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A detailed investigation has been conducted into the use of Reynolds-Averaged 

Navier-Stokes (RANS) methods, for predicting the performance of conventional and 

high lift rudder sections, operating under free stream and periodic propeller flow con-

ditions. The standard and RNG k — e turbulence models with wall functions are 

applied. A methodical step wise approach to solving the propeller-rudder flow prob-

lem is shown to be necessary, in order to ensure the highest degree of accuracy and 

credibility in the results. By conducting detailed veriflcation and validation studies at 

every stage of the research, the critical parameters required for accurate rudder per-

formance prediction, in terms of skin frictional drag, pressure drag and lift force are 

identified. Steady state and time-accurate computations of the free stream flow over 

a NACA 0012 section fitted with a Gurney flap are conducted. Good agreement is 

found between the computed and experimental results, validating the RANS method 

for predicting flows about high lift rudder sections with blunt trailing edge features. 

The RANS method is shown to be capable of predicting the performance response of 

both conventional and high lift rudder sections, when subjected to periodic transverse 

gusts, similar to the flow produced in the race of a propeller. The research presents 

the first published RANS computations for high lift Schilling rudder sections, oper-

ating under free stream and periodic flow conditions. The high quality grids created 

around the rudder sections investigated, consisted of between 40000 and 85000 grid 

nodes. 
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Chapter 1 

Introduction 

1.1 Motivation 

A wide variety of vehicles operate in the marine environment, from small unmanned 

deep sea craft, to very large crude oil carriers (VLCCs). The vast majority of these 

craft are directionally controlled with the aid of some form of movable control sur-

face, or rudder. The manoeuvrability of a vessel is highly dependent on the design 

and location of its rudder, and the nature of the flow field in which the rudder oper-

ates. Often the rudder will be located directly aft of the propulsor, in order to make 

good use of the added velocity in the race, and so provide an increased turning force. 

However, being located in this asymmetric, accelerating and swirling flow fleld, sig-

niflcantly alters the rudder performance characteristics from those encountered when 

operating in a free stream [1]. The propulsor has the effect of altering the local flow 

velocity and incidence passing over the rudder, thus altering its performance. 

Accurate estimation of both steady and unsteady performance characteristics, i.e. 

the forces and moments, of rudders is necessary for a number of reasons: 



# Safety Requirements 

The manoeuvrability of a ship is a fundamental component of its safety, and as 

such is subject to certain standards and regulations. The regulations dictating 

the minimum manoeuvring criteria of vessels are enforced by the International 

Maritime Organisation (IMO) [2]. In order to quantify a ship's manoeuvrabil-

ity, and hence assess its compliance with the requirements of the IMO at the 

design stage, the forces and moments acting on the rudder need to be accurately 

estimated. 

® Structural Design 

For many vessels, the rudder is the sole means of directional control. It is, 

therefore, of paramount importance that rudders are designed to withstand the 

forces anticipated in operation. In order to determine the rudder scantling, 

stock, bearing and steering gear particulars, the forces and moments acting 

on the rudder must be known. Class rules such as those derived by Lloyds 

Register [3], Det Norske Veritas (DNV) [4] and others provide naval architects 

with rudder structural design criteria, based on a combination of theory and 

full scale data. However, when these rules are applied to some more extreme 

types of rudder, the forces may not be adequately predicted, leading to the 

specification of inappropriate design particulars. There is, therefore, a need 

for accurate force estimation in order to quantify any possible errors, and to 

facilitate better structural design, and the development of class rules which 

reflect the true performance of different rudder devices. 

« Efficiency 

Increasing pressures on ship owners and operators for their ships to be effi-

cient and fast, means that the reduction of ship drag is of major importance. 

Although the rudder drag on a ship, such as a VLCC, accounts for a small 

proportion of the total ship drag, any possible reductions are of importance, in 

order to improve the overall efficiency of the vessel. Even small improvements 



(< 1%) can have a major impact on propulsive power and hence operating costs 

[5]. A rudder can, depending upon its type, design and location, increase the 

propulsive efficiency of a vessel, by recovering some of the energy lost in the 

race. An efficient rudder will, therefore, have low drag and be optimised to give 

the highest level of overall propulsive efficiency. 

® Optimisation of Design 

Often, at the design stage of a vessel, the naval architect is presented with 

difficult decisions as to the type and design of the rudder which should be fitted. 

The choice of rudder is usually dictated by the owner and master mariner's 

preference, through experience. However, certain types of rudder are often 

overlooked, as knowledge of their actual performance may be limited. A single 

tool, which could be used to predict the performance of different sections on the 

same benchmark, would therefore be useful, potentially opening up new design 

options. 

The need for research into theoretical rudder performance prediction was expressed 

by the International Towing Tank Committee (ITTC) in 1987 [6] and repeated more 

recently in 1999 [7]. 

Advances in computing technology over the last two decades have resulted in the 

development of a number of theoretical approaches, which can be used to predict 

rudder performance. These methods fall under the general heading of Computational 

Fluid Dynamics (CFD). The most widely used of these theoretical approaches, at 

the current time, involves solution of the Reynolds-Averaged Navier-Stokes (RANS) 

equations. Using this approach, it is theoretically possible for the viscous performance 

of practically any shaped rudder section to be predicted. This capability makes 

the RANS approach an attractive method for obtaining the important manoeuvring, 

structural and efficiency design information required by naval architects. 

Although the RANS solution approach has been used for a number of years, its full 



capabilities have yet to be exploited for rudder design. However, this current state of 

the art technology has the ability, if correctly applied, to provide answers to many of 

the key issues surrounding the complex hull, propeller and rudder interaction problem. 

1.2 Aims and Objectives 

At the current time, it is not possible to use RANS methods to predict the full un-

steady interaction of the hull, propeller and rudder, to the level required or demanded 

by designers [8, 9]. The aim of this research has been to address a number of the prob-

lems associated with using the RANS method to predict accurately the performance 

of conventional and high lift rudders, operating within the periodic wake produced 

behind a ship's propeller. In order to obtain a better understanding of problems as-

sociated with RANS flow modelling, the complex propeller-rudder flow problem was 

broken down into a number of smaller investigations. Each investigation was focused 

at addressing one or a number of critical aspects associated with the RANS modelling 

of steady and periodic flows around two-dimensional rudder sections. The primary 

objectives of the work were as follows: 

« To investigate the various methods which can be used to predict steady and 

unsteady rudder performance, and to highlight the problems associated with 

both experimental and computational performance prediction methods. 

® To conduct two-dimensional performance predictions of conventional and high 

lift rudder sections operating under free stream conditions, and to identify the 

critical parameters which need to be considered in order to obtain credible 

solutions. 

« To assess the two-dimensional performance of conventional and high lift rudder 

sections, subjected to periodic flow conditions similar to those produced in a 



propeller race, thereby making an assessment of the effect that flow unsteadiness 

has on rudder performance. 

® To investigate the issue of model to full size rudder scaling. 

Particular attention was focused on capturing, and understanding the complex two-

dimensional flow phenomena around various rudders, with the aim of improving de-

sign. Through the use of detailed validation studies, it was hoped that greater con-

fidence in the use of RANS methods in the marine context, could be achieved. The 

knowledge gained from the work presented, will provide important information as to 

the considerations needed to obtain credible solutions to the whole hull, propeller 

and rudder interaction problem, using the RANS method, when adequate computing 

resources become available. 

1.3 Rudder Design Criteria 

Rudder design is a compromise between a number of opposing requirements, which 

have varying priorities according to the vessel in question. The traits usually striven 

for in a good rudder design are: minimal drag, maximum turning ability, high di-

rectional stability and high controllability. Other important considerations are low 

weight, ease of construction, a large degree of structural integrity and high relia-

bility. An effective rudder design, therefore, requires a careful compromise between 

manoeuvrability, hydrodynamics and structural performance. 

1.3.1 Manoeuvr ing 

As previously stated, a vessel must satisfy a number of manoeuvring criteria. As 

of July 1994 the IMO introduced interim manoeuvring standards applying to ships 

of all rudder and propulsion configurations over 100 m in length, and to all Gas 



and Chemical carriers regardless of size. IMO Resolution A.751(18) [10] recommends 

the manoeuvring performance standards, MSC/Circ.644 [2] provides guidance for 

the application of those standards, whilst MSC/Circ.389 [11] addresses the problem 

of defining manoeuvring characteristics, and their estimation during design. The 

IMO guidelines state, that all ships should have manoeuvring qualities which permit 

them to keep course, to turn, to check turns, to operate at acceptably slow speeds 

and to stop, all in a satisfactory manner. However, ship owners/operators often 

introduce more stringent requirements depending upon the operational role of their 

vessel. The manoeuvring characteristics which must be considered in order to fulfil 

these requirements are hsted below: 

• Initial turning ability 

• Sustained turning ability 

® Yaw checking ability 

• Stopping ability 

• Course-keeping ability 

Of the above five manoeuvring characteristics the initial turning, yaw checking and 

course-keeping abilities are the most important. These manoeuvring characteristics 

are quantified through a number of tests carried out in the initial ship sea trials, as 

recommended in the Manoeuvring Trial code of the ITTC [12] and the IMO circular 

MSC/Circ.389 [11]. The standard manoeuvring tests carried out during ship trials 

usually involve a number of the following: 

® Turning circle test 

• Spiral manoeuvre 

® Pull-out manoeuvre 



# Zigzag manoeuvre 

# Stopping trial 

# Hard rudder test 

9 Man-overboard manoeuvre 

The IMO requires that these manoeuvres be carried out at the ship service speed in 

deep water (water depth >2.5 ship draft), little wind (less than Beaufort 4) and calm 

water, to ensure comparability with other ships. Many ship owner/operators extend 

the IMO tests to slow speeds in order to assess the ability of the vessel to manoeuvre 

safely, both at reduced speeds and in a restricted environment. 

The rudder, other control surfaces and control devices are responsible for fulfilling the 

afore mentioned manoeuvring criteria. Although a number of control devices are often 

used to assist in the control of a vessel, the rudder is by far the most prominent. The 

effectiveness of a rudder as a directional control device is related to the magnitude of 

the force produced normal to the centre line of the vessel. 

1.3.2 Hydrodynamics 

The hydrodynamics of a rudder obviously dictate the attainable forces, which have 

vital implications upon manoeuvrability, as already mentioned. However, in terms of 

hydrodynamics, the second most important consideration is powering. Prom a ship 

powering point of view, it is desirable to minimise all the possible components of drag, 

in particular any drag from appendages, such as rudders. An efficient rudder design 

endeavours to maximise the lift/drag ratio within the typical operational incidence 

range. For a rudder operating in a propeller race, local flow incidence angles of 

between 10 and 15 degrees are not uncommon, in the zero incidence position [5]. 

Hence, reducing rudder drag between these angles of incidence, can improve the 



efficiency of the vessel. It must also be noted, that prudent location of some types 

of rudder, can actually recover some of the rotational energy which would otherwise 

have been lost in the race, due to the damping or stator effect the rudder has on the 

rotating race [13, 14]. 

1.3.3 S t ruc tu res 

The structural engineering of a rudder not only has very clear implications upon re-

liability engineering, but also implicit influences upon its hydro dynamic capabilities. 

Often, a compromise needs to be made between the hydrodynamic and structural 

requirements of the rudder. One common decision naval architects are faced with, is 

the selection of a rudder section which has sufficient thickness, in order to accommo-

date the stock with the correct diameter, so as to satisfy the structural requirements. 

It should also be noted that distortion of the rudder, due to imposed loadings can 

often alter the hydrodynamic performance [15]. 

1.4 Rudder Performance 

The rudder of a ship can be considered as part of a servo system, providing the 

transverse force and hence the turning moment needed for a vessel to change its 

attitude. The manoeuvring characteristics of a ship and thereby the effectiveness of 

its rudder, are directly related to the lift and drag forces acting on it. The action of 

these rudder forces through to the ship itself, results in the development of a torque 

and bending moment at the rudder stock. A concise outline of the forces and moments 

which act on a rudder will be given in the following section, since they will be referred 

to extensively throughout the Thesis. The theory behind the generation of the forces 

about lifting sections can be found in most general fluid dynamic texts and as such, 

will not be detailed here. White [16] provides a good general introduction to the 



theory of lifting flows. 

1.4.1 R u d d e r Forces 

Figure 1 shows the forces acting on a three-dimensional rudder, i.e. rudder of finite 

aspect ratio, at an angle of incidence a, in a free stream of Uoo, unaffected by the 

wake of a ship or propeller race. The two principal forces acting on the rudder are 

lift (also known as side force) L, and drag D. The lift force acts perpendicular to the 

free stream, whilst the drag force acts in a direction parallel to the free stream. These 

forces are seen to act from a single point, known as the centre of pressure. The total 

resultant force R acting on the rudder, is obtained when the lift and drag forces are 

added vectorially. Resolution of the lift and drag forces into the ship axis system, gives 

rise to normal N and axial A force components. The rudder force components are 

usually expressed in terms of non-dimensional parameters. The standard ITTC non-

dimensional [17] rudder force parameters are shown below in Equation 1 to Equation 

4. 

Cr — \/CL^ + CD^ (3) 

Cn = Cl cos(a) -h Cd sin(a) (4) 

where, is the free stream speed, p is the density of the fluid, AR is the rudder 

plan form area (be) and a is the rudder incidence angle. 

The non-dimensional forces acting on a two-dimensional rudder, i.e. rudder of infinite 

aspect ratio, are usually represented by lower case coefficient parameters as shown 
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below in Equation 5 to Equation 8, where I and d denote the two-dimensional lift and 

drag forces per unit span acting on a rudder section of chord c. 

Cr = y + Cd^ (7) 

c„ = ci COS (a) + Cj sin(Q) (8) 

1.4.2 R u d d e r Drag 

The drag coefficient of a rudder can be regarded as being a measure of its efficiency, 

the smaller the drag for a given lift, the more effective the rudder. The drag force 

acting on a three-dimensional rudder consists of three components, frictional drag, 

viscous pressure drag and induced drag. For a rudder operating in the vicinity of the 

free-surface, there may also be a wave-making component of drag, however, this force 

is usually small and in this work will be neglected. 

The frictional drag acting on a rudder, results from the viscous shearing stresses 

within the fluid boundary layer close to the rudder surface. The non-dimensional 

forms of this frictional drag force, for both three and two-dimensional rudders are 

given by Equation 9 and Equation 10. 
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The viscous pressure drag, as the name suggests, results from the viscous nature of 

the fluid, although less directly than the frictional drag. This drag force occurs, due to 

distortion of the fluid flow around the rudder, as a result of the developing boundary 

layer and if present, regions of separation. Fundamentally, this occurs because the 

pressure forces at the front and rear of the rudder section, are not being balanced 

due to energy losses within the boundary layer. The non-dimensional forms of this 

pressure drag force for both three and two-dimensional rudders, are given by Equation 

11 and Equation 12. 

OO 

When a three-dimensional rudder operates at an angle of incidence, another drag 

force, known as induced drag, is experienced by the rudder. This drag force is pro-

duced as a consequence of the difference in pressure between the two sides of the 

rudder, which promotes the formation of vortices at the rudder tips. These vortices 

manifest themselves as a down-wash across the rudder, thus modifying the free stream 

inflow incidence angle. This eflFective rotation induces a component of normal force 

acting in the free stream direction, giving rise to an added drag component. The 

non-dimensional form of this induced drag force is given by Equation 13. 

Classical three-dimensional lifting surface theory [16] approximates the total drag on 

a three-dimensional lifting surface of high aspect ratio, using the classical formula 

given in Equation 14. 

(14) 

where, is the three-dimensional zero-hft drag coefficient, A is the rudder aspect 

ratio and k is the induced drag factor, the value of which depends on plan-form shape, 
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i.e. taper ratio, with a minimum value of Ignoring any end effects, CDQ can be 

assumed equal to the two-dimensional zero-lift drag coefficient, Qq- In reality both 

CDO and Qq vary with incidence angle, depending on the relative contributions of ĉ y 

and Cf as shown in Equation 15. 

Cdo = Cpu((x) 4-<:f(cK) (15) 

However, for lifting surfaces operating at low incidence angles, the relative contribu-

tions from Cpj, and Cf are often considered constant. 

1.4.3 R u d d e r Momen t s 

The normal force component mentioned previously, is responsible for the generation 

of the torque moment about the stock. The product of the normal force times the 

distance of the chord-wise centre of pressure from the rudder stock, yields the torque 

moment; as shown in Figure 1. The non-dimensional form of this torque moment for 

a three-dimensional rudder is defined in Equation 16. 

C „ = (16) 

where, cpc is the dimensional chord-wise location of the centre of pressure, and d is 

the stock location, both measured from the leading edge. 

The total resultant force component mentioned previously, is responsible for the gen-

eration of the bending moment on the rudder stock about the root section. The 

product of the normal force times the distance of the span-wise centre of pressure 

from the rudder root, yields the bending moment; as shown in Figure 1. The non-

dimensional form of this bending moment is defined in Equation 17. 

CsM = (17) 

where, cpb is the dimensional span-wise location of the centre of pressure, measured 

from the rudder root, and b is the rudder span. 
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1.4.4 Hull, Propel le r and R u d d e r Flow 

For a rudder in its operational condition, there exists a complex flow regime. The 

action of the hull through the water creates a non-uniform turbulent wake-field, which 

reaches the propeller and is then accelerated before passing over the rudder. In ad-

dition, the drift angle of the vessel relative to its direction of motion, can result in a 

skewed inflow into the propeller disk. The presence of a free surface and possible shal-

low water effects will also distort the inflow into the propeller disk. The performance 

of a rudder operating in this regime is significantly different from the performance 

experienced in a free stream. As such, the whole hull, propeller and rudder interac-

tion problem is complex, consisting as it does, of steady, periodic and unsteady flows. 

Often, the influence of the hull on the flow is neglected, making it easier for the un-

derlying physics of the flow for an isolated rudder and propeller to be investigated. 

The research presented in this Thesis will also neglect any flow effects resulting from 

the presence of an upstream hull. 

1.4.5 Governing R u d d e r Pe r fo rmance P a r a m e t e r s 

It was shown in the previous section that there a number of forces and moments acting 

on rudder operating at an angle of incidence. In order to address the hull, propeller 

and rudder interaction problem, it is necessary to identify the various independent 

parameters which affect these performance characteristics. The magnitude of these 

forces and moments are dependent on a number of parameters, relating to the fluid 

flow, geometry and location of rudder. 

A number of researchers have carried out systematic experiments to quantify the 

effects of these parameters on rudder performance, with some of the most significant 

investigations being those conducted by Stierman [13, 14], English and Bain [18], 

Mathis and Gregory [19], Kerwin and Lewis [20], Turnock [21], Molland and Turnock 

[22] and Smithwick [23]. 
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Molland and Turnock [22] have shown that the performance characteristic variables 

of CL and CD can be expressed as a function of non-dimensional variables, where the 

section shape, twist distribution etc. of the rudder and propeller are assumed fixed, 

see Equation 18. 

From Equation 18, it can be seen that for a particular propeller-rudder combination 

that the parameters reduce those given in Equation 19. 

Cj:, = /[J, &,,/)], M, [ f / D ] (19) 

If follows that, for a given ship, relationships for manoeuvring should consider the 

above parameters. Prom these, the two fundamental controlling parameters are the 

propeller advance ratio J and the rudder incidence angle a. Reynolds number and 

drift angle /3 will have less affect. Momentum theory, indicates that propeller induced 

velocities vary as a function of propeller thrust loading KT/J"^ which is independent 

of P/D. This parameter is commonly used in propeller-rudder interaction studies. 

The geometrical group of parameters determines the magnitude of the influence of J 

and a on the performance of the propeller and rudder. 

1.5 High Lift Rudders 

The conventional rudder (plate or faired section) is an effective and simple manoeu-

vring device which has been used for several millenia. However, conventional rudders 

are most effective toward the high end of a ship's speed range, and/or when the pro-

peller race speeds are high, since the generated lift force varies proportionally to the 

square of the speed. Consequently, conventional rudders often fail to provide the nec-

essary turning force, needed for safe slow speed manoeuvring, in ports and restricted 

waterways. 
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This has lead to the development of what are classified as high lift rudders, whereby, 

the lift producing capabilities of a conventional rudder arrangement, positioned aft of 

a propeller are improved by the use of improved rudder profiles, and/or mechanical 

attachments. A number of different high lift systems have been designed, although 

only a small number have been utilised for practical reasons. A comprehensive review 

of various high lift rudder devices is provided by Cooke [24] and in the Pilotage and 

Ship Handling Handbook [25]. The most common high lift rudders are the flapped 

and modified profile types. Examples of these can be seen in Figure 2. 

Flapped rudders are one of the oldest forms of high lift rudder, dating back to the 

late 1800s. Their design has remained virtually unchanged to the present day. These 

rudders usually consist of a conventional type rudder, fitted with a trailing edge 

flap. The flap angle is either controlled independently, or as function of the rudder 

incidence. Since a flap is used to provide the high lift characteristic, flapped rudders 

can be designed with sections similar to those of conventional rudder proflles. This 

allows the flapped rudder to exhibit a similar zero-incidence drag as conventional 

rudders, whilst being able to a achieve a significantly higher lift force, for a given 

incidence angle. The major draw back of flapped rudders, is the damage vulnerability 

of the flap and the poor vectoring of thrust at large angles of incidence. 

Modified profile rudders produce better lift characteristics, through the use of high 

lift section profiles. The IfS [26], HSVA [27] and Schilling [28, 29] profiles are among 

the most frequently used high lift profiles. These sections all have greater maximum 

thickness to chord ratios, and more rounded leading edges than conventional rudders, 

promoting good flow properties over a wide range of rudder incidences. Both the 

IfS and HSVA sections have profiles which taper smoothly down to a trailing edge 

of relatively small thickness. However, the Schilling form is rather different, being 

equipped with a blunt "fish-tail" trailing edge. This trailing edge feature promotes 

flow acceleration and lift recovery over rear of the section, whilst significantly delaying 

the onset of stall [25]. The flsh-tail trailing edge also improves the course-keeping 

ability of a vessel, with the only penalty being a small augment in drag [29]. The 
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main advantage of the Schilling over other high lift systems, like the flapped rudder, 

is that it is capable of operating at high angles of incidence, and vectoring between 

50 — 70% of the propellers ahead thrust, at angle of 90 degrees or greater to the ship 

centre line, with little or no forward movement [30]. Schilling rudders also have an 

advantage over flapped rudders, that their one piece construction is less vulnerable 

to damage. 

The need for research in the field of high lift rudder performance was expressed by 

Hamworthy KSE, a leading manufacturer of high lift rudders. Wishing to improve 

the design and development of their Schilling type high lift rudders, Hamworthy KSE 

have been responsible for funding the research described in this Thesis. Through this 

research, Hamworthy KSE hoped to further their knowledge of the complex flows 

which exist around Schilling rudders. 

1.6 Conclusions to Chapter 

The motivation, together with the primary aims and objectives of the research detailed 

in this Thesis have been outlined. 

An overview of the fundamental rudder performance characteristics, and the parame-

ters which influence them have been presented. The implications of placing a rudder 

in the flow region directly aft of a hull-propeller arrangement have also been discussed. 

It has been shown that an effective rudder design, demands a careful compromise 

between a number of opposing requirements. These requirements generally fall into 

one of three categories, manoeuvring, hydrodynamics and structures. 

The advantages of fitting high lift rudders, together with a brief discussion of the 

various high lift rudders in common use was also given. 
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Chapter 2 

Rudder Performance Prediction 

2.1 Overview of Chapter 

This chapter describes the various experimental, and theoretical methods which can 

be used to predict the performance of a rudder, operating under both free stream 

and propeller flow conditions. The merits and limitations of these approaches are 

discussed. Particular attention is focused on the use of theoretical methods, and the 

verification and validation procedures which need to be followed, if the solutions are 

to be regarded with any level of confidence. A research strategy aimed at addressing 

the important issues/implications surrounding the use of the RANS approach, in the 

modelling of high performance rudders, operating under steady and periodic flow 

conditions is outlined. 

2.2 Experimental Methods 

Before the advent of the computer and numerical modelling techniques, the principal 

way of predicting rudder performance, with reasonable accuracy, was through the use 
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of empirical techniques, such as model testing, or the extrapolation/interpolation of 

full scale ship rudder data. Today, even though advanced computational modelling 

methods exist, experimental testing is still the most widely used rudder performance 

prediction method. The most common experimental testing procedures are: 

a Self-propelled free running model tests 

# Open-water or wind tunnel tests 

e Cavitation tunnel tests 

These methods have become standardised during the last 50 years [7], and therefore 

have achieved a reasonable level of credibility. However, these methods have always 

had a number of significant drawbacks. 

2.2.1 Limitat ions of Exper imenta l M e t h o d s 

The main difficulty with experimental modelling techniques is scale effect. Scale 

effect may be defined as the difference of the full-scale rudder performance, from that 

predicted through the scaling of the model test results. This can be attributed to the 

fact that experimental tests result in the laws of dynamic similitude being violated. 

The laws of dynamic similitude that apply to the lifting rudder problem are those 

governing cavitation, aeration, friction and wave-making [31, 32]. The extent to which 

these laws are violated in the testing procedure, dictates the amount by which the 

scaling process will be in error. 

For free running model tests, all three of the laws of similitude must be satisfied. This 

means that Proude's law (which governs the dynamics of wave-making), Reynolds law 

(which governs the dynamics of the frictional drag and boundary layer growth) and 
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cavitation index effect, must be satisfied. The Froude number for a particular free-

surface ship flow is characterised by Equation 20. 

where V is the ship speed, g is acceleration due to gravity and L is the ship length. 

The Reynolds number for a particular ship flow is characterised by Equation 21. 

VL 
= — (21) 

u 

where V is the ship speed, L is the ship length and v is the kinematic viscosity. 

Compliance of Proude number similitude leads to desirable conditions, where the ship 

model is small and the speed is low. However, this often results in the model Reynolds 

number being significantly lower than that of the full size ship. In particular, the 

Reynolds number may be such that the fiow over the rudder is laminar, rather than 

fully turbulent, as in the case of the full scale vessel. Appendix A provides a simple 

calculation to highlight this problem. This is unfortunate, since Reynolds number 

efi'ects can exert a very strong influence on the rudder performance, particularly with 

regard to the angle of attack at which stall occurs, and the maximum lift coefiicient 

which is produced by the rudder. If the flow over the model's rudder is laminar, 

then premature stall can occur, giving conservative estimates of the maximum lift 

coefficient and rudder stall angle [5, 31, 32]. 

Open-water /Wind tunnel tests have the advantage that Proude's law does not need to 

be satisfied, hence allowing the tests to be carried out at higher Reynolds numbers, 

better satisfying Reynolds law [31]. It is still, however, often difficult to obtain a 

satisfactory correlation between the model and full scale test results. Problems such 

as wind tunnel blockage effects and transition stimulation can all contribute to errors 

in the correlation procedure. 

With regard to cavitation, it is believed that there may be a scale effect due to the 

dissimilar cavitation indices, between model and full scale [31, 32]. However, since 
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cavitation usually occurs at lower speeds, when open-water and cavitation tunnel 

model tests are run in compliance with Proude's law, this effect will be minimal. In 

comparison with Reynolds effects, cavitation effects are beheved to be less severe. 

As yet, no satisfactory criterion has been established which can account for the effects 

of aeration in model ship correlation [31, 32]. With the atmospheric pressure being 

the same for both model and ship, this usually leads to aeration occurring sooner 

in the model. Fortunately, when aeration does occur, it is visible, and hence can 

generally be avoided, by incorporating a barrier between the free-surface and the top 

of the rudder. 

So far, only the scale eflFects, resulting from the free stream operation of the rudder 

have been considered. The complex interaction between the hull, propeller and rudder 

introduces even more scale effect problems, which cannot be easily accounted for in 

model-ship scaling calculations [33]. One notable scale effect is that the ratio of the 

propeller velocity to free stream velocity in the model is often larger than that for 

the ship [5, 32]. This results in the model having an increased drag coefficient, which 

requires the propeller to operate at a greater slip ratio than the ship. This might 

result in the manoeuvring characteristics, being incorrectly predicted in the case of 

the ship. However, this scale effect is thought to be offset by the compensatory effect 

of the hull boundary layer wake, which is thicker in the case of the model, and leads 

to a reduction in the propeller disc inflow velocity. 

As has been highlighted, experimental approaches to ship rudder performance pre-

diction, based on experimental techniques are dogged with scaling problems, as a 

consequence, theoretical approaches to rudder modelling have been developed in an 

attempt to circumvent some of these problems. 
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2.3 CFD Rudder Modelling Methods 

The past two decades have seen a steady increase in the use of CFD for solving en-

gineering problems, as a direct result of advances in computer technology. As the 

capabilities of computer hardware have advanced, so has the complexity of numerical 

methods used for solving fluid flow problems. Constraints on computing resources 

meant that only simplified numerical methods could be implemented in the early 

years. These methods required numerous assumptions to be made about the fluid 

flow, which in turn introduced modelling errors. However, with the level of comput-

ing power available today, it is possible to implement more complex CFD methods, 

involving fewer assumptions, which are better able to model the physical world. 

The most common area for the application of CFD, has been the aerospace industry. 

As a result, a great deal of research has been focused on the development of numerical 

methods, which can predict the flow over fuselages, wings and rudders. A number of 

these methods are equally well suited to modelling ship rudder flows. The four most 

prominent CFD methods are listed below: 

• Lifting line methods 

# Panel or boundary element methods 

# Reynolds-Averaged Navier-Stokes (RANS) methods 

• Large Eddy Simulations (LBS) and Direct Navier-Stokes (DNS) methods 

However, of the four methods listed above, only the first three are commonly applied 

to wing and rudder flows. There are numerous ways of incorporating the effect of an 

upstream propeller, within the first three numerical methods, using various levels of 

approximation. All four methods vary in complexity, and have certain advantages and 

disadvantages. A brief discussion of these four numerical approaches will be given. 
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in the context of finding the best method or combination of methods, for estimating 

ship rudder performance. 

2.3.1 Lift ing Line Me thods 

This is a basic method which can be used to solve lifting surface flows. The theory 

behind this approach is attributed to the work of Glauert [34]. Here, the lifting surface 

and wake are modelled as a series of horseshoe vortices, known as a lifting line. A 

detailed explanation of this method is given in the text by Katz and Plotkin [35]. 

This method, has the advantage that it provides good estimates of span-wise loading, 

and induced drag, whilst remaining simple to implement and computationally inex-

pensive. However, due to the model's simplicity, it has many drawbacks. The theory 

is limited to lifting surfaces of relatively high aspect ratio, and assumes that the wake 

is aligned in the local flow direction. It also assumes that the lifting surface is of zero 

thickness, and therefore neglects any flow effects resulting from section camber and 

thickness. As it is based on potential flow theory, this method neglects viscous flow 

effects, hence, is unable to directly model frictional drag, flow separation and stall. 

An example of the application of this method to a ship rudder operating in a free 

stream, in its most detailed form, is presented by Molland [36, 37]. 

An upstream propeller can be incorporated within the lifting line model using a 

form of strip theory approach. The upstream propeller effect, can be accounted for 

by modifying the inflow velocity and incidence across the rudder span, using blade 

element momentum theory. Although this approach neglects the span-wise cross flow 

along the rudder, satisfactory predictions of rudder performance have been obtained, 

as demonstrated by Molland [38]. 



23 

2.3.2 Pane l or Boundary Element Me thods 

In the early 60s, as a consequence of increased computing power, a new numerical 

approach to the lifting surface problem, known as the panel method or boundary 

element method began to emerge. This method promised to overcome many of the 

problems of the early lifting line approaches. This technique allows the treatment 

of more complex geometries, and actually models the lifting surface itself, allowing 

the effects of thickness and camber to be calculated. The basic principal of the 

panel method is based on the superposition of source/sinks, vortices and/or doublet 

elements over the lifting surface, such that the boundary conditions on the body, 

across the wake and in the far field are satisfied. Extensive research has been carried 

out in this field. A detailed overview of this method is provided by the pioneer of 

panel methods, Hess [39], and in the text by Katz and Plotkin [35]. 

The advantage of this method, is that it can be used to model actual geometries 

without simplification of the geometry. Although panel methods are significantly 

more complex than lifting line methods, the computational effort required is still 

significantly less than that needed for field methods, like RANS. Wright and Turnock 

[15] found a panel code used to solve a three-dimensional rudder fiow required only 

one percent of the computational effort needed by a RANS code to solve the same 

fiow problem. The reason for this, is that panel method computations are carried 

out on the body, wake and far field boundaries, and not on whole fluid domain, as 

done by the RANS method. Panel methods also allow greater scope in the numerical 

procedure, allowing various levels of detail to be modelled. Even complex flow features 

such as wake roll up, and unsteadiness can be incorporated. However, being based 

on potential flow theory, like the lifting line method, frictional drag, separation and 

stall effects are not directly accounted for. 

Subsequent developments in the field, now mean that viscous effects can be approx-

imated through the use of boundary layer methods, coupled within the panel code. 
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However, panel methods are generally unsuitable for modelling lifting flows, over sec-

tions which have blunt trailing edge features, or regions of large separation and vortex 

shedding, since the method requires the steady Kutta condition [35] to be satisfied 

at the trailing edge. Applying a virtual trailing edge condition, whereby, the trailing 

edge is extended, and faired to the shape of the separation streamlines aft of the blunt 

trailing edge has been used to circumvent this problem, as shown by Jefirey [40] and 

Couser [41]. However, this is a crude approximation and the results are indicative of 

this. 

It is also possible to incorporate unsteady propeller effects within the panel method. 

Turnock [21], Tamsshima et al [42], Soding [43, 44] and Li and Dyne [45] have all 

successfully used boundary element methods to model ship rudders operating under 

both free stream and propeller flow conditions. A detailed review of these, and other 

panel code investigations is given by Turnock [21]. It has been shown that the panel 

method gives good overall performance prediction when compared to experimental 

results. 

2.3.3 RANS Methods 

The previous discussions identifled the limitations of using potential theory in rudder 

flow calculations. Although boundary layer approximations can be used to simulate 

the eff'ect of viscosity on the flow, these methods still introduce another level of 

approximation. Another solution approach, which has developed rapidly over the 

past three decades, involves solving the RANS equations. A detailed description 

of this method is given in Chapter 3. The RANS approach does, however, place 

significantly more demand on computer resources than potential methods, since the 

whole fluid domain is discretised. The computing requirement for accurate full three-

dimensional RANS computations is currently well beyond the capabilities of all but 

the largest research establishments. However, detailed two-dimensional computations 

are within the capabilities of more modest computing facilities. 
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The RANS approach has been around for a number of years, and has been successfully 

applied to a number of marine problems. One of the most common applications of 

the RANS method is in the prediction of ship resistance. A number of the most 

recent RANS investigations into ship flows are presented in the Gothenburg 2000 

[46] and Numerical Towing Tank Symposium [47] proceedings. Surprisingly, limited 

research has been conducted on marine rudder flows using the RANS approach, with 

the researchers Chau [48], El Moctar and Muzaferija [49], Simonsen [8], Wright and 

Turnock [15, 50] having the only published works known to the Author. 

Propeller effects can be incorporated within the RANS method using one of two 

approaches. The simplest way is to model the propeller as an actuator disk. This 

method involves applying body forces, i.e. the source terms in the momentum equa-

tions, to the cells located within the propeller disk, such that the flow is accelerated 

in the same way as a propeller with an infinite number of blades, with the required 

thrust and torque. This actuator disk approach was first proposed by Schetz and 

Favin [51] and has been widely implemented over the years. However, this method 

only accounts for the axial and tangential forces, and neglects any radial force com-

ponents which would be present in the real flow. For simplicity, the effect of the 

propeller is usually represented as circumferentially averaged body forces, input into 

the steady RANS momentum equations, hence, neglecting any unsteady effects. It 

is perfectly feasible for unsteady body forces to be included in unsteady RANS mo-

mentum equations. However, due to the high computing overheads associated with 

time-accurate simulations, these computations are uncommon. Recent investigations 

using the circumferentially averaged body forces, and time varying body force ap-

proaches have been carried out by Stern et al [52, 53], Wright and Turnock [15, 50], 

Tzabiras [54] and Simonsen [8]. Various degrees of success have been obtained using 

this body force method, with qualitative results comparing more favourably than the 

quantitative results. However, in Kodama's [55] review of hull, propeller and rudder 

interactions, he states that agreement with experimental data is not yet satisfactory, 

using this method. 
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The second, and more complex, way of incorporating propellers within the RANS 

model, is to compute the actual unsteady flow over the real rotating propeller ge-

ometry. This method is extremely complicated, requiring the generation of complex 

non-matching grids around the hull, propeller and rudder geometries, with fixed and 

rotating frames of reference. In addition, this approach needs to take into account 

the different time scales in the flow, as the propeller flow requires a much smaller time 

step than the ship flow. It goes without saying, that this approach requires extremely 

large computing resources. The most advanced calculations of this kind have been 

carried out by McDonald and Whitefield [56] and Abdel-Maksoud et al [9]. Although 

promising results have been obtained, increased computing power is needed before 

the full potential of this method can be exploited. 

2.3.4 DNS and LES Methods 

Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) computations 

of marine flows are as yet uncommon. DNS involves the direct solution of the unsteady 

Navier-Stokes equations, and are thought to be capable of resolving even the smallest 

eddies and time scales of turbulence within a flow. Although the DNS method does 

not require any additional closure equations (as in the case of the RANS method), very 

fine grids and extremely small time steps need to be used, in order to obtain accurate 

solutions. This method is currently confined to simple flow problems at relatively low 

Reynolds numbers. DNS computations of the fully turbulent high Reynolds number 

flows associated with ship flows await major advances in computational hardware. A 

detailed discussion of DNS solvers and the future of CFD are presented in the texts 

by Anderson [57] and Wilcox [58]. Although DNS solvers are presently limited to 

solving low Reynolds flows, they are playing a role in further RANS code turbulence 

model development. 

Like DNS codes, the use of LES solvers is rare and mainly the preserve of the CFD 

researcher. LES is a method that can be used to predict accurately the large scale 
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turbulent structures within a flow, requiring a sub-grid scale model to represent the 

smaller scale eddies. Although only the large scale eddies are resolved individually, 

this still requires the use of extremely fine grids, making solutions expensive and de-

manding on present computer resources. Recently this method has been successfully 

utilised in solving numerous high Reynolds number problems, like the turbulent flow 

over a NACA 0012 aerofoil, carried out by Creismeas [59]. It is widely believed that 

LES codes will become the new standard in calculating turbulent flows, with ever 

increasing computing power, long before DNS solvers. A discussion of LES method 

is presented by Wilcox [58]. 

2.4 Verification and Validation in CFD 

Continued advances in computing power and the ever reducing costs of computing 

hardware, means that CFD methods are no longer confined to the research environ-

ment. These advances have lead to the development of many CFD packages aimed 

at the commercial market. As a result, CFD is now widely utilised throughout the 

engineering community. The widespread use of such packages has raised the impor-

tant question of quality assurance, and has resulted in various attempts to develop 

quality standards. These quality standards are aimed at improving confidence within 

the industry. Unlike experimental techniques, which have a large body of knowledge 

and methods which can be used to estimate the experimental error and uncertainty 

(which are widely accepted), numerical techniques of error and uncertainty evaluation 

are less mature. 

Recognising the need for verification and validation in the marine CFD sector, the 

International Towing Tank Conference (ITTC) in conjunction with the American 

Society of Mechanical Engineers (ASME) has been at the forefront in establishing 

guidelines and standards. The proposed standards address all aspects of the CFD 

process. A detailed resume of these guidelines can be found in the proceedings of 
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ITTC [33] and the ASME Editorial Policy Statement on the Control of Numerical 

Accuracy [60]. These guidelines require researchers to investigate the numerical un-

certainty of their CFD computations. The major emphasis of these standards has 

been to ensure that a known level of accuracy is achieved by flow solvers. As yet 

there is no standard method for evaluating numerical uncertainty, accepted by the 

CFD community, hence, it is a subject of much debate, together with the exact def-

initions of verification and validation. However, the simple definition of verification 

and validation given by Blottner [61], provides a broad definition which encompasses 

many of the accepted interpretations; "Verification is solving the equations right, 

and validation is solving the right equations". Stern et al [62] discuss many of the 

verification and validation issues surrounding CFD. 

CFD investigations which require a high level of confidence in the results must in-

clude both verification and validation stages. Depending on the CFD approach used, 

diff'erent verification and validation methods must be employed. The subsequent dis-

cussions will be focused on the specific requirements of the RANS method. 

2.4.1 Verification 

The verification stage of any RANS investigation must assess the uncertainty of the 

method, by investigating the dependence of the numerical model on its boundary 

locations, discretisation approach and iterative solution method. 

As will be described in Chapter 3, the selection of the correct boundary conditions 

which describe the physical domain being modelled, is critical in obtaining valid 

RANS solutions. Assuming that correct boundary conditions have been prescribed, 

the dependence of the flow solution on the location of these boundaries must be inves-

tigated. Usually this is done by moving the boundaries until an important integrated 

global parameter such as lift, drag or field parameter like velocity or pressure, at some 

location within the flow, becomes insensitive to the boundary movement. It must be 
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noted that this approach usually only applies to unbounded fluid flow problems. 

Investigation of the error and uncertainty resulting from the use of flnite diff'erence 

approximations of the governing RANS equations, is probably the most important 

component of any RANS study. Discretisation of a fluid domain, which theoretically 

has an infinite number of continuum values, inevitably results in errors. The problem 

of discretisation uncertainty or error is usually addressed through spatial and temporal 

(unsteady flows only) discretisation studies. 

A spatial discretisation or grid independence study involves obtaining solutions on 

successively refined grids. The purpose of this exercise is to determine the sensitivity 

of the flow solution to the size of mesh used to discretise the fluid domain. Depend-

ing on the number of meshes computed, estimates of discretisation error and order of 

accuracy can be made. A number of systematic approaches to the quantification of 

uncertainty and order of accuracy have been proposed. Stern et al [62] advocate error 

estimates based on a form of Richardson extrapolation [63] using three model grids 

systematically refined in the three co-ordinate directions, whilst Eca and Hoekstra 

[64] argue that this method is unreliable, favouring the use of more than three grids. 

Ideally asymptotic convergence of an important integrated global parameter such as 

lift, drag or field parameter like velocity or pressure at some important location in 

the flow, should occur as the computational mesh is refined. However, in practice, 

asymptotic convergence is sometimes hard to achieve because of numerical problems 

associated with the solver being used. The process of finding a grid independent 

solution can be a complex one, especially when three-dimensional grids are consid-

ered, as the grid properties in each dimension are often interrelated with regard to 

the flow-field variables. Many researchers follow the approach of Stern et al [62] to 

discretisation error estimation, successively refining their grids in all the dimensions 

by the same refinement factor and subsequently estimating the error. The author 

believes that this approach is fiawed and results in meshes which are over-refined in 

some areas and under-refined in others. The authors experience has shown that highly 
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refined grids often produce solutions which violate the asymptotic convergence crite-

ria on which Stern et al's [62] uncertainty estimation is based. The author favours 

a more detailed independence study approach, whereby, grid refinement is carried 

out in each of the three dimensions in turn. This approach allows grid nodes to be 

concentrated in specific areas and has an advantage over Stern et al's [62] approach, 

in that there is less overkill or wastage of nodes located in regions with relatively low 

flow gradients. The disadvantage of this method is that it requires the creation of 

many different grids. 

It must be noted that the degree of grid independence for a particular CFD model, 

should be related to the degree of accuracy needed in the final solution. The difference 

between a fully grid independent solution and an error of 1% in the solution, can often 

result in a 10-fold increase in the number of cells. Accepting a possible 1% error can, 

therefore, save time and money, when extreme accuracy is not necessary. 

Time-accurate flow computations should include a temporal time step independence 

study, whereby, the temporal time accuracy of the flow solution is assessed. In the 

same way as the grid independence study, the time step size used should be varied, 

and its effect on the solution investigated. 

Many CFD solution techniques like the RANS approach, obtain solutions to the 

discretised governing equations using iterative or time-marching equation solvers. A 

steady state converged solution is said to have been achieved, when all the flow field 

variables across the domain stop changing, from iteration to iteration. Many solvers 

quantify the global error in the computed field values from iteration to iteration, 

by calculating the residual imbalance of the momentum and continuity equations. 

The residual error associated with the continuity equation, is usually referred to 

as the mass source residual, which is described in detail in Chapter 3. The mass 

source residual is commonly used as the stopping criteria in RANS computations. 

Hence, every RANS investigation should assess the effect this mass source residual 

stopping criteria, has on the accuracy of the results. Chapter 3 discusses in detail the 
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importance of setting the correct mass source residual stopping criteria. 

2.4.2 Validat ion 

The final stage of any RANS investigation is the validation of the numerical solution. 

This requires some form of benchmark solution, to which the numerical solution can 

be compared. Model test data, full scale data and some analytical solutions are 

commonly used as benchmarks, for assessing the validity of RANS flow solutions. 

Validation is not a simple procedure and has as much to do with the accuracy of the 

benchmark solution, as the accuracy of the RANS solution itself. Good agreement 

between experimental and numerical results does not necessarily mean that the nu-

merical model is correct. Close agreement might result from the cancellation of errors 

or large uncertainties in the experimental data. Like verification, validation has also 

received a considerable amount of attention, and is the subject of much discussion. 

Stern et al [62] provides a detailed discussion on the subject of CFD code validation. 

Ultimately, good validation of CFD results requires high quality experimental data, 

whose level of uncertainty is quantified. Published results of this calibre are often 

hard to find. 

Although general validation of a commercial code is the responsibility of the vendor, 

the final user must appreciate the need for careful verification and validation studies in 

order to assess the validity of the code in solving his/her problem. Detailed verification 

and validation studies, as recommended by the ITTC and ASME, will be applied to 

all the solutions presented in this Thesis. 

2.5 Research Strategy 

The previous discussion of CFD methods highlighted a number of approaches, which 

could be used to estimate rudder performance. These methods ranged from the most 
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basic lifting line approach, to the more complex RANS method. Based on the findings 

of the literature review used to compile the CFD rudder modelling methods section, 

it was decided that a research programme aimed at assessing the capabilities of the 

RANS method, for rudder performance prediction would be conducted. The RANS 

method was chosen in preference to the other methods described, because it is consid-

ered to be the current state of the art for modelling practical marine flow problems, 

and would remain so for the next decade at least. Although a number of recent inves-

tigations have used the RANS method to predict the full unsteady hull, propeller and 

rudder flow regime, the accuracy of these results is far from satisfactory. A number 

of problems are responsible for this lack of accuracy; grid generation problems, grid 

resolution problems, transient time step considerations, turbulence model limitations, 

insufficient computing power and lack of detailed verification and validation. 

Rather than tackle the full three-dimensional hull, propeller and rudder interaction 

problem, with inadequate computing resources, it was decided that the research would 

be better focused on addressing a number of the problems outlined above, using a 

less demanding, but representative two-dimensional rudder-propeller model. The 

ultimate aim of this research programme, was the accurate modelling of flows around 

high hft sections with blunt trailing edges, such as the Schilling. RANS computations 

of steady and time-accurate flows about Schilling sections have yet to be conducted, 

as they present a number of difficult challenges, as identified by Soding [43]. 

As was explained earlier, detailed verification and validation studies must be con-

ducted in order to gain confidence in CFD. It was decided that the whole unsteady 

propeller-rudder problem would be broken down into four validation stages. This 

would allow a detailed performance assessment of the RANS method to be made, 

before utilising it to solve a number of flows around different types of high lift rud-

der. A schematic of the research programme is shown in Figure 3. The aim of each 

validation stage was to assess in isolation, a number of the important criteria and 

considerations needed for accurate modelling of high performance rudders, using the 
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RANS method. It was hoped that by starting with a simple flow model and progres-

sively increasing its complexity, a better understanding of the requirements of the 

whole unsteady propeller-rudder RANS model would be obtained. Dealing with sim-

ple flow problems, gradually increasing the complexity of the model, and quantifying 

the accuracy at each stage, is the only way of assuring the engineering community of 

the validity of the results obtained. 

An un-complicated initial investigation using the RANS approach was sought. The 

steady flow over a two-dimensional flat plate was chosen for this purpose. Despite 

its simplicity, this investigation allowed many of the important aspects of the RANS 

method to be explored without the added complications of grid generation. The 

primary aims of this investigation were as follows; 

• Determine the critical grid and solver parameters needed for accurate skin fric-

tion prediction. 

® Assess the performance of different turbulence models in flows with zero pressure 

gradient. 

® Validate the predicted skin friction against published experimental data over a 

range of Reynolds numbers. 

The second verification and validation investigation was focused on solving the steady 

flow over a two-dimensional NACA 0012 aerofoil. The primary aims of this investi-

gation were as follows: 

9 Determine the critical grid and solver parameters needed for accurate conven-

tional rudder performance prediction. 

» Assess the performance of difl'erent turbulence models in solving flows with 

pressure gradients and regions of separation. 
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» Validate the predicted rudder performance against published experimental data. 

The third verification and validation investigation was focused on solving the under-

converged steady state and time-accurate flow over a NACA 0012 aerofoil fitted with 

a Gurney flap. The primary aims of this investigation were as follows: 

• Determine the critical grid and solver parameters needed to capture periodic 

vortex shedding behind bluff' bodies, and to provide accurate predictions of 

performance. 

• Investigate the implications of using either under-converged steady state or 

time-accurate solution approaches, for solving flows known to exhibit vortex 

shedding. 

• Validate the predicted flow field and section performance, against published 

experimental data. 

After completing the verification and validation studies, to confirm the validity of the 

RANS method in solving free stream flows over both conventional and high lift type 

sections, an investigation into the performance of different conventional and high hft 

rudder sections was conducted. A conventional NACA 0020 and a generic high lift 

Schilling type rudder section were chosen for this study. The aims of this investigation 

were as follows: 

• Investigate the effect of Reynolds Number and flow type, on free stream rudder 

performance and its implication in model-ship scaling. 

® Investigate the free stream performance effect of fish-tail trailing edges, like 

those fitted to Schilling rudders. 

« Obtain a better understanding of the flow physics associated with SchiUing 

rudder flows. 
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The final verification and validation investigation was focused on modelling both con-

ventional and high lift rudders, operating under simplified two-dimensional periodic 

inflow conditions, similar to those produced in a propeller race. The objectives of this 

investigation were two-fold. Firstly, to establish a plausible flow model which could 

be used to simulate two-dimensional periodic flow conditions experienced by a rudder 

operating downstream of a propeller. The second objective, was to obtain a better 

understanding of the effect periodic flows have on rudder performance. The primary 

aims of this investigation were as follows: 

• To devise a method which allows two-dimensional periodic flow conditions ex-

perienced by a rudder operating downstream of a propeller to be simulated. 

• In the absence of detailed experimental validation data, to assess the validity 

of the method, against classical linear theory at low amplitudes and reduced 

frequencies. 

• Assess the effect of periodic flow disturbances of high amplitude, at various 

reduced frequencies on conventional and high lift rudder sections. 

2.6 Organisation of Thesis 

The work presented in this Thesis can be divided into six main threads, following a 

common theme of verification and validation. These are: explanation of the RANS 

solution approach and required grid generation procedure (Chapters 3 and 4); val-

idation of the RANS solution approach in the prediction of flat plate skin friction 

(Chapter 5); validation of the RANS method in the prediction of NACA 0012 section 

performance (Chapter 6); validation of the RANS solution approach in the prediction 

of the performance of a NACA 0012 section fitted with a Gurney flap (Chapter 7); 

investigation of high lift section performance (Chapter 8); validation of the RANS 

method in the prediction of periodic flows about high lift rudder sections (Chapter 
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9). The first and last sections of each Chapter summarise, respectively, the context 

and significant findings of that Chapter. Thus, by reading these Sections only, it is 

possible to understand the development of the Thesis, and the important findings 

of the research presented. Chapter 10 summarises the major findings of the entire 

Thesis, as well as presenting some recommendations for future research. A number of 

Appendices are also included which discuss in more detail: model-ship rudder scaling 

(Appendix A); geometric progression distribution formulae (Appendix B); hyperbolic 

distribution formulae (Appendix C) and linear unsteady aerofoil theory (Appendix 

D). All tables and figures are placed at the end of the Thesis. 
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Chapter 3 

Governing Equations and R A N S 

Solver Detail 

3.1 Overview of Chapter 

The commercial RANS flow solver CFX-4.3 was used to facilitate the rudder per-

formance predictions presented in this Thesis. The following Chapter presents the 

fundamental fluid flow governing equations, along with a brief description of the nu-

merical approach used by CFX-4.3 and similar RANS codes, in formulating a solution 

to these equations. Particular attention is focused on the specification of the initial 

and/or boundary conditions and the selection of the appropriate solver parameters, 

needed to obtain solutions to external flow problems, such as rudder flows. It is 

hoped that many of the techniques and procedures introduced in this Chapter will 

prove valuable to any engineer faced with using a RANS code for the first time. 
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3.2 Governing Equations 

3.2.1 Comple te Navier-Stokes Equat ions 

The governing equations which describe the motion of viscous, incompressible fluids 

are the complete Navier-Stokes equations, named after the fluid dynamicists Navier 

and Stokes who derived the constituent momentum equations at the beginning of 

nineteenth century. They consist of a coupled system of five nonlinear partial difi'er-

ential equations, made up of equations of continuity, momentum and energy. These 

equations are derived by accounting for the changes of mass, momentum and energy 

within a infinitesimally small fluid element, resulting from fluid flow across its bound-

aries and/or due to any sources within the fluid element itself. For incompressible 

flows, the density is assumed to be constant, and the Navier-Stokes equations reduce 

to a set of four coupled partial diEerential equations; the continuity equation and 

three momentum equations. From here on, only the incompressible Navier-Stokes 

equations will be referred to. The conservation form of the governing equations will 

be presented. All equations will be expressed in compact Cartesian tensor form; where 

Xi or {x,y,z) are the Cartesian co-ordinates and Ui or [Ua îVy^w^] are the Cartesian 

velocity components. 

Equation 22 is the continuity equation, accounting for the conservation of mass within 

a fluid. 

Equation 23 is the momentum equation, classically known as the Navier-Stokes equa-

tion and accounts for the conservation of momentum within a fluid. 

H r —— v 
dui duj 

(23) 
dt dxj dxi dxj \ [dxj dxi 

The first term on the left hand side of Equation 23 is due to the temporal change in 

momentum and the second term accounts for convection. The first term on the right 
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hand side of Equation 23 gives the momentum change due to the pressure gradient 

and the second term accounts for the diffusion due to viscosity. The third term on the 

right hand side of Equation 23 accounts for any body forces which may exist in the 

fluid, like those resulting from the inclusion of a propeller, or more usually gravity. 

The development of the finite volume method used by CFX-4.3 and other flow solvers, 

results from the integration of the conservative form of the complete Navier-Stokes 

equations over a three-dimensional control volume, as explained by Versteeg and 

Malalasekera [65]. The resulting equations express the exact conservation of the 

relevant flow properties within the control volume. This direct relationship between 

the physical conservation principle, and the governing equations form one of the main 

attractions of the finite volume method. 

Currently no general closed-form solutions have been obtained to the complete Navier-

Stokes equations, except for a few special cases. Hence, a numerical method involving 

some form of discretisation of the partial differential equations is used in order to solve 

them. Further information on the development of these finite difference approxima-

tions can again be found in texts by Anderson [57] and Versteeg and Malalasekera 

[65]. 

3.2.2 Reynolds-Averaged Navier-Stokes Equat ions 

Although the complete Navier-Stokes equations govern both laminar and turbulent 

flows, they are not suitable for the direct computation of turbulent flows. To do 

so would require computers in the order of 10® times faster than today's fastest 

supercomputer, computing on extremely fine grids and over a large number of time 

steps, in order to capture the turbulent motion at the smallest time and length scales, 

as stated by Speziale [66]. 

For engineers dealing with practical problems, in which they are mainly concerned 

with quantitative properties such as average forces, a computational procedure known 
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as Reynolds-averaging can be applied to turbulent flows, giving useful results without 

the need to model the effects of every eddy within the flow. This method was first 

proposed by Reynolds [67]. In the Reynolds-averaged approach to turbulence, the 

flow variables are resolved into time mean and fluctuating components, as shown by 

Equation 24 and Equation 25. 

Ui — Uj, "f" Vn (24) 

P — P p' (25) 

On substitution into the complete Navier-Stokes equations, and following time-

averaging, the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations are ob-

tained. The time-averaged form of the continuity equation is given by Equation 26. 

The time-averaged Navier-Stokes momentum equation is given by Equation 27, where 

u'-u'j denotes the time-average of u'-u'j and is known as the specific Reynolds stress 

tensor. This stress tensor consists of six unknown independent stresses, acting in the 

normal and shear directions. 

= 0 (26) 

- - - r 

% 
a ? a 

+ - — 1 u (27) 

3.2.3 Turbulence and Turbulence Model l ing 

As was shown in the previous section, Reynolds-averaging of the complete Navier-

Stokes equations gives rise to six additional unknown independent stresses. A com-

putational procedure known as turbulence modelling, is used to predict these stress 

terms. This provides closure to the time-averaged complete Navier-Stokes equations, 

based on the turbulence effects of the mean flow. The complex phenomena of tur-

bulence precludes the use of simple formulae in the calculation of these unknown 
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stress terms. Consequently, no single turbulence model exists which can be applied 

universally to any turbulent flow problem. For a turbulence model to be useful in an 

engineering sense, it must have wide applicability, a known level of accuracy in its 

application to different flow problems and remain un-complicated and easy to imple-

ment. A number of turbulence models have been developed over the years, all varying 

in their complexity and suitability to certain flow situations. Turbulence models can 

be roughly divided into four main categories; Algebraic (zero-equation), one-equation, 

two-equation and stress-transport models. A complete discussion of turbulence and 

turbulence modelling is beyond the scope of this Chapter. However, a brief descrip-

tion of the theory behind the most widely used turbulence models, the two-equation 

or standard k — e turbulence model and its Renormahzation Group (RNG) variant 

will be given. These two turbulence models will be used exclusively throughout the 

research. More detailed discussions of turbulence and turbulence modelling can be 

found in Versteeg and Malalasekera [65] and Wilcox [58]. 

3.2.3.1 Standard k — e Turbulence Model 

The k — e turbulence model is probably the most widely used turbulence model to 

date, and was chosen for this reason as the turbulence model in this research. The 

k — e turbulence model computes the Reynolds stresses based on the Boussinesq [68] 

eddy hypothesis for Newtonian fluids, whereby the Reynolds stresses are related to 

the mean rate of deformation, turbulent kinetic energy and turbulent viscosity within 

a fluid, as expressed in Equation 28. 

K - ; = ( | | + ^ ) + (28) 

where i>t is known as the eddy viscosity and depends on the local turbulence in the 

flow and 5^ is Kronecker delta {5ij = 1 Hi = j and Sij = 0 if i ^ j ) which makes the 

formula applicable to the normal Reynolds stresses. Equation 28 is commonly known 

as the isotropic eddy viscosity model, since it predicts the normal turbulent stresses 

as being the same in all directions, even though it is known that these stresses are not 
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generally isotropic. The eddy viscosity, Vt, is determined from the turbulent kinetic 

energy, k = and the rate of turbulent dissipation, e = using Equation 

29. Physically, turbulent kinetic energy, k, is the kinetic energy per unit mass of the 

turbulent fluctuations within a flow. The rate of turbulent dissipation, e, is the rate 

at which turbulent kinetic energy is converted into thermal internal energy within a 

fluid. Equation 29 is derived from dimensional analysis of the velocity and length 

scales which characterise the turbulent exchange of momentum. 

e 
(29) 

where is an empirical coeflicient generally set to 0.09. k and e are determined 

from the two transport equations (hence, the name two-equation turbulence model), 

Equation 30 and Equation 31. 

1 dt 

dt 

d 

dxj 

V - — 1 
86 
dxj 

de 
+ 

+ Pk- pe 

Qa/) k 

(30) 

(31) 

where (rt,cre, Cei and Qg are empirical constants obtained from experiments on a wide 

range of turbulent flows. The standard constants and the ones used in this research 

are given in Table 1. Pfe in Equation 30 and Equation 31 is the generation rate of 

turbulent kinetic energy and is given by Equation 32. 

Pk = -U':U' (32) 

The standard k — e turbulence model described, has been widely used, validated 

and shown to perform well in a variety of applications. However, like all turbulence 

models it has a number of deficiencies. Useful references which discuss the weaknesses 

of the standard k ~ e turbulence model and the implications these weaknesses have 

on different flow solutions, are given by Versteeg and Malalasekera [65], Wilcox [58], 

Leschziner [69], Guilmineau et al [70] and Rhie and Chow [71]. In the context of the 

research presented later in the Thesis, i.e. flows over Ufting sections, a number of the 

weaknesses associated with the standard k — e turbulence model are outlined below: 
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• The standard k — e has been found to over-predict the turbulent kinetic energy 

in regions of impingement and re-attachment, leading to the poor prediction of 

boundary layer development around leading edges and bluff bodies. 

® The standard k ~ e turbulence model has been found to give poor prediction 

of flow separation from surfaces under the action of adverse pressure gradients. 

Often, the real flow is found to be much closer to separation or more separated 

than the computed flow. 

» Flow recovery following separation re-attachment is often poorly predicted as 

a result of the implementation of wall functions within the standard k — e 

turbulence model. 

« The standard k~e turbulence model is often poor at predicting highly swirling 

flows, where the turbulent flow field is anisotropic, such as in regions of re-

circulation and vortex shedding. 

» Laminar and transitional flows cannot be calculated with the standard k — e 

turbulence model. 

In spite of its seeming large number of deficiencies, the standard k — e turbulence 

model still remains the major work-horse of industrial turbulent flow computations, 

in preference to models which incorporate improved physical modelling of turbulence. 

The reason for this is probably because the standard k — e turbulence model is rela-

tively simple, stable and has deficiencies which have been quantified. 

3.2.3.2 RNG k ~ e Turbulence Model 

Recent advances in turbulence modelling have lead to the development of a variation 

on the standard k — e turbulence model, the RNG k ~ e turbulence model, in an at-

tempt to overcome some of the deficiencies of the standard model [65]. New statistical 

mechanics approaches have lead to the development of new mathematical formalisms. 
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In conjunction with a Umited number of assumptions regarding the statistics of small 

scale turbulence these new formalisms, provide a basis for the extension of the basic 

eddy viscosity models. This model involves representing the small scale turbulence, 

by means of a random forcing function within the complete Navier-Stokes equations. 

The RNG procedure developed by Yakhot et al [72] systematically removes the small 

scales of motion from the governing equations by expressing their effects in terms 

of larger scale motions and a modified viscosity. The subsequent modified transport 

equations for k and e are given by Equation 33 and Equation 34 and additional coef-

ficient equations Equation 35 and Equation 36. The only adjustable coefficient is /3, 

which is calculated from near-wall turbulence data. All other coefficients are either 

fixed, or explicitly computed as part of the RNG solution process. The constants 

used by the RNG model are given in Table 2. 

dt dxj 
at + f/f) 

a t 
a z j j 

pe (33) 

dt dxj dxj 
ag (z/ + f/f) 

de 
< 1 ^ k 

(34) 

-el Csl 
^7(1 - W%) 

1 + I3rf 
(35) 

77 = 7̂  1/2' 
(36) 

The RNG turbulence model is generally regarded as being better than the standard 

k — e turbulence model [72], overcoming some of its deficiencies. However, it still 

suffers from the inability of predicting anisotropy of turbulence. This turbulence 

model still needs to be widely validated in order to obtain the same credibility as the 

standard k — e turbulence model. 
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3.3 Boundary Conditions 

In order to obtain correct solutions from the governing equations, it is necessary to 

define the initial and/or boundary conditions for the dependent field variables P^k 

and £, that describe the problem to be solved. The correct selection of these boundary 

condition variables, is fundamental to obtaining accurate flow solutions. The use of 

unrealistic and badly posed boundary conditions can lead to spurious and incorrect 

flow solutions, or more usually rapid solver divergence. The two most frequently 

used linear boundary conditions are, the Dirichlet and Neumann conditions [57]. The 

Dirichlet condition is the specification of the value of the dependent variable on the 

boundary of the computational domain. The Neumann condition is the specification 

of the normal component of the gradient of a dependent variable on the boundary. 

The various boundary conditions used in this research, and how their values are 

determined, will be outlined. 

3.3.1 Inlet 

The inlet boundary condition is a form of Dirichlet boundary condition. On an 

inlet boundary, the dependent variables oiUi,k and e are prescribed explicitly. The 

pressure is not set for incompressible flows, since it is extrapolated from downstream 

in the fluid domain. The variables of Ui are set according to the inflow velocity of the 

problem. The turbulence quantities k and e, however, are often difiicult to specify. 

If the computations are to be compared with experimental data, the inlet turbulence 

quantities of k and e should be set according to measured values found from the 

experiments. These measurements are seldom available to researchers, making it 

hard for comparisons to be made on the same benchmark. When this is the case, 

investigations into the sensitivity of the flow solution to the selection of k and e 

parameters must be carried out. 

If measurements of turbulence intensity do exist and the turbulent length scale of the 
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problem is known, then crude estimates of k and e can be made. The turbulence 

level or turbulence intensity within a flow is defined by Equation 37, which reduces 

to Equation 38 if all the Reynolds stresses are assumed equal. 

% = =- (37) 
^oo 

^ ^ (38) 
"'OO 

Substituting Equation 38 into the equation for kinetic energy, Equation 39, an ex-

pression for k based on the turbulence intensity can be obtained, Equation 40. 

+ ^ + (39) 

k = \ T f U l (40) 

The specification of the rate of dissipation of kinetic energy e is more difficult. Esti-

mates of e can be made if measurements of the turbulent length scale I of the problem 

exist using Equation 41, [58, 65]. 

e = (41) 

If the flow is known to be free of residual turbulence, (which is extremely unusual 

especially in the case of wind tunnel experiments) k and e can be set to zero, the free 

stream undisturbed condition. In practice, both k and e are set to small values, say 

1.0 X 10""̂ , to avoid solver convergence problems where k and e can turn negative. If 

the upstream inlet boundary is placed far enough upstream, the choice of k and e is 

less critical as they tend to dissipate to low values. 

3.3.2 Wall 

The wall boundary condition requires that the velocity on the wall satisfies the no-slip 

condition. Also, on the wall k is zero and e is non-zero. The k — e turbulence models 
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can only be applied to regions which are fully turbulent and cannot be applied in 

regions where viscous effects are dominant, such as those found in the laminar sub-

layer. The wall function approach proposed by Launder and Spalding [73] can be 

used to overcome this problem. 

From experimental work it is known that near-wall flows have a characteristic multi-

layered structure within the boundary layer as shown in Figure 4. This consists of 

a laminar sub-layer (viscous force dominated) close to the wall, followed by a buffer 

layer (viscous and turbulent forces of similar magnitude) and then an outer turbulent 

core (turbulent stress force dominated). Direct methods of resolving the turbulent 

eddies within this boundary layer, require extremely flne grids down to the wall, 

through the laminar sub-layer, which is computationally intensive and very costly. 

However, most RANS codes use turbulence models that employ wall functions, based 

on the universal law of the wall [74]. The use of wall functions avoids the need for fine 

grids in the laminar sub-layer, by making use of empirical fits within this region. The 

turbulence models used in this research all make use of this wall function approach. 

When dealing with near-wall flows, positions and velocities within the boundary layer 

are usually considered in non-dimensional form, ?/+ and 

is a local Reynolds number, with length scale in the direction perpendicular to 

the wall and velocity based on the wall shear stress, as represented by Equation 42. 

is a non-dimensional form of velocity at a distance away from a wall as represented 

by Equation 43. 

'y'^w/P 

Non-dimensional analysis and experimental work has shown that the specific flow 

structures within the boundary layer lie within strict bounds of and these are 

used in the formulation of wall functions [65]. Positions within the boundary layer 

in which ^ 11.63 are regarded as being laminar in structure and positions where 



48 

y'̂  ^ 11.63 are considered as being turbulent. It has been shown that within these 

two regions, two different functional relationships exist between ?/+ and These 

are shown in Equation 44 and Equation 45, for the laminar linear sub-layer and for 

the turbulent log-law regions respectively [65]. 

= (44) 

= — In Ey^ — -Iny'^ + B (45) 
K K 

The constants in Equation 45 are determined from experiment. For hydraulically 

smooth walls the Von Karman constant, K = 0.4, and the log-layer constant, E = 

9.793 (or B = 5.5). Roughness can be simulated by increasing the value of E. The 

buffer layer crossover value of 11.63, is found by finding the intersection of the linear 

laminar sub-layer profile; Equation 44 and the log-law turbulent profile; Equation 45. 

The use of wall function turbulence models places specific requirements on the grids 

used in solving turbulent flow problems. When considering turbulent near-wall flows, 

the most critical grid parameter is the near-wall grid spacing. It is of paramount 

importance, that near-wall grid spacing is selected in accordance with the require-

ments of the wall function. In wall function turbulent calculations, a of 11.63 

usually sets the lower limit for the distance of the first cell, to the wall boundary, 

with the optimum near-wall position lying somewhere between — 30 and 500, [65]. 

It must also be remembered that whilst the first cell spacing is critical in accurate 

near-wall flow modelling, enough cells should be placed within the boundary layer, to 

resolve the flow gradients. The use of wall functions, therefore, poses a special grid 

independence problem for near-wall flows. 

3.3.3 Mass Flow Out le t 

The mass flow boundary condition is a form of Neumann boundary condition. Here 

the gradient of the dependent field variables C/,, k and e normal to the boundary are 
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initially set to zero and, later, Ui is modified to have a constant gradient, in order 

to maintain global mass continuity. The pressure is extrapolated from upstream [75]. 

This boundary condition relies on the assumption that the flow is fully developed 

when it reaches the outlet. Therefore, all outlet boundaries should be placed far 

enough downstream, to ensure that the fluid flow is fully developed, i.e. zero flow 

variable gradients in the flow direction. Positioning an outlet too close to an area with 

a flow disturbance, may result in solution errors, since the assumed outlet condition 

of zero flow gradient does not hold. With regard to bluff body flows, it has been 

shown that there will be an area of reversed flow downstream. This reversed flow, 

will violate the outlet boundary condition of outward flow, if the outlet is placed too 

close to the body. It is necessary in the case of incompressible flows for global mass 

continuity to be maintained in order for the pressure correction equation to be well 

posed. This means that the total flow out of the domain must equal the total flow 

into the domain at all stages of the solution procedure. This is achieved by setting the 

normal derivatives of Ui to zero at the end of the velocity update, followed by working 

out the discrepancy in mass conservation. A constant multiple of unit outward normal 

is then added to the Ui at each outlet control volume in order to ensure global mass 

conservation. Thus the zero gradient condition of Ui is modified. The normal velocity 

gradient is in fact equal to a constant multiple of the unit outward normal [75]. 

3.3.4 P ressu re Out le t 

The pressure outlet boundary condition is a mixed boundary condition in which the 

Dirichlet boundary condition is applied to the P field variable and the Neumann 

boundary condition is applied to Ui, k, and e. As for the mass flow outlet boundary 

condition, the assumption of zero normal gradient for Ui is assumed, i.e. the fully 

developed approximation. However, unlike the mass flow boundary condition, Ui is 

not later modified to achieve global mass conservation. This is instead taken care of 

by the velocity-pressure correction procedure [75]. 



50 

3.3.5 S y m m e t r y P lane 

The symmetry plane boundary condition is also a mix of the Dirichlet boundary 

condition and Neumann boundary condition. Here the normal velocity components 

to the symmetry plane, and the normal gradients of k and e together with the parallel 

velocity components, are set to zero. The shear stresses on the symmetry plane are, 

therefore, also set to zero. 

3.3.6 Posi t ioning of Boundar ies 

It is important that all boundaries are positioned to ensure that they have no demon-

strable effect on the flow solution. In any CFD study, where high accuracy results 

are required, a sensitivity study should be carried out, to demonstrate that the in-

terior flow solution is unaffected by the location of the boundaries. It must also be 

remembered that it is not good practice to place boundaries at excessive distances 

from the body. This wastes valuable computational resources, which could be put to 

better use in resolving areas with high flow gradients. 

3.4 CFX-4.3 Flow Solver 

The RANS flow solver used in this research was CFX-4.3, a structured multi-block, 

fully implicit finite volume flow code produced by AEA Technologies [75]. Solutions 

are obtained on multi-block grids produced by MESHBUILD, CFX-4.3's own grid gen-

eration module or other grid generation programs. A variation upon the Rhie-Chow 

[71] solution algorithm is implemented within CFX-4.3. The non-linear complete 

Navier-Stokes equations are solved to yield the velocity components by means of a 

two step iterative process. An inner iteration is used to solve for the spatial coupling 

for each variable, and an outer iteration is used to solve for the coupling between 
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variables. Each variable is taken in sequence regarding all the other variables as fixed 

and a linearised difference equation for the variable is formed for every control volume 

in the flow domain. The equations are then handed over to a linear equation solver, 

which then returns the updated values of that variable. The non-linearity of the orig-

inal equations is simulated by reformatting the coefficients of the discrete equations, 

using the most recently calculated values of the variables, before each outer iteration. 

The calculation of pressure throughout the domain is slightly different, since it does 

not obey a transport equation. Instead, simplified versions of the discrete momentum 

equations are used to derive a functional relationship between a correction to the pres-

sure, and corrections to the velocity components in each control volume. Substitution 

of this expression into the continuity equation, leads to an equation linking the pres-

sure correction with the continuity error in the control volume. This set of equations 

is then solved in the same way as the transport equations, using a linear equation 

solver. The solution is used to update the pressure and to correct the velocity field 

though the functional relationship, in order to enforce mass conservation. One of 

two pressure coupling algorithms for incompressible flows can be implemented within 

CFX-4.3. Either the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) 

[76] or Pressure Implicit with Splitting of Operators (PISO) [77] pressure correction 

algorithms can be used. A number of linear equation solver options exist within CFX-

4.3. The default solvers use Block Stone's method [75] for all equations, apart from 

the turbulence quantities where line relaxation is used. These default solvers were 

used in the research presented. A study of the performance of the various available 

equation solvers within CFX-4.3 is given by Wakefield [78]. A complete description 

of the CFX-4.3 flow solver can be found in the CFX-4.3 user manual [75]. 
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3.5 Obtaining a Solution 

The governing equations, along with the boundary conditions required to solve them, 

have been presented. The process of obtaining a solution using a solver such as CFX-

4.3, is a complex procedure, which cannot be carried out by just executing a list of 

tasks one after the other. Often, the solver must be run, the results checked and 

then re-run with slight adjustments to the model, in order to improve the solution. 

The production of a good simulation usually results from a continual process of trial 

and error. The use of a commercial flow solver means that much of the numerical 

solution process is hidden from the user. Some parameters important in the solution 

process often need to be prescribed by the user, in order to obtain satisfactory solution 

progression and final results. This section will introduce these solver parameters and 

detail their effects on the solution process. 

3.5.1 Differencing Schemes 

The accuracy of a flow solution is dependent on the choice of differencing scheme 

employed in approximating the Navier-Stokes equations. The type of differencing 

scheme, dictates the way in which the partial derivatives in the governing Navier-

Stokes equations, are replaced with algebraic difference quotients, based on the flow 

field variables at the faces of the control volumes. A variety of differencing schemes 

exist, all with varying orders of accuracy. Essentially, the use of a greater number 

of surrounding control volume faces, in formulating the difference quotients, usually 

constitutes a higher order accurate differencing scheme. The choice of differencing 

scheme used for a particular flow solution, depends on the flow type and the degree of 

accuracy expected from the flow solution. High order accurate differencing schemes, 

have the advantage over the lower order schemes, that they generally need fewer total 

grid points to obtain comparable overall accuracy, but this is often at the expense 

of increased computer time. Lower order schemes are often more robust than higher 
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order schemes, and can cause fewer convergence problems, especially when used on 

grids of poor quality. 

The three most common differencing schemes used in finite volume flow codes are; 

upwind (first order), Quadratic Upstream Interpolation for Convective Kinetics or 

QUICK (third order) and hybrid (second order) [65]. The upwind differencing scheme 

forms, the difference quotients based on the value of the upstream control volume face, 

whereas, QUICK uses a three point upstream weighted quadratic interpolation. The 

hybrid interpolation combines an upwind interpolation with a central differencing 

scheme, which uses one upstream and one downstream face for interpolation. 

Similar differencing scheme approaches, are applied to transient problems in order to 

calculate the time dependent partial derivatives in the Navier-Stokes equations, in 

terms of algebraic difference quotients based on the variables at different time levels. 

Backward [65] and Quadratic differencing, are two of the most common time marching 

differencing schemes used by finite volume codes like CFX-4.3. 

3.5.2 I te ra t ive Solution Process 

As has already been mentioned, the solution process used is iterative. This means 

that an initial solution, normally a "guessed" solution, is required at the start of 

the solution process. The numerical equations are then used to produce a more 

accurate approximation to the numerically correct solution, which is one in which 

all the variables of each control volume satisfy the governing equations. During this 

iterative process, the updated solution field variables at the end of the iteration can 

be very different from those at the start of the iteration. Ideally, as the solution 

proceeds towards convergence these differences should decrease. In order to quantify 

if the solution process is converging, an error measure known as the residual is used. 

This error term is formulated from the numerical equations being solved. At the end 

of each iteration the latest solution is used to generate all the terms in the various 
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partial differential equations. For example, if all the terms in the momentum equation 

are placed on the left hand side of the equation, and the individual components 

are calculated, then the terms should sum to give zero. As the solution is only an 

approximation to the required values of the variable, the sum will not be zero. It is 

this sum that is the residual error. As the solution process progresses from iteration 

to iteration, the residual errors from each equation should reduce. If this is the case, 

the solution is said to be converging. If the residuals become ever larger, then the 

process is said to be diverging. CFX-4.3 and similar solvers output the residuals for 

both the momentum, continuity, and turbulence transport equations in an output 

file, enabling quick assessment of the progress of the solution. 

3,5.2.1 Convergence Stopping Criteria 

Most solvers use the residual error from the continuity equation, commonly known as 

the mass source residual, as the stopping criteria for defining a solution as converged. 

The mass source residual, is the sum of the absolute values (the Li norm [79]) of 

the net mass fluxes into or out of every control volume in the flow, and thus has 

the dimensions of kg/s. For the continuity equation to be satisfied and hence the 

solution converged, this must equal zero. In practice a small residual tolerance is set 

by the user, dependent on the accuracy expected from the solution. The specification 

of this tolerance is problem specific, and can only be determined after running a 

problem for a number of iterations whilst studying the convergence history of an 

important property, like an integrated global parameter such as lift, drag, or a field 

parameter like velocity or pressure, at some location within the flow. From this data, 

the minimum mass source tolerance needed to obtain a converged solution, in terms 

of the flow property of interest can be found. The selection of the correct mass source 

tolerance for a problem, can mean the difference between obtaining a solution in 

100s of iterations rather than in 1000s of iterations with no noticeable increase in 
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accuracy in results. The default mass source residual stopping criteria within CFX-

4.3 is 1.0 X 10~®, however, this criteria may in some computations be too onerous, 

as will be shown later. A study into the effect of the mass source tolerance stopping 

criteria is presented in Chapter 6. 

3.5.2.2 Iterations on Inner Equations 

Up until now, it has been assumed that the solution process has been converging from 

iteration to iteration. This is rarely the case and residual errors become larger from 

iteration to iteration instead. In the previous section it was mentioned that iterative 

solution algorithms are used to provide solutions to the sets of simultaneous equations. 

Usually solvers like CFX-4.3 provide controls which allow the user to control the way 

in which this process is carried out. One control is the number of inner iterations used 

to solve the simultaneous equations. Increasing this can often help the convergence 

of difficult problems. Poor convergence of the inner pressure correction iteration, in 

particular, can lead to loss of mass conservation and solver divergence. Therefore, 

increasing the number of iterations on pressure can sometimes help. It must be noted, 

that increasing the number of inner iterations can greatly increase the solution time, 

so the smallest number of inner iterations as possible should always be sought. Unless 

otherwise stated only one iteration on the inner equations will be used in this research. 

3.5.2.3 Under-Relaxation 

Another parameter which can be used to control the inner iteration solution process, 

specifically in steady state problems, is "Under-Relaxation". Under-relaxation has 

several interlinked purposes in the inner solution process. Firstly, and principally, 

the amount by which a variable would change, if the equations were solved as they 

stand is reduced. Difficulties caused by instability due to, amongst other factors, 

the non-linearity of the equations, are overcome in this way. Under-relaxation is 
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implemented by scaling the coefficient of the variable in the control volume by an 

under-relaxation factor {URF) in the range 0 < URF < 1.0. The smaller the factor, 

the more under-relaxation is employed. 

A secondary purpose of under-relaxation which is a consequence of modifying the 

equations in the way described earlier, is that the linear equation solver is presented 

with an easier problem to solve. A small URF yields a more diagonally dominant 

matrix, whilst causing more work for the solver. For the above reasons, an under-

relaxed problem, although more stable, may take more time to reach the required 

minimum mass source residual. This is because the amount by which a variable 

would change is reduced and hence the time to reach a converged value is increased. 

If the computational mesh is complex and the control volumes are not near cuboid in 

shape, the relaxation factors applied to the equations might need to be reduced, in 

order to obtain convergence. The standard URF values used throughout this research 

are given in Table 3. 

3.5.3 Transient Flows and Time Stepping 

So far only the solution parameters specific to the control of steady state solution 

processes have been discussed. Another means of controlling the overall solution 

process is to use a time dependent solution scheme. This approach can be used for 

transient flows, or steady state flows with convergence difliculties. Such schemes 

reproduce the physical changes that a flow would undergo if it were changing with 

time. For steady state problems, this can be used as a means of smoothing out the 

way in which the solution changes from one iteration to another, as an alternative 

to under-relaxation. With time dependent schemes, the main controlling factor is 

the value of the time step. This is set to give the smallest number of time steps as 

possible, whilst maintaining a smoothly converging solution, in which all the complex 

physics within the flow are resolved. For steady state problems, only the converged 

solution, after what is eff'ectively an infinite period of time, is required and so the 
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time step can be large. For transient problems where time variation is of importance, 

the time step has to be small enough to model accurately the temporal changes in 

the flow variables. 

For transient problems, it is difficult to determine the value of the time step necessary 

to obtain a converging solution, as the stability criteria of the complete Navier-Stokes 

equations cannot be found analytically. The choice of time step depends on the time 

scales of the important flow features which need to be resolved in the flow. Using 

too large a time step can often result in resolution of non-physical flow behaviour. 

Although from a numerical stability point of view, the time step used by implicit 

solvers does not have to satisfy the Courant-Priedrichs-Lewy (CFL) condition, given 

in Equation 46, it is often advisable for relatively small time steps close to the CFL 

limit to be initially used. 

C = c—— ^ 1 (46) 
Ax 

where C is the Courant Number, c is the speed of propagation of some important flow 

feature, is the time step and Az is the grid spacing in the direction of propagation. 

Using this (CFL) criteria, an estimate of the time step needed in transient problems 

can be made. Based on this condition, a time step of the order of magnitude of the 

residence time of a fluid particle passing through a control volume is often used. The 

residence time, is the time it would take a fluid particle to move through a cell from 

one face to the opposite face. For example, if a fluid particle moves in the ^-direction 

with a velocity «, the residence time and hence the time step necessary to capture 

this movement would be given by Equation 47. 

Z\Z== (47) 
u 

This calculation is typically carried out on a control volume, which is known to be 

located at a point with the greatest flow instability, such as the vortex street in bluff 

body flows. Care must, however, be taken to ensure that the time step used, is not 
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so small that the Reynolds-averaging assumptions are violated, i.e. averaging time 

A(. 

For steady state problems with convergence problems, the time step is often set 

close to the Courant limit and slowly increased by means of adaptive time stepping, 

whereby, the time step is increased by a fixed factor at each new time step. This 

approach can also be applied to transient flows when seeking an optimum time step, 

hence, rapid convergence. 

3.5.4 User FORTRAN 

Although CFX-4.3 and similar solvers allow the definition of the initial and/or bound-

ary conditions, and solver parameters through a command file, there is often a need 

to specify more complex information such as unsteady boundary conditions. CFX-4.3 

allows the user to generate FORTRAN subroutines, defining such additional informa-

tion, which can then be compiled and linked with the main solver libraries to provide 

a modified solver program. 

3.5.5 D a t a O u t p u t 

CFX-4.3 like other flow solvers allows the output of a wide range of data throughout 

and at the end of the solution process. The output data is written to two files. A 

dump [.dmp) file containing flow field variables at every grid node, together with 

the geometry information, and an output (./o) file containing information such as 

integrated wall forces and pressures at various times throughout the solution process. 

A dump file can be output any number of times throughout the solution process, 

whilst, the output data file is only generated at the end of the solution. When, 

and what type of data, is included in the output file, is defined in the command 

file. Depending on the problem and/or if the solution is transient, these files can 
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be extremely large, typically 400MB for some of the long transient runs presented. 

The dump files produced can be processed using some form of visualisation package. 

The large output files, however, need to be post-processed in order to extract the 

important information. A post-processing program was developed by the Author 

specifically to do this. 

3.5.6 D a t a Visualisation 

Although the basic visualisation tool CFX-VIEW is provided within the CFX-4.3 

suite of software, the flow field data contained within the dump (.dmp) files were vi-

sualised using "Fieldview" [80], a commercial visualisation tool specifically developed 

for viewing finite volume flow solver data. 

3.6 Solution Troubleshooting 

As previously mentioned, obtaining a valid, converged solution is often a continual 

process of trial and error. Even though much of the solver detail is hidden from the 

user, many parameters still exist for the user to define, all of which can influence the 

solution process, as has been shown. Knowing which parameters to change, in order 

to obtain a converged solution which is correct in the physical sense, is an art in itself, 

one which is not readily discussed in CFD texts. This section will discuss the reasons 

for solver divergence and present possible remedies to these problems. 

3.6.1 Solver Divergence 

The most likely cause of solver divergence or convergence to the wrong solution is 

often due to incorrect problem specification. The specification of conflicting or non-

physical properties, user subroutines and/or boundary conditions, can all lead to 
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convergence problems. Careful checking of these is necessary before other possible 

causes are sought. 

If the problem has been specified correctly, is physically reasonable and has a well 

defined stable mathematical solution, yet still fails to converge satisfactorily, then 

numerical difficulties may be suspected. Many of these problems can be rectified by 

the selection of more conservative solution parameters. Likely causes and possible 

solutions to poor solver convergence are given below: 

# Incorrect initial and/or boundary conditions 

The single most common cause of a solution failing to converge, is prescription of 

incorrect initial and/or boundary conditions. This can usually be remedied by 

carefully examining the command file. If the errors in the boundary conditions 

are not easily identifiable, and some form of output field data has been produced, 

it is useful to visualise the data as this often indicates the source of error in 

the initial model. If the initial conditions are suspected as being the cause of 

initial solver divergence, it can often prove advantageous to run a laminar, or 

potential flow case of the problem, and restart the more complex problem using 

the field values generated from the solution. 

# Poor mesh quality 

With multi-block finite volume flow codes, the definition of a poor mesh, is one 

who's control volumes differ in shape greatly from a cuboid. Non-orthogonal 

grids can cause convergence problems, due to inaccurate calculation of fluxes 

through the control volume faces. Smoothing the grid and making it more or-

thogonal by altering the block shape and/or structure, can often help overcome 

this. Non-orthogonal grids are often unavoidable, especially around complex 

geometries. Rapid changes in cell size/aspect ratio can also cause solver diver-

gence and must generally be avoided, especially in areas where rapid changes 

in flow variables are expected. Most convergence problems that do manifest 
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themselves can usually be counteracted with suitable under-relaxation of the 

transport equations, in particular the turbulent transport equations. A pro-

cess known as deferred correction, which under-relaxes the turbulent transport 

equations early on in the solution and slowly increases them as the solution 

progresses, is often used and is explained in the CFX-4.3 user manual [75]. 

® False diffusion 

False diffusion, or numerical diffusion, is the side-effect that results from the 

truncation errors associated with discretisation. Depending on the differencing 

scheme used, its effect is prominent in flows where the flow is not aligned with 

the grid lines. It results in the distributions of the transported properties be-

coming smeared. Most prominent false diffusion occurs when upwind schemes 

are used. The degree of false diffusion also increases with Reynolds number. 

False diffusion can be minimised by using higher order differencing schemes, 

such as hybrid or QUICK. A comprehensive study into the effect of false diffu-

sion on flow solutions, for various differencing schemes, is discussed by Versteeg 

and Malalasekera [65]. 

» Incorrect time step size 

As previously mentioned, in transient calculations it is necessary for the time 

step to be set such that the temporal changes in the flow variables are adequately 

captured. If this is not the case, then the solver will have difficulty in converging 

each time step iteration. As such, this should be the first indicator of solver 

divergence in transient problems, and be reduced accordingly. 

# Turbulence model problems 

The use of a turbulence model can bring its own convergence problems. 

Two problems which have been identified in this research are; slow or non-

convergence, due to incorrect first cell size on wall boundaries and divergence 

due to negative calculated values of k and e from the turbulence transport 

equations. 
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The first problem arises, when the first grid cell size near to a wall boundary is 

specified such that it violates the lower criteria of ^ 11.63 on which the wall 

function approach, employed within the standard and RNG k ~ e turbulence 

models, is fundamentally based. It has been shown, that too small a cell size 

can result in excessive computational effort being employed, in order to obtain a 

converged solution, since the transport equations are being applied right down 

through the viscous sub-layer. Ensuring that the first cell size satisfies at least 

the minimum criteria ^ 11.63, usually resolves this problem. 

The second problem of negative calculated values of k and e often arise when 

higher order upwind and QUICK differencing schemes are applied to the tur-

bulence equations, or when the shear layer is not adequately resolved by the 

grid. It is recommended, even when using high order differencing schemes on 

the velocity terms, that lower order schemes such as upwind or hybrid should 

be used for the k and e terms, thus ensuring positive results. Although the 

upwind and hybrid schemes are of lower order, the overall accuracy of the flow 

solution is usually unaffected, since k and e are dominated by production and 

dissipation [75]. 

3.6.2 Non-Physical Flow Resul ts 

Once a converged solution has been obtained, all that is known is that the solution 

satisfies the numerical equations for that mesh, to some order of accuracy. It is fur-

ther required that the converged solution bears some relationship to the physical flow 

expected from the problem. This should be confirmed by comparing the numerically 

calculated flow structures with those expected from experiments. If there are signif-

icant differences between the numerical and physical flows, then the computational 

model might need to be modified. Differences might be caused by one or more of the 

following; 
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@ Unsuitable boundary conditions 

The prescription of unsuitable boundary conditions, or boundary conditions 

which are incorrectly located, can over or under constrain the flow being mod-

elled, resulting in non-physical flow results. Careful selection and placing of 

boundary conditions can overcome this problem. The outlet boundary condi-

tion location can often cause such problems, as previously discussed. 

« Insufiicient mesh density 

Insuflicient mesh density in regions where large gradients in the flow variables 

are occurring, can cause non-physical results. This is overcome by ensuring that 

the grid density is increased in such areas. Particular attention should be paid 

to placing extra grid nodes within boundary layers and areas in which vortical 

flows are known to exist. 

® Incorrect time step size 

Using too large a time step in transient simulations, can result in the resolution 

of incorrect flow physics. If this is suspected to be the case, the time step should 

be reduced towards the CFL limit, as previously discussed. 

« Inadequate physical modelling 

The use of turbulence models which form simplistic approximations to the ac-

tual physical flow, can lead to incorrect physical results. The flow type and 

turbulence model being used, will dictate the level of error in the physical re-

sults. This can only be overcome by testing different turbulence models on the 

problem and analysing the results. 

3.7 Computation Hardware 

The CFX-4.3 computations presented in this Thesis were run using Southampton 

University's Irixcompute and Irixresearch services. The specifications of these services 
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are given in Table 4. When specific computational performance data is presented, 

the computing resource used will be detailed. 

3.8 Conclusion to Chapter 

The complete Navier-Stokes equations, which describe the motion of viscous incom-

pressible fluid flows, have been presented. As explained, direct solution of these 

equations for common turbulent engineering flows is beyond the capacity of even the 

largest supercomputers available today. However, by considering the mean turbulent 

flow, and applying a process known as Reynolds time-averaging, a new set of equa-

tions which are more readily solved, can be obtained. These equations, known as the 

RANS equations, require the use of a suitable turbulence model for closure. 

For engineering applications, where mean flow properties or mean forces, are of pri-

mary importance, the RANS method can provide sufliciently accurate information. 

However, the accuracy of results obtained using the RANS approach, are dependent 

on the selection of an appropriate turbulence model. A discussion of two of the most 

commonly used turbulence models, the standard and RNG k — e turbulence models, 

has been given. 

The correct solution of the RANS equations is dependent on the selection of the 

appropriate initial and/or boundary conditions. A description of the most commonly 

implemented boundary conditions was given. An overview of the CFX-4.3 RANS 

flow solver used in the subsequent research was also presented, together with an 

explanation of the important solver parameters which need to be correctly set, in 

order to obtain converged RANS solutions. 

Obtaining physically correct and converged solutions using the RANS approach is 

an art in itself, involving the careful selection of many different boundary conditions 

and solver parameters. A troubleshooting section was included within the Chapter, 
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discussing reasons for solver divergence and non-physical flow results, together with 

possible remedies which can be used to rectify any such problems. 
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Chapter 4 

Grid Generation 

4.1 Overview of Chapter 

The rudiments of the finite volume RANS solution approach, were presented in Chap-

ter 3. However, the success and accuracy of this method in obtaining a solution, is 

primarily dependent on the type and quality of the computational grid used to dis-

cretise the flow domain. This Chapter introduces the multi-block grid generation 

approach favoured by many flow solvers, including CFX-4.3. The methodology be-

hind multi-block grid generation is introduced, along with a brief description of the 

software used in this research to create such grids. Also presented are the multi-block 

topologies used to generate the grids about the various rudder sections investigated 

later in the Thesis. 
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4.2 Multi-Block Grid Generation 

The finite volume solution method described in Chapter 3, requires the modelled 

flow domain to be discretised into a number of finite three-dimensional control vol-

umes. The multi-block grid generation method, generates these control volumes from 

an unstructured arrangement of structured block grids, which conform together to 

represent the flow geometry being modelled. These blocks must be topologically 

cuboidal, although they can, and often are, distorted to the shape of the problem 

being investigated. Figure 5 shows a typical single block C-Grid topology/grid con-

structed around an aerofoil. Each block is made up of a hierachial structure of object 

elements; block vertex nodes, edges and faces. The block vertex nodes define the 

block vertex co-ordinates, and hence the start and end locations of the edges, which 

make up the block. The block edges are shaped so that they conform with the geom-

etry of the flow model. These edges do not have to be straight, they may be defined 

as arcs or curves, whichever best describes the geometry. 

Once all multi-blocks have been defined, one or a number of interpolation methods can 

be used to compute the coordinates of the internal grid nodes within each block, based 

on the number of nodes required in the I, J and K directions. A linear interpolation 

method known as transfinite interpolation [81], is one of the most widely implemented 

interpolation methods. This method determines the grid node coordinates within each 

block by interpolating the block edge nodes into the interior. 

Following interpolation, the node coordinates for each block are then output into a 

grid file, together with the relevant block joining and block face boundary condition 

type information. This file is then usually input into the flow solver and the solution 

obtained by applying the appropriate boundary conditions, defined in the command 

file to the block faces. 

The major advantage of multi-block grids is that they are relatively easy to compute 

and require low storage memory requirements. This is because the connectivity of the 
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mesh, is imphcitly mapped between physical and computational domains. However, 

the generation of grids about complex geometries, especially in three-dimensions, can 

require considerable skill. 

4.2.1 CFX-MESHBUILD Grid Generator 

CFX-MESHBUILD is the basic interactive multi-block grid generation preprocessor 

supplied with CFX-4.3 [75]. A user-friendly graphical user interface (GUI) allows 

multi-block grids to be created through the manipulation of the geometrical objects 

which make up each block. The edge node propagations used to interpolate the 

interior block nodes are also set through the GUI, along with the face boundary 

conditions on each block. The interpolated multi-block mesh is then output in the 

.geo format required by the CFX-4.3 flow solver. 

There are a number of advantages and disadvantages to using CFX-MESHBUILD. 

The main advantage of CFX-MESHBUILD is that the GUI allows the user to generate 

grids relatively quickly. The extensive error checking provided by CFX-MESHBUILD 

throughout the grid generation process, ensures that complex grids can be constructed 

free of errors. However, due to the structure in which the multi-block grids are 

created within CFX-MESHBUILD, it is difficult for changes in geometry to be made 

without considerable effort on the part of the user. CFX-MESHBUILD also has the 

disadvantage that it only allows regular, or geometric progression node propagations 

along block edges. This severely restricts the variety of grids which can be created. 

Appendix B shows the formulation of the geometric progression node distribution 

function implemented with CFX-MESHBUILD. As previously mentioned in Chapter 

3, the first grid node location away from any wall boundary, must be located at 

the correct value required by the turbulence model. Although the geometric 

progression function can be used to correctly locate the first near wall node, the 

behaviour of the function is such that it prevents bias clustering of points above this 

node. It is, therefore, impossible to place the required number of grid nodes within 
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the boundary layer region, without placing excessive numbers of nodes across the 

whole domain. This problem severely reduces the capability of the grid generator. 

The afore-mentioned conclusions were made after CFX-MESHBUILD was used to 

create the simple grids in the flat plate investigation presented. A full description of 

the CFX-MESHBUILD grid generator is given in the CFX-4.3 user manual [75]. 

4.2.2 CFX-MBSHIMPORT 

CFX-MESHIMPORT is a module within the CFX-4.3 suite which reads any multi-

block grid file generated by CFX-MESHBUILD, PATRAN or IDEAS and creates 

a new multi-block grid file, suitable for use with the CFX-4.3 flow solver. CFX-

MESHIMPORT can processes these multi-block grid files and create a new optimised 

multi-block grid in the CFX-4.3 .geo format, consisting of as few blocks as possible. 

As well as reducing the number of blocks, CFX-MESHIMPORT also re-orientates 

each block to ensure that the I block direction in the computational domain, points 

in the same direction as the block edge with the most number of grid nodes. Reducing 

the number of blocks and re-orientating them, can often enhance the computational 

efliciency of the flow solver. CFX-MESHIMPORT can be used to partition a grid 

into blocks with approximately the same number of nodes per block. This is used to 

balance the processor load when solving the problem on parallel processor machines. 

4.2.3 Fleximesh Grid Genera to r 

Following the creation of the simple grids in the flat plate study in Chapter 5, us-

ing CFX-MESHBUILD, it was evident that another more versatile grid generation 

method was needed, if high quality grids were to be produced around rudder sections. 

To this end the in-house multi-block grid generator "Fleximesh" initially developed 

by Rycroft [82] was chosen. The Fleximesh grid generator carries out essentially the 

same function as CFX-MESHBUILD, but without a GUI. A full description of the 
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Fleximesh grid generator is given by Rycroft [82], along with a detailed topology 

construction example and the necessary input and output file format information. 

The advantage of using an in-house grid generator such as Fleximesh, is that it 

can be tailored to the specific needs of the problem to which it is applied. The 

simple input file format which Fleximesh uses to create complex grids is Fleximesh's 

major advantage over CFX-MESHBUILD. It is possible through a custom written 

program, to pre-process this file and make quick changes to the topology structure 

with the minimum of eflFort. Also, being an in house grid generator means that custom 

grid propagation functions can implemented, giving the user more control over the 

distribution of the nodes within the grid. Appendix C shows the formulation of the 

versatile hyperbolic node distribution function implemented within Fleximesh. This 

function is much better than the geometric progression function, available within 

CFX-MESHBUILD, because it allows the biasing of nodes in the near wall region. 

Fleximesh can produce various output grid files including CFX-4.3 .geo and PATRAN 

neutral files .pnf. These files are then usually pre-processed by CFX-MESHBUILD 

before being passed to the CFX-4.3 flow solver. 

4.3 Multi-Block Rudder Section Grids 

A general outline of the multi-block grid generation process has been given, but 

the process of building multi-block grid topologies has not yet been discussed. The 

topology definition stage can and often is, the most complex and time consuming part 

of any CFD analysis. The nature of the multi-block method means that the relative 

placement, and the shape of the edges making up each block, dictates the way in 

which the internal block nodes are interpolated. Poor block location and/or edge 

shapes, can lead to interpolated grids of unsatisfactory quality, which places undue 

strain on the flow solver. The skill of creating a multi-block grids lies in shaping the 

multi-block topology so as to produce a grid which is orthogonal and as smoothly 
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varying as possible. 

The two-dimensional topologies created around the rudder sections investigated later 

in this Thesis were relatively straight forward to create, although rather time con-

suming. A number of important factors were borne in mind when these topologies 

were defined. The main considerations were block structure, block outer edge shape 

and edge node clustering. It was decided that the common C-Grid topology shown 

in Figure 5, would be used to generate the multi-block grids around the sections 

studied. Instead of consisting of a single block wrapped around the aerofoil and its 

wake, a number of blocks were used. It was decided that the curve describing the 

aerofoil would be broken into six parts of equal length, to allow grid node cluster-

ing at the leading and trailing edges. The outer block edges forward of the aerofoil 

section between the two points of maximum thickness were defined as oGset splines 

to ensure that the normal distance outward from any point on the section was fixed. 

This was done to ensure that the interpolated nodes, radiating from the section were 

located the same distance away from the section. All the other outer block vertices 

were placed directly above or downstream of the node vertices on the aerofoil section. 

Block structure diagrams, showing how the physical and computational domains are 

related for the various rudder geometries are detailed in Figures 6 to 9. The most 

complex block structure developed, was that used for generating grids around flapped 

rudder sections. Producing a topology which allowed the gap between the flap and 

the main rudder section and movement of the flap, whilst maintaining a high level of 

grid quality was challenging. Figure 9 shows the flapped rudder topology developed. 

Although computations of flapped rudder performance were beyond scope of the work 

presented, the flapped rudder topologies were generated to highlight the versatility 

of the grid generation method. 
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4.4 Conclusion to Chapter 

A general overview of the multi-block grid generation method favoured by finite vol-

ume flow solvers, like CFX-4.3 was presented. A description of MESHBUILD and 

Fleximesh, the grid generators used in this research programme was also given, to-

gether with a discussion of their respective merits and shortcomings. Because of the 

flexibility of Fleximesh, it was decided that it would be used to create the rudder 

section grids investigated in this Thesis. 

The generation of high quality multi-block grids, can often be a complex procedure 

requiring careful multi-block topology definition. A description of the construction 

of the multi-block topologies used to generate the grids around the rudder sections 

investigated later in the Thesis, was also given. 
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Chapter 5 

Flat Plate Skin Friction Estimation 

5.1 Overview of Chapter 

It was decided that a flat plate resistance study would be carried out, to determine 

the model and grid parameters necessary for accurate viscous flow modelling, in the 

absence of the grid distortions produced by rudder sections. It was hoped that the re-

sults obtained from this study would provide invaluable information as to the critical 

parameters needed for accurate skin friction evaluation. The effects of grid resolution, 

Reynolds number, differencing scheme, turbulence model and turbulence model con-

stants were all investigated. Where possible the computations were validated against 

experimental data, and in the absence of any suitable experimental data, against 

empirical skin friction lines. A number of the low Reynolds number flat plate com-

putations were validated against the flat plate skin friction data obtained by William 

Proude [83, 84] in the 1870's. A more detailed overview of skin friction estimation, 

together with additional results from this investigation can be found in Date and 

Turnock [85]. 
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5.2 Investigation Description 

5.2.1 Invest igat ion St ra tegy 

Steady state two-dimensional laminar and turbulent computations are presented for 

flat plates of various lengths, over a range of Reynolds numbers. Boundary location 

and full grid independence studies were conducted, to determine the critical grid 

requirements needed to accurately predict skin friction. The effects of using different 

differencing schemes and turbulence models were also investigated. Where possible, 

the computed skin friction estimates were compared with experimental data, and in 

the absence of such data, compared to empirical skin friction lines. By carrying out 

linear regression on the RANS skin friction data, a resistance correlation line was 

derived, and subsequently compared with those of Schoenherr [86] and the ITTC 

[87]. 

5.2.2 Validation D a t a 

The experimental results obtained by Proude [83, 84] were used for validation, along 

with the empirical skin friction lines of Schoenherr [86] and the ITTC [87]. Proude 

carried out towing tank tests on flat plates ranging from jL = 1 — 50 ft (0.3054 — 15.0 

m) at free stream velocities of between t/oo = 50 — 1000 ft/min (0.254 — 5.08 m/s), 

corresponding to = 6.7 x 10^ — 6.8 x 10^. The towing tank turbulence level was 

not measured. The empirical skin friction lines of Schoenherr [86] and the ITTC [87] 

were derived from regression analysis of experimental data over a range of Reynolds 

numbers. 
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5.2.3 Computa t iona l Model Par t i cu la rs 

Computations were carried out on flat plate models of between L = 1 — 1000 ft 

(0.3054 — 15.0 m) at free stream velocities of between Uoo — 50 — 1000 ft/min (0.254 — 

5.08 m/s), corresponding to = 6.7 x 10^ — 1.4 x 10®. The fluid density was set as 

p = 1000 kg/m^ and dynamic viscosity was set as // = 1.719 x 10"^ kg/m s at 2 degrees 

centigrade. The standard and RNG k — e turbulence models were tested, using the 

standard constants given in Table 1. The inlet turbulence parameters k and e were 

set according to the free stream conditions. Various differencing schemes were used 

for the spatial u and v terms and turbulence quantities k and e. Pressure correction 

was carried out using the SIMPLE algorithm. The under-relaxation parameters were 

set according to Table 3. The mass source residual stopping convergence criteria was 

set at 1.0 X 10"G kg/s in all computations. All computations were carried out using 

the Irixcompute computing facility, as described in Chapter 3. 

5.3 Boundary Conditions 

There were a number of boundary condition combinations that could be applied to the 

simple problem of the viscous flow over a flat plate. Figure 10 and Table 5 show the 

boundary conditions used for the flat plate model. In this skin friction investigation, 

it was only necessary to model one side of the plate. Halving the problem in this 

way, reduced the total number of cells and hence the solution time. The plate itself 

was modelled as a wall with a no-slip condition. The boundary conditions used in 

this investigation were found to give the most rapid flow solutions. However, the 

upper inlet boundary condition could have been set either as symmetry plane or as 

a constant pressure boundary; likewise the downstream boundary could also have 

been defined as constant pressure boundary. The use of an upper pressure boundary 

condition was found to be a poor choice, as it needed to be placed at an excessive 

distance from the lower wall, in order to ensure tangential flow to it. 
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Since Proude was unaware of the existence of residual turbulence, and thus not taking 

any measurements of turbulence level, it was assumed that the tank had very little 

residual turbulence in all of his experiments. The inlet turbulence parameters k and 

e were therefore both set to 1.0 x 10"*, ensuring that k and e remained positive 

throughout the solution, as discussed in Chapter 3. 

5.3.1 Posi t ioning of Boundar ies 

A boundary location sensitivity study was carried out to determine the minimum 

distance at which the inlet, outlet and upper inlet boundaries could be placed in 

relation to the plate, without affecting the solution. The boundary position sensitivity 

study involved moving one of the outer boundaries until convergence on the plate skin 

friction was obtained, whilst the remaining two boundaries were held fixed. This was 

done in turn for all three outer boundaries. The positioning of the boundaries was 

based on the plate length L and ranged from L/8 to 4L. All the grids used in this 

sensitivity study, used a uniform distribution of cells in the x and ^-directions of fixed 

size regardless of boundary position. This ensured that any variations were due to 

the boundary positioning and not cell size. The longest plate tested by Proude of 

50 ft (15.24 m) was used at the maximum test speed of 5.08 m/s, the condition of 

maximum turbulence. A third order spatial differencing scheme was used on the flow 

variables and the standard k ~ e turbulence model was employed. The results from 

the study are shown in Tables 6 to 8. For the inlet and outlet parametric studies, the 

upper inlet boundary was positioned at a distance 2L above the plate. For the upper 

inlet boundary parametric study, the inlet and outlets were positioned at a distance 

of L upstream and downstream. 

It can be seen that convergence on skin friction has been reached on all of the bound-

ary condition positions. Comparing Table 6 with Table 7, it is evident that the 

solution to the flow problem is more sensitive to the downstream outlet boundary 

position, than the upstream inlet position. In fact, the upstream inlet can be placed 
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as close as half the plate length upstream of the plate without affecting the flow solu-

tion, whereas the outlet mass flow boundary must be placed at least one plate length 

downstream. 

It is quite surprising to note, from the data in Table 8, that the upper inlet needs 

to be placed at least two plate lengths above the plate, before the solution becomes 

boundary independent. It should be noted from this study, that the number of 

iterations taken in obtaining a solution, are generally unaffected by the boundary 

position once convergence has been reached. This is because the additional number 

of cells resulting from the increased size of the flow domain, have no effect on the flow, 

having the same transport properties at the outer cells of the previously converged 

solution. Additional cells merely serve to increase the number of equations being 

solved and hence, the total time for solution. Based on the results found in this study, 

it was decided that all inlet and outlet boundaries, would be placed at a distance 2L 

from the plate, to ensure boundary independence. 

5.4 Grid Parameters and Independence 

In this flat plate investigation, a full independence study was carried out to determine 

the optimum cell distribution throughout the domain. The study was carried out on 

the largest plate tested by Proude, the case of maximum turbulent flow; the wall 

roughness was considered hydraulically smooth. It is known from the previous work 

done by Reynolds [88], that the transition from laminar to turbulent flow over a flat 

plate happens near a critical Reynolds number of = 5 x 10®. From Table 9 it is 

evident that for all, but the shortest of plates and slowest of speeds, Proude's tests 

were conducted within the turbulent flow region. 
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5.4.1 Near-Wall Grid S tudy 

A near-wall independence study was carried out to determine the effect of the near-

wall cell spacing on the skin friction prediction. It was necessary in the near-wall 

independence study to consider both the maximum and minimum velocities at which 

the model was to be tested, since the criteria of the wall function is related to 

velocity and cell spacing. Having to produce a grid, suitable for operation over a 

range of Reynolds numbers, caused a significant problem with regard to the fixing of 

the first cell size. This cell size was carefully selected to ensure that the remained 

within the 30 to 500 range for all Reynolds numbers, as detailed in Chapter 3. The 

grid propagation options within CFX-MESHBUILD, allowed either a uniform dis-

tribution or geometric progression along the block edges. In this grid independence 

study, the geometric progression distribution was used in the ^-direction, and a simple 

uniform distribution in the x-direction. The geometric propagation is controlled by 

the required number of cells and a common factor. The cell distribution parameters 

in the geometric progression, can be derived using the first and last cell sizes on a 

block edge, see Appendix B. The uniform distribution in the z-direction consisted of 

40 cells in the 2L upstream, and downstream directions and 20 cells along the plate 

itself. The outer cell in the ^/-direction had a fixed cell spacing of 10 m, and the near-

wall cell size was varied. Equation 48 was used to estimate the cell size needed to 

give the correct y"*" for the high and low Reynolds numbers, as derived by Schlichting 

[74], 

S+ = 0.172 I C (48) 

Using = 30 as the criterion for the first cell size, the corresponding was found 

for both the high and low Reynolds number flow conditions. As can be seen from 

Table 10, the first cell size at the maximum and minimum Reynolds numbers, vary 

quite dramatically when y'̂  is fixed at 30. In fact, the cell size for the high Reynolds 

number case is approximately 15 times smaller than that of the low Reynolds number 

case. For the same grid to be used in solving both the high and low Reynolds number 
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flow cases, the smallest first cell size had to be no smaller than 0.0035 ra, in the 

{/-direction, if is to be kept above the lower limit of 30. Based on these estimates 

it was decided that the first cell size spacing would be set at 0.005 m. Two runs 

were subsequently carried out at the maximum and minimum Reynolds numbers to 

check that the calculated y'̂  values fell within the bounds required. The results from 

these two runs can be seen in Table 11. For the high Reynolds number case, the 

values lie with the range 30 ^ ^ 500, using a cell spacing of 0.005 m. For the low 

Reynolds number case, the y'̂  values fall below these bounds, but above the absolute 

minimum value of 11.63. Based on the results from this study, it was decided that a 

first cell size of 0.005 m would be used. 

A brief study was carried out to determine the effect of on the actual calculated 

skin friction, within the range of 30 ^ ^ 500 for the 50 ft (15.24 m) plate operating 

at the highest Reynolds number. The results in Table 12, show the results from five 

different runs, each with a near-wall cell size half that of the previous, and an outer 

cell size of 5.0 m. It can be seen from these results that there is very little variation 

in Cf with near-wall cell size. It is obvious from Table 12 that the use of a small 

near-wall cell size, and hence small y'^, causes excessive computational effort to be 

used in formulating a solution, with no increase in accuracy. 

Although the reduction in the near-wall cell size slightly increases the total number 

of cells (an extra 1500 cells) within the problem, this alone does not account for the 

228 fold increase in CPU time needed to solve the problem. It should be noted that 

if the cell size is such that the y'̂  falls below 5 and is within the purely laminar sub 

layer, convergence is hard to achieve. This study, therefore, indicates the importance 

of selecting the correct near-wall cell size, in order to make good use of the wall 

functions provided. 
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5.4.2 Bounda ry layer Flow Suppor t Gr id S tudy 

Following the correct selection of the near-wall grid spacing, a convergence study-

was carried out to determine the optimum outer grid cell size needed to provide the 

required distribution for flow support in the boundary layer in the ^/-direction. The 

near-wall grid spacing was fixed at 0.005 m, and the outer grid cell size was varied 

between 10 m and 1.25 m, until convergence was achieved. The distributions in the 

z-direction were the same as those used in the near-wall grid study, and the flow 

speed was fixed at 5.08 m/s. 

Prom Table 13, it can be seen that full convergence of skin friction coefiicient, was 

reached when the outer cell size was fixed at 1.25 m. It can be seen that the CPU 

time increases sharply with decreasing outer cell size, as a result of the increased total 

number of cells. Based on this data, it was decided that the outer cell size of 2.5 m 

would be used in subsequent calculations, since the small increase in accuracy of the 

1.25 m case did not warrant the extra number of cells. 

5.4.3 Longi tudinal Grid S tudy 

An independence study was carried out for the grid distribution along the length of 

the plate itself. Again, the study was carried out on the 50 ft (15.24 m) plate at 

5.08 m/s. The grid propagation in the y-direction, was set in accordance with the 

grid independent solution, found in the boundary layer study i.e. 0.005 — 2.5 m. 

The propagation used on the upstream and downstream blocks were set as geometric 

progressions. The outer cell size started at 2.5 m, decreasing in size to 0.1 m at the 

leading edge of the plate. The distribution used on the plate itself was a symmetric 

geometric progression, with a matched cell size of 0.1 m at the leading edges and 

variable middle cell size. 

From Table 14, it can be seen that convergence on skin friction coefficient, is achieved 
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when the middle cell size of the geometric progression reached 0.5 m. It can be seen 

that further reduction in middle cell size along the plate does not effect Cf. Therefore, 

it can be said that the solution to this problem is grid independent. 

The grids used subsequently in this investigation, were based on the results found in 

this grid independence study. The z-direction geometric progression distributions on 

the blocks for the different plate lengths tested, were set with the same parameters 

as those derived for the 50 ft (15.24 m) plate, tested in the independence study. The 

^-direction geometric progressions down on to the plate itself were slightly modified 

to ensure that the first cell size gave the correct y'̂  value for the particular plate 

length. An example of the final grid used to model the 50 ft (15.24 m) is given in 

Figure 11. 

5.5 Validation against Experimental Data 

The aim of this investigation was to evaluate the performance of standard and RNG 

k — e turbulence models at predicting skin friction, and to assess the effect of Reynolds 

number. The investigation involved further modelling Proude's plates of 50 ft (15.24 

m), 16 ft (4.88 m), 1 ft (0.30 m) and two ship scale high Reynolds number test cases 

of 500 ft (152.40 m) and 1000 ft (304.8 m). All of the results obtained were validated 

against Froude's original test data and the ITTC 1957 and Schoenherr correlation 

lines. 

5.5.1 Differencing Scheme Effects on Accuracy 

In this investigation, three of the most common differencing schemes were investi-

gated; upwind, QUICK and hybrid. All the tests were carried out on the 50 ft (15.24 

m) plate using the standard k — e model. Table 15 shows the differencing schemes 

tested on the 15.24 m plate. For the high order study, the QUICK differencing scheme 
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was unable to be implemented on the turbulence equations k and e, since this gave 

rise to non-convergent flow solutions, resulting from negative values of k and £. The 

hybrid scheme was used instead, ensuring that k and e remained positive. The results 

from the study can be seen in Figure 12. 

There is only a slight increase in accuracy when the third order differencing scheme 

is used for solving the flow. It was noted that the use of the QUICK scheme, resulted 

in an increased solution time compared with that of the upwind solution. Depending 

on flow velocity, this increase varied between 15 — 45%. This is not surprising, as 

the grid used in this study was refined with extreme accuracy, using the QUICK 

differencing scheme. The use of the QUICK differencing schemes throughout the 

boundary positioning and independence studies, was done to ensure a high degree 

of accuracy in the final comparison studies. If the grid had been refined using the 

upwind differencing scheme, it is envisaged that there would have been a noticeable 

increase in accuracy, if a higher order scheme was subsequently used. Following this 

route would, however, have resulted in the need for a further independence study, 

to confirm that the maximum level of accuracy had been achieved, and not just an 

increase in accuracy from the upwind solution. 

5.5.2 Compar ison of Turbulence Models 

A study was carried out to determine which out of the two high Reynolds number 

turbulence models available within CFX-4.3, gave the most accurate viscous drag 

predictions. The standard k — e and RNG k -- e turbulence models were verified 

for the highest and lowest Reynolds number, plate experiments tested by Froude 

i.e. the 1 ft (0.305 m) and 50 ft (15.24 m) plate cases. The results were assessed 

using Froude's experimental data as a benchmark. The results from the study can 

be seen in Figure 12 and Figure 13. It is obvious in Figure 12, that there is little 

difference in the accuracy of the two turbulence models, when validated against the 

results from Froude's experimental data, for the 50 ft (15.24 m) case. The standard 
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k — e turbulence model is 2% more accurate in predicting the skin friction than the 

RNG k — e model, providing a skin friction estimate of 99.7% of Proude's actual 

experimental value. However, the results from the low Reynolds number study on 

the 1 ft (0.305 m) plate do not show good agreement with Proude's experimental 

data, as indicated in Figure 13. The skin friction estimates calculated using the 

two different turbulence models show good agreement with each other as in the high 

Reynolds number case. However, they both over predict the viscous drag by 15 — 50%, 

depending on the surface finish of the plates. It is believed that the source of this 

error is due to the turbulence model's inability to simulate transition from laminar to 

turbulent flow. Based on the results found in this study, the standard k — e model was 

considered the most appropriate turbulence model for solving this particular viscous 

flow problem and was consequently used for all the subsequent studies presented. 

5.5.3 Laminar -Turbulen t Transi t ion 

Comparing the experimental data plotted in Figure 13 and considering the Reynolds 

number range over which the data corresponds (-R„ = 4.0 x 10^ — 1.0 x 10®), it 

is obvious that the flow is within the typical laminar-turbulent transition region of 

{Rn — 3.0 X 10^ — 1.0 X 10^). The effect of surface roughness on skin friction is also 

highlighted in Figure 13 on comparison of the experimental data for the varnished 

and tin foil coated plates tested by Froude. The rougher varnished plate has the 

effect of tripping the initial laminar boundary layer into becoming turbulent closer 

to the leading edge, resulting in a greater viscous drag. However, the smooth tin 

foil covered plate has a greater region of laminar flow extending further aft along 

its surface, which is triggered into turbulent flow much later and results in greatly 

reduced skin friction. 

The discrepancy between Proude's experimental data and the numerical results are 

a result of the flow solvers' lack of simulation of this laminar-turbulent transition 

region. When solving fluid flows using CFX-4.3, the problem has to be specified as 
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being either laminar or turbulent. Hence, laminar or turbulent flow is simulated over 

the whole length of the plate from the leading edge, which is physically incorrect. 

However, the assumption that the flow is fully turbulent over the whole length of the 

plate is valid for plates travelling at > 5.0 x 10®. At these high Reynolds numbers, 

the contribution to skin friction resulting from the laminar boundary layer tends to 

zero, since transition happens almost instantaneously at the leading edge. Hence, 

there is good agreement between the experimental and theoretical results, as shown 

in Figure 12. 

At low Reynolds numbers, Rn < 5.0 x 10®, the situation is reversed, and the laminar 

boundary layer contribution to viscous drag becomes significant and an assumption 

that the flow is fully turbulent does not hold. This results in an overestimate of the 

viscous drag, as shown in Figure 13. With regard to a RANS calculation, there is 

no simple solution to the problem of transitional flow, since the problem must be 

specified as either laminar or turbulent. 

Other RANS studies such as those carried out by Chung and Min [89], have simulated 

laminar-turbulent transition using a triggering method in which the critical local 

Reynolds number or location of transition is specified on the body. However, for most 

practical full-scale ship flow calculations the problems associated with transition can 

be ignored, since the flow is predominately turbulent over the whole body. 

5.5.4 Compar ison Against Skin Frict ion Lines 

A study was conducted to assess the overall performance of the standard k — e tur-

bulence model over a range of Reynolds numbers from model to full scale, similar 

to that conducted by Dolphin [90] using the Baldwin-Lomax turbulence model. The 

results obtained were compared with the empirical skin friction correlation lines of 
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Schoenherr; Equation 49 and the ITTC; Equation 50 given below. 

1 
4.131ogio(E»cy) (49) 

= ( i o g . ° r - 2 ) ^ 

In order to make valid comparisons, further calculations were conducted to provide 

skin friction data at intermediate and high Reynolds numbers. The runs were carried 

out on flat plates of 16 ft (4.877 m), 500 ft (152.4 m) and 1000 ft (304.8 m). The 

resistance curves for these plates are shown in Figures 14 to 16. 

All of the skin friction data obtained for standard k — e turbulence model and laminar 

studies to third order were subsequently plotted on a Schoenherr Log-Log graph, along 

with the empirical skin friction lines of Schoenherr, ITTC 1957 and Fronde's data, as 

shown in Figure 17. When the RANS skin friction data is compared with the ITTC 

model-ship correlation line, the following trends were identified: 

• Between = 5.0 x 10^ and 1.0 x 10®, there is good agreement between the 

RANS predicted skin friction data and the ITTC Hne, probably due to the 

modified slope of the ITTC line. 

« Between = 1.0 x 10® and 1.0 x 10 ,̂ there seems to be a constant over 

prediction in skin friction by the RANS method. 

The following trends were identified on comparing the RANS method skin friction 

results with Schoenherr's line. 

» There is general agreement between the data and the Schoenherr line across the 

whole range of Reynolds numbers. 

® Between = 1.0 x 10^ and 2.0 x 10 ,̂ there is a constant under-estimate, 

probably due to the inclusion of aspect ratio and edge effects in Schoenherr's 

original data. 
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* Between Rn — 2.0 x 10^ and 1.0 x 10®, there is a constant over-prediction. 

Prom this study it can, therefore, be concluded that standard k ~ e turbulence model 

generally performs well over the range of Reynolds numbers investigated, with only 

slight differences compared to empirical friction hnes of the Schoenherr and the ITTC. 

However, as highlighted by Kodama [55], only after conducting full scale measured 

wake surveys can a turbulence model be considered fully valid, as a good turbulence 

model should be able to capture the Reynolds number dependence of the wake from 

model to full scale. 

5.5.5 Numerical ly Derived Resis tance Correlat ion Line 

Based on all the experimental skin friction data obtained for the standard k — e 

turbulence model, a RANS predicted Schoenherr skin friction formula was derived 

using Prandtl's approach. A linear least-squares regression fit was then carried out 

on all of the results, to obtain the the two coefficients in Equation 49. The regression 

plot of the data can be seen in Figure 18. The modified Schoenherr formula based on 

the regression analysis of the RANS data is given by Equation 51. 

^ 4.06 logio(7Z^c/)-0.729 (51) 
Vc/ 

The form of Equation 51 is similar to that derived by Schoenherr from experimental 

data, with nearly identical gradient and a slight offset. However, it is not explicitly 

dependent on experimental data (no influence of shape, aspect ratio or edge effects) 

and is only implicitly dependent on empirical data on which the turbulence model is 

based. 
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5.5.6 Simulat ing Wall Roughness 

A brief investigation was carried out to determine how plate roughness could be 

simulated in RANS computations. The study was carried out on the 50 ft (15.24 

m) plate. When using wall functions, the effect of wall roughness can be simulated 

by decreasing the log-layer constant E. The skin friction results for smooth wall 

condition, E = 9.793, were compared with two rough wall cases; where E = 4.897 

and E — 2.449. The results are plotted in Figure 19. Decreasing the value of the 

log-layer results in an increase in predicted skin friction. Using a log-layer constant 

half that of the smooth wall value {E — 9.793) results in an 11% increase in the 

predicted viscous drag at a speed of 5.08 m/s. Similarly, the use of a value a quarter 

of the smooth wall value results in a 22% increase in viscous drag. 

It is possible to select values of the log-layer constant based on experimental data on 

sand roughness, values of which can be found in Schlichting [74]. However, finding 

the sand roughness and its corresponding log-layer constant for a particular surface is 

difficult. The only accurate way of determining the log-layer constant for a particular 

surface finish, say a painted ship rudder, would be to conduct a flat plate experiment. 

The log-layer constant in the RANS calculations could then be adjusted, to make the 

calculated skin friction consistent with those found by experiment. 

5.6 Conclusion to Chapter 

This investigation has highlighted the complex procedures that are required in order 

to obtain accurate viscous skin friction estimates, when using a RANS solver. The 

procedures carried out in this study can be applied to the modelling of any viscous 

flow problem, be it a simple pipe flow or the flow round complex ship geometry. The 

difference is that for a rudder flow problem, the problem definition is further compli-

cated by complex curved surfaces and the existence of viscous pressure interaction. 
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The following general conclusions are drawn from this skin friction investigation; 

» Correct model boundary condition selection and positioning are essential in 

forming a well-posed problem, capable of efficient solution using a RANS code 

solver. 

• Detailed near-wall and whole fluid domain independence studies are necessary 

if RANS solutions are to be regarded as being grid independent, and of the 

highest level of accuracy. 

9 Correct selection of the first near-wall cell size is important in order to make 

proper use of the wall function, whereby, avoiding excessive computational ef-

fort. 

• Effects of Reynolds number on the near-wall grid spacing must be taken into 

account, when dealing with flow problems operating over a range of velocities. 

• Initial specification of the level of accuracy expected from the results is essential, 

in order to make efficient use of computational resources. 

The following conclusions can be drawn from the comparisons made between the 

RANS results and those of Proude and the empirical skin friction lines; 

® The standard k — e and RNG k — e turbulence models both performed well over 

a range of Reynolds numbers, with the standard k — e model providing a 2% 

more accurate correlation with Proude's data than the RNG k — e turbulence 

model, at high Reynolds numbers. 

» With regard to the skin friction estimation at low Reynolds numbers, the RANS 

results were in error due to the RANS solvers inability to simulate laminar-

turbulent transition. 
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e As expected there is good correlation between the RANS results and the corre-

lation lines of the ITTC and Schoenherr, over the range of Reynolds numbers 

investigated, with specific differences within certain bounds of Reynolds num-

ber. 

® A modified Schoenherr formula was derived from the RANS data, providing 

constants not dissimilar to those derived by Schoenherr. The important point 

to note is that this formula does not rely explicitly on Proude's plank data but 

on the empirical factors included within the k — e turbulence model. 

» It was shown that surface roughness could be simulated by suitably modifying 

the log-layer constant within the turbulence model wall function. 
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Chapter 6 

N A C A 0012 Section Performance 

6.1 Overview of Chapter 

The previous Chapter investigated the use of the RANS solver in estimating the 

viscous drag on a fiat plate. The results from this study highlighted how sensitive 

even the simplest flow models can be to the selection of grid and solver parameters. 

These results give an insight into the important grid quality solver parameters which 

need to be considered when seeking accurate frictional drag estimates. However, 

the flow phenomena about lifting two-dimensional rudders is far more complex than 

the flow about a flat plate. The existence of high pressure gradients and separation 

flow features, as well as frictional effects, place speciflc demands on grid quality 

and solution strategy. The following Chapter presents a validation study similar to 

the flat plate, but addressing the specific grid requirements needed to capture the 

flow features about a two-dimensional NACA 0012 rudder section adequately. The 

coupling of pressure distribution and boundary layer development will thereby be 

examined. This study will also address the important topic of convergence criteria 

and its effect on solution accuracy. 
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6.2 Investigation Description 

6.2.1 Invest igat ion S t ra tegy 

The investigation was divided into four parts; a boundary location study, grid inde-

pendence study, a convergence criteria study together with a validation investigation 

against experimental data. 

The boundary location and grid independence study was deemed necessary, in order 

to gain an understanding of specific grid requirements, needed to capture the complex 

flow features about rudder sections adequately. The convergence criteria study, was 

carried out to determine the effect of mass source residual stopping criteria on solution 

accuracy. This investigation was regarded as extremely important at this stage of 

the research, since later transient calculations would require efficient use of computer 

resources, whilst retaining a high degree of accuracy. The validation study was carried 

out to assess the performance of the RANS code in computing lifting surface flows. 

6.2.2 Validation D a t a 

The NACA 0012 section was chosen as the validation test case, since many systematic 

experimental investigations had been carried out using it, providing a rich source of 

validation data. A number of experimental tests have been carried out on the NACA 

0012 section, the most comprehensive of which are those conducted by Abbott and 

Von Doenhoff [91], Thibert et al [92] and Gregory and O'Reilly [93]. 

Abbott and Von Doenhoff's [91] tests were carried out in a wind tunnel on a wing of 

chord, c = 0.6 m and span, 6 = 0.9 m at Reynolds numbers up to = 9.0 x 10® 

and Mach numbers of less than 0.17. The tunnel turbulence level was low, in the 

order of a few hundredths of a percent. The low Mach numbers of these tests mean 

that they can be regarded as incompressible, and suitable for validation against the 
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computed incompressible results, obtained from the RANS code. The data presented 

by Abbott and Von Doenhoff [91] consists of plots of q versus a and q versus q, at 

Rn = 3.0 X 10®, 6.0 X 10® and 9.0 x 10®. Whilst Abbot and Von Doenhoff [91] present 

a rich set of force measurements, surface pressure measurements are not presented. 

The results from Abbott and Von Doenhoff's [91] experiments were used to validate 

the RANS computed rudder force coefficients. 

Thibert et al's [92] experiments were carried out in a wind tunnel on a wing of chord, 

c = 0.21 m and span, h = 0.56 m at Reynolds numbers up to = 4.96 x 10® and 

Mach numbers between 0.3 — 0.829. Measurements of turbulence level were not made. 

The high Mach numbers at which these tests were carried out mean that the results 

cannot be regarded as incompressible, hence, making them unsuitable for comparison 

with the incompressible results obtained from the RANS code; They would, however, 

provide a good source of validation data for any compressible RANS results. The 

data presented by Thibert et al [92] consists of plots of q versus a and Cj versus c; 

and surface pressure plots at various Reynolds numbers and Mach numbers. 

Gregory and O'Reilly's [93] experiments were carried out in a wind tunnel on a 

wing of chord, c = 0.76 m and span, 5 = 2.7 m at Reynolds numbers up to i?„ = 

2.88 x 10® and Mach numbers of less than 0.16. Measurements of turbulence level were 

not made. The low Mach numbers of these tests, mean that they can be regarded 

as incompressible and are, therefore, suitable for validation against the computed 

incompressible results obtained from the RANS code. Gregory and O'Reilly [93] 

present plots of q versus a and Cd versus q, at = 1.44 x 10® and 2.88 x 10®, 

along with surface pressure plots at = 1.44 x 10®. The results from Gregory and 

O'Reilly's [93] experiments, were used to validate the RANS computed rudder surface 

pressures computed by the RANS code. 
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6.2.3 Computa t iona l Model Par t icu la rs 

The NACA 0012 section modelled, had a chord, c = 0.32 m and span, s = 1.0 m. The 

chord of c = 0.32 m was chosen, because it allowed the grids created, to be used in the 

subsequent study into the flow about NACA 0012 section with attached Gurney flap. 

The model was run at = 2.88 x 10® and 6.0 x 10® equating to inflow velocities of 

Uoo = 135.37 m/s and 282.03 m/s respectively, based on an air of density p = 1.204 

kg/m^ and dynamic viscosity fi — 1.811 x 10""̂  kg/m s at 15 degrees centigrade. The 

standard and RNG k — e turbulence models were both tested, using the standard con-

stants given in Table 1 and Table 2. The inlet turbulence parameters k and e were set 

according to the free stream conditions. QUICK differencing was used for the spatial 

u and V terms and hybrid for the turbulence quantities k and e. Pressure correction 

was carried out using the SIMPLE algorithm. The under-relaxation parameters, were 

set according to Table 3. The mass source residual stopping convergence criteria was 

set at 1.0 x 10"® kg/s in all computations. All computations were carried out at 

steady state, using the Irixresearch computing facility, as described in Chapter 3. 

6.3 Boundary Conditions 

The multi-block topology structure used to generate the grids around the NACA 0012 

section, are shown in Figure 6. The boundary conditions used for the conventional 

rudder are shown in Figure 20 and Table 16. It must be highlighted, that it was 

decided that when modelling rudders at angles of incidence, that the inflow angle 

and not the rudder grid would be altered. This decision resulted in the use of two 

different boundary conditions, depending on the angle of incidence the section was to 

be run at. The reasoning behind this decision will be explained. 

In many studies of this sort, the rudder is twisted within the grid, whilst holding the 

inflow direction constant; The author has mixed views on the effect this approach 
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has on the flow solutions over a range of incidences. The main problem with this 

approach, is the fact that the cells within the grid become highly skewed as the angle 

of incidence increases, and it is often hard to control the grid distributions to avoid 

this. Although these grids can yield acceptable flow results, the creation of highly 

skewed, and discontinuous cell propagations within the grid, places excessive demand 

on the flow solver, and often results in solution difficulties and divergence. Even if 

flow solutions are obtained over a range of incidences using this approach, it is hard 

to compare the results on the same basis, since the differences in the flow solution 

will have as much dependence on the grid used, as on the angle of incidence itself. It 

can be argued that changing the inflow direction, provides a solution to the problem, 

since it avoids the problem of twisting the rudder within the grid model. Although 

true, this method also has drawbacks inasmuch as the flow at high angles results 

in flow diagonally from cell vertex to vertex, within some grid cells of the model. 

This is far from ideal and can result in numerical diffusion as already mentioned. 

The problem of numerical diffusion is an inherent problem of both inflow approaches, 

since no matter what angle the flow is to the grid, at some location within the grid, 

the flow is likely to be diagonal from cell vertex to vertex. It is believed that this 

causes less of a problem, than those resulting from twisting the rudder within the 

grid model. Twisting the rudder within the grid results in regions with have highly 

skewed cells making the accuarate prediction of cell fluxes difficult, placing excessive 

demand on the flow solver. 

As with the flat plate model in Chapter 5, the rudder section is modelled as a wall 

with a no-slip condition applied. As shown in Figure 20, the specification of the 

inflow conditions depend on the angle of incidence of the flow. The constant pressure 

boundary conditions, were used in this model instead of the mass flow boundary 

condition, since they are simpler to apply in cases where the mass flow is difiicult 

to calculate, such as on curved boundaries. The inlet turbulence parameters k and 

e were set according to the free stream conditions, ensuring that k and e remained 

positive throughout the solution, as discussed in Chapter 3. 
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6.3.1 Posi t ioning of Boundar ies 

As with the flat plate investigation in Chapter 5, a study was carried out to investigate 

the sensitivity of the flow model to the location of the outer boundaries used to model 

the unbounded flow field around the rudder. In this investigation, the outer boundary 

distances from the rudder section were varied between 2 and 15 chord lengths, and 

the effect on the computed ci and Cj were noted. The rudder flow incidence angle was 

set at a = 8 degrees, and run at = 6.0 x 10® using the standard k ~ s turbulence 

model. An incidence angle of a = 8 degrees was chosen so as to produce a flow 

regime with a pronounced wake structure, but not so high as to cause problems of 

convergence with the standard k — e turbulence model. The results from this study 

can be seen in Figure 21. Figure 21 shows that there is asymptotic convergence in 

both Ci and Cj, as the boundaries are moved further from the rudder. It can be seen 

that when the boundaries are placed around 15 chord lengths from the rudder, there 

is little change in the computed ci and Cj. At this point it is obvious that the solution 

is no longer affected by the location of the outer boundaries. These results confirm 

those found by Chau [48], Simonsen [8] and Guilmineau et al [70], who found that 

the outer boundaries, needed to be placed at between 12 and 15 chord lengths away 

from the rudder. Many other studies have used boundary locations closer than those 

found in this study, this is mainly due to constraints on grid size, as a result of limited 

computational resources. Often, the small errors that result from the application of 

closer than adequate boundary conditions, can be regarded as acceptable. Based on 

the results found in this boundary location study, the boundaries were located 15 

chord lengths away from the rudder in all subsequent tests. 
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6.4 Grid Parameters, Independence and Conver-

gence 

As in the flat plate study, a full decoupled independence study was conducted, to 

investigate the effect of changes in near-wall grid node location, number of grid nodes 

around radiating from and in the wake of the NACA 0012 section. The 

variation in the q and Cj, along with the pressure distribution around the rudder 

section were all studied. Although carrying out such independence studies on every 

model seems laborious, it is regarded by the author as the only way of ensuring that 

high quality solutions can be gained from CFD. 

An identical approach to the problem of grid independence, has been applied to the 

NACA 0012 model for the same reasons as was detailed in Chapter 5 for the flat plate 

model. The only difference between the two flow models, is that the NACA 0012 sec-

tion experiences pressure forces and separation, at high angles as well as frictional 

effects; This grid independence study provides important information, as to the spe-

cific grid requirements for accurate conventional lifting surface RANS computations. 

The study was run at a = 6.0 x 10® using the standard k — e turbulence model. 

6.4.1 Near-Wal l Grid S tudy 

In an identical way to the study conducted on the flat plate in Chapter 5, the effect 

of the first cell size on the NACA 0012's drag was investigated. In this study, the 

rudder section was held at a fixed incidence of a = 0 degrees, so that the force acting 

on it was purely due to drag. This was done to remove any lift induced effects on the 

solution, thus simplifying the independence analysis. 

The outer cells on the outer boundary to the NACA 0012 section were held fixed, 

whilst the first cell size was varied. The outer cell size was fixed at 0.75 m and the 

first near-wall cell size was varied between 0.0016 m and 0.0001 m. The results from 
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the study are shown in Table 17. Here, as was found in the flat plate study in Chapter 

5, the Cf tends to vary little between y~̂  values of 20 and 400, with the number of 

iterations and CPU time increasing sharply below the lower %/+ wall function limit of 

30. 

More importantly, looking at the Cpy, it is obvious that use of too large a first cell 

size, results in an over prediction of the Cpy. Good convergence in Cp̂  is shown with 

decreasing cell size. The reasons for this are two fold. Firstly, the method used to 

find the wall surface pressure, uses linear interpolation from the cells above the wall; 

The closer the nearest cell is to the wall, the more accurate the linear interpolation. 

Secondly, the reduced first cell size means that the total number of cells used in the 

interpolation are closer to the body, hence, providing better values for interpolation; 

It is, therefore, not advisable to use the upper criterion when selecting the first 

cell size, since this will result in incorrect prediction of the Cp„. 

These results reiterate the findings of the flat plate study, and highlight the need for 

the first grid cells near the body, to be small enough not only to resolve the frictional 

drag correctly, but also ensure the correct computation of the pressure drag too. This 

finding is significant, since it shows the importance of decoupling a complex flow prob-

lem, into simpler sub problems in order to determine the specific grid considerations, 

necessary to obtain credible flow solutions. Based on these findings it was decided 

that the near-wall grid cell size would be set at 0.0002 m in all subsequent studies 

within this section. 

6.4.2 Chord-wise Grid S tudy 

A chord-wise grid independence study was carried out to establish the effects of varia-

tions in the chord-wise number of cells n^, on the solution, similar to the longitudinal 

study carried out in the flat plate investigation in Chapter 5. It was necessary to 

cluster the grid, in order to capture the large velocity gradients in the flow at the 
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leading and trailing edges. In this study, the NACA 0012 section was placed at an 

angle of incidence of a = 8 degrees, and the effects of different numbers of chord-wise 

cells on Q, Cj, and pressure distribution were studied. 

The results from this study can be seen in Figure 22 and Figure 23. It is evident 

from Figure 22 that both c/ and C/ have converged to an almost asymptotic limit. 

Similarly, looking at Figure 23 there is no identifiable difference between the pressure 

distribution plots, for all but the coarsest grid tested. In all subsequent tests the 

chord-wise number of cells were set to = 244. 

6.4.3 Pressure C a p t u r e Grid S tudy 

An independence study was carried out, to investigate the effect of increasing the 

number of cells down onto, n^, the NACA 0012 section. In this study, the NACA 

0012 section was placed at an angle of incidence of o; = 8 degrees, and the effects of 

different numbers of cells down onto the section on q, Cj and pressure distribution 

were studied. Here, the inner cell size on the body, was held fixed at 0.0002 m found 

from the near-wall grid study, and the cell size on the outer body was varied between 

3.0 and 0.092 m. The results from this study, can be seen in Figure 24 and Figure 

25. It can been seen from Figure 24 that there is good convergence in both q and 

Cd as the number of cells increases. As expected, the pressure distribution in Figure 

25, also follows the same trend with convergence in the plotted pressure distribution. 

This identified convergence in pressure distribution was also found by Zhu and Quin 

[94] in their research into supercritical aerofoils, using a RANS code. This trend is 

due to the increased accuracy of the interpolated pressure down onto the body, caused 

by the increased grid density in the near body region. In all subsequent tests, the 

number of cells down onto the section were set to = 49. 
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6.4.4 Wake Grid S tudy 

An independence study was conducted, to investigate the effects of increasing the 

number of cells in the wake region, n^, on the NACA 0012 solution. In this study, 

the NACA 0012 section was placed at an angle of incidence of a = 8 degrees, and the 

effects of increasing the number of cells in the wake region on q and Cj were studied. 

Here, the first cell size at the trailing edge was held fixed, to match the size of the cell 

on the section, and the outer cell size on the outer boundary was varied between 0.95 

m and 0.0887 m. The results from this study can be seen in Figure 26. It is evident 

that the performance of the section remains generally unaffected by changes in the 

number of cells in the wake, above 99 cells. In all subsequent tests the wake number 

of cells were set to = 99. The final grid used in all subsequent investigations with 

the NACA 0012 section can be seen in Figure 27; for clarity alternate grid lines have 

been plotted. 

6.4.5 Convergence Versus Accuracy 

As mentioned before, the convergence criteria used in CFX-4.3 for stopping a solution, 

is the mass source residual. In all the computations up until now, the mass source 

residual stopping criteria has been set to 1.0 x 10"® kg/s; It was deemed necessary, to 

conduct an investigation into the effect this stopping criteria has on solution accuracy. 

Using the optimum grid generated through the detailed independence study, a run 

was carried out at a = 8 degrees, with a convergence criteria set at 1.0 x 10"® kg/s, 

however, every ten iterations the forces and residuals were output. The data from this 

study is presented in Figures 28 to 30. Figure 28 shows that after only 600 iterations 

both the Q and Cd have converged, indicating that the subsequent 700 iterations have 

been wasted unnecessarily, in reducing the mass residual down to 1.0 x 10"® kg/s. In 

fact, the convergence criteria could have been set at 2.0 x IQr^ kg/s and still given 

the same results, but for a lower computational overhead. 
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Out of interest, the Cf and Cpy were plotted against the number of iterations in Figure 

30. Figure 30 shows that convergence in the frictional drag is reached early on in the 

computation, at around 100 iterations, with the pressure drag taking a further 450 

iterations to converge. This is an important result, since it indicates that the major 

effort in obtaining a converged solution is in resolving the pressure field within the 

flow. Using this information, the number of inner iterations on the pressure equation, 

could have been increased, in order to speed up the convergence rate. Based on these 

findings, a convergence criteria of 1.0 x 10'^ kg/s was used in all the subsequent runs, 

unless stated otherwise. 

6.5 Validation against Experimental Data 

Following the detailed grid independence investigation, the optimum grid was subse-

quently validated against experimental data. The q and Cj were validated against the 

data presented by Abbot and Von Doenhoff [91] at = 6.0 x 10®, over a range of 

incidences past stall. The pressure distribution was compared to the data derived by 

Gregory and O'Reilly [93] at = 2.88 x 10® at an angle incidence of a = 6 degrees. 

The standard and RNG k — e turbulence models were both tested. Simulations took 

between 10 and 100 minutes to converge, depending on the angle of incidence of the 

section. Solution time increased with increasing angle of incidence, due to the addi-

tional complexity of the flow physics, resulting from separation at the higher angles. 

The convergence times for both the standard, and RNG k — e turbulence models were 

broadly the same across the incidence range. 

6.5.1 Lift 

The results from the variation of angle of incidence on q can be seen in Figure 

31. There is good correlation between the computed lift slope and experimental lift 
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slope obtained by Abbot and Von Doenhoif [91], for both turbulence models up until 

stall. The maximum lift coefficient ci^rnax, calculated using the RNG k — e turbulence 

model, shows good correlation with experimental data, although the stall angle astaii 

at which it occurs is slightly over predicted. The standard k — e turbulence model 

severely under predicts the cî rnax- After stall, there is a drop in the computed q but 

this does not compare well with the experimental data in the case of both turbulence 

models. These results are broadly similar to those found by Chau [48]. 

The poor prediction of separation, and hence q at high angles is a well known limi-

tation of the standard and RNG k — e turbulence models, also identified by Rhie and 

Chow [71], Chau [48], Rizzeta and Visbal [95] and others. This problem arises due 

to the use of the wall functions in the near-wall region. Since the first grid points 

usually lie between a of 30 and 500, this is usually inadequate when separation is 

present, as identified by Rizzeta and Visbal [95]. 

6.5.2 Drag 

The results from the variation of angle of incidence on Cj, can be seen in Figure 31. It 

can be seen that the computed Cd compares well with the experimental results at low 

angles of incidence, with only a slight over prediction for both the standard and RNG 

k — e turbulence models. At the higher incidences the RNG k — e turbulence model 

does show a slightly better correlation with the experimental drag. Since the lift 

prediction, which is pressure dominated seems to be accurate, the over prediction in 

the computed drag values across the incidence range, suggests that the error lies in the 

computation of frictional drag. Prom the investigation carried out on the flat plate in 

Chapter 5, it suspected that this slight over estimate in the frictional drag, is probably 

due to the laminar-turbulent transition. This problem is addressed by Johansen and 

S0rensen [96], who carried out an investigation into the influence of transition on 

lift and drag characteristics of different wing sections, in particular the NACA 0012 

section, at = 3.0 x 10®. They concluded that where possible, transition should be 
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modelled in CFD calculations, since the laminar-turbulent properties of the boundary 

layer, have a significant influence on the skin friction and separation experienced by 

the section, and hence, the computed lift and drag. Johansen and S0rensen [96] found 

that if transition was not taken into account, a slight under prediction in lift, and a 

over prediction in drag resulted. It was concluded, that provided the errors in the 

predicted ca remained low, quantifiable, and similar for all lifting surface geometries, 

good qualitative performance comparisons were possible. 

6.5.3 Pressure Dis t r ibut ion 

The computed pressure distribution, represented by the local pressure coefiicient Cp 

given in Equation 52 for the NACA 0012 is plotted in Figure 32, along with the 

experimentally determined distribution found by Gregory and O'Reilly [93]. 

It is evident, that both the standard and RNG k — e turbulence models show good 

agreement with the experimental data, on pressure and suction surfaces. This was a 

somewhat expected result, since the lift force, which is predominately pressure dom-

inated, was already shown to be coincident with that determined by experiment. On 

closer inspection of the pressure distribution, it is noticeable that the curves are not 

purely smooth and have a number of discontinuities. These small deviations have 

little effect on the overall performance of the section. It is, however, important to 

highlight why these small errors have occurred. It is due to the fact that pressure 

distribution is picking up on the resolution of the grid, which means that the ap-

proximated curve which is made up of small linear sections is manifesting itself in 

the pressure distribution. This problem is unavoidable, using the solution technique 

implemented by CFX-4.3. The discontinuities in pressure which are noticeable at 

locations xjc — 0.33 and x/c = 0.66 result from a problem in the grid generation 

technique within Fleximesh. These occur at the inter block boundaries because the 
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gradients of the two splines that meet, are not matched. This results in small er-

rors in the calculation of the section co-ordinates close to the inter block boundaries. 

This problem was subsequently rectified in a later release of Fleximesh and, therefore, 

eliminated from later investigations. 

6.5.4 Visual Flow Resul ts 

Figure 33 and Figure 34 show the streamline plots for the NACA 0012 section at 

a = 15 and 18 degrees (before and after stall) using the standard k — e turbulence 

model. Although no experimental data was available for comparison, it is evident 

that the predicted separation zone is much smaller than what would be expected, as 

found by [48]. This is primarily due to the use of a wall function in the standard k — e 

turbulence model. 

6.6 Conclusion to Chapter 

This Chapter presented the results obtained from steady state calculations, on a 

NACA 0012 section using a RANS code. Full boundary, independence, convergence 

and validation studies were conducted for the standard and RNG k — e turbulence 

models. 

The following general conclusions are drawn from the NACA 0012 lifting surface 

investigation: 

9 The boundary location study, indicated that the outer boundaries should be 

placed at least 15 chord lengths away from the section, in order to obtain a 

solution that is unaffected by boundary position. 

« The near-wall grid independence study highlighted the need for the first grid 

cell and density near bodies with high pressure gradients, to be small enough to 
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resolve the frictional drag, but also ensuring the correct computation of pressure 

drag. 

® The wake grid independence study showed that the solution is largely unaffected 

by the number of cells placed in the wake region. 

® The convergence study indicated the need for careful selection of the mass source 

convergence criteria, to ensure efficient use of computational resources whilst 

maintaining a high degree of accuracy in the results. 

The following conclusions can be drawn from the comparisons made between the CFD 

results and those found by experiment: 

® There was good correlation between the experimental and computed lift curves 

for both the standard and RNG k — e turbulence models up to stall. 

• Both the standard and RNG k — e turbulence models fail to predict the loca-

tion of maximum lift, with the RNG k — e turbulence model providing a more 

reasonable estimate of the point of maximum lift. 

® The drag curves for both the standard and RNG k—e turbulence models showed 

a good general agreement with those found by experiment, with only a small 

offset at low incidences, with the RNG k — e providing a better correlation at 

higher incidences. 

» The pressure distribution was shown to have good agreement with that found 

by experiment. 

These conclusions have shown that the RANS code is capable of providing accurate 

estimates of rudder performance up to stall, and qualitative performance prediction 

past stall, using the standard and RNG k — e turbulence models. A number of 

limitations of the standard and RNG k ~ e turbulence models have been identified, 
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such as the lack of a rational way of including laminar turbulent transition, and poor 

prediction of separation. It is evident that the RANS method can be used to predict 

conventional rudder performance, with a reasonable degree of accuracy up to the 

point of stall. For the RANS code to be a truly versatile tool in rudder design, it 

must be capable of giving performance estimates of non-conventional rudder sections, 

such as the Schilling, which has a blunt trailing edge. 
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Chapter 7 

Effect of a Gurney Flap on NACA 

0012 Section Performance 

7.1 Overview of Chapter 

A detailed computational investigation into the two-dimensional performance of a 

NACA 0012 section, fitted with 2 and 4% h/c Gurney flaps, operating aX — 0.85 x 

10® is presented. The aim of the work, was to determine the suitability of the RANS 

method in modelling the vortex shedding, experienced by lifting sections with blunt, 

sharp edged features; In particular, whether under-converged steady state calculations 

could be used for accurate section design performance evaluation, in place of the 

computationally intensive time-accurate flow simulations. Under-converged steady-

state, periodic, and time-averaged two-dimensional lift and drag coeiScients, vortex 

shedding frequency and maximum Reynolds stresses are predicted, and compared 

with the available experimental data. Particular attention is focused on the specific 

grid and time-accurate time step requirements needed to capture the vortex shedding 

produced by the Gurney flap. 
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The flow phenomena over a Gurney flapped NACA 0012 section, is similar to that 

found over the Schilling high lift sections discussed in Chapter 1. In the absence of 

detailed validation data for Schilling sections, the Gurney flapped NACA 0012 section 

provided a comparable, if not more complex validation test case. This investigation 

was necessary, in order to evaluate the suitability and accuracy of the RANS code 

for the modelling high lift section performance. From a structural design point of 

view, i.e. racing car and aircraft applications, the prediction of the frequency and 

magnitude of any periodic forces acting on Gurney flapped wings, is of considerable 

importance. 

7.2 The Gurney Flap 

7.2.1 Descr ipt ion 

A Gurney flap is a short thin flap of height h fltted perpendicular to the pressure 

surface, at the trailing edge of a wing, as illustrated in Figure 35. The most common 

application of this device, is in racing-car spoilers, where it is used to increase the 

down-force. This type of device, was first used in this application in the late 1960's 

by the American racing-car driver and team owner Dan Gurney, who is generally 

credited with inventing the device that now bears his name. The Gurney height h is 

usually non-dimensionalised using the chord of the wing c to give a height h/c. 

7.2.2 Gurney Flap Effect on Forces 

The blunt, sharp edged effect of the Gurney induces an effective camber dispropor-

tionate to its size; increasing the CL for a given incidence, as well as maximum CL-

A number of physical flow phenomena are responsible for this. The vortex shedding, 

aft of the Gurney, combined with the upstream stagnation region causes an increase 



108 

in the circulation and hence lift about the wing. The reduced pressure, aft of the 

Gurney, also helps to delay separation from the suction surface, increasing maximum 

CL- However, the penalty for these increases in CL is an augment in the zero-lift Co-

Effects similar to these are experienced by high performance ship rudder sections [29]. 

Of considerable interest is how the lift augment can be maintained, whilst minimising 

the zero-lift drag. Increments in lift occur with increasing device height, with small 

Gurneys having a disproportionately large effect. 

Jeffery [40] states that generally, fitting a Gurney increases the drag, and reduces the 

lift-to-drag ratio at low to moderate values of lift. The magnitude of these changes 

vary with device height, with small Gurneys (< 1%) having relatively small drag 

penalties. Gurneys also reduce the lift dependent drag, leading to reductions in drag 

at high values lift. Evidence also suggests that small Gurneys can actually reduce the 

minimum drag of some sections. 

7.2.3 Effect of Gurney Flap on Wake S t ruc tu re 

The first investigation and discussion as to the physical flow around a Gurney, was 

presented by Liebeck [97], who postulated the flow structure shown in Figure 35. 

Liebeck [97] hypothesised a short region of separated flow, directly upstream of the 

Gurney, and two counter-rotating vortices downstream, which he described as having 

a "tuning effect" on the local flow field. This flow structure, was derived from the 

twin-bubble structure hypothesised by Kiichemann [98], for the trailing-edge region 

of aerofoils operating at large incidences. Neuhart and Pendergraft [99] also reported 

that similar vortex structures were observed in water-tunnel experiments. Similar 

flow structures have been identified by Ashby [100], Ross et al [101] and Jang et al 

[102] from steady state RANS simulations of aerofoils fitted with Gurneys. These 

investigations will be discussed in more detail, later in this Chapter. 

The RANS studies were all carried out using a steady state solution approach, and 
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as such failed to provide information regarding any periodicity that may have existed 

in the wake. It is, therefore, unclear from these studies, whether or not the vortex 

structure, aft of the Gurney, is in fact stable. Time-accurate calculations have not 

been carried out using RANS solvers, purely due to computational restraints. To do 

so, requires large numbers of time steps and extremely fine grids in the wake region, 

in order to capture vortex shedding. 

7.2.3.1 Stable Vortex Structure 

Stable vortex structures comparable to those hypothesised by Liebeck [97], can be 

found downstream of bluff bodies, either at very low Reynolds numbers, < 50, 

or when time-averaged, high Reynolds number flow fields are considered. Carrying 

out time-averaging on the velocities, in the wake region, results in the alternating 

velocities far downstream of the body cancelling out, with the only evidence of vortex 

shedding being two counter-rotating vortices downstream of the Gurney, as hypoth-

esised by Liebeck [97]. 

7.2.3.2 Unsteady Vortex Structure 

For most practical flows about bluff bodies, such as flat plates, cylinders and Gurney 

flaps, where > 50, it is well known that a wake of alternate vortices, known as a 

Von Karman vortex street is formed. In these flows, the boundary layers on either 

side of the bluff body separate at some point, to form two shear layers of opposing 

vorticity, which roll up to form alternate vortices which then travel downstream. 

The mechanism by which these separating shear layers form the vortex street, was 

first postulated by Gerrard [103]. The first stage of the shedding cycle begins as the 

shear layer on one side of the body rolls up to form a vortex. As this occurs, it draws 

the shear layer over from the other side of the body. This shear layer, which contains 

vorticity of opposing sign, is drawn across the wake centreline, cutting off the supply 
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of vorticity to the shear layer that is rolling up. At this point, the vortex is shed and 

moves downstream, whilst the shear layer on the opposite side starts to roll up, so 

repeating the process. 

The vortices shed from the body, travel downstream in the vortex sheet, at typically 

70 — 85% of the free-stream velocity [104]. These vortices are shed into the wake, 

at a frequency / resulting in periodic lift and drag forces to be experienced by the 

body. The frequency of the shed vortices is often non-dimensionalised, to give what 

is known as the Strouhal number, given in Equation 53. 

6^==-^^ (53) 
ÔO 

where, Uoa is the free-stream velocity and d is some base dimension, which is often 

the bluff body height, or in the case of the Gurney flap, the flap height h. 

7.2.4 Exper imenta l Investigations 

A number of experimental investigations have been conducted into the effect Gurneys 

have on wing performance, since its invention in the 1960's. A detailed overview of 

these experiments, along with results from his own experiments, are given by Jeffrey 

[40], circumventing the need for a detailed discussion in this instance. 

The earliest reference to the effect of a Gurney on wing performance was made by 

Liebeck [97], who investigated the effect of a 1.25% device on the lift, drag and 

wake structure of a symmetrical Neumann aerofoil. Earlier investigations into the 

performance effect of similar devices, not explicitly known as Gurneys, were evaluated 

prior to the 1960's and are also discussed in detail by Jeffrey [40]. 

The recent experimental work by Jeffrey [40] and Jeffrey et al [105, 106], using Laser 

Doppler Anemometry (LDA), coupled with force and pressure measurements, has fur-

thered the understanding of Gurney flap flows and provided a rich source of validation 

data for computational fluid dynamics (GFD) simulations. 
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7.2.5 Computa t iona l Simulations 

CFD modelling of Gurneys has been limited, mainly due to computational resource 

constraints, and difficulties associated with the periodic vortex street produced by 

the Gurney. To date, only two computational approaches have been applied to the 

problem. The first being a panel method and the second a RANS approach. 

Fripp [107] and Jeffrey [40], used panel methods to model sections fitted with Gurney 

flaps. The Gurney was modelled through the definition of a modified section, with 

a "virtual" trailing edge, representing the streamlines bounding the recirculation re-

gions upstream and downstream of the Gurney. Fripp [107] reported disappointing 

results, following comparison with experimental data. Jeffrey [40] managed to ob-

tain reasonable agreement between the computational and experimental results for 2 

and 4% Gurneys fitted to a NACA 0012 section. Although this approach has obvious 

weaknesses, it can be used as a qualitative tool for assessing Gurney flap performance, 

whilst being simple to develop and computationally inexpensive. 

RANS investigations have been carried out by Ashby [100], Ross et al [101], Jang et 

al [102] and Sims-Williams et al [108]. All these investigations modelled the Gurney 

directly, yielding time-averaged data through a steady state solution approach. 

Ashby [100] carried out both experimental and computational studies of lift-enhancing 

tabs on a multi-element aerofoil (NACA 632-215ModB). The computational study 

was conducted using a two-dimensional incompressible RANS code, implementing 

both the Spalart-Allmaras one-equation and Baldwin-Barth one-equation turbulence 

models. The computed results predicted all of the trends observed in the experimental 

data reasonably well. The time-averaged flow field indicated by computed streamlines 

were found to be consistent with the flow field hypothesised by Liebeck [97] and 

observed by Neuhart and Pendergraft [99]. 

Ross et al [101] also carried out both experimental, and computational studies of 
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lift-enhancing tabs on the multi-element aerofoil (NACA 632-215 ModB). The com-

putational study was conducted using a two-dimensional incompressible RANS code, 

implementing the Baldwin-Barth one-equation turbulence model. Whilst the com-

puted lift and drag results did not exactly match those found by experiment, they 

did manage to indicate the correct trend in the aerodynamic forces, resulting from 

the addition of the Gurney flap to the geometry. 

Jang et al [102] carried out computational studies of Gurney flaps fitted to a NACA 

4412 aerofoil. The computational study was conducted using a two-dimensional in-

compressible RANS code, again implementing the Baldwin-Barth one-equation tur-

bulence model. The trends observed in this study were shown to agree well with the 

available experimental results. Although not all of the flow physics were captured 

in the wake downstream of the Gurney flap, enough of the major flow disturbances 

caused by the application of the Gurney flap were, giving rise to results consistent 

with those found by experiment. 

Sims-Williams et al [108] conducted a single computational study into the effect of 

fitting a 4.7% Gurney flap to a single element racing car wing. The computational 

investigation was carried out using a compressible RANS flow solver, implementing 

the standard k — e turbulence model. As such, an elevated Mach number had to be 

used, although this was considered not to have a great effect on the results. Both 

viscous and inviscid calculations were carried out for the wing, with and without 

a Gurney, at one incidence angle. Good agreement was found between the viscous 

and inviscid computed pressure distributions, and the experimental data, with the 

lift-enhancing effect of the Gurney being adequately predicted. 

Although these RANS studies yielded results broadly similar to those found by exper-

iment, the validity of the steady state solution method used in solving this periodic 

flow problem has yet to be addressed, along with computations of the time-accurate 

performance. The aim of this work has been to apply the standard k — e turbulence 

model in both under-converged steady state, and time-accurate calculations and to 
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compare the results with each other and experimental data. Wake grid resolution 

and time step sensitivity studies were conducted, in order to establish confidence in 

the results. 

7.3 Investigation Description 

7.3.1 Invest igat ion St ra tegy 

In this study both under-converged steady state, and full RANS time-accurate two-

dimensional computations, were carried out on a Gurney flapped NACA 0012 sec-

tion. A boundary location and full grid independence study was not conducted, as 

the NACA 0012 investigation in Chapter 6 provided the necessary boundary and grid 

conditions needed to obtain an optimum solution. Subsequently, a wake grid inde-

pendence study was conducted on the NACA 0012 + 4% Gurney, to investigate the 

effect of the wake grid on the under-converged steady state solution, in particular its 

effect on flow structure and performance prediction. 

Under-converged steady state computed performance data for a NACA 0012 fitted 

with a 2 and 4 % Gurney, was then compared with the experimental data obtained 

by Jeffrey [40], using the optimum grid obtained from the wake study. The under-

converged steady state flow about the NACA 0012 + 4% Gurney was also compared 

with the experimental flow structure obtained by Jeffrey [40]. 

A time-accurate periodic flow investigation was carried out on the NACA 0012 + 4% 

Gurney only. This involved a time step study, to examine the effect of time step size 

on the solution, followed by validation against the experimental data of Jeffrey [40]. 

The time-averaged periodic data was also compared with the under-converged steady 

state results, to determine if the under-converged steady state solution approach, 

captured the same time-averaged flow physics. 
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Steady state solutions were also obtained for an un-fiapped NACA 0012, operating at 

the same flow conditions as the Gurney flapped NACA 0012 sections. This was done 

as a comparison, to show how well the solver predicted the effect of fitting a Gurney. 

These computations were also validated against the data obtained by Jeffrey [40]. 

7.3.2 Validation D a t a 

The experimental results obtained by Jeffrey [40] were used for validation. These tests 

were carried out in a wind tunnel, on a wing section of chord c = 0.32 m and span 

b = 1.6 m, at a free stream velocity of Uoo = 40 m/s, corresponding to a Reynolds 

number of between Rn = 0.77 — 0.89 x 10® and Mach number of less than 0.11. 

The variation in the Reynolds number of these tests, was caused by variations in the 

ambient pressure and temperature. The wind tunnel turbulence level was measured, 

and found to be of the order of 0.2%. Transition was fixed at 5% x/c from the leading 

edge. The low Mach numbers of these tests, make them suitable for the validation 

of the computed incompressible results obtained from the RANS code. Jeffrey [40] 

presents time-averaged q, C l , q and Co versus a, surface pressures, LDA flow field 

data and LDA spectral flow field information. Calculations of the uncertainties of the 

data were made. The accuracy of the inclinometer used to set the incidence angle of 

the wings was ±0.1 degrees. An uncertainty of ±0.0087 in the CL and ±0.00078 in 

the CD was calculated. The surface pressure measurements were found to have an 

uncertainty of ±0.0013 in the Cp. 

7.3.3 Computa t iona l Model Par t icu la rs 

Two Gurney flapped, and one un-flapped NACA 0012 sections having a chord, c = 

0.32 m, span 6 = 1.6 m and flap heights of 2 and 4% were modelled, using the RANS 

code. These models were run at i2„ = 0.85 x 10®, which equated to an inflow velocity of 

Uoo = 40 m/s, based on an air of density p = 1.204 kg/m^ and dynamic viscosity fi — 
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1.811 X 10̂ 5 kg/m s at 15 degrees centigrade. The standard k—e turbulence model was 

tested using the standard constants given in Table 1. The inlet turbulence parameters 

k and e were set according to the free-stream conditions. QUICK differencing was 

used for the spatial u and v terms and hybrid for the turbulence quantities k and 

e. Quadratic second order time differencing was used in conjunction with fixed time 

stepping for all time-accurate calculations. Pressure correction was carried out using 

the SIMPLE algorithm. The under-relaxation parameters were set according to Table 

3. The mass source residual stopping convergence criteria was set at 1.0 x 10"* kg/s 

in all computations. This convergence level, was determined from a mass source 

residual versus q and ca convergence study on the NACA 0012 section investigated 

in Chapter 6. Computations were carried out, using both steady state and transient 

solution methods. All computations were carried out using the Irixresearch computing 

facility, as described in Chapter 3. 

7.4 Boundary Conditions and Grid 

The multi-block topology structure used to generate the grids around the Gurney 

flapped NACA 0012 section is shown in Figure 7. As with the NACA 0012 topology 

from Chapter 6, all the outer boundaries were located 15 chord lengths away from the 

section. The boundary conditions used to model the Gurney flapped NACA 0012 are 

shown in Figure 36 and Table 18. They were essentially the same as those used in the 

NACA 0012 study in Chapter 6. The NACA 0012 section was modelled as a no-slip 

wall, and the Gurney flap was represented by two no-slip wall surfaces back-to-back. 

It was deemed unnecessary to model the Gurney thickness, as its effect was considered 

insignificant, and would only serve to further complicate the grid generation process. 

Facilitating the creation of the two wall surfaces, the topology used in the NACA 0012 

investigation in Chapter 6 was divided in two at the Gurney flap height as shown in 

Figure 36. The grid used for the computations, was based on the final grid derived 

in the NACA 0012 study in Chapter 6, with small refinements at the trailing-edge 
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and in the wake regions. Figure 37 shows the finest grid (Grid 4) around the the 

NACA 0012 section fitted with a 4% Gurney, for clarity only alternate grid lines 

have been plotted. The first grid node was located 0.000625c away from the aerofoil 

(%/+ = 39 - 99). 

7.5 Under-converged Steady State Investigation 

Before the results of the under-converged steady state investigation are presented, it 

is deemed necessary to explain what is meant by a "under-converged steady state" 

solution. Although the flow about a Gurney is unsteady due to the vortex shed-

ding, it is typical to solve these problems as though they were steady, i.e. the time 

derivatives in RANS equations are set to zero. Steady state computations are much 

easier and faster than time-accurate computations. Applying this solution approach 

to unsteady problems can, however, neglect important fiow phenomena resulting in 

incorrect performance prediction. Although theoretically it should be possible to ob-

tain a converged steady state solution, as will become evident, more often than not 

under-converged steady state solutions are obtained as a result of problems associated 

with the implementation of steady state method. Although the results obtained from 

under-converged steady state solutions are not fundamentally correct since global 

mass conservation has not been satisfied, an investigation was deemed necessary to 

asses whether useful information could be obtained from these computations. Both 

under-converged steady state and time-accurate computations have been carried out 

to determine if this is the case. 

7.5.1 Wake Grid Independence S tudy 

It was necessary for a wake grid independence study to be carried out. A refined 

grid, based on the one obtained in the NACA 0012 independence study in Chapter 
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6, was used and the wake distribution aft of the Gurney refined successively, to 

produce four grids. The propagation parameters were chosen such that the majority 

of the grid nodes were located close to the Gurney. The finest (Grid 4) is shown in 

Figure 37; for clarity alternate grid lines have been plotted. The flow over the four 

grids was then solved at an angle of incidence of 0 degrees. The computed q and Q 

are compared in Table 19. 

It is evident, that the q does not seem to follow any limiting trend with increasing 

wake grid density. This is somewhat expected, since the lift force is predominantly 

affected by the flow over the section, and not that occurring in the wake. Although 

the Q does not seem to have fully converged to a limiting value, it is evident that 

the predicted drag is affected by the wake grid density, and would indeed converge 

further upon refinement. Increased numbers of cells in the wake region, allow more 

accurate resolution of the pressures aft of the flap, and hence the predicted drag force. 

These small gains in accuracy in the computed drag, resulting from the increased 

wake density, does not seem to warrant the large simulation times. It should be 

noted that the issue of wake grid independence, for the flow in the wake region is 

problematic. As the grid is successively refined, it becomes increasingly difficult 

to obtain a converged solution as a result of numerical problems associated with 

the solution method. A number of steps were taken in an attempt to improve the 

convergence of the computations. Increasing the number of inner iterations on the 

pressure equations and further under relaxation were all tried, having little effect 

on the convergence level. It was decided that further investigation into this lack of 

convergence would not be conducted as it was far beyond the scope of the research. 

The streamlines plotted for the coarse grid (Grid 1) in Figure 41, show the formation 

of the double vortex structure hypothesised by Liebeck [97] and found by Jeffrey [40]. 

The streamlines plotted for the fine grid (Grid 4) in Figure 42 indicate the formation 

of a periodic vortex structure. It is, however, expected that the fine grid solutions 

would produce similar predicted flow patterns as the coarse grid (Grid 1) solution, 

if properly converged. The observed wake grid dependent flow structure was implied 
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by Jang et al [102]. It was found that as the grid in the wake region was refined, the 

steady state solutions failed to converge, instead oscillating about some mean mass 

source residual value. This also resulted in oscillations in the predicted q and q , 

about some mean or under-converged steady state value as shown in Figure 43. 

As a final investigation, the coarse (Grid 2) and fine grid (Grid 4) were run over a 

range of incidences, —20 ^ a ^ 20 degrees. The results from this study are shown 

in Figure 45. It can be seen that there is little difference in the Ci and Cd curves 

of both grids, except around stall, with the coarse grid (Grid 1) predicting a later 

onset. The effect of wake grid distribution on the section pressure distribution was 

also plotted for the coarsest (Grid 1) and finest (Grid 4) grids, at an angle of incidence 

of 10 degrees in Figure 47. As can be seen, there is no noticeable difference in the 

pressure plots for both grids, supporting the conclusions obtained from the previous 

Ci comparison. 

Although the wake independence study indicated that the wake grid density only 

has a small effect on the computed Ci and q , it was decided that the fine wake 

grid (Grid 4) would be used in all subsequent under-converged steady state and 

time-accurate calculations at the expense of increased solution times. This decision 

was made because the fine grid (Grid 4) was considered to form a closer numerical 

representation of the physical flow, allowing the unsteadiness to be captured in the 

later time-accurate calculations. The total number of cells in the fine grid (Grid 4) 

was 49760. 

7.5.2 Validation against Exper imenta l D a t a 

The under-converged steady state section force coefficients of q and Cj were validated 

against those obtained by Jeffrey [40] at ^ = 0.59 x 10® for the NACA 0012 -t-

4% Gurney, over a range of incidences past stall. The under-converged steady state 

pressure distribution was also compared to the experimental data obtained by Jeffrey 
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[40] at the same Reynolds number, at angles of incidence of a = 0 and 10 degrees. 

In order to assess the proficiency of the RANS code at predicting the effect of fitting 

different size Gurney flaps, both an un-flapped NACA 0012 and NAG A 0012 + 2% 

Gurney were also modelled at = 0.59 x 10®, over a range of incidences past stall. 

Typically, the under-converged steady state computations took between 2 and 5 hours 

to converge to an oscillating state, depending on the angle of incidence. 

7.5.2.1 Lift 

It was decided that the computed c; data would be compared directly with the mea-

sured CL data obtained by Jeffrey [40]. This decision was taken, because comparing 

the data with the ci derived through integration of the pressures around the section 

was felt to be inadequate, since it fails to take account of any forces acting on the Gur-

ney flap itself. Although this was akin to comparing two-dimensional data (A = oo), 

with three-dimensional data (A = 5), it was considered the best option, other than 

making empirical corrections to the data. Figure 45 compares the computed data 

with the experimental data. As expected, when carrying out a comparison of this 

type, there is a decrease in lift slope from the two-dimensional computed data, to the 

three-dimensional experimental data; When the two-dimensional lift slope from the 

computed data is corrected to a flnite aspect ratio (A = 5), using the finite aspect 

ratio correction [91], in Equation 54 the lift slopes are in agreement. 

Table 20 shows the lift slope corrected data. Agreement of the experimental and 

corrected computational lift slopes, would suggest that the two-dimensional section 

Cl curve is correct. The predicted stall angle and maximum ci are governed by the 

known limitations of the k — e turbulence model as stall is approached. 
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7.5.2.2 Drag 

The computed Cd was compared with the measured Cd found by Jeffrey [40], and 

not the Cd found though integration of the surface pressures. This decision was made 

because drag forces calculated through integration of pressures fail to include the skin 

friction contribution to drag. At low angles of incidence, both the two-dimensional 

computed data, and the experimental three-dimensional data, should be similar, since 

the induced drag component is small. Figure 45 compares the computed data with 

the experimental data. It is noticeable that even at low angles of incidence that 

the computed data severely under-predicts the drag experienced by the section, even 

at the point of zero-lift. However, the likely reason for this difference can only be 

deduced upon comparison of the Cd curve for the NACA 0012 + 2% Gurney, with its 

experimental equivalent in Figure 48. It can be seen that there is closer agreement 

between the computed and experimentally derived data for the NACA 0012 + 2% 

Gurney. A possible explanation for this has been proposed. It is thought that the 

large upstream low pressure recirculation region, produced in front of the Gurney 

in the experiments, (even at the zero-lift incidence), promotes the development of 

vortices close to the trailing-edge. This might explain why the smaller Gurney flap 

RANS model, has a better correlation with the experimental data than the larger 

Gurney flap case. Discrepancies in the predicted drag may also occur because the 

RANS simulation assumes the flow is fully turbulent, neglecting the laminar-turbulent 

transition occurring near the leading edge, and the drag associated with tripping the 

flow in the experiments, as already discussed in Chapter 5. With the Reynolds number 

of the experimental tests being between = 0.77 — 0.89 x 10®, it is expected that 

these laminar-turbulent transition effects would be significant. 

7.5.2.3 Pressure Distribution 

The computed under-converged steady state pressure distribution for the NACA 0012 

+ 4% Gurney, along with the steady state pressure distribution about an un-flapped 
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NACA 0012 section at angles of incidence of 0 and 10 degrees, are compared with 

Jeffreys data [40] in Figure 46 and Figure 47. The Gurney flap's influence on the 

pressure distribution around the NACA 0012 section is evident when the data for the 

un-flapped NACA 0012 section is compared to its flapped counterpart. The Gurney 

unquestionably increases the pressure difference between the suction and pressure 

surfaces, especially in the vicinity of the trailing edge. Above all, there is good 

agreement between the computed and experimental data, with small differences only 

occurring in the leading-edge regions. 

7.5.2.4 Effect of Flap Size 

The effect of flap size on the q and Cj was investigated. Facilitating this, further 

computations were carried out on an un-flapped NACA 0012 and a NACA 0012 -t- 2% 

Gurney. The data obtained is plotted in Figure 48. The computed two-dimensional 

data, is compared with the experimental three-dimensional results and the lift slopes 

corrected to a finite aspect ratio (A = 5) in Table 20. It is apparent from Figure 

48, that the trends of increasing q and Cj with increasing flap height are correctly 

reproduced in the computations. The computed lift slopes also show good agreement 

with the experimentally calculated lift slopes. 

7.5.2.5 Maximum Reynolds Stresses 

As mentioned in Chapter 3, the Reynolds-Aver aged approach to turbulence modelling 

involves the prediction of six known Reynolds stress terms in the RANS equations, 

through the use of a turbulence model. By comparing the Reynolds stresses in the 

wake of the Gurney flap predicted by the turbulence model against those found by 

experiment, an indication of the accuracy of the standard k — e turbulence model can 

be obtained. Turbulence models, like the standard k — e model assume that these 

Reynolds stresses are isotropic, and are related to the production of turbulent kinetic 



122 

energy k and the turbulent dissipation rate e. Therefore, in two-dimensional isotropic 

flows, the turbulent kinetic energy k is equal to the stream wise normal and cross 

flow normal stresses. Figure 49 shows a contour plot of non-dimensional isotropic 

stresses u'^/U^ and v'^/U^ in the wake region of the Gurney flap, at the end of the 

simulation, for the a = 0 degree case. A point of maximum stress can clearly be 

identified, occurring as expected, where one of the shed vortices interacts with the 

free stream. Tabulated in Table 24, are the locations and values of the maximum 

non-dimensional Reynolds stress measured by Jefl'rey [40] in his LDA experiments. 

Comparing this data with the data plotted in Figure 49, it is evident that there is a 

difference of 18 — 35% between the computed and experimental values for the stream 

wise normal stresses, and a 69% difference for the cross flow normal stresses. It is also 

evident that the location of the lower point of maximum stream wise Reynolds stress, 

shown in Figure 49, is in good agreement with that found by experiments. It must, 

however, be remembered that this plot is a snap shot at the end of the simulation, 

hence, the point of maximum Reynolds stress will vary from iteration to iteration. It 

is clear that modelling a highly anisotropic flow problem with an isotropic turbulence 

model, can result in large differences in the computed and experimental Reynolds 

stresses. 

7.6 Time-Accurate Performance Investigation 

A study into the time-accurate performance of the Gurney flapped NACA 0012 section 

was conducted. In order to keep the number of large time-accurate simulations to 

a minimum, only the NACA 0012 + 4% Gurney was modelled. The 4% flap height 

model was chosen, because it is typical of those found on blunt trailing edge rudders, 

giving a close representation of the expected flow. The aim of this investigation was to 

obtain information on the flow transients caused by the Gurney flap, and to identify 

if the RANS code is capable of predicting the principle vortex shedding frequency 

and periodic performance. Comparison of the time-averaged performance data, with 
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the data obtained from the under-converged steady state investigation, was used to 

confirm the validity of the under-converged steady state approach. 

7.6.1 Tempora l T ime Step S tudy 

As already discussed in Chapter 3, the selection of the correct time step value is 

the single most important parameter which can effect the solution of unsteady flows, 

such as vortex shedding. To highlight this, a study was conducted to determine 

the optimum time step needed to capture the vortex shedding behind the Gurney. 

Computations were carried out on the fine grid (Grid 4) used in the previous under-

converged steady state computations at = 0.59 x 10® at an angle of incidence 

of 0 degrees. Solutions were obtained using various time steps, and the time step 

dependency of the solutions was investigated. 

An initial estimate of the smallest time step needed, was made using the residence 

time approach detailed in Chapter 3. Knowing the smallest cell size in the wake 

region Ax = 0.001 m and free-stream velocity C/oo = 40 m/s, an approximation of 

the required time step was made using Equation 47. This gave an estimate of the 

smallest time step as being At = 0.000025 s. An estimate of the total simulation 

time, was made based on the domain size and free-stream velocity. The time taken 

for the fluid to travel from the inlet to the downstream outlet was calculated as 0.25 s 

and was subsequently used as the maximum simulation time. Based on these onerous 

calculations, 10000 time steps were, therefore, required for the whole simulations 

using the derived time step. 

Figure 50 shows the evolution of the transient lift and drag as the simulation pro-

gresses. It is evident that the solution is highly oscillatory at the beginning of the 

computation, and slowly converges to a regular oscillating solution, as the vortex 

shedding becomes better resolved. It is obvious from Figure 50, that the estimate of 

the total simulation time was correct, because up until 0.2 s in the simulation, the 
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solution is still converging. Figure 51 shows the transient lift and drag, near the end 

of the simulation, over a period of approximately two cycles. Looking at the number 

of time steps used in evaluating the transient performance over one cycle in Figure 

51, it would be correct to assume that an excessive number of time steps have been 

used. To investigate if this was in fact the case, further solutions were carried out 

using successively larger time steps of 0.00005, 0.0001, 0.0003 and 0.001 s. The results 

from this study are also plotted in Figure 51. As can be seen in Figure 51, all but 

the two largest time steps of 0.0003 and 0.001 s succeeded in predicting the periodic 

performance of the section, resulting from the vortex shedding aft of the Gurney. It 

is evident from the plots of lift and drag for the two largest time steps, that the solver 

has essentially solved the problem as if the flow was at a steady state. On comparison 

of the transient response curves in Figure 51 and the mean performance data, in Ta-

ble 21, it is evident that the accuracy of the predicted performance is approximately 

the same for time steps 0.000025, 0.00005 and 0.0001 s, all except for the drag curve, 

produced using the smallest time step of 0.000025 s, which has a slight offset. 

Although the response curves shown in Figure 51 were all plotted using the data 

taken from the same time interval near the end of the simulation, the curves all seem 

to be out of phase. This occurs because of the way in which the vortex shedding 

is resolved as the solution progresses. Depending on the time step size, the regular 

vortex shedding might be resolved earlier or later in the simulation. Table 21 shows 

the amount of CPU time taken in all five time step studies. It is evident that these 

computations are extremely computationally intensive, with the small time step case 

taking 230 hours to solve. 
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7.6.2 Validation against Exper imenta l D a t a 

Following the detailed time step study, the time-averaged c; and q were validated 

against those obtained by Jeffrey [40] and compared with those found in the under-

converged steady state investigation over a range of incidences. The computed prin-

ciple shedding frequency was validated against the LDA measured value of Jeffrey 

[40]. The time-averaged pressure distribution, was also validated against Jeffery's 

[40] data at an angle of incidence of 10 degrees. It was decided, based on the data 

obtained in the time step study, that a time step of 0.0001 s would be used in all the 

computations, providing a compromise between accuracy and CPU time. Typically, 

these time accurate computations took between 100 and 150 hours, to converge to an 

oscillating state depending on the angle of incidence. 

7.6.2.1 Shedding Frequency and Strouhal Number 

Table 22 shows the calculated principle shedding frequency and Strouhal number at 

angles of incidence of 0, —5 and 10 degrees using a time step of 0.0001 s. It can be 

seen that only the 0 and —5 degrees incidence angle computations managed to capture 

the periodic vortex shedding. The 10 degree incidence angle case, along with all the 

other incidence angle computations, failed to capture the periodic vortex shedding. 

This occurred because the wake grid at these incidence angles, (which would be 

approximately at the same angle as the aerofoil to the inflow), failed to have enough 

resolution to capture the unsteadiness. This problem could have been resolved by 

propagating the fine wake grid in the anticipated wake direction, however, this was 

not investigated. The —5 degrees incidence case managed to capture the periodic 

vortex shedding because at this angle the vortex street was displaced closer towards 

the wake grid centre line, where the grid was of a sufficient resolution to capture the 

vortex shedding. It can be seen from Table 22 that the computed principle shedding 

frequency and Strouhal number for the 0 degrees incidence case, compares extremely 

well with the measured values found by Jeffrey [40] in his LDA experiments. 
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7.6.2.2 Time-Averaged Lift 

As with the under-converged steady state validation of the q, the computed time-

averaged c; was also compared directly with the measured CL data obtained by Jeffrey 

[40]. Figure 52 compares the time-averaged data with the experimental data and 

under-converged steady state data. It is apparent that the computed time-averaged c; 

data is identical to that obtained in under-converged steady state state investigation, 

and hence, shows the same correlation with the experimental data. Correction to 

finite aspect ratio, using the same method as applied to the under-converged steady 

state data, would therefore, give the same close correlation. 

Table 23 shows the minimum, maximum and time-averaged C; over the incidence 

range. Prom this table it is noticeable that the greatest amplitude in the lift force 

occurs between incidence angles —10 ^ a ^ 10 degrees. This occurs because past 

these angles of incidence, full separation and stall occurs, with the breakdown of the 

vortex wake structure into a fully turbulent wake. 

7.6.2.3 Time-Averaged Drag 

In the same way as the under-converged steady state Cj was validated, the computed 

time-averaged Cd was compared with the measured wing CD derived by Jeffrey [40]. 

Figure 52 compares the computed time-averaged data with the experimental and 

under-converged steady state data. It is apparent that the computed time-averaged 

transient drag data is identical to that obtained in under-converged steady state 

state investigation, and hence, shows the same correlation with the experimental 

data. Table 23 shows the minimum, maximum, and time-averaged drag coefficients, 

over the incidence range. From this table, it is noticeable that the greatest amplitude 

in the drag force, which is actually quite small in comparison to the lift amplitude, 

occurs between incidence angles —5 ^ a ^ 5 degrees. 
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7.6.2.4 Time-Averaged Pressure Distribution 

The computed periodic pressure distribution at an angle of incidence 0 and 10 degrees, 

was validated against the experimental data obtained by Jeffrey [40] and compared 

with the results obtained in the under-converged steady state investigation, in Figure 

53 and Figure 54. The pressure distributions at the maximum (1/4 shedding cycle) 

and minimum (3/4 shedding cycle) and time-averaged positions were compared. It is 

obvious that there is very little change in the pressure distribution over the shedding 

cycle, with only small noticeable changes in the pressure distribution occurring in the 

trailing-edge region. The computed time-averaged pressure distribution was found to 

be identical to that obtained in the under-converged steady state investigation, and 

hence, showing the same close correlation with the experimental results. 

7.6.2.5 Maximum Reynolds Stresses 

Figure 55 shows a contour plot of non-dimensional isotropic shear stresses u'̂  /U^ r2 
OO 

and v''^/U^ in the wake region of the Gurney flap, at the end of the simulation, 

for the a = 0 degree case. A point of maximum Reynolds stress can clearly be 

identified, occurring as expected, where one of the shed vortices interacts with the 

free stream, similar to that previously identified in the under-converged steady state 

investigation and shown in Figure 49. A slightly higher maximum Reynolds stress 

than that obtained in the under-converged steady state computations has been found, 

agreeing better with the experimental data of Jeffrey [40]. The difference between 

the computed values in Figure 55 and the experimental values tabulated in Table 24 

are 9 — 27% for the stream wise normal stresses and 66% for the cross flow normal 

stresses. Like the under-converged steady state computation, the location of the 

lower maximum stream wise Reynolds stress is in good agreement with that found by 

experiments, although this would also change somewhat from time step to time step. 
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7.7 Conclusion to Chapter 

A detailed investigation of the under-converged steady state and periodic performance 

of a NACA 0012 fitted with 2 and 4% Gurney flaps was conducted using a RANS 

solver, implementing the standard k — e turbulence model. 

The following conclusions are drawn from the Gurney flap investigation: 

® The under-converged steady state wake resolution sensitivity analysis high-

lighted that although the wake grid resolution had a profound effect on the 

flow physics captured within it, the under-converged steady state performance 

remained largely un-affected. The predicted under-converged steady state per-

formance for both the coarsest and finest grids was found to correlate well with 

the experimental data. The correct trends in performance, resulting from the 

addition of different size Gurney flaps was also observed. 

• The time-accurate performance investigation highlighted the importance of se-

lecting the correct time step necessary to resolve the periodicity in the wake 

region. The time-averaged performance was found to be identical to the perfor-

mance predicted by the under-converged steady state solution approach, show-

ing the same correlation with the experimental data. The principle vortex 

shedding frequency was also found to correlate favourably. 

® The under-converged steady state solution approach used here, and in other 

investigations, was confirmed as producing the same time-averaged performance 

predictions as the full time-accurate simulations, however, at l/30th of the 

computing cost; For practical applications when transient section performance 

is of secondary importance, the under-converged steady state solution approach 

can be used to obtain estimates of time-averaged performance. Care should be 

taken during grid dependence investigations involving under-converged steady 

state and time-accurate solution approaches. This is because the local grid size 
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can have a significant influence on the predicted flow, and this may prevent 

asymptotic force convergence. 

® Comparison of computed and experimental maximum Reynolds stresses, in the 

wake aft of the Gurney flap highlighted the limitations of using an isotropic 

turbulence model, like the standard k — e model, in predicting flows which are 

highly anisotropic. 

The detailed veriflcation and validation studies presented here, have shown that the 

typical grid resolution needed for accurate two-dimensional section performance pre-

diction is of the order of 70000 cells. Assuming that a similar level of grid resolution 

would be required in the third dimension, an estimate of total number of cells needed 

to model a low aspect ratio wing can be made. It is thought that 21 million cells 

would probably be needed to resolve the three-dimensional flow features to the same 

degree of accuracy, as those in the two-dimensional study presented here. Even with 

this number of cells, there is no guarantee that grid independence would be achieved. 
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Chapter 8 

Conventional and High Lift 

Rudder Section Performance 

8.1 Overview of Chapter 

The previous investigations have confirmed the validity of the RANS method for pre-

dicting the free stream performance of rudder sections, with both sharp and blunt 

trailing edge features. This Chapter investigates the performance of different conven-

tional and high lift rudder sections, using the validated RANS method. The rudder 

sections studied are a conventional NACA 0020 section and a generic three-piece 

Schilling section. The effects of Reynolds number and flow type (turbulent or lam-

inar) are investigated for the NACA 0020 section. Particular attention is focused 

on understanding the flow physics produced around the Schilhng section. It is hoped 

that Schilling section study, will provide an insight into how, and why, rudder sections 

fitted with fish-tail trailing edges produce their high lift characteristics. 
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8.2 Investigation Description 

8.2.1 Invest igat ion St ra tegy 

This investigation was divided into two parts; a brief study of the NACA 0020 per-

formance and a more detailed study of the Schilling rudder performance. The NACA 

0020 solutions were obtained using the steady state RANS approach. The Schilling 

solutions were obtained using the under-converged steady state approach detailed 

in Chapter 7. One time-accurate simulation was also conducted for the 10 degree 

trailing edge angle Schilling. 

Turbulent flow computations were carried out for both rudder sections, over a range 

of incidence angles and at three different Reynolds numbers. The Reynolds numbers 

chosen, corresponded to typical ship service, manoeuvring and model-scale speeds. 

Laminar flow computations were also conducted on the NACA 0020 at the model-

scale Reynolds number, to assess the effect of laminar flow conditions on model-scale 

rudder performance. 

The majority of the Schilling investigation, is focused on assessing the performance 

of a generic three-piece Schilling section, with a fish-tail trailing edge angle of 10 

degrees. A number of computations were also conducted on Schilling sections with 5, 

7.5 and 15 degree fish-tail angles to assess their effect on performance. 

The single time-accurate Schilling computation was carried out for two reasons. 

Firstly, to estimate the approximate shedding frequency of the Schilling section op-

erating at the ship service speed, in its undeflected position. Secondly, it was also 

necessary to determine the smallest time step needed, to correctly capture the peri-

odic vortex shedding. The importance of determining this minimum time step, will 

become clearer when the periodic propeller influence is introduced in Chapter 9. 

It must be stressed, that the results presented in this Chapter must be taken in 

context, since the accuracy of the results are restricted by the limitations of the 
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standard k — e turbulence model, as already described in Chapter 3. 

8.3 Computational Model Particulars 

The NACA 0020 and Schilling sections modelled, both had chord of c = 5.0 m and 

span of 6 — 8.0 m, being representative dimensions of a rudder fitted to a typical 

tanker. The thickness to chord ratio for the SchiUing section was t/c — 20%, i.e. the 

same t/c as the NACA 0020 section. The sections were modelled at = 8.38 x 10® 

and 4.19 x 10?, corresponding to inflow free stream speeds of = 2.0 and 10 m/s. 

These are typical tanker slow speed manoeuvring and service speeds. Model-scale 

runs at Rn = 2.12 x 10® were also conducted. In order to achieve this low Reynolds 

number, the flow speed over the full size ship rudder needed to be 0.05 m/s. Derivation 

of the model-scale Reynolds number is given in Appendix A. 

The fluid density properties, were set according to those of salt water; a density 

of p = 1025 kg/m^ and dynamic viscosity /i = 1.224 x 10"^ kg/m s at 15 degrees 

centigrade. The turbulent flows past both rudder sections were computed at the 

three Reynolds numbers, using the standard k — e turbulence model, implementing 

the standard constants given in Table 1. The inlet turbulence parameters k and e 

were set to their free stream values. For the i?„ = 2.12 x 10^ model-scale runs, laminar 

computations were also conducted. 

QUICK differencing was used for the spatial u and v terms and hybrid for the tur-

bulence quantities k and e. Quadratic second order time differencing was used in 

conjunction with fixed time stepping for all transient calculations. Pressure correc-

tion was carried out using the SIMPLE algorithm. The under-relaxation parameters, 

were set according to Table 3. The mass source residual stopping convergence criteria, 

was set at 1.0 x 10"^ kg/s in all computations. It must be noted that in the case of 

the steady state computations on the Schilling sections, this convergence criteria was 
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never met, for the same reasons as explained in Chapter 7. The steady state com-

putations of the flows over the Schilling sections were only terminated once suitable 

under-converged steady state solutions were observed. Computations were carried 

out using the steady state solution approach for both the NACA 0020 and Schilling 

sections, together with one time-accurate solution for the Schilling section. All com-

putations were carried out using the Irixresearch computing facility, as described in 

Chapter 3. 

8.4 Boundary Conditions and Grids 

The multi-block topology structures used to generate the grids around the NACA 

0020 and Schilling sections are shown in Figure 6 and Figure 8. The outer boundaries, 

were located 15 chord lengths away from the section. The boundary conditions for 

the NACA 0020 were identical to those applied to the NACA 0012 section modelled 

in Chapter 6 and shown in Figure 56 and Table 25. The boundary conditions used 

to model the Schilling are shown in Figure 20 and Table 16. 

Table 26 and Table 27 tabulate the near-wall cell size and corresponding computed 

values for both the NACA 0020 and the 10 degree trailing edge Schilling section 

at a = 0. The low Reynolds number laminar flow NACA 0020 computations were 

carried out using the same grid as used for the Rn = 8.38 x 10® turbulent flow study. 

Approximately the same number of cells were distributed chord-wise and down 

onto n,, both the NACA 0012 and Schilling sections. A higher number of cells 

were placed in the wake (n^) of the Schilling section, in order to resolve the vortex 

shedding within this region. Table 28 tabulates the information for both the NACA 

0020 and Schilling section grids. Figure 57 shows the grid produced around the 10 

degree trailing edge angle Schilling section. For clarity, only alternate grid lines have 

been plotted. The large number of cells clustered in the trailing edge region should 

be noted. This fine clustering continued approximately eight trailing edge widths 
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downstream, before the grid is stretched into the far field. 

8.5 NACA 0020 Section Performance 

8.5.1 Lift and Drag 

Figure 58 and Table 29 present the performance data for the NACA 0020 operating at 

Rn = 2.12 X 10®, 8.38 x 10® and 4.19 x 10?. Comparing the model-scale = 2.12 x 10® 

laminar flow data, with the corresponding turbulent flow data at the same Reynolds 

number, it is evident the laminar flow condition significantly reduces predicted a stall 

and Climax- When the laminar flow model-scale = 2.12 x 10® data is compared 

with the full scale = 4.19 x 10^ turbulent flow data, the laminar flow case is 

seen to produce a 24% under prediction in a stall, whilst a 36% under prediction 

in Climax- This result, clearly re-iterates the implications of having a laminar flow 

regime, over the model ship rudder, as previously discussed in Chapter 2. There 

is a slight increase in the predicted hft slopes with increasing Reynolds number, 

with the laminar flow model-scale i?„ = 2.12 x 10® case, producing the smallest 

increase. Although the standard turbulence model is poor at predicting astaii and 

exact value of Cî rnax, the three different Reynolds number turbulent computations, 

show the expected progressive increase in the astaii and cî max-

The laminar flow model-scale = 2.12 x 10® case produces, as expected, significantly 

lower Cd values than its turbulent flow counterpart at low incidence angles, a < 10 

degrees, and higher q values at incidence angles, a > 10 degrees. It is interesting to 

see that the ĉ o for the laminar flow case is of a similar magnitude to the turbulent 

flow case when Rn — 8.38 x 10®. Looking at the breakdown of drag components in 

Table 29, it can be seen that the Qo for the laminar flow case is only brought closer to 

that of the turbulent flow computation by virtue of a large Cp̂  drag component. This 

relatively large Cpu drag component, is characteristic of non-laminar flow sections like 
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the NACA 0020. 

When the laminar flow Cdo from the model-scale = 2.12 x 10® is compared with the 

turbulent flow Cdo from the = 4.19 x 10^ flow case, it is evident that the laminar 

flow condition at the model-scale would produce a 28% increase in the predicted Cdo-

This over prediction in Qo would undoubtably have implications in the model-ship 

scaling procedure, and hence, on the powering calculations. What is probably more 

alarming, is the fact that even if the flow over the model-scale rudder was tripped 

into fully turbulent flow, by the upstream hull wake or propeller race, the predicted 

model Cdo would be some 68% greater than that of the ship rudder flow. Caution 

must be stressed on the accuracy of this result. As was highlighted in Chapter 3, too 

large a cell size on the rudder surface, can result in large errors in the predicted Cp̂  

and hence Cdo- As can be seen from Table 26 the near-wall cell size needs to be quite 

large, in order for the wall function approach to be correctly applied. This condition, 

therefore, results in the over prediction of as discussed in Chapter 3. In the event 

that the Cpy was computed correctly and found to be signiflcantly lower, the ĉ o for 

the model rudder would still remain considerably higher than that of the full size ship 

rudder, due to the large C/ contribution to qo-

Also plotted in Table 29 are 1 -{- A; form factors for the NACA 0020 at the difi'er-

ent Reynolds numbers. There is clear evidence to suggest that the rudder form 

factor shows some form of Reynolds number dependence. It interesting to note that 

Bertram's [5] formulae for predicting rudder drag, incorporate a 1.25 form factor. The 

calculated form factor values given in Table 29 might be useful to naval architects 

carrying out simple rudder drag resistance estimates. 

8.5.2 Pressure Distribution and Centre of Pressure 

Figure 59 and Figure 60 show the pressure distributions, and movement of centre of 

pressure with varying incidence angle for the 72̂  = 4.19 x 10̂  case. These pressure 
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distributions and the movement of pressure are as expected. The centre of pressure is 

seen to move aft from the 25% chord position towards the 35% location with increasing 

incidence angle. 

8.6 Schilling Section Performance 

8.6.1 Under-converged Steady S ta te Lift and Drag 

Figure 61 and Table 30 present the under-converged steady state performance data for 

the 10 degree trailing edge angle Schilling, operating at = 2.12 x 10^, 8.38 x 10® and 

4.19 X 10^ in a fully turbulent flow. Note that for commercial confldentiality reasons 

all Cd values have been normalised, with respect to the qq of the 10 degree trailing 

edge Schilling section, operating at Rn = 4.19 x 10^, to give values of normalised drag 

Looking at the q curves in Figure 61, it is evident that like the NACA 0020, the 

Schilling exhibits a progressive increase in otstaii and ci^max with increasing Reynolds 

number. Although the computed location of astaii is considerably less than what 

would be expected for this type of Schilling section, ci^MAX is reasonably well predicted. 

Comparing the predicted lift slopes, it is evident that the = 8.38 x 10® and 

Rn = 4.19 X 10^ cases have nearly identical lift slopes, only being slightly higher than 

that of the Rn = 2.12 x 10^ case. Comparing the Rn = 4.19 x 10^ q curves of both the 

NACA 0020 and the 10 degree trailing edge Schilling, it can be seen that the Schilling 

gives a 13% augment in the lift slope, together with 31% increase in the It 

must be noted that these estimates are probably conservative in comparison to the 

NACA 0020 computations, due to the limitations of the standard k — e turbulence 

model. The Schilling flow consists of significant regions of re-circulatory and separated 

flow (which will be poorly predicted by the turbulence model) even at low incidence 

angles, hence, the errors in astaii and cî rnax are expected to be significantly larger than 
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those found for the NACA 0020. The fish-tail trailing edge of the Schilling is clearly-

responsible for the significant increase in the lift slope delayed stall characteristics 

identified. The flow phenomena which produce these characteristics will be explained 

later in the Chapter. 

It is evident that the predicted for the model-scale = 2.12 x 10̂  case is 36% 

greater than that of the full size ship rudder operating at = 4.19 x 10 ,̂ as opposed 

to 68% in the case of the NACA 0020 section. This would seem to suggest that model 

scale Schilling rudder tests would yield values of closer to those found at full scale. 

This is an important result, since it has significant implications with regard to the 

model-ship scaling process. Clearly, applying the same scaling procedure to a ship 

model tested with with conventional and Schilling type rudders, will produce biased 

resistance estimates. This highlights the need for different correlation functions to 

be derived, and used, when carrying out model-ship scaling on models fitted with 

different types of rudder. 

8.6.2 Trailing Edge Angle Effect 

Figure 62 and Table 31 present the under-converged steady state performance data 

for Schilling sections with trailing edge angles of 5, 7.5 and 10 degrees operating at 

Rn = 4.19 X lOF. Note that for commercial confidentiality reasons all Cd values have 

been normalised with respect to the C^Q of the 10 degree trailing edge Schilling section, 

operating at = 4.19 x 10?, to give values of normalised drag, c^. 

Looking at the ci curves for the four different Schilling sections, it is apparent that 

increasing fish-tail angle produces a delay in stall, together with an increase in the 

ci,max- A 10 degree increment in traihng edge angle results in a 14% increase in the 

Ci,max- What is more surprising is that trailing edge angle only exhibits a small effect 

on the predicted lift slope. 

As expected, the ĉ g for the Schilling increases considerably within increasing fish-tail 
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angle. The for the 15 degree trailing edge angle Schilling is found to be three times 

that of the 5 degree trailing edge angle Schilling. However, the downside of reducing 

fish-tail angle would be a reduction in the Schilling high incidence angle {a > 70) 

performance. 

The data presented in Figure 62 and Table 31, therefore, seems to suggest that 

a Schilling profile with a fish-tail angle of 5 degrees would provide good high lift 

performance, as well as minimal drag. 

8.6.3 Pressure Dis t r ibut ion and Cen t re of Pressure 

Figure 63 and Figure 64 show the under-converged steady state pressure distributions 

and movement of centre of pressure with varying incidence angle, for the 10 degree 

trailing edge Schilling at = 4.19 x 10?. There are a number of features to highlight, 

with regard to the pressure distributions presented in Figure 63. 

The slight dips in the pressure distributions, (more noticeable on suction surface), 

located at approximately x/c — 0.06, highlight a discontinuity in the curvature of 

the Schilling section. Sharp discontinuities in the pressure distributions, where the 

forward section, and the fish-tail meet the fiat plate, middle section, can also be 

observed at the x/c = 0.66 and 0.82 locations. At the higher angles of incidence 

between a = 20 and 22 degrees, a large region of constant low pressure exists on the 

suction side. As will become clear from the visual flow results discussed in the next 

section, this is caused by a large recirculation region just forward of the fish-tail. The 

centre of pressure is seen to move aft, from the 25% chord position towards the 40% 

location with increasing incidence angle. 
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8.6.4 Visual Flow Resul ts 

Figures 65 to 70 show the under-converged steady state streamline plots for 10 degree 

trailing edge angle Schilling, at = 4.19 x 10̂  at a = 0, 21 and 22 degrees at the 

end of the simulation. Consider the a = 0 degree streamline plots, in Figure 65 and 

Figure 66. The development of periodic vortex shedding aft of the fish-tail, similar 

to that produced behind the Gurney flapped NACA 0012, investigated in Chapter 7, 

is apparent. Figure 67 and Figure 68, show the streamline around the Schilling at 

21 degrees incidence angle (just before stall). A number of important features need 

to be highlighted. The large recirculation region, which is responsible for the region 

of constant low pressure (identified from the pressure distribution plots) upstream of 

the fish-tail, is clearly visible. Notice how the flow is pulled in as it passes the trailing 

edge, and is held down as it continues into the vortex street. Two contributing factors 

result in this effect. The trailing edge accelerates the flow which would probably have 

separated from a conventional section. Also, in a similar way to the Gurney flap, 

the reduced pressure aft of the Schilling section, helps to delay separation from the 

suction surface. 

Figure 69 and Figure 70 show the streamlines around the Schilling at 22 degrees 

incidence angle (just after stall). What is interesting to note from this plot, is how 

although the flow has separated from the trailing edge, there is a strong tendency 

for flow to be pulled downward in the region of the vortex street, clearly showing the 

extent to which the reduced pressure region aft of the Schilling trailing edge effects 

the flow. 

8.6.5 Time-Accura te Pe r fo rmance 

As highlighted in Chapter 7, time-accurate computations are highly computationally 

intensive and provide only limited performance information, which cannot otherwise 

be obtained from under-converged steady state computations. A single time-accurate 
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computation was conducted for the 10 degree trailing edge angle Schilling operating 

at a = 0 and = 4.19 x 10 .̂ A time step of At = 0.003 s was calculated, using the 

residence time approach detailed in Chapter 3. 

Figure 71 and Figure 72 show the periodic q and response histories for the 10 

degree trailing edge Schilling section operating at a = 0 and = 4.19 x 10 .̂ The 

total flow simulation time was approximately 1 second, taking around 5 days compute 

time. Although the simulation was run for quite some time, it is evident that it has 

yet to reach a regular oscillating solution. This, however, was un-important since the 

aim of the study was to obtain an approximate response frequency, and minimum 

time step for the Schilling section. Given another 5 days compute time, and based 

on the findings of the Gurney fiap study, the Schilling section computation would 

probably have converged. It is reassuring to see that the response curve presented in 

Figure 72 seems to be converging towards a periodic state, about some mean value, 

approximately the same as the under-converged steady state computed value. It 

is also interesting to note that the Ci and response frequencies are different, unlike 

the Gurney flap which saw both q and having approximately the same frequencies. 

The Q frequency is / = 6 Hz and the frequency is / = 13 Hz. The reason for the 

Cj response frequency being approximately double that of the ci response frequency 

is best explained by Figure 73. This does, however, raise the question as to why 

the Gurney flap c/ and Cj response frequencies were seeming identical. One possible 

explanation might have something to do with the flow around the Gurney flapped 

section being asymmetric, as opposed to symmetric in the case of the Schilling section, 

but further investigation would be needed in order to confirm this. Figure 74 plots the 

streamlines aft of the Schilling trailing edge. The formation of trailing edge vortices, 

and their subsequent convection downstream is clearly evident. Further downstream, 

when grid stretching begins, the vortex structure undergoes rapid dissipation. 
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8.7 Conclusion to Chapter 

The performance of NACA 0020 and Schilling sections operating under free stream 

flow conditions have been investigated using a RANS solver, implementing the stan-

dard k — £ turbulence model. The effect of Reynolds number and flow type on the 

performance of the NACA 0020 section were examined. The aim of this study was 

to numerically quantify through the use of CFD, the errors which can occur in pre-

dicted rudder performance, as a result of Proude model-ship scaling procedures. The 

Schilling rudder investigation was focused on assessing the performance effect of the 

Schilling's characteristic flsh-tail trailing edge. 

The following conclusions are drawn from the NACA 0020 investigation: 

# Comparison of the lift curves of the laminar model-scale Reynolds number and 

turbulent full scale Reynolds number rudder flow cases, showed that the laminar 

flow over the model-scale rudder resulted in a signiflcant reduction in both agtaii 

and cî jYiQ̂x' 

® Although the standard k — e turbulence model was known to be poor at pre-

dicting both a stall and Ci^max, it did manage to predict a progressive increase in 

ci-staii and cî rnax With Increasing Reynolds number. 

# Both the laminar and turbulent model-scale Reynolds number rudder flows 

showed significantly higher Cjo values than that of the turbulent full scale ship 

Reynolds number rudder flow, highlighting the problem of conducting model-

ship scaling in accordance with Proude's law of similitude. 

The following conclusions are drawn from the Schilling investigation: 

® Although the standard k ~ e turbulence model was known to be poor at pre-

dicting both astaii and cî max, it did manage to predict a progressive increase in 

Oistaii and Cî rnax with increasing Reynolds number. 



142 

9 The fish-tail trailing edge of the Schilling was found to produce large augments 

in both lift slope and cî max, when compared to the NACA 0020 section. 

® The Schilling turbulent model-scale Reynolds number predicted Cdo was found 

to be closer to the full scale ship rudder Cdo than in the NACA 0020, highlight-

ing the need for different correlation functions to be derived, and used, when 

carrying out model-ship scaling on models fitted with different types of rudder. 

® Increasing the Schilling section trailing edge angle was found to increase the 

ci,max and Cdo of the section. 
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Chapter 9 

Rudder Section Performance in 

Periodic Flows 

9.1 Overview of Chapter 

The research presented up until now has been focused on obtaining accurate perfor-

mance predictions of two-dimensional rudder sections, operating under steady free 

stream flow conditions. As was stated in Chapter 1, most ship rudders are sub-

jected to a flow regime which is far from steady. The highly turbulent, periodic and 

interactive wake produced by a propeller, gives rise to rudder performance charac-

teristics which differ significantly from those experienced in a free stream. The work 

presented in this Chapter is focused on investigating periodic rudder flows, through 

the use of a simplified periodic two-dimensional RANS model. By imposing periodic 

flow conditions, representative of the flow produced in the wake of a propeller, it was 

hoped that a better understanding of the performance rudders operating in propeller 

wakes could be achieved. The response prediction of two-dimensional rudder sec-

tions subjected to periodic flow conditions, can be regarded as a necessary first step 

towards understanding the requirements for full periodic three-dimensional rudder 
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computations. 

9.2 Rudder Performance in Periodic Flows 

Considering a propeller and rudder in isolation, i.e. neglecting the wake field produced 

behind a ship hull, the rudder is subjected to a periodically varying flow field. The 

helical and non-axisymmetric nature of this flow field, means that the velocities within 

the propeller wake vary as a function of space and time, as given by Equation 55. 

= (55) 

A simple way of visualising what is happening to a rudder located in a propeller race, 

is to consider the two-dimensional flow, i.e. ignoring rotational or cross flow efl'ects, 

at a span-wise section. The section effectively experiences periodic variations in both 

flow incidence and speed, as the propeller rotates. Down-stream of a propeller, the 

variation in axial u and radial v velocities with propeller blade angular position would 

look similar to data generated by Turnock [21], and reproduced in Figure 75. As can 

be seen, an almost sinusoidal variation in the axial and radial velocity components 

occurs, as the propeller rotates. Figure 75 clearly reemphasises, how large the local 

flow incidence angles produced in the propeller race can be. 

Now, consider the same span-wise section, operating within a two-dimensional pro-

peller wake, experiencing a time varying effective flow incidence o f a # , as shown in 

Figure 76. The resolved axial and normal forces are related to the lift and drag forces 

by Equation 56 and Equation 57. 

N{t) = L{t) cos (a + aE{t)) 4- D{t) sin (a + ag(()) (56) 

A(t) = -L{t) sin (a -f- otE{t)) + D{t) cos (a -t- a!g(()) (57) 

If a + = 0, the lift and drag forces act in the normal and axial directions respec-

tively. However, if a-l-a^ or the lift/drag ratio becomes large enough, a net reduction 
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in drag can be achieved. It is also theoretically possible for a net propulsive thrust 

to be produced, in the same way as a sail produces the forward thrust of a yacht, as 

shown in Figure 76. Consider now, the flow over the whole rudder; the asymmetry 

of the propeller wake above and below the propeller shaft line, would result in the 

cancellation of the normal forces. The axial force components above and below the 

rudder shaft line would be additive. So, over one complete revolution of the propeller, 

it is theoretically possible for a net thrust force to be produced. This thrust force 

combined with the stator effect of the rudder, can result in improvements in propul-

sive efficiency. As stated by Lewis [32], this advantage may be significant enough that 

a ship may not require any increase in propulsive power, over what would be required 

if the rudder were not located in the propeller race. 

However, the problem is not quite that simple, since the magnitude of lift and drag 

forces acting on the rudder are periodic, and highly dependent on the circular passage 

frequency of the propeller. For a propeller with N number of blades and rotating at 

n revolutions per second, the circular passage frequency w of the propeller is given 

by Equation 58. 

w = 27TnN (58) 

For periodic flows, it is more common to characterise the fluid dynamic phenom-

ena, with respect to the non-dimensional or reduced frequency parameter k given in 

Equation 59. 

' = £ (5^) 

9.3 Periodic Aerofoil Performance Prediction 

The response of a rudder to the periodic flow conditions produced by a propeller, are 

governed by unsteady aerofoil and boundary layer theory. The main motivation for 

research in this field has been focused on how the undesirable effects of vibration. 
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buffeting, gust response, dynamic stall and flutter caused by unsteady flows can be 

reduced. However, some attention has also been focused on ways of optimising the 

beneficial effects of flow unsteadiness, such as improvements in propulsive efficiency 

and stall delay. Assessment of these effects, requires the prediction of both the mag-

nitude and time lag of the unsteady fluid dynamic loads. McCroskey [109] presents 

an excellent review of the subject of unsteady aerofoil flows. 

Although a considerable amount of research has been focused on the periodic response 

of two-dimensional aerofoils, a great deal of further research is still needed, for both 

two-dimensional and three-dimensional flows. The research presented here will be 

focused solely on two-dimensional periodic rudder section flows. 

9.3.1 Exper imenta l Me thods 

Unlike free stream aerofoil performance prediction, unsteady or periodic model testing 

of aerofoils is extremely difficult. Various methods, as outlined by Commerford and 

Carta [110] can be used to produce the required fluctuating flow field. 

# Oscillating aerofoils 

« Flapping upstream aerofoils 

» Pulsing jets of air transverse to the flow field 

« Moving floor and ceiling test sections 

® Moving ramps attached to the floor and ceiling of the test section 

Referring to Commerford and Carta [110], all the techniques listed suffer from similar 

problems. These problems are namely; a large amount of external energy is required 

to produce the motion, and the upper reduced frequency capabilities are considerably 

lower than those needed to be modelled. A detailed bibliography of the subject of 
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unsteady aerofoil testing is given by Gollnick [111]. The difficulties and expense 

of experimental testing methods has, therefore, prompted research into theoretical 

methods of predicting unsteady aerofoil performance. 

9.3.2 Theoret ica l Me thods 

As recently stated by Paterson and Stern [112], historically the rational approach 

to solving the unsteady aerofoil problem, was through the classical and fundamen-

tal work on unsteady boundary layers and unsteady lifting flows. Thus, theoretical 

unsteady aerofoil flows have often been approached from differing perspectives, de-

pending on the engineering importance of certain aspects of the flow. When, boundary 

layer effects have been the primary driver, viscous unsteady boundary layer methods 

have often been implemented; when lift performance has been the driver, unsteady 

inviscid flow methods have been applied. A detailed discussion of unsteady theo-

retical flow methods is beyond the scope of this Chapter. However, a brief review 

of classical lifting surface theory will be given, since it will be used to validate the 

work presented later in the Chapter. For discussions of the important references in 

the fleld of unsteady boundary layers and unsteady lifting surface theory, the Author 

refers the reader to Paterson and Stern's [112, 113, 114] work on unsteady viscous 

marine-propulsor flows. 

The pioneers of early theoretical unsteady aerofoil performance prediction were 

Theodorsen [115], Von Karman [116] and Sears [117]. Using linear potential theory, 

these researchers investigated various periodic incompressible flows, over flat plate 

aerofoils of infinite span. By considering only small disturbances to the steady flow, 

they found that it was possible to linearise the flow about a uniform parallel mean 

flow, and thus un-couple the time-dependent component of the flow completely from 

the steady state flow characteristics. The general method used by these researchers 

was circulation theory. The solution to the unsteady aerofoil problem, basically in-

volved the evaluation of a flow field, which satisfied certain boundary conditions on 
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the aerofoil surface, the Kutta condition at the aerofoil trailing edge, and Kelvin's 

theorem of conservation of total circulation. 

Unsteady classical aerofoil theory is best explained by considering the changes in 

circulation around an aerofoil, as it under goes unsteady motion. For every change 

in circulation about the aerofoil, resulting from the unsteady behaviour of the flow 

or aerofoil, vorticity of opposing sign must be shed into the wake, and carried away 

by the mean flow [109]. The vortices shed into the wake represent the time history 

of the unsteady flow about the aerofoil, and being vortices, they induce a velocity 

field which is proportional to the vortex circulation, and inversely proportional to the 

distance away from the vortex centre. In essence, the wake of the aerofoil acts as if 

it had a memory of the previous aerofoil unsteady flow, and the total velocity field 

therefore depends on the entire history of the airfoil motion. 

Sears' [117] approach involved the derivation of a lift function for a rigid aerofoil 

subjected to periodic transverse gusts. The form of this function, known as the 

Sears function, is given in Appendix D. Similar functions have also been derived 

by other researchers such as Horlock [118], for fluctuations parallel and at an angle 

to the mean flow direction. The form of these additional functions, is also given in 

Appendix D. The Sears function will be used to validate the two-dimensional RANS 

propeller-rudder wake flow model presented later. 

Classical linear potential theory does have its limitations; it is limited to small am-

plitude, low frequency oscillations, due to the use of the steady Kutta condition. 

Experimental work by Poling and Telionis [119] has shown that the steady Kutta 

condition on which classical linear potential theories are based, is never satisfied for 

reduced frequencies above k = 2. Linear potential theory also neglects any viscous 

efl'ects, such as the interaction of the outer unsteady flow, with the mean flow bound-

ary layer development. These non-linear effects, found in real unsteady aerofoil flows, 

will, therefore, cause a departure from the predicted performance found using classical 

linear theory. To overcome some of the limitations of classical linear potential theory. 
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non-linear methods have been developed, which account for the unsteady interaction 

and distortion of the travelling gust. However, like classical linear theory, non-linear 

potential theory has also been shown to be invalid, for unsteady flows of high reduced 

frequency. 

It is obvious from this brief discussion of unsteady theoretical methods, that there is 

scope for a method which can be used in the modelling of high frequency unsteady 

lifting flows, whilst also accounting for the unsteady boundary layer effects. Unsteady 

RANS flow methods have offered this capability for a number of years. However, as 

detailed in Chapter 2, unsteady RANS methods require large computing resources, 

in order to resolve the different time scales in the flow. As a result, published work 

in this field is sparse, with Paterson and Stern's [112, 113, 114] work being the most 

comprehensive to date. 

Using a time-accurate RANS approach, implementing the Baldwin-Lomax turbulence 

model, Paterson and Stern [112, 113, 114] investigated the response of a propeller-

blade geometry operating under unsteady flow conditions. The aims of their research 

were; the validation of time-accurate solutions obtained using the RANS approach and 

investigation of the response of turbulent propeller-blade boundary layers and wakes 

to external-flow travelling waves. Validation was carried out using the results obtained 

from the Massachusetts Institute of Technology (MIT) flapping foil experiment [120, 

121] as benchmark. 

Paterson and Stern [112, 113, 114] concluded; in comparison with classical and fun-

damental boundary layer and potential theories, RANS solutions to unsteady Hfting 

surface flows give a consolidated perspective, resolving both viscous and inviscid ef-

fects and their interactions. Further more the RANS approach was shown to have 

permitted the detailed analysis and explanation of the physics of high-frequency flows. 

Paterson and Stern [112, 113, 114] successfully showed that high-frequency lifting sur-

face flows display a complex response which is significantly different from classical and 

fundamental boundary layer and potential theories. Viscous-inviscid interaction was 
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also found to be an important mechanism of lifting surface response. 

A number of more specific conclusions were also made by Paterson and Stern 

[112, 113, 114]. Despite implementing the Baldwin-Lomax turbulence model in a 

quasi-steady manner, the unsteady velocity profiles over the propeller blade were 

found to show a close correlation with the experimental data. Quantitative details 

of the flow such as lift and drag, were found to be highly dependent upon frequency, 

geometry and waveform. Agreement between the CFD and the experimental un-

steady pressure response was found to be poor. The CFD indicated upstream and 

downstream travelling pressure waves over the foil and in the wake. Detailed analysis 

showed that distortion of the external flow wave, particularly on the suction side of 

the propeller blade, was signiflcant and may have been partially responsible for the 

complex wake structure. 

9.4 Investigation Description 

9.4.1 Invest igat ion S t ra tegy 

The aim of this investigation was to examine in detail what affect periodic changes 

in inflow angle, i.e. transverse gusts, have on rudder performance, ignoring periodic 

changes in speed and any rotational flow effects, which would be present in real ship 

propeller-rudder flows. The investigation was divided into two parts; a validation 

study conducted using the NACA 0020 section, and a performance response study, 

conducted using both the NACA 0020 and Schilling sections. To simplify the compu-

tational model, and to provide continuity between the two investigations, the rudder 

sections were modelled in their undeflected positions. As previously mentioned, the 

typical flow incidence angles experienced by a rudder, in a propeller wake, are be-

tween 10 and 15 degrees. Therefore, the flow modelled was representative of the 

flow experienced by a rudder section aligned with the local propeller wake mean flow 
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direction. 

After confirming the validity of the method, an investigation of the performance effect 

of subjecting undetected NACA 0020 and Schilling sections to large amplitude gusts 

was conducted. Although the sinusoidal amplitude of the effective incidence angle 

produced behind a ship propeller has been shown to be approximately 2.5 degrees, it 

was decided that the sections would be subjected to much larger amplitude gusts of 

approximately 14 degrees, to assess the effect of amplitude on response. The effect 

of different gust frequencies was investigated. It is worth noting, that the typical 

upper reduced frequency of the wake produced by a 4 bladed propeller of a VLCC is 

approximately k = 3, based on a propeller R.P.M of 80, rudder chord of c = 5 m and 

mean propeller race speed of K = 25 m/s. 

Since, the primary aim of this investigation was to determine the performance re-

sponse characteristics of rudders operating under periodic flow conditions, i.e. lift 

and drag amplitudes and mean values, only these characteristics were considered, 

ignoring effects such as phase difference. 

It must be stressed, that the results presented in this Chapter must be taken in 

context, since their accuracy is restricted by limitations of quasi-steady application of 

the standard k — e turbulence model, whose limitations for steady flows have already 

been described and apply equally to this study. 

9.4.2 Validation D a t a 

Paterson and Stern [112, 113, 114] used the results obtained from the MIT flapping 

foil experiment [120, 121], to validate their computations of unsteady lifting surface 

flows. This did, however, require a complex computational model in order to emulate 

the experiments. A full validation study of the unsteady RANS approach used in 

this Thesis, using the MIT flapping foil data [120, 121] as a benchmark, was deemed 

beyond the scope of the research. However, a less complex validation procedure was 



152 

required in order to confirm the correct implementation of the periodic boundary 

conditions. To this end, the classical linear theory of Sears [117] was used to con-

firm the lift response of the NACA 0020 subjected to small amplitude low frequency 

transverse gusts. 

9.4.3 Computa t iona l Model Par t icu la rs 

The NACA 0020 and Schilling sections modelled, both had a chord of c = 5.0 m and 

a span of 6 = 8.0 m. The sections were modelled at = 4.19 x 10 ,̂ corresponding 

to the flow velocity in water in the ^-direction of w = 10 m/s. The magnitude of the 

u velocity component was held fixed throughout the simulation, and the v velocity 

component was sinusoidally varied according to Equation 60. 

where, Dq is the amplitude of the transverse gust moving past the aerofoil, t is time, 

Xy is the vertex node location in the x-direction, on the inlet boundaries. 

In the NACA 0020 investigation, small and large amplitude gusts of wq = 0.2 and 2.5 

m/s were investigated for four different reduced frequencies of k = 0.5, 1.0, 2.0 and 

5.0. Time steps of At = T/50 s were used for all the NACA 0020 computations, where 

T is the gust period. Table 32 tabulates the transient model data for the NACA 0020 

section. 

In the Schilling investigation, only large amplitude gusts of Dq = 2.5 m/s were inves-

tigated for four different reduced frequencies of A = 0.5, 1.0, 2.0 and 5.0. However, 

unlike the NACA 0020 investigation, a time step of At = 0.003 s was used. The 

time-accurate investigation presented in Chapter 8 had shown this time step to be 

sufficiently small, so as to capture the natural periodic vortex shedding produced be-

hind the Schilling. The importance of determining this time step now becomes clear. 

As was mentioned in Chapter 2, obtaining solutions to flows which exhibit more than 

one flow time scale can be problematic. It is important that the time step is selected 
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to allow the smallest significant time scale in the flow to be resolved. In this case, the 

smallest significant time scale was the natural vortex shedding period. If identical 

size time steps had been used for the Schilling as determined for the NACA 0020, i.e. 

At = T/50 s, non-physical interaction between the naturally shed vorticity and that 

produced as a result of the periodic flow conditions would have occurred. 

The fluid density properties, were set according to those of salt water; a density of 

p = 1025 kg/m^ and dynamic viscosity oi ji — 1.224 x 10"^ kg/m s at 15 degrees 

centigrade. The turbulent flows past both rudder sections, were computed using the 

standard k — e turbulence model, implementing the standard constants given in Table 

1. The inlet turbulence parameters k and e were set to their free stream values. 

QUICK difl'erencing was used for the spatial u and v terms and hybrid for the tur-

bulence quantities k and e. Quadratic second order time difl'erencing was used in 

conjunction with fixed time stepping for all transient calculations. Pressure correc-

tion was carried out using the SIMPLE algorithm. The under-relaxation parameters, 

were set according to Table 3. The mass source residual stopping convergence criteria, 

was set at 1.0 x 10"^ kg/s in all computations. 

Computations were carried out using the transient solution approach, for both the 

NACA 0020 and Schilling sections. All computations were carried out using the 

Irixresearch computing facility, as described in Chapter 3. 

9.5 Boundary Conditions and Grid 

The multi-block topology structures used to generate the grids around the NACA 

0020 and Schilling sections are shown in Figure 6 and Figure 8. Unlike the previous 

investigations the upper and downstream boundaries were located 2 and 6 chord 

lengths, respectively, away from sections. This was done in order to reduce the 

chance of the imposed gust being numerically dissipated, as a result of insufficient 
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grid resolution. By reducing the outer boundaries closer to the rudder section, whilst 

keeping the ?/+ and the number and distribution of cells identical to that of the 

previous investigations presented in Chapter 8, a grid with sufficient grid resolution 

was produced. Although at first this would seem to contradict all that has been 

talked about with regard to boundary location independence, this is not strictly 

true for computations of this type. Because an explicit periodic boundary condition 

is being prescribed, the problem of boundary location independence is less critical 

than for steady flow computations, so long as the boundary conditions do not over 

constrain the flow. The boundary conditions for the NACA 0020 were identical to 

those applied to the NACA 0012 section operating at an incidence of a = 0, modelled 

in Chapter 6 and shown in Figure 20 and Table 16. The boundary conditions for 

the Schilling were identical to those applied to the Schilling section operating at an 

incidence of a = 0, modelled in Chapter 8 and shown in Figure 56 and Table 25. The 

periodic gust boundary conditions as per Equation 60 were implemented by means 

of a user FORTRAN subroutine. This user FORTRAN routine essentially took each 

inlet patch on the outer domain at each solution time step, looped through every node 

applying a fixed u = 10 m/s and phase lag or lead adjusted v value as per Equation 

60. 

9.6 NACA 0020 Section Small Amplitude Gust In-

vestigation 

9.6.1 Lift and Drag 

Figure 77 and Figure 78 show the response histories for the NACA 0020 section sub-

jected to small amplitude transverse gusts of = 0.2 m/s, at k = 0.5 and k = 5, 

respectively. As can be seen, both frequency response histories show a first-harmonic 

response, consistent with the imposed first-harmonic inflow boundary conditions. 
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Comparing the c/ response histories, it is evident that lower frequencies produce 

larger q amplitudes; with a 10 fold increase in frequency, resulting in a 8% reduction 

in the Q amplitude. The Cj response histories, however, show a 100% reduction in 

Cd amplitude with a 10 fold increase in frequency. It is interesting to note, that the 

response Cd for the k = 0.5 case oscillates about a mean drag coefficient q equal to the 

free stream (zeroth-harmonic) Cjo value, previously obtained in Chapter 8. However, 

a zeroth-harmonic response is found for the k = 5 case, with the predicted q being 

4.6% higher than the free stream Qo value. 

Figure 79 compares the q response amplitude for the NACA 0020 section subjected 

to small amphtude transverse gusts of VQ = 0.2 m/s against the classical linear theory 

of Sears [117], over a range of reduced frequencies. A general trend of reducing q 

amplitude with increasing frequency can be seen. For low frequencies of around k — 

0.5, the ci response amplitude shows reasonable agreement with the classical linear 

theory, therefore, confirming the correct implementation of the periodic boundary 

conditions. However, at higher frequencies, departure from classical linear theory is 

seen to occur. A similar trend to this was found by Paterson and Stern [114]. Whilst 

not fully understanding the exact reasons for departure from Sears' theory [117], 

Paterson and Stern [114] postulated a number of likely causes; an outer flow which 

is increasingly non-irrotational, increasing steady-unsteady interaction and trailing-

edge effects which are not resolved by either the inviscid flow approximation or the 

classical Kutta condition. Also worth noting from the Q response amplitude plot is 

the sharp amplitude change which occurs at approximately k — 1. This might suggest 

a change unsteady flow field characteristics or some kind of numerical effect, although 

further investigation would be needed in order to confirm this either way. 

Figure 80 compares the Cj response amplitude and q for the NACA 0020 section 

subjected small amplitude transverse gusts of VQ = 0.2 m/s, over a range of reduced 

frequencies. As can be seen, the Cd response amplitude tends to zero with increasing 

frequency, with the steepest change in amplitude occurring between k = 0.5 and 

& = 1. The Cd plot shows convergence to a limiting value which is 4.6% greater than 
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the free stream Cdo- However, at low frequencies oik < 1, the Cd is found to be slightly 

less than the free stream Cdo-

9.6.2 Pressure Dis t r ibut ion and Cent re of Pressure 

Figure 81 shows the pressure distributions for the NACA 0020 section subjected small 

amplitude transverse gusts of fo — 0.2 m/s at the maximum and minimum transient 

response values of q = 0 and q = 0.056, at k = 0.5. For comparison the free 

stream pressure distributions at Q = 0 and c; = 0.056 have also been plotted, found 

from the work in Chapter 8. As can been seen, both the pressure distributions for 

the maximum and minimum response values are nearly identical to their free stream 

counterparts. Although not shown, the pressure distributions at the minimum and 

maximum q values for the k — 5.0 case were identical to the free stream pressure 

distribution at ci = 0. The best way of explaining this section response behaviour, is 

to consider the flow at the limiting extremes of frequency, i.e. k ^ 0 and A —> oo. As 

k 0, the section responds as if were in a free stream with a slowly varying effective 

angle of incidence. This, therefore, results in a pressure distribution not dissimilar to 

free stream pressure distribution produced at the same q. Conversely, as A; —>• oo, the 

section response diminishes because the section is experiencing a flow disturbance for 

a very small period of time. However, between these two limiting frequencies complex 

flow interactions occur between the travelling gust and the flow about the section. 

Figure 82 shows the centre of pressure response history for the NACA 0020 section 

subjected to small amplitude gusts of vo = 0.2 m/s, at k = 0.5. The centre of pressure 

is seen to oscillate about the 20% chord position with an amplitude of approximately 

10%. Why the centre of pressure tends to infinity at different points throughout the 

cycle needs to be explained. Based on the assumption that the centre of pressure acts 

from a point along the centre line of the section, and with knowledge of and c„, 

the centre of pressure can be calculated, using Equation 16. However, as > 0 and 

c„ 0 as > 0, large errors in the calculated location of centre of pressure occur 
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as a result of the roundoff error associated with the floating point arithmetic. 

9.7 NACA 0020 Section Large Amplitude Gust In-

vestigation 

9.7.1 Lift and Drag 

Figure 83 and Figure 84 show the response histories for the NACA 0020 section sub-

jected to large amplitude transverse gusts of VQ — 2.5 m/s, at k = 0.5 and k ~ 5, 

respectively. As can be seen, both frequency response histories show a first-harmonic 

response, consistent with the imposed first-harmonic inflow boundary conditions. 

Comparing the q response histories at k = 0.5 and k — 5, it is evident that in a 

similar manner to small amplitude investigation, lower frequencies produce larger q 

amplitudes; with a 10 fold increase in frequency, resulting in a 8% reduction in the c; 

amplitude. The Cj response histories also show a 100% reduction in Cj amphtude with 

a 10 fold increase in frequency, identical to the low amplitude case. It is interesting 

to note, that the response Cj for the k — 0.5 case oscillates about a q = —0.037 

showing that an appreciable thrust force is being generated by the rudder. It can be 

concluded that large amplitude low frequency unsteadiness can result in large reduc-

tions in rudder drag. The origin of this force will become obvious when the pressure 

distribution around the section is considered. The Cj response for the k — b case 

shows a zeroth-harmonic response, giving a q which is 14% greater than the free 

stream ĉ o value. Comparing this to the small amplitude result, it can be concluded 

that large amplitude high frequency unsteadiness can result in an augment in base 

drag. 

Figure 85 compares the q response amplitude for the NACA 0020 section subjected 

to large amplitude transverse gusts of Dq = 2.5 m/s against the classical linear theory 

of Sears [117], over a range of reduced frequencies. Like the small amplitude case. 
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a general trend of reducing q amplitude with increasing frequency is evident. For 

low frequencies of around k = 0.5 the q response amplitude shows reasonable agree-

ment with the classical linear theory. However, at higher frequencies, as with the 

small amplitude case, departure from classical linear theory is seen to occur. Also 

present is the same sharp amplitude change initially identified in the small amplitude 

investigation and located at approximately A: = 1. 

Figure 86 compares the q response amplitude and q for the NACA 0020 section 

subjected large amplitude transverse gusts of vq = 2.5 m/s, over a range of reduced 

frequencies. As can be seen, the Cd response amphtude tends to zero with increasing 

frequency, with the steepest change in amplitude occurring between k = 0.5 and 

k = 1. The Cj plot also shows convergence to a limiting value which is 4.6% greater 

than the free stream CdQ- However, at low frequencies of A; < 2, the q a thrust force 

can be generated. 

9.7.2 P ressu re Dis t r ibut ion and Cent re of Pressure 

Figure 87 shows the pressure distributions for the NACA 0020 section subjected large 

amplitude transverse gusts of Uq = 2.5 m/s at the maximum and minimum transient 

response values of q = 0 and Ci = 0.71, at k = 0.5. For comparison the free stream 

Q = 0 and Q = 0.71 pressure distributions have also been plotted. The pressure 

distributions for both the minimum and maximum q response values show a different 

behaviour than that found in the low amplitude investigation. Looking first at the 

the suction surface for the q = 0, it is apparent that the high amplitude periodic 

inflow conditions result in a reduction in the suction pressure from the leading edge 

back as far as the xjc — 0.4 location. Aft of x/c = 0.4 the suction surface pressure 

is coincident with the free stream data. The pressure surface on the other hand, 

undergoes an increase in the leading edge pressure back as far as the xjc = 0.2 

location, and a reduction in pressure aft of this location. This pressure distribution 

clearly explains the origin of the mean thrust force identified previously. The pressure 



159 

plots for the q = 0.071 case show a similar response as the Q = 0 case, although less 

marked. 

Figure 88 shows the pressure distributions for the NACA 0020 section subjected large 

amplitude transverse gusts of VQ = 2.5 m/s, at q = 0 and q = 0.057 the maximum 

and minimum response values, at ^ = 5.0. For comparison the free stream q = 0 and 

Q = 0.057 pressure distributions have also been plotted. These pressure plots show 

as similar behaviour as the low amplitude high frequency pressure distribution plots, 

with the maximum and minimum response values showing a close correlation with 

the free stream q = 0.0 pressure distributions. 

Figure 89 shows the centre of pressure response history for the NACA 0020 section 

subjected to small amplitude gusts of Vq = 2.5 m/s, at & = 5.0. The centre of pressure 

is seen to oscillate about the 20% chord position with an amplitude of approximately 

10%, in the same manner as the low amplitude investigation results. 

9.7.3 Visual Flow Resul ts 

Figure 90 shows the pressure and streamline plot of the flow field around the NACA 

0020 section subjected large amplitude transverse gusts of Vq — 2.5 m/s at A: = 0.5. 

The flow field data used to generate this plot was taken at the end of the simulation, 

t /T = 0.24. The slow moving transverse gust is clearly visible. 

Figure 91 shows the pressure and streamline plot of the flow field around the 

NACA 0020 section subjected large amplitude transverse gusts of vq = 2.5 m/s and 

k = 5.0.The flow field data used to generate this plot was taken at the end of the 

simulation, t/T = 0.70. Although the fast moving transverse gust is evident close to 

the outer inflow boundaries, its propagation into the domain is negligible, giving rise 

to the apparent free stream flow behaviour. 
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9.8 Schilling Section Large Amplitude Gust Inves-

tigation 

9.8.1 Lift and Drag 

Figure 92 and Figure 93 show the response histories for the Schilling section subjected 

to large amplitude transverse gusts of tig = 2.5 m/s, at A: = 0.5 and k = 5, respectively. 

Note that all Cd values have been normalised, with respect to the Qo of the 10 degree 

trailing edge Schilling section studied in Chapter 8, operating at = 4.19 x 10?, 

to give values of normalised drag c^. It must also be noted that constraints on 

computing time, i.e. 5 days, prevented the k = 5 case reaching a fully converged 

periodic solution. As can be seen, the response history for the Schilling at fc = 0.5 

is quite different from that of the NACA 0020 section. Approximately 20 vortices 

are shed throughout one cycle, identifiable from the wiggles in the q and response 

curves. What is interesting, is that the q response history for the k = 5 case shows a 

second-harmonic response, whilst the shows a first harmonic response. Clearly the 

natural vortex shedding of the Schilling is interacting with the forced periodic flow 

field. This not surprising, since the natural q frequency of the Schilling was estimated 

as 6 Hz in Chapter 8, and the forced frequency of the periodic flow is approximately 

3 Hz. Comparing the q response histories at A; = 0.5 and fc = 5, it is evident that in 

the similarly way to the NACA 0020, lower frequencies produce larger q amplitudes. 

However, unlike the NACA 0020, a 10 fold increase in frequency, produces a 4.8% 

reduction in the q amplitude as opposed to an 8% reduction. The response histories 

also shows a reduction in amplitude, with a 10 fold increase in frequency resulting 

in a 88% reduction in the response amplitude. The response for the k — 0.5 case 

oscillates about = 1.5, showing that the Schilling experiences a 50% augment in its 

mean drag as a result of the periodic flow. The cj response for the k = b case shows 

a first-harmonic response, giving a which is 300% greater than the free stream ĉ q 

value. 
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Figure 94 compares the q response amplitude for the Schilling section subjected to 

large amplitude transverse gusts of VQ = 2.5 m/s, against the classical linear theory 

of Sears [117], over a range of reduced frequencies. A general trend of reducing c; 

amplitude with increasing frequency is evident. Unlike the NACA 0020 small and 

large amplitude gust investigations, the Schilling q response amplitude shows closer 

agreement with the classical theory between k — 1 and 5, with the major departure 

occurring at A: = 0.5. This is some what surprising, and seems to suggest that Sears' 

theory [117] would provide better high frequency estimates of periodic performance 

for sections with a blunt trailing edges, rather than sharp. The Schilling q response 

amplitude also exhibits the same sharp amplitude change in the region of A; = 1 

as found in the NACA 0020 small and large amplitude investigations, although less 

pronounced. 

Figure 95 compares the response amplitude and for the Schilling section sub-

jected to large amplitude transverse gusts of VQ = 2.5 m/s, over a range of reduced 

frequencies. As can be seen, the cj response amplitude tends to zero with increas-

ing frequency, with the steepest change in amplitude occurring between k = 0.5 and 

k = 1. Cj plot also shows convergence to a limiting value, which is 300% greater 

than the free stream ĉ g- However, at low frequencies of A: < 1, the is found to be 

50% greater the free stream c* .̂ These drag results are somewhat misleading, since 

they corresponds to a Schilling section aligned with the mean flow direction, which 

is rarely the case for real propeller-rudder flows. In reality the rudder section would 

experience an effective incidence angle of between approximately 10 and 15 degrees. 

Because the Schilling section would generate a much larger lift force for a given angle 

of incidence, when compared to the NACA 0020 section; resolution of this lift force 

into the ship axis system would result in a larger reduction in drag for the Schilling. 
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9.8.2 Pressure Distribution and Centre of Pressure 

Figure 96 shows the pressure distributions for the NACA 0020 section subjected large 

amplitude transverse gusts ofuo — 2.5 m/s, at the maximum and minimum transient 

response values of cj = 0 and q — 1.02, at k = 0.5. For comparison, the free stream 

Ci — 0 and c; = 1.02 pressure distributions have also been plotted. Looking first at 

the the suction surface for the q = 0 case, it is apparent that unlike the NACA 0020 

case, the high amplitude periodic inflow conditions result in a increase in the suction 

pressure from the leading edge back as far as the xjc = 0.3 location. Aft oix/c = 0.3, 

the suction surface pressure is slightly lower than the free stream data. The pressure 

surface on the other hand, undergoes a decrease in the leading edge pressure, back 

as far as the x/c = 0.2 location, and slight reduction in pressure aft of this location. 

The pressure plots for the q = 1.02 case show a similar response as the Q = 0 case, 

although less marked. 

Figure 97 shows the pressure distributions for the Schilling section subjected large 

amplitude transverse gusts of Wq = 2.5 m/s, at q = 0 and q = 0.057, the maximum 

and minimum response values, ai k = 5.0. For comparison, the free stream c/ = 0 

and ci = 0.057, pressure distributions have also been plotted. Close correlation with 

the free stream q = 0.0 pressure distributions is evident, with deviations occurring 

in the trailing edge suction and pressure surface regions. 

Figure 98 shows the centre of pressure response history for the Schilling section sub-

jected to small amplitude gusts of VQ = 2.5 m/s, at fc = 5.0. The centre of pressure is 

seen to oscillate about the 20% chord position with an amplitude of approximately 

10%. 
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9.8.3 Visual Flow Resul ts 

Figure 99 shows the pressure and streamline plot of the flow field around the Schilling 

section subjected large amplitude transverse gusts of%o = 2.5 m/s at k — 0.5. The 

flow field data used to generate this plot was taken at the end of the simulation, 

t/T = 0.7. The slow moving transverse gust is clearly visible. Figure 100 shows a close 

up of the streamlines in the region of the Schilling trailing edge. The development, 

convection and interaction of the vortices downstream of the Schilling trailing edge 

with non-uniform flow can be seen. 

Figure 101 shows the pressure and streamline plot of the flow field around the Schilling 

section subjected large amplitude transverse gusts of VQ = 2.5 m/s at k = 5.0. The 

flow field data used to generate this plot was taken at the end of the simulation, 

t/T = 0.58. Although the fast moving transverse gust is evident close to the outer 

inflow boundaries, its propagation into the domain is negligible, giving rise to the 

apparent free stream flow behaviour. Figure 102 shows a close up of the streamlines 

in the region of the Schilling trailing edge. The development and convection of the 

vortices downstream of the Schilling trailing edge, in what is essentially a uniform 

flow can be seen. 

9.9 Conclusion to Chapter 

Detailed investigations of the effect of small and large amplitude transverse gusts on 

the performance of NACA 0020 and Schilling sections were conducted using a RANS 

solver, implementing the standard k~e turbulence model. The time-accurate RANS 

approach has been shown to provide the capability of predicting the performance 

response of different rudder sections subjected to periodic flow conditions. 

The following conclusions are drawn from the NACA 0020 small and large amplitude 

transverse gust investigations: 
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® Reasonable agreement was found between the computed response ci amplitudes 

and the classical linear theory of Sears [117], for both the large and the small 

amplitude gusts at low frequencies. Deviation from the classical linear theory 

was found at higher frequencies. A general trend of reducing q amplitude with 

increasing frequency was also observed. 

» Low frequency gusts were shown to produce reductions in base drag, with the 

large amplitude low frequency gusts giving rise to a net thrust force. However, 

both the high and the low amplitude high frequency gusts were shown to pro-

duce an augment in the base drag above that found through operation in a free 

stream 

The following general conclusions are drawn from the Schilling large amplitude trans-

verse gust investigations: 

• Surprisingly, the computed c/ response amplitude for the Schilling section 

showed closer agreement with the classical linear theory of Sears [117] than 

the NACA 0020 section, at high frequencies. A general trend of reducing q 

amplitude with increasing frequency was also observed for the Schilling section. 

® Low frequency and high frequency gusts were both shown to produce increases 

in the base drag, above that found through operation in a free stream. 

® The natural vortex shedding produced by the Schilling was found to interact 

strongly with the forced periodic flow, especially when the frequency of the 

periodic flow was of a similar order of magnitude to the natural vortex shedding 

frequency. 
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Chapter 10 

Conclusions and Recommendations 

for Future Work 

10.1 Overview 

The need for naval architects to predict the rudder performance accurately at the 

design stage of a vessel, has been the motivation behind the research presented. 

The difficulties associated with obtaining accurate rudder performance predictions, 

through traditional experimental procedures have been highlighted, and a demand 

for research into alternative, potentially more accurate and cost effective theoretical 

techniques was identified. The research has been focused on exploring, in detail, 

the capabilities of the RANS technique. This method was chosen in preference to 

other theoretical methods, because of its ability to predict the viscous performance 

of arbitrary shaped rudder sections. A review of previous research carried out in 

the field of hull, propeller and rudder interaction, using the RANS approach, was 

conducted. Prom this review, it became apparent that the quality and accuracy of 

the results obtained were far from satisfactory. 
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The research was focused on addressing a number of the problems associated with 

using RANS methods, to predict the performance of rudder sections, thereby, im-

proving the usefulness of the RANS method as a practical rudder design tool. This 

Chapter, presents the general and more detailed conclusions drawn from the research, 

together with recommendations for future work. 

10.2 General Conclusions 

The RANS method has been used successfully to predict the performance of conven-

tional and high lift sections, operating under free stream flow conditions. The high 

quality grids created around the rudder section investigated, consisted of between 

40000 and 85000 grid nodes. The critical parameters which effect the accuracy of 

these performance predictions have been identified. The RANS method was shown 

to be capable of providing accurate estimates of rudder section performance, up to 

stall, and qualitative performance predictions past stall. The inaccurate prediction 

of separation, and hence, rudder section stall performance, is primarily a function 

of the turbulence model implemented within the RANS method. Future advances 

in turbulence modelling techniques should hopefully resolve many of these problems. 

Turbulence model limitations aside, it has been shown that the standard k — e turbu-

lence model performs with the required consistent and quantifiable level of accuracy, 

needed for rudder section design comparisons, that is equally good or bad for similar 

rudder sections. 

Detailed verification and validation studies have been conducted at every stage of 

the investigation, to ensure the highest degree of accuracy and credibility in the 

results. A methodical approach to solving the rudder-propeller flow problem was 

adopted, whereby, certain aspects of the RANS solution method were validated using 

progressively more complex flow models; with the final model being representative 

of a two-dimensional rudder, operating in a propeller race. It has been shown, that 
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a methodical approach should be adopted when accurate quantitative results are 

required from a RANS solution. Tackling a complex flow problem in one step makes 

it difficult, if not impossible to identify the origin of any errors and inaccuracies in 

the computed results. The results presented, are testimony to the fact that a clear 

methodical approach to CFD, is rewarded with high quality results. A tendency for 

researchers to present colourful, and impressive flow visualisation plots, in place of 

accurate high quality results, has done untold damage, with regard to the perceived 

credibility of CFD flow solutions. As will have been noticed, only when there has been 

a specific need, have flow visualisation plots been presented, as an aid to interpreting 

the raw numerical data, and not in place of it. It is hoped that the work presented, 

will help to restore confidence in the use of CFD methods, for solving marine flow 

problems. 

Throughout the research, the use of CFD has been approached from a practical naval 

architecture point of view, in an attempt to dispel some of the "Black Art" stigma 

which has surrounded it, since its early days. The aim has been to stimulate naval 

architects, into exploring the potential rewards of using CFD methods. Although 

commercial RANS codes have become much more user friendly, obtaining high quality 

results, still requires considerable expertise on behalf of the user. Knowing which 

parameters to change in order to obtain a converged solution, which is correct in the 

physical sense, is an art in itself, one which is not readily talked about in CFD texts. 

As a result, a conscious effort has been made to explain many of the intricacies of 

using the RANS approach, providing an invaluable source of information for novice 

and expert users alike. 

Detailed grid refinement studies conducted throughout the research, have demon-

strated the high levels of grid resolution which are required, in order to obtain fully 

grid independent solutions to two-dimensional rudder flow problems. Assuming that 

a similar level of grid resolution would be required in the third dimension, estimates 

of the total number of cells needed to model a three-dimensional rudder, that is a 

rudder of finite aspect ratio, with the same degree of accuracy, have been made. 



168 

It has been estimated, that 21 miUion cells would be required to resolve the three-

dimensional flow features, to the same degree of accuracy as those resolved in the 

two-dimensional studies. Computations using grids of this order of magnitude, would 

require massive computing resources, by current standards. Research has shown, 

that grid independent solutions, for relatively simple two-dimensional flow problems 

are often hard to achieve, even when large numbers of successively refined grids are 

employed. Therefore, claims by researchers, that they have achieved grid indepen-

dent solutions to complex three-dimensional flow problems, using three grids or fewer, 

should be regarded with suspicion. 

Flows, which exhibit either natural or forced periodic vortex shedding, have been 

identified as having their own specific problems, with regard to grid independence 

and grid resolution. Detailed grid refinement studies conducted in the wake region of 

the Gurney flapped NACA 0012, have shown the modelled flow physics in this region 

to be highly dependent on grid resolution. In the case of time-accurate computations, 

the choice of transient time step was found to have a profound effect on the predicted 

flow physics as well. 

Under-converged steady state, and time-accurate computations, of the free stream 

flow over a NACA 0012 section fitted with a Gurney flap were conducted. As far as 

the Author is aware, the time-accurate computations for the Gurney flapped NACA 

0012 section, were the first of their kind. Both the under-converged steady state 

and time-accurate computed data was found to agree extremely well with the exper-

imentally derived data. In doing so, the RANS method was validated and shown 

to be suitable for predicting flows about high lift sections with blunt trailing edge 

features. An important finding of the Gurney flap investigation, was the fact, that 

for practical purposes, when transient performance is of secondary importance, the 

under-converged steady state solution approach can be used to predict time-averaged 

section performance accurately, for only a fraction of the computing cost of full time-

accurate solutions. 
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The research has presented the first pubUshed under-converged steady state and time-

accurate RANS computations, for high hft SchiUing rudder sections operating under 

free stream flow conditions. The results obtained, have provided a clearer insight 

into how, and why Schilling rudder sections fitted with their characteristic fish-tail 

trailing edge, produce a higher lift force, than conventional sections. Useful design in-

formation, relating to the performance effect of different size Schilling fish-tail trailing 

edges, has also been obtained. 

The RANS method, was shown to be capable of predicting Reynolds scale effects, 

making it a useful compliment to experimental testing procedures. The ability of 

a RANS code to predict Reynolds scale effects, might, in the future help in the 

derivation of more representative, model-ship correlation methods. 

The RANS method, was successfully used, to predict the performance response, of 

both conventional and high lift rudder sections, subjected to periodic transverse gusts, 

similar to the flow produced in the race of a propeller. These investigations, have 

provided an important insight into the potential capabilities of the RANS method, 

for predicting the response of rudders located in the race of a propeller. Reasonable 

correlation was found between the predicted lift response amplitude, of both the con-

ventional and high lift sections, subjected to low frequency gusts, when compared with 

classical linear theory. At high frequencies, the conventional rudder section response 

amplitude showed a significant departure from the classical linear theory. However, 

the Schilling's response at higher frequencies, was found to show closer agreement 

with the classical linear theory. Interaction between the natural and periodic flow 

induced shed vorticity from the Schilling section was observed. 
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10.3 Detailed Conclusions 

10.3.1 R A N S M e t h o d Specific 

The research has shown, that for unbounded free stream flow problems, the outer 

boundaries should be located far enough away from the body, i.e. the rudder section, 

so as not to have any demonstrable effect on the flow solution. For flows around 

rudder/aerofoil sections, the outer boundaries should be located at least 15 chord 

lengths away from the section. If possible, the optimum outer boundary location 

should be determined by means of a boundary location sensitivity study. 

The RNG k — e turbulence model was found to provide less accurate skin friction 

estimates than the standard k — e model, for flows with zero pressure gradient. How-

ever, for flows with pressure gradients, i.e. flows over rudder/aerofoil sections, the 

RNG k — e turbulence model was found to perform slightly better than the standard 

k ~ e turbulence model, with regard to prediction of separation and total drag. For 

highly anisotropic flows, i.e. vortex shedding, the standard k — e turbulence model, 

was found to over predict the cross flow normal stresses. 

The near-wall cell size, together with the distribution of cells about it, were found to 

be the most critical parameters, with regard to the correct prediction of frictional and 

pressure drag, using the RANS method. The first cell size should be set in accordance 

with the lower y'̂  criterion of 30, and a sufficiently large number of cells (typically 

30), should be placed within the boundary layer region, to resolve the flow gradients. 

When Reynolds number dependence is being studied, using a single grid, the near-

wall cell size should be selected carefully, to ensure that it is valid over the range of 

Reynolds numbers being investigated. 

Studies have highlighted, the need for careful selection of mass source residual con-

vergence stopping criteria, in order to ensure eflicient use of computational resources, 

whilst maintaining a high degree of accuracy in the results. Determination of the 
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correct mass source residual stopping criteria, is problem specific. Ideally, it should 

be determined after studying the converge history of an important global parameter, 

such as lift, drag, or a flow property such as velocity or pressure, a location within 

the flow. 

Time-accurate performance investigations carried out, for flows known to exhibit pe-

riodic vortex shedding, i.e. bluff" bodies, have highlighted the importance of selecting 

the correct time step, in order to resolve the periodicity produced in the wake. For 

flows where the time scale of any periodicity or flow unsteadiness is unknown, the 

CFL criteria, can provide an initial approximation of the lower limit of the time step 

size needed. 

10.3.2 Fla t P l a t e Skin Friction Es t imat ion 

The standard k — e and RNG k — e turbulence models were found to perform well 

at predicting skin friction, over the range of Reynolds numbers investigated. The 

standard k — e model was found to provide a 2% more accurate correlation with 

Proude's skin friction data, than the RNG k — e turbulence model at high Reynolds 

numbers. 

With regard to the skin friction estimation at low Reynolds numbers, the RANS 

results were found to be in error due to the RANS solvers inability to simulate laminar-

turbulent transition. 

Good correlation, was found between the RANS predicted skin friction, and the 

correlation lines of the ITTC and Schoenherr, over the range of Reynolds numbers 

investigated. 

A modified Schoenherr formula was derived from the RANS generated data, providing 

constants not dissimilar to those derived by Schoenherr. 

It was shown, that surface roughness could be simulated by suitably modifying the 
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Log-Layer constant within the turbulence model wall function. 

10.3.3 N A C A 0012 Section Pe r fo rmance 

Excellent correlation was found, between the experimental and computed lift curves 

for both the standard and RNG k — e turbulence models up to stall. 

Both the standard and RNG k — e turbulence models failed to predict the location 

of maximum lift, with the RNG k — e turbulence model providing a more reasonable 

estimate of the point of maximum lift. 

The drag curves for both the standard and RNG k — e turbulence models showed 

good general agreement with those found by experiment, with only a small offset at 

low incidences. This was error was probably due the laminar-turbulent transition 

problems. However, the RNG k — e model did provide a better correlation at higher 

incidences. The computed pressure distributions were also found to agree favourably 

with the experimental data. 

10.3.4 Gurney F lapped N A C A 0012 Section Per fo rmance 

The predicted under-converged steady state and time-accurate performance was found 

to correlate well with the experimental data. The computed pressure distributions 

were also found to agree favourably with the experimental data. 

The principle vortex shedding frequency obtained from the time-accurate compu-

tations was found to correlate favourably with the experimentally derived vortex 

shedding frequency. 

The correct trends in performance, resulting from the addition of different size Gurney 

flaps, was also observed. 

Comparison of computed and experimental maximum shear stresses in the wake aft 
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of the Gurney flap, highlighted the limitations of using an isotropic turbulence model, 

like the standard k — e model, in predicting flows which are highly anisotropic. 

10.3.5 Conventional and High Lift R u d d e r Section Perfor-

mance 

Comparison of the lift curves of the laminar model-scale Reynolds number and tur-

bulent full scale Reynolds number NACA 0020 section flow cases, showed that the 

laminar flow over the model-scale rudder resulted in a significant reduction in both 

stall angle and maximum lift coeflicient. 

Although the standard k — e turbulence model was known to be poor at predicting 

both stall angle and maximum lift coeflicient, it did manage to predict a progressive 

increase in stall angle and maximum lift coeflicient, with increasing Reynolds number, 

for both the NACA 0020 and Schilling sections. 

Both the laminar and turbulent model-scale Reynolds number rudder flows showed 

signiflcantly higher zero-lift drag coefficient values, than that of the turbulent full scale 

ship Reynolds number rudder flow, highlighting the problem of conducting model-ship 

scaling, in accordance with Proude's law of similitude. 

The fish-tail trailing edge of the Schilhng section, was found to produce large augments 

in both lift slope and maximum lift coefficient, when compared to the NACA 0020 

section. 

The Schilling turbulent model-scale Reynolds number predicted zero-lift drag coefli-

cient, was found to be closer to the full scale ship rudder value, than the NACA 0020. 

This highlighted the need for different correlation functions to be derived and used, 

when carrying out model-ship scaling, on models fitted with different types of rudder. 

Increasing the fish-tail trailing edge angle on the Schilling section, was found to in-

crease the maximum lift and zero-lift drag coeflicient. 
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10.3.6 R u d d e r Section Per fo rmance in Periodic Flows 

Reasonable agreement was found between the computed response lift coefficient am-

plitudes and the classical linear theory, for both the large and the small amplitude 

gusts at low frequencies, in the case of the NACA 0020 section. Deviation from the 

classical linear theory was found at higher frequencies. A general trend of reducing 

lift coefficient amplitude with increasing frequency was also observed. 

Surprisingly, the computed hft coefficient response amplitude for the Schilling section 

showed closer agreement with the classical linear theory, than the NACA 0020 section 

at high frequencies. A general trend of reducing lift coefficient amplitude, with in-

creasing frequency, was observed for the Schilling section. Low frequency gusts were 

shown to produce reductions in base drag, with the large amplitude low frequency 

gusts giving rise to a net thrust force. However, both the high and low amplitude, 

high frequency gusts, were shown to produce an augment in the base drag, above that 

found through operation in a free stream. 

Low frequency, and high frequency gusts, were both shown to produce increases in 

the base drag, above that found through operation in a free stream. 

The natural vortex shedding, produced by the Schilling section was found to interact 

strongly with the forced periodic flow, especially, when the frequency of the periodic 

flow was of a similar order of magnitude to the natural vortex shedding frequency. 

10.4 Recommendations for Future Work 

Based on the findings of the work presented, the following recommendations for fur-

ther work should be considered. 

The research has been solely focused on obtaining accurate two-dimensional rudder 
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section performance data, using the RANS method. Although this data can pro-

vide useful information, with regard to section design, a rational way of predicting 

the three-dimensional performance of real ship rudders is needed. Using the RANS 

method with current computing resources, it is not possible to predict with the re-

quired level of accuracy demanded by naval architects, the full three-dimensional flow 

about a finite aspect ratio ship rudder. 

A method has, therefore, been proposed which uses the accurate two-dimensional 

data, generated using the RANS method, to produce estimates of three-dimensional 

rudder performance. A schematic of the proposed approach, is given Figure 104. The 

method involves a combination of the lifting line theory (as outlined in Chapter 2), 

and strip theory [122], applied in a pseudo time-domain approach. In essence, this 

method is an advancement on Molland and Turnock's [38], blade element-momentum 

theory/lifting line approach. Steady state RANS computations are used to derive 

the sectional performance characteristics for the portion of the rudder outside the 

propeller race; whilst the transient RANS computations, are used to obtain the time-

accurate performance characteristics, for the portion of the rudder in the way of the 

propeller race. Using a combined lifting line and strip theory approach, estimates of 

viscous three-dimensional rudder performance could be obtained. 

Investigation of the performance of more complex turbulence models, is needed, if 

accurate rudder performance predictions are to be accomplished, for rudders operating 

close to, or past stall. Investigations using the Wilcox [58] k—ijj and/or Reynolds stress 

models would be strongly recommended. A rational way of incorporating laminar-

turbulent transition into turbulence models is also needed. 

Further investigation of the performance of conventional, and high lift sections, sub-

jected to more complex periodic propeller flow conditions is required. 

Finally the RANS approach, could be used, to investigate the performance of flap 

type high lift rudders. The grid generation process, as used in this research, has been 

shown to be versatile enough, to construct complex multi-block grids around flapped 
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rudders. Figure 103 shows an example of a grid generated around a generic flapped 

rudder section. This grid was generated using Fleximesh, and the topology structure 

described in Chapter 4 and shown in Figure 9. The gap between the main rudder 

section and the flap, has also been included. An interesting investigation, might be 

to assess the performance effect of having flow through this gap. 
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Appendix A 

Model-Ship Rudder Scaling 

Consider the following model-ship scaling problem, neglecting any hull wake or pro-

peller effects. A free running model test is conducted for a vessel with the following 

particulars. 

Length = 190 m 

Service Speed % = 10 m/s 

Froude No. Fus = 0.23 

Rudder Chord c. = 8 m 

Assuming that the free running model is of scale 1:35, then the model length and 

rudder chord will be, Lm = 5.43 m and Cm = 0.14 m, respectively. Now since free 

running model tests are run in compliance with Proude's scaling law, i.e. Fug = Fum, 

the model free running speed equates to Vm = 1.69 m/s. Now, assuming that the 

kinematic viscosity of the water the model is tested in, is z/ = 1.19 x 10"®, then the 

Reynolds number of the rudder flow will be equal to = 2.03 x 10\ It is, therefore, 

evident from these simple calculations, that the Proude Scaling procedure produces a 

flow, which is likely to be partially laminar, if not totally laminar, about the rudder. 

In reality, however, turbulent flow might be triggered in the vicinity of the rudder, as 

a result of the unsteady hull wake and propeller flow, but there is no guarantee that 
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this will be the case. 
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Appendix B 

Geometric Progression 

Distribution Formulae 

The function used to set the grid distributions within CFX-MESHBUILD is based 

on the geometric progression summation formulae expressed by Equation 61. 

E l = ^ = o + ar + ar^ + ... + (61) 
«=i 

where, EL is the edge length, a is the largest cell size, is the smallest cell size, 

n is the number of nodes along the edge and r is the common ratio. 

The sum of geometric progression expressed in Equation 61, can be rewritten in 

another form given by Equation 62. 

Now, r and n can be determined from knowledge of the EL and the required 

and a, following the rearrangement of Equation 62, into Equation 63 and substitution 

of Equation 63, into Equation 62 to give Equation 64. 

(e3) 
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n = + 1 (64) 
Zô ior 

Figure 105 shows the distributions produced along an edge on length, EL = 100 mm, 

with the smallest distance between nodes set at, 1.0 mm, and the largest distance 

between nodes set at 10 mm. It is not possible to increase the number of nodes along 

the edge, without changing the size of the largest distance between nodes. 
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Appendix C 

Hyperbolic Distribution Formulae 

The method used to set the grid distributions within Fleximesh is based on the formu-

lae derived by Roberts [123] and modified by Eiseman [124]. This approach distributes 

nodes along an edge of unit length, based on a normalised parametric formulation 

implementing a hyperbolic distribution function, as expressed by Equation 65 and 

Equation 66. The hyperbolic function, has the advantage that it can produce more 

than one distribution, with fixed second and second from last node locations. 

n 

S = Si — Sj_i — 52 + (ss — S2) + ... + {Sfi — = 1 0 < Sj < 1 (65) 
t = 2 

+ 0 < , . < 1 (66) 

" = ~ («7) 

where, S is the normalised edge length, Si is the normalised node location, p is the 

slope parameter, q is the damping factor, n is the number of nodes along an edge and 

rii is the normalised uniform node location. 
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The parametric formulation given above, can then be used to calculate the real node 

location by multiplying the parametric location Sj by the edge length Ei . 

Ei = ElSI (68) 

The process of determining the p, q and n parameters needed to produce a distribution 

with specific second and second from last node locations is complex. The behaviour 

of the hyperbolic function means there is more than one set of p, q and n which can 

produce a distribution with the required second and second from last node locations. 

Specifying the second and second from last node locations along an edge, results in 

two equations. Equation 69 and Equation 70 and three unknowns i.e. p, q and n. 

In order to determine the minimum number of n nodes needed to produce the required 

distribution, the following solution approach is used. First Equation 69 is rearranged 

to give Equation 71 expressing p in terms of q. 

tanh (9(1-772)) 

r, = — (71) 
" - . tanh (g(l—7?2)) ^ ' 

S2 — 1 + 

2̂ - ^ + tanh. 

Equation 71 is substituted into Equation 70 and the resulting equation, Equation 72, 

solved for g, using the Newton-Raphson approximation given in Equation 73. 

/ ( , ) = + (1 - p ) (̂ 1 - = 0 (72) 

As n is also a variable, it must also be globally iterated until the converged value of 

q produces a positive value of p, when substituted into Equation 71. The minimum 
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number of nodes n which can produce the required distribution corresponds to the 

first converged value of q for positive p. By specifically setting the number of nodes 

to some value above this minimum number, and solving Equation 72 in the same 

manner as before, other distributions which satisfy the same distribution criteria 

can be obtained. A maximum number of points capable of producing the required 

distribution is defined by Equation 74. 

+ i (74) 

Figure 106 shows the distributions produced along an edge of length, EL = 100 mm, 

with the smallest distance between nodes set at, 1.0 mm, and the largest distance 

between nodes set at 10 mm. As can be seen, by increasing the number of nodes from 

21 to 30, whilst keeping the smallest and largest distances between nodes fixed, a 

distribution with more nodes packed towards the end with the smallest node distance 

can be produced. 
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Appendix D 

Linear Unsteady Aerofoil Theory 

D.l Transverse Flow Fluctuations 

Consider a transverse gust, with amplitude VQ, moving past a flat plate aerofoil of 

chord c, velocity Uoo and frequency uj. Assume that the origin for x is at the centre 

of the aerofoil, and that the perpendicular periodic velocity component is written in 

the form given by Equation 75. 

(75) 

Sears [117] found that the unsteady fluctuating lift produced, was equal to the 

steady lift at the effective gust angle of incidence, multiplied by a complex function 

S{k), known as the Sears function, as shown in Equation 76 

Zlj:* == TrfcfVcciVaefw'/ff/c) (TT)) 

A table of Sears function values for reduced frequencies between zero and oo are 

presented by Kemp [125]. 
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D.2 Parallel Flow Fluctuations 

Now consider a velocity fluctuation, with amplitude -uq, moving parallel with a flat 

plate aerofoil of chord c, velocity Uoo and frequency w. Assume that the origin for x 

is at the centre of the aerofoil, and that the parallel periodic velocity component is 

written in the form given by Equation 77. 

iw == (IT?) 

Horlock [118] found that the unsteady fluctuating lift AL„ produced, was equal to the 

steady lift slope, multiplied by the angle of incidence of the aerofoil and the velocity 

fluctuation UQ multiplied by a complex function T{k), known as the Theodorsen [115] 

function, as shown in Equation 78. 

(78) 

A table of Theodorsen function values for reduced frequencies between zero and oo 

are presented by Horlock [118]. 

D.3 Transverse and Parallel Flow Fluctuations 

Next, consider the general case of a gust, at an angle to the stream-wise direction. 

The solution is found by the direct addition of the linearised equations, described in 

the two proceeding sections. Equation 76 and Equation 78. The new equation for the 

fluctuating lift force is given by Equation 79. 

+ ar(A)) (79) 
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TABLES 
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Cel Cc2 

0.09 1.00 1.30 1.44 1.92 

Table 1: Standard k—e turbulence model constants 

OLJi Cg2 Vo P 

0.085 1.39 1.39 1.42 1.68 4 j # 0.015 

Table 2: RNG k — e turbulence model constants 

SDfPLE PISO 

u 0.6 0.7 

V 0.6 0.7 

P 0.4 1.0 

k 0.6 0.8 

e 0.6 0.8 

0.5 0.5 

Table 3: Under-relaxation factors 

Service Processor No. Processors Memory Maximum job time 

Irixcompute 195 Mhz MIPS RIOOOO 8 1 Gbyte 5 Days 

Irixresearch 300 Mhz MIPS R12000 8 8 Gbyte 5 Days 

Irixresearch 400 Mhz MIPS R12000 8 8 Gbyte 5 Days 

Table 4: Computing resources 
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Edge Boundary condition 

A B Symmetry 

E C W a i l 

C D Symmetry 

DH Mass Flow 

A B Inlet 

E F Inlet 

Inlet 

Inlet 

Table 5: Flat plate boundary conditions 

Outlet position c/ Nit CPU time No. of cells 

xlQ-s (s) 

I , /8 2.211 191 515 6800 

I,/4 2.210 171 503 7200 

2.210 172 583 8000 

L 2.209 165 706 9600 

2L 2.209 187 1141 12800 

4L 2.209 227 2217 19200 

Table 6: 15.24 m flat plate outlet boundary position 

study 
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Inlet position c/ Nit CPU time No. of cells 

XlO-3 (s) 

Z/8 &213 176 450 6800 

2.211 170 463 7200 

2.209 176 581 8000 

L &209 165 656 9600 

2i: 2.209 172 980 12800 

4L 2.209 166 1666 19200 

Table 7: 15.24 m flat plate inlet boundary position study 

Upper inlet Nit CPU time No. of cells 

position XlO-3 (s) 

1 /4 2.217 96 31 1200 

1 /2 2212 99 69 2400 

L 2,210 111 183 4800 

21 2.209 165 706 9200 

41 2209 364 4322 19200 

Table 8; 15.24 m flat plate upper inlet boundary position 

study 

Plate length Max Uoo Min Uoa Max R n Min Rn 

(ft), (m) (m/s) (m/s) xlO® Xl05 

50, 15.24 &08 0.25 68.0 330 

1, 0.305 &08 &25 L4 &67 

Table 9: Reynolds numbers for Proude's flat plates 
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Uoo Rn Az/p 

(m/s) XlQG (m) 

&08 68.0 0.00024 30 

&254 3.3 0.00350 30 

Table 10: 15.24 m flat plate estimated minimum near-

wall cell sizes at high and low Reynolds numbers 

Uoo Rn Ag/p y^ 

(m/s) Xl06 (m) 

5.08 68.0 0.005 2 4 6 - 335 

0.254 3.3 0.005 16--22 

Table 11: 15.24 m flat plate near-wall cell size and RANS 

calculated y'̂  

Ag/p c/ Nit CPU time No. of cells 

(m) xlO'S (s) 

0.0050 246 - 335 2.370 649 856 4000 

0.0025 126 - 171 2.360 1234 1850 4300 

(K00125 5 8 - 7 9 2.350 2981 4850 4700 

0.000625 3 0 - 4 0 2.360 5728 10200 5100 

0.0003135 1 5 - 2 0 2.390 10452 196000 5500 

Table 12: 15.24 m flat plate effect of near-wall cell size 

on computed skin friction 
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Last cell size CPU time No. of cells 

(m) xior^ (s) 

10.0 2̂ W0 293 168 2000 

5.0 2.369 649 856 4000 

2.5 2.365 1100 2910 7400 

1.25 &364 1541 10600 13300 

Table 13: 15.24 m fiat plate outer cell independance 

study-

Middle cell size c/ CPU time No. of cells 

(m) xlO-s (s) 

4.0 ;L380 1345 225 5464 

2.0 2.374 1208 355 7548 

1.0 2^73 1185 413 8732 

0.5 2.372 1109 481 10434 

&25 2.372 1008 574 12728 

&125 2^:72 906 669 15964 

Table 14: 15.25 m flat plate longitudinal cell indepen-

dance study 

Flow field First order Third order 

variable 

u upwind QUICK 

V upwind QUICK 

P upwind QUICK 

k upwind hybrid 

e upwind hybrid 

Table 15: Differencing schemes tested 
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Edge Boundary condition Boundary condition 

a = 0 deg a > 0 deg 

AB Inlet Inlet 

BC Inlet Inlet 

CD Inlet Inlet 

DE Inlet Inlet 

FG Wall Wall 

Wall Wall 

ET Wall WaD 

%7 Pressure Pressure 

7P Pressure Pressure 

Wall Wall 

WaU Wall 

LI Wall Wail 

EM Inlet Wall 

MTV Inlet Pressure 

# 0 Inlet Pressure 

O f Inlet Pressure 

Table 16: NACA 0012 & 0020 boundary conditions 

c/ Cpv Cd Nit CPU time No. of cells 

(m) XlO-3 xlQ-s XlO-3 (min) 

0.016 270 - 7 6 5 7.145 3.478 10.623 1697 26 14400 

0.008 118 -3W8 7.090 2.960 10.051 1693 29 15552 

0.004 65 - 2 0 0 7.076 :1711 9.788 1686 31 16704 

0.002 39 — 99 7.070 2.508 9.578 1672 34 18432 

0.001 20 - 49 7.080 2.485 9.565 2704 55 19584 

Table 17; Effect of near-wall cell size on computed 

NACA 0012 drag, a = 0 deg 
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Edge Boundary condition Boundary condition 

a = 0 deg a > 0 deg 

AB Inlet Inlet 

BC Inlet Inlet 

CD Inlet Inlet 

D E Inlet Inlet 

FG WaU Wall 

GH Wall WaU 

M WaU WaU 

Pressure Pressure 

Pressure Pressure 

70 Wall WaU 

Wall WaU 

MAT Wall WaU 

FM Wall WaU 

Inlet Inlet 

Inlet Pressure 

QA Inlet Pressure 

Inlet Pressure 

LS Pressure Pressure 

Pressure | Pressure 

Table 18: 

tions 

Gurney flapped NACA 0012 boundary condi-
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Grid No. q Cj CPU time No. of cells 

xlO"* xlO"* (min) 

1 37 6.517 0.304 140 39840 

2 59 6.533 0.315 177 43360 

3 79 6.538 0.320 193 46560 

4 99 6.501 0.338 200 49760 

Table 19: 4% Gurney under-converged steady 

state wake grid study 

Gurney ^ (l/rad) ^ (1/rad) ^ (l/rad) 

CFX (A = go) Corrected (A = 5) Jeffrey [40] (A = 5) 

None 5.632 4.022 4.091 

2 % 6.440 4.600 4.647 

4 % 6.469 4.621 4.738 

Table 20: Lift slope correction 

At fp Cl CPU time 

(s) (Hz) xlO-i xlO-i (hrs) 

0.000025 526 6.812 0.369 230 

0.00005 526 6.844 0.363 115 

0.0001 526 6.801 0.356 104 

0.0003 416 6.525 0.309 57 

(1001 — 6.497 0.305 13 

Table 21; 4% Gurney temporal time step study 
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a (deg) / (Hz) / (Hz) & St 

CFX Jeffrey [40] CFX Jeffrey [40] 

0 526 485 - 490 0.168 0.155-0.157 

- 5 526 — &168 — 

+10 — 440 - 445 — 0.141 - 0.142 

Table 22: 4% Gurney shedding frequency and Strouhal 

No. comparison 

c, xlQ-i ^ x l Q - i 

a (deg) Min Max Average Min Max Average 

- 2 0 -8.056 -8.057 -8.057 1.863 1.863 L863 

-15 -9.582 -9.582 -9.582 0.867 0.867 &867 

- 1 0 -5.479 -5.481 -5.480 0.421 0.422 0L422 

- 5 0.454 0.719 0.587 &323 &328 0.326 

0 11618 6.984 &801 0.336 0.376 0.356 

+ 5 10.181 10.181 10.181 &491 OJWl &491 

+10 15.097 15.097 15.097 0.975 0.974 0.975 

+15 13.788 13.789 1&789 1.960 1.960 1.960 

+20 13.096 13.096 13.096 3.938 3.938 3.938 

Table 23: 4% Gurney time-accurate performance 

1///1 

1.0 -0.31 0.1290 

0.75 -1.06 0.1618 

1.19 -0.69 - 0.3453 

Table 24; 4% Gurney positions of maximum shear stress 
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Edge Boundary condition Boundary condition 

a = 0 deg a > 0 deg 

AB Inlet Inlet 

BC Inlet Inlet 

CD Inlet Inlet 

DE Inlet Inlet 

EF Inlet Inlet 

FG Inlet Inlet 

m Wall Wall 

LJ Wall Wall 

WaU WaU 

WaU WaU 

Wall WaU 

AN Pressure Pressure 

Pressure Pressure 

OZ Pressure Pressure 

Wall WaU 

WaH WaU 

WaH WaU 

WaU WaU 

TH Wall WaU 

Gc; Inlet Inlet 

Inlet Pressure 

Inlet Pressure 

Inlet Pressure 

x y Inlet Pressure 

Inlet Pressure 

Table 25: Schilling section boundary conditions 
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Rfi A% (m) y +-

2.12 X 10̂  0.04 2 4 --64 

8.38 X 10= 0.003 3 8 - 142 

4.19 X 10̂  0.0006 21 - 120 

: NACA 0020 near-wall cell size 

1 y+, a = 0 deg 

Rn Az/p (m) 

2.12 X 10̂  0.04 2 2 - 70 

8.38 X 10= 0.003 3 9 - 153 

4.19 X 10̂  0.0006 1 9 - 380 

Table 27: Schilling near-wall cell size and RANS calcu-

lated a = 0 deg 

Section Tlj^ 71̂  No. of cells 

NACA 0020 390 59 149 — 40592 

Schilling (5 deg T.E.) 414 59 299 32 69276 

Schilling (7.5 deg T.E.) 414 59 299 44 72864 

Schilling (10 deg T.E.) 414 59 299 58 77050 

Schilling (15 deg T.E.) 414 59 299 84 84824 

Table 28: NACA 0020 and Schilling grid information 
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Flow dfŷ  ÎjTnax ŝtall d̂O p̂v 1 ~f~ 

(1/rad) (deg) xlO~^ xlO"^ xlO""̂  

Laminar 2.12 x 10̂  5.504 0.957 16 10.075 5.971 4.104 1.687 

Turbulent (t - e) 2.12 x 10̂  5.546 1.251 18 21.041 14.816 6.225 1.420 

Turbulent (A: - e) 8.38 x 10̂  5.878 1.399 19 10.073 7.310 2.763 1.378 

Turbulent (A: - e) 4.19 x 10̂  6.043 1.495 21 7.858 5.759 2.099 1.364 

Table 29: NACA 0020 performance information 

Flow Rn 
dci 
da ^stall 

(1/rad) (deg) 

Turbulent {k — e) 2.12 X 10̂  7.100 1.649 17 1.361 

Turbulent (k — e) 8.38 X 10̂  6.895 1.824 18 1.00 

Turbulent {k — e) 4.19 X 10" 6.828 1.957 21 1.00 

Table 30: Schilling (10 deg T.E.) under-converged 

steady state performance information at different 

Reynolds numbers 

Fish-tail T.E. angle ^ ci,max Gstaii ĉ o 

(deg) (1/rad) (deg) 

5 6.865 1.821 21 0.549 

7.5 6.875 1.901 21 0.768 

10.0 6.828 1.957 21 1.0 

15.0 6.672 2.083 21 1.565 

Table 31: Schilling performance information for different 

fish-tail T.E. angles, = 4.19 x 10̂  
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k UJ T At 

(rad/s) (s) (s) 

0.5 2 TT 7r/50 

1.0 4 7r/2 %yioo 

2.0 8 7r/4 %y2oo 

5.0 20 tt/IO n/SOO 

Table 32: NACA 0020 transient model data 



216 

FIGURES 
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Figure 1: Rudder forces and moments 
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Figure 3; Rudder performance prediction 
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Figure 4; Flat plate boundary layer 
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Figure 5: Aerofoil single block C-Grid 
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Figure 10: Flat plate boundary conditions 

Figure 11: Flat plate grid 
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Figure 12: Skin friction line for 15.24 m flat plate 
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Figure 13: Skin friction line for 0.305 m flat plate 
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Figure 15: Skin friction line for 152.4 m flat plate 
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Figure 16: Skin friction line for 304.8 m fiat plate 
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Figure 18: Prandtl logarithmic skin friction plot 

xlO" 
3rd Order - Turbulent (k -€ ) - E = 9 .793 

— - 3rd Order - Turbulent ( k - e ) - E = 4 .897 

3rd Order - Turbulent (k-E) - E m Z 4 4 9 

* Froude (Tin /Varmsh) 

J 

U (m/s) 
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Figure 20: NACA 0012 & 0020 boundary conditions 
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Figure 21; NACA 0012 boundary location study, a = 8 

deg, Rn — 6.0 X 10® 
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Figure 22: NACA 0012 chord-wise grid study, a = 8 

deg, Rn = 6.0 X 10® 
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Figure 23: NACA 0012 chord-wise grid study Cp distri-

bution, a = 8 deg, = 6.0 x 10® 
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Figure 24; NACA 0012 pressure capture grid study, a 

8 deg, Rn = 6.0 x 10® 
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Figure 25: NACA 0012 pressure capture grid study Cp 

distribution, a = 8 deg, = 6.0 x 10® 
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Figure 26: NACA 0012 wake grid study, a = 8 deg, 

JL = 6.0 X 10̂  

Figure 27: NACA 0012 final Grid 
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Figure 28: NACA 0012 q and Cj convergence history, 
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Figure 29: NACA 0012 MSR convergence history, a — 8 

deg, Rn = 6.0 X 10® 
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Figure 30: NACA 0012 Cf and Cp̂  convergence history, 

a = 8 deg, i2„ = 6.0 x 10® 
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Figure 31: NACA 0012 performance, i2„ = 6.0 X 10® 
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Figure 32; NACA 0012 Cp distribution, a = 6 deg, 
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Figure 33; NACA 0012 streamlines, a = 15 deg, = 

6.0 X IQG 
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Figure 34: NACA 0012 streamlines, a = 18 deg, 

6.0 X 10̂  

Counter rotating 
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Figure 35: Typical Gurney showing Liebeck's [97] hy-

pothesised flow downstream 
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Figure 36: Gurney flapped NACA 0012 boundary con-

ditions 

Figure 37: 4% Gurney fine grid 



239 

Figure 38: 4% Gurney coarse grid wake region 

Figure 39; 4% Gurney fine grid wake region 
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Figure 40: 4% Gurney under-converged steady state fine 

grid streamlines, a = 0 deg, = 0.85 x 10® 

Figure 41: 4% Gurney under-converged steady 

coarse grid wake region streamlines. 0 deg, Rn -

0.85 X 10̂  
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Figure 42; 4% Gurney under-converged steady state fine 

grid wake region streamlines, a — 0 deg, = 0.85 x 10® 
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Figure 43; 4% Gurney under-converged steady state q 

and Cd convergence history, a = 0 deg, = 0.85 x 10® 
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Figure 44: 4% Gurney under-converged steady state 

MSR convergence history, a = 0 deg, = 0.85 x 10® 
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Figure 45: 4% Gurney under-converged steady state 

performance, = 0.85 x 10® 
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distribution, a = 0 deg, — 0.85 x 10® 
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distribution, a — 10 deg, — 0.85 x 10® 
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sponse over two cycles, a — 0 deg, = 0.85 x 10® 
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Figure 53: 4% Gurney time-accurate Cp distributions, 

a = 0 deg, Rn — 0.85 x 10® 
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Figure 56; Schilling boundary conditions 

Figure 57: Schilling Grid 
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Figure 60; NACA 0020 centre of pressure variation, 

Rn = 4.19 X 10^ 
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steady state performance, = 4.19 x 10^ 

a = 0 deg 
a = 5 deg 
a = 10 deg 

- ot = 15 deg 
a = 20 deg 
a = 21 deg 

" a = 22 deg 
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Figure 64: 10 deg T.E. Schilling under-converged steady 

state centre of pressure variation, jR„ = 4.19 x 10^ 

Figure 65: 10 deg T.E. Schilling under-converged steady 

state streamlines, a = 0 deg, = 4.19 x 10^ 
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Figure 66; 10 deg T.E. Schilling under-converged steady 

state close up streamlines, ct = 0 deg, = 4.19 x 10^ 

Figure 67; 10 deg T.E. Schilling under-converged steady 

state streamlines, a = 21 deg, = 4.19 x 10^ 
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Figure 68: 10 deg T.E. Schilling under-converged steady 

state close up streamlines, a = 21 deg, = 4.19 x 10^ 

Figure 69: 10 deg T.E. Schilling under-converged steady 

state streamlines, a = 22 deg, = 4.19 x 10^ 
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Figure 70; 10 deg T.E. Schilling under-converged steady 

state close up streamlines, a = 22 deg, = 4.19 x 10^ 
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Figure 71; 10 deg T.E. Schilling time-accurate q , a = 0 

deg, At = 0.003 s, = 4.19 x 10^ 
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Figure 72: 10 deg T.E. Schilling time-accurate q , a = 0 

deg, At = 0.003 s, = 4.19 x 10^ 

Figure 73: Response curve diagram 
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Figure 74: 10 deg T.E. Schilling time-accurate close up 

streamlines, a = 0 deg, At — 0.003 s, = 4.19 x 10^ 
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Figure 76: Resolution of lift and drag forces in the nor-

mal and axial directions 

Figure 77: NACA 0020 q and Cj response history, u 

10 m/s, Vo = 0.2 m/s, k = 0.5 
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Figure 78; NACA 0020 q and Cj response history, u 

10 m/s, Vq = 0.2 m/s, k — b 
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Figure 79; NACA 0020 q response amplitude, m = 10 
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Figure 80: NACA 0020 q response amplitude and mean 

Cj, M = 10 m/s, vq = 0.2 m/s 
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Figure 81: NACA 0020 Cp distribution, u = 10 m/s, 

Vq = 0.2 m/s, k = 0.5 
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Figure 82: NACA 0020 centre of pressure variation, u 

10 m/s, Vq — 0.2 m/s, k = 0.5 
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Figure 83: NACA 0020 q and q response history, u 

10 m/s, vq — 2.5 m/s, k — 0.5 
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Figure 84; NACA 0020 q and Cd response history, u 
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Figure 86: NACA 0020 Cj response amplitude and mean 

Cj, u = 10 m/s, Uo = 2.5 m/s 
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Figure 87: NACA 0020 Cp distribution, u — 10 m/s, 

Vq = 2.5 m/s, k = 0.5 
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Figure 88; NACA 0020 Cp distribution, w = 10 m/s, 

Vq = 2.5 m/s, k = 5 

Figure 89: NACA 0020 centre of pressure variation, u 

10 m/s, vq = 2.5 m/s, k = 0.5 



265 

1.0000 

1.0527 

Figure 90: NACA 0020 streamlines and Cp plot, w — 10 

m/s, vq — 2.5 m/s, k — 0.5, t/T — 0.24 
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Figure 91: NACA 0020 streamlines and Cp plot, M — 10 

m/s, Vq — 2.5 m/s, k = 5, t/T — 0.70 
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Figure 92: 10 deg T.E. Schilling q and q response his-

tory, u — lQ m/s, Vq = 2.5 m/s, k = 0.5 
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Figure 93: 10 deg T.E. Schilling q and q response his-

tory, u = 10 m/s, Vq — 2.5 m/s, k = 5 
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Sears Theory 
Turbulent (k-E) 

Figure 94; 10 deg T.E. Schilling q response amplitude, 

It = 10 m/s, vq = 2.5 m/s 
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Figure 95: 10 deg T.E. Schilling Cd response amplitude 

and mean Cj, u = 10 m/s, Vq = 2.5 m/s 
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Figure 96; 10 deg T.E. Schilling Cp distribution, u = 10 

m/s, vq = 2.5 m/s, k = 0.5 
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Pressure surface (ĉ  = 0.19) 
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Pressure surface (ĉ  = -0.23) 
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Pressure surface (ĉ  = 0) 
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Figure 97; 10 deg T.E. Schilling Cp distribution, u = 10 

m/s, vq = 2.5 m/s, A: = 5 
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Figure 98: 10 deg T.E. Schilling centre of pressure vari-

ation, w = 10 m/s, Wo — 2.5 m/s, k — 0.5 
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Figure 99: 10 deg T.E. Schilling streamlines and Cp plot, 

u = 10 m/s, Vq = 2.5 m/s, k - 0.5, t/T = 0.70 
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Figure 102; 10 deg T.E. Schilling close up streamlines, 

"• = 10 m/s, Vq = 2.5 m/s, k = 5.0, t/T = 0.58 

Figure 103: Example of a flapped rudder grid 
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2D free stream flow 2D periodic flow 
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Figure 104; Proposed three-dimensional rudder perfor-

mance prediction method 
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n= 25, r = 0.0909 

Figure 105: Geometric progression distribution along an 

edge 

n= 21,p = 0.0364, q = 1.9656 

n=30,p = 0.2821, q = 3.6611 

Figure 106; Hyperbolic distributions along an edge 


