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ABSTRACT 
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Master of Philosophy 

NUMERICAL STUDIES OF WAVE PROPAGATION PHENOMENA IN 
SHOCK AND EXPANSION TUBES 

By Te-Wei Po 

The results from numerical simulations of one-dimensional in viscid and 

two-dimensional axisymmetric viscous simulations in shock and expansion tubes 

are presented. A code using the HLLC approximate Riemann solver developed by 

Toro et al [43] was used to carry out the simulations. 

The ability of the code to provide accurate solutions for one-dimensional 

Euler equations has been verified by examining Sod's ideal shock tube problem and 

the details in shock wave and contact surface were investigated. It shows that the 

details were accurate as the initial pressure ratio across a primary diaphragm was 

low. For high initial pressure ratio across the primary diaphragm, the numerical 

simulations of the simple shock tube problem were carried out. It shows that there 

is an initial overestimation in shock speed. The computed heat transfer rate 

compared to Mirels' theory and the duration of the test time were investigated. 

The tailoring interface technique used widely in shock tube researches was 

considered because of the possibility to increase the test time. The simulations for 

inviscid flow with tailored, under-tailored and over-tailored conditions were carried 

out and the results are given here. Some simulations for viscous flow were also 

carried out and there was a pressure loss in the driver chamber due to heat transfer. 

The acoustic transverse wave propagation phenomenon caused by the interaction 

between heat transfer and pressure loss was investigated. 

The simulations of expansion tube with two different pressure ratios across 

the secondary diaphragm were carried out. The details of wave propagation of the 

primary shock interaction with the secondary diaphragm and the interaction 

between the reflected shock and the secondary expansion were investigated. The 

durations of the test gas with good quality were also discussed here. 
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I'd like to share this poem with people, for the right but hard decision, that my family 

made for me, and which has decided which path I am walking now after I lost most of 

hearing ability during my childhood. 

TWO roads diverged in a yellow wood, 

And sorry I could not travel both 

And be one traveller, long I stood 

And looked down one as far as I could 

To where it bent in the undergrowth; 

Then took the other, as just as fair, 

And having perhaps the better claim. 

Because it was grassy and wanted wear; 

Though as for that, the passing there 

Had worn them really about the same. 

And both that morning equally lay 

In leaves no step had trodden black. 

Oh, I kept the first for another day! 

Yet knowing how way leads to way, 

I doubted if I should ever come back. 

I shall be telling this with a sigh 

Somewhere ages and ages hence: 

Two roads diverged in a wood, and I— 

I took the one less travelled by, 

And that has made all the difference. 

-Robert Frost (1874-1963) 
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Chapter 1 

Introduction 

Since Chunk Yeager proved the sound barrier was a myth a little over 50 years 

ago, engineers have been striving for the ultimate speed machine. Commercial 

passenger carriers wanted to beat their competitors to point destinations and the 

military sought a rapid delivery for weapons and ordnance. Hence, the concepts of 

hypersonic aerospace transport vehicle have been developed, and the research 

projects include Reusable Launch Vehicle (RLV) such as X-33 (Venture Star) and 

X-38 are undertaken in USA and other countries. The goals of RLV projects are to 

develop the technologies which to achieve single-stage-to-orbit vehicle, and to 

prove the flight performance by experiments. 

In early space vehicles, they needed to have efficient control abilities and withstand 

the severe aerodynamic and thermal loading when they were cruising at hypersonic 

speed or entering the Earth's atmosphere. The problems involved in hypersonics 

can be defined as compressible flow field problems. To study the physical 

phenomena of these problems, ground based experimental facilities have been the 

usual approach investigating tools. However, it appears to be impossible to mimic 

the real conditions requested in ground based experiments. Therefore, 

computational fluid dynamics (CFD), which plays an important role of aerospace 

technologies, has been developed and applied in aerodynamics and 

aerothermodynamics. 
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Chapter 1 Introduction 

CFD is a powerful tool brought by the intensive use of computers for studying fluid 

mechanics problems. Although the costs of numerical simulations are cheaper than 

ground based experiments, they have many uncertainties and inaccuracies. 

Numerical methods applied to fluid dynamics have been progressively increasing 

accuracy and speed, extending its use among scientists. A wide range of techniques 

has applied to different systems with acceptable results. However, the 

computational techniques have increased in accuracy progressively. In this work, 

the computational approach has been used to investigate the phenomena of wave 

propagation in shock and expansion tubes. The numerical approach is based on a 

Godunov's method [14] with the HLLC Riemann solver [43, 44]. The HLLC 

solver code used to carry out the work is developed for that created by 

Amaratunga [1] and, later, by Murray [32]. 

Previous researches have been carried out to simulate the shock/expansion tube 

flows by using the finite-volume method [20, 33] and Total Variation Diminishing 

(TVD) methods [48, 49 and 50]. Most of their works were to simulate the large 

size high enthalpy pulse facilities such as the NASA Langley expansion tube. In this 

work, for the first time shock/expansion tube flows have been simulated with the 

HLLC solver code, although some researchers have carried out shock tube 

investigations with the HLLC solver for low diaphragm pressure ratios, and short 

length of the tubes, primarily as test cases. 

This work presented in this thesis is divided into five parts. First, Chapter 1 will 

give a brief introduction of CFD, then Chapter 2 will present numerical techniques 

of modelling inviscid flow, then Chapter 3 will describe the numerical 

implementations of the viscous solver and some results of shock and expansion 

tube simulations will be discussed in Chapter 4. Finally, some conclusions and 

recommendations for future work will be given in Chapter 5. 
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Chapter 2 

Numerical Methods 

2.1 Governing Equations 

The governing equation of flow field problems requires a set of equations which 

can describe the physical phenomena of the flow field. In this section, the forms of 

the Euler equations and the Navier-Stokes equations are defined as follows. 

2.1.1 Euler Equations 

In general, the basic inviscid compressible flow field is described by the inviscid 

Euler equations for an ideal gas. The equations can effectively represent a non-

physical fluid of zero viscosity without rotational factors and chemical reactions 

involved in the flow field. For describing two-dimensional or axisymmetric flow 

problems the conservation form of the inviscid Euler equations can be written in 

Cartesian space co-ordinates system as follows: 

^ + ^ + ^ + 6(^ = 0 (2.1) 
c/y 

where a = 0 for two-dimensional and a = l for axisymmetric problem, and 

vectors [/, F, G and can be given by 
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U = 

' p~ pu 

pv 
, F = , G = , H — — 

_pE_ u{ pE + P j 

(2.2) 

Here, vector U is the solution vector of conserved variables and vectors F and G 

are the inviscid flux vectors, H is the axisymmetric source term, p denotes the 

density, u and v represent velocity components in the x and y Cartesian directions 

respectively. We denote the pressure by P, the total internal energy per unit mass 

by E, and the total enthalpy per unit mass by h. E is related to h through the 

following relationship as 

E = h-
P 

(2.3) 

In this work, the ideal gas equation of state is assumed the pressure relating the E 

as: 

V 

(2.4) 
y 

where y is the specific heat ratio. 

2,1.2 Navier-Stokes Equations 

The two-dimensional planar or axisymmetric Navier-Stokes equations for the flow 

of a viscous, compressible flow fluid may be written in conservative form 

Cartesian co-ordinates system [18] as follows: 
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(?X 
(2.5) 

where vectors U, F, G, H are the same as the Euler relations (2.2), and vectors F^ 

and Gy denote the viscous fluxes and is the axisymmetric source term 

expressed in non-dimensional form by 

F. J _ 

" 0 ' ' 0 " 

Sx • " • ' i 

K_ 

0 

- v / y ) 

R 

(2.6) 

Assuming a Newtonian fluid, the viscous flux terms can be expressed in usual 

fashion by 

3 y 

2 V 
<7̂  = 2/A/̂  -—//( 

(2.7) 

= w(T̂  +vr. A!)' TX' 

where <7 and T are the shear stresses, and q are the heat fluxes. Re is the 

Reynolds number expressed as: 

jU 
(2.8) 

For the details of the non-dimensionalisation procedure, see Appendix A. 
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2.2 Numerical Solvers 

In this section, the Euler equation (2.1) are considered for an inviscid 

compressible flow. The conservation form of these equations in one Cartesian 

space variable is 

(2.9) 
or ok 

and can be written in integral form over the distance bounded by and as 

— r [/(x, f )ak = f (%,, f) - F(%2, r) (2.10) 

These Euler equations, due to its hyperbolic nature, admit discontinuous solutions 

(shock waves, contact surfaces). The correct resolution of the discontinuities 

presents the major hazards while modelling inviscid compressible flow. Many 

numerical schemes have been reported to solve equations in the form of equation 

(2.10). ArtiScial viscosity methods, flux splitting techniques and Godunov's 

method are the most popular techniques in finite volume methods [17, 44]. 

The Godunov's methods or reconstruction evolution have been successfully used 

modelling hypersonic flows. This method has been used throughout this work 

with the high order extension MUSCL (Monotone Upstream-centred Schemes for 

Conservation Laws) [46]. 

In this section, the numerical method will be presented with the approximate 

Riemann solver and the MUSCL extension [17]. We will discuss the test case 

which was suggested by Sod [41] to compare the numerical schemes. 
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2.2.1 Godunov's Methods 

Let p be the density, m = pii be the momentum per unit length and e = pE be the 

total energy per unit length. The time is divided into intervals of length I and let 

Ax be the spatial increment. The solution is to be evaluated at time f" = nl where 

71 is a pHDsidTw: intejger lWie sqaatial uicreiixants , % = 0, :k 1, :k:2. TThe 

\%BctcHr (7" vvtucdi Eqyprcyximate Idie cxsH erverayge (xm Ibe (%xpcriBsse(i rnallwEmaticajly 

as 

(2A1) 
Ax - \ "2 dx 

where i + j denotes the interface between cell i and z+1. 

In Godunov's upwind differencing scheme [14] which was presented in 1959, the 

fluid is described as a sequence of cell-averaged conserved quantities /?", m", 

. TTtw: aTHsraĝ es (tie rwsxt tinie leiw:! f"*' =:f" -Pf cam 

be obtained by averaging over a cell (A%, . 

\\^th Godunov's scheme, the flow domain is treated as a succession of cells with 

ceH interfaces lying between consecutive grid points. The variation of vector [/ 

over these cells can be approximated by averaging into piecewise constant 

quantities. These piecewise constant quantities are assigned to the grid point 

representing the cell as showed in Fig. 2-1. 

Hence, the integral form of Euler equation (2.10) which can be evaluated by using 

the numerical flux through a cell over the time increment At at the next time level 

f can be written in conservation form as 
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Af 

A% ^ 2 
(2.12) 

where and f \ the time averaged Guxes through cell interfaces ; + y and 
' + 2 

f - y respectively. 

£7 

[ / , • U, U. +1 

i-. \ i \ i--l 

Fig. 2-1 Cell averaged representation of conserved variables for Godunov's scheme 

'-4 ^ >1. * i+^ '-4 ^ 

Fig. 2-2 Time averaged fluxes through cell interfaces in a 1-D flow domain 
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It is more efBcient to calculate the fluxes to the two ceDs bounded by each 

interface rather than to calculate the fluxes to one cell bounded by two interfaces. 

This is shown in Fig. 2-2. 

Let the fluxes in [/. be written in the form through interfaces z+y and i- j as 

F", (2.13) 
A% ' z 

F", (2.14) 

The equations (2.13) and (2.14) can be combined to give at the next time as 

follows: 

+ (%/.̂  (2.15) 

which updates the equation (2.15). 

With Godunov's scheme, the equation (2.15) is completely defined once the 

fluxes have been specified. Godunov's scheme uses the solution of the local 

Riemann problem with data ( , ) to define the numerical flux F " . 

2.2.2 The Riemann Problem 

The Riemann problem for equation (2.9) is the initial value problem in the domain 

- o o < x < o o , f > o with initial data 

rc/;, % < 0, 
[/(%,0)= J - (2.16) 

l[/^, z > 0 , 
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as illustrated in Fig. 2-3. 

The Riemann problem with two intermediate states separated by the 

middle wave V was defined as 

X 

f/z. if 

[/I if 

if 

if 

X 

X 

X 

(2.17) 

U, 

u 
A 

x=0 

Fig. 2-3 Initial state values of the Riemann problem defined at time (=0 

The structure of the solution of the Riemann problem is depicted in Rg. 2-4. 

There are three waves. The middle wave is always a contact discontinuity. The 

left and right waves, which due to their character are called non-linear waves, can 

be either shock waves or rarefaction waves depending on the states and 

[6, 15]. Hence, there are four possible wave patterns. Contacts and shocks are 

discontinuities, rarefaction waves are continuous solutions. 

The region bounded by the two non-linear waves is defined as the star * region. 

The * region has constant pressure p* and constant normal velocity w'. The other 
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variables that appear in vector (/ have differing left and right states of the contact 

discontinuity and . Finding exact solutions of the Riemann problem is 

computationaHy expensive. For this reason approximate Riemann solvers were 

developed. 

To modify the exact solution of the Riemann problem, a number of approximate 

Riemann solvers have been developed following ideas of some researchers, e.g.; 

the HLL (Harten, Lax and van Leer) approximate Riemann solver [15], the HLLE 

(Harten, Lax, van Leer and E stands for Einfedlt) approximate Riemann solver 

and the HLLC (Harten, Lax, van Leer and C stands for Contact) approximate 

Riemann solver [43]. The choice of approximate Riemann solver is heavily 

dependent on the type and conditions of flow to be simulated. An example of this 

win be discussed later in a test case of shock tube problems. The HLLC solver is 

the most accurate, can mimic the exact Riemann problem and will be presented 

here. 

left wave 

middle wave V 

right wave 

x=0 

Fig. 2-4 The time dependant solution of the Riemann problem in the x-t plane. 
The three waves present define four piece-wise constant states , 

and 

2.2.3 The HLLC Approximate Riemann Solver 

This improved version HLLC solver was presented by Toro et al. [43]. This solver 

is based on the HLL solver put forward by Harten, et al. [15]. It accounts for the 
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contact discontinuity in the physics of the problem by incorporating the contact 

surface into the wave pattern. 

In Fig. 2-5, we consider two averaged intermediate states, [ /*, [/*, separated by 

the contact wave, whose speed is denoted by . The two-state approximate 

Riemann solution was defined by Toro et al. [43] as 

U 

^ ^ , < 0 

(2.18) 

The corresponding interface flux, denoted , is defined as 

HUT (2.19) 

Integrating over the rectangle ABCD and using the criterion which is given by 

HLLC approximate Solver [43] shown as 

(2.20) 

which simply states that the weighted average of must give the mean 

value of the exact solution, , between the two acoustic waves. 

Considering various ways of confuting ± e and states from estimates of 

the flux across the contact line suggested by Harten et al. [15] and the sin^lest 

approach for confuting these star states suggested by Toro et al. [43], we can 

M.Phil. Thesis 12 



observe that the particle velocity may be assumed constant between the acoustic 

waves if we ignore the influence factor of expansion fans. 

Fig. 2-5 Simplified Riemann fan with two intermediate states 

Applying the Rankine-Hugoniot conditions across the wave in the 

quadrilateral CDEF gives 

(2.21) 

Similarly, the wave in the rectangle ABGH gives 

(2.22) 

Equations (2.21) and (2.22) can be written as 

(2.23) 

(2.24) 

For the three-dimensional Euler equations with states separated by an 

interface with unit normal vector » , equation (2.23) can be expressed in full as 
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5, 

Pl PlIl Pl PL^IL 

* * * r** 

- PL^L^L + - PL^L^L + ^if^y (2.25) 

PL^L PL^L^L + PL^z 

_Pl^L _ _^l(PL^L + _ 

where q - un^ + Dn^ + con^. For one-dimensional problem, it can be expressed as 

gr = M using - 1, »^ = 0 andn^ = 0 . 

For Gilding values of the vectors , Toro et al. [43] assumed that 

(2.26) 

where q" was taken as some estimate of the contact velocity. However, Batten et 

al. [4] made the assumption that 

n * * * (2.27) 

where q* is the average directed velocity between the two acoustic waves. Now, 

assuming that the wave speed of the contact discontinuity is u" = . The 

expression for within the HLLC approximate solver to [/* can be given by 

Pr1R(^R *?/?) 

Then, the first equation can be given by 

(2.28) 

(2.29) 
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The second equation can be given by 

(2.30) 

The final equation gives 

Pl^L - M (2.31) 

As the pressure in the star region is constant, it is possible to construct the vector 

of conserved averaged variables. Then the fluxes can be calculated using equation 

(2.23). For the case where > 0, it is the right supersonic case. Similarly, for the 

case where < 0, it is the left supersonic case. In the star region, for the two 

cases where < 0 < and < 0 < S^,, they are both the subsonic cases. 

These equations can be solved exactly in the same way just switching L for R 

subscripts. The solution of the relevant fluxes is available once an accurate 

estimation of wave speeds and is obtained. 

2.2.4 Roe Average state 

Many Riemann solvers make use of the eigenvalues and eigenvectors of the 

Jacobian matrix A = . For a general gas, the Jacobian matrix of the Euler 

equation can be written as 

A 

0 
( ; ' -3 ) 2 

1 

( 3 - / ) w 

0 

( y - i ) 

(X-l)M — ( ! - / ) « 

(2.32) 
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The three eigenvalues of A are 

/Ij = u + c 

y&2 = W —c (2.33) 
" 2 

/Ig = W 

where c is the speed of sound. 

In this one-dimensional shock tube problem, these eigenvalues represent the speed 

of the right, left extreme waves and the velocity of the fluid respectfully. 

However, a discontinuity can be given effectively in the flow with the left and 

right hand initial states each producing a Jacobian matrix A at the interface of the 

two cells. Then, the right and left states of the interface can be defined as two 

Jacobian matrices, and . So it is required to form an average matrix A, so 

as not to violate the laws of conservation. For formulating an average matrix, Roe 

[37] and Yee [51] showed this to be true by constructing an average state 

using the following relations 

% _ + % 
1 + or 

H -• 
l + or 

77 
2 

where a 

For finding the linearised estimates of the two waves for the HLL approximate 

Riemann solver, Roe defined the eigenvalues and as 

M.Phil. Thesis 16 



Then the new lower and upper limits of the acoustic wave speed estimates can be 

expressed as 

No matter which approximate Riemann solver we use, the accuracy of the solver 

is fully dependant on the choice of these wave speed estimates [43]. Hence, 

another method of implementing the Riemann solver was presented by Einfeldt 

(known as HLLE) [10] to improve the results obtained. Einfeldt suggested an 

improvement on the wave speed estimates regarding the numerical dissipation 

near rarefaction waves, and chose the wave speed estimates as 

where f i - j——-. However, according to Toro [43], this method can lead to 

problems with the undesirable feature of smearing of contact surfaces for certain 

applications, and so in this work, Equation (2.36) has been used. 

2.2.5 MUSCL Schemes 

The procedure to be followed here is based on an extension of the Godunov type 

schemes. The projection stage, whereby the solution is projected in each cell 

( f - y . z + y) on piecewise constant states, is the cause of the low accuracy of the 

Godunov schemes. This step is completely decoupled from the physical stage 
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where the Riemann problems are solved at the interfaces of the cells. Therefore, it 

is possible to modify the projection process without modifying the Riemann 

solver, in order to generate higher spatial approximations. The state variables at 

the interfaces can be obtained from an extrapolation of the neighbouring cells. 

This method for the generation of second-order upwind schemes via variable 

extrapolation can be referred to in the literature as the MUSCL scheme (Monotone 

Upstream-centred Schemes for Conservation Laws) which was developed by van 

Leer [46]. 

Let us consider the general local representation, valid within cell i, at a given 

instant, see Fig. 2-6: 

1 Tt-

A% 2A% 12 
(2.38) 

where and [/. is the average value, deGned by 

1 
= — f '[/(%)lic 

A% ""'-2 
(2.39) 

U A 

U[ 

i-1 i i+1 
X 

Fig. 2-6 Linear extrapolation for a more accurate prediction of interface values 
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and S.U,S]U are estimations of the first and second order differences within cell 

f. The derivatives with cell z must be computed in order to preserve the monotone 

of the solution, clipping the extremes to avoid oscillations near discontinuities. 

The MUSCL schemes are first order accurate near discontinuities. 

Actually, the resolution of the Riemann problem or the numerical flux estimation 

requires only the values at the cell boundaries. For the second order accuracy, 

setting jc = ± ^ within cell z expresses the linear extrapolation of as 

Z/m (2.40) 

is computed through a function of neighbour cells in a slope limiter process 

as Amaratunga [1]. 

(3c 
(2.41) 

else 

- 2A: 
Ax 

L 2A% ; 

2Ax 
,2A: 

Ax 
(2.42) 

Here, k is defined as a parameter to switch the MUSCL step on and off. If ^=1, the 

MUSCL step is fully on and if ^=0, then the MUSCL step is off. This parameter k 
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allows us to control the degree of dissipation of the scheme. If k increases, the 

formal accuracy also increases as we add nunierical dissipation through the 

Mmiter. However, near boundary layers this numerical dissipation can mask 

natural diffusion related to viscosity, creating convergence problems. In this shock 

tube problem test ^=0.8 has been used. 

Although the MUSCL implementation was seen to work well with a simple test 

case (Sod's problem, see Section 4.1), when applied to a more realistic shock tube 

or expansion tube configuration, the MUSCL scheme provoked an oscillatory 

behaviour with results. The problem appears to be worse at higher diaphragm 

pressure ratios, where the wave propagations are stronger. Therefore, in these 

cases only non-MUSCL results are implemented, restricting the results to first 

order accuracy in space. 

2.3 Inviscid Boundary Conditions 

In general, specification of the boundary conditions and their numerical 

implementation when solving the Euler equations is an important part of the 

overall algorithm construction. For satisfying the conservation of mass, at a solid 

wall boundary, the normal velocity must be set to zero (shown in Fig. 2-7), this 

implies that no mass or other flux can penetrate the solid wall. Hence, the physical 

condition imposed is 0. The other variables at the solid wall, velocity and 

pressure, can be calculated using a symmetry condition. 

2.3.1 Solid Walk 

In terms of parameters, for two-dimensional flow problems, zero waU gradients of 

density, energy and tangential velocity, and a zero normal velocity can be imposed 

at a solid wall in the conserved vector components as follows: 
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C2.43) 

Flow domain 

Fluid 

u„ = 0 

mi [>> 
I \ 

blid^Wal 

Fig. 7: A zero normal velocity at a solid wall. 

2.4 Time Stepping and Stability 

The time step, At, is obtained from the in viscid explicit solver. In order to 

maintain stability, it is necessary to limit the time step. For the first time step in 

the solution, At is set very small, and then later time steps are computed by using 

the Courant condition (also known as Courant-Friedrichs-Lewyor (CFL) 

condition) with a Courant number (CEL) of 0.7 and the wavespeeds S obtained 

from the Riemann solvers as follows: 

(2.44) 

2.5 Multi-Dimensional Flow 

In general though, most flow fields can be categorised into either two-

dimensional, axisymmetric or three-dimensional flow problems. They are all 
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defined as multi-dimensional flows. As we know, these multi-dimensional flows 

always involve many problems; i.e., the con^lex shape problems and surface 

catalytic eGect problems. 

In general, numerical solution of multidimensional fluid problem is more complex 

than its one-dimensional counterpart. The operator splitting method is a simple 

technique to reduce the multi-dimensional problem to a series of one-dimensional 

problems. In this section an operator splitting methodology which can simply 

calculate multi-dimensional flows is considered [5, 24, 25, 42]. 

2.4.1 Dimensional Operator Splitting 

This method is similar to that used in the one-dimensional flow. For two-

dimensional problems, the whole domain is divided into rectangular cells. Four 

cell boundaries can be considered with Godunov's method as shown in Fig. 2-8. 

ij+\ 

+/2 

z- i j ' ; 
J\ 

\ - k 

a .<e-
+̂ 1 V -/g 

i - / . 

ij-l 

Fig. 2-8 An arbitrary cell i,j for two-dimensional flow 

M.Phil. Thesis 22 



The governing equations are given as 

C145) 

where 

U 

p~ fyv 

, F = 
+ p 

, G = , F = 
+ p 

, G = 
^ P 

v(/% + p) 

(2.46) 

and in numerical form showed as 

— k " , - G " 
Ay 

(2.47) 

Then the flux balance at cell can be expressed in conservation form as 

Af 
(2.48) 

where i,j refers to an arbitrary grid point in the plane and is the time 

averaged flux through an interface of the length Q . 

Using an operator splitting this solution procedure can be split up into two steps 

which are considered separately. The first step is the flow in the x-wise direction 

and gives the fluxes f and - Simultaneously, the second step is the flow in 

the y-wise direction and gives the fluxes G" and . Here, equation (2.43) can 
'+2 I ; 

be split into directional operators as foUows: 
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^ 3 = 0 
C2.49) 

Therefore, it is not necessary to consider a new multi-dimensional solver. The 

standard HLLC solver is utilized twice instead. 

2.4.2 Extension to Axisymmetric Flow 

The algorithm for axisymmetric flow is derived from the two-dimensional version 

with a number of changes to suit the geometry. This geometry has boundary 

conditions similar to two-dimensional flow. The volume of each cell varies with 

radius, as does the area of the cell surface. The simulations for axisymmetric flow 

are set up the lower edge of the domain to be zero radius, and can be allowed for 

an offset radius as in an annular domain shown in Fig. 2-9. The grid points in the 

computing domain are uniformly spaced on %-axis and r-axis for two-dimensional 

axisymmetric viscous simulations. 

Radial direction 

The computing domain 

Longituamal direction 

Fig. 2-9 The computing domain in annular space (Not to scale) 
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2.4.3 Numerical Treatments 

In the axisymmetric How case, the boundary conditions can also be treated as in 

the two-dimensional flow case. However, it may be made more complex when we 

consider moving the MUSCL into two-dimensional or axisymmetric flow. 
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Chapter 3 

Viscous Compressible Flow 

In this section, the effects of viscosity in the solution of the governing equations 

are considered. The Navier-Stokes equations required for the two-dimensional 

axisymmetric flow problem can be given in conservative form, in cylindrical co-

ordinates (x,r) by [32] 

(3.1) 

where [/ is the vector of conserved variables and F and G are the inviscid flux 

vectors in the % and r Cartesian directions respectively, and Ĝ , are the 

corresponding viscous fluxes. These fluxes can been given by the relations shown 

in Equation (2.7) in cylindrical co-ordinates (x,r). A is the additional terms for the 

axisymmetric flow problem and can be given by 

^ 0 

0 

0 V 

(3.2) 

The shear stress of A are given as 
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(3.3) 

3,1 Transport Properties 

The transport properties are important for viscous flow field simulations, 

particularly for the estimation of the wall heat flux (see 4.2.4.1). These properties 

include specific heat capacities, viscosity and thermal conductivity. The specific 

heat capacities are assumed to be these for an ideal gas, i.e. 

R 
Cv = 

r - 1 

r 
y-l 

•R 

(3.4) 

(3.5) 

where R is the specific gas constant. It is assumed that for the range of conditions 

considered here with Argon (R = 208 J/kgK , y = 1.667) as the test gas, and 

are constant. The viscosity and thermal conductivity are, however, evaluated as 

function of temperature. 

3.1.1 Temperature and Heat Flux 

The equation of temperature, 7̂  for an ideal gas can be expressed as 

2 , 2 \ 

r = _ 
C, 

u~ + v 
(3.6) 

V V 

where c,, is the specific heat at constant volume. The equation of heat flux, g, can 

be expressed following Fourier's heat conduction law as 

g = (3.7) 
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3.1.2 Viscosity 

With Sutherland's law, a reasonable estimate for the viscosity of a fluid can be 

given as 

(3.8) 
r + 1 1 0 / 

where and 7^ are free stream viscosity and free stream temperature 

respectively. 

3.1.3 Thermal Conductivity 

Thermal conductivity is proportional to the viscosity through Prandlt number, f r, 

by 

;i = : ^ (3.9) 
Pr 

where is the specific heat at constant pressure. In the calculations of perfect 

gas, is assumed to be constant, and f r is suggested to be a constant, f r is 0.667 

for Argon [47]. 

3.2 Implicit Viscous Solver 

The viscous solver chosen to solve the viscous flux in this case was based on an 

implicit scheme put forward by Batten et al. [3]. In an operator splitting method 

like this, where separate diffusive and convective solvers are used, it may be found 
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that the stable time step required by the viscous solver is much smaller than that 

required by the inviscid solver. Implicit solvers have not such limitations and can 

use larger time steps. Due to the operator splitting approach, it is possible to use an 

explicit solver in the inviscid part and an explicit solver in the viscous contribution. 

The diffusion split PDE's can be given by the equation (3.1) reduced to 

^ = (3.10, 
or ok oy 

Dimensional splitting gives 

(3.11) 

(3.12) 

3.2.1 Linearisation in Time 

With the implicit backward Euler scheme, the change in the vector of conserved 

variables due to the viscous effects can be given by 

dU { ( F - ) , u - ( f . i 
(3.13) 

Then the backward Euler scheme can be written as 

(3.14) 

= [A" (3.15) 

where 
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R, = 
•1+1 

Zlx 
(3.16) 

Linearising the terms in time gives the following system of equations 

&/ =/lf R + & / (3.17) 

where 

T ' = r-+^«T (3.18) 

Then this is solved in the S form as 

7 - ^ a ; (3.19) 

And / is an identity matrix and is a viscous flux Jacobian matrix. This 

formulation could be solved implicitly for SU which U is updated by 

(3.20) 

With this solver, each of the viscous fluxes is considered separately in the two-

dimensional viscous code. The calculations of this solver can be expressed as 

(3.21) 

where the values of A, B, C and D vary with each equation. 
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The values of A, B and C can be entered into a block tridiagonal matrix to give the 

following system of the equations. This shows that a simple LU decomposition can 

be used to invert the tridiagonal matrix solving for the (%/ terms and update the 

vector of conserved variables. 

r i - g , q 

A 1 Q AtRi + D2 

Aj 1 - ^ 3 Q = 

'• AtRi + 

V y V • y \ • V 

(3.22) 

3.3 Viscous Boundary Conditions 

A set of boundary and initial conditions for the Navier-Stokes equations can be 

defined. However, physical experience has to be used to determine the nature of 

the boundary conditions to impose along solid wall boundaries. 

3.3.1 Adiabatic Wall 

Assuming r to be the direction normal to the wall, the boundary conditions for an 

adiabatic wall can be defined as: 

= 0 (3.23) 

The boundary condition above is the temperature gradient, which namely a 

specified zero gradient at the wall, referred to the zero heat transfer through an 

adiabatic wall. The no slip boundary condition for the fluid particles at the wall is 

deGned as: 
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= 0 
(3.24) 

In two-dimensional axisymmetric flow shown in Fig. 3-1, using the subscript w and 

N-1 for the quantities referred to the ghost cell for the wall and the last inner cell, 

respectively. Then, the boundary conditions can be expressed as: 

u,.. = -u 

V = —V 
n-j 

(3.25) 

\ \ \ \ \ 
% 

1 
r 

1 
# 
i 
i 
i Ruid 

(pg 
Ruid on opposite side 

Centre 

Fig. 3-1 Scheme of the wall showing the ghost and the inner cells 

3.3.2 Isothermal Wall 

For an isothermal wall, the temperature remains constant in the wall and the 

boundary condition is: 

(3.26) 
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which is the well known Dirichlet condition, and is used to define an isothermal 

wall which can be given by second order extrapolations; 

(3.27) 

Hence, the boundary conditions for an isothermal wall can be given by: 

(3 28) 

3.3.3 Centre Line 

For two-dimensional axisymmetric flow simulations, the symmetry conditions can 

be given by: 

— - 0 (3.29) 
ar 

^ = 0 (3.30) 
dr 

Using the subscript g and 1 for the quantities referred to the ghost cell and fluid 

cell (the 6rst inner cell) the boundary conditions can be expressed as: 

r , = 7 ; 

Wg - Mj (3.31) 

V, =-Vi 
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Chapter 4 

Results 

4.1 Sod's Shock Tube Problem 

4.1.1 Physical Description 

In this section the standard simple test case of the shock tube problem suggested 

by Sod [41] is utilized to verify the inviscid numerical scheme. In its simplest 

form, the shock tube consists of a long tube of constant area divided into two 

sections by a diaphragm. The latter is typically made from a thin sheet of metal 

which often has grooves cut into it to ensure that it can easily and clearly broken. 

The tube contains a high pressure driver gas on one side of the diaphragm and a 

low pressure driven gas on the other side of the diaphragm, as shown in Fig. 4-1. 

When the diaphragm is broken, a shock wave propagates into the low pressure 

section and an expansion wave propagates into the high pressure section as 

illustrated in Fig. 4-2. The driver/driven gas interface, known as the contact 

surface, lies between the shock wave and the expansion wave. Between the shock 

wave and the contact surface a uniform region of high velocity and temperature is 

generated that can be used for many different types of experimental studies. 

The flow condition generated in a shock tube can be determined analytically by 

noting that the velocity and pressure behind the shock wave must be equal to the 

velocity and pressure behind the expansion wave as indicated in Fig. 4-3 [2]. The 

shock wave increases the temperature of the driven gas whereas the expansion 

wave decreases the temperature of the driver gas. The situation illustrated in Fig. 
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4-3 (b) is where the driver gas temperature is equal to the driven gas temperature 

(7^ = 7], for example). 

Primar^diaphragm 

High Pressure Low Pressure 

Fig. 4-1 Arrangement of the shock tube 

Initial position of primary diaphragm 

Expansion Wave Contact Shock Wave 
Surface 

Fig.4-2 Wave generated in the shock tube following 
rupture of primary diaphragm 

Pa 

Pa = P2 
Pi 

— 0 

Wg — 

M, = 0 
X 

Fig.4-3 (a) Schematic diagram of flow in a shock tube 
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Fig.4-3 (b) Schematic of flow in a shock tube 

4.1.2 1-1) simulation without MUSCL solution 

The one-dimensional exact analytical solution consists of a left rarefaction, a 

contact surface and a right shock. It is used to validate the accuracy of the one-

dimensional numerical simulation using the HLLC solver. The initial conditions 

can be given by 

^r( PR >^R > PR )' ^^'2' 

(4.1) 

where the length of the shock tube, L, which is taken to be unity, and the 

diaphragm is located at x = x,,. 

In this one-dimensional simulation the driver and test gas are assumed to be the 

same and behave perfectly. The pressure and density ratios across the diaphragm 

are chosen to be 10:1 and 8:1, respectively, and the ratio of specific heat capacities 

is chosen to be that of air, y = 1.4. The initial states of the vector of conserved 

variables can be therefore expressed as 
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1.0 I 

0.0 

l.OJ 

0J25I 

0.0 

L 0.1 J 
(4.2) 

A typical set of results obtained with a uniform grid points of N=200 at time t=0.2 

seconds are shown in Fig. 4-4. In Fig. 4-4 the red color line indicates the results 

calculated by the one-dimensional analytical solution, and the green color line 

indicates the results calculated by the one-dimensional HLLC solver without 

MUSCL slope Hmiter. The shock wave, the expansion wave, and the division 

between the flow traversed by the shock wave and by the expansion wave wiH be 

noted. In Fig. 4-4, overall, the agreement between the CFD results and the 

analytical theory is good, before then criticising the CFD results inability to 

resolve the discontinuities sharply. It also shows that, because of the relatively 

small number of grid points used, the shock wave, the contact surface and the 

expansion wave are not sharp. The region between the contact surface and the 

expansion wave is poorly captured compared with the same region calculated by 

the analytical solution. However, the region between the shock wave and the 

contact surface was captured well. The effect of increasing the number of grid 

points on the solution is shown in Fig. 4-5, from which it wiU be seen that the 

details of the shock wave, the contact surface and the expansion wave are getting 

better when a larger number of grid points is used. 

ai &2 

Fig. 4-4 (a) Density profile at t=0.2 using non-MUSCL HLLC solver 
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OM 02 

exact" u 1 ;3 74.600 

Fig. 4-4 (b) Pressure, velocity and temperature profiles at X-Q.2 using non-MUSCL HLLC solver 
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Chapter 4 Results 

In Fig. 4-6 it shows that when a number of grid points of 1200 is used, there is no 

significant change from the details of the shock wave and the contact surface from 

that when N=1000 is used. This implies that 1000 grid points may be enough for 

achieving a grid independent solution. 

However, ever the grid independent solution shows that a certain amount of 

numerical diffusion exists near the contact surface in particular (see Fig. 4-5 (b)). 

As wiU be shown in the next section, implementing a MUSCL slope Umiter 

improves this situation. 

Q 

r 
exact u 1:2 

N=200 
N=400 
N=800 

0.4 0.5 0.6 

Distance 

Fig. 4-5 (a) Density profile using non-MUSCL HLLC solver with variable number of grid points 
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Fig. 4-5 (b) Pressure and velocity profiles using non-MUSCL HLLC solver 

with variable number of grid points 
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Fig. 4-5 (c) Temperature profile using non-MUSCL HLLC solver with variable number of grid points 
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Fig. 4-6 (a) Comparison of density profile using non-MUSCL HLLC solver for N=:800, 1000 and 1200 
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Fig. 4-6 (b) Comparison of pressure and velocity profiles using non-MUSCL HLLC solver 

for N-SOO, 1000 and 1200 
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Fig. 4-6 (c) Comparison of temperature profile using non-MUSCL HLLC solver 

for N=800, 1000 and 1200 

4.1.3 1-D simulation with MUSCL solution 

Fig. 4-7(a) shows that implementing MUSCL extrapolations, where a number of 

k=0.8 is used, gives a significant improvement in resolution. Note that, by 

implementing MUSCL slope Hmiter, the HLLC solver code becomes effectively 

second order accurate in space. Fig. 4-8 shows that a number of grid points of 800 

may be enough in resolution by using this solution. However, in this resolution, 

close examination of the results, where a number of grid points of 200, show that 

there is some little oscillation behavior in the region between the contact surface 

and the shock wave. By contrast, there is no significant oscillatory behavior in 

resolution in the non-MUSCL HLLC scheme shown in Fig. 4-7 (b). 

Comparing the non-MUSCL HLLC scheme with the MUSCL HLLC scheme, the 

details of the contact surface and the shock wave show that the MUSCL HLLC 

scheme gives an apparent improvement in resolution. But, in this solution when a 
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smaller number of grid points is used, it may be important to choose a suitable 

value of k for avoiding some little oscillation. However, when a large number of 

grid points is used, it may be less important to consider a suitable value of k in this 

solution. 

In conclusion, it is suggested that an adequate resolution of the wave phenomena 

in this case is best obtained by combining the HLLC solver with MUSCL slope 

Hmiter with a reasonably large number of grid points. 

(a) 

'exact* u 1 : 2 IWOOWwut MUSCL' 

\ 
'Nm200«Ah MUSCL' 
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1 -

(b) 

• 
' e x a c f u 1:5 

'N=200wi t f io iJ tMUSCL' 'N.200 *Ah MUSCL' 

-

r i 
-

\ 

-

Fig. 4-7 Comparison of density and temperature profiles for N=200 
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Fig. 4-8 (a) Density and pressure profiles using variable number of grid points with MUSCL 
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Fig. 4-8 (b) Velocity and temperature profiles using variable number of grid points with MUSCL 
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4.2 Simple Shock Tube 

4.2.1 Introduction 

This section will discuss wave propagation phenomena in simple shock tube 

without end wall when the high initial pressure ratio {P^lP^) of 1000 is used. The 

grid independent solutions for one-dimensional inviscid and two-dimensional 

axisymmetric viscous cases will be discussed here. The computed heat transfer 

rate compared to Mirels' Theory [26, 27, 30] and the duration of the test time will 

be presented here as well. 

4.2.2 Grid independent solution 

For examining the ability of the non-MUSCL HLLC solver code, a primary 

diaphragm pressure ratio of 1000 is considered to be a harsh test of the 

code. The simple shock tube has an overall length of 5.85 m and an internal 

diameter of 0.038 m, with the primary diaphragm located at x = 2.11 m. Argon is 

considered as driver and test gas initially at room temperature {T^=T^- 3Q0K). 

One-dimensional inviscid simulations were performed with uniformly spaced grid 

points of 1170, 1755 and 2340. The simulations were carried out for times up to 

0.003 sec after the primary diaphragm burst. The results compared to the one-

dimensional analytical solution are shown in Fig. 4-9 and Fig. 4-10. In Fig. 4-10, it 

shows that when N= 2925 is used, there is no significant change from the details of 

the shock wave and the contact surface from that when N= 2340 is used. 

Therefore, N= 2340 may be enough for achieving a grid independent solution for 

one-dimensional case. 

Finally, two-dimensional axisymmetric viscous simulations are also carried out 

here and the results are shown in Fig. 4-11. The three grid used in the simulations 

are uniformly spaced on %-axis and r-axis. It shows that the fine grid (N= 2340 on 

%-axis and N = 70 on r-axis) may be enough for achieving a grid independent 

solution. It also shows that there are some oscillations between the contact surface 

M.Phil. Thesis 47 



and the expansion when the noiddle grid (N= 1755 on %-axis and N= 52 on r-axis) 

and the coarse grid (N= 1170 on %-axis and N= 35 on r-axis) are used. And there is 

no significant oscillation between the contact surface and the expansion when the 

fine grid is used. However, it shows that the numerical diffusion (for the contact 

surface in particular) is worse when comparing Fig. 4-11 with Fig.4-9. Note that 

the 'exact' solution shown in Fig. 4-11 is the inviscid results and there is no 

'exact' solution for the viscous problem. 

The reason to cause some oscillations between the contact surface and the 

expansion may be due to numerical diffusion when a smaller number of grid points 

on r-axis is used. Hence, it implies that it is important to choose a suitable number 

of grid points on r-aMS for avoiding some oscillations caused when the initial 

pressure ratio is high in this case. Note that, due to the non-steady growth 

of the boundary layer from the foot of the shock wave, boundary layer properties 

near the shock wave will not be well reduced no matter how fine the grid. The 

Reynolds number (based on the diameter of the tube and post-shock freestream 

conditions) in the viscous solution is approximately 1.95x10". 

4.2.3 Primary shock speed 

From the details of the inviscid shock wave shown in Fig. 4-9, it shows that the 

shock front positions appear to be incorrect although they have good agreements in 

the expansion pattern and the region between the contact surface and the shock 

wave. It also shows that the more the grid points are given, the closer the shock 

front moves backward to the analytical shock front position. The computed shock 

(IS) speeds with variable number of grid points compared to the analytical shock 

(AS) speed are shown in Table 1. The shock speeds are obtained by the distance 

between two specific locations divided the time difference when the shock arrives 

the two locations respectively. 

A one-dimensional inviscid distance-time wave diagram with grid points of 2340 

compared to the analytical solution is shown in Fig. 4-12. It shows that at the 
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pressure ratio of 1000, there is an initial overestimation of shock speed, 

but the speed of the inviscid shock (IS) decays to the speed of the analytical shock 

(AS) near the end of the shock tube. It shows that the in viscid and analytical 

speeds seem to be quite constant in Fig. 4-12, except near the diaphragm. This 

implies that longer tube length may be required to decay to the analytical shock 

speed when the initial pressure ratio {P^IP^) increases. Petrie-Repar and Jacobs 

[33] explained that the initial overestimation of shock speed when the initial 

pressure ratio {P^IP^) is high is due to numerical diffusion, particularly at the 

contact surface. Sheng et al [40] also described that the smearing of cold and hot 

gas interfaces is caused by numerical diffusion. Numerical diffusion becomes 

greater when the distance that the interface travels increases, especially in a strong 

shock. 

Table 1. Comparison of the one-dimensional inviscid computed shock speeds 
and the analytical shock speed 

^ o W o n ^ 1170 grid points 1755 grid points 2340 grid points 

Initial 
(at 2.50m) 

End 
(at 5.85m) 

898.74 m/s 945.89 m/s 921.18 m/s 917.07 m/s 

898.74 m/s 939.48 m/s 914.11 m/s 910.71 m/s 

Finally, the computed shock speeds of viscous flow with variable number of grid 

points compared to the analytical shock speed are shown in Table 2. It shows that 

the viscous shock (VS) speeds appear to be reduced to be smaller than the 

analytical shock speed due to the viscous effects. Fig. 4-13, a distance-time plot 

for the viscous flow also shows that the contact surface (labelled VCS) appears to 

be accelerated and the shock front is decelerated due to the growth of the boundary 

layer. For the finest grid used, the final shock speed in the viscous case is 

approximately 9.5% slower than in the inviscid case at these conditions. 
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These results obtained with the viscous Gow model appear to be consistent with 

Mirels' theory [30]. A more detailed comparison with this theory will be discussed 

in the next section. 

Table 2. Comparison of the two-dimensional axisymmetric viscous computed shock speeds 
and the analytical shock speed 

Analytical 1170x35 1755x52 2340x70 
solution grid points grid points grid points 

Initial 
(at 2.50m) 

898.74 m/s 939.27 m/s 938.84 m/s 910.47 m/s 

End 
(at 5.85m) 

898.74 m/s 867.17 m/s 839.21 m/s 825.1 m/s 
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Fig. 4-9 (a) Density and pressure profiles of one-dimensional inviscid simulations 
at 0.003 sec for grid independent solutions 
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Fig. 4-9 (b) Velocity and temperature profiles of one-dimensional inviscid simulations 
at 0.003 sec for grid independent solutions 
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Fig. 4-10 Comparison of the density profiles for one-dimensional in viscid simulations 
at 0.003 sec when N=2340 and N=2925 are used 
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Fig. 4-11 (a) Density and pressure profiles of two-dimensional axisymmetric viscous simulations 
at 0.003 sec for grid independent solutions 
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Fig. 4-11 (b) Velocity and temperature profiles of two-dimensional axisymmetric viscous simulations 
at 0.003 sec for grid independent solutions 
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4.2.4 Boundary Layers 

In an ideal in viscid shock tube flow, the primary shock wave and the contact 

surface propagate at contact speeds and the separation distance between them 

increases linearly with distance from the diaphragm as shown in Fig. 4-14 (a). 

However, in a real viscous shock tube flow shown in Fig. 4-14 (b), when the shock 

travels toward the end of the tube, the flow behind the shock and ahead of the 

expansion fan near the wall forms a region of velocity lag due to the viscous 

friction along the wall. The region of the velocity lag is the boundary layer. Fig. 4-

15 shows that the boundary layer can be seen in the two-dimensional axisymmetric 

viscous simulation. 

Hence, the waU boundary layer between the shock wave and the contact surface 

acts as an aerodynamic sink and absorbs mass from this region. This causes the 

contact surface to accelerate and the shock wave to decelerate and reduces the 

separation distance I below the ideal value, as is also shown in Fig. 4-14 (a). The 

results of the numerical modeling appear to illustrate these phenomena, as 

described in the previous section. 

4.2.4.1 Wall heat transfer 

To test the accuracy of the numerical code, the wall heat transfer behind the shock 

at the end is evaluated as a function of time. Mirels' theory [30] for laminar 

boundary layer heat transfer rate is used to compare with the computed heat 

transfer rate. Mirels considered the laminar boundary layer development behind a 

moving shock front. In general, in the shock tube, the development is unsteady in a 

laboratory coordinate system, but is steady in a shock-fixed coordinate system. In 

Fig. 4-14 (b), assume is the shock speed. Therefore, the wall moves with a 

velocity equals to in a shock-Gxed coordinate system. Then the post-

shock freestream velocity ^ laboratory coordinate system can be deAned to 

relate to in a shock-fixed coordinate system by: 
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Fig.4-14 Boundary layer effect on viscous flow in a shock tube 
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Fig. 4-15 Density contours showing the separation distance and boundary layer 
of the viscous shock tube flow 
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(4.3) 

In laminar boundary layer flow the boundary conditions for % > 0 according to a 

shock-fixed coordinate system can be defined as: 

W(%,0) = , 

v(x,0) = 0, 

r(%,0) = ] r , 

(44) 

In the problems considered here, the wall temperature 7^ is assumed to be 

constant. The magnitudes of and depending on the shock strength can be 

defined from the normal shock relations described in Appendix C. The velocity 

profile w(x,);) can be defined to be in terms of a function / ( ; ; ) , where is a 

similarity parameter and uju^ = / ' , where primes denote d/dr] [26]. Since Pr, 

c and p/u are assumed constant, the energy equation may be linear and the 

general solution for the temperature profile may be expressed as the linear 

superposition of the solution for zero heat transfer plus the effect of heat transfer 

by 

r 
^ - 1 

T r ~ 

T e _ 

(4 5) 

with two functions /-(y;) and are expressed, respectively, as 

r" + Pr fr' 
2 f r 

- l ) ' 

r(oo) = r'(o) = 0 

(4.6) 

and 
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+ Pr = 0 

j(o) = 1/ ^̂ (oo) = 0 

(4 7) 

Here, the recovery temperature can be expressed as: 

& 
Z 1 + 

w. 

(0) 
(4.8) 

Then Mirels [27] deduced interpolation formulae from a series of integrations, 

giving an explicit dependence for on u^Ju^ and Pr 

= A o K - T j f -
Fr 

(4.9) 

where 

r(0) = (fr)' a39-0CG3̂  

(4.10) 

04 11) 

and 

'(0) = 0.489Jl + 1 . 6 6 5 ^ f r 
0.48+0.02^ 

(4 12) 

Here, f,, is the time when the shock wave arrives at the measuring station. 

Mirels also noted that the equations should be valid for test gases with 

0.6 < f r < 1.0. Later, Mirels [30] presented correlation formulas for 1 < <(» 

and allowing real gases effects. In these improved correlation formulas, he defined 

the normalized velocity and static enthalpy profiles as: 
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ly -w/w^ 

w - i 

CAopfgr 4 ĝswZfa 

0LI3) 

(4.14) 

where W = and % = A /̂A .̂ Then the heat transfer rate was revised as: 

•G'(0) (4.15) 

where 

P A 
Pe 

(4.16) 

And the improved interpolation formulae for constant ppi give: 

1 + — 
M̂  + 1 

(4.17) 

and 

/ (O) - + 1.285(W - 1 ) + 0.3827(W - 1 ^ p (4.18) 

The correction formulas of Mirels were verified experimentally (with Argon as a 

test gas) by Roberts [34]. The improved wall heat transfer rate with prediction of 

Mirels' theory [30] compared to the computed heat transfer rate at x = 5.85 m is 

shown in Fig. 4-16. It shows that the time of arrival of the primary shock with the 

finest grid is approximately 0.004374 The infinite heat flux predicted by 

Mirels' theory is not predicted by the numerical code. It also shows that the 

agreement between the numerical result with the finest grid and Mirels' theory is 

quite good until t = 0.0062 From Fig. 4-13, the distance-time plot, t = 0.0062 
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sec corresponds to the arrival of the contact surface in this viscous calculation 

(labelled VCS in Fig. 4-16), and it is evidently responsible for the reduction in heat 

flux. The arrival of the contact surface in the inviscid case (labelled ICS in Fig. 4-

16) is shown for comparison purpose only. 
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Mirels Theory 

VCS Arrival 

ICS Arrival 
Computation 

0.004 0.005 0.006 0.007 

Time (sec) 

0.008 0.009 0.01 

Fig. 4-16 Comparison of the heat transfer rate with prediction of Mirels' theory 

and the computed heat transfer rate at x = 5.85 m 

4.2.4.2 Test time 

In the previous section, the separation distance between the shock and the contact 

surface appears to be shorter than the ideal separation distance ( Z ^ ) . Hence, the 

test time, which is the difference in time between the arrival of the shock and the 

arrival of the contact surface at a fixed location, is reduced. Many researchers [8, 

9, 19, 29, 30, 38, 39] have investigated this phenomenon. This quantity will be 

discussed here. 
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For an ideal 'straight-through' shock tube, the analytical solution gives a way to 

calculate the test time of the flow. Assuming the post-shock flow is uniform, the 

test time of the uniform flow at the end location of the tube can be given by 

h " ' (4.19) 

where 

I = L 
U. 

(4.20) 

and L is the tube length between the primary diaphragm and the end of the tube. 

Computed test times of the simulations are shown in Table 3. This shows that the 

computed test time of the viscous flow appears to be shorter than the others and is 

only half of the analytical test time. The reasons causing the shorter test time are 

deceleration of the shock and acceleration of the contact surface due to viscous 

effects. This is consistent with the description of viscous effects provided by 

Mirels [26, 28]. The 1-D inviscid results are also shorter than the analytical 

solution due to numerical diffusion associated with the contact surface. 

Table 3. Comparison of the computed test time and the analytical test time 

Analytical 1-D inviscid 2-D viscous 
solution simulation simulation 

Coarse grid 
(N=1170for 1-D) 

2.21 ms 1.78 MK 1.01 ms 

Middle gird 
(N=1755 for 1-D) 

2.21 /Mj 1.86 ms 1.07 ms 

Fine grid 
(N=2340 for 1-D) 

2.21 m.; 1.90 ms lAO ms 
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4.3 Shock Tube with End Wall 

This section will discuss the tailored interface technique used widely in shock tube 

research because of the possibility to achieve longer test time. Some researchers 

[7, 16, 19, 23, 49] have carried out some important studies of the tailored interface 

technique. 

In Fig. 4-17 an ideal procedure scheme of the reflected shock tube is shown. 

Davies [7] has given a clear description of the tailored interface technique. The 

region 5 behind the reflected shock is used for studying high temperature chemical 

reaction phenomena [12, 13] or providing a hot test gas reservoir for expansion to 

hypervelocity in a nozzle of a reflected shock tunnel. The test time is usually 

limited by disturbances originating from the interaction of the reflected shock with 

the contact surface. When the reflected shock travels back to interact with the 

contact surface, the shock passing through the contact surface gives rise to either 

an expansion wave or a shock wave as the reflected disturbance that travels from 

the point of interaction towards the end wall as shown in Fig. 4-18 (a) and Fig. 4-

18 (b). They are known as "under-tailored" and "over-tailored", respectively. 

With tailored condition, the contact surface is ideally brought to rest and only an 

infinitely weak disturbance (a Mach wave) is propagated toward the end wall 

shown in Fig. 4-18 (c). As will be demonstrated later, this condition corresponds 

to a situation where the same speed in the shock-heated test gas matches that in 

the expanded driver gas, i.e. the same speed ratio across the contact surface 

(ag/Og) is unity. This condition is achieved by appropriate adjustments of the 

driver/driven gas temperatures and pressures. Even though these ideal conditions 

are rarely achieved in practice, operation at near tailored-interface condition can 

greatly extend the useful run time of reflected shock facilities. 

4.3.1 Analysis of Tailoring Conditions 

For achieving the performance of the tailored condition, the analysis suggests that 

the Arst reflected disturbance (Mach wave) propagated from the contact surface is 

weak enough to be tailored in a specific range of Mach number of the primary 
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(b) Over-tailored condition 
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Fig. 4-18 (b) and (c) Wave diagrams and pressure profiles for over-tailored and tailored conditions 
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shock. Therefore, the strength of the reflected shock is equal to the strength of the 

transmitted shock, so that the Mach number behind the primary shock is equal to 

the Mach number behind the contact surface. 

Since the velocities on the two sides of the contact surface are equal, then the 

speeds of sound on the two sides of the contact surface must also be equal for this 

condition to be satisfied. A theoretical analysis of tailoring conditions is given by 

Holder and Schultz [19] below. 

Assume , the relationship between the pressure ratio 7̂ ^ across the primary 

shock and the initial pressure ratio across the diaphragm can be expressed as; 

p.-, = Pn 
14 (4.19) 

, y + 1 a 1 
where = , p = ^ and &, = — 

y - 1 2;̂  a, 

The Mach number of the primary shock related to can be 

expressed as: 

M ^ — -yf^ial^y+Tj (4.20) 

The speed of sound in the region of the gas behind the shock can be given by 

2̂ 
& ( & +Gr) 

+1 
(4.21) 

The speed of sound behind the contact surface can be given by 
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3̂ - (̂ 4 
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04.22) 

Finally, the speed of sound ratio across the contact surface can be given by 

combining equations (4.21) and (4.22) as 

a 32 - 4̂1 (̂ 4-̂ 21 Y 
6KP2I +1 

.&(&+*) J 
04.23) 

The values of calculated from equation (4.23) by varying the value of are 

shown in Fig. 4-19 in terms of , calculated by equations (4.19) and (4.20). The 

pressure ratio in terms of is also shown in Fig. 4-20. The results suggest 

that it is necessary to increase the temperature of driver gas for achieving the 

under-tailored and tailored conditions, and that it is not possible to achieve 

tailored conditions when except for the trivial case when = 1. 

T4=300K'u 1:3 
T4=600 K' u 1:3 

T4=1200 K'u1:3 
T4=1800 K'u 1:3 
T4=2400 K'u 1:3 

Ar/Ar. T1=300 K 

2 2.5 3 

Maoh Number, Ms 

Fig. 4-19 Values of in terms of M ^ 
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4.3.2 Numerical Simulations 

From the analysis above, the values of and in terms of for - 1 can 

be found in Table 4. For simplicity, the value of is considered to be 4 

(a^j = 2 = and = 21.4 is chosen to run the tailored inviscid simulations 

for Mg = 2.24 shown in Fig. 4-21 and Fig. 4-22. And = 10 and 50 are chosen 

to be the conditions of the under-tailored and over-tailored cases for < 2.24 

and > 2.24, respectively. For comparison with the tailored inviscid 

simulations, a tailored viscous simulation is suggested to run with the same 

tailored condition shown in Fig. 4-27. The computations were performed by the 

HLLC Riemann solver without MUSCL slope Umiter. The number of uniformly 
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spaced grid points used in all the simulations is N = 2340 on jc-axis and N = 70 on 

r-axis. 

Table 4. The values of 7^, and in terms of M ^ for = 1 

7; = 300 7 ; - 6 0 0 i [ 7; =1200^ 7̂  = 1800^ 7^=2400^ 

1.00 1.48 2.24 2.83 3.32 

4̂1 1.00 5.29 21.4 41.77 63.68 

4.3.2.1 Inviscid Flow Cases 

Fig. 4-21 shows that reflected shock (RS) passes through inviscid contact surface 

(ICS) to become a transmitted shock (TS) without any significant change in speed 

when = 2.24. The transmitted shock is later accelerated by arrival of reflected 

expansion (RE) from the end wall of driver chamber. It also shows that reflected 

disturbance (RD) is weak although it appears to be finite. In Fig. 4-22, the 

computed pressure at three different locations appears to be equal after the 

reflected shock passes through the contact surface and reflected disturbance is 

very weak. It also shows that the available constant pressure test time is 

approximately 4 ms at the end wall. There are no equivalent experimental data for 

this condition. However, it is fairly typical for reflected shock tunnels when 

operating close to tailored-interface conditions, to have run durations of the order 

of a few milliseconds (see Roberts' Ph. D. Thesis [34]). 

In Fig. 4-23, it is seen that the expansion wave is reflected from the contact 

surface (ICS) after the reflected shock (RS) passes through when < 2.24, but 

the contact surface is reversed as described in Fig. 4-18 (a) by Davies [7]. After 

the first reflected expansion (RE), the reflected disturbance (RD) can be weak, so 

that the pressure may be close to the equilibrium pressure. In Fig. 4-24, the 

computed pressure at x = 5.25 m appears to be constant for approximately 1 ms 

after the reflected shock arrives. It is because the speed of sound increase at the 

contact surface, , the Mach number of the shock reduces when it passes 
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the contact surface, hence, the reflected expansion wave is brought to restore the 

pressure equality. 

In Fig. 4-25, for > 2.24, the contact surface (ICS) appears to continue to 

travel slowly toward the end-wall, as described in Fig. 4-18 (b) by Davies [7] 

when the secondary reflected shock (SRS) wave is reflected from the contact 

surface. The first transmitted shock (FTS) wave shown in Fig. 4-25 is slower than 

the reflected shock (RS). In Fig. 4-26, the computed pressure at x = 5.25 m shows 

that after the reflected shock wave, the reflected disturbances (RD) are also shocks 

and will be reflected from the contact surface at a later stage. Later, the third 

reflected shock (TRS) wave is reflected from the end wall and is strong enough to 

passes through the contact surface, then secondary transniitted shock (STS) is 

formed. At later stages, the further reflected shocks are not strong enough to pass 

through the contact surface and the pressure may be brought to be close to the 

equilibrium pressure. 
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Fig. 4-23 Wave diagram of the density profile for the under-tailored condition 
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4.3.2.2 Viscous Flow Cases 

A viscous simulation has also been carried out for comparing to the in viscid 

simulation for the tailored condition. The wall temperatures of both chambers are 

at 300 K and are isothermal. The results of distance-time wave diagram and 

computed pressure at three different positions along central line are shown in Fig. 

4-27 (a) and Fig. 4-27 (b), respectively. Fig. 4-27 (a) shows that the viscous shock 

(VS) propagates toward the end wall of the tube at the initial shock speed of 

710.88 m/s, and the shock speed later decays to 552.40 m/s at the end. It also 

appears to be slower 23.5% than the shock speed of the in viscid flow. Then, the 

reflected shock (RS) is reflected from the end wall to pass through the viscous 

contact surface (VCS) to become a transmitted shock (TS) without any significant 

change in speed. Compared with the inviscid case (Fig. 4-21), the reflected 

disturbance (RD) is smeared out. This is also apparent in the pressure variation 

with time illustrated in Fig. 4-27 (b). Fig. 4-27 (a) shows that the available 

constant pressure test time is approximately 1.60 at x = 5.50 m. This compares 

with 4 ms of test time in the inviscid case. However, Fig. 4-27 (a) shows that there 

is an odd feature in the expansion pattern. It is suspected that there may be 

transverse waves occurring in the driver chamber due to the large temperature 

difference between the hot driver gas and the cold wall. This phenomenon is 

investigated further below. 

4.3.3 The Acoustic Wave Propagation Phenomenon 

Fig. 4-28 shows that a large pressure loss and some oscillation behaviours occur 

ahead of the arrival of the expansion wave in the driver chamber. Hence, another 

simulation using Helium as driver and driven gas is also carried out with the same 

pressure ratio and the result is shown in Fig. 4-29. In comparison with the 

previous results, the result appears to have larger pressure loss and oscillation 

behaviours due to the higher specific gas constant of Helium. It implies that 

transverse waves may exist when the temperature difference between the gas and 
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the wall is large. Hence, it is necessary to clarify the influence of the temperature 

difference in the driver chamber. 
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Fig. 4-27(a) Wave diagram of the viscous density profile for the tailored condition 
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Fig. 4-27 (b) Computed pressure at three positions for the tailored condition 
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Fig. 4-29 Computed pressure versus time for Helium using the same tailored condition 
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From the previous simulations, it may be explained that in the driver chamber 

some heat of the hot gas transferred into the cold wall causes the pressure near the 

waU to decrease. The interaction between heat transfer and pressure loss causes 

transverse waves to propagate from the side of the wall to the centre, even 

propagate across to the other side of the wall, then reflect to the side of the wall 

shown schematically in Fig. 4-30. 
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Fig. 4-30 Schematic diagram of heat transfer and transverse wave in the driver chamber 

A simulation with double the diameter (D = 0.076 m) using the same tailored 

condition was carried out and the result are shown in Fig. 4-31. These indicate a 

smaller pressure loss and lower frequency of transverse wave propagation there 

compared with these shown in Fig. 4-28. 

A closer look of the results obtained in Fig. 4-28 was carried out, for 

0 < f < 0.0002 shown in Fig. 4-32. This indicates that the pressure at the 

centre line remains constant for approximately 24 before decreasing and 

becoming oscillatory in nature. The period of the subsequent oscillation is 
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approximately 55 //^ygc. This may be compared with the time taken for an 

acoustic wave to propagate in the gas across the tube, given by: 

r r 
t = — = I (4.23) 

where F is the internal diameter and is the speed of sound of the gas. Using 

equation (4.23) a period of 58.8 /Usee for F = 0.038 m and argon driver gas at 

= 1200 K is estimated. This very close to the period observed. 

In Fig. 4-33 (a), the results show that the computed pressure is measured at the 

radius of 0.0063 m ( ? ; = l / 3 r , r = 0.019 m) i.e. close to central line. The computed 

pressure appears to keep constant for only 16 ^ s e c . In the meanwhile, the 

computed pressure measured at the radius of 0.0126 m = 2/3 r , r = 0.019 m) 

i.e. close to the wall shown in Fig. 4-33 (b) appears to keep constant for 8 . 

Since the period of initial constant pressure is shorted near the wall, this supports 

the view that the disturbance originates at the wall and propagates transversely at 

approximately this acoustic speed. 

In the last analysis shown in Fig. 4-34, it shows that the contours of the velocity of 

y vector are plotted from 0 ji sec to 48 // sec . It shows that there are transverse 

waves propagating from the side of the wall to central line. It also shows that there 

is a velocity peak at x = 2.11 m due to the large temperature difference between 

the driver and driven gases. Hence, it may prove that the transverse waves do exist 

when there is the temperature difference between the gas and the wall in the driver 

chamber. 

Since the previous analysis shows that the transverse waves exist due to the 

temperature difference, it is necessary to have a look at the influence of the 

temperature difference on the quality of the driver gas. So that two further analysis 

which the driver gas is at the temperature of 600 K and 2400 K are also carried 
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out with the same pressure ratio 7̂ , = 2 1 . 4 shown in Table 4. The results are 

shown in Fig. 4-35 and Fig. 4-36. 

In Fig. 4-35 (a), it shows that the computed pressure at 600 K appears to have 

some larger oscillation behaviors and loss approximate 9.4% of the initial pressure 

at X = 1.0 m. In Fig. 4-35 (b), it also shows that the computed pressure at 2400 K 

appears to have some small oscillation behaviors and loss approximate 31% of its 

initial pressure at x = 1.0 m. In contrast, the computed pressure at 1200 K appears 

to have some middle level of oscillation behaviors and loss approximate 17.5% of 

the initial pressure at x = 1.0 m ( = 21400 Pa at 1200 K). 

Fig. 4-36 shows that the computed pressure at central line with a time range of 

200 jisec keep constant for approximate 33 jlsec at 600 K and 17 jisec at 2400 

K, respectively, suggesting that the disturbance wave speed is higher at the higher 

temperature. The calculations for the period of transverse wave propagation are 

83.3 jisec at 600 K and 41.7 fAsec at 2400 K. However, the results indicate that 

the period is 76 jisec at 600 K and 38 ^isec at 2400 K. 

Fig. 4-36 shows that the period of oscillation is approximately proportional to 

and further supports the hypothesis that a transverse wave propagates at 

approximate acoustic speed. 

Fig. 4-37 also shows the computed pressure versus time with three temperatures at 

two locations of x = 0.0 m and x = 1.0 m for comparison. It appears that the 

duration for pressure loss decreases as the temperature of driver gas increases. 

In short, all the evidence obtained suggests that the transverse wave propagation 

exists in the driver chamber due to heat transfer effect. The influence of the 

temperature difference may be necessary to consider taking into account for 

avoiding larger pressure loss and oscillation behaviors. 

Although the hot driver gas/cool wall situation has been created artiGcially to 

investigate tailored interface operation, the results obtained (showing the 
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propagation of transverse waves) may be applicable and important in experiments 

facilities where the driver gas is heated impulsively (e.g. detonation-driven shock 

tubes) [52]. 
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Chapter 4 Results 
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Fig. 4-31 Computed pressure versus time for Argon with double diameter 
using the same tailored condition at x = 0.0 m,x = 0.\m and x = 1.0 m 
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Fig. 4-32 Computed pressure versus time for Argon at 1200 K along central line 
at X = 0.0 m, X = 0.1 m and x = 1.0 m 
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Fig. 4-33 (a) Computed pressure versus time for Argon at 1200 K at the radius of 0.0063 m 
at X = 0.0 m , X = 0.1 m and x = 1.0 m 
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Fig. 4-33 (b) Computed pressure versus time for Argon at 1200 K at the radius of 0.00126 m 
at X = 0.0 m,x = 0.1 m and x = 1.0 m 
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Fig. 4-35 (a) Computed pressure versus time for Argon using = 21.4 at 600 K 

at X = 0.0 m, X = 0.1 m and x = 1.0 m 
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Fig. 4-35 (b) Computed pressure versus time for Argon using P^^ = 21.4 at 2400 K 

at X = 0.0 m, X = 0.1 m and x - 1.0 m 
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Fig. 4-36 (a) Computed pressure versus time for Argon at 600 K along central line 
at X = 0.0 m, X = 0.1 m and x = 1.0 m 
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Fig. 4-36 (b) Computed pressure versus time for Argon at 2400 K along central line 
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Fig. 4-37 (b) Computed pressure versus time for Argon at x = 1.0 m with three variable 
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4.4 Expansion Tube Simulation 

4.4.1 Introduction 

A unique feature of the expansion tube which was proposed by Trimpi [45] among 

different types of pulse facilities including the HYPULSE expansion tube [48, 50] 

is that it theoretically avoids stagnating the flow within the facility and avoids any 

excitation and dissociation of the test gas. Hence, in principle, a better simulation 

of the free stream condition can be achieved using the experiment facilities, e.g. a 

reflected shock tunnel [31]. 

As in the previous facilities, it is also a useful device for achieving higher total 

pressure, and enthalpy test conditions than can be provided using other types of 

ground testing facilities, and for investigating hypersonic flow phenomena. It 

consists essentially of a single tube divided into three sections by diaphragms as 

foUows; a driver, a driven section (containing the test gas), and an acceleration 

section. Fig. 4-38, which is a schematic diagram of the classic expansion tube 

described by Trimpi [45], shows the components and ideal operating sequence 

represented by the distance-time {x-t) diagram. 

Time 

t =t. 

r — 

Unsteady 

Contact Surface 

% 
Unsteady 

Contact Surface Expansion 

Secondary shock 

Primary Shock 

Driver 
Section ^ 

Acceleration 
Section 

Driven 
Section 

Primary 
Diaphragm 

Secondary 
Diaphragm Distance 

Fig. 4-38; Schematic diagram of expansion tube cycle. Numbers identify flow 
regions as defined by Trimpi [45]. (Not to scale) 
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4.4.2 Principle of Operation 

In order to clarify the assumptions made in the numerical simulations, a brief 

explanation of the operation of the expansion tube is given here. As in the previous 

facilities, the operation begins by rupturing the primary diaphragm at time f = 0, a 

primary shock wave travels into the test gas, compressing it, and an expansion 

wave propagates into the driver gas at the same time, as illustrated in Fig. 4-38. 

The numbering of the flow states in the figure corresponds to the defined by 

Trimpi [45] as follows: 

1: Quiescent test gas. 

2: Test gas behind incident shock in driven section. 

3: Driver gas following unsteady expansion. 

4: Initial driver gas. 

5: Test gas in acceleration section (free stream). 

10: Quiescent acceleration gas. 

20: Acceleration gas behind incident shock in acceleration section. 

On reaching the end of the driven tube, the primary shock ruptures the secondary 

diaphragm. This creates a secondary incident shock and a second expansion both 

of which travel down the acceleration tube, while an another expansion wave 

moves into the test gas. This expansion wave is washed downstream, since the gas 

in region 2 is moving at higher speeds. Test time can start with the arrival of the 

test gas/accelerating gas contact discontinuity at the model and ends with the 

arrival of the expansion wave. The state of the gas in region 5 determines the test 

conditions. The velocities obtained in the test gas of region 5 can be very high 

( > 1 0 ^ / ; ^ ) [31]. Test times in expansion tubes are typically tens to hundreds of 

microseconds long [11, 20]. In this ideal operating sequence, no stagnation regions 

are created and there are no high ten^ra tures to dissociate the test gas. 

4.4.3 Previous Research 

Some researchers [20, 48, 50] have previously carried out computational 

simulations of expansion tube flow fields. Their goal was to investigate the flow 
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without explosive mixtures inside the expansion tube facility. Their calculations 

were restricted to the time interval 0 < f (See Fig. 4-38). Similarly, the focus 

of the present work is to have a look at the flow Geld and interaction among 

expansion wave, shock wave, interface and the boundary layer. Hence, the 

simulations were carried out for the same duration. These previous investigations, 

which were carried out by Sod [41] and Yee [51], were generally for relatively low 

pressure ratios across the diaphragm (ratios less than 10). Initial pressure ratios in 

a hypersonic pulse facility may be over 10000 in which case it has been found that 

special condition must be used [50]. 

4.4.4 Numerical Simulations 

In this present work, the expansion tube facility used to carry out some simulations 

is a double-diaphragm shock tube which has an overall length of x = 7.11 m and an 

internal diameter of 0.038 m, with the primary diaphragm located at x = 2.11 m 

and the secondary diaphragm located at % = 5.85 m shown in Fig. 4-39. The 

dimensions were chosen to match the XI expansion tube facility of the University 

of Queensland [35]. The numerical simulations of the expansion tube were carried 

out by using the HLLC Riemann solver without MUSCL slope limiter. Illustrated 

is a distance-time plotting of the one-dimensional inviscid simulation for a primary 

diaphragm pressure ratio (P^/Pj ) of 1000 and a secondary diaphragm pressure 

ratio (Pj /Pjo ) of 1, with all driver, driven and test gases initially at room 

temperature (7^ =7] =7],, =300 K). An overall 2844 uniformly spaced grid (N = 

2844x70 for two-dimensional axisymmetric viscous simulations) was utilized in 

the simulations. Both two diaphragms are assumed to be removed instantaneously. 

The results of a simulation carried out for Pj/P,q = 10 will also be given here for 

comparison with the results when Pj /Pjg = 1 is used. 

The simulations for two-dimensional axisymmetric viscous flows are also carried 

out for Pj/Pio = 1 and P]/P,o = 10. And the results will be discussed later. The 
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density contour figures are plotted within a specific range excluding the expansion 

region to illustrate more clearly the wave propagation phenomena in the test gas. 

4.4.4.1 One-dimensional Simulations 

In Fig. 4-39, the simulation with PJP^q = 1 was performed for non-dimensional 

secondary diaphragm rupture time (t^) = 0.0658 corresponding to burst delay time 

of approximately 25 . The plotting shows that the interaction of the primary 

shock (PS) and the secondary diaphragm causes a reflected shock (RS) to form 

then propagate back to the driven chamber. As the secondary diaphragm has been 

burst, the secondary shock (SS) is propagated into the test gas, and a secondary 

expansion (SE) is also formed followed. A secondary contact surface (SCS), which 

separates the shock heated test gas from the expanded test gas, is also formed. 

These features shown in Fig. 4-39 are similar to those shown in some 

investigations [20, 21, 48]. Later, the reflected shock upstream interacts with the 

primary contact surface (PCS) to cause the reflected shock to be propagated 

downstream. In the meanwhile, due to the over-tailored conditions which exist, the 

interaction of the reflected shock with the contact surface causes another shock 

wave- termed the disturbance shock (DS) to be propagated into the test gas. Fig. 4-

40 shows that the disturbance shock is very weak. The disturbance shock passes 

through the secondary expansion and travels into the test gas at a higher speed 

(^Ds - 1175.52 m/s) as it follows behind the secondary shock (U^^= 924.43 m/s). 

Then, the secondary expansion interacts with the primary contact surface to cause 

the reflected expansion (RE) to propagate closely behind the disturbance shock. 

The test time starts from the arrival of the secondary contact surface till the arrival 

of the disturbance shock. It is only 0.55 ms long for the test gas with good quality. 

Fig. 4-41 shows that the simulation is carried out for PJPiq = 10 with the same 

burst delay time of approximately 25 //y. After the secondary diaphragm is burst, 

a secondary shock (SS) propagates into the test gas at a higher shock speed of 

1452.81 TTiA and a secondary contact surface (SCS) is formed to propagate at a 

speed of 1033.14 mA behind the secondary shock. A secondary expansion (SE) is 

also formed to propagate into the test gas behind the secondary contact surface. 
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The reflected shock (RS) interacts with the primary contact surface (PCS) to cause 

the reflected shock to be propagated downstream into the test gas and a reflected 

expansion (RE) is formed to propagate behind the secondary expansion. However, 

a feature of disturbance shock shown in Fig. 4-39 is not seen in Fig. 4-41 because 

the region between the secondary expansion and the reflected expansion is 

smeared out and the resulting disturbances are very weak. Because of this, the test 

time starts from the arrival of the secondary contact surface and lasts until the 

arrival of the secondary expansion. It is 0.9 ms for the test gas with good quality. It 

is longer than the test time calculated for PJP^q= 1. Fig. 4-42 shows that the 

disturbance shock (DS) becomes stronger as the secondary expansion (SE) travels 

into the test gas. 

4.4.4.2 Two-dimensional Axisymmetric Viscous Simulations 

In comparison with the results of one-dimensional inviscid flow, the simulations of 

two-dimensional axisymmetric viscous flow have been carried for PJPiq - 1 and 

Pj/PjQ = 10. Fig. 4-43 shows that the details of the boundary layer can be observed 

in the simulations of the expansion tube for PjPio = 1 and 10 at 0.005 sec. 

First, Fig. 4-44 shows a distance-time plotting of the viscous flow carried out with 

Pj/Pjo = 1, and it shows that a disturbance shock (DS) shown in Fig.4-39 are not 

shown in Fig. 4-44 because it is very weak and smeared out. And the detail of a 

secondary contact surface (SCS) is not very clear that can be observed in Fig. 4-43 

(a). After the secondary diaphragm has been burst, the secondary shock (SS) 

propagates into the test gas at the speed of 820.4 m/s, which is slower than its 

primary shock speed. Fig. 4-45 shows a computed pressure-time plotting and it 

shows that the reflected shock (RS) downstream of the secondary diaphragm is 

very weak and it appears to be smeared out with the primary expansion (PE). 

However, the available test time is only approximately 0.1 for the test gas with 

good quality. 
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Finally, a distance-time plotting performed for 10 and its computed 

pressure-time plotting are shown in Fig. 4-46 and Fig. 4-47, respectively. Fig. 4-46 

shows that the secondary shock (SS) propagates into the test gas at the speed of 

1400.1 m/s initially as the secondary diaphragm has been burst, then the shock 

speed decays to 1195.22 m/y later due to the viscous effects. It also shows that the 

secondary contact surface (SCS) propagates into the test gas at the constant speed 

of 1221.72 m/s behind the secondary shock (SS). The disturbance shock (DS) 

shown in Fig.4-47 appears to smear out with the reflected shock (RS) that can be 

seen in Fig. 4-43 (b) and the reflected shock travels into the test gas slower than 

that shown in Fig. 4-41. However, the test time for the test gas with good quality is 

approximately 0.3 ms. 

4.4.5 Discussions 

The simulations have been carried out to investigate the details of wave 

propagation of the primary shock interaction with the secondary diaphragm and 

the interaction between the reflected shock and the secondary expansion on the 

quality and duration of the test gas. It also shows that the pressure ratio of the 

secondary diaphragm may have an influence on the duration of the test gas 

with good quality [35, 36]. It appears that the test times obtained from the viscous 

simulations are much shorter than those of the inviscid simulations due to the 

viscous effects and numerical diffusions. 

However, the situation where Pj /Fjo = 1 is not valid for a real expansion tube flow 

(since the shock would not accelerate). It was used by Roberts et al [35, 36] to 

investigate shock-diaphragm interaction phenomena under specific conditions. 
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Chapter 5 

Conclusions and Further Work 

The work presented in this thesis concerns the numerical simulations of one-

dimensional inviscid and two-dimensional axisymmetric viscous shock and 

expansion flow problems with perfect gas considered. The prediction of wall heat 

transfer rate and the wave phenomena of shock tube with variable tailoring 

conditions have been given. 

The numerical scheme using HLLC Riemami solver has been investigated to 

determine their suitability for the variable pressure ratios across the primary and 

secondary diaphragms. In this respect, the HLLC solver showed that it may be the 

most appropriate approximate Riemann solver for low pressure ratio (e.g.: 

7^ /^=10) with a reasonable number of grid points. However, the solver suffers 

quite severe numerical diffusions and inaccuracy when the pressure ratio / Pj is 

larger, in particular in higher speed and higher temperature gas. It was also found 

that it is possible to reduce numerical diffusions when more grid points are given. 

However, it may cost more in the computing time. 

From the simulations, simple shock tube flows show good agreements with 

analytical theory, although indicate that numerical diffusion may be severe 

particularly near the contact surface. Viscous phenomena in simple shock tube 

flows show the expected trends of reduced test times due to primary shock 

deceleration and contact surface acceleration. Good agreement with the heat 
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transfer theory of Mirels was obtained. Examples of tailored-interface conditions, 

under-tailored and over-tailored conditions, were computed for reflected shock 

tube flows. The phenomena observed were consistent to those expected from 

analytical theory. Again, viscous flow effects were observed to reduce the total test 

time available. During the investigation, the influence of loss of energy from a 

heated driver gas appeared to produce a set of transverse pressure waves in the 

driver chamber propagating at the local acoustic speed. A study of expansion tube 

flows was conducted, in which the rupture of the secondary diaphragm was 

delayed. This resulted in complex wave interaction phenomena, the net result of 

which was to reduce the test time. 

Further work may be addressed to obtain appropriate solutions with higher number 

of grid points and high order schemes for increasing accuracy. Contact surface 

tracking and moving grid may be considered to be used when it is necessary. The 

gradual opening diaphragm process may be an important key to mimic the real 

conditions. The computational requirements of the shock and expansion tube 

problem will cost more, the approximate Riemann solver technique should be 

adapted in order to improve in computing speed and accuracy. 

Also, it is necessary to achieve more appropriate solutions and more accurate 

results for the shock and expansion tube problems involving higher pressure ratio 

across diaphragm, higher shock speed and higher temperature flow. 
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Appendix A 

Non-dimensionalisation 

To achieve the flow behaviors with minimum computational (or experimental) 

effort, it is necessary to transform all the parameters into non-dimensional 

variables, for example, density and free stream velocity. It is known that two 

flows are dynamically similar when the non-dimensional variables have the same 

value. Hence, the best way to identity the certain non-dimensional variables is to 

non-dimensionalise the quantities used for the governing equation as following: 

Density: p* = 

Pressure: F* = 
P 

2 

Velocity: u = , v = — 

* r 
Temperature: 7* = — 

Energy: E* 
2 

c c 
Special heats: ^ * 

Time: 

T * X * r 

Length: x =—, r = — 

Viscosity: 
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Where /)_, [ /_, 7^ and //_ are free-stream reference values, and 1 is a 

characteristic length such as the hydraulic diameter for 2-D axisymmetric flow 

simulations. 
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Appendix B 

Analytical Solution of 

the Riemann Problem 

To find the analytical solution of the Riemann Problem, consider three states: the 

shock, the contact surface and the expansion fan. Consider the Hugoniot relation 

[2, 22], the state of the shock can be given by 

^2^ _ ^ M + i (B-l) 

i - 1 

5' = Ml . (B-3) 

Then, the state of the contact surface can be given by 

2̂ - W), (B-4) 

^2 = ^ (B-5) 

Finally, the state of the expansion fan can be given by 

= 1̂ —+ , (B-6) 
x + i w 2 ; 
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a(%/) = w(x,^)-
% 

r y + l 

X y - 1 2 r ; 
+ -I f 2 M4 +^4 

X 

t 

f = 
/ \2y/(y-i) 

a 

(B-7) 

(B-8) 
v^4 y 

Then, consider the simple wave condition u + 2a/{Y + l)= constant, the relation 

of the expansion fan can be given by 

2a. 2a. 
M-, H — M. H 

x - l ^ - 1 
(B-9) 

Combining Equations (B-8) and (B-9) gives 

Mg = + 
2a, 

r-1 p 
(B-10) 

And combining Equations (B-4), (B-5) and (B-9) gives 

^2 — ^4 
2a, 

y - 1 
(B-l l ) 

Therefore, solving the Equations (B-2) and (B-l l ) can give 

1 + 
y-l 

2a, 

a 
W4 - W; 

A 
1 f, 

-2y/(y-i) 

(B-12) 
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Appendix C 

Shock Relations 

In the Mirels' works [27], for convenience, some normal shock relations are re-

written as: 

^ W W W W W W W 

In the shock-fixed coordinate system, the flow may be assumed to be steady. 

Then, assume that subscript "s" designates the undisturbed flow in front of the 

shock; and subscript "e" designates the flow behind the shock and external to the 

boundary layer. Here, = u j a ^ . 

4M. 

2 + ( y - l ) M / M / + 3 
for Y = 1.667 (CM) 

M . = 
4 ^ - 1 

for Y = 1-667 (C-2) 

7 ; _ _ 4 ^ - 1 
for y = 1.667 (C-3) 
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