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In recent theories of cochlear mechanics, it has been proposed that spontaneous, transiently
evoked and stimulus frequency otoacoustic emissions originate from scattering of a “tall
and broad” travelling wave (TW) with a random spatial distribution of cochlear
inhomogeneities. In contrast, in an earlier theory, it was proposed that scattering arises
from inhomogeneities in the form of regular spatial corrugations. Both these theories
successfully predict the existence of quasi-periodic frequency variations in the spectra of
these otoacoustic emissions. However, they invoke very different cochlear mechanical
properties to explain the frequency spacing commonly characterised by a parameter known
as its periodicity. In the first theory, the periodicity is determined predominantly by the
wavelength of the TW near its peak amplitude, whilst in the second it is determined by the
spatial period of the corrugations, and is therefore largely independent of TW wavelength.
The aim of this thesis is to test these two rival theories in humans by attempting to induce
changes in the TW wavelength through ipsilateral acoustic suppression, whilst measuring
any accompanying changes in the periodicity of stimulus frequency otoacoustic emissions
(SFOAE).

For both theories, a one-dimensional longwave model of cochlear mechanics was
developed including representations of the two scattering mechanisms and of nonlinear
cochlear active processes. Detailed predictions of the changes in SFOAE periodicity under
conditions of self-suppression and high-side, two-tone suppression were then made from
both models. In the model with random inhomogeneities, the periodicity clearly increased
with the extent of self-suppression, and decreased with the extent of two-tone suppression.
In sharp contrast, in the model with regular spatial corrugations, no change in periodicity
occurred in either case. This result provides a means for differentiating between the two
theories experimentally. Experiments were performed in 20 human subjects with normal
hearing to measure any changes in SFOAE periodicity during self-suppression and two-
tone suppression.

The experimental results were in broad agreement with the theoretical predictions of
the model with random irregularities: SFOAE periodicity generally increased with the
extent of self-suppression and decreased with the extent of high-side, two-tone
suppression. This result was interpreted as strong evidence favouring the theory of
spatially random inhomogeneities over the rival theory of regular spatial corrugations,
thereby enhancing understanding of the mechanism for generation of otoacoustic

emissions.
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1. Introduction
1.1 The Anatomy and Physiology of the Human Cochlea

In this section the anatomy and physiology of the cochlea are briefly described. A
detailed review of our current knowledge of the human cochlea is reported in Pickles
(1988) and Dallos et al. (1996).

The cochlea comprises three fluid filled channels, or scalae, called the scala vestibuli,
the scala media and the scala tympani. These are about 35 mm in length and are coiled
into a spiral of approximately 2.5 turns about a bony core called the modiolus. The spiral
structure is embedded in the temporal bone, which forms part of the outer wall of the three
scalae. The scala media is separated from the scala vestibuli by Reissner’s membrane, and
from the scala tympani by the basilar membrane (BM). All three scalae contain fluids
whose mechanical properties are similar to water and whose ionic composition is important
in cochlear function. The scala vestibuli and scala tympani are connected to each other by
a small port called the helicotrema, located at the apex of the spiral, whilst the scala media
is closed at the apex, and is not directly connected to the other two scalae. Acoustic
vibrations in the outer ear canal are transmitted by the middle-ear ossicles to a membrane
at the basal end of the scala vestibuli called the oval window. The scala tympani is closed
by a membrane called the round window, which faces the middle cavity.

The BM comprises radial fibres which are connected at their inner end to a bony
ledge projecting from the modiolus called the osseous spiral lamina. The outer ends of the
fibres connect to a structure called the spiral ligament. The stiffness of these fibres is
important in determining the mechanical behaviour of the cochlea.

From a cochlear mechanical viewpoint, the spiral shape of the cochlea is unimportant
and it is therefore often treated as though it were unwound into a long, straight structure.
The cochlea shows the following variations in its dimensions and properties along its
length. Firstly, the BM becomes broader, and mechanically more compliant from base to
apex. Secondly, both the width of the osseous spiral limbus and the cross section of the
scala media taper in the opposite direction to the BM, becoming narrower from base to
apex. These variations form the basis of the mechanical frequency analysis that occurs in
the cochlea in which stimulus frequency is mapped to location on the BM.

Acoustic stimuli in the ear canal cause vibrations of the oval window which generate
a hydromechanical wave involving transverse motion of the BM. The wave, known as the
travelling wave (TW) travels along the BM carrying energy from base to apex. For a pure

tone stimulus, the TW amplitude response varies with position along the BM, peaking at a
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point which is dependent on the stimulus frequency. The location of the peak in the
response is near the apex of the cochlea for low frequency stimuli, and moves towards the
base for progressively higher frequency stimuli.

The BM supports a cellular structure called the organ of Corti, which comprises
support cells and two types of sensory cells: the inner and outer hair cells (IHC and OHC
respectively). Above these is a gelatinous structure called the tectorial membrane, which is
attached at its inner edge and which runs along the length of the cochlea. A bundle of hairs
called the stereocilia projects from the top of each hair cell towards the tectorial
membrane, with the tips of the OHC stereocilia being embedded in its underside. In
response to vibrations of the BM, the stereocilia deflect, thereby modulating the rate of
flow of ions from the surrounding cochlear fluid into the hair cells.

In the IHC:s, this flow of ions into the cell initiates nerve impulses which travel along
the auditory nerve to the brainstem. In this way, the vibration of a point on the BM
becomes encoded as a neural signal.

The role of the OHCs is quite different from that of the IHCs: rather than detecting
BM vibration, the OHCs actively amplify the vibration, thus enhancing the sensitivity of
the auditory system. This amplification mechanism is not well understood, but according
to the most widely accepted theories, a deflection of their stereocilia causes the OHCs to
undergo length changes, thereby applying excitation forces to the BM and injecting energy
into the passing TW. Since these length changes are both initiated by, and have an
influence on the passing TW, a feedback loop exists involving mechanical to electrical
transduction by the stereocilia, followed by electrical to mechanical transduction in the
body of the OHC. The entire system is known as the cochlear amplifier, and is powered by
a metabolic energy supply which maintains the ionic composition of the cochlear fluids.
The action of the cochlear amplifier not only increases the sensitivity of the cochlea, but
also improves frequency selectivity by sharpening the peak of envelope of the TW
response. The cochlear amplifier is physiologically vulnerable, and its impairment is
implicated in most cases of sensorineural hearing loss.

The mechanical response of the cochlea shows a strong compressive nonlinearity
such that the ratio of amplitude of the BM vibration to the that of the acoustic stimulus
reduces with increasing stimulus level. This nonlinearity greatly complicates the
mechanical response since the response at any given frequency may be influenced by many
frequency components in the stimulus, not just the component at the response frequency.

It is thought that this nonlinearity arises predominantly from the transduction processes in

the OHC:s.



1.2 Otoacoustic Emissions

Otoacoustic Emissions (OAE) are low level acoustic signals that are generated in the
cochlea, propagate through the middle ear and appear in the ear canal where they can be
measured using a probe microphone (Kemp, 1978). The mechanism of their generation is
thought to involve the cochlear amplifier, and consequently OAEs provide a clinically
useful noninvasive tool for assessing the state of health of the cochlea.

OABEs are usually divided into two main classes: spontaneous OAEs and evoked
OAEs. Spontaneous OAEs (SOAE) are sounds measured in the ear canal in the absence of
any external stimulation. They appear as one or more narrow band spikes in the power
spectrum of the ear canal sound pressure, which can be measured with a miniature
microphone sealed into the ear canal.

Evoked OAEs only arise when an external sound stimulus is presented to the ear.
These are usually measured using a probe in the ear canal which houses both a microphone
and an earphone. Evoked OAEs are usually further divided into three subclasses:
transiently evoked, stimulus frequency, and distortion product OAEs, abbreviated to
TEOAE, SFOAE and DPOAE respectively (Probst et al., 1991). This subdivision is based
purely on the type of the evoking stimulus and is not intended to imply differences in the
generation mechanisms. TEOAES are evoked using a transient stimulus such a click, tone-
burst or chirp and appear as echo-like signals after the stimulus. SFOAEs are evoked using
a continuous pure tone stimulus, and appear themselves as continuous pure tones at the
same frequency as the stimulus. DPOAESs are evoked by the presentation of two or more
continuous pure tone stimuli and appear as continuous pure tones at intermodulation
frequencies. SFOAEs and TEOAEs are sometimes referred to as ‘simultaneously evoked’
and ‘delayed evoked’ otoacoustic emissions respectively though this terminology will not
be used here.

SFOAESs in humans are the main subject of this project. TEOAE:s are also briefly
discussed, since they are thought to be closely related to SFOAEs. DPOAEs are more

complicated and will not be discussed in any detail.

1.3 Overview of the Project

The purpose of this project is to investigate the mechanisms by which SFOAEs are
generated in the cochlea. The current leading theory of SFOAE generation was proposed
by Shera and Zweig (1993b). According to this theory, SFOAEs arise by a process in
which the TW in the cochlea is both amplified by active processes and reflected by an

3



array of reflection sites distributed randomly along the length of the BM. An earlier theory
developed by Strube (1989) postulated that the reflection sites were distributed with
approximate spatial periodicity along the BM.

One consequence of Shera and Zweig’s theory is that certain features of the SFOAE
frequency spectrum should vary with variations in TW response. These features are
related to the group delay of the OAE signal which in turn is related to a quantity known as
the periodicity of the SFOAE spectrum. Specifically, Shera and Zweig’s theory predicts a
relationship between the periodicity of the SFOAE and both the wavelength of the TW
near its peak, and the sharpness of the TW envelope. In contrast, Strube’s theory predicts
that the periodicity in the SFOAE is independent of the TW shape, being determined only
by the spatial periodicity in the reflection sites.

The main aim of this project is to look for experimental evidence for or against Shera
and Zweig’s theoretical prediction. The approach that was adopted was to induce changes
in the TW response whilst looking for corresponding changes in the SFOAE frequency
functions. Because of the nonlinearity of cochlear responses, manipulation of the acoustic
input stimuli induces changes in the TW response. Two different manipulations were
used. In the first, the level of the a pure tone stimulus is varied, leading to the phenomenon
known as ‘self-suppression’. In the second, two tones are presented simultaneously,
leading to a nonlinear interaction known as ‘two-tone suppression’.

This investigation has three main parts. First, cochlear models were developed,
tested, and then used to generate theoretical predictions of the changes in SFOAEs that
occur during self-suppression and two-tone suppression. Second, a signal processing
method was developed for analysing SFOAE signals in terms of physical quantities in
Shera and Zweig’s theory of SFOAE generation. Third, experimental measurements of
SFOAEs were made in human subjects, and comparisons made with theory.

In the first part, the objective was to obtain testable prediction of the SFOAE
behaviour predicted both by Shera and Zweig’s theory, and by Strube’s theory. Several
different cochlear models based on the 1-dimensional longwave formulation were
assembled from elements of existing published models, and were then implemented on a
PC. These elements included models of the cochlear amplifier and BM impedance
inhomogeneities, which act as reflection sites for the TW. In order to test the sensitivity of
the model predictions to arbitrary assumptions in the models, two different variants of the
cochlear amplifier were implemented: the first due to Neely and Kim (1986) and the
second due to Zweig (1991). Two different spatial distributions of BM impedance
inhomogeneities were also modelled: first, the random distribution postulated in Shera and

Zweig’s theory (1993b); second, the periodic distribution postulated in Strube’s theory
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(1989). A nonlinear analysis technique (the ‘quasilinear’ method) due to Kanis and
de Boer (1993b) was also included in the models in order to allow self-suppression and
two-tone suppression to be modelled.

The major theoretical results of interest are as follows. Models based on Shera and
Zweig’s theory predict that the SFOAE periodicity should show specific changes during
self-suppression and two-tone suppression. No such change in periodicity is predicted by
models based on Strube’s theory. These results provide a means of testing the two theories
experimentally. Also, qualitatively similar results are obtained regardless of the different
assumptions made in the model, such as the details of the cochlear amplifier
characteristics. This is in agreement with Zweig and Shera’s assertion (1995) that
SFOAEs will arise whenever a ‘tall-and-broad” TW encounters a random array of
reflection sites.

In the second part, a signal processing method for accurately quantifying the SFOAE
periodicity was developed. This is required because, in general, neither measured nor
predicted SFOAE spectra show perfect spectral periodicity. Instead they exhibit a degree
of random amplitude and phase modulation with frequency. In Zweig and Shera’s
cochlear model, this arises from the underlying random nature of the reflection sites on the
BM. It can be shown that, as a consequence of this random element, the changes in
periodicity predicted by Zweig and Shera’s cochlear model are difficult to discern using
previously published methods. For cochlear models, this random element can be removed
by performing averaging across an ensemble of models, each with a different realization of
the random reflection sites. This yields the parameters which describe the population from
which the realizations were drawn. However, performing the corresponding ensemble
averaging process is not possible for experimental data, where the ensemble would have to
be formed from different subjects. The problem there is that, in contrast to the ensemble of
cochlear models, different subjects differ in many more ways than simply their
distributions of reflections sites. Therefore a method is required for estimating the
periodicity of a single SFOAE spectrum. The method developed in this project is based on
parametric spectral analysis. In this method, called the 4-parameter model, the measured
SFOAE function is treated as if it arose from a random process with two main controlling
parameters. The first of the four parameters, called here the ¢-centre value is used to
define the SFOAE periodicity in this thesis. The second parameter, called here the
¢-bandwidth, is related to the spread of periodicities in the SFOAE signal. The 4-
parameter model was tested against the results from averaging across an ensemble of

cochlear models, and was found to be capable of detecting the changes in periodicity (or



¢-centre value) predicted by Shera and Zweig’s model. Furthermore, its performance was
significantly better than that of alternative estimators.

In the third part, experiments were designed and conducted to measure the behaviour
of the SFOAE periodicity during self-suppression and two tone suppression. SFOAEs
were recorded in 20 subjects with normal hearing under varying degrees of self-
suppression and two-tone suppression. Where SFOAEs could be measured with sufficient
accuracy, the 4-parameter model described earlier was used to estimate the periodicity.
These results were then compared with theoretical predictions from the cochlear models.

The experimental results show that the SFOAE periodicity is altered both during
self-suppression and two-tone suppression. Furthermore, the measured relationship
between the periodicity and levels of the acoustic stimuli closely resembles the predictions
of cochlear models based on Shera and Zweig’s theory (1993b). In contrast, the
experimental results contradict the predictions of models based on Strube’s theory (1989).
This general result holds for several different variants of cochlear model, indicating that
the result is not dependent on the exact details of the models. It is concluded that the

experimental results provide strong support for Shera and Zweig’s theory (1993b).

1.4 Project Motivation and Scope

The two very basic questions “How does the cochlea work?” and “How are OAEs
generated?” have still not been fully answered at the macromechanical level. Although
plausible theories have been developed to answer these questions, these theories have yet
to be fully substantiated. One motivating factor for this project comes from the desire to
test these theories experimentally.

A related question is “What do OAE:s tell us about the cochlea?”. The answer to this
question has implications not just for basic hearing science, but also for clinical audiology.
Although OAESs have become a useful clinical tool in determining the state of health of the
cochlea, exactly what information is contained in OAE signals remains unclear.
Consequently, current clinical procedures use the most basic features of OAE signals, such
as the overall level of the emission. Thus, the motivation for this project comes not just
from basic hearing science, but also from clinical audiology. Though in this project no
direct clinical application is sought, it is hoped that the further understanding of the
cochlear mechanisms of OAE generation that is gained will lead to the development of
improved clinical techniques.

In particular, this thesis is motivated by the predictions of Shera and Zweig’s theory

(1993b), that SFOAE periodicity is related to the shape of the TW. This prediction
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differentiates the theory from an earlier theory due to Strube (1989) and thus provides a
possible means of testing the two theories experimentally. Also, if the prediction is
correct, it provides a link between cochlear mechanical behaviour and OAE signal
characteristics.

The potential benefits of this work are in three areas. Firstly, at the purely
phenomenological level, it may lead to improved methods of characterising measured
OAE:s, thereby revealing new patterns in OAE traces. Secondly, at the cochlear
mechanical level, it tests some aspects of the leading theories of the OAE generation in
humans, where there is a dearth of experimental data. Thirdly, it may point to ways of
extracting useful information about a particular cochlea (such as the width of the auditory
filter) from measurements of OAEs.

The scope of this investigation has been limited to SFOAEs. The reason for this is
that the theoretical treatment of SFOAES at the cochlear mechanical level is simpler than
that of other OAEs. This is because the cochlea is nonlinear, and therefore frequency
components in the stimulus (or in the response) can potentially interact with each other.
As SFOAEs arise from a single pure tone stimulus, nonlinear effects are minimised.
According to current theories, SFOAESs share their origins with other OAEs. Therefore,
the investigations carried out in this project may provide insight into the generation
mechanisms of other OAEs. This is important, since current clinical procedures use

TEOAEs and DPOAEs.
1.5 Overall Aims and Objectives

1.5.1 Aims

The general aim of this project is to further the understanding of cochlear mechanics
by exploring the link between measurable characteristics of OAEs and current
macromechanical theories of OAE generation. In particular, the aim is to answer the
following questions:

1. What predictions do the theories of Shera and Zweig (1993b) and of Strube (1989)
make about the variation of SFOAE periodicity during self-suppression and two-tone
suppression, and how can these variations be qualified?

2. How does the SFOAE periodicity measured in human ears vary during self-suppression
and two-tone suppression?

3. Do the experimental data concur with the predictions of the theories of either Shera and

Zweig or of Strube?



1.5.2 Deliverables

As part of the process of answering these questions, the aim is to deliver:

1.

cochlear models which capture the essential features of the two theories, and which are
capable of predicting SFOAEs during self-suppression and two-tone suppression,
appropriate predictions from the cochlear models,

a signal processing method for quantifying SFOAE periodicity,

experimental measurements of SFOAEs during self-suppression and two-tone

suppression.

1.5.3 Objectives

The project can be broken down into the following objectives:

To develop and implement macromechanical cochlear models in Matlab, which capture
the essential features of both Shera and Zweig’s theory and of Strube’s theory. These
models must be capable of the showing the effects of self-suppression and two-tone
suppression both on the TW envelope and on SFOAE:s.

To examine the performance of various versions of the models in detail, in order to
assess the sensitivity of the results to various modelling assumptions. The effects of
differences in the formulation of the middle ear model, in the properties of the BM, and
in the characteristics of the cochlear amplifier are all investigated.

To use the cochlear models to make predictions of the effect on SFOAE spectra of self-
suppression and of two-tone suppression.

To develop a signal processing method for quantifying the periodicity of SFOAE
spectra. Problems arise in quantifying SFOAE periodicity because of the complexity of
the SFOAE spectra predicted by Shera and Zweig’s model. The signal processing
method is to be designed to extract meaningful parameters from the SFOAE spectra
predicted by Shera and Zweig’s model, in order to allow comparisons to be made with
measured data.

To design and carry out experiments to measure the effect on SFOAESs in humans of
self-suppression and of two-tone suppression.

To use the signal processing method to quantify both the measured and theoretical

variations in SFOAE periodicity during self-suppression and two-tone suppression.



7. To refine the cochlear models and signal processing methods further where necessary,

based on the experimental results.

1.6 Structure of the Thesis

This thesis is broken into four parts. In the first part, the published literature is
reviewed on the measurement of SFOAESs and on the theories of SFOAE generation. In
the second part, the development of a cochlear model, and of a signal analysis method are
described, leading to the generation of testable theoretical predictions. In the third part the
experiments are described and comparisons are made between the experimental results and

the theoretical predictions. Finally, in the fourth part the overall implications of the results

are discussed.



PARrT I: LITERATURE REVIEW
2 Experimental Findings on OAEs

2.1 Definition of OAEs

OAE:s are defined by Probst et al. (1991) as ‘acoustic energy produced by the
cochlea and recorded in the outer ear ...”. In the case of SOAESs, this definition is
unproblematic. However, in the case of evoked OAEs the application of this definition is
not straightforward. This is because the pressure in the ear canal comprises several
components: the direct wave from the external stimulus, reflections originating from the
eardrum or middle ear, plus the desired OAE originating in the cochlea. This is a
particular problem for TEOAEs and SFOAESs, where the OAE and stimulus signals overlap
in both the time and the frequency domains. One way of defining an evoked OAE (at least
conceptually) is as the additional acoustic signal in the ear canal that arises as a results of
the active processes in the cochlea. Practical methods of measuring TEOAEs and SFOAEs
are discussed later.

SFOAEs are the main subject of this project. Recall that SFOAESs are continuous
pure tones evoked using a continuous pure tone stimulus at the same frequency. Due to
cochlear nonlinearity, a single pure tone stimulus will evoke not only a pure tone response
at the stimulus frequency, but also pure tone responses at other frequencies, such as integer
multiples of the stimulus frequency. These components are not classed as SFOAEs (and

are in any case generally quite small).
2.2 A Review of the Theory and Analysis of Reflections

Before reviewing the experimental data on OAEs, it is useful to consider some very
simple reflection phenomena. This anticipates the “reflection hypothesis” which was
introduced by Kemp (1978) to explain the generation of OAESs, and which is reviewed in
more detail later. In this section, some of the basic physics of reflections, together with
some useful signal processing techniques are introduced.

Fig. 2.1, panel (a) shows a simple arrangement for generating a simple reflection in a
duct. A loudspeaker generates a single click, which travels as a one-dimensional wave
along the duct, is reflected at the right hand wall, travels back down the duct and is

completely absorbed at the left hand wall.
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Fig2.1. A single reflection in an acoustic cavity. Time and frequency domain representations of the

microphone response arising from a single reflection. The microphone, loudspeaker and reference plane in
panel (a) are all coincident with the left hand wall of the duct, but are drawn separated for clarity. The
microphone signal, panel (h), can be represented as the sum of two components: the “Stimulus” component,
panel (b), and the “Echo” component, panel (e). The stimulus component may be defined as the microphone
response which would have been measured had the right-hand duct termination been completely non-
reflecting. In this example, the magnitude of the reflectance, R; (f), is broad band, peaking at 0.6, and the
time delay, 73 is 4 ms. Middle panels (c), (f) and (i) show the magnitude of the Fourier transforms of the left
hand panels (b), (¢) and (h) respectively. The right hand panels, (d), (g) and (j) show the phase of the Fourier
transforms of the left hand panels (b), (e) and (h), respectively. The echo and stimulus are related in the
frequency domain via the (complex) reflectance: Pgepo () = Pstimutus (f) R (f).
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Here it is assumed that the combination of the loudspeaker, microphone and left-
hand termination is non-reflecting, that the system is linear, that the side-walls are rigid
and that only plane waves propagate in the duct. Also, the right hand wall is assumed to
reflect all incident waves in a broad frequency band between about 0.25 and 1.75 kHz,
without introducing any significant delay', whilst the passage of the wave along the duct
introduces delay, but with no significant change in amplitude. The click passes the
microphone twice before being absorbed, giving rise to two pulses in the microphone
pressure signal, panel (h). This signal can be split into two components: the stimulus
component and the echo component. The two components of the microphone signal are
shown in panels (b) and (e), and their Fourier transforms are shown to the right of these.
The stimulus is a very short click at zero time, whose Fourier transform therefore has a
constant magnitude and zero phase over a wide frequency band. The Fourier transform of
the echo component has a broad band magnitude arising from the reflection characteristics
of the right hand wall, and a linear phase arising from the transmission delay.

To a good approximation, the sound field in the duct satisfies the simple one-
dimensional wave equation. From this equation, it can be shown that any arbitrary sound
field in the duct can be represented as the superposition of a right and a left going wave,
referred to here as the forward and backward waves respectively. Consequently, it is
useful to define a quantity known as the reflectance (or reflection coefficient), which, at
any frequency, is defined as the ratio of the complex amplitude of the reflected wave to
that of the incident wave. In panel (a) the reflectance at the plane of the microphone
looking in the forward direction is given by:

Reflectance, R ( f) = Ppaciwara (f) | PForwara (f) [2.1]
where symbols in bold typeface are used to denote complex quantities, and where Ppacrwara
and Prgryarg are the complex pressures at the microphone due to the backward and forward
components. For this simple case, the forward going wave is simply the stimulus wave,
whilst the backward going wave is simply the echo component. This leads to the following
simple relationship:

Py, =P,

stimutus T Prcno = Ptimunus A+ R) [2.2]
where all quantities are assumed to be complex functions of frequency.

Because the Fourier transform of the stimulus is uniform (i.e., independent of
frequency) (panels ¢ and d), the reflectance is identical in shape to the Fourier transform of

the echo, shown in panels (f) and (g). The magnitude of the reflectance thus is related to

! In order for this broad band filtering to be physically realizable, there must be some non-zero delay, but

this can be very small compared to the transmission delay.
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the broad band filtering that occurs between the incident and the reflected waves, whilst
the phase is related to the delay. The linearity of the phase indicates that there is no
dispersion: all frequency components are delayed by the same time. The slope of the phase

indicates the actual time delay:

LM = Tl [23]
2 df

Top(f) =~
where 7p is the delay in seconds (known formally as the group delay), @is the phase angle
in radians, and f'is the frequency in Hz. In this case 7%;p is independent of frequency and is
denoted 7.

Though it is conceptually useful, the reflectance is not directly measurable. Instead,
measurements yield only Py, for a given loudspeaker input voltage. However, given
knowledge of the loudspeaker source impedancez, Pgimuss could be calculated from this
input voltage, and hence the reflectance can be solved from [2.2] (Keefe, 1997).

In addition to the reflectance, it is useful to examine the transfer function given by
Purtic | Pstimuras - The form of this function resembles the frequency response shown in
panels (i) and (j). Here, the echo causes a ripple pattern to be superposed onto the
magnitude spectrum of the microphone pressure (panel i). The ripple spacing is related to
the delay between the stimulus and the echo, by 71 =1/ A f, where A fis the frequency
interval in Hz between adjacent ripple peaks. Physically, these ripples arise from the
interference between the stimulus and echo at the location of the microphone. This can be
understood with reference to fig. 2.2, which shows the complex phasor representations of
the stimulus and echo components for a single frequency. (See Kemp and Chum, 1980a,
fig 1. and Randall, 1987, fig 8.2) The phasor representing the echo pressure lies at an
angle of 2 7t f 7; relative to the real axis, and therefore rotates anticlockwise with increasing
frequency. The length of the phasor changes only slowly with frequency. This causes a
roughly periodic change in the length and angle of the microphone phasor, corresponding
to ripples in the magnitude and phase spectra of the microphone signal, shown in panels (i)
and (j).

A more complicated situation arises when the left hand wall is reflecting, as is shown
in fig. 2.3, panel (a). Again the loudspeaker, microphone, reference plane and left hand
wall are coincident. Two reflectances are now defined at the reference plane: R (f) for

incident waves approaching in the forward direction, and r ( /') for those approaching in

% It is assumed that the loudspeaker acts as a volume velocity source (proportional to voltage) shunted by an
acoustic impedance. To achieve a reflectionless termination, this acoustic impedance must equal the

characteristic impedance of the medium (scaled appropriately with the cross sectional area of the duct).
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the backward direction. This leads to a pressure pulse travelling back and forth, being

reflected at each encounter with the termination (e.g., Keefe, 1997).

Echo pressure

Stimulus
Pressure

Microphone
Pressure
Imag Axis

Real Axis

Fig 2.2. Phasor representation of the stimulus and echo components for a simple reflection, based on Kemp

and Chum, 1980a, fig 1, by permission of D. T. Kemp and Delft University Press.

As before, it is convenient to split the microphone signal in panel (h) into the
stimulus and echo components, shown in panels (b) and (e), where the stimulus component
is defined as the pressure signal that would have been measured had the right hand wall
been non-reflecting. The echo component is simply defined as the microphone signal
minus the stimulus. Now the forward and reverse pressure components no longer
correspond to the stimulus and echo components, because the echo component is made up
of forward as well as reverse waves (the stimulus component comprises only the first
forward wave). This means that the echo spectrum in panels (f) and (g) no longer

resembles the reflectance, R (f). It can be shown® that the following relationship holds

3 This can be verified by noting that the ratio of the forward to the reverse echo component in [2.4] equals
r(f), whilst the ratio of the reverse echo component to the sum of forward echo component and the stimulus

component equals R (f).
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between the echo and stimulus components:

P imu usle(1 +r)
PEcho = = {_rR = PStimulus

P rR(1+rR+(rR)* +... (forward)

Stimulus

R(A+rR+(rR)" +... (reverse) [2.4]

where explicit dependence on frequency has been omitted. The binomial expansion of the
denominator emphasises the interpretation of the echo signal as a sum of multiple
reflections. The value of r ( f) depends only on the source impedance. When r =0, [2.4]
simplifies to the single reflection case described earlier. For simplicity, r (f) has been
assumed real and constant in the example shown in fig 2.3.

Unlike the single reflection case, the spectrum of the echo component in panels (f)
and (g) now shows a ripple pattern, which arises from the periodicity in the time domain
signal in panel (e). In fact the ripple peaks correspond to the acoustic natural frequencies
of the system, which occur as a series of harmonics. The fundamental frequency, and the
spacing between the higher harmonics are given by the reciprocal of the time interval
between successive reflections. The width of these peaks is inversely related to the decay
time of the envelope of the pulse train seen in panel (e), which is determined by the
damping in the system. A large value of the product | # R | gives rise to a slow decay of the
pulse train, and therefore sharper ripples in the frequency domain. Note also that the
simple phasor diagram (fig. 2.2) no longer strictly applies, since the echo component is
now made up of an infinite sum of phasors, each one rotating (as frequency increases) at a
different rate, depending on its delay.

The ripple patterns in the spectra of the echo (panel (f)) and microphone (panel (i)),
resemble each other because the time delay between multiple reflections is the same as that
between the stimulus and the first reflection. This arises because the loudspeaker and the
left hand wall are coincident, and because r ( f) has zero phase.

Another quantity of interest is the acoustic impedance looking forwards at the plane of the
microphone, which is defined as the complex ratio of the acoustic pressure to the volume

velocity. A standard result relating the impedance, Z ( f), to the reflectance is:

7 =%UtR) [2.5]
1-R

where Zj is the characteristic impedance of the medium. Z ( f) is independent of the

reflectance, r (f), since it depends only on the system to the right of the reference plane.
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Fig 2.3. Multiple Reflections in an acoustic cavity. Panels (a)-(j) are as in fig 2.1, but with a reflecting left
hand wall. The “stimulus” component in panel (b) is defined as the microphone response that would have
been measured had the right-hand duct termination been completely non-reflecting. For the reflectance
looking right, the magnitude, R (f) is broad band with a peak value of 0.6, and the time delay, 7; = 4 ms. For
the reflectance looking left, the magnitude, r (f) = 0.8, and the phase angle, §( f) =0 for all f. Middle
panels (¢), (f) and (i) show the magnitude of the Fourier transforms of the left hand panels (b), (¢) and (h)
respectively. The right hand panels, (d), (g) and (j) show the phase of the Fourier transforms of the left hand
panels (b), (e) and (h), respectively. The echo and stimulus are related in the frequency domain via the two
(complex) reflectances:

PEcho(f)ZPStimulus(f)R(f)[1+r(f)]/[1*r(f)R(f)]'
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Now the transfer function between the microphone output and the loudspeaker input
will approximate this acoustic impedance, provided that r ( f) = 1, as is the case here. This
can be seen by setting 7 (f) = 1 in [2.4], and by noting that, for a high impedance
loudspeaker4, the volume velocity is proportional to the voltage input. This means that the
spectrum shown in panels (i) and (j) closely resembles the acoustic impedance seen at the
microphone. Therefore the peaks in the ripple pattern correspond closely to antiresonances
of the system, defined as frequencies where the input resistance is large.

Summarising the main points from these two simple cases:

1. For the single reflection case, the transfer function between echo and stimulus signals
equals the reflectance at the transducers, looking forwards. The slope of the phase of
the reflectance is determined by the time delay between stimulus and echo.

2. For the single reflection case, the transfer function between microphone and
loudspeaker shows a ripple pattern whose spacing is determined by the time delay
between stimulus and echo.

3. For the multiple reflection case, the transfer function between echo and stimulus is no
longer simply the reflectance looking forwards. Ripples appear in both its the
magnitude and phase. The average slope of the phase of the reflectance is still
determined by the time delay between stimulus and echo.

4. For the multiple reflection case, the transfer function between microphone and
loudspeaker closely resembles the acoustic impedance at the microphone, provided that
the source impedance is high, such that the reflectance looking backwards has a value
close to 1.

5. To recover the reflectance from measurements of Pys. a knowledge of the loudspeaker
source impedance is required.

It should be noted that in both cases, the presence of ripples in the Py spectrum
does not imply that the reflectance at the right hand wall is higher at the frequencies of the
ripple peaks. Instead, the ripple peaks indicate constructive interference between two or

more temporally separated components in the signal.
2.3 A Qualitative Description of Measured TEOAE and SFOAE Signals

TEOAES were first measured by Kemp (1978). He presented a click to the ear canal

via an earphone, and then measured the resulting acoustic pressure in the ear canal using a

* The impedance must be high for r to approach 1. A similar equation to [2.5] can be written relating rto

the source impedance.
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miniature microphone. In fact, in order to improve the signal-to-noise ratio, a train of
clicks was presented, and then synchronous averaging performed. The TEOAE appeared
in the microphone signal as an echo-like component typically lasting around 20 ms. Kemp
(1978) proposed that TEOAES originate in the cochlea, and that they involve active
cochlear processes. This has since been verified by a large body of evidence reviewed by
Probst et al. (1991) and discussed later.

The TEOAE signal has several characteristics that are different from those of the
simple echoes discussed in section 2.2. Of particular importance here are ‘frequency
dispersion’ and ‘compressive nonlinearity’. Frequency dispersion means that the different
frequency components in the TEOAE have different delays, such that higher frequency
components appear before lower frequency components (Kemp, 1978). This means that,
unlike the simple echoes in section 2.2, the shape of the TEOAE waveform is quite
different from that of the stimulus. Compressive nonlinearity means that the slope of the
input-output function, defined by plotting the rms amplitude of the TEOAE waveform
against that of the evoking click, is less than 1 dB/dB (Kemp, 1978). Again this is unlike
the simple behaviour of acoustic reflections in a duct (though this cannot be seen simply by
examining the single waveforms in section 2.2). Both these phenomena are discussed
further in part II in the context of cochlear macromechanical models.

Shortly after Kemp’s discovery of click evoked OAEs, it was reported that pure tone
stimuli also evoked emissions (Kemp and Chum, 1980a; Wilson, 1980a). These are
referred to here as SFOAEs. They are seen most readily in a normally hearing subject by
exciting the ear canal with a continuous low-level pure tone stimulus using an earphone
with a high impedance, and then measuring the resulting ear canal pressure. As the
stimulus frequency is varied, a ripple is observed in the amplitude of the frequency
spectrum of the ear canal pressure. Kemp and Chum (1980a) attributed these ripples to
alternate constructive and destructive interference between the (pure tone) stimulus wave
and the delayed OAE wave. This is the same interference mechanism that gave rise to the
ripple patterns seen in the spectra shown in figs. 2.1(i) and 2.3(i), and represented by the
phasor diagram in fig. 2.2. As will be discussed later, SFOAEs also exhibit frequency
dispersion and compressive nonlinearity.

If the generating mechanism for OAEs were entirely linear then there would be no
theoretical need to define SFOAEs independently of TEOAEs. This is because the Fourier
transform of the click evoked OAE would be identical to the pure tone evoked OAE.
Since both TEOAESs and SFOAEs show nonlinearity, as seen in their input-output
functions, SFOAEs cannot be predicted from TEOAEs (or vice versa). Nevertheless, the
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two classes of OAE do share many properties, including frequency dispersion and

compressive nonlinearity (Kemp and Chum, 1980a), which will be discussed further.

2.4 The Evidence for Active Processes

In section 2.1, an OAE was defined as the component in the signal arising from
active cochlear processes. It has also been stated the ripples seen in the spectrum of the ear
canal impedance indicate the presence of echo-like components. However, whether or not
these components arise from active processes, and therefore qualify as OAEs, cannot be
established from observations of the signals alone. In fact, there is now extensive
experimental evidence, reviewed by Probst et al. (1991), to show that the ripples arise from
active processes. Most notable is the fact that no ripples are measured in ears with known
cochlear hearing loss exceeding about 30 dB HL (Probst et al., 1991). Another important
experimental observation is the that the ripple exhibits a compressive nonlinearity such that
the amplitude of the ripple pattern reduces as the stimulus level increases, until at around
60 dB SPL it is barely noticeable (Kemp and Chum, 1980a). Such compressive
nonlinearity is also seen in other types of OAEs in humans (Probst ef al., 1991) and in in
vivo measurements of cochlear mechanical responses in animals (e.g., Sellick et al., 1982).
It is generally believed that the passive cochlear mechanics are virtually linear and that the
compressive nonlinearity arises from saturation of the cochlear amplifier (Dallos, 1996).

In addition to this experimental evidence, theoretical considerations suggest that the
passive cochlea will be reflectionless®, and would not give rise to the observed ripples

(de Boer, 1996; Shera and Zweig, 1991a, 1991b, 1993a).
2.5 Frequency Dispersion of SFOAEs

As for the simple case of an echo seen in fig. 2.1(i), the ripple spacing in the
magnitude of the ear canal pressure frequency spectrum depends on the time delay of the
SFOAE component with respect to the stimulus component. Measurements show that the

peaks in the ripples become more widely spaced as the stimulus frequency is increased

> Note that the term “reflectionless” here means that the reflectance measured at the base of the cochlea
looking apically is zero. This reflectance is defined in terms of forward and backward cochlear TWs, and
should not be confused with the reflectance of the eardrum. The cochlea, whether passive or active, has an
impedance which loads the eardrum via the middle cochlea, leading to an impedance mismatch between the
air in the ear canal and the eardrum. This means that reflections will occur even for a “reflectionless” (i.e.,

passive) cochlea. This is discussed further in section 2.9, and in part II of this thesis.
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(Kemp and Chum, 1980a; Zwicker and Schloth, 1984; Dallmayr, 1987), indicating that
higher frequencies have shorter delays than lower frequencies (cf., frequency dispersion in
TEOAE:S above). In fact, to a first approximation, it has been found that the ripple spacing
is roughly proportional to the stimulus frequency (e.g., Wilson, 1980a; Zwicker and
Schloth, 1984; Kemp, 1986; Dallmayr, 1987; Zweig and Shera, 1995). This holds over a
frequency range of 0.5 to at least 4 kHz (Zweig and Shera, 1995). Kemp and Chum
(1980a) used SFOAE phase measurements to derive the group delay, defined in [2.3],
which gives a direct measure of the delay of each frequency component in the signal. This

quantity also revealed dispersion similar to that indicated by the ripple spacing.

2.6 Analysis of an Idealised OAE Signal

It is useful at this point to consider a highly idealised phenomenological model of the
middle ear and cochlea which has been contrived to generate SFOAEs with the property
that the ripple spacing is proportional to the stimulus frequency. This idealisation, shown
in fig. 2.4, is similar to Strube’s analysis (1989) of a system with a group delay inversely
proportional to frequency.

In fig. 2.4 the idealised cochlea is characterised by a reflectance at its base, looking
forwards (i.e., apically). This has a constant magnitude given by R; , and has a phase angle
in radians given by 6, (f) = —A log. (f/ frer) where A and fz,; are constants. The idealised
middle ear is assumed to be reflectionless and to pass all frequencies in a broad band from
0.5 to 1.5 kHz. The middle ear transmission coefficient (i.e., the ratio of transmitted wave
pressure to incident wave pressure) is given by T (f), and for simplicity has been assumed
wholly real and identical in both directions. The ear canal is assumed to be very short,
such that delays are negligible compared to delays arising in the cochlea. The ear canal
termination is assumed to be reflectionless. In order to illustrate the correspondence
between the ripple spacing in the frequency domain and delays in the time domain, the
system is assumed to be linear. The SFOAE is then related to the stimulus by:

Poa (f) = Psimuus () T(f)’ R (f).

It must be stressed that this model is designed only to illustrate how the basic
SFOAE ripple pattern is related to two properties of the system: a phase angle with a
logarithmic variation, and a roughly constant magnitude over a broad band frequency band.
It should also be noted that use of reflectance does not imply that the mechanism for OAE
generation is passive reflection. It merely characterises the relationship between acoustic
input and output waveforms (at a point in space) at a phenomenological level. The

reflectance (also called the reflection coefficient) has been used in a similar way by several
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Fig2.4. OAEs from an idealised ear, in the absence of multiple reflections. Panel (a) shows a highly

idealised ear canal, middle ear and cochlea. The ear canal is closed at its left-hand end with a non-reflecting
termination. The idealised middle ear is perfectly non-reflecting, though not perfectly transparent. It has a
broad band transmission coefficient characterised by the attenuation function, 7' ( f). This applies to both left
and right travelling signals, giving rise to the magnitude spectrum shown in panel (f). Phase changes
introduced by the middle ear are neglected. The idealised cochlea has a highly simplified reflectance, R (f),
whose magnitude is constant and whose phase varies logarithmically with frequency. The parameters in
panel (a) are R; (f) =0.3 and A = 2nx10 (giving a periodicity of approximately 10%). The OAE and
stimulus are related in the frequency domain by: Pgepo (f) = Pssimunus () T (f YR (f). The ear canal
pressure is the sum of the stimulus and echo components. The stimulus component, panel (b), is defined as
the microphone response which would have been measured were the cochlea completely non-reflecting.
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authors (e.g., Kemp, 1980; Strube, 1989; Shera and Zweig, 1993a; Zweig and Shera,
1995). A further point to note is that the reflectance only gives a complete characterisation
of the input-output relationship for a linear system. However, it may be usefully extended
to give a partial characterisation of nonlinear systems (see section 4.11). More realistic
phenomenological and physiological models are discussed in part II of this thesis.

For the idealised ear in fig. 2.4 panel (a), the SFOAE magnitude spectrum (panel f)
shows a broad band characteristic which arises from the middle ear transmission
coefficient, whilst the SFOAE phase spectrum (panel g) shows the logarithmic variation
which arises from the cochlear reflectance. The ear canal magnitude and phase spectra
(panels i and j) show the ripple pattern with a ripple spacing proportional to frequency.

In the time domain, panel (e) (which corresponds to an idealised TEOAE), different
frequency components have different delays. As before, the delay of a particular
frequency component can be quantified by the group delay, 7p (f), defined as the slope of
the phase spectrum:

1d6, A [2.6]

where 7gp is in seconds, # is in radians, and f'is the stimulus frequency in hertz.
Physically, the group delay of a system gives a measure of the delay between energy being
delivered to the system and energy appearing at the output. This is best understood by
considering the input as a tone burst signal described by a sinusoidal carrier signal of
frequency, f, multiplied by a pulse shaped envelope. The output of the system is then also
a tone burst signal of carrier frequency, f, but whose envelope is delayed by 7;p (f) with
respect to the input envelope®.

Equation [2.6] shows that the group delay of the idealised SFOAE is inversely
proportional to the frequency. The effect of this in the time domain is seen in panel (e),
where high frequency components appear before low frequency components. The peak in
the envelope of the waveform in panel (e) appears at a time determined by the delay of the
dominant frequency component (in this case those around 1 kHz, as determined by the
middle ear transmission). The onset time of the envelope is determined by the highest
frequencies present (those around 1.5 kHz), since these have the shortest delay.

In the idealisation in fig. 2.4, where the middle ear and ear canal termination are
reflectionless, the phase of the SFOAE relates directly to the phase of the reflectance. In
reality, however, both the ear canal termination and the middle ear will be significantly

reflecting. A complete analysis of this more complex case is given by Shera and Zweig

® In general, the shape of the output envelope differs from that of the input.
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(1993a) and reviewed in part II. The intermediate case in which the ear canal termination
is reflecting, but the middle ear is not, is shown in fig. 2.5. The purpose of this is to
illustrate how multiple reflections manifest themselves in some of the signal
representations that have been used to characterise SFOAEs. Because of dispersion, the
presence of multiple discrete reflection components in the OAE signal is not immediately
obvious in the time domain (panel e). However, compared to the single reflection case,
fig. 2.4(e), it can be seen that the OAE waveform is distorted, and decays more slowly.
Also, multiple reflections introduce ripples into the OAE magnitude and phase spectra (fig.
2.5 fand g). Apart from the middle ear transmission coefficient, the relationship between
the idealised OAE and the stimulus given in equation [2.7] is 1dentical to that for the

multiple reflection case in equation [2.4].

P T*R(l+r)

P _ % Stimulus

= T?RA+rT*R + (T R)* +... (reverse
OAE 1_rT2R ( ( ) ( )

=P

Stimulus

[2.7]

P rT*RA+rT*R+(@T*R)* +... (forward)

Stimulus

In summary, for both of these two idealised models of the ear, a ripple pattern arises
in the magnitude spectrum of the ear canal pressure signal. This arises from the delay
between the OAE and the evoking stimulus which is determined by the phase spectrum of
the idealised cochlear reflectance. There is no ripple pattern in the magnitude of the
reflectance, which has here been assumed to be independent of frequency. In the following

sections, the similarities between these idealised results and actual experimental data will

be discussed.
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Fig 2.5. OAE:s in an idealised ear including multiple reflections. Panel (a) shows a highly idealised ear
o f=1 f=4

canal, middle ear and cochlea. The ear canal is closed at its left-hand end with a reflecting termination. The
idealised middle ear is perfectly non-reflecting, and has a broad band transmission coefficient, characterised
by the attenuation function, 7 (f). This applies to both left and right travelling signals, giving rise to the
magnitude spectrum shown in panel (f). Phase changes introduced by the middle ear are neglected. The
idealised cochlea has a highly simplified reflectance, R (f), whose magnitude is constant, and whose phase
varies logarithmically with frequency. The parameters in panel (a) are R; (f) = 0.3 and A = 2nx10 (giving
a periodicity of approximately 10%). The OAE and stimulus are related in the frequency domain by:

Poar () = Psimutus () T R(D L1+ (N L1 =r (N TUPR).
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2.7 Experimental Measurements of the Cochlear Reflectance

In the previous section, an idealised phenomenological model of OAEs was
described which showed how the periodic ripple pattern that can be seen in the ear canal
pressure might be explained by the form of the phase of the cochlear reflectance. This
explanation was first put forward by Kemp (1978, 1980). However, it is conceivable that
the ripples could arise from a periodic variation in the strength of the cochlear amplifier
with position along the BM (e.g., Manley, 1983). In contrast to the idealised results
presented above, this would manifest itself as spectral periodicity in the amplitude of the
cochlear reflectance. Shera and Zweig (1993a) investigated the form of the amplitude and
phase of the cochlear reflectance using SFOAEs. They made detailed measurements of the
SFOAE signal characteristics and compared these with predictions from a model that
included the characteristics of the OAE probe, the ear canal, the middle ear and the
cochlear reflectance. Their results confirmed Kemp’s hypothesis that the ripple pattern
arises from the variation in the phase of the cochlear reflectance. They also showed that
the magnitude of the cochlear reflectance varies relatively slowly with frequency, showing
none of the spectral periodicity seen in measurements of the ear canal pressure. Thus to a
first approximation these experimental results agree with those from the idealised models
presented earlier.

The ways in which measured SFOAEs depart from the idealisation are also worth
noting. Three main ways can be identified (e.g., Shera and Zweig, 1993a). Firstly, they
are nonlinear, except perhaps at very low stimulus levels (section 3.5). Secondly, the
cochlear reflectance is not perfectly constant, but instead shows a slow, random fluctuation
with frequency. Thirdly, the middle ear is far from reflectionless, leading to a more

complicated series of multiple reflections than that seen in fig. 2.5. This is discussed

further in part II.
2.8 Alternative Definitions of SFOAESs

Confusingly, in the literature, the term ‘SFOAE spectrum’ does not have a consistent
meaning. In some papers (e.g., Talmadge er al., 1998), it means the spectrum of the total
ear canal pressure response (i.e., stimulus signal plus the echo-like component), which then
shows a strong pattern of ripples in its magnitude. This corresponds to panels (i) and (j) in
figs. 2.4 and 2.5. Elsewhere, however, the term ‘SFOAE’ is used to mean the spectrum of
the echo-like component alone, which does not necessarily show the same regular pattern

of ripples in its magnitude (e.g., Kemp and Chum, 1980a). This corresponds to panels (f)
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and (g) in figs. 2.4 and 2.5. In this thesis, the term ‘SFOAE’ refers to the echo-like
component only, whilst the term ‘ear canal pressure spectrum’ is used to refer to the total
spectrum recorded by the microphone. Thus the ear canal pressure spectrum is the

(complex) sum of the stimulus component and the SFOAE component.

2.9 Measurement Methods for SFOAEs

In the idealised spectra shown in figs. 2.4(i) and 2.5(i), the ear canal pressure signal
can be easily split into the stimulus and SFOAE components, because the stimulus
component is a known signal (in this case entirely uniform). The situation is less simple in
the case of real OAEs. Two issues are addressed in this section. Firstly how to define the
stimulus component conceptually and secondly how to measure it.

Recall that in fig. 2.5(a) the stimulus component was defined as the acoustic pressure
due to the initial forward going wave, and the OAE component was then defined simply
the remainder of the ear canal signal. Because the idealised middle ear was non-reflecting,
this was a convenient definition, since the resulting OAE component originated entirely in
the cochlea. However, in reality, the middle ear is reflecting. This means that multiple
reflections will occur in the ear canal, whether or not the cochlea has a non-zero
reflectance. Therefore, it is useful to modify the definition of the stimulus component from
that used previously, such that it excludes signals originating from backward TW in the
cochlea, but includes reflections from the eardrum’. The stimulus component is therefore
redefined as the pressure signal that would have arisen had the cochlea been entirely non-
reflecting®.

Using this new definition, the typical characteristics of the stimulus component will
now be considered. Assuming the eardrum is approximately 10 mm from the loudspeaker,
the forward going wave from the loudspeaker will be partially reflected after about
0.03 ms. Thus, on striking the eardrum, the initially forward going wave splits into two

components. The first is a transmitted wave which goes on to enter the cochlea’ where it

7 These reflections are dependent on the properties of the passive (or reflectionless) cochlea, as these affect
the eardrum impedance.

8 The question of what is meant by a ‘non-reflecting’ or ‘reflectionless’ cochlea will be addressed more fully
in part II of this thesis. Here it is simply noted reflectionless means that a forward cochlear TW propagating
along the BM does not give rise to a backward TW.

? For simplicity in this explanation, the ossicular chain has been treated as rigid linkages. In reality there
will be reflections not only from the eardrum, but also from other points in the ossicular chain. However,

since these are separated by extremely short delays, they may be treated as a single reflection.
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generates a forward TW on the BM which in turn elicits an OAE. The second is a
reflected wave which then reverberates in the ear canal, until it decays away typically over
about 3 ms. Each time a forward waves strikes the eardrum it further splits into two
components. The stimulus component is equal to the initial forward wave, plus the first
reflection from the eardrum, plus subsequent reflections between eardrum and ear canal
termination. In fact, because of the short delays between these reflections, all these
components add up constructively for the frequencies that are of interest to us here (i.e.,
less than 4 kHz), such that the stimulus wave is larger than the initial forward going wave
component. In addition to the effect of reflections within the ear canal, the transient
response of the loudspeaker also influences the stimulus component for any given voltage
input signal. Thus overall, the stimulus component depends on the dynamic properties of
the loudspeaker, the ear canal termination, the ear canal itself, the middle ear and the
passive (or reflectionless) cochlea. Since many of these properties are unknown, it is
impossible to calculate the stimulus component just from knowledge of the voltage input to
the loudspeaker. Practical methods of estimating the stimulus component are now
discussed.

First consider the measurement of TEOAEs. For an ideal voltage click, the stimulus
component rings on for around 3 ms, obscuring any early TEOAE components. However,
because the OAE delays are typically much longer than the decay time for the stimulus (it
is common for TEOAES to remain measurable up to and beyond 25 ms (Probst et al.,
1991), the majority of the TEOAE remains unobscured. A common method of separating
TEOAES from the stimulus is simply to discard the first few milliseconds of the ear canal
pressure signal.

This same situation can also be considered in frequency domain (cf., fig. 2.5(e)-(g)).
For a pure tone input, the effect of the reverberation is to cause an amplitude and phase
shift of the stimulus pressure component relative to the voltage input. However, this shift
varies only very slowly with frequency, because of the very short time delays. For
example, the ripple pattern associated with the ear canal reverberation discussed above
would have a peak-to-peak frequency spacing of 1/0.06 ms = 17 kHz. This compares with
a ripple spacing seen for SFOAESs of around 0.06 kHz at 1 kHz. Thus, in the frequency
domain, the ear canal ripple is not superimposed onto a perfectly uniform background line,
as it was in the idealised case in fig. 2.5(i). Instead the background slowly fluctuates with
frequency, due to the frequency response of the passive system. However, because this
fluctuation in the frequency domain is relatively slow, the phasor diagram in fig. 2.2
showing a rapidly rotating OAE component plus a slowly varying stimulus component is

still a useful one. One method of estimating the SFOAE component uses the fact that the
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spectral ripples due to the OAE component have a much shorter frequency interval than the
slow variation due to the stimulus. A spectral smoothing technique which removes the
ripples, leaving the underlying stimulus component is reported by Shera and Zweig
(1993a). Having obtained the stimulus component, it is then subtracted from the ear canal
pressure signal to give the OAE component. (Note that all three are complex.) In fact,
smoothing in the frequency domain is equivalent to windowing (or truncation) in the time
domain. Thus this technique is equivalent to inverse Fourier transforming the ear canal
pressure, rejecting the early part (as for TEOAESs above), and then Fourier transforming
back again. It should be borne in mind that the SFOAE is not obtained from a linear
system and therefore the inverse Fourier transform of the SFOAE is not the same as the
TEOAE (it may not even be perfectly causal). The optimum truncation may therefore be
different for the two classes of OAE.

Two other practical methods of obtaining the stimulus component are the self-
suppression and two-tone suppression techniques. These make use of nonlinear acoustic
suppression, where it is assumed that measured suppressed cochlear responses are
approximately equal to passive cochlear responses. The self-suppression method makes
use of the compressive nonlinearity. Here an estimate of the slowly varying stimulus
spectrum is obtained by measuring the (complex) ear canal pressure at a high stimulus
level (say 70 dB SPL), where the ripple pattern is relatively weak (Kemp and Chum,
1980a). The two-tone suppression method estimates the slowly varying stimulus spectrum
by introducing a high level suppressor tone to suppress the ripple (Kemp and Brown, 1983;
Kemp et al., 1990). Having obtained an estimate of the (complex) stimulus spectrum
alone, it is then subtracted from the (complex) unsuppressed ear canal spectrum, yielding
the SFOAE component alone. Note that analogous methods relying on compressive
nonlinearity are also used for the measurement of TEOAESs to remove so called click
artefacts (Probst ez al., 1991; Molenaar et al., 2000).

In general, these three methods appear to yield very similar results, indicating that
the spectrally smoothed ear canal pressure is approximately linear' and therefore
unaffected by level changes or suppressor tones (Shera and Zweig, 1993a). The
correspondence of the spectral smoothing technique and the acoustic suppression technique
is consistent with theoretical predictions, discussed in part II, that the passive component is
essentially both linear and of short latency, while the active component is both nonlinear

and predominantly of long latency. In this project the two-tone suppression method has

19 A theoretical analysis of the validity of this approximation and of the differences between these three

methods is given by Talmadge et al. (2000).
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been adopted.

Note that both the SFOAE component and the stimulus component are affected by
the acoustic impedance of the OAE probe that that is sealed into the ear canal. This is
because the reflections (whether passive or active) reverberate in the ear canal, which is
closed at its outer end by the OAE probe. It is possible to measure the impedance of the
probe using hard walled cavities, and therefore to obtain a (level dependent) measure of the
impedance looking into the ear canal. This is then independent of the probe characteristics
(Jurzita and Hemmert, 1992). An alternative approach to eliminating the effect of the
probe characteristics in which the probe reflectance is measured is reported by Keefe
(1997). However, provided that the source impedance of the loudspeaker is high, the

effect of the probe is only secondary and there is little advantage in using these methods in

this thesis.
2.10 Experimental Data on the Group Delay of SFOAEs

In the idealised ear in figs 2.4 and 2.5 it was shown that the logarithmic variation of
phase gave rise to a 1/ f variation of group delay. This is illustrated in figs. 2.6 a and b
(ignoring the ripples seen in fig 2.6b). An approximate 1/ f variation has been found in
experimental measurements of group delay. Averaging across seven ears, Kemp and
Chum (1980a) found the group delay varied with frequency from about 18 ms at 0.6 kHz
to about 10 ms at 1.4 kHz. Similar results were reported by Wilson (1980a) who used tone
burst stimuli of 5 or 8 cycles, and estimated the latency of the envelope in the time domain.

The ripples in the group delay of the idealised data fig. 2.6(b) illustrate one of the
properties of the group delay of a signal. Recall that the group delay can be interpreted as
the delay of the envelope of a tone burst response to tone burst excitation. This
interpretation must be applied carefully in cases where multiple reflections are present,
such as those illustrated in figs 2.3 and 2.5. In these cases, a tone burst input would give
rise to multiple tone bursts in the response, each with its own delay. However, the
calculation of group delay yields only a single value of delay for any given frequency. To
interpret the group delay correctly in these cases, we must consider the excitation to be a
very long tone burst, such that its envelope is much longer than the decay time for the train
of multiple reflection components. Then in the response, these multiple components
interfere with each other, and form one single tone burst whose envelope latency can be
determined. The result of this is that the interference between components causes ripples
in the group delay as seen in fig. 2.6. Note, however, that when averaged over frequency

such that the ripples disappear, the group delay gives the delay of the first (and strongest)
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component, rather than a weighted average of the delays of all the components. As is
discussed later, this does not always give a measure of delay which is physically useful.
The group delays reported in the literature are commonly estimated by fitting a straight line
to the phase curve over a significant frequency interval, thus effectively performing a form
of frequency averaging which will remove any ripples. This also avoids the problem that
any point estimate of the slope would be highly sensitive to the signal to noise ratio. Kemp
and Chum (1980a) estimated the group delay by averaging over a frequency region that
gave a monotonic drop in phase of about half a cycle. Kemp and Brown (1983) used a

frequency interval of about half an octave.
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Fig 2.6. Signal processing of the idealised OAE pressure component shown in fig 1.4. Panel (a) shows

the phase of the frequency spectrum of the OAE component, given by 6, (f) = —A log. (f/ f.,). Panel (b)
shows the group delay, defined by 7gp (f) = —( '/ 1) d 6, (f) / df . This approximates to A /(2 % f), shown
by the dashed line. Panel (c) shows the real part of the frequency spectrum, with two adjacent spectral peaks
marked by f; and f,. Panel (d) shows the imaginary part of the frequency spectrum. Panels (e), (g) and (h)
show the functions in (a), (c) and (d) evaluated against the logarithmic frequency variable,

Noe: =10go( £/ 1 kHz ). Panel (f) shows —( Y d o ( Hoer ) | d e Which equals the group cycle delay,
multiplied by log. (2). This evaluates to: log. (2) X @sep ( Mo ) = A log, (2) / (2 7) = 6.9 cycles/octave
(shown by the dashed line). Panel (i) shows the magnitude of the @-spectrum, defined as the inverse Fourier
transform of Poag ( 7).
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2.11 Spectral Periodicity of SFOAEs

Rather than measure the group delay, many researchers have characterised the ripple
pattern due to the SFOAE in terms of the ripple spacing in the frequency domain. The
“ripple frequency interval”, Af, is defined simply as:

Af =f,~ /i [2.8]
where f1 and f, are the frequencies of adjacent ripple peaks, as shown in fig. 2.6(c) for the
idealised ear'".

As discussed in section 2.5, the ripple spacing is, to a first approximation,
proportional to the frequency (Kemp and Chum, 1980a; Wilson, 1980a; Zwicker and
Schloth, 1984; Dallmayr, 1987; Zweig and Shera, 1995). Consequently, it is common to
quantify the ripple spacing for a pair of ripple peaks using a quantity called here the
“single-ripple spectral periodicity”, ¥ , defined as the ripple frequency interval divided by

the geometric mean frequency, fgmr, of the two peaks:

wo N _ L], 2]

Jour oSy

(e.g., Zweig and Shera, 1995). SFOAE measurements show that the spectral periodicity,

¥, is roughly constant over a frequency range from 0.5 to 4 kHz, and is equal to about
1/15, or 7% (Zwicker and Schloth, 1984; Dallmayr, 1987; Zweig and Shera, 1995). Note
that the invariance of ¥ is only a first approximation — several authors report that ¥
reduces somewhat with increasing frequency (e.g., Zweig and Shera, 1995; p. 2036).

It is shown in the following analysis that a constant single-ripple spectral periodicity
corresponds to equal ripple spacing on a logarithmic frequency scale. Two logarithmic
scales are used in this thesis. The first is the octave scale, denoted 7o, which is
convenient due its familiarity, and the second is the natural logarithm of frequency,

denoted 77, which has theoretical advantages that will become apparent later. These are

defined by:
=] /
nOct (f) ng (f fRef) [210]
fRef = 1 kHZ
and
n (f)=-log.(f/ fo) [2.11]

"' The ripple spacing in the real part of the OAE spectrum is the same as that in the ear canal pressure

magnitude.
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where (following Zweig and Shera, 1995) f is defined as the characteristic frequency at
the very base of the cochlea. The minus sign in [2.11] is included for compatability with
Zweig and Shera (1995), and leads to simplifications later on.

Given the two frequencies, f and f , used to define the periodicity, we can define
the “ripple natural logarithmic frequency interval”, An, as 7(f1) — 7(f2). Then

manipulating equations [2.9] and [2.11], we obtain the following relationship between Az

and the periodicity, ¥:

An = 210ge(‘{’/2+\/1+‘P2 /4)

or [2.12]
An=%¥ for ¥ <<l
The approximation in [2.12] is a very close one for typical W values, which are around

1/15. The corresponding relationship for the “ripple octave interval”, Ang,, defined as
Noc: (f2) — Noct (f1) 18:

Ay, =—2T - 1.443%  for ¥<<I [2.13]
log, (2)

Thus, [2.12] and [2.13] show that a constant periodicity implies a constant ripple spacing
on a logarithmic frequency scale. For the idealised OAE, fig 2.6 shows how transforming
to an octave scale, 77 o , leads to a linear phase curve in panel (e), and equal ripple spacing
in the real and imaginary parts of the Fourier transform of the OAE in panels (g) and (h).
The linear phase curve, in fig. 2.6(¢), suggests a second way of characterising the
ripple periodicity. Consider the quantity which we will call the “group cycle delay”,

denoted @scp ( 17), and which is defined in a similar way to the group delay in equation

[2.6], but now using the logarithmic frequency. Thus we define:

__1do__ 1dodf ., 1do_
Poco (1) = 27dn 27 df dp / 270 df Teon (1) [2.14]
O =arg(Py,;)

There is a useful physical interpretation of @scp which follows from [2.14], and which has
been reported by several authors (Wilson, 1980a; Kemp, 1986; Zweig and Shera, 1995).
Recall that the ordinary group delay indicates the delay in units of time of the envelope of
a tone burst signal. Multiplying the ordinary group delay of the tone burst by its carrier
frequency, as in [2.14], converts the delay in units of time to a delay measured as a number
of cycles of the carrier signal. Note that this interpretation holds for any arbitrary
frequency response, not just for the OAE signals analysed here. However, for OAE
signals, @dscp is roughly constant over frequency. This follows from the definition of Az in
[2.12] , which implies that:
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dscp=1/An=1/¥ [2.15]
for an idealised cochlear reflectance. For measured OAE signals, the fact that ¥, and
therefore @gcp, are found to be roughly independent of frequency means that the delay
between the peaks in the envelopes of the input and output tone bursts is roughly a constant
number of carrier wave cycles. The number of cycles equals the reciprocal of the
periodicity, and is thus typically between 12 and 15 cycles (Wilson, 1980a; Kemp, 1986;
Zweig and Shera, 1995).

Fig 2.6(f) shows the gradient of the phase curve on the 7o, scale for the idealised
ear, given in units of cycles per octave. This is proportional to gscp (7). The ripples seen
in this curve arise from the presence of multiple reflections. A single reflection would give
the constant value shown by the dashed line. Note that in this idealisation, we have
defined 0= 6, = —A log. (f/ frer ), Which gives dgcp =A /27 . The actual value in the
fig. 2.6 is 10 cycles, corresponding to a periodicity of 0.1, or about 6.93 cycles per octave.
(This periodicity is somewhat higher than the value of 0.07 commonly found in the
literature.)

A third method that has been used to characterise periodicity is to apply the Fourier
transform to the spectrum of the SFOAE, after it has been transformed onto the logarithmic
frequency axis as in figs. 2.6 (e)-(h) (e.g., Zweig and Shera, 1995; Lutman and Deeks;
1999). A simple justification for this is that this transformed SFOAE spectrum has a
roughly periodic ripple pattern, which will show up as lines in the Fourier transform. A
better physical interpretation of this can be gained by noting that the spectrum of the
idealised OAE in the logarithmic frequency domain shown in figs. 2.6 (g) and (h)
resembles the spectrum in the ordinary frequency domain of the echo in the multiple
reflection case shown in figs 2.3 (f) and (g). Now taking the inverse Fourier transform of
this latter spectrum yields the time domain signal in fig. 2.3 (). Similarly, taking the
inverse Fourier transform of figs 2.5 (g) and (h) would yield a series of lines in the
“1/ no-domain”. A closely related function is illustrated in fig. 2.5 (i), which represents
the signal in the “1/ 7-domain” rather than the “1/ 77o.;-domain”. This figure was
obtained by first replotting the spectrum in figs 2.5 (g) and (h) against the # variable, and

then taking the forward Fourier transform'%. Following Zweig and Shera (1995), the

2 Tt is a general result that, for any arbitrary signal, x (z), the forward Fourier transform of x (¢) yields the
same result as the inverse Fourier transform of x (—¢) (where both transforms are taken w.r.t. the ¢ variable).
It follows from the definitions of 7., and 7, that the inverse transform from the 7)., domain is simply a

scaled version of the forward transform from the 7 domain.
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1/ n-domain will henceforth be referred to as the ¢-domain. By analogy with fig. 2.3 (e),
the value of ¢for a given line in the ¢-domain indicates the delay of that OAE component,
but measured in units of cycles rather than time. The dominant line in the ¢-domain lies at
the @gecp (wWhich is 1/ ), which is 10 cycles in fig. 2.5. The ¢-domain then represents the
OAE response to a click in which the 1/ f— dispersion has been “undone” by an
appropriate transformation, such that the frequency components all coincide to form a
single impulse (or a series of impulses in the case of multiple reflections).

To summarise, the SFOAE periodicity arises from the time delay between the
stimulus signal and the OAE signal. For the idealised SFOAE considered here, three ways
of characterising the SFOAE periodicity have been introduced: the single-ripple
periodicity, ¥; the group cycle delay, ¢scp; and the peak in the ¢-domain. The
approximate independence of frequency of the periodicity corresponds to a dispersive
group delay, 7p, which shows a 1/f frequency dependence. This implies a constant
group cycle delay, @dgep, equal to 1/, Transforming the SFOAE spectrum onto a
logarithmic frequency scale, 77, linearises the phase relationship, thereby “undoing” the
effect of the dispersion. The group cycle delay can also be estimated from the inverse
Fourier transform of the SFOAE spectrum from the #-domain to the ¢-domain. This also
reveals the presence of multiple reflection components in the SFOAE. Note that these
three characterisations of periodicity are only exactly equivalent for the idealised SFOAESs
generated in figs. 2.4 and 2.5. In real SFOAESs they may still be closely related to each
other, but cannot be used interchangeably.

A final point to note is that instead of characterising the SFOAE ripple pattern using
a logarithmic frequency transformation, a measure based on critical bandwidth is
sometimes reported (e.g., Zwicker and Schloth, 1987; Dallmayr, 1987; Zwicker, 1988).
Such a measure typically gives the interpeak frequency spacing as 0.4 Bark. This measure
is based on Zwicker and Schloth’s observation (1987), that the shape of the graph of ripple
frequency interval, A f, against centre frequency, fgumr, more closely follows a curve of
critical band width against frequency than a straight line. This measure has not been
adopted for this project, since the stimulus frequencies of interest are all above 1 kHz

where the Bark scale differs little from a purely logarithmic frequency scale.
2.12 Practical Methods of Quantifying the SFOAE Periodicity

In this project, it is necessary to obtain a measure of the average periodicity seen in

the SFOAE signal over a certain stimulus frequency range. Measured SFOAE signals
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differ substantially from the idealised OAE signals shown in fig. 2.6, making estimates of
the SFOAE more problematic. Two differences are important here. Firstly, the periodicity
varies systematically with frequency (Zweig and Shera, 1995). Secondly, the ripple
pattern is much less regular than the virtually pure sinusoid seen in the idealisation. This
irregularity often leads to frequency regions where the ripple pattern disappears below the
measurement noise floor. Thus rather than the SFOAE showing one clear periodicity, it
often appears that a distribution of periodicities is present in the signal. To address this
problem, more realistic phenomenological models of the SFOAE signal will be discussed
more fully in parts II and III. In this section, some of the different methods for estimating
the periodicity that have been reported in the literature are reviewed.

In the literature, several different methods have been used to quantify the periodicity
of a measured SFOAE frequency spectrum. A common method is to directly measure the
frequency intervals between adjacent peaks in the ripples pattern seen in the magnitude of
the ear canal pressure frequency spectrum. If the peak-to-peak interval, Af, is plotted
against the peak-to-peak centre frequency then the points lie roughly on a straight line
whose gradient gives a direct measure of the average single-ripple periodicity over the
measured frequency range (Dallmayr, 1987; Zwicker and Schloth, 1987; Zwicker, 1990;
Zwicker and Peisl, 1990; Lonsbury-Martin et al., 1990). A problem with this method is
that the peaks in the spectrum are not always clear. Therefore, some form of peak
identification algorithm must be used which ignores very small ripples which may be due
to noise.

A second method of quantifying the periodicity is to measure the slope of the phase
of the SFOAE frequency spectrum. This gives a measure of the group delay (in units of
time) of the SFOAE (Kemp and Chum, 1980a; Wilson, 1980a; Kemp and Brown, 1983).
For the idealised system, the group delay, 7sp (f) , and the single-ripple periodicity, ‘¥, are
related via equations [2.14] and [2.15]. Thus, fitting a straight line to a plot of 7;p against
1/f will yield a measure of periodicity (cf., fig. 2.6b). A related method of obtaining a
periodicity value is to plot the phase of the SFOAE frequency spectrum against the
logarithm of stimulus frequency, 77, in order to straighten out the phase curve (cf., fig.
2.6f). The gradient of the best-fit straight line then directly yields a measure of the group
cycle delay, dscp ( 77), and therefore, from [2.15], a measure of periodicity. Wilson
(1980a) reported a group cycle delay equal to about 15 cycles, over a frequency range of
0.5 to 5 kHz. Kemp and Brown (1983) demonstrated a group delay in humans varying
with stimulus level from about 18 cycles down to about 8 cycles for a stimulus range from

10 to 70 dB SPL.
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One problem with the group delay (or group cycle delay) method (at least for the
purposes of this project) is that the phase of the SFOAE becomes hard to measure when the
magnitude is small. A second problem is that any averaging over frequency takes no
account of the SFOAE magnitude. Thus contributions from regions where the SFOAE is
weak (and therefore where the group delay is unreliable) receive the same weight as
contributions from regions where the SFOAE is strong. A third and more serious problem
is that, unlike the idealised SFOAE:s in fig 2.6g, real SFOAE signals do not resemble a sine
wave, but instead appear as a “bandpass” signa113 . This means that a number of
components of different periodicity are present in a single SFOAE spectrum. In the time
domain, this can be interpreted as multiple bursts of OAEs with the same carrier frequency,
but with different envelope delays'®. Since the group delay can only yield one overall
envelope delay per carrier frequency, some sort of averaging must occur. As a
consequence, it turns out that the way in which the group delay quantifies the periodicity
does not correspond very well to the physical quantities in Shera and Zweig’s theory. This
will be discussed more fully later

A third method of characterising the periodicity is reported by Zweig and Shera
(1995). Here, the complex SFOAE pressure is first plotted as a function of the logarithm
of frequency, #, such that the ripple pattern appears roughly periodic (for constant
periodicity). The resulting waveform is then (either forward or inverse) Fourier
transformed and the location of the peak of the magnitude of this transform is used as a
measure of the average periodicity (cf., fig. 2.6(1)). A similar method was used by Lutman
and Deeks (1999) who plotted the amplitude of the ear canal pressure (rather than the
complex SFOAE) on a log frequency scale before Fourier transforming. (A related method
of processing TEOAE spectra is reported by Wit et al. (1994), but they omit the
logarithmic transformation thus leaving the effect of dispersion unchanged from that seen
in the time domain.) These methods have the practical advantage that areas where the
SFOAE is weak (and less reliable) contribute less strongly to the average periodicity.
More importantly, Zweig and Shera’s method yields a periodicity measure which can be
related quantitatively to other parameters of interest via their own theory of SFOAE
generation. For this reason, a periodicity measure based on this approach has been

developed for this project. These methods are discussed further in part II.

13 Bandpass here means that the SFOAE plotted against the 1) variable resembles the more familiar bandpass

time series, obtained by passing white noise through a bandpass filter.
4 Consider, for example, the result of adding two idealised OAE signals, each resembling that in fig 2.4, but

each with a slightly different value of A. See also the discussion in section 2.10.
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2.13 Linearity and Causality of SFOAE Signals

The idealised OAEs in figs. 2.3, 2.4 and 2.6 were generated from a linear, causal
system. The question of whether real measured SFOAEs show either of these properties
was addressed by Shera and Zweig (1993a). They found that the amplitude of SFOAEs
grew linearly with stimulus levels for levels between 0 dB SL and 5 dB SL. This suggests
that a low level linear regime exists for SFOAEs which is important since it allows results
from a linear theory to be applied. As already discussed, it is known that at higher levels
SFOAES are far from linear. Instead they show a compressive nonlinearity which greatly
complicates both the theory and any signal processing.

Shera and Zweig (1993a) also found that the SFOAEs in the linear regime were
consistent with the response of a causal system, indicating that the OAE response always
occurs after the evoking stimulus. This result contradicted earlier results published by
Zwicker and Schloth (1984) which had shown SFOAE signal characteristics which where
inconsistent with those of a causal system. This had prompted speculation that, for a pure
tone input, the brain might anticipate the input signal, and modify the cochlea'® (Shera and
Zweig, 1993a) such that the SFOAE response appeared acausal.

For any given frequency response function, a simple way to test for causality (for a
linear system) is to inverse Fourier transform the signal to give the time domain impulse
response, and then to check that this response is approximately zero for all negative times.
An equivalent way of doing this entirely within the frequency domain is to use the Hilbert
transform. It is useful to consider this method here as it reveals an important property of
SFOAES that will be used later on in parts II and III. This method is best understood by
first noting that any time series x(#), can be split into the sum of even and odd
components, xg () and xo (7 ):

x(@)=x, () +x,(@)

xp (1) =L x(@) + L x(~1) [2.16]

X, () =5 x() -5 x(-1)

This is useful since the Fourier transform of an even signal is purely real whilst that of an
odd function is purely imaginary. Thus the real and imaginary parts of the Fourier

transform of x () are given by the Fourier transform of the even and odd components in

'3 Such a system would not be truly acausal in that the evoking stimulus must still preceed any response.
However, the system might quickly adapt nonlinearly to a prolonged stimulus in such a way that, after having

adapted, the system appeared to behave linearly but acausally. In Shera and Zweig’s data (1993a), no

acausality was found.

38



[2.16]. Now for a causal system it can easily be shown that the odd and even part are not
independent, but are related by:
xo(t) = xg(¢)sgn(z)
where
sgn(t) = -1 fort <0 [2.17]
+1 fortz20
xp(t) = %x(t) fort >0
This means that the real and imaginary parts of the Fourier transform are also not
independent, but are related via a convolution with the Fourier transform of signum
function, sgn (¢). This latter operation can be shown to be identical to the Hilbert
transform (Randall, 1987). Thus:
Xe (f) =Re{F{x(®}} = F{xp 1)}
Xy (f) = Im{F{x(}}= Flxo 0}/
= Xge (/) ® Fisgn(}/i
= —Hilb{X g (f)}

where Xg, and Xj,, denote the real and imaginary parts of the Fourier transform of x (1),

[2.18]

F{ } denotes the Fourier transform; ® denotes convolution and Hilb { } denotes the
Hilbert transform. It can be shown that the Hilbert transform operation acts as an all-pass
filter which delays the output signal by 90° relative to the input. For example, the Hilbert
transform of a cosine wave is a sine wave of the same frequency. This behaviour can be
seen in fig. 2.6(c) and (d) where the imaginary part lags the real part by 90°. Shera and
Zweig (1993a) showed that, for their measurements, the real and imaginary parts did
indeed form a Hilbert transform pair, implying that the system relating the SFOAE to the
evoking stimulus is causal. In fact they showed that the system was not only causal, but
also minimum phase, which is characteristic that is commonly found in physical systems.
For a causal minimum phase system, not only the real and imaginary parts, but also the

magnitude and phase of the transfer function are related via the Hilbert transform (Randall,

1987).
2.14 Relationships between SFOAEs and other Phenomena in Hearing

In the previous sections, some of the characteristics of measured SFOAE signals
were discussed. Some of these characteristics are also seen in other phenomena in hearing.
The spectral periodicity seen in SFOAES is also seen in the spectra of click- and tone burst

evoked TEOAES, in the fine-structure of DPOAES, in the distribution of the frequency
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spacing between SOAES, and in the audiometric microstructure (Elliot, 1958; Kemp, 1979;
Probst et al., 1986; Schloth, 1983; Zwicker and Schloth, 1984; Dallmayr, 1987; He and
Schmiedt, 1996, 1997; Kapadia and Lutman, 1999; Lutman and Deeks; 1999). Since all
these phenomena appear to be related, the development of a theory of SFOAE generation
must form part of a more general theory of cochlear mechanics which accounts for all
these phenomena. Furthermore, effects that show up in SFOAE measurements may also
appear in these related phenomena. Thus in the following sections, the discussion will not
be limited to SFOAEs.

SFOAEs also share several general characteristics with the other classes of OAE,
with certain psychoacoustic phenomena, and with cochlear mechanical responses measured
in animals. These characteristics include saturation at high levels, two-tone suppression
effects, and vulnerability to ototoxic drugs such as aspirin (e.g., Long and Tubis, 1988;
Karlsson et al., 1991; and reviewed in Probst et al., 1991). As with other OAEs, SFOAEs
are strongly related to hearing threshold levels, and are not generally measurable in
subjects with a hearing loss exceeding about 30 dB. These phenomena are relevant since

they involve changes in TW shape.
2.15 Effect of Stimulus Level on OAEs (Self-suppression)

Several researchers have investigated the effect on SFOAEs and TEOAEs of
increasing stimulus level. For pure tones below about 5 dB above the threshold of hearing,
SFOAESs grow approximately linearly with stimulus level (Shera and Zweig, 1993a).
However, as the stimulus level is increased further, they show compressive nonlinearity
(Kemp and Chum, 1980a; Zwicker and Schloth, 1984; Zwicker, 1990; Dallmayr; 1987).
Compressive nonlinearity is of particular importance to this thesis, since both cochlear
models (e.g., Kanis and de Boer, 1993b) and direct measurements (e.g., Rhode, 1971)
indicate that, as the stimulus level increases, the peak of the TW envelope becomes
broader, and the TW wavelength'® in the peak region increases. According to Shera and

Zweig’s theory, these changes should be accompanied by an increase in spectral

' From theoretical considerations of their cochlear model, which exhibits the minimum phase property,

Zweig and Shera (1995) demonstrate that the TW wavelength and the width of the envelope are not

independent.
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periodicity of SFOAEs (or equivalently, a reduction in the latency of TEOAEs)"”. In
addition, the ‘bandwidth’ of the periodicity should reduce with stimulus level (see part II).

Several authors have measured SFOAEs at different stimulus levels, without
reporting any effect of level on spectral periodicity (e.g., Kemp and Chum, 1980a; Zwicker
and Schloth, 1984; Zwicker, 1990). Dallmayr (1987, fig. 8b) explicitly stated that stimulus
level did not affect the SFOAE phase spectrum (related to the spectral periodicity). These
results suggest that the effects predicted by Shera and Zweig’s theory are either absent or
difficult to detect. In contrast, Zweig and Shera (1995, fig. 13) remark that they have
recorded changes in the spectral periodicity of SFOAEs with level which match the
predictions of their cochlear models. However, no measured data were presented and no
quantitative analysis was attempted.

Prior to the development of Shera and Zweig’s theory (1993b), Kemp and Brown
(1983) measured SFOAESs in human and gerbil ears at various stimulus levels. They
measured the group delay (i.e., the slope of the phase spectrum) and reported a reduction in
latency with increasing level, as is now predicted by Shera and Zweig’s theory. However,
no detailed investigation of the effect was performed and nor was any attempt made to
compare the results with theoretical predictions from cochlear models. A further point to
note is that the group delay method of detecting level effects is not well suited to testing
Shera and Zweig’s theory (see part II).

Wilson (1980a) measured group delays at a few frequencies using tone burst stimuli,
rather than pure tones. He also reported a reduction in group delay with increasing
stimulus level. However, quantitative results were not reported. A comprehensive
investigation of tone-burst evoked OAEs, in which latency was measured using a
correlation technique, was reported by Norton and Neely (1987). They too reported a
reduction in latency with increasing stimulus level. They interpreted their results in terms
of the speed of the TW (Neely ez al., 1988), and suggested that the latency was consistent
with measures of ABR latency made at comparable stimulus levels. This interpretation is
based on the assumption that the OAE latency depends on the TW propagation time to and
from a single place-fixed reflection site. According to Shera and Zweig’s theory, this is an
oversimplification which nevertheless leads to reasonably accurate predictions. This will

be discussed further in section 3.3.3 and in part II.

'" Recently, Talmadge ez al. (2000) have presented an analysis of Shera and Zweig’s theory based on
nonlinear cochlear models which suggests that this simple qualitative prediction cannot always be made.
This is because, in some cases, an additional effect of nonlinearity is to disrupt the simple relationship

between TW shape and SFOAE periodicity (see section 3.5 for a fuller discussion).
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Some researchers have looked for a direct relationship between the amplitude of
OAE:s and the sharpness of the auditory filter (measured psychophysically), both of which
are thought to be related to the shape of the TW. Leeuw and Dreschler (1998) found
significant correlation between these two quantities within subjects on varying the stimulus
level. Micheyl and Collet (1994) found a correlation looking across subjects at a constant
stimulus level. However these experiments examined the relationship of TW shape to
SFOAE amplitude, rather than to SFOAE periodicity, and therefore are not directly related
to the aims of this project. Avan et al. (2000) looked at differences in the periodicity of
TEOAE spectra between normally hearing adults and adults with mild noise-induced
hearing loss. It would be expected from Shera and Zweig’s theory that the latter group
would show increased periodicity due to the reduction in sharpness of the TW envelope
that accompanies cochlear hearing loss. However, in practice, the periodicity proved
difficult to measure in this group.

In summary it appears that changes in SFOAE periodicity with stimulus level
predicted by Shera and Zweig’s theory are either absent or difficult to detect with the
signal processing methods previously used. Though some experimental evidence that
supports this theoretical prediction has been reported (Wilson, 1980a; Kemp and Brown;
1983; Zweig and Shera; 1995), no systematic attempt to relate measurements and theory
has been published. Also, no attempt to measure the effect of stimulus level on the
bandwidth of the spectral periodicity, rather than the centre value of the periodicity, has

previously been reported. These are two of the effects that are investigated in this thesis.

2.16 Effect of Suppressor Tones on OAEs

As with stimulus level, the effect of introducing a suppressor tone is expected to alter
the shape of the TW (Kanis and de Boer, 1994). Shera and Zweig’s theory predicts that
these changes should be accompanied by a change in spectral periodicity of SFOAEs.

Many authors have studied the effects of suppressor tones on OAEs (e.g., Kemp and
Chum, 1980a; 1980b; Brass and Kemp, 1993; Zwicker and Wesel, 1990; Sutton, 1985;
Dallmayr; 1987; Tavartkiladze et al., 1994). However no experiments have looked for, or
reported, a change in OAE spectral periodicity with suppressor level. It should be noted
that with two tones the acoustic parameters define a four dimensional parameter space
(stimulus frequency X stimulus level X suppressor frequency X suppressor level), but only
experiments in a small subset of this space would be able to detect the predicted effect:
those where stimulus frequency and suppressor frequency are swept together in a roughly

constant ratio. Though this has been done (e.g., Kemp and Chum, 1980a) no change in
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periodicity was reported. The effect of suppressor tones on SFOAE periodicity is a further

effect that is investigated in this thesis.

2.17 Effect of Contralateral Noise, Ototoxic Drugs and Acoustic Overstimulation

on OAEs

The ingestion of ototoxic drugs, the presentation of contralateral noise, and
prolonged ipsilateral overstimulation are all thought to disturb the normal functioning of
the active processes in some way, and therefore could, according to Shera and Zweig’s
theory, be accompanied by a change in spectral periodicity of SFOAEs.

Several authors have investigated the effect of ototoxic drugs on SFOAEs and
TEOAES (e.g., Long and Tubis, 1988; Karlsson et al., 1991; Brown et al. 1993); of
contralateral acoustic stimulation on OAEs (e.g., Collet et al., 1994; Lind, 1994; and
Giraud et al., 1996); and of acoustic overstimulation on TEOAEs and SOAEs (Kemp,
1986). Whilst some clear changes in OAE characteristics have been induced, no changes

in OAE periodicity have been reported.
3. Theories of OAEs

3.1 Cochlear Mechanics

The mechanical behaviour of the cochlea is still not fully understood. The
development of theories of the cochlea has had several influences, including results from
mathematical models of cochlear mechanics; results from direct mechanical measurements
made in animal experiments; results from OAE experiments and results from
psychoacoustic experiments. Direct measurements in the cochlea are difficult because the
cochlea comprises complex and delicate structures embedded in bone, and because
representative mechanical behaviour can only be measured in a living and undamaged
cochlea. Also, the cochlear structures show a complex pattern of motion Ain three
dimensions, whilst measurements of the motion are usually limited to only a few points.
Consequently, measurements alone have so far been unable to completely elucidate the
functioning of the cochlea. However, despite these difficulties, a consensus has been
reached on the basic mechanisms of the cochlea. This is reviewed in Pickles (1988),

Patuzzi (1996) and Dallos (1996), and a brief summary is presented here.
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3.1.1 The Passive Travelling Wave

It has already been mentioned in section 1.1 that an acoustic stimulus in the ear canal
generates TWs on the BM, which propagate along the cochlea from base to apex. The
passive TW refers to the TW that results in those cases where the active processes are
absent, or where their effects are insignificant, such as at high stimulus levels.

The passive structures of the BM, when uncoiled to lie along a linear axis, can be
compared to a xylophone in that they behave as a series of beams, each with a different
natural frequency. Although in the BM the “beams” are joined together to form a single
membrane, the structural coupling between beams is thought to be very weak such that the
beams can be treated as structurally independent. They are, however, mechanically
coupled to each other by the motion of the cochlear fluid and it is this coupling that allows
passive TWs to propagate along the BM. This passive TW wave propagation involves
transfers of mechanical energy between a spatially distributed store of kinetic energy (in
this case the cochlear fluids) and a spatially distributed store of potential energy (in this
case the BM compliance). In this way it is physically similar to other mechanical wave
motions such as surface water waves (Lighthill, 1981; Patuzzi, 1996).

The passive TW motion exhibits two interesting phenomena: frequency dispersion
and spatial nonuniformity. Frequency dispersion, which results from the hydrodynamics
of the system, means that the wave speed varies with frequency. Spatial nonuniformity
means that the wave speed varies with position along the cochlea. This property, which
arises from the variation along the cochlea of the structural properties of the BM forms the
basis of passive frequency analysis performed by the cochlea. For any single frequency
stimulus, there is a point along the cochlea where the natural frequency of the BM equals
the stimulus frequency. As the TW approaches this point (known as the characteristic
place for a given stimulus frequency), its speed of propagation falls off towards zero, and
its amplitude rises to a peak. This leads to a peak in the mechanical (and consequently the
neural) response in this region of the BM. In this way the cochlea maps stimulus
frequency to position along the BM, with high frequency stimuli peaking near the base of
the cochlea, and low frequency stimuli peaking near the apex. A more rigorous treatment
of this behaviour based on the analysis by Lighthill (1981) and de Boer (1996), will be
presented in part IL.

Note that for a single stimulus frequency, the mechanics of the passive TW response
involve both a wave motion along the BM and resonance phenomenon in a small region of
the BM. This behaviour is far more complex than simple resonance at a point. Instead, the

BM response arises from the propagation of a TW through a medium whose characteristic
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impedance varies both with frequency and place, approaching zero at the point of
resonance. In contrast to the simple second order filter obtained from a single degree of
freedom resonator (which would arise if each point on the BM were coupled directly to the
stapes), the TW response leads to a frequency response functions (at a given point) that has
both a steeper high frequency cut-off and a much greater high frequency phase lag (3 to 5
cycles compared to 0.5 cycles). It was von Békésy’s observation of this property of the
cochlear response that led to the rejection of Helmholtz’s resonance theory in favour of the

travelling wave theory (Patuzzi, 1996).

3.1.2 The Cochlear Amplifier

It is currently believed that the propagation of the TW is enhanced by active
processes involving the OHCs in the organ of Corti. The theory of an active mechanical
amplification by some biological processes was first suggested by Gold'®(1948), though it
was largely forgotten until being revived by Kemp (1978).

As was mentioned in section 1.1, current theory holds that the OHCs respond to an
incoming TW by applying additional excitatory forces to the BM. Though this OHC
motility is not well understood, it is believed that force generation arises from length
changes in the OHCs. This system, known as the cochlear amplifier, greatly increases the
TW amplitude thereby improving both the sensitivity and frequency selectivity of the ear.
The cochlear amplifier can be viewed as creating a region of negative damping on the BM
such that TWs propagating through this region (in either direction) acquire rather than
dissipate energy. For a given stimulus frequency, this region is not thought to extend along
the entire BM, but is instead located at and basal to the peak of the TW (de Boer, 1996). It
follows that the location of this region is frequency dependent. As well as greatly
improving the performance of the cochlea, the cochlear amplifier is also responsible for the

generation of OAEs.
3.1.3 Nonlinearity in the Cochlear Amplifier

One important feature of the cochlea is that its response is strongly nonlinear, It is

believed that the nonlinearity originates mainly in the cochlear amplifier, and is caused by

'8 Gold proposed active processes in order to explain the sharply tuned performance of the cochlea as a
mechanical frequency analyzer. He also predicted the existence of SOAEs, though failed to measure these,

probably because of equipment limitations.
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saturation of certain processes in the OHCs (de Boer, 1996). Two manifestations of this
are important in this project: the first will be termed self-suppression, and the second two-
tone suppression. In self-suppression, a single pure tone is presented to the ear. As its
level increases it is found that the BM vibration progressively approaches that of a fully
passive (or dead) cochlea (e.g., Cooper and Rhode, 1992). (The passive cochlear response
is thought to be approximately linear at moderate levels of stimulation.) In two-tone
suppression (sometimes called ‘mutual suppression’) two tones of different frequency are
presented simultaneously to the ear . The response of the BM at the frequency of the first
tone is found to be reduced by the presence of the second tone (e.g., Rhode and Cooper,

1993) and vice-versa.
3.2 Development of Theories of SFOAE Generation

In the following sections, the development of the current theory of SFOAE
generation due to Zweig and Shera (1995) is outlined. Theories of TEOAE and SOAE
generation are also described, since, according to current theory, these are closely related
to SFOAEs. Some alternative theories of SFOAE generation are also briefly discussed.
DPOAESs are not covered in any depth as they are more complicated (Probst ef al., 1991,
Shera and Guinan, 1999).

The discovery of OAEs and the demonstration of their cochlear origin (Kemp, 1978,
1979; Wilson, 1980a) raised several questions about cochlear mechanics. The presence of
OAEs indicates both a source of energy within the cochlea, and a backward propagation of
this energy. However, no such backward propagation of energy is seen in a large class of
cochlear models when excited at the stapes. This remains the case even for models which
include active processes and which show realistic BM mechanical responses (de Boer,
1996). A possible explanation for the failure of these cochlear models to predict OAEs
arises from the reflection hypothesis, proposed by Kemp (1978), which is described in the

next section.

3.3 The Reflection Hypothesis

In the reflection hypothesis, Kemp (1978) proposed that OAESs arise from an initially
forward TW that is reflected at discontinuities in the BM mechanical impedance, thereby
generating a backward TW which appears in the ear canal as an OAE. Kemp further
proposed that the active processes play an essential role in OAE generation. At the time of

its original suggestion, the theory was far from complete. For example, satisfactory
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characterisations of both the cochlear amplifier and the putative discontinuities were still
required. In this section, the main theories of OAE generation are reviewed. Most of these
are directly descended from the reflection hypothesis in that they contain two essential
elements: active processes and some form of reflection mechanism. Shera and Zweig’s
theory (1993b) and Strube’s theory (1989) both fall into this category. The role of cochlear
nonlinearity and multiple reflections of the TW in the cochlea are also discussed. Note that
here the term ‘reflection’ covers more than simply passive reflection: it also covers the
case where a forward TW stimulates an active source to generate or emit a backward TW.

It is first necessary to define the terms ‘apical’ and ‘basal’ TW reflection. A forward
TW which encounters an impedance discontinuity on the BM will be reflected, giving rise
to a backward TW. This process will be called apical reflection, and is essential for OAE
generation. The backward TW then travels back along the BM until it reaches the stapes
where it again encounters an impedance mismatch and is further reflected. This is called
basal reflection and leads to multiple reflection in the cochlea (Kemp, 1980). Whilst basal
reflection modifies the characteristics of the OAE signal, it is not essential to OAE
generation. This is similar to the behaviour of the idealised ear shown in fig. 2.5. Apical
reflection is discussed in this section, whilst basal reflection will be dealt with in
section 3.6.

At the phenomenological level, the apical reflection can be characterised by the
cochlear reflectance (looking apically), evaluated at the base of the cochlea, as in the
idealisations in fig. 2.4 and 2.5 (Kemp, 1980; Shera and Zweig, 1993a). Recall from
section 2.12 that the form of the cochlear reflectance has been estimated from OAE
measurements. These indicate that the magnitude of the cochlear reflectance varies
relatively slowly with frequency, whilst the phase angle drops rapidly, approximately
following a —log (f) relationship. One aim of cochlear mechanical theories is to explain
these characteristics.

One of the characteristics that received attention early on was the relatively long
latency of OAEs (about 10 ms at 1 kHz), as compared to predictions of the latency based
on estimates of TW travel time obtained from electrocochleographic measurements (e.g.,
3.4 ms predicted from Eggermont’s data, (1979)). Although they did not present a
complete cochlear mechanical theory of OAEs, Kemp and Chum (1980b) argued that the
long delays in the TEOAE could be explained by the steep sided mechanical filters that
characterise the BM response at low stimulus intensities. As the stimulus level increases,
the filter skirts become less steep giving shorter delays. This phenomenon, whereby

latency reduces with increasing stimulus levels, has been used to explain the apparent
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discrepancy between OAE and electrocochleographic measurements (e.g., Neely et al.,
1988).

Note that the OAE latency is sometimes regarded as having two components: the
first associated with the BM resonant response near the characteristic place; and the second
due to the TW transmission time to and from this place (e.g., Rutten, 1980). However,
Strube (1989) points out that this split between TW propagation and BM resonance is
artificial. Instead, the resonance of the BM is not considered to be a phenomenon with its
own delay, but rather as one which influences the overall delay arising from TW
propagation. Thus the speed of the TW varies continuously along the BM, and approaches
zero in the region of BM resonance. This leads to long latencies for any TW originating
within this region.

Originally Kemp (1978) had suggested that mechanical impedance discontinuities on
the BM might be responsible for TW reflection. However, other possible mechanisms
have also been explored. As part of the discussion of the mechanism of TW reflection,
Kemp (1986) introduced the concept of ‘place fixed’ and ‘wave fixed’ source. A place
fixed site is one whose location is independent of frequency, as would arise from a
discontinuity in the BM impedance. A wave fixed source, perhaps arising from
nonlinearity near the peak of the TW envelope, or from complex 2-D or 3-D fluid flows
(Guelke and Bunn, 1985), would move with frequency as the TW peak moved. Kemp
(1986) argued that the long group delays measured in TEOAEs and SFOAEs in humans
are consistent with a place-fixed rather than a wave-fixed hypothesis.

This argument against a purely wave fixed generation mechanism has been restated
by Strube (1989), Zweig and Shera (1995) and Shera and Guinan (1999), based on what is
known as the scaling symmetry (or shift-symmetry) of the cochlea. Essentially this means
that the TW spatial response pattern at any stimulus frequency resembles that at any other
frequency (both in magnitude and phase), except for a translation in place along the BM.
Thus, where scaling symmetry holds, knowledge of the BM response as a function of place
at any single stimulus frequency is sufficient to define the BM response at all frequencies
and all places. Alternatively, knowledge of the BM response as a function of stimulus
frequency at any single place is also sufficient to define the BM response at all frequencies
and all places. It has been shown that the group delays of any wave-fixed emissions from a
scaling symmetric cochlea are very short, and therefore any ripple pattern will have a much
wider peak-to-peak frequency interval (i.e., a greater periodicity) than that observed
experimentally (Strube, 1989). This result holds true for any wave-fixed generation
mechanism in an approximately scaling symmetric cochlea. This is discussed further in

part II.
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Assuming that a place-fixed mechanism is involved, the question remains as to what
form of reflection site could explain the empirical results. Three forms are discussed
below: isolated point reflection sites, spatially periodic reflection sites, and spatially
random reflection sites.

Note that various different terms relating to the mechanism of TW reflection are
found in the literature. The general terms “reflection site” and “scattering site” are used for
to describe either wave-fixed or place fixed mechanisms. Both terms are used in this
thesis. The terms “BM discontinuity”, “irregularity” and “inhomogeneity” are used to
describe a place fixed mechanism arising from the deviation of the BM impedance (or
more strictly the cochlear wave impedance) from the smooth impedance variation
associated with the mechanical frequency analysis performed by the cochlea. In this
thesis, the term “BM inhomogeneity” is generally used. The terms “irregularity” and
“discontinuity” would be misleading if applied to the smooth, periodic impedance variation

proposed by Strube (1989), and will henceforth be avoided.

3.3.1 Point Reflection Sites

Zwicker and Lumer (1985) simulated OAEs from one, two and three localised
inhomogeneities on the BM. A model with single inhomogeneity has two failings. First
the predicted OAE spectra are only seen in a very limited frequency range. This is because
it is only at these limited frequencies that the TW envelope is large in the region of the
reflection site. Secondly, the predicted group delay is too short, except around one
stimulus frequency (the characteristic frequency of the reflection site), where the peak of
the TW coincides with the reflection site. At this frequency, the group speed of the TW
approaches zero at the reflection site, hence increasing the predicted group delay. With
three inhomogeneities, the predicted periodicities could be made to roughly agree with
observed values, but the predicted OAE spectra still looked unnatural. Zwicker (1986,
1988, 1990) noted that the SFOAE periodicity (or equivalently the group delay of the
TEOAES) depended on the wavelength of the TW near the peak. Several other authors
have published essentially similar results from various models with a few discrete
inhomogeneities (e.g., Zwicker and Lumer, 1985; Zwicker and Peisl, 1990; Furst and

Lapid, 1988; Fukazawa, 1992, Fukazawa and Tanaka, 1996; Wada et al., 1999).
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3.3.2 Spatially Periodic Inhomogeneities: Strube’s Theory

Manley (1983) suggested that the periodicity seen in the auditory microstructure, in
SFOAESs and in SOAESs could be explained if the strength of the active cochlear processes
varied periodically along the length of BM. A somewhat similar theory was proposed by
Strube (1989), following the work of Strube (1985), Zwicker (1986, 1988), and Peisl
(1988). In this theory (referred to henceforth as “Strube’s theory”) it is postulated that
some of the BM mechanical properties vary periodically with place (over and above the
exponential variation associated with place-frequency mapping). This spatially periodic
impedance variation is sometimes referred to as a BM corrugation, and gives rise to
reflections (or scattering) of the forward TW. Strube compared the scattering mechanism
to a phenomenon known as Bragg scattering, whereby a wave is strongly reflected when it
encounters a sinusoidal spatial impedance variation whose spatial period equals half the
wavelength (the Bragg condition).

To see how the Bragg condition is satisfied over a wide range of stimulus
frequencies, consider a BM corrugation with a spatial period significantly less than half the
TW wavelength at the base of the cochlea (for a large range of stimulus frequencies). For
any given stimulus frequency, the wavelength of the TW decreases continuously as the TW
propagates forward, and approaches zero as the TW approaches its characteristic place'’.
Consequently there is a point on the BM, basal to the characteristic place, where the Bragg
condition is satisfied, and Bragg scattering occurs. If this point lies close to the TW peak
then the amplitude of the backward scattered TW becomes significant. By scaling
symmetry, the TW wavelength at the BM peak is independent of stimulus frequency (since
changing the frequency simply shifts the response pattern along the BM, without changing
its shape). Therefore the Bragg condition is satisfied for a point near the TW peak over a
wide range of stimulus frequencies.

It should be noted that, although this Bragg point moves with the peak of the TW as
the stimulus frequency is varied, the spatial pattern of BM inhomogeneities remains place
fixed as is required in order for the predicted OAEs to have the long group delays observed
in measurements. The mechanism by which the backward wave is generated is complex,
involving the summation of reflected wavelets over the region of the TW peak, rather than
just one single localised reflection. The spatial variation in the BM impedance ensures that

all the reflected wavelets combine in phase, leading to a significant total reflection.

' The wavelength is only actually zero when the BM is in resonance. This is point lies slightly apical to the

TW peak.
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The theory successfully predicts the observed spectral periodicity, which is
determined by the spatial periodicity in the BM properties. The theory does not rely on
any nonlinearity, but does include active (though still linear) processes. However, these
are only required to explain the magnitude of measured OAEs, rather than the essential
reflection (or scattering) mechanism. Manley’s suggestion (1983) that the corrugations be
in the BM structures associated with the active processes is sufficient, but unnecessary in
Strube’s theory. Corrugations may equally well be in the passive structural properties of
the BM.

In humans, the wavelength in the TW peak region is around 900 um, and hence to
satisfy the Bragg condition, Strube proposed a spatial period of around 500 um for the BM
impedance variation. However, in anatomical examinations of cochleae, no evidence for

any spatial periodicity in the cochlea has been found (Zweig and Shera, 1995).
3.3.3 Random Inhomogeneities: Shera and Zweig’s Theory

Shera and Zweig (1993b) have proposed an alternative version of the place-fixed
theory in which the inhomogeneities in the BM mechanical properties have a random
spatial distribution along the length BM, with length scales down to about 10 yum (the
typical width of a single hair cell). The approximately regular periodicity seen in SFOAEs
then arises from a mechanism described as ‘spatial filtering’. As in Strube’s theory, the
essential mechanism in Shera and Zweig’s theory is linear scattering. Active processes are
required in order to produce what Zweig and Shera describe as a ‘tall and broad” TW
envelope (1995). A more complete description of the theory is given by Zweig and Shera
(1995) and Talmadge et al. (1998). In this theory, the observed spectral periodicity is
determined by the TW wavelength in the peak region, whereas in Strube’s theory it is
determined by the spatial period of the corrugations. Shera and Zweig’s theory is
discussed in greater detail in part II.

As with Strube’s theory, the mechanism by which the backward wave is generated
involves the summation of reflected wavelets over the region of the TW peak, rather than
just one single localised reflection. The spectral periodicity predicted by Shera and
Zweig’s theory are similar to those predicted by Strube’s corrugated BM. A simplified
explanation for this results is that the random spatial variation can conceptually be
decomposed into its spatial Fourier components. Each Fourier component appears as a
corrugation with a different spatial period, and each one acts to scatter the forward TW.
However, only one of these corrugations approximately satisfies the Bragg condition near
the peak of the TW, and therefore generates a strong backward wave. Scattering from all
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the other spatial frequency components is negligible. Shera and Zweig call this mechanism
coherent reflection filtering (Shera and Zweig, 1993b; Zweig and Shera, 1995).

An important difference between Strube’s theory and Shera and Zweig’s theory is
the way in which the spectral periodicity arises. In Strube’s model (1989), it arises from
the regular wave-like corrugation along the BM, which has a typical wavelength in humans
of around 500 pm. In Shera and Zweig’s model, it arises from an interaction between the
TW and a random array of inhomogeneities along the BM. This means that the SFOAE
periodicity predicted by Strube’s model is fixed by the BM corrugations, whilst in Shera
and Zweig’s model it depends on the shape of the TW envelope.

Recall from section 2.15 that there is evidence that the speed of TW propagation
increases with stimulus level. It might then be argued simplistically that an increase in
stimulus level should therefore cause both a reduction in the OAE group delay and an
increase in the periodicity. This simple argument is based on the assumption that the group
delay depends on the TW propagation time to and from a single place-fixed reflection site.
As will be discussed in part II, this argument is in general inadequate in explaining the
predictions of cochlear models. This is because, according to both Strube’s and Shera and
Zweig’s theory, OAEs result not just from a single place fixed-reflection, but from the sum
of many place-fixed reflections. In fact, Shera and Zweig’s theory predicts that the group
delay is dependent on the TW wavelength in the peak region, rather than to the overall TW
travel time. However, since wavelength is related to TW speed, and it is the TW speed in
the peak region that dominates the overall TW travel time, predictions based on Shera and
Zweig’s theory agree closely with results arrived at by the simple single-reflection site
argument. In contrast, models based on Strube’s theory predict no change in group delay
or periodicity when TW propagation speed changes.

No quantitative anatomical evidence either for or against this random array
inhomogeneities exists (direct measurement of the BM mechanical properties being
impossible). However Zweig and Shera (1995) note that anatomical studies have found a
“generalised irregularity” and “cellular disorganisation” in the arrangement of OHCs in the

apical turns of the primate cochlea.
3.4 The Role of Active Processes in the Reflection Hypothesis
The versions of the cochlear reflection hypothesis proposed by Strube, and Shera and

Zweig rely on both active processes and reflection sites. A question that has been

addressed in the literature is why both active processes and reflection sites are required to
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generate OAEs, when it might be argued that either one alone could generate some form of
backward TW, and therefore an OAE.

The first part of the question can be restated more fully as follows. Why, if the
cochlear amplifier is thought to exert forces directly on the BM, and if the BM supports
TW propagation equally in both directions, does the cochlear amplifier not directly
generate an OAE whenever it is activated by a forward TW? The answer to this can be
found in the theoretical modelling results reviewed by de Boer (1996). For any given
stimulus frequency, the cochlear amplifier creates a region where the characteristic
impedance, as seen by the TW, has a negative damping component. This region extends
basally from a point near the peak of the TW envelope. TWs passing through this region
(in either direction) are progressively amplified. This can be seen as a reversal of the more
common process by which an acoustic wave decays as it propagates through a lossy
medium. Such a wave is dissipated without being reflected. In the cochlea, the direction
of energy flow is reversed to give a wave that blooms as it propagates, but is not reflected
in the process. This is most easily illustrated mathematically by considering the cochlear
amplifier to be linear. The presence of the cochlear amplifier can then be incorporated into
a version of linear wave equation, where the negative dissipation manifests itself as a
negative imaginary part to the wave impedance (which is related to the BM resistance). It
can then be shown that, with an initial forward wave, backward waves only arise from
rapid spatial changes in the wave impedance, and not from the sign of the resistance
(de Boer, 1996, p. 274). The physical explanation corresponding to the mathematics is as
follows. Although each infinitesimal element of the cochlear amplifier exerts a force on
the BM which, in isolation, would generate travelling wavelets propagating in both
directions, the spatial distribution and phase of these wavelets (which are both determined
by the incident forward wave) are such that all the wavelets add together to give an
additional forward wave which enhances the incident wave, but no backward wave.

The second part of the question is this. Why do backward TWs not arise from the
scattering of the passive TW? (These backward TWs would not qualify as OAEs,
according to the definition given in section 2.1, but they might be expected to produce a
similar ripple pattern in the ear canal pressure to that observed). This question is addressed
by Zweig and Shera (1995). They argue that in a purely passive cochlea, any TW
reflections decay too rapidly to appear as significant backward waves arriving in the ear
canal. Furthermore, simply reducing the level of damping assumed in the cochlea does not
solve the problem, because the resulting TW envelope then appears to be too sharp.
Instead it is argued that large backward TWs only arise when the TW envelope is both ‘tall

and broad’, as it is when certain forms of cochlear amplifier characteristics are included.
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‘Tall’ means that the forward TW is sufficiently strong to generate a significant backward
wave. ‘Broad’ means that the TW peak region spans at least one full wavelength, such that
Bragg scattering can arise. When the TW peak is too narrow, as it would be in a passive
cochlea with very low damping, then the TW wavelength varies very rapidly over the peak
region, because of the minimum phase property of the TW function discussed in part II.
This means that there is no one dominant wavelength in the peak region, leading to a very
broad band ‘spatial filter’. This is inconsistent with the observed spectral periodicity. At
first sight, this argument may appear to run counter to the widely accepted fact that active
processes give rise to a sharp rather than a broad envelope. In fact with Zweig’s cochlear
amplifier (1991) the envelope is sharper than that arising in a passive cochlea with realistic
damping, but is broader than that which would be seen in a cochlea which had very low
damping, as could arise if the cochlear amplifier simply acted to provide active

undamping. This is discussed in more detail in part II.

3.5 The Role of Cochlear Nonlinearity

The versions of the cochlear reflection hypothesis proposed by Strube, and Shera and
Zweig do not rely on any cochlear nonlinearity for the generation of SFOAEs. The
validity of this simplification is supported by the measurements of Shera and Zweig
(1993a) which showed that the SFOAE spectrum varies linearly with stimulus level at very
low stimulus levels. Thus, SFOAE:s exist even when nonlinearity is absent.

At higher stimulus levels OAEs show a compressive nonlinearity, which is thought
to arise from nonlinearities in the cochlear amplifier response. Results of click suppression
and pure tone suppression experiments reported by Kemp and Chum (1980b), which
indicated that the OAE response comprised a linear signal delay followed by a saturating
nonlinear element, are consistent with this hypothesis.

Recently, Talmadge ez al. (2000) have presented an analysis of Shera and Zweig’s
theory based on nonlinear cochlear models. This generally supports the argument that the
long delays seen in OAEs arise from essentially linear reflection. However, they also
report that a purely nonlinear component of SFOAESs can arise, even in perfectly smooth
cochleae. This originates from deviations in the nonlinear cochlear mechanics from
scaling symmetry and it manifests itself as a very short-latency (and therefore high
periodicity) SFOAE component. Whilst at low and moderate stimulus levels this
component is small, in some cases it can predominate at high stimulus levels. This is
important for this project where the changes in periodicity that are of interest are those

related to changes in the TW wavelength, rather than to additional nonlinear effects.
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Thus in the theories under consideration here, nonlinearity is not essential for OAE

generation, but is an important phenomenon at all but the lowest stimulus levels.
3.6 The Role of Multiple Reflections and the Middle-ear

Kemp (1980) presented an analysis relating evoked OAEs to the transmission
characteristics of the middle ear, and to apical and basal reflections in the cochlea. This
analysis predicted the presence of multiple reflections in the cochlea, whereby the forward
wave is reflected at some site on the BM to generate a backward TW, which is in turn
reflected at the stapes to generate a second forward wave and so on. This is similar to the
situation illustrated in fig. 2.5.

At certain frequencies this second forward TW interferes constructively with the
original forward TW, leading to a resonance*® phenomenon whereby both forward and
backward TWs are stronger at certain frequencies. This occurs when the product of the
apical and the basal reflectances is purely real. Kemp (1980) and Wilson (1980a)
suggested this as explanation of the peaks in the spectrum of TEOAEs, SFOAEs and the
auditory microstructure. Kemp (1980) also pointed out that active processes may give rise
to an apical reflection coefficient greater than unity (i.e., the backward TW may contain
more energy than the original forward TW). If, at a particular frequency, the product of
the apical and basal reflection coefficients is a real value exceeding unity then the cochlea
will be unstable (i.e., any infinitesimal perturbation will grow unbounded at that
frequency). Kemp (1980) proposed this as an explanation of SOAEs (where in practice the
growth is limited by nonlinear saturation in the cochlear amplifier). This phenomenon can
be explained by consideration of the two systems in figs. 2.3 and 2.5, which show multiple
reflections. If the forward looking reflectance were increased in magnitude beyond unity,
then a point would be reached where the train of reflection components seen in the echo (or
OAE) response (panel €) would not decay away, but would become a continuous periodic
signal. The figure also shows how the frequencies of this self sustaining signal would
correspond to the spectral peaks seen in panel f. By analogy, it would be expected that the
frequencies of SOAEs would correspond to the peaks seen the spectrum of TEOAEs and
SFOAESs. This is indeed what is found experimentally (Zwicker and Schloth, 1984; Probst

%0 An acoustical system is said to be resonant when its acoustic input reactance is zero, and its acoustic input
resistance is a minimum. Thus for a high impedance loudspeaker (as is common), the resonances of the
driven system correspond to minima in the pressure response measured by the microphone, whilst the

antiresonances correspond to maxima, assuming a constant voltage drive to the loudspeaker.
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et al. 1986, 1991). The explanation of audiogram fine structure is more complicated, and
is not dealt with here.

When multiple reflections are included in Shera and Zweig’s theory, the spectral
periodicities seen in the audiogram fine structure, in SFOAESs, in TEOAEs and in SOAEs
are successfully explained (Talmadge et al., 1998). Note that the role of multiple apical
and basal reflections differs in these four phenomena. Multiple reflections are essential to
the explanation of spectral periodicity in SOAEs and the auditory microstructure, which
arise from the resonance phenomena of the TW suggested by Kemp (1980). However,
multiple reflections are not essential for the explanation of the basic spectral periodicity
seen in the real and imaginary parts of SFOAEs. This basic periodicity corresponds to the
slope of the phase of the frequency spectrum of the SFOAEs and TEOAEs. Here, only a
single apical reflection is required. Subsequent basal (and further apical) reflections, if
significant, modify the measurements such that periodicity is seen in the magnitude of the
SFOAE, not just in the real and imaginary parts (Kemp, 1980; Shera and Zweig, 1993a;
Talmadge and Tubis, 1993; Talmadge et al., 1998). This is illustrated to some extent by
the difference in the two responses of the idealised ear shown in figs 2.4 and 2.5. It is
discussed more fully in part II.

The basal reflection coefficient is determined by the mechanical properties of the
system comprising the middle ear, the ear canal and the termination of the ear canal by the
OAE probe. Several authors have investigated the effect on OAEs of altering these
properties. For example, Zwicker (1990) found that altering the impedance of the OAE
probe changed the frequencies of the peaks in the audiogram fine structure, SFOAE
spectrum and TEOAE spectrum.

As well as influencing the basal reflectance, these mechanical properties also
determine the transmission characteristics through the middle ear, which influences OAEs
measured in the ear canal. OAE transmission is most efficient in the frequency region of
1-2 kHz, with increasing loss outside this region (Kemp and Chum, 1980a; Kemp, 1980;
Shera and Zweig; 1993a). In ears with abnormal middle ear pressure, or with middle ear
dysfunction, OAEs may be altered or abolished completely (Probst e al.,1991). In normal
ears, measured OAEs have also been found to be altered by the stapedial muscle

contraction (Probst ez al.,1991).
3.7 Alternative Theories to the Reflection Hypothesis

A number of other mechanisms have been suggested for generating OAEs. Wilson

(1980b) proposed the cellular swelling model in which volume changes in the hair cells
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stimulate the fast wave (the longitudinal compression wave) in the cochlea, rather than the
slower moving backward TW. However, this theory fails to predict the observed spectral
periodicity. (In the Shera and Zweig model, active processes cause the BM to deflect at
constant thickness, rather than to swell. BM deflection couples to the slow TW
propagation rather than the fast compression wave.)

Guelke and Bunn (1985) suggested that complex 3-D fluid flow in the region of the
TW peak can act as a generation site. However, this leads to a wave-fixed primary source
which has the problems discussed by Strube (1989).

Van Hengel and Maat (1993) and van Hengel et al. (1996) have proposed a complex
theory which relies on instability in the active processes, on the nonlinear phenomena of
suppression and entrainment, and on multiple reflection at the stapes. Unlike Shera and
Zweig’s theory, this theory uses a completely active cochlea in which all points are
unstable when stationary. The introduction of one single strong emitter leads to complex
nonlinear coupling between points, which can give rise to spectral periodicity. However,

there are as yet no published results from the model showing realistic SFOAEs.

3.8 Summary

In the various versions of the reflection hypothesis that have been proposed the
involvement of the following mechanisms has been proposed: cochlear nonlinearity, BM
inhomogeneities, 3-D fluid flows, active amplification, and multiple reflections within the
cochlea. However, of the theories mentioned, only Strube’s and Shera and Zweig’s have
been developed far enough for detailed models to be constructed which predict SFOAEs
with realistic periodicities. These two theories are linear, active and 1-D but invoke
different spatial distributions of BM inhomogeneities to explain SFOAE generation.

A key difference between Strube’s theory and Shera and Zweig’s theory is the way
in which the spectral periodicity is determined. In Strube’s model (1989) it is fixed by the
spatial period of the BM corrugations, whilst in Shera and Zweig’s model (1993b) it
depends on the shape of the TW envelope, and therefore may be altered depending on the

strength of the cochlear amplifier.
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ParT II: THEORETICAL PREDICTIONS

4. Development of the Cochlear Macromechanical Model

4.1 Overview

The objective in developing a cochlear model in this thesis is to illuminate the
various roles played by the different elements in the theory, and where possible to relate
these elements to measurable characteristics of SFOAEs. Moreover, the model should
enable predictions based on the current theories of OAE generation to be made, which can
then be tested experimentally. To achieve this objective, the model must capture all the
essential features of the theory, whilst eliminating any non-essential features which would
both confuse the interpretation of the results and increase the computational burden. The
approach taken here has been to start with as simple a model as possible, and then to add
complexity to check whether any significant changes result.

Cochlear mechanics is often divided into macro and micromechanics.
Macromechanics is concerned with the large scale motions of both the cochlear fluids and
the BM, whilst micromechanics is concerned with the detailed motions of the many
components in the organ of Corti. The models considered in this thesis provide a
mathematical representation of the macromechanical response of the cochlea only.
Although cochlear micromechanical behaviour does have an influence on the
macromechanical response, it need not be included explicitly. Instead, micromechanical
effects can be characterised as relationships between macromechanical quantities. The
justification for developing a macromechanical model is that, according to the underlying
theory, the characteristics of measured SFOAEs are determined by the macromechanical
behaviour of the cochlear responses consisting of TW propagation, amplification,
dissipation and reflection. Thus, for example, the outer hair cells are not modelled directly
but are instead included through the mechanical properties of the cochlear amplifier.

In the following section, details of the macromechanical cochlear model used in this
thesis are presented and discussed. This is a 1-D, longwave model of the cochlea,
including a locally active cochlear amplifier and BM inhomogeneities. A model variant
including a frequency domain implementation of cochlear amplifier nonlinearity is also
described. All the elements in the models are based on a features found in various

published models. However, these element have not been brought together before as
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described here. As well as specifying the model, in the following section relevant aspects

of the model behaviour are also discussed.
4.2 Basic Assumptions in the Macromechanical Model

In the models used here the following simplifications have been made. The spiral
shape of the cochlea is unrolled giving a straight cochlea. Reissner’s membrane is ignored,
and thus the scala vestibuli and scala media are treated as a single fluid channel, called here
the upper channel. A section across the upper channel (perpendicular to the longitudinal
axis) is assumed to be rectangular. The scala tympani, called here the lower channel, is
assumed to have the same cross section as the upper channel. The basilar membrane, the
tectorial membrane, the organ of Corti and associated support cells are all replaced by a
single flexible membrane called the cochlear partition (CP). It is motion of the CP that
displaces the cochlear fluids. The CP is assumed to be incompressible: it deflects, but it
does not change volume. Thus the fluid velocities above and below the CP are equal at any
location. The stapes footplate forms the basal boundary of the upper channel, and is
perpendicular to the longitudinal axis. Structurally, there is no longitudinal coupling
between points on the CP. Thus the CP is viewed as a series of independent beams
somewhat like a xylophone, but with no gaps between the keys. The helicotrema is
modelled as a gap in the CP at the apex of the cochlea. The cochlear fluids are assumed
incompressible and inviscid. In this report, the terms ‘cochlear partition’, ‘upper channel’
and ‘lower channel’ are adopted for the model representations. In the literature, these are
sometimes referred to as the ‘basilar membrane’, ‘scala vestibuli’ and ‘scala tympani’
respectively. These simplifications are common in many discussions of cochlear
mechanics (e.g., de Boer, 1996; Patuzzi 1996). The validity of these simplifications is

discussed below.
4.2.1 The Assumption of Incompressible Flow

The assumption that the fluid is incompressible is justified provided that the stimulus
frequency is low enough (Patuzzi, 1996). For a stimulus frequency of 3 kHz, and taking
the speed of sound in the cochlear fluid as 1500 m/s, and the length of the fluid channels as
35 mm, the resulting longitudinal wave has a wavelength of about 500 mm or about 14

times the length of the cochlea, and therefore can be safely ignored.
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4.2.2 The Assumption of Uniform Scalae

As is usual in cochlear models (e.g., Neely and Kim, 1986; Kanis and de Boer, 1994;
Talmadge et al. 1998), the cross-sections of the scalae are assumed to be independent of
the axial location. Shera and Zweig (1991a) argue against this assumption, pointing out
that, if lower frequency behaviour is to be accurately represented, the channel cross-section
should taper along the longitudinal axis of the cochlear model. The effect of this taper is to
maintain a resistive cochlear input impedance at low frequencies (and therefore good
middle ear efficiency) and also to maintain scaling symmetry in the cochlea (see
section 4.7.4). However, the effect is only pronounced below about 1 kHz and is not

considered here.

4.2.3 The Compressibility of the Cochlea

In this thesis the commonly made assumption that the volume velocity of the round
window is equal and opposite to the volume velocity of the oval window at all frequencies
of interest. This not only rules out significant fluid compressibility but also net fluid
inflow or outflow from the cochlea via the aqueducts or blood vessels. An empirical check

of this assumption is reported by Shera and Zweig (1992).

4.2.4 The Assumption of No Longitudinal Structural Coupling

Although there must also be some longitudinal structural coupling, this is ignored in
the chosen models. Instead, points on the CP are only coupled to their neighbours via the
fluid flow. For passive models, Lighthill (1981) argued that any longitudinal coupling
must be very weak for the cochlea to function correctly. However, some active models do
include a degree of longitudinal coupling associated with the active processes (e.g.,
Zwicker, 1988; Fukazawa and Tanaka, 1996). However, as with much of cochlear
modelling, there appears to be little direct empirical evidence either for or against these
assumptions. In this thesis, following most cochlear modellers, all longitudinal coupling
has been ignored as an unnecessary complication (e.g., Kanis and de Boer, 1993b; Zweig

1991).
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4.3 Defining the Macromechanical Variables

Fig 4.1 shows a cross section through the cochlea. Here the passive structures of the
CP are represented by a simple spring-mass system, and the cochlear amplifier is
represented by a motion sensor, a filter, and a force generator. The filter may be linear or
nonlinear. The basic place-frequency mapping in the cochlear model arises from the
(roughly) exponential reduction in local natural frequency of the CP along the cochlear
axis. This may be achieved either by reducing the CP local stiffness at constant CP mass,
or by both reducing the CP local stiffness and increasing the CP local mass along the
cochlea. (Here, ‘local’ mass and stiffness means mass and stiffness per unit length at a

point on the cochlear axis.)
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Fig 4.1. Cross section through the model of the cochlea, showing the mass-spring-damper representation of
the cochlear partition. The cochlear amplifier is represented by a motion sensor, a filter and force generator.
The sensor measures the CP velocity, vep( 1), leading to the generation of a force, Fgs ( ¢) applied to the CP.
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For a given sound stimulus, the solution of the macromechanical response is
specified in terms of the fluid pressure and fluid velocity vector at all points and all instants
in time. Together, these define the flow field. Once the flow field is known, the CP
velocity and pressure are also known, because the CP is in contact with the fluid.

Variables are specified with reference to the three-dimensional rectangular co-
ordinate system shown in fig. 4.2 . The x-co-ordinate defines the longitudinal distance
from the stapes; the y-co-ordinate the vertical distance from the CP; and the z-co-ordinate
the lateral distance from the centreline of the CP. No lateral variation is considered in this

2-D analysis. At a given point in space and an instant in time, ¢, the flow field is denoted

by:
the fluid pressure: p(x,y,t)
the fluid x-velocity vector: u(x,y,t)
the fluid y-velocity vector: v(x,y,t)

The velocities at the fluid boundaries are denoted by:

the stapes x-velocity: usr(y,t)
the round window x-velocity: upw(y,1)
cochlear partition z-velocity: vep(x,t)
A 4 Upper Channel
Stapes y z m,
/ 7 helicotrema
.~

Cochlear Partition
/o [ =

Round //

Window Lower Channel

Fig 4.2. Definition of the co-ordinate system for the cochlear model.
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4.4 Symmetry Relations in the Upper and Lower Channels

The symmetry of the upper and lower channels greatly simplifies the analysis.
Patuzzi (1996) illustrates these relationships by imagining a cochlea with a second stapes in
place of its round window, thus giving perfect symmetry. Applying identical forces to both
stapes (the so called ‘push-push’ loading condition) causes compression waves (or ‘fast’
waves) to travel up the two cochlear channels. By symmetry, there is no associated CP
displacement and therefore no cochlear TW. In contrast, applying equal and opposite
forces to the two stapes (the ‘push-pull’ loading condition) gives rise to a pressure
difference in the two channels thereby generating the familiar TW which propagates by CP
deflection. It also generates two antisymmetric fast waves which travel up the two cochlear
channels (for example, pushing the upper stapes and pulling the lower stapes generates a
compression wave in the upper channel, and a rarefaction wave in the lower channel). In
the real (i.e., single stapes) cochlea, any arbitrary boundary condition at the round window
and stapes can be split into the sum of a push-push and a push-pull case (assuming
linearity).

A further simplification arises when fluid compressibility can be ignored (i.e., at low
stimulus frequencies). Here the fast waves can be ignored, since they propagate and decay
away within a fraction of one stimulus period. In this case, push-push loading causes an
instantaneous change in the pressure throughout the entire cochlear fluid (i.e., the pressure
field remains entirely spatially uniform at all times). In the push-pull case, there is no
overall change in the enclosed volume, and thus the fast wave can be ignored entirely.
Thus in this case only the TW on the CP need be considered. Notice that in the push-pull
case the pressure and velocity at apical locations remain completely unchanged until the
arrival of the CP travelling wave: there is no energy transfer other than by the TW.

Mathematically this can be represented as follows. The pressures in the upper and
lower channels can be combined into a semi-sum pressure, denoted p;, and a semi-
difference pressure, denoted p, , which are then functions of the push-push and push-pull

loading respectively:

Py (x,y,8) =7 p(x,y,0) +3 p(x,~,1) for 0<y<H 4.1
Pa(x,y,8) =3 p(x,y,1) =% p(x,~y,1)
This definition is convenient because (assuming fluid incompressibility) only the
semi-difference pressure, p; , plays a part in TW propagation. The semi-sum pressure, p; ,
merely acts as an additional spatially uniform term. For completeness the value of p, will

be derived in this section, but thereafter attention is turned exclusively to p; .
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The semi-sum pressure depends on the push-push loading component. In the real
cochlea, this component has a particularly simple form if, as is common, it is assumed that
the impedance at the round window is approximately zero. From this, it follows that, at
any instant, the uniform semi-sum pressure is simply half the instantaneous pressure at the

stapes, as is shown below:
Prw (y,1) = p(x,,1) |x=0;y<H =0 forallz

P D= Pyt | o [4.2]

pe(t)= 3 p(x,3.1) + 5 p(x=,1) = P () + 3 Psy (1)
=205 (@)

where prw and ps; are the pressures at the round window and stapes respectively. This is
shown more rigorously in appendix 1.

Fluid incompressibility also means that the fluid velocity is completely unaffected by
the push-push case. The velocity components then exhibit the following antisymmetry:

urw(=y,t) = —usr(y,t)
—u(x,y,t) [4.3]

I

u(x,=y,t)

v(x,-y,t) = v(x,y,t)
These symmetry relations are shown in fig. 4.3. This time domain representation
leads to an analogous symmetry relation in the frequency domain for the real and imaginary

parts of the Fourier transforms of the velocity components.

Vl*
- Ll 1
y U/_ti (x1531)
1 I
U
- Vi
1231
(xla—yl)
ug =U u(x,+y) =u v{(x,+y1) =vi
upw = —-U w{x,=~y ) =-u v(xi,-y1) =V

Fig 4.3. Symmetry relations in the cochlear model for instantaneous velocities. Arrows indicate actual
physical direction of motion. The quantities x;  y; are positive displacements, whilst U, u; and v; are positive
velocity scalars. The quantitiesu (x,y), v (X,y ). us and ugy are signed velocity components, defined as
positive in the direction of the x-y co-ordinate system. All velocities are functions of time.
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4.5 The Longwave Model and the 1-D Wave-Equation

In this section, the equations governing TW propagation are introduced. Given the
simplifying assumptions of the previous sections, the semi-difference pressure in the
cochlear fluid can now be related to the displacement of the stapes via the equations of
fluid mechanics (i.e., mass and momentum conservation) and the impedance of the CP.
Fluid viscosity will be ignored (though the system remains damped via the resistive
component of the CP impedance). The equations are linearized, since the particle
displacements and velocities are very small. The full derivation is presented by de Boer
(1996).

The analysis yields partial differential equations for the fluid flow field in which both
the axial and transverse spatial dimensions appear as independent variables. However
there is a certain commonly used simplification, known as the longwave approximation,
which eliminates the transverse co-ordinate as an independent variable. The mechanics of
the resulting longwave model can then be represented as a simple one-dimensional wave
equation. The full derivation of this wave equation is given in appendix I and can be found
in de Boer (1996). Equation [4.4] gives the frequency domain version of the wave
equation (i.e., the Helmholtz equation) for the semi-difference pressure, ps ( x, @), which,

in the longwave model, is independent of y:

d’ps 2
?‘ﬂ-k Pa =0

[4.4]

» iwHZcp

Ctw = _?0““

where, pg4 is the Fourier transform of the semi-difference pressure across the CP, x is the
distance along the CP, k is the wavenumber, crw is the TW phase speed, @ is the radian
stimulus frequency, p is the cochlear fluid density, H is the height of the upper channel
(here assumed constant), and Z¢p is the CP impedance (commonly known as the point
mechanical impedance, though strictly it is the specific acoustical impedance). Note that
Zcp , k and pg are complex numbers (which will be denoted here by the bold typeface) and

can be functions of both x and .
The semi-difference pressure must also satisfy two boundary conditions. For

example, if the stapes velocity, us, has been specified then the two boundary conditions

are:
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apy

=—i2wpug  at the stapes [4.5]
dx x=0

Pa ,x= L= 0 at the helicotrema [4.6]

The stapes boundary condition arises from the x-momentum equation which relates the
pressure gradient to the fluid acceleration. It has also been assumed that the round window
impedance is zero, which means that the true pressure at the stapes equals twice the semi-
difference pressure at the stapes (equation [4.2]). As an alternative to [4.5], the stimulus
could be specified in the ear canal, rather than at the stapes, if a middle ear model is also
included (section 4.6.5).

The condition [4.6] at the helicotrema, though not very realistic, is nevertheless
commonly used. The justification for this is that the model response is highly insensitive
to this apical boundary condition, provided the stimulus frequency is high enough to ensure
that the characteristic place lies basal to the helicotrema. This is because the TW decays
almost entirely as it reaches its characteristic place, and thus very little energy reaches the
helicotrema.

Equation [4.4], together with the boundary conditions [4.5] and [4.6] can be solved
using a finite difference method to give the semi-difference pressure, pg, arising from any
specified stapes velocity. The CP velocity vcp is also dependent only on x and @, and can

be obtained from the CP impedance once the semi-difference pressure is known:

Pq
vep =2 Zer

(impedance relation for the CP) [4.7]

Note that the factor of —2 in equation [4.7] arises from the sign convention and the
definition of the semi-difference pressure in equation [4.1]

It is useful to split the CP point mechanical impedance, Z¢p, into three components:
Zep (x,0)=Z ppeg (X, 0) + Z oy (x,0) + Z 5. (x,0) [4.8]
where Zpyss , Zca , and Zg, are the components of impedance due to the passive cochlear
structures, the cochlea amplifier, and any inhomogeneities (or scattering sites) respectively.

The mechanics of the CP have here been assumed linear (to allow an impedance to be

used).
4.6 Specification of the Model

The cochlear models are based on equations [4.4], [4.5], [4.6], [4.7] and [4.8] with

the parameters specified below.
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4.6.1 The Passive Cochlea

The four cochlear quantities required to solve equation [4.4] are specified here,
assuming a passive CP impedance. These quantities are: H, L, p and Zp(x, ). In this
thesis, the values have been taken from two publications which detail longwave models of
the human cochlea: Kanis and de Boer (1994) and Talmadge et al. (1998).

The first three quantities, which define the cochlear scalae dimensions and the
cochlear fluid, are simply specified by three parameters. Models based on Kanis and
de Boer (1994) use H = 1 mm whilst those based Talmadge et al. (1998) use H = 3.79 mm.
Both models assume p = 1000 kgm™ . The value L = 35 mm has also been taken. This is
unimportant, provided it is significantly greater than the highest characteristic place of
interest.

The fourth quantity is the passive CP impedance, Zp,(x, @), which characterises the
structural properties of a point on the CP in isolation both from the rest of CP and from the
cochlear fluids. The passive structure at each point is modelled by a simple mass-spring-
damper system, whose point impedance is then specified by three parameters: mass,
stiffness and damping rate. Alternatively, the point impedance can be specified in terms of

mass, natural frequency and critical damping ratio, as in [4.9]:
_My 2 -
Z pues (X, ) = ?;;a)c (x) + myo (X)W (x) +iwmy [4.9]

where my is the CP mass; wis the stimulus frequency; ax is the natural frequency; Jis
twice the critical damping ratio and x is the CP location. Note that Jis approximately
equal to the reciprocal of the Q-factor®! of the resonance peak. The passive CP impedance
varies spatially such that its natural frequency, ax, varies (approximately) exponentially
with position, rather like a xylophone. This gives rise to the basic place frequency
mapping in the cochlea. The natural frequency is equal to the frequency at which the
velocity amplitude response is a maximum for a given pressure amplitude. The natural

frequency will be referred to here as the characteristic frequency® of a given point. The

*! The Q-factor of the system is defined from the frequency response function of displacement per unit
pressure. It is defined as the ratio of the frequency of the peak response to the 3 dB bandwidth. For << 1,
as here, it can be shown that Q-factor = 1/ & (Thomson, 1981).

2 This definition of characteristic frequency does not strictly give the model equivalent of the definition used
in cochlear physiological measurements, where it is defined for a given point as the frequency of maximal
response (such as the velocity response) for a given excitation at some reference point such as the stapes.

However, the two values will be close.
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characteristic place is the inverse of this function: i.e., for a given pure tone stimulus, it is
the place whose natural frequency equals the stimulus frequency.
The Kanis and de Boer model assumes a perfect exponential spatial variation of
characteristic frequency, and a constant damping ratio:
W (x)= ®. exp(—x/d)

o(x) =0,

[4.10]

where d is the place-frequency length parameter. The parameters are given as:

d=6.67 mm; w_ = 2% 22.508 kHz; mog=0.5 kgm'z; Jo = 0.4. This passive model will
0

be referred to as the KdB-1994 model.

Talmadge ef al. (1998) have a more realistic form of the passive impedance that
includes a deviation from the perfect exponential characteristic impedance variation, and a
spatially varying Q-factor:

W (x) = 0 exp(=x/d)+ o,

d, +0,exp(x/d) [4.11]

d(x) =
1+ aexp(x/d)

where d =7.24 mm; @ =27x20.8 kHz; @ = -27x 0.1455 kHz; mo = 0.05 kem™;
1 2

o = 0.0385; 4, =0.000765; o= -0.007. This passive model will be referred to as the
T-1998 model.

The seemingly large differences between the parameters H and m ¢ used in the two
models can partly be explained by the assumed width of the CP. Note also that T-1998 is
much more lightly damped than KdB-1994.

4.6.2 The Linear Cochlear Amplifier Impedance, Z¢,4

The cochlear amplifier is characterised by its impedance, Zca(x, @), as a function of
both place and stimulus frequency. It is generally believed that active processes in the
organ of Corti create a region of negative damping near the peak of the TW. This
corresponds to a Z¢p with a negative real part in this region of the CP (for a given stimulus
frequency). This in turn leads to a wavenumber with a negative dissipative component (via
equation [4.4]), which amplifies propagating waves in this region. The argument for this
form of the active impedance is discussed in detail by Zweig (1991) and de Boer (1996),
and is based on attempts to fit results from cochlear models to in vivo measurements of the

mechanical response of the mammalian cochlea.

68



Two different forms of the cochlear amplifier impedance have been adopted. The
first is based on the model of Neely and Kim (1986), but with the precise formulation and
parameters taken from Kanis and de Boer (1994). The second is based on Zweig’s model
(1990, 1991) with the parameters taken from Talmadge et al. (1998).

The (linear) cochlear amplifier impedance reported in Kanis and de Boer (1994) is:

1+if(x,m)
Ssc +i| fx,0) - 0 1 Blx,0)]

ZCA (X,CU) - eodowc ()C)
[4.12]

Bx,w) =

¢ (x)
where ¢g = 4.28x107° kgm'zs; dp = 1404 kgs‘l; Osc =0.14; 0=0.7; and ax is as given in
[4.10] for the KdB-1994. This impedance will be referred to as the Neely and Kim
cochlear amplifier, abbreviated to NK-1986, in this thesis.
The (linear) cochlear amplifier impedance formulated by Zweig (1990, 1991) and
reported in Talmadge et al. (1998) is defined by:

My Py a% (x)

2
. My P (x)
- )|+ —————
- exp[ iy Blx a))] i

Zoy(x,0) = exp[— iws,é’(x,a))]

B(x,w) =

¢ (x)
[4.13]
where my and @ are defined as for the passive model [4.9], [4.10]. The parameter values
are taken from Talmadge et al. (1998): pr=0.16; p; = 0.1416; yy=27x0.24;
Wy = 27rx 1.742 (the subscripts ‘s’ and ‘f’ referring to slow and fast feedback terms). This

impedance will be referred to as the Zweig cochlear amplifier, abbreviated to Z-1991.

4.6.3 The Scattering Impedance, Zs,

Three spatial forms of scattering impedance have also been modelled: the spatially
random inhomogeneities proposed by Shera and Zweig (1993b); the spatially periodic
corrugations proposed by Strube (1989); and (for comparison) a single CP impedance
discontinuity to generate a point reflection. In addition, a variant of Strube’s model has
also been used, where the corrugations are amplitude modulated in space, to give a narrow-
band rather than a purely sinusoidal variation.

The scattering impedance has been generated by starting with the passive damping
rate as a function of CP place, and multiplying this by a spatially varying perturbation

function. For Shera and Zweig’s model, the perturbing function is a gaussian random
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‘spatial white noise’ sequence; for the Strube model it is a sinusoidal function of place; and
for a point reflection site, the perturbation is a step function.

The use of the damping rate ensures that the scattering impedance is independent of
stimulus frequency, which means that the simplified phenomenological model due to
Zweig and Shera (1995) (to be discussed in section 4.8) becomes more applicable. The
effect of using frequency dependent forms of the scattering impedance based on perturbing
combinations of the CP mass, stiffness, or cochlear amplifier impedance have also been
explored. One of these alternative cases, in which the overall CP impedance is perturbed,
is reported here.

Mathematically the scattering impedance is defined in the following equations. In
cases [4.15] to [4.18], it is obtained by perturbing the passive damping term at any point,
r(x), which is determined by the mass, natural frequency and damping ratio:

r(x) = mgo(x)we(x) [4.14]

Five variants of the scattering impedance are detailed below.

(i)  The Shera-Zweig random scattering impedance
Zg (x)=r(x)ag.b(x) [4.15]
where ag, is the scattering amplitude parameter typically set between 0.001-0.01. The
spatial signal, b(x), is a very broad band random gaussian signal with a RMS amplitude
of 1, a lower cut-off spatial frequency given by 1/L, and an upper cut-off spatial frequency

given by 1/10 pm.

(i1)  The Strube spatially periodic scattering impedance
Z¢ (x)=r(x)ag sin(Qzx/l,) [4.16]
where ag, is the scattering amplitude parameter typically set at about 0.005 and s, is the

scattering length (or spatial period), set to between 0.35 and 0.5 mm.

(iii) The Strube narrow band scattering impedance

Z . (x)=r(x)ag.n(x) [4.17]
where as, is the scattering amplitude parameter typically set between 0.001 and 0.01. The
spatial signal, n(x), is a narrow band random gaussian signal with an RMS amplitude of 1,

a centre spatial period of 0.5 mm, and a spatial bandwidth of 2 mm .

(iv) The single point reflection site
This is achieved with a step function in the impedance

Z g, (x) = r(x)ag, sgn(x — xg,) [4.18]
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where as. is the scattering amplitude parameter typically set to about 0.03. xs, is the

location of the discontinuity and “sgn” is the signum function, which has a magnitude of 1

and a sign equal to the sign of its argument.

(v)  The Shera-Zweig frequency dependent random scattering impedance

In order to investigate the influence of the frequency dependence of the scattering
impedance, an alternative form of the random scattering has also been used, based on
perturbations of the entire CP impedance rather than the damping:

Z 5. (x,0) = Z paes (x,0) + Z cp (x,0) Jag b(x) [4.19]
where Zpao( x,w) and Zcys( x,w) are the CP passive impedance and cochlear amplifier
impedances, defined in [4.8]; as. is the scattering amplitude parameter typically set
between 0.001-0.01; and b(x) is a very broad band random gaussian signal with an RMS

amplitude of 1, a lower cut-off spatial frequency given by 1/L, and an upper cut-off spatial

frequency given by 1/10 pm.

4.6.4 Nonlinearity in Cochlear Models

Zweig and Shera’s analysis of SFOAE generation (1995) is based on a linear
cochlear model. However, to test the predictions of this analysis, this thesis uses the
nonlinear phenomena of self-suppression and two-tone suppression to modify the shape of
the TW. In order to predict the SFOAE frequency functions in these two nonlinear cases,
the quasilinear model of Kanis and de Boer (1993b, 1994, 1996) was modified to include
CP inhomogeneities. This model includes a representation of compressive nonlinearity in
the OHCs, but treats the nonlinearity using a simplified, ‘quasilinear’ method. It is capable
of predicting self-suppression, two-tone suppression, and distortion product OAE
generation.

The quasilinear method works in the frequency domain and is numerically very
efficient when only a few (in our case two) primary tones are present. It works iteratively
as follows. First the unsuppressed velocity response due to one tone is calculated as for
the linear model. This includes calculating the active pressure due to the cochlear
amplifier at each point on the CP, assuming no saturation. This is the notional active
pressure, denoted pea,Lin , that would arise for the given CP velocity in the absence of
saturation. This is then converted into a waveform in the time-domain, and passed though
a saturating nonlinearity. Here, following Kanis and de Boer, saturating nonlinearity is
modelled as a hyperbolic tangent function. The output of the saturating function is then
converted back into the frequency domain, retaining only the primary frequency component

71



and discarding any distortion terms. This then defines a new value for the active pressure,
denoted pca,pr. (for quasilinear) at each point. An effective quasilinear cochlear amplifier
impedance, Z¢4, g1, can then be calculated at each point from pcy,gr and the CP velocity.
Since saturation of the cochlear amplifier at any point affects the overall CP response, and
hence feeds back on itself, the CP response must then be recalculated, with this new Z¢4 g1,
in place of the linear value assumed initially. This process is repeated iteratively until the
response stabilises. This then gives the self-suppressed cochlear response due to the first
tone. This must then be repeated for the second tone (initially ignoring the presence of the
first tone).

Having obtained the self suppressed responses due to the two primaries in isolation,
their mutual suppression must be calculated. In this case, the two primary responses at
each point are again converted back into the time domain and added together to give the
total waveform of the CP active pressure. As before, this is passed though the hyperbolic
tangent function to obtain the waveform of the quasilinear active pressure, which is then
transformed to the frequency domain as before. The new effective Zcy gz, at the two
frequencies is then calculated in the frequency domain, and used to recalculate the total CP
response. This continues iteratively until the solutions for the two frequencies are stable.
The quasilinear assumption remains valid provided that the amplitude of the CP response
due to the presence of distortion products OAEs is much less than that due to the primary
tones.

It should be borne in mind that the details of cochlear nonlinearity are not at all well
understood, and that, as with all models, the model of Kanis and de Boer includes many
assumed characteristics and parameter values. Therefore its predictions are unlikely to be
quantitatively accurate, and should be treated with some caution. Despite this, this model
may still produce informative results which are unobtainable with linear models. The

nonlinear model was used to predict the modified shape of the TW in the self-suppression

and two-tone suppression cases.
4.6.5 The Middle Ear, Ear Canal and OAE Probe Model

A model of the middle ear, ear canal and OAE probe are required to complete the full
mathematical model, and allow SFOAEs in the ear canal to be predicted. For brevity, these
three models will be referred to collectively as the ‘front end model’.

The middle ear and ear canal can be represented by a two-port network (as in Kemp,

1980; Shera and Zweig, 1993a):
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Dst TI), Ty, :”:pEC J
= 4.20
{st J {TZI Ty | Opc 1420

where p denotes the acoustic pressure, Q the acoustic volume velocity, subscripts £C and
St indicate locations at the entrance to the ear canal and stapes respectively, and the matrix
elements Tj; define the transmission through the outer and middle ear. All terms are
complex, and functions of frequency.

The OAE probe is represented as an acoustic volume velocity source, Qg , With an

acoustic source admittance, Ys,. . The actual ear canal pressure and volume velocity are

then given by:

Prc = QSrc

Yo +Ypc 4.21]
Oue = QSrcY'EY'C

YSrc + Ygc

where Ygc is the ear canal admittance, which must be calculated from the models of the
cochlea, middle ear and ear canal. The ear canal admittance can be related to the stapes
impedance, Ys , by manipulating [4.20] to give:
= Tu¥s Ty [4.22]
T, 1,Y,

Thus, in addition to the cochlear model, the model becomes fully specified (at any given
stimulus frequency) when the six additional complex numbers defining the front end model
are specified. These are: Qsyc, Ysr, and the four terms in Tj;.

With this full model, the boundary condition given in [4.5] is no longer directly
applicable, since the stapes velocity is not explicitly defined. Instead, specifying the
volume velocity at the source, Qs;. , leads to a system of simultaneous equations which
must be incorporated into the matrix equation representing the finite difference
approximation to [4.4]. The system comprises equations [4.21] and [4.22], plus the
following relationship for the stapes admittance in terms of the semi-difference pressure
and semi difference pressure gradient, both evaluated at the base of the cochlea:

Y =0s /Py
where

1 dpy [4.23]
=A ; N — .
O St U st Ug; Dwp dx o

Pst =2pq | _,

and where Ag, is the area of the stapes.
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Three front end models have been used in this thesis. The first is a perfectly
transparent middle ear coupled to an OAE probe with a purely resistive admittance, which
leads to negligible multiple reflection of the cochlear TW (discussed in section 4.9). This
is similar to that used by Kanis and de Boer (1993b). The model is specified by Tq; = 56,
T2 =1/56, T13 =T21 =0, and Ysc = 2.941 m45kg"1 for all stimulus frequencies. The value
of Ys:c was chosen to match the typical admittance seen looking into the ear canal, between
1 and 2 kHz. This ensures that, when a backward TW in the cochlea encounters the stapes
it is largely dissipated by the source admittance, rather than being reflected. This model

will be referred to as the ‘ideal front end model’.

The second front end model has an identical transparent middle ear to the ideal front
end model, but is coupled to an OAE probe with zero admittance, leading to perfect basal
reflections (discussed in section 4.10). The model is specified by T3 = 56, T, = 1/56,

Ty, =T3 =0, and Ygr = 0 for all stimulus frequencies. This model will be referred to as
the ‘high reflection front end model’.

The third front end model is a more complex and realistic model due to Kringlebotn
(1988), in which the values of Tj; are strongly frequency dependent. The OAE probe is
treated as a perfect volume velocity source, achieved by setting the admittance, Ygye = 0.
This gives a strongly reflective termination of the cochlea at the stapes. Note, however,
that the stapes is still not a perfect reflector of backward cochlear TWs, because of
dissipative elements in the middle ear which are included in the values of Tj; . This model

will be referred to a the ‘Kringlebotn front end model’.
4.6.6 Numerical Solutions to the Longwave Model

The method of solution of equation [4.4] chosen in this thesis is the finite difference
method outlined by Neely and Kim (1986). Because of its apical and basal boundary
conditions, it is a boundary value problem, which must therefore be solved via
simultaneous equations. Typically the CP is discretized into about 1000 - 2000 points,
leading to a matrix equation that can be solved in seconds on a Pentium II PC to give the
ear canal impedance for any given single frequency.

The quasilinear models are solved using an identical method to the linear models.
They are, however, much slower because many iterations are required (at any given pair of
primary stimuli) before the response converges. In addition, at each point on the CP, and
for each iteration, it is necessary to convert the response into and out of the time domain,

thus increasing the computational burden substantially.

74



4.7 Some Important Features of Cochlear Models and their Responses

4.7.1 The Wave Nature of the Cochlear Response

Equation [4.4] would reduce to the simple wave equation if the CP impedance were
purely stiffness controlled (i.e., the stimulus frequency were well below resonance), and if
the stiffness were varying only very slowly with place. This situation is approached near
the base of the cochlea for low frequency stimuli. This resemblance to the wave equation
also illustrates the wave bearing nature of the cochlea. Mechanical wave propagation
requires a spatial distribution of two types of energy store: kinetic and potential. In the
cochlea, the kinetic energy is stored in the motion of the cochlear fluid, whilst the potential
energy is stored in the stiffness of the CP. Note that at frequencies above the characteristic
frequency at a given place, the impedance becomes mass-like rather than spring-like and
thus no longer acts as a potential energy store. Consequently TWs no longer propagate in
this region23 (Patuzzi, 1996).

There are a number of important differences between the equation [4.4] and the
simple 1-D wave equation familiar from acoustics, in which the phase speed is both real
and independent of frequency and place. In equation [4.4] the phase speed, crw is a
function of both x and @, and is a complex number which may lie in any one of the four
quadrants of the complex plane. This gives rise to very complicated TW behaviour, even
for this simplified 1-D, linear model. In fact, in the general case of equation [4.4], where
the phase speed term, crw , is allowed to be any arbitrary function of x, the mechanical
response of the cochlea, as defined by the solution, ps(x), of [4.4], cannot always be
represented simply as the sum of forward and backward going “waves”. In these cases, the
definition of terms such as “wave” and “reflection” can become complicated. The general
problem is discussed by Kaernbach ez al. (1987), Shera and Zweig (1991a, 1991b, 1993a),
de Boer and MacKay (1980), de Boer et al. (1986), Viergever and de Boer (1987), and
Talmadge et al. (1998).

One important result arising from these analyses is as follows. Cochlear models
which have no scattering impedance are approximately “reflectionless” in the sense that no

ripples appear in the frequency response function of the driving point acoustic impedance

» The TW is said to be “evanescent” in this region.
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measured at the oval window®*. This result holds whether or not the cochlear amplifier is
present, provided that the CP impedance varies only slowly with place (as is the case with
the model parameters specified in section 4.6). This allows SFOAEs from the cochlear
models to be defined in terms of the difference in the response measured in the ear canal
between a reflecting and a reflectionless cochlear model. At first sight this may appear to
differ from the definition of OAEs in terms of their origin in active cochlear processes
(section 2.1). However, as is discussed in sections 3.4 and 5.3, it turns out that the cochlea
is approximately reflectionless if either the scattering impedance or the cochlear amplifier
impedance is zero.

A second useful result that arises when the scattering impedance is zero and when the
spatial variation in the CP impedance® is slow is that a simplified method of solution of
the wave equation [4.4] can be used. This method, known as the Wentzel-Kramers-
Brillouin (WKB) method, obviates the need for the finite difference solution method
described earlier (Zweig et al., 1976; Shera and Zweig, 1991b; de Boer, 1996; Talmadge et
al., 1998; Viergever and Diependaal, 1986). It has been shown that the WKB method is
applicable to most active and passive cochlear models over a wide range of stimulus
frequencies (provided the scattering impedance is zero) (Shera and Zweig, 1991b). The
fact that the WKB method is valid also provides insight into the nature of the mechanical
response since it allows the response to be written as the sum of forward and backward
going waves. This further illustrates the wave bearing nature of the cochlea and allows the
flow of wave energy within the cochlea to be easily identified. The validity of the WKB
method implies that the cochlea is reflectionless®® as discussed above. However, the
reverse is not necessarily true: the cochlea may be reflectionless without the WKB method
being applicable (Shera and Zweig, 1991b). The WKB method has been used in this thesis
to check the results of the finite difference method, but has not been used for the final
results since it is not directly applicable when the scattering impedance is non-zero.

It is sometimes mistakenly reported (e.g., Pickles, 1988, p. 49) that backward TWs
are prohibited by the spatial variation in the BM properties. This appeared to be
demonstrated by an experiment in which acoustic stimulation at the apex of a cat cochlea
appeared to generate a forward TW originating at the stapes, rather than the expected

backward TW (Lighthill, 1981, p. 178). A full explanation for this apparently paradoxical

# Contradicting this general result, Talmadge er al. (2000) present results from a ‘smooth’ cochlear model
which show some reflections arising purely from cochlear nonlinearity. However, these nonlinear reflections
give rise to ripple with very high frequency spacing (i.e., high periodicity), and to ripple amplitudes that are
generally much less than those due to the scattering impedance.

5 More strictly the wave impedance, which is related to the CP impedance, and the height of the scalae.

%6 When the WKB method applies, reflections can only arise at the boundaries of the CP.
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result is given by Lighthill (1981). Qualitatively, this argument is most easily understood
by considering a volume velocity excitation of the apical wall of the cochlea which is
symmetric in the upper and lower channels?’. Symmetric excitation (i.e., push-push) does
not couple to the cochlear TW, but instead generates a ‘fast” compression wave that travels
backward (in both channels) to the base of the cochlea. Here it encounters asymmetric
boundary conditions due to the different impedances of the oval and round windows. This
gives rise to asymmetric velocities in the upper and lower channel, which in turn give rise
to a forward cochlear TW, as observed (recall that only asymmetric loading couples to the
TW). Even if the apical excitation is not purely symmetric, any symmetric component will
still generate a significant fast wave followed by the forward TW. Also, any asymmetric
component will only initiate a significant backward TW if the stimulus frequency is lower
than the characteristic frequency at the cochlea apex. Therefore it is easier to generate
forward cochlear TWs than backward ones using an apical volume velocity source. Note
that this situation does not arise in the case of the cochlear amplifier. To see this, consider
the hypothetical case in which the cochlear amplifier applies a force at a single point on the
CP, in the absence of any other excitation. Unlike the previous case, the alternating force
on the CP leads automatically to a purely asymmetric loading of the two channels. This
then generates both forward and backward TWs radiating out from the point of application

of the force. Because there is no symmetric loading, there is no fast wave.

4.7.2 Validity of the Longwave Model

The longwave approximation becomes applicable when the wavelength is much
longer than the height of the channel (de Boer, 1996, suggests k H<1). In this case the fluid
y-momentum equation may be ignored (as it is in the derivation of the longwave equation).

The longwave approximations break down as the wavelength of the TW becomes
much smaller than the height of the cochlear channel, which occurs in the region of the
peak of the TW envelope. Since it is in this region that SFOAESs are thought to be
generated, this may seem like a fatal shortcoming of the longwave model for predicting
SFOAEs. However, it is claimed by Zweig and Shera (1995) that the longwave model
qualitatively captures all the features of the TW that are essential for SFOAE generation.
The main feature is the ‘tall and broad” TW envelope. A more general argument for the

use of the longwave approximation in macromechanical models is given by Zweig (1991,

" Equally a volume velocity source could be introduced.
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p. 1246). A discussion of the use of the longwave model for the analysis of self-
suppression, two-tone suppression and DPOAE generation in macromechanical models is

given by Kanis and de Boer (1993b, 1994, 1997).

4.7.3 Higher Dimensional Models

Several 2 and 3-dimensional cochlear models have been developed, which have the
advantage over 1-D models of more accurately modelling the shape of the TW peak. These
are discussed by Lighthill (1981), and de Boer (1980, 1996). These could perhaps be
useful for improving the quantitative predictions of SFOAEs. However, following Zweig
and Shera (1995), and avoiding excessive complexity, this possibility has not been

investigated in this thesis.
4.7.4 Active Processes and Stability

In active cochlear models, the cochlear amplifier is included in equation [4.4] as a
(linear) component in the CP point impedance, and is of crucial importance to the
generation of SFOAEs. Two questions are sometimes asked. Firstly, does the cochlear
amplifier provide ‘undamping’ or ‘amplification’? Secondly, is the cochlea stable (de Boer;
1993)?

‘Undamping’ means that the active processes act to oppose the passive damping, but
that overall the CP remains positively damped (i.e., the real part of Z¢4 is negative in some
regions of the place-frequency plane, but the real part of Z¢p always remains positive).
The predicted response of an active system with undamping is no different from a passive
system with light damping. It has been argued that the measured cochlear mechanical
response cannot be explained by undamping alone, but that active amplification is required
(de Boer, 1983, 1993; Zweig, 1991). Also, SOAEs clearly cannot arise from a system with
undamping.

A system with active amplification is one which appears to be negatively damped
(i.e., the real part of Z¢cp becomes negative) in certain regions of the place-frequency plane.
Such a system is capable of injecting energy into the TW to enhance it. As discussed
previously, this does not, by itself, generate OAESs. Instead it creates a region of the CP in
which the TW grows, but is not reflected. This is the reverse of the situation where a wave

propagates through a dissipative system: the amplitude of the wave decays, but no

reflection occur.
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In systems with active amplification, the problem of instability may arise, which
might have undesirable effects on the performance of the cochlea. Two aspects of
instability have been distinguished in the literature. Firstly a point on the CP, when
isolated from the rest of the model, may be unstable. This can simply be checked by
examining Zcp as a function of frequency at each point and applying the usual stability
criteria for a transfer function (Hsu, 1995). Secondly, and more importantly, the entire
system may be unstable. This can only be checked by solving equation [4.4], subject to its
boundary conditions. Because these depend on the middle ear model and on the impedance
of the OAE probe, so too will the stability of the cochlea. It is this second form of
instability that is the more important one for this thesis.

The CP impedance of each element used by Kanis and de Boer (1993b) was unstable
when in isolation, but became stable when all the elements were coupled together in their
model. This is because, for any given frequency, there is negative damping over only a
limited region of the CP. Elements within this region become stabilised by their
hydromechanical coupling to positively damped regions. Also, Kanis and de Boer (1993b)
deliberately chose a middle ear model that would prevent instabilities, by minimising any
basal reflection of the TW.

The CP impedance suggested by Zweig (1990, 1991) is stable both when in isolation
(despite having a negative resistance at certain place-frequencies), and when coupled
together within the cochlea (except at certain frequencies, as discussed below).

Use of a simple negative damper (i.e., overall negative resistance at all places and all
frequencies) would lead to both instability of the elements in isolation, and when coupled
together in the cochlea. This type of activity is included in the model reported by van
Hengel et al. (1996) where strong nonlinearity is proposed to limit the instability. The
problem of instability in models is discussed by Koshigoe and Tubis (1983) and Zweig
(1991).

Cochlear models including active processes of the form given by Kanis and de Boer
(1993b) or Zweig (1991), though stable at most frequencies, can become unstable at certain
frequencies when inhomogeneities are introduced leading to reflection of the forward TW.
These instabilities, arising from multiple reflections due to the CP inhomogeneities and the
impedance mismatch at the stapes, are thought to be the cause of SOAEs (e.g., Kemp,
1980; Talmadge and Tubis, 1993; Talmadge et al., 1998). The precise values of these
frequencies depend on the impedance seen by the TW “looking out” of the oval window,

and are therefore dependent on the middle ear, ear canal and OAE probe impedances.
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4.7.5 Scaling Symmetry

Scaling symmetry arises when all the variables in equation [4.4] are functions not of

x and windependently, but of a single variable, 5, , defined here as:

B () = —2—— [4.24]

W e

(which defines the ratio of the stimulus frequency, @, to the local natural frequency,

W, e where @, is the basal natural frequency). This means that cochlear responses

(such as the fluid pressure or CP velocity) can be represented as a one dimensional curve
against the f-axis instead of as a 2-D surface above the x-@ plane. For this to occur, the
CP impedance must vary with x and win a particular way (Shera and Zweig, 1991a). Note
that the passive impedance in equations [4.9] and [4.10] is an example of one leading to
approximate scaling symmetry. (Even greater scaling symmetry arises when the cross-
section of the cochlear scalae tapers exponentially; Shera and Zweig, 1991a). Scaling
symmetry in the cochlea has two important consequences. The first is that the cochlear
response shows symmetries that greatly simplify the analysis. The second is that no
SFOAE:s with spectral periodicity are generated.

The first consequence is that the spatial pattern of the pure-tone cochlear response
shows shift symmetry. This means that the pure-tone TW magnitude and phase responses
(1.e., spatial pattern) at two different stimulus frequencies are identical, except for a
translation in place. It follows then that knowledge of the pure-tone TW response along
the cochlea at a single stimulus frequency is sufficient to define the response along the
cochlea at all frequencies. Alternatively, knowledge of the frequency response at any fixed
point on the cochlea is sufficient to define the frequency response at all places.
Furthermore, place and frequency show a very simple symmetry. This symmetry means,
for example, that the graph of the CP velocity plotted against cochlear place at a fixed
stimulus frequency looks identical to the graph of CP velocity plotted against the logarithm
of stimulus frequency at fixed place. Thus cochlear place and the logarithm of stimulus
frequency become completely interchangeable (requiring only multiplication by a simple
scaling factor).

The second consequence is that the phase response of any SFOAE from a scaling
symmetric cochlea is virtually flat with frequency. This is unlike the steep phase curve
which 1s approximately linear with logarithmic frequency, and which is observed

experimentally. This result led Kemp (1986) to conclude that the observed SFOAEs could
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not arise from a ‘wave-fixed’ reflection site. This result is further discussed by Strube
(1989), Zweig and Shera (1995) and Shera and Guinan (1999).

In the theory of Zweig and Shera (1995), the cochlea shows only partial scaling
symmetry. They argue that, to a first approximation, the cochlea shows scaling symmetry
with regard to its primary response (i.e., the shape of the forward TW). However, place
fixed features in the cochlea cause a break from scaling symmetry leading to lead to
secondary responses such as SFOAEs. These secondary responses are, in general,
significantly less than the primary responses. To achieve this situation in their cochlear
models, the passive and active CP impedances in equation [4.8] show approximate scaling
symmetry, whilst the scattering impedance does not. Thus, the scattering impedance
provides the break from scaling symmetry which leads to the generation of realistic (long
latency) SFOAEs in the first place, whilst the passive and active impedances show the
approximate scaling symmetry which leads the scattering sites to generate SFOAEs of

approximately constant periodicity.
4.7.6 Alternative Formulations of Published Cochlear Models

In this section, the cochlear models used in this thesis are compared with other
models found in the literature. Often the longwave equation [4.4] is implemented as a
discrete 1-D transmission line, where the cochlear fluid mass and the CP mechanics are
replaced by their electrical analogues. These transmission line models are essentially the
same as the discrete form of the wave equation described above. A comparison of several
transmission line models demonstrating their high degree of equivalence is given by de
Boer (1995).

Models have been developed with several different objectives in mind. One
objective has been to match those cochlear responses that have been measured directly in
experiments, such as BM vibration, or hair cell potentials, or neural responses (e.g.,
Zwicker, 1979; Neely and Kim, 1986; Geisler, 1991; Kolston, 1988; Kolston and
Smoorenburg, 1990; Neely, 1993; Zweig, 1990, 1991; Allen, 1988, 1990; Kanis and de
Boer, 1993a). Some of these models include a cochlear amplifier in some form, and also a
more detailed micromechanical model, but they all exclude the scattering impedance
required to predict SFOAEs.

Kanis and de Boer (1997) included a nonlinear cochlear amplifier which leads to the
generation of DPOAEs from the model, but exclude a scattering impedance, and therefore

are unable to generate SOAEs, SFOAEs or TEOAE:s.
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Of more direct relevance are models that include both a cochlear amplifier and a
scattering impedance. These include models reported by Furst and Lapid (1988),
Fukazawa (1992), Fukazawa and Tanaka (1996), Zwicker and Lumer (1985), Zwicker and
Peisl (1990), Zweig and Shera (1995), Talmadge et al. (1998) and Wada et al. (1999). The
main results of these models can be reproduced using the model developed here. These are

presented in section 5.3.
4.8 Zweig and Shera’s Phenomenological Model of SFOAEs

Zweig and Shera (1995) present a simplified analysis of the 1-D longwave model,
which gives a useful approximate relationship between the reflectance measured at the base
of the cochlea, the shape of the TW and the CP scattering impedance. This relationship
holds for a large class of scattering impedance functions, not just the random function
proposed by Shera and Zweig. In this thesis, this simplified model has not been used to
generate any of the final quantitative predictions in this thesis. However, it is introduced
here because of its power in explaining the basic form of SFOAE:s.

The basal reflectance (introduced in section 2.2) relates the backward TW to the
forward TW at the base of the cochlea. Being evaluated at the base of the cochlea, it
contains information about both the scattering mechanism and the TW propagation to and
from all the scattering sites apical to the base. The phase of the reflectance is related to the
overall delay arising from TW propagation as well as to any phase changes induced by
scattering. The magnitude of the reflectance is related to the amplification or dissipation of
the TW occurring during propagation, as well as to the degree of backward scattering. As
seen in fig. 2.4 and 2.5, the form of this basal reflectance closely resembles the SFOAE
measured in the ear canal. In fact the two are related by a fairly simple equation given in
the next section.

In the phenomenological model, it is first assumed that the primary cochlear
responses exhibit scaling symmetry, which means that it is possible to transform cochlear
location directly onto a stimulus frequency scale (as discussed in section 4.7.4). Second, it
is assumed that the scattering impedance, Zs, , is roughly independent of frequency (as it
would be if the inhomogeneities were only in the CP damping). Zweig and Shera then

show that the relationship between the cochlear reflectance, R, the CP scattering

% For this relationship to hold, the scattering impedance must be independent of stimulus frequency, but may

have any arbitrary spatial variation.
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impedance, Zs. , and the TW function, T, can be cast in the form of a simple linear filtering

operation:

R(n)= ps.(n)®T*(n)

nw)=-In(w/ @c, ) [4.25]

T (@) = vCP (X,CU)

ug; (@)
@ X
Ox,w)=In| —— | =——
(x, ) n[wc()e—ﬂd} ~ @)

where R is the cochlear reflectance; ps, is called the scattering potential, and is roughly
proportional to Zg, ; T is the TW function defined as the basilar membrane velocity, vcp,
normalised with stapes velocity, us:; and ® denotes convolution. Scaling symmetry
ensures that 7 is a function of a single variable, ©, rather than of both x and @ (Note that
© =1n B, where S, ,is given in [4.24].) The independent variable in the filtering
operation, 7, is the natural logarithm of the stimulus frequency, normalised with a
reference frequency as in [2.11]. This quantity is denoted by ¥ in Zweig and Shera’s
notation (1995).

From equation [4.25], the mathematical recipe for generating the reflectance
spectrum is as follows. To form s ( 77) , first plot the scattering potential as a function of
cochlear place, x, then map place to the characteristic frequency using [4.10]. Plot this on a
logarithmic frequency scale, denoted by 7. To form T ( 77) , plot the CP velocity response
against place, x, at a single frequency, normalise with the stapes velocity, and again map
place to the log frequency variable, 77 as before. To obtain R ( ), ps. ( #7) is passed
through a filter whose impulse response function is given by T (7). Thus R ( 77) contains
the spatial frequency components in gs. ( 77), filtered by the spatial passband of the TW.

Physically the act of sweeping the stimulus frequency is to sweep the TW peak across
the CP inhomogeneities. The forward TW in the peak region is reflected by spatial
arrangements of the inhomogeneities that have a spatial period equal to half the TW
wavelength. The forward TW outside the peak region is too small to give strong
reflections.

Fourier transforming equation [4.25], gives:

F{R}=F{ps )} F(T?}
n<e ¢

[4.26]
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where F{...} denotes the Fourier transform, from the logarithmic frequency variable, 7, to

its conjugate, ¢, as defined by:
F{A}= [  A(pexp(-i2mpn)dn [4.27]

For Shera and Zweig’s model, " { R } appears pulse like in the ¢-domain. The peak
of the pulse occurs at a location called here the ¢-centre value and denoted by ¢@¢. (Zweig
and Shera (1995) denote this @ /27z. The value of 2 arises from their definition of the
Fourier transform, which maps time to radian frequency). The value of ¢, is related
directly to the ‘average’ single-ripple spectral periodicity, ¥, of the SFOAE, by the
equation (Zweig and Shera, 1995):

g & 1 [4.28]
feur  9Pc

where, in humans, typically ¥ = 1/15. In [4.28] Af.is the peak to peak frequency interval,
and feur is the geometric mean frequency of two adjacent peaks. It follows from [2.15]
that ¢ is also equal to the group cycle delay, decp -

The following terminology will be adopted to distinguish the various different
independent variables used in representing the SFOAE and related signals. The term
‘frequency spectrum’ indicates that the signal is tabulated as a function of linear
frequency, f. An ‘m-series’ or ‘»-function’ indicates that the signal is tabulated as a
function of the logarithmic frequency, 7. The term ‘@-spectrum’ indicates the signal has
first been mapped to the #-domain, and then Fourier transformed to the ¢-domain, by
[4.27].

This phenomenological model allows the cochlear reflectance to be estimated for a
given scattering potential and TW function. Fig 4.4 illustrates the form of the reflectance
that results from the interaction between a random array of CP inhomogeneities, and a
simplified TW function. This TW function represents the peak region only, and has been
approximated by a simple pulse shaped envelope and a linear phase (i.e., a constant
wavelength). The cochlear reflectance has been synthesised digitally in Matlab by
generating a white-noise signal to represent the spatially random scattering potential. This
is then passed through a band-pass filter representing the TW function. The resulting band-
pass signal then gives the estimated cochlear reflectance as in [4.26]. In fig 4.4,

cochlear location, x, and spatial frequency have been transformed into 7 and @respectively.
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Fig 4.4. Tlustration of the predicted cochlear reflectance due to spatially random inhomogeneities, according
to Zweig and Shera’s phenomenological model (1995). The cochlear reflectance has been synthesised from
an assumed scattering potential and travelling wave function. The scattering potential is a broad band random
function of place, with place transformed to 7 via the place-frequency mapping. A simplified travelling wave
function with linear phase and gaussian envelope has been assumed. The reflectance is calculated from the
convolution of the scattering potential with the travelling wave function in the 7-domain, where 77 is the
logarithm of the stimulus frequency, normalised with the characteristic frequency at the stapes. Panel (a):
Scattering potential, modelled as a broad band random irregularity along the basilar membrane. Panel (b):
simplified travelling wave function modelled as a single pulse of constant wavelength. Panel (c): resulting
cochlear reflectance. Panels (d), (e) and (f) are the Fourier transforms of (a), (b) and (c) respectively, where ¢

is the conjugate Fourier variable.
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Fig 4.5. Tlustration of the predicted cochlear reflectance due to spatially periodic inhomogeneities, according
to Zweig and Shera’s phenomenological model (1995). The cochlear reflectance has been synthesised from
an assumed scattering potential and travelling wave function. The scattering potential is a periodic function
of place, as suggested by Strube (1989), with place transformed to 77 via the place-frequency mapping. A
simplified travelling wave function with linear phase and gaussian envelope has been assumed. The
reflectance is calculated from the convolution of the scattering potential with the travelling wave function in
the 7-domain, where 7 is the logarithm of the stimulus frequency, normalised with the characteristic
frequency at the stapes. Panel (a): Scattering potential, modelled as a broad band random irregularity along
the basilar membrane. Panel (b): simplified travelling wave function modelled as a single pulse of constant
wavelength. Panel (c): resulting cochlear reflectance. Panels (d), (e) and (f) are the Fourier transforms of (a),

(b) and (c) respectively, where ¢ is the conjugate Fourier variable.
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Fig 4.5 shows the synthesised reflectance resulting from a Strube type CP corrugation
interacting with the same simplified TW function. This was synthesised in Matlab as
before except that a sine wave is used in place of the white noise signal to represent the CP
scattering potential.

These two figures illustrate several important points. The ¢-domain is related to the
spatial domain by the Fourier transform. Thus central location of a function in the ¢
domain (which will be referred to as the ¢-centre value of the function) corresponds to a
spatial frequency, whilst the width of the function in the g-domain (which will be referred
to as the ¢-bandwidth of the function) is inversely related to the width of the function in the
spatial domain. In the Shera and Zweig model, the periodicity in the reflectance (and
therefore in the SFOAE frequency function) is determined predominantly by the location in
the ¢-domain of the peak in the Fourier transform of the TW function. This peak location
is determined by the wavelength. (Notice, however, that the peak of the reflectance in the
¢-domain does not coincide exactly with the peak in the TW in the ¢-domain, because of
the random nature of the scattering potential.) In contrast, in the Strube model, the
periodicity is determined by the location in the ¢-domain of the peak in the Fourier
transform of the scattering potential function, which is determined by the spatial period of
the cochlear inhomogeneities. Thus in Shera and Zweig’s model it is the TW wavelength
which determines the periodicity, whilst in Strube’s it is the corrugation wavelength. This
is important because it means that according to Shera and Zweig’s model, but not Strube’s
model, changes in the TW function will show up in the SFOAE frequency function. For
example, increasing the level of the input signal is known to cause the (normalised) TW
envelope to reduce in height, to broaden, and for the wavelength increase. For Shera and
Zweig’s model, these three changes will manifest themselves in the ¢-domain of the
SFOAE as a reduction in height, a narrowing of width® and a shift in the peak towards
smaller values of ¢ This thesis sets out to look for experimental confirmation of these
effects predicted by Shera and Zweig.

It could be argued that the SFOAEs arising from Strube’s model (fig. 4.5) are
unrealistically regular. However, this is not a fundamental objection to Strube’s theory.
More realistic SFOAEs would have been obtained in fig. 4.5 if the spatially periodic
scattering potential (fig. 4.5a) were replaced with a narrow-band random scattering
potential. This model could then be thought of as lying somewhere between Strube’s

proposed periodic scattering potential and Shera and Zweig’s broad band random scattering

 This follows from the ‘inverse spreading’ relationship which holds between a pulse-shaped function and its
(pulse-shaped) Fourier transform (e.g., Randall, 1997).
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potential. However, there remains an essential difference between the two theories: in
Strube’s theory the periodicity is determined predominantly by the spatial periodicity in the
CP scattering potential (i.e., the input to the spatial filter), whereas in Shera and Zweig’s
model the periodicity arises from the TW wavelength near the peak of the TW function
(i.e., the centre frequency to the spatial filter). From consideration of Shera and Zweig’s
phenomenological model, it can be seen that, provided the ¢-bandwidth of the CP
scattering impedance function is significantly less than that of the TW function, and that its
¢-centre value falls within the pass-band of the TW ‘spatial filter’ then the resulting
SFOAE periodicity will be dominated by the spatial periodicity of the CP scattering
potential, as suggested by Strube. Thus a model may be described as a Strube model
whenever the SFOAE periodicity is dominated by the spatial periodicity of the CP
scattering potential, rather than by the wavelength at the TW peak.

The form of the cochlear reflectance and of the SFOAE predicted by Shera and
Zweig’s phenomenological theory with spatially random inhomogeneities is further
illustrated in fig. 4.6. For ease of interpretation in this (and subsequent) illustrations of
signals in the 7-domain, the value of 7 will be converted by a linear transformation into the
more familiar units of octaves, denoted 77y, as in [2.10]. These are calculated with respect
to an a?gffra;:;)}(}%fq‘e(rj;n/c];Rffe)quency, fret» chosen here to be 1 kHz.

% +A [4.29]
Note that ahf]%ctor ?ga out 0.69 is introduced in converting 77to #o;. Thus, if the function

D¢ Ref)
when pﬁ(ﬁted“ag%n'ﬁt)—%%p?kﬂ{l{ﬁ% 6030 ripple cycles per octave, (i.e., a ripple period of

S Noer =

n
1/10 octaves) then the ¢g-spectrum will show a peak at around 10/0.69 = 15, indicating a

periodicity of 1/15. Note that the conversion to octaves has not been made in figs. 4.4 and
4.5, since these plots emphasise the fundamental filtering relationships, where the change

of variable would be confusing.
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Fig 4.6 Representations of the complex cochlear reflectance synthesised using Zweig and Shera’s
phenomenological model (1995) with a random scattering potential. Panels (a) and (b): the real and
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frequency). Panel (c): real part plotted against the imaginary part. Panels (d) and (e): the magnitude and
phase of the reflectance plotted against the 775.-variable.
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Fig 4.6 shows how the periodicity appears in several alternative representations of the

cochlear reflectance, R, in the 7 (or log frequency) domain, as predicted by Shera and

Zweig’s phenomenological theory. According to this theory, F { T} is one sided (i.e., it

is non-zero only for positive values of ¢). Consequently, from equation [4.26], F { R } is

also one sided, and therefore the function R ( 7) has a special form known as the analytic
form, whereby the real and imaginary parts of R form a Hilbert transform pair. As has
already been discussed in section 2.13, this means that in the 7-domain, the real part of R
resembles the imaginary part delayed by 90°, as is seen in figs 4.6 (a) and (b). The
periodicity of the SFOAE, which is here approximately 1/15, shows itself as a ripple in the
real and imaginary parts in figs 4.6 (a) and (b) with a peak-to-peak interval, A7y, of about
1/10. Fig 4.6 (c) shows how, as the stimulus frequency increases, the locus of R loops
around the origin of the complex plane, at a rate of one cycle per increment in #p.; of 1/10.
Figs 4.6 (e) and (f) show that the magnitude of the reflectance is typically around 0.2, while
the slope of the phase is roughly constant, at about one cycle per increment in #p,; of 1/10.
The periodicity does not show up at all in the magnitude of R shown in fig. 4.6 (d). The
random fluctuations seen here are determined by the ¢-bandwidth rather than the ¢-centre
value. The cochlear reflectance in fig. 4.6 resembles the idealised OAE (in the absence of
multiple reflections) shown in fig. 2.4, except that its magnitude fluctuates randomly with

frequency.

4.9 Relating the Ear Canal Pressure and the SFOAE Frequency Spectrum to

the Cochlear Reflectance

The relationship between the SFOAE pressure, psr, at the probe microphone and the
cochlear reflectance, R, has been derived by Kemp (1980) and Shera and Zweig (1993a).
This analysis uses a two-port network model of the middle and outer ear, coupled to the
cochlear input impedance which is characterised in terms of the cochlear reflectance and
non-reflecting impedance. The result from Shera and Zweig (1993a) is given in equation

[4.30]:

R
pp =20 = gR(L+ IR +(rR)*+...)
1-rR
py=—DSE [4.30]
PEC:R=0

PsrF = PEc — PEC:R=0
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Here pEc is the ear canal pressure measured for a cochlear reflectance of R whilst pgc.g=o is
the ear canal pressure that would have been measured if the cochlear reflectance were zero.
The SFOAE pressure, psr, is defined as the difference between these two (complex)
pressures. The non-dimensional quantity, pa , which will be referred to as the ‘normalised
SFOAEFE’, is obtained by dividing the SFOAE pressure, psr , with the zero-cochlear-
reflectance ear canal pressure, prc:r=0- The functions g and r are related to the middle ear,
ear canal, and probe impedance characteristics. They can be calculated from the front end
model parameters given in section 4.6.5. All terms are complex functions of frequency.
The expansion for pa shows how the SFOAE can be represented as the sum of multiple
reflections within the cochlea (cf. equation [2.4]). The quantity, r (termed the basal
reflectance) is the reflectance at the stapes as seen by a backward TW leaving the cochlea,
whilst R (the apical cochlear reflectance) is the reflectance due to the CP scattering
inhomogeneities encountered by a forward TW. Therefore the forward wave of amplitude
A returns to the stapes as a backward wave of amplitude AR, which is further partially
reflected at the stapes to give a new forward wave of amplitude ArR and so on. Each time
the backward wave encounters the stapes, a proportional of the energy is transmitted out
into the ear canal. These multiple backward waves sum in the ear canal to give the
measured OAE. As for the idealised OAE considered in fig. 2.5, the magnitude of R
determines the size of the first reflection, whilst the product ¥R determines how significant

multiple reflections are.
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Fig 4.7. Representations of the complex normalised SFOAE pressure synthesised using Zweig and Shera’s
phenomenological model (1995) with a random scattering potential, and assuming thatg=1;r=11in
equation [4.30]. Panels (a) and (b): the real and imaginary parts plotted against the 7j,,, variable. Panel (c):
real part plotted against the imaginary part. Panels (d) and (e): the magnitude and phase of the reflectance
plotted against the 7Jo.,-variable. Thick line = complex normalised SFOAE pressure; thin line = cochlear

reflectance.
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Fig 4.8 The effect of multiple reflections due to the middle ear on the predicted normalised SFOAE pressure
in the 7o, and @ domains. Data have been synthesised using Zweig and Shera’s phenomenological model
(1995) with a random scattering potential. Panel (a) shows the cochlear reflectance (solid line = real part;
dotted line = imaginary part); (b) shows the normalised SFOAE resulting from the cochlear reflectance with
the parameters, g = 2; r = 1 both assumed independent of frequency (solid line = real part; dotted line =
imaginary part); (c) and (d) are the Fourier transforms of (a) and (b) respectively, where ¢ is the conjugate
Fourier variable to 7.
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Fig 4.9. Representations of the complex ear canal pressure synthesised using Zweig and Shera’s
phenomenological model (1995) with a random scattering potential, and assuming that g = 1; 7= 1; prcr=0 =
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real part plotted against the imaginary part. Panels (d) and (e): the magnitude and phase of the reflectance
plotted against the 77,.~variable. Solid line = ear canal pressure; dotted line = ear canal pressure for a
reflectionless cochlea.
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Fig. 4.7 shows alternative representations of p, in the 7—domain, for a case where
multiple reflections are significant (r = 1, and the rms amplitude of R is 0.25). It shows
similarities to the idealised OAEs seen in fig. 2.6, except for the random fluctuations in R.
The effect of multiple reflections is to change the approximately sinusoidal ripple in Im{R }
to a ripple in Im{ pa } approaching a tangent function (fig. 4.7a and b). Also note from
[4.30] the real and imaginary parts of pa , like those of R, form a Hilbert transform pair
(i.e., they are shifted by 90° relative to one another). Fig 4.7 (c) shows that the multiple
reflections shift the locus of pa to the right hand side of the complex plane. The size and
direction of this shift depends on the magnitude and phase of rR. Fig 4.7 (d) and (e) show
that multiple reflections cause ripples in the magnitude and phase of p that would
otherwise be absent. These ripples have the same periodicity of about 1/15 as is seen in the
real and imaginary parts. The average slope of the phase of pa also equals the periodicity.
From this it can be seen that the group delay at any given stimulus frequency, which is
determined by the slope of the phase of px when plotted against linear frequency, will be
related to the periodicity and the value of the stimulus frequency.

Generally er | <1 and therefore the binomial series expansion, [4.30], converges.
However, it is postulated that sometimes, since R involves active amplification, it is
possible that | R | >1 (Kemp, 1980; Zweig and Shera, 1995; Talmadge et al., 1998). If
rR =1, such that a doubly reflected wave is neither reduced in amplitude, nor altered in
phase, then the wave becomes self sustaining. As discussed in section 3.6, this
phenomenon is thought to be the origin of SOAESs.

Fig 4.8 illustrates how the presence of multiple reflections appears in the ¢g-domain.

The single pulse in F { R } appears as a series of pulses of decreasing amplitude in
F { pa}, centred at multiples of the fundamental ¢-centre value (here equal to 15). These

predicted forms of ps and F' { pa } are important, because p, (unlike R ) is a directly
measurable quantity.

The relationship between the actual ear canal pressure and the normalised SFOAE,
can be found by rearranging [4.30], to give [4.31]:

Prc = PEc:r=0(1+ Py) [4.31]
This is illustrated in fig. 4.9 for a case where the zero-cochlear-reflectance ear canal
pressure, prc:r=o0 1s independent of frequency. Unlike pa , the ear canal pressure, ppc shows

ripples in both its magnitude and phase, even in the absence of multiple reflections. The
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locus of pgc in the complex plane is equal to that of pa (fig. 4.7 ¢), plus an offset of 1, and
with an additional scale factor. See also the phasor diagram, fig 2.2, for comparison.

In the macromechanical models, the actual values of g and r depend on the front end
model and on the impedance of the ear canal for a zero-reflectance cochlea. For the ideal
front end model (section 4.6.5), g = 1 and r = 0, independent of stimulus frequency. Thus,
in this case, basal reflections are negligible, and the SFOAE is approximately equal to the
cochlear reflectance. For the high reflection front end model, g = 2 (due to the pressure
doubling) and r = 1. For the Kringlebotn front end model (section 4.6.5), over the
frequency range of interest (1.5-3 kHz), the value of |g| varies from -9 down to -26 dB,
and of |r| from 0.4 up to 0.7. It is this fall off in the function, g, that is responsible for the

fall off in measured SFOAE:s as the stimulus frequency increases above about 1.5 kHz.

4.10 Relating the Observed SFOAE Periodicity to Travelling Wave Shape

According to equations [4.26] and [4.30] the periodicity of the normalised SFOAE,
Da » 1s characterised by the location of the peak of the ¢-spectrum, denoted by ¢ (cf.
section 2.11). This in turn is related to the slope of the phase of the TW function near the
TW peak, which is inversely proportional to the TW wavelength. This leads to the

following relationships (Zweig and Shera, 1995):

¥ E——éf-—zizizl/ﬁ(humans)
Jomr @c 2d
A =fa-h [4.32]

fomr =112

where f and f, are adjacent peaks in the ripple in magnitude of pgc; @c is ¢-centre value

(i.e., the location of the peak of the ¢-spectrum); A isthe TW wavelength near the TW
peak; and d defines the place-frequency mapping (giving the distance along the BM over
which the characteristic frequency changes by a factor of e ). It has been estimated that
d =7.2 mm (Zweig and Shera, 1995), and thus, from the estimates of periodicity, ¥, from
measured SFOAESs, equation [4.32] gives an estimate of the peak TW wavelength
of A ~0.96 mm. The importance of this is that any changes in the TW wavelength in the
peak region will cause a corresponding change in the periodicity.

As well as the ¢-centre value, ¢, we are also interested in the ¢-bandwidth. This is
the width of the peak of I { pa } in the ¢-domain, as seen in fig. 4.8d. This quantity is

denoted by ¢gsw and also shows up in the various 7—domain representations in fig. 4.6 and
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4.7. A large @gpw shows up as large envelope modulations in the real and imaginary parts of
Pa , and in the fluctuations seen in the magnitude and phase curves. The random nature of
these fluctuations arises from the random scattering potential seen in fig. 4.4a, whilst the
value of gy is determined by the width of the peak in the F { T2} curve. This in turn is
inversely related to the width of the peak in of T'% in the 7—domain. Thus [4.26] predicts
that the sharper the TW peak the greater the ¢g-bandwidth, and a the less sharply defined
the periodicity (i.e., the greater the modulation of the ripple pattern envelope). The
physical explanation for this, according to Zweig and Shera (1995), is that the lower the
‘Q’ factor, the broader the TW peak, the more wavelengths it contains, the more coherent
the scattering within the peak region, and thus the narrower the spread of periodicities in
the SFOAE.

Thus the two quantities @ and ¢gpw are related to two properties of the TW: the

wavelength in the peak region, A , and the ‘Q’ factor of the envelope. Note, however, that
these two properties are not wholly independent. According to Zweig and Shera (1995),
the square of the TW function, Tz, is minimum phase, which means that its magnitude and
phase are not independent. Thus a reduction in the sharpness of the envelope (for example,

by disturbing the cochlear amplifier) is accompanied by a reduction in the slope of the

phase (corresponding to an increase in A ). The significance of this is that changes in the
travelling wave shape will result in changes in both ¢c and @sw.

Unlike the periodicity itself, this periodicity bandwidth has seldom been reported.
One exception is the estimate given by Zweig and Shera (1995), obtained by averaging in
the ¢-domain across SFOAEs from several subjects, where they obtained @gsw / ¢¢c = 0.5
(where ¢gw here denotes the full width of the peak, rather than the half-width used by

Zweig and Shera, and which they denote Ag).

4.11 Definition of Reflectance in Nonlinear Systems

For a linear system, the terms such as ‘reflectance’ or ‘impedance’ refer to complex
quantities that are functions of frequency only. For a nonlinear system, the situation is
much more complicated. In the case of SFOAEs, the terms reflectance and impedance
become level dependent, and are defined as follows. Consider a single pure tone presented
to the ear. The cochlear nonlinear response in the time domain can be separated into the
primary or first order response (defined as the response component at the stimulus

frequency), plus any distortion components, which are discarded. The reflectance can then
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be defined in terms of the forward and backward components of the primary response.
Frequency domain equations such as [4.30] can still be used, provided the two non-linear
terms, R and p, are defined in terms of the primary values. (Note, however, that the
interpretation of [4.30] as the sum of successive reflections can only be used with care). In
the case of two tone suppression, R and p, (at the stimulus frequency) depend both on the
level of the stimulus and of the suppressor. Also note that this nonlinear reflectance no
longer gives a complete characterisation of the relationship between the reflected and

incident TW.,
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5. Predicted SFOAEs from Macromechanical Cochlear Models

5.1 Objectives

The primary objective of the cochlear modelling is to obtain predictions of the
behaviour of the SFOAE periodicity during induced changes in TW shape for two cochlear
models: the first based on the Shera and Zweig’s theory and the second based on Strube’s
theory. Changes in TW shape are to be induced by two methods: self-suppression and two-
tone suppression. SFOAE periodicity is characterised by two signal parameters: the
¢-centre value, ¢, and the ¢-bandwidth, @dgy.

A secondary objective is to investigate the influence of various different features in
the model in order both to better understand these features and to ensure that the model
results are not overly sensitive to arbitrary choices of model formulation or model
parameter values. To this end, the following are to be been studied:

1. the effect of a global change of cochlear amplifier gain,

2. the effect of different cochlear amplifier formulations (by comparing models containing
the NK-1986 amplifier with those based on Z-1991 amplifier),

3. the effect of different spatial variations in the CP scattering impedance (in addition to
the scattering impedances based on the theories of Strube and of Zweig and Shera),

4. the effect of any frequency dependency of the CP scattering impedance (by introducing
a scattering impedance based on a spatially varying CP mass and stiffness in addition to
that based on CP damping).

5. the effect of the size of BM inhomogeneities,

6. the effect of different middle ear models.

5.2 Specification of Model Variants and Input Stimuli

The models specified in section 4.6 have been implemented in Matlab 4.2 on a
Pentium II PC. The Matlab script files defining the basic model are given in appendix II.
Table 5.1 shows the model variants that were used, together with their stimuli. In all cases
the stimulus frequency was swept between 1.5 and 3 kHz at 4 Hz intervals, whilst holding
the OAE probe source level, Qs , constant, and whilst outputting the ear canal pressure at
each frequency. This stimulus regime will be referred to as a ‘frequency sweep’. The

reason for choosing this frequency range is discussed in section 8.7.
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5.2.1 Exploring the Basic Model Response

Models 1-10 are exploratory cases in which a single frequency sweep was performed
with various different scattering impedances and cochlear amplifier impedances. In these
cases, the ideal front end model (i.e., the transparent middle ear coupled to a non-reflecting
OAE probe) was adopted. The purpose of these cases was to verify that the models gave
similar predicted SFOAEs to those reported in previous publications, and to those from
Zweig and Shera’s phenomenological model. In addition both NK-1986 and Z-1991
cochlear amplifier formulations were used to check the sensitivity of the predicted SFOAEs
to this basic feature of the models. Models 11 and 12 are as models 9 and 10, but with the

high reflection front end model.
5.2.2 Modelling The Effect of Varying the Global Cochlear Amplifier Gain

Models 13-17 examine the effect on SFOAEs of altering the TW shape by globally
reducing the cochlear amplifier gain. This is achieved by introducing a single attenuating
factor into equations [4.12] and [4.13] for the cochlear amplifier impedance. For each
value of the attenuating factor, a frequency sweep was obtained. The front end model
based on Kringlebotn’s model of the middle ear was used. Models 14 and 17 were chosen
to test Zweig and Shera’s theory with a random scattering impedance. Model 15 has a
spatially periodic scattering impedance, as suggested by Strube (1989). Models 13 and 16
have a zero scattering impedance, and are included to define the reflectionless ear canal
impedance, required to define the SFOAE pressure in equation [4.30]. As is shown later,
this could also be achieved by eliminating the cochlear amplifier, rather than the scattering
sites. For models 14 and 17, where the scattering impedance is random, each frequency
sweep has been repeated n times, each time taking a different sequence of random numbers
used to define the scattering impedance. Averaging was then performed across the
resulting ensemble of SFOAE frequency sweeps. Typically, n = 32. The details of this

averaging are discussed in section 5.5.
5.2.3 Modelling Self-suppression and Two-tone Suppression

Models 18 - 21 used Kanis and de Boer’s quasilinear method to investigate the effect
of self-suppression and two-tone suppression on SFOAEs. For the self-suppression

simulation, frequency sweeps were obtained at various different levels of a stimulus tone.
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This single tone will be referred to as the ‘probe’ tone (for compatibility of terminology
with the two-tone suppression case). In the self-suppression simulations, the nominal
probe levels ranged from 20 to 80 dB SPL.

For the two-tone suppression simulation, frequency sweeps were obtained whilst two
tones are presented simultaneously, the first called the ‘probe’ tone, and the second the
‘suppressor’ tone. For each sweep, the levels of both the probe and suppressor tones were
held constant. The degree of two-tone suppression is highly sensitive to the ratio of the
suppressor frequency to the probe frequency. The suppressor tone is referred to as a ‘low-
side’ suppressor when the ratio is less than 1, and a ‘high-side’ suppressor when it is
greater than 1. In this thesis, only high-side suppression is considered. This is because
models predict that the changes in TW shape induced by a low-side suppressor are similar
to those induced by self-suppression (Kanis and de Boer, 1994). In high-side suppression,
the models predict that the TW shape differs significantly from that in the self-suppression
case (for a given TW peak amplitude) as will be further discussed in section 7.3.2. In the
models used here, it was found that increasing the suppressor to probe frequency ratio at
constant stimulus levels caused a increase in the difference between the shape of the two-
tone suppressed TW and that of the self-suppressed TW. However, it also caused a
reduction in the degree of suppression as measured by the magnitude of peak of the TW.
As a compromise between the desire for a significantly different TW shape from the self-
suppression case and the desire for a significant degree of suppression, a frequency ratio of
1.1 was chosen for the simulations reported here. As will be discussed in part II1, it differs
from the value of 1.3 used in experiments.

In two-tone suppression, the SFOAE values are obtained at the frequency of the
probe tone. Frequency sweeps were obtained for nominal suppressor levels ranging from
30 to 80 dB SPL, and with a probe level of 45 dB SPL throughout. The suppressor to
probe frequency ratio was held constant at 1.1 throughout. To test Shera and Zweig’s
theory, first a simulation with zero scattering impedance was performed to define the
reflectionless ear canal pressure, pgc:r=0. Then a random scattering impedance was used to
obtain the ear canal pressure, pgc, and thence the SFOAE pressure pgr. Owing to the
computational time required to execute each frequency sweep, only two random number

sequences were used.

101



5.2.4 General Points on the Models

In the above models, the size of the scattering impedance is controlled by the scale factor,
asc , given in equations [4.14] - [4.19]. This was set such that significant SFOAEs were
generated, but without causing the model to become unstable. Typically the peak value of
the normalised SFOAE was kept between 0.05 and 0.5. This is discussed further in
section 5.8.

For all models the accuracy of the numerical method is determined by the spatial
discretization. In all these models, at least 1024 equispaced points along the CP were used.
This number was arrived at after checking the sensitivity of the results of several models to
increases in the number of points.

Note also that in the forthcoming discussions, the following shorthand terms are used

to describe the models.

‘a passive model’ a model with zero cochlear amplifier impedance

‘an active model’ a model with non-zero cochlear amplifier impedance

‘a smooth model’ a model with zero CP scattering impedance

‘a scattering model’ a model with non-zero CP scattering impedance
‘arandom scattering model”  a model with a spatially random CP scattering impedance

as suggested in Shera and Zweig (1993b)
‘a periodic scattering model’  a model with a spatially periodic CP scattering impedance

as suggested in Strube (1989)
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Table 5.1: Cochlear model variants used for SFOAE simulations

Model Linear or Cochlear CP Scattering Front end Stimulus
No. Nonlinear Amplifier Impedance model or run type
1 Linear Passive Zero Ideal front end Simple freq. sweep
2 “ Passive Random “ *
3 “ NK-1986 Zero “ *
4 “ NK-1986 Step “ «
5 “ NK-1986 Random “ “
6 “ NK-1986 Alt. Random “ “
7 “ NK-1986 Periodic “ «
8 “ NK-1986 NB-random “ “
9 “ Z-1991 Zero “ “
10 “ Z-1991 Random “ “
11 “ Z-1991 Zero High reflect. “
12 “ Z-1991 Random “ “
13 “ NK-1986 Zero Kringlebotn Vary coch. amp. gain
14 “ NK-1986 Random “ “
15 “ NK-1986 Periodic “ “
16 “ Z-1991 Zero “ «“
17 «“ Z-1991 Random “ “
18 Nonlinear NK-1986 Zero “ Self-suppression
19 “ NK-1986 Random “ “
20 «“ NK-1986 Zero ¢ Two-tone suppression
21 ¢ NK-1986 Random “ “

Details of the table entries are given overleaf.
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Details of Entries in Table 5.1

Column Table entry Details

2 Nonlinear Quasilinear method (Kanis and de Boer, 1993b)

3 Passive " No cochlear amplifier impedance. Passive model as KdB-1994 passive model
Eqn. [4.10]

" NK-1986 Cochlear amplifier as Neely and Kim (1986); Kanis and de Boer (1993b).
Eqns [4.10] & [4.12]

" Z-1991 @ Cochlear amplifier as in Zweig (1991); Talmadge ez al. (1998).
Eqns [4.11] & [4.13]

4 Zero Zs.=0forall xand f

" Step Step function. Eqn [4.18]

" Periodic Periodic scattering impedance as in Strube (1989). Eqn [4.16]

" Random Broad band random scattering impedance based on Zweig and Shera (1995) Eqn
{4.15]

" Alt. Random Alternative random scattering impedance based on Zweig and Shera (1995)
Eqn [4.19]

" NB-Random Narrow band random scattering impedance. Eqn (4.17]

5 Ideal frontend The ideal front end model, section 4.6.5

! High reflect. High reflection front end model, section 4.6.5

! Kringlebotn Kringlebotn front end model. section 4.6.5

Notes:

(1): The passive model here is the KdB-1994 passive model, Eqn. [4.10]

(2): The NK-1986 cochlear amplifier is always used in conjunction with the KdB-1994 passive model,

Eqn. [4.10]

(3): The Z-1991 cochlear amplifier is always used in conjunction with the T-1998 passive model, Eqn. [4.11]
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Fig 5.1 Ear canal pressure due to a constant volume velocity earphone simulated from various cochlear
models. The level is set to give 0 dB SPL at 1.5 kHz in each case. Panel (a): three models which are almost
indistinguishable: (i) passive and smooth (model 1); (ii) passive and rough (model 2); (iii) active and smooth
(model 3). Panel (b): active model with step scattering impedance (model 4). Panel (c) active model (NK-
1986 cochlear amplifier) with random scattering impedance (model 5). Panel (d): active model (Z-1991
cochlear amplifier) with random scattering impedance (model 10). Panel (e): active model with a periodic
scattering impedance (model 7). Panel (f): active model with a narrow band random scattering impedance
(model 8).
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Fig 5.2 Comparison of two different realizations of the SFOAE simulated by a random scattering cochlear
model (model 5). Results of normalised SFOAE, p, , were obtained for 128 realizations of the scattering
impedance. Two different realizations of the results are shown here, and compared with an ensemble average
over the 128 realizations. Panel (a) Realization 1: p, against #jp,, . Panel (b) magnitude of the raw ¢
spectrum for realization 1 (thin line) and the ensemble averaged ¢-spectrum (thick line) plotted on a linear
scale. Panel (¢) as (b), but plotted on a dB scale. Panels (d)-(f) as panels (a) - (¢), but for realization 2.
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Fig 5.3 The effect on SFOAE periodicity of altering the formulation of the random scattering impedance in
the cochlear model (models 5 and 6). Model 5 has the standard random scattering impedance, arising from
the spatial variation in the CP damping. Model 6 has the alternative random scattering impedance, arising
from the spatial variation in the total CP impedance. The predicted normalised SFOAE spectrum, p, , was
obtained for 32 realizations of each model. From these, the average ensemble averaged ¢-spectrum was
calculated. Panel (a): model 5, single realization of p, against 7., . Panels (b) and (c¢): model 5, magnitude
of the ensemble averaged ¢-spectrum plotted with linear and dB scales respectively. Panels (d)-(f) are the
corresponding plots for model 6. Symbol 0 indicates the peak of the curve.
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5.3 Discussion of Fundamental Model Results

Some fundamental results are shown in fig. 5.1. This plots the magnitude spectrum
of the ear canal pressure for a single frequency sweep. Fig. 5.1a illustrates the expected
result that no significant SFOAEs are generated in the absence of either the cochlear
amplifier or of reflection sites. In this panel, the results from three models are overlaid and
indistinguishable: the first is ‘smooth and passive’, the second is ‘scattering and passive’
and the third is ‘smooth and active’ where ‘smooth’ means the CP scattering impedance is
zero; ‘scattering’ means the CP scattering impedance is non-zero; ‘passive’ means the
cochlear amplifier impedance is zero; and ‘active’ means the cochlear amplifier impedance
is non-zero (model numbers 1, 2 and 3, table 5.1). Fig. 5.1b shows that a simple step in the
scattering impedance, which gives rise to a single point reflection site, generates significant
reflections over a very limited frequency range. Fig. 5.1c and d show that the random
scattering impedance together with the inclusion of either of the two cochlear amplifiers
(models 5 and 10) give rise to a ripple pattern in which the peak-to-peak spacing increases
with frequency, as predicted by Shera and Zweig’s model. This result is insensitive to the
choice of cochlear amplifier formulation.

Fig 5.1¢ confirms Strube’s result (1989) that a periodic scattering impedance
(together with a cochlear amplifier) gives rise to the basic periodicity in the SFOAE
(model 7). However, these results are unrealistically regular. More realistic SFOAEs are
shown in fig. 5.1f, resulting from a modified periodic scattering impedance, in which the
spatial frequency of the corrugations has a narrow distribution rather a single value
(model 8). This model can be thought of as lying somewhere between Strube’s proposed
periodic scattering impedance and Shera and Zweig’s broad band random scattering
impedance. Recall from section 4.8 that the essential difference between the two theories
is that in Strube’s theory, the periodicity is determined predominantly by the spatial
periodicity in the CP scattering impedance, whereas in Shera and Zweig’s model, it arises
from the form of the TW function.

Results from model with the alternative random CP scattering impedance, based on
spatial variations of the entire CP impedance, rather than of the damping (model 6) are not

illustrated in fig 5.1, but are discussed in a later section.
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5.4 Calculation of the Cochlear Model SFOAE Spectrum

The SFOAE spectrum for any active scattering model is calculated from the
difference in the ear canal pressure obtained from two runs of the model: the first from the
active scattering model, and the second from a smooth version of the same model, with

identical stimulus conditions. This is given in equation [5.1] (as in equation [4.30]):

Psr = PEc — PEC:R=0

Psr [5.1]

Pa= PEC:R=0

where pgc is the ear canal pressure for the active scattering cochlear model, and pgc:g=o is
the reflectionless ear canal pressure defined here as the ear canal pressure for the smooth
version of the cochlear model (i.e., one with the CP scattering impedance set to zero).

Here psr 1s termed the SFOAE pressure, and pa the normalised SFOAE. All quantities are
complex functions of frequency. Thus, for example, the SFOAE for a random scattering
impedance with the NK-1986 cochlear amplifier (model 5) is obtained from equation [6.1]
by taking pgc from model 5 and pgc:r=¢ from model 3. Similarly, the SFOAE for a
random scattering impedance with the Z-1991 cochlear amplifier (model 10) is obtained by
taking pgc from model 10 and pgc:r=0 from model 9.

The definition of the reflectionless ear canal pressure, pec:r=o, as that arising from the
smooth cochlea requires further justification. The results in fig. 5.1a suggest that prc.r=o
can be estimated from either a passive cochlear model or from the smooth cochlea.
However, in certain circumstances, when using Talmadge’s model formulation (T-1998
with the Z-1991 amplifier) it was found that a slight discrepancy arose between the ear
canal pressure predicted from an active-smooth model and that from a passive-smooth
model (i.e., in these cases the curves corresponding to fig. 5.1a are not indistinguishable,
but are slightly offset from one another). Recently Talmadge er al. (2000) have presented
an analysis of such ‘nonlinear SFOAE’ components (i.e., components in the ear canal
pressure arising not from the scattering impedance, but from nonlinear effects). According
to Talmadge et al. (2000), these nonlinear SFOAESs are (i) highly sensitive to the
formulation of the cochlear model, (ii) are of very low periodicity, especially above 1 kHz,
and (ii1) generally much lower in amplitude than SFOAE:s arising from the scattering
impedance. However, they may become influential at higher stimulus levels where
nonlinear effects are larger and where SFOAEs due to the scattering impedance are
smaller. The decision in this thesis to define the reflectionless ear canal pressure, pgc:g=0,

in terms of the smooth cochlea rather than the passive cochlea eliminates all such
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‘nonlinear’ SFOAE components from the model predictions, leaving only SFOAES arising
from the scattering impedance. The advantage of this is that any changes induced in the
predicted SFOAE spectra can be attributed purely to changes in the TW shape, thereby
greatly simplifying the interpretation of the results. For a further discussion of the possible
influence of nonlinear SFOAEs on the experimental results, see section 9.7.1

In the case of the cochlear models with random scattering impedance, the SFOAE
spectrum depends not just on the model and its parameters, but also on the particular
random number sequence used. In order to extract the underlying information from the

SFOAE spectrum, a stochastic description is required, as explained in the next section.
5.5 Stochastic Description of the SFOAE Periodicity

The terminology in this section is taken from the theory of random processes. The
problem addressed here is similar to that of calculating the power spectrum of a random
process.

The results from a model with a random scattering impedance presented above
depended on the exact form of the spatial variation in scattering impedance which resulted
from the output of a random number generator. Re-running the same model with a
different set of random numbers gives a different SFOAE function. What is desired are
quantities to characterise the SFOAE signal that are dependent only on the underlying
model formulation (which must include a statistical description of the random number
generator), rather than on the particular sequence of random numbers. Such quantities are
termed ‘stochastic’, because they pertain to an underlying probabilistic process, rather than
to a single instance (or ‘realization’) of the process. As a simple example, a complete
stochastic description of a gaussian white noise signal is given by specifying a single
standard deviation, and by further specifying that the signal at every point in time is
independent of that at every other point. A realization of this process is simply one actual
white noise time history.

To obtain the stochastic quantities, models 5 and 10 were run n times with different
realizations of the scattering impedance to give an ensemble of n realizations of normalized
SFOAE frequency functions, pa (f). According to equation [4.30], pa depends on the
reflectance, R, and from equation [4.26], R looks like a narrow band random signal when
plotted against the logarithmic frequency variable, 7. (If equation [4.26] holds, and if the
scattering potential is gaussian as it is in the model used here, then R is also gaussian.)

Recall that a full stochastic description of the gaussian narrow band process is given by its
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power spectral density, which can be estimated by averaging the power of the Fourier
transform across an ensemble of realizations of the process (e.g., Newland, 1984).
Although pa is not strictly gaussian narrow band (unless r = 0) it can still be usefully
described by a power spectrum. The method of calculating the power spectrum of pa
follows standard spectral analysis methods (Newland, 1984). First pa must be in the form
of a sequence at equal 7 intervals. All of the n realizations of pa are then Fourier
transformed from the 7-domain to the ¢-domain. The n Fourier transforms are then
multiplied by their complex conjugates, giving the square of the modulus of the transforms.
This gives n functions, each of which will be termed a ‘SFOAE raw ¢-spectrum’, where
‘raw’ indicates that no averaging has been performed. Averaging this across this ensemble
of n raw ¢-spectra yields an improved estimate of the underlying stochastic function. The
underlying function will be termed the ‘true ¢-spectrum’ and the estimate will be called the
‘SFOAE average ¢-spectrum’. Unlike the raw ¢-spectrum, the true ¢-spectrum is
dependent only on the deterministic quantities in the model, and on the statistics of the
random number generator. Figs 5.2a and 5.2b, show two realizations of SFOAE frequency
functions obtained from an active random scattering models (model 5) using equation
[5.1]. Their two corresponding raw ¢-spectra are shown in figs 5.2c and 5.2d, together
with an estimate of the true ¢-spectrum, obtained from averaging across 128 realizations.
The large variability between the two raw ¢@-spectra shows the difficulty in trying to
estimate the true ¢g-spectrum, based on a single realization. In this project, the ¢-spectrum
will be characterised by two main quantities called the ¢-centre value, denoted ¢¢ and the
¢-bandwidth, denoted @ggw . The ¢-bandwidth is roughly equivalent to the 3 dB bandwidth

of the peak. A method of estimating these two quantities is discussed in section 6.4.
5.6 The Effect of Different Formulations of the Random Scattering Impedance

Fig. 5.3 shows the SFOAE:s resulting from two formulations of the random scattering
impedance. The first (model 5) has the standard random scattering impedance, obtained by
a spatial variation of the CP passive damping. The second (model 6) has the alternative
random scattering impedance, obtained by a spatial variation of the entire CP impedance.
Although both show the expected narrow band ripple pattern, they differ in their values of
periodicity. This is clearly seen in the ensemble average ¢-spectra, where for model 5,

@c = 26 (corresponding to a periodicity of about 4%), whilst for model 6, ¢gc = 17

(corresponding to a periodicity of about 6%). Model 6 also gives a narrower ¢-spectrum.
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The reason for this is that the alternative scattering impedance is frequency dependent,
thereby invalidating the simple spatial filtering result presented in [4.26]. This effect is
mentioned by Zweig and Shera (1995, p. 2033).

Although the alternative scattering impedance gives a periodicity that is closer to
measured values, it was decided to adopt the frequency independent random scattering
impedance as the standard for this thesis. This has the advantage of greater simplicity since
it ensures that [4.26] becomes approximately valid, and consequently that the average
¢-spectrum is simply a scaled version of the Fourier transform of the function T* ©).

This result has been verified by calculating T ( © ) for model 5. (Strictly, since this model
does not exhibit perfect scaling symmetry, 7' ( © ) is not uniquely defined for model 5, but
is instead a function of both x and windependently. However, because the degree of
scaling symmetry is still high, this discrepancy has been found to be small. Thus a useful
estimate of T ( © ) can be made by evaluating both T and © as functions of cochlear
location, x, at one constant stimulus frequency, @.)

All the results reported in this thesis regarding changes in periodicity with TW shape
have also been verified for both the standard and the alternative scattering impedances. For
brevity, only the standard results are illustrated. Investigations have also been carried out
in which the a spatial variation in the CP mass, stiffness or characteristic frequency was
introduced. These also show similar trends to those seen for the standard case. This
demonstrates that in these alternative cases the g-spectrum is still related to the TW shape,

even though the relationship is not the simple one given in [4.26].

5.7 The Absolute Value of the Predicted SFOAE Periodicity

The ¢-spectrum seen in fig. 5.2 for model 5 is bandpass (in the ¢-variable) with its
centre located at a value, ¢, of about 26 cycles (equivalent to a periodicity of about 1/26 or
4%). This periodicity is roughly half the value of around 7% reported in the literature.
There are many possible reasons for this discrepancy, but these have not been investigated
in detail. The models are based on many simplifying approximations (e.g., the long wave
approximation) and contain many parameters whose values are uncertain®. For example,
as will be seen later, simply reducing the cochlear amplifier gain significantly reduces the
periodicity. The detail of the formulation of the random scattering impedance also has a

significant effect, as discussed in the previous section. For these reasons, this discrepancy

% This discrepancy has recently been acknowledged by Talmadge et al. (2000) who also suggest alternative
model parameters.
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in the absolute periodicity is not thought to be a problem for the models. What is important
for this thesis is not the absolute value of the periodicity, but the way in which it changes
with the TW shape. Note that a similar discrepancy is seen in model 10 with the Z-1991

cochlear amplifier and the standard scattering impedance.
5.8 The Effect of the Size of the Scattering Impedance

The size of the scattering impedance is controlled by the scale factor, as. , given in
equations [4.14] - [4.19]. It was found that, for low values of the scattering impedance,
scaling up the scattering impedance simply caused a corresponding scaling up in the
SFOAE frequency spectrum, without any additional changes in its shape. This is expected
from Zweig and Shera’s phenomenological model (1995), equation [4.26], where scaling
up the scattering potential causes a scaling up of the cochlear reflectance, R. The physical
explanation for this is that the scattered TW is much smaller than the forward TW, and
therefore the CP response to the forward wave is approximately independent of the
scattering sites. There is, however, an upper limit to value of this scale factor. For very
large values, equation [4.26] no longer holds, as the wave travelling back from one
reflection site becomes further scattered by more basal reflection sites, leading to multiple
reflections which alter the shape of the spectrum of the cochlear reflectance. These should
not be confused with the multiple reflections arising from the stapes, which affect the
SFOAE rather than the cochlear reflectance, and which are accounted for in
equation [4.30]. In all the models, as, was set below this upper limit.

For the models with the ideal front end, where multiple reflections are negligible, the
size of the scattering impedance is of little interest (provided the upper limit discussed
above is avoided). In these cases, as. was set to give typical normalised SFOAEs between
0.05 and 0.3. For the models with reflecting front ends, the value of as. is more important,
since a simple scaling up of the cochlear reflectance, R, causes a more complex change in
the normalised SFOAE. More specifically, as the value of rR increases, the influence of
multiple reflections increases. In these cases, as. was set to give a reasonably high cochlear
reflectance magnitude of between 0.2 and 0.5 (in the unsuppressed state), such that some
multiple reflection occurs. Note that in models with the Kringlebotn front end, the
normalised SFOAE is less than the cochlear reflectance, due to the middle ear transmission
loss related to the function, g, in equation [4.30]. It was ensured that in all cases the value
of as. was not so high that instability occurred, due to runaway multiple reflections. Thus

in these cases, there are two upper limits on as, : the first to prevent significant multiple
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reflections occurring from the CP scattering sites, the second to prevent unstable multiple
reflections involving the stapes. The second turns out to be the lower, and therefore the

important limit in these models.
5.9 Changes in Average SFOAE g-spectrum with Cochlear Amplifier Gain

Fig. 5.4 shows the effect of varying the cochlear amplifier gain on the SFOAE ¢
spectra for an active random scattering model (model 14). Figs 5.4a and b show the raw ¢
spectra for two realizations of the SFOAE, whilst fig. 5.4c shows the average ¢-spectrum
estimated from an ensemble average over 32 realizations. The location of the peak in each
spectrum, which gives a measure of the periodicity, is also marked. The change in
periodicity with cochlear amplifier gain is clearly seen in the average ¢-spectrum, fig. 5.4c.
It is also shows up in the raw ¢-spectra of realization 2, but not in those of realization 1.
This shows that the changes in periodicity that are sought do not necessarily show up
clearly in the raw ¢-spectrum. To overcome this problem, a parametric model of the
SFOAE ¢-spectrum has been developed. This is described in the next section. Figs 5.4d-f
show the results of this parametric fit to the two realizations, and to the ensemble average.
Further discussion of the changes of periodicity due to varying the cochlear amplifier gain,
self-suppression and two-tone suppression is presented after the development of this

parametric model has been explained.
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Fig 5.4 The effect of varying the cochlear amplifier gain on the SFOAE raw and average ¢-spectra, simulated
by a cochlear model with a random scattering impedance (model 14). The model has the NK-1986 cochlear
amplifier attenuated by: 0, 0.4, 0.8, 1.2 and 1.6 dB. Panels (a) and (b) show raw @-spectra resulting from two
different realizations of the random scattering impedance. Panel (c) shows the average @-spectra obtained
from an ensemble of 32 realizations. Panels (d)-(f) show fitted ¢-spectra obtained by applying the
4-parameter model to the data shown in panels (a)-(c) respectively. Symbol O indicates the peak of the

curve.
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6. A Parametric Model of SFOAE Frequency Spectra
6.1 Overview of Problem

The general question addressed in this section is how to characterise the SFOAE
periodicity and thus allow comparisons to be made between predictions from the
macromechanical models and experimental measurements. As has already been discussed,
the Shera and Zweig’s theory predicts changes in the SFOAE spectral periodicity with
changes in the effective cochlear amplifier activity. In particular, the model predicts
changes in terms of the ¢g-centre value, ¢c , and the ¢g-bandwidth, @gpw , of the SFOAE
average ¢-spectrum. The problem highlighted in the previous section is that for the random
scattering cochlear models, @¢c and @gsw can only be directly calculated from the SFOAE
average ¢-spectrum, obtained by running a macromechanical model many times with
different realizations of the random scattering impedance. This option is obviously not
available with measured SFOAEs where only a single realization is available. Note that
ensemble averaging across subjects does not solve the problem, as will be discussed in
section 6.3.

In this section, various methods from the literature for estimating the SFOAE
periodicity are reviewed. Also a description is given of two parametric models (called here
the 3-parameter and 4-parameter models) which have been developed for analysing

measured data.
6.2 Review of Parametric Spectral Analysis Techniques

To a first approximation, the SFOAE frequency spectrum, when viewed on a log
frequency scale, can be seen as section of a stationary, bandpass random signal
(equation [4.26]). The problem of estimating ¢ and @sw is similar to that of estimating the
power spectral density of an unknown random process, based on a short section of a single
realization.

One way of viewing any stationary random signal (usually a time series) is to imagine
that the measured signal has arisen from an unknown white noise input signal passing
through an unknown filter. In general, the purpose of spectral analysis is then to estimate
the shape of the unknown filter, which then gives the power spectral density of the random
process. (Our problem is a simpler one: to estimate the centre frequency and bandwidth of
an unknown bandpass filter.)
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The standard Fourier based approach to this problem is to use either segment
averaging or spectral smoothing. In the segment averaging approach, the time sequence is
split up into segments and the segments are then windowed, Fourier transformed, and
power averaged. In the spectral smoothing approach the entire time sequence is windowed,
Fourier transformed, and then smoothed in the frequency domain. However, these
approaches performs poorly for applications where their is only a short sequence of data
(Ables, 1978). There are several reasons for the poor performance of Fourier based
method: they make unjustified assumptions about data that are not available (because the
Fourier method implicitly assumes that the unavailable signal outside the window is either
zero, or 1s a perfect periodic continuation of the available signal); and they impose
distorting transformations on the available data (by applying an arbitrary tapering window).
The effect of these assumptions is to give poor spectral resolution.

Parametric spectral analysis is an alternative approach in which the unknown filter is
first characterised by a number of digital filter coefficients. The spectral analysis problem
then becomes one of directly estimating these coefficients (Burg, 1978a, 1978b; Gutowski
et al., 1978). Unlike Fourier methods these methods attempt to obey Jaynes’ principle of
data reduction: “The result of any transformation imposed on the experimental data shall
incorporate and be consistent with all relevant data and be maximally non-committal with
regard to unavailable data” (Ables, 1978). Such methods can give much sharper spectral
resolution than Fourier methods. The approach adopted in this thesis is loosely based on

these parametric methods.
6.3 A Review of Periodicity Measures in Literature

In this section some of the shortcomings of the published methods of estimating
SFOAE periodicity are discussed. These have already been introduced in section 2.12.
The analysis of these periodicity measures has been performed using two methods of
simulating SFOAE signals. The first generates SFOAE signals using cochlear models
whilst the second generates simple bandpass random signals by passing white noise
through a bandpass filter. In the latter method, the SFOAE ¢-centre value corresponds to
the centre frequency of the bandpass filter. In fact, both these methods reveal the same
shortcomings in the published periodicity measures. Thus, although the SFOAEs
generated from cochlear models will differ in some respects (i.e., in their full stochastic
description) from simple bandpass signals discussed here, they show the same essential

features which cause problems for these periodicity measures.
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Fig 6.1 The effect of varying the cochlear amplifier gain on the SFOAE seen in different representations of
the data. The SFOAE was simulated by a cochlear model with a random scattering impedance, and with NK-
1986 cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.2, 1.6 dB (model 14). Panels (a) and (b): two
realizations of the normalised SFOAEs (Re{p, } against 75, ). Panels (c) and (d): two realizations of the
phase of normalised SFOAESs (arg{p, } against 5., }. The slope of this gives a measure of the periodicity.
Panel (e): detail of realization 2, showing the difficulty in clearly identifying peaks.

The published methods of estimating the periodicity are discussed with reference to
fig. 6.1, which shows the effect on the SFOAEs of reducing the cochlear amplifier gain for
the NK-1986 case (model 12). Two realizations are shown.

The first method is that of measuring peak-to-peak frequency intervals (Dallmayr,
1987; Zwicker and Schloth, 1984; Zwicker, 1990; Zwicker and Peisl, 1990; Lonsbury-
Martin et al., 1990). In this method, the turning points of the signal are first extracted, and
then each peak-valley-peak sequence used to define one cycle. The difficulty with this
method is that the signal comprises a broad range of large and small amplitude cycles.
Some of these cycles are barely discernible (see for example, fig. 6.1f), and would easily be
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lost in the presence of noise . This makes the method quite susceptible to contamination by
noise. One way around this is to reject any cycles below some threshold of amplitude, but
this introduces an arbitrary cut-off. A better method of estimating an average periodicity
would be to apply some form of weighting based on the cycle amplitude. This is in effect
what the next method, based on the Fourier transform, does.

In the second method the SFOAE frequency spectrurn31 1s first mapped onto a log
frequency scale (such as the 7 scale), and then transformed to the ¢-domain using the
Fourier transform (e.g., Lutman and Deeks, 1999). This method is similar to using the raw
¢-spectrum directly as an estimate of the true ¢-spectrum and has the problem that the raw
¢-spectrum exhibits large peaks which arise purely from the random nature of the signal,
rather than from the true underlying spectrum of the process. (When viewing the raw ¢
spectrum as an estimator, its sampling distribution has a high standard deviation in relation
to its mean; Bendat and Piersol, 1966). In fig 5.4a it can be seen that the peak of the raw
¢-spectrum does not coincide with the peak of the true spectrum. Also, for this particular
realization, as the cochlear amplifier gain is reduced, the location of raw ¢-spectrum peak
remains stubbornly unchanged. This is a phenomenon that can also easily be reproduced
for bandpass noise obtained by simply passing a fixed white noise sequence through a
bandpass filter several times, each time with a slightly different centre frequency.

The problem of the variability of the raw ¢-spectrum could be approached in several
ways. For example, as in standard spectral analysis, some smoothing in the ¢-domain
could be applied. However, this leads to a reduction in spectral resolution, as discussed in
section 6.1. Zweig and Shera (1995) perform ensemble averaging of ¢-spectra across
subjects, but this method is not of use in studying changes in SFOAEs for a single subject.
Also, it does not estimate the parameters of the random process of interest: the randomness
in the SFOAE of an individual associated with the random scattering impedance alone.
Instead, it includes the effect of intersubject variability of the entire cochlea (which would
have to be characterised in a cochlear model by including a random distribution of cochlear
parameters such as CP stiffness, or channel height).

A third method of estimating the periodicity is to calculate the group delay from the
slope of the phase SFOAE frequency spectrum (Kemp and Chum, 1980a; Kemp and
Brown; 1983). This is equivalent to measuring the instantaneous rate of rotation in the
complex plane of the SFOAE vector as a function of frequency. To estimate a periodicity,

the SFOAE phase can be plotted on a log frequency scale, and a best fit straight fitted to

*! or some other signal exhibiting the SFOAE ripple pattern such as the ear canal sound pressure level.

118



the data. One problem with this method is that the amplitude of the signal is ignored when
fitting the straight line to the phase data. This means that where the signal is weak (due to
random fluctuations) the phase is poorly defined (especially if noise is present). Even with
perfectly clean data, this method is insensitive to changes in periodicity. This can be seen
in figs 6.1c and d, which show the SFOAE phase for the two realizations. In fig. 6.1c,
three of the curves appear to run virtually parallel to each other.

As with the previous method, this phenomenon can be demonstrated easily using a
bandpass time series. (Recall that here we are considering an SFOAE plotted against log
frequency as a time series.) For the time series, the group delay method corresponds to
estimating the centre frequency of the filter using the instantaneous frequency of the output
signal. (Note that the SFOAE is a complex signal: for real signals instantaneous frequency
is defined via the Hilbert transform; Randall, 1987). Instantaneous frequency is a useful
measure for a single component signal (e.g., for demodulating an FM signal), but is less
useful for a broader band signals in which several frequency components are present
simultaneously. Although averaging the instantaneous frequency does give some measure
of the ‘average’ frequency in the signal, it is a highly variable estimate, just like the
location of the peak in the raw spectrum.

In summary, the published methods of estimating periodicity all have shortcomings
which make the detection of small changes in periodicity quite difficult, and may explain
why changes with level (for example) have not been more widely reported previously
(section 2.11). In general, the published methods would work well for a very narrow band

signal, but are progressively less accurate as the bandwidth is increased.
6.4 Description of a Parametric Model of SFOAE Signals

From equation [4.30], it can be seen that the predicted SFOAE #-function, pa( 77)
can be considered as a stationary bandpass random signal provided that three conditions are
met: first if there is very little basal reflectance (i.e., r is negligible); second, if the middle
ear transmission function, g, does not vary significantly over the measured frequency
range; and third, if the cochlear reflectance, R , can itself be treated as a stationary
bandpass random signal. That R can be treated as a stationary bandpass random signal is a
prediction of the Zweig and Shera’s theory, provided first that scaling symmetry roughly
holds and second that the scattering potential is a stationary random function of place (as

seen in the spatial filtering result in equation [4.26]).
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Two parametric models of the SFOAE 7-function have been developed. The first is
a 3-parameter model which assumes that the function can be treated as a realization of a
stationary bandpass random process. The second is a 4-parameter model which takes some
account of multiple reflections due to the basal reflectance, r. In both cases, any
nonstationarity due to variation of g or r with frequency, or due to the spatial form of the
scattering potential has been ignored. The justification for this is discussed in section 6.5.

The approach taken here does not attempt to adhere rigorously to Jaynes’ principle
(section 6.2) which is theoretically problematic. Instead a technique has been developed
here that has been found to work when applied to results from macromechanical models.
Furthermore, it is not suggested that this is an optimal technique - only that it is a useful
one. The parametric methods described by Burg (1978a, 1978b) and Gutowski et al.
(1978) are not directly applicable, because they estimate the coefficients of a general digital
filter, rather than assuming a bandpass filter at the outset. The chosen method here does,

however, borrow some elements from those methods.
6.5 The 3-Parameter Model of SFOAE

The 3-parameter model assumes that the 7-SFOAE function can be treated as a
realization of a stationary bandpass random process. Unlike general spectral estimation,
we already have some idea of the nature of the filter (via the macromechanical model), and
we are only looking to estimate two parameters that characterise the shape of the spectrum
(i.e., @c and @w). In this section, a parametric model is described which estimates these
two parameters, and then calculates a third parameter, p4 rms , Which is simply the RMS
value of p4 when considered as a function of 7.

For this 3-parameter model, the first assumption is that the cochlear reflectance is a
stationary bandpass signal in the 7-domain, R(7). This follows from [4.26], with its
assumptions that the scattering potential is a stationary white (or broad band) random
process in the spatial domain, and that scaling symmetry holds.

The second assumption in the 3 parameter model is that multiple reflections are
small, such that the basal reflectance, r, in [4.30] can be taken as zero. It is then further
assumed that the function, g, in [4.30] is independent of frequency, and has a value denoted
go such that:

pa(m) = 8oR(1) [6.1]

Thus the measured normalised SFOAE, p, is also a stationary bandpass #-function.
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Then, inspection of the results of the macromechanical models shows that the shape
of the SFOAE average ¢-spectrum is well represented by a 2" order Butterworth bandpass
filter in the ¢-domain. This is shown in fig. 6.2a-c for model 5, which has the NK-1986
cochlear amplifier, and in figs 6.2d-f, for model 10, which has the Z-1991 cochlear
amplifier. This filter is specified by only two parameters: the upper and lower cut-off
frequencies, or equivalently, the bandwidth and centre frequency. Therefore it was decided
to define the ¢-centre value and ¢-bandwidth (@ and ¢@gw) of the SFOAE data by the

corresponding parameters for a ‘best-fit’ 2" order Butterworth filter.

Autocorrelations ¢-spectra d-spectra
1 0.02 -10
(a) Model 5 (b) Model § (c) Model 5
0.015
- 05 — -20
¢ 8
o =) S.
= T 0.01
S 0 g 0.0 9
[ = 3o
0.005
-0.5
o] -40
0 0.05 0.1 0 20 40 60 80 100 o] 20 40 60 80 100
1 10 10
(d) Model 10 (e) Model 10 0] Model 10
8
0.5
= — 0
& 5 ° S
© 0 = g
Q 4
o = _10
~0.5 2
o] -20
0 0.05 0.1 0 20 40 60 80 100 0 20 40 60 80 180
1 30 20
(g9) Model 12 o5 (h) Model 12 (i} Model 12
e 05 20 — 10
@ m
o k=4
= I 15 o
g o g
=
o 10 0
-0.5 5
o] -10
0 0.05 0.1 0 20 40 60 80 100 0 20 40 60 80 100
Noet -lag ¢ [

Fig 6.2 Comparison of the ensemble averaged SFOAE data with a parametric fit based on a 2™ order
Butterworth filter. The average SFOAE data (thin lines) were obtained from 32 realizations from cochlear
models with random scattering impedance. The fit (thick lines) is performed on the ensemble averaged
normalised autocorrelation function using a 4-parameter model of the random process. The figure shows the
results from three cochlear models: models 5, 10 and 12. Model 5 has the NK-1986 cochlear amplifier and
an ideal front end model; model 10 has the Z-1991 cochlear amplifier and an ideal front end model; model
12 has the Z-1991 cochlear amplifier and the high reflecting front end model, which leads to significant
mulitple reflections. Panels (a)-(c): model 5, normalised autocorrelation function, ¢-spectrum (linear scale)
and ¢-spectrum (dB scale) respectively. Panels (d)-(e) corresponding plots for model 10. Panels (f)-(g)
corresponding plots for model 12.
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An iterative procedure has been adopted for fitting the @¢ and ¢y values to the
measured data. It turns out that there are advantages to fitting these parameters to an
estimate of the autocorrelation function formed from the data, rather than to the raw
¢-spectrum, as discussed in appendix III. The first step in the fitting procedure is to assume
initial values of @c and @y thereby defining a 2°® order Butterworth filter. Assuming a
stationary white noise input to the this filter, the autocorrelation function of the output is
then defined purely by ¢c and ¢gw . Thus treating the reflectance, R(#) , as the output of
the filter, and h(#) as the impulse response function of the filter, a standard result is that

the autocorrelation function of the reflectance is related to the filter impulse response by:

R(m) = h(n) ® w(n)

, , [6.2]
= RRR(”)‘X th(”)
where w( #77) is a white noise signal; ® denotes convolution; and where:
Ry )= ER" (R 7+ 7)) [6.3]

R = [ R @ (p+7)dn

Here, R 5 (77') is the autocorrelation function of the reflectance, R(#); * denotes the

complex conjugate; and E[] denotes the expectation operator. The assumption that R is
stationary ensures that the autocorrelation function is independent of absolute values of 77,
and is instead a function of the a variable called here #-lag (denoted here by 7”) which
defines the shift in 7. The impulse response function, k(7)), is a complex version of the
standard 2™ order Butterworth filter impulse response, which has been chosen to ensure
that R has the analytic properties discussed in section 2.13. (Recall that the Fourier
transform of R is one-sided). To achieve this, the function , h(7), is defined as the analytic
function corresponding to the wholly real impulse response function of the standard on
order Butterworth filter, denoted /g.(#7). The definition of the analytic form is such that the
transform of (7)) in the ¢-domain is purely one-sided, and equal to the right hand side of
the (two-sided, symmetric) transform of the corresponding real function, fg.(7).

It is useful to define a version of the autocorrelation function normalised with the

variance the signal:

Kz (1) =R (1) /R gz (0) [6.4]

122



where Kgr is the normalised autocorrelation, such that Kgz(0)=1. Note that the
normalisation is performed using R, (0) which is equal to the variance of R(7). From

[6.2], the following relationship holds between normalised autocorrelation functions:

Krr 1) =K, () [6.5]
and from [6.1] it also follows that:
K s 1) =Ker (7)) [6.6]

where K;,;, and K paps AT€ normalised autocorrelation functions for the normalised SFOAE,

pa(n) and the impulse response function, k(7).

Therefore, given values of ¢¢ and @y , the value of K paps CAN be calculated from

[6.3], [6.4], [6.5] and [6.6]. An estimate of KPAPA can also be calculated from the actual

measured 77-series, pa(77), using the following estimator:

g ’ 1 2_177,1 * ’
R ()= Pa Mpa(m+n')dn
PAPA Ny — m ﬂ A A [67]
0<li|<n,—n
KPAPA (77/) = RPAPA (77,) / RPAPA (O) [6'8]

where the diacritical mark ~ denotes an estimate.

The full iterative procedure is as follows. Initial values of @¢ and @gw are assumed,
thereby defining the impulse response of a (real) 2" order Butterworth filter, hg(7). The
(complex) analytic signal, h(7), corresponding to Ag.(7)) plus the Hilbert transform of
hre(7) is then calculated in the standard way (e.g., Randall, 1987). From this the
normalised autocorrelation function of the filter impulse response is calculated from [6.3]

and [6.4]. Then the fitted version of the normalised autocorrelation function of pa(7),

KpApA , is calculated from [6.6]. This is then compared with the measured estimate of the

normalised autocorrelation function of pa(7), K R obtained from [6.7] and [6.8]. A

APA

mean square error is then calculated:

s 1
Eys =

[l (RM mN-K, (77’))2 dnf [6.9]

Trunc

that quantifies the poorness of fit between the fitted version and the measured estimates of
the normalised autocorrelation function. The values of ¢ and @pw are varied iteratively to

minimise this error. This error quantity is calculated over a restricted range of 7-lag

values, 7r.nc . One reason for this restriction in #77”is that KmpA (17") contains a high
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degree of redundancy, such that most of the information about the underlying random

process is contained in the early part of the signal. A second reason for this is that the

~

estimates, KPAPA (17") become less reliable as 77 approaches its maximum possible value,

given by 7,—m; in [6.7]. These issues, together with the choice of 77, are discussed in
appendix III. The issues of convergence and of bias error are addressed in section 6.8.
The final parameter in the 3-parameter model is pa. rums, defined by:
1
T, =1
and is referred to as ‘the RMS normalised SFOAE’. When in decibel form, this will be

Pawms =R,,, (0)= IWNQING [6.10]

referred to as the ‘RMS normalised SFOAE level’, denoted by Larwms.
This method of obtaining estimates of @ and @gw by characterising the SFOAE

signal with the 3-parameter model will be referred to as the 3-parameter model.
6.6 The 4-Parameter Model

The 3-parameter model is based on the assumption that the SFOAE 7-series can be
considered as a stationary bandpass random signal. One problem with this model can be
seen in figs 6.2g-1 for model 12, where there is significant multiple reflection in the
cochlea. In this case, the ¢g-spectrum is not purely bandpass, but shows a series of
additional bandpass lobes (see also figs 2.6 and 4.8). This arises when the product rR
becomes significant relative to 1. If the second lobe is significant relative to the main lobe,
then the 3-parameter model will interpret multiple reflections incorrectly as spuriously high
values of ¢gc and ggw . To partially account for this affect, an additional parameter, denoted
&, has been introduced. This gives some measure of the magnitude of 7R averaged across
the measured 77 range, and hence gives an indication of the strength of multiple reflections.

The 4-parameter model considers the case where the functions g and r in
equation [4.30] do not very greatly over the signal, and can therefore be replaced by the

constants go and rg such that:

R
_Soft [6.11]

Pa=3"nR

It can then be shown that, if R is a gaussian stationary random process, then the following

relationship holds:
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[6.12]
o = 80R a1+ 20 R g + 618 R +..

where RPA A is the autocorrelation function of pa(7), R zr 18 the autocorrelation function

of R defined in [6.2], go is the magnitude of g¢ and ry is the magnitude of ry. The
derivation of this relationship is given in appendix III. For low values of ry the series
expansion in [6.12] converges after only the first two or three terms.

As with the 3-parameter model, it is useful to normalise the autocorrelation functions

in [6.12] by the variances of the signals giving:

2

KI’APA )= o2 K gr (77/)[1 + 20‘2KRR () +6a*Kg (1) + J
PAPA

o= rOO'RR [613]
B =800
where, for an arbitrary signal, x(7), K,.(#") denotes the normalised autocorrelation

function, such that K,,(0) = 1; and where o, denotes the rms amplitude of x(7).

The 4-parameter model fits the four parameters: ¢¢, dsw , arand frequired to define
the right hand side of equation [6.13] to the measured data. The iterative fitting procedure

is then as follows. First, the measured value of pa. rys 1S calculated from [6.10]. This is

used as an estimate of Oy pp- Then initial guesses are made of the three parameters: ¢c,

dsw and . From the values of arand of pa. rus , an estimate of the value of £ can be

calculated using [6.13], evaluated at "= 0:

1=~ '252 [1+2a2+60(4]

CTPAPA
therefore [6.14]

2
5 Parms

14202 +6a*

From the values of ¢¢ and ¢@gw, the fitted version of the normalised autocorrelation
function of the reflectance, Kz, (77) can be calculated as for the 3-parameter model, using
equations [6.3], [6.4] and [6.5]. The fitted version of the normalised autocorrelation

function of the normalised SFOAE, KpApA , can then be calculated using [6.13]. This is

then compared with the measured estimate of the normalised autocorrelation function of

paln), RPAPA , obtained from [6.7] and [6.8]. As for the 3-parameter model, a mean
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square error term is calculated, using [6.9]. Iteration over the three parameters, ¢c, @gw
and ¢ continues until this error is minimised. All four parameters are now defined. The
SFOAE ¢-spectrum which can be calculated from the four parameters will be called the

‘SFOAE fitted ¢-spectrum’.

The result of applying the 4-parameter model to the output of cochlear models is
shown in figs 6.2g-i, where the parametric fit is compared to the ensemble averaged
SFOAE ¢-spectrum for the model 12, where multiple reflections in the cochlea are
significant. Note that if 7o = 0 then @=0, = pa. rms and the 3-parameter model is
recovered.

This method of obtaining estimates of @ and @zw by characterising the SFOAE
signal with the 4-parameter model will be referred to as the 4-parameter model. A Matlab
procedure for returning the four parameters for any given SFOAE signal can be found in

appendix II.
6.7 Validity of the 4-Parameter Model

With reference to equation [6.1], the assumptions underlying the 4-parameter model
are that g and r are independent of frequency, and that R is a random signal arising from
stationary, gaussian white noise passed through a 2" order Butterworth band filter, defined
by ¢c and @sw . Although it is clear from our knowledge of the middle ear models that g
and r are not independent of frequency, their variation with frequency is much slower than
that of the SFOAE, pa. Consequently it has been found in the models used here that, the 4-
parameter model can still be usefully applied even when realistic middle ear models are
included. The values of azand fthat are then obtained relate to frequency averaged values
of | gR | and | rR | rather than the values given in [6.13]. Similarly, the reflectance, R, may
not in reality satisfy all the above assumptions. This is because scaling symmetry is only
approximate, the scattering potential may not be stationary and gaussian, and the spatial

filtering equation [4.26] is only approximate.
6.8 The Performance of the 4-Parameter Model for Cochlear Model Data

It is useful to assess the performance of the 4-parameter model with regard to the
variability of the estimates and to the sensitivity to noise. Quantifying the performance

analytically is extremely difficult. Instead, the following numerical approach has been
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taken. First data have been generated for which the optimal four parameters are already
known. Then the four parameters are estimated from the 4-parameter model and the
estimates compared to these optimal values. Three kinds of signal have been used to check
the performance in this way. The first kind is an ideal synthetic signal which satisfies all
the assumptions stated in section 6.4. This was achieved by passing a white noise signal
through a known 2" order Butterworth bandpass filter, and then inserting the resulting
bandpass signal into equation [6.1] to give an ideal output signal. This has been repeated
many times in order to generate the sampling distribution of the estimators for the four
parameters. The second kind of signal is an ideal synthetic signal plus additive random
noise. This gives an indication of the signal-to-noise ratio (SNR) for which the model can
be safely used. The third kind of signal is output generated by the macromechanical model.

These investigations show that for estimating ¢c , the performance of the 4-parameter
model is much better than that of a crude Fourier based estimator, which returns the
location of the peak of the raw ¢-spectrum. (The variance of the parametric estimator is
roughly a half that of the crude Fourier based estimator.) The results also suggest that the
model performs successfully down to an SNR of about 0 dB. However, estimates of @gw
and o are less reliable than those of @¢ and f. The results also show that for low values of
o (<0.1) the 4-parameter model gives very similar results to the 3-parameter model. There
is no significant bias error in the estimates of @d¢, dsw and f. There is, however, some bias
error in &, when the true value is very small, arising from the fact that ¢ cannot be negative
as it is an RMS quantity.

An example of the bias error and the variability of the four estimates for model 5 is
shown in fig. 6.3, which shows the results of applying the 4-parameter model to 32
realizations of the SFOAE output. These are compared against four baseline reference
values obtained by applying the 4-parameter model to an ensemble averaged value of the
autocorrelation function of the SFOAE data. This shows no significant bias error in the
distribution of estimates for any of the four parameters. It also shows that the estimates of
¢sw are more variable than those of ¢gc. Note also that the value of ozmust always be
between 0 and 1. The lower limit arises from the fact that it is an RMS quantity. The
upper limit arises from the physical constraint of stability. (Note that SOAEs can be
present without ¢rexceeding 1, since these only require that rR = 1 at a single frequency,
rather than that the RMS measure of rR across the frequency range of interest should

exceed 1.)
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Fig 6.3 Variability in the estimates in the 4 parameter fit to SFOAE data. The 4-parameter model was
applied to 32 realizations of the normalised SFOAE, obtained from the cochlear model with a random
scattering impedance (model 5). The figures show the mean (thick solid), one standard deviation (thick
dahsed) either side of the mean, and the actual estimates for each realization (thin solid). The 4-parameter
model was also applied to the ensemble averaged autocorrelation function to obtain ensemble estimates (thick

chain) which serve as the baseline reference values. Panel (a): the @g-centre value, @¢ . Panel (b): the ¢-
bandwidth, dzy . Panel (¢): the & -parameter. Panel (d): the f-parameter.

The ability to detect changes in periodicity has also been investigated. This is
illustrated in fig 5.4 where changes in periodicity are induced by altering the cochlear
amplifier gain. Each panel shows ¢-spectra at four different amplifier gain settings. Panels
(a) and (b) show the induced changes in raw SFOAE ¢-spectra for two realizations of the
SFOAE, whilst panel (c) shows the changes in average SFOAE ¢-spectrum obtained by
ensemble averaging. The corresponding fitted SFOAE ¢-spectra for these three cases are
shown in figs 5.4(e)-(f). Unlike in the raw ¢-spectra in panel (a), the fitted @g-spectra in
panel (d), shows a change in peak location with cochlear amplifier gain (albeit a reduced
change relative to the ensemble averaged SFOAE ¢@-spectra in panels ¢ and f). This is an
example of the increased sensitivity of the estimate of the periodicity of the 4-parameter

model, compared to an estimate based on the location of the peak of the raw ¢-spectrum.

128



6.9 Summary of the 4-Parameter Model

A 4-parameter model of the normalised SFOAE frequency spectrum has been
developed for estimating the ¢-centre value, and ¢-bandwidth of the SFOAE ¢-spectrum.
This model is based on the characteristics of a 2™ order Butterworth filter and attempts to
account for the spatial filtering proposed by Zweig and Shera (1995) as well as multiple
reflections involving the stapes. The performance of the model has been checked against

predicted SFOAEs from cochlear models.
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7.  Predicted Changes in SFOAE Periodicity with the TW Shape

In this section, the 4-parameter model used to quantify the changes in @¢ and @y that

cochlear models predict when changes in TW shape are induced.
7.1 The Effect of Cochlear Amplifier Gain on the TW Function

One simple way of altering the TW shape is to progressively deactivate the cochlear
amplifier by reducing the gain globally along the entire CP. This has been done using the
linear models (model 13-17) as illustrated in fig 7.1 for smooth and active cochlear using
either the NK-1986 or the Z-1991 cochlear amplifier. The TW function (magnitude and
phase in panels a, b, d and €), has been evaluated against CP place for a single frequency of
1.5 kHz. Panels ¢ and f show the real part of the total CP impedance. Negative values
indicate regions of TW amplification. Note that the absence of any scattering impedance is
of little importance as the effect of the including a scattering impedance on the TW
function is minimal.

Figs 7.1 a, b, d and e show an important result: decreasing the cochlear amplifier
gain causes both a broadening of the peak of the TW, and an increase in the TW
wavelength in the peak region (which is inversely proportional to the gradient of the phase
curve). As discussed earlier, in Shera and Zweig’s theory, the wavelength of the TW is
related to the periodicity of the SFOAE.

Comparing figs 7.1 a-c with d-f illustrates some obvious differences between the
results with the two different cochlear amplifier models. One difference is in the passive
response (i.e., where the cochlear amplifier impedance is zero). Model 16, with the T-1998
passive CP, shows a greater accumulated phase at the TW peak (i.e., 5 complete waves)
than model 13, with the KdB-1994 passive CP, which shows about 3 complete waves.
This is due to the parameter settings rather than any fundamental differences in
formulation. A second difference is in the region of negative damping arising from the
cochlear amplifier. For the NK-1986 model, the effect of the cochlear amplifier is
concentrated in a region just basal to the TW peak. For the Z-1991 model, the cochlear
amplifier gives rise to a negative CP resistance spreading apically beyond the characteristic

place. It also contributes a significant positive resistance in the more basal regions of the

CP.
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Fig 7.1 The effect of varying cochlear amplifier gain on the travelling wave function, 7, defined as
vep(x,w)/ug,(w). The travelling wave function is shown against CP location, for a constant stimulus
frequency of 1.5 kHz, and is obtained from two active cochlear models (models 13 and 16) with no scattering
impedance. Results are shown for cochlear amplifier gain attenuations of 0, 2.5, 6, 12, and o= dB. Model 13
has the NK-1986 cochlear amplifier; model 16 has the Z-1991 cochlear amplifier. Panels (a) and (b):
magnitude and phase of the travelling wave function for model 13. Panel (c) shows the real part of the total
CP impedance (i.e., the resistance) for model 13. Negative resistance indicates TW amplification. Panels (d)
- (f) show corresponding results for model 16. The thick line in each panel identifies the result at e dB
attenuation (i.e., the passive case).
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7.2 The Effect of Cochlear Amplifier Gain on SFOAE Periodicity

The effect on SFOAE periodicity of altering the cochlear amplifier gain has been
investigated for three cochlear models, two of which (models 14 and 17) have a random
scattering impedance, and a third (model 15), which has a periodic scattering impedance as
suggested by Strube. For the random scattering models, results were obtained from an

ensemble average over 32 realizations.

Varying gain of NK-1986 Varying Gain of NK-1986
. T . -10
0.05t (a) Random Scattering | b) Random Scattering
\ — ~20
m
=
-\< E
Q % < A A\ A2 =
D O b N L/ R Ty A £ -30
i ‘ 2
Q.
¢
= 40
-0.05} p
. ; . . . _5o UL
0.6 0.8 1 1.2 1.4 1.6 0 20 40 60 80 100
nom[octaves re. 1 kHz] [+]
Varying gain of Z-1991 Varying gain of Z-1991
: . " . 0
(c) Random Scattering (d) Random Scattering
— =10
m
.
£
£ -20
o
[
o
?
< 30
: . . - ~40
0.6 0.8 1 1.2 1.4 1.6 ¢] 20 40 680 80 100
L [octaves re. 1 kHz] [
Varying gain of NK-1986 Varying gain of NK-1986
0.05 - (e) Periodic Scattering | -10 (U] Periodic Scattering
g
. ‘g -20
g 2
& g
% -30
R=2
~0.05 + 1 —40
0.6 0.8 1 1.2 14 16 0 20 40 60 80 100
[octaves re. 1 kHz] [}

n Oct

Fig 7.2 The effect of varying cochlear amplifier gain on the normalised SFOAE obtained from three cochlear
models (models 14, 17 and 15). Results are presented as single realizations and as fitted ¢-spectra obtained
from the 4-parameter model fit to the ensemble average over 32 realizations. Panels (a) and (b): random
scattering impedance with NK-1986 cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.2, 1.6 dB (model 14).
Panels (c) and (d): random scattering impedance with Z-1991 cochlear amplifier attenuated by: 0, 0.4, 0.8,
1.1, 1.5, 1.9 dB (model 17). Panels (¢) and (f): periodic scattering impedance, with NK-1986 cochlear
amplifier attenuated by: 0, 0.4, 0.8, 1.2, 1.6 dB (model 15). Symbol O indicates the peak of the curve.

132



RMS Normalised SFOAE Level Variation

@

-60 - : .
0 0.5 1 1.5 2
Coch. Amp. Gain Attenuation [dB]
¢-bandwidth
30
(©
201
=
o
h=dd
1071
0 . . .
-60 -50 -40 -30 -20
RMS normalised SFOAE level, P, aus [dB]

p-parameter

=30t

-60 . .
-60 -50 -40 -30 -20

RMS normalised SFOAE level, Py ams [dB]

Fig 7.3 The effect of varying cochlear amplifier gain on the SFOAE parameters obtained from three cochlear
models (models 14, 17 and 15). Results are obtained by applying the 4-parameter model to the ensemble
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average over 32 realizations. Model 14 ( + symbol) has random scattering impedance with NK-1986
cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.2, 1.6 dB. Model 17 ( 0 symbol) has random scattering

impedance with Z-1991 cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.1, 1.5, 1.9 dB. Model 15 (* symboi)

has periodic scattering impedance, with NK-1986 cochlear amplifier attenuated by: 0, 0.4, 0.8, 1.2 and

1.6 dB. Panel (a): the variation of the RMS normalised SFOAE with cochlear amplifier attenuation. Panels
(b) - (e): the variation of @¢, @gw , vand £ with the RMS normalised SFOAE. Panel (f): the variation of gz

with ¢C .
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Figs 7.2a — d show the effect of cochlear amplifier gain reduction on single
realizations of the SFOAE frequency spectrum for the two random scattering models
together with fitted ¢-spectra obtained by applying the 4-parameter model to the ensemble
averaged results. As predicted by Zweig and Shera (1995), for the random scattering
models, the ¢-spectra show an decrease in the ¢-centre value, @, as the cochlear amplifier
gain decreases. There is also a corresponding decrease in the ¢-bandwidth, ¢gzw. In
contrast, for the periodic scattering model shown in figs 7.2e and f, no such change in ¢c or
@sw is seen with changes amplifier gain.

The effect of cochlear amplifier gain on the level of the SFOAE, La.rums, defined in
equation [6.10], is shown in fig 7.3a. Figs 7.3b-e show the four fitted parameters, ¢c, @sw,
orand S plotted against pa. rms. Note that the overall change in the SFOAE level is about
20 dB for each model.

In figs 7.3b and c, the random scattering models show a variation of ¢ and @gw with
SFOAE level, whilst the periodic scattering model does not. Fig 7.3e shows that fis
approximately equal to pa. rms, as expected from equation [6.13] when «/is small.

In fig 7.3d, «is plotted against the linear normalised SFOAE amplitude, pa: rums
(rather than the decibel form) to highlight the approximately linear variation of ¢ with
pa:rMs. This is expected, since, from equation [6.11], &/ f=ro/ go and B = pa. rms.
Therefore &/ pa. rms 1s roughly constant. In these models, 7y and gg are dependent only on
the front end models, not on the cochlear amplifier gain. Physically this means that the
effect of multiple reflections becomes negligible as the reflectance, R, and therefore the
SFOAE amplitude, pa. rms, becomes small.

Also plotted is the variation of @y as a function of ¢ (fig 7.3f). This gives an
indication of the variation of the Q-factor (defined as the ratio of the centre-frequency to
the 3 dB bandwidth) of the fitted 2™ order Butterworth filter. For the two random
scattering cochlear models, the points lie roughly on a straight line through the origin,
indicating a roughly constant Q-factor. The gradient of the slope of this line is the
reciprocal of the Q-factor. The differences in Q-factor for the NK-1986 and Z-1991
cochlear amplifiers, where the Q factor is roughly 1.0 and 1.8 respectively, arises from
differences both in cochlear amplifier formulation and passive cochlear parameters. For
the periodic scattering model, the Q-factor is unrealistically high, at around 6.0, due to the
near perfect sinusoidal SFOAE prediction. More realistic values from a Strube model

could be obtained by using the Strube narrow band scattering impedance (model 8).
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7.3 The Effect of Self-suppression and Two-tone Suppression on SFOAE
Periodicity

7.3.1 Self-Suppression Simulations

To model the effect of increasing probe level, the quasilinear models of single tone
self-suppression is used (models 18 and 19). This is the model developed by Kanis and de
Boer (1993b, 1994, 1996), modified to include reflection sites on the CP. In this model,
the cochlear amplifier progressively saturates in some regions of the CP, leading to local
reductions in amplifier gain. Figs 7.4 a and b shows the effect of self-suppression due to
increasing the stimulus input level on the TW function at a single frequency. Fig 7.4 ¢
shows how (unlike the global gain reduction, fig 7.1c) the saturation of the cochlear
amplifier begins at the right hand edge of the active region, where the CP velocity is the
highest.

Unlike for the linear models, no ensemble averaging has been performed due to the
excessive computation time required. Instead, only two realizations of the random
scattering impedance were generated at each probe level. Frequency sweeps were then
performed for both the realizations of the random scattering impedance (model 19), and for
the corresponding smooth model (model 18). This gave two realizations of the SFOAE
frequency spectrum for model 19 at each probe level. The 4-parameter model was then

applied to both realizations.

7.3.2 Two-tone Suppression Simulations

As mentioned in section 5.2.3, the predicted effect on the TW shape of introducing a
high-side suppressor tone is quite different to that of simply increasing the level of the
probe tone (Kanis and de Boer, 1994). This can be seen in fig. 7.4. The reason for this
result is that the cochlear amplifier does not saturate uniformly along the CP, but instead
tends to saturate first at those points where the amplifier activity is highest. This
corresponds to regions where the CP velocity amplitude is highest. Consequently, in self-
suppression saturation begins near the peak of the TW of the probe, and then spreads
basally as the probe level increases. In contrast, in high-side suppression, saturation can
occur near the peak of the suppressor which lies basal to the peak of the probe, and
therefore lies within the probe’s region of active amplification. Thus the suppressor tone
can cause saturation of the cochlear amplifier to begin at a point basal to the peak of the
probe’s TW envelope, rather than at the peak itself (fig 7.4f).
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Fig 7.4 The effect of self-suppression and two-tone suppression on the travelling wave function, T, defined as
vep(x,w)/ug,(w). The travelling wave function is shown against CP location for a constant stimulus
frequency of 1.5 kHz, and is obtained from two quasilinear cochlear models (models 18 and 20) with no
scattering impedance. Model 18 simulates self-suppression with probe levels of 40, 50, 60, 70, 80, and 120
dB SPL. Model 20 simulates two-tone suppression with a probe level of 45 dB SPL, and suppressor levels of
30, 50, 60, 70, 80, and 90 dB SPL. Panels (a) and (b): magnitude and phase of the travelling wave function
during self-suppression (model 18). Panel (c) shows the real part of the total CP impedance (i.e., the
resistance) during self-suppression (model 18). Negative resistance indicates TW amplification. Panels (d) -
(f) show corresponding results for two-tone suppression model 20. Thick and thin solid lines: response at
stimulus frequency; thick solid lines: response at stimulus frequency in the maximum suppressed case; chain
line (shown in (d) only): response at suppressor frequency for 30 dB SPL suppressor level.
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Note that the same effect does not occur in low-side suppression, where the peak of
the suppressor lies apical to the probe and therefore lies apical to the probe’s region of
active amplification. Low-side suppression of the probe TW is therefore caused by the CP
response to the basal portion of the suppressor TW, rather than its peak response.
Consequently, as with self-suppression, saturation of the probe’s active amplification
begins near the peak of the probe TW, and spreads basally as the low-side suppressor level
increases.

The effect of the a high-side suppressor tone on the TW is seen in figs 7.4d-f, for
model 20, with a suppressor to probe frequency ratio of 1.1. Compared to the self-
suppression case, the changes in TW shape are harder to characterise. It is useful here to
define the “6 dB peak region” as the portion of the TW envelope that is no more than 6 dB
down from the peak in fig 7.4d. This region shows little if any broadening (fig 7.4d)
during two-tone suppression. Similarly the slope of the phase in this region changes
relatively little (fig 7.4e). This has consequences for the SFOAE periodicity, since, in
Zweig and Shera’s theory, periodicity is related to the wavelength of the TW in the peak
region, which in turn is related to the slope of the phase of travelling wave. This is
changed little by the addition of a high side suppressor tone, whilst it is reduced by a probe
level increase.

Note that this definition of the 6 dB TW peak region is somewhat arbitrary. In order
to determine precisely how the changes in TW shape seen in fig. 7.4d and e would affect
the OAE periodicity directly from Zweig and Shera’s phenomenological model (rather than
the full cochlear model), the predicted TW response (figs 7.4d and e) could be used to
approximate the (scaling symmetric) TW function in equation [4.26]. The periodicity
could then be calculated in the manner illustrated in fig. 5.4. This analysis has not been
performed. However, provided that the OAE is dominated by reflections from within this
6 dB peak region, the argument stated above that a high-sided two-tone suppressor should
cause no reduction in ¢¢ is a valid one.

Two-tone suppression of SFOAES for various different suppressor levels was
simulated using models 20 and 21. The same two realizations of the random scattering
impedance that were used in the self-suppression simulation were again used in the two-
tone suppression simulation. A frequency sweep was then performed at each suppressor
level for both the random scattering impedances (model 21), and for smooth model (model
20), thus yielding two realizations of the SFOAE frequency spectrum. The 4-parameter

model was then applied to both realizations.
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7.3.3 Results of Self-suppression and Two-tone Suppression Simulations

Figs 7.5a-c show the results of the self-suppression simulations obtained with
realization 1. Below a stimulus level of about 40 dB SPL, the model is approximately
linear and little self-suppression occurs (panel a). Above this level, the RMS normalised
SFOAE level falls off with increasing stimulus level at about 1 dB/dB. Panels bandc
show that the changes in the SFOAE ¢@-spectrum are similar to those seen for the global
cochlear amplifier gain reduction (fig 7.2b). The reason for this can be seen by examining
the spatial variation of the TW phase, the slope of which gives the wavenumber (inversely
proportional to wavelength). In both the global gain reduction simulation and in the self-
suppression simulation, a reduction in TW peak amplitude is accompanied by an increase
in the wavelength near the TW peak, leading to a reduction in the ¢-centre value, ¢c, and
hence an to increase in periodicity (equation [4.32]).

Figs 7.5d-f show the results of the two-tone suppression simulations obtained with
realization 1. The change in RMS normalised SFOAE level (panel d) shows that two-tone
suppression starts to take effect once the level of the suppressor tone exceeds that of the
probe tone (45 dB SPL). Unlike either the global gain reduction simulation, a reduction in
the SFOAE level is accompanied by a slight increase in the ¢-centre value, ¢¢ (panels e
and ).

The four fitted parameters, ¢, dsw , crand £ are plotted against pa. rms in figs 7.6b-f
for realization 1 for both the self-suppression and the two-tone suppression cases. The
curve in panel (b), shaped like a lower case “y”, clearly shows the difference in the
predicted variation of ¢ with pa. rms between the self-suppression and the two-tone
suppression cases. The longer limb of the “y” (which has a positive gradient) arises from
the self-suppression experiment, and the shorter limb (which has a negative gradient) arises
from the two-tone suppression experiment. The difference between the two cases for the
variation of ¢ggw is less clear (panel ¢). Here the curve for the self-suppression case is not
monotonic. This is thought to be due to the difficulty in estimating @sw, seen in fig. 6.3b.

The explanation for the variation of zand £ (panels d and e) is the same as in section 6.2.
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Fig 7.5 The effect of self-suppression and two-tone suppression on the normalised SFOAE and its
¢-spectrum simulated by quasilinear cochlear models with random scattering impedances (Models 18 and
20). Model 18 simulates self-suppression with probe levels of 20, 30, 35, 40, 45, 50, 55 and 60 dB SPL.
Model 20 simulates two-tone suppression with a probe level of 45 dB SPL, and suppressor levels of 30, 45,
55, 65 and 75 dB SPL. Fitted results are obtained by applying the 4-parameter model to a single realization
of each frequency sweep. Only single realizations are obtained for each frequency sweep. Panel (a): the
variation of the RMS normalised SFOAE with probe level (self-suppression: model 18). Panels (b) and (c):
the effect of self-suppression on the raw and fitted SFOAE ¢-spectra for probe levels of 20, 40, 50, and 60 dB
SPL (model 18). Panel (d): the variation of the RMS normalised SFOAE with suppressor level (two-tone
suppression: model 20). Panels (e) and (f): the effect of two-tone suppression on the raw and fitted SFOAE
¢-spectra for suppressor levels of 30, 55, 65, and 75 dB SPL (model 20). In panels (b), (c), (e) and (f)
symbol 0 indicates the peaks of the curve.
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RMS normalised SFOAE level variation
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Fig 7.6 The effect of self-suppression and two-tone suppression on the SFOAE parameters obtained from
quasilinear cochlear models with random scattering impedances (models 18 and 20). Results are obtained by
applying the 4-parameter model to a single realization (realization number 1) for each frequency sweep.
Model 18 ( 0 symbol) simulates self-suppression with probe levels of 20, 30, 35, 40, 45, 50, 55 and 60 dB
SPL. Model 20 ( + symbol) simulates two-tone suppression with a probe level of 45 dB SPL, and suppressor
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or suppressor level. Panels (b) - (e): the variation of @¢ , @zw , and £ with the RMS normalised SFOAE.
Panel (e): the variation of @z with ¢c .
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RMS normalised SFOAE level variation
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Fig 7.7 As fig. 7.6, except that the simulations used realization 2 of the random scattering impedance instead
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RMS normalised SFOAE level variation
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The corresponding results for realization 2 are shown in fig 7.7a-f. As for realization 1, the
variation of @ with pa. rms follows a y-shaped curve (panel b), though with somewhat
lower absolute values of ¢ . Unlike realization 1, the variation of ¢y now also follows a
y-shaped curve. The variation of ¢ (panel d) is somewhat erratic, with several of the
points deviating from the expected trend (cf. fig. 7.3d). These results are consistent with
the result found in section 6.8, that gz and ¢ are more difficult to estimate reliably than
@c using the 4-parameter model.

To compare results from realization 1 with those from realization 2, figs 7.8a-f shows
both results overlaid. Panel (f) indicates the wide discrepancy in the estimates of the Q-
factor of the 2™ order Butterworth filter. In realization 1, the estimated Q-factor is clearly
reducing with increasing probe level (i.e., ¢ reduces more rapidly than @gw ), whilst for

realization 2, the reverse is the case. This is a further illustration of the difficulty in

estimating @gy.
7.4 Testable Predictions from the Cochlear Models

The results of the cochlear models are qualitatively all in agreement with the
predictions of Zweig and Shera’s theory of spatial filtering. This theory predicts that, for a
cochlea with a random spatial distribution of scattering sites, the form of the SFOAE
frequency spectrum is directly related to the shape of the TW. More specifically, the
¢-centre value, ¢, is related to the wavelength in the TW peak region, whilst the
¢-bandwidth, ¢ggw, is related to the width of the envelope of the TW peak. Thus the theory
predicts that changes in TW shape will result in changes ¢c, and @gw.

Changes in TW shape can be induced experimentally by increasing the probe level
(self-suppression) or by introducing a suppressor tone (two-tone suppression).
Unfortunately changes in the shape of the TW can not be measured experimentally.
However, by using the models of self-suppression and two-tone suppression described
above, changes in ¢, and ¢@gw can be related to changes in the RMS level of the SFOAE,
which give an indication of the degree of suppression. The model results seen in figs 7.6
and 7.7 show clear predictions that may be tested experimentally.

Four testable predictions can be formally stated, based on the characteristic y-shaped
results seen in figs. 7.6 and 7.7, panels (b) and (c). These results all apply to the cochlear
models based on Shera and Zweig’s theory, in which the cochlear scattering impedance has
a random spatial distribution, and combined with Kanis and de Boer’s quasilinear model of

self-suppression and two-tone suppression.
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1. For self-suppression, an increase in the level of the probe tone causes a reduction in both

the RMS normalised SFOAE and the ¢-centre value, ¢c.
2. For high-sided, two-tone suppression, an increase in the level of the suppressor tone
(holding the probe level constant), causes a reduction in the RMS normalised SFOAE, but
an increase in the ¢-centre value, ¢.
3. For self-suppression, an increase in the level of the probe tone causes a reduction in the
RMS normalised SFOAE and, in general, a reduction in the ¢-bandwidth, gzw.
4. For high-sided, two-tone suppression, an increase in the level of the suppressor tone
(holding the probe level constant), causes a reduction in the RMS normalised SFOAE. The
corresponding value of @gw may increase or decrease. In the latter case, the rate of decrease
appears on average to be less than that for ¢.

The results for ggw appear to be more erratic, and show a greater variability between

the two realizations than do those for ¢g¢. Thus it might be expected that the predictions for

¢sw may be less easy to test than those for ¢.

Note that Strube’s model, in which the cochlear scattering impedance has a periodic
spatial distribution, predicts no change in either the ¢-centre value or ¢-bandwidth in either

suppression case.
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PArT III: EXPERIMENTS

8.  Experiments to Test the Theoretical Predictions

8.1 Objectives

The objectives of the experiment were to test the four cochlear model predictions
stated in section 7.4 against measurements made in human ears. Two experiments, referred
to here as the self-suppression experiment, and the two-tone suppression experiment, have
been performed.

The objective of the self-suppression experiment was to determine the variation of
the SFOAE amplitude, the @g-centre value and the ¢-bandwidth with the level of the
stimulus tone (referred to here as the probe tone).

The objective of the two-tone suppression experiment was to determine the variation
of the SFOAE amplitude, the ¢g-centre value and the ¢-bandwidth with the level of a
suppressor tone, at a constant probe tone level.

In both of these, the ¢-centre value and ¢-bandwidth were obtained by applying the 4-

parameter model to measurements of the SFOAE frequency sweeps.

8.2 Subject Selection

The experiment was designed to compare the results from each subject directly with
theory, rather than averaging results across subject. That is to say, from the results of an
individual subject, it should be possible to conclude whether or not the theoretical
predictions are borne out for that subject. Therefore the number of subjects was chosen to
give a representative sample of the normal hearing population (rather than in accordance
with any statistical power calculation). It was decided to test one ear per subject, with 20
subjects in total (10 male and 10 female, all aged between 18 and 40 years). Subjects were
paid volunteers. The experiment was approved by the departmental Safety and Ethics
Committee. |

Subjects were screened to ensure that the test ear was normal on otoscopy and
tympanometry, and that the pure tone hearing threshold level was 10 dB or better at 0.5, 1,
2,3, 4 and 8 kHz, and was 15 dB or better at 0.25 kHz.
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Fig 8.1 Schematic diagram of the experimental apparatus for measuring SFOAESs in the ear canal of a human
subject.

8.3 Experimental Apparatus

SFOAEs were measured using an existing system that had been specifically designed
for DPOAE and SFOAE measurement, and was controlled by in-house software modified
for these experiments. A schematic diagram of the hardware is shown in fig 8.1. The PC
controls the DPOAE box, which comprises a DSP card, 16 bit DAC and ADC stages and a
sample rate generator. The two outputs of this box connect to two Etymotic ER-2 insert
earphones which deliver pure tones to the ear via coupling tubes running through the OAE
probe.

Two tones can be presented to the ear simultaneously by the two earphones. One of

these tones, termed the probe tone, is used to evoke the SFOAE. Thus the SFOAE appears
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as a component of the ear canal pressure at the probe tone frequency. The second tone (if
present) is termed the suppressor tone, and is used to suppress the SFOAE. The term
stimulus is used to mean the entire acoustic stimulus; that is, the combination of the probe
and suppressor tone. Where only one tone is presented, it will still be referred to as the
probe tone. (To avoid any confusion, the physical device inserted into the subject’s ear
canal will always be termed the ‘OAE probe’, rather the simply the ‘probe’.)

The earphones and their tubing provide a high acoustic source impedance, and thus a
given earphone voltage gives a volume velocity which is approximately independent of the
ear canal impedance loading the OAE probe. The system can deliver tones up to
approximately 80 dB SPL in the ear canal. Tones are generated digitally in the DSP card
with frequencies which are multiples of 16 Hz. The acoustic pressure in the ear canal is
measured using a low noise Etymotic ER-10B+ microphone housed in the OAE probe, and
connected through a preamplifier to the input of the DPOAE box. The OAE probe is
connected to the ear canal using a soft plastic cuff.

The OAE probe is calibrated in a Bruel and Kjaer Type 4157 ear simulator which
contains a reference microphone situated at a point corresponding approximately to the
eardrum. Earphone and microphone levels quoted in all the experiments are based on this
calibration. Thus a nominal earphone level of 20 dB SPL is defined as the voltage
amplitude to the earphone that gives 20 dB SPL at the reference microphone of the ear
simulator. Similarly, an OAE probe microphone level of 20 dB SPL is defined as the
voltage output from the OAE probe microphone that arises when the reference microphone
of the ear simulator is reading 20 dB SPL, when excited by the OAE probe earphones.
Calibration was performed at 16 Hz intervals over the frequency range of interest. It can be
shown that the problem of standing waves in the ear simulator, which is inherent to this
method for defining microphone calibration at high frequencies (>3 kHz), does not
materially influence the results of the SFOAE experiments conducted here.

The experiment was conducted with the subject sitting in a sound treated booth,

whilst the researcher, the DPOAE box and the PC are located outside the booth.
8.4 Measurement of Ear Canal Pressure during Stimulus Presentation

At any probe frequency, the SFOAE is calculated from two measurements of the ear
canal pressure: the first in which both the SFOAE and the stimulus components are
present, and the second in which the SFOAE component has been minimised by acoustic

suppression. The details of this method are given in sections 8.8.1 and 8.8.2.
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The method of measurement of the ear canal pressure at a given probe frequency
provides for both noise reduction by synchronous averaging, and for the rejection of noisy
epochs of the signal. The stimuli are delivered in epochs of 62.5 ms (2048 sample points)
containing a whole number of periods of the stimulus tones. In the DSP card, following
the ADC™ stage, the sampled microphone signal is recorded in corresponding epochs with
16 bit precision and loaded into buffers of 2048 points. On completion of the epoch and
before the next epoch begins, an in-place FFT with 16 Hz resolution is calculated. The
buffer holds a whole number of periods of the tones, thereby eliminating any truncation
effects in the FFT. The FFT is transferred to the PC for further processing as follows.

The first buffer (i.e., the first 62.5 ms of the signal at each frequency) is always
discarded, since this will contain the transient response of the transducers and the ear.
Subsequent buffers are then classified as ‘good’ or ‘bad’ depending on an estimate of their
noise level, as described below. Bad buffers are rejected, whilst good buffers are accepted
for averaging.

Averaging of the (complex) FFT across successive buffers leads to an improvement
in SNR equal to 3 dB for each doubling of the number of buffers in the average (assuming
the noise is gaussian and uncorrelated with the stimulus). The number of good buffers in
the average varied between 8 and 128, depending on estimates of the levels of SFOAE
signal and noise. Thus the total duration of the ‘good’ section of signal varied between 0.5
and 8 seconds.

The buffer was classed as ‘bad’ if the estimated noise power in the buffer around the
frequency of interest (i.e., the probe frequency) exceeded some preset threshold, referred to
here as the rejection level. This allows particularly noisy sections of data (perhaps arising
because the subject has moved or swallowed) to be rejected before they could contaminate
the average. The noise level is estimated by averaging the power in the microphone signal
in the 10 spectral lines either side of the probe spectral frequency line (but excluding the
spectral line at the location of the suppressor tone). The assumption here was that the noise
power in this 16-Hz band equalled the average noise power in the 20 adjacent spectral
bands. The setting of the rejection level for the two experiments is discussed further in
section 8.8.3. Typically the rejection level was set to 10 or 15 dB SPL. Note also that the

noise is subject to truncation effects, leading to spurious components in the FFT.

2 The ADC is an 8 x over-sampling device, thus eliminating the need for anti-aliasing filters.
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8.5 Measurement of the SOAEs

In order to identify any SOAESs, the power spectrum of the ear canal pressure in the
absence of any stimulus was measured. Since SOAEs are not phase locked to the
measuring epoch, synchronous averaging is not appropriate. Instead, the average power in
each 16-Hz band was calculated over 100 buffers. As in the previous section, ‘bad’ buffers
are rejected. Typically the rejection level was set at about 15 dB SPL. The frequency for
calculating the noise level used in the rejection procedure was arbitrarily chosen as 1 kHz.

This method of measuring SOAE:s is relatively insensitive, because the frequency
resolution of the power spectrum (16 Hz) is poorer than the bandwidth of a typical SOAE,

which may be as narrow as 1 Hz or less. The consequences of this are discussed in a later

section.
8.6 Experimental Procedure

Prior to testing, subjects were screened for normal hearing. Suitable subjects were
then seated in the test booth, and the OAE probe inserted into the test ear. Subjects were
instructed to keep as still as possible, and to swallow as infrequently as was comfortable
whilst testing was in progress. The test session was then carried out.

For each test session, two experimental protocols were followed: the self-suppression
and the two-tone suppression protocol. Both protocols comprised initial measurements of
SOAES, followed by a series of frequency sweeps, followed by a final measurement of
SOAE:s. The series of frequency sweeps will be referred to as a ‘level series’. In the self-
suppression protocol, described in detail in section 8.8.1, the level series comprised seven
frequency sweeps, each at a different probe level. In the two-tone suppression protocol
(section 8.8.2), the level series comprised five frequency sweeps, each at a the same probe
level, but at different suppressor levels. The first of these frequency sweeps was performed
with the suppressor absent. Each frequency sweep comprised measurements of the SFOAE
pressure (referred to as ‘points’) at 91 frequencies between 1376 Hz and 2816 Hz. Each
SFOAE pressure measurement is obtained from two measurements of the (complex) ear
canal pressure at the probe frequency. The first of these two measurements yields the
stimulus + SFOAE pressure component, whilst the second yields an estimate of the
stimulus component alone. This method is described in detail in the next section. As a

check on repeatability, each subject sat for two test sessions on different days.
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The self-suppression and two-tone suppression protocols took roughly 50 and 30
minutes respectively to carry out. Removal and refitting of the OAE probe was kept to a
minimum. Usually this meant that the OAE probe remained in place for the entire duration
of the session. As a minimum, the OAE probe was kept in place for the duration of each
frequency sweep (i.e., sweeps were discarded if the OAE probe was removed before
completion).

For the first session, the SFOAE frequency sweeps were collected in order of
increasing probe (or suppressor) level. This order was reversed for the second test session
(though, as expected, the order of presentation made no noticeable difference).

Summarising the basic test structure, and specifying the main experimental
parameters:

e Each subject sat for 2 sessions.

e For each session, two experimental protocols were followed: the self-suppression

and two tone suppression protocol.

e Each protocol comprised initial SOAE measurements, followed by one SFOAE
level series, followed by final SOAE measurements.

e The self-suppression level series comprised seven frequency sweeps at probe
levels ranging from 14 up to 50 dB SPL in 6-dB steps.

e The two-tone suppression level series comprised five frequency sweeps: one
unsuppressed sweep plus four suppressed frequency sweeps at suppressor levels
ranging from 26 up to 62 dB SPL in 12-dB steps. The probe level was held
constant at 26 dB SPL. The suppressor frequency was 1.3 X the probe frequency.

e Each frequency sweep comprised 91 points at frequencies from 1376 to 2816 Hz
in 16-Hz steps.

e Each point comprised a single measurement of the SFOAE pressure obtained
from two measurements of the complex ear canal pressure at the probe frequency:
the first is the stimulus + SFOAE components, the second is an estimate of the
stimulus component alone.

e Fach measurement of the complex ear canal pressure was obtained by averaging a
number of the FFTs (between 8 and 128), each FFT being calculated from a

recording epoch with a duration of 62.5 ms.
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8.7 The Problem of the Frequency Resolution and Spectral Aliasing

One question that must be addressed is whether or not the frequency resolution of
16 Hz (which was set by the DSP card) was sufficient to accurately characterise the
SFOAE frequency spectrum. This can be thought of as a ‘spectral aliasing’ problem,
analogous to the more familiar problem of temporal aliasing. Temporal aliasing arises
during analogue to digital conversion when the analogue signal contains frequency
components that are higher than half the sampling rate (the so called ‘folding frequency’).
The problem is not just that these high frequency components cannot be represented by the
digital time series, and are therefore lost, it is that they appear as spurious low-frequency
components. Once sampled, they are indistinguishable from genuine low-frequency
components, and no amount of digital signal manipulation can remove them (e.g.,
Newland, 1987).

The procedure of measuring the SFOAE frequency spectrum at discrete intervals is,
in effect, sampling the true underlying continuous spectrum, and therefore susceptible to
the problem of aliasing. Thus, any variations in the continuous frequency spectrum of the
SFOAE that occur over sufficiently small frequency intervals will be misinterpreted in the
measured discrete spectrum as variations over larger frequency intervals. To assess this
problem, it is first assumed that the SFOAE is roughly stationary in the 7-domain (section
6.5). Then to use the analogy of temporal aliasing, consider 7 as the analogue of time, and
¢ as the analogue of frequency. Aliasing becomes a problem when components in the true
¢-spectrum are higher than the ‘folding” value of ¢. The analogy is not perfect, because the
measurements are made at constant frequency intervals of 16 Hz, rather than constant #7-
intervals. The intervals in 7o, decrease over the measurement range of 1376 to 2816 Hz.
However, if we assume (pessimistically) that the #7-series is obtained with the largest 7.,
interval then we obtain a sampling interval of:

Anoc: =10gs[(1376+16)/1376] = 0.0167 octaves
and therefore a ‘folding’ ¢ value of:

P ro1a = 1/AD =1 /(log. 2 Atjo.; ) = 1.443 7 0.0167 = 86.

This means that components with ripple spacings down to a periodicity value of 1/86 can
be represented, and will not cause aliasing (recall that typical periodicities are 1/15). By
examining the measured raw ¢-spectra of the frequency sweeps (to be presented later), it is
clear that the spectrum at ¢= 86 is at least 20 dB below the maximum value, and therefore

spectral aliasing will not be a problem.
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Two further points are worth noting. The first is that here the ‘folding’ ¢is equal to
the ‘sampling’ ¢, rather than half the ‘sampling’ ¢, where the latter value might be
expected from the temporal aliasing analogy. The reason for this is that the SFOAE #-
series is complex and has a ¢g-spectrum that is entirely one sided. Therefore the ¢-spectrum
has no left hand side to ‘fold back’ onto the right hand side (Newland, 1987). The second
point is that, with a constant frequency interval, spectral aliasing becomes more of a
problem at lower frequencies. In fact, the minimum frequency value of 1376 Hz used in

this experiment was chosen partly to avoid possible spectral aliasing problems.
8.8 SFOAE Measurements
8.8.1  The Self-suppression Experimental Protocol

The measured SFOAE is a function of two independent variables: the probe input
pressure amplitude, and probe input frequency. For the self-suppression experiment,
SFOAE:s frequency functions were measured at each of seven different input levels over a
frequency range of just over one octave. The seven input levels used were from 14 up to
50 dB SPL in 6-dB steps. For each of the seven SFOAE frequency sweeps, the probe input
level was held constant while the frequency was decreased from 2816 to 1376 Hz in 16-Hz
steps. Note that the probe input pressure amplitude is not controlled directly. Instead, the
voltage to the earphone is controlled based on the level in the B & K Type 4157 ear
simulator (section 8.4). Thus, for example, an input level of 20 dB SPL means that the
voltage to the earphone (essentially proportional to the earphone volume velocity) is that
which gives 20 dB SPL at the reference microphone in the ear simulator.

Calculating the SFOAE at any frequency and input level requires using the OAE
probe microphone to measure the complex ear canal pressure in two conditions. In the first
condition, ear canal pressure equals the stimulus pressure component plus the OAE
pressure component. In the second it is approximately equal to the stimulus pressure
component alone. The SFOAE is then the (complex) difference between these two. To
estimate the stimulus component alone, the suppressor method of SFOAE measurement
was used, where a high-level suppressor tone is introduced to reduce the OAE component
as far as possible. A suppressor tone at 58 dB SPL, and spaced 16 Hz above the probe tone
was found to provide adequate suppression. For example, to obtain the SFOAE component

for an input level of 20 dB SPL, at 2000 Hz, the following pair of measurements is made:
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Table 8.1 Example of a pair of presentations for a single point in the SFOAE

frequency sweep for the self-suppression experimental protocol

Mic. Components Probe Tone Suppressor Tone
freq (Hz) level (dB SPL) freq (Hz) level (dB SPL)
PEC= PEC:R=0 + PsF 2000 20 None
PEC:R=0 2000 20 2016 58

The two measurements must be completed within a short time interval (e.g., two seconds
or s0), in order to minimise ‘drift noise’ discussed further in section 8.8.3. The

measurement of the ear canal pressure is detailed in section 8.4.

8.8.2  The Two-tone Suppression Experimental Protocol

Unlike the self-suppression experiment, in the two-tone suppression experiment,
SFOAESs are measured in the presence of a suppressor tone. Such SFOAEs will be called
partially suppressed SFOAEs (to distinguish them from the maximally suppressed SFOAEs
used to estimate the stimulus component alone).

The partially suppressed SFOAE is a function of four independent variables. These
are the input pressure amplitude and frequency of both the probe and suppressor tones. For
the two-tone suppression experiment, four SFOAE frequency sweeps were measured, each
with the same probe input level of 26 dB SPL, but with four different suppressor levels
(from 26 to 62 dB SPL in 12-dB steps). The suppressor frequency was nominally 1.3 times
the probe frequency (rounded to the nearest 16 Hz), whilst the probe frequency was
decreased from 2816 to 1376 Hz in 16-Hz steps. As before, each of the four SFOAE
frequency sweeps was measured by varying the frequency while the probe and suppressor
tone levels were held constant. In addition to the four partially suppressed SFOAE
frequency sweeps, a fifth, unsuppressed measurement was made, also with a 26 dB SPL.
probe. This was an exact repeat of one of the self-suppression frequency sweeps, but was
included to give a baseline measurement made close in time to the four partially suppressed
SWEEPS.

The partially suppressed SFOAE is measured using a similar method to that for
unsuppressed SFOAESs, except that a suppressor tone is introduced. For example, to obtain

the (partially suppressed) SFOAE component for a probe tone of 26 dB SPL and 2000 Hz,
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in the presence of a suppressor tone of 38 dB SPL and 2608 Hz, the following pair of

measurements are made:

Table 8.2 Example of a pair of presentations for a single point in the SFOAE

frequency sweep for the two-tone suppression experimental protocol

Components Probe Tone Suppressor Tone
freq (Hz) level (dB SPL) freq (Hz) level (dB SPL)

PEC=PEC:R=0 + PsF 2000 26 2608 38

PEC:R=0 2000 26 2016 58

Note that the purpose of the suppressor is different in the two measurements: in the first its
purpose is to partially suppress the SFOAE by a controlled amount, whilst in the second, it

1s to suppress the SFOAE as far a possible.
8.8.3 Optimising the Signal-to-noise Ratio in SFOAE measurements

The measured SFOAESs are small relative to the background noise, and therefore
great care was taken to achieve an adequate signal-to-noise ratio (SNR) in the design of the
experiment. In the following discussion the term ‘noise’ is used to refer to the uncertainty
in the measurement of the SFOAE, rather than to any actual physical contaminating signal.
Specifically, the noise on the SFOAE signal is defined here as the standard deviation in the
estimate of the SFOAE pressure, and is denoted by ngr. With this definition, two different
sources of noise can be identified. These will be called here ‘additive noise’ and ‘drift
noise’, and are denoted by ngr.aqq and nge.p, respectively. These components are all

functions of probe frequency, fj. The SNR for the SFOAE is then defined as:

IPS;' (fl); 8.1]
ng(f1)

Where in [8.1], psr is understood to refer to the true value of the SFOAE, rather than the

SNR(f,) =10log,,

actual measurement, which will include noise.

Additive noise arises from unknown random components in the microphone signal,
which may originate from acoustic sources other than the cochlea (such as physiological
noise) or from electrical noise in the electronic components. This additive noise is reduced
by the signal averaging procedure, such that the noise power reduces by approaching 3 dB

for each doubling of the number of buffers in the average. It can easily be shown that,
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since the error in the SFOAE arises from the noise in two measurements of the ear canal

pressure, the additive noise component is given by:

Mgrpaa (1) = Mpe () + Mgcpee (F) [8.2]
where ngc and nge.g-o are the standard deviations of the measurements of the ear canal
pressure in the unsuppressed and suppressed conditions, respectively. Good estimates of
these two values can be obtained from the method of averaging the noise power in adjacent
spectral bands. The values of ngc and ngc.g=o are usually approximately equal and
therefore the power of the SFOAE additive noise is twice that of the additive noise in a
single ear canal pressure measurement.

Drift noise arises from the calculation of the SFOAE pressure as the difference in two
microphone readings: psr = prc — Pec:r=0 (first introduced in equation [4.30]), and from
the fact that these two readings cannot be obtained simultaneously. Slow variations in
these components appear as spurious SFOAE readings. Now the estimate of the SFOAE is
calculated from a small difference in two large quantities, and is therefore highly sensitive
to small changes in the measured ear canal pressure. The effect can be illustrated by the
following example. Consider measurements in an ear with no SFOAEs. Two
measurements, about 1 second apart, are made of the ear canal pressure, the first in the
unsuppressed condition and the second in the suppressed condition. Any change in the two
measurements is attributed to the presence of an SFOAE in the unsuppressed condition.
However, changes will also arise from other sources such as a change in the middle-ear
pressure, or a change in the OAE probe fit over the course of the two readings. In addition
low frequency additive noise (with a period greater than 1 s) will also lead to changes
between the two readings. Consider for example, a change in the source impedance due to
a change in probe fit. This will cause a change in ear canal pressure measured at the
microphone for a given earphone voltage. Furthermore, for a given change in impedance,
the size of the change in ear canal pressure will be proportional to the original ear canal
pressure. This means that the magnitude of the drift error increases as the stimulus level
increases. Because the SFOAE pressure is relatively smaller at high levels, the drift noise
becomes more significant as the level increases. For example, at the highest stimulus
levels, the SFOAE level is typically 40 dB below the stimulus level. Therefore a drift of
1% (or 0.09 dB) in the amplitude of the measured ear canal pressure leads to an error in the
SFOAE pressure amplitude of 100% (or 6 dB).

Drift noise is also increased as the time interval between the two readings is
increased. Therefore, unlike additive noise, the drift noise is increased, rather than
reduced, by increasing the averaging time for the signal: the longer the time interval, the
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greater the opportunity to drift. Drift error could be reduced by an ensemble averaging
technique in which the two ear canal measurements are made repeatedly at each frequency.
However this technique was found to be too time consuming to pursue.

In measuring the SFOAE, a trade-off exists between additive noise and drift noise.
The additive noise is caused by noise on the microphone signal at the probe frequency, and
can be reduced by increasing the number of averages. In magnitude, it is independent of
the stimuli, and it is therefore most serious at low probe levels where the SFOAE pressure
is small. The drift noise arises from slow fluctuations in the microphone signal and can be
reduced by reducing the time interval between the measurement of the unsuppressed and
suppressed ear canal pressure components. It is most serious when the SFOAE pressure is
small relative to the probe pressure, as occurs at high probe levels. Thus increasing the
averaging time reduces the additive noise, but increases the drift noise. The two main
recording parameters: rejection level and averaging time were set such that, on average, the
total SNR for the SFOAE was roughly independent of the stimulus conditions. This was
achieved by averaging for longer time periods at low probe levels, where the additive noise
is dominant, than at high probe levels, where drift noise is dominant. An exception to this
was at the very lowest probe levels, where additive noise is dominant, but where time
limitations made it impossible to achieve the desired SNR. This is because each
improvement in SNR of 3 dB requires a doubling of averaging time, leading to excessive

recording times.
9. Results

The results were processed to obtain the following for each subject:
1. The variation of the fitted SFOAE ¢-spectrum (in particular of the ¢-centre value, ¢,
and ¢-bandwidth, ggw ), and the RMS normalised SFOAE level during self-suppression and
two-tone suppression.
2. Estimates of the SNR.
3. A measure of the influence of SOAESs on the results.

The procedures for processing these results are discussed below.
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9.1 Calculating the Fitted SFOAE ¢-spectrum from Measured Data

For each subject, there are data for two test sessions; for each session, there are
frequency sweep data for seven different probe levels, and for five two-tone suppressor
levels. For each of these frequency sweeps the following steps were carried out:

1. The SFOAE frequency spectrum, pa(f) was obtained from the raw data.

2. The function was re-sampled from equal frequency to equal log-frequency intervals, to

obtain the 7-series, pa( 7).

3. The estimate of the autocorrelation function, R s ("), was calculated.

p
4. The 4-parameter model was applied to give the estimates of ¢, @sw, orand £ which
define the fitted SFOAE ¢-spectrum.

These steps are detailed below. Fig. 9.1 illustrates the steps for an example frequency
sweep, taken from the measurements in subject no. 20, session 1. These results are typical

for subjects with moderate to strong SFOAEs.

Step 1

As explained in section 8.8.1 and 8.8.2, for each probe frequency, f , the ear canal
pressure was measured by the OAE microphone in two conditions. In the first condition,
the ear canal pressure is denoted prc (f1 ) and is measured either with no suppressor tone
(self-suppression experiment) or with a suppressor tone present (two-tone suppressor
experiment). In the second condition, the ear canal pressure is denoted pgc: r=0( f1 ), and is
measured in the presence of the maximum suppressor tone. This gives an estimate of the
stimulus pressure component (i.e., the ear canal pressure in the non-reflecting cochlea
condition). Results for the self-suppression and two-tone suppression experiments were
processed in the same way.

In step 1, an estimate of the SFOAE pressure, psr( fi ), is obtained. This quantity
will be termed the ‘measured SFOAE pressure’ (though it should be borne in mind that this
is not measured directly, but is only an estimate of the true SFOAE, based on the two
measurements of ear canal pressure). This is normalised with the ear canal pressure
measured in the maximally suppressed condition, pgc: r=0( f1 ), to give the normalised

SFOAE pressure, pa( fi ), (denoted by A in Zweig and Shera, 1995).

PsF = PEc — PEC:R~0 [9.1]
y4
Pp = —=E
PEC:R~0
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where all quantities are complex and functions of the probe frequency, fi (91 values at

16-Hz intervals).
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Fig 9.1 Signals at each stage in the processing of measured ear canal data to give the fitted SFOAE
¢-spectrum. (Data from subject 20, session 1, earphone level 20 dB SPL nominal, no suppressor).
Parels (a-i) -(a-iv): magnitude, phase, real and imaginary parts respectively, of both the unsuppressed ear

canal pressure, pzc , (thin line) and the maximally suppressed ear canal pressure, prc. g (thick line). Panels

(b-i) -(b-iv): magnitude, phase, real and imaginary parts respectively, of the SFOAE pressure,
Psr=PEec — Pec: r=0 - The thin line in (b-1) is the estimated noise floor.
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Fig 9.1 continued. Panels (c-i)-(c-iv): magnitude, phase, real and imaginary parts respectively, of the
normalised SFOAE pressure, pa=psr/ Pec. r-0 plotted against the logarithmic frequency,

Noe: = 1082( fi/ frep)s frer= 1 kHz, which has been resampled at equal 7., intervals (thin line is (c-i) indicates
the noise floor). Panel (d) real part of the estimated measured normalised autocorrelation function of the
normalised SFOAE (thin line), and the corresponding 4-parameter fit (thick line). Panel (e) and (f) the raw

measured SFOAE @-spectrum (thin line) and the fitted SFOAE ¢-spectrum (thick line) on linear and
logarithmic ordinates respectively.
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Note that in fig 9.1a (i)-(iv) the maximally suppressed spectrum, pgc: r=o( f),
resembles a frequency-smoothed version of the unsuppressed spectrum, pgc( f), as
expected (section 2.9). This also suggests that the nonlinear SFOAE components predicted
by Talmadge ez al. (2000) are insignificant over the measured frequency range. If present,
these components would differ in the suppressed and unsuppressed cases, thus leading to a
deviation of the suppressed spectrum from the frequency-smoothed, unsuppressed
spectrum. Since the predicted nonlinear components show no fine structure (i.e., they vary
only very slowly with frequency) this deviation would be easily distinguished from SFOAE

components arising from TW scattering.
Step 2

In step 2, the logarithmic frequency variable, 7o, is calculated, such that it equals

the number of octaves above a reference frequency of 1 kHz.

1 oer=10g; (fl/fRef ) Jree =1 kHz [9.2]

Then the normalised SFOAE, pa( f1 ), is resampled from the 91 values at 16-Hz
intervals, to 1456 values at 1-Hz intervals (using a low-pass interpolation algorithm). It is
then further interpolated (using linear interpolation) to give 512 values, denoted ps(n ), at
equal 7o, intervals of Ao, , which are at approximately 1/512 octaves. For simplicity of

notation, the independent variable n is simply the index, 0, 1, 2, ...511.

Step 3

An estimate of the normalised autocorrelation function is then calculated. The

estimated autocorrelation function could be calculated from:
- | Nom-l
Ry ps (M=~ ZOPA *(m)py(n+m)
m=0,1,2..N-1 [9.3]
n=0,1,2..N-1
N =512
where * denotes the complex conjugate. (For simplicity, only positive lag values are
calculated.) However, rather than using equation [9.3], it has been found that a better
estimate can be obtained by making use of the analytic properties of the signal, previously

discussed in section 6.5. Briefly, for any given frequency sweep, Zweig and Shera’s theory
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predicts that the real and imaginary parts of pa( n ) will not be independent, but will instead
be related by the Hilbert transform. This is somewhat analogous to the relationship that
holds for any frequency response function which corresponds to a causal (i.e., one-sided)
impulse response function. Recall from section 2.13 that causality in the time domain
leads to a frequency response whose real and imaginary parts form a Hilbert transform pair.
In our case, it is the real and imaginary parts of the 7-series that form the Hilbert transform
pair, and the ¢-spectrum which is one-sided.

This relationship is used to reject noise from the pa( n ) signal, since the noise does
not show the same analytic properties shown by the signal. This noise rejection occurs

automatically when the following estimate of the autocorrelation function is used:

2 N-m-1
pA:ReﬁA:Re (m) = —ﬁ ZopA:Re (n)pA:Re (n' + l’l’l)
n=l
where

Pare(n) =Re{py (n)}
Parm () =Im{p, (n)}
Pare(®) =Hilb{ppp, ()}

[9.4]

m=0,1,2..N -1
n=0,1,2..N-1
N =512

and where Hilb denotes the Hilbert transform. Equation [9.4] estimates only the real part
of the autocorrelation function in [9.3], but the imaginary part can then be calculated
assuming analyticity. In [9.4], first the Hilbert transform of the imaginary part of pa( n ) is

used to give an estimate of the real part, ppp.. Then the cross-correlation is calculated

between the actual real part of pa( # ) and this estimate. The validity of this method is

discussed in sections 9.3.

Step 4

The 4-parameter model is then applied to the estimate of the autocorrelation function,

~

PaPar (m), yielding the estimates of the four parameters: @c , @w, @and . The

estimated power ¢-spectral density is then reconstructed from these parameters. In addition

to the four parameters, the poorness-of-fit is also calculated as the difference between the
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(m) and K (m)

fitted and measured autocorrelation functions, Kp

ARePARe PARePARe

respectively:

2 ~ B 2
Ems = Z (KPA;RJ’A:Re (m) KPA:RePA:Re (m)) [9’5]

Here K denotes the normalised autocorrelation function :

0) [9.6]

~

m)=R ) /R

PaRePARe PaRePARe PARePARe
and Muax is the maximum 7-lag value used in the fit (see section 6.6). The logarithmic
form of the poorness-of-fit is also useful:

L, =20log,, (&) [9.7]
Note that it is the poorness-of-fit that is minimised during the iterative parameter fitting
procedure. The quantity in [9.5] is then the final minimum achievable value of this

poorness-of-fit.
9.2 Assessing the Effect of SOAEs

It is important to ensure that the measured SFOAESs frequency sweeps are not
strongly influenced by the presence of SOAEs, which may become synchronised to the
probe tone. To assess SOAEs, measurements were made of the power spectrum of the ear
canal pressure in the absence of any stimulus before and after each level series
(section 8.5). From visual inspection of the spectrum, SOAEs were identified as any sharp
peak in the spectrum with a bandwidth of 32 Hz or less, and which exceeded the
surrounding background noise by at least 1 dB.

Of the 20 subjects tested, 9 subjects showed one or more SOAEs in the frequency
range of interest. It is argued here that an SOAE is only likely to influence any given
SFOAE frequency sweep if the acoustic power emitted spontaneously is of similar
magnitude to that evoked by the probe tone. If the SOAE is very weak, then, according to
Zweig and Shera’s theory, the measured SFOAE will still be dominated by the mechanisms
modelled in section 4. The approach taken here is to give each frequency sweep a rating,
referred to as the ‘spontaneous-to-evoked OAE rating’ (or S/EOAE rating), which gives a
crude indication of the likelihood that the frequency sweep will be significantly influenced
by an SOAE. The rating is used in later sections of the analysis as a means of classifying
the SFOAE frequency sweeps, and is calculated as follows. For each SOAE of frequency
fsoak the level of the SOAE, Lsoag (in dB SPL), is compared to the level of the SFOAE
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pressure, Lsr( fsoar ), measured at the SOAE frequency, where
Lsr( fsoae ) = 10logiol | psr (fsoas )/Pre’1 > and prer= 20 uPa. Where a subject has more
than one SOAE, the emission for which Lgoag — Lsr( fsoar ) is the smallest is chosen.
The S/EOAE rating for each frequency sweep is then defined as:
‘zero’ if no SOAE could be measured
‘low’ if Lsoag + 6 dB < Lsg( fsoar )
‘high’ if Lsoag + 6 dB > Lsr( fsoar )

This is illustrated in fig. 9.2 for two subjects. Thus, for a sweep with a ‘low’ S/EOAE
rating, the acoustic pressure of the emission (in the 16-Hz measurement band containing
fsoag) is at least doubled in amplitude by the presentation of the probe tone.

In fig. 9.2 (a) it is clear that the peaks in the SFOAE magnitude coincide with the
frequencies of the SOAESs, even for frequency sweeps with a ‘low’ S/EOAE rating (and
even in some cases where the SFOAE level exceeds the corresponding SOAE level by over
10 dB). This fact does not, however, imply that the SOAE is influencing the SFOAE.
Instead, according to Shera and Zweig’s theory, the two phenomena are closely related with
SOAES being interpreted as self-sustaining SFOAEs in which the product of the cochlear
apical and basal reflectances equals 1. However, on presenting an evoking tone of
sufficient magnitude, self-suppression of the TW will rapidly reduce the apical reflectance,
and thus the measured emission is essentially no different from a pure SFOAE. The reason
for the coincidence of the peaks in the SFOAE with the frequencies of the SOAE:s is that

multiple reflections in the cochlea are involved in both phenomena.
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Fig 9.2 SFOAE self-suppression frequency sweeps for subjects with SOAEs. The figure also shows the
classification of SFOAEs frequency sweeps according to whether SOAEs are expected to significantly
influence the frequency sweep. Each SFOAE frequency sweep is given a ‘S/EOAE strength’ rating based on
the strength of the SOAE relative to the SFOAE, measured at that frequency where the SOAE pressure is
greatest, relative to the SFOAE pressure. A ‘low’ rating indicates that the measured frequency sweep is
deemed likely to be dominated by the evoked OAE. A ‘high’ rating indicates that the measured frequency
sweep is deemed likely to be influenced by an SOAE, at the SOAE frequency. (a) shows the SFOAE pressure,
Dsr, over the seven frequency sweeps for the self-suppression experiment, for the subject with the SOAEs
shown in (b) (subject 20, session 2). The S/EOAE strength is classed as ‘high’ for the two lower frequency
sweeps, and ‘low’ for the five upper frequency sweeps. (c) and (d) show the corresponding data for a
different subject (subject 15, session 1). For this subject, the STEOAE strength is classed as ‘high’ for all

seven frequency sweeps.
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9.3 Estimation of SNR and Measurement Repeatability

Before presenting the measured data, the issue of measurement reliability is
addressed. Frequency sweeps that are excessively contaminated with noise are excluded
from the analysis since in these cases the 4-parameter model is unable to perform reliably.
However, when excluding data, care must be taken not to distort the results (i.e., not to
exclude data simply because they do not support the theory under test). It was decided to
exclude frequency sweeps purely on the basis of an estimate of the SNR for that sweep.

Three methods of estimating the SNR for the measurements of the SFOAE have been
used:

e SNR estimate 1: based on the additive noise present in adjacent frequency bands.

e SNR estimate 2: based on session-to-session repeatability.

e SNR estimate 3: based on the analytic properties of the SFOAE.

Of these, SNR estimate 1 was chosen as the reference SNR used to exclude frequency
sweeps. The other two estimates are used to give additional indications of the quality of
the measurements.

SNR estimate 1, denoted SNR;, is calculated from the estimate of additive noise,
defined in section 8.8.3, by averaging it over the frequency sweep. Thus there is one value

of SNR; for each frequency sweep.

2 a2
SNR, =10log,, Sl—le
Nj
1 n 2
st =————3" |per )
(ny —ny) n=znl

[9.8]
NY

I

1 o) 9
———— > nppga ()
(n2 ! ) n=n

mAf =1376 Hz
nyAf =2816 Hz
Af =16 Hz
The reason that the noise appears in the numerator in [9.8] is that the value of S;° gives an

estimate of the signal power plus the noise power.

SNR estimate 2, denoted SNR», is calculated from the correlation coefficient between
the SFOAE frequency sweeps measured in two sessions. Thus there is one value of SNR;
for each pair of frequency sweeps. The SNR is obtained directly from the correlation

coefficient, o, , by assuming (for simplicity) that any lack of correlation is due entirely to
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additive noise. With this assumption, the following relationship between SNR and

correlation coefficient is easily derived:

SNR, ElOloglo(l Pia j

gV
P12 =|pra]
1 &
712 = (ny —ny) Zp*SF:Session 1 (n)pSF:Session 2(11) [9:9]
2 1/ n=n;

mAf =1376 Hz

n,Af =2816 Hz

Af =16 Hz
where the * denotes the complex conjugate. Thus for example, a correlation coefficient of
0.5 gives SNR; = 0 dB, whilst a correlation coefficient of 0.8 gives SNR, = 6 dB.

SNR estimate 3, denoted SNR3, is calculated from the correlation coefficient between

the real part of pa , denoted pare , and an estimate of page , Obtained from the Hilbert

transform of the imaginary part of pa. This estimate of pare is denoted ppp.. Thus:

SNR, ElOloglO[_&M]

pA:ReﬁA:Re
2 ~
- = PARePARe
PARePARe o. .
PARePARe  PARePARe
) 1 N-1
GpA:ReﬁA:Re = N pA:Re (n)pA:Re (n)
n=0
2 1 N-1
o-pA:RepA:Re = -]—v— PARe (n)pA:Re (7’1)
n=0
2 = ~
o-iA:ReiA:Re = —N— PARe (n)pA-'Re (n) [910]
n=0

where

Pare(n) =Re{p,(n)}
Pam (M) =Im{p, (n)}
Pare (m) = Hilb{ pp g, ()}

m=0,1,2.N-1
n=0,1,2.N-1
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Fig 9.3 Session-to-session repeatability for four subjects. The real part of the SFOAE pressure for sessions 1
and 2 are overlaid for four subjects. The results are taken from the self-suppression experiment, from
subjects with: (a) moderate SFOAEs, but no detectable SOAE (subject 1; L; =26 dB SPL). (b) strong
SFOAES, and with both ‘low’ and ‘high’ S/EOAE strength ratings (subject 20, L; = 20 dB SPL) (c) strong
SFOAESs and with ‘high’ S/EOAE strength ratings throughout (subject 15; L; = 20 dB SPL) (d) weak SFOAE
and with no detectable SOAE (subject 3, L, = 26 dB SPL). Solid triangles indicate the location of SOAEs.
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Normalised SFOAE, p, : Real Part & Hilbert transform of Imaginary Part
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Fig 9.4 Analyticity of the SFOAE frequency sweep for four subjects. The real part of the normalised SFOAE
is overlaid on top of the Hilbert transform of the imaginary part for four subjects. The results are for the self-
suppression experiment, from subjects with (a) moderate SFOAEs, but no detectable SOAE (subject 1; L; =
26 dB SPL). (b) strong SFOAESs, and with both ‘low’ and ‘high’ S/EOAE strength ratings (subject 20,

L, =20dB SPL) (c) strong SFOAEs and with ‘high’ S/EOAE strength ratings throughout (subject 15; L; = 20
dB SPL) (d) weak SFOAE and with no detectable SOAE (subject 3, L; = 26 dB SPL). Solid triangles
indicate the location of SOAEs.
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To illustrate the calculation of SNR», fig. 9.3 shows example comparisons of the
frequency sweep for sessions 1 with that for session 2, for four subjects. The first subject
had moderate SFOAES, but no detectable SOAEs (subject 1), the second had strong
SFOAESs and moderate SOAEs (subjects 20), the third had strong SFOAEs and strong
SOAE:S (subject 15), and the fourth subject had weak SFOAESs, and no SOAEs. The
frequency sweeps from the first three subjects show good correlation between sessions.
The frequency sweep from the fourth shows poor correlation, leading to a low estimate for
SNR;.

To illustrate the calculation of SNR3, fig. 9.4 shows examples of the signal
analyticity for the same frequency sweeps as in fig. 9.3. Note that similar values of the

correlation coefficients are obtained, leading to similar values of SNR; and SNR3.

9.4 Criterion for Rejecting Frequency Sweeps

It was decided to reject all frequency sweeps for which the SNR; value fell below
6 dB. The reasons for choosing SNR; over SNR; or SNRj3 are as follows. SNR; may be an
underestimate of the true SNR, since some changes in the measured SFOAE frequency
sweep will arise simply by session to session changes in the fit, or the middle ear
properties. Were SNR; used as a criterion, relatively noise free frequency sweeps might be
rejected unnecessarily. It was decided that SNR3 should not be used as a rejection
criterion, since its validity depends to some extent on the theory to be tested. This leaves
SNR; as the preferred rejection criterion. SNR; does, however, have the disadvantage that
it is insensitive to drift noise, which would be expected to show up in both SNR; and
SNRj3. Therefore it is expected that SNR; will overestimate the true SNR.

Fig. 9.5a shows SNR; plotted against SNR; for each pair of frequency sweeps, for all
the data. There are approximately 240 pairs of sweeps shown (20 subjects X 7 probe levels
+ 20 subjects x 5 suppressor levels). This shows that SNR; is typically about 5 dB lower
than SNR, as expected for the reasons already discussed. Similarly, SNRj3 is typically
3 dB below SNR; (fig. 9.5b). Rejected frequency sweeps are indicated on the figure. Also
shown is the poorness-of-fit, defined in equation [9.7]. This shows the expected result that
the 4-parameter model performance improves with improvements in SNR. Note that
values of the logarithmic poorness-of-fit greater than about —10 indicate a complete failure
to converge to realistic parameters. The good correlation between all three estimates of

SNR suggests that they are all reliable measures. Note also that although SNR; has not
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been adopted as the basis for rejecting noisy data, inter-session comparisons of data are

performed later in the analysis after estimates of the four parameters have been obtained for

both sessions.

Table 9.1 shows a summary of the numbers of sweeps retained in the analysis. The
target number of sweeps exceeds the actual number of sweeps as some of the sessions

could not be completed due to time constraints.
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Fig 9.5 Measures of the quality of the data and the parametric fit. Three measures are shown, plotted against
the SNR estimate 1 (the reference SNR estimate), which is obtained using the frequency average of the ‘noise
in adjacent bands’ SNR estimate. Results are shown for all subjects, for both self- and two-tone suppression
experiments and for both sessions. (a) shows the a second estimate of SNR, obtained by correlating the
SFOAE frequency sweep from session 1 with that from session 2. There is one point for each pair of
frequency sweeps. (b) shows a third estimate of the SNR, based on the assumption that the normalised
SFOAE frequency sweep is analytic. It is derived from the correlation of the real part of the frequency sweep
with the Hilbert transform of the imaginary part. There is one point per frequency sweep. (c) shows the
logarithmic measure of the poorness-of-fit of the 4-parameter model for each frequency sweep. There is one
point per frequency sweep. Also indicated are those frequency sweeps which are rejected because their SNR
estimate 1 falls short of a set threshold value of 6 dB.
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Table 9.1: Summary of frequency sweep rejections due to poor SNR

Numbers of frequency sweeps

Self-suppression

Two-tone suppression

Target
Actual
Rejected

Retained

2x20x7=280
273
53
220

2x20x5=200
170
47
123

Table 9.2 summarises the statistics of the S/EOAE ratings for the retained frequency

sweeps.

Table 9.2: Breakdown of retained frequency sweeps by S/EOAE rating.

Numbers of frequency sweeps

Self-suppression

Two-tone suppression

Retained: Total

Retained with SOAESs absent
Retained with low S/EOAE rating
Retained with high S/EOAE rating

220
96
74
50

123
41
45
37

9.4.1 The Validity of Applying the 4-parameter Model to Experimental Data

The choice of the 2™ order Butterworth filter was based on predicted SFOAEs from

cochlear models. As will be shown in later sections, where measured and fitted ¢-spectra

are compared, it appears that the 4-parameter model may also be applied successfully to

experimental data. It might be thought that the poorness-of-fit could be used to quantify

how well the measured data conformed to the 4-parameter model. However, the results in

fig. 9.4 indicate that the poorness-of-fit is dominated by the SNR rather than by

deficiencies in the stochastic model underlying the 4-parameter model.

9.5 Discussion of Results

Examples of the results are presented for four subjects who have been chosen to

illustrate various features seen across all 20 subjects. The chosen subjects are:

1. subject 1, with moderately strong SFOAEs and with no detectable SOAEs;

171




2. subject 20, with strong SFOAEs and with moderate SOAEs, such that some frequency
sweeps have a low S/EOAE rating, and others have a high S/EOAE rating.

3. subject 15, with strong SFOAEs and with strong SOAE:s, such that all the frequency
sweeps have a high S/EOAE rating.

4. subject 3 with weak SFOAEs and no detectable SOAEs. Several of the frequency

sweeps are rejected due to poor SNR; estimates.

9.5.1 Qualitative Discussion of the Results for the Self-suppression Experiment

Fig. 9.6 shows the measured ear canal pressure in both the unsuppressed and
maximally suppressed conditions for the self-suppression experiments for all four subjects.
(Results from only one session are shown.) This shows the expected pattern of ripples,
with a spacing that corresponds to the SFOAE periodicity. The ripple amplitude reduces as
the probe level is increased.

Fig. 9.7 shows various results derived from the measurement of the complex SFOAE
pressure for subject 1, plotted against the logarithmic frequency variable, 7o, for each
probe level. Panel (a) shows that the magnitude of the SFOAE pressure, psr, increases
with probe level, reaching a maximum of about 15 dB SPL. Panel (c) shows that the
magnitude of the normalised SFOAE pressure, pa, decreases with probe level, indicating
the expected compressive nonlinearity. Panel (b) shows the SNR as a function of
frequency, estimated using the noise in adjacent frequency bands, as in [8.1]. The SNR is
typically well above 6 dB, indicating that the estimates of the SFOAE should be reliable.
There is, however, a region at about 7., = 1.2 where the SNR is poor, and where therefore
the estimated SFOAE is unreliable. Note that the SNR; estimate, used as a basis for
rejecting frequency sweeps, can not be derived directly from the frequency dependent
quantity plotted in panel (b), since SNR; is obtained by frequency averaging the signal and
noise powers separately. Note also that, provided their SNR; estimate exceeds 6 dB,
sweeps such as those in panel (b) are retained even when they contain regions where the
frequency dependent SNR is very weak. The justification for this is that these parts of the
signal are weak and have the least influence on the estimates given by the 4-parameter
model.

The SFOAE periodicity does not show up in the magnitude plots in panels (a) and
(c). Instead, the periodicity is most clearly seen as the ripple pattern in the real and
imaginary parts of the normalised SFOAE, shown in panels (d) and (f). (Recall that a

single frequency sweep with a constant periodicity of 1/15 would appear as a ripple pattern
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with a peak to peak interval of about 0.1 octaves.) The periodicity is also seen in the phase
of the normalised SFOAE, shown in panel (e). Here, a frequency sweep with a periodicity
of 1/15 would appear as a straight line with slope of about 10 cycles per octave. Rather
than being approximately linear, the actual phase measurements shown in panel (e) exhibit
a slope which steepens with 7jo.; . This result is in accordance with previous reports (e.g.,
Zweig and Shera, 1995, p. 2036). A possible explanation for this given by Zweig and
Shera, is that the real cochlea departs from scaling symmetry due to a broadening of
mechanical tuning at low characteristic frequencies. Note , however, that this variation in
periodicity with frequency is not the subject of this thesis. Instead, the thesis concentrates
on a form of frequency averaged periodicity, as extracted from the measurements by the 4-
parameter model. It is variations in this periodicity with probe level that are of most
interest. It is interesting to note that no obvious change in periodicity with probe level can
be discerned from a visual inspection of the results shown in panels (d), (e) and (f). Itis
argued here that there is a significant change in periodicity with probe level, but that the
representations in panels (d), (e) and (f) are not well suited to revealing this change. This
change is, however, revealed by applying the 4-parameter model to the results as seen in
fig. 9.8.

Fig. 9.8 shows the raw measured and the fitted ¢-spectra corresponding to the #-
series shown in fig. 9.7. The spectra are shown on both a linear and a dB ordinate. The
linear scale is useful because the 4-parameter model performs a fit to the autocorrelation
function, which is related (via the Fourier transform) to the linear spectrum. Therefore any
features that appear insignificant in the raw linear spectrum will have no significant
influence on the 4-parameter fit. In contrast, these feature will be magnified by the dB
scale. The dB scale is useful in that it clearly shows the trends in the spectra that occur
over the entire level series.

The most striking result is that the fitted spectra clearly show changes in ¢g-centre
value, ¢@c, with increasing probe level (panels (b) and (d)). This agrees with the predictions
made by the cochlear models based on Zweig and Shera’s theory (cf., fig 7.5). Variations
in the bandwidth are less easy to judge simply by inspection. A quantitative discussion of
this variation, and that of the other fitted parameters is given later. Two other points are
worth noting. The first is that the variation in ¢¢ is not immediately obvious from the raw
spectra. This is similar to the results obtained from the cochlear models (sections 5 and 6).
The second is that the multiple reflection parameter, ¢, does not appear to vary smoothly,
as seen by the erratic appearance of the second spectral lobe in panel (d) for nominal probe
levels of 38 and 44 dB SPL. This is thought to be an inaccurate result, arising from the
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difficulty in reliably estimating &z As will be discussed in more detail later, such errors in
estimating ¢/ do not invalidate the estimates in the other parameters.

Figs. 9.9 and 9.10 show the SFOAE #-series and ¢-spectra for subject 20. These
results are in general qualitatively similar to those of subject 1, though the SFOAE level
and SNR are greater. Two differences are worth noting. First, at the lower probe levels
(14 — 26 dB SPL) there are clear peaks in the magnitude of the SFOAE (figs. 9.9a and c)
coinciding with the presence of SOAEs. These peaks become less pronounced as the probe
level increases. This is in accordance with the Zweig and Shera model, where multiple
reflections become less significant as the magnitude of the apical reflectance is reduced.
The second difference is that the phase curves (panel e) are more linear than for subject 20.
In fact, in contrast to the trend seen in subject 1, at a nominal probe level of 14 dB SPL, the
phase curve becomes less rather than more steep at higher frequencies. It was decided not
to attempt to quantify this effect, or to study it further in this thesis. However, since this
trend is opposite to that reported elsewhere (e.g., Zweig and Shera, 1995) it is perhaps
worthy of a future investigation.

It can be seen in fig. 9.10 that, as for subject 1, the fitted ¢-spectra show the trend of
reducing ¢c with increasing probe level.

Figs. 9.11 and 9.12 show the SFOAE 7-series and ¢-spectra for subject 15. Again
these results are in general qualitatively similar to those of subject 1. The main difference
is that, even at high probe levels, there are clear peaks in the in the magnitude of the
SFOAE (figs. 9.11a and c) coinciding with the presence of strong SOAEs. All the
frequency sweeps here have high a S/EOAE rating, indicating that the frequency sweeps
may be significantly affected by SOAEs. Despite the presence of strong SOAE:s, the fitted
¢-spectra (fig. 9.12) show the trend of reducing ¢¢ with increasing probe level, as for the
previous subjects.

Figs. 9.13 and 9.14 show the SFOAE #-series and ¢-spectra for subject 3, who had
unusually weak SFOAEs. In these sweeps the SNR is poor, and therefore most of the
sweeps are rejected. Only at the higher probe level (e.g., 44 and 50 dB SPL nominal) is
there any sign of an SFOAE with the expected periodicity, as revealed by the phase curves
in fig. 9.13 panel (e). The fitted ¢-spectra are also erratic, showing little continuity between
spectra from neighbouring probe levels. Since all the unusual looking spectra correspond
to sweeps where the SNR was poor, it is likely that these are entirely unreliable results. In
fact all these unusual looking spectra are eliminated, based on the low value of their SNR;

estimate.
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Fig 9.6 BEar canal sound pressure level for the self-suppression experiment for four subjects. The results are
from subjects with (a) moderate SFOAESs, but no detectable SOAE (subject 1; session 1); (b) strong SFOAEs,
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Fig 9.7 Measured SFOAE frequency sweep data for the self-suppression experiment, for a subject showing
moderate SFOAESs, but with no detectable SOAEs (subject 1, session 1). Nominal probe tone levels are 14 to
52 dB SPL, indicated on curves. (a) SFOAE pressure level; (b) estimated SNR; (c¢) normalised SFOAE
level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) imaginary part of normalised
SFOAE.
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Fig 9.8 Raw and fitted SFOAE ¢@-spectra for the self-suppression experiment, for a subject showing

moderate SFOAEs, but with no detectable SOAEs (subject 1, session 1). Nominal probe tone levels are 14 to
52 dB SPL, indicated on curves. (a) and (b) show raw and fitted g-spectra plotted on a linear vertical scale.

(c) and (d) show raw and fitted ¢-spectra plotted on a dB scale.
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Fig 9.9 Measured SFOAE frequency sweep data for the self-suppression experiment, for a subject showing
strong SFOAEs, and with both ‘low’ and ‘high’ S/EOAE strength ratings (subject 20, session 2). Nominal
probe tone levels are 14 to 52 dB SPL, indicated on curves. (a) SFOAE pressure level; (b) estimated SNR;
(c) normalised SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f)

imaginary part of normalised SFOAE.
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Fig 9.10 Raw and fitted SFOAE ¢-spectra for the self-suppression experiment, for a subject showing strong
SFOAEs, and with both ‘low’ and ‘high’ S/EOAE strength ratings (subject 20, session 2). Nominal probe
tone levels are 14 to 52 dB SPL, indicated on curves. (a) and (b) show raw and fitted ¢g-spectra plotted on a
linear vertical scale. (c) and (d) show raw and fitted g—spectra plotted on a dB scale.
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Fig 9.11 Measured SFOAE frequency sweep data for the self-suppression experiment, for a subject showing
strong SFOAEs, and with ‘high” S/EOAE strength ratings (subject 15, session 1). Nominal probe tone levels
are 14 to 52 dB SPL, indicated on curves. (a) SFOAE pressure level; (b) estimated SNR; (c) normalised
SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) imaginary part of
normalised SFOAE.
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Fig 9.12 Raw and fitted SFOAE @-spectra for the self-suppression experiment, for a subject showing strong
SFOAES, and with ‘high’ S/EOAE strength ratings (subject 15, session 1). Nominal probe tone levels are 14
to 52 dB SPL, indicated on curves. (a) and (b) show raw and fitted ¢—spectra plotted on a linear vertical
scale. (c) and (d) show raw and fitted ¢-spectra plotted on a dB scale.
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Fig 9.13 Measured SFOAE frequency sweep data for the self-suppression experiment, for a subject showing
weak SFOAEs, and with no detectable SOAEs (subject 3, session 1). Nominal probe tone levels are 14 to 52
dB SPL, indicated on curves. (a) SFOAE pressure level; (b) estimated SNR; (c) normalised SFOAE level
(d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) imaginary part of normalised
SFOAE.
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9.5.2 Qualitative Discussion of the Results for the Two-tone Suppression Experiment

Fig. 9.15 shows measured ear canal pressure in both the partially suppressed and
maximally suppressed conditions for the two-tone suppression experiments for all four
subjects. (Results from only one session are shown.) This shows the expected pattern of
ripples, with a spacing which corresponds to the SFOAE periodicity. The ripple amplitude
reduces as the suppressor level is increased.

Fig. 9.16 shows various results derived from the measurement of the complex
SFOAE pressure for subject 1, plotted against the logarithmic frequency variable, 7y, for
each probe level. The results appear to be qualitatively similar to those seen in the self-
suppression experiment (fig. 9.7), except that now the maximum change in the normalised
SFOAE level is less.

Fig. 9.17 shows the raw measured and the fitted ¢-spectra obtained from the #-series
shown in fig. 9.16. The fitted ¢-spectra show a clear difference from those in the self-
suppression experiment (fig. 9.8). Instead of showing a reduction in value, ¢c shows a
tendency to increase in value as the normalised SFOAE amplitude reduces. The change is
less marked than for the self-suppression experiment, but it is still clearly discernible. This
change is in agreement with the predictions from the cochlear models based on Shera and
Zweig’s theory (fig. 7.5).

Figs. 9.18 and 9.19 show the SFOAE #}-series and ¢-spectra for subject 20. In
fig. 9.19 the trend of increasing g¢ with reducing amplitude of the normalised SFOAE
amplitude is seen even more clearly than for subject 1.

Figs. 9.20 and 9.21 show the SFOAE #-series and ¢@-spectra for subject 15. In
fig. 9.21 the trend in ¢¢ less clear than for subjects 1 and 20.

The results for subject 3 are not shown, since all the frequency sweeps had a poor

SNR and were therefore rejected.
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Fig 9.15: Ear canal sound pressure level for the two-tone suppression experiment for four subjects. The ear
canal pressure at the stimulus frequency is shown. For clarity, traces are offset vertically, with the bar
indicating the range. The results are from subjects with (a) moderate SFOAES, but no detectable SOAE
(subject 1; session 2); (b) strong SFOAE, and with both ‘low’ and ‘high’ S/EOAE strength ratings (subject
20, session 2); (c) strong SFOAE and with ‘high’ S/EOAE strength ratings throughout (subject 15; session 1);
(d) weak SFOAE and with no detectable SOAE (subject 3, session 2). The partially suppressed ear canal
pressure, pgc , appears as a rippled trace, whilst the maximally suppressed ear canal pressure, pgc:r=0, appears
as a smooth trace. Solid triangles indicate any SOAE frequencies.
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Fig 9.16 Measured SFOAE frequency sweep data for the two-tone suppression experiment, for a subject
showing moderate SFOAES, but with no detectable SOAEs (subject 1, session 2). The nominal probe tone
level is held constant throughout at: L; =26 dB SPL. The nominal suppressor tone levels (indicated on
curves) are: L, = —eo, 26, 38, 50 and 62 dB SPL. (a) SFOAE pressure level; (b) estimated SNR; (c)
normalised SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f) imaginary
part of normalised SFOAE.
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Fig 9.17 Raw and fitted SFOAE ¢-spectra for the two-tone suppression experiment, for a subject showing
moderate SFOAESs, but with no detectable SOAEs (subject 1, session 2). The nominal probe tone level is
held constant throughout at: L; =26 dB SPL. The nominal suppressor tone levels (indicated on curves) are:
L, = —o, 26, 38, 50 and 62 dB SPL.

(a) and (b) show raw and fitted ¢-spectra plotted on a linear vertical scale. (c) and (d) show raw and fitted
g-spectra plotted on a dB scale.
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Fig 9.18 Measured SFOAE frequency sweep data for the two-tone suppression experiment, for a subject
showing strong SFOAESs, and with both ‘low’ and ‘high’ S/EOAE strength ratings (subject 20, session 2).
The nominal probe tone level is held constant throughout at: L, =26 dB SPL. The nominal suppressor tone
levels (indicated on curves) are: Ly = —eo, 26, 38, 50 and 62 dB SPL. (a) SFOAE pressure level; (b)
estimated SNR; (c) normalised SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised
SFOAE; (f) imaginary part of normalised SFOAE.
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Fig 9.19 Raw and fitted SFOAE ¢-spectra for the two-tone suppression experiment, for a subject showing
strong SFOAESs, and with both ‘low” and ‘high’ S/EOAE strength ratings (subject 20, session 2). The
nominal probe tone level is held constant throughout at: L; =26 dB SPL. The nominal suppressor tone levels

(indicated on curves) are: L, = —o<, 26, 38, 50 and 62 dB SPL.

(a) and (b) show raw and fitted g-spectra plotted on a linear vertical scale. (c) and (d) show raw and fitted

¢—spectra plotted on a dB scale.
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Fig 9.20 Measured SFOAE frequency sweep data for the two-tone suppression experiment, for a subject
showing strong SFOAESs, and with ‘high’ S/EOAE strength ratings (subject 15, session 1). The nominal
probe tone level is held constant throughout at: L; =26 dB SPL. The nominal suppressor tone levels
(indicated on curves) are: L, = —e0, 26, 38, 50 and 62 dB SPL. (a) SFOAE pressure level; (b) estimated
SNR; (c) normalised SFOAE level (d) real part of normalised SFOAE; (e) phase of normalised SFOAE; (f)
imaginary part of normalised SFOAE.
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Fig 9.21 Raw and fitted SFOAE g¢g—spectra for the two-tone suppression experiment, for a subject showing
strong SFOAESs, and with ‘high’ S/EOAE strength ratings (subject 15, session 1). The nominal probe tone
level is held constant throughout at: L, =26 dB SPL. The nominal suppressor tone levels (indicated on
curves) are: L, = —oo, 26, 38, 50 and 62 dB SPL. (a) and (b) show raw and fitted ¢-spectra plotted on a linear
vertical scale. (c) and (d) show raw and fitted ¢-spectra plotted on a dB scale.
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Fig 9.22 Comparison of the fitted ¢-spectra arising from the 4-parameter model with that from the 3-
parameter model. Results from two frequency sweeps are shown. (a) and (b) show the ¢-spectra for a case
where the 4-parameter model returns a value of o = 0.35, which, if the model is correct, indicates significant
multiple reflection (subject 15; session 1; self-suppression; L; = 26 dB SPL). The ¢-spectra for the 3- and
4-parameter model show significant differences. (c) and (d) show the g-spectra for a case where the 4-
parameter model returns a value of o = 0.1, thus predicting that multiple reflection are insignificant

(subject 20; session 1; self-suppression; L; =26 dB SPL). The g-spectra for the 3- and 4-parameter model
show no significant differences. Note that the fit is performed on the data in its linear, rather than decibel
form, and therefore the representations in panels (a) and (c) give a more direct indication of the quality of the
fit than panels (b) and (d).
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9.5.3 Comparison of Results of the 3-Parameter and 4-Parameter Models.

Before looking at the detailed results from the 4-parameter model, the issue of the
validity of the model is briefly examined. Questions about the validity of the model arose
in the discussion of fig. 9.8, where the value of «rdid not appear to vary smoothly with
probe level. Although the values of ¢rare not the main focus of this investigation, it might
be thought that errors in the estimates of & may be symptomatic of error in estimates of the
other parameters.

In this section it is asserted that the estimates of & from the 4-parameter model are in
general valid, though they suffer from a higher than desirable random error. This probably
leads to an overestimate of ¢ for some frequency sweeps. However, the effect of this
random error on the accuracy of estimates of ¢ is expected to be very slight. The effect on
estimates of ¢@gw is expected to be greater, probably leading overestimates in @gy for certain

frequency sweeps.

Evidence for this assertion comes from the application of both the 4-parameter model
and 3-parameter model (which is equivalent to the 4-parameter model with ¢ set to zero) to
the results, which led to the following observations being made.

e For small values of a (< 0.15) the effect of &zon the other three parameters: ¢c, dsw
and fis negligible. This means that virtually the same results are obtained with the 3-
parameter and 4-parameter models.

e For larger values of (> 0.15) the effect of czon ¢¢ and fis only slight, whilst the
effect on @ggw is more significant.

These two points are illustrated in fig. 9.22, which compares the results for the 3-
parameter and 4-parameter models. Two cases are examined, the first where a high value
of ¢ris returned by the 4-parameter model; the second where a low value of «is returned.
For the high value of & (panels a and b), the fitted ¢-spectra for the 3- and 4-parameter
models are clearly different (though the effect on ¢ is only slight). For the low value of ¢
the fitted ¢-spectra for the 3- and 4-parameter models are indistinguishable when plotted on
a linear scale (panel (c)). Some difference is seen when plotted on a dB scale, but there is
no significant difference in the estimated values of @ and f. From results such as these it
was concluded that ¢ is largely insensitive to errors in the estimate of ¢

Evidence for the validity of the estimates of ¢&rcomes from applying the 4-parameter
model to all the frequency sweeps in a level series. This showed that, when the value of &

exceeds about 0.15, its variation within the level series is, on average, in accordance with
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predictions from the cochlear models. However, the value of «zalso shows significant,
apparently random, scatter around this central trend.

This result is illustrated and discussed in greater detail in section 9.6.6. The result
lends weight to the argument that ¢ gives a useful measure of the physical phenomenon of
multiple reflection in the cochlea. The error in estimates of ¢, which is suggested by the
erratic trends across some of the level series, is thought to be a consequence of the random
process underlying SFOAE generation. Support for this also comes from the study of
cochlear models in section 6.8, where the performance tests on the 4-parameter model
using the cochlear models showed that the estimates of «zand @y suffered from significant
random error.

The conclusion from these results is that the 4-parameter model gives more reliable
estimates than the 3-parameter model, though significant random errors in the estimates of

aon gy expected. Errors ¢ arising from error is ¢ are expected to be slight.

9.6 Variations across the Level Series

In this section, variations across the level series are examined. Thus for each
frequency sweep, a single set of characterising quantities are calculated, most important of
which are the parameters returned by the 4-parameter model. The variation of these
quantities can then be traced for both the self-suppression and the two-tone suppression

experiments.

9.6.1 I/0O Functions: Variation of SFOAE Level

For each frequency sweep, the strength of the SFOAE pressure has been
characterised by calculating an RMS value of the SFOAE pressure, psr , across the
frequency range. This is the quantity denoted by S; is equation [9.8], and will be referred
to as the RMS SFOAE pressure, or, when expressed in dB, the RMS SFOAE pressure
level. The variation of this value across the level series for both the self-suppression and
the two-tone suppression experiments is shown in fig. 9.23 for each of the 20 subjects. The
variations are shown against either the nominal probe level or the nominal suppressor level,
as appropriate. Both sessions for each experiment are shown. The figure also indicates
which frequency sweeps have been rejected, based on the SNR; estimate. Also indicated

are the S/EOAE ratings.
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The results show in general that the RMS SFOAE pressure level grows at approx.
0.5 dB per dB increase in probe level. Maximum levels of around 12 dB SPL are obtained.
Frequency sweeps with a level below —10 dB SPL usually become rejected on the basis of
their poor SNR, estimate. Note that it is not safe to infer the presence of a signal simply
from an increase in SFOAE with probe level, because the estimate of the SFOAE level will
contain a component due to noise. Because of the reduction in the averaging time with
probe level, the noise level will also tend to increase with probe level. The variation of
noise is discussed in the next section.

Typically, at the maximum suppressor tone levels, the RMS SFOAE pressure level is
reduced by about 7 dB, relative to its unsuppressed value.

The variation of the RMS normalised SFOAE level, La.rus, for each frequency
sweep is presented in fig. 9.24. This is calculated from the RMS average of the normalised
pressure, pa, across logarithmic frequency giving pa.rms (equation [6.10]). In fact this
value is virtually identical to the parameter £, returned by the 4-parameter model
(section 6.6). These curves show the deviation from nonlinearity, since, for a linear
system, the normalised SFOAE would remain unchanged with changes in probe or
suppressor level. The maximum values of the frequency averaged normalised SFOAE are

around —15 dB. Typically the values fall at about 0.5 dB per dB increase in probe level.

9.6.2 Variation of SNR

In order to show clearly which frequency sweeps have been rejected for each subject,
the variation of the SNR; estimate over the level series is shown in fig. 9.25. Instead of
plotting the data against probe or suppressor level, the variation in SNR; is plotted against
the RMS normalised SFOAE level, La.rms, Which, for brevity, will be referred to as the
‘normalised SFOAE level’. The reason for adopting this value as the abscissa is that it
allows both the self-suppression and the two-tone suppression experiments to be plotted
against a common axis (cf. figs. 7.6 and 7.7). This turns out to be particularly useful for
future plots, and for comparison with model results. The plot shows where SNR; values
fall below 6 dB, leading to the sweep being rejected.

For the self-suppression experiment, there is a tendency for SNR; to reduce as the
normalised SFOAE level increases. This is because a high normalised SFOAE level
corresponds to a low SFOAE pressure level, where it becomes uneconomic in terms of
experimental time to attempt to average to the same SNR as at high SFOAE levels
(section 8.8.3).
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Continued over page.
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For the two-tone suppression experiment, SNR; increases with normalised SFOAE
level. This is because all results were averaged to the same estimated noise level,
irrespective of the suppressor level. Therefore SNR; is reduces as the SFOAE pressure
level (and therefore also the normalised SFOAE level) is reduced by an increase in

suppressor level.

9.6.3 Variation of ¢-centre value

Fig. 9.26 shows the variation in the ¢-centre value, ¢¢ , with the normalised SFOAE
level for all 20 subjects. The results from frequency sweeps that were rejected on the basis
of their poor SNR; value are not shown. The S/EOAE rating is shown for each frequency
sweep. It is useful to bear in mind the corresponding curves from the cochlear models,
shown in figs. 7.6. and 7.7. These curves resemble the character “y”, where the longer
limb of the “y” (which has a positive gradient) arises from the self-suppression experiment,
and the shorter limb (which has a negative gradient) arises from the two-tone suppression
experiment.

This predicted y-shape is seen clearly in some of the data (e.g., subject 20). In other
cases the trends are less clear (e.g., subject 11), or there are too few acceptable frequency
sweeps for any trends to be assessed (e.g., subject 3). It is also desirable to take account of
the S/EOAE rating for the results.

In order to make a systematic comparison between the measured data for each
experiment and the model predictions laid out in section 7.4, the curves from sessions 1
and 2 have been averaged to produce a single joint curve. Prior to averaging, any ¢c
estimates that are deemed to be unreliable are rejected. This judgement of reliability is
made based on the repeatability of the estimates between sessions 1 and 2. However, since
these estimates were made on different days, with different probe fits, there may be
significantly different excitation levels in the cochlea for the two sessions. Therefore, it is
inappropriate to compare the absolute values of estimates across sessions. Instead, the

trends for sessions 1 and 2 are compared. The precise procedure is as follows.

1. For each experiment and for each subject, the curve in fig. 9.26 for session 1 is
compared with that for session 2. Any portions of the two curves which show different
trends in both sessions are identified. For example, for subject 16 the portions of the
curves for the self-suppression experiment defined by the three points obtained with

L; = 14, 20 and 26 dB SPL have a very different trend in the three ¢ estimates for

202



session 1 compared to session 2. Such estimates (in both the sessions) are then classed
as “unrepeatable” and are rejected from this analysis. All the remaining estimates are
classed as “repeatable” and are included in the further analysis. Thus, in this example
for subject 16, the estimates for L; = 30, 36, 42 and 50 dB SPL are retained. Note that
the classification is based on the trends within the session, and not on the absolute
difference in the estimate across sessions. Also, differences in trend that are judged to
be quite small are not used to reject estimates. For example, for subject 4, the estimates
for session 1, at I.; = 30, 36 and 42 dB SPL. do not define a monotonic curve, whilst the
corresponding estimates for session 2 do. However in this case, it is judged that the
difference is small, and hence all estimates are accepted for further analysis. Although
in these cases there is clearly a certain degree of subjective assessment required, they
are rare, and have not proved problematic.

2. Incases where an estimate is present for only one of the sessions, such as for subject 5,
session 2, L; = 50 dB SPL, this estimate is rejected.

3. The number of repeatable estimates in each group is counted to establish whether there
are sufficient data for further assessment.

4. The trend of ¢ with normalised SFOAE level in each group is classified, according to
the following scheme:

“As model’: the measured trend follows the model predictions (section 7.4)
“Anomalous:” the trend is not as predicted in section 7.4

“Insufficient data”: too few (<3) reliable estimates in curve to assess the trend.

The averaged curves are shown in fig. 9.27. Note that now two stages of data
rejection have been applied. In the first, frequency sweeps were rejected based on their
SNR; estimates. The 4-parameter estimates for all the retained frequency sweeps were
then calculated. The marked points in fig. 9.27 correspond to the estimates for ¢¢. The
second stage of data rejection applies only to the averaged curve shown in the figure. In
this stage, ¢ estimates are rejected, based on the variability between session 1 and
session 2 using the procedure described above. One cause of this variability was probably
subject movement, leading to degradation of the probe fit. A second possible cause is drift

noise, which is not accounted for in the SNR; estimate.
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This summary results are shown in table 9.3:

Table 9.3: Summary of results for the measured ¢ variation with SFOAE level

Experiment Classification Number of Subject Identification
of Trend Subjects Numbers
Self-suppression As model 14 1, 4-6, 8-10, 13-18, 20
Anomalous 1 11
Insufficient data 5 2,3,7,12,19
Two-tone suppression As model 10 1,4-6,9, 10, 13, 15, 18, 20
Anomalous 2 14, 17
Insufficient data 8 2,3,7,8,11,12,16, 19
Both experiments As model 10 1,4-6,9, 10, 13, 15, 18,20

For the self-suppression experiment, only one result was classed as anomalous
(subject 11). For this subject, ¢ varies little with SFOAE level. However, only the tail
end of the curve was measurable (i.e., at high probe levels), where the predicted curve
becomes quite flat. Therefore, this result is not strong evidence against the model.

For the two-tone suppression experiment, two results were classed as anomalous.
(subjects 14 and 17). However, for subject 14, the reliable portion of the curve is very
short, showing a change in normalised SFOAE level of only 2 dB. The results for subject
17 are more surprising, showing as a downward trend in ¢¢ over a 4 dB change in
normalised SFOAE level.

The presence of SOAEs appears to have little influence on the trends. For the self-
suppression experiment, results classed as “as model” were obtained where:

1. no SOAEs were detected (subjects 1, 8, 10, 14 and 17),

2. the S/EOAE rating was low for most sweeps (subjects 5, 6, 13, 16, 18, and 20)

3. the S/EOAE rating was high for most sweeps (subjects 4, 9, and 15).
Similarly for the two-tone suppression experiment, results classed as “as model” were
obtained where:

1. no SOAEs were detected (subjects 1 and 10),

2. the S/EOAE rating was low for most frequency sweeps (subjects 5, 6, 13, 18, and 20),
3. the S/EOAE rating was high for most frequency sweeps (subjects 4, 9, and 15).

Within the “as model” class, a variety of different y-shapes are seen. It is speculated
that subjects within this class show a variety of different cochlear amplifier characteristics,
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leading to significant differences in the way in which the TW shape is altered during

acoustic suppression.

In conclusion, the results give strong support to the model predictions made for the
self-suppression experiment. The results for the two-tone suppression are less clear cut,

but are, in general, in agreement with model predictions.

9.6.4 Variation of g-bandwidth

Fig. 9.28 shows the variation in the ¢g-bandwidth, @gw, with the normalised SFOAE
level for all 20 subjects. The corresponding curves obtained from the cochlear models are
shown in fig. 7.6¢c. Recall that for the model, the estimates of ¢ggw were found to be less
reliable the those of ¢¢ (fig. 6.3), leading to ‘glitches’ in the curve of estimated @gw
variation, as was seen in figs. 7.6c and 7.7c¢ for the self-suppression simulation at a probe
level of 50 dB SPL. However, ignoring such glitches (which were found to be dependent
on the realization of the random scattering sites) the predicted self-suppression and two-
tone suppression curves together either resembled a “y” as in fig. 7.7c, or a distorted
character “y” as in fig. 7.6c¢ (the distortion being that the short limb is rotated
anticlockwise). The longer limb of the “y” arises from the self-suppression experiment,
and the shorter limb arises from the two-tone suppression experiment.

In order to obtain an average curve for gz across both sessions, the same analysis
procedure was followed as for the ¢@¢ results outlined in the previous section. This led to
some ¢@pw estimates being judged “unrepeatable” and therefore excluded from further
analysis. As would be expected, those frequency sweeps which showed repeatable trends
in their ¢¢ estimates also showed repeatable trends in their @ggw estimates. The averaged

curves are shown in fig. 9.29.

The curves for each experiment were then classified as in the previous section, giving

the results shown in table 9.4.
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Table 9.4: Summary of results for the measured ggw variation with SFOAE level

Experiment Classification | Number of Subject Identification
of Trend Subjects Numbers
Self-suppression As model 6 4,6,9,11, 16,20
Anomalous 9 1,5, 8,10, 13-15, 17, 18
Insufficient data 5 2,3,7,12,19
Two-tone suppression As model 2 4,20
Anomalous 9 1, 5,6, 10, 13-15, 17, 18
Insufficient data 9 2,3,7,8,9,11, 12, 16, 19
Both experiments As model 2 4,20

The results show more intersubject variability and are harder to interpret than those
for the ¢ measurements. In table 9.4, curves which show significant non-monotonicity
have been classed as anomalous (despite the non-monotonicity seen in fig. 7.6c). For the
self-suppression experiment, six subjects showed the trend predicted by the model. Nine
self-suppression curves were classed as anomalous. The curves for subjects 1, 5, 8, 15 and
17 show a clear non-monotonicity, whereby the ¢y estimate first increases, and then
decreases as the normalised SFOAE level is reduced by the increasing probe level. A
second type of anomaly is seen for subject 14 where there is a tendency for @gw to increase
with probe level. The remaining anomalous self-suppression curves (subjects 10, 13 and
18) either show little change, or erratic changes in @gy.

The ¢gw curves for the two-tone suppression experiment are even harder to analyse,
because of the limited numbers of accepted estimates and the limited variation achieved in
the normalised SFOAE level. Consequently their was insufficient data for nine subjects.
For the remaining cases, it was decided to place any “y” shaped curves (whether distorted
or not) in the “as model” class. That is to say, the classification was not based on the
absolute slope of the ggw curve for two-tone suppression, but on the slope for two-tone
suppression curve relative to that for self-suppression. Only two subjects (numbers 4 and
20) clearly showed this form of ¢g variation. The nine results which were classed as
anomalous showed a variety of different trends. Subjects 1, 5 and 17 showed some non-
monotonicity. Subject 15 showed a steeper @ggw curve in the two-tone suppression case
than in the self-suppression case. The remaining subjects showed a @gsw curve in the two-

tone suppression that was of a similar slope to that for the self-suppression case.
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Overall, for both the self-suppression and the two-tone suppression experiments there
is more intersubject variability in the results for @ggw than was seen in the ¢¢ variation. This
is expected to some extent from the results from the cochlear models given section 6.8
where the expected error in the estimates of ¢gw from the 4-parameter model was greater
than those of ¢¢. Thus, even using noise free results from the cochlear models, the
estimated ¢y variations from many realisations showed ‘glitches’ which resulted in non-
monotonicity. As a consequence, the comparison between the measured @gw results and
the theoretical ones is difficult, and therefore this part of the experiment does not provide a
strong test of the model. Further modelling work (discussed in section 10) and

experimentation may enable a stronger test based on ¢@gw to be devised.
9.6.5 Variation of the Relative Bandwidth

The variation of the ¢-bandwidth in relation to the @g-centre frequency is shown in
fig. 9.30. If the ¢-spectrum had an approximately constant Q factor (defined by
QO = ¢c/ ¢gsw ) then these curves would lie on a straight line passing through the origin,
where the gradient would be inversely proportional to the Q factor. The Q factor has not
been plotted directly, since the values become unreliable at small values of @gw. A
significant intersubject variation is seen in the shape of these curves. For example,
subject 15 shows a Q factor which reduces with probe level, whilst subject 20 shows the
opposite trend. This suggests that use of Q-factor offers no benefits over the direct use of
@sw as a means of characterising the width of the ¢-spectrum. This result is in agreement
with the cochlear model results shown in figs. 7.6¢, 7.7c and 7.8c, which showed that a
significant variation in the Q-factor arose from one realization of the scattering impedance

to the next.
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page. Continued over page.
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9.6.6 Variation of the Multiple Reflection Parameter, o.

Recall from section 6.6 that the value of «ris related to the (frequency-averaged)
product, | rR | where r and R are the cochlear basal and apical reflection coefficients
respectively. Also, the value fis related to the frequency averaged product | gR | where g
characterises transmission through the middle ear, outer ear and probe. The value of fis
also virtually identical to the value of the RMS normalised SFOAE pressure. The effect of
the probe or suppressor level is to reduce the magnitude of R, leaving r and g unaltered.
Therefore it is expected that ¢ will be proportional to . This has been tested by plotting &
against £ for the measured data (fig. 9.31). For comparison, results from the cochlear
model predictions are shown in figs. 7.6d and 7.7d. In general, the results bear out the
predictions, as is most clearly seen for subjects 4, 5, 6, 9, 14, 15, 16, 17, 18 and 20. Recall
also that the studies of the performance of the 4-parameter model revealed that errors in the
estimates of « were large, even for noise free data. Therefore a significant departure of the

measured results from ideal proportionality (as seen in fig. 9.31) was expected.
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9.7 Overall Comparison of Modelling and Experimental Results

The results allow four separate comparisons between measurements and theory to be
made. These are the estimates of the ¢ and @gw variations for both the self-suppression
and two-tone suppression experiments.

The results for ¢¢ for the self-suppression gave the most consistent pattern of results
across subjects. For nearly all subjects where the SFOAEs were strong enough to be
measured accurately for several level series, the measured variation of @g¢c showed a striking
similarity to the theoretical results obtained from cochlear models. The results of the two-
tone suppression experiment were less clear, partly because of the limitations of this
experiment, discussed later. However, in general the results for ¢ for the two-tone
suppression experiment also agreed with theoretical predictions. Thus, in general, the
experimental results showed the characteristic y-shaped variation in ¢¢ predicted by the
models. Though two of the subjects showed results that deviated slightly from the model
predictions, these anomalies were weak, and could be attributed to the random variation
which is inherent in the SFOAE generation mechanism proposed by Shera and Zweig.
Thus, the measured ¢ variations have been interpreted as offering strong experimental
support for the cochlear models. Furthermore, this conclusion appeared to be valid across
all subjects where SFOAEs were strong enough to allow comparisons with model
predictions to be made.

The precise details of the y-shaped results varied significantly across subjects. It is
speculated that this variation is due to inter-subject differences in the cochlear amplifier
characteristics, leading to differences in the way in which the TW shape is altered during
acoustic suppression.

The results for ggw are harder to interpret for two reasons. Firstly the results of the
cochlear modelling study showed that the errors in the 4-parameter model estimates of ¢gsw
were significant, leading to glitches in the ¢ggw curves. Secondly, the @z experimental
results showed a larger intersubject variability than did the ¢ results (as would be expected
from the modelling results). Overall, neither the self-suppression @y results nor the two-
tone suppression @y results were clear enough to be safely interpreted as either supporting
or contradicting the cochlear model. Therefore this part of the experiment does not provide
a good test of theory.

Overall the experimental results show that changes in OAE periodicity, as

characterised by the ¢ variable, can be detected during both self-suppression and two-tone
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suppression. Furthermore, these changes are in agreement with cochlear models based on
Shera and Zweig’s theory of OAE generation combined with the model of self-suppression
and two-tone suppression developed by Kanis and de Boer. This suggest that the cochlear
models are accurately representing the main features of the OAE generation mechanism
and of OAE suppression, and lends some support to both Shera and Zweig’s theory and to
Kanis and de Boer’s model of nonlinearity. The results are not in agreement with a

cochlear models containing Strube’s spatially periodic scattering impedance.
9.7.1 A Possible Alternative Interpretation

Talmadge et al. (2000) have shown that some nonlinear cochlear models predict
SFOAE spectra with two components: a nonlinear component and a ‘roughness’ or
scattering component. In this thesis, only the scattering component has been included in
the model predictions. As a consequence of the definition of the reflectionless cochlea
(section 5.4), even the nonlinear models in this thesis show no nonlinear SFOAE
component. Thus the y-shaped variation seen in the model results is due entirely to the
interaction of the TW shape with the scattering impedance. However, in the following
discussion, the possibility of a nonlinear effect on the experimental data is addressed.

In the model of Talmage et al. (2000) the nonlinear component varies only very
slowly with frequency (i.e., it has a very high periodicity) and is generally of smaller
amplitude to the scattering component which has been the focus of this thesis. Thus the
total SFOAE spectrum is usually dominated by the scattering component. However, as the
stimulus level increases the nonlinear component increases whilst the scattering component
reduces. When a stimulus level is reached at which the nonlinear component becomes
dominant, then the fine structure in the total SFOAE spectrum virtually disappears being
replaced by the much coarser (i.e., higher periodicity) spectral structure of the nonlinear
component (Talmadge et al., 2000, fig 4). This would correspond to a ¢-centre value, ¢c ,
approaching zero. It could be speculated that, in the transition region between these two
regimes, the variation of ¢gc with stimulus level might appear qualitatively similar to
variation seen experimentally.

The following arguments are presented to support the interpretation given in section
9.7, that the y-shaped variation is dominated by the scattering SFOAE component, rather
than by transition from scattering to nonlinear components. Firstly, no sign of the
nonlinear SFOAE component was seen when comparing the suppressed and unsuppressed

ear canal pressure spectra (section 9.1). Secondly, the final measured value of ¢ in
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fig 9.27 is typically 10. This is much higher than the value of ¢ due to the nonlinear
component alone (which is less than 1 in the frequency range of interest in Talmadge et al.,
2000, figs 2, 4 and 6). This shows that the final SFOAE is still dominated by the scattering
component. Thirdly, the variation in @ with stimulus level follows a smooth, continuous
line. If a transition phenomenon were strongly influencing the results, it might be expected
that a more sudden drop in the value of @ with stimulus level would be seen. Finally, the
striking resemblence of the experimentally measured ¢c variations to those obtained
theoretically argues against the involvement of nonlinear SFOAE components.
Nevertheless, without further modelling studies, which are outside the scope of this thesis,
it is difficult to completely rule out any influence from nonlinear SFOAE components.

Such further modelling studies are left as recommended future areas of investigation.

9.8 Implications of the Results

Within the framework of Kemp’s reflection hypothesis, the main questions that have
a bearing on the results obtained in this thesis are:
e What is the spatial form of the scattering impedance in the cochlea?
e What is the nonlinear variation in the TW response during self-suppression and two-
tone suppression?
e What is the relationship between SFOAESs, the TW response and the scattering
impedance?

e What is an appropriate signal processing method for characterising SFOAE periodicity?

In this thesis, the primary aim was to acquire experimental evidence which would
shed light on the form of the scattering impedance. However, the answers to the remaining
questions listed above are still uncertain. Therefore the assumptions that have been made
in answering these questions may influence any conclusions drawn about the scattering
impedance.

In this respect the interpretation of the self-suppression experiment given in the
previous section is less open to question than that of the two-tone suppression experiment.
This is because the broadening of the TW envelope with increasing probe level is well
established from direct measurements of the BM mechanical response (Cooper and Rhode,
1992). Furthermore, the modelling of self-suppression is more straightforward than two-

tone suppression. In fact, the results of the cochlear models presented here show that the
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changes in TW shape during self-suppression predicted by the nonlinear model are similar
to those predicted by linear models in which the overall cochlear amplifier gain is reduced.
This has been found for two quite different (linear) formulations of the cochlear amplifier.
For the random scattering impedance models, the resulting changes in @¢ and @ggw were
seen for both of these linear models as well as for the nonlinear model. This suggests that
the general result is not dependent on the details of the cochlear model.

In contrast, several factors make the interpretation of the two-tone suppression
experiment more questionable. The changes in TW shape in two-tone suppression are
generally less well established than those in self-suppression. Furthermore, model
predictions of two-tone suppression necessarily require a nonlinear formulation: there is
no simple way of checking the nonlinear model results against a linear model. Such
nonlinear formulations introduce another set of assumptions, over and above those required
for the linear models. Due to time constraints, only the nonlinear model due to Kanis and
de Boer was implemented. Therefore there is a danger that the results depend on the
details of this particular formulation. Finally, the conclusions that have been drawn are
based on a single suppressor-to-probe frequency ratio, and at a single probe level.

The self-suppression results are in agreement with the result reported by Kemp and
Brown (1983), that increasing the probe level gave a reduction in group delay. They are
also in agreement with the reported results of a reduction of TEOAE latency with probe
level (Neely et al., 1988). No reported results have been found which either directly
confirm or contradict the two-tone suppression results.

The experimental results have been interpreted as providing support for Shera and
Zweig’s theory in which the CP scattering impedance shows a fine-grained, random spatial
variation. This requires further qualification. Two main classes of scattering model have
been used in the simulations: random scattering and periodic scattering models. The
measured ¢¢ variations clearly confirm the predictions of the random scattering models but
contradict those of the periodic scattering models. However, it may be argued that the
periodic scattering models used were unrealistic, since the resulting SFOAE spectra show
near perfect periodicity (section 7.2). This can be seen by considering their predicted gsw
values, which are much lower than measured values (figs. 7.3 and 9.28). Thus such models
could have been discounted purely on the measured value of ggw for a single frequency
sweep. Although this problem was partially addressed in section 5.5.1, where more
realistic SFOAE results were presented from models which have a narrow-band, rather
than a periodic, scattering impedance, these models were not included in the self-

suppression or two-tone suppression simulations. However, it is possible to predict the
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results that would have been obtained by considering Zweig and Shera’s phenomenological
theory, as illustrated in figs. 4.4 and 4.5. For a scattering impedance, the scattering
potential in panel (d) would have a narrow band bandpass shape in the ¢-domain,
somewhere between the random broadband function seen in fig. 4.4d and the sharp peak
seen in fig. 4.5d. Consider multiplying this bandpass shape with the TW pulse in the ¢
domain. It can be seen that the resulting SFOAE periodicity may or may not depend
strongly on the TW shape, depending on the relative positions in the ¢-domain of the
scattering potential and the TW function. We might then class those cochlear models
which predict SFOAE spectra whose periodicity is dominated by the peak of the TW
function as representing Shera and Zweig’s model, and those which predict SFOAE spectra
whose periodicity is dominated by the peak in the scattering potential as representing
Strube’s model. The measured results indicate that significant changes in ¢ occur during
suppression, which strongly suggests that the SFOAE periodicity is not dominated by the
spatial periodicity of the scattering impedance. In this sense, the results contradict Strube’s
model.

However, this result does not necessarily imply that a perfectly random scattering
impedance was actually present in the tested ears. Other spatial variations which have not
been simulated might produce similar results. For example, perhaps the fine-grained
inhomogeneities could be replaced by fewer point inhomogeneities rather like the models
discussed in section. 3.3.1, except with greater numbers of reflection sites, and with a
random distribution. This could be described as a sparsely distributed, coarse grained
random distribution. Or a BM with some scattering regions interspersed with smooth
regions might produce similar results, depending on the size and location of these regions.
These two suggestions are made simply to illustrate that there are many possible variants of
the random scattering impedance which have not been simulated. Further modelling and
experimentation would allow the models to be refined.

Overall the experimental results for the self-suppression experiment provide strong
support for the model of OAE generation based on Shera and Zweig’s theory. The results
of the two-tone suppression experiment appear to support both Shera and Zweig’s theory
and the two-tone suppression model developed by Kanis and de Boer. However, further
modelling and experimentation in this area is desirable.

The results do not refute the hypothesis that Shera and Zweig’s theory is generally
applicable to all normally hearing subjects. The few anomalies that were seen are readily

accommodated by the random nature of the proposed OAE generation mechanism.
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If the interpretation outlined above is correct, then changes in the shape of the TW
function manifest themselves as measurable changes in the characteristics of the SFOAEs.
Therefore it may be possible to extract potentially interesting information about TW. This
may provide a method of linking the results obtained for SFOAEs with measures such as
TEOAES, or with psychophysical measures of the auditory filter. It may also be possible to
study further the nonlinear behaviour of the TW using SFOAEs.

Unfortunately, however, the information about the TW is partially obscured by the
random nature of the SFOAE, which according to theory arises from the random
arrangement of inhomogeneities in the cochlea. This means, for example, that models
predict different values of the SFOAE periodicity (or of ¢) from different realizations of
the scattering impedance, even when the primary TW response (and therefore the auditory
filter width) is held constant (section 7.3). This suggests that accurately measuring
auditory filter bandwidth using SFOAEs or TEOAEs may be problematic. This conclusion
is, however, based on the use of the 4-parameter model to measure periodicity. Better

signal processing methods may reveal this information more clearly.
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PArT IV: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

10. Conclusions

The aim of this investigation was to test theories of the mechanism of OAE
generation against experimental evidence. This aim was achieved by examining the
variation of the periodicity of the SFOAE during self-suppression and two-tone
suppression. This investigation falls into three main parts.

In the first part, a macromechanical cochlear model has been developed which allows
predictions of SFOAESs to be made. This is a simple longwave model, incorporating
models both of the cochlear amplifier and of reflection sites on the basilar membrane for
the cochlear TW. These reflection sites were modelled by a scattering impedance
implemented as spatial variations in the basilar membrane point mechanical impedance. In
one group of cochlear models, the reflection sites were modelled as a random component in
the spatial variation of the basilar membrane impedance, as proposed in Shera and Zweig’s
theory. In variants of these models, this random spatial variation is replaced by a periodic
variation, as proposed by Strube. Using these two groups of models, SFOAEs predicted by
Shera and Zweig’s theory can be compared to those predicted by Strube’s model. The
models also include cochlear amplifier nonlinearity, based on the quasilinear
implementation of Kanis and de Boer, which allows the effects of self-suppression and two
tone suppression on SFOAE:s to be simulated. In an additional model variant, self-
suppression was crudely simulated by an overall reduction in the cochlear amplifier gain of
a linear model.

Various model parameter studies have been performed to examine the sensitivity of
the predicted SFOAEs to the modelling assumptions. The sensitivity to changes in the
middle-ear model, to the scattering impedance, and to the cochlear amplifier characteristics
were studied. It was found that the major results reported in this thesis are all insensitive to
these changes, suggesting that they are generally applicable to a large class of cochlear
models.

In the second part of this thesis, a method has successfully been developed for
accurately determining the periodicity of an SFOAE spectrum. Because of the random
nature of the scattering impedance in Shera and Zweig’s theory, the SFOAE spectrum has
been treated as a single realization of an underlying random process. The random nature of
the SFOAE makes the definition of spectral periodicity problematic. A method has been
developed for quantifying the periodicity of the ripple pattern seen in a single SFOAE
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frequency spectrum (whether measured or predicted). This method, known as the 4-
parameter model, has been designed to extract parameters that characterise the random
process arising from Shera and Zweig’s theory of SFOAE generation. Physically these
parameters relate to the shape of the cochlear TW, and to the extent and degree of multiple
reflection in the cochlea. One of the parameters, called the ¢-centre frequency and denoted
¢c, relates directly to the periodicity of the SFOAE ripple pattern. This effectively provides
a definition of periodicity. A second parameter, called the ¢-bandwidth and denoted @pw,
quantifies the spread of periodicities in the SFOAE spectrum. In cochlear modelling
studies, it was found that the 4-parameter model enables small changes in the periodicity of
the SFOAE arising in self-suppression and two-tone suppression studies to be detected.
The 4-parameter model has been applied to the predicted SFOAEs from the cochlear
models during both self-suppression and two-tone suppression.

In the third part of this thesis, experiments were carried out on 20 normally hearing
subjects to measure the variation of the SFOAE periodicity during self-suppression and
two-tone suppression. The two-tone suppression was carried out with a high-side
suppressor tone whose frequency was 1.3 times that of the probe tone. A subset of the
subjects was created containing only those subjects who showed accurately measurable
SFOAESs over a range of suppression levels. The 4-parameter model was then used to
compare predicted and measured variations in @¢ and @gw which characterise the

periodicity.
The following conclusions have been drawn from the investigation.

1. Those cochlear models that are based on Shera and Zweig’s theory of OAE generation
produce realistic looking SFOAE predictions. Two features of the model that are
necessary for predicting realistic SFOAE:s are first, a random spatial variation in the
basilar membrane impedance and second, a cochlear amplifier giving active TW
amplification. These results are quite insensitive to the major assumptions in the
model, in that different formulations of the cochlear amplifier and of the random
scattering impedance do not lead to qualitative differences in SFOAEs. These results
confirm Zweig and Shera’s results (1995).

2. The SFOAE:s predicted by cochlear models based on Shera and Zweig’s theory show
distinctive changes in the ¢-centre value, ¢c, and ¢-bandwidth, @ggw, during both self-
suppression and two-tone suppression. Specifically, during self-suppression the value
of ¢c reduces as the normalised SFOAE level reduced. However, during high-side,
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two-tone suppression the value of @¢ increases as the normalised SFOAE level reduces.
This variation resembles a y-shape when ¢ is plotted against the normalised SFOAE
level. In general ggw shows qualitatively similar trends to those of ¢¢ during both self-
suppression and two-tone suppression. However, the estimates of @ggw are less reliable
than those of @ (i.e., they showed a greater variation across an ensemble of models,
each with a different realization of the random scattering impedance). In some cases,
for a particular realization of the random scattering impedance, the trend in @gw with
the normalised SFOAE level is not monotonic. Thus overall the models shows that gzw
is less useful than ¢@¢ as a measure of either periodicity or TW shape.

. The 4-parameter model provides a useful stochastic model of an SFOAE frequency
spectrum obtained at constant stimulus level. This gives a measure of SFOAE
periodicity which can be related to physical quantities in Shera and Zweig’s theory of
SFOAE generation.

. Experiments show that measured SFOAE ¢¢ and ¢gw are altered both during self-
suppression and two-tone suppression.

. In the subset of subjects where SFOAESs could be measured with sufficient accuracy,
the variations of the measured ¢¢ show a similar y-shaped variation to that seen in the
predictions of the cochlear models based on Shera and Zweig’s theory of OAE
generation. These results are interpreted as providing strong supporting evidence for
this theory.

. Experimental results for ¢ggw were harder to interpret as the observed trends were often
not monotonic. It is concluded that these results are not clear enough to be safely
interpreted as either supporting or contradicting the cochlear model. Further modelling
and experimental work is recommended in this area.

Overall, it is concluded that the measured variation in SFOAE periodicity provides
strong support for Shera and Zweig’s theory of OAE generation, thereby suggesting a

fundamental link between SFOAE periodicity and the shape of the cochlear TW.
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11. Recommendations for Future Work

Recommendations are made here for work in three areas: experimental, cochlear

modelling, and signal processing.

11.1 Improvements to the Experimental Procedure

One of the main limitations of the experiment was the difficulty in obtaining
sufficient SFOAE data to allow trends to be assessed. Despite choosing subjects with
normal hearing (generally better than 10 dB HL) and recording for about three hours in
total, the results from about a quarter of the subjects were too noisy to be useable. One
practical limitation of the recording method was that SFOAEs were not calculated at
measurement time. If this were rectified, the recording system could adaptively vary the
number of averages to achieve a desired SNR. The experimental procedure could be
modified to measure at fewer levels, but with greater accuracy in those subjects with

weaker SFOAEs.

11.2 Further Experiments

The following further experiments are suggested:

1. amore comprehensive study of the effects reported here in which self-suppression and
two-tone suppression of SFOAE:s are studied in more depth,

2. acharacterisation of level effects and suppression effects in TEOAEs,

3. astudy of the effects of ototoxic drugs or contralateral suppression on the SFOAE ¢
spectrum,

4. astudy of the relationships between the ¢-spectrum and the psychophysical measures of
the auditory filter bandwidth,

5. experiments specifically designed to separate possible nonlinear SFOAE components
from the scattering SFOAE component.

These proposals are outlined below.

Firstly, a more comprehensive study of SFOAEs in self-suppression and two-tone
suppression could be undertaken. Though the results of the self-suppression experiment
reported here provided an adequate test of the model, the two-tone suppression experiment
was less successful, owing partly to the limited level of suppression that was obtained

(typically 7 dB). A lower suppressor-to-probe frequency ratio (say 1.1 or 1.2) would give a
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higher degree of suppression. A study involving a range of suppressor to probe frequency
ratios would provide further tests of the nonlinear elements of cochlear models. Studies
could also explore the other experimental parameters which were fixed in the experiments
reported here: the probe frequency range and the probe level in two-tone suppression
experiments. Additionally, a further investigation of the anomalous results found for ggw
would also be interesting, though this should follow a more thorough modelling study.

A second area which might be fruitfully explored is the characterisation of TEOAEs.
Cochlear theory predicts, and measurements confirm, that the SFOAE frequency spectrum
is similar to the Fourier transform of a TEOAE waveform. In fact the following argument
shows that a TEOAE can be thought of a suppressed SFOAE. For simplicity, consider the
input stimulus to a TEOAE as a periodic train of clicks, with a click interval greater than
the TEOAE duration. This can be decomposed into the sum of frequency components of
roughly equal strength comprising the Fourier series expansion. Each frequency
component in the measured TEOAE can therefore be thought of as an SFOAE, suppressed
by multiple suppressor tones. More generally, when the click train is not periodic, it can be
seen that the TEOAE frequency spectrum is a particular class of suppressed SFOAE
frequency spectra: a SFOAE frequency spectrum measured in the presence of a broad band
suppressor. An obvious experiment to perform would be to measure TEOAESs at various
click levels, and to analyse their frequency spectra using the 4-parameter model. The effect
of various additional suppressor stimuli on the TEOAE could also be studied. Since in
TEOAE level series the effects of self-suppression and multi-tone suppression are
combined, it is not possible to predict how the TEOAE spectra should vary, without
performing further modelling studies.

In the third area proposed above, experiments could investigate other methods of
altering the TW, such as ototoxic drugs or contralateral acoustic suppression. Measuring
the SFOAE frequency spectrum, and using the 4-parameter model to extract the periodicity
(or ¢-spectrum) may provide information about changes in the TW shape.

One problem with using ototoxic drugs, such as aspirin, is that they take days to have
any effect. In the experiments reported here, it was found that the ¢-spectrum can be
altered simply by removing and refitting the OAE probe (perhaps because this alters the
parameters denoted g and r in section 4.10). Day-to-day changes in the middle ear would
also be a problem. The acoustic effects investigated here do not suffer from these
shortcomings, since the OAE probe can be left in place for the duration of the experiment.
Day-to-day changes in the ¢g-spectrum are seen in the session-to-session variations of the
results reported here.
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A problem with contralateral suppression is that the effect is small (typically giving

changes of only a few dB). Nevertheless there may be some benefit in investigating this

effect.

In the fourth area proposed, experiments could look for a relationship between the
SFOAE periodicity and psychophysical measures of the auditory filter. If, as is generally
believed, the width of the auditory filter is determined primarily by the width of the
mechanical tuning curve, then both the psychophysical measure, and the ¢g-spectrum will be
determined by the shape of the TW. As a consequence, it might be thought that subjects
with narrower tuning curves measured psychophysically would also show smaller
periodicities (or higher ¢c and @sw values). However, such a simple relationship does not
necessarily follow from the cochlear models. This is because the two measures are
different, single number characterisations of the TW shape, which is a complex curve.
Inter-subject differences in TW shape would confound the results. Furthermore, the TW
shape is dependent on the acoustic stimulus. The psychophysical measures are usually
performed at high overall levels (taking both probe and masker into account), and with
quite a complex acoustic stimulus (such as a pure tone plus a notched noise masker). Now,
¢c has been found to be highly dependent on both probe and suppressor (or masker) level.
Also, this dependency varies across subjects, such that a high ¢c at one level is not
necessarily a good predictor of the ¢ at a different level. Therefore any experiment would
have to account for these effects in order to relate the two measures. It might be possible to
use nonlinear cochlear models to help assess the importance of these factors.

In the final area, an experimental investigation of the influence of nonlinear SFOAEs
reported by Talmadge et al. (2000) may be worthwhile. This should be undertaken
following further modelling work in the area which might help establish the characteristics

of these components.
11.3 Development of Cochlear Models and Signal Processing Techniques

This thesis has relied on both macromechanical models of the cochlea and on the 4-
parameter model for extracting information from measured SFOAEs. Both of these areas
could be further developed.

Many properties of the cochlea are still poorly understood. Consequently there is
much scope for further model development. In the absence of reliable measurements in the

real cochlea, studies could be undertaken to assess the sensitivity of cochlear model
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predictions to changes in those parameters which are still very uncertain. Aspects which
could be addressed are the effects on the predicted ¢-spectrum of:

e nonlinear cochlear amplifier effects,

e the form of the basilar membrane inhomogeneity,

e scaling symmetry in the cochlea.

The most important of these aspects is probably the modelling of the cochlear
amplifier. One simple extension to the modelling work reported here would be to modify
the quasilinear model to include the Zweig cochlear amplifier (1991), rather than the Neely
and Kim (1986) cochlear amplifier. The simulation of the self-suppression and two-tone
suppression cases could then be repeated and the results compared with experimental data.
This would reduce the likelihood of making misleading predictions, which could be
sensitive to the choice of cochlear amplifier model. More generally, Kanis and de Boer’s
formulation of cochlear nonlinearity contains many assumptions and simplifications. It
may be interesting to investigate alternative formulations of this nonlinearity.

A second aspect of the models that may be investigated is that of TW reflection sites.
The physiological basis for TW reflection is still uncertain. Preliminary investigations
using the cochlear models (section 4.6) have shown that the form of the basilar membrane
inhomogeneity (e.g., whether the inhomogeneity is in the basilar membrane stiffness or
damping) has a significant effect on the model predictions of SFOAEs. The effects of
these formulations on the ¢-spectrum could be studied more comprehensively. In addition,
the various forms of spatial variation of scattering impedance discussed in section 9.8
could be further investigated. For example, a narrow band spatial variation, a coarser
grained random distribution, or an intermittent random spatial distribution could all be
modelled quite easily.

Finally in the area of cochlear modelling, improvements to the modelling of scaling
symmetry in the cochlear model might allow a better prediction of the variation of
periodicity with frequency. The justification for converting the SFOAE frequency
spectrum to a log-frequency axis (or 7-domain) is to straighten out the phase spectrum.
Viewed from the time domain, this is equivalent to reversing the effect of frequency
dispersion in the cochlea. However, the logarithmic transformation is only strictly accurate
when perfect scaling symmetry holds. A more accurate transformation, based on some
average cochlear properties, should lead to a better characterisation of the SFOAE
response.

The stochastic model of the SFOAE frequency signal is another area where further
improvements can perhaps be made. This is an important area since it determines the
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accuracy with which potentially useful information about the cochlea can be obtained from
SFOAE measurements. The basic 4-parameter model adopted in this thesis is a very
simply one: a stationary, gaussian white noise signal is first passed through a Butterworth
filter, and then a transformation is applied to account for multiple reflections. Further work
could look at:

e non-gaussian signals,

e non-stationary signals,

different filter transfer functions,

different treatments of multiple reflections.

Additional parameters might need to be added to account for some of these effects. In
addition, improvements to the estimation algorithm may be possible. This work could

either be done in conjunction with cochlear models, or it could be based entirely on

measured signals.
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AppendixI Derivation of the Longwave Equation

Derivations of the longwave equation can be found in Lighthill (1981) and de Boer
(1996). In order to indicate the precise variant of the longwave equation that has been
adopted in this these, a full derivation is presented here. The notation introduced in

sections 4.3 and 4.4 is used throughout this section.
I-1 Derivation of the Wave Equation for Antisymmetric Loading

Consider first the cochlear fluid in the scala vestibuli under antisymmetric (push-
pull) loading. In this case, from [4.1] with p,(x,y,?) =0, the fluid pressure in the scala
vestibuli is simply equal to the semi-difference pressure, p; (x,y,t). The fluid then obeys
the equation of conservation of mass:

ou(x,y,t) ov(x,y,t)
=0
ox " dy

and the equations of conservation of momentum in two directions:

(conservation of mass) [1-1]

op 4 (x, y,1 ,

M = —,OM (conservation of x-momentum) [1-2]
o0x ot

op 4 (x, .1 ,

—M =— ,OM (conservation of y-momentum) [1-3]

dy ot
together with the boundary conditions at the stapes and helicotrema:

u(x,y,0| o =us ()  Vy.r

[I-4]
u(x,y,0)| _, =0 Vy,t
and at the CP and ceiling of the scala vestibuli:
v(x, y,t)]yzo =vep (x,1) Vx,t
[1-5]
v(x, y,z‘)lyzH =0 Vx,t

where it has been assumed that the stapes x-velocity is independent of y. It has also been
assumed that the fluid is incompressible (such that p is constant) and that all fluid
displacements and velocities are small, such that nonlinear terms in the momentum

equations are neglected.
In the longwave approximation, it is assumed that the y-velocity, v(x,y,t), varies

linearly across the scala. It then follows from [I-5] that:

v(x, Y, t) =(1- 'I){L)VCP (x, t) [1-6]
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It can be shown that in adopting this assumption, the conservation of y-momentum is
violated (i.e., that [I-3] is nor satisfied). This is approximately valid provided that
v(x,y,t) << u(x,y,t), which occurs when H is much smaller than the wavelength of the

TW. By differentiating [I-6] w.r.t. y and substituting into [I-1] it follows that:

ou(x, y,t)  vep(x,t)
= 1-7
ox H (=71

Since the right-hand side of [I-7] is independent of y, so too is the left-hand side. It follows
from [I-7] evaluated at the stapes and from the assumption that stapes velocity is
independent of y that u(x,y,t) is independent of y. Also, from [I-2], the pressure also
becomes independent of y. Thus, by adopting the longwave assumption, it follows that
both fluid pressure and x-velocity are uniform across the scala. Henceforth the y-
independent variable will be dropped from the equations.

Differentiating [I-7] w.r.t. #, and [I-2] w.r.t. x, we obtain:

azpd (x,1) _ 0%u(x,1)
2
ox dxdt [1-8]
__P dvep (x,1)
H ot

Transforming [I-8] into the frequency domain gives:

d? X, . )
%—_—2 - —zgpvcp (x, @) [1:9]

But ps equals half the pressure difference across the CP, which is related to the CP velocity
by the impedance relation:

_Pa(x,0) [1-10]
ZCP (x’a))

VCP (x, a)) =-2
where the -2 in [I-10] arises from the sign convention and from the definition of the semi-
difference pressure. Note that the boundary condition at the helicotrema can be
represented by specifying an appropriate value of Z¢p (x,®) at x = L. Then substituting
[I-10] into [I-9] then gives the wave equation.

d’py(x,0 2p, (x,

pd(zx ) —iap pa(x,0) L-11]
dx Z cP (x’ a))

Rearranging [I-11] gives the form introduced in [4.4]:
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2
M+k2(x,w)pd(x,w) -0

i
k(x,0)=—2 [-12]
cTW (x,a))
v HZ , 0
C%W(X,w)fl cp (%, @)
2p

Solving [I-12] together with the remaining boundary conditions [I-4] then yields p 4(x,®),

u(x,w), vep(x,w) andv(x,y,m).
I-2 The Effect of Symmetric Loading

In the above derivation it was first assumed that the loading was antisymmetric. It
will now be shown that the situation remains unchanged when introducing a symmetric
loading component, since this alters neither the fluid velocities nor the pressure gradient.

For a purely symmetric loading, with p;(x,y,?) =01n [4.1], it follows that the fluid
pressure in the scala vestibuli is simply equal to the semi-sum pressure, ps (x,y,#). The x-

and y-momentum equations become:

a b 2 t k] b4 :
ps (%, 1) =-p0 ou(x, y,1) (conservation of x-momentum) [1-13]
ox ot
aps (x, y,t :
ps (%, y,1) =—p v, y.0) (conservation of y-momentum) [1-14]

dy ot
However, from symmetry in the scala vestibuli and scala tympani and from the assumption
of fluid incompressibility, it follows that u(x,y,t) =0andv(x,y,t) =0forall x,y and

t. Therefore:

op, (x, .1 ,

—p—s%x—z——) =0 (conservation of x-momentum) [1-15]
X

dp, (x,,1 .

—125-(;#) =0 (conservation of y-momentum) [1-16]
Y

And therefore p; is independent of both x and y.
I-3 The Complete Solution to Asymmetric Loading

For a general loading, as specified by a velocity at the stapes and an impedance at the

round window, the complete solution for the fluid pressure is as follows.

246



Prw (@) = p(x,0) lx=0;y<H =0 forallw
[1-17]
Ps: (@) = p(x,0) 'x:O;y>H
and, by the definition in [4.1], these pressures can be split into the semi-sum and semi-
difference pressures:

Pt (@)= ps(@)+ pg (x,0) | _,

Prw (@) = ps (@) - pg (x,0) |, [1-18]

where the semi-sum pressure is independent of x, as shown above. The boundary

conditions at the stapes and round window become:

DPrw (@) = ~Z gy (@)u(x, ) Ix=0;y<H =0 forallw 19)

I dp(x,m)|
—1pw dx lx=0;y>H

ug () =

[I-20]
I dpy(x, a))]

- 10w dx ’ +=0

where the minus sign in [I-19] arises from the antisymmetry of the stapes and round
window velocities, which applies even in the general loading case, due to fluid
incompressibility. Equation [I-20] is the frequency domain version of the x-momentum
equation, [I-2]. It follows from [I-20] that p, is dependent on ug, only and not on Zgw. It
can be solved from this boundary condition and the wave equation [I-12]. Having solved

for pg, the semi-sum pressure then follows from [I-18] and [I-19] and [I-20]:
=—Z gw (@ug (@) +pg (x,0) | _, [1-21]

_ Z pw (@) dpy (x,0)

+ , Q)
1P dx Pa (@) !x:O

Thus, in the case where Zgw is negligible, the semi-sum pressure is simply equal to the

semi-difference pressure at the stapes.
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Appendix II Listings of Matlab Programs for Cochlear Models

Two listing are given here. The first is for a linear cochlear model. The second is for
the nonlinear model for two-tone suppression. Self-suppression can be simulated using the

two-tone suppression model, with the suppressor tone set to zero.

Linear Cochlear Model
IIITIIIIIITITITIIIIIIITIITIIIIIIIIIIT

Matlab Version 4.2

Based on:
Neely & Kim (1986)
Kanis & de Boer (1994)
Zweig (1991)
Talmadge et al. (1998)
Kringlebotn (1988)

B.Lineton 5-3-1999

returns the ear canal pressure and volume velocity
pEC(ireal,ifreq); QEC(ireal,ifreq)
where ireal is the index of the realization

ifreqg is the index of stimulus frequency

also returns (for a single realization):

pED(ifreq) QED{ifreq) : ear drum pressure & vol. vel.

pSt(ifreq) QSt(ifreq) : stapes pressure & vol. vel.
vCP(ix,ifreq) : CP velocity at place & freg
u(ix, ifreq) : fluid x-velocity at place & freq
p(ix,ifreq) : fluid semi-diff pressure at place & freqg

0\00‘90\00\0o\OdePdPo‘PdePo\Oo\Oo‘@dPo‘PdePo‘Po\oo‘P0\00‘90‘00\00\00\0o‘@c\OdePo\O

Zom=msmosozm=====zz=-====== [Jger Defined Inputs R T e
matname="'thesis\test_0l.mat'; % Output mat filename
fregq=[{1500:4:30001]; Stimulus frequencies [Hz]

Place-damping length parameter [m~-1]
Damping Parameter at x=0 (r0/mQ0), [s"-1]
Non-scaling Damping Param. (r0/m0), [s”-1]
Characteristic frequency at stapes [rad/s]
Non-scaling char frequency parameter [rad/s]

kgamma=kom;
gamma0=5035;
gammal=100;
omegaC0=20.8e3*2*pi;
omegaCl=-145.5*2*pi;

%
CAFlag=1; % Coch Amp Flag {1l=K & de B; 2=Talmadge}
CAFactor=1.0; % Coch Amp Gain Factor (0=>Passive)
Nx=1024; % Number of points on CP
L=30e-3; % Length of cochlea [m]
ASt=1.e-6; % Cross sectional area of stapes [m"2]
rho=1000; % Density of Fluid [kg/m”"3]
if CAFlag==1 % ==> KdB-1994 & NK-1986 Coch. Amp.
W=1l.e-3; % Width of cochlea [m]
H=1l.e-3; % Height of cochlea [m]
kom=150.0; % Place-frequency length parameter [m"-1]
delta=0.4; % Damping ratio=2.Zeta=R/sqgrt(S.M)
m0=0.5; % Areal density of BM [kg/m"2]
s0=1.E10; % stiffness/unit area of BM [kg/m"2/s8"2]
mc0=0.06; % c0 parameter [kg/m"2]
deltaSC=0.14; % Stereocilia damping
sigma=0.7; % OHC Resonance shift ratio
e0=4.28e-5; % Active OHC impedance parameter [kg.m"-2]
d0=1404; % Active OHC impedance parameter [kg.s”-1]
elseif CAFlag==2; % ==> T-1998 & Z-1991 Coch Amp.
kom=138.2; % Place-frequency length parameter [m"-1]
%
%
%
%
%

248



rhofast=0.16; % Fast coefficient

phifast=0.24*2*pi; % Fast angle [rad]

rhoslow=0.1416; % Slow coefficient

phislow=1.742%2%pi; % Slow angle [rad]

m0=0.055; % Areal density of BM [kg/m"2]

W=0.02%e-2; % Avg width of BM [m]

H=1.1lE-6/0.02%e-2; % Height of cochlea [m]
end
ScatFlg=1; % Scattering flag {0= no inhomos; 1= Z&ST;

% 2=StubeI; 3=Strubell; 4=Point; 5=Z&SIT}
ScatSize=0.01; % Standard dev as a fraction of nominal
ScatLen=10.e-6; % Length Parameter [m] (meaning depends on
% ScatFlag)

% ScatLen=3.46e-4; % Strube spatial period
% ScatLen=0.014; % Location of Point Reflection Site [m]
% ScatLenBW=4*ScatLen; % For Strubell only: Spatial Bandwidth [m]
Navg=1; % Number of realizations in the ensemble
AEC=0.4%0.01"2; % C.S.A. ear canal [m"2]
GLME=1/1.4; % Lever ratio of ossicular chain
MidEarFlg=0; % Middle Ear flag {0=Transparent, 3=Kringlebotn}
rho0=1.225; % Density of air [kg/m"3]
c0=340; % Speed of sound in air [m/s]
LEC=0.0001; % Length of ear canal [m]
QSrc0=4.8019e-008; % Source Short Circuit Volume Velocity [m”™3/s]
YSrc0=0; % Source Admittance [m"3/s/Pal
% ==================== End of User Inputs =============================
%
% Derived & Preset Quantities
% IIITTITIIIITIIITTIIIIIIITIIT
%
Nfreg=length(freq) ; % Number of frequencies
WH=W*H; csa of cochlea
xs=L/ (Nx-1) ; Length step [m]

All NX points along the cochlea

NX-1 points exluding h/trema

place-freqg length [m]

==> KdB-1994 & NK-1986 Coch Amp.

Char frequency at stapes [rad/s]

Char freq along BM [rad/s]

Damping/unit area at stapes [Ns/m"3]

Mass/unit area along CP [kg/m"2]

Stiffness/unit area along CP [N/m"3]
rl=delta*sqgrt (ml*sl); Damping/unit area along CP [Ns/m"3]

elseif CAFlag==2; ==> T-1998 & Z-1991 Coch Amp.
omegaC=omegaC0*exp (-kom*x2) +omegaCl;
gamma=gammal*exp (-kom*x2) +gammal ;
s0=m0*omegaC (1) "2; Stiffness/unit area at stapes [N/m"3]
rO=mO*gamma (1) ; Damping/unit area at stapes [Ns/m"3]
ml=m0; Mags/unit area along CP [kg/m"2]
sl=ml*omegaC."2; Stiffness/unit area along CP [N/m"3]
rl=gamma*ml; Damping/unit area along CP [Ns/m”"3]
mkappaf=rhofast*sl; Fast feedback stiff’ss along CP [N/m"3]
tauf=phifast./omegal; Fast feedback delay [s]
mkappas=rhoslow*sl; Slow feedback stiff’ss along CP [N/m"3]
taus=phislow./omegaC; Slow feedback delay [s]

end;

QSrc=QSrclO0*ones(size(freq));

YSrc=YSrcO*ones (size(freq));

ZHel=1e-12; % Effective impedance at helicotrema (make v.small)

%

x=[0:Nx-1]*xs;

x2=x(1:Nx-1);

len=1/kom;

if CAFlag==1;
omegaCO=sqrt {s0/m0) ;
omegaC=omegaC0*exp (-kom*x2) ;
rO0=delta*sqgrt (m0*s0) ;
ml=m0;
sl=ml*omegaC."2;

90 AP OP O° 0P O° O O O O gP oP o°

AP 00 O° AP I P o° oC of

% === Two Port Repregentation of Ear Canal and Middle Ear ===
%
GOME=AEC/ (ASt*GLME); % Overall middle ear static pressure gain
if MidEarFlg==0 % Transparent
TEDoSt_ll=ones{(size(freqg)) *1/GOME; $% <=== Stapes to Ear Drum

Transmission Coeff.
TEDoSt_l2=zeros(size(freq));
TEDoSt_2l=zeros(size(freq));
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TEDoSt_22=ones (size(freq))

elseif MidEarFlg==3
% NB:
milli=1l.e-3;

*GOME;
% Kringlebotn

inputs to t_kring are in CGS units,
micro=1.e-6;

La=1.00*milli; Ca=3.90*micro; Ra=60;
Ct=0.40*micro;

Ld=7.50*milli;

Ls=66.0*milli; Cs=0.30*micro; Rs=20;
Cr=1.30*micro; Rr=120;
Cm=0.38*micro; Rm=120;

Lo=22.0*milli; Ro=20;
Ci=0.30*micro; Ri=6000;

Le=46.0*milli; Cc=0.56*micro; Rc=330;

outputs are in SI units

MidEarParam=[ASt,AEC,GLME,La,Ca,Ra,Ct,Ld,Ls,Cs,Rs,Cr,Rr,Cm,Rm,Lo,Ro,Ci,Ri

,Lc,Cc,Rc];

[TEDoSt_11, TEDoSt_12,TEDoSt_21,TEDoSt_22]=t_kring(MidEarParam, freq) ;

end;

% === Rar Canal
rhocO=rho0*c0;
kL=2*pi*freqg*LEC/c0;
sinkL=sin (kL) ;
coskL=cos (kL) ;
tankL=tan (kL) ;

% === Transmission Matrices

TECoED_ll=cosklL;

%
TECoED_12=1i*sinkL*rhoc0/AEC; %
%

TECOED_21=i*ginkL,*AEC/rhoc0;

TECoED_22=cosklL;

TECoSt_11=TECoED_11.
TECoSt_12=TECoED_11.
TECoSt_21=TECoED_21.
TECoSt_22=TECoED_21.
TSrcSt_11=TECoED_11.
TSrcSt_12=TECoED_11.
TSrcSt_21=TECoOED_21.
TSrcSt_22=TECoED_21.

*TEDoSt_11+TECOED_12

*TEDoSt_12+TECoED_12.
*TEDoSt_11+TECOED_22.
.*TEDoSt_22;

*TEDoSt_12+TECoOED_22

*TEDoSt_11+TECOED_12.
*TEDoSt_12+TECOED_12.
*TEDOSt_11+TECOED_22.
*TEDOSt_12+TECOED_22.

Ear Drum
to
Ear Canal

. *TEDoSt_21;

*TEDoSt_22;
*TEDoSt_21;

*TEDoSt_21;
*TEDoSt_22;
*TEDoSt_21;
*TEDoSt_22;

% Refer the Acoustic source to the stapes.

QStSrc=QSrc./ (TSrcSt_12.*YSrc+TSrcSt_22);
YStSrce=(TSrcSt_11.*YSrc+TSrcSt_21) ./ (TSrcSt_12.*YSrc+TSrcSt_22);

P o0 0P P

pECens=zeros (Navg, Nfreq) ;
$reset seed

randn('seed',0);
for iavg=1:Navg

if ScatFlg==1]|ScatFlg==

inhomo=randn(size (x2));

Wn=2*xs/ScatlLen;
if Wn<l1.0

[BB,AA]l=butter (1,Wn);

% LP cut-off spatial freq /(1/2 sampling rate)

inhomo=£filtfilt (BB, AA, inhomo) ;

end

Cochlear Response Calculation
IITTITITIITITITITITIITIITIITITIIINIILIT

QECens=zeros (Navg, Nfreq) ;

elseif ScatFlg==2 % Strube periodic corrugations

Kappa=1/ScatlLen;

inhomo=cos (2*pi*Kappa*x2) ;

elseif ScatFlg==3 % Strube narrow-band corrugations

inhomo=randn(size (x2));

Kappa=1/ScatlLen;

KappaBW=1/ScatLenBW;
Wn=[Kappa-KappaBW/2, Kappa+KappaBW/2] *2*xs;

if Wn<l1l.0

[BB,AA] =butter(1,Wn) ;

inhomo=filtfilt (BB, AA, inhomo) ;

end

elseif ScatFlg==4 % Point reflection site
inhomo=0.5* (1+sign (x2-ScatLen)) . *hamming (length(x2)).';

else % smooth CP

inhomo=zeros(size (x2));
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% Z & S broad band random scattering

% 1lst order butterworth low pass filter

%1lst order butterworth bandpass filter



end
% loop over freguencies

p_2=zeros (Nx,Nfreq); vCP=zeros(Nx,Nfreq); u=zeros(Nx,Nfreq);
p=zeros(Nx,1l); rhs=zeros(Nx,1l); rnew=zeros(Nx,l); a=zeros(Nx,1l);
clc

stepop=2;

t0=clock;

for ifr=1:Nfreq;
pcent=100*ifr/Nfreq;
if (rem(ifr, stepop)==0) % o/p only every 2 percent (for pcentop=2)
strl= int2str(pcent);
str2= num2str(etime{clock,t0)/60);
str2 = str2(l:min(5,length(str2)));
home,disp (...
['Calculation is ',strl,' % complete after ', str2,' mins'])
end
omega=2*pi*freqg(ifr);
iomega=i*omega;
ZPass=sl/iomega+rl+iomega*ml; % Passive CP impedance
if CAFlag==1; % Coch Amp CP impedance
beta=omega./omegaC;
Gxom=d0* (1+i*beta) ./ (deltaSC+i* (beta-sigma”2./beta));
ZCA=-e0*omegaC. *Gxom;
elseif CAFlag==2;
ZCA= (mkappaf.*exp(-iomega*tauf)
+mkappas. *exp (-iomega*taus) ) ./iocmega;
end
if ScatFlg~= % Scattering impedance based on damping
ZScat=ScatSize*inhomo.*rl;
else % Scattering impedance based on stiffness
ZScat=ScatSize*inhomo.*sl/iomega;
end
ZCP=ZPass+ZCA*CAFactor+ZScat;
ZCP=[ZCP, ZHell];
b=2*iomega*rho*xs”2./ (H*2CP) ;
All=-1-b(l)-2*iomega*rho*xs*YStSrc(ifr) /WH;
Al2=1;
rhs (1) =-Q0StSrc(ifr) *iomega*rho*xs/WH;
rnew(l)=rhs(1)/A11;
a(l)=-212/A11;
for ix=2:Nx-1;
a(ix)=-1/(-2-b{ix)+a(ix-1));
rnew{ix)=(rnew(ix-1)-rhs(ix)) *a(ix) ;
end;
a(Nx)=-1/(-1-b{(Nx)+a(Nx-1));
rnew (Nx) =a (Nx) * (rnew (Nx-1) -rhs (Nx) ) ;
p (Nx) =rnew (Nx) ;
for ix=Nx-1:-1:1;
p(ix)=rnew(ix)+a(ix) *p(ix+1);
end;
VCP(:,ifr)=(-2*p)./Z2CP."';
u(2:Nx,ifr)=diff (p)/(-iomega*rho*xs) ;
u(l,ifr)=u(2,ifr)-vCP(1l,ifr) *xs/H;
p_2(:,ifr)=p;
end; % end loop over freq
clear p;p=p_2;clear p_2;

o

fluid pressure

CP velocity
fluid x-velocity

0P oe

%

% Ear Canal Pressure Calculation
% ITIITIIIITIIITIIITIIITIIIIIIIIIITL
%

pSt=2*p (1, :);

QSt=u(l, :)*WH;
pPED=TEDoSt_11.*pSt+TEDoSt_12.*QSt;
QED=TEDOSt_21.*pSt+TEDoSt_22.*QSt;
pPEC=TECOED_11.*pED+TECOED_12.*QED;
QEC=TECOED_21.*pED+TEC0OED_22.*QED;
pECens (iavyg, : ) =pEC;
QECens (iavyg, : ) =QEC;

end % end ensemble avg

command=[ 'save ',matname]; eval (command) ;
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% IITIITIIIIIIITITIIITIIITITITITIIIIIIITIITIITITITIITIITIITITIIITITIIITIITIIIIIIIIIIITIL

°

% IITIIITIIIIIIIIITIITIIITITTITITIIITIIITIITITITIITIIIIIIITIITIIITITIIIIIITIIIIIITIITI

Q

function

{TEDoSt_11,TEDoSt_12, TEDoSt_21,TEDoSt_22]1=t_kring(MidEarParam, freq);
o3

Kringlebotn’s Middle Ear Model

Calculate 2-port transmission matrix, TEDoSt, between stapes

and ear drum such that:

pED = [TEDoSt] pSt
QED QSt;

AP 00 0P 0P o oP o

s=—oo=-=sos=sozzz==zzoooz==zso=zz==== pParameters (CGS unlts) m—=

o

ASt =MidEarParam{ 1);
AEC =MidEarParam( 2);
GLME =MidEarParam( 3);
La =MidEarParam{ 4);
Ca =MidEarParam( 5);
Ra =MidEarParam( 6);
Ct =MidEarParam( 7);
Ld =MidEarParam( 8);
Ls =MidEarParam{ 9);
Cs =MidEarParam(10) ;
Rs =MidEarParam(l1ll) ;
Cr =MidEarParam(1l2) ;
Rr =MidEarParam(13);
Cm =MidEarParam(14) ;
Rm =MidEarParam(1l5) ;
Lo =MidEarParam(l1l6);
Ro =MidEarParam(17) ;
Ci =MidEarParam{18) ;
Ri =MidEarParam(1l9) ;
Lc =MidEarParam(20) ;
Cc =MidEarParam(21) ;
Rc =MidEarParam(22) ;
Y================================ Impedances ===
GOME=AEC/ (ASt*GLME); % Overall middle ear static pressure gain

omega=2*pi*freq;
iomega=1i*omega;

Zla=Ra+iomega*La+l./ {iomega*Ca) ;

Z1lb= 1./ (iomega*Ct) ;

Zlc= iomega*Ld ;
zld=Rs+iomega*Ls+1l./ (iomega*Cs) ;

Zle=Rr +1./ (iomega*Cr) ;

72 =Rm +1./ (iomega*Cm) ;

73 =Ro+iomega*Lo ;

74 =Ri +1./ (iomega*Ci);

Z5a= iomega*Lc+l./ (iomega*Cc) ;

Z5b=Rc ;
Zl=Zla.*zlb./(2la+Z1lb)+Zlc+zld.*2le./(Z21d+21le) ;
Z5=7Z5a+725b;

$===========z==z======== Middle Ear Transmission matrix ===

Z_eff0=21+722.*(23+24) ./ (Z22+7Z3+24) ;

7 effl=74.*Z5a./(Z4+Z5a) ;
7_eff2=722.*(23+7Z_effl) ./ (22+23+Z_effl);
72_eff3=721+7_eff2;

T11=1./((1-21./Z_eff0) .*24./(23+24));
T21=1./(Z_eff0.*(1-21./Z_eff0) .*Z24./(23+24));
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T22=725a.*(Z23+Z_effl) ./ (Z_effl.*z_eff2);
T12=T22.*Z_eff3;

TEDoSt_11= T11/GOME;
TEDoSt_12= T12*GOME;
TEDoSt_21= T21/GOME;
TEDoSt_22= T22*GOME;

% convert to SI units

TEDoSt_12= TEDoSt_12*1.e5;
TEDoSt_21= TEDoSt_21/1.e5;

return
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Two-tone Suppression Cochlear Model
ITIIITITIITIIIITITIILITIIIITIIIIIITIIIIIIIIIIIITIITITITIT

Matlab Version 4.2

Based on:
Neely & Kim (1986)
Kanis & de Boer (1993, 1994, 1996)
Zwelig (1991)
Talmadge et al. (1998)
Kringlebotn (1988)

B.Lineton 19-7-1999

returns the ear canal pressure and volume velocity for a single
realization

PEC(ifreqgl, itone); QEC(ifreql,itone)

where ifreqgl is the index of probe frequency
itone is the index of the tone number:
1l=> probe tone
2=> guppressor tone

—z=z==================== [Jser Defined Inputs ________________________

=== KdB-1994 & NK-1986 Coch. Amp. ===

00 0P 0P dP P P P AP I AP AP P I AP P P I AP AP I OP I O O d° AP P oF

matroot='thesis\testb_03"'; mat filname root

IDstart=0; file ID

Nfregl=3; number of frequencies in sweep

OctL=0; lower freq in octaves

OctH=1; upper freqg in octaves

SPLnom=[45,30]; desired SPL probe & suppressor in ear canal
Nx=256%4; Number of points along the CP

L=30e-3; Length of cochlea [m]

ASt=1.e-6; Cross sectional area of stapes [m"2]
rho=1000; Density of Fluid [kg/m"3]

W=1l.e-3; Width of cochlea [m]

H=1l.e-3; Height of cochlea [m]

kom=150.0; Place-frequency length parameter [m"-1]
delta=0.4; Damping ratio=2.Zeta=R/sqgrt(S.M)
m0=0.5; Areal density of BM [kg/m"2]

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
s0=1.E10; % Stiffness/unit area of BM [kg/m"2/s72]
mc0=0.06; % c¢0 parameter [kg/m”"2]
deltasSC=0.14; % Stereocilia damping
sigma=0.7; % Shift of OHC resonance wrt. BM resonance.
e0=4.28e-5; % Active OHC impedance parameter [kg.m™-2]
d0=1404; % Active OHC impedance parameter [kg.s”-1]
ScatFlg=1; % Scattering flag {0= no inhomos; 1= ZSTI;
% % 2=Stubel; 3=Strubell; 4=Point; 5=Z&SII}
ScatSize=0.01; % Standard dev as a fraction of nominal
ScatLen=10.e-6; % Length Parameter [m]
realiz=22; % Realization number {(for cf linear model)
AEC=0.4%0.01"2; % C.S.A. ear canal [m"2]
GLME=1/1.4; % Lever ratio of ossicular chain
MidEarFlg=3; % Middle ear flag (0=Perfect transformer,
% 3=Kringlebotn)
% Density of air [kg/m"3]
% Speed of sound in air [m/s]
% Length of ear canal [m]

rho0=1.225;
c0=340;
LEC=0.0001;

YSrc0=0; % Source Admittance [m"3/s/Pal

fregl=1500*2.~ (OctL+[0:Nfreqgl-11* (OctH-OctL)/ (Nfregl-1)); % Probe
% fregs

f2o0fl=1.1; % suppressor:probe freg ratio £2/f1

f2mfl=round((1l-f20fl) *freql); % £2-f1;

nnl=round(1/(1-f20f1)): % round frequencies to nearest 1 Hz

nn2=nnl-1;
fregl=nnl+*f2mfl;
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freg2=nn2*f2mfl;

tO=clock;

for ifreql=1:Nfreql;
freg=[fregl (ifreql), freq2(ifreql)]; % fregs of the two tones
Nfreg=length(freq); % =2 (two Cone suppression)
strl= num2str(1l00*ifreqgl/Nfreqgl) ;
str2= num2str(etime(clock,t0)/60); str2= str2(l:min(5,length(str2)));
str3= num2str(freqg(l));
disp(' ');disp(' ');disp(' ');
disp('ITIIIIIITIIIIIITIIIIIITIITIIIIIIITITIIIIIIITITIIIIITIITIIIIIIIIIIIT") ;
Aisp('IIIIIIITIIIIIIIIIIIIIIIIIIIIIIIITIIIIITIIIIIIIIIITIIIIIIITIIIIIL ) ;
disp(...

['Freqg= ',str3,' Hz; ',strl,' % complete after ',6str2,' mins'])

Derived & Preset Quantities
TIIITITIITIIIIIITIIIIIITIIIIL

P @ 0P oe

pRef=20.e-6;

Nfreg=length(freq); % Number of frequencies

WH=W*H; % csa of cochlea

xs=L/ (Nx-1) ; % Length step [m]

x=[0:Nx-17."'*xs; % All NX points along the cochlea
x2=x(1:Nx-1) ; % NX-1 points along CP (excl h/trema)
len=1/kom; % place-freq length [m]

omegaCO=sqgrt (s0/m0) ; % Char frequency at stapes [rad/s]
omegaC=omegaC0*exp (-kom*x2) ; % Char freq along BM [rad/s]
rO=delta*sqgrt(m0*s0) ; % Damping/unit area at stapes [Ns/m"3]
ml=m0; % Mass/unit area along CP [kg/m"2]
sl=ml*omegaC."2; % Stiffness/unit area along CP [N/m"3]
rl=delta*sgrt{(ml*sl) ; % Damping/unit area along CP [Ns/m"3]
YSrc=YSrcO*ones(size(freq)); % Source acoustic imp. at each freg
ZEDnom=3.30e07; % Nominal eardrum acoustic impedance
Pnom=10."((SPLnom) /20.) *pRef; % Nominal ear drum pressure
QSrc=Pnom. /ZEDnom; % Source short circuit volume velocity
ZHel=1le-12; % Effective impedance at helicotrema (make v.small)

%

% === Two Port Representation of Ear Canal and Middle Ear ===

%

GOME=AEC/ (ASt*GLME); % Overall middle ear static pressure gain

if MidEarFlg== % Transparent

TEDoSt_ll=ones(size(freqg)) *1/GOME; $% <=== Stapes to Ear Drum
TEDoSt_l2=zeros(size(freq));
TEDoSt_21l=zeros(size(freq));
TEDoSt_22=ones(size(freq)) *GOME;
elseif MidEarFlg== % Kringlebotn
% NB: in CGS units
milli=l.e-3; micro=l.e-6;
La=1.00*milli; Ca=3.90*micro; Ra=60;
Ct=0.40*micro;
Ld=7.50*milli;

Ls=66.0*milli; Cs=0.30*micro; Rs=20;
Cr=1.30*micro; Rr=120;
Cm=0.38*micro; Rm=120;

Lo=22.0*milli; Ro=20;
Ci=0.30*micro; Ri=6000;

Lc=46.0*milli; Cc=0.56*micro; Rc=330;

MidEarParam=[ASt,AEC,GLME,La,Ca,Ra,Ct,Ld,Ls,Cs,Rs,Cr,Rr,Cm,Rm,Lo,Ro,Ci,R1
,Lc,Cc,Rel;
[TEDoSt_11,TEDoSt_12,TEDoSt_21,TEDoSt_22]=t_kring(MidEarParam, freq) ;
end;
=== Ear Canal ===
rhocO=rho0*c{;
kL=2*pi*freq*LEC/c0;
sinkL=sin (kL) ;
coskL=cos (kL) ;
tankL=tan (kL) ;
% === Transmission Matrices ===
TECoED_1ll=coskL; % <=== Ear Drum to Ear Canal



TECOED_12=i*sinkL*rhoc0/AEC;
TECOED_21=i*ginkL*AEC/rhoc0;

TECOED_22=coskL;

TECoSt_11=TECoED_11.*TEDoSt_11+TECOED_12.*TEDoSt_21; % <=== Stapes
TECoSt_12=TECoED_11.*TEDoSt_12+TECOED_12.*TEDoSt_22; % to
TECoSt_21=TECoED_21.*TEDoSt_11+TECOED_22.*TEDoSt_21; % Ear Canal
TECoSt_22=TECOED_21.*TEDoSt_12+TECoED_22.*TEDoSt_22;
TSrcSt_11=TECoED_11.*TEDoSt_11+TECOED_12.*TEDoSt_21; % <=== Stapes
TSrcSt_12=TECoED_11.*TEDoSt_12+TECOED_12.*TEDoSt_22; % to
TSrcSt_21=TECoED_21.*TEDoSt_11+TECOED_22.*TEDoSt_21; % Source
TSrcSt_22=TECoED_21.*TEDoSt_12+TECOED_22.*TEDoSt_22;

% Refer Source Q and Y to the stapes.

QStSrc=QSrc./ (TSrcSt_12.*YSrc+TSrcSt_22) ; % Q
YStSre=(TSxcSt_11.*¥YSrc+TSrcSt_21) ./ (TSrcSt_12.*YSrc+TSrcSt_22); % Y

% Cochlear Response Calculation
% ITIIIIIITIIITIIITIIIIITIIIIIIIINT

randn{'seed',0); %reset seed
if ScatFlg==1|ScatFlg==5
for iavg=l:irealiz
inhomo=randn(size(x));
end;
inhomo=inhomo {1:Nx-1) ;
Wn=2*xs/ScatLen; % LP cut-off spatial freq /(1/2 sampling rate)

% Z & S broad band random scattering

if Wn<1.0
[BB,AA]l=butter(l,Wn); % lst order butterworth low pass filter
inhomo=£filtfilt (BB, AA, inhomo) ;

end

elseif ScatFlg==2 % Strube periodic corrugations
Kappa=1/ScatLen;
inhomo=cos (2*pi*Kappa*x2) ;
elseif ScatFlg==3 % Strube narrow-band corrugations
for iavg=l:irealiz
inhomo=randn (size(x));
end;
inhomo=inhomo (1:Nx-1) ;
Kappa=1/ScatlLen;
KappaBW=1/ScatLenBW;
Wn=[Kappa-KappaBW/2, Kappa+KappaBW/2] *2*xs;
if Wn<l.0
[BB,AA]l=butter(1,wWn); %lst order butterworth bandpass filter
inhomo=filtfilt (BB, AA, inhomo) ;
end
elseif ScatFlg==4 % Point reflection site
inhomo=0.5* (1l+sign(x2-ScatlLen)) .*hamming (length(x2))."';
else % smooth CP
inhomo=zeros (size (x2)) ;
end

Single Tone Cochlear Response Calculation
TIIIIITITIIIIIITIITIIIIIITIIIIIIIIITITIIIIIL
p=zeros (Nx,Nfreq) ;

vCP_tmp=zeros (Nx,Nfreq) ;

ZCP_QL_tmp=zeros (Nx,Nfreq) ;

ZOHC_QL_tmp=zeros (Nx,Nfreq) ;

u=zeros (Nx,Nfreq) ;

p_ifr=zeros(Nx,1);

rhs=zeros (Nx, 1) ;
rnew=zeros (Nx, 1) ;
a=zeros (Nx,1);
Ns=24;
itr_max=30;

P P o

% time samples samples per period of stimulus tone
% max iterations before time-out
tolabs=0.05; % % convergence tolerance for magnitude
tolang=0.05*pi; % % convergence tolerance for phase
strl= num2str(tolabs*100);

str2= numZ2str(tolang*180/pi);

gncon= zeros{itr_max,Nfreg+l);

$avgabs=zeros (itr_max,Nfreg+l) ;

$mxabs= zeros(itr_max,Nfreqg+l);

256



oP

$imxabs=zeros (itr_max,Nfreg+l) ;
$mxang= zeros(itr_max,Nfreg+l);
$imxang=zeros (itr_max,Nfreq+l) ;
disp('=0=0=0=0 SINGLE ISOLATED TONES 0=0=0=0=")

disp(' ")

disp(' convergence tolerances: ')

disp([' magnitude=', strl,'$%, phase=',str2,' deg'])
disp(' ')

% loop over the two stimulus tone frequencies
for ifr=1:Nfreq;

str0= int2str(ifr);

omega=2*pi*freq(ifr);

iomega=i*omega;

Tp=1/freq(ifr); % period [s]

time=Tp*(-Ns/2:Ngs/2-1) /Ns; % time variable

Mexp=diag({exp(-iomega*time))*2/Ns; % matrix to extract Fourier coeff.

ZPass=sl/iomega+rl+iomega*ml; % passive

if ScatFlg~=5 % Scattering impedance based on damping
ZScat=ScatSize*inhomo. *rl;

else % Scattering impedance based on stiffness
ZScat=ScatSize*inhomo.*sl/iomega;

end

ZCPl=ZPass+ZScat;
beta=omega./omegal;
Gxom=d0* (1+i*beta) ./ (deltaSC+i* (beta-sigma”2./beta)):;
Gxom=[Gxom; 0] ;
ZOHC_MET=e0* [omegaC; 0] .*Gxom; %the Z associated with the mech=>elec
transduction (ie. linear part, called ZOHC by K & dB)
phiZ=angle (ZOHC_MET) ;
ZOHC_QL=Z0HC_MET; % initialise quasilinear imp. to linear impedance
ZCP1l=[ZCP1l;ZHel];
ZCP_QL=ZCP1-ZOHC_QL;
QStSrc_ifr=QStSrc(ifr);
YStSrc_ifr=¥YStSrc(ifr);
itr=0;
loop=1; % setloop = true
vCP=zeros (Nx,1);
vCP_mid=vCP;
vCP_old=vCP_mid;
disp(...
['" freqg : itn : max abs err @ worst elmnt : max ang err @ worst elmnt'l)
while (loop) % start iterative loop
itr=itr+l;
vCP_old=vCP_mid;
vCP_mid=vCP;
b=2*iomega*rho*xs”2./ (H*ZCP_QL) ;
All=-1-b(l)-2*iomega*rho*xs*YStSrc_ifr/WH;
Al2=1;
rhs (1) =-QStSrc_ifr*iomega*rho*xs/WH;
rnew(l)=rhs(1)/A1l1;
a(l)=-A12/A11;
for ix=2:Nx-1;
a(ix)=-1/(-2-b{ix)+a(ix-1));
rnew(ix)=(rnew(ix-1)-rhs(ix)) *a(ix):
end;
a(Nx)=-1/(-1-b(Nx)+a(Nx-1));
rnew (Nx) =a (Nx) * (rnew (Nx-1) -rhs (Nx) ) ;
p_ifr(Nx)=rnew(Nx) ;
for ix=Nx-1:-1:1;

p_ifr(ix)=rnew(ix)+a(ix)*p_ifr(ix+1); % fluid pressure
end;
vCP_new=(-2*p_1ifr) ./ZCP_QL; % CP velocity

vCP= (vCP_new+0.6065*vCP_mid+0.3679*vCP_o0ld)/1.9744; % lst order
% lag relaxtion (seems to work)

phiv=angle (vCP) ;

% one-sided Fourier series expansion

% x runs down a column; time runs along a row.

phiIxt=(phiV+phiZ) *ones (size(time))+ones(size(x)) *omega*time;

A_pMET=abs (vCP.*Gxom) *ones (size(time) ) ;

Ixt=A_pPMET. *cos(phiIxt) ;
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p_OHC_NLt=e0* ([omegaC; 0] *ones (size(time))) .*tanh(Ixt);

% one-sided Fourier series coeff.

% sum over time to extract lst order component

% NB time is along rows whilst "sum" sums over columns, so

% therefore transpose

p_OHC=sum(Mexp*p_OHC_NLt.').';

ZOHC_QL=(p_OHC. /vCP) ;

ZCP_QL=ZCP1-ZOHC_QL;

delta_abs=abs ( (vCP-vCP_mid) ./vCP);

delta_ang=abs (angle (vCP_mid./vCP)) ;

converged=all (delta_abs<tolabs) & all{delta_ang<tolang) & (itr>=3);

% some convergence indicators:

ncon(itr,ifr)=gsum(delta_abs<tolabsg)/Nx; % proportion of converged
% elements

avgabs (itr,ifr)=sqgrt(sum(delta_abs.*delta_abs)/Nx); % average of
% deltas over all elements

[mxabs (itr,ifr), imxabs(itr,ifr) ]=max(delta_abs); % max error, and
% its location

[mxang (itr,ifr),imxang(itr,ifr) ]=max(delta_ang); % max error, and
% its location

strl= sprintf('%4i',ifr);

str2= sprintf('%3i',itr);

str3= sprintf('%10.3f' , mxabs(itr,ifr)*100);
strd= sprintf('%11i', imxabs(itr,ifr));

strS5= sprintf('%$6.0f' , mxang{itr,ifr)*180/pi);
str6= sprintf('%4i',imxang(itr,ifr));

disp
({* ",stxrl," : ',str2,' : ',str3,'% ',str4,' : ',str5,' deg ',str6])
if converged
loop=0;
disp(' ")
disp(['converged after ',num2str{itr),' iterations'])
end
if ~converged&itr>=itr_max
disp(* ')

disp(' *** WARNING *** ')
disp{' failed to converge after max iterations ')
loop=0
end
end; % end of iterative loop
itrmx (ifr)=itr;
ZCP_QL_tmp(:,ifr)=7ZCP_QL;
ZOHC_QL_tmp(:, ifr)=Z0HC_QL;
vCP_tmp(:,ifr)=vCP; % CP velocity
U(2:Nx,ifr)=diff(p_ifr)/(-iomega*rho*xs) ;
u(l,ifr)y=u(2,ifr)-vCP(1l) *xs/H;
p(:,ifr)=p_ifr;
end; % end loop over both stimulus tones
clear vCP;vCP=vCP_tmp;clear vCP_tmp;
clear ZCP_QL;ZCP_QL=ZCP_QL_tmp;clear ZCP_QL_tmp;
clear ZOHC_QI,; ZOHC_QL=ZOHC_QIL_tmp;clear ZOHC_QI,_ tmp;
% store isolated primaries
u_pri=u;
vCP_pri=vCP;
p_pri=p;
ZCP_QL_pri=ZCP_QL;
ZOHC_QL_pri=Z0HC_QL;
3

0

% Two Tone Cochlear Response Calculation

% IITTITITIIITITITITITITITITITITITIIIITIITIIIIIT

%

Ns0=24; % min samples per stimulus tone period
tolabs=0.01; % convergence tolerance for magnitude
tolang=2*pi/180; % convergence tolerance for phase (in radians)

strl= num2str(tolabs*100);
str2= num2str(tolang*180/pi);

disp(' ')

disp('=0=0=0=0 TWO TONE SUPPRESSION 0=0=0=0="')
disp(' ')

disp(' convergence tolerances: ')
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[ 1

disp([' magnitude=',6 strl,'$%, phase=',str2,' deg'])
disp(' ")

itr _max=30;

omega=2*pi*freq;

Tp=1./freq;

TpO0=1/gcd(round(freqg(l)),round(freqg(2)})); % lowest common period [s]
Ng=NsO0*Tp0/Tp(2) ; % required number of samples
time=Tp0O* (-Ns/2:Ns/2-1) /Ns; % time variable

% initialise matrices: expand some vectors to two dimensions:
% =>ZCP1l, ZOHC_MET, ZCP_QL,phiZ,vCP,vCP_new,vCP_mid,vCP_old
omega=2*pi*freqg; % [1 x 2]
iomega=i*omega;
ZPass=sl*(1./iomega)+rl*ones(size(omega))+ml*ones{size(x2)) *iomega;

% size [Nx-1,2]

if ScatFlg~= % Scattering impedance independent of freg
ZScat=ScatSize* (inhomo. *rl) *ones (size(omega)) ;

else % Scattering impedance dependent on freq
ZScat=ScatSize* (inhomo.*sl)* (1. /iomega) ;

end

ZCPl=ZPass+ZScat;

beta=(1./omegaC) *omega; % size [Nx-1,2]

Gxom=d0* (1+i*beta) ./ (deltaSC+i* (beta-sigma”2./beta));
Gxom=[Gxom; [0,0]];

omegaC_2=[omegaC;0]; % size [Nx,1]

% the Z associated with the mech=>elec transduction (ie. linear part,
% called ZOHC by K & dB)

ZOHC_MET=e0* (omegaC_2*ones (size(omega))).*Gxom; % size [Nx,2]
phiZ=angle (ZOHC_MET) ; % size [Nx,2]

% initialise quasilinear impedance to value obtained above for
% isolated primaries

ZOHC_QL=ZOHC_QL_pri;

ZCP1={2ZCP1; [ZHel,6 ZHel]l]; % size [Nx,2]
ZCP_QL=ZCP1-ZOHC_QL;

vCP=vCP_pri; % initialise to isolated primary values
itr=0; % count iterations

loop=1;

vCP_mid=vCP_pri;

vCP_old=vCP_pri;

disp(*' ")

disp(...

iter : freq : max abs err @ worst elmnt : max ang err @ worst elmnt'])
while (loop)
itr=itr+1;
vCP_o0ld=vCP_mid;
vCP_mid=vCP;
b=(ones(size(x))*iomega) .*(2*rho*xs”™2./(H*ZCP_QL)); % size [Nx,2]
for ifr=1:Nfreq % loop over two stimulus tone frequencies
All=-1-b(l,ifr)-2*iomega(ifr) *rho*xs*YStSrc(ifr) /WH;
Al2=1;
rhs(1l)=-QStSrc(ifr) *iomega (ifr) *rho*xs/WH;
rnew(l)=rhs(1l)/All;
a(l)=-al12/A11;
for ix=2:Nx-1;
a(ix)=-1/(-2-b(ix,ifr)+a(ix-1)};
rnew(ix)=(rnew(ix-1)-rhs (ix)) *a(ix) ;

end;
a(Nx)=-1/(-1-b(Nx,ifr)+a(Nx-1));
rnew (Nx) =a (Nx) * (rnew (Nx-1) -rhs (Nx) ) ;
p_ifr(Nx)=rnew(Nx) ;
for ix=Nx-1:-1:1:

p_ifr(ix)=rnew(ix)+a(ix)*p_ifr(ix+1); % fluid pressure
end;
p(:,ifr)=p_1ifr;
end
vCP_new=(-2*p) ./ZCP_QL; % CP velocity
vCP=(vCP_new+0.6065*vCP_mid+0.3679*vCP_o0l1d)/1.9744; % 1lst order lag
% relaxation

phiv=angle (vCP);
% one-sided Fourier series expansion
% x runs down a column; time runs along a row.
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Ixt=zeros (Nx,Ns);
for ifr=1:Nfreq % loop over two stimulus tone frequencies
A_pPMET=abs (vCP(:,1fr) .*Gxom(:,ifr));
phiIxt=(phiV(:,ifr)+phiZ(:,1ifr)) *ones(size(time))...
+ones (size(x) ) *omega (ifr) *time;
Ixt_ifr=(A_pMET*ones(size(time))).*cos{philxt);
Ixt=IxXt+Ixt_ifr;
end
p_OHC_NLt=e0* (omegaC_2*ones (size(time))) .*tanh (Ixt) ;
% one-sided Fourier series coeff.
% sum over time to extract lst order component
NB time is along rows whilst "sum" sums over columns, so therefore
Cranspose
or ifr=1:Nfreq % loop over two stimulus tone frequencies
Method 1: create [Ns,Ns] diagonal matrix M
then matrix mult: [Ns,Ns]*[Ns,Nx]=[Ns,Nx]
then sum & transpose
==> [Ns,Ns] matrix for extracting Fourier coeff.
Mexp=diag (exp(-iomega{ifr)*time)) *2/Ns;
P_OHC(:,ifr)=sum(Mexp*p_OHC_NLt.').';
Method 2: create [Ns,Nx] mx M (repeated cols)
then array mult: [Ns,Nx].*[Ns,Nx]=[Ns,Nx} as before
==> [Ns,Nx] matrix for extracting Fourier coeff.
NB method 2: much faster
Mexp=(exp(-iomega(ifr)*time.')*2/Ns) *ones(size{x.'));
p_OHC(:,ifr)=sum(Mexp.*p OHC_NLt.')."';
end;
ZOHC_QL=(p_OHC. /vCP) ;
ZCP_QL=ZCP1-ZOHC_QL;
for ifr=1:Nfreqg % loop over two stimulus tone fregquencies
delta_abs=abs ((vCP(:,ifr)~-vCP_mid(:,1ifr))./vCP(:,ifr));
delta_ang=abs(angle(vCP_mid(:,ifr)./vCP(:,ifxr)));
% some convergence indicators:
conv{ifr)=all (delta_abs<tolabs) & all{delta_ang<tolang) ;
% some convergence indicators:
ncon{itr,2+ifr)=sum({delta_abs<tolabs)/Nx; % proportion of
% converged elements
avgabs (itr,2+ifr)=sqgrt(sum({delta_abs.*delta_abs)/Nx); % average of
% deltas over all elements

h @ of

0P 00 IP I 0P P oP P J° P

[mxabs (itr,2+1ifr),imxabs (itr,2+ifr) l=max(delta_abs); % max overall
% error and its freq
[mxang (itr,2+ifr), imxang(itr,2+ifr) l=max(delta_ang); % max error,

% and its location
strl= sprintf('%3i',itr);
str2= sprintf('%$3i',ifr); ;
str3= sprintf('%9.3f', mxabs(itr,2+ifr)*100);
strd= sprintf('%11li', imxabs(itr,2+ifr));
strS5= sprintf('%6.0f', mxang(itr,2+ifr)*180/pi);
stré6= sprintf('%4i', imxang(itr,2+ifr));
disp([' ', strl,' . ',str2,! : ',8tr3,'% ',strd, ...
' ',str5, ' deg ', str6l)
end
converged=conv(l)& conv(2)&(itr>=3);
if converged
loop=0;
disp(' ")
disp(['converged after ',num2str{itr),' iterations'])
end
if ~converged&itr>=itr_max
disp(' ')
disp (' *** WARNING *** ')
disp(' failed to converge after max iterations ')
loop=0
end

P

end; % end of iterative loop
clear A_pMET philIxt Ixt;

u(2:Nx, :)=diff(p).*(ones{Nx-1,1)*(1l./(-iomega*rho*xs)})));

u(l, :)=u(2,:)-vCP(1l, :)*xs/H;

External Responses Calculation
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% TIIIITTIITTITITIIIITIITIITTIIIIIIINILIT
pSt=2*p (1, :);
QSt=u(l, :) *WH;
uSt=QSt/ASt;
ZSt=pSt/QSt;
pPED=TEDoSt_11.*pSt+TEDoSt_12.*QSt;
QED=TEDoSt_21.*pSt+TEDoSt_22.*QSt;
PEC_ifqg=TECOED_11.*pED+TECOED_12.*QED;
QEC_ifqg=TECOED_21.*pED+TECOED_22.*QED;
PEC(ifreql, :)=pEC_ifqg; % pEC(iprobe freq, itone)
QEC (ifreql, :)=QEC_ifqg;
UED=QED/AEC;
ZED=pED. /QED;
clear vCP_new vCP_mid vCP_old p_OHC_NLt Mexp Ixt_ifr
ID=IDstart+ifreqgl-1;
fname=[matroot, int2str{floor(ID/100)),int2str(floor(rem(ID,100)/10))...
,int2str(rem(rem(ID,100),10)), ".mat'];
varlist=' freq QSrc QEC pEC QED pED QSt pSt uSt ¥YSrc TECoSt_11...
TECoSt_12 TECoSt_21 TECoSt_22°';
command=['save ', fname,varlist];
eval (command) ;
end %$loop over fregs

261



Appendix III Parametric Model of SFOAE Frequency Functions

In this appendix, the theory behind the 3-parameter and 4-parameter models of the
SFOAE frequency spectrum is discussed and the results quoted in sections 6.5 and 6.6 are

derived. A Matlab program listing for the 4-parameter model is also presented.

III-1  3-parameter Model

This analysis shows how the three parameters in the model (i.e., the two Butterworth
filter parameters, together with the RMS value of the signal) can be determined from the first
few terms of the autocorrelation function of the random process. In the following discussion,
it is useful to consider SFOAE frequency function sampled at equal 7-intervals (i.e., log
frequency intervals) as being the digital signal of interest. It also is useful to consider the #
variable as analogous to time. Following this analogy, the terms time and frequency will be
used to refer to 77 and the ¢ respectively. This allows the use of the familiar signal processing
terms such as ‘bandpass’ or ‘stationarity’.

As a first approximation, the SFOAE frequency function is modelled as a bandpass
random signal which is stationary with respect to 7. This can be thought of as arising from
gaussian stationary white noise passed through a bandpass filter. In the 3-parameter model, a
2" order Butterworth filter has been chosen to fit the data. This is an ARMA (autoregressive,
moving average) filter with nine filter coefficients. These nine coefficients are not
independent, but instead are given by two filter parameters: the filter centre frequency and
bandwidth. To obtain the spectrum of the data, the 3-parameter model then estimates these
two filter parameters, plus the RMS value of the white noise.

This procedure is illustrated in the next section for a simpler case: a first order, bandpass
Butterworth filter, which has only five filter coefficients instead of nine. Also for simplicity in
this example the real form of the impulse response function is used instead of the analytic

impulse response function used in the 3-parameter model.

II1-2  The Autocorrelation Function for White Noise through a
1*' Order, Butterworth Bandpass Filter
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Consider a signal arising from gaussian stationary white noise passed through a 1* order

Butterworth bandpass filter. This is an ARMA filter with five filter coefficients and with the

following input-output relationship:
x(n) = agw(n) + ayw(n =1) + ayw(n —2) —byx(n —1) —byx(n—2) [II-1]

where x(n) is the filter output sequence, w(n) is the (white-noise) input sequence, and the a,
and b, s are the MA and AR filter coefficients respectively.

These five coefficients are given by the two 1% order Butterworth filter parameters in the

following relationships:

ag :C’)BW /(]‘+a)BW +wC2)
al———O
ap =4y

b2=(1~wBW+wcz)/(1+wBW+wcz) [[1-2]

WD = OyDy,

Wy =Wy — Wy,

wy ;= tan(@yy . /2 1)

where @ 4; and @ 4 are the desired upper and lower cut-off frequencies, f; is the sampling
rate, @ ;; and @ ; are the dimensionless prewarped cut-off frequencies of the Butterworth
filter, and @ . and @ gy, are the dimensionless centre frequency and bandwidth.

By forming the autocorrelation function for the signal, x, equation [III-1] can be

converted into the following relationship
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R, (m)= E[ x(n)" x(n+m) ]
2 2
R.m=>aR, (k-m-> R, (m-k) foralm
k=0 k=1
and (1I-3]
R, (1) = o2h(n)

2 2
h(n) =Y a,6(n—k)— Y byh(n—k)

k=0 k=1

§(n):{l forn=0 }

0 otherwise

where R,, is the autocorrelation function of x, R, is the cross correlation function between the
white noise and signal x, & is the impulse response function of the filter, J is the unit impulse
signal, o, is the RMS value of the white noise, E[...] denotes the expectation operator and *
denotes complex conjugation.

Expanding the summation in [III-3] explicitly gives:

R..(0)=-bR_ (1) -b,R . (2) + 02agh(0) + 62a;h(l) + 0 a,h(2)
R, 1 =-bR,0)-b,R 1) +02ah0)+c2ah(l)

R, (2 =-bR, . 1)-bR, . (0)+02a,h0)
R.3=-hR_.2-bR,_ Q1

R,.4)=-bR. .3 -0R, (2

....... [[I1-4]
R.m=-bR, (m-1)-b,R, (m-2) form>2

and

h(0) = ay

hQ) = a, — bh(0) = ay — byag
h(2) = ay — byh(1) = byh(0) = ay —byay +b;>aq —byag

The first three rows can be further expanded by replacing the 4’s with a’s and b’s by
using the last three equations in [III-4]. Thus, given the first five values of the autocorrelation

function, Ry(m), m =0, 1,...4 in [1II-4] it is possible to calculate the five ARMA filter
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coefficients (though the AR filter coefficients cannot be separated from the unknown RMS
value of the white noise input, ¢;,). Note, however, that the first three rows of [I[I-4] contain
nonlinear terms comprising products of a’s with 4’s, which expand to give products of a’s
with b’s. Thus, unlike Burg’s method (1978a, 1978b) discussed later, the five ARMA filter
coefficients would have to be solved using nonlinear methods. Having solved for the ARMA
filter coefficients, the Butterworth filter parameters, ax and wpw , could be calculated (again
using nonlinear methods) from the equations in [III-2]. Note that @ and @pw are
overdetermined, since there are five (possibly independent) ARMA filter coefficients and only
two Butterworth filter parameters. If the autocorrelation function in [III-4] truly arises from
white noise through a 1* order Butterworth filter, then this is not a problem, since the ARMA
filter coefficients will be interdependent such that all five equations in [III-2] are satisfied
exactly. If this is not the case, however, then a least squares method becomes appropriate for
inverting [1I-2].

It should be noted that the purpose of the above analysis is to illustrate that all the
information required to determine the unknown filter parameters is contained in only the first
few terms of the autocorrelation function. It is not intended to give the actual solution method

adopted in this thesis. This is discussed in the next section.

III-3  Solution Method for the 3-parameter Model

Unlike the analysis in the previous section, the 3-parameter model assumes a 2™ order,
rather than a 1% order Butterworth filter. This has nine, rather than five ARMA filter
coefficients (though is still has only two free filter parameters: ax and wsw ). Also, in order to
achieve a one-sided filter, the analytic form of the filter is used, rather than the real form. In
fact, the two stage solution method described above (i.e., first calculating the ARMA filter
coefficients from the autocorrelation function in [III-4], and then the filter parameters from the

ARMA filter coefficients in [III-2]) is unnecessary. Instead, the following procedure has been

adopted.

First the autocorrelation function is estimated from the (finite) signal, x(n), of length, N,

by the biased estimator:

N N—-m—-l*
R, (m) :i}- > x (mx(n+m) form=0..N-1 [01-5]
n=0
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and normalised using the signal variance:

Al

- m) = R [IM—6]
R, (0)

The three unknown parameters, apw , @ . and ©,,, are then estimated using the
following iterative procedure.

1. Guess initial values of the three parameters, apw , @ . and o,,.

2. Calculate the nine ARMA filter coefficients from the 2" order Butterworth filter equation,
which is an extension of the 1% order filter equation [III-2].

3. Calculate the impulse response function of the real 2" order Butterworth filter from the 2™
order version of [III-1] with the nine ARMA filter coefficients and a delta function as the
input signal:

hr(n)=0 n<0
hp(ny=a, —bhy(n—1)=byhg(n—2)—bshp(n—3)—bshg(n—4)10<n<5
hr(n)=~bhp(n—1)—byhp(n—2)—bshp(n—3)—bshp(n—4) n>5

[I11-7)

4. Calculate the analytic form of the impulse response function of the filter:
h= h’R + lhI
h; = Hilb{hz }

[II1-8]

5. Calculate the fitted normalised autocorrelation function of x(n) from the impulse response

function in [II-7]:

Ktx(m) = Khh (m)

K,,(m) = M [II1-9]
R, 0)
N*m—l)k
R,,(m)= > I (mh (n+m) form=0...N -1
n=0
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6. Calculate the mean squared error between the fitted and the estimated normalised

autocorrelation functions, across the first Mz, values:

2 _

1 MTrunc ~
Eps = (

R oo (m) K oo (m)) [T-10]

M Trunc m=0

The choice of M7y, is discussed in the section ITI-5.
7. Tterate steps 1-5 above on the three variables to minimise the error in [III-10].

This procedure is equivalent to solving the 2" order equivalents of [[I-4] and [[[-2]

numerically using the first My, values in the equivalent to [1[1-4].

II1-4  Comparison of the 3-parameter Model with Maximum Entropy Spectral
Analysis (Burg, 1978a)

The 3-parameter model differs from the maximum entropy spectral analysis method due
to Burg (1978a) in two main respects. Firstly, Burg’s method uses only AR filter coefficients
(denoted b,). This means that the equivalent equation to [III-4] contains only linear terms and
can simply be solved by linear matrix operations. Secondly, Burg’s method does not constrain
the filter to be any particular form. Instead, the order of the filter (i.e., the number of AR filter
coefficients) is increased parametrically until some stopping criterion is reached. It is for these
reasons that Burg’s method is not suited to the work in this thesis. Being a more general
spectral estimation method, Burg’s method does not make use of the knowledge of the shape
of the filter that has been gained from the cochlear modelling work, and consequently it
contains many more free parameters (i.e., AR filter coefficients) that need to be determined

than does the 3-parameter model.

II-5  The Optimal Value of My,

If the autocorrelation function of the signal were known exactly and if it arose from
white noise passed through a 2" order Butterworth, then it has been found that only the first

two values of the autocorrelation function are required to solve exactly for the two Butterworth
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filter parameter, f¢ and fpw in [III-2]. Any additional values of the autocorrelation function
would be redundant, adding no new information. The mean square error term in this case
would be identically zero. However, in reality the situation differs from this ideal case in three
ways. Firstly, the autocorrelation function is only an estimate based on a finite length of
signal. Note also that estimates of the autocorrelation function in equation [III-5] become less
reliable at higher lag values, as they are based on fewer and fewer points. Secondly, the signal
is contaminated with noise. Thirdly, the signal does not conform perfectly to stationary
gaussian white noise through a 2°® order Butterworth filter. As a consequence of these factors,
the optimal value of Mrunc is > 2.

A theoretical treatment of the these effects is extremely difficult. There is one argument
for choosing My, = 9. This would then allow nine ARMA filter coefficients to be
calculated. From these, the two Butterworth filter parameters could be found by a least
squares method (cf., the 1% order case in [ITI-4]). This does not, however, overcome the three
probelms listed above. Thus instead of attempting further theoretical analysis, the following
numerical approach was adopted. Using many signal realizations from both ideal 2" order
Butterworth processes and from the cochlear models, the performance of the 3-parameter
model was measured in the presence of additive noise, and for different values of My,
Simulations were performed with realistic values of the filter parameters, lengths of signal, and
signal-to-noise ratios. The result of the numerical analysis was that the performance of the
estimator varied little, provided that Myy,,. lay between about 10% and 50% of the signal
length. In practice, a value of 12.5% was chosen for the analysis of both the cochlear models
and the experimental data. This corresponds to about 11 points for the 91 measured points in
the SFOAE signal, which is close to the value M7, = 9 discussed above. The reason for
defining M7y, as a proportion of the signal length, rather than as a number of points is
explained below.

In the experiments, the SFOAE signal is resampled from 91 equispaced points in the
frequency domain, to give 256 equispaced points in the 7-domain. This effectively resamples
the autocorrelation function, and complicates the argument in the following way. On
resampling, the lag value of the Mth point of the original autocorrelation function is greater
than the lag values of the Mth point of the resampled autocorrelation function. However, the
resampling operation does not add any new information, and therefore the first M points in the

resampled autocorrelation function contain less information than the first M points of the
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original autocorrelation function. From this it can be shown that the number of points in the
resampled autocorrelation function required to define the ARMA filter coefficient must be
increased. Thus if the first 9 points of R(m) are required for the original 91 point signal, then
the first 26 points are required when R, () is calculated from a resampled signal of length
256 points. (The fact that the original signal was equispaced in frequency, whilst the
resampled signal is equispaced in 7 does not does not materially alter the argument.) Thus for
a given random process estimated from a given signal, it appropriate to define My, as a

fraction of the number of points in the signal.

111-6 4-parameter Model

In this section, equation [6.12] is derived. In the 4-parameter model, the measured
signal, y(n), can be thought of as arising from a two stage process. Firstly white noise is
passed through a 2" order Butterworth filter to give the signal, x(n), as for the 3-parameter
model. Then this signal undergoes a nonlinear transformation to give y(n).

x(n) = h(n) ® w(n)

gox(n)
1-ryx(n)

[II-11].

y(n)=
The relationship between the autocorrelation function of y(n) and the filter coefficients in h(n)
is now more complicated than in [III-4]. The analysis proceeds as follows.

For small values of the product rox(n) (i.e.rox(n)<1) [1I-11] can be expanded
using the binomial theorem, and truncated to a the first two terms (further terms can be
included if desired).

y(n) = gox(Wl+ryx(n) +rix*(m) +ryx’ (n)...]

Truncating to the first two terms :

y(n) = Ax(n) + Bx 2 (n) [I-12]
A= go
B =gy,

The autocorrelation function of y(n) is then given by:
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R, (m) = B[ yo)" y(n+m) |
=R, (m)+R,(m)+R5(m) + R, (m)
where
R, (m) = A? E[x(n)*x(n+m)] [[1-13]
R, (m) = B? E[ X2 x*(n+m) ]
R;(m) = AB E[ x(n) x2(n+m) ]
R,(m) = AB E[ x2(n)'x (n+m) ]
Now Ri(m) in [III-13] is simply proportional to the terms appearing in the 3-parameter model
in [III-3] and [III-9]:
R,m)=A*R_(m) =A% ¢2R,, (m) [II1-14]
where ¢ w 18 the variance of the white noise signal.
The term R3(m) can be found by expanding the convolution integral for x(n) in terms

of the filter impulse response, k(n), and a white noise signal, w(n).

R;(m) = AB E[ x(n)" x*(n+m) ]
=AB E[Zjlh(jl)*w(n_jl)*zjzh(jz)w(n+m~jz)zjsh(j3)w(n+m—j3) ]

SABY S S hG) RO E] win— ) wnt m= jywntm= o) |
[I-15]

where all summations are taken from —eo to +oo. To evaluate the functions R3(m), recall that
the signals inside the expectation operator in [III-15] are all assumed to be gaussian, with zero
mean. It can be shown that, for any three jointly gaussian random variables, X, ¥, and Z of
zero mean, the following holds (Deutsch, 1965):

E[XYZ]=0 [III-16]
It follows from [III-15] and [I[I-16] that:

Ry(m) =R, m)=0 [HI-17]

Following a similar expansion to [III-15], it can be shown that R,(m) in [III-13] becomes:
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R, (m) = B? E[xz(n)*xz(rH—m) ]
=B2 Y3 3 3 R h(i) Ry h(ja)

E[w(n—jl)*w(n~j2)*w(rz+m—j3)w(n+m—j4)J

[II-18]

For any four jointly gaussian random variables, W, X, Y, and Z of non-zero mean, the
expectation of their product is given by [III-19] (Deutsch, 1965).
EIWXYZ]1= E(WX]E[YZ]+ EWY ]E[XZ]+ E[WZ]E[XY]
- 2E[W]E[X]E[Y]E[Z]

[III-19]

Equation [III-19] allows the expectation in [II-18] to be expanded as a sum of
autocorrelation functions. Recall that w(n) is gaussian stationary white noise, whose

autocorrelation function is therefore a delta function at zero lag. Thus the expectation in
[III-18] becomes:
E[ w(n—j1) wn— jy) wn+m— j3)w(n+m— j,) ]:

0, [0 = j2)8Uis = jg) +
o(m+ ji— j3)0(m+ jo — ju)+

. . . [IT-20]
o(m~+ ji = jg)o(m+ j, — J3)]

1 forj=k

o(j—k)=
(=) {0 for j#k

where oy is the RMS value of the white noise process. Substituting [II-20] into [III-18] and

using the sifting property of the delta function gives:

Ry(m)=0uB* Y 3 h(j2) h(jy) h(jadh(js) +
ouB* Y, X h(js=m) h(jy —m) h(j3)h(js)+
oWB2Y 3 h(ia =m) h(js =m)" h(j3)h(js)

=ouB> Y () Y KR+

2048 Y, h(js =m) h(j)Y; h(ja —m) h(js)

[II-21]
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Because h(n) is analytic it follows that:

2R =2 0 ()=0 [I-22]
The demonstration of [III-22] is as follows. The product of any two analytic functions is also
analytic, as argued later. Therefore hz(n) is analytic. The sum of terms in [[II-22] represents
the zero-frequency (or d.c. offset) of A*(n). But since A*(n) is analytic, its zero-frequency term
is zero. Therefore equation [III-22] holds if A(n) is analytic.

To show that the product of two analytic functions is itself analytic, consider the
Fourier transform of the product. This yields the convolution of two transforms in the
frequency domain. Since both transforms are one-sided (by the definition of analyticity), the
convolution of the two one-sided transforms is itself one sided. Inverse Fourier transforming
this one-sided function gives the desired product. Therefore the product of the two analytic
functions must itself also be analytic.

Thus, by noting the result in [III-22], and recalling the definition in [III-9], it follows

that [T-21] simplifies to:

e ] 2
Ry(n) = 20487 | 5, B =m) h(j3) }
# 2

=20, B> [ > k() h(j+m) } [1-23)

=20,,B> Ry,,” (m)

=2B%*R_*(m)
Substituting [II-23], [III-17] and [III-14] into [[1I-13] gives:

R,, (m) =A* R (m)+2B* R *(m)

2 2.2 2 [H=24]
=g R..(0m)+2g; r;R,."“(m)

This gives the first two terms in equation [6.12]. The third term in [6.12] (and higher order
terms 1if desired) can be obtained in a similar way by including higher terms in the binomial
expansion in [III-12]. In fact, the influence of the third order terms has generally been found
to be very small. Equation [III-24] can then be used to fit the 4-parameter model to the

estimated autocorrelation function, as described in section 6.6.

Note that there is an inconsistency in the above approach. The binomial expansion in
[III-12] is only valid when rox(n)<1. However, since x (n) is assumed to be gaussian, it can
take any value from ~ee to +e0. Thus, in theory, the binomial expansion becomes inapplicable
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for a small proportion of the theoretical signal. In practice, however, this is not a problem.

The physical signal, x (n) is, of course, not truly unbounded, and thus not truly gaussian.
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I1-7 Matlab Listing of 4-parameter Model

function ..
[phi, Syv4, SyyMeas, etaOctLag, Ryy4, RyyMeas, phiC,phiBW, alpha, beta, epsl]. ..
= paramé (y,etalct_s);

Matlab Version 4.2
B.Lineton 19-8-1999

4-parameter model: returns estimates of the four parameters together
with error values and the raw and fitted spectra

inputs:
y= SFOAE frequency function sampled at equal log freq intervals
etalOct_s= the sampling interval in octaves

outputs:
phi= the independent phi variable
Syyd= fitted 4 parameter phi-spectrum at phi values
Shhd4= fitted 4 parameter phi-spectrum of
SyyMeas= measured raw phi-spectrum
etaOctLag= the independent lag octave frequency variable
Ryvd= fitted 4-parameter autocorrelation function
RyvyMeas= measured raw autocorrelation function
phiC,phiBW, alpha,beta = estimates of four parameters
eps= final error (poorness-of-fit)

IR P P 0° A IC P A P P AIC I SC IC SC O I° O I° OP GO o

Ny=length(y) ;
etalOctLag =[0:Ny-1]*etalct_s; % octave lag variable
phi_g=1/etalct_s/log(2); % sampling rate in phi
phi=[0:Ny/2-1]*phi_s/Ny;

% remove mean, and find Hilbert transform pair
ym=mean (y) ;

yd=y-ym;

yvdr=real (yd) ;

ydr2=imag (hilbert (imag(yd)));

% estimate autocorrelation function of y from

% cross correlation of real & Hilbert transform of imag parts
RyyMeas=xcorr (ydr,ydr2, 'biased') ;

RyyMeas=RyyMeas (Ny:2*Ny-1) ;

% Obtain initial estimates of phiC & phiBW from fft over selected range:

winl=hanning(Ny).';

Fyr=fft (conj(detrend(ydr.*winl,0)) , Ny); % window 1
Fyr2=fft(conj(detrend(ydr2.*winl,0)),Ny); % window 1

SyyMeas=abs (Fyr.*Fyr2) /Ny/mean(winl.”2); % estimate of raw phi-spectrum

% parametric fit over selected range

Nord=2; % Butterworth filter order

NRPoF=round (Ny/8); % number of points used in err calculation

% starting guesses: suffix 0

[mx, iphi_max]=max (SyyMeas)

phiCO=phi (iphi_max) ;

phiBWO=phiC0/2;

% Run at three different values of alphal & take the one with the lowest
final error:

alphaO0_1=0;

[phiCl,phiBWl,alphal,betal,eps0_1,epsll= ...
paramd_1 (Nord, NRPoF, RyyMeas,phi_s,phiC0,phiBW0,alphal_1);
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alpha0_2=0.25;

[phiC2,phiBW2,alpha?2,beta2,eps0_2,eps2l= .

paramé_1 (Nord, NRPoF, RyyMeas,phi_s,phiC0,phiBW0,alphal_2) ;
alpha0_3=0.5;

[phiC3,phiBW3,alphal,betald,eps0_3,eps3l=...

paramé4_1 (Nord, NRPoF, RyyMeas,phi_s,phiC0,phiBW0,alphal_3);

[epsMin, IepsMin]=min([epsl, eps2,eps3]);
if IepsMin==
phiC=phiC1;
phiBW=phiBW1;
alpha=alphal;
beta=betal;
eps=epsl;
epsO=eps0_1;
alphalO=alphal_1;
elseif IepsMin==2
phiC=phiC2;
phiBW=phiBW2;
alpha=alpha2;
beta=beta?2;
eps=eps2;
epsO=eps0_2;
alphalO=alphal_2;
elseif IepsMin==
phiC=phiC3;
phiBW=phiBW3;
alpha=alpha3;
beta=betal3;
eps=eps3;
epsO=eps0_3;
alpha0O=alphal_3;
end;

% calculate fitted autocorrelation and phi-spectrum
Rhh4=RhhCalc (phiC, phiBW, Ny, Nord, phi_s) ;

sigmayy=sgrt (2*RyyMeas (1)) ;

beta_sg=sigmayy”2/(24*abs (alpha)~6+6*abs(alpha)"4+2*abs(alpha)~2+1);
beta=abs (sgrt (beta_sdqg));

Shh4=2*real (fft(conj ([0.5*Rhh4 (1) ,Rhh4(2:Nvy)1)));

Shh4=Shh4 (1:Ny/2);

Ryyd=abs (beta)"2* (24*abs (alpha)*6*Rhh4."4+6*abs(alpha)~4*Rhhd."3+2*abs (alpha
) *2*Rhh4.~2+Rhhd) ;

Syyé4=2*real (fft(conj ([0.5*Ryy4(1l),Ryv4(2:Ny)1)));

Syva=Syy4 (1:Ny/2);

% Recalculate analytic forms of the raw measured functions:
RyyMeas=2*conj (hilbert([fliplr (RyyMeas), RyyMeas(2:Ny)]));
RyyMeas=RyyMeas (Ny:2*Ny-1) ;

SyyMeas=4*SyyMeas (1:Ny/2) ;

return
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function [fc, £BW, alpha,beta,Err0,Err]l= .
paramé4_1 (Nord, NRyy, RyyMeas, £s, £c0, £BW0, alphal) ;

4-parameter model: returns estimates of the four parameters together with
the initial and final error values for a given autocorrelation function.

inputs:
Nord= filter order (=2)
NRyy= number of points in Ryy overwhich to calc. the error
RyyMeas= the measured raw autocorrelation function
fs= samlping rate
fc0, £BWO,alphal = initial estimates of three parameters

outputs:
fc,£BW,alpha = final estimates of three parameters

Err0, Err = initial and final error

R P I P O° JC I P AP P S G P o°

Novr=length (RyyMeas) ;

sizeRyydl=size (RyyMeas) ;

if sizeRyydl(l)~=1; RyyMeas=RyyMeas.';end;

ts=1/=fs;

=== QOptimise Parameters: alpha, beta, flow, fupp ===

uses Matlab function "fmins" to minimise output of function "Par4Err("

ce oo

fupp0=0.5*sqgrt (£BWO"2+4*£fc072)+0.5*fBW0; % convert centre freqg & BW to
flow0=0.5*sqrt (£fBW0"2+4*£c0"2)~-0.5*fBW0; % upper & lower cut-off fregs

FMIN_OPTIONS(1)=1; % display parameters
FMIN_OPTIONS(3)=(1.e-4)/100; % tolerance
FMIN_OPTIONS(14)=2000; % max iterations
ParamvVecO=[flow0, fuppl, alphal];

Err0=Par4Err0 (ParamVecO, RyyMeas, Nord,NRyy, £s); % initial error
ParamVec=fmins ('Par4Err(Q', ParamVec0, FMIN_OPTIONS, [], RyyMeas, Nord, NRyy, fs) ;
Err=Par4Err0 (ParamVec, RyyMeas,Nord,NRyy,fs); % final error

flow=ParamVec (1) ;
fupp=ParamVec (2) ;
alpha =abs(ParamVec(3));

sigmayy=sqgrt (2*RyyMeas (1)) ;
beta_sg=sigmayvy”2/(24*abs(alpha) "6+6*abs (alpha)~4+2*abs(alpha)~2+1);

beta=abs (sqrt (beta_sq) ) ;
fBW=£fupp-flow;
fe=sqgrt (fupp*flow) ;

return
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function Err=Par4Err0(ParamVec, RyyMeas,Nord,NRhh, fs);

calculates error between a non-linear bandpass npoise signal and

model of noise signal based on:

yv= Al*X + A2*x"2

where x is 1st order Butterworth band pass noise with a std of 1;

ParamVec=[flow, fupp,alphal;

flow, fupp=3dB Upper and Lower Cut-offs for B'worth filter, both in cycles
per unit time

alpha=A2/Al;

NRhh= points in Rhh to be included;

fs= sampling rate in cycles per unit time.

use fact that real & imag parts are related by the Hilbert transform

0P 0P dP 0P P I P O OP P IP P

alpha_Limit=1;

Novr=length (RyyMeas) ;

sigmayy2=2*RyyMeas (1) ;

RyyMeas=2*conj (hilbert([fliplr (RyyMeas), RyyMeas(2:Novr)l)); % create full
Ryy from real part;

KyyMeas=RyyMeas (Novr+ (0:NRhh-1)) /sigmayy2; % normalised & truncated to NRhh

points

flow=ParamvVec (1) ;
fupp=ParamvVec (2) ;

alpha =abs(ParamVec(3)):

alpha =min({alpha,alpha_Limit]);

small=fs/Novr; % =fg/Novr; % ensure filter turning points are sensible

if flow <=small flow=small; end;
1f fupp <=2*small fupp=2*small; end;
if fupp >=fs/2-small fupp=fs/2-small; end;

if flow >=fupp-small flow=fupp-small; end;

[B,A]=butter (Nord, [flow, fuppl/ (fs/2));

symclick=[zeros(l,Novr),1l,zeros(l,Novr-1)1; % click
htempl=£filter(B,A,symclick); % hr(t) (real IRF)
htemp2=filter (B,A,con]j (fliplr(htempl))); %

Rhrhr=fliplr (htemp2) ; % Rhrhr= hr(t) (x) hr(-t)
Rhh=2*conj (hilbert (Rhrhr)); % analytic Rhh (2-sided in
time)

Rhh=Rhh (Novr+1:2*Novr) ; % analytic Rhh (l-sided in
time)

Rhh=Rhh (1 :NRhh) ; % truncate to NRhh points
Rhh=(Rhh) /real (Rhh(1l)); % Normalise

Kyy4=(24*alpha”~6*Rhh. 4+6*alpha”~4*Rhh.”3+2*alpha”2*Rhh."2+Rhh) ...
/(24*alpha”~6+6*alpha™4+2*alpha”~2+1); % 4-paramter fit to Ryy

Diff=KyyMeas-Kyv4;

Err=sum{abs(Diff) .”2)/NRhh;

return
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function Khh=RhhCalc(fc, £BW,N,Nord, £s) ;
% Khh=RhhCalc(£fc, fBW,N,Nord, fs) ;
return the normalised autocorrelation function corresponding to
a Butterworth filter
inputs:
fc, fBW= centre freq & bandwidth in cycles per unit time
N= Number of points;
fs= sampling rate in cycles per unit time;

P 00 OP P oP of

fupp=0.5*sgrt (£BW"2+4*£c*2) +0.5*£BW;
flow=0.5*sgrt (£BW"2+4*fc*2)-0.5*£BW;

[B,Al=butter (Nord, [flow, fuppl/ (fs/2))

symclick=[zeros(1,N),1,zeros(1,N-1)1; % click

htempl=filter(B,A, symclick); % hr({t) (real IRF)
htemp2=filter(B,A,conj(fliplr (htempl))};

Rhrhr=fliplr (htemp2) ; % Rhrhr= hr(t) (x) hr(-t)
Rhh=2*conj (hilbert (Rhrhr)); % analytic Rhh (2 sided in time)
Rhh=Rhh (N+1:2*N) ; % analytic Rhh (l-sided in time)
Khh=(Rhh) /real (Rhh (1)) % normalised Rhh

return
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