters an impedance discontinuity on the BM will be reflected, giving rise 

to a backward TW. This process will be called apical reflection, and is essential for OAE 

generation. The backward TW then travels back along the BM until it reaches the stapes 

where it again encounters an impedance mismatch and is further reflected. This is called 

basal reflection and leads to multiple reflection in the cochlea (Kemp, 1980). Whilst basal 

reflection modifies the characteristics of the OAE signal, it is not essential to OAE 

generation. This is similar to the behaviour of the idealised ear shown in fig. 2.5. Apical 

reflection is discussed in this section, whilst basal reflection will be dealt with in 

section 3.6. 

At the phenomenological level, the apical reflection can be characterised by the 

cochlear reflectance (looking apically), evaluated at the base of the cochlea, as in the 

idealisations in fig. 2.4 and 2.5 (Kemp, 1980; Shera and Zweig, 1993a). Recall from 

section 2.12 that the form of the cochlear reflectance has been estimated from OAE 

measurements. These indicate that the magnitude of the cochlear reflectance varies 

relatively slowly with frequency, whilst the phase angle drops rapidly, approximately 

following a - log ( / ) relationship. One aim of cochlear mechanical theories is to explain 

these characteristics. 

One of the characteristics that received attention early on was the relatively long 

latency of OAEs (about 10 ms at 1 kHz), as compared to predictions of the latency based 

on estimates of TW travel time obtained from electrocochleographic measurements (e.g., 

3.4 ms predicted from Eggermont's data, (1979)). Although they did not present a 

complete cochlear mechanical theory of OAEs, Kemp and Chum (1980b) argued that the 

long delays in the TEOAE could be explained by the steep sided mechanical filters that 

characterise the BM response at low stimulus intensities. As the stimulus level increases, 

the filter skirts become less steep giving shorter delays. This phenomenon, whereby 

latency reduces with increasing stimulus levels, has been used to explain the apparent 
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discrepancy between OAE and electrocochleographic measurements (e.g., Neely et al, 

1988). 

Note that the OAE latency is sometimes regarded as having two components: the 

first associated with the BM resonant response near the characteristic place; and the second 

due to the TW transmission time to and from this place (e.g., Rutten, 1980). However, 

Strube (1989) points out that this split between TW propagation and BM resonance is 

artificial. Instead, the resonance of the BM is not considered to be a phenomenon with its 

own delay, but rather as one which influences the overall delay arising from TW 

propagation. Thus the speed of the TW varies continuously along the BM, and approaches 

zero in the region of BM resonance. This leads to long latencies for any TW originating 

within this region. 

Originally Kemp (1978) had suggested that mechanical impedance discontinuities on 

the BM might be responsible for TW reflection. However, other possible mechanisms 

have also been explored. As part of the discussion of the mechanism of TW reflection, 

Kemp (1986) introduced the concept of 'place fixed' and 'wave fixed' source. A place 

fixed site is one whose location is independent of frequency, as would arise from a 

discontinuity in the BM impedance. A wave fixed source, perhaps arising from 

nonlinearity near the peak of the TW envelope, or from complex 2-D or 3-D fluid flows 

(Guelke and Bunn, 1985), would move with frequency as the TW peak moved. Kemp 

(1986) argued that the long group delays measured in TEOAEs and SFOAEs in humans 

are consistent with a place-fixed rather than a wave-fixed hypothesis. 

This argument against a purely wave fixed generation mechanism has been restated 

by Strube (1989), Zweig and Shera (1995) and Shera and Guinan (1999), based on what is 

known as the scaling symmetry (or shift-symmetry) of the cochlea. Essentially this means 

that the TW spatial response pattern at any stimulus frequency resembles that at any other 

frequency (both in magnitude and phase), except for a translation in place along the BM. 

Thus, where scaling symmetry holds, knowledge of the BM response as a function of place 

at any single stimulus frequency is sufficient to define the BM response at all frequencies 

and all places. Alternatively, knowledge of the BM response as a function of stimulus 

frequency at any single place is also sufficient to define the BM response at all frequencies 

and all places. It has been shown that the group delays of any wave-fixed emissions from a 

scaling symmetric cochlea are very short, and therefore any ripple pattern will have a much 

wider peak-to-peak frequency interval (i.e., a greater periodicity) than that observed 

experimentally (Strube, 1989). This result holds true for any wave-fixed generation 

mechanism in an approximately scaling symmetric cochlea. This is discussed further in 

part II. 
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Assuming that a place-fixed mechanism is involved, the question remains as to what 

form of reflection site could explain the empirical results. Three forms are discussed 

below: isolated point reflection sites, spatially periodic reflection sites, and spatially 

random reflection sites. 

Note that various different terms relating to the mechanism of TW reflection are 

found in the literature. The general terms "reflection site" and "scattering site" are used for 

to describe either wave-fixed or place fixed mechanisms. Both terms are used in this 

thesis. The terms "BM discontinuity", "irregularity" and "inhomogeneity" are used to 

describe a place fixed mechanism arising from the deviation of the BM impedance (or 

more strictly the cochlear wave impedance) from the smooth impedance variation 

associated with the mechanical frequency analysis performed by the cochlea. In this 

thesis, the term "BM inhomogeneity" is generally used. The terms "irregularity" and 

"discontinuity" would be misleading if applied to the smooth, periodic impedance variation 

proposed by Strube (1989), and will henceforth be avoided. 

3.3.1 Point Reflection Sites 

Zwicker and Lumer (1985) simulated OAEs from one, two and three localised 

inhomogeneities on the BM. A model with single inhomogeneity has two failings. First 

the predicted OAE spectra are only seen in a very limited frequency range. This is because 

it is only at these limited frequencies that the TW envelope is large in the region of the 

reflection site. Secondly, the predicted group delay is too short, except around one 

stimulus frequency (the characteristic frequency of the reflection site), where the peak of 

the TW coincides with the reflection site. At this frequency, the group speed of the TW 

approaches zero at the reflection site, hence increasing the predicted group delay. With 

three inhomogeneities, the predicted periodicities could be made to roughly agree with 

observed values, but the predicted OAE spectra still looked unnatural. Zwicker (1986, 

1988, 1990) noted that the SFOAE periodicity (or equivalently the group delay of the 

TEOAEs) depended on the wavelength of the TW near the peak. Several other authors 

have published essentially similar results from various models with a few discrete 

inhomogeneities (e.g., Zwicker and Lumer, 1985; Zwicker and Peisl, 1990; Burst and 

Lapid, 1988; Fukazawa, 1992, Fukazawa and Tanaka, 1996; Wada et al, 1999). 
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3.3.2 Spatially Periodic Inhomogeneities: Strube's Theory 

Manley (1983) suggested that the periodicity seen in the auditory microstructure, in 

SFOAEs and in SOAEs could be explained if the strength of the active cochlear processes 

varied periodically along the length of BM. A somewhat similar theory was proposed by 

Strube (1989), following the work of Strube (1985), Zwicker (1986, 1988), and Peisl 

(1988). In this theory (referred to henceforth as "Strube's theory") it is postulated that 

some of the BM mechanical properties vary periodically with place (over and above the 

exponential variation associated with place-frequency mapping). This spatially periodic 

impedance variation is sometimes referred to as a BM corrugation, and gives rise to 

reflections (or scattering) of the forward TW. Strube compared the scattering mechanism 

to a phenomenon known as Bragg scattering, whereby a wave is strongly reflected when it 

encounters a sinusoidal spatial impedance variation whose spatial period equals half the 

wavelength (the Bragg condition). 

To see how the Bragg condition is satisfied over a wide range of stimulus 

frequencies, consider a BM corrugation with a spatial period significantly less than half the 

TW wavelength at the base of the cochlea (for a large range of stimulus frequencies). For 

any given stimulus frequency, the wavelength of the TW decreases continuously as the TW 

propagates forward, and approaches zero as the TW approaches its characteristic place'^. 

Consequently there is a point on the BM, basal to the characteristic place, where the Bragg 

condition is satisfied, and Bragg scattering occurs. If this point lies close to the TW peak 

then the amplitude of the backward scattered TW becomes significant. By scaling 

symmetry, the TW wavelength at the BM peak is independent of stimulus frequency (since 

changing the frequency simply shifts the response pattern along the BM, without changing 

its shape). Therefore the Bragg condition is satisfied for a point near the TW peak over a 

wide range of stimulus frequencies. 

It should be noted that, although this Bragg point moves with the peak of the TW as 

the stimulus frequency is varied, the spatial pattern of BM inhomogeneities remains place 

fixed as is required in order for the predicted OAEs to have the long group delays observed 

in measurements. The mechanism by which the backward wave is generated is complex, 

involving the summation of reflected wavelets over the region of the TW peak, rather than 

just one single localised reflection. The spatial variation in the BM impedance ensures that 

all the reflected wavelets combine in phase, leading to a significant total reflection. 

" The wavelength is only actually zero when the BM is in resonance. This is point lies slightly apical to the 

TW peak. 
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The theory successfully predicts the observed spectral periodicity, which is 

determined by the spatial periodicity in the BM properties. The theory does not rely on 

any nonlinearity, but does include active (though still linear) processes. However, these 

are only required to explain the magnitude of measured OAEs, rather than the essential 

reflection (or scattering) mechanism. Manley's suggestion (1983) that the corrugations be 

in the BM structures associated with the active processes is sufficient, but unnecessary in 

Strube's theory. Corrugations may equally well be in the passive structural properties of 

the BM. 

In humans, the wavelength in the TW peak region is around 900 |Lim, and hence to 

satisfy the Bragg condition, Strube proposed a spatial period of around 500 jim for the BM 

impedance variation. However, in anatomical examinations of cochleae, no evidence for 

any spatial periodicity in the cochlea has been found (Zweig and Shera, 1995). 

3.3.3 Random Inhomogeneities: Shera and Zweig's Theory 

Shera and Zweig (1993b) have proposed an alternative version of the place-fixed 

theory in which the inhomogeneities in the BM mechanical properties have a random 

spatial distribution along the length BM, with length scales down to about 10 jxm (the 

typical width of a single hair cell). The approximately regular periodicity seen in SFOAEs 

then arises from a mechanism described as 'spatial filtering'. As in Strube's theory, the 

essential mechanism in Shera and Zweig's theory is linear scattering. Active processes are 

required in order to produce what Zweig and Shera describe as a 'tall and broad' TW 

envelope (1995). A more complete description of the theory is given by Zweig and Shera 

(1995) and Talmadge et al. (1998). In this theory, the observed spectral periodicity is 

determined by the TW wavelength in the peak region, whereas in Strube's theory it is 

determined by the spatial period of the corrugations. Shera and Zweig's theory is 

discussed in greater detail in part II. 

As with Strube's theory, the mechanism by which the backward wave is generated 

involves the summation of reflected wavelets over the region of the TW peak, rather than 

just one single localised reflection. The spectral periodicity predicted by Shera and 

Zweig's theory are similar to those predicted by Strube's corrugated BM. A simplified 

explanation for this results is that the random spatial variation can conceptually be 

decomposed into its spatial Fourier components. Each Fourier component appears as a 

corrugation with a different spatial period, and each one acts to scatter the forward TW. 

However, only one of these corrugations approximately satisfies the Bragg condition near 

the peak of the TW, and therefore generates a strong backward wave. Scattering from all 
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the other spatial frequency components is negligible. Shera and Zweig call this mechanism 

coherent reflection filtering (Shera and Zweig, 1993b; Zweig and Shera, 1995). 

An important difference between Strube's theory and Shera and Zweig's theory is 

the way in which the spectral periodicity arises. In Strube's model (1989), it arises from 

the regular wave-like corrugation along the BM, which has a typical wavelength in humans 

of around 500 |Lim. In Shera and Zweig's model, it arises from an interaction between the 

TW and a random array of inhomogeneities along the BM. This means that the SFOAE 

periodicity predicted by Strube's model is fixed by the BM corrugations, whilst in Shera 

and Zweig's model it depends on the shape of the TW envelope. 

Recall from section 2.15 that there is evidence that the speed of TW propagation 

increases with stimulus level. It might then be argued simplistically that an increase in 

stimulus level should therefore cause both a reduction in the OAE group delay and an 

increase in the periodicity. This simple argument is based on the assumption that the group 

delay depends on the TW propagation time to and from a single place-fixed reflection site. 

As will be discussed in part II, this argument is in general inadequate in explaining the 

predictions of cochlear models. This is because, according to both Strube's and Shera and 

Zweig's theory, OAEs result not just from a single place fixed-reflection, but from the sum 

of many place-fixed reflections. In fact, Shera and Zweig's theory predicts that the group 

delay is dependent on the TW wavelength in the peak region, rather than to the overall TW 

travel time. However, since wavelength is related to TW speed, and it is the TW speed in 

the peak region that dominates the overall TW travel time, predictions based on Shera and 

Zweig's theory agree closely with results arrived at by the simple single-reflection site 

argument. In contrast, models based on Strube's theory predict no change in group delay 

or periodicity when TW propagation speed changes. 

No quantitative anatomical evidence either for or against this random array 

inhomogeneities exists (direct measurement of the BM mechanical properties being 

impossible). However Zweig and Shera (1995) note that anatomical studies have found a 

"generalised irregularity" and "cellular disorganisation" in the arrangement of OHCs in the 

apical turns of the primate cochlea. 

3.4 The Role of Active Processes in the Reflection Hypothesis 

The versions of the cochlear reflection hypothesis proposed by Strube, and Shera and 

Zweig rely on both active processes and reflection sites. A question that has been 

addressed in the literature is why both active processes and reflection sites are required to 
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generate OAEs, when it might be argued that either one alone could generate some form of 

backward TW, and therefore an OAE. 

The first part of the question can be restated more fully as follows. Why, if the 

cochlear amplifier is thought to exert forces directly on the BM, and if the BM supports 

TW propagation equally in both directions, does the cochlear amplifier not directly 

generate an OAE whenever it is activated by a forward TW? The answer to this can be 

found in the theoretical modelling results reviewed by de Boer (1996). For any given 

stimulus frequency, the cochlear amplifier creates a region where the characteristic 

impedance, as seen by the TW, has a negative damping component. This region extends 

basally from a point near the peak of the TW envelope. TWs passing through this region 

(in either direction) are progressively amplified. This can be seen as a reversal of the more 

common process by which an acoustic wave decays as it propagates through a lossy 

medium. Such a wave is dissipated without being reflected. In the cochlea, the direction 

of energy flow is reversed to give a wave that blooms as it propagates, but is not reflected 

in the process. This is most easily illustrated mathematically by considering the cochlear 

amplifier to be linear. The presence of the cochlear amplifier can then be incorporated into 

a version of linear wave equation, where the negative dissipation manifests itself as a 

negative imaginary part to the wave impedance (which is related to the BM resistance). It 

can then be shown that, with an initial forward wave, backward waves only arise from 

rapid spatial changes in the wave impedance, and not from the sign of the resistance 

(de Boer, 1996, p. 274). The physical explanation corresponding to the mathematics is as 

follows. Although each infinitesimal element of the cochlear amplifier exerts a force on 

the BM which, in isolation, would generate travelling wavelets propagating in both 

directions, the spatial distribution and phase of these wavelets (which are both determined 

by the incident forward wave) are such that all the wavelets add together to give an 

additional forward wave which enhances the incident wave, but no backward wave. 

The second part of the question is this. Why do backward TWs not arise from the 

scattering of the passive TW? (These backward TWs would not qualify as OAEs, 

according to the definition given in section 2.1, but they might be expected to produce a 

similar ripple pattern in the ear canal pressure to that observed). This question is addressed 

by Zweig and Shera (1995). They argue that in a purely passive cochlea, any TW 

reflections decay too rapidly to appear as significant backward waves arriving in the ear 

canal. Furthermore, simply reducing the level of damping assumed in the cochlea does not 

solve the problem, because the resulting TW envelope then appears to be too sharp. 

Instead it is argued that large backward TWs only arise when the TW envelope is both 'tall 

and broad', as it is when certain forms of cochlear amplifier characteristics are included. 
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'Tail' means that the forward TW is sufficiently strong to generate a significant backward 

wave. 'Broad' means that the TW peak region spans at least one full wavelength, such that 

Bragg scattering can arise. When the TW peak is too narrow, as it would be in a passive 

cochlea with very low damping, then the TW wavelength varies very rapidly over the peak 

region, because of the minimum phase property of the TW function discussed in part II. 

This means that there is no one dominant wavelength in the peak region, leading to a very 

broad band 'spatial filter'. This is inconsistent with the observed spectral periodicity. At 

first sight, this argument may appear to run counter to the widely accepted fact that active 

processes give rise to a sharp rather than a broad envelope. In fact with Zweig's cochlear 

amplifier (1991) the envelope is sharper than that arising in a passive cochlea with realistic 

damping, but is broader than that which would be seen in a cochlea which had very low 

damping, as could arise if the cochlear amplifier simply acted to provide active 

undamping. This is discussed in more detail in part II. 

3.5 The Role of Cochlear Nonlinearity 

The versions of the cochlear reflection hypothesis proposed by Strube, and Shera and 

Zweig do not rely on any cochlear nonlinearity for the generation of SFOAEs. The 

validity of this simplification is supported by the measurements of Shera and Zweig 

(1993a) which showed that the SFOAE spectrum varies linearly with stimulus level at very 

low stimulus levels. Thus, SFOAEs exist even when nonlinearity is absent. 

At higher stimulus levels OAEs show a compressive nonlinearity, which is thought 

to arise from nonlinearities in the cochlear amplifier response. Results of click suppression 

and pure tone suppression experiments reported by Kemp and Chum (1980b), which 

indicated that the OAE response comprised a linear signal delay followed by a saturating 

nonlinear element, are consistent with this hypothesis. 

Recently, Talmadge et al. (2000) have presented an analysis of Shera and Zweig's 

theory based on nonlinear cochlear models. This generally supports the argument that the 

long delays seen in OAEs arise from essentially linear reflection. However, they also 

report that a purely nonlinear component of SFOAEs can arise, even in perfectly smooth 

cochleae. This originates from deviations in the nonlinear cochlear mechanics from 

scaling symmetry and it manifests itself as a very short-latency (and therefore high 

periodicity) SFOAE component. Whilst at low and moderate stimulus levels this 

component is small, in some cases it can predominate at high stimulus levels. This is 

important for this project where the changes in periodicity that are of interest are those 

related to changes in the TW wavelength, rather than to additional nonlinear effects. 
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Thus in the theories under consideration here, nonlinearity is not essential for OAE 

generation, but is an important phenomenon at all but the lowest stimulus levels. 

3.6 The Role of Multiple Reflections and the Middle-ear 

Kemp (1980) presented an analysis relating evoked OAEs to the transmission 

characteristics of the middle ear, and to apical and basal reflections in the cochlea. This 

analysis predicted the presence of multiple reflections in the cochlea, whereby the forward 

wave is reflected at some site on the BM to generate a backward TW, which is in turn 

reflected at the stapes to generate a second forward wave and so on. This is similar to the 

situation illustrated in fig. 2.5. 

At certain frequencies this second forward TW interferes constructively with the 

original forward TW, leading to a resonance^ phenomenon whereby both forward and 

backward TWs are stronger at certain frequencies. This occurs when the product of the 

apical and the basal reflectances is purely real. Kemp (1980) and Wilson (1980a) 

suggested this as explanation of the peaks in the spectrum of TEOAEs, SFOAEs and the 

auditory microstructure. Kemp (1980) also pointed out that active processes may give rise 

to an apical reflection coefficient greater than unity (i.e., the backward TW may contain 

more energy than the original forward TW). If, at a particular frequency, the product of 

the apical and basal reflection coefficients is a real value exceeding unity then the cochlea 

will be unstable (i.e., any infinitesimal perturbation will grow unbounded at that 

frequency). Kemp (1980) proposed this as an explanation of SOAEs (where in practice the 

growth is limited by nonlinear saturation in the cochlear amplifier). This phenomenon can 

be explained by consideration of the two systems in figs. 2.3 and 2.5, which show multiple 

reflections. If the forward looking reflectance were increased in magnitude beyond unity, 

then a point would be reached where the train of reflection components seen in the echo (or 

OAE) response (panel e) would not decay away, but would become a continuous periodic 

signal. The figure also shows how the frequencies of this self sustaining signal would 

correspond to the spectral peaks seen in panel f. By analogy, it would be expected that the 

frequencies of SOAEs would correspond to the peaks seen the spectrum of TEOAEs and 

SFOAEs. This is indeed what is found experimentally (Zwicker and Schloth, 1984; Probst 

^ An acoustical system is said to be resonant when its acoustic input reactance is zero, and its acoustic input 

resistance is a minimum. Thus for a high impedance loudspeaker (as is common), the resonances of the 

driven system correspond to minima in the pressure response measured by the microphone, whilst the 

antiresonances correspond to maxima, assuming a constant voltage drive to the loudspeaker. 

55 



et al. 1986, 1991). The explanation of audiogram fine structure is more complicated, and 

is not dealt with here. 

When multiple reflections are included in Shera and Zweig's theory, the spectral 

periodicities seen in the audiogram fine structure, in SFOAEs, in TEOAEs and in SOAEs 

are successfully explained (Talmadge et al., 1998). Note that the role of multiple apical 

and basal reflections differs in these four phenomena. Multiple reflections are essential to 

the explanation of spectral periodicity in SOAEs and the auditory microstructure, which 

arise from the resonance phenomena of the TW suggested by Kemp (1980). However, 

multiple reflections are not essential for the explanation of the basic spectral periodicity 

seen in the real and imaginary parts of SFOAEs. This basic periodicity corresponds to the 

slope of the phase of the frequency spectrum of the SFOAEs and TEOAEs. Here, only a 

single apical reflection is required. Subsequent basal (and further apical) reflections, if 

significant, modify the measurements such that periodicity is seen in the magnitude of the 

SFOAE, not just in the real and imaginary parts (Kemp, 1980; Shera and Zweig, 1993a; 

Talmadge and Tubis, 1993; Talmadge et al., 1998). This is illustrated to some extent by 

the difference in the two responses of the idealised ear shown in figs 2.4 and 2.5. It is 

discussed more fully in part II. 

The basal reflection coefficient is determined by the mechanical properties of the 

system comprising the middle ear, the ear canal and the termination of the ear canal by the 

OAE probe. Several authors have investigated the effect on OAEs of altering these 

properties. For example, Zwicker (1990) found that altering the impedance of the OAE 

probe changed the frequencies of the peaks in the audiogram fine structure, SFOAE 

spectrum and TEOAE spectrum. 

As well as influencing the basal reflectance, these mechanical properties also 

determine the transmission characteristics through the middle ear, which influences OAEs 

measured in the ear canal. OAE transmission is most efficient in the frequency region of 

1-2 kHz, with increasing loss outside this region (Kemp and Chum, 1980a; Kemp, 1980; 

Shera and Zweig; 1993a). In ears with abnormal middle ear pressure, or with middle ear 

dysfunction, OAEs may be altered or abolished completely (Probst et a/., 1991). In normal 

ears, measured OAEs have also been found to be altered by the stapedial muscle 

contraction (Probst e? a/.,1991). 

3.7 Alternative Theories to the Reflection Hypothesis 

A number of other mechanisms have been suggested for generating OAEs. Wilson 

(1980b) proposed the cellular swelling model in which volume changes in the hair cells 
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stimulate the fast wave (the longitudinal compression wave) in the cochlea, rather than the 

slower moving backward TW. However, this theory fails to predict the observed spectral 

periodicity. (In the Shera and Zweig model, active processes cause the BM to deflect at 

constant thickness, rather than to swell. BM deflection couples to the slow TW 

propagation rather than the fast compression wave.) 

Guelke and Bunn (1985) suggested that complex 3-D fluid flow in the region of the 

TW peak can act as a generation site. However, this leads to a wave-fixed primary source 

which has the problems discussed by Strube (1989). 

Van Hengel and Maat (1993) and van Hengel et al. (1996) have proposed a complex 

theory which relies on instability in the active processes, on the nonlinear phenomena of 

suppression and entrainment, and on multiple reflection at the stapes. Unlike Shera and 

Zweig's theory, this theory uses a completely active cochlea in which all points are 

unstable when stationary. The introduction of one single strong emitter leads to complex 

nonlinear coupling between points, which can give rise to spectral periodicity. However, 

there are as yet no published results from the model showing realistic SFOAEs. 

3.8 Summary 

In the various versions of the reflection hypothesis that have been proposed the 

involvement of the following mechanisms has been proposed: cochlear nonlinearity, BM 

inhomogeneities, 3-D fluid flows, active amplification, and multiple reflections within the 

cochlea. However, of the theories mentioned, only Strube's and Shera and Zweig's have 

been developed far enough for detailed models to be constructed which predict SFOAEs 

with realistic periodicities. These two theories are linear, active and 1-D but invoke 

different spatial distributions of BM inhomogeneities to explain SFOAE generation. 

A key difference between Strube's theory and Shera and Zweig's theory is the way 

in which the spectral periodicity is determined. In Strube's model (1989) it is fixed by the 

spatial period of the BM corrugations, whilst in Shera and Zweig's model (1993b) it 

depends on the shape of the TW envelope, and therefore may be altered depending on the 

strength of the cochlear amplifier. 
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P A R T I I : THEORETICAL PREDICTIONS 

4. Development of the Cochlear Maeromechanical Model 

4.1 Overview 

The objective in developing a cochlear model in this thesis is to illuminate the 

various roles played by the different elements in the theory, and where possible to relate 

these elements to measurable characteristics of SFOAEs. Moreover, the model should 

enable predictions based on the current theories of OAE generation to be made, which can 

then be tested experimentally. To achieve this objective, the model must capture all the 

essential features of the theory, whilst eliminating any non-essential features which would 

both confuse the interpretation of the results and increase the computational burden. The 

approach taken here has been to start with as simple a model as possible, and then to add 

complexity to check whether any significant changes result. 

Cochlear mechanics is often divided into macro and micromechanics. 

Macromechanics is concerned with the large scale motions of both the cochlear fluids and 

the BM, whilst micromechanics is concerned with the detailed motions of the many 

components in the organ of Corti. The models considered in this thesis provide a 

mathematical representation of the macromechanical response of the cochlea only. 

Although cochlear micromechanical behaviour does have an influence on the 

macromechanical response, it need not be included explicitly. Instead, micromechanical 

effects can be characterised as relationships between macromechanical quantities. The 

justification for developing a macromechanical model is that, according to the underlying 

theory, the characteristics of measured SFOAEs are determined by the macromechanical 

behaviour of the cochlear responses consisting of TW propagation, amplification, 

dissipation and reflection. Thus, for example, the outer hair cells are not modelled directly 

but are instead included through the mechanical properties of the cochlear amplifier. 

In the following section, details of the macromechanical cochlear model used in this 

thesis are presented and discussed. This is a 1-D, longwave model of the cochlea, 

including a locally active cochlear amplifier and BM inhomogeneities. A model variant 

including a frequency domain implementation of cochlear amplifier nonlinearity is also 

described. All the elements in the models are based on a features found in various 

published models. However, these element have not been brought together before as 
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described here. As well as specifying the model, in the following section relevant aspects 

of the model behaviour are also discussed. 

4.2 Basic Assumptions in the Macromechanical Model 

In the models used here the following simplifications have been made. The spiral 

shape of the cochlea is unrolled giving a straight cochlea. Reissner's membrane is ignored, 

and thus the scala vestibuli and scala media are treated as a single fluid channel, called here 

the upper channel. A section across the upper channel (perpendicular to the longitudinal 

axis) is assumed to be rectangular. The scala tympani, called here the lower channel, is 

assumed to have the same cross section as the upper channel. The basilar membrane, the 

tectorial membrane, the organ of Corti and associated support cells are all replaced by a 

single flexible membrane called the cochlear partition (CP). It is motion of the CP that 

displaces the cochlear fluids. The CP is assumed to be incompressible: it deflects, but it 

does not change volume. Thus the fluid velocities above and below the CP are equal at any 

location. The stapes footplate forms the basal boundary of the upper channel, and is 

perpendicular to the longitudinal axis. Structurally, there is no longitudinal couphng 

between points on the CP. Thus the CP is viewed as a series of independent beams 

somewhat like a xylophone, but with no gaps between the keys. The helicotrema is 

modelled as a gap in the CP at the apex of the cochlea. The cochlear fluids are assumed 

incompressible and inviscid. In this report, the terms 'cochlear partition', 'upper channel' 

and 'lower channel' are adopted for the model representations. In the literature, these are 

sometimes referred to as the 'basilar membrane', 'scala vestibuli' and 'scala tympani' 

respectively. These simplifications are common in many discussions of cochlear 

mechanics (e.g., de Boer, 1996; Patuzzi 1996). The validity of these simplifications is 

discussed below. 

4.2.1 The Assumption of Incompressible Flow 

The assumption that the fluid is incompressible is justified provided that the stimulus 

frequency is low enough (Patuzzi, 1996). For a stimulus frequency of 3 kHz, and taking 

the speed of sound in the cochlear fluid as 1500 m/s, and the length of the fluid channels as 

35 mm, the resulting longitudinal wave has a wavelength of about 500 mm or about 14 

times the length of the cochlea, and therefore can be safely ignored. 
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4.2.2 The Assumption of Uniform Scalae 

As is usual in cochlear models (e.g., Neely and Kim, 1986; Kanis and de Boer, 1994; 

Talmadge et al. 1998), the cross-sections of the scalae are assumed to be independent of 

the axial location. Shera and Zweig (1991a) argue against this assumption, pointing out 

that, if lower frequency behaviour is to be accurately represented, the channel cross-section 

should taper along the longitudinal axis of the cochlear model. The effect of this taper is to 

maintain a resistive cochlear input impedance at low frequencies (and therefore good 

middle ear efficiency) and also to maintain scaling symmetry in the cochlea (see 

section 4.7.4). However, the effect is only pronounced below about 1 kHz and is not 

considered here. 

4.2.3 The Compressibility of the Cochlea 

In this thesis the commonly made assumption that the volume velocity of the round 

window is equal and opposite to the volume velocity of the oval window at all frequencies 

of interest. This not only rules out significant fluid compressibility but also net fluid 

inflow or outflow from the cochlea via the aqueducts or blood vessels. An empirical check 

of this assumption is reported by Shera and Zweig (1992). 

4.2.4 The Assumption of No Longitudinal Structural Coupling 

Although there must also be some longitudinal structural coupling, this is ignored in 

the chosen models. Instead, points on the CP are only coupled to their neighbours via the 

fluid flow. For passive models, Lighthill (1981) argued that any longitudinal coupling 

must be very weak for the cochlea to function correctly. However, some active models do 

include a degree of longitudinal coupling associated with the active processes (e.g., 

Zwicker, 1988; Fukazawa and Tanaka, 1996). However, as with much of cochlear 

modelling, there appears to be little direct empirical evidence either for or against these 

assumptions. In this thesis, following most cochlear modellers, all longitudinal coupling 

has been ignored as an unnecessary comphcation (e.g., Kanis and de Boer, 1993b; Zweig 

1991). 
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4.3 Defining the Macromechanical Variables 

Fig 4.1 shows a cross section through the cochlea. Here the passive structures of the 

CP are represented by a simple spring-mass system, and the cochlear amplifier is 

represented by a motion sensor, a filter, and a force generator. The filter may be linear or 

nonlinear. The basic place-frequency mapping in the cochlear model arises from the 

(roughly) exponential reduction in local natural frequency of the CP along the cochlear 

axis. This may be achieved either by reducing the CP local stiffness at constant CP mass, 

or by both reducing the CP local stiffness and increasing the CP local mass along the 

cochlea. (Here, 'local' mass and stiffness means mass and stiffness per unit length at a 

point on the cochlear axis.) 

B O N E 

Upper Channel 

C O C H L E A R F L U I D 

~ % _ 

m ^ z 
Cochlear Partition 

FG4(f) 

Motion Sensor 

Lower 
Channel 

Force 
Generator 

(O 

Filter 

Fig 4.1. Cross section through the model of the cochlea, showing the mass-spring-damper representation of 
the cochlear partition. The cochlear amplifier is represented by a motion sensor, a filter and force generator. 
The sensor measures the CP velocity, vcp{t) , leading to the generation of a force, Fca ( t ) applied to the CP. 
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For a given sound stimulus, the solution of the macromechanical response is 

specified in terms of the fluid pressure and fluid velocity vector at all points and all instants 

in time. Together, these define the flow field. Once the flow field is known, the CP 

velocity and pressure are also known, because the CP is in contact with the fluid. 

Variables are specified with reference to the three-dimensional rectangular co-

ordinate system shown in fig. 4.2 . The x-co-ordinate defines the longitudinal distance 

from the stapes; the y-co-ordinate the vertical distance from the CP; and the z-co-ordinate 

the lateral distance from the centreline of the CP. No lateral variation is considered in this 

2-D analysis. At a given point in space and an instant in time, t, the flow field is denoted 

by: 

the fluid pressure: p(x,y,t) 

the fluidX-velocity vector: u(x,y,t) 

the fluid y-velocity vector: v(x,y,t) 

The velocities at the fluid boundaries are denoted by: 

the stapes x-velocity: u s r i y j ) 

the round window x-velocity: URwiy J ) 

cochlear partition z-velocity: vcp(x,f) 

Stapes 

Round 
Window 

Upper Channel 

Cochlear Partition 

Lower Channel 

helicotrema 

Fig 4.2. Definition of the co-ordinate system for the cochlear model. 
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4.4 Symmetry Relations in the Upper and Lower Channels 

The symmetry of the upper and lower channels greatly simplifies the analysis. 

Patuzzi (1996) illustrates these relationships by imagining a cochlea with a second stapes in 

place of its round window, thus giving perfect symmetry. Applying identical forces to both 

stapes (the so called 'push-push' loading condition) causes compression waves (or 'fast' 

waves) to travel up the two cochlear channels. By symmetry, there is no associated CP 

displacement and therefore no cochlear TW. In contrast, applying equal and opposite 

forces to the two stapes (the 'push-pull' loading condition) gives rise to a pressure 

difference in the two channels thereby generating the familiar TW which propagates by CP 

deflection. It also generates two antisymmetric fast waves which travel up the two cochlear 

channels (for example, pushing the upper stapes and pulling the lower stapes generates a 

compression wave in the upper channel, and a rarefaction wave in the lower channel). In 

the real (i.e., single stapes) cochlea, any arbitrary boundary condition at the round window 

and stapes can be split into the sum of a push-push and a push-pull case (assuming 

linearity). 

A further simplification arises when fluid compressibility can be ignored (i.e., at low 

stimulus frequencies). Here the fast waves can be ignored, since they propagate and decay 

away within a fraction of one stimulus period. In this case, push-push loading causes an 

instantaneous change in the pressure throughout the entire cochlear fluid (i.e., the pressure 

field remains entirely spatially uniform at all times). In the push-pull case, there is no 

overall change in the enclosed volume, and thus the fast wave can be ignored entirely. 

Thus in this case only the TW on the CP need be considered. Notice that in the push-pull 

case the pressure and velocity at apical locations remain completely unchanged until the 

arrival of the CP travelling wave: there is no energy transfer other than by the TW. 

Mathematically this can be represented as follows. The pressures in the upper and 

lower channels can be combined into a semi-sum pressure, denoted ps, and a semi-

difference pressure, denoted pd , which are then functions of the push-push and push-pull 

loading respectively: 

f o r 0<y<H [4.1] 

This definition is convenient because (assuming fluid incompressibility) only the 

semi-difference pressure, pd , plays a part in TW propagation. The semi-sum pressure, Ps, 

merely acts as an additional spatially uniform term. For completeness the value of ps will 

be derived in this section, but thereafter attention is turned exclusively to pd . 
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The semi-sum pressure depends on the push-push loading component. In the real 

cochlea, this component has a particularly simple form if, as is common, it is assumed that 

the impedance at the round window is approximately zero. From this, it follows that, at 

any instant, the uniform semi-sum pressure is simply half the instantaneous pressure at the 

stapes, as is shown below: 

for all r 

[4.2] 'x=Q\y>H 

f f ( 0 = 2 y, 0 + 2 f) = 2 ( 0 + 2 ( 0 

where p^w and pst are the pressures at the round window and stapes respectively. This is 

shown more rigorously in appendix I. 

Fluid incompressibihty also means that the fluid velocity is completely unaffected by 

the push-push case. The velocity components then exhibit the following antisymmetry; 

URw{-y ,t) = -usT(y,t) 

!*(.%, -g/.f) := 

= v ( x , y , f ) 

These symmetry relations are shown in fig. 4.3. This time domain representation 

leads to an analogous symmetry relation in the frequency domain for the real and imaginary 

parts of the Fourier transforms of the velocity components. 

U 

U 

Ma = # 
I^RW— ~U 

1 I'CP 

Ml 

Vl i Ml 

i Vi 

( , -yi ) 

M ( 
u {xi , —yi) = —Ml 

V ( %1 , H-yi ) =Vi 
(;(], -yi) = 

Fig 4.3. Symmetry relations in the cochlear model for instantaneous velocities. Arrows indicate actual 
physical direction of motion. The quantities Xi _ yi are positive displacements, whilst U, w, and Vi are positive 
velocity scalars. The quantities u (x , y ) , v ( x, y ) , M5, and URW are signed velocity components, defined as 
positive in the direction of the x-y co-ordinate system. All velocities are functions of time. 
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4.5 The Longwave Model and the 1-D Wave-Equation 

In this section, the equations governing TW propagation are introduced. Given the 

simplifying assumptions of the previous sections, the semi-difference pressure in the 

cochlear fluid can now be related to the displacement of the stapes via the equations of 

fluid mechanics (i.e., mass and momentum conservation) and the impedance of the CP. 

Fluid viscosity will be ignored (though the system remains damped via the resistive 

component of the CP impedance). The equations are linearized, since the particle 

displacements and velocities are very small. The full derivation is presented by de Boer 

(1996). 

The analysis yields partial differential equations for the fluid flow field in which both 

the axial and transverse spatial dimensions appear as independent variables. However 

there is a certain commonly used simplification, known as the longwave approximation, 

which eliminates the transverse co-ordinate as an independent variable. The mechanics of 

the resulting longwave model can then be represented as a simple one-dimensional wave 

equation. The full derivation of this wave equation is given in appendix I and can be found 

in de Boer (1996). Equation [4.4] gives the frequency domain version of the wave 

equation (i.e., the Helmholtz equation) for the semi-difference pressure,/7rf(x, O)), which, 

in the longwave model, is independent of y: 

+ = 0 
dx 

k = — [4.4] 
^TW 

2 icoHZi Qp 
CTVU — 

where, pd is the Fourier transform of the semi-difference pressure across the CP, x is the 

distance along the CP, k is the wavenumber, ctw is the TW phase speed, (O is the radian 

stimulus frequency, p is the cochlear fluid density, H is the height of the upper channel 

(here assumed constant), and ZQP is the CP impedance (commonly known as the point 

mechanical impedance, though strictly it is the specific acoustical impedance). Note that 

ZCP , k and pd are complex numbers (which will be denoted here by the bold typeface) and 

can be functions of both x and (O. 

The semi-difference pressure must also satisfy two boundary conditions. For 

example, if the stapes velocity, , has been specified then the two boundary conditions 

are: 
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dPd 
- -ilcopugf at the stapes [4.5] 

x = 0 

Pd \x~L ~ ® the heUcotrema [4.6] 

The stapes boundary condition arises from the x-momentum equation which relates the 

pressure gradient to the fluid acceleration. It has also been assumed that the round window 

impedance is zero, which means that the true pressure at the stapes equals twice the semi-

difference pressure at the stapes (equation [4.2]). As an alternative to [4.5], the stimulus 

could be specified in the ear canal, rather than at the stapes, if a middle ear model is also 

included (section 4.6.5). 

The condition [4.6] at the helicotrema, though not very realistic, is nevertheless 

commonly used. The justification for this is that the model response is highly insensitive 

to this apical boundary condition, provided the stimulus frequency is high enough to ensure 

that the characteristic place lies basal to the helicotrema. This is because the TW decays 

almost entirely as it reaches its characteristic place, and thus very little energy reaches the 

helicotrema. 

Equation [4.4], together with the boundary conditions [4.5] and [4.6] can be solved 

using a finite difference method to give the semi-difference pressure, pa , arising from any 

specified stapes velocity. The CP velocity vcp is also dependent only on x and CO, and can 

be obtained from the CP impedance once the semi-difference pressure is known: 

Pd 
VCP = - 2 — — (impedance relation for the CP) [4.7] 

^CP 

Note that the factor of - 2 in equation [4.7] arises from the sign convention and the 

definition of the semi-difference pressure in equation [4.1] 

It is useful to split the CP point mechanical impedance, Zcp, into three components: 

Zgf (x.fu) = + [4.8] 

where Zpass, ZCA , and Zsc are the components of impedance due to the passive cochlear 

structures, the cochlea amplifier, and any inhomogeneities (or scattering sites) respectively. 

The mechanics of the CP have here been assumed linear (to allow an impedance to be 

used). 

4.6 Specification of the Model 

The cochlear models are based on equations [4.4], [4.5], [4.6], [4.7] and [4.8] with 

the parameters specified below. 
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4.6.1 The Passive Cochlea 

The four cochlear quantities required to solve equation [4.4] are specified here, 

assuming a passive CP impedance. These quantities are: H, L, p and OJ). In this 

thesis, the values have been taken from two publications which detail longwave models of 

the human cochlea: Kanis and de Boer (1994) and Talmadge et al. (1998). 

The first three quantities, which define the cochlear scalae dimensions and the 

cochlear fluid, are simply specified by three parameters. Models based on Kanis and 

de Boer (1994) use H= \ mm whilst those based Talmadge et al. (1998) use H = 3.79 mm. 

Both models assume p = 1000 kgm"^. The value L = 35 mm has also been taken. This is 

unimportant, provided it is significantly greater than the highest characteristic place of 

interest. 

The fourth quantity is the passive CP impedance, A)), which characterises the 

structural properties of a point on the CP in isolation both from the rest of CP and from the 

cochlear fluids. The passive structure at each point is modelled by a simple mass-spring-

damper system, whose point impedance is then specified by three parameters: mass, 

stiffness and damping rate. Alternatively, the point impedance can be specified in terms of 

mass, natural frequency and critical damping ratio, as in [4.9]: 

T'Pass {X)(DQ{X) -V IOONIQ [4.9] 

ico 

where mo is the CP mass; ft)is the stimulus frequency; coc is the natural frequency; J i s 

twice the critical damping ratio and % is the CP location. Note that (5'is approximately 

equal to the reciprocal of the Q-factor^' of the resonance peak. The passive CP impedance 

varies spatially such that its natural frequency, coc, varies (approximately) exponentially 

with position, rather like a xylophone. This gives rise to the basic place frequency 

mapping in the cochlea. The natural frequency is equal to the frequency at which the 

velocity amplitude response is a maximum for a given pressure amplitude. The natural 

frequency will be referred to here as the characteristic frequency^^ of a given point. The 

The Q-factor of the system is defined from the frequency response function of displacement per unit 

pressure. It is defined as the ratio of the frequency of the peak response to the 3 dB bandwidth. For S« I, 

as here, it can be shown that Q-factor ~ 1 / S(Thomson, 1981). 

^ This definition of characteristic frequency does not strictly give the model equivalent of the definition used 

in cochlear physiological measurements, where it is defined for a given point as the frequency of maximal 

response (such as the velocity response) for a given excitation at some reference point such as the stapes. 

However, the two values will be close. 
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characteristic place is the inverse of this function: i.e., for a given pure tone stimulus, it is 

the place whose natural frequency equals the stimulus frequency. 

The Kanis and de Boer model assumes a perfect exponential spatial variation of 

characteristic frequency, and a constant damping ratio: 

(Or (%) = (O exp(-x/ d) 

(^(x) = (̂ 0 

where d is the place-frequency length parameter. The parameters are given as: 

d = 6.67 mm; co = 2;rx 22.508 kHz; mo = 0.5 kgm"^; J'o = 0.4. This passive model will 
Co 

be referred to as the KdB-1994 model. 

Talmadge et al. (1998) have a more realistic form of the passive impedance that 

includes a deviation from the perfect exponential characteristic impedance variation, and a 

spatially varying Q-factor: 

(Of. (%) = exp(-jc/ d) + 

SQ + 5^ e x p ( x I d ) [4.11] 

l + (%exp(%/ d) 

where (i = 7.24 mm; (W = 2; tx 20.8 kHz; =-2;7rx 0.1455 kHz; mo = 0.05 kgm" ; 
Q C2 

5q = 0.0385; 5\ = 0.000765; a= -0.007. This passive model will be referred to as the 

T-1998 model. 

The seemingly large differences between the parameters H and m o used in the two 

models can partly be explained by the assumed width of the CP. Note also that T-1998 is 

much more lightly damped than KdB-1994. 

4.6.2 The Linear Cochlear Amplifier Impedance, ZCA 

The cochlear amplifier is characterised by its impedance, ZcA(%, (U), as a function of 

both place and stimulus frequency. It is generally believed that active processes in the 

organ of Corti create a region of negative damping near the peak of the TW. This 

corresponds to a Zcp with a negative real part in this region of the CP (for a given stimulus 

frequency). This in turn leads to a wavenumber with a negative dissipative component (via 

equation [4.4]), which amplifies propagating waves in this region. The argument for this 

form of the active impedance is discussed in detail by Zweig (1991) and de Boer (1996), 

and is based on attempts to fit results from cochlear models to in vivo measurements of the 

mechanical response of the mammalian cochlea. 

68 



Two different forms of the cochlear amplifier impedance have been adopted. The 

first is based on the model of Neely and Kim (1986), but with the precise formulation and 

parameters taken from Kanis and de Boer (1994). The second is based on Zweig's model 

(1990, 1991) with the parameters taken from Talmadge et al. (1998). 

The (linear) cochlear amplifier impedance reported in Kanis and de Boer (1994) is: 

1 + iP{x, CO) 

[4 12] 

where eo = 4.28x10"^ kgm'^s; do = 1404 kgs ' \ dsc = 0.14; cr= 0.7; and ftfc is as given in 

[4.10] for the KdB-1994. This impedance will be referred to as the Neely and Kim 

cochlear amplifier, abbreviated to NK-1986, in this thesis. 

The (linear) cochlear amplifier impedance formulated by Zweig (1990, 1991) and 

reported in Talmadge et al. (1998) is defined by: 

niQPjCOQix) r 1 mQp^C0Q{x) 

ico 
CO 

I Cji) l Ct) 

w c ( 4 

BU3] 

where mo and Cit are defined as for the passive model [4.9], [4.10]. The parameter values 

are taken from Talmadge et al. (1998): Pf= 0.16; = 0.1416; y/f= 2n:x0.24; 

y/s = Inv. 1.742 (the subscripts '5' and ' / ' referring to slow and fast feedback terms). This 

impedance will be referred to as the Zweig cochlear amplifier, abbreviated to Z-1991. 

4.6.3 The Scattering Impedance, Z, 5c 

Three spatial forms of scattering impedance have also been modelled: the spatially 

random inhomogeneities proposed by Shera and Zweig (1993b); the spatially periodic 

corrugations proposed by Strube (1989); and (for comparison) a single CP impedance 

discontinuity to generate a point reflection. In addition, a variant of Strube's model has 

also been used, where the corrugations are amplitude modulated in space, to give a narrow-

band rather than a purely sinusoidal variation. 

The scattering impedance has been generated by starting with the passive damping 

rate as a function of CP place, and multiplying this by a spatially varying perturbation 

function. For Shera and Zweig's model, the perturbing function is a gaussian random 
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'spatial white noise' sequence; for the Strube model it is a sinusoidal function of place; and 

for a point reflection site, the perturbation is a step function. 

The use of the damping rate ensures that the scattering impedance is independent of 

stimulus frequency, which means that the simplified phenomenological model due to 

Zweig and Shera (1995) (to be discussed in section 4.8) becomes more applicable. The 

effect of using frequency dependent forms of the scattering impedance based on perturbing 

combinations of the CP mass, stiffness, or cochlear amplifier impedance have also been 

explored. One of these alternative cases, in which the overall CP impedance is perturbed, 

is reported here. 

Mathematically the scattering impedance is defined in the following equations. In 

cases [4.15] to [4.18], it is obtained by perturbing the passive damping term at any point, 

r(x), which is determined by the mass, natural frequency and damping ratio: 

r(x) = mQS(x)C0(j(x) [4.14] 

Five variants of the scattering impedance are detailed below. 

(i) The Shera-Zweig random scattering impedance 

Z&c (%) = r(z)a^c6(%) [4.15] 

where asc is the scattering amplitude parameter typically set between 0.001-0.01. The 

spatial signal, b{x), is a very broad band random gaussian signal with a RMS amplitude 

of 1, a lower cut-off spatial frequency given by 1/L, and an upper cut-off spatial frequency 

given by 1/10 |im. 

(ii) The Strube spatially periodic scattering impedance 

^sc W = [4.16] 

where asc is the scattering amplitude parameter typically set at about 0.005 and Isc is the 

scattering length (or spatial period), set to between 0.35 and 0.5 mm. 

(iii) The Strube narrow band scattering impedance 

Z ^,.{x) = r{x)ag^n{x) [4.17] 

where age is the scattering amplitude parameter typically set between 0.001 and 0.01. The 

spatial signal, n{x), is a narrow band random gaussian signal with an RMS amplitude of 1, 

a centre spatial period of 0.5 mm, and a spatial bandwidth of 2 mm' \ 

(iv) The single point reflection site 

This is achieved with a step function in the impedance 

= [4.18] 
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where fl5c is the scattering amplitude parameter typically set to about 0.03. xsc is the 

location of the discontinuity and "sgn" is the signum function, which has a magnitude of 1 

and a sign equal to the sign of its argument. 

(v) The Shera-Zweig frequency dependent random scattering impedance 

In order to investigate the influence of the frequency dependence of the scattering 

impedance, an alternative form of the random scattering has also been used, based on 

perturbations of the entire CP impedance rather than the damping: 

= + [4.19] 

where Zpassi x,Q)) and Zca{ x,Q)) are the CP passive impedance and cochlear amplifier 

impedances, defined in [4.8]; asc is the scattering amplitude parameter typically set 

between 0.001-0.01; and b{x) is a very broad band random gaussian signal with an RMS 

amplitude of 1, a lower cut-off spatial frequency given by 1/L, and an upper cut-off spatial 

frequency given by 1/10 |im. 

4.6.4 Nonlinearity in Cochlear Models 

Zweig and Shera's analysis of SFOAE generation (1995) is based on a linear 

cochlear model. However, to test the predictions of this analysis, this thesis uses the 

nonlinear phenomena of self-suppression and two-tone suppression to modify the shape of 

the TW. In order to predict the SFOAE frequency functions in these two nonlinear cases, 

the quasilinear model of Kanis and de Boer (1993b, 1994, 1996) was modified to include 

CP inhomogeneities. This model includes a representation of compressive nonlinearity in 

the OHCs, but treats the nonlinearity using a simplified, 'quasilinear' method. It is capable 

of predicting self-suppression, two-tone suppression, and distortion product OAE 

generation. 

The quasilinear method works in the frequency domain and is numerically very 

efficient when only a few (in our case two) primary tones are present. It works iteratively 

as follows. First the unsuppressed velocity response due to one tone is calculated as for 

the linear model. This includes calculating the active pressure due to the cochlear 

amplifier at each point on the CP, assuming no saturation. This is the notional active 

pressure, denotedpcA,Un , that would arise for the given CP velocity in the absence of 

saturation. This is then converted into a waveform in the time-domain, and passed though 

a saturating nonlinearity. Here, following Kanis and de Boer, saturating nonlinearity is 

modelled as a hyperbolic tangent function. The output of the saturating function is then 

converted back into the frequency domain, retaining only the primary frequency component 
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and discarding any distortion terms. This then defines a new value for the active pressure, 

denoted PCA,QL (for quasilinear) at each point. An effective quasilinear cochlear amplifier 

impedance, ZCA,QL can then be calculated at each point from PCA,QL and the CP velocity. 

Since saturation of the cochlear amplifier at any point affects the overall CP response, and 

hence feeds back on itself, the CP response must then be recalculated, with this new ZCA,QL 

in place of the linear value assumed initially. This process is repeated iteratively until the 

response stabilises. This then gives the self-suppressed cochlear response due to the first 

tone. This must then be repeated for the second tone (initially ignoring the presence of the 

first tone). 

Having obtained the self suppressed responses due to the two primaries in isolation, 

their mutual suppression must be calculated. In this case, the two primary responses at 

each point are again converted back into the time domain and added together to give the 

total waveform of the CP active pressure. As before, this is passed though the hyperbolic 

tangent function to obtain the waveform of the quasihnear active pressure, which is then 

transformed to the frequency domain as before. The new effective ZCA,QL at the two 

frequencies is then calculated in the frequency domain, and used to recalculate the total CP 

response. This continues iteratively until the solutions for the two frequencies are stable. 

The quasilinear assumption remains valid provided that the amplitude of the CP response 

due to the presence of distortion products OAEs is much less than that due to the primary 

tones. 

It should be borne in mind that the details of cochlear nonlinearity are not at all well 

understood, and that, as with all models, the model of Kanis and de Boer includes many 

assumed characteristics and parameter values. Therefore its predictions are unlikely to be 

quantitatively accurate, and should be treated with some caution. Despite this, this model 

may still produce informative results which are unobtainable with linear models. The 

nonlinear model was used to predict the modified shape of the TW in the self-suppression 

and two-tone suppression cases. 

4.6.5 The Middle Ear, Ear Canal and OAE Probe Model 

A model of the middle ear, ear canal and OAE probe are required to complete the full 

mathematical model, and allow SFOAEs in the ear canal to be predicted. For brevity, these 

three models will be referred to collectively as the 'front end model'. 

The middle ear and ear canal can be represented by a two-port network (as in Kemp, 

1980; Shera and Zweig, 1993a): 
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'Tn 

Qst, J21 
^ [4JW] 

where p denotes the acoustic pressure, Q the acoustic volume velocity, subscripts EC and 

St indicate locations at the entrance to the ear canal and stapes respectively, and the matrix 

elements Ty define the transmission through the outer and middle ear. All terms are 

complex, and functions of frequency. 

The OAE probe is represented as an acoustic volume velocity source, Qsrc, with an 

acoustic source admittance, Ysrc • The actual ear canal pressure and volume velocity are 

then given by: 

PEC = y 
r [4.21] 

'Src + ̂ EC 

where YEC is the ear canal admittance, which must be calculated from the models of the 

cochlea, middle ear and ear canal. The ear canal admittance can be related to the stapes 

impedance, F& , by manipulating [4.20] to give: 

y"" [4.22] 

21^St 

Thus, in addition to the cochlear model, the model becomes fully specified (at any given 

stimulus frequency) when the six additional complex numbers defining the front end model 

are specified. These are: Qsrc, Ysrc, and the four terms in Ty. 

With this full model, the boundary condition given in [4.5] is no longer directly 

applicable, since the stapes velocity is not explicitly defined. Instead, specifying the 

volume velocity at the source, Qsrc, leads to a system of simultaneous equations which 

must be incorporated into the matrix equation representing the finite difference 

approximation to [4.4]. The system comprises equations [4.21] and [4.22], plus the 

following relationship for the stapes admittance in terms of the semi-difference pressure 

and semi difference pressure gradient, both evaluated at the base of the cochlea: 
= 6 a / f a 

where 

BL2% 1 dp^ 
Qst = ^st^st; ^st ~ ilcop dx 

/ ' a = 

and where Ast is the area of the stapes. 

x=0 
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Three front end models have been used in this thesis. The first is a perfectly 

transparent middle ear coupled to an OAE probe with a purely resistive admittance, which 

leads to negligible multiple reflection of the cochlear TW (discussed in section 4.9). This 

is similar to that used by Kanis and de Boer (1993b). The model is specified by T\i = 56, 

T22 = 1/56, T\2 = T21 = 0, and Fgrc = 2.941 m'^skg'^ for all stimulus frequencies. The value 

of Fsrc was chosen to match the typical admittance seen looking into the ear canal, between 

1 and 2 kHz. This ensures that, when a backward TW in the cochlea encounters the stapes 

it is largely dissipated by the source admittance, rather than being reflected. This model 

will be referred to as the 'ideal front end model'. 

The second front end model has an identical transparent middle ear to the ideal front 

end model, but is coupled to an OAE probe with zero admittance, leading to perfect basal 

reflections (discussed in section 4.10). The model is specified by Tn = 56, T22 = 1/56, 

T\2 = T21 = 0, and Fsrc = 0 for all stimulus frequencies. This model will be referred to as 

the 'high reflection front end model'. 

The third front end model is a more complex and realistic model due to Kringlebotn 

(1988), in which the values of Ty are strongly frequency dependent. The OAE probe is 

treated as a perfect volume velocity source, achieved by setting the admittance, Fsrc = 0. 

This gives a strongly reflective termination of the cochlea at the stapes. Note, however, 

that the stapes is still not a perfect reflector of backward cochlear TWs, because of 

dissipative elements in the middle ear which are included in the values of Tjj. This model 

will be referred to a the 'Kringlebotn front end model'. 

4.6.6 Numerical Solutions to the Longwave Model 

The method of solution of equation [4.4] chosen in this thesis is the finite difference 

method outlined by Neely and Kim (1986). Because of its apical and basal boundary 

conditions, it is a boundary value problem, which must therefore be solved via 

simultaneous equations. Typically the CP is discretized into about 1000 - 2000 points, 

leading to a matrix equation that can be solved in seconds on a Pentium n PC to give the 

ear canal impedance for any given single frequency. 

The quasilinear models are solved using an identical method to the linear models. 

They are, however, much slower because many iterations are required (at any given pair of 

primary stimuli) before the response converges. In addition, at each point on the CP, and 

for each iteration, it is necessary to convert the response into and out of the time domain, 

thus increasing the computational burden substantially. 
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4.7 Some Important Features of Cochlear Models and their Responses 

4.7.1 The Wave Nature of the Cochlear Response 

Equation [4.4] would reduce to the simple wave equation if the CP impedance were 

purely stiffness controlled (i.e., the stimulus frequency were well below resonance), and if 

the stiffness were varying only very slowly with place. This situation is approached near 

the base of the cochlea for low frequency stimuli. This resemblance to the wave equation 

also illustrates the wave bearing nature of the cochlea. Mechanical wave propagation 

requires a spatial distribution of two types of energy store: kinetic and potential. In the 

cochlea, the kinetic energy is stored in the motion of the cochlear fluid, whilst the potential 

energy is stored in the stiffness of the CP. Note that at frequencies above the characteristic 

frequency at a given place, the impedance becomes mass-like rather than spring-like and 

thus no longer acts as a potential energy store. Consequently TWs no longer propagate in 

this region^^ (Patuzzi, 1996). 

There are a number of important differences between the equation [4.4] and the 

simple 1-D wave equation familiar from acoustics, in which the phase speed is both real 

and independent of frequency and place. In equation [4.4] the phase speed, CTW is a 

function of both % and co, and is a complex number which may lie in any one of the four 

quadrants of the complex plane. This gives rise to very complicated TW behaviour, even 

for this simplified 1-D, linear model. In fact, in the general case of equation [4.4], where 

the phase speed term, CTW , is allowed to be any arbitrary function of %, the mechanical 

response of the cochlea, as defined by the solution,/?rf(x), of [4.4], cannot always be 

represented simply as the sum of forward and backward going "waves". In these cases, the 

definition of terms such as "wave" and "reflection" can become complicated. The general 

problem is discussed by Kaembach et al. (1987), Shera and Zweig (1991a, 1991b, 1993a), 

de Boer and MacKay (1980), de Boer et al. (1986), Viergever and de Boer (1987), and 

Talmadge et al. (1998). 

One important result arising from these analyses is as follows. Cochlear models 

which have no scattering impedance are approximately "reflectionless" in the sense that no 

ripples appear in the frequency response function of the driving point acoustic impedance 

^ The TW is said to be "evanescent" in this region. 
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measured at the oval window^. This result holds whether or not the cochlear amplifier is 

present, provided that the CP impedance varies only slowly with place (as is the case with 

the model parameters specified in section 4.6). This allows SFOAEs from the cochlear 

models to be defined in terms of the difference in the response measured in the ear canal 

between a reflecting and a reflectionless cochlear model. At first sight this may appear to 

differ from the definition of OAEs in terms of their origin in active cochlear processes 

(section 2.1). However, as is discussed in sections 3.4 and 5.3, it turns out that the cochlea 

is approximately reflectionless if either the scattering impedance or the cochlear amplifier 

impedance is zero. 

A second useful result that arises when the scattering impedance is zero and when the 

spatial variation in the CP impedance^^ is slow is that a simplified method of solution of 

the wave equation [4.4] can be used. This method, known as the Wentzel-Kramers-

Brillouin (WKB) method, obviates the need for the finite difference solution method 

described earlier (Zweig et al., 1976; Shera and Zweig, 1991b; de Boer, 1996; Talmadge et 

al., 1998; Viergever and Diependaal, 1986). It has been shown that the WKB method is 

applicable to most active and passive cochlear models over a wide range of stimulus 

frequencies (provided the scattering impedance is zero) (Shera and Zweig, 1991b). The 

fact that the WKB method is valid also provides insight into the nature of the mechanical 

response since it allows the response to be written as the sum of forward and backward 

going waves. This further illustrates the wave bearing nature of the cochlea and allows the 

flow of wave energy within the cochlea to be easily identified. The validity of the WKB 

method impUes that the cochlea is reflectionless^ as discussed above. However, the 

reverse is not necessarily true; the cochlea may be reflectionless without the WKB method 

being applicable (Shera and Zweig, 1991b). The WKB method has been used in this thesis 

to check the results of the finite difference method, but has not been used for the final 

results since it is not directly applicable when the scattering impedance is non-zero. 

It is sometimes mistakenly reported (e.g., Pickles, 1988, p. 49) that backward TWs 

are prohibited by the spatial variation in the BM properties. This appeared to be 

demonstrated by an experiment in which acoustic stimulation at the apex of a cat cochlea 

appeared to generate a forward TW originating at the stapes, rather than the expected 

backward TW (Lighthill, 1981, p. 178). A full explanation for this apparently paradoxical 

^ Contradicting this general result, Talmadge et al. (2000) present results from a 'smooth' cochlear model 
which show some reflections arising purely from cochlear nonlinearity. However, these nonlinear reflections 
give rise to ripple with very high frequency spacing (i.e., high periodicity), and to ripple amplitudes that are 
generally much less than those due to the scattering impedance. 
^ More strictly the wave impedance, which is related to the CP impedance, and the height of the scalae. 
^ When the WKB method applies, reflections can only arise at the boundaries of the CP. 

76 



result is given by Lighthill (1981). Qualitatively, this argument is most easily understood 

by considering a volume velocity excitation of the apical wall of the cochlea which is 

symmetric in the upper and lower channels^^. Symmetric excitation (i.e., push-push) does 

not couple to the cochlear TW, but instead generates a 'fast' compression wave that travels 

backward (in both channels) to the base of the cochlea. Here it encounters asymmetric 

boundary conditions due to the different impedances of the oval and round windows. This 

gives rise to asymmetric velocities in the upper and lower channel, which in turn give rise 

to a forward cochlear TW, as observed (recall that only asymmetric loading couples to the 

TW). Even if the apical excitation is not purely symmetric, any symmetric component will 

still generate a significant fast wave followed by the forward TW. Also, any asymmetric 

component will only initiate a significant backward TW if the stimulus frequency is lower 

than the characteristic frequency at the cochlea apex. Therefore it is easier to generate 

forward cochlear TWs than backward ones using an apical volume velocity source. Note 

that this situation does not arise in the case of the cochlear amplifier. To see this, consider 

the hypothetical case in which the cochlear amplifier applies a force at a single point on the 

CP, in the absence of any other excitation. Unlike the previous case, the alternating force 

on the CP leads automatically to a purely asymmetric loading of the two channels. This 

then generates both forward and backward TWs radiating out from the point of application 

of the force. Because there is no symmetric loading, there is no fast wave. 

4.7.2 Validity of the Longwave Model 

The longwave approximation becomes applicable when the wavelength is much 

longer than the height of the channel (de Boer, 1996, suggests kH<\). In this case the fluid 

^-momentum equation may be ignored (as it is in the derivation of the longwave equation). 

The longwave approximations break down as the wavelength of the TW becomes 

much smaller than the height of the cochlear channel, which occurs in the region of the 

peak of the TW envelope. Since it is in this region that SFOAEs are thought to be 

generated, this may seem like a fatal shortcoming of the longwave model for predicting 

SFOAEs. However, it is claimed by Zweig and Shera (1995) that the longwave model 

qualitatively captures all the features of the TW that are essential for SFOAE generation. 

The main feature is the 'tall and broad' TW envelope. A more general argument for the 

use of the longwave approximation in macromechanical models is given by Zweig (1991, 

27 Equally a volume velocity source could be introduced. 
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p. 1246). A discussion of the use of the longwave model for the analysis of self-

suppression, two-tone suppression and DPOAE generation in macromechanical models is 

given by Kanis and de Boer (1993b, 1994, 1997). 

4.7.3 Higher Dimensional Models 

Several 2 and 3-dimensional cochlear models have been developed, which have the 

advantage over 1-D models of more accurately modelling the shape of the TW peak. These 

are discussed by Lighthill (1981), and de Boer (1980, 1996). These could perhaps be 

useful for improving the quantitative predictions of SFOAEs. However, following Zweig 

and Shera (1995), and avoiding excessive complexity, this possibility has not been 

investigated in this thesis. 

4.7.4 Active Processes and Stability 

In active cochlear models, the cochlear amplifier is included in equation [4.4] as a 

(linear) component in the CP point impedance, and is of crucial importance to the 

generation of SFOAEs. Two questions are sometimes asked. Firstly, does the cochlear 

amplifier provide 'undamping' or 'amplification'? Secondly, is the cochlea stable (de Boer; 

1993)? 

'Undamping' means that the active processes act to oppose the passive damping, but 

that overall the CP remains positively damped (i.e., the real part of zQA is negative in some 

regions of the place-frequency plane, but the real part of Zcp always remains positive). 

The predicted response of an active system with undamping is no different from a passive 

system with light damping. It has been argued that the measured cochlear mechanical 

response cannot be explained by undamping alone, but that active amplification is required 

(de Boer, 1983, 1993; Zweig, 1991). Also, SOAEs clearly cannot arise from a system with 

undamping. 

A system with active amplification is one which appears to be negatively damped 

(i.e., the real part of Zcp becomes negative) in certain regions of the place-frequency plane. 

Such a system is capable of injecting energy into the TW to enhance it. As discussed 

previously, this does not, by itself, generate OAEs. Instead it creates a region of the CP in 

which the TW grows, but is not reflected. This is the reverse of the situation where a wave 

propagates through a dissipative system: the amplitude of the wave decays, but no 

reflection occur. 
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In systems with active amplification, the problem of instability may arise, which 

might have undesirable effects on the performance of the cochlea. Two aspects of 

instability have been distinguished in the literature. Firstly a point on the CP, when 

isolated from the rest of the model, may be unstable. This can simply be checked by 

examining Zcp as a function of frequency at each point and applying the usual stability 

criteria for a transfer function (Hsu, 1995). Secondly, and more importantly, the entire 

system may be unstable. This can only be checked by solving equation [4.4], subject to its 

boundary conditions. Because these depend on the middle ear model and on the impedance 

of the OAE probe, so too will the stability of the cochlea. It is this second form of 

instability that is the more important one for this thesis. 

The CP impedance of each element used by Kanis and de Boer (1993b) was unstable 

when in isolation, but became stable when all the elements were coupled together in their 

model. This is because, for any given frequency, there is negative damping over only a 

limited region of the CP. Elements within this region become stabilised by their 

hydromechanical coupling to positively damped regions. Also, Kanis and de Boer (1993b) 

deliberately chose a middle ear model that would prevent instabilities, by minimising any 

basal reflection of the TW. 

The CP impedance suggested by Zweig (1990, 1991) is stable both when in isolation 

(despite having a negative resistance at certain place-frequencies), and when coupled 

together within the cochlea (except at certain frequencies, as discussed below). 

Use of a simple negative damper (i.e., overall negative resistance at all places and all 

frequencies) would lead to both instabihty of the elements in isolation, and when coupled 

together in the cochlea. This type of activity is included in the model reported by van 

Hengel et al. (1996) where strong nonlinearity is proposed to limit the instability. The 

problem of instability in models is discussed by Koshigoe and Tubis (1983) and Zweig 

(1991). 

Cochlear models including active processes of the form given by Kanis and de Boer 

(1993b) or Zweig (1991), though stable at most frequencies, can become unstable at certain 

frequencies when inhomogeneities are introduced leading to reflection of the forward TW. 

These instabilities, arising from multiple reflections due to the CP inhomogeneities and the 

impedance mismatch at the stapes, are thought to be the cause of SOAEs (e.g., Kemp, 

1980; Talmadge and Tubis, 1993; Talmadge et al., 1998). The precise values of these 

frequencies depend on the impedance seen by the TW "looking out" of the oval window, 

and are therefore dependent on the middle ear, ear canal and OAE probe impedances. 
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4.7.5 Scaling Symmetry 

Scaling symmetry arises when all the variables in equation [4.4] are functions not of 

X and independently, but of a single variable, Px-m, defined here as: 

Px-co ~ [4.24] 

(which defines the ratio of the stimulus frequency, co, to the local natural frequency, 

, w h e r e i s the basal natural frequency). This means that cochlear responses 

(such as the fluid pressure or CP velocity) can be represented as a one dimensional curve 

against the y&axis instead of as a 2-D surface above the x-co plane. For this to occur, the 

CP impedance must vary with x and A/in a particular way (Shera and Zweig, 1991a). Note 

that the passive impedance in equations [4.9] and [4.10] is an example of one leading to 

approximate scaling symmetry. (Even greater scaling symmetry arises when the cross-

section of the cochlear scalae tapers exponentially; Shera and Zweig, 1991a). Scaling 

symmetry in the cochlea has two important consequences. The first is that the cochlear 

response shows symmetries that greatly simplify the analysis. The second is that no 

SFOAEs with spectral periodicity are generated. 

The first consequence is that the spatial pattern of the pure-tone cochlear response 

shows shift symmetry. This means that the pure-tone TW magnitude and phase responses 

(i.e., spatial pattern) at two different stimulus frequencies are identical, except for a 

translation in place. It follows then that knowledge of the pure-tone TW response along 

the cochlea at a single stimulus frequency is sufficient to define the response along the 

cochlea at all frequencies. Alternatively, knowledge of the frequency response at any fixed 

point on the cochlea is sufficient to define the frequency response at all places. 

Furthermore, place and frequency show a very simple symmetry. This symmetry means, 

for example, that the graph of the CP velocity plotted against cochlear place at a fixed 

stimulus frequency looks identical to the graph of CP velocity plotted against the logarithm 

of stimulus frequency at fixed place. Thus cochlear place and the logarithm of stimulus 

frequency become completely interchangeable (requiring only multiplication by a simple 

scaling factor). 

The second consequence is that the phase response of any SFOAE from a scaling 

symmetric cochlea is virtually flat with frequency. This is unlike the steep phase curve 

which is approximately linear with logarithmic frequency, and which is observed 

experimentally. This result led Kemp (1986) to conclude that the observed SFOAEs could 
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not arise from a 'wave-fixed' reflection site. This result is further discussed by Strube 

(1989), Zweig and Shera (1995) and Shera and Guinan (1999). 

In the theory of Zweig and Shera (1995), the cochlea shows only partial scaling 

symmetry. They argue that, to a first approximation, the cochlea shows scaling symmetry 

with regard to its primary response (i.e., the shape of the forward TW). However, place 

fixed features in the cochlea cause a break from scaling symmetry leading to lead to 

secondary responses such as SFOAEs. These secondary responses are, in general, 

significantly less than the primary responses. To achieve this situation in their cochlear 

models, the passive and active CP impedances in equation [4.8] show approximate scaling 

symmetry, whilst the scattering impedance does not. Thus, the scattering impedance 

provides the break from scaling symmetry which leads to the generation of realistic (long 

latency) SFOAEs in the first place, whilst the passive and active impedances show the 

approximate scaling symmetry which leads the scattering sites to generate SFOAEs of 

approximately constant periodicity. 

4.7.6 Alternative Formulations of Published Cochlear Models 

In this section, the cochlear models used in this thesis are compared with other 

models found in the literature. Often the longwave equation [4.4] is implemented as a 

discrete 1-D transmission line, where the cochlear fluid mass and the CP mechanics are 

replaced by their electrical analogues. These transmission line models are essentially the 

same as the discrete form of the wave equation described above. A comparison of several 

transmission line models demonstrating their high degree of equivalence is given by de 

Boer (1995). 

Models have been developed with several different objectives in mind. One 

objective has been to match those cochlear responses that have been measured directly in 

experiments, such as BM vibration, or hair cell potentials, or neural responses (e.g., 

Zwicker, 1979; Neely and Kim, 1986; Geisler, 1991; Kolston, 1988; Kolston and 

Smoorenburg, 1990; Neely, 1993; Zweig, 1990, 1991; Allen, 1988, 1990; Kanis and de 

Boer, 1993a). Some of these models include a cochlear amplifier in some form, and also a 

more detailed micromechanical model, but they all exclude the scattering impedance 

required to predict SFOAEs. 

Kanis and de Boer (1997) included a nonlinear cochlear amplifier which leads to the 

generation of DPOAEs from the model, but exclude a scattering impedance, and therefore 

are unable to generate SOAEs, SFOAEs or TEOAEs. 
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Of more direct relevance are models that include both a cochlear amplifier and a 

scattering impedance. These include models reported by Furst and Lapid (1988), 

Fukazawa (1992), Fukazawa and Tanaka (1996), Zwicker and Lumer (1985), Zwicker and 

Peisl (1990), Zweig and Shera (1995), Talmadge et al. (1998) and Wada et al. (1999). The 

main results of these models can be reproduced using the model developed here. These are 

presented in section 5.3. 

4.8 Zweig and Shera's Phenomenological Model of SFOAEs 

Zweig and Shera (1995) present a simphfied analysis of the 1-D longwave model, 

which gives a useful approximate relationship between the reflectance measured at the base 

of the cochlea, the shape of the TW and the CP scattering impedance. This relationship 

holds for a large class of scattering impedance functions^^, not just the random function 

proposed by Shera and Zweig. In this thesis, this simplified model has not been used to 

generate any of the final quantitative predictions in this thesis. However, it is introduced 

here because of its power in explaining the basic form of SFOAEs. 

The basal reflectance (introduced in section 2.2) relates the backward TW to the 

forward TW at the base of the cochlea. Being evaluated at the base of the cochlea, it 

contains information about both the scattering mechanism and the TW propagation to and 

from all the scattering sites apical to the base. The phase of the reflectance is related to the 

overall delay arising from TW propagation as well as to any phase changes induced by 

scattering. The magnitude of the reflectance is related to the amplification or dissipation of 

the TW occurring during propagation, as well as to the degree of backward scattering. As 

seen in fig. 2.4 and 2.5, the form of this basal reflectance closely resembles the SFOAE 

measured in the ear canal. In fact the two are related by a fairly simple equation given in 

the next section. 

In the phenomenological model, it is first assumed that the primary cochlear 

responses exhibit scaling symmetry, which means that it is possible to transform cochlear 

location directly onto a stimulus frequency scale (as discussed in section 4.7.4). Second, it 

is assumed that the scattering impedance, Zsc, is roughly independent of frequency (as it 

would be if the inhomogeneities were only in the CP damping). Zweig and Shera then 

show that the relationship between the cochlear reflectance, R, the CP scattering 

For this relationship to hold, the scattering impedance must be independent of stimulus frequency, but may 

have any arbitrary spatial variation. 
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impedance, Zsc, and the TW function, T, can be cast in the form of a simple linear filtering 

operation: 

7](a)) = - \n{co / Q)c^) [4.25] 

©(x, CO) = In 
CO 

-x! d 
— - 77(6/) 

where R is the cochlear reflectance; psc is called the scattering potential, and is roughly 

proportional to Zsc; T is the TW function defined as the basilar membrane velocity, vcp, 

normalised with stapes velocity, Ust', and ® denotes convolution. Scaling symmetry 

ensures that T is a function of a single variable, 9 , rather than of both x and A) (Note that 

0 = In Px-o) where Px-m is given in [4.24].) The independent variable in the filtering 

operation, t], is the natural logarithm of the stimulus frequency, normalised with a 

reference frequency as in [2.11]. This quantity is denoted by % in Zweig and Shera's 

notation (1995). 

From equation [4.25], the mathematical recipe for generating the reflectance 

spectrum is as follows. To form p s d v ) ^ first plot the scattering potential as a function of 

cochlear place, x, then map place to the characteristic frequency using [4.10]. Plot this on a 

logarithmic frequency scale, denoted by rj. To form T{r]), plot the CP velocity response 

against place, x, at a single frequency, normalise with the stapes velocity, and again map 

place to the log frequency variable, r] as before. To obtain R^rj), psdr]) '!^ passed 

through a filter whose impulse response function is given by T{rj). Thus R i t ] ) contains 

the spatial frequency components in psc {rj), filtered by the spatial passband of the TW. 

Physically the act of sweeping the stimulus frequency is to sweep the TW peak across 

the CP inhomogeneities. The forward TW in the peak region is reflected by spatial 

arrangements of the inhomogeneities that have a spatial period equal to half the TW 

wavelength. The forward TW outside the peak region is too small to give strong 

reflections. 

Fourier transforming equation [4.25], gives: 

[4.26, 
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where F{...} denotes the Fourier transform, from the logarithmic frequency variable, rj, to 

its conjugate, as defined by; 

F{A} = ^ A(rj)exp(-i2n:^rj)dr] [4.27] 

For Shera and Zweig's model, F {R} appears pulse like in the ^domain. The peak 

of the pulse occurs at a location called here the ^centre value and denoted by ^c- (Zweig 

and Shera (1995) denote this ^ /iTT. The value of 2 a r i s e s from their definition of the 

Fourier transform, which maps time to radian frequency). The value of is related 

directly to the 'average' single-ripple spectral periodicity, V, of the SFOAE, by the 

equation (Zweig and Shera, 1995): 

y = = — [4.28] 

where, in humans, typically T = 1/15. In [4.28] A/is the peak to peak frequency interval, 

and fcMF is the geometric mean frequency of two adjacent peaks. It follows from [2.15] 

that (Zb is also equal to the group cycle delay, 0GCD • 

The following terminology will be adopted to distinguish the various different 

independent variables used in representing the SFOAE and related signals. The term 

'frequency spectrum' indicates that the signal is tabulated as a function of linear 

frequency,/. An '77-series' or '//-function' indicates that the signal is tabulated as a 

function of the logarithmic frequency, 77. The term '^spectrum' indicates the signal has 

first been mapped to the //-domain, and then Fourier transformed to the (Z>-domain, by 

[4.27]. 

This phenomenological model allows the cochlear reflectance to be estimated for a 

given scattering potential and TW function. Fig 4.4 illustrates the form of the reflectance 

that results from the interaction between a random array of CP inhomogeneities, and a 

simplified TW function. This TW function represents the peak region only, and has been 

approximated by a simple pulse shaped envelope and a linear phase (i.e., a constant 

wavelength). The cochlear reflectance has been synthesised digitally in Matlab by 

generating a white-noise signal to represent the spatially random scattering potential. This 

is then passed through a band-pass filter representing the TW function. The resulting band-

pass signal then gives the estimated cochlear reflectance as in [4,26]. In fig 4.4, 

cochlear location, x, and spatial frequency have been transformed into rj and ^respectively. 
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Fig 4.4. Illustration of the predicted cochlear reflectance due to spatially random inhomogeneities, according 
to Zweig and Shera's phenomenological model (1995). The cochlear reflectance has been synthesised from 
an assumed scattering potential and travelling wave function. The scattering potential is a broad band random 
function of place, with place transformed to rj via the place-frequency mapping. A simplified travelling wave 
function with linear phase and gaussian envelope has been assumed. The reflectance is calculated from the 
convolution of the scattering potential with the travelling wave function in the ?7-domain, where r] is the 
logarithm of the stimulus frequency, normalised with the characteristic frequency at the stapes. Panel (a): 
Scattering potential, modelled as a broad band random irregularity along the basilar membrane. Panel (b): 
simplified travelling wave function modelled as a single pulse of constant wavelength. Panel (c): resulting 
cochlear reflectance. Panels (d), (e) and (f) are the Fourier transforms of (a), (b) and (c) respectively, where (j) 
is the conjugate Fourier variable. 
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Fig 4.5. Illustration of the predicted cochlear reflectance due to spatially periodic inhomogeneities, according 
to Zweig and Shera's phenomenological model (1995). The cochlear reflectance has been synthesised from 
an assumed scattering potential and travelling wave function. The scattering potential is a periodic function 
of place, as suggested by Strube (1989), with place transformed to rj via the place-frequency mapping. A 
simplified travelling wave function with linear phase and gaussian envelope has been assumed. The 
reflectance is calculated from the convolution of the scattering potential with the travelling wave function in 
the yy-domain, where T] is the logarithm of the stimulus frequency, normalised with the characteristic 
frequency at the stapes. Panel (a): Scattering potential, modelled as a broad band random irregularity along 
the basilar membrane. Panel (b): simplified travelling wave function modelled as a single pulse of constant 
wavelength. Panel (c): resulting cochlear reflectance. Panels (d), (e) and (f) are the Fourier transforms of (a), 
(b) and (c) respectively, where (j) is the conjugate Fourier variable. 

86 



Fig 4.5 shows the synthesised reflectance resulting from a Strube type CP corrugation 

interacting with the same simplified TW function. This was synthesised in Matlab as 

before except that a sine wave is used in place of the white noise signal to represent the CP 

scattering potential. 

These two figures illustrate several important points. The ^domain is related to the 

spatial domain by the Fourier transform. Thus central location of a function in the (j)-

domain (which will be referred to as the ^centre value of the function) corresponds to a 

spatial frequency, whilst the width of the function in the ^domain (which will be referred 

to as the ^bandwidth of the function) is inversely related to the width of the function in the 

spatial domain. In the Shera and Zweig model, the periodicity in the reflectance (and 

therefore in the SFOAE frequency function) is determined predominantly by the location in 

the ^domain of the peak in the Fourier transform of the TW function. This peak location 

is determined by the wavelength. (Notice, however, that the peak of the reflectance in the 

^domain does not coincide exactly with the peak in the TW in the ^domain, because of 

the random nature of the scattering potential.) In contrast, in the Strube model, the 

periodicity is determined by the location in the ^domain of the peak in the Fourier 

transform of the scattering potential function, which is determined by the spatial period of 

the cochlear inhomogeneities. Thus in Shera and Zweig's model it is the TW wavelength 

which determines the periodicity, whilst in Strube's it is the corrugation wavelength. This 

is important because it means that according to Shera and Zweig's model, but not Strube's 

model, changes in the TW function will show up in the SFOAE frequency function. For 

example, increasing the level of the input signal is known to cause the (normalised) TW 

envelope to reduce in height, to broaden, and for the wavelength increase. For Shera and 

Zweig's model, these three changes will manifest themselves in the ^domain of the 

SFOAE as a reduction in height, a narrowing of width^^ and a shift in the peak towards 

smaller values of This thesis sets out to look for experimental confirmation of these 

effects predicted by Shera and Zweig. 

It could be argued that the SFOAEs arising from Strube's model (fig. 4.5) are 

unrealistically regular. However, this is not a fundamental objection to Strube's theory. 

More realistic SFOAEs would have been obtained in fig. 4.5 if the spatially periodic 

scattering potential (fig. 4.5a) were replaced with a narrow-band random scattering 

potential. This model could then be thought of as lying somewhere between Strube's 

proposed periodic scattering potential and Shera and Zweig's broad band random scattering 

This follows from the 'inverse spreading' relationship which holds between a pulse-shaped function and its 
(pulse-shaped) Fourier transform (e.g., Randall, 1997). 
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potential. However, there remains an essential difference between the two theories: in 

Strube's theory the periodicity is determined predominantly by the spatial periodicity in the 

CP scattering potential (i.e., the input to the spatial filter), whereas in Shera and Zweig's 

model the periodicity arises from the TW wavelength near the peak of the TW function 

(i.e., the centre frequency to the spatial filter). From consideration of Shera and Zweig's 

phenomenological model, it can be seen that, provided the ^bandwidth of the CP 

scattering impedance function is significantly less than that of the TW function, and that its 

^centre value falls within the pass-band of the TW 'spatial filter' then the resulting 

SFOAE periodicity will be dominated by the spatial periodicity of the CP scattering 

potential, as suggested by Strube. Thus a model may be described as a Strube model 

whenever the SFOAE periodicity is dominated by the spatial periodicity of the CP 

scattering potential, rather than by the wavelength at the TW peak. 

The form of the cochlear reflectance and of the SFOAE predicted by Shera and 

Zweig's phenomenological theory with spatially random inhomogeneities is further 

illustrated in fig. 4.6. For ease of interpretation in this (and subsequent) illustrations of 

signals in the ;;-domain, the value of 77 will be converted by a linear transformation into the 

more familiar units of octaves, denoted rjoct as in [2.10]. These are calculated with respect 

to an ar6ifrary r e & r e n c d % q u e n c y , , chosen here to be 1 kHz. 

ln(2) 

Note that a^f^rtor y ^ ^ o u t 0.69 is introduced in converting rj to r]oct- Thus, if the function 

when gAotted ag^^t^ ripple cycles per octave, (i.e., a ripple period of 

1/10 octaves) then the ^spectrum will show a peak at around 10/0.69 = 15, indicating a 

periodicity of 1/15. Note that the conversion to octaves has not been made in figs. 4.4 and 

4.5, since these plots emphasise the fundamental filtering relationships, where the change 

of variable would be confusing. 
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Fig 4.6 Representations of the complex cochlear reflectance synthesised using Zweig and Shera's 
phenomenological model (1995) with a random scattering potential. Panels (a) and (b): the real and 
imaginary parts plotted against the rjoa (the octave form of the logarithm of the normalised stimulus 
frequency). Panel (c): real part plotted against the imaginary part. Panels (d) and (e): the magnitude and 
phase of the reflectance plotted against the variable. 
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Fig 4.6 shows how the periodicity appears in several alternative representations of the 

cochlear reflectance, if, in the 77 (or log frequency) domain, as predicted by Shera and 

Zweig's phenomenological theory. According to this theory, F { T ^ } is one sided (i.e., it 

is non-zero only for positive values of (j)). Consequently, from equation [4.26], F { ^ } is 

also one sided, and therefore the function R i i j ) has a special form known as the analytic 

form, whereby the real and imaginary parts of R form a Hilbert transform pair. As has 

already been discussed in section 2.13, this means that in the /^-domain, the real part of R 

resembles the imaginary part delayed by 90°, as is seen in figs 4.6 (a) and (b). The 

periodicity of the SFOAE, which is here approximately 1/15, shows itself as a ripple in the 

real and imaginary parts in figs 4.6 (a) and (b) with a peak-to-peak interval, of about 

1/10. Fig 4.6 (c) shows how, as the stimulus frequency increases, the locus of R loops 

around the origin of the complex plane, at a rate of one cycle per increment in rjoct of 1/10. 

Figs 4.6 (e) and (f) show that the magnitude of the reflectance is typically around 0.2, while 

the slope of the phase is roughly constant, at about one cycle per increment in rjoct of 1/10. 

The periodicity does not show up at all in the magnitude of R shown in fig. 4.6 (d). The 

random fluctuations seen here are determined by the ^bandwidth rather than the ^centre 

value. The cochlear reflectance in fig. 4.6 resembles the idealised OAE (in the absence of 

multiple reflections) shown in fig. 2.4, except that its magnitude fluctuates randomly with 

frequency. 

4.9 Relating the Ear Canal Pressure and the SFOAE Frequency Spectrum to 

the Cochlear Reflectance 

The relationship between the SFOAE pressure, psF, at the probe microphone and the 

cochlear reflectance, R, has been derived by Kemp (1980) and Shera and Zweig (1993a). 

This analysis uses a two-port network model of the middle and outer ear, coupled to the 

cochlear input impedance which is characterised in terms of the cochlear reflectance and 

non-reflecting impedance. The result from Shera and Zweig (1993a) is given in equation 

[4.30]: 

eR T 
Ph = ~ p ~ + /"if + {rR) +...) 

l-rR 

[4J0] 
PEC:R=0 

PSF = PEC ~ PEC:R=O 
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Here pEC is the ear canal pressure measured for a cochlear reflectance of R whilst pEC:R=Q is 

the ear canal pressure that would have been measured if the cochlear reflectance were zero. 

The SFOAE pressure, psF, is defined as the difference between these two (complex) 

pressures. The non-dimensional quantity, jja , which will be referred to as the 'normalised 

SFOAE', is obtained by dividing the SFOAE pressure, j j s f , with the zero-cochlear-

reflectance ear canal pressure, The functions g and r are related to the middle ear, 

ear canal, and probe impedance characteristics. They can be calculated from the front end 

model parameters given in section 4.6.5. All terms are complex functions of frequency. 

The expansion for/;a shows how the SFOAE can be represented as the sum of multiple 

reflections within the cochlea (cf. equation [2.4]). The quantity, r (termed the basal 

reflectance) is the reflectance at the stapes as seen by a backward TW leaving the cochlea, 

whilst R (the apical cochlear reflectance) is the reflectance due to the CP scattering 

inhomogeneities encountered by a forward TW. Therefore the forward wave of amplitude 

A returns to the stapes as a backward wave of amplitude AR, which is further partially 

reflected at the stapes to give a new forward wave of amplitude ArR and so on. Each time 

the backward wave encounters the stapes, a proportional of the energy is transmitted out 

into the ear canal. These multiple backward waves sum in the ear canal to give the 

measured OAE. As for the idealised OAE considered in fig. 2.5, the magnitude of R 

determines the size of the first reflection, whilst the product rR determines how significant 

multiple reflections are. 
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Fig 4.7. Representations of the complex normalised SFOAE pressure synthesised using Zweig and Shera's 
phenomenological model (1995) with a random scattering potential, and assuming that^ = 1; r = 1 in 
equation [4.30]. Panels (a) and (b): the real and imaginary parts plotted against the variable. Panel (c): 
real part plotted against the imaginary part. Panels (d) and (e): the magnitude and phase of the reflectance 
plotted against the variable. Thick line = complex normalised SFOAE pressure; thin line = cochlear 
reflectance. 
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Fig 4.8 The effect of multiple reflections due to the middle ear on the predicted normalised SFOAE pressure 
in the and ^ domains. Data have been synthesised using Zweig and Shera's phenomenological model 
(1995) with a random scattering potential. Panel (a) shows the cochlear reflectance (solid line = real part; 
dotted line = imaginary part); (b) shows the normalised SFOAE resulting from the cochlear reflectance with 
the parameters, g = 2\r= 1 both assumed independent of frequency (solid line = real part; dotted line = 
imaginary part); (c) and (d) are the Fourier transforms of (a) and (b) respectively, where $ is the conjugate 
Fourier variable to 
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Fig 4.9. Representations of the complex ear canal pressure synthesised using Zweig and Shera's 
phenomenological model (1995) with a random scattering potential, and assuming thatg = 1; r = 1; Pi-c n = o = 
20 i^Pa in equation [4.30]. Panels (a) and (b): the real and imaginary parts plotted against the rjoa- Panel (c): 
real part plotted against the imaginary part. Panels (d) and (e): the magnitude and phase of the reflectance 
plotted against the %crvariable. Solid line = ear canal pressure; dotted line = ear canal pressure for a 
reflectionless cochlea. 
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Fig. 4.7 shows alternative representations of/7a in the -domain, for a case where 

multiple reflections are significant ( r = 1, and the rms amplitude of R is 0.25). It shows 

similarities to the idealised OAEs seen in fig. 2.6, except for the random fluctuations in R. 

The effect of multiple reflections is to change the approximately sinusoidal ripple in Im{/?} 

to a ripple in Im{ PA } approaching a tangent function (fig. 4.7a and b). Also note from 

[4.30] the real and imaginary parts of p^ , like those of R, form a Hilbert transform pair 

(i.e., they are shifted by 90° relative to one another). Fig 4.7 (c) shows that the multiple 

reflections shift the locus of PA to the right hand side of the complex plane. The size and 

direction of this shift depends on the magnitude and phase of rR. Fig 4.7 (d) and (e) show 

that multiple reflections cause ripples in the magnitude and phase of PA that would 

otherwise be absent. These ripples have the same periodicity of about 1/15 as is seen in the 

real and imaginary parts. The average slope of the phase of PA also equals the periodicity. 

From this it can be seen that the group delay at any given stimulus frequency, which is 

determined by the slope of the phase of PA when plotted against linear frequency, will be 

related to the periodicity and the value of the stimulus frequency. 

Generally | r/? | <1 and therefore the binomial series expansion, [4.30], converges. 

However, it is postulated that sometimes, since R involves active amplification, it is 

possible that | /? | >1 (Kemp, 1980; Zweig and Shera, 1995; Talmadge et al, 1998). If 

rR = I, such that a doubly reflected wave is neither reduced in amplitude, nor altered in 

phase, then the wave becomes self sustaining. As discussed in section 3.6, this 

phenomenon is thought to be the origin of SOAEs. 

Fig 4.8 illustrates how the presence of multiple reflections appears in the ^domain. 

The single pulse inF { R } appears as a series of pulses of decreasing amplitude in 

F { PA}, centred at multiples of the fundamental ^centre value (here equal to 15). These 

predicted forms of PA and F {PA} are important, because PA (unlike i? ) is a directly 

measurable quantity. 

The relationship between the actual ear canal pressure and the normalised SFOAE, 

can be found by rearranging [4.30], to give [4.31]: 

Pec - Pec:r=oo- + Pa) [4.31] 

This is illustrated in fig. 4.9 for a case where the zero-cochlear-reflectance ear canal 

pressure, pec;r=o is independent of frequency. Unlike pa , the ear canal pressure, pec shows 

ripples in both its magnitude and phase, even in the absence of multiple reflections. The 
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locus of PEC in the complex plane is equal to that of /?a (fig. 4.7 c), plus an offset of 1, and 

with an additional scale factor. See also the phasor diagram, fig 2.2, for comparison. 

In the macromechanical models, the actual values of g and r depend on the front end 

model and on the impedance of the ear canal for a zero-reflectance cochlea. For the ideal 

front end model (section 4.6.5), g ~ 1 and r~0, independent of stimulus frequency. Thus, 

in this case, basal reflections are negligible, and the SFOAE is approximately equal to the 

cochlear reflectance. For the high reflection front end model, g = 2 (due to the pressure 

doubhng) and r=l. For the Kringlebotn front end model (section 4.6.5), over the 

frequency range of interest (1.5-3 kHz), the value of |g | varies from - 9 down to -26 dB, 

and of |r I from 0.4 up to 0.7. It is this fall off in the function, g, that is responsible for the 

fall off in measured SFOAEs as the stimulus frequency increases above about 1.5 kHz. 

4.10 Relating the Observed SFOAE Periodicity to Travelling Wave Shape 

According to equations [4.26] and [4.30] the periodicity of the normalised SFOAE, 

p^ , is characterised by the location of the peak of the ^spectrum, denoted by (Zt (cf. 

section 2.11). This in turn is related to the slope of the phase of the TW function near the 

TW peak, which is inversely proportional to the TW wavelength. This leads to the 

following relationships (Zweig and Shera, 1995): 

W = ^ ~ — = 1/15 (humans) 

= ./2 - jfi 

/CMF = V /1/2 

where/ i a n d a r e adjacent peaks in the ripple in magnitude of PEC ; A: is ^centre value 

(i.e., the location of the peak of the ^spectrum); A is the TW wavelength near the TW 

peak; and d defines the place-frequency mapping (giving the distance along the BM over 

which the characteristic frequency changes by a factor of e ). It has been estimated that 

d ~ 7.2 mm (Zweig and Shera, 1995), and thus, from the estimates of periodicity, Y, from 

measured SFOAEs, equation [4.32] gives an estimate of the peak TW wavelength 

o f A - 0.96 mm. The importance of this is that any changes in the TW wavelength in the 

peak region will cause a corresponding change in the periodicity. 

As well as the ^centre value, </>c , we are also interested in the (Z)-bandwidth. This is 

the width of the peak of F { /;a } in the (z)-domain, as seen in fig. 4.8d. This quantity is 

denoted by B̂W and also shows up in the various 7;-domain representations in fig. 4.6 and 

96 



4.7. A large (pBw shows up as large envelope modulations in the real and imaginary parts of 

/?A , and in the fluctuations seen in the magnitude and phase curves. The random nature of 

these fluctuations arises from the random scattering potential seen in fig. 4.4a, whilst the 

value of (pBw is determined by the width of the peak in the F { 7^ } curve. This in turn is 

inversely related to the width of the peak in of in the 77-domain. Thus [4.26] predicts 

that the sharper the TW peak the greater the (z)-bandwidth, and a the less sharply defined 

the periodicity (i.e., the greater the modulation of the ripple pattern envelope). The 

physical explanation for this, according to Zweig and Shera (1995), is that the lower the 

'Q' factor, the broader the TW peak, the more wavelengths it contains, the more coherent 

the scattering within the peak region, and thus the narrower the spread of periodicities in 

the SFOAE. 

Thus the two quantities and are related to two properties of the TW: the 

wavelength in the peak region, X , and the 'Q' factor of the envelope. Note, however, that 

these two properties are not wholly independent. According to Zweig and Shera (1995), 

the square of the TW function, T^, is minimum phase, which means that its magnitude and 

phase are not independent. Thus a reduction in the sharpness of the envelope (for example, 

by disturbing the cochlear amplifier) is accompanied by a reduction in the slope of the 

phase (corresponding to an increase in A ). The significance of this is that changes in the 

travelling wave shape will result in changes in both ^ and (pBw-

Unlike the periodicity itself, this periodicity bandwidth has seldom been reported. 

One exception is the estimate given by Zweig and Shera (1995), obtained by averaging in 

the ^domain across SFOAEs from several subjects, where they obtained 0c ~ 0.5 

(where here denotes the full width of the peak, rather than the half-width used by 

Zweig and Shera, and which they denote A ^ . 

4.11 Definition of Reflectance in Nonlinear Systems 

For a linear system, the terms such as 'reflectance' or 'impedance' refer to complex 

quantities that are functions of frequency only. For a nonlinear system, the situation is 

much more complicated. In the case of SFOAEs, the terms reflectance and impedance 

become level dependent, and are defined as follows. Consider a single pure tone presented 

to the ear. The cochlear nonlinear response in the time domain can be separated into the 

primary or first order response (defined as the response component at the stimulus 

frequency), plus any distortion components, which are discarded. The reflectance can then 
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be defined in terms of the forward and backward components of the primary response. 

Frequency domain equations such as [4.30] can still be used, provided the two non-linear 

terms, R a n d a r e defined in terms of the primary values. (Note, however, that the 

interpretation of [4.30] as the sum of successive reflections can only be used with care). In 

the case of two tone suppression, R andPA (at the stimulus frequency) depend both on the 

level of the stimulus and of the suppressor. Also note that this nonlinear reflectance no 

longer gives a complete characterisation of the relationship between the reflected and 

incident TW. 



5. Predicted SFOAEs from Macromechanical Cochlear Models 

5.1 Objectives 

The primary objective of the cochlear modelling is to obtain predictions of the 

behaviour of the SFOAE periodicity during induced changes in TW shape for two cochlear 

models; the first based on the Shera and Zweig's theory and the second based on Strube's 

theory. Changes in TW shape are to be induced by two methods: self-suppression and two-

tone suppression. SFOAE periodicity is characterised by two signal parameters: the 

^centre value, (pc, and the ^bandwidth, (psw-

A secondary objective is to investigate the influence of various different features in 

the model in order both to better understand these features and to ensure that the model 

results are not overly sensitive to arbitrary choices of model formulation or model 

parameter values. To this end, the following are to be been studied: 

1. the effect of a global change of cochlear amplifier gain, 

2. the effect of different cochlear amphfier formulations (by comparing models containing 

the NK-1986 amplifier with those based on Z-1991 amplifier), 

3. the effect of different spatial variations in the CP scattering impedance (in addition to 

the scattering impedances based on the theories of Strube and of Zweig and Shera), 

4. the effect of any frequency dependency of the CP scattering impedance (by introducing 

a scattering impedance based on a spatially varying CP mass and stiffness in addition to 

that based on CP damping). 

5. the effect of the size of BM inhomogeneities, 

6. the effect of different middle ear models. 

5.2 Specification of Model Variants and Input Stimuli 

The models specified in section 4.6 have been implemented in Matlab 4.2 on a 

Pentium n PC. The Matlab script files defining the basic model are given in appendix n. 

Table 5.1 shows the model variants that were used, together with their stimuli. In all cases 

the stimulus frequency was swept between 1.5 and 3 kHz at 4 Hz intervals, whilst holding 

the OAE probe source level, Qsn , constant, and whilst outputting the ear canal pressure at 

each frequency. This stimulus regime will be referred to as a 'frequency sweep'. The 

reason for choosing this frequency range is discussed in section 8.7. 
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5.2.1 Exploring the Basic Model Response 

Models 1-10 are exploratory cases in which a single frequency sweep was performed 

with various different scattering impedances and cochlear amplifier impedances. In these 

cases, the ideal front end model (i.e., the transparent middle ear coupled to a non-reflecting 

OAE probe) was adopted. The purpose of these cases was to verify that the models gave 

similar predicted SFOAEs to those reported in previous publications, and to those from 

Zweig and Shera's phenomenological model. In addition both NK-1986 and Z-1991 

cochlear amplifier formulations were used to check the sensitivity of the predicted SFOAEs 

to this basic feature of the models. Models 11 and 12 are as models 9 and 10, but with the 

high reflection front end model. 

5.2.2 Modelling The Effect of Varying the Global Cochlear Amplifier Gain 

Models 13-17 examine the effect on SFOAEs of altering the TW shape by globally 

reducing the cochlear amplifier gain. This is achieved by introducing a single attenuating 

factor into equations [4.12] and [4.13] for the cochlear amplifier impedance. For each 

value of the attenuating factor, a frequency sweep was obtained. The front end model 

based on Kringlebotn's model of the middle ear was used. Models 14 and 17 were chosen 

to test Zweig and Shera's theory with a random scattering impedance. Model 15 has a 

spatially periodic scattering impedance, as suggested by Strube (1989). Models 13 and 16 

have a zero scattering impedance, and are included to define the reflectionless ear canal 

impedance, required to define the SFOAE pressure in equation [4.30]. As is shown later, 

this could also be achieved by eliminating the cochlear amplifier, rather than the scattering 

sites. For models 14 and 17, where the scattering impedance is random, each frequency 

sweep has been repeated n times, each time taking a different sequence of random numbers 

used to define the scattering impedance. Averaging was then performed across the 

resulting ensemble of SFOAE frequency sweeps. Typically, n = 32. The details of this 

averaging are discussed in section 5.5. 

5.2.3 Modelling Self-suppression and Two-tone Suppression 

Models 1 8 - 2 1 used Kanis and de Boer's quasilinear method to investigate the effect 

of self-suppression and two-tone suppression on SFOAEs. For the self-suppression 

simulation, frequency sweeps were obtained at various different levels of a stimulus tone. 
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This single tone will be referred to as the 'probe' tone (for compatibility of terminology 

with the two-tone suppression case). In the self-suppression simulations, the nominal 

probe levels ranged from 20 to 80 dB SPL. 

For the two-tone suppression simulation, frequency sweeps were obtained whilst two 

tones are presented simultaneously, the first called the 'probe' tone, and the second the 

'suppressor' tone. For each sweep, the levels of both the probe and suppressor tones were 

held constant. The degree of two-tone suppression is highly sensitive to the ratio of the 

suppressor frequency to the probe frequency. The suppressor tone is referred to as a 'low-

side' suppressor when the ratio is less than 1, and a 'high-side' suppressor when it is 

greater than 1. In this thesis, only high-side suppression is considered. This is because 

models predict that the changes in TW shape induced by a low-side suppressor are similar 

to those induced by self-suppression (Kanis and de Boer, 1994). In high-side suppression, 

the models predict that the TW shape differs significantly from that in the self-suppression 

case (for a given TW peak amplitude) as will be further discussed in section 7.3.2. In the 

models used here, it was found that increasing the suppressor to probe frequency ratio at 

constant stimulus levels caused a increase in the difference between the shape of the two-

tone suppressed TW and that of the self-suppressed TW. However, it also caused a 

reduction in the degree of suppression as measured by the magnitude of peak of the TW. 

As a compromise between the desire for a significantly different TW shape from the self-

suppression case and the desire for a significant degree of suppression, a frequency ratio of 

1.1 was chosen for the simulations reported here. As will be discussed in part HI, it differs 

from the value of 1.3 used in experiments. 

In two-tone suppression, the SFOAE values are obtained at the frequency of the 

probe tone. Frequency sweeps were obtained for nominal suppressor levels ranging from 

30 to 80 dB SPL, and with a probe level of 45 dB SPL throughout. The suppressor to 

probe frequency ratio was held constant at 1.1 throughout. To test Shera and Zweig's 

theory, first a simulation with zero scattering impedance was performed to define the 

reflectionless ear canal pressure, PEC.R=O- Then a random scattering impedance was used to 

obtain the ear canal p r e s s u r e , a n d thence the SFOAE pressure psF- Owing to the 

computational time required to execute each frequency sweep, only two random number 

sequences were used. 
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5.2.4 General Points on the Models 

In the above models, the size of the scattering impedance is controlled by the scale factor, 

asc , given in equations [4.14] - [4.19]. This was set such that significant SFOAEs were 

generated, but without causing the model to become unstable. Typically the peak value of 

the normalised SFOAE was kept between 0.05 and 0.5. This is discussed further in 

section 5.8. 

For all models the accuracy of the numerical method is determined by the spatial 

discretization. In all these models, at least 1024 equi spaced points along the CP were used. 

This number was arrived at after checking the sensitivity of the results of several models to 

increases in the number of points. 

Note also that in the forthcoming discussions, the following shorthand terms are used 

to describe the models. 

a model with zero cochlear amplifier impedance 

a model with non-zero cochlear amplifier impedance 

a model with zero CP scattering impedance 

a model with non-zero CP scattering impedance 

a model with a spatially random CP scattering impedance 

as suggested in Shera and Zweig (1993b) 

a model with a spatially periodic CP scattering impedance 

as suggested in Strube (1989) 

'a passive model' 

'an active model' 

'a smooth model' 

'a scattering model' 

'a random scattering model' 

'a periodic scattering model' 
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Table 5.1: Cochlear model variants used for SFOAE simulations 

Model Linear or Cochlear CP Scattering Front end Stimulus 

No. Nonlinear Amplifier Impedance model or run type 

1 Linear Passive Zero Ideal front end Simple freq. sweep 

2 " Passive Random " " 

3 " NK.1986 Zero " " 

4 " NK-1986 Step " " 

5 " NK-1986 Random " " 

6 " NK-1986 Alt. Random " " 

7 " NK-1986 Periodic " " 

8 " NK-1986 NB-random " " 

9 " Z-1991 Zero " " 

10 " Z-1991 Random " " 

11 " Z-1991 Zero High reflect. " 

12 " Z-1991 Random " " 

13 " NK-1986 Zero Kringlebotn Vary coch. amp. gain 

14 " NK-1986 Random " " 

15 " NK-1986 Periodic " " 

16 " Z-1991 Zero " " 

17 " Z-1991 Random " " 

18 Nonlinear NK-1986 Zero " Self-suppression 

19 " NK-1986 Random " " 

20 NK-1986 Zero " Two-tone suppression 

21 NK-1986 Random " " 

Details of the table entries are given overleaf. 
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Details of Entries in Table 5.1 

Column Table entry Details 

2 Nonlinear Quasilinear method (Kanis and de Boer, 1993b) 

Passive (1) 

NK-1986 (2) 

Z-1991 (3) 

No cochlear amplifier impedance. Passive model as KdB-1994 passive model 

Eqn. [4.10] 

Cochlear amplifier as Neely and Kim (1986); Kanis and de Boer (1993b). 

Eqns [4.10] & [4.12] 

Cochlear amplifier as in Zweig (1991); Talmadge et al. (1998). 

Eqns [4.11] & [4.13] 

Zero Zsc = 0 for all x a n d / 

Step Step function. Eqn [4.18] 

Periodic Periodic scattering impedance as in Strube (1989). Eqn [4.16] 

Random Broad band random scattering impedance based on Zweig and Shera (1995) Eqn 

[4.15] 

Alt. Random Alternative random scattering impedance based on Zweig and Shera (1995) 

Eqn [4.19] 

NB-Random Narrow band random scattering impedance. Eqn [4.17] 

Ideal front end The ideal front end model, section 4.6.5 

High reflect. High reflection front end model, section 4.6.5 

Krinelebotn Kringlebotn front end model, section 4.6.5 

Notes: 

(1): The passive model here is the KdB-1994 passive model, Eqn. [4.10] 

(2): The NK-1986 cochlear amplifier is always used in conjunction with the KdB-1994 passive model, 

Eqn. [4.10] 

(3); The Z-1991 cochlear amplifier is always used in conjunction with the T-1998 passive model, Eqn. [4.11] 
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Passive or Smooth Cochlear Models Step Scattering Impedance 
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freq [Hz] 
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Random Scattering Impedance; Coch. Amp. NK-1986 Random Scattering Impedance; Coch. Amp. Z-1991 
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3000 1500 2000 2500 
freq [Hz] 

3000 

Periodic Scattering Impedance Narrow Band Scattering Impedance 
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3000 1500 2000 2500 
freq [Hz] 

3000 

Fig 5.1 Ear canal pressure due to a constant volume velocity earphone simulated from various cochlear 
models. The level is set to give 0 dB SPL at 1.5 kHz in each case. Panel (a): three models which are almost 
indistinguishable: (i) passive and smooth (model 1); (ii) passive and rough (model 2); (iii) active and smooth 
(model 3). Panel (b): active model with step scattering impedance (model 4). Panel (c) active model (NK-
1986 cochlear amplifier) with random scattering impedance (model 5). Panel (d): active model (Z-1991 
cochlear amplifier) with random scattering impedance (model 10). Panel (e): active model with a periodic 
scattering impedance (model 7). Panel (f): active model with a narrow band random scattering impedance 
(model 8). 
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Fig 5.2 Comparison of two different realizations of the SFOAE simulated by a random scattering cochlear 
model (model 5). Results of normalised SFOAE, , were obtained for 128 realizations of the scattering 
impedance. Two different realizations of the results are shown here, and compared with an ensemble average 
over the 128 realizations. Panel (a) Realization I: against rjoct • Panel (b) magnitude of the raw ^ 
spectrum for realization 1 (thin line) and the ensemble averaged ^spectrum (thick line) plotted on a linear 
scale. Panel (c) as (b), but plotted on a dB scale. Panels (d)-(f) as panels (a) - (c), but for realization 2. 
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Fig 5.3 The effect on SFOAE periodicity of altering the formulation of the random scattering impedance in 
the cochlear model (models 5 and 6). Model 5 has the standard random scattering impedance, arising from 
the spatial variation in the CP damping. Model 6 has the alternative random scattering impedance, arising 
from the spatial variation in the total CP impedance. The predicted normalised SFOAE spectrum, , was 
obtained for 32 realizations of each model. From these, the average ensemble averaged ^spectrum was 
calculated. Panel (a): model 5, single realization o f a g a i n s t rjoa • Panels (b) and (c): model 5, magnitude 
of the ensemble averaged ^spectrum plotted with linear and dB scales respectively. Panels (d)-(f) are the 
corresponding plots for model 6. Symbol o indicates the peak of the curve. 
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5.3 Discussion of Fundamental Model Results 

Some fundamental results are shown in fig. 5.1. This plots the magnitude spectrum 

of the ear canal pressure for a single frequency sweep. Fig. 5.1a illustrates the expected 

result that no significant SFOAEs are generated in the absence of either the cochlear 

amplifier or of reflection sites. In this panel, the results from three models are overlaid and 

indistinguishable: the first is 'smooth and passive', the second is 'scattering and passive' 

and the third is 'smooth and active' where 'smooth' means the CP scattering impedance is 

zero; 'scattering' means the CP scattering impedance is non-zero; 'passive' means the 

cochlear amplifier impedance is zero; and 'active' means the cochlear amplifier impedance 

is non-zero (model numbers 1, 2 and 3, table 5.1). Fig. 5.1b shows that a simple step in the 

scattering impedance, which gives rise to a single point reflection site, generates significant 

reflections over a very limited frequency range. Fig. 5.1c and d show that the random 

scattering impedance together with the inclusion of either of the two cochlear amplifiers 

(models 5 and 10) give rise to a ripple pattern in which the peak-to-peak spacing increases 

with frequency, as predicted by Shera and Zweig's model. This result is insensitive to the 

choice of cochlear amplifier formulation. 

Fig 5.1e confirms Strube's result (1989) that a periodic scattering impedance 

(together with a cochlear amplifier) gives rise to the basic periodicity in the SFOAE 

(model 7). However, these results are unrealistically regular. More realistic SFOAEs are 

shown in fig. 5.If, resulting from a modified periodic scattering impedance, in which the 

spatial frequency of the corrugations has a narrow distribution rather a single value 

(model 8). This model can be thought of as lying somewhere between Strube's proposed 

periodic scattering impedance and Shera and Zweig's broad band random scattering 

impedance. Recall from section 4.8 that the essential difference between the two theories 

is that in Strube's theory, the periodicity is determined predominantly by the spatial 

periodicity in the CP scattering impedance, whereas in Shera and Zweig's model, it arises 

from the form of the TW function. 

Results from model with the alternative random CP scattering impedance, based on 

spatial variations of the entire CP impedance, rather than of the damping (model 6) are not 

illustrated in fig 5.1, but are discussed in a later section. 
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5.4 Calculation of the Cochlear Model SFOAE Spectrum 

The SFOAE spectrum for any active scattering model is calculated from the 

difference in the ear canal pressure obtained from two runs of the model: the first from the 

active scattering model, and the second from a smooth version of the same model, with 

identical stimulus conditions. This is given in equation [5.1] (as in equation [4.30]): 

PSF ~ PEC ~ PEC:R=O 

PSF [5-1] 
Pa -

PEC:R=0 

where PEC is the ear canal pressure for the active scattering cochlear model, andPEC:R=(> is 

the reflectionless ear canal pressure defined here as the ear canal pressure for the smooth 

version of the cochlear model (i.e., one with the CP scattering impedance set to zero). 

Here psF is termed the SFOAE pressure, andp^ the normalised SFOAE. All quantities are 

complex functions of frequency. Thus, for example, the SFOAE for a random scattering 

impedance with the NK-1986 cochlear amplifier (model 5) is obtained from equation [6.1] 

by takingPEC from model 5 and j?EC.A=o from model 3. Similarly, the SFOAE for a 

random scattering impedance with the Z-1991 cochlear amplifier (model 10) is obtained by 

taking PEC from model 10 and PEC;R=(I from model 9. 

The definition of the reflectionless ear canal pressure, PEC;R=G, as that arising from the 

smooth cochlea requires further justification. The results in fig. 5.1a suggest that PEC:R=O 

can be estimated from either a passive cochlear model or from the smooth cochlea. 

However, in certain circumstances, when using Talmadge's model formulation (T-1998 

with the Z-1991 amplifier) it was found that a slight discrepancy arose between the ear 

canal pressure predicted from an active-smooth model and that from a passive-smooth 

model (i.e., in these cases the curves corresponding to fig. 5.1a are not indistinguishable, 

but are slightly offset from one another). Recently Talmadge et al. (2000) have presented 

an analysis of such 'nonlinear SFOAE' components (i.e., components in the ear canal 

pressure arising not from the scattering impedance, but from nonlinear effects). According 

to Talmadge et al. (2000), these nonlinear SFOAEs are (i) highly sensitive to the 

formulation of the cochlear model, (ii) are of very low periodicity, especially above 1 kHz, 

and (iii) generally much lower in amplitude than SFOAEs arising from the scattering 

impedance. However, they may become influential at higher stimulus levels where 

nonlinear effects are larger and where SFOAEs due to the scattering impedance are 

smaller. The decision in this thesis to define the reflectionless ear canal pressure, 

in terms of the smooth cochlea rather than the passive cochlea eliminates all such 
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'nonlinear' SFOAE components from the model predictions, leaving only SFOAEs arising 

from the scattering impedance. The advantage of this is that any changes induced in the 

predicted SFOAE spectra can be attributed purely to changes in the TW shape, thereby 

greatly simplifying the interpretation of the results. For a further discussion of the possible 

influence of nonlinear SFOAEs on the experimental results, see section 9.7.1 

In the case of the cochlear models with random scattering impedance, the SFOAE 

spectrum depends not just on the model and its parameters, but also on the particular 

random number sequence used. In order to extract the underlying information from the 

SFOAE spectrum, a stochastic description is required, as explained in the next section. 

5.5 Stochastic Description of the SFOAE Periodicity 

The terminology in this section is taken from the theory of random processes. The 

problem addressed here is similar to that of calculating the power spectrum of a random 

process. 

The results from a model with a random scattering impedance presented above 

depended on the exact form of the spatial variation in scattering impedance which resulted 

from the output of a random number generator. Re-running the same model with a 

different set of random numbers gives a different SFOAE function. What is desired are 

quantities to characterise the SFOAE signal that are dependent only on the underlying 

model formulation (which must include a statistical description of the random number 

generator), rather than on the particular sequence of random numbers. Such quantities are 

termed 'stochastic', because they pertain to an underlying probabilistic process, rather than 

to a single instance (or 'realization') of the process. As a simple example, a complete 

stochastic description of a gaussian white noise signal is given by specifying a single 

standard deviation, and by further specifying that the signal at every point in time is 

independent of that at every other point. A realization of this process is simply one actual 

white noise time history. 

To obtain the stochastic quantities, models 5 and 10 were run n times with different 

realizations of the scattering impedance to give an ensemble of n realizations of normalized 

SFOAE frequency functions,/>A ( / ) • According to equation [4.30],/?A depends on the 

reflectance, R, and from equation [4.26], R looks like a narrow band random signal when 

plotted against the logarithmic frequency variable, r], (If equation [4.26] holds, and if the 

scattering potential is gaussian as it is in the model used here, then R is also gaussian.) 

Recall that a full stochastic description of the gaussian narrow band process is given by its 
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power spectral density, which can be estimated by averaging the power of the Fourier 

transform across an ensemble of realizations of the process (e.g., Newland, 1984). 

Although is not strictly gaussian narrow band (unless r = 0) it can still be usefully 

described by a power spectrum. The method of calculating the power spectrum of 

follows standard spectral analysis methods (Newland, 1984). FirstPA must be in the form 

of a sequence at equal rj intervals. All of the n realizations of /?A are then Fourier 

transformed from the //-domain to the (z)-domain. The n Fourier transforms are then 

multiplied by their complex conjugates, giving the square of the modulus of the transforms. 

This gives n functions, each of which will be termed a 'SFOAE raw ^spectrum', where 

'raw' indicates that no averaging has been performed. Averaging this across this ensemble 

of n raw ^spectra yields an improved estimate of the underlying stochastic function. The 

underlying function will be termed the 'true ^spectrum' and the estimate will be called the 

'SFOAE average ^spectrum'. Unlike the raw ^spectrum, the true ( Z > - s p e c t r u m is 

dependent only on the deterministic quantities in the model, and on the statistics of the 

random number generator. Figs 5.2a and 5.2b, show two realizations of SFOAE frequency 

functions obtained from an active random scattering models (model 5) using equation 

[5.1]. Their two corresponding raw ^spectra are shown in figs 5.2c and 5.2d, together 

with an estimate of the true ^spectrum, obtained from averaging across 128 realizations. 

The large variability between the two raw ^spectra shows the difficulty in trying to 

estimate the true ^spectrum, based on a single realization. In this project, the (Z ) - spec tmm 

will be characterised by two main quantities called the ^centre value, denoted 0C and the 

^bandwidth, denoted (pBw • The ^bandwidth is roughly equivalent to the 3 dB bandwidth 

of the peak. A method of estimating these two quantities is discussed in section 6.4. 

5.6 The Effect of Different Formulations of the Random Scattering Impedance 

Fig. 5.3 shows the SFOAEs resulting from two formulations of the random scattering 

impedance. The first (model 5) has the standard random scattering impedance, obtained by 

a spatial variation of the CP passive damping. The second (model 6) has the alternative 

random scattering impedance, obtained by a spatial variation of the entire CP impedance. 

Although both show the expected narrow band ripple pattern, they differ in their values of 

periodicity. This is clearly seen in the ensemble average ^spectra, where for model 5, 

= 26 (corresponding to a periodicity of about 4%), whilst for model 6, 17 

(corresponding to a periodicity of about 6%). Model 6 also gives a narrower ^spectrum. 
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The reason for this is that the alternative scattering impedance is frequency dependent, 

thereby invalidating the simple spatial filtering result presented in [4.26]. This effect is 

mentioned by Zweig and Shera (1995, p. 2033). 

Although the alternative scattering impedance gives a periodicity that is closer to 

measured values, it was decided to adopt the frequency independent random scattering 

impedance as the standard for this thesis. This has the advantage of greater simplicity since 

it ensures that [4.26] becomes approximately valid, and consequently that the average 

^spectrum is simply a scaled version of the Fourier transform of the function T^(©) . 

This result has been verified by calculating T ( 0 ) f o r model 5. (Strictly, since this model 

does not exhibit perfect scaling symmetry, T ( 0 ) is not uniquely defined for model 5, but 

is instead a function of both x and A; independently. However, because the degree of 

scaling symmetry is still high, this discrepancy has been found to be small. Thus a useful 

estimate of 7 ( 8 ) can be made by evaluating both T and 8 as functions of cochlear 

location, x, at one constant stimulus frequency, co.) 

All the results reported in this thesis regarding changes in periodicity with TW shape 

have also been verified for both the standard and the alternative scattering impedances. For 

brevity, only the standard results are illustrated. Investigations have also been carried out 

in which the a spatial variation in the CP mass, stiffness or characteristic frequency was 

introduced. These also show similar trends to those seen for the standard case. This 

demonstrates that in these alternative cases the ^spectrum is still related to the TW shape, 

even though the relationship is not the simple one given in [4.26]. 

5.7 The Absolute Value of the Predicted SFOAE Periodicity 

The ^spectrum seen in fig. 5.2 for model 5 is bandpass (in the ^variable) with its 

centre located at a value, (j)c, of about 26 cycles (equivalent to a periodicity of about 1/26 or 

4%). This periodicity is roughly half the value of around 7% reported in the literature. 

There are many possible reasons for this discrepancy, but these have not been investigated 

in detail. The models are based on many simplifying approximations (e.g., the long wave 

approximation) and contain many parameters whose values are uncertain^®. For example, 

as will be seen later, simply reducing the cochlear amplifier gain significantly reduces the 

periodicity. The detail of the formulation of the random scattering impedance also has a 

significant effect, as discussed in the previous section. For these reasons, this discrepancy 

^ This discrepancy has recently been acknowledged by Talmadge et al. (2000) who also suggest alternative 
model parameters. . _ 
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in the absolute periodicity is not thought to be a problem for the models. What is important 

for this thesis is not the absolute value of the periodicity, but the way in which it changes 

with the TW shape. Note that a similar discrepancy is seen in model 10 with the Z-1991 

cochlear amplifier and the standard scattering impedance. 

5.8 The Effect of the Size of the Scattering Impedance 

The size of the scattering impedance is controlled by the scale factor, asc, given in 

equations [4.14] - [4.19]. It was found that, for low values of the scattering impedance, 

scaling up the scattering impedance simply caused a corresponding scaling up in the 

SFOAE frequency spectrum, without any additional changes in its shape. This is expected 

from Zweig and Shera's phenomenological model (1995), equation [4.26], where scaling 

up the scattering potential causes a scaling up of the cochlear reflectance, R. The physical 

explanation for this is that the scattered TW is much smaller than the forward TW, and 

therefore the CP response to the forward wave is approximately independent of the 

scattering sites. There is, however, an upper hmit to value of this scale factor. For very 

large values, equation [4.26] no longer holds, as the wave travelling back from one 

reflection site becomes further scattered by more basal reflection sites, leading to multiple 

reflections which alter the shape of the spectrum of the cochlear reflectance. These should 

not be confused with the multiple reflections arising from the stapes, which affect the 

SFOAE rather than the cochlear reflectance, and which are accounted for in 

equation [4.30]. In all the models, asc was set below this upper limit. 

For the models with the ideal front end, where multiple reflections are negligible, the 

size of the scattering impedance is of little interest (provided the upper limit discussed 

above is avoided). In these cases, asc was set to give typical normalised SFOAEs between 

0.05 and 0.3. For the models with reflecting front ends, the value of asc is more important, 

since a simple scaling up of the cochlear reflectance, R, causes a more complex change in 

the normalised SFOAE. More specifically, as the value of rR increases, the influence of 

multiple reflections increases. In these cases, asc was set to give a reasonably high cochlear 

reflectance magnitude of between 0.2 and 0.5 (in the unsuppressed state), such that some 

multiple reflection occurs. Note that in models with the Kringlebotn front end, the 

normalised SFOAE is less than the cochlear reflectance, due to the middle ear transmission 

loss related to the function, g, in equation [4.30]. It was ensured that in all cases the value 

of asc was not so high that instability occurred, due to runaway multiple reflections. Thus 

in these cases, there are two upper limits on asc: the first to prevent significant multiple 
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reflections occurring from the CP scattering sites, the second to prevent unstable multiple 

reflections involving the stapes. The second turns out to be the lower, and therefore the 

important limit in these models. 

5.9 Changes in Average SFOAE ^spectrum with Cochlear Amplifier Gain 

Fig. 5.4 shows the effect of varying the cochlear amplifier gain on the SFOAE (jh 

spectra for an active random scattering model (model 14). Figs 5.4a and b show the raw ^ 

spectra for two realizations of the SFOAE, whilst fig. 5.4c shows the average ^spectrum 

estimated from an ensemble average over 32 realizations. The location of the peak in each 

spectrum, which gives a measure of the periodicity, is also marked. The change in 

periodicity with cochlear amplifier gain is clearly seen in the average ^spectrum, fig. 5.4c. 

It is also shows up in the raw ^spectra of realization 2, but not in those of realization 1. 

This shows that the changes in periodicity that are sought do not necessarily show up 

clearly in the raw ^spectrum. To overcome this problem, a parametric model of the 

SFOAE ^spectrum has been developed. This is described in the next section. Figs 5.4d-f 

show the results of this parametric fit to the two realizations, and to the ensemble average. 

Further discussion of the changes of periodicity due to varying the cochlear amplifier gain, 

self-suppression and two-tone suppression is presented after the development of this 

parametric model has been explained. 
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Fig 5.4 The effect of varying the cochlear amplifier gain on the SFOAE raw and average 0-specti-a, simulated 
by a cochlear model with a random scattering impedance (model 14). The model has the NK-1986 cochlear 
amplifier attenuated by; 0, 0.4, 0.8, 1.2 and 1.6 dB. Panels (a) and (b) show raw (^spectra resulting from two 
different realizations of the random scattering impedance. Panel (c) shows the average ^spectra obtained 
from an ensemble of 32 realizations. Panels (d)-(f) show fitted (^spectra obtained by applying the 
4-parameter model to the data shown in panels (a)-(c) respectively. Symbol O indicates the peak of the 
curve. 

114 



6. A Parametric Model of SFOAE Frequency Spectra 

6.1 Overview of Problem 

The general question addressed in this section is how to characterise the SFOAE 

periodicity and thus allow comparisons to be made between predictions from the 

macromechanical models and experimental measurements. As has already been discussed, 

the Shera and Zweig's theory predicts changes in the SFOAE spectral periodicity with 

changes in the effective cochlear amplifier activity. In particular, the model predicts 

changes in terms of the ^centre value, ^ , and the ^bandwidth, (j)Bw , of the SFOAE 

average ^spectrum. The problem highlighted in the previous section is that for the random 

scattering cochlear models, (f>c and B̂W can only be directly calculated from the SFOAE 

average ^spectrum, obtained by running a macromechanical model many times with 

different realizations of the random scattering impedance. This option is obviously not 

available with measured SFOAEs where only a single realization is available. Note that 

ensemble averaging across subjects does not solve the problem, as will be discussed in 

section 6.3. 

In this section, various methods from the literature for estimating the SFOAE 

periodicity are reviewed. Also a description is given of two parametric models (called here 

the 3-parameter and 4-parameter models) which have been developed for analysing 

measured data. 

6.2 Review of Parametric Spectral Analysis Techniques 

To a first approximation, the SFOAE frequency spectrum, when viewed on a log 

frequency scale, can be seen as section of a stationary, bandpass random signal 

(equation [4.26]). The problem of estimating 0c and 0bw is similar to that of estimating the 

power spectral density of an unknown random process, based on a short section of a single 

realization. 

One way of viewing any stationary random signal (usually a time series) is to imagine 

that the measured signal has arisen from an unknown white noise input signal passing 

through an unknown filter. In general, the purpose of spectral analysis is then to estimate 

the shape of the unknown filter, which then gives the power spectral density of the random 

process. (Our problem is a simpler one: to estimate the centre frequency and bandwidth of 

an unknown bandpass filter.) 
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The standard Fourier based approach to this problem is to use either segment 

averaging or spectral smoothing. In the segment averaging approach, the time sequence is 

split up into segments and the segments are then windowed, Fourier transformed, and 

power averaged. In the spectral smoothing approach the entire time sequence is windowed, 

Fourier transformed, and then smoothed in the frequency domain. However, these 

approaches performs poorly for applications where their is only a short sequence of data 

(Abies, 1978). There are several reasons for the poor performance of Fourier based 

method: they make unjustified assumptions about data that are not available (because the 

Fourier method implicitly assumes that the unavailable signal outside the window is either 

zero, or is a perfect periodic continuation of the available signal); and they impose 

distorting transformations on the available data (by applying an arbitrary tapering window). 

The effect of these assumptions is to give poor spectral resolution. 

Parametric spectral analysis is an alternative approach in which the unknown filter is 

first characterised by a number of digital filter coefficients. The spectral analysis problem 

then becomes one of directly estimating these coefficients (Burg, 1978a, 1978b; Gutowski 

et al., 1978). Unlike Fourier methods these methods attempt to obey Jaynes' principle of 

data reduction: "The result of any transformation imposed on the experimental data shall 

incorporate and be consistent with all relevant data and be maximally non-committal with 

regard to unavailable data" (Abies, 1978). Such methods can give much sharper spectral 

resolution than Fourier methods. The approach adopted in this thesis is loosely based on 

these parametric methods. 

6.3 A Review of Periodicity Measures in Literature 

In this section some of the shortcomings of the published methods of estimating 

SFOAE periodicity are discussed. These have already been introduced in section 2,12. 

The analysis of these periodicity measures has been performed using two methods of 

simulating SFOAE signals. The first generates SFOAE signals using cochlear models 

whilst the second generates simple bandpass random signals by passing white noise 

through a bandpass filter. In the latter method, the SFOAE ^centre value corresponds to 

the centre frequency of the bandpass filter. In fact, both these methods reveal the same 

shortcomings in the published periodicity measures. Thus, although the SFOAEs 

generated from cochlear models will differ in some respects (i.e., in their full stochastic 

description) from simple bandpass signals discussed here, they show the same essential 

features which cause problems for these periodicity measures. 
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Fig 6.1 The effect of varying the cochlear amplifier gain on the SFOAE seen in different representations of 
the data. The SFOAE was simulated by a cochlear model with a random scattering impedance, and with NK-
1986 cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.2, 1.6 dB (model 14). Panels (a) and (b): two 
realizations of the normalised SFOAEs (Re{pA } against )• Panels (c) and (d): two realizations of the 
phase of normalised SFOAEs (arg[pA } against ). The slope of this gives a measure of the periodicity. 
Panel (e): detail of realization 2, showing the difficulty in clearly identifying peaks. 

The pubhshed methods of estimating the periodicity are discussed with reference to 

fig. 6.1, which shows the effect on the SFOAEs of reducing the cochlear amplifier gain for 

the NK-1986 case (model 12). Two realizations are shown. 

The first method is that of measuring peak-to-peak frequency intervals (Dallmayr, 

1987; Zwicker and Schloth, 1984; Zwicker, 1990; Zwicker and Peisl, 1990; Lonsbury-

Martin et al, 1990). In this method, the turning points of the signal are first extracted, and 

then each peak-valley-peak sequence used to define one cycle. The difficulty with this 

method is that the signal comprises a broad range of large and small amplitude cycles. 

Some of these cycles are barely discernible (see for example, fig. 6. If), and would easily be 
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lost in the presence of noise . This makes the method quite susceptible to contamination by 

noise. One way around this is to reject any cycles below some threshold of amplitude, but 

this introduces an arbitrary cut-off. A better method of estimating an average periodicity 

would be to apply some form of weighting based on the cycle amplitude. This is in effect 

what the next method, based on the Fourier transform, does. 

In the second method the SFOAE frequency spectrum^^ is first mapped onto a log 

frequency scale (such as the r] scale), and then transformed to the ^domain using the 

Fourier transform (e.g., Lutman and Deeks, 1999). This method is similar to using the raw 

^spectrum directly as an estimate of the true ^spectrum and has the problem that the raw 

^spectrum exhibits large peaks which arise purely from the random nature of the signal, 

rather than from the true underlying spectrum of the process. (When viewing the raw (j)-

spectrum as an estimator, its sampling distribution has a high standard deviation in relation 

to its mean; Bendat and Piersol, 1966). In fig 5.4a it can be seen that the peak of the raw 

^spectrum does not coincide with the peak of the true spectrum. Also, for this particular 

realization, as the cochlear amplifier gain is reduced, the location of raw ^spectrum peak 

remains stubbornly unchanged. This is a phenomenon that can also easily be reproduced 

for bandpass noise obtained by simply passing a fixed white noise sequence through a 

bandpass filter several times, each time with a slightly different centre frequency. 

The problem of the variability of the raw ^spectrum could be approached in several 

ways. For example, as in standard spectral analysis, some smoothing in the ^domain 

could be applied. However, this leads to a reduction in spectral resolution, as discussed in 

section 6.1. Zweig and Shera (1995) perform ensemble averaging of ^spectra across 

subjects, but this method is not of use in studying changes in SFOAEs for a single subject. 

Also, it does not estimate the parameters of the random process of interest: the randomness 

in the SFOAE of an individual associated with the random scattering impedance alone. 

Instead, it includes the effect of intersubject variability of the entire cochlea (which would 

have to be characterised in a cochlear model by including a random distribution of cochlear 

parameters such as CP stiffness, or channel height). 

A third method of estimating the periodicity is to calculate the group delay from the 

slope of the phase SFOAE frequency spectrum (Kemp and Chum, 1980a; Kemp and 

Brown; 1983). This is equivalent to measuring the instantaneous rate of rotation in the 

complex plane of the SFOAE vector as a function of frequency. To estimate a periodicity, 

the SFOAE phase can be plotted on a log frequency scale, and a best fit straight fitted to 

or some other signal exhibiting the SFOAE ripple pattern such as the ear canal sound pressure level. 
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the data. One problem with this method is that the amplitude of the signal is ignored when 

fitting the straight line to the phase data. This means that where the signal is weak (due to 

random fluctuations) the phase is poorly defined (especially if noise is present). Even with 

perfectly clean data, this method is insensitive to changes in periodicity. This can be seen 

in figs 6.1c and d, which show the SFOAE phase for the two reahzations. In fig. 6.1c, 

three of the curves appear to run virtually parallel to each other. 

As with the previous method, this phenomenon can be demonstrated easily using a 

bandpass time series. (Recall that here we are considering an SFOAE plotted against log 

frequency as a time series.) For the time series, the group delay method corresponds to 

estimating the centre frequency of the filter using the instantaneous frequency of the output 

signal. (Note that the SFOAE is a complex signal: for real signals instantaneous frequency 

is defined via the Hilbert transform; Randall, 1987). Instantaneous frequency is a useful 

measure for a single component signal (e.g., for demodulating an FM signal), but is less 

useful for a broader band signals in which several frequency components are present 

simultaneously. Although averaging the instantaneous frequency does give some measure 

of the 'average' frequency in the signal, it is a highly variable estimate, just like the 

location of the peak in the raw spectrum. 

In summary, the published methods of estimating periodicity all have shortcomings 

which make the detection of small changes in periodicity quite difficult, and may explain 

why changes with level (for example) have not been more widely reported previously 

(section 2.11). In general, the published methods would work well for a very narrow band 

signal, but are progressively less accurate as the bandwidth is increased. 

6.4 Description of a Parametric Model of SFOAE Signals 

From equation [4.30], it can be seen that the predicted SFOAE //-function, j)A( V) 

can be considered as a stationary bandpass random signal provided that three conditions are 

met; first if there is very little basal reflectance (i.e., r is negligible); second, if the middle 

ear transmission function, g, does not vary significantly over the measured frequency 

range; and third, if the cochlear reflectance, R , can itself be treated as a stationary 

bandpass random signal. That R can be treated as a stationary bandpass random signal is a 

prediction of the Zweig and Shera's theory, provided first that scaling symmetry roughly 

holds and second that the scattering potential is a stationary random function of place (as 

seen in the spatial filtering result in equation [4.26]). 
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Two parametric models of the SFOAE //-function have been developed. The first is 

a 3-parameter model which assumes that the function can be treated as a realization of a 

stationary bandpass random process. The second is a 4-parameter model which takes some 

account of multiple reflections due to the basal reflectance, r. In both cases, any 

nonstationarity due to variation of ^ or r with frequency, or due to the spatial form of the 

scattering potential has been ignored. The justification for this is discussed in section 6.5. 

The approach taken here does not attempt to adhere rigorously to Jaynes' principle 

(section 6.2) which is theoretically problematic. Instead a technique has been developed 

here that has been found to work when applied to results from macromechanical models. 

Furthermore, it is not suggested that this is an optimal technique - only that it is a useful 

one. The parametric methods described by Burg (1978a, 1978b) and Gutowski et al. 

(1978) are not directly applicable, because they estimate the coefficients of a general digital 

filter, rather than assuming a bandpass filter at the outset. The chosen method here does, 

however, borrow some elements from those methods. 

6.5 The 3-Parameter Model of SFOAE 

The 3-parameter model assumes that the 7/-SF0AE function can be treated as a 

realization of a stationary bandpass random process. Unlike general spectral estimation, 

we already have some idea of the nature of the filter (via the macromechanical model), and 

we are only looking to estimate two parameters that characterise the shape of the spectrum 

(i.e., (j)c and (pBw)- In this section, a parametric model is described which estimates these 

two parameters, and then calculates a third parameter, PA RMS , which is simply the RMS 

value of when considered as a function of rj. 

For this 3-parameter model, the first assumption is that the cochlear reflectance is a 

stationary bandpass signal in the //-domain, R{rj). This follows from [4.26], with its 

assumptions that the scattering potential is a stationary white (or broad band) random 

process in the spatial domain, and that scaling symmetry holds. 

The second assumption in the 3 parameter model is that multiple reflections are 

small, such that the basal reflectance, r, in [4.30] can be taken as zero. It is then further 

assumed that the function, g, in [4.30] is independent of frequency, and has a value denoted 

go such that: 

= [6.1] 

Thus the measured normalised SFOAE, is also a stationary bandpass //-function. 
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Then, inspection of the results of the macromechanical models shows that the shape 

of the SFOAE average ^spectrum is well represented by a 2"^ order Butterworth bandpass 

filter in the ^domain. This is shown in fig. 6.2a-c for model 5, which has the NK-1986 

cochlear amplifier, and in figs 6.2d-f, for model 10, which has the Z-1991 cochlear 

amplifier. This filter is specified by only two parameters: the upper and lower cut-off 

frequencies, or equivalently, the bandwidth and centre frequency. Therefore it was decided 

to define the ^centre value and ^bandwidth and of the SFOAE data by the 

corresponding parameters for a 'best-fit' 2"^ order Butterworth filter. 

Autocorrelations ^-spectra (()-6pectra 
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Fig 6.2 Comparison of the ensemble averaged SFOAE data with a parametric fit based on a 2™" order 
Butterworth filter. The average SFOAE data (thin lines) were obtained from 32 realizations from cochlear 
models with random scattering impedance. The fit (thick lines) is performed on the ensemble averaged 
normalised autocorrelation function using a 4-parameter model of the random process. The figure shows the 
results from three cochlear models: models 5, 10 and 12. Model 5 has the NK-1986 cochlear amplifier and 
an ideal front end model; model 10 has the Z-1991 cochlear amplifier and an ideal front end model; model 
12 has the Z-1991 cochlear amplifier and the high reflecting front end model, which leads to significant 
mulitple reflections. Panels (a)-(c): model 5, normalised autocorrelation function, ^spectrum (linear scale) 
and ^spectrum (dB scale) respectively. Panels (d)-(e) corresponding plots for model 10. Panels (f)-(g) 
corresponding plots for model 12. 
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An iterative procedure has been adopted for fitting the <pc and values to the 

measured data. It turns out that there are advantages to fitting these parameters to an 

estimate of the autocorrelation function formed from the data, rather than to the raw 

^spectrum, as discussed in appendix m . The first step in the fitting procedure is to assume 

initial values of and (pBw thereby defining a 2"'̂  order Butterworth filter. Assuming a 

stationary white noise input to the this filter, the autocorrelation function of the output is 

then defined purely by ^ and ^bw • Thus treating the reflectance, R{r]), as the output of 

the filter, and h(r}) as the impulse response function of the filter, a standard result is that 

the autocorrelation function of the reflectance is related to the filter impulse response by: 

[6.2] 

where w(rj) is a white noise signal; ® denotes convolution; and where: 

Flj,*(%') = (%4-)7')| [6.3] 

Here, (7') is the autocorrelation function of the reflectance, R(rjy, * denotes the 

complex conjugate; and E[] denotes the expectation operator. The assumption that R is 

stationary ensures that the autocorrelation function is independent of absolute values of t j , 

and is instead a function of the a variable called here rj-lag (denoted here by rj^) which 

defines the shift in rj. The impulse response function, h{rj), is a complex version of the 

standard 2"'' order Butterworth filter impulse response, which has been chosen to ensure 

that R has the analytic properties discussed in section 2.13. (Recall that the Fourier 

transform of R is one-sided). To achieve this, the function , h{ri), is defined as the analytic 

function corresponding to the wholly real impulse response function of the standard 2"'' 

order Butterworth filter, denoted hRe(rj). The definition of the analytic form is such that the 

transform of h(7j) in the ^domain is purely one-sided, and equal to the right hand side of 

the (two-sided, symmetric) transform of the corresponding real function, hRe{rf). 

It is useful to define a version of the autocorrelation function normalised with the 

variance the signal: 

) ~ [6-4] 
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where is the normahsed autocorrelation, such that K;js(0)=l. Note that the 

normalisation is performed using (0) which is equal to the variance of R{r]). From 

[6.2], the following relationship holds between normalised autocorrelation functions: 

^RR^V)-^hh^V) [6.5] 

and from [6.1] it also follows that: 

= [6.6] 

where Khh and K ̂  „ are normalised autocorrelation functions for the normalised SFOAE, 

p^{r]) and the impulse response function, h{r]). 

Therefore, given values of and (pBw, the value of K can be calculated from 

[6.3], [6.4], [6.5] and [6.6]. An estimate of can also be calculated from the actual 

measured r]-seh&s,p/i{r]), using the following estimator: 

R_ _ (;?') = — — r + 

0 < M < % 

" [6/n 

[6.8] 

where the diacritical mark ~ denotes an estimate. 

The full iterative procedure is as follows. Initial values of <j)c and ^BW are assumed, 

thereby defining the impulse response of a (real) 2"*̂  order Butterworth filter, hneirf). The 

(complex) analytic signal, h{r]), corresponding to kReirf) plus the Hilbert transform of 

hRe{rj) is then calculated in the standard way (e.g., Randall, 1987). From this the 

normalised autocorrelation function of the filter impulse response is calculated from [6.3] 

and [6.4]. Then the fitted version of the normalised autocorrelation function ofpd,r]), 

K , is calculated from [6.6]. This is then compared with the measured estimate of the 

normalised autocorrelation function o f P A ( T ] ) , K , obtained from [6.7] and [6.8]. A 

mean square error is then calculated: 

4 : " ^ f # P . P . - K , . , . ( " ' ) ? 1 6 - 9 ] 

that quantifies the poorness of fit between the fitted version and the measured estimates of 

the normalised autocorrelation function. The values of ^ and B̂W are varied iteratively to 

minimise this error. This error quantity is calculated over a restricted range of /y-lag 

values, TjTrunc • One reason for this restriction in rj^is that (rj') contains a high 
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degree of redundancy, such that most of the information about the underlying random 

process is contained in the early part of the signal. A second reason for this is that the 

estimates, {rj') become less reliable as 7^approaches its maximum possible value, 

given by in [6.7]. These issues, together with the choice of rjTmnc are discussed in 

appendix HI. The issues of convergence and of bias error are addressed in section 6.8. 

The final parameter in the 3-parameter model is /?A: RMS, defined by: 

A — r 

VI ~ VI 

and is referred to as 'the RMS normalised SFOAE'. When in decibel form, this will be 

referred to as the ' R M S normalised S F O A E level', denoted by L ^ R M S -

This method of obtaining estimates of (pc and (pBw by characterising the SFOAE 

signal with the 3-parameter model will be referred to as the 3-parameter model. 

6.6 The 4-Parameter Model 

The 3-parameter model is based on the assumption that the SFOAE /7-series can be 

considered as a stationary bandpass random signal. One problem with this model can be 

seen in figs 6.2g-i for model 12, where there is significant multiple reflection in the 

cochlea. In this case, the ^spectrum is not purely bandpass, but shows a series of 

additional bandpass lobes (see also figs 2.6 and 4.8). This arises when the product rR 

becomes significant relative to 1. If the second lobe is significant relative to the main lobe, 

then the 3-parameter model will interpret multiple reflections incorrectly as spuriously high 

values of (pc and (j)Bw • To partially account for this affect, an additional parameter, denoted 

a, has been introduced. This gives some measure of the magnitude of rR averaged across 

the measured range, and hence gives an indication of the strength of multiple reflections. 

The 4-parameter model considers the case where the functions g and r in 

equation [4.30] do not very greatly over the signal, and can therefore be replaced by the 

constants go and ro such that: 

It can then be shown that, if /? is a gaussian stationary random process, then the following 

relationship holds: 
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1 + 2 ^ R ^ ^ + + ... 
[6.12] 

where is the autocorrelation function ofPA(T]), R^^ is the autocorrelation function 

of R defined in [6.2], go is the magnitude of go and ro is the magnitude of ro. The 

derivation of this relationship is given in appendix HI. For low values of ro the series 

expansion in [6.12] converges after only the first two or three terms. 

As with the 3-parameter model, it is useful to normalise the autocorrelation functions 

in [6.12] by the variances of the signals giving: 

P̂APA 

[6.13] 

where, for an arbitrary signal, x{r]), Kxx(^') denotes the normalised autocorrelation 

function, such that Kxc(O) = 1; and where a^x denotes the rms amplitude of x{r]). 

The 4-parameter model fits the four parameters: ^ , (PBW, arand Prequired to define 

the right hand side of equation [6.13] to the measured data. The iterative fitting procedure 

is then as follows. First, the measured value of PA: RMS is calculated from [6.10]. This is 

used as an estimate of (7 . Then initial guesses are made of the three parameters: ^ , 

and a. From the values of or and of RMS , an estimate of the value of can be 

calculated using [6.13], evaluated at r]^= 0; 

1 . 
(JP' fAfA 

1 + 2(Z^ + 66̂ '̂  

therefore [6.14] 

2 
2 

1 + 2(%^ + 6<3f̂  

From the values of ^ and , the fitted version of the normalised autocorrelation 

function of the reflectance, i r f ) can be calculated as for the 3-parameter model, using 

equations [6.3], [6.4] and [6.5]. The fitted version of the normalised autocorrelation 

function of the normalised SFOAE, K , can then be calculated using [6.13]. This is 
P A P A to L J 

then compared with the measured estimate of the normalised autocorrelation function of 

p^{rj), , obtained from [6.7] and [6.8]. As for the 3-parameter model, a mean 
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square error term is calculated, using [6.9]. Iteration over the three parameters, ^ 

and « continues until this error is minimised. All four parameters are now defined. The 

SFOAE ^spectrum which can be calculated from the four parameters will be called the 

'SFOAE fitted ^spectrum'. 

The result of applying the 4-parameter model to the output of cochlear models is 

shown in figs 6.2g-i, where the parametric fit is compared to the ensemble averaged 

SFOAE ^spectrum for the model 12, where multiple reflections in the cochlea are 

significant. Note that if ro = 0 then a=0, /3= p^- RMS and the 3-parameter model is 

recovered. 

This method of obtaining estimates of (pc and (pgw by characterising the SFOAE 

signal with the 4-parameter model will be referred to as the 4-parameter model. A Matlab 

procedure for returning the four parameters for any given SFOAE signal can be found in 

appendix II. 

6.7 Validity of the 4-Parameter Model 

With reference to equation [6.1], the assumptions underlying the 4-parameter model 

are that g and r are independent of frequency, and that i? is a random signal arising from 

stationary, gaussian white noise passed through a 2°^ order Butterworth band filter, defined 

by (pc and (pBw • Although it is clear from our knowledge of the middle ear models that g 

and r are not independent of frequency, their variation with frequency is much slower than 

that of the SFOAE, Consequently it has been found in the models used here that, the 4-

parameter model can still be usefully applied even when realistic middle ear models are 

included. The values of a and (3 that are then obtained relate to frequency averaged values 

of 1 g-i? I and I rR ( rather than the values given in [6.13], Similarly, the reflectance, R, may 

not in reality satisfy all the above assumptions. This is because scahng symmetry is only 

approximate, the scattering potential may not be stationary and gaussian, and the spatial 

filtering equation [4.26] is only approximate. 

6.8 The Performance of the 4-Parameter Model for Cochlear Model Data 

It is useful to assess the performance of the 4-parameter model with regard to the 

variability of the estimates and to the sensitivity to noise. Quantifying the performance 

analytically is extremely difficult. Instead, the following numerical approach has been 
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taken. First data have been generated for which the optimal four parameters are already 

known. Then the four parameters are estimated from the 4-parameter model and the 

estimates compared to these optimal values. Three kinds of signal have been used to check 

the performance in this way. The first kind is an ideal synthetic signal which satisfies all 

the assumptions stated in section 6.4. This was achieved by passing a white noise signal 

through a known 2"^ order Butterworth bandpass filter, and then inserting the resulting 

bandpass signal into equation [6.1] to give an ideal output signal. This has been repeated 

many times in order to generate the sampling distribution of the estimators for the four 

parameters. The second kind of signal is an ideal synthetic signal plus additive random 

noise. This gives an indication of the signal-to-noise ratio (SNR) for which the model can 

be safely used. The third kind of signal is output generated by the macromechanical model. 

These investigations show that for estimating ^ , the performance of the 4-parameter 

model is much better than that of a crude Fourier based estimator, which returns the 

location of the peak of the raw ^spectrum. (The variance of the parametric estimator is 

roughly a half that of the crude Fourier based estimator.) The results also suggest that the 

model performs successfully down to an SNR of about 0 dB. However, estimates of (j)Bw 

and a are less reliable than those of (PC and P. The results also show that for low values of 

a (<0.1) the 4-parameter model gives very similar results to the 3-parameter model. There 

is no significant bias error in the estimates of ^ , B̂W and There is, however, some bias 

error in a, when the true value is very small, arising from the fact that cannot be negative 

as it is an RMS quantity. 

An example of the bias error and the variability of the four estimates for model 5 is 

shown in fig. 6.3, which shows the results of applying the 4-parameter model to 32 

realizations of the SFOAE output. These are compared against four baseline reference 

values obtained by applying the 4-parameter model to an ensemble averaged value of the 

autocorrelation function of the SFOAE data. This shows no significant bias error in the 

distribution of estimates for any of the four parameters. It also shows that the estimates of 

(pBw are more variable than those of (pc- Note also that the value of or must always be 

between 0 and 1. The lower limit arises from the fact that it is an RMS quantity. The 

upper limit arises from the physical constraint of stability. (Note that SOAEs can be 

present without exceeding 1, since these only require that rif = 1 at a single frequency, 

rather than that the RMS measure of rR across the frequency range of interest should 

exceed 1.) 
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Fig 6.3 Variability in the estimates in the 4 parameter fit to SFOAE data. The 4-parameter model was 
applied to 32 realizations of the normalised SFOAE, obtained from the cochlear model with a random 
scattering impedance (model 5). The figures show the mean (thick solid), one standard deviation (thick 
dahsed) either side of the mean, and the actual estimates for each realization (thin solid). The 4-parameter 
model was also applied to the ensemble averaged autocorrelation function to obtain ensemble estimates (thick 
chain) which serve as the baseline reference values. Panel (a): the (^centre value, • Panel (b): the (jy-
bandwidth, B̂W • Panel (c): the <2-parameter. Panel (d): the /^-parameter. 

The ability to detect changes in periodicity has also been investigated. This is 

illustrated in fig 5.4 where changes in periodicity are induced by altering the cochlear 

amplifier gain. Each panel shows ^spectra at four different amplifier gain settings. Panels 

(a) and (b) show the induced changes in raw SFOAE ^spectra for two realizations of the 

SFOAE, whilst panel (c) shows the changes in average SFOAE ^spectrum obtained by 

ensemble averaging. The corresponding fitted SFOAE (Z)-spectra for these three cases are 

shown in figs 5.4(e)-(f). Unlike in the raw ^spectra in panel (a), the fitted (^spectra in 

panel (d), shows a change in peak location with cochlear amplifier gain (albeit a reduced 

change relative to the ensemble averaged SFOAE ^spectra in panels c and f). This is an 

example of the increased sensitivity of the estimate of the periodicity of the 4-parameter 

model, compared to an estimate based on the location of the peak of the raw ^spectrum. 
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6.9 Summary of the 4-Parameter Model 

A 4-parameter model of the normalised SFOAE frequency spectrum has been 

developed for estimating the ^centre value, and ^bandwidth of the SFOAE ^spectrum. 

This model is based on the characteristics of a 2"^ order Butterworth filter and attempts to 

account for the spatial filtering proposed by Zweig and Shera (1995) as well as multiple 

reflections involving the stapes. The performance of the model has been checked against 

predicted SFOAEs from cochlear models. 
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7. Predicted Changes in SFOAE Periodicity with the TW Shape 

In this section, the 4-parameter model used to quantify the changes in 0c and that 

cochlear models predict when changes in TW shape are induced. 

7.1 The Effect of Cochlear Amplifier Gain on the TW Function 

One simple way of altering the TW shape is to progressively deactivate the cochlear 

amplifier by reducing the gain globally along the entire CP. This has been done using the 

linear models (model 13-17) as illustrated in fig 7.1 for smooth and active cochlear using 

either the NK-1986 or the Z-1991 cochlear amplifier. The TW function (magnitude and 

phase in panels a, b, d and e), has been evaluated against CP place for a single frequency of 

1.5 kHz. Panels c and f show the real part of the total CP impedance. Negative values 

indicate regions of TW amplification. Note that the absence of any scattering impedance is 

of little importance as the effect of the including a scattering impedance on the TW 

function is minimal. 

Figs 7.1 a, b, d and e show an important result: decreasing the cochlear amplifier 

gain causes both a broadening of the peak of the TW, and an increase in the TW 

wavelength in the peak region (which is inversely proportional to the gradient of the phase 

curve). As discussed earlier, in Shera and Zweig's theory, the wavelength of the TW is 

related to the periodicity of the SFOAE. 

Comparing figs 7.1 a-c with d-f illustrates some obvious differences between the 

results with the two different cochlear amplifier models. One difference is in the passive 

response (i.e., where the cochlear amplifier impedance is zero). Model 16, with the T-1998 

passive CP, shows a greater accumulated phase at the TW peak (i.e., 5 complete waves) 

than model 13, with the KdB-1994 passive CP, which shows about 3 complete waves. 

This is due to the parameter settings rather than any fundamental differences in 

formulation. A second difference is in the region of negative damping arising from the 

cochlear amplifier. For the NK-1986 model, the effect of the cochlear amplifier is 

concentrated in a region just basal to the TW peak. For the Z-1991 model, the cochlear 

amplifier gives rise to a negative CP resistance spreading apically beyond the characteristic 

place. It also contributes a significant positive resistance in the more basal regions of the 

CP. 
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Fig 7.1 The effect of varying cochlear amplifier gain on the travelling wave function, T, defined as 
V CP{X,CO)LUST{C^) • The travelling wave function is shown against CP location, for a constant stimulus 
frequency of 1.5 kHz, and is obtained from two active cochlear models (models 13 and 16) with no scattering 
impedance. Results are shown for cochlear amplifier gain attenuations of 0, 2.5, 6, 12, and dB. Model 13 
has the NK-1986 cochlear amplifier; model 16 has the Z-1991 cochlear amplifier. Panels (a) and (b): 
magnitude and phase of the travelling wave function for model 13. Panel (c) shows the real part of the total 
CP impedance (i.e., the resistance) for model 13. Negative resistance indicates TW amplification. Panels (d) 
- (f) show corresponding results for model 16. The thick line in each panel identifies the result at oo dB 
attenuation (i.e., the passive case). 
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7.2 The Effect of Cochlear Amplifier Gain on SFOAE Periodicity 

The effect on SFOAE periodicity of altering the cochlear amplifier gain has been 

investigated for three cochlear models, two of which (models 14 and 17) have a random 

scattering impedance, and a third (model 15), which has a periodic scattering impedance as 

suggested by Strube. For the random scattering models, results were obtained from an 

ensemble average over 32 realizations. 
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Fig 7.2 The effect of varying cochlear amplifier gain on the normalised SFOAE obtained from three cochlear 
models (models 14, 17 and 15). Results are presented as single realizations and as fitted ^spectra obtained 
from the 4-parameter model fit to the ensemble average over 32 realizations. Panels (a) and (b): random 
scattering impedance with NK-1986 cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.2, 1.6 dB (model 14). 
Panels (c) and (d): random scattering impedance with Z-1991 cochlear amplifier attenuated by: 0, 0.4, 0.8, 
1.1, 1.5, 1.9 dB (model 17). Panels (e) and (f): periodic scattering impedance, with NK-1986 cochlear 
amplifier attenuated by: 0, 0.4, 0.8, 1.2, 1.6 dB (model 15). Symbol O indicates the peak of the curve. 
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Fig 7.3 The effect of varying cochlear amplifier gain on the SFOAE parameters obtained from three cochlear 
models (models 14, 17 and 15). Results are obtained by applying the 4-parameter model to the ensemble 
average over 32 realizations. Model 14 ( + symbol) has random scattering impedance with NK-1986 
cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.2, 1.6 dB. Model 1 7 ( 0 symbol) has random scattering 
impedance with Z-1991 cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.1, 1.5, 1.9 dB. Model 15 (* symbol) 
has periodic scattering impedance, with NK-1986 cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.2 and 
1.6 dB. Panel (a): the variation of the RMS normalised SFOAE with cochlear amplifier attenuation. Panels 
(b) - (e): the variation of (J>C, (PBW, (Zand /? with the RMS normalised SFOAE. Panel (f): the variation of B̂W 
with (pc • 
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Figs 7.2a - d show the effect of cochlear amplifier gain reduction on single 

realizations of the SFOAE frequency spectrum for the two random scattering models 

together with fitted ^spectra obtained by applying the 4-parameter model to the ensemble 

averaged results. As predicted by Zweig and Shera (1995), for the random scattering 

models, the ^spectra show an decrease in the ^centre value, as the cochlear amplifier 

gain decreases. There is also a corresponding decrease in the ^bandwidth, (pBw- In 

contrast, for the periodic scattering model shown in figs 7.2e and f, no such change in (j)c or 

is seen with changes amplifier gain. 

The effect of cochlear amplifier gain on the level of the SFOAE, LA:RMS, defined in 

equation [6.10], is shown in fig 7.3a. Figs 7.3b-e show the four fitted parameters, (J)C, ^BW, 

OF and P plotted against /?A: RMS- Note that the overall change in the SFOAE level is about 

20 dB for each model. 

In figs 7.3b and c, the random scattering models show a variation of ^ and with 

SFOAE level, whilst the periodic scattering model does not. Fig 7.3e shows that /?is 

approximately equal to PA:RMS, as expected from equation [6.13] when a is small. 

In fig 7.3d, a h plotted against the linear normalised SFOAE amplitude, RMS , 

(rather than the decibel form) to highlight the approximately linear variation of a with 

P^•. RMS- This is expected, since, from equation [6.11], A/ TQ / GO and ~PA-. RMS-

Therefore A/PA-. RMS is roughly constant. In these models, RO and GO are dependent only on 

the front end models, not on the cochlear amplifier gain. Physically this means that the 

effect of multiple reflections becomes negligible as the reflectance, H, and therefore the 

SFOAE amplitude, PA: RMS, becomes small. 

Also plotted is the variation of as a function of (fig 7.3f). This gives an 

indication of the variation of the Q-factor (defined as the ratio of the centre-frequency to 

the 3 dB bandwidth) of the fitted 2"^ order Butterworth filter. For the two random 

scattering cochlear models, the points lie roughly on a straight line through the origin, 

indicating a roughly constant Q-factor. The gradient of the slope of this line is the 

reciprocal of the Q-factor. The differences in Q-factor for the NK-1986 and Z-1991 

cochlear amphfiers, where the Q factor is roughly 1.0 and 1.8 respectively, arises from 

differences both in cochlear amplifier formulation and passive cochlear parameters. For 

the periodic scattering model, the Q-factor is unrealistically high, at around 6.0, due to the 

near perfect sinusoidal SFOAE prediction. More realistic values from a Strube model 

could be obtained by using the Strube narrow band scattering impedance (model 8). 
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7.3 The Effect of Self-suppression and Two-tone Suppression on SFOAE 

Periodicity 

7.3.1 Self-Suppression Simulations 

To model the effect of increasing probe level, the quasilinear models of single tone 

self-suppression is used (models 18 and 19). This is the model developed by Kanis and de 

Boer (1993b, 1994, 1996), modified to include reflection sites on the CP. In this model, 

the cochlear amplifier progressively saturates in some regions of the CP, leading to local 

reductions in amplifier gain. Figs 7.4 a and b shows the effect of self-suppression due to 

increasing the stimulus input level on the TW function at a single frequency. Fig 7.4 c 

shows how (unlike the global gain reduction, fig 7.1c) the saturation of the cochlear 

amplifier begins at the right hand edge of the active region, where the CP velocity is the 

highest. 

Unlike for the linear models, no ensemble averaging has been performed due to the 

excessive computation time required. Instead, only two realizations of the random 

scattering impedance were generated at each probe level. Frequency sweeps were then 

performed for both the realizations of the random scattering impedance (model 19), and for 

the corresponding smooth model (model 18). This gave two realizations of the SFOAE 

frequency spectrum for model 19 at each probe level. The 4-parameter model was then 

applied to both realizations. 

7.3.2 Two-tone Suppression Simulations 

As mentioned in section 5.2.3, the predicted effect on the TW shape of introducing a 

high-side suppressor tone is quite different to that of simply increasing the level of the 

probe tone (Kanis and de Boer, 1994). This can be seen in fig. 7.4. The reason for this 

result is that the cochlear amplifier does not saturate uniformly along the CP, but instead 

tends to saturate first at those points where the amplifier activity is highest. This 

corresponds to regions where the CP velocity amplitude is highest. Consequently, in self-

suppression saturation begins near the peak of the TW of the probe, and then spreads 

basally as the probe level increases. In contrast, in high-side suppression, saturation can 

occur near the peak of the suppressor which lies basal to the peak of the probe, and 

therefore lies within the probe's region of active amplification. Thus the suppressor tone 

can cause saturation of the cochlear amplifier to begin at a point basal to the peak of the 

probe's TW envelope, rather than at the peak itself (fig 7.4f). 
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Fig 7.4 The effect of self-suppression and two-tone suppression on the travelling wave function, T, defined as 
y cp{x,co)lust{(J}) • The travelling wave function is shown against CP location for a constant stimulus 
frequency of 1.5 kHz, and is obtained from two quasilinear cochlear models (models 18 and 20) with no 
scattering impedance. Model 18 simulates self-suppression with probe levels of 40, 50, 60, 70, 80, and 120 
dB SPL. Model 20 simulates two-tone suppression with a probe level of 45 dB SPL, and suppressor levels of 
30, 50, 60, 70, 80, and 90 dB SPL. Panels (a) and (b): magnitude and phase of the travelling wave function 
during self-suppression (model 18). Panel (c) shows the real part of the total CP impedance (i.e., the 
resistance) during self-suppression (model 18). Negative resistance indicates TW amplification. Panels (d) -
(f) show corresponding results for two-tone suppression model 20. Thick and thin solid lines: response at 
stimulus frequency; thick solid lines: response at stimulus frequency in the maximum suppressed case; chain 
line (shown in (d) only): response at suppressor frequency for 30 dB SPL suppressor level. 
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Note that the same effect does not occur in low-side suppression, where the peak of 

the suppressor lies apical to the probe and therefore lies apical to the probe's region of 

active amplification. Low-side suppression of the probe TW is therefore caused by the CP 

response to the basal portion of the suppressor TW, rather than its peak response. 

Consequently, as with self-suppression, saturation of the probe's active amplification 

begins near the peak of the probe TW, and spreads basally as the low-side suppressor level 

increases. 

The effect of the a high-side suppressor tone on the TW is seen in figs 7.4d-f, for 

model 20, with a suppressor to probe frequency ratio of 1.1. Compared to the self-

suppression case, the changes in TW shape are harder to characterise. It is useful here to 

define the "6 dB peak region" as the portion of the TW envelope that is no more than 6 dB 

down from the peak in fig 7.4d. This region shows little if any broadening (fig 7.4d) 

during two-tone suppression. Similarly the slope of the phase in this region changes 

relatively little (fig 7.4e). This has consequences for the SFOAE periodicity, since, in 

Zweig and Shera's theory, periodicity is related to the wavelength of the TW in the peak 

region, which in turn is related to the slope of the phase of travelling wave. This is 

changed little by the addition of a high side suppressor tone, whilst it is reduced by a probe 

level increase. 

Note that this definition of the 6 dB TW peak region is somewhat arbitrary. In order 

to determine precisely how the changes in TW shape seen in fig. 7.4d and e would affect 

the OAE periodicity directly from Zweig and Shera's phenomenological model (rather than 

the full cochlear model), the predicted TW response (figs 7.4d and e) could be used to 

approximate the (scaling symmetric) TW function in equation [4.26]. The periodicity 

could then be calculated in the manner illustrated in fig. 5.4. This analysis has not been 

performed. However, provided that the OAE is dominated by reflections from within this 

6 dB peak region, the argument stated above that a high-sided two-tone suppressor should 

cause no reduction in (j)c is a valid one. 

Two-tone suppression of SFOAEs for various different suppressor levels was 

simulated using models 20 and 21. The same two realizations of the random scattering 

impedance that were used in the self-suppression simulation were again used in the two-

tone suppression simulation. A frequency sweep was then performed at each suppressor 

level for both the random scattering impedances (model 21), and for smooth model (model 

20), thus yielding two realizations of the SFOAE frequency spectrum. The 4-parameter 

model was then applied to both realizations. 
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7.3.3 Results of Self-suppression and Two-tone Suppression Simulations 

Figs 7.5a-c show the results of the self-suppression simulations obtained with 

realization 1. Below a stimulus level of about 40 dB SPL, the model is approximately 

linear and little self-suppression occurs (panel a). Above this level, the RMS normalised 

SFOAE level falls off with increasing stimulus level at about 1 dB/dB. Panels b and c 

show that the changes in the SFOAE (^spectrum are similar to those seen for the global 

cochlear amplifier gain reduction (fig 7.2b). The reason for this can be seen by examining 

the spatial variation of the TW phase, the slope of which gives the wavenumber (inversely 

proportional to wavelength). In both the global gain reduction simulation and in the self-

suppression simulation, a reduction in TW peak amplitude is accompanied by an increase 

in the wavelength near the TW peak, leading to a reduction in the ^centre value, , and 

hence an to increase in periodicity (equation [4.32]). 

Figs 7.5d-f show the results of the two-tone suppression simulations obtained with 

realization 1. The change in RMS normalised SFOAE level (panel d) shows that two-tone 

suppression starts to take effect once the level of the suppressor tone exceeds that of the 

probe tone (45 dB SPL). Unlike either the global gain reduction simulation, a reduction in 

the SFOAE level is accompanied by a slight increase in the ^centre value, (pc (panels e 

and f). 

The four fitted parameters, (j>c , (psw, or a n d a r e plotted against /?A: RMS in figs 7.6b-f 

for realization 1 for both the self-suppression and the two-tone suppression cases. The 

curve in panel (b), shaped like a lower case "y", clearly shows the difference in the 

predicted variation of ^ with PA: RMS between the self-suppression and the two-tone 

suppression cases. The longer limb of the "y" (which has a positive gradient) arises from 

the self-suppression experiment, and the shorter limb (which has a negative gradient) arises 

from the two-tone suppression experiment. The difference between the two cases for the 

variation of is less clear (panel c). Here the curve for the self-suppression case is not 

monotonic. This is thought to be due to the difficulty in estimating seen in fig. 6.3b. 

The explanation for the variation of (Zand (panels d and e) is the same as in section 6.2. 
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Fig 7.5 The effect of self-suppression and two-tone suppression on the normalised SFOAE and its 
^spectrum simulated by quasilinear cochlear models with random scattering impedances (Models 18 and 
20). Model 18 simulates self-suppression with probe levels of 20, 30, 35, 40, 45, 50, 55 and 60 dB SPL. 
Model 20 simulates two-tone suppression with a probe level of 45 dB SPL, and suppressor levels of 30, 45, 
55, 65 and 75 dB SPL. Fitted results are obtained by applying the 4-parameter model to a single realization 
of each frequency sweep. Only single realizations are obtained for each frequency sweep. Panel (a): the 
variation of the RMS normalised SFOAE with probe level (self-suppression: model 18). Panels (b) and (c): 
the effect of self-suppression on the raw and fitted SFOAE ^spectra for probe levels of 20, 40, 50, and 60 dB 
SPL (model 18). Panel (d): the variation of the RMS normalised SFOAE with suppressor level (two-tone 
suppression: model 20). Panels (e) and (f): the effect of two-tone suppression on the raw and fitted SFOAE 
^spectra for suppressor levels of 30, 55, 65, and 75 dB SPL (model 20). In panels (b), (c), (e) and (f) 

symbol O indicates the peaks of the curve. 
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Fig 7.6 The effect of self-suppression and two-tone suppression on the SFOAE parameters obtained from 
quasilinear cochlear models with random scattering impedances (models 18 and 20). Results are obtained by 
applying the 4-parameter model to a single realization (realization number 1) for each frequency sweep. 
Model 18 ( o symbol) simulates self-suppression with probe levels of 20, 30, 35, 40, 45, 50, 55 and 60 dB 
SPL. Model 20 ( + symbol) simulates two-tone suppression with a probe level of 45 dB SPL, and suppressor 
levels of 30, 45, 55, 65 and 75 dB SPL. Panel (a): the variation of the RMS normalised SFOAE with probe 
or suppressor level. Panels (b) - (e): the variation of </>C, (̂BW , <2̂  and /3 with the RMS normalised SFOAE. 
Panel (e): the variation of (psw with 0c • 
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Fig 7.7 As fig. 7.6, except that the simulations used realization 2 of the random scattering impedance instead 
of realization 1. 
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Fig 7.8. Results in figs. 7.6 and 7.7 overlaid. Thick lines: realization 1; thin lines: realization 2. 
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The corresponding results for realization 2 are shown in fig 7.7a-f. As for realization 1, the 

variation of with /?A: RMS follows a y-shaped curve (panel b), though with somewhat 

lower absolute values of • Unlike realization 1, the variation of (j)Bw now also follows a 

y-shaped curve. The variation of a (panel d) is somewhat erratic, with several of the 

points deviating from the expected trend (cf. fig. 7.3d). These results are consistent with 

the result found in section 6.8, that B̂W and A are more difficult to estimate reliably than 

(A: using the 4-parameter model. 

To compare results from realization 1 with those from realization 2, figs 7.8a-f shows 

both results overlaid. Panel (f) indicates the wide discrepancy in the estimates of the Q-

factor of the 2"'' order Butterworth filter. In realization 1, the estimated Q-factor is clearly 

reducing with increasing probe level (i.e., ^ reduces more rapidly than ), whilst for 

realization 2, the reverse is the case. This is a further illustration of the difficulty in 

estimating B̂W-

7.4 Testable Predictions from the Cochlear Models 

The results of the cochlear models are qualitatively all in agreement with the 

predictions of Zweig and Shera's theory of spatial filtering. This theory predicts that, for a 

cochlea with a random spatial distribution of scattering sites, the form of the SFOAE 

frequency spectrum is directly related to the shape of the TW. More specifically, the 

(^centre value, is related to the wavelength in the TW peak region, whilst the 

^bandwidth, (pew, is related to the width of the envelope of the TW peak. Thus the theory 

predicts that changes in TW shape will result in changes (j)c, and (psw-

Changes in TW shape can be induced experimentally by increasing the probe level 

(self-suppression) or by introducing a suppressor tone (two-tone suppression). 

Unfortunately changes in the shape of the TW can not be measured experimentally. 

However, by using the models of self-suppression and two-tone suppression described 

above, changes in (J)C, and ^BW can be related to changes in the RMS level of the SFOAE, 

which give an indication of the degree of suppression. The model results seen in figs 7.6 

and 7.7 show clear predictions that may be tested experimentally. 

Four testable predictions can be formally stated, based on the characteristic y-shaped 

results seen in figs. 7.6 and 7.7, panels (b) and (c). These results all apply to the cochlear 

models based on Shera and Zweig's theory, in which the cochlear scattering impedance has 

a random spatial distribution, and combined with Kanis and de Boer's quasilinear model of 

self-suppression and two-tone suppression. 
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1. For self-suppression, an increase in the level of the probe tone causes a reduction in both 

the RMS normalised SFOAE and the ^centre value, 

2. For high-sided, two-tone suppression, an increase in the level of the suppressor tone 

(holding the probe level constant), causes a reduction in the RMS normalised SFOAE, but 

an increase in the C e n t r e value, 

3. For self-suppression, an increase in the level of the probe tone causes a reduction in the 

RMS normalised SFOAE and, in general, a reduction in the ^bandwidth, <I)BW-

4. For high-sided, two-tone suppression, an increase in the level of the suppressor tone 

(holding the probe level constant), causes a reduction in the RMS normalised SFOAE. The 

corresponding value of (PSW may increase or decrease. In the latter case, the rate of decrease 

appears on average to be less than that for 

The results for B̂W appear to be more erratic, and show a greater variability between 

the two realizations than do those for 0c- Thus it might be expected that the predictions for 

(/)BW may be less easy to test than those for 

Note that Strube's model, in which the cochlear scattering impedance has a periodic 

spatial distribution, predicts no change in either the ^centre value or ^bandwidth in either 

suppression case. 

144 



PART I I I : EXPERIMENTS 

8. Experiments to Test the Theoretical Predictions 

8.1 Objectives 

The objectives of the experiment were to test the four cochlear model predictions 

stated in section 7.4 against measurements made in human ears. Two experiments, referred 

to here as the self-suppression experiment, and the two-tone suppression experiment, have 

been performed. 

The objective of the self-suppression experiment was to determine the variation of 

the SFOAE amplitude, the ^centre value and the ^bandwidth with the level of the 

stimulus tone (referred to here as the probe tone). 

The objective of the two-tone suppression experiment was to determine the variation 

of the SFOAE amplitude, the (Z>-centre value and the ^bandwidth with the level of a 

suppressor tone, at a constant probe tone level. 

In both of these, the Cen t r e value and ^bandwidth were obtained by applying the 4-

parameter model to measurements of the SFOAE frequency sweeps. 

8.2 Subject Selection 

The experiment was designed to compare the results from each subject directly with 

theory, rather than averaging results across subject. That is to say, from the results of an 

individual subject, it should be possible to conclude whether or not the theoretical 

predictions are borne out for that subject. Therefore the number of subjects was chosen to 

give a representative sample of the normal hearing population (rather than in accordance 

with any statistical power calculation). It was decided to test one ear per subject, with 20 

subjects in total (10 male and 10 female, all aged between 18 and 40 years). Subjects were 

paid volunteers. The experiment was approved by the departmental Safety and Ethics 

Committee. 

Subjects were screened to ensure that the test ear was normal on otoscopy and 

tympanometry, and that the pure tone hearing threshold level was 10 dB or better at 0.5,1, 

2 , 3 , 4 and 8 kHz, and was 15 dB or better at 0.25 kHz. 

145 



DPOAE Box 

DSP Remote 
Converter O u t 

Module 
O u t -

In 

sound treated test booth 

ER2 earphones 

microphone 
preamplifier 

soft plastic probe tip 

ER-10B+ 
OAE probe 

ear canal 

microphone 

Fig 8.1 Schematic diagram of the experimental apparatus for measuring SFOAEs in the ear canal of a human 
subject. 

8.3 Experimental Apparatus 

SFOAEs were measured using an existing system that had been specifically designed 

for DPOAE and SFOAE measurement, and was controlled by in-house software modified 

for these experiments. A schematic diagram of the hardware is shown in fig 8.1. The PC 

controls the DPOAE box, which comprises a DSP card, 16 bit DAC and ADC stages and a 

sample rate generator. The two outputs of this box connect to two Etymotic ER-2 insert 

earphones which deliver pure tones to the ear via coupling tubes running through the OAE 

probe. 

Two tones can be presented to the ear simultaneously by the two earphones. One of 

these tones, termed the probe tone, is used to evoke the SFOAE. Thus the SFOAE appears 
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as a component of the ear canal pressure at the probe tone frequency. The second tone (if 

present) is termed the suppressor tone, and is used to suppress the SFOAE. The term 

stimulus is used to mean the entire acoustic stimulus; that is, the combination of the probe 

and suppressor tone. Where only one tone is presented, it will still be referred to as the 

probe tone. (To avoid any confusion, the physical device inserted into the subject's ear 

canal will always be termed the 'OAE probe', rather the simply the 'probe'.) 

The earphones and their tubing provide a high acoustic source impedance, and thus a 

given earphone voltage gives a volume velocity which is approximately independent of the 

ear canal impedance loading the OAE probe. The system can deliver tones up to 

approximately 80 dB SPL in the ear canal. Tones are generated digitally in the DSP card 

with frequencies which are multiples of 16 Hz. The acoustic pressure in the ear canal is 

measured using a low noise Etymotic ER-10B+ microphone housed in the OAE probe, and 

connected through a preamplifier to the input of the DPOAE box. The OAE probe is 

connected to the ear canal using a soft plastic cuff. 

The OAE probe is calibrated in a Bruel and Kjaer Type 4157 ear simulator which 

contains a reference microphone situated at a point corresponding approximately to the 

eardrum. Earphone and microphone levels quoted in all the experiments are based on this 

calibration. Thus a nominal earphone level of 20 dB SPL is defined as the voltage 

amplitude to the earphone that gives 20 dB SPL at the reference microphone of the ear 

simulator. Similarly, an OAE probe microphone level of 20 dB SPL is defined as the 

voltage output from the OAE probe microphone that arises when the reference microphone 

of the ear simulator is reading 20 dB SPL, when excited by the OAE probe earphones. 

Calibration was performed at 16 Hz intervals over the frequency range of interest. It can be 

shown that the problem of standing waves in the ear simulator, which is inherent to this 

method for defining microphone calibration at high frequencies (>3 kHz), does not 

materially influence the results of the SFOAE experiments conducted here. 

The experiment was conducted with the subject sitting in a sound treated booth, 

whilst the researcher, the DPOAE box and the PC are located outside the booth. 

8.4 Measurement of Ear Canal Pressure during Stimulus Presentation 

At any probe frequency, the SFOAE is calculated from two measurements of the ear 

canal pressure: the first in which both the SFOAE and the stimulus components are 

present, and the second in which the SFOAE component has been minimised by acoustic 

suppression. The details of this method are given in sections 8.8.1 and 8.8.2. 
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The method of measurement of the ear canal pressure at a given probe frequency 

provides for both noise reduction by synchronous averaging, and for the rejection of noisy 

epochs of the signal. The stimuli are delivered in epochs of 62.5 ms (2048 sample points) 

containing a whole number of periods of the stimulus tones. In the DSP card, following 

the ADC^^ stage, the sampled microphone signal is recorded in corresponding epochs with 

16 bit precision and loaded into buffers of 2048 points. On completion of the epoch and 

before the next epoch begins, an in-place FFT with 16 Hz resolution is calculated. The 

buffer holds a whole number of periods of the tones, thereby eliminating any truncation 

effects in the FFT. The FFT is transferred to the PC for further processing as follows. 

The first buffer (i.e., the first 62.5 ms of the signal at each frequency) is always 

discarded, since this will contain the transient response of the transducers and the ear. 

Subsequent buffers are then classified as 'good' or 'bad' depending on an estimate of their 

noise level, as described below. Bad buffers are rejected, whilst good buffers are accepted 

for averaging. 

Averaging of the (complex) FFT across successive buffers leads to an improvement 

in SNR equal to 3 dB for each doubling of the number of buffers in the average (assuming 

the noise is gaussian and uncorrected with the stimulus). The number of good buffers in 

the average varied between 8 and 128, depending on estimates of the levels of SFOAE 

signal and noise. Thus the total duration of the 'good' section of signal varied between 0.5 

and 8 seconds. 

The buffer was classed as 'bad' if the estimated noise power in the buffer around the 

frequency of interest (i.e., the probe frequency) exceeded some preset threshold, referred to 

here as the rejection level. This allows particularly noisy sections of data (perhaps arising 

because the subject has moved or swallowed) to be rejected before they could contaminate 

the average. The noise level is estimated by averaging the power in the microphone signal 

in the 10 spectral lines either side of the probe spectral frequency line (but excluding the 

spectral line at the location of the suppressor tone). The assumption here was that the noise 

power in this 16-Hz band equalled the average noise power in the 20 adjacent spectral 

bands. The setting of the rejection level for the two experiments is discussed further in 

section 8.8.3. Typically the rejection level was set to 10 or 15 dB SPL. Note also that the 

noise is subject to truncation effects, leading to spurious components in the FFT. 

The ADC is an 8 x over-sampling device, thus eliminating the need for anti-aliasing filters. 
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8.5 Measurement of the SOAEs 

In order to identify any SOAEs, the power spectrum of the ear canal pressure in the 

absence of any stimulus was measured. Since SOAEs are not phase locked to the 

measuring epoch, synchronous averaging is not appropriate. Instead, the average power in 

each 16-Hz band was calculated over 100 buffers. As in the previous section, 'bad' buffers 

are rejected. Typically the rejection level was set at about 15 dB SPL. The frequency for 

calculating the noise level used in the rejection procedure was arbitrarily chosen as 1 kHz. 

This method of measuring SOAEs is relatively insensitive, because the frequency 

resolution of the power spectrum (16 Hz) is poorer than the bandwidth of a typical SOAE, 

which may be as narrow as 1 Hz or less. The consequences of this are discussed in a later 

section. 

8.6 Experimental Procedure 

Prior to testing, subjects were screened for normal hearing. Suitable subjects were 

then seated in the test booth, and the OAE probe inserted into the test ear. Subjects were 

instructed to keep as still as possible, and to swallow as infrequently as was comfortable 

whilst testing was in progress. The test session was then carried out. 

For each test session, two experimental protocols were followed; the self-suppression 

and the two-tone suppression protocol. Both protocols comprised initial measurements of 

SOAEs, followed by a series of frequency sweeps, followed by a final measurement of 

SOAEs. The series of frequency sweeps will be referred to as a 'level series'. In the self-

suppression protocol, described in detail in section 8.8.1, the level series comprised seven 

frequency sweeps, each at a different probe level. In the two-tone suppression protocol 

(section 8.8.2), the level series comprised five frequency sweeps, each at a the same probe 

level, but at different suppressor levels. The first of these frequency sweeps was performed 

with the suppressor absent. Each frequency sweep comprised measurements of the SFOAE 

pressure (referred to as 'points') at 91 frequencies between 1376 Hz and 2816 Hz. Each 

SFOAE pressure measurement is obtained from two measurements of the (complex) ear 

canal pressure at the probe frequency. The first of these two measurements yields the 

stimulus + SFOAE pressure component, whilst the second yields an estimate of the 

stimulus component alone. This method is described in detail in the next section. As a 

check on repeatability, each subject sat for two test sessions on different days. 
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The self-suppression and two-tone suppression protocols took roughly 50 and 30 

minutes respectively to carry out. Removal and refitting of the OAE probe was kept to a 

minimum. Usually this meant that the OAE probe remained in place for the entire duration 

of the session. As a minimum, the OAE probe was kept in place for the duration of each 

frequency sweep (i.e., sweeps were discarded if the OAE probe was removed before 

completion). 

For the first session, the SFOAE frequency sweeps were collected in order of 

increasing probe (or suppressor) level. This order was reversed for the second test session 

(though, as expected, the order of presentation made no noticeable difference). 

Summarising the basic test structure, and specifying the main experimental 

parameters: 

• Each subject sat for 2 sessions. 

• For each session, two experimental protocols were followed: the self-suppression 

and two tone suppression protocol. 

• Each protocol comprised initial SOAE measurements, followed by one SFOAE 

level series, followed by final SOAE measurements. 

• The self-suppression level series comprised seven frequency sweeps at probe 

levels ranging from 14 up to 50 dB SPL in 6-dB steps. 

• The two-tone suppression level series comprised five frequency sweeps: one 

unsuppressed sweep plus four suppressed frequency sweeps at suppressor levels 

ranging from 26 up to 62 dB SPL in 12-dB steps. The probe level was held 

constant at 26 dB SPL. The suppressor frequency was L3 x the probe frequency. 

• Each frequency sweep comprised 91 points at frequencies from 1376 to 2816 Hz 

in 16-Hz steps. 

• Each point comprised a single measurement of the SFOAE pressure obtained 

from two measurements of the complex ear canal pressure at the probe frequency: 

the first is the stimulus + SFOAE components, the second is an estimate of the 

stimulus component alone. 

• Each measurement of the complex ear canal pressure was obtained by averaging a 

number of the FFTs (between 8 and 128), each EFT being calculated from a 

recording epoch with a duration of 62.5 ms. 
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8.7 The Problem of the Frequency Resolution and Spectral Aliasing 

One question that must be addressed is whether or not the frequency resolution of 

16 Hz (which was set by the DSP card) was sufficient to accurately characterise the 

SFOAE frequency spectrum. This can be thought of as a 'spectral aliasing' problem, 

analogous to the more familiar problem of temporal aliasing. Temporal aliasing arises 

during analogue to digital conversion when the analogue signal contains frequency 

components that are higher than half the sampling rate (the so called 'folding frequency'). 

The problem is not just that these high frequency components cannot be represented by the 

digital time series, and are therefore lost, it is that they appear as spurious low-frequency 

components. Once sampled, they are indistinguishable from genuine low-frequency 

components, and no amount of digital signal manipulation can remove them (e.g., 

Newland, 1987). 

The procedure of measuring the SFOAE frequency spectrum at discrete intervals is, 

in effect, sampling the true underlying continuous spectrum, and therefore susceptible to 

the problem of aliasing. Thus, any variations in the continuous frequency spectrum of the 

SFOAE that occur over sufficiently small frequency intervals will be misinterpreted in the 

measured discrete spectrum as variations over larger frequency intervals. To assess this 

problem, it is first assumed that the SFOAE is roughly stationary in the ;y-domain (section 

6.5). Then to use the analogy of temporal aliasing, consider rj as the analogue of time, and 

(j) as the analogue of frequency. Aliasing becomes a problem when components in the true 

^spectrum are higher than the 'folding' value of The analogy is not perfect, because the 

measurements are made at constant frequency intervals of 16 Hz, rather than constant rj-

intervals. The intervals in rjoct decrease over the measurement range of 1376 to 2816 Hz. 

However, if we assume (pessimistically) that the yy-series is obtained with the largest f]oct 

interval then we obtain a sampling interval of: 

^Voct = log2[(13764-16)/1376] = 0.0167 octaves 

and therefore a 'folding' Rvalue of: 

F̂OID = I/AT; = 1 / ( l o g e 2 AT/OC/ ) = 1 .443 / 0 . 0 1 6 7 = 86. 

This means that components with ripple spacings down to a periodicity value of 1/86 can 

be represented, and will not cause aliasing (recall that typical periodicities are 1/15). By 

examining the measured raw ^spectra of the frequency sweeps (to be presented later), it is 

clear that the spectrum at 86 is at least 20 dB below the maximum value, and therefore 

spectral aliasing will not be a problem. 
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Two further points are worth noting. The first is that here the 'folding' ^is equal to 

the 'sampling' (j), rather than half the 'sampling' ^ , where the latter value might be 

expected from the temporal aliasing analogy. The reason for this is that the SFOAE 7]-

series is complex and has a ^spectrum that is entirely one sided. Therefore the (^spectrum 

has no left hand side to 'fold back' onto the right hand side (Newland, 1987). The second 

point is that, with a constant frequency interval, spectral aliasing becomes more of a 

problem at lower frequencies. In fact, the minimum frequency value of 1376 Hz used in 

this experiment was chosen partly to avoid possible spectral aliasing problems. 

8.8 SFOAE Measurements 

8.8.1 The Self-suppression Experimental Protocol 

The measured SFOAE is a function of two independent variables: the probe input 

pressure amplitude, and probe input frequency. For the self-suppression experiment, 

SFOAEs frequency functions were measured at each of seven different input levels over a 

frequency range of just over one octave. The seven input levels used were from 14 up to 

50 dB SPL in 6-dB steps. For each of the seven SFOAE frequency sweeps, the probe input 

level was held constant while the frequency was decreased from 2816 to 1376 Hz in 16-Hz 

steps. Note that the probe input pressure amplitude is not controlled directly. Instead, the 

voltage to the earphone is controlled based on the level in the B & K Type 4157 ear 

simulator (section 8.4). Thus, for example, an input level of 20 dB SPL means that the 

voltage to the earphone (essentially proportional to the earphone volume velocity) is that 

which gives 20 dB SPL at the reference microphone in the ear simulator. 

Calculating the SFOAE at any frequency and input level requires using the OAE 

probe microphone to measure the complex ear canal pressure in two conditions. In the first 

condition, ear canal pressure equals the stimulus pressure component plus the OAE 

pressure component. In the second it is approximately equal to the stimulus pressure 

component alone. The SFOAE is then the (complex) difference between these two. To 

estimate the stimulus component alone, the suppressor method of SFOAE measurement 

was used, where a high-level suppressor tone is introduced to reduce the OAE component 

as far as possible. A suppressor tone at 58 dB SPL, and spaced 16 Hz above the probe tone 

was found to provide adequate suppression. For example, to obtain the SFOAE component 

for an input level of 20 dB SPL, at 2000 Hz, the following pair of measurements is made: 
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Table 8.1 Example of a pair of presentations for a single point in the SFOAE 

frequency sweep for the self-suppression experimental protocol 

Mic. Components Probe Tone Suppressor Tone 

freq (Hz) level fdB SPL) frea ("Hz) level (dB SPL) 

PEC = PEC:R=O + PSF 2000 20 ===== None ==== 

2000 2016 58 

The two measurements must be completed within a short time interval (e.g., two seconds 

or so), in order to minimise 'drift noise' discussed further in section 8.8.3. The 

measurement of the ear canal pressure is detailed in section 8.4. 

8.8.2 The Two-tone Suppression Experimental Protocol 

Unlike the self-suppression experiment, in the two-tone suppression experiment, 

SFOAEs are measured in the presence of a suppressor tone. Such SFOAEs will be called 

partially suppressed SFOAEs (to distinguish them from the maximally suppressed SFOAEs 

used to estimate the stimulus component alone). 

The partially suppressed SFOAE is a function of four independent variables. These 

are the input pressure amplitude and frequency of both the probe and suppressor tones. For 

the two-tone suppression experiment, four SFOAE frequency sweeps were measured, each 

with the same probe input level of 26 dB SPL, but with four different suppressor levels 

(from 26 to 62 dB SPL in 12-dB steps). The suppressor frequency was nominally 1.3 times 

the probe frequency (rounded to the nearest 16 Hz), whilst the probe frequency was 

decreased from 2816 to 1376 Hz in 16-Hz steps. As before, each of the four SFOAE 

frequency sweeps was measured by varying the frequency while the probe and suppressor 

tone levels were held constant. In addition to the four partially suppressed SFOAE 

frequency sweeps, a fifth, unsuppressed measurement was made, also with a 26 dB SPL 

probe. This was an exact repeat of one of the self-suppression frequency sweeps, but was 

included to give a baseline measurement made close in time to the four partially suppressed 

sweeps. 

The partially suppressed SFOAE is measured using a similar method to that for 

unsuppressed SFOAEs, except that a suppressor tone is introduced. For example, to obtain 

the (partially suppressed) SFOAE component for a probe tone of 26 dB SPL and 2000 Hz, 
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in the presence of a suppressor tone of 38 dB SPL and 2608 Hz, the following pair of 

measurements are made: 

Table 8.2 Example of a pair of presentations for a single point in the SFOAE 

frequency sweep for the two-tone suppression experimental protocol 

Components Probe Tone Suppressor Tone 

freq (Hz) level CdB SPL) freq (Hz) level (dB SPL) 

PEC—PEC;R=OPsF 2000 26 2608 38 

PEcaa 2000 26 2016 58 

Note that the purpose of the suppressor is different in the two measurements: in the first its 

purpose is to partially suppress the SFOAE by a controlled amount, whilst in the second, it 

is to suppress the SFOAE as far a possible. 

8.8.3 Optimising the Signal-to-noise Ratio in SFOAE measurements 

The measured SFOAEs are small relative to the background noise, and therefore 

great care was taken to achieve an adequate signal-to-noise ratio (SNR) in the design of the 

experiment. In the following discussion the term 'noise' is used to refer to the uncertainty 

in the measurement of the SFOAE, rather than to any actual physical contaminating signal. 

Specifically, the noise on the SFOAE signal is defined here as the standard deviation in the 

estimate of the SFOAE pressure, and is denoted by USF. With this definition, two different 

sources of noise can be identified. These will be called here 'additive noise' and 'drift 

noise', and are denoted by nsF.-Add and nsF.-orift respectively. These components are all 

functions of probe frequency,/i. The SNR for the SFOAE is then defined as: 

S N R ( / J = lOlog^o [8.1] 

Where in [8.1],/75F is understood to refer to the true value of the SFOAE, rather than the 

actual measurement, which will include noise. 

Additive noise arises from unknown random components in the microphone signal, 

which may originate from acoustic sources other than the cochlea (such as physiological 

noise) or from electrical noise in the electronic components. This additive noise is reduced 

by the signal averaging procedure, such that the noise power reduces by approaching 3 dB 

for each doubling of the number of buffers in the average. It can easily be shown that, 
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since the error in the SFOAE arises from the noise in two measurements of the ear canal 

pressure, the additive noise component is given by: 

= + [82] 

where HEC and NEC.R=O are the standard deviations of the measurements of the ear canal 

pressure in the unsuppressed and suppressed conditions, respectively. Good estimates of 

these two values can be obtained from the method of averaging the noise power in adjacent 

spectral bands. The values of uec and riEc.R^o are usually approximately equal and 

therefore the power of the SFOAE additive noise is twice that of the additive noise in a 

single ear canal pressure measurement. 

Drift noise arises from the calculation of the SFOAE pressure as the difference in two 

microphone readings: PSF = PEC -PEC:R=O (first introduced in equation [4.30]), and from 

the fact that these two readings cannot be obtained simultaneously. Slow variations in 

these components appear as spurious SFOAE readings. Now the estimate of the SFOAE is 

calculated from a small difference in two large quantities, and is therefore highly sensitive 

to small changes in the measured ear canal pressure. The effect can be illustrated by the 

following example. Consider measurements in an ear with no SFOAEs. Two 

measurements, about 1 second apart, are made of the ear canal pressure, the first in the 

unsuppressed condition and the second in the suppressed condition. Any change in the two 

measurements is attributed to the presence of an SFOAE in the unsuppressed condition. 

However, changes will also arise from other sources such as a change in the middle-ear 

pressure, or a change in the OAE probe fit over the course of the two readings. In addition 

low frequency additive noise (with a period greater than 1 s) will also lead to changes 

between the two readings. Consider for example, a change in the source impedance due to 

a change in probe fit. This will cause a change in ear canal pressure measured at the 

microphone for a given earphone voltage. Furthermore, for a given change in impedance, 

the size of the change in ear canal pressure will be proportional to the original ear canal 

pressure. This means that the magnitude of the drift error increases as the stimulus level 

increases. Because the SFOAE pressure is relatively smaller at high levels, the drift noise 

becomes more significant as the level increases. For example, at the highest stimulus 

levels, the SFOAE level is typically 40 dB below the stimulus level. Therefore a drift of 

1% (or 0.09 dB) in the amplitude of the measured ear canal pressure leads to an error in the 

SFOAE pressure amplitude of 100% (or 6 dB). 

Drift noise is also increased as the time interval between the two readings is 

increased. Therefore, unlike additive noise, the drift noise is increased, rather than 

reduced, by increasing the averaging time for the signal: the longer the time interval, the 
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greater the opportunity to drift. Drift error could be reduced by an ensemble averaging 

technique in which the two ear canal measurements are made repeatedly at each frequency. 

However this technique was found to be too time consuming to pursue. 

In measuring the SFOAE, a trade-off exists between additive noise and drift noise. 

The additive noise is caused by noise on the microphone signal at the probe frequency, and 

can be reduced by increasing the number of averages. In magnitude, it is independent of 

the stimuli, and it is therefore most serious at low probe levels where the SFOAE pressure 

is small. The drift noise arises from slow fluctuations in the microphone signal and can be 

reduced by reducing the time interval between the measurement of the unsuppressed and 

suppressed ear canal pressure components. It is most serious when the SFOAE pressure is 

small relative to the probe pressure, as occurs at high probe levels. Thus increasing the 

averaging time reduces the additive noise, but increases the drift noise. The two main 

recording parameters: rejection level and averaging time were set such that, on average, the 

total SNR for the SFOAE was roughly independent of the stimulus conditions. This was 

achieved by averaging for longer time periods at low probe levels, where the additive noise 

is dominant, than at high probe levels, where drift noise is dominant. An exception to this 

was at the very lowest probe levels, where additive noise is dominant, but where time 

limitations made it impossible to achieve the desired SNR. This is because each 

improvement in SNR of 3 dB requires a doubling of averaging time, leading to excessive 

recording times. 

9. Results 

The results were processed to obtain the following for each subject: 

1. The variation of the fitted SFOAE ^spectrum (in particular of the ^centre value, 

and (Z)-bandwidth, (PGW), and the RMS normalised SFOAE level during self-suppression and 

two-tone suppression. 

2. Estimates of the SNR. 

3. A measure of the influence of SOAEs on the results. 

The procedures for processing these results are discussed below. 
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9.1 Calculating the Fitted SFOAE (g^spectrum from Measured Data 

For each subject, there are data for two test sessions; for each session, there are 

frequency sweep data for seven different probe levels, and for five two-tone suppressor 

levels. For each of these frequency sweeps the following steps were carried out; 

1. The SFOAE frequency spectrum,/7A ( /) was obtained from the raw data. 

2. The function was re-sampled from equal frequency to equal log-frequency intervals, to 

obtain the 77-series,pA( V)-

3. The estimate of the autocorrelation function, R (n'), was calculated. 
PAP^ 

4. The 4-parameter model was applied to give the estimates of (pBw, or and which 

define the fitted SFOAE ^spectrum. 

These steps are detailed below. Fig. 9.1 illustrates the steps for an example frequency 

sweep, taken from the measurements in subject no. 20, session 1. These results are typical 

for subjects with moderate to strong SFOAEs. 

Step 1 

As explained in section 8.8.1 and 8.8.2, for each probe frequency,/i , the ear canal 

pressure was measured by the OAE microphone in two conditions. In the first condition, 

the ear canal pressure is denotedPEC ( / i ) and is measured either with no suppressor tone 

(self-suppression experiment) or with a suppressor tone present (two-tone suppressor 

experiment). In the second condition, the ear canal pressure is denoted/?£C;i?=o(/i), and is 

measured in the presence of the maximum suppressor tone. This gives an estimate of the 

stimulus pressure component (i.e., the ear canal pressure in the non-reflecting cochlea 

condition). Results for the self-suppression and two-tone suppression experiments were 

processed in the same way. 

In step 1, an estimate of the SFOAE pressure, ), is obtained. This quantity 

will be termed the 'measured SFOAE pressure' (though it should be borne in mind that this 

is not measured directly, but is only an estimate of the true SFOAE, based on the two 

measurements of ear canal pressure). This is normalised with the ear canal pressure 

measured in the maximally suppressed condition,/7£C;fl=o(/i), to give the normalised 

SFOAE pressure, pd,f\), (denoted by A in Zweig and Shera, 1995). 

PSF = PEC ~ PEC:R'=O [9.1] 

PEC:R«0 
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where all quantities are complex and functions of the probe frequency,/i (91 values at 

16-Hz intervals). 

Ear Canal Pressures: and SFOAE Pressure: p 

1.4 1.6 1.8 2 2.2 2.4 2.f 
freq [kHz] 

Ear Canal Pressures: and ^ 
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- 1 0 0 

- 1 1 0 
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Fig 9.1 Signals at each stage in the processing of measured ear canal data to give the fitted SFOAE 
(^spectrum. (Data from subject 20, session 1, earphone level 20 dB SPL nominal, no suppressor). 
Panels (a-i) -(a-iv): magnitude, phase, real and imaginary parts respectively, of both the unsuppressed ear 
canal pressure, , (thin line) and the maximally suppressed ear canal pressure, PEO fi=o (thick line). Panels 
(b-i) -(b-iv): magnitude, phase, real and imaginary parts respectively, of the SFOAE pressure, 
PsF=PEC- PEC: R=O • The thin line in (b-i) is the estimated noise floor. 
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Fig 9.1 continued. Panels (c-i)-(c-iv); magnitude, phase, real and imaginary parts respectively, of the 
normalised SFOAE pressure, = PSF / PEC: R=O plotted against the logarithmic frequency, 

"Hoa = log2(/i I fRef)\fRef= 1 kHz, which has been resampled at equal RJOCT intervals (thin line is (c-i) indicates 
the noise floor). Panel (d) real part of the estimated measured normalised autocorrelation function of the 
normalised SFOAE (thin line), and the corresponding 4-parameter fit (thick line). Panel (e) and (f) the raw 
measured SFOAE ^spectrum (thin line) and the fitted SFOAE 0-spectrum (thick line) on linear and 
logarithmic ordinates respectively. 
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Note that in fig 9.1a (i)-(iv) the maximally suppressed spectrum,/?£C:«=o(/), 

resembles a frequency-smoothed version of the unsuppressed spectrum,/7£c(/), as 

expected (section 2.9). This also suggests that the nonhnear SFOAE components predicted 

by Talmadge et al. (2000) are insignificant over the measured frequency range. If present, 

these components would differ in the suppressed and unsuppressed cases, thus leading to a 

deviation of the suppressed spectrum from the frequency-smoothed, unsuppressed 

spectrum. Since the predicted nonlinear components show no fine structure (i.e., they vary 

only very slowly with frequency) this deviation would be easily distinguished from SFOAE 

components arising from TW scattering. 

Step 2 

In step 2, the logarithmic frequency variable, rjocu is calculated, such that it equals 

the number of octaves above a reference frequency of 1 kHz. 

^ ocf = log2 1 kHz [9.2] 

Then the normalised SFOAE,/?A(/I ), is resampled from the 91 values at 16-Hz 

intervals, to 1456 values at I-Hz intervals (using a low-pass interpolation algorithm). It is 

then further interpolated (using linear interpolation) to give 512 values, denoted/?A( n ), at 

equal rjoct intervals of l^rjoct, which are at approximately 1/512 octaves. For simplicity of 

notation, the independent variable n is simply the index, 0, 1, 2, ...511. 

Step 3 

An estimate of the normalised autocorrelation function is then calculated. The 

estimated autocorrelation function could be calculated from: 

_ 2 N-m-\ 
Z / ' A (»+;») 
n=0 

m = 0,l,2...Ar-l [9.3] 

» = 0, l ,2.. .Ar-l 

Â  = 512 

where * denotes the complex conjugate. (For simplicity, only positive lag values are 

calculated.) However, rather than using equation [9.3], it has been found that a better 

estimate can be obtained by making use of the analytic properties of the signal, previously 

discussed in section 6.5. Briefly, for any given frequency sweep, Zweig and Shera's theory 
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predicts that the real and imaginary parts of pd_ n ) will not be independent, but will instead 

be related by the Hilbert transform. This is somewhat analogous to the relationship that 

holds for any frequency response function which corresponds to a causal (i.e., one-sided) 

impulse response function. Recall from section 2.13 that causality in the time domain 

leads to a frequency response whose real and imaginary parts form a Hilbert transform pair. 

In our case, it is the real and imaginary parts of the //-series that form the Hilbert transform 

pair, and the ^spectrum which is one-sided. 

This relationship is used to reject noise from the p^{ n ) signal, since the noise does 

not show the same analytic properties shown by the signal. This noise rejection occurs 

automatically when the following estimate of the autocorrelation function is used: 

^ 2 N-m-l 
Z fA:R. («)P4:Re (« + " • ) 
w=0 

where 

f A:Re (") = (»)} 

m = 0 , 1 , 2 . . . # - 1 

n = 0 , 1 , 2 . . . N - \ 

/ / = 512 

and where Hilb denotes the Hilbert transform. Equation [9.4] estimates only the real part 

of the autocorrelation function in [9.3], but the imaginary part can then be calculated 

assuming analyticity. In [9.4], first the Hilbert transform of the imaginary part of /7A( n ) is 

used to give an estimate of the real part, • Then the cross-correlation is calculated 

between the actual real part of /7A( n ) and this estimate. The validity of this method is 

discussed in sections 9.3. 

S t ep 4 

The 4-parameter model is then applied to the estimate of the autocorrelation function, 

R - (m), yielding the estimates of the four parameters; ^ , ^bw , (Zand /3. The 

"AKA:Re 

estimated power ^spectral density is then reconstructed from these parameters. In addition 

to the four parameters, the poomess-of-fit is also calculated as the difference between the 
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fitted and measured autocorrelation functions, K (m) and K ~ (m) 
PAiRePAiRe PA:Re/'A:Re 

respectively: 

1 V 
4 . I [9.5] 

MAX m=\ 

Here K denotes the normalised autocorrelation function : 

K ~ (m) = R ~ ( m ) / R ~ (0) [9.6] 
PA-.RCPA-.RS PA:RePA:Re PA:RePA:Re 

and MMAX is the maximum 77-lag value used in the fit (see section 6 . 6 ) . The logarithmic 

form of the poomess-of-fit is also useful: 

I t = 20Iog,o(fMs) 

Note that it is the poomess-of-fit that is minimised during the iterative parameter fitting 

procedure. The quantity in [9.5] is then the final minimum achievable value of this 

poomess-of-fit. 

9.2 Assessing the Effect of SOAEs 

It is important to ensure that the measured SFOAEs frequency sweeps are not 

strongly influenced by the presence of SOAEs, which may become synchronised to the 

probe tone. To assess SOAEs, measurements were made of the power spectrum of the ear 

canal pressure in the absence of any stimulus before and after each level series 

(section 8.5). From visual inspection of the spectrum, SOAEs were identified as any sharp 

peak in the spectrum with a bandwidth of 32 Hz or less, and which exceeded the 

surrounding background noise by at least 1 dB. 

Of the 20 subjects tested, 9 subjects showed one or more SOAEs in the frequency 

range of interest. It is argued here that an SOAE is only likely to influence any given 

SFOAE frequency sweep if the acoustic power emitted spontaneously is of similar 

magnitude to that evoked by the probe tone. If the SOAE is very weak, then, according to 

Zweig and Shera's theory, the measured SFOAE will still be dominated by the mechanisms 

modelled in section 4. The approach taken here is to give each frequency sweep a rating, 

referred to as the 'spontaneous-to-evoked OAE rating' (or S/EOAE rating), which gives a 

crude indication of the likelihood that the frequency sweep will be significantly influenced 

by an SOAE. The rating is used in later sections of the analysis as a means of classifying 

the SFOAE frequency sweeps, and is calculated as follows. For each SOAE of frequency 

/ s o A E the level of the SOAE, L S O A E (in dB SPL), is compared to the level of the SFOAE 
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pressure, L S F ( / S O A E ), measured at the S O A E frequency, where 

L S F ( / S O A E ) = 101ogio[ \ psF (/soAE )flpReh ' ^ndpRef= 20 jiPa. Where a subject has more 

than one S O A E , the emission for which L S O A E - L S F ( / S O A E ) is the smallest is chosen. 

The S/EOAE rating for each frequency sweep is then defined as: 

'zero' if no SOAE could be measured 

' l o w ' i f L S O A E + 6 d B < L S F ( / S O A E ) 

'high' if L S O A E + 6 dB > L S F ( / S O A E ) 

This is illustrated in fig. 9.2 for two subjects. Thus, for a sweep with a 'low' S/EOAE 

rating, the acoustic pressure of the emission (in the 16-Hz measurement band containing 

/ S O A E ) I S at least doubled in amplitude by the presentation of the probe tone. 

In fig. 9.2 (a) it is clear that the peaks in the SFOAE magnitude coincide with the 

frequencies of the SOAEs, even for frequency sweeps with a 'low' S/EOAE rating (and 

even in some cases where the SFOAE level exceeds the corresponding SOAE level by over 

10 dB). This fact does not, however, imply that the SOAE is influencing the SFOAE. 

Instead, according to Shera and Zweig's theory, the two phenomena are closely related with 

SOAEs being interpreted as self-sustaining SFOAEs in which the product of the cochlear 

apical and basal reflectances equals 1. However, on presenting an evoking tone of 

sufficient magnitude, self-suppression of the TW will rapidly reduce the apical reflectance, 

and thus the measured emission is essentially no different from a pure SFOAE. The reason 

for the coincidence of the peaks in the SFOAE with the frequencies of the SOAEs is that 

multiple reflections in the cochlea are involved in both phenomena. 
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Fig 9.2 SFOAE self-suppression frequency sweeps for subjects with SOAEs. The figure also shows the 
classification of SFOAEs frequency sweeps according to whether SOAEs are expected to significantly 
influence the frequency sweep. Each SFOAE frequency sweep is given a 'S/EOAE strength' rating based on 
the strength of the SOAE relative to the SFOAE, measured at that frequency where the SOAE pressure is 
greatest, relative to the SFOAE pressure. A 'low' rating indicates that the measured frequency sweep is 
deemed likely to be dominated by the evoked OAE. A 'high' rating indicates that the measured frequency 
sweep is deemed likely to be influenced by an SOAE, at the SOAE frequency, (a) shows the SFOAE pressure, 
PsF, over the seven frequency sweeps for the self-suppression experiment, for the subject with the SOAEs 
shown in (b) (subject 20, session 2). The S/EOAE strength is classed as 'high' for the two lower frequency 
sweeps, and 'low' for the five upper frequency sweeps, (c) and (d) show the corresponding data for a 
different subject (subject 15, session 1). For this subject, the S/EOAE strength is classed as 'high' for all 
seven frequency sweeps. 
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9.3 Estimation of SNR and Measurement Repeatability 

Before presenting the measured data, the issue of measurement reliability is 

addressed. Frequency sweeps that are excessively contaminated with noise are excluded 

from the analysis since in these cases the 4-parameter model is unable to perform reliably. 

However, when excluding data, care must be taken not to distort the results (i.e., not to 

exclude data simply because they do not support the theory under test). It was decided to 

exclude frequency sweeps purely on the basis of an estimate of the SNR for that sweep. 

Three methods of estimating the SNR for the measurements of the SFOAE have been 

used; 

• SNR estimate 1: based on the additive noise present in adjacent frequency bands. 

• SNR estimate 2: based on session-to-session repeatability. 

• SNR estimate 3: based on the analytic properties of the SFOAE. 

Of these, SNR estimate 1 was chosen as the reference SNR used to exclude frequency 

sweeps. The other two estimates are used to give additional indications of the quality of 

the measurements. 

SNR estimate 1, denoted SNRi, is calculated from the estimate of additive noise, 

defined in section 8.8.3, by averaging it over the frequency sweep. Thus there is one value 

of SNRi for each frequency sweep. 

SNR| ^ lOlogio 

=72 

2 1 2 [9 8] 
^ 1 = 7 r ^ ^SF:Add (») 

njA/ = 1376 Hz 

= 2816 Hz 

= 1 6 H z 

The reason that the noise appears in the numerator in [9.8] is that the value of 5i^ gives an 

estimate of the signal power plus the noise power. 

SNR estimate 2, denoted SNR2, is calculated from the correlation coefficient between 

the SFOAE frequency sweeps measured in two sessions. Thus there is one value of SNR2 

for each pair of frequency sweeps. The SNR is obtained directly from the correlation 

coefficient, p n , by assuming (for simplicity) that any lack of correlation is due entirely to 
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additive noise. With this assumption, the following relationship between SNR and 

correlation coefficient is easily derived: 

S N R 2 = LOLOGJO 

P\1 = \P\2\ 

Pl2 = 

r \ 
P\2 

1 - A 2 

1 
SF-.Session 1 SF'.Session 2 (») [9.9] 

(»2 

»iA/' = 1376Hz 

= 2816 Hz 

A/ =16 Hz 

where the * denotes the complex conjugate. Thus for example, a correlation coefficient of 

0.5 gives SNR: = 0 dB, whilst a correlation coefficient of 0.8 gives SNR2 = 6 dB. 

SNR estimate 3, denoted SNR3, is calculated from the correlation coefficient between 

the real part of , denoted pA:Re > and an estimate of pA:Re, obtained from the Hilbert 

transform of the imaginary part of PA- This estimate of is denoted • Thus: 

SNR3 ^lOlogio 
^ P ~ ' 

/̂'A:RePA:Re 
P A : R e P A : R e 

P 
f A : R e f A : R e 

/ ' A : R e P A : R e (7 CT~ ~ 
fA:RefA:Re P\-.RePA:Re 

1 N-l 
Z ;'A:Re (»)^A:Re (») 
n=0 

2 Af-l 
^ P A : R e P A : R e = " X ^ A : R e ( " ) P A : R e ( " ) 

M = 0 

2 N-l 
'^PA-.RePA-.Re = — 2] ^A:Re (")PA:Re (^) 

n=0 

where 

m = 0 , 1 , 2 . . . # - 1 

% = 0, 1,2. .JV-1 

Af = 512 

[9.10] 
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Fig 9.3 Session-to-session repeatability for four subjects. The real part of the SFOAE pressure for sessions 1 
and 2 are overlaid for four subjects. The results are taken from the self-suppression experiment, from 
subjects with: (a) moderate SFOAEs, but no detectable SOAE (subject l ; L , = 2 6 d B SPL). (b) strong 
SFOAEs, and with both 'low' and 'high' S/EOAE strength ratings (subject 20, L, = 20 dB SPL) (c) strong 
SFOAEs and with 'high' S/EOAE strength ratings throughout (subject 15; L, = 20 dB SPL) (d) weak SFOAE 
and with no detectable SOAE (subject 3, Li = 26 dB SPL). Solid triangles indicate the location of SOAEs. 
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Fig 9.4 Analyticity of the SFOAE frequency sweep for four subjects. The real part of the normalised SFOAE 
is overlaid on top of the Hilbert transform of the imaginary part for four subjects. The results are for the self-
suppression experiment, from subjects with (a) moderate SFOAEs, but no detectable SOAE (subject 1; Li = 
26 dB SPL). (b) strong SFOAEs, and with both 'low' and 'high' S/EOAE strength ratings (subject 20, 
Li = 20 dB SPL) (c) strong SFOAEs and with 'high' S/EOAE strength ratings throughout (subject 15; Lj = 20 
dB SPL) (d) weak SFOAE and with no detectable SOAE (subject 3, Li = 26 dB SPL). Solid triangles 
indicate the location of SOAEs. 
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To illustrate the calculation of SNR2, fig. 9.3 shows example comparisons of the 

frequency sweep for sessions 1 with that for session 2, for four subjects. The first subject 

had moderate SFOAEs, but no detectable SOAEs (subject 1), the second had strong 

SFOAEs and moderate SOAEs (subjects 20), the third had strong SFOAEs and strong 

SOAEs (subject 15), and the fourth subject had weak SFOAEs, and no SOAEs. The 

frequency sweeps from the first three subjects show good correlation between sessions. 

The frequency sweep from the fourth shows poor correlation, leading to a low estimate for 

SNRz. 

To illustrate the calculation of SNR3, fig. 9.4 shows examples of the signal 

analyticity for the same frequency sweeps as in fig. 9.3. Note that similar values of the 

correlation coefficients are obtained, leading to similar values of SNR2 and SNR3. 

9.4 Criterion for Rejecting Frequency Sweeps 

It was decided to reject all frequency sweeps for which the SNRi value fell below 

6 dB. The reasons for choosing SNRi over SNR2 or SNR3 are as follows. SNR2 may be an 

underestimate of the true SNR, since some changes in the measured SFOAE frequency 

sweep will arise simply by session to session changes in the fit, or the middle ear 

properties. Were SNR2 used as a criterion, relatively noise free frequency sweeps might be 

rejected unnecessarily. It was decided that SNR3 should not be used as a rejection 

criterion, since its validity depends to some extent on the theory to be tested. This leaves 

SNRi as the preferred rejection criterion. SNRi does, however, have the disadvantage that 

it is insensitive to drift noise, which would be expected to show up in both SNR2 and 

SNR3. Therefore it is expected that SNRi will overestimate the true SNR. 

Fig. 9.5a shows SNR2 plotted against SNRi for each pair of frequency sweeps, for all 

the data. There are approximately 240 pairs of sweeps shown (20 subjects x 7 probe levels 

+ 20 subjects x 5 suppressor levels). This shows that SNR2 is typically about 5 dB lower 

than SNRi, as expected for the reasons already discussed. Similarly, SNR3 is typically 

3 dB below SNRi (fig- 9.5b). Rejected frequency sweeps are indicated on the figure. Also 

shown is the poomess-of-fit, defined in equation [9.7]. This shows the expected result that 

the 4-parameter model performance improves with improvements in SNR. Note that 

values of the logarithmic poomess-of-fit greater than about -10 indicate a complete failure 

to converge to realistic parameters. The good correlation between all three estimates of 

SNR suggests that they are all reliable measures. Note also that although SNR2 has not 
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been adopted as the basis for rejecting noisy data, inter-session comparisons of data are 

performed later in the analysis after estimates of the four parameters have been obtained for 

both sessions. 

Table 9.1 shows a summary of the numbers of sweeps retained in the analysis. The 

target number of sweeps exceeds the actual number of sweeps as some of the sessions 

could not be completed due to time constraints. 

All Subjects, both expts, both sessions All Subjects, both expts, both sessions 

-15 -10 - 5 0 5 10 15 20 25 30 35 
SNA estimate 1 [dB] 

<u 
cc 

-15 -10 - 5 0 5 10 15 20 25 30 35 
SNR estimate 1 [dB] 

All Subjects, both expts, both sessions 

Key: 

Rejected Frequency Sweep 

Retained Frequency Sweep 

-20 -15 -10 - 5 0 5 10 15 20 25 30 35 
SNR estimate 1 [dB] 

Fig 9.5 Measures of the quality of the data and the parametric fit. Three measures are shown, plotted against 
the SNR estimate 1 (the reference SNR estimate), which is obtained using the frequency average of the 'noise 
in adjacent bands' SNR estimate. Results are shown for all subjects, for both self- and two-tone suppression 
experiments and for both sessions, (a) shows the a second estimate of SNR, obtained by correlating the 
SFOAE frequency sweep from session 1 with that from session 2. There is one point for each pair of 
frequency sweeps, (b) shows a third estimate of the SNR, based on the assumption that the normalised 
SFOAE frequency sweep is analytic. It is derived from the correlation of the real part of the frequency sweep 
with the Hilbert transform of the imaginary part. There is one point per frequency sweep, (c) shows the 
logarithmic measure of the poorness-of-fit of the 4-parameter model for each frequency sweep. There is one 
point per frequency sweep. Also indicated are those frequency sweeps which are rejected because their SNR 
estimate 1 falls short of a set threshold value of 6 dB. 
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Table 9.1: Summary of frequency sweep rejections due to poor SNR 

Numbers of frequency sweeps Self-suppression Two-tone suppression 

Target 2x20x7=280 2x20x5=200 

Actual 273 170 

Rejected 53 47 

Retained 220 123 

Table 9.2 summarises the statistics of the S/EOAE ratings for the retained frequency 

sweeps. 

Table 9.2: Breakdown of retained frequency sweeps by S/EOAE rating. 

Numbers of frequency sweeps Self-suppression Two-tone suppression 

Retained; Total 220 123 

Retained with SOAEs absent 96 41 

Retained with low S/EOAE rating 74 45 

Retained with high S/EOAE rating 50 37 

9.4.1 The Validity of Applying the 4-parameter Model to Experimental Data 

The choice of the 2°^ order Butterworth filter was based on predicted SFOAEs from 

cochlear models. As will be shown in later sections, where measured and fitted ^spectra 

are compared, it appears that the 4-parameter model may also be applied successfully to 

experimental data. It might be thought that the poomess-of-fit could be used to quantify 

how well the measured data conformed to the 4-parameter model. However, the results in 

fig. 9.4 indicate that the poomess-of-fit is dominated by the SNR rather than by 

deficiencies in the stochastic model underlying the 4-parameter model. 

9.5 Discussion of Results 

Examples of the results are presented for four subjects who have been chosen to 

illustrate various features seen across all 20 subjects. The chosen subjects are: 

1. subject 1, with moderately strong SFOAEs and with no detectable SOAEs; 
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2. subject 20, with strong SFOAEs and with moderate SOAEs, such that some frequency 

sweeps have a low S/EOAE rating, and others have a high S/EOAE rating. 

3. subject 15, with strong SFOAEs and with strong SOAEs, such that all the frequency 

sweeps have a high S/EOAE rating. 

4. subject 3 with weak SFOAEs and no detectable SOAEs. Several of the frequency 

sweeps are rejected due to poor SNRi estimates. 

9.5.1 Qualitative Discussion of the Results for the Self-suppression Experiment 

Fig. 9.6 shows the measured ear canal pressure in both the unsuppressed and 

maximally suppressed conditions for the self-suppression experiments for all four subjects. 

(Results from only one session are shown.) This shows the expected pattern of ripples, 

with a spacing that corresponds to the SFOAE periodicity. The ripple amplitude reduces as 

the probe level is increased. 

Fig. 9.7 shows various results derived from the measurement of the complex SFOAE 

pressure for subject 1, plotted against the logarithmic frequency variable, rjoct, for each 

probe level. Panel (a) shows that the magnitude of the SFOAE pressure, ps f , increases 

with probe level, reaching a maximum of about 15 dB SPL. Panel (c) shows that the 

magnitude of the normalised SFOAE p r e s s u r e , d e c r e a s e s with probe level, indicating 

the expected compressive nonlinearity. Panel (b) shows the SNR as a function of 

frequency, estimated using the noise in adjacent frequency bands, as in [8.1]. The SNR is 

typically well above 6 dB, indicating that the estimates of the SFOAE should be reliable. 

There is, however, a region at about rjoct =1-2 where the SNR is poor, and where therefore 

the estimated SFOAE is unreliable. Note that the SNRi estimate, used as a basis for 

rejecting frequency sweeps, can not be derived directly from the frequency dependent 

quantity plotted in panel (b), since SNRi is obtained by frequency averaging the signal and 

noise powers separately. Note also that, provided their SNRi estimate exceeds 6 dB, 

sweeps such as those in panel (b) are retained even when they contain regions where the 

frequency dependent SNR is very weak. The justification for this is that these parts of the 

signal are weak and have the least influence on the estimates given by the 4-parameter 

model. 

The SFOAE periodicity does not show up in the magnitude plots in panels (a) and 

(c). Instead, the periodicity is most clearly seen as the ripple pattern in the real and 

imaginary parts of the normalised SFOAE, shown in panels (d) and (f). (Recall that a 

single frequency sweep with a constant periodicity of 1/15 would appear as a ripple pattern 
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with a peak to peak interval of about 0.1 octaves.) The periodicity is also seen in the phase 

of the normalised SFOAE, shown in panel (e). Here, a frequency sweep with a periodicity 

of 1/15 would appear as a straight line with slope of about 10 cycles per octave. Rather 

than being approximately linear, the actual phase measurements shown in panel (e) exhibit 

a slope which steepens with rjoct • This result is in accordance with previous reports (e.g., 

Zweig and Shera, 1995, p. 2036). A possible explanation for this given by Zweig and 

Shera, is that the real cochlea departs from scaling symmetry due to a broadening of 

mechanical tuning at low characteristic frequencies. Note , however, that this variation in 

periodicity with frequency is not the subject of this thesis. Instead, the thesis concentrates 

on a form of frequency averaged periodicity, as extracted from the measurements by the 4-

parameter model. It is variations in this periodicity with probe level that are of most 

interest. It is interesting to note that no obvious change in periodicity with probe level can 

be discerned from a visual inspection of the results shown in panels (d), (e) and (f). It is 

argued here that there is a significant change in periodicity with probe level, but that the 

representations in panels (d), (e) and (f) are not well suited to revealing this change. This 

change is, however, revealed by applying the 4-parameter model to the results as seen in 

fig. 9.8. 

Fig. 9.8 shows the raw measured and the fitted ^spectra corresponding to the rj-

series shown in fig. 9.7. The spectra are shown on both a linear and a dB ordinate. The 

linear scale is useful because the 4-parameter model performs a fit to the autocorrelation 

function, which is related (via the Fourier transform) to the linear spectrum. Therefore any 

features that appear insignificant in the raw linear spectrum will have no significant 

influence on the 4-parameter fit. In contrast, these feature will be magnified by the dB 

scale. The dB scale is useful in that it clearly shows the trends in the spectra that occur 

over the entire level series. 

The most striking result is that the fitted spectra clearly show changes in ^centre 

value, (pc, with increasing probe level (panels (b) and (d)). This agrees with the predictions 

made by the cochlear models based on Zweig and Shera's theory (cf., fig 7.5). Variations 

in the bandwidth are less easy to judge simply by inspection. A quantitative discussion of 

this variation, and that of the other fitted parameters is given later. Two other points are 

worth noting. The first is that the variation in (j)c is not immediately obvious from the raw 

spectra. This is similar to the results obtained from the cochlear models (sections 5 and 6). 

The second is that the multiple reflection parameter, a, does not appear to vary smoothly, 

as seen by the erratic appearance of the second spectral lobe in panel (d) for nominal probe 

levels of 38 and 44 dB SPL. This is thought to be an inaccurate result, arising from the 
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difficulty in reliably estimating a. As will be discussed in more detail later, such errors in 

estimating ado not invalidate the estimates in the other parameters. 

Figs. 9.9 and 9.10 show the SFOAE ;;-series and ^spectra for subject 20. These 

results are in general qualitatively similar to those of subject 1, though the SFOAE level 

and SNR are greater. Two differences are worth noting. First, at the lower probe levels 

(14 - 26 dB SPL) there are clear peaks in the magnitude of the SFOAE (figs. 9.9a and c) 

coinciding with the presence of SOAEs. These peaks become less pronounced as the probe 

level increases. This is in accordance with the Zweig and Shera model, where multiple 

reflections become less significant as the magnitude of the apical reflectance is reduced. 

The second difference is that the phase curves (panel e) are more linear than for subject 20. 

In fact, in contrast to the trend seen in subject 1, at a nominal probe level of 14 dB SPL, the 

phase curve becomes less rather than more steep at higher frequencies. It was decided not 

to attempt to quantify this effect, or to study it further in this thesis. However, since this 

trend is opposite to that reported elsewhere (e.g., Zweig and Shera, 1995) it is perhaps 

worthy of a future investigation. 

It can be seen in fig. 9.10 that, as for subject 1, the fitted ^spectra show the trend of 

reducing with increasing probe level. 

Figs. 9.11 and 9.12 show the SFOAE /^-series and ^spectra for subject 15. Again 

these results are in general qualitatively similar to those of subject 1. The main difference 

is that, even at high probe levels, there are clear peaks in the in the magnitude of the 

SFOAE (figs. 9.11a and c) coinciding with the presence of strong SOAEs. All the 

frequency sweeps here have high a S/EOAE rating, indicating that the frequency sweeps 

may be significantly affected by SOAEs. Despite the presence of strong SOAEs, the fitted 

^spectra (fig. 9.12) show the trend of reducing ^ with increasing probe level, as for the 

previous subjects. 

Figs. 9.13 and 9.14 show the SFOAE //-series and ^spectra for subject 3, who had 

unusually weak SFOAEs. In these sweeps the SNR is poor, and therefore most of the 

sweeps are rejected. Only at the higher probe level (e.g., 44 and 50 dB SPL nominal) is 

there any sign of an SFOAE with the expected periodicity, as revealed by the phase curves 

in fig. 9.13 panel (e). The fitted (Z>-spectra are also erratic, showing little continuity between 

spectra from neighbouring probe levels. Since all the unusual looking spectra correspond 

to sweeps where the SNR was poor, it is likely that these are entirely unreliable results. In 

fact all these unusual looking spectra are eliminated, based on the low value of their SNRi 

estimate. 
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Fig 9.6 Ear canal sound pressure level for the self-suppression experiment for four subjects. The results are 
from subjects with (a) moderate SFOAEs, but no detectable SOAE (subject 1; session 1); (b) strong SFOAEs, 
and with both 'low' and 'high' S/EOAE strength ratings (subject 20, session 1); (c) strong SFOAEs and with 
'high' S/EOAE strength ratings throughout (subject 15; session 1); (d) weak SFOAEs and with no detectable 
SOAEs (subject 3, session 1). The unsuppressed ear canal pressure, PEC , appears as a rippled trace, whilst 
the suppressed ear canal pressure, PEC:R=O , appears as a smooth trace. Solid triangles indicate any SOAE 
frequencies. 

175 



SFOAE pressure p 

Q-
w 
m 

Sub. 1: Sess. 1 

Estimated SNR 

- 1 0 

Sub. 1; Sess. 1 

octaves, r| octaves, r\ 

Normalised SFOAE: p Normalised SFOAE: p 

Sub. 1; Sess. 1 

I 
z 

(d) Sub. 1; Sess. 1 

- 0 . 2 

octaves, x] octaves, Hr 

Normalised SFOAE: p Normalised SFOAE: p 

- 1 0 

(e) Sub. 1; Sess. 1 

0.5 1 

octaves, x] 
1.5 

Sub. 1; Sess. 1 

octaves, x] 

Fig 9.7 Measured SFOAE frequency sweep data for the self-suppression experiment, for a subject showing 
moderate SFOAEs, but with no detectable SOAEs (subject 1, session 1). Nominal probe tone levels are 14 to 
52 dB SPL, indicated on curves, (a) SFOAE pressure level; (b) estimated SNR; (c) normalised SFOAE 
level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) imaginary part of normalised 
SFOAE. 
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Fig 9.8 Raw and fitted SFOAE (^spectra for the self-suppression experiment, for a subject showing 
moderate SFOAEs, but with no detectable SOAEs (subject 1, session 1). Nominal probe tone levels are 14 to 
52 dB SPL, indicated on curves, (a) and (b) show raw and fitted 0-spectra plotted on a linear vertical scale, 
(c) and (d) show raw and fitted (Z>-spectra plotted on a dB scale. 
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Fig 9.9 Measured SFOAE frequency sweep data for the self-suppression experiment, for a subject showing 
strong SFOAEs, and with both 'low' and 'high' S/EOAE strength ratings (subject 20, session 2). Nominal 
probe tone levels are 14 to 52 dB SPL, indicated on curves, (a) SFOAE pressure level; (b) estimated SNR; 
(c) normalised SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) 
imaginary part of normalised SFOAE. 
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Fig 9.10 Raw and fitted SFOAE S p e c t r a for the self-suppression experiment, for a subject showing strong 
SFOAEs, and with both 'low' and 'high' S/EOAE strength ratings (subject 20, session 2). Nominal probe 
tone levels are 14 to 52 dB SPL, indicated on curves, (a) and (b) show raw and fitted (Z>-spectra plotted on a 
linear vertical scale, (c) and (d) show raw and fitted ^spec t ra plotted on a dB scale. 
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Fig 9.11 Measured SFOAE frequency sweep data for the self-suppression experiment, for a subject showing 
strong SFOAEs, and with 'high' S/EOAE strength ratings (subject 15, session 1). Nominal probe tone levels 
are 14 to 52 dB SPL, indicated on curves, (a) SFOAE pressure level; (b) estimated SNR; (c) normalised 
SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) imaginary part of 
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Fig 9.12 Raw and fitted SFOAE ( Z > - s p e c t r a for the self-suppression experiment, for a subject showing strong 
SFOAEs, and with 'high' S/EOAE strength ratings (subject 15, session 1). Nominal probe tone levels are 14 
to 52 dB SPL, indicated on curves, (a) and (b) show raw and fitted (^spectra plotted on a linear vertical 
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Fig 9.13 Measured SFOAE frequency sweep data for the self-suppression experiment, for a subject showing 
weak SFOAEs, and with no detectable SOAEs (subject 3, session 1). Nominal probe tone levels are 14 to 52 
dB SPL, indicated on curves, (a) SFOAE pressure level; (b) estimated SNR; (c) normalised SFOAE level 
(d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) imaginary part of normalised 
SFOAE. 
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Fig 9.14 Raw and fitted SFOAE (^spectra for the self-suppression experiment, for a subject showing weak 
SFOAEs, and with no detectable SOAEs (subject 3, session 1). Nominal probe tone levels are 14 to 52 dB 
SPL, indicated on curves, (a) and (b) show raw and fitted ^spec t ra plotted on a linear vertical scale, (c) 
and (d) show raw and fitted ^spec t ra plotted on a dB scale. 
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9.5.2 Qualitative Discussion of the Results for the Two-tone Suppression Experiment 

Fig. 9.15 shows measured ear canal pressure in both the partially suppressed and 

maximally suppressed conditions for the two-tone suppression experiments for all four 

subjects. (Results from only one session are shown.) This shows the expected pattern of 

ripples, with a spacing which corresponds to the SFOAE periodicity. The ripple amplitude 

reduces as the suppressor level is increased. 

Fig. 9.16 shows various results derived from the measurement of the complex 

SFOAE pressure for subject 1, plotted against the logarithmic frequency variable, rjoct for 

each probe level. The results appear to be quahtatively similar to those seen in the self-

suppression experiment (fig. 9.7), except that now the maximum change in the normalised 

SFOAE level is less. 

Fig. 9.17 shows the raw measured and the fitted ^spectra obtained from the /^-series 

shown in fig. 9.16. The fitted ^spectra show a clear difference from those in the self-

suppression experiment (fig. 9.8). Instead of showing a reduction in value, (pc shows a 

tendency to increase in value as the normalised SFOAE amplitude reduces. The change is 

less marked than for the self-suppression experiment, but it is still clearly discernible. This 

change is in agreement with the predictions from the cochlear models based on Shera and 

Zweig's theory (fig. 7.5). 

Figs. 9.18 and 9.19 show the SFOAE ;7-series and ^spectra for subject 20. In 

fig. 9.19 the trend of increasing (j)c with reducing amplitude of the normahsed SFOAE 

amplitude is seen even more clearly than for subject 1. 

Figs. 9.20 and 9.21 show the SFOAE //-series and ^spectra for subject 15. In 

fig. 9.21 the trend in less clear than for subjects 1 and 20. 

The results for subject 3 are not shown, since all the frequency sweeps had a poor 

SNR and were therefore rejected. 
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Fig 9.15: Ear canal sound pressure level for the two-tone suppression experiment for four subjects. The ear 
canal pressure at the stimulus frequency is shown. For clarity, traces are offset vertically, with the bar 
indicating the range. The results are from subjects with (a) moderate SFOAEs, but no detectable SOAE 
(subject 1; session 2); (b) strong SFOAE, and with both 'low' and 'high' S/EOAE strength ratings (subject 
20, session 2); (c) strong SFOAE and with 'high' S/EOAE strength ratings throughout (subject 15; session 1); 
(d) weak SFOAE and with no detectable SOAE (subject 3, session 2). The partially suppressed ear canal 
pressure, PEC , appears as a rippled trace, whilst the maximally suppressed ear canal pressure, PEC:R=Q , appears 
as a smooth trace. Solid triangles indicate any SOAE frequencies. 
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Fig 9.16 Measured SFOAE frequency sweep data for the two-tone suppression experiment, for a subject 
showing moderate SFOAEs, but with no detectable SOAEs (subject 1, session 2). The nominal probe tone 
level is held constant throughout at: L, =26 dB SPL. The nominal suppressor tone levels (indicated on 
curves) are: L2 = 26, 38, 50 and 62 dB SPL. (a) SFOAE pressure level; (b) estimated SNR; (c) 
normalised SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) imaginary 
part of normalised SFOAE. 
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Fig 9.17 Raw and fitted SFOAE ^spec t ra for the two-tone suppression experiment, for a subject showing 
moderate SFOAEs, but with no detectable SOAEs (subject 1, session 2). The nominal probe tone level is 
held constant throughout at: Li =26 dB SPL. The nominal suppressor tone levels (indicated on curves) are: 
Lz = ^ , 26, 38, 50 and 62 dB SPL. 
(a) and (b) show raw and fitted ^spec t ra plotted on a linear vertical scale, (c) and (d) show raw and fitted 
^spec t ra plotted on a dB scale. 
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Fig 9.18 Measured SFOAE frequency sweep data for the two-tone suppression experiment, for a subject 
showing strong SFOAEs, and with both 'low' and 'high' S/EOAE strength ratings (subject 20, session 2). 
The nominal probe tone level is held constant throughout at: L, =26 dB SPL. The nominal suppressor tone 
levels (indicated on curves) are: h j = 26, 38, 50 and 62 dB SPL. (a) SFOAE pressure level; (b) 
estimated SNR; (c) normalised SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised 
SFOAE; (f) imaginary part of normalised SFOAE. 
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Fig 9.19 Raw and fitted SFOAE ^spec t ra for the two-tone suppression experiment, for a subject showing 
strong SFOAEs, and with both 'low' and 'high' S/EOAE strength ratings (subject 20, session 2). The 
nominal probe tone level is held constant throughout at: L; -26 dB SPL. The nominal suppressor tone levels 
(indicated on curves) are: L; = -°°, 26, 38, 50 and 62 dB SPL. 
(a) and (b) show raw and fitted (^spectra plotted on a linear vertical scale, (c) and (d) show raw and fitted 
^spec t ra plotted on a dB scale. 

189 



SFOAE pressure p 

a. 
cn 
CO 

Sub. 15; Sess. 1 

Estimated SNR 

Sub. 15: Sess. 1 

octaves, ri octaves, r\ 

Normalised SFOAE: p Normalised SFOAE: p 

- 1 0 

- 2 0 

Sub. 15; Sess. 1 

-30 

I 

Sub. 15: Sess. 1 

octaves, T| octaves, T] 

Normalised SFOAE: p Normalised SFOAE: p 

o - 4 

- 9 

(e) Sub. 15; Sess. 1 

^ ^ 8 2 

0.5 1 
octaves, y\ 

1.5 

Sub. 15; Sess. 1 

octaves, ri 

Fig 9.20 Measured SFOAE frequency sweep data for the two-tone suppression experiment, for a subject 
showing strong SFOAEs, and with 'high' S/EOAE strength ratings (subject 15, session 1). The nominal 
probe tone level is held constant throughout at; L, =26 dB SPL. The nominal suppressor tone levels 
(indicated on curves) are: Li = 26, 38, 50 and 62 dB SPL. (a) SFOAE pressure level; (b) estimated 
SNR; (c) normalised SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) 
imaginary part of normalised SFOAE. 
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Fig 9.21 Raw and fitted SFOAE ^spec t ra for the two-tone suppression experiment, for a subject showing 
strong SFOAEs, and with 'high' S/EOAE strength ratings (subject 15, session 1). The nominal probe tone 
level is held constant throughout at: Li -26 dB SPL. The nominal suppressor tone levels (indicated on 
curves) are: L2 = -°°, 26, 38, 50 and 62 dB SPL. (a) and (b) show raw and fitted S p e c t r a plotted on a linear 
vertical scale, (c) and (d) show raw and fitted ^spec t ra plotted on a dB scale. 

191 



*-spectra (|)-speotra 

a 0.5 

&) 1 Sub. 15; Sess. 1 

= 26 dB SPL 

A 

a = 0.35 

\ 

10 20 30 

-spectra 

40 50 

® 0.5 

Sub. 20; Sess. 1 

L, = 26 dB SPL 

a = 0.1 

Sub. 15; Sess. 1 

L, =26dBSPL 

spectra 

Sub. 20; Sess. 1 

L = 26 dB SPL 

a = 0.1 

Key 

3-parameter fitted (^-spectrum 

4-parameter fitted tf-spectrum 

raw measured ((i-spectrum 

Fig 9.22 Comparison of the fitted ^ s p e c t r a arising from the 4-parameter model with that from the 3-

parameter model. Results from two frequency sweeps are shown, (a) and (b) show the ^ s p e c t r a for a case 

where the 4-parameter model returns a value of a = 0.35, which, if the model is correct, indicates significant 

multiple reflection (subject 15; session 1; self-suppression; Li = 26 dB SPL). The (^spectra for the 3- and 

4-parameter model show significant differences, (c) and (d) show the ^ s p e c t r a for a case where the 4-

parameter model returns a value of a = 0.1, thus predicting that multiple reflection are insignificant 

(subject 20; session 1; self-suppression; L, = 26 dB SPL). The ^ s p e c t r a for the 3- and 4-parameter model 

show no significant differences. Note that the fit is performed on the data in its linear, rather than decibel 

form, and therefore the representations in panels (a) and (c) give a more direct indication of the quality of the 

fit than panels (b) and (d). 
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9.5.3 Comparison of Results of the 3-Parameter and 4-Parameter Models. 

Before looking at the detailed results from the 4-parameter model, the issue of the 

validity of the model is briefly examined. Questions about the validity of the model arose 

in the discussion of fig. 9.8, where the value of or did not appear to vary smoothly with 

probe level. Although the values of aa re not the main focus of this investigation, it might 

be thought that errors in the estimates of a may be symptomatic of error in estimates of the 

other parameters. 

In this section it is asserted that the estimates of or from the 4-parameter model are in 

general valid, though they suffer from a higher than desirable random error. This probably 

leads to an overestimate of or for some frequency sweeps. However, the effect of this 

random error on the accuracy of estimates of (pc is expected to be very slight. The effect on 

estimates of (psw is expected to be greater, probably leading overestimates in ^bw for certain 

frequency sweeps. 

Evidence for this assertion comes from the application of both the 4-parameter model 

and 3-parameter model (which is equivalent to the 4-parameter model with or set to zero) to 

the results, which led to the following observations being made. 

• For small values of a{a< 0.15) the effect of or on the other three parameters; ^c, 

and P is negligible. This means that virtually the same results are obtained with the 3-

parameter and 4-parameter models. 

• For larger values of or(or> 0.15) the effect of or on (pc and y^is only slight, whilst the 

effect on 0BW is more significant. 

These two points are illustrated in fig. 9.22, which compares the results for the 3-

parameter and 4-parameter models. Two cases are examined, the first where a high value 

of oris returned by the 4-parameter model; the second where a low value of oris returned. 

For the high value of or (panels a and b), the fitted ^spectra for the 3- and 4-parameter 

models are clearly different (though the effect on ^ is only slight). For the low value of a 

the fitted ^spectra for the 3- and 4-parameter models are indistinguishable when plotted on 

a linear scale (panel (c)). Some difference is seen when plotted on a dB scale, but there is 

no significant difference in the estimated values of (pc and p. From results such as these it 

was concluded that (j)c is largely insensitive to errors in the estimate of a. 

Evidence for the validity of the estimates of or comes from applying the 4-parameter 

model to all the frequency sweeps in a level series. This showed that, when the value of a 

exceeds about 0.15, its variation within the level series is, on average, in accordance with 
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predictions from the cochlear models. However, the value of or also shows significant, 

apparently random, scatter around this central trend. 

This result is illustrated and discussed in greater detail in section 9.6.6. The result 

lends weight to the argument that or gives a useful measure of the physical phenomenon of 

multiple reflection in the cochlea. The error in estimates of a, which is suggested by the 

erratic trends across some of the level series, is thought to be a consequence of the random 

process underlying SFOAE generation. Support for this also comes from the study of 

cochlear models in section 6.8, where the performance tests on the 4-parameter model 

using the cochlear models showed that the estimates of or and (pBw suffered from significant 

random error. 

The conclusion from these results is that the 4-parameter model gives more reliable 

estimates than the 3-parameter model, though significant random errors in the estimates of 

or on (j)Bw expected. Errors ^ arising from error is or are expected to be slight. 

9.6 Variations across the Level Series 

In this section, variations across the level series are examined. Thus for each 

frequency sweep, a single set of characterising quantities are calculated, most important of 

which are the parameters returned by the 4-parameter model. The variation of these 

quantities can then be traced for both the self-suppression and the two-tone suppression 

experiments. 

9.6.1 I/O Functions: Variation of SFOAE Level 

For each frequency sweep, the strength of the SFOAE pressure has been 

characterised by calculating an RMS value of the SFOAE pressure, psF, across the 

frequency range. This is the quantity denoted by S\ is equation [9.8], and will be referred 

to as the RMS SFOAE pressure, or, when expressed in dB, the RMS SFOAE pressure 

level. The variation of this value across the level series for both the self-suppression and 

the two-tone suppression experiments is shown in fig. 9.23 for each of the 20 subjects. The 

variations are shown against either the nominal probe level or the nominal suppressor level, 

as appropriate. Both sessions for each experiment are shown. The figure also indicates 

which frequency sweeps have been rejected, based on the SNRi estimate. Also indicated 

are the S/EOAE ratings. 
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Fig 9.23 Variation of the measured rms SFOAE pressure level during both the self-suppression and the two-
tone suppression experiments. Each point represents the PSF.RMS value obtained by frequency averaging 
\PsF i f ) f over one sweep. The horizontal axis shows the nominal level of the probe tone (self-suppression 
experiment) or the suppressor tone (two-tone suppression experiment). Results are shown for all 20 subjects 
and for both sessions. The S/EOAE rating of each sweep is also indicated. Sweeps that will be rejected due 
to poor SJ4R are also shown. Key shown on the following page. Continued over page. 
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Fig 9.23 continued. 
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Fig 9.24 Variation of the measured RMS normalised SFOAE level during both the self-suppression and the 
two-tone suppression experiments. Each point represents the PAIRMS value obtained by frequency averaging 
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The results show in general that the RMS SFOAE pressure level grows at approx. 

0.5 dB per dB increase in probe level. Maximum levels of around 12 dB SPL are obtained. 

Frequency sweeps with a level below -10 dB SPL usually become rejected on the basis of 

their poor SNRi estimate. Note that it is not safe to infer the presence of a signal simply 

from an increase in SFOAE with probe level, because the estimate of the SFOAE level will 

contain a component due to noise. Because of the reduction in the averaging time with 

probe level, the noise level will also tend to increase with probe level. The variation of 

noise is discussed in the next section. 

Typically, at the maximum suppressor tone levels, the RMS SFOAE pressure level is 

reduced by about 7 dB, relative to its unsuppressed value. 

The variation of the RMS normalised SFOAE level, Lmrms, for each frequency 

sweep is presented in fig. 9.24. This is calculated from the RMS average of the normalised 

pressure,/7a, across logarithmic frequency giving juairms (equation [6.10]). In fact this 

value is virtually identical to the parameter P, returned by the 4-parameter model 

(section 6.6). These curves show the deviation from nonlinearity, since, for a linear 

system, the normalised SFOAE would remain unchanged with changes in probe or 

suppressor level. The maximum values of the frequency averaged normalised SFOAE are 

around -15 dB. Typically the values fall at about 0.5 dB per dB increase in probe level. 

9.6.2 Variation of SNR 

In order to show clearly which frequency sweeps have been rejected for each subject, 

the variation of the SNRi estimate over the level series is shown in fig. 9.25. Instead of 

plotting the data against probe or suppressor level, the variation in SNRi is plotted against 

the RMS normalised SFOAE level, Lairms, which, for brevity, will be referred to as the 

'normalised SFOAE level'. The reason for adopting this value as the abscissa is that it 

allows both the self-suppression and the two-tone suppression experiments to be plotted 

against a common axis (cf. figs. 7.6 and 7.7). This turns out to be particularly useful for 

future plots, and for comparison with model results. The plot shows where SNRi values 

fall below 6 dB, leading to the sweep being rejected. 

For the self-suppression experiment, there is a tendency for SNRi to reduce as the 

normalised SFOAE level increases. This is because a high normalised SFOAE level 

corresponds to a low SFOAE pressure level, where it becomes uneconomic in terms of 

experimental time to attempt to average to the same SNR as at high SFOAE levels 

(section 8.8.3). 
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For the two-tone suppression experiment, SNRi increases with normalised SFOAE 

level. This is because all results were averaged to the same estimated noise level, 

irrespective of the suppressor level. Therefore SNRi is reduces as the SFOAE pressure 

level (and therefore also the normalised SFOAE level) is reduced by an increase in 

suppressor level. 

9.6.3 Variation of (^centre value 

Fig. 9.26 shows the variation in the ^centre value, (pc , with the normalised SFOAE 

level for all 20 subjects. The results from frequency sweeps that were rejected on the basis 

of their poor SNRi value are not shown. The S/EOAE rating is shown for each frequency 

sweep. It is useful to bear in mind the corresponding curves from the cochlear models, 

shown in figs. 7.6. and 7.7. These curves resemble the character "y", where the longer 

limb of the "y" (which has a positive gradient) arises from the self-suppression experiment, 

and the shorter limb (which has a negative gradient) arises from the two-tone suppression 

experiment. 

This predicted y-shape is seen clearly in some of the data (e.g., subject 20). In other 

cases the trends are less clear (e.g., subject 11), or there are too few acceptable frequency 

sweeps for any trends to be assessed (e.g., subject 3). It is also desirable to take account of 

the S/EOAE rating for the results. 

In order to make a systematic comparison between the measured data for each 

experiment and the model predictions laid out in section 7.4, the curves from sessions 1 

and 2 have been averaged to produce a single joint curve. Prior to averaging, any <j)c 

estimates that are deemed to be unreliable are rejected. This judgement of reliability is 

made based on the repeatability of the estimates between sessions 1 and 2. However, since 

these estimates were made on different days, with different probe fits, there may be 

significantly different excitation levels in the cochlea for the two sessions. Therefore, it is 

inappropriate to compare the absolute values of estimates across sessions. Instead, the 

trends for sessions 1 and 2 are compared. The precise procedure is as follows. 

1. For each experiment and for each subject, the curve in fig. 9.26 for session 1 is 

compared with that for session 2. Any portions of the two curves which show different 

trends in both sessions are identified. For example, for subject 16 the portions of the 

curves for the self-suppression experiment defined by the three points obtained with 

Li = 14, 20 and 26 dB SPL have a very different trend in the three estimates for 
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session 1 compared to session 2. Such estimates (in both the sessions) are then classed 

as "unrepeatable" and are rejected from this analysis. All the remaining estimates are 

classed as "repeatable" and are included in the further analysis. Thus, in this example 

for subject 16, the estimates for Li = 30, 36, 42 and 50 dB SPL are retained. Note that 

the classification is based on the trends within the session, and not on the absolute 

difference in the estimate across sessions. Also, differences in trend that are judged to 

be quite small are not used to reject estimates. For example, for subject 4, the estimates 

for session 1, at Li = 30, 36 and 42 dB SPL do not define a monotonic curve, whilst the 

corresponding estimates for session 2 do. However in this case, it is judged that the 

difference is small, and hence all estimates are accepted for further analysis. Although 

in these cases there is clearly a certain degree of subjective assessment required, they 

are rare, and have not proved problematic. 

2. In cases where an estimate is present for only one of the sessions, such as for subject 5, 

session 2, Li = 50 dB SPL, this estimate is rejected. 

3. The number of repeatable estimates in each group is counted to establish whether there 

are sufficient data for further assessment. 

4. The trend of (pc with normalised SFOAE level in each group is classified, according to 

the following scheme: 

"As model": the measured trend follows the model predictions (section 7.4) 

"Anomalous:" the trend is not as predicted in section 7.4 

"Insufficient data": too few (<3) reliable estimates in curve to assess the trend. 

The averaged curves are shown in fig. 9.27. Note that now two stages of data 

rejection have been applied. In the first, frequency sweeps were rejected based on their 

SNRi estimates. The 4-parameter estimates for all the retained frequency sweeps were 

then calculated. The marked points in fig. 9.27 correspond to the estimates for (pc- The 

second stage of data rejection applies only to the averaged curve shown in the figure. In 

this stage, (j)c estimates are rejected, based on the variability between session 1 and 

session 2 using the procedure described above. One cause of this variability was probably 

subject movement, leading to degradation of the probe fit. A second possible cause is drift 

noise, which is not accounted for in the SNR, estimate. 
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Fig 9.26. Variation of the measured SFOAE (Mzentre value during both the self-suppression and the two-
tone suppression experiments. Each point represents 0c obtained from one sweep. The horizontal axis 
shows the normalised SFOAE level, PMRMS- Results are shown for all 20 subjects and for both sessions. The 
S/EOAE rating of each sweep is also indicated. Rejected sweeps are not shown. Numbers in normal font 
next to selected points indicate the nominal probe level for the self-suppression experiment, for that point. 
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experiment, for that point. Key shown on the following page. Continued over page. 
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estimates for session 1 and 2. Only accepted averages have been used. See text for the acceptance criteria. 
The horizontal axis shows the normalised SFOAE level, PA:RMS- The S/EOAE rating of each sweep is also 
indicated. Rejected sweeps are not shown. Numbers in normal font next to the start and end of a curve 
indicate the nominal probe levels at the end points for the self-suppression experiment. Numbers in italics 
next to the start and end of a curve indicate the nominal suppressor level at the end points for the two-tone 
suppression experiment. Key shown on the following page. Continued over page. 
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Fig 9.27. continued. 
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This summary results are shown in table 9.3; 

Table 9.3: Summary of results for the measured ^ variation with SFOAE level 

Experiment Classification Number of Subject Identification 

of Trend Subjects Numbers 

Self-suppression As model 14 1,4-6,8-10,13-18, 20 

Anomalous 1 11 

Insufficient data 5 2 , 3 , 7 , 1 2 , 1 9 

Two-tone suppression As model 10 1 ,4 -6 ,9 ,10 ,13 ,15 ,18 ,20 

Anomalous 2 14,17 

Insufficient data 8 2 , 3 , 7 , 8 , 1 1 , 1 2 , 1 6 , 1 9 

Both experiments As model 10 1 ,4 -6 ,9 ,10 ,13 ,15 ,18 ,20 

For the self-suppression experiment, only one result was classed as anomalous 

(subject 11). For this subject, (pc varies little with SFOAE level. However, only the tail 

end of the curve was measurable (i.e., at high probe levels), where the predicted curve 

becomes quite flat. Therefore, this result is not strong evidence against the model. 

For the two-tone suppression experiment, two results were classed as anomalous, 

(subjects 14 and 17). However, for subject 14, the reliable portion of the curve is very 

short, showing a change in normalised SFOAE level of only 2 dB. The results for subject 

17 are more surprising, showing as a downward trend in ^ over a 4 dB change in 

normalised SFOAE level. 

The presence of SOAEs appears to have little influence on the trends. For the self-

suppression experiment, results classed as "as model" were obtained where: 

1. no SOAEs were detected (subjects 1, 8, 10, 14 and 17), 

2. the S/EOAE rating was low for most sweeps (subjects 5, 6, 13, 16, 18, and 20) 

3. the S/EOAE rating was high for most sweeps (subjects 4, 9, and 15). 

Similarly for the two-tone suppression experiment, results classed as "as model" were 

obtained where: 

1. no SOAEs were detected (subjects 1 and 10), 

2. the S/EOAE rating was low for most frequency sweeps (subjects 5, 6, 13, 18, and 20), 

3. the S/EOAE rating was high for most frequency sweeps (subjects 4, 9, and 15). 

Within the "as model" class, a variety of different y-shapes are seen. It is speculated 

that subjects within this class show a variety of different cochlear amplifier characteristics, 
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leading to significant differences in the way in which the TW shape is altered during 

acoustic suppression. 

In conclusion, the results give strong support to the model predictions made for the 

self-suppression experiment. The results for the two-tone suppression are less clear cut, 

but are, in general, in agreement with model predictions. 

9.6.4 Variation of (Zi-bandwidth 

Fig. 9.28 shows the variation in the ^bandwidth, (psw, with the normalised SFOAE 

level for all 20 subjects. The corresponding curves obtained from the cochlear models are 

shown in fig. 7.6c. Recall that for the model, the estimates of (pBw were found to be less 

reliable the those of ^ (fig. 6.3), leading to 'glitches' in the curve of estimated (pBw 

variation, as was seen in figs. 7.6c and 7.7c for the self-suppression simulation at a probe 

level of 50 dB SPL. However, ignoring such glitches (which were found to be dependent 

on the realization of the random scattering sites) the predicted self-suppression and two-

tone suppression curves together either resembled a "y" as in fig. 7.7c, or a distorted 

character "y" as in fig. 7.6c (the distortion being that the short limb is rotated 

anticlockwise). The longer limb of the "y" arises from the self-suppression experiment, 

and the shorter limb arises from the two-tone suppression experiment. 

In order to obtain an average curve for across both sessions, the same analysis 

procedure was followed as for the (pc results outlined in the previous section. This led to 

some ^Bw estimates being judged "unrepeatable" and therefore excluded from further 

analysis. As would be expected, those frequency sweeps which showed repeatable trends 

in their (pc estimates also showed repeatable trends in their B̂W estimates. The averaged 

curves are shown in fig. 9.29. 

The curves for each experiment were then classified as in the previous section, giving 

the results shown in table 9.4. 
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Fig 9.28 Variation of the measured SFOAE ^-bandwidth during both the self-suppression and the two-tone 
suppression experiments. Each point represents obtained from one sweep. The horizontal axis shows 
the normalised SFOAE level, PA:RMS- Results are shown for all 20 subjects and for both sessions. The 
S/EOAE rating of each sweep is also indicated. Rejected sweeps are not shown. Numbers in normal font 
next to selected points indicate the nominal probe level for the self-suppression experiment, for that point. 
Numbers in italics next to selected points indicate the suppressor level for the two-tone suppression 
experiment, for that point. Key shown on the following page. Continued over page. 
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Fig 9.29 Measured ^bandwidth curves defined by the average of estimates for session 1 and session 2. The 
variation is shown for both the self-suppression and the two-tone suppression experiments. The marked 
points are the actual estimates of (psv/ • The thick line passes though the average of the two estimates for 
session 1 and 2. Only accepted averages have been used to define the average. See text for the acceptance 
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curve indicate the nominal suppressor level at the end points for the two-tone suppression experiment. Key 
shown on the following page. Continued over page. 
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Table 9.4: Summary of results for the measured (pgw variation with SFOAE level 

Experiment Classification Number of Subject Identification 

of Trend Subjects Numbers 

Self-suppression As model 6 4 , 6 , 9 , 1 1 , 1 6 , 2 0 

Anomalous 9 1, 5 ,8 ,10 ,13-15 ,17 ,18 

Insufficient data 5 2 , 3 , 7 , 1 2 , 1 9 

Two-tone suppression As model 2 4 20 

Anomalous 9 1 ,5 ,6 ,10 ,13-15 ,17 ,18 

Insufficient data 9 2 , 3 , 7 , 8 , 9 , 1 1 , 1 2 , 1 6 , 1 9 

Both experiments As model 2 4 20 

The results show more intersubject variability and are harder to interpret than those 

for the measurements. In table 9.4, curves which show significant non-monotonicity 

have been classed as anomalous (despite the non-monotonicity seen in fig. 7.6c). For the 

self-suppression experiment, six subjects showed the trend predicted by the model. Nine 

self-suppression curves were classed as anomalous. The curves for subjects 1 , 5 ,8 ,15 and 

17 show a clear non-monotonicity, whereby the estimate first increases, and then 

decreases as the normalised SFOAE level is reduced by the increasing probe level. A 

second type of anomaly is seen for subject 14 where there is a tendency for B̂W to increase 

with probe level. The remaining anomalous self-suppression curves (subjects 10, 13 and 

18) either show little change, or erratic changes in 

The curves for the two-tone suppression experiment are even harder to analyse, 

because of the limited numbers of accepted estimates and the limited variation achieved in 

the normalised SFOAE level. Consequently their was insufficient data for nine subjects. 

For the remaining cases, it was decided to place any "y" shaped curves (whether distorted 

or not) in the "as model" class. That is to say, the classification was not based on the 

absolute slope of the (pBw curve for two-tone suppression, but on the slope for two-tone 

suppression curve relative to that for self-suppression. Only two subjects (numbers 4 and 

20) clearly showed this form of (pBw variation. The nine results which were classed as 

anomalous showed a variety of different trends. Subjects 1, 5 and 17 showed some non-

monotonicity. Subject 15 showed a steeper curve in the two-tone suppression case 

than in the self-suppression case. The remaining subjects showed a <pBw curve in the two-

tone suppression that was of a similar slope to that for the self-suppression case. 
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Overall, for both the self-suppression and the two-tone suppression experiments there 

is more intersubject variability in the results for ^BW than was seen in the variation. This 

is expected to some extent from the results from the cochlear models given section 6.8 

where the expected error in the estimates of from the 4-parameter model was greater 

than those of Thus, even using noise free results from the cochlear models, the 

estimated (j)Bw variations from many realisations showed 'glitches' which resulted in non-

monotonicity. As a consequence, the comparison between the measured (pBw results and 

the theoretical ones is difficult, and therefore this part of the experiment does not provide a 

strong test of the model. Further modelling work (discussed in section 10) and 

experimentation may enable a stronger test based on (j)Bw to be devised, 

9.6.5 Variation of the Relative Bandwidth 

The variation of the ^bandwidth in relation to the ^centre frequency is shown in 

fig. 9.30. If the ^spectrum had an approximately constant Q factor (defined by 

Q = I ^Bw) then these curves would lie on a straight line passing through the origin, 

where the gradient would be inversely proportional to the Q factor. The Q factor has not 

been plotted directly, since the values become unreliable at small values of B̂W- A 

significant intersubject variation is seen in the shape of these curves. For example, 

subject 15 shows a Q factor which reduces with probe level, whilst subject 20 shows the 

opposite trend. This suggests that use of Q-factor offers no benefits over the direct use of 

(pBw as a means of characterising the width of the ^spectrum. This result is in agreement 

with the cochlear model results shown in figs. 7.6c, 7.7c and 7.8c, which showed that a 

significant variation in the Q-factor arose from one realization of the scattering impedance 

to the next. 
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session 2. The variation is shown for both the self-suppression and the two-tone suppression experiments. 
The marked points are the actual estimates of and • The thick line passes though the average of the 
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page. Continued over page. 
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Fig 9.30 continued. 
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9.6.6 Variation of the Multiple Reflection Parameter, a. 

Recall from section 6.6 that the value of a i s related to the (frequency-aver aged) 

product, I rR | where r and R are the cochlear basal and apical reflection coefficients 

respectively. Also, the value Pis related to the frequency averaged product | gR | where g 

characterises transmission through the middle ear, outer ear and probe. The value of 

also virtually identical to the value of the RMS normalised SFOAE pressure. The effect of 

the probe or suppressor level is to reduce the magnitude of R, leaving r and g unaltered. 

Therefore it is expected that or will be proportional to p. This has been tested by plotting a 

against P f o r the measured data (fig. 9.31). For comparison, results from the cochlear 

model predictions are shown in figs. 7.6d and 7.7d. In general, the results bear out the 

predictions, as is most clearly seen for subjects 4, 5, 6, 9, 14, 15, 16, 17, 18 and 20. Recall 

also that the studies of the performance of the 4-parameter model revealed that errors in the 

estimates of a were large, even for noise free data. Therefore a significant departure of the 

measured results from ideal proportionality (as seen in fig, 9.31) was expected. 
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Fig 9.31 Variation of the measured a parameter during both the self-suppression and the two-tone 
suppression experiments. Each point represents a , which quantifies the strength of multiple reflections, 
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equal to RMS • Results are shown for all 20 subjects and for both sessions. The S/EOAE rating of each 
sweep is also indicated. Rejected sweeps are not shown. Key shown on the following page. 

Continued over page. 
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9.7 Overall Comparison of Modelling and Experimental Results 

The results allow four separate comparisons between measurements and theory to be 

made. These are the estimates of the <j>c and (pgw variations for both the self-suppression 

and two-tone suppression experiments. 

The results for (pc for the self-suppression gave the most consistent pattern of results 

across subjects. For nearly all subjects where the SFOAEs were strong enough to be 

measured accurately for several level series, the measured variation of (j)c showed a striking 

similarity to the theoretical results obtained from cochlear models. The results of the two-

tone suppression experiment were less clear, partly because of the limitations of this 

experiment, discussed later. However, in general the results for (pc for the two-tone 

suppression experiment also agreed with theoretical predictions. Thus, in general, the 

experimental results showed the characteristic y-shaped variation in ^ predicted by the 

models. Though two of the subjects showed results that deviated slightly from the model 

predictions, these anomalies were weak, and could be attributed to the random variation 

which is inherent in the SFOAE generation mechanism proposed by Shera and Zweig. 

Thus, the measured 0c variations have been interpreted as offering strong experimental 

support for the cochlear models. Furthermore, this conclusion appeared to be valid across 

all subjects where SFOAEs were strong enough to allow comparisons with model 

predictions to be made. 

The precise details of the y-shaped results varied significantly across subjects. It is 

speculated that this variation is due to inter-subject differences in the cochlear amplifier 

characteristics, leading to differences in the way in which the TW shape is altered during 

acoustic suppression. 

The results for (pBw are harder to interpret for two reasons. Firstly the results of the 

cochlear modelling study showed that the errors in the 4-parameter model estimates of 

were significant, leading to glitches in the curves. Secondly, the experimental 

results showed a larger intersubject variability than did the 0c results (as would be expected 

from the modelling results). Overall, neither the self-suppression results nor the two-

tone suppression (pBw results were clear enough to be safely interpreted as either supporting 

or contradicting the cochlear model. Therefore this part of the experiment does not provide 

a good test of theory. 

Overall the experimental results show that changes in OAE periodicity, as 

characterised by the ^ variable, can be detected during both self-suppression and two-tone 
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suppression. Furthermore, these changes are in agreement with cochlear models based on 

Shera and Zweig's theory of OAE generation combined with the model of self-suppression 

and two-tone suppression developed by Kanis and de Boer. This suggest that the cochlear 

models are accurately representing the main features of the OAE generation mechanism 

and of OAE suppression, and lends some support to both Shera and Zweig's theory and to 

Kanis and de Boer's model of nonlinearity. The results are not in agreement with a 

cochlear models containing Strube's spatially periodic scattering impedance. 

9.7.1 A Possible Alternative Interpretation 

Talmadge et al. (2000) have shown that some nonlinear cochlear models predict 

SFOAE spectra with two components: a nonlinear component and a 'roughness' or 

scattering component. In this thesis, only the scattering component has been included in 

the model predictions. As a consequence of the definition of the reflectionless cochlea 

(section 5.4), even the nonlinear models in this thesis show no nonlinear SFOAE 

component. Thus the y-shaped variation seen in the model results is due entirely to the 

interaction of the TW shape with the scattering impedance. However, in the following 

discussion, the possibility of a nonlinear effect on the experimental data is addressed. 

In the model of Talmage et al. (2000) the nonlinear component varies only very 

slowly with frequency (i.e., it has a very high periodicity) and is generally of smaller 

amplitude to the scattering component which has been the focus of this thesis. Thus the 

total SFOAE spectrum is usually dominated by the scattering component. However, as the 

stimulus level increases the nonlinear component increases whilst the scattering component 

reduces. When a stimulus level is reached at which the nonlinear component becomes 

dominant, then the fine structure in the total SFOAE spectrum virtually disappears being 

replaced by the much coarser (i.e., higher periodicity) spectral structure of the nonhnear 

component (Talmadge et al., 2000, fig 4). This would correspond to a ^centre value, (pc , 

approaching zero. It could be speculated that, in the transition region between these two 

regimes, the variation of (j)c with stimulus level might appear qualitatively similar to 

variation seen experimentally. 

The following arguments are presented to support the interpretation given in section 

9.7, that the y-shaped variation is dominated by the scattering SFOAE component, rather 

than by transition from scattering to nonlinear components. Firstly, no sign of the 

nonlinear SFOAE component was seen when comparing the suppressed and unsuppressed 

ear canal pressure spectra (section 9.1). Secondly, the final measured value of 0c in 
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fig 9.27 is typically 10. This is much higher than the value of ^ due to the nonlinear 

component alone (which is less than 1 in the frequency range of interest in Talmadge et ah, 

2000, figs 2, 4 and 6). This shows that the final SFOAE is still dominated by the scattering 

component. Thirdly, the variation in ^ with stimulus level follows a smooth, continuous 

line. If a transition phenomenon were strongly influencing the results, it might be expected 

that a more sudden drop in the value of with stimulus level would be seen. Finally, the 

striking resemblence of the experimentally measured (pc variations to those obtained 

theoretically argues against the involvement of nonlinear SFOAE components. 

Nevertheless, without further modelling studies, which are outside the scope of this thesis, 

it is difficult to completely rule out any influence from nonlinear SFOAE components. 

Such further modelling studies are left as recommended future areas of investigation. 

9.8 Implications of the Results 

Within the framework of Kemp's reflection hypothesis, the main questions that have 

a bearing on the results obtained in this thesis are: 

• What is the spatial form of the scattering impedance in the cochlea? 

• What is the nonlinear variation in the TW response during self-suppression and two-

tone suppression? 

• What is the relationship between SFOAEs, the TW response and the scattering 

impedance? 

• What is an appropriate signal processing method for characterising SFOAE periodicity? 

In this thesis, the primary aim was to acquire experimental evidence which would 

shed light on the form of the scattering impedance. However, the answers to the remaining 

questions listed above are still uncertain. Therefore the assumptions that have been made 

in answering these questions may influence any conclusions drawn about the scattering 

impedance. 

In this respect the interpretation of the self-suppression experiment given in the 

previous section is less open to question than that of the two-tone suppression experiment. 

This is because the broadening of the TW envelope with increasing probe level is well 

established from direct measurements of the BM mechanical response (Cooper and Rhode, 

1992). Furthermore, the modelling of self-suppression is more straightforward than two-

tone suppression. In fact, the results of the cochlear models presented here show that the 
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changes in TW shape during self-suppression predicted by the nonlinear model are similar 

to those predicted by linear models in which the overall cochlear amplifier gain is reduced. 

This has been found for two quite different (linear) formulations of the cochlear amplifier. 

For the random scattering impedance models, the resulting changes in ^ and (pBw were 

seen for both of these linear models as well as for the nonlinear model. This suggests that 

the general result is not dependent on the details of the cochlear model. 

In contrast, several factors make the interpretation of the two-tone suppression 

experiment more questionable. The changes in TW shape in two-tone suppression are 

generally less well established than those in self-suppression. Furthermore, model 

predictions of two-tone suppression necessarily require a nonlinear formulation; there is 

no simple way of checking the nonlinear model results against a linear model. Such 

nonlinear formulations introduce another set of assumptions, over and above those required 

for the linear models. Due to time constraints, only the nonlinear model due to Kanis and 

de Boer was implemented. Therefore there is a danger that the results depend on the 

details of this particular formulation. Finally, the conclusions that have been drawn are 

based on a single suppressor-to-probe frequency ratio, and at a single probe level. 

The self-suppression results are in agreement with the result reported by Kemp and 

Brown (1983), that increasing the probe level gave a reduction in group delay. They are 

also in agreement with the reported results of a reduction of TEOAE latency with probe 

level (Neely et al., 1988). No reported results have been found which either directly 

confirm or contradict the two-tone suppression results. 

The experimental results have been interpreted as providing support for Shera and 

Zweig's theory in which the CP scattering impedance shows a fine-grained, random spatial 

variation. This requires further qualification. Two main classes of scattering model have 

been used in the simulations: random scattering and periodic scattering models. The 

measured (pc variations clearly confinn the predictions of the random scattering models but 

contradict those of the periodic scattering models. However, it may be argued that the 

periodic scattering models used were unrealistic, since the resulting SFOAE spectra show 

near perfect periodicity (section 7.2). This can be seen by considering their predicted B̂W 

values, which are much lower than measured values (figs. 7.3 and 9.28). Thus such models 

could have been discounted purely on the measured value of B̂W for a single frequency 

sweep. Although this problem was partially addressed in section 5.5.1, where more 

realistic SFOAE results were presented from models which have a narrow-band, rather 

than a periodic, scattering impedance, these models were not included in the self-

suppression or two-tone suppression simulations. However, it is possible to predict the 
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results that would have been obtained by considering Zweig and Shera's phenomenological 

theory, as illustrated in figs. 4.4 and 4.5. For a scattering impedance, the scattering 

potential in panel (d) would have a narrow band bandpass shape in the ^domain, 

somewhere between the random broadband function seen in fig. 4.4d and the sharp peak 

seen in fig. 4.5d. Consider multiplying this bandpass shape with the TW pulse in the ^ 

domain. It can be seen that the resulting SFOAE periodicity may or may not depend 

strongly on the TW shape, depending on the relative positions in the ^domain of the 

scattering potential and the TW function. We might then class those cochlear models 

which predict SFOAE spectra whose periodicity is dominated by the peak of the TW 

function as representing Shera and Zweig's model, and those which predict SFOAE spectra 

whose periodicity is dominated by the peak in the scattering potential as representing 

Strube's model. The measured results indicate that significant changes in (pc occur during 

suppression, which strongly suggests that the SFOAE periodicity is not dominated by the 

spatial periodicity of the scattering impedance. In this sense, the results contradict Strube's 

model. 

However, this result does not necessarily imply that a perfectly random scattering 

impedance was actually present in the tested ears. Other spatial variations which have not 

been simulated might produce similar results. For example, perhaps the fine-grained 

inhomogeneities could be replaced by fewer point inhomogeneities rather like the models 

discussed in section. 3.3.1, except with greater numbers of reflection sites, and with a 

random distribution. This could be described as a sparsely distributed, coarse grained 

random distribution. Or a BM with some scattering regions interspersed with smooth 

regions might produce similar results, depending on the size and location of these regions. 

These two suggestions are made simply to illustrate that there are many possible variants of 

the random scattering impedance which have not been simulated. Further modelling and 

experimentation would allow the models to be refined. 

Overall the experimental results for the self-suppression experiment provide strong 

support for the model of OAE generation based on Shera and Zweig's theory. The results 

of the two-tone suppression experiment appear to support both Shera and Zweig's theory 

and the two-tone suppression model developed by Kanis and de Boer. However, further 

modelling and experimentation in this area is desirable. 

The results do not refute the hypothesis that Shera and Zweig's theory is generally 

applicable to all normally hearing subjects. The few anomalies that were seen are readily 

accommodated by the random nature of the proposed OAE generation mechanism. 
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If the interpretation outlined above is correct, then changes in the shape of the TW 

function manifest themselves as measurable changes in the characteristics of the SFOAEs. 

Therefore it may be possible to extract potentially interesting information about TW. This 

may provide a method of linking the results obtained for SFOAEs with measures such as 

TEOAEs, or with psychophysical measures of the auditory filter. It may also be possible to 

study further the nonlinear behaviour of the TW using SFOAEs. 

Unfortunately, however, the information about the TW is partially obscured by the 

random nature of the SFOAE, which according to theory arises from the random 

arrangement of inhomogeneities in the cochlea. This means, for example, that models 

predict different values of the SFOAE periodicity (or of from different realizations of 

the scattering impedance, even when the primary TW response (and therefore the auditory 

filter width) is held constant (section 7.3). This suggests that accurately measuring 

auditory filter bandwidth using SFOAEs or TEOAEs may be problematic. This conclusion 

is, however, based on the use of the 4-parameter model to measure periodicity. Better 

signal processing methods may reveal this information more clearly. 
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P A R T I V : CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

10. Conclusions 

The aim of this investigation was to test theories of the mechanism of OAE 

generation against experimental evidence. This aim was achieved by examining the 

variation of the periodicity of the SFOAE during self-suppression and two-tone 

suppression. This investigation falls into three main parts. 

In the first part, a macromechanical cochlear model has been developed which allows 

predictions of SFOAEs to be made. This is a simple longwave model, incorporating 

models both of the cochlear amplifier and of reflection sites on the basilar membrane for 

the cochlear TW. These reflection sites were modelled by a scattering impedance 

implemented as spatial variations in the basilar membrane point mechanical impedance. In 

one group of cochlear models, the reflection sites were modelled as a random component in 

the spatial variation of the basilar membrane impedance, as proposed in Shera and Zweig's 

theory. In variants of these models, this random spatial variation is replaced by a periodic 

variation, as proposed by Strube. Using these two groups of models, SFOAEs predicted by 

Shera and Zweig's theory can be compared to those predicted by Strube's model. The 

models also include cochlear amplifier nonlinearity, based on the quasilinear 

implementation of Kanis and de Boer, which allows the effects of self-suppression and two 

tone suppression on SFOAEs to be simulated. In an additional model variant, self-

suppression was crudely simulated by an overall reduction in the cochlear amplifier gain of 

a linear model. 

Various model parameter studies have been performed to examine the sensitivity of 

the predicted SFOAEs to the modelling assumptions. The sensitivity to changes in the 

middle-ear model, to the scattering impedance, and to the cochlear amplifier characteristics 

were studied. It was found that the major results reported in this thesis are all insensitive to 

these changes, suggesting that they are generally applicable to a large class of cochlear 

models. 

In the second part of this thesis, a method has successfully been developed for 

accurately determining the periodicity of an SFOAE spectrum. Because of the random 

nature of the scattering impedance in Shera and Zweig's theory, the SFOAE spectrum has 

been treated as a single realization of an underlying random process. The random nature of 

the SFOAE makes the definition of spectral periodicity problematic. A method has been 

developed for quantifying the periodicity of the ripple pattern seen in a single SFOAE 
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frequency spectrum (whether measured or predicted). This method, known as the 4-

parameter model, has been designed to extract parameters that characterise the random 

process arising from Shera and Zweig's theory of SFOAE generation. Physically these 

parameters relate to the shape of the cochlear TW, and to the extent and degree of multiple 

reflection in the cochlea. One of the parameters, called the ^centre frequency and denoted 

^c, relates directly to the periodicity of the SFOAE ripple pattern. This effectively provides 

a definition of periodicity. A second parameter, called the ^z^bandwidth and denoted 

quantifies the spread of periodicities in the SFOAE spectrum. In cochlear modelling 

studies, it was found that the 4-parameter model enables small changes in the periodicity of 

the SFOAE arising in self-suppression and two-tone suppression studies to be detected. 

The 4-parameter model has been applied to the predicted SFOAEs from the cochlear 

models during both self-suppression and two-tone suppression. 

In the third part of this thesis, experiments were carried out on 20 normally hearing 

subjects to measure the variation of the SFOAE periodicity during self-suppression and 

two-tone suppression. The two-tone suppression was carried out with a high-side 

suppressor tone whose frequency was 1.3 times that of the probe tone. A subset of the 

subjects was created containing only those subjects who showed accurately measurable 

SFOAEs over a range of suppression levels. The 4-parameter model was then used to 

compare predicted and measured variations in <j)c and which characterise the 

periodicity. 

The following conclusions have been drawn from the investigation. 

1. Those cochlear models that are based on Shera and Zweig's theory of OAE generation 

produce realistic looking SFOAE predictions. Two features of the model that are 

necessary for predicting realistic SFOAEs are first, a random spatial variation in the 

basilar membrane impedance and second, a cochlear amplifier giving active TW 

amplification. These results are quite insensitive to the major assumptions in the 

model, in that different formulations of the cochlear amplifier and of the random 

scattering impedance do not lead to qualitative differences in SFOAEs. These results 

confirm Zweig and Shera's results (1995). 

2. The SFOAEs predicted by cochlear models based on Shera and Zweig's theory show 

distinctive changes in the ^centre value, and (Z>-bandwidth, during both self-

suppression and two-tone suppression. Specifically, during self-suppression the value 

of ^ reduces as the normalised SFOAE level reduced. However, during high-side, 
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two-tone suppression the value of 0c increases as the normalised SFOAE level reduces. 

This variation resembles a y-shape when ^ is plotted against the normalised SFOAE 

level. In general 0BW shows qualitatively similar trends to those of ^ during both self-

suppression and two-tone suppression. However, the estimates of 0BW are less reliable 

than those of ^ (i.e., they showed a greater variation across an ensemble of models, 

each with a different realization of the random scattering impedance). In some cases, 

for a particular realization of the random scattering impedance, the trend in (j)Bw with 

the normalised SFOAE level is not monotonic. Thus overall the models shows that (pBw 

is less useful than (pc as a measure of either periodicity or TW shape. 

3. The 4-parameter model provides a useful stochastic model of an SFOAE frequency 

spectrum obtained at constant stimulus level. This gives a measure of SFOAE 

periodicity which can be related to physical quantities in Shera and Zweig's theory of 

SFOAE generation. 

4. Experiments show that measured SFOAE (j)c and (j)Bw are altered both during self-

suppression and two-tone suppression. 

5. In the subset of subjects where SFOAEs could be measured with sufficient accuracy, 

the variations of the measured ^ show a similar y-shaped variation to that seen in the 

predictions of the cochlear models based on Shera and Zweig's theory of OAF 

generation. These results are interpreted as providing strong supporting evidence for 

this theory. 

6. Experimental results for ^BW were harder to interpret as the observed trends were often 

not monotonic. It is concluded that these results are not clear enough to be safely 

interpreted as either supporting or contradicting the cochlear model. Further modelling 

and experimental work is recommended in this area. 

7. Overall, it is concluded that the measured variation in SFOAE periodicity provides 

strong support for Shera and Zweig's theory of OAF generation, thereby suggesting a 

fundamental link between SFOAE periodicity and the shape of the cochlear TW. 
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11. Recommendations for Future Work 

Recommendations are made here for work in three areas: experimental, cochlear 

modelling, and signal processing. 

11.1 Improvements to the Experimental Procedure 

One of the main limitations of the experiment was the difficulty in obtaining 

sufficient SFOAE data to allow trends to be assessed. Despite choosing subjects with 

normal hearing (generally better than 10 dB HL) and recording for about three hours in 

total, the results from about a quarter of the subjects were too noisy to be useable. One 

practical limitation of the recording method was that SFOAEs were not calculated at 

measurement time. If this were rectified, the recording system could adaptively vary the 

number of averages to achieve a desired SNR. The experimental procedure could be 

modified to measure at fewer levels, but with greater accuracy in those subjects with 

weaker SFOAEs. 

11.2 Further Experiments 

The following further experiments are suggested: 

1. a more comprehensive study of the effects reported here in which self-suppression and 

two-tone suppression of SFOAEs are studied in more depth, 

2. a characterisation of level effects and suppression effects in TEOAEs, 

3. a study of the effects of ototoxic drugs or contralateral suppression on the SFOAE ^ 

spectrum, 

4. a study of the relationships between the ^spectrum and the psychophysical measures of 

the auditory filter bandwidth, 

5. experiments specifically designed to separate possible nonlinear SFOAE components 

from the scattering SFOAE component. 

These proposals are outlined below. 

Firstly, a more comprehensive study of SFOAEs in self-suppression and two-tone 

suppression could be undertaken. Though the results of the self-suppression experiment 

reported here provided an adequate test of the model, the two-tone suppression experiment 

was less successful, owing partly to the limited level of suppression that was obtained 

(typically 7 dB). A lower suppressor-to-probe frequency ratio (say 1.1 or 1.2) would give a 

230 



higher degree of suppression. A study involving a range of suppressor to probe frequency 

ratios would provide further tests of the nonlinear elements of cochlear models. Studies 

could also explore the other experimental parameters which were fixed in the experiments 

reported here: the probe frequency range and the probe level in two-tone suppression 

experiments. Additionally, a further investigation of the anomalous results found for (pgw 

would also be interesting, though this should follow a more thorough modelling study. 

A second area which might be fruitfully explored is the characterisation of TEOAEs. 

Cochlear theory predicts, and measurements confirm, that the SFOAE frequency spectrum 

is similar to the Fourier transform of a TEOAE waveform. In fact the following argument 

shows that a TEOAE can be thought of a suppressed SFOAE. For simplicity, consider the 

input stimulus to a TEOAE as a periodic train of clicks, with a click interval greater than 

the TEOAE duration. This can be decomposed into the sum of frequency components of 

roughly equal strength comprising the Fourier series expansion. Each frequency 

component in the measured TEOAE can therefore be thought of as an SFOAE, suppressed 

by multiple suppressor tones. More generally, when the click train is not periodic, it can be 

seen that the TEOAE frequency spectrum is a particular class of suppressed SFOAE 

frequency spectra; a SFOAE frequency spectrum measured in the presence of a broad band 

suppressor. An obvious experiment to perform would be to measure TEOAEs at various 

click levels, and to analyse their frequency spectra using the 4-parameter model. The effect 

of various additional suppressor stimuli on the TEOAE could also be studied. Since in 

TEOAE level series the effects of self-suppression and multi-tone suppression are 

combined, it is not possible to predict how the TEOAE spectra should vary, without 

performing further modelling studies. 

In the third area proposed above, experiments could investigate other methods of 

altering the TW, such as ototoxic drugs or contralateral acoustic suppression. Measuring 

the SFOAE frequency spectrum, and using the 4-parameter model to extract the periodicity 

(or (^spectrum) may provide information about changes in the TW shape. 

One problem with using ototoxic drugs, such as aspirin, is that they take days to have 

any effect. In the experiments reported here, it was found that the ^spectrum can be 

altered simply by removing and refitting the OAE probe (perhaps because this alters the 

parameters denoted g and r in section 4.10). Day-to-day changes in the middle ear would 

also be a problem. The acoustic effects investigated here do not suffer from these 

shortcomings, since the OAE probe can be left in place for the duration of the experiment. 

Day-to-day changes in the ^spectrum are seen in the session-to-session variations of the 

results reported here. 
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A problem with contralateral suppression is that the effect is small (typically giving 

changes of only a few dB). Nevertheless there may be some benefit in investigating this 

effect. 

In the fourth area proposed, experiments could look for a relationship between the 

SFOAE periodicity and psychophysical measures of the auditory filter. If, as is generally 

believed, the width of the auditory filter is determined primarily by the width of the 

mechanical tuning curve, then both the psychophysical measure, and the ^spectrum will be 

determined by the shape of the TW. As a consequence, it might be thought that subjects 

with narrower tuning curves measured psychophysically would also show smaller 

periodicities (or higher ^ and values). However, such a simple relationship does not 

necessarily follow from the cochlear models. This is because the two measures are 

different, single number characterisations of the TW shape, which is a complex curve. 

Inter-subject differences in TW shape would confound the results. Furthermore, the TW 

shape is dependent on the acoustic stimulus. The psychophysical measures are usually 

performed at high overall levels (taking both probe and masker into account), and with 

quite a complex acoustic stimulus (such as a pure tone plus a notched noise masker). Now, 

(j)c has been found to be highly dependent on both probe and suppressor (or masker) level. 

Also, this dependency varies across subjects, such that a high (j)c at one level is not 

necessarily a good predictor of the ^ ^ a t a different level. Therefore any experiment would 

have to account for these effects in order to relate the two measures. It might be possible to 

use nonlinear cochlear models to help assess the importance of these factors. 

In the final area, an experimental investigation of the influence of nonlinear SFOAEs 

reported by Talmadge et al. (2000) may be worthwhile. This should be undertaken 

following further modelling work in the area which might help establish the characteristics 

of these components. 

11.3 Development of Cochlear Models and Signal Processing Techniques 

This thesis has relied on both macromechanical models of the cochlea and on the 4-

parameter model for extracting information from measured SFOAEs. Both of these areas 

could be further developed. 

Many properties of the cochlea are still poorly understood. Consequently there is 

much scope for further model development. In the absence of reliable measurements in the 

real cochlea, studies could be undertaken to assess the sensitivity of cochlear model 

232 



predictions to changes in those parameters which are still very uncertain. Aspects which 

could be addressed are the effects on the predicted ^spectrum of: 

• nonlinear cochlear amplifier effects, 

• the form of the basilar membrane inhomogeneity, 

• scaling symmetry in the cochlea. 

The most important of these aspects is probably the modelling of the cochlear 

amplifier. One simple extension to the modelling work reported here would be to modify 

the quasilinear model to include the Zweig cochlear amplifier (1991), rather than the Neely 

and Kim (1986) cochlear amplifier. The simulation of the self-suppression and two-tone 

suppression cases could then be repeated and the results compared with experimental data. 

This would reduce the likelihood of making misleading predictions, which could be 

sensitive to the choice of cochlear amplifier model. More generally, Kanis and de Boer's 

formulation of cochlear nonlinearity contains many assumptions and simplifications. It 

may be interesting to investigate alternative formulations of this nonlinearity. 

A second aspect of the models that may be investigated is that of TW reflection sites. 

The physiological basis for TW reflection is still uncertain. Preliminary investigations 

using the cochlear models (section 4.6) have shown that the form of the basilar membrane 

inhomogeneity (e.g., whether the inhomogeneity is in the basilar membrane stiffness or 

damping) has a significant effect on the model predictions of SFOAEs. The effects of 

these formulations on the ^spectrum could be studied more comprehensively. In addition, 

the various forms of spatial variation of scattering impedance discussed in section 9.8 

could be further investigated. For example, a narrow band spatial variation, a coarser 

grained random distribution, or an intermittent random spatial distribution could all be 

modelled quite easily. 

Finally in the area of cochlear modelling, improvements to the modelling of scaling 

symmetry in the cochlear model might allow a better prediction of the variation of 

periodicity with frequency. The justification for converting the SFOAE frequency 

spectrum to a log-frequency axis (or //-domain) is to straighten out the phase spectrum. 

Viewed from the time domain, this is equivalent to reversing the effect of frequency 

dispersion in the cochlea. However, the logarithmic transformation is only strictly accurate 

when perfect scaling symmetry holds. A more accurate transformation, based on some 

average cochlear properties, should lead to a better characterisation of the SFOAE 

response. 

The stochastic model of the SFOAE frequency signal is another area where further 

improvements can perhaps be made. This is an important area since it determines the 
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accuracy with which potentially useful information about the cochlea can be obtained from 

SFOAE measurements. The basic 4-parameter model adopted in this thesis is a very 

simply one: a stationary, gaussian white noise signal is first passed through a Butterworth 

filter, and then a transformation is applied to account for multiple reflections. Further work 

could look at; 

• non-gaussian signals, 

• non-stationary signals, 

• different filter transfer functions, 

• different treatments of multiple reflections. 

Additional parameters might need to be added to account for some of these effects. In 

addition, improvements to the estimation algorithm may be possible. This work could 

either be done in conjunction with cochlear models, or it could be based entirely on 

measured signals. 
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Appendix I Derivation of the Longwave Equation 

Derivations of the longwave equation can be found in Lighthill (1981) and de Boer 

(1996). In order to indicate the precise variant of the longwave equation that has been 

adopted in this these, a full derivation is presented here. The notation introduced in 

sections 4.3 and 4.4 is used throughout this section. 

I- l Derivation of the Wave Equation for Antisymmetric Loading 

Consider first the cochlear fluid in the scala vestibuli under antisymmetric (push-

pull) loading. In this case, from [4.1] w i thps{x ,y , t ) = 0 , the fluid pressure in the scala 

vestibuli is simply equal to the semi-difference p r e s s u r e , { x , y , t ) . The fluid then obeys 

the equation of conservation of mass; 

= 0 (conservation of mass) [I-l] 
OX dy 

and the equations of conservation of momentum in two directions: 

^Pd y' _ _ ^ d u { x , y , t ) (conservation of x-momentum) [1-2] 

^Pd _ _ p 0 (conservation of y-momentum) [1-3] 

together with the boundary conditions at the stapes and helicotrema: 

and at the CP and ceiling of the scala vestibuli: 

0 | = vcf (;(, 0 Vz, f 

[1-4] 

[1-5] 

where it has been assumed that the stapes x-velocity is independent of y. It has also been 

assumed that the fluid is incompressible (such that p is constant) and that all fluid 

displacements and velocities are small, such that nonlinear terms in the momentum 

equations are neglected. 

In the longwave approximation, it is assumed that the y-velocity, v{x,y,t), varies 

linearly across the scala. It then follows from [1-5] that; 

f ) = (1 - P-6] 
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It can be shown that in adopting this assumption, the conservation of y-momentum is 

violated (i.e., that [1-3] is not satisfied). This is approximately valid provided that 

v{x,y ,t) « u(x,y,t), which occurs when H is much smaller than the wavelength of the 

TW. By differentiating [1-6] w.r.t. y and substituting into [I-l] it follows that; 

Since the right-hand side of [1-7] is independent of y, so too is the left-hand side. It follows 

from [1-7] evaluated at the stapes and from the assumption that stapes velocity is 

independent of y that u{x,y, t) is independent of y. Also, from [1-2], the pressure also 

becomes independent of y. Thus, by adopting the longwave assumption, it follows that 

both fluid pressure and x-velocity are uniform across the scala. Henceforth the y-

independent variable will be dropped from the equations. 

Differentiating [1-7] w.r.t. t, and [1-2] w.r.t. x, we obtain; 

[1-8] 

Transforming [1-8] into the frequency domain gives; 

[1-91 

But Pd equals half the pressure difference across the CP, which is related to the CP velocity 

by the impedance relation; 

V(jp {x,Q)) - - 2 ^ [I-10] 
^CP 

where the - 2 in [I-10] arises from the sign convention and from the definition of the semi-

difference pressure. Note that the boundary condition at the helicotrema can be 

represented by specifying an appropriate value of Zcp (%,(o) a tx = L. Then substituting 

[I-10] into [1-9] then gives the wave equation. 

dx 

Rearranging [I-11] gives the form introduced in [4.4]: 
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^ - ^ ~ ^ + k^(x,co)pa (x,a}) = 0 
d!% 

= !^ - - - - [L12] 
Cf^ir {X,CO) 

2p 

Solving [1-12] together with the remaining boundary conditions [1-4] then yields/7^;(x,co), 

u(x,m), vcpix,w) mdv(x,y,(ii). 

1-2 The Effect of Symmetric Loading 

In the above derivation it was first assumed that the loading was antisymmetric. It 

will now be shown that the situation remains unchanged when introducing a symmetric 

loading component, since this alters neither the fluid velocities nor the pressure gradient. 

For a purely symmetric loading, w i t h p d i x , y , t ) = 0 in [4.1], it follows that the fluid 

pressure in the scala vestibuli is simply equal to the semi-sum pressure, ps{x,y,t). The x-

and y-momentum equations become: 

— _ _ p (conservation of x-momentum) [1-13] 

^ r ^ \ rTi,4i 
—i - - p (conservation of y-momentum) [1-14] 

However, from symmetry in the scala vestibuli and scala tympani and from the assumption 

of fluid incompressibility, it follows that u(x,y,t) =Q andv{x ,y ,t) = 0 for all x , } and 

t. Therefore: 

dx 
- 0 (conservation of x-momentum) [1-15] 

= 0 (conservation of y-momentum) [1-16] 

And therefore ps is independent of both x and y. 

1-3 The Complete Solution to Asymmetric Loading 

For a general loading, as specified by a velocity at the stapes and an impedance at the 

round window, the complete solution for the fluid pressure is as follows. 
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= = 0 for all (U 
[1-17] 

and, by the definition in [4.1], these pressures can be spht into the semi-sum and semi-

difference pressures: 

i ' j fw W = W - (z, A/) [1-18] 

where the semi-sum pressure is independent of x, as shown above. The boundary 

conditions at the stapes and round window become; 

W L o .<;7 for all (U 
\x-̂ j,y<.n [1-19] 

Ma W 

- ~^RW 

1 dp{x,co) 

• ipco dx 

1 
[MO] 

• ipco dx x=Q 

where the minus sign in [1-19] arises from the antisymmetry of the stapes and round 

window velocities, which applies even in the general loading case, due to fluid 

incompressibility. Equation [1-20] is the frequency domain version of the x-momentum 

equation, [1-2]. It follows from [1-20] thatpd is dependent on ust only and not on Zrt^. It 

can be solved from this boundary condition and the wave equation [1-12]. Having solved 

for Pd, the semi-sum pressure then follows from [1-18] and [1-19] and [1-20]: 

W = W + A/) 

- a ( ^ ) + f (f (^, 1̂ =0 [1-21] 

- ( ^ ) dpa(x,Q)) I 

^ ipa dx 

Thus, in the case where ZRW is negligible, the semi-sum pressure is simply equal to the 

semi-difference pressure at the stapes. 
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Appendix II Listings of Matlab Programs for Cochlear Models 

Two listing are given here. The first is for a linear cochlear model. The second is for 

the nonlinear model for two-tone suppression. Self-suppression can be simulated using the 

two-tone suppression model, with the suppressor tone set to zero. 

Linear Cochlear Model 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

Matlab Version 4.2 

Based on: 
Neely & Kim (1986) 
Kanis & de Boer (1994) 
Zweig (1991) 
Talmadge et al. (1998) 
Kringlebotn (1988) 

B.Lineton 5-3-1999 

% returns the ear canal pressure and volume velocity 
% 
% pEC(ireal,ifreq); QEC(ireal,ifreq) 
% 
% where ireal is the index of the realization 
% ifreq is the index of stimulus frequency 

also returns (for a single realization): 

pED(ifreq) QED(ifreq) 
pSt(ifreq) QSt(ifreq) 
vCP(ix,ifreq) 
u(ix,ifreq) 
p(ix,ifreq) % 

% 
% ===================== 
matname='thesis\test_01. 
freq=[1500:4:3000]; 
CAFlag=l; 
CAFactor=l.0; 
Nx=1024; 
L=3 Oe-3; 
ASt=l.e-6; 
rho=1000; 
if CAFlag==l 

W=1.e-3; 
H=1.e-3; 
kom=15 0.0; 
delta=0.4; 
m0=0.5; 
s0=l.ElO; 
mc0=0.06; 
deltaSC^O.14; 
sigma=0.7; 
e0=4.28e-5; 
d0=1404; 

elseif CAFlag==2; 
kom=13 8.2; 
kgamma=kom; 
gamma0=5035; 
gammal=100; 
omegaC0=2 0.8e3 *2 *pi; 
omegaCl=-145.5*2*pi; 

ear drum pressure & vol. vel. 
stapes pressure & vol. vel. 
CP velocity at place & freq 
fluid x-velocity at place & freq 
fluid semi-diff pressure at place & freq 

=== User Defined Inputs ====================== 
mat'; % Output mat filename 
% Stimulus frequencies [Hz] 
% Coch Amp Flag {1=K & de B; 2=Talmadge} 
% Coch Amp Gain Factor (0=>Passive) 
% Number of points on CP 
% Length of cochlea [m] 
% Cross sectional area of stapes [m*2] 
% Density of Fluid [kg/m^3] 
% ==> KdB-1994 & NK-1986 Coch. Amp. 
% Width of cochlea [m] 
% Height of cochlea [m] 
% Place-frequency length parameter [rn̂ -l] 
% Damping ratio=2.Zeta=R/sqrt(S.M) 
% Areal density of BM [kg/m^2] 
% stiffness/unit area of BM [kg/m*2/s*2] 
% cO parameter [kg/m^2] 
% Stereocilia damping 
% OHC Resonance shift ratio 
% Active OHC impedance parameter [kg.m^-2] 
% Active OHC impedance parameter [kg.s^-1] 
% ==> T-1998 & Z-1991 Coch Amp. 
% Place-frequency length parameter [m^-1] 
% Place-damping length parameter [m^-l] 
% Damping Parameter at x=0 (rO/mO) , [s'̂ -l] 
% Non-scaling Damping Param. (rO/mO), [s^-1] 
% Characteristic frequency at stapes [rad/s] 
% Non-scaling char frequency parameter [rad/s] 
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rhofast=0.16; % Fast coefficient 
phifast = 0.24*2 *pi; % Fast angle [rad] 
rhoslow=0.1416; % Slow coefficient 
phislow=l.742*2*pi; % Slow angle [rad] 
mO = 0.0 5 5; % Areal density of BM [kg/m^2] 
W=0 . 029e-2; % Avg width of BM [m] 
H=l.lE-6/0.029e-2; % Height of cochlea [m] 

end 
ScatFlg=l; % Scattering flag {0= no inhomos; 1= Z&SI; 

% 2=StubeI; 3=StrubeII; 4=Point; 5=Z&SII} 
ScatSize=0.01; % Standard dev as a fraction of nominal 
ScatLen=10.e-6; % Length Parameter [m] (meaning depends on 

% ScatFlag) 
% ScatLen=3.46e-4; % Strube spatial period 
% ScatLen=0.014; % Location of Point Reflection Site [m] 
% ScatLenBW=4*ScatLen; % For Strubell only: Spatial Bandwidth [m] 
Navg=l; % Number of realizations in the ensemble 
A3C=0.4*0.01*2; % C.S.A. ear canal [m*2] 
GLME=1/1.4; % Lever ratio of ossicular chain 
MidEarFlg=0; % Middle Ear flag {0=Transparent, 3=Kringlebotn} 
rhoO=l.225; % Density of air [kg/m'^3] 
c0=340; % Speed of sound in air [m/s] 
LEC=0.0001; % Length of ear canal [m] 
QSrcO=4.8019e-008; % Source Short Circuit Volume Velocity [m^3/s] 
YSrc0=0; % Source Admittance [m^3/s/Pa] 

% End of User Inputs 

Nfreq=length{freg); 

Derived & Preset Quantities 
IIIIIIIIIIIIIIIIIIIIIIIIIII 

% Number of frequencies 

WH=W*H; 
xs=L/(Nx-1); 
x=[0:Nx-l]*xs; 
x2=x{l:Nx-l); 
len=l/kom; 
if CAFlag==l; 

omegaCO=sgrt(sO/mO); 
omegaC=omegaCO*exp(-kom*x2) 
rO=delta*sgrt(mO*sO); 
ml=mO; 
sl=ml*omegaC .'̂ 2; 
rl=delta*sqrt(ml*sl); 

elseif CAFlag==2; 
omegaC=omegaCO*exp(-kom*x2)+omegaCl; 
gamma=gammaO*exp{-kom*x2)+gamma1; 

% csa of cochlea 
% Length step [m] 
% All NX points along the cochlea 
% NX-1 points exluding h/trema 
% place-freq length [m] 
% ==> KdB-1994 & NK-1986 Coch Amp. 
% Char frequency at stapes [rad/s] 
% Char freq along BM [rad/s] 
% Damping/unit area at stapes [Ns/m^3] 
% Mass/unit area along CP [kg/m^2] 
% Stiffness/unit area along CP [N/m^3] 
% Damping/unit area along CP [Ns/m^3] 
% ==> T-1998 & Z-1991 Coch Amp. 

^2; % Stiffness/unit area at stapes [N/m*3] 
% Damping/unit area at stapes [Ns/m*3] 
% Mass/unit area along CP [kg/m*2] 
% Stiffness/unit area along CP [N/m^3] 
% Damping/unit area along CP [Ns/m^3] 
% Fast feedback stiff'ss along CP [N/m^3] 
% Fast feedback delay [s] 
% Slow feedback stiffss along CP [N/m^3] 
% Slow feedback delay [s] 

s 0 =mO * omegaC{1) 
rO=mO*gamma(1); 
ml=mO; 
s 1 =ml * omegaC . 2 ; 
rl=gamma*ml; 
mkappaf=rhofast*sl; 
tauf=phifast./omegaC; 
mkappas=rhoslow*sl; 
taus=phislow./omegaC; 

end; 
QSrc=QSrcO*ones(size(freq)); 
YSrc=YSrcO*ones(size(freq)); 
ZHel=le-12; % Effective impedance at helicotrema (make v.small) 
% 
% === Two Port Representation of Ear Canal and Middle Ear === 
% 
GOME=AEC/(ASt*GLME); % Overall middle ear static pressure gain 
if MidEarFlg==0 % Transparent 
TEDoSt_ll=ones(size(freq)) *1/G0ME; % <=== Stapes to Ear Drum 

Transmission Coeff. 
TEDoSt_12 = zeros(size(freq) ) ; 
TEDoSt_21=zeros(size(freq)) ; 
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TEDoSt_22=ones(size(freq)) *GOME; 
elseif MidEarFlg==3 % Kringlebotn 

% NB: inputs to t_kring are in CGS units, outputs are in SI units 
milli=l.e-3; micro=l.e-6; 
La=l.00*milli; 

Ld=7.50*milli; 
Ls=66.0*milli; 

Lo=22.0*milli; 

Lc=46.0 *milli; 

Ca=3.90*micro; 
Ct=0.40*micro; 

Cs=0.30*micro; 
Cr=l.30*micro; 
Cm=0.38*micro; 

Ci=0.30*micro; 
Cc=0.56*micro; 

Ra=60; 

Rs=2 0; 
Rr=120; 
Rm=12 0; 
Ro=20; 
Ri=6000; 
Rc=330; 

MidEarParam=[ASt,AEC,GLME,La,Ca,Ra,Ct,Ld,Ls,Cs,Rs,Cr,Rr,Cm,Rm,Lo,Ro,Ci, Ri 
,Lc,Cc,Rc]; 

[TEDoSt_ll,TEDoSt_12,TEDoSt_21,TEDoSt_22]=t_kring(MidEarParam,freq) ; 
end; 
% === Ear Canal === 
rhocO=rhoO *cO ; 
kL=2 *pi*freq*LEC/cO ; 
sinkL=sin(kL) ; 
coskL=cos(kL); 
tankL=tan(kL); 
% === Transmission Matrices === 
TECoED_ll=coskL; % <=== Ear Drum 
TECoED_12=i*sinkL*rhocO/AEC; % to 
TECoED_21=i*sinkL*AEC/rhocO; % Ear Canal 
TECoED_22=coskL; 
TECoSt_ll=TECoED_ll.*TEDoSt_ll+TECoED_12.*TEDoSt_21 
TECoSt_12=TECoED_ll.*TEDoSt_12+TECoED_12.*TEDoSt_22 
TECoSt_21=TECoED_21.*TEDoSt_ll+TECoED_22.*TEDoSt_21 
TECoSt_22=TECoED_21.*TEDoSt_12+TECoED_22.*TEDoSt__22 
TSrcSt_ll=TECoED_ll.*TEDoSt_ll+TECoED_12.*TEDoSt_21 
TSrcSt_12=TECoED_ll.*TEDoSt_12+TECoED_12.*TEDoSt_22 
TSrcSt_21=TECoED_21.*TEDoSt_ll+TECoED_22.*TEDoSt_,21 
TSrcSt_22=TECoED_21.*TEDoSt_12+TECoED_22.*TEDoSt_22 
% Refer the Acoustic source to the stapes. 
QStSrc=QSrc./(TSrcSt_12.*YSrc+TSrcSt_22); 
YStSrc={TSrcSt_ll.*YSrc+TSrcSt_21)./(TSrcSt_12.*YSrc+TSrcSt_22) 

% <=== stapes 
% to 
% Ear Canal 

% <=== Stapes to 
% to 
% Acoustic Source 

% Q @ St 
% Y @ St 

Cochlear Response Calculation 

pECens=zeros(Navg,Nfreq); QECens=zeros(Navg,Nfreq); 
randn('seed',0); %reset seed 
for iavg=l:Navg 

if ScatFlg==lIScatFlg==5 % Z & S broad band random scattering 
inhomo=randn(size(x2)); 
Wn=2*xs/ScatLen; % LP cut-off spatial freq / (1/2 sampling rate) 
i f Wn<1.0 

[BB,AA]=butter(1,Wn); % 1st order butterworth low pass filter 
inhomo=filtfilt(BB,AA,inhomo); 

end 
elseif ScatFlg==2 % Strube periodic corrugations 
Kappa=l/ScatLen; 
inhomo=cos{2*pi*Kappa*x2); 

elseif ScatFlg==3 % Strube narrow-band corrugations 
inhomo=randn(size{x2)); 
Kappa=1/ScatLen,• 
KappaBW=l/ScatLenBW; 
Wn=[Kappa-KappaBW/2,Kappa+KappaBW/2]*2*xs; 
i f Wn<1.0 

[BB,AA]=butter(1,Wn); %lst order butterworth bandpass filter 
inhomo=filtfilt(BB,AA,inhomo); 

end 
elseif ScatFlg==4 % Point reflection site 

inhomo=0.5*(1+sign(x2-ScatLen)).*hamming(length(x2)).'; 
else % smooth CP 

inhomo=zeros(size(x2)); 
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end 
% loop over frequencies 
p_2=zeros(Nx,Nfreg); vCP=zeros(Nx,Nfreg); u=zeros(Nx,Nfreg); 
p=zeros(Nx,1); rhs=zeros(Nx,1); rnew=zeros(Nx,1); a=zeros(Nx,1); 
clc 
stepop=2; 
tO=clock; 
for ifr=l:Nfreq; 
pcent=100*ifr/Nfreq; 
if (rem(ifr,stepop)==0) % o/p only every 2 percent (for pcentop=2) 
strl= int2str(pcent); 
str2= num2str(etime(clock,tO)/60); 
str2 = str2(1:min(5,length(str2))); 
home,disp(... 
['Calculation is ',strl,' % complete after ',str2,' mins']) 

end 
omega=2*pi*freq(ifr) ; 
i omega=i * omega; 
ZPass=sl/iomega+rl+iomega*ml; % Passive CP impedance 
if CAFlag==l; % Coch Amp CP impedance 

beta=omega./omegaC; 
Gxom=dO*(l+i*beta)./(deltaSC+i*(beta-sigma^2./beta)); 
ZCA=-eO*omegaC.*Gxom; 

elseif CAFlag==2; 
ZCA= (mkappaf.*exp(-iomega*tauf) ... 

+mkappas.*exp(-iomega*taus))./Iomega; 
end 
if ScatFlg~=5 % Scattering impedance based on damping 
ZScat=ScatSize*inhomo.*rl; 

else % Scattering impedance based on stiffness 
ZScat=ScatSize*inhomo.*sl/iomega; 

end 
ZCP=ZPass+ZCA*CAFactor+ZScat; 
ZCP=[ZCP,ZHel]; 
b=2*iomega*rho*xs^2./(H*ZCP); 
All=-l-b(l)-2*iomega*rho*xs*YStSrc(ifr)/WH; 
A12=l; 
rhs(1)=-QStSrc(ifr)*iomega*rho*xs/WH; 
rnew(l)=rhs(1)/All; 
a(l)=-A12/All; 
for ix=2:Nx-l; 
a(ix)=-1/(-2-b(ix)+a(ix-l)); 
rnew(ix)=(rnew(ix-l)-rhs(ix))*a{ix); 

end; 
a(Nx)=-1/(-1-b(Nx)+a(Nx-1)); 
rnew(Nx)=a(Nx)*(rnew(Nx-l)-rhs(Nx)); 
p(Nx)=rnew(Nx); 
for ix=Nx-l:-1:1; 
p(ix)=rnew(ix)+a(ix)*p(ix+1); % fluid pressure 

end; 
vCP(:,ifr)=(-2*p)./ZCP.'; % CP velocity 
u{2:Nx,ifr)=diff(p)/{-iomega*rho*xs); % fluid x-velocity 
u(1,ifr)=u(2,ifr)-vCP(1,ifr)*xs/H; 
p_2(:,ifr)=p; 

end; % end loop over freg 
clear p;p=p_2;clear p_2; 
% 
% Ear Canal Pressure Calculation 
% IIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
% 
pSt=2*p(1,:); 
QSt=u(l,:)*WH; 
pED=TEDoSt_ll.*pSt+TEDoSt_12.*QSt 
QED=TEDoSt_21.*pSt+TEDoSt_22.*QSt 
pEC=TECoED_ll.*pED+TECoED_12.*QED 
QEC=TECoED_21.*pED+TECoED_22.*QED; 
pECens(iavg,:)=pEC; 
QECens(iavg,:)=QEC; 

end % end ensemble avg 
command=['save ',matname]; eval(command); 
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% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII % =================================================================================== 

% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

function 
[TEDoSt_ll,TEDoSt_12,TEDoSt_21,TEDoSt_22]=t_kring(MidEarParam,freq); 
% 
% Kringlebotn's Middle Ear Model 
% Calculate 2-port transmission matrix, TEDoSt, between stapes 
% and ear drum such that: 
% 
% pED = [TEDoSt] pSt 
% QED QSt; 

Parameters (CGS units) 

ASt =MidEarParam( 1); 
AEC =MidEarParam{ 2); 
GLME =MidEarParam( 3) ; 
La =MidEarParam( 4) ; 
Ca =MidEarParam{ 5) ; 
Ra =MidEarParam( 6); 
Ct =MidEarParam{ 7); 
Ld =MidEarParam( 8); 
Ls =MidEarParam( 9); 
Cs =MidEarParam{10); 
Rs =MidEarParam(ll) ; 
Cr =MidEarParam(12) ; 
Rr =MidEarParam(13) ; 
Cm =MidEarParam(14); 
Riti =MidEarParam{15) ; 
Lo =MidEarParam(16) ; 
Ro =MidEarParam(17); 
Ci =MidEarParam{18); 
Ri =MidEarParam(19); 
Lc =MidEarParam(2 0); 
Cc =MidEarParam{21); 
Rc =MidEarParam(22) ; 

GOME=AEC/(ASt*GLME); 
omega=2*pi*freq; 
i omega=i * omega; 

============ Impedances === 

% Overall middle ear static pressure gain 

Zla=Ra+iomega*La+l. 
Zlb= 1. 
Zlc= iomega*Ld 
Zld=Rs+iomega*Ls+l. 
Zle=Rr +1. 
Z2 =Rm +1. 
Z3 =Ro+iomega*Lo 
Z4 =Ri +1. 
Z5a= iomega*Lc+l. 
Z5b=Rc 

/(iomega*Ca) 
/(iomega*Ct) 

/(iomega*Cs) 
/(iomega*Cr) 
/(iomega*Cm) 

/(iomega*Ci) 
/(iomega*Cc) 

Zl=Zla.*Zlb./(Zla+Zlb)+Zlc+Zld.*Zle./(Zld+Zle); 

Z5=Z5a+Z5b; 

%==================== Middle Ear Transmission matrix === 

Z_effO=Zl+Z2.*(Z3+Z4)./(Z2+Z3+Z4); 
Z_effl=Z4.*Z5a./(Z4+Z5a); 
Z_eff2=Z2.*(Z3+Z_effl)./(Z2+Z3+Z_efEl); 
Z_eff3=Z1+Z_eff2; 
Tll=l./((l-Zl./Z_effO).*Z4./(Z3+Z4)); 
T21=l./(Z_effO.*(l-Zl./Z_effO).*Z4./(Z3+Z4)); 
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T22=Z5a.*(Z3+Z_effl)./(Z_effl.*Z_eff2); 
T12=T22.*Z_eff3; 

TEDoSt_ll= Tll/GOME 
TEDoSt_12= T12*G0ME 
TEDoSt_21= T21/G0ME 
TEDoSt_22= T22*G0ME 

% convert to SI units 

TEDoSt_12= TEDoSt_12*l.e5; 
TEDoSt_21= TEDoSt_21/l.e5; 

return 
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Two-tone Suppression Cochlear Model 

% Matlab Version 4.2 

Based on: 
Neely & Kim (1986) 
Kanis & de Boer (1993, 1994, 1996) 
Zweig (1991) 
Talmadge et al. (1998) 
Kringlebotn (1988) 

B.Lineton 19-7-1999 

returns the ear canal pressure and volume velocity for a single 
realization 

% pEC(ifregl,itone); QEC(ifregl,itone) 
% 
% where ifregl is the index of probe frequency 
% itone is the index of the tone number: 
% 1=> probe tone 
% 2=> suppressor tone 
% 
% ======================== User Defined Inputs 

% === KdB-1994 & NK-1986 Coch. Amp. 
% 

matroot='thesisXtestb 
IDstart=0; 

03 

Nfregl=3; 
OctL=0; 
OctH=l; 
SPLnom=[45,30]; 
Nx=256*4; 
L=30e-3; 
ASt=l.e-6; 
rho=1000; 
W=1.e-3; 
H=1.e-3; 
kom=150.0; 
delta=0.4; 
mO = 0.5; 
s0=l.ElO; 
mc 0 = 0.06; 
deltaSC=0.14; 
sigma=0.7; 
eO=4.28e-5; 
d0=1404; 
ScatFlg=l; 
% 
ScatSize=0.01; 
ScatLen=10.e-6; 
realiz=22; 
A3C=0.4*0.01*2; 
GLME=1/1.4; 
MidEarFlg=3; 

rho0=l.225; 
c0=340; 
LEC=0.0001; 
YSrc0=0; 

freql=1500*2.' 

f2ofl=l.l; 
f2mfl=round((l-f2ofl)*freql 
nnl=round(1/(1-f2of1)); 
nn2=nnl-l; 
fregl=nnl*f2mf1; 

% mat filname root 
% file ID 
% number of frequencies in sweep 
% lower freg in octaves 
% upper freq in octaves 
% desired SPL probe & suppressor in ear canal 
% Number of points along the CP 
% Length of cochlea [m] 
% Cross sectional area of stapes [m*2] 
% Density of Fluid [kg/m*3] 
% Width of cochlea [m] 
% Height of cochlea [m] 
% Place-freguency length parameter [m*-l] 
% Damping ratio=2.Zeta=R/sgrt(S.M) 
% Areal density of BM [kg/m*2] 
% Stiffness/unit area of BM [kg/m^2/s^2] 
% cO parameter [kg/m'̂ 2] 
% Stereocilia damping 
% Shift of OHC resonance wrt. BM resonance. 
% Active OHC impedance parameter [kg.m^-2] 
% Active OHC impedance parameter [kg.s^-1] 
% Scattering flag {0= no inhomos; 1= ZSI; 
% 2=StubeI; 3=StrubeII; 4=Poink; 5=Z&SII} 
% Standard dev as a fraction of nominal 
% Length Parameter [m] 
% Realization number (for cf linear model) 
% C.S.A. ear canal [m*2] 
% Lever ratio of ossicular chain 
% Middle ear flag (0=Perfect transformer, 
% 3=Kringlebotn) 
% Density of air [kg/m*3] 
% Speed of sound in air [m/s] 
% Length of ear canal [m] 
% Source Admittance [m^3/s/Pa] 

======== End of User Inputs ============================= 
(OctL+[0:Nfregl-l]*(OctH-OctL)/(Nfregl-l)); % Probe 

% freqs 
% suppressor:probe freq ratio f2/fl 
% f2-fl; 
% round frequencies to nearest 1 Hz 
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freq2=nn2 *f2mf1; 
tO=clock; 
for ifregl=l:Nfreql; 
freq=[freql(ifreql),freq2(ifreql)]; % freqs of the two tones 
Nfreq=length(freq); % =2 (two tone suppression) 
strl= num2str(100*ifreql/Nfreql); 
str2= num2str(etime(clock,to)/60); str2= str2(1;min(5,length(str2))) ; 
str3= num2str (freqd) ) ; 
disp(' ');disp(' ');disp(' '); 
disp( 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII') ; 
disp('IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ' ) ; 
disp( . . . 

['Freq= ',str3,' Hz; ',strl,' % complete after ',str2,' mins']) 

% 
% Derived & Preset Quantities 
% IIIIIIIIIIIIIIIIIIIIIIIIIII 
% 
pRef=20.e-6; 
Nfreq=length(freq); % Number of frequencies 
WH=W*H; % csa of cochlea 
xs=L/(Nx-1); % Length step [m] 
x=[0;Nx-l].'*xs; % All NX points along the cochlea 
x2=x(l:Nx-l); % NX-1 points along CP (excl h/trema) 
len=l/kom; % place-freq length [m] 
omegaC0=sqrt(sO/mO); % Char frequency at stapes [rad/s] 
omegaC=omegaCO*exp(-kom*x2); % Char freq along BM [rad/s] 
rO=delta*sqrt(mO*sO); % Damping/unit area at stapes [Ns/m*3] 
ml=mO; % Mass/unit area along CP [kg/m^2] 
sl=ml*omegaC.*2; % Stiffness/unit area along CP [N/m*3] 
rl=delta*sqrt(ml*sl); % Damping/unit area along CP [Ns/m*3] 
YSrc=YSrcO*ones(size(freq)); % Source acoustic imp. at each freq 
ZEDnom=3.3 0e07; % Nominal eardrum acoustic impedance 
Pnom=10 .'̂  ( (SPLnom)/20 .) *pRef; % Nominal ear drum pressure 
QSrc=Pnom./ZEDnom; % Source short circuit volume velocity 
ZHel=le-12; % Effective impedance at helicotrema (make v.small) 
% 
% === Two Port Representation of Ear Canal and Middle Ear === 
% 
GOME=AEC/(ASt*GLME); % Overall middle ear static pressure gain 
if MidEarFlg==0 % Transparent 
TEDoSt_ll=ones(size(freq)) *1/GOME; % <=== Stapes to Ear Drum 
TEDoSt_12 = zeros(size(freq)) ; 
TEDoSt_21=zeros(size(freq)); 
TEDoSt_22=ones(size(freq)) *GOME; 

elseif MidEarFlg==3 % Kringlebotn 
% NB: in CGS units 
milli=l.e-3; micro=l.e-6; 
La=l.OQ*milli; Ca=3.90*micro; Ra=60; 

Ct=0.40*micro; 
Ld=7.50*milli; 
Ls=66.0*milli; Cs=0.30*micro; Rs=20; 

Cr=l.3 0*micro; Rr=12 0; 
Cm=0.38*micro; Rm=120; 

Lo=22.0*milli; Ro=20; 
Ci=0.30*micro; Ri=6000; 

Lc=46.0*milli; Cc=0.56*micro; Rc=330; 

MidEarParam=[ASt,AEC,GLME,La,Ca,Ra,Ct,Ld,Ls,Cs,Rs,Cr,Rr,Cm,Rm,Lo, Ro, Ci , Ri 
,Lc,Cc,Rc]; 

[TEDoSt_ll,TEDoSt_12,TEDoSt_21,TEDoSt_22]=t_kring(MidEarParam,freq) ; 
end; 
% === Ear Canal === 
rhocO=rhoO*cO; 
kL=2 *pi*freq*LEC/cO; 
sinkL=sin(kL) 
coskL=cos(kL) 
tankL=tan(kL) 
% === Transmission Matrices === 
TECoED_ll=coskL; % <=== Ear Drum to Ear Canal 
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TECoED_l2 = i * s inkL * rhoc 0/AEC; 
TECoED_21=i*sinkL*AEC/rhocO; 
TECoED_2 2=coskL; 
TECoSt_ll=TECoED_ll.*TEDoSt_ll+TECoED_12.*TEDoSt_21; % <=== Stapes 
TECoSt_12=TECoED_ll.*TEDoSt_12+TECoED_12.*TEDoSt_22; % to 
TECoSt_21=TECoED_21.*TEDoSt_ll+TECoED_22.*TEDoSt_21; % Ear Canal 
TECoSt_22=TECoED_21.*TEDoSt_12+TECoED_22.*TEDoSt_22; 
TSrcSt_ll=TECoED_ll.*TEDoSt_ll+TECoED_12.*TEDoSt_21; % <=== Stapes 
TSrcSt_12=TECoED_ll.*TEDoSt_12+TECoED_12.*TEDoSt_22; % to 
TSrcSt_21=TECoED„21.*TEDoSt_ll+TECoED_22.*TEDoSt_21; % Source 
TSrcSt_22=TECoED_21.*TEDoSt_12+TECoED_22.*TEDoSt_22; 
% Refer Source Q and Y to the stapes. 
QStSrc=QSrc./(TSrcSt_12.*YSrc+TSrcSt_22); 
YStSrc=(TSrcSt_ll.*YSrc+TSrcSt_21)./(TSrcSt_12.*YSrc+TSrcSt_22); 

% Q 
% Y 

Cochlear Response Calculation 

randn('seed',0); %reset seed 
if ScatFlg==lIScatFlg==5 % Z & S broad band random scattering 

for iavg=l:irealiz 
inhomo=randn(size(x)) ; 

end; 
inhomo=inhomo(1;Nx-1); 
Wn=2*xs/ScatLen; % LP cut-off spatial freg /{1/2 sampling rate) 
i f Wn<1.0 

[BB,AA]=butter(l,Wn); % 1st order butterworth low pass filter 
inhomo=filtfilt(BB,AA,inhomo); 

end 
elseif ScatFlg==2 % Strube periodic corrugations 
Kappa=l/ScatLen; 
inhomo=cos(2*pi*Kappa*x2); 

elseif ScatFlg==3 % Strube narrow-band corrugations 
for iavg=l;irealiz 
inhomo=randn(size(x)); 

end; 
inhomo=inhomo(1:Nx-l) ; 
Kappa=l/ScatLen; 
KappaBW=1/ScatLenBW; 
Wn=[Kappa-KappaBW/2,Kappa+KappaBW/2]*2*xs; 
if Wn<l.0 

[BB,AA]=butter(1,Wn); %lst order butterworth bandpass filter 
inhomo=filtfilt(BB,AA,inhomo); 

end 
elseif ScatFlg==4 % Point reflection site 

inhomo=0.5*(1+sign(x2-ScatLen)).*hamming(length(x2)).'; 
else % smooth CP 

inhomo=zeros(size(x2)); 
end 
% 

% Single Tone Cochlear Response Calculation 
% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
p=zeros(Nx,Nfreg); 
vCP_tmp=zeros(Nx,Nfreg); 
ZCP_QL_tmp=zeros(Nx,Nfreq); 
ZOHC_QL_tmp=zeros(Nx,Nfreq) ; 
u=zeros{Nx,Nfreg); 
p_ifr=zeros(Nx,1); 
rhs=zeros(Nx,1); 
rnew=zeros(Nx,1); 
a=zeros(Nx,1); 
Ns=24; 
itr_max=3 0; 
tolabs=0.05; 
tolang=0.05*pi; 
strl= num2str{tolabs*100); 
str2= num2str(tolang*180/pi); 
%ncon= zeros{itr_max,Nfreq+l) 
%avgabs=zeros(itr_max,Nfreg+1) 
%mxabs= zeros{itr_max,Nfreq+l) 

time samples samples per period of stimulus tone 
max iterations before time-out 
% convergence tolerance for magnitude 
% convergence tolerance for phase 
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%iinxabs = zeros (itr_max,Nfreq+l) ; 
%mxang= zeros(itr_max,Nfreq+l); 
%iitixang=zeros (itr_max,Nfreq+l) ; 
disp('=0=0=0=0 SINGLE ISOLATED TONES 0=0=0=0=') 
disp{ ' ' ) 
disp{' convergence tolerances: ') 
disp([' magnitude=',strl,'%, phase=',str2,' deg']) 
disp{' ' ) 
% loop over the two stimulus tone frequencies 
for ifr=l:Nfreq; 
strO= int2str(ifr); 
omega=2*pi*freq{ifr) ; 
iomega=i*omega; 
Tp=l/freq(ifr); % period [s] 
time=Tp*{-Ns/2;Ns/2-l)/Ns; % time variable 
Mexp=diag(exp(-iomega*time))*2/Ns; % matrix to extract Fourier coeff. 
ZPass=sl/iomega+rl+iomega*ml; % passive 
if ScatFlg~=5 % Scattering impedance based on damping 
ZScat=ScatSize*inhomo.*rl; 

else % Scattering impedance based on stiffness 
ZScat=ScatSize*inhomo.*sl/Iomega; 

end 
ZCPl = ZPass + ZScat ; 
beta=omega./omegaC; 
Gxom=dO*(l+i*beta)./(deltaSC+i*(beta-sigma^2./beta)); 
Gxom=[Gxom;0]; 
ZOHC_MET=eO*[omegaC;0].*Gxom; %the Z associated with the mech=>elec 

transduction (ie. linear part, called ZOHC by K & dB) 
phiZ=angle(ZOHC_MET); 
ZOHC_QL=ZOHC_MET; % initialise quasilinear imp. to linear impedance 
ZCPl=[ZCPl;ZHel]; 
ZCP_OL=ZCP1-ZOHC_QL; 
QStSrc_ifr=QStSrc(ifr); 
YStSrc_ifr=YStSrc(ifr); 
itr=0; 
loop=l; % setloop = true 
vCP=zeros(Nx,1); 
vCP_mid=vCP; 
vC P_o 1 d=vC P_mid ; 
disp(... 

' freq : itn : max abs err @ worst elmnt : max ang err @ worst elmnt']) 
while (loop) % start iterative loop 

itr=itr+l; 
vC P_o 1 d=vC P_mi d; 
vC P_mi d=vC P; 
b=2*iomega*rho*xs*2./(H*ZCP_QL); 
All=-l-b(1)-2*iomega*rho*xs*YStSrc_ifr/WH; 
A12=l; 
rhs(1)=-QStSrc_ifr*iomega*rho*xs/WH; 
rnew(l)=rhs(1)/All; 
a(l)=-A12/All; 
for ix=2:Nx-l; 
a(ix)=-1/(-2-b(ix)+a(ix-1)); 
rnew(ix)={rnew(ix-l)-rhs(ix))*a{ix); 

end; 
a(Nx)=-1/(-1-b(Nx)+a(Nx-1)); 
rnew(Nx)=a(Nx)*(rnew(Nx-l)-rhs(Nx)); 
p_ifr(Nx)=rnew(Nx); 
for ix=Nx-l:-1:1; 
p_ifr(ix)=rnew(ix)+a{ix)*p_ifr(ix+1); % fluid pressure 

end; 
vCP_new=(-2*p_ifr)./ZCP_QL; % CP velocity 
vCP={vCP_new+0.6065*vCP_mid+0.3679*vCP_old)/I.9744; % 1st order 

% lag relaxtion (seems to work) 
phiV=angle(vCP); 
% one-sided Fourier series expansion 
% X runs down a column; time runs along a row. 
philxt=(phiV+phiZ)*ones(size(time))+ones(size(x))*omega*time; 
A_pMET=abs(vCP.*Gxom)*ones(size(time)); 
Ixt=A_pMET.*cos(phiixt); 
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p_OHC_NLt=eO*([omegaC;0]*ones(size(time))).*tanh{Ixt); 
% one-sided Fourier series coeff. 
% sum over time to extract 1st order component 
% NB time is along rows whilst "sum" sums over columns, so 
% therefore transpose 
p_OHC=sum(Mexp*p_OHC_NLt.').'; 
ZOHC_QL=(p_OHC./vCP); 
ZCP_QL=ZCP1-Z0HC_QL; 
delta_abs=abs((vCP-vCP_mid)./vCP); 
delta_ang=abs(angle(vCP_mid./vCP)); 
converged=all(delta_abs<tolabs) & all(delta_ang<tolang) & (itr>=3); 
% some convergence indicators: 
ncon(itr,ifr)=sum(delta_abs<tolabs)/Nx; % proportion of converged 

% elements 
avgabs(itr,ifr)=sgrt(sum(delta_abs.*delta_abs)/Nx); % average of 

% deltas over all elements 
[mxabs(itr,ifr),imxabs(itr,ifr)]=max(delta_abs); % max error, and 

% its location 
[mxangdtr, ifr) , imxang(itr, ifr) ] =max(delta_ang) ; % max error, and 

% its location 
strl= sprintf('%4i',ifr); 
str2= sprintf('%3i',itr); 
str3= sprintf('%10.3f',mxabs(itr,ifr)*100); 
str4= sprintf('%lli',imxabs(itr,ifr)); 
str5= sprintf ( ' %6 . Of ' ,mxangdtr, ifr) *180/pi) ; 
str6= sprintf('%4i',imxang(itr,ifr)); 

disp ... 
([' ',strl,' : ',str2,' : ',str3,'% ',str4,' : ',str5,' deg ',str6]) 

if converged 
loop=0; 
disp{' ' ) 
disp(['converged after ',num2str(itr),' iterations']) 

end 
if ~converged&itr>=itr_max 
disp(' ') 
disp(' *** WARNING *** ') 
disp(' failed to converge after max iterations ') 
loop=0 

end 
end; % end of iterative loop 
itrmx(ifr)=itr; 
ZCP_QL_tmp(:,ifr)=ZCP_QL; 
ZOHC_QL_tmp(:,ifr)=ZOHC_QL; 
vCP_tmp(:,ifr)=vCP; % CP velocity 
u(2:Nx,ifr)=diff(p_ifr)/(-iomega*rho*xs); 
u(1,ifr)=u(2,ifr)-vCP(1)*xs/H; 
p(:,ifr)=p_ifr; 

end; % end loop over both stimulus tones 
clear vCP;vCP=vCP_tmp;clear vCP_tmp; 
clear ZCP_QL;ZCP_QL=ZCP_QL_tmp;clear ZCP_QL_tmp; 
clear ZOHC_QL;ZOHC_QL=ZOHC_QL_tmp;clear ZOHC_QL_tmp; 
% store isolated primaries 
u_pri=u; 
vCP_pri=vCP; 
p_pri=p; 
ZCP_QL_pri=ZCP_QL; 
ZOHC_QL_pri=ZOHC_0L; 
% 
% Two Tone Cochlear Response Calculation 
% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
% 
NsO=24; % min samples per stimulus tone period 
tolabs=0.01; % convergence tolerance for magnitude 
tolang=2*pi/180; % convergence tolerance for phase (in radians) 
strl= num2str(tolabs*100); 
str2= num2str(tolang*180/pi); 
disp(' ') 
disp('=0=0=0=0 TWO TONE SUPPRESSION 0=0=0=0=') 
disp(' ') 
disp(' convergence tolerances: ') 
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disp([' magnitude=',strl,'%, phase=',str2,' deg']) 
disp(' ') 
itr_max=3 0; 
omega=2 * p i •* f r eq ; 
Tp=l./freq; 
TpO=l/gcd(round(freg(1)),round{freq(2))); % lowest common period [s] 
Ns=NsO*TpO/Tp(2); % required number of samples 
time=TpO*(-Ns/2:Ns/2-l)/Ns; % time variable 
% initialise matrices: expand some vectors to two dimensions: 
% =>ZCPl,ZOHC_MET,ZCP_QL,phiZ,vCP,vCP_new,vCP_mid,vCP_old 
omega=2*pi*freq; % [ 1 x 2 ] 
i omega=i * omega; 
ZPass=sl*(1./Iomega)+rl*ones(size(omega))+ml*ones(size(x2))*iomega; 

% size [Nx-1,2] 
if ScatFlg~=5 % Scattering impedance independent of freq 
ZScat=ScatSize*(inhomo.*rl)*ones(size(omega)); 

else % Scattering impedance dependent on freq 
ZScat=ScatSize*(inhomo.*sl)*(1./Iomega); 

end 
ZCPl=ZPass+ZScat ; 
beta=(1./omegaC)*omega; % size [Nx-1,2] 
Gxom=dO*(l+i*beta)./(deltaSC+i*(beta-sigma^2./beta)); 
Gxom=[Gxom;[0,0]]; 
omegaC_2=[omegaC;0]; % size [Nx,l] 
% the Z associated with the mech=>elec transduction (ie. linear part, 
% called ZOHC by K & dB) 
ZOHC_MET=eO*(omegaC_2*ones(size(omega))).*Gxom; % size [Nx,2] 
phiZ=angle(ZOHC_MET); % size [Nx,2] 
% initialise quasilinear impedance to value obtained above for 
% isolated primaries 
ZOHC_QL=ZOHC_QL_pri; 
ZCP1=[ZCP1;[ZHel,ZHel]]; % size [Nx,2] 
ZCP_QL=ZCP1-Z0HC_QL; 
vCP=vCP_pri; % initialise to isolated primary values 
itr=0; % count iterations 
loop=l; 
vCP_mid=vCP_pri; 
vCP_old=vCP_pri; 
disp(' ') 
disp ( . . . 
' iter : freq : max abs err @ worst elmnt : max ang err @ worst elmnt']) 
while (loop) 

itr=itr+l; 
vC P_o1d=vC P_mid; 
vCP_mid=vCP; 
b= (ones (size (x) ) *iomega) .* (2*rho*xs'^2 ./(H*ZCP_QL) ) ; % size [Nx,2] 
for ifr=l:Nfreq % loop over two stimulus tone frequencies 
All=-l-b(l,ifr)-2*iomega(ifr)*rho*xs*YStSrc(ifr)/WH; 
A12=l; 
rhs(1)=-QStSrc(ifr)*Iomega(ifr)*rho*xs/WH; 
rnew(l)=rhs(1)/All; 
a(l)=-A12/All; 
for ix=2:Nx-l; 
a(ix)=-1/(-2-b(ix,ifr)+a(ix-1)); 
rnew(ix)=(rnew(ix-l)-rhs(ix))*a(ix); 

end; 
a(Nx)=-1/(-1-b(Nx,ifr)+a(Nx-1)); 
rnew(Nx) =a(Nx) * (mew(Nx-1) -rhs (Nx) ) ; 
p_ifr(Nx)=rnew(Nx); 
for ix=Nx-l:-1;1; 
p_ifr(ix)=rnew(ix)+a(ix)*p_ifr(ix+1); % fluid pressure 

end; 
p(:,ifr)=p_ifr; 

end 
vCP_new=(-2*p)./ZCP_QL; % CP velocity 
vCP=(vCP_new+0.6065*vCP_mid+0.3679*vCP_old)/I.9744; % 1st order lag 

% relaxation 
phiV=angle(vCP); 
% one-sided Fourier series expansion 
% X runs down a column; time runs along a row. 
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Ixt=zeros(Nx,Ns); 
for ifr=l:Nfreq % loop over two stimulus tone frequencies 
A_pMET=abs{vCP{:,ifr).*Gxom(:,ifr)); 
philxt=(phiV{:,ifr)+phiZ(:,ifr))*ones(size(time))... 

+ones(size(x))*omega(ifr)*time; 
Ixt_ifr=(A_pMET*ones(size(time))).*cos(phiixt); 
Ixt=Ixt+Ixt_ifr; 

end 
p_OHC_NLt=eO*(omegaC_2*ones(size(time))).*tanh(Ixt); 
% one-sided Fourier series coeff. 
% sum over time to extract 1st order component 
% NB time is along rows whilst "sum" sums over columns, so therefore 
% transpose 
for ifr=l:Nfreq % loop over two stimulus tone frequencies 

% Method 1: create [Ns,Ns] diagonal matrix M 
% then matrix mult: [Ns,Ns]*[Ns,Nx]=[Ns,Nx] 
% then sum & transpose 
% ==> [Ns,Ns] matrix for extracting Fourier coeff. 
% Mexp=diag(exp(-Iomega(ifr)*time))*2/Ns; 
% p_OHC(:,ifr)=sum(Mexp*p_OHC_NLt.')•'; 
% Method 2: create [Ns,Nx] mx M (repeated cols) 
% then array mult: [Ns,Nx].*[Ns,Nx]=[Ns,Nx} as before 
% ==> [Ns,Nx] matrix for extracting Fourier coeff. 
% NB method 2: much faster 
Mexp=(exp(-Iomega(ifr)*time.')*2/Ns)*ones(size(x.')); 
p_OHC(:,ifr)=sum(Mexp.*p_OHC_NLt.').'; 

end; 
ZOHC_QL=(p_OHC./vCP); 
ZCP_QL=ZCP1-Z0HC_QL; 
for ifr=l:Nfreq % loop over two stimulus tone frequencies 
delta_abs=abs((vCP(:,ifr)-vCP_mid(:,ifr))./vCP(:,ifr)); 
delta_ang=abs(angle(vCP_mid(:,ifr)./vCP(:,ifr))); 
% some convergence indicators: 
conv(ifr)=all(delta_abs<tolabs) & all{delta_ang<tolang); 
% some convergence indicators: 
ncon(itr,2+ifr)=sum(delta„abs<tolabs)/Nx; % proportion of 

% converged elements 
avgabs(itr,2+ifr)=sqrt(sum(delta_abs.*delta_abs)/Nx); % average of 

% deltas over all elements 
[mxabs(itr, 2 + ifr),imxabs(itr,2 + ifr)]=max(delta_abs); % max overall 

% error and its freq 
[mxang(itr,2+ifr),imxang(itr,2+ifr)]=max(delta_ang); % max error, 

% and its location 
strl= sprintf( 
str2= sprintf( 
str3= sprintf( 
str4= sprintf( 
str5= sprintf( 
str6= sprintf( 

%3i',itr); 
Si',ifr); ; 
).3f',mxabs(itr, 2 + ifr)*100) ; 

%lli',imxabs(itr,2+ifr)); 
%6.Of',mxang(itr,2+ifr)*180/pi); 
li',imxang(itr,2+ifr)); 

disp([' ',strl,' : ',str2,' ; ',str3,'% ',str4,.. 
' : ',str5,' deg ',str6]) 

end 
converged=conv(1)& conv(2)&(itr>=3); 
if converged 
loop=0; 
disp(' ') 
disp(['converged after ',num2str(itr), ' iterations']) 

end 
if ~converged&itr>=itr_max 
disp(' ') 
disp(' *** WARNING *** ') 
disp(' failed to converge after max iterations ') 
loop=0 

end 
end; % end of iterative loop 
clear A_pMET phiixt Ixt; 
u(2:Nx,:)=diff(p).*(ones(Nx-1,!)*(!./(-iomega*rho*xs))); 
u(l,;)=u(2,;)-vCP(1,;)*xs/H; 
% 
% External Responses Calculation 
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% IIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
pSt=2*p(l,:); 
QSt=u{l,:)*WH; 
uSt=QSk/ASb; 
ZSt=pSt/QSt; 
pED=TEDoSt_ll.*pSt+TEDoSt_12.*QSt; 
QED=TEDoSt_21.*pSt+TEDoSt_22.*QSt; 
pEC_ifq=TECoED_ll.*pED+TECoED_12.*QED; 
QEC_ifq=TECoED_21.*pED+TECoED_22.*QED; 
pEC(ifreql,:)=pEC_ifq; % pEC(iprobe freq,itone) 
QEC(ifreql,:)=QEC_ifq; 
UED=QED/AEC; 
ZED=pED./QED; 
clear vCP_new vCP_mid vCP_old p_OHC_NLt Mexp Ixt_ifr 
ID=IDstart+ifreql-l; 
fname=[matroot,int2str(floor(ID/100)),int2str{floor(rem(ID,100)/lO) 

,int2str(rem(rem(ID,100),10)),'.mat']; 
varlist=' freq QSrc QEC pEC QED pED QSt pSt uSt YSrc TECoSt_ll... 

TECoSt_12 TECoSt_21 TECoSt_22'; 
command=['save ',fname,varlist]; 
aval(command); 

end Sloop over freqs 
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Appendix III Parametric Model of SFOAE Frequency Functions 

In this appendix, the theory behind the 3-parameter and 4-parameter models of the 

SFOAE frequency spectrum is discussed and the results quoted in sections 6.5 and 6.6 are 

derived. A Matlab program listing for the 4-parameter model is also presented. 

III-l 3-parameter Model 

This analysis shows how the three parameters in the model (i.e., the two Butterworth 

filter parameters, together with the RMS value of the signal) can be determined from the first 

few terms of the autocorrelation function of the random process. In the following discussion, 

it is useful to consider SFOAE frequency function sampled at equal ^-intervals (i.e., log 

frequency intervals) as being the digital signal of interest. It also is useful to consider the rj 

variable as analogous to time. Following this analogy, the terms time and frequency will be 

used to refer to t] and the (j) respectively. This allows the use of the familiar signal processing 

terms such as 'bandpass' or 'stationarity'. 

As a first approximation, the SFOAE frequency function is modelled as a bandpass 

random signal which is stationary with respect to t]. This can be thought of as arising from 

gaussian stationary white noise passed through a bandpass filter. In the 3-parameter model, a 

2"'̂  order Butterworth filter has been chosen to fit the data. This is an ARMA (autoregressive, 

moving average) filter with nine filter coefficients. These nine coefficients are not 

independent, but instead are given by two filter parameters: the filter centre frequency and 

bandwidth. To obtain the spectrum of the data, the 3-parameter model then estimates these 

two filter parameters, plus the RMS value of the white noise. 

This procedure is illustrated in the next section for a simpler case: a first order, bandpass 

Butterworth filter, which has only five filter coefficients instead of nine. Also for simplicity in 

this example the real form of the impulse response function is used instead of the analytic 

impulse response function used in the 3-parameter model. 

III-2 The Autocorrelation Function for White Noise through a 

1®' Order, Butterworth Bandpass Filter 
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Consider a signal arising from gaussian stationary white noise passed through a 1 '̂ order 

Butterworth bandpass filter. This is an ARMA filter with five filter coefficients and with the 

following input-output relationship; 

x{n) = aQw(n) + aiw{n -1 ) + a2 w ( n - 2 ) - b i x { n - 1 ) - 62 ~ 2) [HI-l] 

where x(n) is the filter output sequence, w{n) is the (white-noise) input sequence, and the a,j 

and bn s are the MA and AR filter coefficients respectively. 

These five coefficients are given by the two 1 '̂ order Butterworth filter parameters in the 

following relationships: 

2 
"̂ 0 ~ ^BW + 

a j = 0 

^2 = - ^ 0 

—1)/(1 + COBW 

^2 ~ ( 1 ^ i [in-2] 

^BW = ~^L 

'^u,L - t a n ^ d L ! ) 

where O) and co are the desired upper and lower cut-off frequencies, fs is the sampling 

rate, co u and o) ^ are the dimensionless prewarped cut-off frequencies of the Butterworth 

filter, and co ^ and co are the dimensionless centre frequency and bandwidth. 

By forming the autocorrelation function for the signal, x, equation [III-l] can be 

converted into the following relationship 
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R^(/M) = E[ %(») + 

2 2 
= forallm 

A=0 k=l 

and [in-3] 

Rw;c W = c r iAW 

2 2 

h{n) = -k)- ^bj^h{n - k) 

k=0 k=l 

= for» = 0 1 

0 otherwise 

where Rx̂  is the autocorrelation function of x, R^x is the cross correlation function between the 

white noise and signal x, h is the impulse response function of the filter, d is the unit impulse 

signal, (7^ is the RMS value of the white noise, £•[...] denotes the expectation operator and * 

denotes complex conjugation. 

Expanding the summation in [111-3] explicitly gives: 

^xx (0) = -h^xx (1) ~ ^2^x1: (2) + o-^aQhiO) + crl,aih{l) + (T^a2h(2) 

(1) - ~h^xx (0) + o-^aihiO) + crla2h0.) 

R _ ( 3 ) = - 6 i R _ ( 2 ) - 6 2 R ; ^ ( l ) 

R ^ ( 4 ) = - 6 i R _ ( 3 ) - 6 2 R _ ( 2 ) 

[ni-4] 

R ^ ( m ) = -Z7IR^(OT-1)-Z?2R;CC('"~2) form > 2 

and 

A(0)= ^0 

h{V) = ai - b-JiiOi) - ai -biag 

h{2) = ^2 " bih{l) - £>2^(0) - <32 - b^ai + b-^UQ - 63ag 

The first three rows can be further expanded by replacing the A's with a ' s and &'s by 

using the last three equations in [111-4]. Thus, given the first five values of the autocorrelation 

function, Rn(m), m = 0, 1,...4 in [111-4] it is possible to calculate the five ARMA filter 
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coefficients (though the AR filter coefficients cannot be separated from the unknown RMS 

value of the white noise input, aw). Note, however, that the first three rows of [in-4] contain 

nonlinear terms comprising products of a 's with A's, which expand to give products of a 's 

with 6's. Thus, unlike Burg's method (1978a, 1978b) discussed later, the five ARMA filter 

coefficients would have to be solved using nonlinear methods. Having solved for the ARMA 

filter coefficients, the Butterworth filter parameters, COC and COBW , could be calculated (again 

using nonlinear methods) from the equations in [111-2]. Note that COC and COBW are 

overdetermined, since there are five (possibly independent) ARMA filter coefficients and only 

two Butterworth filter parameters. If the autocorrelation function in [ in-4] truly arises from 

white noise through a 1®' order Butterworth filter, then this is not a problem, since the ARMA 

filter coefficients will be interdependent such that all five equations in [111-2] are satisfied 

exactly. If this is not the case, however, then a least squares method becomes appropriate for 

inverting [in-2]. 

It should be noted that the purpose of the above analysis is to illustrate that all the 

information required to determine the unknown filter parameters is contained in only the first 

few terms of the autocorrelation function. It is not intended to give the actual solution method 

adopted in this thesis. This is discussed in the next section. 

III-3 Solution Method for the 3-parameter Model 

Unlike the analysis in the previous section, the 3-parameter model assumes a 2"'̂  order, 

rather than a 1®' order Butterworth filter. This has nine, rather than five ARMA filter 

coefficients (though is still has only two free filter parameters: COC and COBW )• Also, in order to 

achieve a one-sided filter, the analytic form of the filter is used, rather than the real form. In 

fact, the two stage solution method described above (i.e., first calculating the ARMA filter 

coefficients from the autocorrelation function in [in-4], and then the filter parameters from the 

ARMA filter coefficients in [111-2]) is unnecessary. Instead, the following procedure has been 

adopted. 

First the autocorrelation function is estimated from the (finite) signal, jc(n), of length, N, 

by the biased estimator; 

2 N—m~\ ^ 
H^{m) = — {n)x{n + m) fox m = O...N - l [111-5] 

^ n=0 
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and normalised using the signal variance; 

R ^ ( m ) 
[ni-6] 

The three unknown parameters, COBW , O) ^ and , are then estimated using the 

following iterative procedure. 

1. Guess initial values of the three parameters, cogw, co ̂  and (J^ . 

2. Calculate the nine ARMA filter coefficients from the 2"^ order Butterworth filter equation, 

which is an extension of the 1 '̂ order filter equation [in-2]. 

3. Calculate the impulse response function of the real 2°̂ ^ order Butterworth filter from the 2°'' 

order version of [III-l] with the nine ARMA filter coefficients and a delta function as the 

input signal; 

&#(») = 0 

hj^(n) = - bihj^{n - I) - b2hji{n - 2) - b-^hj^{n - 3) - b^hj^ (n - 4) 

hj^ (n) - -bih^ (n - 1 ) - (n - 2) - b^hj^ (n-3)- b^hj^ (n - 4) 

n<0 

0<M<5 

n> 5 

[in-7] 

4. Calculate the analytic forni of the impulse response function of the filter; 

h = hj^+ ihj 

A; 
[in-8] 

5. Calculate the fitted normalised autocorrelation function of x{n) from the impulse response 

function in [in-7]; 

A/z' 

[in-9] 

N-m-\ 

(n)h (n + m) form - 0....N -1 
n=0 
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6. Calculate the mean squared error between the fitted and the estimated normalised 

autocorrelation functions, across the first Mrmnc values: 

4 ; i ( K „ ( m ) - K „ ( m ) ) [m-lO] 
Trunc m=Q 

The choice of Mrmnc is discussed in the section 111-5. 

7. Iterate steps 1-5 above on the three variables to minimise the error in [IE-10]. 

This procedure is equivalent to solving the 2°^ order equivalents of [ in-4] and [ni-2] 

numerically using the first Mxrunc values in the equivalent to [III-4]. 

III-4 Comparison of the 3-parameter Model with Maximum Entropy Spectral 

Analysis (Burg, 1978a) 

The 3-parameter model differs from the maximum entropy spectral analysis method due 

to Burg (1978a) in two main respects. Firstly, Burg's method uses only AR filter coefficients 

(denoted bn). This means that the equivalent equation to [III-4] contains only linear terms and 

can simply be solved by linear matrix operations. Secondly, Burg's method does not constrain 

the filter to be any particular form. Instead, the order of the filter (i.e., the number of AR filter 

coefficients) is increased parametrically until some stopping criterion is reached. It is for these 

reasons that Burg's method is not suited to the work in this thesis. Being a more general 

spectral estimation method, Burg's method does not make use of the knowledge of the shape 

of the filter that has been gained from the cochlear modelling work, and consequently it 

contains many more free parameters (i.e., AR filter coefficients) that need to be determined 

than does the 3-parameter model. 

III-5 The Optimal Value of Mrmnc 

If the autocorrelation function of the signal were known exactly and if it arose from 

white noise passed through a 2"^ order Butterworth, then it has been found that only the first 

two values of the autocorrelation function are required to solve exactly for the two Butterworth 
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filter parameter,/c mdfBw in [111-2]. Any additional values of the autocorrelation function 

would be redundant, adding no new information. The mean square error term in this case 

would be identically zero. However, in reality the situation differs from this ideal case in three 

ways. Firstly, the autocorrelation function is only an estimate based on a finite length of 

signal. Note also that estimates of the autocorrelation function in equation [111-5] become less 

reliable at higher lag values, as they are based on fewer and fewer points. Secondly, the signal 

is contaminated with noise. Thirdly, the signal does not conform perfectly to stationary 

gaussian white noise through a 2"^ order Butterworth filter. As a consequence of these factors, 

the optimal value of Mrmnc is > 2. 

A theoretical treatment of the these effects is extremely difficult. There is one argument 

for choosing Mrmnc = 9. This would then allow nine ARMA filter coefficients to be 

calculated. From these, the two Butterworth filter parameters could be found by a least 

squares method (cf., the 1®' order case in [ni-4]). This does not, however, overcome the three 

probelms listed above. Thus instead of attempting further theoretical analysis, the following 

numerical approach was adopted. Using many signal realizations from both ideal 2"^ order 

Butterworth processes and from the cochlear models, the performance of the 3-parameter 

model was measured in the presence of additive noise, and for different values of Mrnmc. 

Simulations were performed with realistic values of the filter parameters, lengths of signal, and 

signal-to-noise ratios. The result of the numerical analysis was that the performance of the 

estimator varied little, provided that Mrmnc lay between about 10% and 50% of the signal 

length. In practice, a value of 12.5% was chosen for the analysis of both the cochlear models 

and the experimental data. This corresponds to about 11 points for the 91 measured points in 

the SFOAE signal, which is close to the value MTmnc = 9 discussed above. The reason for 

defining MTmnc as a proportion of the signal length, rather than as a number of points is 

explained below. 

In the experiments, the SFOAE signal is resampled from 91 equispaced points in the 

frequency domain, to give 256 equispaced points in the //-domain. This effectively resamples 

the autocorrelation function, and complicates the argument in the following way. On 

resampling, the lag value of the Mth point of the original autocorrelation function is greater 

than the lag values of the Mth point of the resampled autocorrelation function. However, the 

resampling operation does not add any new information, and therefore the first M points in the 

resampled autocorrelation function contain less information than the first M points of the 
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original autocorrelation function. From this it can be shown that the number of points in the 

resampled autocorrelation function required to define the ARMA filter coefficient must be 

increased. Thus if the first 9 points of Rxxim) are required for the original 91 point signal, then 

the first 26 points are required when Rxxijn) is calculated from a resampled signal of length 

256 points. (The fact that the original signal was equispaced in frequency, whilst the 

resampled signal is equispaced in r] does not does not materially alter the argument.) Thus for 

a given random process estimated from a given signal, it appropriate to define Mmmc as a 

fraction of the number of points in the signal. 

III-6 4-parameter Model 

In this section, equation [6.12] is derived. In the 4-parameter model, the measured 

signal, j(n), can be thought of as arising from a two stage process. Firstly white noise is 

passed through a 2"^ order Butterworth filter to give the signal, x{n), as for the 3-parameter 

model. Then this signal undergoes a nonlinear transformation to give j(n). 

x{n) = h{n) ® w{n) 

The relationship between the autocorrelation function of j(n) and the filter coefficients in h{n) 

is now more complicated than in [111-4]. The analysis proceeds as follows. 

For small values of the product r qX (n) (i.e. r qx (n) < 1) [III-l 1] can be expanded 

using the binomial theorem, and truncated to a the first two terms (further terms can be 

included if desired). 

j ' W = + /"o:*: (») + / " o ^ W + (»)..] 

Truncating to the first two terms : 

y{n) ~ Ax{n) + Bx^{n) [111-12] 

^ = gQ^Q 

The autocorrelation function of j(n) is then given by: 
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= R j (m) + R2 (m) + R3 (m) + R4 (m) 

where 

Rj (m) = E x(n)^x(n + m) 

R2(m) = E (n)*(n + m) 

= AB E x(ji) x^{n + m) 

Pi4.{m)=ABE x^{n)'X (n + m) 

[in-13] 

Now Ri(m) in [111-13] is simply proportional to the terms appearing in the 3-parameter model 

in [ni -3] and [ni-9]: 

Ri(m) = R ^ ( m ) = A^ <7jR;,;,(m) [111-14] 

where is the variance of the white noise signal. 

The term RsCm) can be found by expanding the convolution integral for x{n) in terms 

of the filter impulse response, h(n), and a white noise signal, w(n). 

R3(m) = AB e\ x(n) * 2 / \ 

X (n + m) 

= AB E )* - A )* + ^ - 72 + /» - 73 ) 

Z, Z , Z , A )**(;2 )̂ (;3 - A)" +/» - 73) 

[m-15] 

where all summations are taken from -0° to +00. To evaluate the functions RsCm), recall that 

the signals inside the expectation operator in [111-15] are all assumed to be gaussian, with zero 

mean. It can be shown that, for any three jointly gaussian random variables, X, Y, and Z of 

zero mean, the following holds (Deutsch, 1965); 

E[xyz] = 0 [in-16] 

It follows from [111-15] and [111-16] that: 

R 3 ( m ) = R 4 ( m ) = 0 [ni-17] 

Following a similar expansion to [IE-15], it can be shown that RaCm) in [III-13] becomes: 
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R2(m) =3"^ E[ x'^{rif {n + m) 

= ^ ^ E ; , )* ̂ (^'z )" /̂ (Vs )A(;4 ) : 

e\ w(n - Ji)* w(n - J2) w(n + m- )w{n + m- j^) 

IX 
[m-18] 

[ni-19] 

For any four jointly gaussian random variables, W, X, Y, and Z of non-zero mean, the 

expectation of their product is given by [111-19] (Deutsch, 1965). 

E c m r z ] = ]E[yz ]+E[wy ] E [ ^ ] + E [ w z ] E [ x y ] 

- 2E[W]E[%]E[y]E[Z] 

Equation [111-19] allows the expectation in [HI-IS] to be expanded as a sum of 

autocorrelation functions. Recall that w(n) is gaussian stationary white noise, whose 

autocorrelation function is therefore a delta function at zero lag. Thus the expectation in 

[ in- lS] becomes: 

w(n - 7i )* w(n - J2) w(n + m- )w{n + m- j^) 

- ;2 ) (^( ;3 - A ) + 

+ A + - 7 4 ) + 

(̂ (/M + _/i - (m + ;2 - )] 
[m-20] 

jl for j = k 

[0 for j 

where c% is the RMS value of the white noise process. Substituting [111-20] into [IE-IS] and 

using the sifting property of the delta function gives: 

R 2 W = AU4)/^(74) + 

'Ji 

[ni-21] 
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Because h{n) is analytic it follows that: 

[in-22] 

The demonstration of [HI-22] is as follows. The product of any two analytic functions is also 

analytic, as argued later. Therefore h^{n) is analytic. The sum of terms in [111-22] represents 

the zero-frequency (or d.c. offset) of h^{n). But since h^{n) is analytic, its zero-frequency term 

is zero. Therefore equation [111-22] holds if h{n) is analytic. 

To show that the product of two analytic functions is itself analytic, consider the 

Fourier transform of the product. This yields the convolution of two transforms in the 

frequency domain. Since both transforms are one-sided (by the definition of analyticity), the 

convolution of the two one-sided transforms is itself one sided. Inverse Fourier transforming 

this one-sided function gives the desired product. Therefore the product of the two analytic 

functions must itself also be analytic. 

Thus, by noting the result in [111-22], and recalling the definition in [111-9], it follows 

that [in-21] simplifies to: 

RzCm) -m)*&(;3) 

[in-23] 

— 2(7^5 R/zA (^ ) 

Substituting [111-23], [111-17] and [111-14] into [IE-IS] gives: 

R)y(m) = R^(/M) + 2g^ Rx%^(m) 

.2d , o„2 „2D 2, 
[in-24] 

= W + R^^ (;«) 

This gives the first two terms in equation [6.12]. The third term in [6.12] (and higher order 

terms if desired) can be obtained in a similar way by including higher terms in the binomial 

expansion in [HI-12]. In fact, the influence of the third order terms has generally been found 

to be very small. Equation [III-24] can then be used to fit the 4-parameter model to the 

estimated autocorrelation function, as described in section 6.6. 

Note that there is an inconsistency in the above approach. The binomial expansion in 

[in-12] is only valid when r o x ( n ) < l . However, since x ( n ) is assumed to be gaussian, it can 

take any value from to +°°. Thus, in theory, the binomial expansion becomes inapplicable 
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for a small proportion of the theoretical signal. In practice, however, this is not a problem. 

The physical signal, x ( « ) is, of course, not truly unbounded, and thus not truly gaussian. 
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III-7 Matlab Listing of 4-parameter Model 

function ... 
[phi,Syy4,SyyMeas,etaOctLag,Ryy4,RyyMeas,phiC,phiBW,alpha,beta,eps] .. . 

= param4(y,etaOct_s) ; 
% 
% Matlab Version 4.2 
% 

% B.Lineton 19-8-1999 
% 
% 4-parameter model: returns estimates of the four parameters together 
% with error values and the raw and fitted spectra 

inputs: 
y= SFOAE frequency function sampled at equal log freq intervals 
etaOct_s= the sampling interval in octaves 

% outputs: 
% phi= the independent phi variable 
% Syy4= fitted 4 parameter phi-spectrum at phi values 
% Shh4= fitted 4 parameter phi-spectrum of 
% SyyMeas= measured raw phi-spectrum 

etaOctLag= the independent lag octave frequency variable 
R y y 4 = fitted 4-parameter autocorrelation function 
RyyMeas= measured raw autocorrelation function 
phiC,phiBW,alpha,beta = estimates of four parameters 
eps= final error (poorness-of-fit) 

Ny=length(y); 
etaOctLag =[0:Ny-l]*etaOct_s; 
phi_s=l/etaOct_s/log(2); 
phi=[0:Ny/2-l]*phi_s/Ny; 

% octave lag variable 
% sampling rate in phi 

% remove mean, and find Hilbert transform pair 
ym=mean (y) ,-
yd=y-ym; 
ydr=real(yd); 
ydr2=imag{hilbert(imag(yd))); 

% estimate autocorrelation function of y from 
% cross correlation of real & Hilbert transform of imag parts 
RyyMeas=xcorr(ydr,ydr2,'biased'); 
RyyMeas=RyyMeas(Ny:2*Ny-l); 

% Obtain initial estimates of phiC & phiBW from fft over selected range: 

winl=hanning(Ny).'; 
Fyr=fft(conj(detrend(ydr.*winl,0)),Ny); % window 1 
Fyr2=fft(conj(detrend(ydr2.*winl,0)),Ny); % window 1 
SyyMeas=abs(Fyr.*Fyr2)/Ny/mean(winl.'~2); % estimate of raw phi-spectrum 

% parametric fit over selected range 
Nord=2; % Butterworth filter order 
NRPoF=round(Ny/8); % number of points used in err calculation 
% starting guesses: suffix 0 
[mx,iphi_max]=max(SyyMeas) 
phiCO=phi(iphi_max); 
phiBW0=phiC0/2; 
% Run at three different values of alphal & take the one with the lowest 
final error: 

alpha0_l=0; 
[phiCl,phiBWl,alphal,betal,epsO_l,epsl]= ... 
param4_l(Nord,NRPoF,RyyMeas,phi_s,phiCO,phiBWO,alphaO_l); 
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alpha0_2=0.25; 
[phiC2,phiBW2,alpha2,beta2,eps0_2,eps2]= ... 
param4_l(Nord,NRPoF,RyyMeas,phi_s,phiCO,phiBWO,alphaQ_2); 
alpha0_3=0.5; 
[phiC3,phiBW3,alpha],beta3,eps0_3,eps3]=... 
param4__l(Nord,NRPoF,RyyMeas,phi_s,phiCO,phiBWO,alpha0_3); 

[epsMin,lepsMin]=min([epsl,eps2,eps3]); 
if IepsMin==l 
phiC=phiCl; 
phiBW=phiBWl; 
alpha=alphal; 
beta=betal; 
eps=epsl; 
epsO=epsO_l; 
alphaO=alphaO_l; 

elseif IepsMin==2 
phiC=phiC2; 
phiBW=phiBW2; 
alpha=alpha2 ; 
beta=beta2; 
eps=eps2; 
eps0=eps0_2; 
alpha0=alpha0_2; 

elseif IepsMin==3 
phiC=phiC3; 
phiBW=phiBW3; 
alpha=alpha3; 
beta=beta3; 
eps=eps3; 
eps0=eps0_3; 
alpha0=alpha0_3; 

end; 

% calculate fitted autocorrelation and phi-spectrum 
Rhh4=RhhCalc(phiC,phiBW,Ny,Nord,phi_s); 
sigmayy=sgrt(2*RyyMeas(1)); 
beta_sg=sigmayy^2/(24*abs (alpha) '̂6 + 6*abs (alpha) '^4+2*abs (alpha) "2 + 1) ; 
beta=abs(sgrt(beta_sq)); 
5hh4=2*real(fft(con]([0.5*Rhh4(l),Rhh4(2:Ny)]))); 
Shh4=Shh4(l:Ny/2); 
Ryy4=abs(beta)"2*(24*abs(alpha)"6*Rhh4."4+6*abs(alpha)"4*Rhh4."3+2*abs (alpha 
)*2*Rhh4.*2+Rhh4); 
Syy4=2*real(fft(conj([0.5*Ryy4(1),Ryy4(2:Ny)]))) ; 
5yy4=Syy4(l:Ny/2); 

% Recalculate analytic forms of the raw measured functions: 
RyyMeas=2*conj(hilbert([fliplr(RyyMeas),RyyMeas(2:Ny)])); 
RyyMeas=RyyMeas(Ny:2*Ny-l); 
SyyMeas=4*SyyMeas(1:Ny/2); 

return 
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% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII % ==================================================================== 

% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

function [fc,fBW,alpha,beta,ErrO,Err]= ... 
param4_l(Nord,NRyy,RyyMeas,fs,fcO,fBWO,alphaO); 

% 
% 4-parameter model: returns estimates of the four parameters together with 
% the initial and final error values for a given autocorrelation function. 
% 
% inputs: 
% Nord= filter order (=2) 
% NRyY= number of points in Ryy overwhich to calc. the error 
% RyyMeas= the measured raw autocorrelation function 
% fs= samlping rate 
% fcO,fBWO,alphaO = initial estimates of three parameters 
% 

% outputs: 
% fc,fBW,alpha = final estimates of three parameters 
% ErrO, Err = initial and final error 

Novr=length(RyyMeas); 
sizeRyydl=size(RyyMeas) ; 
if sizeRyydl(1)~=1; RyyMeas=RyyMeas.';end; 
ts=l/fs; 

% === Optimise Parameters: alpha,beta,flow,fupp === 
% uses Matlab function "fmins" to minimise output of function "Par4ErrO" 

fupp0 = 0 . 5*sqrt ( fBW0'^2+4*fc0'^2)+0 . 5*fBW0 ; % convert centre freq & BW to 
f lowO-O . 5*sqrt (fBW0'^2+4*f c0^2 ) - 0 . 5*fBW0 ; % upper & lower cut-off freqs 

FMIN_OPTIONS(1)=1; % display parameters 
FMIN_OPTIONS(3)=(1.e-4)/lOO; % tolerance 
FMIN_OPTIONS(14)=2000; % max iterations 
ParamVecO=[flowO,fuppO,alphaO]; 

ErrO=Par4ErrO(ParamVecO,RyyMeas,Nord,NRyy,fs); % initial error 
ParamVec=fmins('Par4ErrO',ParamVecO,FMIN_OPTIONS,[],RyyMeas,Nord,NRyy,fs); 
Err=Par4ErrO(ParamVec,RyyMeas,Nord,NRyy,fs); % final error 

flow=ParamVec(1); 
fupp=ParamVec(2); 
alpha =abs(ParamVec(3)); 

sigmayy=sqrt{2*RyyMeas(1)); 
beta_sq=sigmayy^2/(24*abs (alpha) *6 + 6*abs (alpha) '^4+2*abs (alpha) ̂ 2̂ + 1) ; 
beta=abs(sqrt(beta_sq)); 
fBW=fupp-flow; 
fc=sqrt(fupp*flow); 

return 
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% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII % ==================================================================== 

% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

function Err=Par4ErrO(ParamVec,RyyMeas,Nord,NRhh, fs); 
% 
% calculates error between a non-linear bandpass npoise signal and 
% model of noise signal based on; 
% y= Al*x + A2*x*2 
% where x is 1st order Butterworth band pass noise with a std of 1; 
% ParamVec=[flow,fupp,alpha]; 
% flow, fupp=3dB Upper and Lower Cut-offs for B'worth filter, both in cycles 
% per unit time 
% alpha=A2/A1; 
% NRhh= points in Rhh to be included; 
% fs= sampling rate in cycles per unit time. 
% use fact that real & imag parts are related by the Hilbert transform 

alpha_Limit = l ; 
Novr=length(RyyMeas); 
sigmayy2=2 *RyyMeas(1); 
RyyMeas=2*conj(hilbert([fliplr(RyyMeas),RyyMeas(2:Novr)])); % create full 
Ryy from real part; 
KyyMeas=RyyMeas{Novr+(0:NRhh-l))/sigmayy2; % normalised & truncated to NRhh 
points 

flow=ParamVec(1); 
fupp=ParamVec(2); 
alpha =abs(ParamVec(3)); 
alpha =min([alpha,alpha_Limit]) ; 

small=fs/Novr; % =fs/Novr; % ensure filter turning points are sensible 
if flow <=small flow=small; end; 
if fupp <=2*small fupp=2*small; end; 
if fupp >=fs/2-small fupp=fs/2-small; end; 
if flow >=fupp-small flow=fupp-small; end; 

[B,A]=butter(Nord,[flow,fupp]/(fs/2)); 

symclick=[zeros(1,Novr),1,zeros(1,Novr-1)]; % click 
htempl=filter(B,A,symclick); % hr(t) (real IRF) 
htemp2=filter(B,A,conj(fliplr(htempl))); % 
Rhrhr=fliplr(htemp2); % Rhrhr= hr(t) (x) hr(-t) 
Rhh=2*conj{hilbert(Rhrhr)); % analytic Rhh (2-sided in 
time) 
Rhh=Rhh(Novr+1;2*Novr); % analytic Rhh (1-sided in 
time) 
Rhh=Rhh(l:NRhh); % truncate to NRhh points 
Rhh=(Rhh)/real(Rhh(1)); % Normalise 
Kyy4=(24*alpha^6*Rhh. ̂ ^+6*alpha*4*Rhh. ̂ 3+2*alpha*2*Rhh.^2+Rhh)... 

/(24*alpha*6+6*alpha*4+2*alpha*2+l); % 4-paramter fit to Ryy 
Diff=KyyMeas-Kyy4; 
Err=sum(abs(Diff).^2)/NRhh; 

return 
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% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

function Khh=RhhCalc{fc,fBW,N,Nord,fs); 
% Khh=RhhCalc(fc,fBW,N,Nord, fs) ; 
% return the normalised autocorrelation function corresponding to 
% a Butterworth filter 
% inputs: 
% fc, fBW= centre freg & bandwidth in cycles per unit time 
% N= Number of points; 
% fs= sampling rate in cycles per unit time; 

fupp=0.5*sqrt(fBW*2+4*fc*2)+0.5*fBW; 
flow=0.5*sqrt(fBW*2+4*fc*2)-0.5*fBW; 

[B,A]=butter{Nord,[flow,fupp]/{fs/2)); 

symclick=[zeros{1,N),1,zeros{1,N-1)]; % click 
htempl=filter(B,A,symclick); % hr(t) (real IRF) 
htemp2=filter(B,A,conj(fliplr(htempl))); 
Rhrhr=fliplr(htemp2); % Rhrhr= hr(t) (x) hr(-t) 
Rhh=2*conj(hilbert(Rhrhr)); % analytic Rhh (2-sided in time) 
Rhh=Rhh(N+1;2*N); % analytic Rhh (1-sided in time) 
Khh= (Rhh)/real (Rhhd) ) ; % normalised Rhh 

return 
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