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Non-linear realisations of the groups SU(2) and SO(1.4) are analysed, described
by the coset spaces SU(2)/U(1) and SO(1.4)/SO(1,3). The analysis consists of
determining the transformation properties of the Goldstone bosons, constructing
the most general possible Lagrangian for the realisations and finding the metric of
the coset space. The Lie algebras of special unitary groups are studied and their
projection operators are determined, leading to a general method for construct-
ing the Lagrangian for a non-linear realisation of a special unitary group. The
Lie algebra of SU(4) is looked at in depth and its homomorphism with SO(6)
allows a full specification of the most general Lagrangian for the coset space

SO(6)/S0O(4):50(2).
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Preface

Original work starts at the very end of Chapter 4. The contents of Chapter 5
have been presented by me in an internal group seminar but never published. The
majority of the work in the sections of Chapter 6 concerning SU(4) and SO(6) is
original and has been accepted for publication to the Journal of Physics A as a
paper entitled “How orbits of SU(N) can describe rotations in SO(6)" , (authors
I\ J Barnes, J Hamilton-Charlton and T R Lawrence) as well as being presented

by me in an internal group seminar. Likewise, the work presented in Chapters 7,

8 and 9 is original (except where otherwise stated).
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Chapter 1

Introduction

The importance of Lie group symmetries in particle physics has long been under-
stood, with Wigner's classification of the unitary representations of the Poincaré
group underpinning much of modern particle physics[l] and a local U(1) sym-
metry motivating the introduction of the electromagnetic gauge field described
by quantum electrodynamics. The idea of introducing a gauge field to in order
to maintain a local symmetry was extended to the (non-Abelian) isotopic spin
group in 1955 [2] and in the following vear to the Poincaré group [3]. where it

was shown to be the gravitational field as described by general relativity.

The roots of the research presented in this thesis, however. lie in the 1960s. in
two topics which were studied in such different ways that it was not proved until
after nearly a decade of research that they were two sides of the same coin. In-
terestingly, these were both initiated largely by papers submitted for publication
in Nuovo Cimento in 1960. Goldstone’s paper [4] looked at the possible inter-
pretations of a situation in which a Lagrangian contains a scalar field or scalar
multiplet with an imaginary mass. If such a Lagrangian has a discrete symmetry,

the minima of the potential part of this Lagrangian must be discrete. whereas if



it has a continuous symmetry the potential has a continuous set of degenerate

minima. For example, the Lagrangian

@(b“ OG)“ 5 /\0 5
L=———"——y"¢"0" — —(¢"0")* 1.1
da, D e 6 (¢°¢") (1.1)

is invariant under an O(2) transformation of the doublet ¢* and with p? negative,

the potential looks like:

2
@

Figure 1.1: O(2) invariant potential with degenerate minima

To obtain physical fields. one must redefine the scalar fields such that one of the
minima represents the vacuum state of the system - picking a minimum in this
way breaks the symmetry (or at least part of it). Furthermore, following the field
redefinition, some of the fields are massless (a flavour of why this occurs is given

in Section 2.3).

This paper was followed by another [5] in which these conclusions were restated
in a more general form: whenever a Lagrangian is invariant under a continuous
symmetry group but its vacuum is not, there will be spinless fields of zero mass
present. These are known as Goldstone bosons. It was shown that this theorem
is generally valid for global symmetries in Lorentz covariant theories [3, 6]; the

extension of Goldstone’s method of symmetry breaking to the case of a gauged

SV



symmetry is the famous Higgs mechanism [7]. All of these papers were concerned
with a way of going from a Lagrangian which is explicitly invariant under a given
group of symmetries to a vacuum which is not invariant under all of them (though

it may be invariant under a subgroup of these symmetries), which can be applied

regardless of the particular group chosen.

Gell-Mann and Lévy’s paper [8], by contrast, was classic phenomenology, con-
cerning pion decays in a system of pions and nucleons. In such a system, the
current which transforms neutron into proton could be split up into a vector part
and an axial part. This paper described and considered three different models in
which the axial vector current satisfied a certain condition, which it was shown
led to a particular form for the decay rate which agreed with experiment (or

would do if an unknown form factor behaved as expected).

In the second of these models, the nucleons transform as a representation of SO(4)
but the pions only transform as a representation of its SO(3) (vector) subgroup.
(We will look more closely at what this means in Chapter 2.) A fourth scalar
(meson) field called ¢’ is introduced; under the remaining - axial - part of SO(4),
7 and ¢’ transform into each other, that is to say the pions and the o’ together

form a multiplet of SO(4).

In the third model the ¢’ field is eliminated from the Lagrangian by constraining

the modulus (the ‘length’) of this field:

where ("' 1s a constant. so that

(1.3)

Wherever ¢’ previously appeared in the Lagrangian, then, it is now replaced



by this non-linear function of w. This model therefore became known as the

‘non-linear sigma model’.

This idea of involving a scalar field non-linearly in the Lagrangian so that the

full symmetries of the system (typically those of the *chiral groups’ SU(2)@5U(2)
~S50(4) or SU(3)2SU(3)) were not explicit, became increasingly popular through
the 1960s. Much of the research was essentially phenomenological, considering
one particular realisation of one particular group [9]. A notable exception was the
work of Callan, Coleman. Wess and Zumino in 1969 [10, 11]. This demonstrated
how, given any Lie group! and any Lie subgroup, it was possible in theory to de-
rive the most general Lagrangian in which the subgroup was linearly represented
but the rest of the symmetries were realised non-linearly. These papers form the
starting point for this thesis and will be reviewed in detail in Chapters 2 and 3.
They differ from their predecessors both by virtue of their geometric approach

and by the generality of their application.

The geometry of these non-linear realisations was examined further by Isham
[12], who introduced the concepts of Killing vectors and of a metric (prompted

by Meetz [13]). and later by Boulware and Brown [14].

Salam and Strathdee [15] drew attention to the fact that in any such ‘phenomeno-
logical Lagrangian’ there are always terms involving a set of scalar fields, but
none of these terms are pure powers of the fields - in particular there is no term
quadratic in the fields, that is, they are massless. They proved that if a non-linear
realisation of a particular group were obtained from a linear one, the vacuum
could not be invariant under the full group. Goldstone’s theorem then implied
that there were massless scalars present in the non-linear realisation, which were

exactly the fields identified by Callan, Coleman, Wess and Zumino. Also, if one

IStrictly speaking, this should be a linear Lie group (see, for example, Vol. 1 of [16]), but we
will follow the convention of particle physics and use the phrase ‘Lie group’ in the understanding
that it 1s a linear Lie group we are talking about.

4



were to specify that a system of fields is invariant under a Lie group G while the
system’s vacuum state is invariant under a subgroup H. one could ask whether
there is a general method of determining the couplings between the Goldstone
bosons and the other fields - Salam and Strathdee showed that in any such case
the methods of Callan, Coleman, Wess and Zumino would do just this. In this
way of looking at things, a non-linear realisation was just the effective theory
resulting from the spontaneous breaking of a symmetry. (A more explicit com-
parison of the Lagrangians obtained from the methods of [11] and those from a
spontaneous symmetry breaking scheme was carried out by Honerkamp [17] for

the case of the chiral groups.)

Aided in their understanding of non-linear realisations by these papers, research-
ers in the area spent the next three years applying the methods of Callan, Cole-
man, Wess and Zumino and Isham to the chiral groups, culminating in the paper

of Barnes, Dondi and Sarkar [18].

In this thesis we shall analyse various non-linear realisations. The first of these
analyses, SU(2)/U(1), has been done before [19] - we shall just reproduce this
work as a simple example of how to apply the above theory. The second,
SO(1,4)/SO(1,3), has not been done before, but the formal manipulations are
almost identical to those of SU(2)/U(1). For both of these non-linear realisations.
we will determine the transformation properties of the fields involved (using the
Killing vector method) and construct the most general possible Lagrangian. From
this Lagrangian, we will obtain a metric, where the coordinates are the Goldstone

fields themselves?.

In the latter part of the thesis, we concentrate on SU(N) groups. in particular

“Whenever there is an even number of such real fields. they may be combined into complex
fields; for certain non-linear realisations the resulting complex metric is particularly useful to
anyone wishing to supersymmetrise the realisation [23, 24, 25, 26]

ot



SU(4), and by way of a homomorphism, on SO(6). We make a general study of the
geometry and algebra associated with the Lie algebras of these groups and then
turn to the problem of specifving the Lagrangian and finding the metric for non-
linear realisations of the groups. By using the machinery of projection operators.
we are able to find very general forms of the required quantities for a large
class of realisations, those with ‘automorphism conjugate u-vectors’. However,
these expressions assume one can find the projection operators appropriate to
the realisation. This we do for particular realisations of SU(4), or equivalently of
SO(6). including SO(6)/SO(4)2SO(2). These we shall see have ‘automorphism
conjugate u-vectors’ so for SO(6)/SO(4)2S0(2) we will completely specify the

Lagrangian.

Chapter 2 will begin by introducing the key concepts of a coset and a coset
space which underpin the whole of this work. It will be seen that there is an
initmate connection between the description of the coset space and the nature
of the Goldstone fields. The bulk of this chapter will be spent looking at the
transformation properties of the coset space and hence the Goldstone fields, using
the coset space SU(2)/U(1) as an example. This analysis will be exactly that of
[19], in which the field transformations are described in terms of the Killing

vectors.

Chapter 3 introduces the ‘standard field” description of the other particles that
may be involved in the non-linear realisation. After looking at how these fields
transform, we will look at how to construct the most general possible Lagrangian
from the Goldstone fields and the standard fields, following the prescription given
by [11]. Most of the chapter is involved with defining ‘covariant derivatives’ for
the fields which transform in the same way as the fields themselves. Again, we
shall see how to do all this for SU(2)/U(1) - we will obtain each term in the

Lagrangian involving these covariant derivatives, and from the term involving

6



the covariant derivatives of the Goldstone fields we will extract the metric of the

coset space.

In Chapter 4 we start to look in detail at the properties of specific Lie alge-
bras. We start off with the simplest (non-Abelian) example of all, SU(2). We
describe the effects of similarity transformations on the vectors of the defining
representation and see how this can be used to define the elements of the adjoint
representation (of both the group and the algebra). We also identify a set of pro-
jection operators for each of these representations, which are so important in the
non-linear realisations of higher-dimensional SU(N) groups. We go on to look at
the special orthogonal groups SO(3), SO(4). SO(5), SO(1,3) and SO(1,4). making
full use of homomorphisms between the groups. We consider the y-matrices of
the spinor representations and their products, as well as identifving projection
operators for the spinor representation of SO(3) and the Weyl representation of

SO(4).

This understanding of the Lie algebras of S0O(1,3) and SO(1.4) is put to use
in Chapter 5, which deals with the non-linear realisation SO(1.4)/50(1,3). For
this realisation we find the transformation properties of the Goldstone fields, the
covariant derivatives and the metric, just as for SU(2)/U(1) in Chapters 2 and 3.
Indeed, we also double-check this metric by introducing a method for obtaining

it from the Killing vectors.

In Cthapter 6 we go back to studying the intrinsic properties of Lie algebras. We
see that SU(2) is something of a special case among the special unitary groups
- the algebras of the higher-dimensional SU(N) all have additional features. We
take a geometric approach to studying these features. based on the work of Michel
and Radicati [27]. Although the bulk of this paper specifically concerns SU(3),
they also outline a general way of describing the Lie algebra of any SU(N) group;

after reviewing this theory we then apply it to SU(4). We see how the elements

-1



of the Lie algebra fall into four distinct classes or “strata’. We also look at two
bilinear operators on the Lie algebra which are related to the symmetric and
antisymmetric structure constants. The final section notes that this Lie algebra
contains the same elements as the Lie algebras of the two spinor representations
of SO(6) and the space of matrices spanned by the products of SO(4) y-matrices.
This means that the strata of SU(4) can be seen as strata of SO(6). In this
section we focus particularly on the SU(2), SO(3) and SO(4) subsets of SO(6)
rotations, which gives us a deeper understanding of the geometry. Seen in this

way the symmetric structure constants take on an unexpectedly simple form.

Chapter 7 starts by extending the definition of the elements of the adjoint rep-
resentation of the Lie algebra of SU(2) to higher-dimensional SU(N). These ele-
ments act as tensor operators on the elements of the defining representation of
the algebra and are constructed using the antisymmetric structure constants. We
define a similar set of tensors based on the symmetric structure constants. We
use the geometric properties of the projection operators of the defining repre-
sentation to derive explicit forms for particular combinations of the projection
operators of the adjoint representation. These are all the tensors we will employ
in constructing a general Lagrangian for a non-linear realisation of SU(N). We
close the chapter by finding explicit forms for these tensors for SO(6), by using

the homomorphism with SU(4).

In Chapter 8 we set about trying to derive the covariant derivatives of an arbi-
trary non-linear realisation of SU(N) - these constitute a full specification of the
most general possible Lagrangian. Given a set of (defining representation) pro-
jection operators relating to an arbitrary element of the coset space, we derive an
expression for a key quantity, known as L='9, L, in terms of the tensor operators
and the traceless parts of the defining representation projection operators . For

a large class of realisations (those with ‘automorphism conjugate u-vectors’) we



are able to extract the vital information, resulting in general expressions for the

covariant derivatives at the end of the chapter.

Having identified the covariant derivatives for a general SU(N) coset space, as-
suming the projection operators for that space to be known, in Chapter 9 we
turn to a particular class of coset spaces of SU(4). for which we can determine
the projection operators. We note some of the properties of this class and use
these properties to find the projection operators for an arbitrary element of the
coset space. We are able to provide a check on our result by using a method re-
lating to the eigenvalues of the element. Fach of these spaces has ‘automorphism
conjugate u-vectors’, so at this point we have completely specified the projection
operators and the covariant derivatives for the realisations. However, we further
find that we are able to express one of the terms in the covariant derivative of
the Goldstone fields in a more convenient form. giving us derivatives which look

very much like those of the chiral non-linear realisations in [18].

Again. we can use the homomorphism to express all these results in SO(6) terms.
Using the simple form of the symmetric structure constant we find simple expres-
sions for the various vectors and invariants needed to construct the projection
operators, explicitly in this basis. We end the chapter by demonstrating that the
coset space SO(6)/SO(4)@SO(2) belongs to the class for which we have identified

the covariant derivatives.

Finally. a note on ranges of indices. Throughout this thesis, we will stick to
the following conventions. Whenever the indices a, b, ¢ appear they run over the
values 1.2, Similarly, the indices 7, 7, k., [, m will always run over 1,2,3. Whenever
we are considering compact groups, so the metric of the Lie algebra is Euclidean
(positive definite). greek indices will run 1,2.3.4. but when we come to consider
the SO(t.s) group, we shall follow convention and use the index 0 to represent

a timelike direction; in such cases the greek indices will run 0,1,2,3 (this will be



clarified in Section 4.5). (We assume the fields to be functions of normal four-
dimensional Minkowski spacetime, so whenever the index g represents spacetime,

for example in 9, M4, it is assumed to run 0,1.2.3.)

The variety of Lie algebras and their subspaces we shall be working with means
that it is not practical to rigidly define ranges of the upper case indices. We shall
endeavour to define them as and when they are introduced, chapter by chapter.
However, wherever possible, the following guidelines are observed. The indices
X,Y are only used in the final chapter where they range over 5,6. When we
work with a d-dimensional representation of a group, the indices S. 7.0,V run
1.....d (these are largely used for projection operators). For SU(N) groups and
their coset spaces, an A, B, (', D-index on a generator indicates it is a generator
associated with the coset space, while a P, (). R-index indicates it is a generator of
the subgroup. The indices I,.J, I, L in such cases run over all the group indices,

from 1 to the dimension of the group. For special orthogonal groups, an arbitrary

group index may be denoted by any capital letter upto and including P.

10



Chapter 2

Coset Spaces and (Goldstone

Bosons

2.1 Lie Algebras as Vector Spaces

Any element of an n-dimensional Lie group may be written e™* where X is a
vector in an n-dimensional vector space. For example, an element of SU(2) (in
the defining representation) may be written as e where x = 67} is a vector
in a 3-dimensional real vector space whose elements are 2 x 2 matrices. We can
choose a basis set (of matrices) for this space - in the case of SU(2) the most

common choice of basis is the set of generators given by half the Pauli matrices:

Tz’ = ;0
2
0 1 0 —1 1 0
where oy = L0y = , O3 = (2.1)
1 0 10 0 -1

11



For all SU(N) and SO(t.s) groups (the ones we shall be looking at), if we take the
commutator of any two vectors in this vector space we get another vector in the
space. or at least a vector in the space multiplied by a complex constant. In the
case of unitary groups (all the vectors in the space are hermitian), this constant
is purely imaginary, so following the notation and normalisation of Michel and

Radicati [27], we can define the operator :

[ S}
N
~—

ry =t :

For all SU(N) and SO(t.s) groups the matrix x,y is an element of the vector space

(it ‘lies in the algebra’. or the operator , is an ‘algebra’ of the vector space). The

~r-algebra is. of course. a linear algebra, in that
i 1

(ax + eyl z=—5llax+ay).z)=—Falxz] -

Z L

2 ly.2] = a1XAZ + Y AZ

B e

(2.3)
where ¢y, ¢ are numerical coefficients

so we can write the commutator of any two vectors as a linear sum of commutators
of basis vectors. The vector space is known as the Lie algebra, although the set
of all commutation relations between the generators is often referred to also as

the Lie algebra - it is always clear from the context which is meant.

The “components’ of the vector x = #T; are the parameters §7. These can be
thought of as coordinates on the space. Indeed, if we replace the basis vectors
T; by the normal Cartesian basis vectors, our vector space becomes the familiar
n-dimensional space of real numbers, with the §! being the Cartesian coordinates
of a vector in this space. This is defining a mapping from the (n-dimensional)

Lie algebra to the (n-dimensional) space of real numbers:



Figure 2.1: Mapping from the Lie algebra to R”

2.2 Cosets and Coset Spaces

In the basis of the generators, then, we can write an element ¢ of a Lie group G

as

where n is the dimension of the group.

Let H be a subgroup of . Then

—_
N
<t

~

hec H= e~ Tp

where P =1.....m where m is the dimension of H

We now define a left coset gH to be the set of elements gH = {gh Vh € H}:
note that each ¢ is in its own coset gH. (Right cosets can be similarly defined
but they will not be used in this work; therefore whenever the word ‘coset’ is

used in the remainder of this thesis I will always be referring to a left coset.)

(2.4) is not the only way of writing ¢; to construct gH we instead decompose it

13



into two factors. For example, the elements of SU(2) may be written
g =e 2V i=1,2.3 (2.6)

or alternatively we may express them as follows:

gv
~1

g =e 2077030 a=1,2 (:

(We will be working a lot with elements of SU(2). As the metric for the algebra
is positive definite there is no distinction between, for example, #* and 6, - we
are free to raise and lower indices as we wish. However, for clarity, and to make
things easier when we come to look at groups like SO(1.4) for which this is not the
case. we shall ensure throughout this thesis that we keep the notation covariant,

that is we keep our indices balanced.)

The elements of the U{1) subgroup generated by T3 = o3 are

b= e 3 (2.8)

The elements of gH are then given by
gH = R LEPS T {e_%glggg v o7} (2.9)
= e 3Pafem30 w3 (2.10)

In the context of broken symmetry, the part of the symmetry under G that is
associated with the o, is broken, while the part associated with o3 survives. The

o, are thus known as ‘broken generators’.

Note in the above that if two groups elements have the same values of % but

different values of 6 they lie in the same coset. It is thus only the #* that

14



distinguish between different cosets. We therefore define the element L as the

part which distinguishes between cosets - in this particular case, it is

L =e"20 70 (2.11)
or in general for a Lie group
[ =ew'Ts (2.12)
where A=m-+1.....,n

so each coset is represented by one value of L - it is much simpler to work with
L than with the entire coset. (Note that the L in (2.11) is a representative of the

coset gH in (2.10), as indeed is g¢.)

We now define the coset space G/H to be the space of all of the cosets, so each
point in the space is a coset, represented by a particular value of L{w™?); that
is to say, there is a one-to-one mapping from the coset space to the space of all
L(w?). The space clearly has n —m dimensions - one for each of the w? which

distinguish the cosets.

2.3 Goldstone Bosons

Now consider a situation where we have a Lagrangian which is invariant under
transformations in the group G but the vacuum states are only invariant under
H. Let us look at what happens if we apply group elements to one such vacuum
state. dp. If two elements of (& have the same values of w® but different values
of w” (i.e. theyv lie in the same coset) they map ¢y to the same vacuum state.

Conversely, if they have the same values of w” but different values of w?. they

15



map ¢ to different vacuum states. The coset space G/H thus represents the set

of transformations which map one vacuum state into a different vacuum state.

The connection between these transformations and the Goldstone bosons that
occur in spontaneous symimetry breaking can be seen by the following simple,
rather heuristic argument. (A rigorous discussion of these details of spontaneous
symmetry breaking lies outside the scope of this thesis. but may be found in [5]

or any textbook dealing with the subject, such as [28].)

Consider a potential V" of a scalar multiplet ¢ which transforms as an d-dimensional
representation of SU(2) (i.e. S =1.2,....d). The minima of the vacuum occur

when
6] = (1) +(6*) + ...+ (6)})F =« (2.13)

- we take these minima to be invariant under the U(1) subgroup in (2.8). (This
is like an d-dimensional version of the potential in Figure 1.) Under the transfor-
mation ¢° — Lo°, the vacuum state @3 is transformed into a different vacuum
state, as discussed above. Taylor expanding V(¢”) under this transformation and

. e At A5 — A5 e o
evaluating at ¢~ = ¢, we get

. . A% .1 9%V -
o Sy 1oy S o7 .S Ser T
‘v (L(/)O) = X (OO ) + ()@5 d)ls’ch)g‘ OL(DU + E W QA)S,:@}?. (SL(QO (sLOU + e
(2.14)
The second order term looks like a mass term:
IV Sep T , s T r
m i ) (SLCD(] éL()O ~ AJST,\ X (21))

9%

The ¢ is just a set of numbers and contains no variables; rather the variables in
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§Lo3 ave the coset space parameters:
SLoy = —iw Tady (2.16)

so regardless of the representation, in this SU(2)/U(1) case §L&; is always a

function of two fields, one for each of the coset space parameters.

av

ades

Now @7 is a minimum of V', so at this point is zero. Also, the Lagrangian is
M M T T/ . . . . . S
invariant under SU(2), so the potential is invariant under the action of L on ¢~.
Thus to second order from (2.14) we obtain
o*V

95007

E\)
-
-1

M\ ~ SLogS Lot =0

¢>5:¢>§

i.e. our two fields are massless.

It should be clear from this argument that in general we have one massless field
for each coset space parameter - these are the Goldstone bosons. Note that
by assigning particular values to each of these parameters. we assign particular
amplitudes to each of the Goldstone fields. In particular, if we set all the coset
space parameters to zero, each of the Goldstone boson amplitudes are zero. There
is thus a one-to-one mapping between the space of Goldstone fields and the space
of coset space parameters, which maps the origin of one space into the origin of
the other: alternatively we can think of this as changing coordinates on a space

from coset space parameters to Goldstone fields.

2.4 Goldstone field transformations

We would like to determine the transformation properties of the Goldstone bosons

- that is. to determine the transformation properties of the vector space described

17



above. We can now see the advantage of decomposing ¢ into a coset space part and
a subgroup part: L is a simple function of the vector space whose coordinates are
the w?, or alternatively the Goldstone fields. In order to find the transformation
properties of the vector space, we therefore start by looking at the (rather simple)

transformation properties of L.

Under the action of ¢ € G, it is clear that the coset ¢’ H will transform into

another coset:

[S)
o
o)

g(gH)=(99'H)=4¢"H (2.

where ¢" € ¢

However, we may write a coset ¢’H as a product of a particular L with the

subgroup (as in equation (2.10) ), so this is equivalent to saying:

g(LH)y=L'H (2.19)

which implies for L that

(8]
[
jan]

gL = L'h (2.

where h € H.

By L' here we mean a new ‘point’ in the coset space:

L/ — e—iw’ATA (

o
QW]
[



2.4.1 A Simple Example

To see how this helps us find the transformation properties of the vector space
(as parametrised by the coset space parameters), it is once again easiest to use
an example. The example we shall use is the simplest possible example; we look
at the transformation of the L considered above (that of SU(2)/U(1) ) under the

U(1) subgroup:

o
o
o

gL =h(o")L (2.2:

with h(@?) given by (2.8) (with 8 replaced by ¢%). We can always multiply by
the identity in the form A~'/4. which makes the right-hand side look more like

the right-hand side of (2.20):
gL = hL(h™'h) = (hLh™")h (2.23)

We might therefore expect to have L' = hLh~'. Let us try calculating hLh™" -

we start by expanding the L in (2.11) as a power series.

hLh™' = he s%7ap1 (2.24)
i 1 i
= h[1— 5070, + S(—50'0) (= 50'0)
L L
+§Tt~%ﬂ“aaM—»%ﬁ%m)t—%ﬂ‘ag-+..jh_1 (2.25)

i _ Looi,, N 1, _
= 1-—/259"‘70(,,/1 1—{—;/7,(—50‘ o )h 1/1(-—;9"01))/1 L

Aa &

! ) . - |
—|——/7(—%(9[’0(,)11_1/2(—%91’05)/2,_1/7(—;9'“’0[.)/1_1 + ... (2.26)

3! 2 2
. 1 ;
= 1- %/79“’0(,/2_1 + §(—%/u9“(7ah_1)(—%h&babh'l)
1 1 o -1 ! - i — o5 o
+§¢—§haagzlx—§hwauz1u~§h&anl)+.” (2.27)
— 6-—'7;;‘/2'9“0'(,]7/—] (2.28)
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Now we just need to determine h8%c,h~'. For this it is easiest to use h(¢>) not

in the form (2.8) but in an equivalent trigonometric form:

.3 1 43 ©3
. ) 1 e, 1.0 ,
—1—50z . ? 2 ? 3 9w
eTITE = 1— ity — — ()14 (=)o 2.29
sy S P+ (S (229
3 '3
@ . . @ 5
= 1lcos— —io3sin— (2.30)
2 2 '
and similarly 771(¢%) = 1cos % + 103 sin % Substituting these into h8%c,h~"

and using the product rule for the o’s
00 = 1(5,’j -+ ie,‘jkak (2.31)

and the trigonometric identities

. O o o f 2@ ‘
2sin 5 €08 o =sino and  2sin” 5 =1—coso
we find after a little calculation
Is — I 2 - /- . I 2 5 G
oo, ht = (0" cos ¢ — 07 sin & )oy + (0 sin &® + 02 cos 0°) o, (2.32)
Thus we can indeed write hL(#*)h™" as L' = L(6") where #" is given by
2 o -
9 = 0'cos ¢’ — 67 sin o’ (2.33)
2 . i 2 I o A
0% = H'sing® + 6% cos o’ (2.34)
or in matrix form
o' cos ¢®  —sin ¢’ H1 _
= (2.35)
622 sin ¢° cos & 0?2

ie. 0% is transformed as a doublet of U(1). This is a linear transformation:

each 0" is just a linear sum of #%s. This is actually the case for any such coset
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space G/H - if we act on L with the subgroup H we find that the coset space

parameters transform as a representation of H.

Finding the transformation of the #%s was particularly simple in this case. There
are several reasons for this: the Abelian nature of H certainly helped, but also
the fact that L' = hLh™! allowed us to use a helpful property of the similarity
transformation of an exponential. This, of course, will not be possible if we look
at transformations under ¢ ¢ H. Also, we have only found how the #s transform
- we would like to see how the Goldstone fields themselves transform, though in
general we only need to know the transformation properties under an infinitesimal

transformation.

We shall address these two issues in turn, which will allow us to give a general pre-
scription for finding the transformation properties of the Goldstone fields which

will be valid for all the transformations we will be considering in this thesis.

2.4.2 The Outer Involutive Automorphism

When we consider the transformation of 4[, under the action of elements of &
which are not in the subgroup H. there is no simple technique for obtaining L'
from (2.20) which is valid for all G/H. However, the three coset spaces we will
be considering have a useful property which allows us to obtain an equation for
L"? from (2.20). To get a feel for the meaning of this property, let us look at the
commutators of the generators of (. In general, we may write the commutator

of two generators as

(Tr, Ty =ifr/" Tk (2.36)



using the conventional normalisation, where f7;% are a set of totally antisymmet-
ric structure constants (we will consider these in more detail in later chapters).
We may decompose these relations into three sets (this is following an argument
in [14]). Firstly, we have the commutator of two generators of H. As I1 is a

group, the commutator must close onto generators of H. Therefore we have, for

P.Q,R=1,....m where m is the dimension of H,
[Tp.To] =ifpo" Tk (2.37)
Note that all the prA for A=m+1.....n (where n is the dimension of ) are

zero. From the antisymmetry of the structure constants this then means that all
of the prQ are zero, so for the commutator of a subgroup generator with a coset

space genera‘tor. we have

—_
N>
[V
o0

iy

(Tp, Ta] =ifra®Ts

- 1.e. this commutator closes onto the coset space generators.

A1y, we . . atl the ) 7 ~Osel spa >nerators. cneral.
Finally, we can look at the commutator of two coset space generators. In general

this is a linear sum of both subgroup and coset space generators:
[T4.Tp) = ifss"Tp +ifas"Tc (2.39)

However. the three coset spaces we will be considering belong to a class known
as ‘symmetric spaces’ for which all of the f45% are zero. Thus for these. (2.39)

reduces to the simple form
[T4.Ts) = ifap" Tp (2.40)

just closing onto the subgroup generators; thus the algebra has a ‘Z, grading

[SW]
[SW]



structure’. Note that if we map each of the coset space generators T4 into —7'4
(but do not alter the subgroup generators), the commutators (2.37), (2.38) and
(2.40) are unaffected. However, this is not true for the commutator (2.39), so the

algebra admits the ‘outer involutive automorphism’
Ty—Ty= ~T4 (2.41)

if and only if the coset space is symmetric. This property is particularly useful
to us as we can use it to derive an expression for L'? from (2.20). First, note that
under this automorphism. f, defined by (2.5) is unaffected, while using the forms
of L and L' given in (2.12) and (2.21) we see that L — L~ and L' — L'~'. Thus

applving the automorphism to (2.20) we get
pplying ! g

gL™ = L""'h (2.42)
where ¢ = ¢ if ¢ lies entirely in the subgroup or ¢ = —g if ¢ lies entirely in the
coset space. Now we invert this expression:

Lt =L (2.43)
and premultiply it by equation (2.20):

gLyt =1" (2.44)

We can thus use this expression to obtain L for any ¢ in the same way as we

used L' = hh™!.



2.4.3 Killing vectors

We can use the above equation to find how the coset space parameters w” trans-
form under any transformation g(¢’) in G. We would, however, like to know how
the Goldstone bosons transform, at least to first order, under such transforma-

tions.

Recall that the Goldstone fields can be thought of as an alternative coordinate

4, one which has the same origin - we

basis for the coset space to the parameters w
are now thinking of the space as a “field space’. We have denoted the invariance
group of the Lagrangian (¢ and we shall see in Chapter 3 that the Lagrangian and

the metric of the space are very closely related and share an invariance group,

i.e. (¢ 1s the isometry group of the field space.

We shall denote the Goldstone fields M. Under an isometry transformation of

the field space. they transform as

o
):S_‘_
nt
~—

MY = M™ = M + 'K + O(o7)? (:

where the A'3' are quantities known as Killing vectors (satisfying Killing’s equa-
tion V(4h'g); = 0) which clearly fully specify the first order transformation of
the field space coordinates under the isometry. We can also Taylor expand the
L™ resulting from these transformations in powers of M#, which in principle we
know how to find:

2

SproM Tt oAty (2.46)

L/2:L2+

"For SU(2)/U(1), this space looks like the surface of a sphere[19]



but we see from above that M4 = ¢! ', so we therefore have

Q
i
-7

We can use this to find the Killing vectors. To do so, we simply need to find the

first order variation in L? and the derivative ,*‘le The first of these we can do
easily from (2.44):
S(L*) =dgL* + L*657! (2.48)
giving us the important result
SgL? 4+ L*6¢ ' = ddfﬁ o' K (2.49)

Let us now see how to use this to obtain the Killing vectors of SU(2)/U(1).

2.4.4 The Killing vectors of SU(2)/U(1)

We will search first for the Killing vectors relating to the linear transformation

(2.22). We start by identifying d¢ and 61
g = §=eH0 21— Lot 4 O (2.50)
= dg = —%afgg (2.51)
and similarly 6g=! = %©:30;3 so in this case
SgL? + L6657 " = —%Q’%BLZ + %@%%—3 = %@3[1:2. 03] (2.52)

e Z ot

b
ot



To calculate this commutator, or for that matter the derivative on the right-
hand side of (2.49), we will need an explicit expression for L? as a linear sum of
generators. We obtain this in much the same way as we got the trigonometric
expression for . We start with L? given by the square of (2.11), which is an
exponential of the vector @ = #%¢,. Writing L? as a power series will give us
terms in increasing powers of this vector. By using the product rule for the o’s.

we find that

(0°0c,)? = (0M)*1 + (67)*1 (2.53)
We now define
O =+/(0%) + (0%)? (2.54)
and
n" = % (2.55)

(We will see in Section 4.2.1 that what we are doing here is in a very precise
sense defining the ‘length’ of the vector # and an associated unit vector. We will
always use a bold typeface for vectors of the algebra and a normal typeface for

their lengths.)

With these definitions

—
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—
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Now calculating L? as a linear sum of generators is easy:

P = e (2.57)
= e it (2.58)
= 1—inc, — 5921 -+ 3%9372”05, + ... (2.59)
= 1cosh —in“o,sinb (2.60)

Once again using the product rule for o’s, the commutator in (2.52) is then easily

found to be
[L2. 03] = 2€,5"n" 0y sin 0 (2.61)

so using (2.49) and (2.52) we obtain

oL*

b, _a : : -a 5 (e
s niopsind = —i——Ah 2.62)
1 IMe? (

To find a helpful form of ,'TL;— we have to understand a little about the vectors

in this situation. In the same way that the #* are components of a vector 6 in
the coset space part of the algebra, the fields M* are components of a vector M
in the coset space part of the algebra. So far. we have considered a completely
general form of the vector 8 and similarly the field amplitudes M are completely
arbitrary. We are only working with the #* to help us get a handle on the field
amplitudes and we can considerably simply things if we now choose to work with
a @ which lies in the same direction in the coset space as M. This choice entails
no loss of generality in the field amplitudes and any other choice corresponds
simply to taking linear combinations of the fields. which we are always free to
do. (It will turn out that leaving the magnitude of the vector 8 as an arbitrary
function of the fields M = M®“M, - other than being one-to-one and respecting

the same origin - does not unnecessarily complicate the calculations.)

]
|



With 8 and M lying in the same direction, they clearly share a unit vector n“;

le.

* =6n"; M =Mn" nn,=1 (2.63)

From these relations we can derive the useful identities

oM b a0 dé

ot =" e T an” (2.64)
and we can then use the fact that
dMns  IM*
—_ . a 9 @x
OME MY o (2.65)
to derive
9 a 1 »
o = (();L)L - 72(1‘?1])) (266)

M M
Differentiating L* in the form (2.60) and using these identities we then find

oL? ] do . sinf ., sinf | L do
= —1n,sinf — 10, + 1n.n"oy —ingn"opcos —— |

IOMe dM M M AM

E\)
D
-1

so substituting into (2.62) we get

b oa ) dé 1 p 1 ) df
€3 N0y = | 1In,—— — — 0o, + nyn"o,— — n,n oy cot §—

- ]".(I .2_(8
M M M d;\[) vaoo (268)

Now this looks very long and messy, but actually all but one of the terms on the
right hand side are zero, as can be seen by taking the trace of both sides, which
gives us

0=2 (in”a—ﬂ) KNy =n,h] =0 (2.69)

[\]
o0



so all that survives of the above expression is

1

7o (2.70)

b a
Cyz N Op = —
. . - . .
from which we see that Ajo, is a vector with components

Ky =M, (2.71)

Thus we have found the Killing vector which describes - through (2.45) - the

transformation of the Goldstone fields under the U(1) subgroup to first order:

S
-1
o
e

MY — M" = M"+ M, 30" (:

- again, this is a linear transformation; it is. as could be expected, the transfor-

mation of a vector of SU(2) under the U(1) subgroup, as we will see in Section

Les

Let us now briefly recap what we have done so far in this section. We started by
looking at the transformation properties not of the Goldstone fields themselves
but of the coset space representative L. We showed that L transformed according
to (2.20). We then noted that for symmetric coset spaces we could make use
of the involutive automorphism and doing so we obtained an equation for L%,
equation (2.44). However. our ultimate aim was an expression for the first order
transformation of the Goldstone fields. To find this, we expanded the left-hand
side of (2.44) as a power series in the transformation parameter ¢! and similarly
Taylor expanded the right-hand side in this same parameter and equated the first
order variations. Writing the first order variation in the fields as ¢! A3', we thus

obtained (2.49).

We then focused on the particular example of how the Goldstone fields of SU(2)/



U(1) transform under elements of the U(1) subgroup. Once we had found suitable

H]2 ey . 2
5’%1(“ the Killing vectors were relatively easv to find.

descriptions of L? and

Having used this method to find the suberoup Killing vectors, we now turn to
the transformations of the fields under other elements of SU(2). In fact, as a
general group element may be decomposed in the form (2.7), we can restrict our

attention to transformations under elements of the form

g =e 39
In this case, § = g. so equating first order variations of the left and right sides of

(2.49) gives us

aL* .,
> Iy 2.7
PR, (2.73)

—%@l){LZ,U])} —

Inserting (2.60) and (2.67). using the product rule for the ¢’s and equating coef-

. . ) 1y
ficients of ¢", we get

dM M M

: : ., d80 . sin® . sinf
—iogycosl —Inysin = | —1In,sinl— —io,—— +inn‘c.——

. . dg i o
—in,n°c. cos 9W> A (2.74)

Again, we can take the trace of both sides, which gives us

1A1
ne I\ = (—nb (2.7

dé

N
=
(1]

Substituting this back in, then dividing by isin #/M and rearranging we get

. . o dM
o, Ny = oM cot ) — nyno.M cot 0 + nyno.—— (

do

o

76)
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The easiest way to equate coefficients of the generators (components of the vec-
tors) is to multiply by another o and take the trace. Doing this finally gives us
the Killing vector:

dA
do

Ry = M cot 06, —n"ny) + nny

We therefore see that the transformation of the Goldstone fields in this case is

given by

dM
do

M* — M'™ = M* 4+ M cot §(o* — d"nyn®) + d'nyn”

to first order in ¢". where of course @ = §(M). Unlike the transformation under
the subgroup, this is a non-linear transformation - the first order variation involves
a complicated function of the fields. We sayv that the Goldstone fields, rather than

forming a (linear) representation of ¢, form a non-linear realisation of G.

Finally, it is worth noting that although we chose for this transformation not
to calculate gL = L'h and opted instead to look at the first order variations of
gL?g™' = L'*, we could have multiplied ¢ directly into L. The calculation and
the result are very messy indeed, but one does get an answer of the required form
L'h; the only feature of any interest to us is that in general L is a function of
both ¢" and 87, i.e. of the transformation parameters and the Goldstone fields.

(We shall need to be aware of this in the next chapter.)
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Chapter 3

Constructing a Lagrangian

3.1 Standard Fields

In the last chapter we saw how whenever a Lie group symmetry is broken, a set of
massless Goldstone bosons occur. We considered these fields as though they were
the only ones present in the system and indeed Goldstone’s theorem does not
require that other fields are present, either in the broken or the unbroken theory.
A consequence of this is that the Goldstone bosons must transform as a realisation
of GG on their own: under the action of an element of (7, each Goldstone boson is
transformed into combination of Goldstone bosons without involving other fields;

we saw in the last chapter that in general this is a non-linear combination.

However, from a particle physics perspective. we are generally interested in in-
volving fermionic and/or other bosonic fields in the theory which interact with
the Goldstone bosons. Furthermore, as we want our non-linear theory to arise as
a consequence of spontaneous symmetry breaking in a linear theory, these other
fields must result from fields in the linear theory, that is, in a theory in which they

transform as a representation of G. In breaking the symmetry, we redefine these



fields such that the new fields, known as ‘standard fields’, transform linearly only
under A and transform non-linearly under the rest of & (just as the Goldstone

bosons do).

Unlike the Goldstone bosons, it is not necessarily true that the standard fields
form a realisation of G on their own. Indeed if we involve the Goldstone bosons
in the redefinition, the transformation of the standard fields will involve the
Goldstone bosons and consequently be non-linear as required and the Lagrangian
will naturally include interactions between the standard fields and the Goldstone

bosons.

What we want. therefore, is a way to redefine a field multiplet of G, say ®°.
involving the Goldstone bosons in the definition in such a way that the redefined
fields, say . transform as a representation of H. Theyv will then form a non-
linear realisation of (& together with the Goldstone bosons. Such a redefinition is
given in [10]; it is easiest to follow in the case where ® transforms as the defining
representation of & (so S = 1,2.....d where d is the dimension of the defining

representation):

7 — "7 = g7 o7 (3.1)
In particular, for h € H.

®° — 0% = pioT (3.2)

The standard fields ¢* are then given in terms of the original multiplet ®° and

the Goldstone bosons by

% = (L7307 (3.3)
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We can then easily see that under the action of i € H the standard fields trans-

form as the defining representation:

07 = (LTl = = (LThFe! (3.4)
= ((hLh™) " )zhi-0" (3.5)
= (AL~ h Y)JhkeY (3.6)
= (LYo (3.7)
= hieY (3.8)

We also need to know how these fields transform under elements of ¢ which are
functions only of the coset space parameters. We can find this in much the same

way:

08 = (L7707 — v = (L7 (3.9)
= (L'"Y)jgloY (3.10)
= (L' lg)noY (3.11)
= (L g)nLit (3.12)
= (L'7'gL)e" (3.13)

but from (2.20), L'"'gL = h where h

is a function of the Goldstone bosons
= hy" (3.14)
If @7 transforms as some other representation of (-

o7 — 00 =T(g)707 (3.15)
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we simply note that, by definition (of a representation),
L(9)70(d) ) = Tl )i (3.16)

for any two elements ¢g,¢’ € . Thus all of the above calculations are equally

valid for in this representation, so we end up with

0¥ = ¢ = TPt (3.17)

3.2 Constructing a Lagrangian

Having seen what fields we may include in our non-linear realisation and how
they transform. we would now like to construct a Lagrangian for the system.
As a whole, the Lagrangian must be Lorentz invariant and invariant under G.
These restrictions actually allow us to determine the form of each term in the

Lagrangian, as we shall now see!.

For a normal, linear theory, the Lagrangian is composed of kinetic terms for each
field, mass terms for the massive fields and interaction terms. The mass terms

have form

2
m° o

— Q" O3
‘) i

for scalars, and

S
my g

for fermions.

YActually, if we only require that the action be invariant under (. we may include extra
terms in the action which are not invariant under transformations of (., but change by a
total derivative[29, 30]. D’Hoker and Weinberg have shown that these terms are in one-to-one
correspondence with the generators of the fifth cohomology class of G/ H[31]. For SU(2)/U(1),
which we consider in this chapter, this class is zero so there are no extra terms.



For our non-linear realisation it is clear from the transformations derived in the
last chapter that such a term for the Goldstone bosons is invariant under H \
but not the whole of (&, so we cannot include such a term in the Lagrangian.
(That is, the Goldstone bosons are massless, as they should be.) Indeed, it is
observed in [15] that M cannot appear without derivatives. For the standard
fields, on the other hand. we see from the transformations in the last section that
if a polynomial in ®° is allowed in the linear theory (is invariant under ') the

same polynomial in U~ is allowed in the non-linear realisation.

We now turn to terms involving derivatives. First we note that the Goldstone
bosons do not transform as representations of (¢ so neither do their derivatives.
This means that the normal kinetic term for scalars in the linear theory is not
invariant under the whole of . Obviously we cannot just throw away this term if
we want our Goldstone bosons to be real, dvnamical fields. so we must add other
terms to it such that the sum of the terms is invariant. This is analogous to the
case of a gauged symmetry where a gauge field is added to a Lagrangian to make
it invariant under local transformations - this is usually achieved by constructing
covariant derivatives which involve the gauge fields and, following [11], we will

adopt precisely the same approach. Our ‘kinetic term’ thus has the form
1 FADNEAT
gD‘, M=D* M 4

(with 4 once again running over the coset space indices and g running over the

spacetime indices)
where D, A/# is a ‘covariant derivative’ of the form

Iz

D, M* = 3,M* + something

pt

vet to be determined.
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For standard fields the problem is similar - again the normal spacetime derivatives

are 1‘10t inva‘riant:
D 0” = 9,077 = (0,T(h) )" + T a,e" (3.13)

so we need to find a covariant derivative D, > which transforms in the same way

as i, i.e.

D, v = (D) = [(h)yD,v" (3.19)

To find these covariant derivatives we again turn to the work of Coleman et al
[10. 11]. Theyv use a particularly complicated and subtle argument to justify a
particular form for these covariant derivatives - we shall present a basic outline
of this argument here and then show that the forms that are obtained have the

correct properties.

We think of the M* and the ® as coordinates on a manifold. The action of
a group element on this manifold falls into two parts: the action on the M is
given by multiplying the element into L(A*), while the action on the ® is given
simply by acting on the fields with the appropriate representation of the element.
Under the action of L™, the Goldstone bosons are therefore transformed away,
while the ®° are transformed into standard fields. This transformation therefore
takes us from a set of coordinates which have a very complicated behaviour under
the action of elements of G which are not in H to a set of coordinates with a

particularly simple behaviour under this action.

Now if we consider the coordinates on this manifold as functions of space-
time, we can also ask about the transformation properties of the gradients of
the fields. The important quantity here is the difference hetween the coordi-

nates evaluated at two neighbouring points in space time, (M (x). ®°(x)) and



(MA (2 + d2), (2 + §2)). (For the moment we shall suppress the spacetime
indices and write 2/ as 2.) We know that both of these have complicated trans-
formation properties under the action of elements of ¢ which are not in H, but
at least the former can be simplified by multiplying by L~! and the latter will

vary infinitesimally from this.

Take as an example the action of L™! on the gradient of the Goldstone fields. If
we act on the fields themselves by multiplying L(A#) by L~!, we must act on
the gradient of the fields by multiplying

lim  L(a+ Sx)— L{x) lim &L

dr — 0 ox B b =0 o

by L7, However, as the transformation of L(AM*) by L~! is a special case of

(2.20), we can use take a d-variation of both sides of (2.20) to find L7'4L and,

using exponential forms of L’ and £, it turns out to be
L™ 2)SL = —iw™(62)Ty —in® (62)Tp (3.20)

where n”’Tp is the vector in the exponential of A':

which, as we remarked at the end of the last chapter. is a function of the fields

Tt is a vector in the sense that it is an element of a vector space, the Lie algebra. We shall
see in Chapter 4 that this means that it transforms as a vector if you act on it with a group
element by conjugation. However, all the transformations we will be considering will be applied
by acting with a group element on L and these induce transformations on n (dx)7p; under
such transformations n” (§2)Tp does not transform as a vector. The same goes for w™ (6x)Ta,
as we shall see on the next page.



and therefore of x. Thus (reinstating the spacetime indices)

lim oL lim oL )
-1 -1 -1

. L dat L iy St L=l
dat =0 dat =0

1s a sum of a vector of the coset space and a vector of the subgroup (see foot-
note), both of which are derivatives with respect to ', which, the argument goes,
transform in a very straightforward manner. It would seem logical that the part
in the coset space is at least related to the covariant derivative of the Goldstone
fields, while the part in the subgroup comes from the /i(n(dx)) which describes
the transformation of the standard fields, so we might expect this to be connected

with the covariant derivative of the standard fields.

Now, for a given coset space such as SU(2)/U(1), if we can put L in a trigonomet-
ric form, we can of course find L~'9, L directly. We shall do precisely this in the
next section, where we shall see that L7190, L does indeed naturally fall into two
terms. one in the coset space part of the algebra and one in the subgroup part
- there are no terms involving the identity matrix. The two terms are usually

written (upto a factor) as a, and v, respectively:

L70,L = 5 (a, +v,) (3.21)

pa

(For example. for SU(2)/U(1) we may write these vectors a, = «}o, and v, =

3
'FHUB')

To see how these vectors are related to the covariant derivatives, we need to use
L' = gL/z_l (3.22)

(from (2.20) ) and invert it (to obtain the transformation law for L=!) and dif-
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ferentiate it (to obtain the transformation law for d,L). The inverse is

L'V = hLtg™? (3.23)

and the differential is

O.L = g((0,L)h™ + L, (h™)) (3.24)

so multiplying them together we get

L', L' = hL YO, L)h™" + hd,(h™1) (3.25)
This is the transformation law for L"la,,L., i.e.
L0, L — (L7'0,LY = hL™HO, LYk~ + RO, (h71) (3.26)

Now /i does not contain any coset space generators so therefore neither does
hd,(h™'). Therefore we see by comparing (3.26) and (3.21) that a, and v,

transform according to

a, — a, = ha,h”! (3.27)
i 1 / J -1 : -1 3 )q
—3V# - —;V“ = —;/YVH/? -+ /Z()N(h ) ( ...4(,)

We see that a, has the correct transformation properties to be a covariant deriva-

tive by noting that

-1 2 9¢
a'a, — ha'a,h (3.29)
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so that tr(a*a,) 1s an invariant under the action of (. Taking the trace just
contracts the components - again, we show this for SU(2)/U(1) (we shall not
look at the general case here because the normalisation of vectors of special
orthogonal groups is different from that of special unitary groups, as we will see

in Chapter 4)
tr(aa,) = tr(a@‘a”’aiab) = ag‘ai tr(ctoy) = aﬁ,’afﬁg = aja;, (3.30)
Thus with
DYM,y = o (3.31)

the kinetic term %D“ M4D, A 4 is invariant as required.

(We will calculate this for the case of SU(2)/U(1) in the next section and we will
see that D, A* does take the expected form 9, M* + something and what nor-
malisation this gives the kinetic term. Furthermore, note that if we were to add
another quantity to ¢y which transforms in the same way, so the transformation
property of D¥ A1 4 as a whole remains the same, we would get unwanted terms in
%D“ M4D, M 4 which would spoil its invariance. Thus the form of the covariant

derivative we have found is the only one which leads to an invariant kinetic term.)

We now turn to the derivatives of the standard fields. The ®° transform lin-
early under (¢ and therefore so do their derivatives 9,® (indeed these are the

derivatives in the linear theory). It must be the case, then, that
L7'0,0% = L', (L”) = 00" + (L7 9, L)
transforms in the same way as

L—I @‘v _ 'U/'S



5]), so it seems that the ‘something’ we need

(this is following an argument in [1
to add to the usual partial derivative of the standard fields to get the covariant
derivative is just L7190, L. Actually, as suggested on the previous page, we only
need the —-%V“ part of L7190, L. This is because to construct a covariant deriva-
tive, we need to add on to the partial derivative a term which transforms in such
a way as to cancel the inhomogeneous term in (3.18) - that is, its transformation
must contain a derivative of I'(h). The term of this form in the transformation of
(L7109, L)¢"" can be seen from (3.28) to lie entirely in the —%Vu'gﬁvs part. Let us
now see that this cancellation does occur - that the combination Ou’zbs — %V“'u:"s
does transform in the same way as ¢*° (we will work with standard fields trans-

forming as the defining representation of H for simplicity but the following is

valid for any representation).

D0 — %VN'Q” — (F, )0 + hd + <—%hvﬂh_1 + /20‘,(/7“1)> hi (3.32)

= (D) + ho — éhv“m + hd, (h™ ) ha (3.33)
but
hh™t =1 = (D, ")+ (D)™ = 0= h(,h™") = —(F )k ™! (3.34)
so the fourth term becomes
—(D,hYh ™ h = —(D,h )

which does indeed cancel the first term, leaving us with

)

Z

i i ) i 1
PN g o0k [ 3 ook 2 9r
Dt = v = O — Shv = h (0@ 5 VNL> (3.35)

This combination thus clearly does transform in the same way as the standard



fields themselves and is therefore the covariant derivative we have been looking

for.

We close this section by summarising the above theory for the example of a system
which contains only fermionic standard fields which have no self-interaction terms
(fourth order self-couplings and so forth). For such a system, the demands of
invariance under ¢ and Lorentz invariance impose the following form on the

Lagrangian:
1 PR , —g > ar
L= 3D“ MyD, M* + i ~+4D s + mu s (3.36)
where

%V#u‘, (3.37)

DN,L;’» e dﬂl/’:‘ —

and D, M* is given by (3.31), with a, and v,, defined by (3.21). The first term
in the Lagrangian contains the normal kinetic term for the Goldstone bosons,
%a“ M4O, M 4 and also sell-interaction terms, while the interactions between the
(Goldstone bosons and the standard fields are contained in the second term. cour-

tesy of the v,.

3.3 SU(2)/U(1)

Let us now find the covariant derivatives for our simple example of SU(2)/U(1).

The easiest way to find a useful form of L7, L is to start with L in trigonometric

form, which we get by replacing #¢ by £~ in (2.57):
e o .. . o
L =e7727 =1 cos 5~ in“o, sin 5 (3.38)

< L
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The a-dependence of the #* has clearly gone into the § and the n,, so the differ-

ential of this is

) ' /e 0 Y I
L = —51 sin 5@9 — %72”00 cos ;0‘,9 — i, sin 30“71”‘ (3.39)

while L7 is just

) f .
L7 =1cos 5+ in"o, sin 5 (3.40)

< i~

Multiplying these together and using (2.56) and the identities

.00 . L0
2sin —cos — = sinf)  and  sin®= 4+ cos®* = =1
2% 9 P
we get
—14a ; i a ; i . S a 29 aa b a
L70,L = —3n 0,0,0 — 5 sin Oo,0,n" + sin SN d,n" 0,0 (3.41)

We can simplify the last of these terms by using the product rule for the o’s and

by noting that

n'n, =1=n"dn, +n,dn" =0=n"dn, =0 (3.42)
which gives us
1. l a -~ 1 . - a 29 a < b 3 o4
L0, L = —3n ,0,0 — 5 sin 0o,0,n" +isin Sh dneq 03 (3.43)
le.,
a, =n"0,0,0 + sinfo,d,n" (3.44)
= D, M =da, =n"0,0+sindd,n" (3.45)
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and

1 N o A
—5Vu = isin” Sn“dﬂnbeabsag (3.46)

= <

We have yet to put D, M in the form J,M"* + something. As both # and n*
are defined in terms of the A/“. this is not difficult to do. We will, however, need

some identities. We start by differentiating M®.

I MY = 0, (Mn"y= MIn"+n"0,M (3.47)
= 0, M" = Mnydn" +nn’0,M = 0,M (3.48)

where we have used (3.42) and the fact that n® is a unit vector. Substituting

(3.48) into (3.47) we get

oM = Man"+ nnyd, M" (3.49)
, I .
= " = 2 (0 M =1 md, M) (3.50)
while
, o - de
0l = 370 M = mnbdﬂz\[i (3.51)

Thus the covariant derivative for the Goldstone bosons becomes

10 . sinf . )
D,M" = 77“21(1‘—171110;,1”1) + i%%*-((')ﬁ,ﬂ'[“ — 71“715@,;\[5) (3.52)

Similarly, we can now write the covariant derivative for the standard fields as

3 Pa ; i ; o 1 . 2 9 oAb i : 17C 3 i [ E
D, =04 — SVt = d v+ i sin” 377”(()# M —n'n 0, M e ozt (3.53)



but n%nley,” = 0. so

Du U' = a;z U + J[Z

(This is all derived. albeit in a slightly more involved way. in [19].)

R .
—sin” 31\;/“1‘()“ ﬂfbeabg)agw

Having found the covariant derivatives, it is worth a close look at the term con-

taining D, M“ in (3.36).

1 A4 Ao 1 dy ' sin 0 ¢ b o
—_Z—D‘ M,D, M = 3 (n,wn o* My, + i (0" M, — n,n"0" M, ))
X S ME “‘ng(du M — n®n. 0, M%) ) (3.55)
d \[ A

dM M

1 dé sinf
o ;()“/\[b ( nan’ -+ sin ((32 — nafnb)>

dé 9
x d,M° (—77"}1 + sin (62 — n"n. ))

1M M

Now

(53 - nanb)n”m = n"n, —n"n. =0
and similarly
n.n"(6° —nn.) =0
while
(él — Ngn )(é“ n'n.) = 5f — e’ —ntn. 4+ 0t = 5,? — n'n.
SO

1 14 2 sinf
;DHAIE’DHAIQ _01 /‘[’)()uAIL [<~S~/Q> 7'16‘7?5- + (Sln

.
[
Ut
-1

R

—_
(W]
[
oe]

—

ﬂ)} (3.60)



Note that if we consider the power series expansion of #( M):

O(M) =c ;M + e, M? + s M° + ... (3.61)

(there is no constant term as we know that if all the coset space parameters are
zero the amplitudes of the Goldstone fields are all zero) then it is clear that in

the limit of small M,

dci—f[ — f 7 (3.62)
Also. in this limit
5?]9 = % (3.63)
so two of the terms in the above invariant quantity vanish:
Lo, R T
§D‘ M,D,M"* — 5()‘ Mo, M i (3.64)

Thus if we take the fields to be normalised such that § — M for small M, the
first term in a power series expansion of 2D#*M,D, M* is the normal kinetic term,

as expected.

Finally. we promised in the introduction that we would identify a metric for our
non-linear realisation. The first to identify a metric for a non-linear realisation
was Meetz[13]. He was concerned with the realisation of SU(2)&SU(2) obtained
from the constraint (1.2). In the linear sigma model, one can define an ‘interval’

for the (flat) field space:
ds? = (dm)? + (do')? (3.65)

This is clearly G=SU(2)©SU(2) invariant. On eliminating the o’ field, this be-
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comes
ds? = g;;dm'dn? (3.66)

where ¢;; is the (non-flat) metric for the coset space. ds? is still G-invariant, and
therefore so is
drt dr/

A R A VT
gz;,'—% = ()ﬂ’/T C) m g,jj'
da+ da,

This is valid for any choice of coordinates on the field space; in general for the

non-linear realisation (G/H. the quantity
0“ “]4 o Z"[B{/AB

is G-invariant[12]. However, we have already shown that the only invariant of
this form is tr(a,a”) = D, M*AD*M4. For SU(2)/U(1) this is given by (3.60), so

the metric is the quantity in square brackets:

b 2 sin 0 2
Gbe = (%}) npn. + <81j} ) ((Sbc - 71])77’5) (367)

(note that it 1s symmetric).




Chapter 4

Introduction to Lie Algebras and

Projection Operators

4.1 Projection Operators

We have seen in the last two chapters how important it is to be able to write
g4 . . . .

L = e T4 an arbitrary element of the coset space, as a linear sum of the broken

generators T4. For each coset space we tackle we will need to be able to calculate

this exponential. The exponential of such a matrix is defined by its power series:
63T n A l 4, 2 1 / , 3 ;
T = 1 10Ty — S (0 T) T+ o (07 T) (4.1)
L .
where 1 is the identity matrix of the same dimension as the generators and where

(02T3)" = (0'T0)* + (0°Ty)" + (0°T3)° + ...
+{0'"T.0° T} + {0'T0.0°T5 ) + ... (4.2)
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If the generators involved all anticommute with each other and the sum of the
square terms is proportional to the identity, (as is the case with any element of
SU(2), for example), calculating this exponential becomes trivial, as every term
in the power series is proportional either to 1 or to #17T4 so the entire series can

be written as a linear sum of 1 and 047 ,.

If this is not the case, the easiest way to find the exponential is to introduce
objects called projection operators. A set of projection operators is a set of
matrices of the same dimension as the generators, denoted P~ which by definition

have the properties

0 T £U
PT T =0

PTPU —

The set is a complete set if

> rPh=1 (4.4)

T

or in terms of components,

Z (PT)UV = (5[7V (45)

T

These properties means that any polynomial in the projection operators reduces
to a linear sum, so the only combinations of these matrices that can be formed
are linear ones. If we only have two projection operators, say P and P~. every
such linear sum can be written as a linear sum of Pt + P~ =1 and PT — P~. i.e.

every traceless matrix which can be written in terms of the projection operators

is a multiple of P* — P~. This combination has the property

(Pt — P =ptpt—ptp-—p prip P =Pr+P =1 (46)



This means that if (a scalar multiple of) the vector we want to exponentiate
squares to the identity we can write it as the difference of two projection operators.
We will shortly see how to do this for an arbitrary SU(2) vector. However. this
is of limited use as if (a scalar multiple of ) the vector does square to the identity.
we may calculate its exponential directly as remarked above. If this is not the

case we clearly need more than two projection operators.

The simplest projection operators are those with a single 1 somewhere along the
leading diagonal and zeros everywhere else. For a n-dimensional group represen-

tation, we clearly need n of these to form a complete set:

10000 00000 000 00
00000 01 000 000 00
00 0 0 0 00 0 00 001 00
00000 00000 00000
00000 000 00 000 00
00000 00000
00000 00 000
00 000 000 0 O
00010 000 0 0
00 00 0 000 01

By applying these operators to a n-dimensional vector (a multiplet of the

n-dimensional representation) we can project out the individual components
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(fields):

0000 0) /(e 0
00000 || & 0
00000 || e |=]o0
00010 04 04
00000)\ ¢ )

(hence the name). Clearly any diagonal n x n matrix can be written as a linear
sum of these matrices. If we want to exponentiate a matrix with off-diagonal
components. we can think of a similarity transformation reducing it to a diagonal

matrix:
STaS=d=caP 4P 4. +o, P (4.7)

which we can then invert:

(98]
fs

r=SdST = SPYST 4 6, SPAST L 4, SPST! (4.

The set of operators SPTS™! satisfies all the conditions ((4.3) and (4.4)) to be a

complete set of projection operators:

« : . 0 HT#U
(SPTST)(SPUST) = SPTPYS™ = e (4.9)
SPTS™ T =0

SPYST 4 SPPST 4+ SPIST =S (PP PP P ST =857 =1
(4.10)

so we can write any vector of a Lie algebra as a linear sum of projection operators.

providing we can find the appropriate set.

This similarity transformation acting on the multiplet corresponds to a field re-

N
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definition and the new projection operators project out various superpositions of

states.

Such similarity transformations do not give us every complete set of projection
operators for the group representation, as we can always add together projection
operators - the sum of two projection operators is always another projection

operator:

(PT + PYYyPY = PTPY L PUPY = if 7.0,V all different  (4.11)

(PT 4+ Py PT + PYy = PTPT 4 PUPT 4 pTPU 4 pUPY = pT 4 PV (4.12)

(the logical extreme of adding projection operators to get new ones is of course
when vou just have one projection operator which is the identity). However,
doing this obviously reduces the number of vectors which can be expressed in
terms of the set and in general if we want to exponentiate an n X n matrix we

will want a set of n projection operators.

To calculate a given L. i.e. to exponentiate an arbitrary linear sum of the broken
generators, we must find a set of projection operators which we can write the sum
in terms of. Once we have found such a set and written our coset space vector
as a linear sum of them. (say x = ¢! P! + @?P? + ... + @™ P"), exponentiating it
15 easy:

e = 1—i(¢' P+ PP TP %(cplpl + PP 4. 40" P
.

3,(@1131+@2P2+...+¢”Pﬂ)3+___

+



= (P'4+ P24 . £ P") —i(¢'P 4 P+ ...+ " PT)

1 b 2D > D "
=5 (6" P+ (&°)P P+ 4 (¢")P")
= TP g TP e (4.13)

The generators are now all contained in the projection operators, so the coset
space element is expressed as a linear sum of the generators, with coefficients of

—ig! a2 _ian . .
the form cie™% +cae™ +. . . 4c,e™'? (where ¢1. ca,. .. , ¢, are purely numerical).

Note that if one of the set of n projection operators does not appear in the
expression for x, it still appears in the expression for the exponential with a
coefficient of e’ = 1. due to the identity matrix appearing in the expansion being

a sum of all n projection operators.

4.2 SU(2)

4.2.1 Defining representation

The fundamental representation of SU(2) is the doublet. In quantum mechanics,
we can only ever determine one component of a doublet’s angular momentum (or
isospin) at any one time, the component in the z-direction. This is because the
SU(2) angular momentum (or isospin) group only has one diagonal generator,
which is taken to be the one associated with the z-component, T, = T4 = %03.

(This generates a U{l) Cartan subgroup.) If we wish to project out the two

components of the doublet, we must construct two projection operators to do



this:

10 \ \

Pty = AL I (4.14)
0 0 X2 0
0 0 \ 0

Py = Y= (4.15)
0 1 X2 X2

and we may use the diagonal generator to do this. In this case, the expressions

for the projection operators are obvious:

1 1{ 10 1{1 0 1

= <\ 0 1 “\ 0 -1 0 0
1 1{ 10 1{1 O 0 0
= 01 20 -1 01

(Note that for any SU(N) or SO(t,s) group, any traceless diagonal matrix in
the group’s algebra can be written as a linear sum of the diagonal generators,
so any diagonal matrices, including the diagonal projection operators, can be

constructed from the diagonal generators and the unit matrix 1.)

We just have two projection operators, so every matrix in the algebra which can
be written in terms of these two is a multiple of PT — P~ = o3, that is, any

diagonal vector can be written as
1. '
X = 93T3 = 3(930'3 = —93(P+ — P_) (418)

We can think of this vector as lying along the same direction as T3 and o3,
with 3 being a measure of the ‘length’” of the vector. Every vector space. by
definition, has some definition of ‘length’ or ‘distance’ associated with it, so we
would like a definition in this case which allows us to take the generators or the

o’s as an orthonormal basis with the #'s as their coefficients or ‘components’.

(W52
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The definition of the square of the length of x that we will use (following the

conventions of Michel and Radicati[27]) is
tr(x?) (4.19)

The factor at the beginning is matter of convention, depending on what multiple
of the generators vou wish to use as your basis vectors. However, we will find
that for SU(N) and SO(t,s) groups, it is usually most convenient to deal with
quantities which are given by doubling the generators when constructing projec-
tion operators. (For SU(2) these are obviously the Pauli matrices.) The factor of

% in the above expression is then the appropriate one:
1 , 1 \
(0;.0;) = 3‘51‘(0'7) = 5t1‘(1) =1 (4.20)

We can see this is a sensible definition by considering the length of a vector

(x.x) = %—m(xg) (4.21)
= %l‘l’tr(rfiaj) (4.22)
- %;z-ﬁritr(wij+1qfo—k) (4.23)
= 2l (4.24)

(here I have used a' for the coefficients of o; as I do not want to cause confusion
with the coefficients of T; - the usual group parameters - which are precisely

double those used above: 2 = 16').
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- then if y = y'oy,
(X, y) = 1.,2'“ (4.26)

These definitions allow us to describe a set of vectors as orthogonal if their scalar
products are all zero and orthonormal if they also each have unit length. For
example. the basis of the ¢’s is orthonormal:
tr(o'o;) = - tr(15}) = 4}

’ J

9

I
Lo =
[SSE I

I

Having found the projection operators for the diagonal group elements, we would
now like to find the projection operators for a matrix in the algebra with off-
diagonal components. (Vectors associated with the coset space SU(2)/U(1) arve
clearly all of this type.) Given such a matrix, we can do this by finding a similar-
ity transformation which diagonalises the matrix and then applying the inverse

transformation to the diagonal projection operators.

Now it is a well-known fact that any hermitian matrix can be diagonalised by
a unitary (and hence invertible) similarity transformation. As every vector x of
the SU(2) algebra is hermitian, we can apply a unitary similarity transformation

to it to get a diagonal vector d in the algebra:
SxS7t=d (4.28)

Conversely, any such vector can be obtained by applying a unitary similarity

transformation (the inverse transformation) to the appropriate diagonal vector:
S7ldS =x (4.29)

The S here is a 2 x 2 unitary matrix. Furthermore, it is easy to see that this

=3
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transformation does not alter the length of the vector - any overall scaling from
the S'is cancelled by an inverse scaling from S™! (the transformation as a whole
is “special” or ‘unimodular’). It is not surprising. then. that this transformation
corresponds to an SU(2) rotation of the vector - we will study this in depth in

the next section.

For SU(2) we have seen that every diagonal vector is proportional to the diagonal
generator T5. This means that every vector x is proportional to S71o35 - that
is. it can be obtained by applyving an SU(2) transformation to o3 (which will
give you another unit vector) followed by a simple scaling. This is obvious if you
bear in mind the homomorphism between SU(2) and the group of rotations in
J-dimensional space (see Section 4.3.1). By applying an arbitrary SU(2) trans-
formation to o3. then, we obtain the arbitrary unit vector n'c;, where n' are the

components of the unit vector in the basis given by the Pauli matrices:
: 5 , | -
n'n; =n'ng +nn, +Fnng =1 (4.30)

Any matrix in the SU(2) algebra can then be written as one of these unit vectors

multiplied by a scaling factor, by factoring out its length:

X =z'0; =arn'o; where @ = \/(x,x) = '\/J?i;l7z' (4.31)

just as we did for 8 in Section 2.4.4. To find the projection operators for such a
matrix, we just apply the same SU(2) (similarity) transformation to the diagonal

projection operators. This gives us

(]_ _i_nig'i) (432)

(1—n'o;) (4.33)

Lo b =

With this form of Pt and P~. every matrix in the algebra is a multiple of

4
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Pt — P~ =nlo;.

While our previous projection operators were constructed with explicit reference
to the diagonal U(1) subgroup, these new forms do not relate to any particu-

lar subgroup. However, they still satisfy the defining properties of projection

operators:
ot L : j 1 99 i g {2
PP+ = 1(1 tn'o)(1+nlo;) = Z(l +2n'0; +n'n'oo;) (4.34)
but
1157»’(7;(13— = (Pt —-P )= 7'1"7'2,-"(517-1 + iq‘,‘kak’) =nnl=1 (4.35)

so PEP* = P* as required and

1 , : 1 w 1
PtP~ =P Pt = 1(1 +n'o)(1—n'o;) = 1(1 —n'n'oo;) = 1(1 —1)=0

(4.36)
We can now exponentiate an arbitrary vector in the algebra easily:
om0 T _ om50'0n _ omiOntan _ —36(PY-P7) _ e~ 3OPTHEOPT e 20 pt +es?p-
(4.37)

This is clearly equivalent to the trigonometric form of L we used in the last two

chapters with n"o, replaced by n'o;.



4.2.2 Adjoint representation
Definition of the adjoint representation

We usually think of the defining representation of SU(2) as acting on a dou-
blet and transforming it into another doublet. We can also. however, consider
an element of the defining representation acting on a vector in the algebra by

conjugation:
X = X = gxg~* (4.38)

This is a similarity transformation of the vector using a 2 x 2 special unitary
matrix and corresponds simply to an SU(2) rotation of the vector. Such a trans-

formation preserves all scalar products and lengths:

SRR

1 1 i
Xy — gxyg "l = Str(xy) = 5 tr(gxyg™) = = tr(xy) (4.39)

In the basis of the Pauli matrices we can think of the SU(2) similarity transfor-

mation as rotating the components of the vector into each other:
dop— 2o = grtogT! = a'gogT? (4.40)

To find out what these components of the transformed vector are, we take the

scalar product of both sides with o:

(o0’ = (2'gogto!) (4.41)
. . 1 . ,
= 2" (o, 07) = 5 tr(z'go;g” o) (4.42)
, , 1 o
= = = 5 tr(goig o’ )t (4.43)
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or writing the right-hand side as the action of a rotation matrix R(g),

= a2 = R(g) ! (4.44)

This is the definition of the adjoint representation! of SU(2) - the adjoint repre-

sentation of such a group element is often written

1

| b

(Ad(g))! = 3 tr(go'g™' o) (4.45)

N

3

It is 3-dimensional (the matrix indices 7. 7 run over 1,2,3) and we can show that
this mapping is indeed homomorphic - the rule for combining elements, and

therefore the commutator and anticommutator structure, is preserved - as follows.

If under the action of an SU(2) element ¢;.
x = x' = gixgy!

we can then apply a second transformation:

X" = $xX'g;" = goixgr 97" = (9201)%(9201) 7 (4.46)
(Ad(g:))";2" = (Ad(g2))")(Ad(g1)) 2" = (Ad(g201))" 12" (4.47)
Ad(gy) Ad(g)) = Ad(g201) (4.48)

By considering infinitesimal SU(2) transformations we can find the generators of

1See, for example, Vol. 2 of [16]
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the adjoint representation. To first order an element ¢ of SU(2) looks like
gra1+6g=1— %59‘"@ (4.49)

so, using (2.31) and the resulting commutator, as well as the tracelessness of the

o’s.
(Ad(144g))’ = st {(1 - %50}"0;{)0"(1 + %59101‘)(;{! (4.50)
1 o - _
= St (O’JO'Z‘ + %[JJ, é@kak]m + @((&9)‘)) (4.51)

— (0’,0) + ise’* tr(2ie/ yoio,) + O(80)?

= (5{ — —)—091\ tl‘((‘/k{é“l + lﬁjklégima'm) + (9(59)“

4

= & = 80Fc7 ) + O(30)° (4.52)

(hence the form of the linear transformation of the Goldstone fields in (2.72) ).

We observe that the identity of the defining representation maps to

100
=101 0
00 1

the identity matrix in the adjoint representation, while o maps to
(ad(ok))’ = —2ie; (4.53)

Note that we use the lower-case ad to denote the adjoint representation of the

Lie algebra - an arbitrary element of the algebra can then be written

(ad(=0"0,)) = —i0%¢;), = 10Fe? (4.54)

[SVERE
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in this representation. (We will look at this for a general SU(N) group in Section
7.1, where we will introduce a different, more appropriate notation for the adjoint

representation of an element of the Lie algebra.)

Projection operators of the adjoint representation

In the defining representation we had two projection operators, Pt and P~. and
we could write any element of the algebra as a multiple of P+ — P~. This allowed
us to express an arbitrary group element as a linear sum of these projection
operators (see (4.37) ). In the adjoint representation we have an expression for
an arbitrary group element, Ad(g), in terms of the corresponding element of the
defining representation, g. We can write this too in terms of PT and P~ by

substituting (4.37) into (4.45).

(Ad(g))’ =

tr (e 5 P 4 e3P )gi (e PY 4 em 50 P,

: )

e

(SR I S I NGRS

. 1 .. , 1 ., ;
tr(Pto/ Pto,) + 56‘16 tr(P o' PTo;) + —e " tr(Po! P o)

1 .
+3 tr(P~ o' P~ o;) (4.55)

[t is worth comparing and contrasting this with (4.37). Both expressions have
one term involving an exponential (of a multiple of #) and another term involving
its inverse. In (4.37), the coefficients of these exponentials are the two projection
operators, PT and P~ the difference of which is the vector we are exponentiating,.

upto a numerical factor.

For the adjoint representation, which we know is 3-dimensional. we should be

able to construct three projection operators®. Let us suggest that an arbitrary

“The techniques for constructing projection operators for the adjoint representation of a
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element of the algebra can once again be written, upto a factor, as a difference

of two of these projection operators:
(ad(x)); = —i0%¢/, = —ibn*e’, x (P — P?); (4.56)

Now (Ad(g)):/ can be written as an exponential power series in (ad(x))/: the
above expression would then allow us to write it in terms of P!, P2 P?. The first
term in the power series will be 1 = P! + P? + P?. It is easy to see that, just as

for the defining representation,
(P! — P2 = ptpt _ plp? _ pipl 4 prp? = plg p? (4.57)

although this is no longer equal to the identity. and

2

(P' = P*)(P'+ P?)= P'P' = PPP' + P'P? — PP = P' — P*  (4.58)

so that once again the odd powers are proportional to P' — P? and the even
Al

powers are proportional to P! + P2 Calculating this exponential will then give

us coefficients for P! and P? of the same form as we got for Pt and P~ in (4.37).

As noted above, we already have precisely these coefficients in (4.55). This would
seem to indicate that (4.55) is in reality, an expression for (Ad(g));” as a linear
sum of P!, P%. P3. To demonstrate this, we must show that the tensors in (4.55)
have projection operator qualities and that the element of the algebra we are

exponentiating is proportional to the difference of the appropriate two projectors.

general SU(IN) group were established by Barnes and Delbourgo[21], based on earlier work on
SU(3) by Rosen[32] and Barnes[22] - we will come back to this more general theory in Section
7.2.
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For example, by substituting in (4.32) and (4.33) we can write

tr(PTo/P o;) = N tr (070 + ntorolo; — nlol oo, — 71’”71101\10*’010;) (4.59)

Q

[

then, by repeatedly using (2.31), we get

tr(Pto! P o;) = %(511 —nn? —infey) (4.60)

<

N | —

If this is to be a projection operator, say P!, it must have the property
(P1)/(PY)F = (P (4.61)
To show this we note that
nm*/njnk = n;n” (4.62)
(from the fact that these are unit vectors), that
n'n'e;;F =0 (4.63)
(as one factor is svmmetric on 7 and j and the other is antisymmetric) and that

6i‘/_mekzlm — 5{1»51/ _ 5555 (_164)
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We then have

.) ?

e

[—(ét’ — ! —in'ed))

| SE——

I . :
{—)—(5}‘ — njnA — mmcfm)

4

(68 —nm* —iner) —nin® + nin® + infnn'e

/|

M | e

com k g K . 3 A GE
—In € gy T INN M€ m — 77’1717nflijékmj) (46))

= 1(511” —nn® — et — ek, — (nmk — 5? ) (4.66)

|

= .)(5;“ —nm* —inle)) (4.67)
as required.
Similarly, we find that
Str(P o' PTo;) = 5{6; - +inte ) (4.68)

which has the properties

1 P : 1 Lk 1 o !
[3(5;/ —nmn’ + 17?16#[)} {é’(& — ‘n‘,‘n]‘ -+ 17777‘6J'I‘m):! = 3(55 —n” 4 inle”)

(4.69)
and
1 cJ i sl 1 ck k oo, k =
3(6[ —nn? —ine’)) S(Oj —nn" +in"e;" ) =0 (4.70)
We therefore denote
1 1 + ip— Lo Pk 17
P = 3tr(P o' P o) = 3(5‘[ — o —in"el ) (4.71)
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and

, J ; oy
(P70 Pro;) = S(6] —nm! + in*e’) (4.7

Z

M
-3
[N

P =

b |

noting that this choice satisfies (4.56):
(ad(x)) = —ifn*e, = (P — P?),/ (4.73)

(Note also that all of these tensors commute, so that P! P? = 0 also tells us that

P*P' =0.)

Finally, the other two tensors turn out to be equal:

—tr(PYo' Pto;) = -

, 1
tr(P 0/P o;) = Snm”’ (4.74)

SR
SR

-

These appear added together in (4.55):

. 1 . .
tr(PYo’ Pto;) + Stl‘(P_O'JP_O',’) = ;n’ (4.75)

D |

and we know from (4.62) that this quantity squares to itself. If we think of
writing (Ad(g))/ as an exponential power series in (ad(x))7, P® only appears
in the identity term, so the part of (Ad(g)); which does not have a #-dependent
coefficient must he P?. We therefore suspect that (4.75) is P?. To show this. we
only need to show that P1P? = P?P? = (0. This is quite trivial:

(n;nk —nn" + 'n[n,jn/‘"‘efj;) =0 (4.76)

Lo | =

1 S : .
;(O;’ —n;nt &+ 17'116,'*’;)72\,-77;‘ =

e

We therefore have our third projection operator:

=1
=1

P? =tr(Pto'Pto;) = tr(P~ 0/ P~ o) = nn’ (4.



Note that the three form a complete set:

—
W
-1
o0

P1+P2—|—P3——-51'\]'—77,.1'7”—{—]33:5&

We briefly recap the main results of this section. For the adjoint representation
of SU(2). defined by the homomorphic mapping (4.45), there are three projection
operators, given by (4.71), (4.72) and (4.77). Any element of the algebra may be

written as

(ad(x))/ = —i'c/)s

for an appropriate #* and is thus proportional to P' — P%. Exponentiating the
element of the algebra then proceeds exactly as it did for the defining represen-
tation in (4.37), except for the fact that we now have a P? which occurs in the
expression for the group element with a coefficient of e” = 1. The expression for

the group element ends up as
(Ad(g))/ = Ple™ 4 P + P? (4.79)
in agreement with (4.55). or

(Ad(g)) = [;((3;7 —nm’ —infed))e™ + [;(é‘f —nn? +infelp)]el + nm
(4.80)

(of course this can be rearranged to give trigonometric coefficients).
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4.3 SO(3)

4.3.1 Spinors

The elements of any special orthogonal group may be written

v AB N
emiw T Tap (4.81)

where the generators Typ are traceless matrices which are antisvmmetric on the
indices A and B, as are the parameters w*? (the ranges of A, B are explained
below.) If the group is compact, the generators are also hermitian and obey the

following commutation relations

(Tap.Tep] = —i(dpcTap — dacTsp — dppTac + d4pTsc) (4.82)

The (compact) group of N x N special orthogonal matrices is known as SO(N)

and 1s isomorphic to the group of rotations in N dimensions.

Unlike the SU(N) groups, the lowest dimensional representations of special or-
thogonal groups are not always the defining representations, as these groups have
spinor representations. SO(2N-+1) has one 2"V-dimensional spinor representation

for which we can construct 2N + 1 ~v-matrices which obey the Clifford algebra
{74,798} = 2041 (4.83)

If we then take the generators for this rep. to be given by

i .
Typ = —1[7;4«“;'3} (4.84)

the Lie algebra of the group is automatically satisfied. (We will use this rule
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for all SO(s) groups, to keep the metric positive, but when we come to look at

SO(t,s) groups we will change the sign - see Section 4.5.1.)

For SO(3) this means that we have one two-dimensional spinor representation
with three y-matrices. The generators for this two-dimensional representation

are

T12 = —'T?.l T23 = _TSQ TB’I = _T13

each of which generates an SO(2) subgroup isomorphic to a group of rotations in

a plane. From (4.82). they satisfy the Lie algebra
[Th2, T3] = iT5

[Ths, Tay] = 1115
[T51. Tho] = i1

Observe that if we make the replacement T;; — ¢;;* T} we get the algebra of SU(2),
so these groups are homomorphic. This homomorphism tells us that SU(2) forms
a representation of SO(3) (though not in this case a faithful one) which we know
is two-dimensional with generators 7}, = 1oy. Thus the generators of the two-
dimensional representation of SO(3) - the spinor representation - are given by
T; = -l—g.,-kak (4.85)

2

<

1.e.

1
Ty = 303 Ths = ;01 Ty =

We can now ask what the y-matrices look like. We are looking for three matrices

which satisfy (4.83) and, from (4.84) and (4.85),
Vi ;) = 2i€i00n (4.86)
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These conditions are obviously satisfied by

3

I

S
=
lo2s}
~1

For special orthogonal groups, as for special unitary groups, it is often easier to
work with matrices which are given by doubling the generators - we will call them
o4p. These are products of gammas for the spinor representation:
- T 4.88
Cap = —3 (7.4, 78] (4.88)

Z

= 04 = ‘““i“/'.ﬂl')’B i A 75 B (48())

but are also well defined for other representations. From (4.82) it is clear they

have the commutation relations

loap.ocp)] = =2i(8pcoap — Sacopp — 0BDTAc + dapoBC) (4.90)

For the spinor representation of SO(3), it is clear that each of these o’s is a Pauli
matrix. so they form an orthonormal basis for the space of all traceless, hermitian
2 x 2 matrices. (In Section 4.4.3 we will look at the analogous situation for SO(4)

and SO(5).)

Projection operators of the spinor representation

We have seen that the fundamental spinor of SO(3) is nothing other than the
doublet of SU(2). This means that the projection operators for the spinor rep-
resentation of SO(3) are simply those of the defining representation of SU(2).
However. we would like to be able to express them in terms of the vectors of the

SO(3) algebra. To do this. we must find what a unit vector in this algebra looks



like. We start by noting that

(O'ij! O_lm) — 6117_1;61777“(0%7 O,n) — 6ijké,lmk — 6{1(5;11 _ 6}5;{71

SO

Im i
) w ‘]u),'»/'

(u){‘]‘a'l‘j.‘u,

Oﬁlm) - wijw[771(0-ij~ O_Im) =

so the square of the length of w¥o,; is

where

ng; = —

—w

o
Wi

P
2wt w;;

(4.91)

(4.93)

(4.94)

(4.95)

Therefore the projection operators for the spinor representation of SO(3) are:

)

1 1 .
+ _ - [P
prt = 5 (1 -+ \/577 0
- _ . . gy b e
P~ = 5 <1 ﬁn 0’1]>

4.3.2 Defining representation

(4.96)

(4.97)

Just for the sake of completeness, we note here that in the same way that SU(2)

forms a representation of SO(3). (the defining representation of) SO(3) forms a

-1
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representation of SU(2). We know that it is three-dimensional. However, we have
already studied the three-dimensional representation of SU(2) (there is only one
upto equivalence) - it is the adjoint representation. The homomorphic mapping
(4.45) can therefore also be seen as the mapping from the spinor representation

to the defining representation of SO(3).

4.4 SO(4) and SO(5)

4.4.1 Spinor Representations

SO(4) is an SO(2N) group so we know that its elements may be written

e_i“"'HVTNV = e_%‘”“ygl”‘ (498)
where g, v = 1,...,4, with the generators and ¢’s again satisfving the commu-

tation relations (4.82) and (4.90).

Now SO(2N) has two 2" ~!-dimensional spinor representations. For the direct
sum of these (known as the Weyl representation) we can construct 2N y-matrices
which again obey the Clifford algebra (4.83) and the generators and o’s for this

representation are given by (4.84) and (4.89).

To find the gammas for SO(4) we note that if a set of y-matrices for a group
SO(2N-1), labelled 72) (with. obviously, H = 1,....2N — 1) anticommute
amongst themselves and all square to the unit matrix, so do the matrices

()
@) _ 0 1y (4.99)



Furthermore. the matrices

0 1
V2N = and  Yanyr = (4.100)

also square to one and anticommute with each of the “/2«2) . Clearly the set com-
posed of the ﬂ,'g) and v have the correct Clifford algebra to be the gammas for
the group SO(2N) and if we add 49y to these we get a valid set of gammas for
SO(2N+1). So if we start with the gamma matrices of SO(3) as given in (4.37).
the gamma matrices of SO(5) from this method are:

0 iU; O 1 1 0
,/5: (4101)

—io; 0 1 0 0 -1

where each entry is 2x 2. (Incidentally. we could multiply any of these gammas by
-1 if we wanted to. as it would still square to one and {va,v5} — — {74,758} =0
so the anticommutations would still hold.) The first four of these are the gammas
of SO(4). so by using (4.89) the o's for the Weyl representation are:

Tl 0 Tl 0

k ‘ = (4.102)

Tij = €ij Oks =

The fifth is used to construct the projection operators

ey
o

1 :
pR:;uJﬂs): (4.103)

<
<o

o
o

and Plr=—(1—7)= (4.104)

N | =
<
—



which project out the right-handed and left-handed spinors:

N1 X1
y (2 A2 8 0
L I (P B I P (A = YPR T
X3 0 0 0
X4 0
o, 0
PRoy, = ’ =B (4.106)
0 0
\1 0
: 0 0 0
o R =\* Plo,; = & = op (4.107)
X3 \3 0 o
\4 4
0 0
Prony = =0y, (4.108)
O —J

(I will be using the phrase ‘spinor’ to refer to the multiplet which transforms

under a spinor representation.)

4.4.2 The Homomorphism with SU(2) = SU(2)

Now certain linear combinations of the generators generate an SU(2) subgroup

which acts only on the right-handed spinor:

1 1 .. (en8 0 i
0‘}1? = 5 <361‘I];0'1fj -+ O'/\~4> = 0 0 (4109)

- we shall denote this subgroup ST7(2)g. Similarly. the orthogonal combinations

generate an S{/(2);, subgroup which acts solely on \* and therefore commutes

-7
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with SU(2)R:

1/1 .. 0 0
oF = - <.-<~;w,¢afj — m) = (4.110)
2\ 9
=\~ 0 o
(for example, 05 = 1 (015 + 034) and O‘é‘ = % (012 — 034) ).

Remembering that the generators form a basis for the vector space of all wo,,,.
taking linear combinations in this way corresponds to changing basis in this space.
from an SO(4) basis to an SU(2)g @ SU(2), basis. We can therefore rewrite an

element of the SO(4) Lie algebra as an element of the SU(2)g ¢ SU(2), algebra.

WMo, = Yol + et op) + 2 o — o) (4.111)
= (WY + 2ol + (Wt — 20 oy (4.112)
LY 0
- (4.113)
0 u(.JL A’,O_A

in the Weyl representation, where

B = Vet 420 (4.114)

and

Wt = Wit — 2w (4.115)
What we are doing here is to think of o;; and o4 as generating ‘vector’ and “axial’
subsets of the SO(4) transformations (or ‘rotations’ and ‘boosts’ in Euclidean
four-space, R*). We then write the ‘vector” generators as ¢;;* (o' + oF) and the
‘axial’ generators as (ol — oF), that is we take combinations of them which
generate a pair of mutually commuting SU(2) subgroups, SU(2);, and SU(2)g.

By manipulating the entire SO(4) vector, we can thus break it into an SU(2)r
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3-vector (the quantity 1we;* + W) and an SU(2), 3-vector (Lw'e;” — Wk,

Projection Operators

Let us see how to use this homomorphism to find projection operators for SO(4).

RE

Now wi* ol is an SU(2)g spinor. The projection operators for this SU(2) sub-

group are obviously

1
P =L an g tion) (4.116)
and
2 LR Rk _R 11
Pf=5 (1" =n"oy) (4.117)
R O . . . . . R RA
where 1" = in 2 x 2 block notation (this is clearly just P™) and n
00
s a unit vector:
A (4.118)
We can. of course, obtain such a unit vector in the usual way from wf*ol, by

dividing by its length,

Similarly w ¥k is an SU(2)r, spinor and the projection operators for SU(2)y, are

5 1
P? =5 (1" +alop) (4.119)
and
;1
Pt = 3(1L NLAUII:) (4.120)



where 1F = in 2 x 2 block notation and n** is a unit vector:

nLknif =1 (4.121)

We can, of course, rewrite these in SO(4) terms:

PR+ — T <1 4o nm(;tukglj + Um)) (4.122)
1 y

PR = 4 (1 + 75 = ?YRA(gﬁf‘kaz‘j + UA~4)) (4.123)
1 1 ..

Pt = Z(1—73-%?7”(;6%04;—Um)) (4.124)

L- 1 Li Lo .

P = 1 1= —n (56 k0 — Oka) (4.125)

but in practice when exponentiating an SO(4) vector it can be easier to rewrite

the vector in SU(2) <3 SU(2) terms, as in (4.112).

4.4.3 Clifford Algebra Structures of SO(4) and SO(5)

In the same way that the Pauli matrices form a basis for the space of all 2x2
traceless, hermitian matrices, the y-matrices of SO(4) and their products form
a basis for the space of all 4x4 traceless, hermitian matrices. As this 1s a 15-
dimensional space. we require 11 such products as well as the four y-matrices.
From the Clifford algebra, the square of any y-matrix is just the identity, while

the product of two different 4’s is proportional to a . for example:

1 . 1A
O13 = _3[7L Vsl = =173 (4.120)

e

-]
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and we have seen there are six of these. Similarly, the product of all four 4’s is just
++5, as can be seen by multiplving them in the Weyl representation using (4.101).
(The order in which they are multiplied can only make the difference of a sign
due to the Clifford algebra.) The remaining four matrices we can get as products
of three different +'s, or equivalently they are products of v5 = —71727374 with

one of the v,, e.g.

27374 = =17 (4.127)

where the factor of i ensures hermiticity. However, we know that together with
the ~,. 75 is one of the y-matrices of SO(5), so this quantity is one of the o’s of

SO(5). In general, we have

1
Ous = _Shﬁ* A)'?} = € T Ve A (4128)

4.5 S0(1,3) and SO(1,4)

4.5.1 Weyl Representation

SO(1.3) is isomorphic to the group of rotations in Minkowski spacetime. Elements
of the group still have the form (4.98) where y, v now run 0, 1,2,3, with the 0
representing the timelike direction. The generators are still traceless and are still
antisymmetric on y and v, but are no longer all hermitian and they now satisfy

the commutation relations

['T‘NV‘ T/L\] - i(nl//)Tu,\ - 77;1‘/)T1/,\ - 77”1\T/»l/? + 77“,\T,/p) (4129)



where 1, is the Minkowski metric:

1 0 0 0
0 -1 0 0 .
M = (4.130)
0 -1 0
0o 0 0 -1

Note that the overall sign has changed from the Euclidean case; this is to ensure
that the subset of generators T;; generate an SO(3) subgroup with the commuta-
tion relations we expect for SO(3). In terms of the ¢’s, the commutation relations
look like:

[0;11/w U/),\J - 21(772/1)0-;1,\ - 77;1p01/,\ - 771/,\O-up + 77;1,\0-1//)) (4131)

As for 5O(4), SO(1.3) has two 2-dimensional spinor representations, with the ~-

matrices for the direct sum (the Weyl representation) obeying a Clifford algebra:

{A}[HAI/I/} = 277;12/1 (4132)

This time, to ensure the correct commutation relations for the generators, we

take

i A )Y
']j;u/ = Z[A)ﬂa ’\;'1/] (4133)
=0 = 1% if o £ v (4.134)

To find the y-matrices for SO(1,3) we first note that the anticommutator of any
two different v-matrices of SO(4) is zero and this is unaffected if we multiply any
of them by a numerical factor. Next we note that the -4 of SO(4) squares to
the identity, as does the vy of SO(1,3). The remaining three 4's square to 1 for

SO(4), but to —1 for SO(1,3). Thus we can obtain a valid set of v's for SO(1,3)

o0
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from those for SO(4) by multiplying the +; by i and taking ¢ of SO(1,3) to be

equal to the 54 of SO(4), giving us:
o = v = ' (4.135)

Using (4.134) we thus find:

iO‘Ij 0 L T 0 a0
Jg; = T = €5 (4]36)
0 —io; 0 oy
The extension to SO(1,4) is the obvious one. The metric becomes 5-dimensional

with an extra —1 on the diagonal. This means that the fifth v-matrix must square

to —1 and is of course taken to be i times the v5 of SO(5).

4.5.2 Clifford Algebra Structures of SO(1,3) and SO(1,4)

We found for SO(4) and SO(5) that we could construct 15 products of 47s, or 16
if we include the identity. The same can be done for SO(1.3) and SO(1.,4). We
have already seen the v, and how to take products of two different ones to get
o.'s. The product of all four gives

J0T15273 = s (4.137)
The remaining four can again either be written as products of three of the 5, or
as products or commutators of one of the v, with 45. However, in this case, we

should be a little careful with our use of €,,,\. As we are now using an indefinite



metric, the value of €,,,\ changes as we raise and lower indices. In particular,
2 y &
= — V123 (4.138)

so if we are to use this tensor we should be careful to point out what sign con-
vention we are using. If we adopt the convention that €y1a3 = 1, we have as the

final four matrices (the remaining o’s of SO(1,4)):

i / ‘\ A 378
(s 78] = 7€ 707 (4.139)

Finally. in the next chapter we will be considering a coset space for which the
broken generators are the o,5's. In the same way that for SU(2)/U(1) it proved
useful to have an expression for o,0,, it would be to our benefit in the next

chapter if we can now derive an expression for o,50,5:
Ou505 = (17;1’75)(171/“/5) = = YuVs VvV = s e (4140)

using the Clifford algebra (we keep the 155 rather than replacing it with -1 because
we want to maintain covariance on all our indices). We can write the product of

the ~’s as half the sum of the commutator and the anticommutator:

f

1 1 . L
TusOvs = S0s5{ % w} + 575500 1] = M50l — 1550, (4.141)

-~ P

From this we can see that

(05005) = 205500 (4.142)

(0-;4,5 05 ) -

b | =

and

5101 (4.143)
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Clifford Algebra Structures of Other SO(t,s) Groups

For each SO(2N) group, we can construct a set of products of the v's (including
the identity matrix and the %'s themselves) and by multiplying by i where appro-
priate we may make them all hermitian. For SO(4), as we have seen, there were
16 (including 1), while for SO(6) there are 64 - in general, there will be enough
to form a complete basis for the set of all hermitian matrices of the dimension of
the Weyl representation. (For example, the 16 matrices in the Clifford algebra
structure of SO(4) form a basis for the set of all hermitian 4 x 4 matrices, while
for SO(6) the Weyl representation is 8-dimensional - as we will see in Section 6.3 -
and the 64 products form a basis for the set of all hermitian 8 x 8 matrices.) The
procedure is much the same: you start with 1 and the 4’s and take products of
increasing numbers of (different) 77s, or equivalently take commutators and an-
ticommutators alternately. For matrices with more than N indices, the number
of indices may be reduced (as for 0,5 above) by contracting with an appropriate

e-tensor. The last of these is always proportional to von 1.

For SO(t,s) groups with an indefinite metric, the process is just the same; the
only difference is that the 4’s with spatial indices are antihermitian rather than

hermitian.



Chapter 5

SO(1,4)/SO(1,3)

5.1 Obtaining the Killing Vectors

5.1.1 Preliminaries

We have now established more than enough background to tackle our second
coset space. SO(1,4)/SO(1,3). We will see that this coset space shares many

of the features of SU(2)/U(1) and we will need very little of the machinery we

developed in the last chapter.

An element of G = SO(1,4) is usually, as we have already seen, written

i, AB i 3 5 5 i
—lw T:!B — e-—‘;(u}“”o’;w—{—u}“ J;LS‘*‘W)N’TS/J) — e_;_(

g — e WLIVU/,AU+2W;“D(T,{:5)

with an element of # = SO(1,3) written



but in order to identify L, we need to write ¢ in a form equivalent to (2.7). In
fact, we will subsume the factor of 2 resulting from the antisvmmetry into the

coset space parameters:

ioub i
~§w’ “0“59— 5w" O (

V62 4
S
—

g=e
so that L, defined by (2.12), is in this case
L =e 7" (5.3)

Our first task is to find the Killing vectors of the Goldstone fields M*® (remember,
there is one for each coset space parameter). We know how to do this if our coset
space admits the automorphism (2.41), so let us show that it does by decomposing

the commutation relations for the generators in the form (2.37)-(2.39):

[sz/- T/),\] = i(nupT;L,\ - 77;1./)ﬂ/,\ - 771/,\]14) + 77;1,\T1/p) (54)
(L Tos] = 10T ys — Mo Tos) (5.5)
[TN"’* Tp5] = "i7]55TL,p (36)

These clearly have the required Z» grading structure. This means that we can
use equation (2.49), or rather its equivalent for this situation:
JdL?

59L2 + L25£7~] - al‘/jﬁliﬁ AAB I{ifB ( )

T
-1
—

to determine the Killing vectors K“ﬁ;. (Here the A\4B’s are the parameters of the
transformation - the equivalent of the ¢' for SU(2)/U(1).) To do this, we must

of course find each of the other quantities in this equation. If we concentrate on

2]
Ut



the action under the subgroup H to start with, we see that the nature of dg is

obvious from (5.1):

i
S = — o, (53)
and, as h = h,
S5 = i)\““’ 5.6
0 = 5\ o (5.9)

P

We now want to find L* as a linear sum of the generators, as we did in Section
2.4.4. We start with L? given by the square of (5.3). which is an exponential of
w0 ,s. By using (4.143), (assuming the generators to be in the spinor represen-

tation), we see that

L,

(“’VNSO-LIS) = ;{"“"ug)O—HSﬂ ‘WVSUZ/E} = w

“5@»’/5775577“,,1 = ‘.u“;swﬂg,l (5.10)
As remarked in Section 4.1, this feature ensures that we will not need projection
operators. Indeed, it is remarkably similar to the case for SU(2)/U(1) and we
would expect the rest of the analysis to be along the same lines with an eventual
expression for L? looking very like (2.60). We therefore propose to split w*® into

a magnitude and a direction.

This is where the one extra subtlety of this coset space comes in. For SU(2)/U(1),
0 = 00, lay in a 2-dimensional subspace of the Lie algebra of SU(2), which has
positive definite metric. In this case. w*® is a vector-like part of the antisymmetric
5-tensor wB, that is. it is a tensor which is constrained such that its second
index lies in the x” direction. Because the 5-dimensional space it lives in has an
indefinite metric, we must be careful raising and lowering its indices, so we would
be unwise to treat it as a vector w*®). Indeed, in (5.10) we have kept the 5’s in

as (fixed) tensor indices which are raised and lowered with 1s5’s. (Note that this

36



practice means that, unlike indices which are summed over, we may have more
than one covariant and one contravariant 5 in a term.) Thus rather than dealing

uh

with a unit vector, we will introduce a unit tensor, n*”, so that

W= wnt (5.11)

“5 is timelike for some cosets and spacelike

As the metric is indefinite, the tensor w
for others. We therefore have a two-way choice: we may adopt a timelike unit
tensor, in which case for spacelike cosets w and the components of n*° will be
imaginery, or we may adopt a spacelike unit tensor, in which case for timelike
cosets w and the components of n*® will be imaginery. (Null cosets are a special
case which cannot be dealt with in this way. We clearly cannot write a timelike
or spacelike w*® as wn*® with n*® null, as then w? would have to be infinite;

conversely we cannot use a timelike or spacelike n#% for «*® null.) For now, we

will opt for a timelike unit tensor:
n*n,s =1 (5.12)

as this gives us the results which look most like those of SU(2)/U(1), though we
will describe in the final section of this chapter how the results would differ if we

had chosen a spacelike unit tensor.

With this definition

(71,“50“5)2 = 72“572“51 =1 (5.13)

(v 4]
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and then

[} = e iwrtou (5.14)
3 15 1 2 1 3.u1b =
= 1—-1wn"o,; — 5w 1+ iw o+ ... (5.15)
= lcosw—in"o,ssinw (5.16)
L2

We now just need Once again we let w*? and M* lie in the same direction.

GMRE

so thev share a unit vector:

ot
—
~1
—

M = Mn# (5.

This allows us to derive two identities analogous to those of SU(2)/U(1):

Jw dw (5.18)
. - = e s 5.18
AM»  dM "
on?? 1 . ,
R A N V- 3 = 1Q
A = [U((S“ n" N, ) (5.19)
Therefore
dL? L ) dew . sinw e s Slnw 5 dew
——— = —1n,ssinw— —10,5——— + iN,5n" 05 —— — N5 0,5 COS W
M #5 “o dM MM " UM S dM

(5.20)

5.1.2 An Aside: the unexpected projection operators of

SO(1,4)/SO(1,3)

Let us quickly note a property of this coset space which is at odds with what we
might have expected at this stage. An arbitrary unit vector of the coset space

may be written n*°c,5 and squares to the identity. In analogy with SU(2). this

o0
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may be written as the difference of two projection operators:

1 . ,
P+ = ; (1 -+ 77#00'“5) (521)
1 -
Pt o= (1 —n"0o.s5) (5.22)
so a vector of arbitrary length w is
w“SU“;; = wPt —wP~ (5.23)

However, we noted in Section 4.1 that in general, to express an n x n matrix as a
linear sum of projection operators. we will want a set of n projection operators,
but there are no two-dimensional representations of SO(1,4). Indeed, the spinor
representation of SO(1,4) is four-dimensional, so we would expect to need four
projection operators if we were dealing with w*?o,s in this representation. In

general, these would all have different coefficients in the linear sum.

The reason that we only need two projection operators in this case, with one
arbitrary invariant w, is that an arbitrary vector of SO(1,4)/SO(1.3) is not an
arbitrary 4 x 4 traceless. hermitian matrix. All the vectors of the coset space
belong to a special class of vectors. We shall look at such classes. or ‘strata’,
for the case of SU(N) algebras in Chapter 6, where we shall see examples of
subgroups of SO(6) which are entirely composed of vectors of one stratum. We
will return to this particular coset space in Section 9.6.2, where we will show how

all the vectors belong to the same special class.

5.1.3 The linear Killing vectors

We are now ready to substitute all the quantities we have found into (5.7). Using

(5.8), (5.9) and (5.16). we find that the left-hand side is a commutator, which we

89



can evaluate using (5.5) to get
SgL? 4+ L2671 = —iMn" sinw (1,05 — 10u,005) (5.24)

Using (5.20) for the right-hand side and equating coefficients of A" (which are,

of course, independent variables), we therefore find

o5 ) . dw sinw
N sin (N, 0us — Mp005) = | —11n,5 sinw=r + o5
\s  sinw \5 Cde |
—T 5N O')\g,—/\jt— + N5t Oyp COS x.d'd‘T] Xw,
(5.25)
Once again. we can take the trace of both sides to find that
nps b, =0 (5.26)
which we can substitute back in to get
po (. « — ! NG 5.27)
n (771//)011‘5 - 77;4/)01/5) - ﬁapg ‘;51/ (.),_,[
Finally, we take the scalar product with ¢*® which gives us
-5 ’ 5 5¢A 5¢N A PD SA CA s IQ
N, = Mna™(0,,650, — 1,,,050,)) = M™ (1,0, — 1,p0;) (5.28)
Note that this is. as should be expected, antisymmetric under p <+ v.
The transformation law for the Goldstone bosons is then
MY = MY = MY 4 XYM (1,,6) — 7,,0,) (5.29)
= MY+ N, M =M (5.30)
A 7AD a1y A J 05 3
= M +2X,M” (5.31)
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5.1.4 The non-linear Killing vectors

Now we turn to the transformations of the Goldstone fields under elements of the

coset space. From (5.3) we see that in this case.

11
e
[N}

Nl

S = 837 = e, 5
thus, using (4.143) and (5.16).
SgL* + L?6¢7! = —i/\“’5aﬂ5 cosw — 1/\“571#5 sinw (5.33)

Substituting this and (5.20) into (5.7), we obtain (by equating coefficients of A\**)

1 ) 1 dw i sinw
0,5 COSW — 10N ,5 SILW = —1in,5 SN w——o Tps 77—
! dM M
s sinw . dew | 5
—N N T~ i + 15N 0\ COSW I v
(5.34)
Taking traces (and rearranging) gives us
dM ,
p5 Eoax
— N5 = 71/75]‘“», ()3))

dew

which we can substitute back in to get

sinw .5 dAM \s  sinw n \5
O,5C08w = Op——N") — ——n, 507 0s——— + N5 0 5 COSW
5 2 v 5 7 2
M " de M
(5.36)
- dM -
-pb A o . A5 3 . A5
= Uﬁ,,.;[xﬂ:; = Mcotw(ous —nusn o) + T;zmn O\
oL
(5.37)
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Again. we can take a scalar product with ¢ to give us the Nilling vector:

. , . dA
(2N v D v5
K2 = M cotw(d, —n,sn"") + s
(e

- remarkably similar to (2.77) for SU(2)/U(1). Note that we could have used A\>*
instead of M in (5.32). We would then be finding the Killing vector AZ>. This
would interchange u5 <+ 5u in (5.34) and hence in (5.37). Contracting with o*?

would then give us

. dM
5 AT c B 5 .
Ky, = Mcotw(—0; —ns,n”) + ——nsz,n” (5.39)
dw
. 5 dM 5
= —Mcotw(d) —n,sn™) — —ET'I?,L[572,”° (5.40)
L

as could be expected. (Knowing that the Killing vector has this antisymmetry

will be important at the end of this chapter.)

5.2 Finding the Covariant Derivatives

Our next task is to construct a Lagrangian for SO(1.4)/SO(1.3), which. following
the prescription of Chapter 3, means calculating L~=1d, L. We start with L in the

trigonometric form

Ry - W . IS .
L =e 2777 — 1 cos 5~ "o 5 sin 5 (5.41)
The x-dependence is in the w and the n,s5, so the differential of this is
- 1 LW . LWL s 1 V5 W T
d,L = —;1 sin ;dﬂ‘w — 10,5 sin 3()“71 = g oys cos 3duw (5.42)

We now want to multiply by the inverse of (5.41) to get L7'9, L and simplify

the resulting expression; the stages of this calculation are precisely equivalent to
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those in equations {3.40)-(3.43). with the same trigonometric identities. but with
the product rule for the o’s now being (4.141) and with n*d,n, = 0 replaced by

n"9,n,5 = 0. The result is

1 1 o 5 W
1. 5 E . ; 5 . .9 5 .
L™ 0,L = —;n” o500 — 5 8inwo,; "7 —1isin 377”’0;172”50,),,
i w1 2 5,5 : L
— sin wyssn® 'm0 ,,0,w (5.43)

vh

We now note that in the final term. n”°n*” is symmetric under the interchange
of ¢ and v while ¢, is antisymmetric, so the last term is zero. Thus we split up

L', L into

a, = (n”d,w+sinwd,n")o,s (5.44)
5 /5 ¢ . I 5 y
= a = n"dw+sinwd,n” (5.45)
and
i o2 w pd j2%5) - .
—5Vu = —isin® Jssn "0,n" o, (5.46)

< L

We saw in Section 3.2 that tr(a*a,) o aiz¢”’ is an invariant. from which we

5
deduced that «!” has the right properties to be a covariant derivative. We also
remarked that the normalisation of vectors of special orthogonal algebras is dif-
ferent from the normalisation of vectors of SU(2)/U(1), for example - in this case,

the normalisation is given by (4.142):

N o M pBy 1D A M pD
tr(a’a, ) = 2a,5al, L Ops) = dasal (:

t
Uy
~1

—

(o

- . . . A TU5 . Y 8705
We now want to put the covariant derivative D, M"” x a!” into the form 9, M"* +

something. Again, we use the same techniques as for SU(2)/U(1) to obtain the
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replacements

. dw‘ ; ) 1 oo
O = 70 M = — [%aﬂ M (5.4%)
and

@Hfz”r \[(d“ M7 — 77,"50“}\/[) ”(dﬂj\]’” fn,,j()“ M*P) (5.49)

so that a’” becomes

vh du) wh fa Fp5 9]11&» b h p5 KK
ay = ﬁn 571,)5()‘1111”' i (0. M nm()ﬂj\[’ ) (5.50)
= lu) b W - .

= 9M7 (0 4 “;[ (87— n""n,5) (5.51)

Similarly, we can now write the covariant derivative for the standard fields as

D, =0, — ;V;,I‘ = — %[ sin® £775577 (0, M —n"d,M)o,, 0 (5.52)

ja §
wt
o
—

- again, the last term is zero because of the symmetry of n”®n"® and the antisym-

metry of o,,. so

i

M2

D, = dyih — P MM 5000 (5.53)

Once again, we will have a closer look at the term in the Lagrangian involving the

covariant derivative of the Goldstone fields. The quantities n””n 5 and 65 —n""n,s

which occur in @”® have the same properties as n“n; and 8% —n“n,, which we now
1t proj b b b

recognise as the properties of projection operators’.

'In Chapter 8 we will get a feel for why the projection operators of the adjoint represen-
tation emerge naturally in the expressions for the covariant derivatives and - for the case of
SU(N}) groups - we will see how sin and cos coefficients come to be associated with particular
combinations of these operators
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We thus find that

ot

1)

) . lw \? sinw\”
" vh _ apj\[ & “i[,\a C ’/\5 g,\ o _ o, AB 5.
a5, o501 o) " + Vi (07 —myn™”) (5

It makes sense to use the same normalisation for the fields as for SU(2)/U(1) and

to take

b
it
[ 4
—

tr(a’a,) (5.5

ool =

- . 1 5 1 5
AFVD 125 A AFVD J2 vh
DM = af? = SD'"MysD, M = Salisal® =

M & H

5.3 A useful double-check on the metric

From (5.54) it is clear that the metric for this coset space is given by

2 . 2
dw N Sin w ( ) (5.56)
G5 \s = | =—— | n,5m05 55770 — M p5N Az 5.56)
Gp5 M5 AM LD M 15571\ pPEITENS
However. we can check this using the following expression:
(g7HPC x KERY! (5.57)

where B, (" are coset space indices and / ranges over all of the group’s indices

and the inverse metric is defined by

—
ot
ot
[028]

~—

gaplg™")PC =69

Boulware and Brown[14] cite a similar expression, but we use the notation of an
inverse metric rather than a contravariant metric because in this thesis indices
are raised and lowered using the Minkowski (group) metric ;s rather than the
coset space metric. The construction of the metric from Killing vectors was first

performed by Isham[12] for the case of chiral groups and his expression for the



metric was used by Barnes, Dondi and Sarkar[18] in a similar manner to the

following.

For the coset space SO(1,4)/SO(1.3), (5.57) becomes

—1\v5 05 w5 105 AB __ 7.v5 1705 pb vb 1705 bp r.7vb rob pl EE
(¢7) o Niph = N h + A5k + AR (5.59)
As the non-linear Killing vectors are linear sums of the projection operators n””n s

~ o 5 . | . . . . . .
and é’p’ — n""n,s, squaring them in this way is trivial:

a

b
50
dw

5 105 pb b 1 rebBp oo ou, b5 | a2 2 KV 4y 5
KoK + KN = 207”7 | M7 cot” w(d), — nsn™?) + (

A’/;':{’](U-ﬁ 7 is not difficult to calculate either; with a little work one finds

V5 05 pA o ap2(, 55, o1 75 V5 o2 5 56
KNyVK PN = QM (P — 0Py = 2M Py (0} —nusn™) (5.61)

Adding these two together, we thus have

2
.1 - - E . . ” 5 dj\[ - .
Ry K AP = 274> [ M? (cot® w + 1)(0), — n,sn™”) + “d_’> 51
L

1

Tt

2
= : E 5 C‘L"\[ - .5 .
= 277”“775° M? cosec? w(0V —n,sn) + ( ) nsn” | (5.62)

g dw

The fact that this sum is still written in terms of projection operators also makes

inversion easy. If a vector can be written
1 12 p2
AP PP

its inverse is simply

1 1.
—P '+ —P? 4.,

C)l 2
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as can easily be seen:

2 2 1 Lo w .
(o' P14+ &* P> +...) <§P1+5-_2-P2+...> =P'4+P4... =1 (5.63)

The inverse of K43 K°° 48 which is proportional to the metric, is therefore

.9 2
sin”w < dew -
N L £ D
2o M55 (0 —n"n,s) + ( ) n* " n,s

M? dM
sinw dw\? i
=2 :"MT(U&S?L/U — NosNys) + (d;[> No51005 (5.64)

in agreement with (5.56).

5.4 Results with a spacelike unit tensor

Finally, we remark on how the calculations and results differ if we take n*® to be
spacelike rather than timelike. We start with the expression for L2, (5.16), which
changes in a very simple manner - the sin and cos are replaced by sinh and cosh.

The identity (5.13) just changes sign, while (5.19) becomes

In’? 1
OM= M

[}
N
(&1

~—

(8 4+ n""n,s) (5.6

Perhaps unsurprising, these changes have no overall impact on the linear Killing

vectors. However, the non-linear Killing vector becomes

dAM .

N2 = M cothw(d, + n,sn™) — 1—71“571”‘3 (5.66)
dw

The effect on the expression for L=, L (5.43) is just the same as for L7, the

sin and cos are replaced by sinh and cosh, while the identities (5.48) and (5.49)
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become

R dw s -
Oyw = —mn,ﬁdﬂ[w” (5.67)
and

. v5 l P 3 A 1,5 v5 P y /)5 AL S)
dn” = H(ONM' + 10,50, M) (5.68)

The final results are
D ,‘]1/5 — d /‘1/)5 _g vh Sinh“u X4 v5 3 (r 69)

il = 0,1 dj\[n N,5 + \—[((f + n"n,s) 5.6¢

D, = d 1 — —3-5[-,- sinh? %‘1'\[”50,,1\1”5%1,@ (5.70)

and

1 LA ATU5 l( fs FY; du) : L
§D’“ M,sD, M = 50‘ ﬂ[,),;d;,z\d’\r'% [— (dz\/[) 77p5n’\5

sinhw\ -
() (M)} 571)




Chapter 6

More Lie Algebras

So far we have studied two non-linear realisations based on the coset spaces
SU(2)/U(1) and (SO1,4)/SO(1.3). These both had the properties that the broken
generators all anticommute and the square of an arbitrary vector of the coset
space is proportional to 1. As remarked in Section 4.1 this vastly simplifies

calculations.

In the rest of this thesis we concentrate on SU(N) groups, in particular SU(4),
and by way of a homomorphism, on SO(G). The coset spaces of these groups
do not in general have these properties and we will see that trying to determine
the properties of the associated non-linear realisations is a different proposition
entirely. For a start, the Lie algebras we will be using have features which are
totally absent in those we have studied so far. Fortunately, these new features are
common to all of these coset spaces (when dressed in the appropriate language)

and this allows us to develop a standard set of techniques.

In this chapter, we will be looking at features of the Lie algebras of the groups
we intend to use, from a geometrical point of view. This study is very much self

contained and has been submitted as a paper entitled ‘How orbits of SU(N) can
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describe rotations in SO(6)" to the Journal of Physics A, (authors K. J. Barnes,

J. Hamilton-Charlton and T. R. Lawrence).

In the next chapter, we will go on to look at how to define tensor operators
for a general SU(N) group and their algebraic properties, which will allow us to
determine the covariant derivatives and metrics for the non-linear realisations of
SU(N) as described in Chapter 1: however, for now we limit our study to the
vectors of Lie algebras. We start by looking at the common features of the Lie

algebras of special unitary groups.

6.1 General SU(N)

The elements of any special unitary group may be written
P 12084 6.1
g=¢7 (6.1)

where the A\; are a set of N? — 1 traceless, hermitian N x N matrices which are
twice the generators T7. As we did in Section 4.2.1, we denote an arbitrary vector

of the Lie algebra
x:efT[:%m]:fo] (6.2)

with the scalar product of two such vectors given by (4.25). Like the o’s of SU(2),

the A’s form an orthonormal basis:

(M. Ap) =63 (6.3)
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and have the product rule

ArAy = 7\7(51J1 +di M A +ifr A (6.4)

where d;;™ and fr;% are respectively totally symmetric and totally antisymmet-
ric under rearrangements of 7,.J, A". (Note that for SU(2), the A; are the Pauli
matrices and the dj; % are all zero. For higher-dimensional SU(N), they are not

all zero.)

The group SU(N) has N — 1 diagonal A's, which are usually labelled As. As,
AMsy- oo s Axz_1. Any diagonal vector of the algebra can then be written as a

linear sum of these. For example, for SU(3), the diagonal \’s are

1 00 10 0
1 .
0 00 0 0 -2
Now if we act on these by conjugation by a group element ¢:
X — X = gxg~! (6.6)

we get new matrices with the same eigenvalues (this is once again a unitary
similarity transformation on Hermitian matrices). Because the eigenvalues of A3
and Ag are different, it is not possible to use a group element in this way to

transform one into the other.

We can effect all the possible unitary similarity transformations on a vector (say
A3) by acting on it with all the group elements by conjugation, which will give
us all the vectors in the algebra with the same eigenvalues (1, -1, 0). Thus under
this action of the group on its own algebra - which, as we have seen in SU(2)

is the action of the adjoint representation - the algebra falls into (is partitioned
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into) distinct orbits.

Two matrices have the same eigenvalues if they have the same characteristic
equation. The general characteristic equation for an N x N traceless, hermitian

matrix is
NV — ()X T = g (x)x N T — L —An(x)1 =0 (6.7)

where ~;(x) is invariant under the action of the group and is defined by

k=2
1 ~ .
w(x) =t x" = ux)x =0 (6.8)
=2
For SU(2) this is a quadratic equation
x? —7,(x)1 =0 (6.9)
with one invariant, the square of the length of x
I .
Y2 (X) = (X, X) = 5 frx” (6.10)

while for SU(3). for example, it is a cubic equation with the two invariants

Y2(x) = (x,x) and 43(x) = - trx” (6.11)

3

To proceed with the study of these Lie algebras. we turn to the work of Michel
and Radicati[27]. This work is based on the notion that when the symmetric
structure constants are non-zero. vectors in the space in general have non-trivial

anticommutators. Besides the .-algebra (2.2), one can then define another (lin-



early independent) algebra on the vector space based on the anticommutator:

Xyy = g{xy} — —1—1t1'(xy) (6.12)

This definition ensures that x,y is both hermitian and traceless and that this

relation is preserved under the group action:

- - VN - - . -
xvy = (9xg7 vlgyg™) = ——(9xyg~ " +gyxg™") - ey Y

VN A
= g(Xy +yx)g~ " — gg” 1tr(xy)
g(xy +yx)g \/—\—JJ (xy

2

L

= glxvy)g™' (6.13)

(this is obviously true of the ,-algebra as well). Furthermore, these are the only
linearly independent algebras on the space which are invariant under the action
of the group. Another way of saying this is that under the automorphism of the
algebra generated by the adjoint representation of SU(N), only operators of the

form

XTY = aXyy + X,y a, P eR (6.14)

are preserved and give a vector in the space for x and y. (For SU(2), xyy =0.)

6.1.1 r-vectors and g-vectors

For N > 2. (the cases for which there is a non-trivial y-algebra), there exist sets
of vectors with particular values of the N — I invariants which lead to a simpler

characteristic equation than the general case (6.7). One such set is the set of unit
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r-vectors, defined by

(6.16)

which has a quadratic characteristic equation:

N —4

S — (6.17

and, from (6.12), clearly commutes with r.

The beauty of this approach is that it is invariant under the group’s action on
the vector space - that is. it is independent of basis (as transforming from one set
of basis vectors to another corresponds to a similarity transformation). However.
many people are more at home working with components of vectors rather than
the index-free style we are using. We therefore look in Appendix 1 at what the
above relations imply for the components of the ¢-vectors and r-vectors of SU(3)

if we explicitly choose the basis of the Gell-Mann A-matrices.

Now SU(3) is a rank 2 group (this can be seen from the fact that there are
two diagonal generators). This means that if we take a vector x we can always
find another vector which commutes with it and - assuming them to be linearly
independent - we can then use these two vectors to construct a plane of mutu-
ally commuting vectors (an Abelian subalgebra). No other vectors in the SU(3)
algebra then commute with the entirety of this plane. Section I11.4 of [27] is con-
cerned with showing that in any such Cartan plane there are three unit positive

(-vectors and six unit r-vectors, which are the roots of SU(3) for the plane. (We
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also show in Appendix 1 that (r,q,) = 0 so that for any Cartan plane, a unit

r-vector and its corresponding ¢-vector in that plane form an orthonormal basis.)

In general for SU(N), as Michel and Radicati state in Appendix 3 of [27], the
r-vectors of any Cartan (maximal Abelian) subspace of SU(N) are the roots of
that space. For the diagonal Cartan subspace, which we denote Cq, one way in
which these can be found is to construct the weights using the eigenvalues of the
diagonal generators and take the differences of them - we will see this for SU(4)
in Section 6.2. For SU(3), this procedure vields the information that one of the

diagonal A's, A3, is a unit r-vector, with the other one. As, its associated ¢-vector.

It is important to note that as the r-vectors are defined in terms of the invari-
ants, under the group action an r-vector is transformed into another r-vector.
Furthermore, all lengths, scalar products, - and -relations are preserved - in
particular, g-vectors are transformed into other g-vectors and an orthonormal

basis is transformed into another orthonormal basis.

6.1.2 Orbits and Strata

[t should be noted that for any vector x not every group element acting on it

transforms it into another vector. If a group element g commutes with it,
x =+ x =gxg ' =xg¢7" =x (6.18)

Such elements form a group called the little group or isotropy group of X, or in
terms of the group action on the vector space they are the stabiliser of x under

this action. We can always express such an element as an exponential of a second



vector,

g=e" (6.19)

and by considering the power expansion of this it is clear that ¢ commutes with
x if and only if y commutes with x. So the isotropy group of x is just a subgroup
of SU(N) generated by the centraliser of x in the algebra (the set of vectors which

commute with it).

The centraliser of a vector depends on its eigenvalues. We can see this by looking
at diagonal vectors of SU(3). For example, if we take a diagonal vector whose
eigenvalues are all different (such as A3), it will obviously commute with any other
diagonal matrix. It will not, however, commute with any generator of an SU(2)

subgroup with off-diagonal components, such as

00 0
Ar=10 0 —i
0« 0

because (due to the dimension of the fundamental representation of SU(2)) any
‘identity” element for such a subgroup must have at least two 1's along the leading
diagonal, or at any rate two eigenvalues of the same value. So the largest sub-
algebra such a vector commutes with is the (Cartan) subalgebra of all diagonal
vectors, the algebra of U(1) © U(1). Hence the stabiliser of any vector with all

eigenvalues different 1s U(1) & U(1).

As, however, has a repeated eigenvalue. This means that it acts as an identity
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for the SU(2) group generated by

01 0 0 —i 0 1 00
A= 100 ]. A= i 00 ], A=10-10
0 0 0 0 00 0 0 0

as well as with the U(1) it generates itself. The isotropy group for such a vector
with a repeated eigenvalue is therefore SU(2)U(1)~U(2). Clearly the centraliser
of two equivalent matrices is the same (upto equivalence) as the ,-algebra is pre-
served under similarity transformations, so all the vectors in one orbit necessarily
have the same stabiliser. The orbits thus fall into two distinct sets - those with

a U(1) @ U(1) stabiliser and those with a U(2) stabiliser. These sets are known

as ‘strata’.

It is worth noting that for any SU(N) there is always one stratum which has
as its isotropy group SU(N-1)@U(1)~U(N-1) and one stratum which has as its
isotropy group the Cartan subgroup U(1)@U(1)...U(1), known as the ‘generic’

stratum (as discussed in [33]).

6.2 SU(4)

We now want to apply all of the above theory for SU(4), which has a 15-
dimensional Lie algebra. The A's which form a basis for this space have the

product rule

1 . .
AAg = 551J1 +drM A+ i A (6.20)
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SO the anticol]ll]lllta.tors are non-zero.:
A A =651+ 2dr" A (6.21)

Three of these A's are diagonal:

1 00 0 10 00
0 —1 0 0 11 o1 00
/\3: /\8:—
0 00 0 V3l o0 -2 0
0 00 0 00 00
100 0
10 0
A5 =

Sil-
fanpY
< [ <
<o
[—
[aun}

(for an explicit matrix representation of all fifteen based on the Gell-Mann A’s of

SU(3), see, for example, [34]).

For an arbitrary vector in the Lie algebra, the characteristic equation is

with v3(x) and ~3(x) given by (6.11) and
Lo 2 1 4 2,2 .
v(x) = T (x* — y2(x)x7) = Ztrx — —(trx”*) (6.23)

As the anticommutators are non-zero, there is a -product given by (6.12) with



N=4:

xvy = {x.y} - (x,y)1 (6.24)

- in particular,

o
ot
—

XyX = 2x% — 75(x)1 (6.:

6.2.1 r-vectors and g-vectors of (g

We have a set of unit r-vectors defined by (6.15), so their characteristic equation

bhecomes

xAx?=1)=0 (6.26)

- their eigenvalues are thus 1, -1, 0, 0.

For the diagonal Clartan subspace Cq, which in this case is 3-dimensional, we can
show that this is in agreement with the statement that the r-vectors are the roots

of the subspace by using the method outlined in Section 6.1.1.

The weights of Cq are constructed from the eigenvalues of A, As and Ays:

1 (1 1 1 ) 5 < 11 1 ) (6.27)
o= - —. vio=1| -, —, 2
2 23 2V6 2723 2V6
‘ 1 1 3
o= <O.————.—-—————> v = (O 0. — ) (6.28)
V3 2V6 26
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The roots are then just the differences of these:

1 1 :

137 = 4(1.0.0) 41— (3\/T§O> (6.29)
. 11 2 , 1

:I:,U’hl = -+ (j‘, — j") :|:523 =+ (——ﬁ()) (6 30)

2 92v/3 3 202

11 2 1 2

+3% = £ -2 ——=.4/= + 3 =410, ———,4/= 6.31
" ( 2 23 3) ‘ V3 V3 (6:31)

0 0 0 0
2 99, 1 3 0 1 0 0O
r = (37)3As + (3%)sAs + (37)15015 = —;)\3 + {As =
< = 0 0 -1 0
00 00
(6.32)
Similarly,
1 0 00 1 000
1 3 0 0 0 0 -1 0 0
ry = ;/\3 + 4% = rs = \; =
= = 0 0 =1 0 0 0 0 0
0 0 0 0 0 0 0 0
(6.33)

(these are the three diagonal unit 1-vectors of the SU(3) subgroup generated by

/\1.‘)\2.‘.. ,/\g)

100 0

SV BN 000 0 .

'y = Azt oA T\ A = 5.3+
27 2v3 37 000 0
00 0 —1

110



000 0
S N Aﬁfm: 010 0 (6.35)
2793 3 000 0
[ 0
0
0

00 —1
00 0
—As + O/\ 00 / (6.36)
g = 8 15 = 0.2
f 001 0
00 0 —1
Figure 6.1: The SU(4) root lattice
To obtain the g-vectors of Cq, we just use (6.16) with N=4:
-1 0 0 O
1 1 010 O (6.37)
gL = —z=rhvlt = —= 5.3
V2 V2 001 o
00 0 —1
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1 0 -1 0 0 1 01 0 0 (6.33)
Q2 = —= Qs = —= D¢
V2010 01 0 V2l o0 -1 0
0 0 0 —1 00 0 -1
Qs = —qu qs = —q2 Qs = —ds3 (6.39)
Note that for each of these.
, 1 -
q = 31 = (q.q) = (6.40)
but also. from (6.25).
qug =0 (6.41)

in agreement with (6.17). Note that each ¢-vector acts as an identity for its

r-vector (upto a factor of 1//2):

1
= —=T (6.42
ar =5 )
so each 1-vector is orthogonal to its associated ¢-vector. (Indeed. a g-vector such

as gz must be orthogonal to both r3 and rg, as g = —qs.)

An r-vector and its associated ¢-vector thus form an orthonormal basis for a plane,
but to form a complete basis for Cq we clearly need three linearly independent

vectors. The most obvious set that comes to mind is the set of three independent



diagonal g-vectors, qi,qs. qs. Indeed,

-1.00 0 100 0
1 1| o010 o0 0 —1 0 o
(di.qz) = Str]g (6.43)
= =] o001 0 0 01 0
000 —1 0 00 —1
-1 000
1 0 -1 00 ‘
= Jtr =0 (6.44)
0 010
0 001

and similarly for (q;.qs) and (qz, g3), so they form an orthonormal set. We can
therefore express any vectors of the subspace as linear combinations of these three

¢-vectors. The vectors we have considered so far are

e (6.45)
As = %(7% i — d2) (6.46)
Ms = %(qﬁqwqg) (6.47)
| | .
ry = 75(013 qz) ry = ﬁ(%Jrq?) (6.43)
ry = %(%—Oh) rs = %(CB‘FOH) (6.49)
ko= %(qg—qn ro = %(qw—ql) (6.50)
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6.2.2 Non-diagonal Cartan Subspaces

We can consider non-diagonal Cartan subspaces by looking at what happens to Cq
under the group action. Recall that all -relations are preserved under the group
action, so the Cartan subalgebra is preserved. This means that Cq is transformed
into another Cartan subspace, and as stated in Section 6.1.1, any orthonormal
basis we take for Cq4 is transformed into an orthonormal basis for the new Cartan

subspace.

Furthermore. as any vector x in the algebra can be diagonalised to one lying in
Cq by the action of the appropriate group element g, it follows that by applying
the inverse transformation to Cq we get the Cartan subspace containing x. Thus
we can obtain any Cartan subspace by acting on Cq with the appropriate group

element.

If. as above. we take the set q; = qi.qs2,qs to be our orthonormal basis for
Cq, under the group action this is transformed into another set of orthonormal

g-vectors (see Figure 6.2).

x = x' = gxg™!

Figure 6.2: Transformation of q; under the group action
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Hence we see that any vector can be written as a linear sum of three ¢-vectors:

a; = gy’ (6.51)
a4y = gq297" (6.52)
d; = 939 (6.53)

with the appropriate g¢.

The group action also preserves the -relations of the vectors. As the -algebra
is linear, we only need to consider the -relations of the g-vectors we are using as

a basis. For commuting, orthogonal vectors, (6.24) becomes

Xy = 2Xy (6.54)
then using (6.37)-(6.38) we find
anvg: = —V2as (6.55)
Qvas = —V2q; (6.56)
Qevqs = —\/5011 (6.57)

or using the tensor 1, introduced in [27],
5ok =g
and; = =2 (6.58)

(this tensor acts like the modulus of ¢;;: it takes the value 1 if ¢, j, k are all

different, otherwise it takes the value 0).



6.2.3 Orbits and Strata

As pointed out in [33], in SU(4) there are four strata. We shall label them the

g-stratum (in analogy with [27]), the r- s- and t-strata.

i) g-stratum

This stratum is composed of vectors with two distinct eigenvalues, both with a
multiplicity of 2. Remembering they must be traceless, this means that they

must diagonalise to the form

a 0 0 0
0 «a 0 0 B
0 0 —«a 0
0 0 0 —a

which is the general form of a ¢-vector. Hence every vector in this stratum is a

g-vector. d commutes with the SU(2) group generated by

0100 0 —1 0 0 1 0 00
1 000 i 000 0 -1 00

)\1 — )\2 = /\3 —
0000 0 0 00 0 0 00
0000 0 000 0 0 0 0

and with the SU(2) group generated by

0000 000 0 000 O
0 0 000 0 0 00 O

)\13 - )\14 = g =
0 0 0 1 0 0 0 —i 001 O
001 0 00 1 0 00 0 -1
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as well as with the U(1) it generates itself. The isotropy group of the g-stratum

is therefore SU(2) @ SU(2) & U(1).

As all g-vectors of a given length are related by similarity transformations, the
g-stratum contains one orbit for each length of ¢-vector. An alternative way to
see this is by looking at the values of the three invariants v,(q). v3(q) and v4(q).
Using the fact that each ¢-vector squares to %172(61) (which can be obtained from

(6.25) and (6.41) ). we see that
a(q) =0 (6.60)
Similarly. from the characteristic equation and the square of q, we obtain
yald) = =~ (y2(q))” (6.61)

so two ¢-vectors with the same length have the same characteristic equation and
therefore lie in the same orbit. (For example, we can act upon qz by conjugation

with the special unitary - and orthogonal - matrix

1 000
0010
00 01
01 00

to get qa.)
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i) r-stratum

This stratum contains r-vectors such as

000 O

000 O
g =

001 0

000 -1

but it also contains other vectors with the same multiplicities of eigenvalues, such

as

10 00 2 000
N 0 -2 0 0
VBl o0 -2 0 0 030

00 00 0 00 1

All three of these commute with the SU(2) group generated by Ay, Ay, As. They
also commute with the U(1) they generate themselves as well as with a U(1) group
generated by one other linearly independent vector. For example, rg commutes
with the SU(2) group, its own U(1) group and the U({1) group generated by its
associated q-vector, qz = —qg. The isotropy group of the r-stratum is therefore

SU(2) ¢ U(l) @ U(1).

The above three matrices have different eigenvalues and therefore different chai-
acteristic equations, or equivalently different values of 44, 73 and 74, as can easily
be verified. In particular. unit r-vectors by definition have 3 = =4 = 0. We
may ask what the consequences of these conditions are (individually) for the

eigenvalues. Firstly, if v4 = 0, the characteristic equation becomes

X(x7 — 72(x)x — y3(x)) = 0 (6.62)



so one eigenvalue is zero. Secondly, if 73 = 0, the characteristic equation becomes
4 2 .
X* — Y (x)x® — 4 (x)1 =0 (6.63)

. - . ) 7« 2 »
- a quadratic equation in x*. This only has two roots. so x* can have at most

two eigenvalues, for example

a2 0 0 0

R 0 « 0 0
X =

0 0 b 0

0 0 0 b

By removing the trace from this, we see that xyx is a ¢-vector. For x in the

r-stratum. this implies that x has the form

a 0 0 0
0 a O 0
X =
00 b6 0
0 0 0 =b
where, to ensure the tracelessness of x,
a+a+b—-—>b=2a=0=a=0 (6.64)

hence x is an r-vector. (This is obviously true for non-diagonal vectors as well as

diagonal ones.)

Finally. if 44 = —3 # 0, which is the case for the last of the above three matrices,

the characteristic equation becomes

(x — 1)(x* +x* = 43(x)1) = 0 (6.65)
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so one of the eigenvalues is 1.

iii) s-stratum

This stratum is composed of vectors with a triple eigenvalue. From the trace-
lessness condition, we find that there are only eight diagonal unit vectors in this

stratum:

30 0 0
1 0 -1 0 0 1
“=“Zlo o -1 ol ﬁ(—ql + q2 +a3) (6.66)
0 0 0 -1
-1 0 0 0
1 03 0 0 1
S2 = 76 00 -1 o = %(Oh — Q2+ qs) (6.67)
00 0 —1
—1 00 O
1 0 -1 0 0 1 -
S3 = 7 0 03 0 = ﬁ(Q1+Q2—QB) (6.63)
0 0 0 —1
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Lp oot oo L ) (6.69)
S¢ = = ==l - Q2 ot
V6l 0 0 -1 0 V3 ’
0 0 0 3

as well as —sq, —83, —S3 and —s; = A5

For any vector in this stratum. there is a similarity transformation which diago-

nalises it to

a 0 0 0
0 a« 0 0
0 0 « 0
0 0 0 —3a

where « is a real number. Calculating the invariants for this vector, we find they

are
. 2 3 a4
v2 = 6a”, v3 = —3a”, 74 = 3a

Clearly, vectors with a triple eigenvalue « and those with a triple eigenvalue —a
have the same value of 42 (the same length) and the same value of 74, but their
values of 3 have opposite signs. Thus for a given length of vector there are two
distinct orbits in this stratum and v; distinguishes between them. This is much

the same as the situation for ¢-vectors in SU(3), as discussed in [27].

Finally. using the same arguments as for the previous two strata, the isotropy
A g g 1
group of this stratum is SU(3) @ U(1) (recall it was noted in Section 6.1.2 that

there is always such a stratum).
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iv) t-stratum

This is the generic stratum: it is composed of vectors with all eigenvalues different,

for example

10 00 1 00 0
02 00 0 -1 0 0
00 -3 0| 0 02 0
00 00 0 00 -2

For the second of these, v = 0. This is true for any vector which diagonalises to

the form

a 0 0 0

0 —a 0 0
X =

0 0 6 0

0 0 0 —=b

so for any such vector xyx is a ¢-vector.

Clearly vectors in this stratum only commute with the Cartan subgroup, i.e. the

isotropy group i1s U(1) = U(1) & U(1).

6.3 SO(6)

6.3.1 Spinor representations

The elements of SO(6) take the form (4.81), where the parameters w?

and the
generators T4p are. as always, antisymmetric under the interchange of A and

B, which run 1,...,6. The generators and o’s again satisfy the commutation



relations (4.82) and (4.90).

SO(6) has two 2°71 = 4-dimensional spinor representations. For the direct sum
of these we can construct six y-matrices which again obey the Clifford algebra
(4.83). To find these. we take the ~’s of SO(5) to be the A“(ql) of the method
described in Section 4.4.1 and use this inductive method to obtain the gammas

of SO(7):

0 0 0 -0 0 0 0 11
0 0 o 0 0 0 i1 0
= py = (6.70)
0 o 0 0 0 —11 0 0
—0; 0 0 0 —i1 0 0 O
0 0 11 0 0 01 0
0 0 0 —i1 000 1 N
s = Y6 = (611)
—i1 0 0 0 1 0 0 0
0 i1 0 0 01 0 0
1 0 0 0
0 1 0 0 .
yo= (6.72)
0 0 -1 0
0 0 0 —1

Again we can take products of the first six of these to obtain the ¢’s for the Weyl

representation and use the last to construct the projection operators

1000
1 010 0 .
Pa=5 (1475 = (6.73)
2 0000
0000
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(6.74)

o o o O
o O o O
o = o O
o o O

with which we can project out the o’s for the two spinor representations. We

find that the o’s for the right-handed spinor are

of =a ol = (6.75)
A 0 o 0 —o;
0 —o; 0 11
oh = oit = (6.76)
0 1o : 0 1 0
ol = oft = ok (6.77)
—ia; 0 1 0 0 -1
while the o’s for the left-handed spinor are
o 0 o; 0
of =t | oh = (6.75)
( 0 oy 0 —o
0 —; 0 11 .
ok = ol = (6.79)
—0; 0 —il 0
0 —io; 0 -1 -1 0 s
o = ok = ok = (6.80)
io; 0 -1 0 0 1

6.3.2 Connections with SO(4)

All of the above matrices are 4 x 4 traceless hermitian matrices, so they must lie in
the Clifford algebra structure of SO(4), or alternatively. in the algebra of SU(4).

In this subsection, we identify each of the ¢’s of the two spinor representations
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with the matrices of the Clifford algebra of SO(4).

We start by noting that the o,, in the above two spinor representations which
generate the subgroup of rotations in the first four dimensions - we will call this
subgroup H - have precisely the same form as they do in the Weyl representa-
tion of SO(4) (see (4.102)). Indeed, together with the o5 they form an SO(5)
subgroup, so we might expect the above o,5 to be the 0,5 discussed in Section

4.4.3; if we commute the appropriate 5's in (4.101) we see this is correct.

This means by elimination that o,s and 055 must be linear combinations of other
matrices of the Clifford algebra structure, i.e. the ~'s of SO(5). In fact. by
inspection, we see that for the right-handed spinor, the o, are just the 7, of
SO(4) and similarly os6 is the 45 of SO(4). with signs reversed for the left-handed

spinor.

6.3.3 The geometry of the algebra of SU(4) in an SO(6)

basis

We have shown that the o's of the spinor representations of SO(6) form a basis
for the space of all 4 x 4 traceless Hermitian matrices. This means that there is
a one-to-one mapping between these and the A's of SU(4) - this can be thought
of as a change of axes in the algebra. (Incidentally, this mapping preserves the
commutation relations - the algebras of SU(4) and SO(6) are then said to be
isomorphic!, which in this case gives a homomorphism between the two groups.)
We should therefore be able to couch all of the results we obtained for SU(4) in
the language of SO(6). It turns out that this is remarkably easy and in many

ways this is the more natural description.

1See, for example, Vol. 2 of [16]



The obvious place to start is with the diagonal Cartan subspace. For 5SU(4).
we found three q-vectors in this space - these are, upto a factor, precisely the

diagonal generators of SO(6):

1 o3 0 1 ,
q: = —F= = —=012 (661)
\/5 0 o3 2
1 03 0 1
q] o e = _.,___,_0-34 (652)
1 0
L ~1ﬁ (6.83)

Using (6.45)-(6.47) then gives us the mapping between the diagonal SO(6) gen-

erators and the diagonal SU(4) generators:

1 -
Az = ;(012+034) (6.34)
1 1 Con
b= glont )+ ol (6.85)
1 O
Ms = —=(012 — oas + i) (6.86)

\/6

We then have the r-vectors. Two of these. rs and rg, can be written in terms of

q; and qz. l.e. can be written in terms of the diagonal generators of H:

1 1 * o
r3; = 7§(CI2—(311) = 5(012—1*0’34) (6.87)
o - (6.88)
rg = \/§(CI2 +q1) = 2<0'12 0341) =

- these are what we called ot and ol in Section 4.4.2. Similarly, the other diagonal

1-vectors are sums and differences of the diagonal SO(6) generators, for example

1 1
ry; = —_)(q:s —qp) = :;((734 + Uria)



- if we consider other SO(4) subgroups. e.g. in the (a3, 2y, vs,vs)-space, these
are then the corresponding SU(2)g and SU(2), diagonal generators. ¢, and
ri.Ts,...Tg are shown in this basis in Figure 6.3 (the r-vectors given by the

negatives of these are omitted).

034

Figure 6.3: Diagonal ¢-vectors and r-vectors in the SO(6) basis

v-relations between o’s

We now turn to non-diagonal vectors. A key to this is looking at SU(2) subgroups
of SO(6). Start by noting that for each generator in the Weyl representation, as

the v's anticommute and square to the identity.

(010) = (—ivma)? = =g (6.89)

Yy =1 (6.90)

(with no sums) so for the two spinor representations, it is also true that the

generators square to the identity:

(ofy) =(op))’ =1 (6.91)



This has an interesting consequence:

. 1 = 1 i
OrvO1] = 2(0[])2 — ;tl‘(O']J)Zl =21 - 5 x 41 =0 (6.92)

4

i.e. all SO(6) generators are g-vectors?.

We then note that sets of generators such as {044, 25, 045 } form SO(3) subgroups
of SO(6) (rotations in the (x4, x4, 25)-subspace). Now SO(3) ~ SU(2), and we
know that upto an overall length, all the vectors in an SU(2) algebra have the
same eigenvalues (lie in the same orbit). This means that in any SO(3) subgroup,
all the vectors are ¢-vectors, and for any pair of generators which share an index,
say o4p and oac, (e.g. 094 and oa5), their y-product is zero as we can always

find an SO(3) subgroup they fall in. {oap,04c.0pc}:
orvoin =0 (6.93)

(no sum)

Note that this implies that for any SO(3) subgroup, 73 = 0 and 74 = —172. 80
there is only one independent invariant which varies from vector to vector. This
is one of many cases we will see in which a subspace of the algebra has fewer
arbitrary invariants than the algebra as a whole (this is, in fact, why we only

needed one invariant for SO(1,4)/S0(1,3). as we shall see in Section 9.6.2).

Now consider two generators with all indices different, for example o4 and
035. They are two mutually commuting generators of an SO(4) subgroup, <
013, O14, 015, O34, O35, 045 >. They satisfy o75v077 = 0 (no sum) and oyjaorr = 0,

so a unitary transformation can be used to transform them into another pair

of mutually commuting ¢-vectors. We could, for example. diagonalise them, to

92 .. - . .
“we only explicitly use the R and L superscripts when they are required for an expression
to make sense - in general, it is clear which representation is being used from the context



get two of the three diagonal ¢-vectors (of the same length). If we do this to
obtain, for example, 013 and o34, we can see from the algebra that applying this

transformation to the entire SO(4) subgroup will give us the SO(4) subgroup H.

Whichever generators we get after diagonalising 014 and o35, we know from
(6.55)-(6.57) that taking their -product we get the other diagonal generator
which generates the SO(2) subgroup orthogonal to the SO(4) the first two lie in
(upto a factor). All this is obviously preserved under the unitary transforma-
tion, so the y-product of 014 and o35 generates an SO(2) subgroup orthogonal to

< 013,014 015, 034, 035. 045 >, 1.€. T14y035 X T,

So we know that if o7y and opp have any indices in common, oryvorr = 0.
but if they do not, orjvorr x oy, where M. N # [, J K., L. To find the
proportionality. we go back to the S-dimensional Weyl representation. It can
be shown using the Clifford algebra and the orthogonality of the o’s that for

I, J, K, L all different,

1

{orokn} — s trlop.oxL)l = =2917767L (6.94)
For example.
1 ; e
{o12. 035} — T)'m'(012~035)1 = 291727375 (6.95)
However, in the same way that for SO(4) we had v5 = —~;v27374, for SO(6) we
have
i AN 1 0 -
: _ Y wKLMN, R
Y7 = 177273747576 = € JIVIVR VLYMN = (6.96)
6. 0 —1

and we know from the Clifford algebra that the 4's anticommute with each other

and square to the identity. We can use this information to obtain any string of
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four 4's such as (6.95) as a product of 77 and a g-matrix:

g N Ny N N L N Y,

—V7046 = —172730475 V6406 — T V1727375 (6.97)

Observe that every anticommutation introduces a minus sign, so in general we

have

1 NN .
{or.oxLy — stelo oxL)l = eyrr™ " y70mN (6.93)
R
- a T
MN AN .
= et . (6.99)
0 —oxN

for I..J. . L all different. (The factor of 2 in the right-hand side of (6.95) re-
sults from the fact that ;044 is also included in the sum.) This implies for the

individual spinor representations, together with (6.93), that

R _R ) MN _R .
OrpORL = €KL OnN (6.100)
and
L L CMN L .
OrivOKNL = —€IJKL Oxn (6.101)

Thus on changing from a basis where the group’s parameters have a single vec-
tor index. such as the basis of the A's, to the SO(6) basis where they have an
antisymmetric pair of indices, we are replacing the totally symmetric structure

constant dj;r with the totally antisymmetric tensor of rank six, erjnparn-

Note that among other things, these equations contain the information that if
we apply the algebra (6.24) to the vectors of the Weyl representation of 5O(4) it
does not close. Indeed, the Clifford algebra structure of SO(4) can be defined as

the minimal extension of this vector space such that the algebra does close.
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r-vectors and g-vectors in SO(4) subgroups

We have begun to see the power of studying the geometry of this Lie algebra
in the SO(6) basis - so far we have seen that each ‘basis vector’ is a ¢-vector
and the symmetric structure constants take a remarkably simple form. We can
gain further insight into how the structure of this algebra can be described by

rotations by looking at SO(4) subgroups of SO(6).

Every SO(4) subgroup is homomorphic to SU(2) © SU(2) and we know from H
how to take orthogonal combinations of commuting SO(4) generators (¢-vectors)
to get the SU(2)g & SU(2)L generators (r-vectors). We also know that all vectors
of a given length in one of these SU(2) subgroups lie in the same orbit. so by
rotating rs we see that all vectors of the form n®'o® (in the ST7(2)g subgroup) are
r-vectors and similarly all SU(2)1, vectors are r-vectors®. This is obviously true of
the SU(2)r and SU(2)L, vectors of any SO(4) subgroup of SO(6). Furthermore, by
applying these SU(2)g and SU(2)g, rotations to q = \/13(0'3R +ol) independently,

we see that any vector that has ‘equal parts” in SU(2)g and SU(2):
q=0(n%ol + 0ol

(i.e. its SU(2)g and SU(2), components have equal magnitude) is a g-vector.

Let us write this expression explicitly for a g-vector in H in terms of o7;'s:

(77R1(073 + o) + nt (0'31 + o24) + 1 3(0'12 + 034)

[SUR IS

+77L1(023—014)—|—n (J;1~J>4)+77 o1y — 034)) (6.102)

SRR

((77R1 + ntYous + (P2 4+ oy, + (nf? 4 "o,

+(n™ — "o+ (0 = Moy 4 (0B — 2M)osy)  (6.103)

3These subalgebras therefore also only have one arbitrary invariant, -

131



There are a number of interesting examples of such ¢-vectors obtained by equating
components of nft and n}:

R L 1 2 3
n, =n; =mn;: q =10 (n"oy3+n’os +n’ops)

i

- any element of the vector part of ‘H

R L 1 2 3
n; = -—n; =n;: q= A (n O14 + 17004 + 1 034)
- any element of the axial part of H
R L R L R L R1 R2 R3
ny =Ny = —Ny. Ny = —Ng q=>~0 (n O+ 1 Cogy 0 0sy)
- any element of SO(3) in (a3, 3, v4)-space
R L R L R L R1 R2 R3
ny = -—ny.ny =ngong =ng . q=0(n"oy+ 0o +non)
- any element of H/above SO(3)
R L R L R L. 4 (.RI _R2 R3
Ny = —npong =ng,ny =—ng . q=0(n "oy +n oy +n o)
- any element of SO(3) in (xy, a3, v4)-space
i ‘ -
it =nl ol = —abnl =0l q =0 (nMoy + Mo + nfop,)
- any element of H/above SO(3)
R L R L R L R1 R2 R3
ny =N Ny = N5, Ny T Nyl q="0n"ou+noutn o12)
- any element of SO(3) in (2, 23, v4)-space
R L R LR L R1 R2 R3
Ny = Ny.ny = N5 Ng = gl q="0(n"o+n" 03 +n O341)

- any element of H/above 50(3)

Note that unitary transformations in (the adjoint representation of) the SU(2)r
subgroup of SO(6) transform one SU(2)g vector into another, but there exist
other unitary transformations in SO(6) which transform an S{/(2)g vector into
a vector in the corresponding S{7(2)y, subgroup or even a vector in a completely
different SU(2) subgroup, as all the unit r-vectors in SO(6) lie in the same orbit
(as their eigenvalues are the same). Similarly, acting on a g-vector in ‘H with a

unitary transformation in ‘H &~ SI7(2)g © SU/(2)y, will transform it into another
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g-vector in ‘H. but there exist SO(6) transformations which will transform it into

a g-vector in a completely different SO(4) subgroup.

Commuting sets of vectors

Finally, if one wishes to make use of all of this theory, it is usually important to
have a clear and thorough understanding of which vectors of the algebra commute.
It is all too easy, when considering all the subgroups of rotations in SO(6), to
get confused about which vectors commute, so in this subsection we present this
problem and its solutions as clearly and precisely as possible. We have already
found the centralisers of the various strata in Section 6.2.3, but it would be helpful

to review this in the language we have used in this section.

Firstly we took as an example of a ¢-vector the matrix

1 0 0 0

0 1 0 0
d=u«

0 0 —1 0

00 0 —1

which is clearly just a multiple of o55. We observed that, besides the U(1) =~
SO(2) group it generates, it commutes with two SU(2) groups, which we are now
calling SU(2)g and SU(2)r; it should be noted that these two make up H. the
SO(4) orthogonal to this subgroup. So the isotropy group is SU(2) © SU(2) &

U(1) or SO(4) = SO(2).

For the r-vectors, we looked most closely at rg. We noted that it commutes with
the whole of SU(2)r. as well as with the U(1) group it generates itself, which is
the diagonal part of S{/(2)p. Finally, it commutes with its associated ¢-vector,

which is, upto a factor, os6 - this clearly acts as an identity for both SU(2) groups,
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to which it is orthogonal.

We can now think of picking a vector in the algebra, choosing an orthogonal
vector it commutes with and then picking a third vector which is orthogonal to
both of the first two and commutes with them. For example, we can start with
a g-vector. We have already found that any orthogonal vector which commutes
with it must lie in the algebra of the SO(4) which commutes with the SO(2)
it generates. However, we have the whole SO(4) space to choose from, which
contains ¢-vectors, r-vectors and vectors which are neither. If we pick one of the
(-vectors in this SO(4) as our second vector, the third must be a vector in the
SO(4) which commutes with it and is orthogonal to it. This uniquely defines
a third ¢-vector (upto a change of length) - we can see this from o3, whose
centraliser in H is the U(1) @ U(1) generated by oy, and o34. However, if we
pick an r-vector as our second vector, this is a vector in a right (or left) SU(2)
subgroup of the SO(4) and commutes with the whole of the left (or right) SU(2)
subgroup, so although we know our third vector must be another r-vector, we

have the whole of an SU(2) subgroup to choose from.

Now start with an r-vector. Its isotropy group is SU(2) @ U(1) & U(1). where the
algebra of the SU(2) is composed entirely of r-vectors and the U(1) orthogonal
to the r-vector is generated by a single ¢-vector. We could take a g-vector from
the U(1) and an r-vector from the SU(2), in which case the ¢-vector is uniquely
defined (upto a change of length), whereas we are free to choose any r-vector
from the SU(2). We can also ask whether there are any r-vectors or ¢-vectors in
the algebra of SU(2) & U(1) other than these. Take the example of r3 which lies

in SU(2)g. We know that
r3, 3 = V2qs and re, e = —V2qs

We are asking whether there are any r-vectors or g-vectors which are linear sums
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of q3 and an SU(2)y, vector. These equations are preserved under SU(2)g and
SU(2)y, transformations. By applying these transformations to the r-vectors on
the left-hand sides of these equations we can get any SU(2)g or SU(2);, vector.
However. these transformations are in the stabiliser of g3, so the right-hand sides

are unaffected. Hence for any SU(2)g or SU(2)p r-vector,
ryr = :f:\/§q3

So the vectors we are interested in are linear sums of an SU(2)y, r-vector and
its corresponding q-vector, that is, they lie in a plane spanned by the SU(2)y
r-vector and its corresponding ¢-vector. If we look at the plane containing re
and gz in Figure 6.3, we see that +rg and +q3 are the only r-vectors and g-
vectors in this plane. It is not possible to take a linear sum of an r-vector and
its corresponding ¢-vector to get another r-vector or ¢-vector, therefore the only
r-vectors and g-vectors in the algebra of an SU(2) @ U(1) isotropy group are the

r-vectors in the SU(2) algebra and the ¢-vector which generates the U(1).

Finally, it is worth noting that if we take the first vector to be in the t-stratum,
we have a choice for our second vector of any vector in a plane (generating a U(1)
< U(1) which commutes with the U(1) generated by the first vector). Having

chosen this, the third vector is uniquely defined (upto a change of length).



Chapter 7

Tensor operators of SU(N)

In order to find the covariant derviatives of a non-linear realisation of SU(N), we
need to work with L for the realisation, as a linear sum of broken generators. This
requires. as mentioned before, the use of projection operators of (the defining
representation of ) SU(N). These may be constructed from a set of ‘u-vectors’,
which are a generalisation of the s-vectors defined in Section 6.2.3. However, in
the next chapter, we will endeavour to construct a general form for L7'd, L which
will clearly involve the derivatives of these projection operators. In doing this,
we will be following in the footsteps of Barnes et a/[18], who construct just such
an expression for SU(N)@SU(N)/SU(N) - this paper demonstrates the intimate
connection between these derivatives and the projection operators of the adjoint

representation of SU(N).

In this chapter we therefore carry out an analysis of the adjoint representation
of SU(N), much as we did for SU(2) in Section 4.2.2. This will necessarily be
more involved for SU(N) as there are new features in the Lie algebra. In Section
7.1 we look at the much-studied f- and d-tensors of SU(N) and note some useful

identities. (The former are related to ad(x).) In Section 7.2 we define the u-
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vectors and look at some of their properties. In Section 7.3 we turn to the adjoint
representation projection operators. The complete set of these was identified by
Barnes and Delbourgo[21]; however, we shall only be concerned with a subset,
which are analogous to (4.71) and (4.72). By using the identities of Section 7.1
and the u-vector properties of Section 7.2, we are able to obtain simple forms
for the symmetric and antisymmetric combinations of these operators. We close
the chapter by using the homomorphism between SU(4) and SO(6) explored
in Section 6.3 to investigate the form of the f- and d-tensors and the adjoint

representation projection operators in the SO(6) description.

7.1 Adjoint representation of su(IN)

In Section 4.2.2 we saw how the adjoint representation of an element of SU(2)
is defined: acting with the element on a vector of the algebra by conjugation is
equivalent to acting on the components with a ‘rotation” matrix - this matrix is
the adjoint representation of the group element. Using just the orthonormality of
the Pauli o-matrices, we showed that the general form of the matrix for a group
element g is

tr(go’g ™ oy)

o | =

R(g)/ = (Ad(g)) =

¢

As the A's of SU(N) are also orthonormal. this definition extends trivially to

SU(N):

(Ad(9));” = < tr(gh g™ Ap) (7.1)

N | —

¢

Again, this mapping is homomorphic.

To find the adjoint representation of the algebra we once again consider infinites-
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imal transformations. We now have

tr [ (1 — ga"@KAK)AJu 1 %ML/\L Y

~T
o
~

(Ad(1+6g)) =

| —

- (/\J,/\])—{—icsy"tr([/\‘]./\]{]/\j)—|—O(5())Z (7.3)

= (M) = 580" fT Rt (AL A + O(60)°

= 07 =008 frl i + O(60)? (7.4)
SO

(ad(a™Ag)), 7 = 20 fin! (7.5)

Let us look more closely at this quantity. Like the rotation matrix R(g), this acts

as an operator on the components of a vector:
yt =yl =2 fy? (7.6)

i.e. it transforms the vector y thus:

~1
-1

y =y A\ =y =y = 2" oy’ (7.

We know that the structure constant frx” arises from the commutator of two

A's, so it is no surprise to learn that this transformation itself is a commutation:

x.y] = [28 A,y M) = oy e, Al = 20y fae s A = i sy

(7.

e

)

To get x,y we just multiply both sides by —i/2

p—

xny = (" [Tray”)Ar 7.9)



but the left-hand side is now a vector of the Lie algebra; the components of this

vector are then
(xay)' = 2™ gy’ (7.10)

(Clearly, the operator x, acting on the vector y is equivalent to the rank-2 tensor
operator ™ f1-; acting on its components. We shall adopt the notation of [27]

and denote this operator f,; that is
(fo)'y =2 iy (7.11)

(for SU(2), this is obviously just the familiar +*¢';;). This is clearly linear on the

r argument:

(Faatsy) s = alfe) s+ 81" a,eR (7.12)
We can, in the same manner, define an operator d, using the \-algebra -
xvy = Ny A ds = 2Ny (VN ) = (VNS gy (7.13)
naturally gives us the definition
(d) s = VNI ey (7.14)

(in this case we do not technically need to stagger the indices, as this operator is

clearly symmetric on its free indices).

In [35] many identities are derived for the symmetric and antisymmetric structure

constants and these are rephrased in terms of the f, and d, in [27]; for example,
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the Jacobi identity may be written in terms of the structure constants as

T P = fi™ fan” = P o fiad? (7.15)
or in terms of the f, operators as
[fos fyl = oy (7.16)
There is a similar relation for the commutator of f, and d,:
[fordy] = de,y (7.17)
Three more of these relations will be useful to us:
Jedy + fyde = fryy (7.18)
fods = dofo = 5 Fons (7.19)
and
dody — Nfyfo = dpyy — 20 >< y+2(x,¥)1 (7.20)
where the tensor + >< y is the outer product of x and y:
(2 ><y)) = oy’ (7.21)
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7.2 The u-vectors of SU(N)

7.2.1 Defining the u-vectors

To look at the connections between the projection operators of the defining rep-
resentation P7. those of the adjoint representation and the f- and d-tensors, we
split the P® into two parts. Each of the P7 has a trace of 1 and therefore is not
a vector of the Lie algebra, but we may write it as a vector of the algebra plus a

trace term:

P?=—=1+u” (7.22)
AN
This clearly has a trace of 1; it also has the property
(A1, P?) = S ) + (A.u”) = (A Ag) =) (7.23)

(these components are called Py, in [21]).

For the diagonal projection operators (those shown explicitly in Section 4.1 with
a single 1 and all other elements 0), the ‘u-vectors’ take a particularly simple

matrix form:

[a—
o o o o
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(3]
[y

o
o,
Il
< <
<
[
R
—_
jam) jow] < fam]

etc.
For SU(4), by comparison with (6.66)-(6.69), we see that

7 VG

u; = —8§ (7.24
In general, these are vectors of the stratum with isotropy group SU(N-1)&U(1)

~U(N-1), mentioned at the end of Section 6.1.2.

7.2.2 Properties of n-vectors

Recall that we get non-diagonal projection operators from the diagonal ones by
applying unitary similarity transformations. This means that we are acting with
a group element on the u-vectors (the trace term is obviously unaffected by this
action). This, we know, transforms the set of u-vectors into another set of vectors
in the s stratum?® with the s -products, ,-products and scalar products
in the same stratum' with the same -products, s-products and scalar products.
These products can be found from the basic properties of the projection operators,

(4.3).

Firstly, we see from the diagonal case that the u-vectors all commute. This means

1 As the u-vectors are defined by the properties of the associated projection operators, which
are preserved under the transformation, a set of u-vectors is always transformed into another
set of u-vectors



that

w
~
o
Vg
e
bﬂ
ok
.
-1
o
[l ¢

(using (6.12) ). so

- 1 . 1
PPPT = (—.1 + u~*> ( 1+ uT> (7.26)
N N
1 1 - 1 - 2.
If S # T we know that this is zero, so that
PRI p— (7.28)
2N -~

(we already knew they could not be orthogonal as there are N of them and they

commute, while the Cartan subspace is only (N — 1)-dimensional)

and
u,ul = _L(us +ul) (7.29)
Similarly, if S = T, the property P®P¥ = P® implies that

L (7.30)

and

(remember that we never have any implied sum on the S, 7T, [/-indices).
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7.3 Adjoint representation projection operators

Recall that the adjoint representation of SU(2) is 3-dimensional and for each

vector of the algebra x = xn'c; a set of three projection operators may be defined:

1 : 1 , o
P! = 5 tr(PYo’' P o) = 3((5;’ —nn? — in"ey)
9 1 — it 1 3 ; - ko
P = str(P o’ PTo;) = 3(&» —nmn! +1in"e¢’y)

P? =tr(Pto’Pto;) = tr(P~ 0/ P o;) = nin’
The adjoint representation of SU(N) is (N? — 1)-dimensional and therefore (for
each vector of the algebra) there are N? — 1 projection operators[21]. In this

section, we will be concerned with N(N — 1) of these, given by

7 l T +
(PP = S t(PIAPYAT) T #U (7.32)
or, more precisely. their symmetric combinations
oy s 1 H 1 7 ' - -
(PP + PUI)] = S tw(PTAPYN) + S te(PYA PTAY) T#U (7.33)

(these are themselves projection operators and are symmetric under the inter-
change of [ and J due to the cyclicity of the trace) and their antisymmetric

combinations

|

tr(PTA PY N — %tr(PU/\IPT)\J) T #U (7.34)

< -

(PTU o PUT)I.] —

I

(which do not have projection operator properties).
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We know that for any vector of the Lie algebra x. there are N projection operators
of the defining representation, of the form (7.22). We now want to substitute this
expression into (7.32) to find a general expression for the P57, This is analogous
to the way we substituted P* = 11+ n‘o;) into (7.32) for SU(2), except here

the u® are as vet unknown functions of x:

-1
(V4]
(W
—

u :us(x) (7.:

(We shall see how to determine the u” as functions of x for certain coset spaces

of SU(4) in Chapter 9.)

The tensor forms we obtain for the P°7 themselves are not particularly elegant,
but by judicious use of the identities in Section 7.1 we can find simple forms for
their symmetric and antisymmetric combinations. For example, for the symmet-
ric combinations, simply substituting (7.22) and using the orthonormality of the

A's gives us

; ) 2 1 : ‘ . ,
(PP 4+ PP = 50+ o (u + a4 otV (0 4 u)
1 . T i
+5 tr(uAul M) 4 S tr(uf A ut) S#£T (7.36)

Z o

To simplify this, we need a couple of identities which can be derived from those

given in Section 7.1 (the derivations are given in Appendix 2):

tr(ArxA7) + tr( A xA;) = %((m{

and

8 o
tr(xAry A7) + tr(yAxA?) = ﬁ(xay)é‘z] +

~1
]
o8]

4 . .
F(dl’vl/){ +4{f~l‘~fy}{ (7.



Using these gives us

2|

4

_ 5J J
’|”\(U. u)>< \\/__ (dys gt )y
(du vur)g + Q{fuﬁ fu'T}] S 7& T (7.39)

(PST_I_ PTS)? — <

= T

+

Now we know that u® and u? commute, so by (7.16) f,s and f,r commute. The
anticommutator in the last term then reduces to a product. Similarly, we can use
the scalar product and the -product of u® and u?. (7.28) and (7.29), to cancel

the other terms, leaving us with

(PT+ PT] =Afusfr)]  S#T (7.40)

Finding the antisymmetric combinations is much the same.

. ) 1 1 ;
(P71 — P9y, = IN tr[A(u” = u”)A’] - IN A (u —u¥)A]
1 : 1 , ]
+3 tr(u Aul A = St ANy S £ T (T4

p

(V]

We can now use

_‘T
o

tr(AxA?) — tr(A xAp) = 4i(fo)r” (

and

tr(xAryA) = te(yAcA’) = A[f. £l - \%(H — fyd)r” + (A rfxyIN)
(7.43)

(also derived in Appendix 2) and the fact that the u-vectors commute to get
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g . 21 21 . .
(PDT - PTb)]J = _,'\i'(fuT - fu‘s')IJ + \/—/T(./ujdug - ]LusduT)IJ S 7% T

(7.44)

It is actually possible to use the identities in Section 7.1 to eliminate the d,’s
from this last equation. We shall go through the technique for doing this in some
detail, as it will involve some concepts which will be of use to us later. These

concern the properties of the f, operators and the u >< w operators.
First consider the operator

(v ><ul)! = u?uT‘] (

-1
Uit
S

(these operators are called P4, Pg; in [21] and they are related to the other N —1
projection operators of the adjoint representation which we have not looked at).

We act on an arbitrary vector of the algebra, x, with this operator:

(uS >< -uT)]J:r,] = 'u';uTJ.,TJ = 'u}g(uT,X) (7.46)
or in coordinate-free notation.
u’ ><ulx = (ul, x)u’ (7.47)

(this is how the operator 2 >< y is originally defined in [27]). So we end up with
a scaled version of the vector u”. provided x is not orthogonal to u’. Contrast
this with the action of f,= on x:

. ; 1 . o
X =u'sx = ——(u’x — xu”) (7.48)
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This is actually orthogonal to all of the u-vectors. including u”:

(ul u’,x) = ——i(m(uTuSX)-m(uTxuSH (7.49)
= ——%(m{uSuTx)—au(uSuTx)) (7.50)
= 0 (7.51)

where we have cycled the second trace and used the fact that the u-vectors

commute in the first. This means that

' ><ul fax = (ul u’,xut =0 (7.52)
for all x. Similarly.

fusup ><ulx = (uT,X)u‘S/\uU =0 (7.53)
for all x. 1.e.

W s<ul fs = feut s<ut =0 (7.54)

for any three u-vectors u®. u’, u’.

We can now make use of this property in adapting equation (7.20) to our purpose.

Again, this is done in Appendix 2. with the final result

. = 1 - .
.}LquuS = zﬁfugij - ﬁfur ("i)'rj)
Substituting this into (7.44) we finally find
PST - PTS = 4i.]t'usf'uT(fuT - fus) (736)
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7.4 Tensor operators of SO(6)

We saw in section 6.3 that all of the properties of the su(4) Lie algebra can
been seen in an so(6) “description’. This can obviously be extended to the tensor
operators. In particular, the f- and d-tensors have a particularly simple form in
this description. The operator f, is an element of the adjoint representation of

the so(6) Lie algebra and may be written

j]
o
-1

K MN -
(f) g™ F = N froan™t

where the fryaan™" are the structure constants of SO(6). From the Lie algebra.

we have

=1
Ut
[o7s]

oP - - . :
frant” oop = —dyxorL + dixogn + 0501 — O1LOIK (7.

we can then take a scalar product with oM to give us

fni™ = Sl0ik(8567 = a5 61") — Sy (87767 — 07 070
— 8108 — 8NN ) + 8, (8M SN — SN (7.59)

From this we find that

¥ MN M LN N gi MgN =6
(f(,)j,]‘”‘\ = a]\éy — (1,1\[5} — aJ\é[” + (lJ\[(SII (7.60)

) . . . . IN
- we note that this has all the symmetries we expect of it. Similarly. ((IQ)UM‘

has the simple form

MN MN KL 5 MN KL - -
(da) ™Y = VAN dpjan ™ = £2d" N e p ™ (7.61)
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We can now turn to the projection operators P37, We know that these are
projection operators constructed from the P° and the generators. We would

therefore expect to have
(P )" o te(PRowp Plot)

such that these still have projection operator qualities. To find the normalisation
appropriate for P57 to be a projection operator, we look at the paper in which

1t was first shown that

| =

(PT)," = s t(PIAPTAT)

~

I

is a projection operator for SU(N), [21]. and see that we require an identity

equivalent to (4.3) of that paper:

1
— (M N) tr(AY) = (XY — ey

SR

where X and Y are arbitrary hermitian matrices (not necessarily traceless). using

SO(6) o’s in place of A's. In Appendix 3 we find such an identity:
tr(o?/ X)tr(orY) = 8tr(NY) — 2tr N tr Y
With this, it is trivial to find the normalisation which ensures that
(PST Yy I PSTY NN = (pST),  MN
for S £ T

(PP MY = hta(Progp PTot )k te(PRopy PToT) (7.62)

= (o PPop PT)te(o s PT oMY PY) (7.63)
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8k*tr( PP o g PTPToMYN PS5y — 2k to(Po o, PT) tr( PToMN PS)(7.64)
= 8k tr(PYoxp PToMN Py — 2k e(Poor PT) to( PToMNPT) - (7.65)
= 8Kt (P P o PToMYy — 212 te( PTPooyr) tr(PPPTo™Y)  (7.66)

= Sk?tr(P on PToMY) (7.67)

The correct normalisation is clearly

5 1
S
ie.
5 1
(PbT)I\'L[ngtI(P U[\'LPTO‘I]) (768)



Chapter 8

Lagrangians of SU(N) sigma

models

8.1 The Content of J,L

The purpose of this chapter is to determine the general form of the Lagrangian of
a non-linear realisation of SU(N), otherwise known as an SU(N) sigma model. We
know from Chapter 3 that the Lagrangian for a non-linear realisation is uniquely
specified for a given set of standard fields by the covariant derivatives D, M+ and
D, ¢, and that these may be found by calculating 719, L and splitting it up into
a, and v, parts. Our main task, then, is to find an expression for L=19, L for a
general SU(N) sigma model. As we are working with Lie algebras in which the
generators do not mutually anticommute (there is a non-trivial y-algebra), this

will require the use of projection operators.

To guide us in this task, we may make use of the work of Barnes et
al 18], who found the equivalent expression for the chiral sigma models,

SU(N)©OSU(N)/SU(N). It will turn out that the basic approach of this paper

Jo—
it
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is one we can emulate, though some of the methods used in the paper are not
directly applicable to the coset spaces we are looking at. The starting point is
to consider L as a function of 8. the arbitrary vector for the coset space, which

may be written as a linear sum of projection operators:
0=0"0y=> 6,r° (8.1)
S

(we always write sums over the projection operators indices, S = 1,2.... N,
explicitly; so if no summation is shown, none is implied). L then has the general

form

D (

S

(V7]
[SN]
~—

as can be seen from (4.13). (We will look at how to carry out the decomposition
(8.1) in the next chapter, and will find it for certain coset spaces of SU(4)). The

derivative d, L obviously contains derivatives of both the #% and the P~:

NEDD (—-13(6:‘%6%)?’0#0; + e—%%aﬂpg) (8.3)

5

The derivatives d, P® are related to the projection operators of the adjoint repre-
sentation studied in the last chapter. We shall see precisely what the connection
between them is in Section 8.1.1, drawing on arguments in [18]. The coefficients
¢'s will be studied in Section 8.1.2, where we will gain a much clearer under-
standing of their significance. In both of these sections we will obtain expressions
which will be very useful in simplifving L9, L when we calculate it in Section
8.2. In the form of L7'9,L we end up with at the end of this section. the terms
involving d, P* look very much like their equivalents for the chiral sigma models.
[t is also possible to bring the terms involving the 9,64 into a form like their

chiral equivalent. but we are principally interested in coset spaces of SU(4), for

153



which an alternative form is more appropriate, as we shall see in the next chapter.

The final section looks at how to split L7'9, L into its a, and v, parts for certain

symmetric spaces.

8.1.1 Derivatives of P°

Recall that the u” are functions of x - or in this case 8, the arbitrary element of
the coset space - which is in turn a function of the Goldstone fields M. We can

therefore write the derivatives in the following way:

Ju® ' ST /
K Vg a;f],,4al1;1144xf (8.4)

5 pS _ 1 S(MA
d,P° =0, (T1+u (M7) ) = OMA

The quantity »
du!
oM

looks like a tensor (with I and A tensor indices and an S ‘label’), so we might
expect to be able to write it as a linear sum of the projection operators of the
adjoint representation. Again, [18] points the way to doing so. In general, 6 can
be expressed as a power series in M. This means that M commutes with 8. i.e.
its lies in the Cartan subspace of 8. Therefore M = MP X may be written as a

linear sum of the P%:
MPAg =Y M.P? (8.5)
g

(remembering that we explicitly write sums on the 5,7, [/-indices rather than

implying them. In [18], the coefficients M{ are written as lower-case m’s.)
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Now act on this from the left with one of the projection operators. say P':
P'MPAg = M| P! (8.6)

then differentiate with respect to M* and rearrange:

OM] oy _ 40 OP' P!

P'ay — =M —— MP X 8.7
AT oM TOMA T 9MA B (8:7)
Substitute (8.5) into the right-hand side:
oM JaP! JP? .
Py — —Lp' = M| - - MLP> 8.8
S LoMA 9 zb: S (5:5)

and multiply from the right by a second projection operator, say P?. Dividing

both sides by M| — M) then gives

1 . JpPt A
— P\ PP=_—P* 8.9
M= M JMA (8.9)
More generally, for two different projection operators P~ and PT.
L psy,pr = O pr (3.10)
ML= M YT gMA

(All of the above is covered on page 401 of [18].)

To find an expression for
opP* du®

OMA — OMA

from this. we make use of the properties of projection operators. First we note
that as the P” form a complete set,
JP! JP?

— 1 2 N .
i = g A P (8.11)




and

P! . . OP?
= (P'+ PP 4. 4+ PN 8.12
IMA (PP )0111‘4 (8.12)
Adding these together gives us
dP! . v. OPY  OP! , . o
2gipa = P P PO (P PR 4 P (8 03)
However,
oP! dP! opP! A
PP = P! = Pl - Pl = - 8.14
RV ERE T VER T VR (5414
Therefore
oP! apPt . , OP! apPt ., OP? oP! ; OP?
= PP 4 PP P’ + P° et PN -
OM4 OMA + OMA + OMA T IMA + + IMA + IMA
(8.15)
Also,
ap! apt A
T pil T 1 S 1
PP =0=PF ENE + ()zWAP = (8.16)
for 7" # 1, which we can use to obtain
ort_ort ., or gpt . 9P P v 9PN
= P?— P!+ - P - "+ =P - P
Y E TV E R} VE S VE R IV ToaAt T oan
(8.17)

We can now substitute (8.10) in to this to get

oP! 1 . 1
— = — (P M PP+ PP ——
M A N VI V7,

1 ! )
T (PAPN 4 PV PY
+ -+ A= fwf\?( 4 + af)

(P1A,P?+ PPA4PY)

(8.18)



This is getting very close to what we were after; we have quantities of the form
P3X4P7 on the right-hand side which we know are involved in some of the
adjoint representation projection operators. To get the final expression, we use

the following procedure:

"'Pl ; ., 17 .’41] .”’1]
%tr (.d . /\J> A= étr (,d“_ AN) =2 iy = 2y

oM oMA T OMA oM
P! ,
=— (3.19
aMA (3.19)
Substituting (8.18) into the left-hand side of this, we finally get
JP? 1 . ' ,
: = ——— (PP 4+ PPN+ ——— (PP + PP+
gart = ap—ap T RN g A
| N |
———— (PN 4+ PVYA 8.20
gt (8.20)
1 ) o
= 2{:‘;YT———Xfr(f317.+-JDTIXQAJ (8.21)
T# My — M

or in general

S
o
o

opr? 1 - . 4 ,
G = 2 g P A PN =Y e faia (32
! T#s S T T#s ST AUT

so that

. 1 - o )
0,P% = > T (P P, (8.23)
T#s S T
4 A 3 A i .- Q )/
- Z A — M (fusj'uT )i)\]duﬂji (624)
T#S g ST



8.1.2 u-vectors and eigenvalues

To see the deeper significance of the #.. consider diagonalising the coset space
I S g g

vector 8 using a group element ¢:

1 0 0
0 s 0 -
00g~" = o i (8.25)
5
0 0 e MUN

where the ptg are the eigenvalues of 8 and P; are the diagonal projection operators

10 0
00 - 0 1
0 0 - 0
00 0
A 01 --- 0 1 A
Fi=1 . . . . |= it uj
00 --- 0
etc. Applying the inverse transformation we get
} 1 4
0=> usg ' Pig= Z"“Tl + g 'ulg) (8.26)

S s

but applving such a transformation to the diagonal u-vectors gives another valid

set of u-vectors (with all the same properties). so

1 1.8
Tl +9 "ugyg

—
Ut
oD



are a valid set of projection operators. Thus we have found the decomposition of

6 into projection operators:

jo ]
o
—~1

6= Z ,uSPS (8.
s

i.e. the 05 in equation (8.1) are just the eigenvalues of €, which we can find by

solving the characteristic equation of 8.

This clarifies the nature of the decomposition - writing the P as u-vectors plus

trace terms

oo
[\
lo79]
—

= %IZHQ—FZ%uS (
: s s

o e]
o
Ne)

we see that the left-hand side has no trace. so that
0= Ou® (8.30)
5

and

Y =0 (8.31)

S

which is just the condition that the sum of the eigenvalues is zero.

For a completely arbitrary vector of SU(N). this is the only restriction on the
eigenvalues. However, some coset spaces have algebras consisting entirely of
vectors in a stratum with repeated eigenvalues. For example, in Chapter 9 we

shall identify a coset space of SU(4) whose algebra consists entirely of vectors

!Many papers on non-linear realisations and finite transformations of SU(N) are based on
this approach, such as those by Rosen[32] and Bincer[36]
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in the r-stratum and another whose algebra consists entirely of vectors in the ¢-
stratum. Indeed, all of the coset spaces we will study in detail in Chapter 9 have
the property ~v3(#) = 0 for every vector of the space, which, as we saw in Section
6.2.3, means that we can only identifv two independent eigenvalues (matching

the two arbitrary independent invariants 2(8) and ~4(0) ).

82 L7'9,L

We now move on to the core of this chapter: calculating L='d,L. We start with

the expression (8.2) for L. which has an inverse

L™= edtps (8.32)
5

and a derivative given by (8.3). Multiplying these together, we get
L0, = =33 PPo0+ Y 3P, pt (3.33)
- s 5T

The P? in the first term can be replaced by a u® by using (7.22):

PR SO DURLTE (334)
5 - S B

S

and then noting that by differentiating (8.31) the first of these terms is zero: thus

(8.33) becomes

o
(W)
o
)

L70,L =5 w906+ ed%=0 p3g, pT (3.3
S S, T
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To deal with the second term, we substitute in (8.23):

N et psy pT = N st pS N T ”, PTY 4 PUT)N,0, M
ST ST U£T

(8.36)

—

Once again, we can use (7.22) to eliminate the P° in favour of the u”. giving us

1 1 S oo /
L laﬂL = —E E u”()/,()s
I} V 1 T T o A
LoL—or TU UT\Jy 5 afd
+§ € 1+u )§ A[fg“_j\’[[/?(P + P Oy 0. M
U#T
(8.37)

To see how this helps. let us consider the product u”A;. By using (6.4) we see

that

w = Ay = %u;;“l + %uus)ﬂ‘,\]\- —i(fus)s™ AR (3.33)
but from (10.24),
tr(u AN ) = w3 (A ) = \/)T(l )% =20 fes )" (3.39)
SO
uhy = %@1 + %t1‘(uSAJ/\K)/\K (8.40)

Look at the second term on the right-hand side. Using the fact that u’ = pP— —{'1
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and inserting 1 = > . P7.

%tr(us/\J)\K))\K = % ( — WI AM\) A (8.41)
= Ly poy ZPW\ Aw — —1~—t1()\ M)A (8.42)
— 2 J IN IN J K \o.4a4
= > (PN — —AJ (8.43)
T
Thus

8 2 . e 1
uN, = Tu¢;1 + ) (PN - N (8.44)

iV T iV

We can then substitute this into the second term on the right-hand side of (3.37)

to get

L oar o } 1 N 7 /
2P — (P 4 PV N0, M
6 ZT T AR R

igpt ’ 1 - e
_ LoL-0y) pTU 4 pUTyJ
;6 2. vt 1

T T

)
x (i\ uJ1+Z (P5V) f‘AA> 9, M (8.45)

ST

However, we have in here the product
(PTY 4 PYT) 4l = 4 fur for )y = 4(for furu®)

which we know to he zero. Therefore

i e 1
E ,,;(9»—6 b E TU urT AgA
- “ [T - /\[/ (P + P ) /\Jdﬂ ‘]
ST U#T

— é—el —0%) pTv UT\J SV Ky o agd
- _ %: M —/\['\ + PUT Y (P M AR DM

s
(8.46)
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The terms where T = S sum to

1 o |
[ Pbb ) R Y . ) “/][4
(2 T VAR

but we would like to bring out the symmetric and antisvmmetric combinations:

we can do this by splitting this in half and relabelling on one half:

(P M A0, M
e M — \15( )47 AR O,
l'¢
1

1 SUy KN g ard 1 Usy KNy g ard
) Z A]/, — /\[, (P )A )\]\'()N A\[ —|— 5 lg m(}j )A /\]\ 0“.'\[
H > ~

1 1 . 1 1 o s o
et l"'#‘s / ‘S‘ i L‘ [ / l"v
1 1 - - v
- 5 Z — M! (Pbl’ - Pl 5)44]\ /\]\Eaﬂﬂ’[rl (847)
~ [1£5 S My
1 - e '
= Z TS (PU — PUS) W Agd, M4 (8.48)
S<lU U
Similarly, the terms where S # T but S = {7 sum to
igpt ! 1 o - ~
5“%’%“)4 PDT f\/\ \,) A[—i
; ‘ A —arp D ARG
”w 1 o
- Z 2 v _9T ‘j! ‘[/ (P§T)]; AI\V@HA[A
SET T — Mg
/ / l e - ; X , -
+ 3 et M(P“)Q A O, M* (8.49)
SET T
il ! 1 .-
_ Z 6_5(55—6’T)W<PTb )I\ /\I\ ()L,/\‘[ (b )0)
S#ET T cs

which naturally fall into symmetric and antisymmetric combinations if we break

the exponential upto into a sine and a cosine:
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_ O — 07 ST TS
Z\[T—\[’ <181n< 5 )(P + P7)

- o : o
+ cos <—*—7—T—> (P31 — P“)) Expo,M*  (8.51)
= A

and all other terms are zero. Therefore

1 7 l
L(0L—0%) pS TU UT
E € ) p? E 77\[’ Vi (P + P ) /\Jduz\l

S.T U£T
1 ST S . A g O My
= Z W(Fﬂ — P70 A d M (8.52)
S<T
oy

T> (PST 4+ PTS‘)

- Z isin bs =%
ML — /\[T ‘ 2
05 — 07 ST 75 Ky 7 as4
+cos | =—1L 5 (P77 — P'7) AR, M-
< 4
1 0y — 0 .
:Z— —isin L) (P57 + P79
‘e ML — M, 2
S<T S

1 2sin? (95 Z 97) (PST - PTS)> KA;;@,JWA
A

Having performed this manipulation, (8.37) becomes

L0, = =5 ) u'd b
S
sin (62‘;6%) - T5.7 4
. ———— 2 (P 4 PTHY X0, M
S<T Mg — Mz .
S () T
S MG = My 4 | L
(8.53)

PT% are given by (7.40) and (7.56).

where P°T + PTS and P°T —

The second and third terms of this expression. are, as promised, very similar to
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those in equations (4.7) and (4.8) of [18]. We could in principle make the first
term take the same form as the first term of (4.7) by introducing the remaining
N — 1 projection operators of the adjoint representation, called p,s by Barnes
et al[18. 21]. (These are related to the u® >< u! operators.) In actual fact, for
SU(4), as we shall see in the next chapter, it makes more sense to rewrite this
term in terms of the operators ¢; >< ¢;. For this reason. we shall for this chapter

leave this term as it stands.

8.3 a, and v,

8.3.1 Automorphism conjugate u-vectors

We now specialise to the case of SU(N) coset spaces whose commutation relations

have the Zygrading structure of a symmetric space, as described in Section 2.4.2.

If the outer involutive automorphism can be effected on each u-vector by the
action of a group element, it is possible to show that the first two terms of (8.53)
form the a, part of L7139, L. while the third term forms the v, part. This is

easiest to see for a particular Lie algebra - we will take su(4) as an example.

For su(4). we know that for a given Cartan subspace, there are four u-vectors. In
general, these are composed of a part in the subalgebra and a part in the coset

space part of the algebra:

e
U
Il
T
v
>
|
+
=,
i
>
>
(g §
To



Written in this way, (u®.u®) takes the form

(u”.u”) = (Frp+ uSA/\A,'uSQ/\Q + u?PAg) (8.55)
= (u«F)p, uSQ)\Q) + (AN 4, uSB/\B) (8.56)

Under the outer involutive automorphism. the lengths are preserved:

(u¥,u”) = (07.0%) = (Ap — PN w0 —uPrg)  (8.57)

— (QLSP/\P. 'USQ/\Q) + (’(ISA/\A, uSB)\B) (8.58)

Furthermore, if there is a group element which carries out this automorphism,
the other invariants y3(u”) and ~4(u”) are preserved and 0” lies in the same orbit

as u”.

However, we know that each of the u® are functions of 8 - in general, they may be
expressed as a power series in @ (we will find such expressions for the u-vectors of
certain coset spaces of SU(4) in Section 9.2). As @ is a vector of the coset space.

under the automorphism

0 — -6 (3.59)
0> — 6° (8.60)
0> — -6’ (8.61)

etc.. so 1° may also be expressed as a power series in #. This means that both

u” and u” lie in the Cartan subspace of 8. and we know from the diagonal case

~

that for any Cartan subspace, there are only four vectors in the same orbit as u®

L w? u® and u?. Thus all of the 1° must be members of

(see Section 6.2.3) - u
the set < u® >. This is the idea of ‘automorphism conjugate’ u-vectors: each of

the u® has an ‘automorphism conjugate’ u” also in the set. Note that if any of
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the u-vectors lie in the subalgebra, they are self-conjugate.

What is more, we can use this to deduce further properties of the #%. Let us take
a different example. Say that for a given non-linear realisation of SU(3) we have

three u-vectors, two of which form a conjugate pair:

al = u’, & = ul @ = u’
6 may be written
0 = 0u' + 0u* + ou’ (8.62)
but if we take the automorphism conjugate of this equation we get
-6 = ou' +05u + o’ = gu’ + out + ohu’ (8.63)
=0 = —fu'-0u*-0u’ (8.64)

by comparing these, we see that

(this is not surprising because u? is self-conjugate and so lies in the subgroup and
therefore we would not expect it to appear in the expansion of the coset space

vector @) and

’ /!
1:_92

i.e. the eigenvalues associated with two conjugate u-vectors are opposite and

equal.

This is all obviously also true for the AM{; as we can write M as a linear sum

of the same u-vectors (see equation (8.5) ) and M also changes sign under the

automorphism, the same reasoning tells us that ML = — A% for 0¥ = u’.
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Once again, we will see in Section 9.2 that for a whole class of coset spaces of

SU(4) the u-vectors fall into such automorphism conjugate pairs.

8.3.2 Using the automorphism to decompose L™'0,L

It should now be clear how to identify which terms in (8.53) lie in the subalgebra
and which in the coset space of the algebra - we simply apply the automorphism

to each term and determine whether or not it changes sign.

This is particularly easy for the first term. which is a linear sum of the u-vectors

just as @ is. Just like 6, the coefficients for two conjugate u-vectors are equal

and opposite, while self-conjugate u-vectors have zero coefficient. If we number
-3 1

the u-vectors such that u! = u?, 0* = u'. etc., the automorphism acts just as

it would for 8:

—S (U 0,0, + 020,04 + 00,0, + u'0,0))
= =W+ 9,0, + a0l + w0
= %(uzdﬂeg + ula“(); + u4aﬂgg + uBaﬂgg)
(8.65)

so overall this quantity has changed sign. Therefore Y u”9,05 lies in the coset

space part of the algebra.

The other parts of (8.53) are not quite so straightforward. The second is perhaps

easiest to deal with if we note that

(P14 PELAOMY = A fus fur MO, (8.66)
= A(u’ (u’ 10, M)) X (8.67)
= 4u’,(ul A 9, M) (8.68)
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Now numbering the u-vectors as above, we consider just one term in the sum:

Sill( 1;9£> 1 3 .
B W A

Under the automorphism, this transforms as

sin( /;/) o ‘ Sin< 1;9\4)\ R
—4 W u /\(u( /\()ﬂM) — -4 m/ u‘/\(u A()llM)

. —6L 46!
sin (%)

= 4i|—"7
N\ o

u'Z/\ ( u4/\auM)

sin<§;6’é> Sy
R T e

sin < g; 3) . ‘
= 4 m u.’/\(u /\dﬂM)

(8.69)

Similarly,

sin (%) , ‘ sin (9;; ;) o |
—41 \W u"/\(ll“l/\auM) — 4 M u /\(ll/\()pM) (3.70)

By using this reasoning it is not hard to see that each term in the sum is trans-
formed into the negative of another term. so the entire sum changes sign under

the automorphism. Therefore

sin ( ,; /T> N i
————= | (PPT + PPN 0, M7

e\ ML=

lies in the coset space part of the algebra.
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We can deal with the third part of (8.53) in much the same way. Using (7.56) we
can write

(PST - PT'S)A)\IOHAJA = 4iuSAuT/\(US — UT)/\auM

(8.71)
Again, we consider the transformation of just one term of the sum:
8i o (00N 1 s 3
————sin” = Ju au'A(u —u”) d,M 8.72
J\[{ - Afé ( 4 A /\( )/\ o ( )

8i L 0 — 0. ; . 2 : PR
BT T ( 7 3) uyuts(uf —u'),9,M

S L (OO
BT R A <f> w’uta(u’ —u') oM

SO0 L
_mmn~ ( 2 . 4) u-/\u4/\(u_ . u4)/\d‘,M

31 B ‘9‘/2 — 9»{1 2 : 2 4y =
o mSlHZ ( ) ) u)Au4A(u) — U )/\dL,M

(8.73)
and similarly
8i . (00 S -
m.@lnz < 2 1 4) uZAu4A(u2 e u4),\()‘,M (b(—l)

S, (00 o
- msm‘( 14 3) ul \u?,(u! —u’) 9, M

(

os)

75)

In this case, each term is transformed exactly into another term in the sum, so

the entire sum is invariant under the automorphism. Therefore

. 2 L (0 =0 i ) -
1 Z m sin” (TT> (PbT _ PTb )AI)\[()“ "/;[A

sS<T

lies in the subalgebra.
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We have thus shown that L7190, L breaks into a, and v, parts as described at
the start of this section. This means that for these particular symmetric spaces,

the covariant derivatives are

| an(BE)
D,MP=da? = Y w00 +2) W (P37 + PT9HBg, M
B s<T \ 8 T

(8.76)

. Iv 9/
o 51n<527> ‘ -
= > PO b +8) NI (fus Fr)5OMA (8.77)

s S5<T
and
DM’" - d;zu b ;th’
= Ju+ Z 2 sin? bs =01 (P°T — P75 I8, M 0 (8.78)
" 4 ﬂif’g — JU} 4 . ! ‘
S<T -
. S (00, T
= dﬂw —I_ Z; A[é _ A[} S ( 4 ) (.]Lll'“c.fur(..fll/r - fu,s))il /\Pdﬂ"“[ Zf”

(8.79)
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Chapter 9

Coset spaces of SU(4)~SO(6)

9.1 Introduction

All su(N) algebras are composed entirely of traceless. hermitian matrices.

Consider the matrix

0 0 2 —1i 0

0 0 1 3—21 =31
—21 1 0 0 0

1 3421 0 0 0

0 30 0 0

This has the interesting property that all of its odd powers are traceless. Indeed,

any matrix that can be partitioned thus:

0 A
A 0



has this property.

Some subspaces of su(4) are entirely composed of vectors of this type. We have
already seen how so(3) subalgebras and su(2)g and su(2)p subalgebras have the
property ys3(x) = %tr x? = 0 for every vector x in the subalgebra, but we also
saw in 6.2.3 that there are generic vectors of SU(4) with this property. There
exist coset spaces of SU(4), some (but not all) containing generic vectors, for
which v3(x) = 0 for every vector of the space. One example! is the coset space

SUM)/SU2)g@SU(2),0U(1) generated by

00 1 0 00 —1 0 00 00
0 0 00 00 00 0010
)\4 — /\) = /\6 =
10 0 0 i 0 00 01 00
0000 00 00 0 000 /
00 00 0 0 0 1 00 0 —i
00 —1 0 00 0 0 00 O
Ar = Ag = Ao =
0 1 00 00 0 0 0 0 0
00 0 0 L0 0 0 i 00 O
000 0 00 0 0
00 0 1 00 0 —i
>\11 - /\1‘2 =
0 0 0 0 00 0 0
0 1 00 0 1 0 O

(which is clearly homomorphic to SO(6)/SO(4)5S0(2) - we shall examine it in

the SO(6) formulation in Section 9.6.2), so all of the vectors in the coset space

!One example of a coset space for which v3(x) = 0 for every vector of the space but does
not contain generic vectors is the coset space SU(4)/SU(3)0U(1)[37]
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have the form

0 A
A0
Such coset spaces are always symmetric spaces, as the r-product of two vectors

is always an element of the subalgebra:

AB"— BA" 0
AB - B*A

0 4 0 B

. (9.1)
A0 B~ 0

SR
SR
)

(see Section 2.4.2). These are the main subject of this chapter. Let us identify

some basic properties of the generic vectors of these coset spaces.

Recall that the condition v3(x) = 0 reduces the characteristic equation for a
4 % 4 traceless. hermitian matrix, (6.22), to a quadratic equation in x?, so x* has
at most two distinct eigenvalues, both appearing twice and that xyx is then a
-vector. However, we also know that for a generic vector, x. x* and x” are all
linearly independent, or equivalently, x, xyx and x,xyx are all linearly indepen-
dent (the fourth power is related to the others by the characteristic equation).
Furthermore, they all commute; therefore x, x,x and x,XyX - or X, x? and x°
minus their traces - must form a basis (though not necessarily an orthonormal
one) for a Cartan subspace, for which we know there are three orthonormal unit

g-vectors (upto a sign).

Thus for a generic vector of SU(4) with the property 73(x) = 0 we can say the
following: there are two linearly independent unit ¢-vectors which are linear sums
of x and xyxyx (which we shall call g} and q}). while xyx is proportional to a

third (qj), and all three commute.

In the last chapter, we found a general form of L='d,L which was valid for any
SU(N) coset space, based on the decomposition of an arbitrary vector of the coset

space in terms of projection operators, (8.1). As promised, we shall now look at
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how to do this decomposition - in two equivalent ways - for a coset space of the

above type.

9.2 (g-vectors for an arbitrary vector

9.2.1 Obtaining the g-vectors

By combining (7.24) with equations (6.66)-(6.69) we already have expressions for
the diagonal u-vectors of SU(4) in the orthonormal basis of the diagonal unit

g-vectors:

1 -
u, = —2\6( di + Q2 + qs) (9.2)
5 1 N
uy = —)\ (dr — g2 + g3) (9.3)
; 1 7
ui = (g +a—a) (9.4)

%

ul = —=(—q1 —q—qs) (9.5)

[AN]
I

However, we are interested in a non-diagonal Cartan subspace. We discussed in

Section 8.1.2 how the properties of the projection operators P° are preserved

-1

under the transformation uj — gujg~'. Thus, under the change of basis q; —

q’ = gq;g". the vectors

= iﬁ(%+QAqﬂ (9.6)
ﬁzzi%m—%+%> (9.7)
ut = fﬁmfab a@) (9.5)
u' = K%vq&wb—%> (9.9)



are a valid set of u-vectors. With this established, finding a set of u-vectors we can
use in our analysis is equivalent to finding the ¢-vectors for the Cartan subspace
of an arbitrary coset space vector. As the Cartan subspace of an arbitrary vector
is the same as that for its associated unit vector, we shall work with the unit
vector in order to find the relevant ¢-vectors: we can then easily generalise to a

vector of arbitrary length at the end.

We now refine our notation for coset space vectors, denoting an arbitrary unit
coset space vector x, and its Cartan subspace C,.. We further define the vector y

to be x? with its trace removed and z to be x> with its trace removed:

T RN S
Yy =X —Elmx =X —51 (9.10)
1 ‘ ,
z=x" —-1trx’ (9.11)

/]

and recall that these form a basis for C,. We can rearrange these definitions to

find x? and xy:

. 1 ,
XZ:y+31 (9.12)
1 : .
Xy:z—_f)«x—{—lltrx'3 (9.13)

Other products can be found using the characteristic equation:

1 ‘ 1 L
Xz = y-+ Tk trx” + 11 trx* (9.14)
. 1 1 , 1 ) ;
y? = gx trx” + Eltrx4 — —4-1 (9.15)
B 1 1 3 1 4 1 f 3 a1
Yz = EZ-}-E}/UX +ZXUX — EX—}- ﬂlth ()16)
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o 1 . 1 PR 1 5 3 4 1 a1
Y= ——zlrx” 4+ -ytr = =X tr —1tr —1(trx")* ——-1
Z 6Z1X +4y1x +2y+3X1X +8 rx —{—48(1x) 1

(9.17)

Remembering that trx = try = trz = 0, we can easily find the trace of each of

these, which allows us to calculate the -products:

XyX = 2y (9.18)

Xy = 2z—X (9.19)

1 N

Xz = 2y + EX trx? (9.20)

2 5 o

yvwy = §Xt1‘X' (9.21)
1 3 l 4 Y Y6

YVvZ = z+6ytrx +;Xtrx - X (9.22)
(S T 2 N

ZyZ = -_—3—ztrx' +sytrx +y+§xt1‘x (9.23)

Note that we can rearrange the first two of these to see how to change basis from

x, x? and x® minus their traces to x. xyx and xyXyX:

1
y = XX (9.24)
and
zZ = §X + ZX\/XVX (9.25)

Due to the nature of the characteristic equation it is easier to determine the ¢-
vectors in terms of x, y and z. but we shall re-express them in terms of x, xyx
and xyx,x once we have found them as they are easier to handle in this form

and it will be more in keeping with the existing literature.



As the g-vectors we are seeking lie in the subspace spanned by x, y and z, we

can write
q: = ax+ 5By + 7.z (9.26)

where a;, 3;. v, are real numbers. We can determine the values of the coefficients
by using the g-vector property ql,q’ = 0 (this is equivalent to what Barnes et al
do for SU(3) in [20]; the main differences being that their calculation is to obtain
the angle o in the Cartan plane with basis r and q, while we are identifying the
coefficients a;. /3;,7; in a 3-dimensional Cartan space where the basis is the set of
q;). Employing the above identities then gives us

5.2 5 5 1 3 2 3

205y +4a 3z — 20;3:x + 4oy + gazﬁ,ix trx” + 73—/3;)( trx

f 1 1
+20viz + = 5 By trx® + Byxtrx? — 234x — §“ ‘7 trx°

1 —_—
+_—,1ytlx + ,Zy+§w 2xtrx” =0 (9.27)

However, x, y and z are all linearly independent, so by equating coefficients

1 ] 2 . ‘

—20;3; + 30 A trx? —|— 3 3 trx” 4+ By trxt — 234 + -g‘;"l-ztl‘XS = 0 (9.28)
1 1 | 4, 2 .

2a* +4al,l—rgﬁ,zt1x +—~‘t1x +~7 = 01(9.29)

dai 3 + 23y —

To find the g-vectors we must solve these equations. When trx” = 0,

(9.30) reduces to

(20, +71) =0 (9.31)

so either

~i = —2a; or 4, =0

it
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If v; = —2a;. (9.28) and (9.29) give us:

20;3:(1 —trx*) =0 (9.32)
and

207(1 —trx?) =0 (9.33)
so for an arbitrary value of trx*, we get

a;=0==0 (9.34)

so that, as expected, we have a ¢-vector proportional to xyx:

q, =By = %ﬂixvx (9.35)
To normalise this g-vector, we need (y,y). which is easily found to be

| , 1 1 s
(y.y)=5trx' — 5 =2u(x) + 5 (9.36)

|

So our normalised ¢-vector is

(ST

)7y (9.37)

[N

q; = £(27:(x) +

If 3; = 0. both sides of (9.28) and (9.30) are zero. but (9.29) gives us a coupled
equation in a; and 5;. We obviously cannot have 4; = 0, as then «a;. 3; and v
would all be zero. However. any other choice of a; and 4; which satisfies this
equation corresponds to a particular ¢-vector (of a particular length). We can

get unnormalised ¢-vectors by, say, setting 4; = 1; equation (9.29) then gives us
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‘ 1
2&‘;) +da; + StrX“1 +1 = 0 (9.38)

= a;, = —1++/—7(x) (9.39)

so two unnormalised ¢-vectors in the (x,z)-space are

- (—Hxﬂ?ﬁ)xirz

and

d) = (~1 = V=) x+ 2

We now want to normalise these. The process is much the same as it was for q.
However. (not surprisinglv), the factor /—~4({x} keeps making an appearance,
O * 14 1 1 1

so we define

fum—

= trxt (9.40)

P =V =l

I\J|>—k
,z_

With this definition, we finally get for our three ¢-vectors:

q, = £(20*— 49" F[(=1+p)x+ 7] (9.41)

d, = £(20°+4p°) 7 [(-1 - p)x + 7] (9.42)
I,

q; = (5 -2p°)72y (9.43)

or, using (9.24) and (9.25),

1 1 1 11 1 )
— RN Y b Y S 3 G 44
q, = in { (2 p)-x+4(2 P) -XVX\/XJ (9.44)
1 1 1 11 1
— T Y V3 . 5 Qg 45
q, = i'Z/) [ (_2 +p)zx + 4( 5 +p)” vavxl (9.45)
o) = £(2-8p%) Txux (9.46)
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Note that there is a pole in the normalisation factor of q] when y4(x) = 0 or

However, we saw in Section 6.2 that a unit vector with

Iy,

when 4(x) = —
v3(x) = ~4(x) = 0 is (by definition) an r-vector, while a unit vector with v3(x) =
ya(x) = —1 is a g-vector. qj is similarly ill-defined for r-vectors and qj for

g-vectors.

It can be shown that the scalar product of any (linearly independent) pair of these
is zero as expected and that they satisfv the ,-relations of q;, q2, qs provided we
pick an appropriate set of signs. For example, we could take + signs on all of the

g-vectors in (9.41)-(9.43) to get the desired result
dhd = =2t (9.47)

This is not a unique choice, though. If we change the sign of a single g-vector the
three relations are not preserved, for example o, q, # —v2q} if we make the
replacement q3 — —q5. Similarly, if we change the sign of all three the relations
are not preserved. However, if we change the sign of two of them. the relations
are all preserved (try, for example, ) — —q}, g, — —d5). Also, of course, we

are also perfectly free to renumber them.

9.2.2 q-vectors in H and sign/numbering conventions

To develop a set of sign conventions/numbering conventions we recall from Sec-
tion 6.3 how we viewed the vectors of SU(4) as vectors of SO(6), concentrating

particularly on those in H. the subgroup of rotations in the first four dimensions.

Consider an arbitrary vector in this subgroup.

I _
WOy =



We now have two ways of finding the projection operators for this vector. The
first is that described in Section 4.4.2; this provides a set of projection operators

which we now number in the logical way:

1
P o= 5(1R—|—72R1‘ R) (9.48)
2 1 .
PP o= S (1% ="y (9.49)

1 ,
P = S (1 4ty (9.50)
Pto= %(1L—n“‘g,{:) (9.51)

Alternatively, we can use the method outlined in the last section. First we divide

w' o, by its length to get the associated unit vector, x. Now

g 2 ( 4
(""; 0-;11/) - ) (952)

{9.53)
W,
From this we can obtain xyX:
xyX = 2x°—1 (9.54)
2 (wh)?1 0 (WR)2 4 ()2 [ 1 0
SR ez 1 0
= (w?) ( ) (9.55)



Note in this case x(x,x) is traceless, 1.e.

(x,xyx) =0 (9.56)

This makes it particularly easy to find x,xyx:

S (o el Calld o0 (9.57)
XyXyX = 2X(XyX) = - — 9.0
WP @R | o b,

Finally we have

' i 0

wio L (] (9.58)
[(Wh)? + (Wb)2)]2 0 (91
from which we can obtain
SRl
P ‘ (9.59)

Now, substituting our expressions for x, xyX, XyXyX and p into (9.44)-(9.46) we
find our g-vectors; taking them to be numbered as in (9.44)-(9.46) with plus signs

for each. we get after a little work:

, 1 n{,{(;k 0 1 n?ak 0
ql - — qZ T e o
\/E 0 —771{?0‘1\« \/E 0 71%0;{

We can then use (9.6)-(9.9) in conjunction with (7.22) to get the projection

operators:

Pll —



[

P 5 (1R + n?a?)

P/3 l (1L _ L _L
= 5 (1F = nkob)

Pﬁl __ l <1L + L L
) o)

Clearly, this does not correspond with the projection operators we got from con-

sidering the SU(2)g and SU(2);, parts. If instead,

! 1 1 1 11 1 ‘
=Ty, [‘S —pPx+ (5 -7) zxvxvx] (9.60)
' —nlo, 0
v B (9.61)
V2 0 ntaoy
1 1 1 11 ) 7
5 = — | (5 2 e e V72 Q69
4 = 2 [ (2 +p)?x+ 4(‘2 +p) XvaX} (9.62)
1 njor 0
G (9.63)
V2 0 nkoy
qg = (2 - 8/)2)_%)(\/){ (964)
1 1 0 -
V) (9.65)

we get the desired result. Indeed, in the special case where our vector of H is

L

diagonal, nfolt — ot nkol — ok and our g-vectors reduce to (6.81)-(6.33).

Recall that the reason we were finding these g-vectors was to be able to obtain
a form for the u-vectors and projection operators of a generic vector as used in
the last chapter. These u-vectors and projection operators are defined without
reference to diagonal vectors, so we did not put primes on them. Similarly. we
now have expressions for the ¢-vectors corresponding to a generic vector with the
property trx® = 0, which are defined without reference to diagonal vectors and

which we can write our u-vectors and projection operators in terms of: therefore



we shall drop the primes and simply write that for a generic x with trx* = 0:

1 1 1 1.1
@ =y {—(5—/))33‘1‘?;(5

1 1 1 11
@ = -~ {—(§+P)2X+Z(§
qs = (2- 8[)2)_%XVX

- /))* %X\/X\/X]

1
+ ) TxyxyX

(9.66)

(9.67)

(9.68)

- note the single invariant p, as we have set y3 = 0 and factored out the length

T2

The relevant u-vectors and projection operators are then given by

1
u' = ;/:2-( —qi + a2 + q3)
: L +as)
u = e 5
z\f g1 — Q2 QB
1
w o= m(CI1+q7—Cl3)
4 _ e o 5 — )
u = zﬂ( q2 — g3)

and (7.22). Note that as q; and q, are in the coset space while qs is in the

subgroup, if the algebra admits the outer involutive automorphism - as it does

for all coset spaces whose vectors are all of the form

0 A
A0

- these u-vectors fall into automorphism conjugate pairs:

(9.73)



9.2.3 trx’#0
Let us now have a quick look at the case for vectors which do not have the
property trx® = 0.

We start again with the three equations (9.28)-(9.30). We note that the answers
are nonsensical if 4; = 0, as then we get from (9.29) that a; = 0 and consequently
from (9.28) that #; = 0. The plan therefore is to set 4; = 1, obtain corresponding
values for a; and 3;, substitute these three into (9.26) and then normalise the

resulting ¢-vectors.

We can start by noting that when ; = 1, (9.29) reduces to
20} + 4a; + Biya(x) + 24(x) +2 =0 (9.74)

which we can rearrange to get an equation for /3;:

|
Ut
—

] 1 ‘
B = — (207 + 4da; 4 294(x) + 2) (9.
Y3(x)

Similarly, (9.30) reduces to
Bi(4a; + 2) = y3(x) (9.76)

Combining these two equations we get a cubic equation for a;:

-

5 . . 1 1 1 . A
a?+§af+(2—p’)‘)m—§p +3 z—g“/s(X)z (9.77)

Unfortunately the solutions to this equation are long and messy. Obviously, the
corresponding values for 3; obtained by substituting these into (9.75) or (9.76)

are just as bad, and normalising the resulting ¢-vectors simply makes them worse.



However, it is worth noting that it is possible to factorise the left-hand side of

this equation:

va(x)? (9.78)

0| b=

1.
(a;+14p)a;+1—=p)a; + 5/ ="

which is valid for any value of v3(x) other than zero. So for sufficiently small

73(x), we have the following approximate solutions:
, 1 -
ar=—1—p, —1+p. -3 (9.79)

L

and to obtain more accurate solutions one could use numerical methods.

9.2.4 x in the basis of the u-vectors

Before we go on to look at the other method for finding the u-vectors. it is
instructive to find expressions for x for the case trx® = 0 in terms of the ¢-

vectors and also in terms of the u-vectors/projection operators.

From (9.66) and (9.67) we get

We can also use (9.2)-(9.5) to get

a = —=(—u'+u'+u’—u') (9.81)



Thus

1 1 1 1 1 1 4

] 1‘5”2—(1*?)')“
(9.83)

11,1 N S SRS B BRI

= ((Z—EP)-‘HZ‘F:/))’)P +<—(I—§P)-’“(Z EP)>P
RS TS B SE NS BN SV BN BV N
+<—(1—§P)~+(1+§P)->P +<(1—§/))2‘(1+§/)>P
(9.84)

9.3 Consequences of the eigenvalue equation

We now turn to the second way to find the u-vectors for an arbitrary vector
of the coset space. This is almost the above procedure in reverse: we find the
decomposition of the vector in terms of the u-vectors, then similarly find the
decomposition of its powers in terms of the u-vectors. then finally invert the
relations. We discussed this decomposition of an arbitrary vector of the coset
space in Section 8.1.2, and saw that if we write such a vector as a linear sum
of projection operators or u-vectors, the coefficients are the eigenvalues of the
vector. It was remarked that these can be found by solving the characteristic
equation. In this case the characteristic equation is (6.63). Solving this for a unit

vector gives us the eigenvalues:
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According to the argument in Section 8.1.2, the coefficients in (9.83) and (9.84)

should be these eigenvalues - this is easy to see by squaring the coefficients; for

example:
11 2 1 1 1\ 1 1 1 1 ,. 1 1
—_——— 2 — — 2 e —_ — N — — —p=)2 —_ —
((4 5P) +(4+J))> (37— 3P +2yg — 77 +(4+2P)
L1 N\
| 1\ 2 .
= E + (A,f"dx(x) + I) (9.87)

So solving the eigenvalue equation leads us to precisely the expansion (9.83) for
x. This is. in principle, all we need to find the four u-vectors in terms of x. xyx
and xyxyX: we can use (7.29) and (7.31) to find expressions for x,x and XyXyX
as linear sums of the u-vectors; together with the fact that the u-vectors add up
to zero (this is obvious as the projection operators form a complete set) this is
sufficient to find the four u-vectors. (It is just solving four linear equations in
four unknowns.) However, we will not do this here as we have already found our
u-vectors in the last section and checked the form of the resulting expression for

X.

9.4 L '9,L for SU(4) coset spaces

Let us recap what we found in the last chapter and what we have done so far in
this chapter. We showed that for any coset space of an SU(N) group, given the

decomposition of an arbitrary vector of that space

0=0"0,=> 0O’
S
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L=19,L takes the form (8.53). If the u-vectors of the space form automor-
phism conjugate pairs, the first two terms in this expression form the a, part
while the third term forms the v, part. For coset spaces of SU(4) for which
tr@? = 0 for every vector in the space, we have found the above decomposi-
tion; furthermore we have shown that if the space is also a symmetric one (e.g.
SU(4)/SU(2)aSU(2)@U(1)) the u-vectors do fall into these pairs. As remarked
at the end of Section 8.2 it is possible to rewrite the first part of the right-hand
side of (8.53) in terms of ¢; >< ¢; (using techniques equivalent to those given in

[18]) - this is what we shall do in this section.

We start by comparing and contrasting our two expressions for 8., in two different
bases. In the case of @ = 64N\, the #* are the components of the vector 8 in
a coordinate system whose basis is the set of Ay. The matrix nature of 8 is
contained entirely in the A's - the 4 are just numerical coefficients. Furthermore,
the A4 form an orthonormal basis set. Similarly, the 6% are the components of 8
in a coordinate system whose basis is the set of u®; however, these are unlike the
A7 in several ways: they are mutually commuting and they are neither orthogonal

nor normalised. as can be seen from (7.28) and (7.30).

The u” are a set of four vectors, in the case of SU(4), lying in the 3-dimensional
Cartan subspace containing 8. Also in this subspace is Y. ;u”d,05. Barnes et
al construct from the u® a set of orthonormal vectors in the Cartan subspace.
which they call p© and are defined by equation (3.8) of [18]. For the coset spaces
of SU(4), we already have such an orthonormal set - the g-vectors; indeed. these
are simpler functions of the u® than the relevant p*. We can rewrite 8 in the
orthonormal basis of the ¢-vectors by defining a unit vector x = 8/6 and using

(9.80):

0 = bx = q,0" (9.88)
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where ¢ = 1.2 and

wp.»

1 ! .
o = —9(3 —p)z, 9" = 9( +p)z, (9.89)
(these are the equivalent of the v'* in [18]). We would also like to rewrite

Z w90, = u'd, 0 + u?d, 0, + u®d,.b, + u'd,l,

in terms of the ¢-vectors. Now we already know the decomposition 8 = x =

S gu’ from (9.83) - the 0% are just linear sums of the 6"

0, = ¢ <(£ ~ %,))% + (% + ,—;—p)%> - \2( —0" 4+ 0") (9.90)
P (__(% _ %p)% _ (4£ n épﬁ-) _ \%(9"1 — ") (9.91)
0, = e<—(i—%p)%+(i+%p)%> = %(0”%9”2) (9.92)
o~ 0 (é - %mé _ (i + %p)é> _ %(_gﬂl —0") (9.93)

We thus use this in conjunction with (9.69)-(9.72) - not surprisingly, this gives us
Zk US@;IQ,/S = qualz{)/m (()94)

Now, if we are to use L7'0,L to find the metric for the realisation. we need to

extract a d, M 4 from this. We therefore write

. i )0//1 o
N w05 = q,0,8" = ;\14 a, M (9.95)

To take this further, we recall that M has an analogous decomposition to 6,

M= MANy =Y M’

S
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where we have the same u-vectors (as they lie in the same Cartan subspace) and

the AL have the same form as the 6% but with different values of the invariants:

? }xﬁ) (9.96)

o) o=
-
e
+

!
+
|

e |
e
o

M, = M ((

1 1 1 1 o
M — T {28 (2 2~ )3 997
M, = f\[( (4 2\) (4—{—2\) ) (9.97)
1 1 1 | o
M = M (2 — )2 TP | 9.98
M, M( (7 -3V (5 + 50 ) (9.98)
, 1 1 1 I 1 -

M can therefore be expressed in the same way in the basis of the same g-vectors:
M = q,M" (9.100)

but with different values of the invariants:

1 1 2 y l 1
M" = —1\1(;—\)5, M = A/W(;Jr\)?ﬁ (9.101)
We then view the #”* as functions of M"":
P ae" JM" 4 o
E u 0;,95 = q(,mmdﬂi\/[ (9102)

In order to evaluate the differential

oM™
OMA

(which is essentially a rotation matrix - a Jacobian matrix - describing the change

of basis from the A's to the q's), we take a scalar product of (9.100) with a
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g-vector:

(M, ) = (qu. qp) M"™ = 6, M"™ = M/ (9.103)
= M" = MPg, (9.104)

(where covariant and contravariant a,b-indices have the same sign.) In differen-
tiating this expression, we must be careful. Remember, what we have done is to
take a vector M = M4\, and construct from it three ¢-vectors, then decompose
the vector into a linear sum of two of these. ¢ is therefore a function of A%
This transformation from the basis of the A’s to the basis of the g-vectors is de-
pendent on M - if we pick a different M, we must find new q's. Differentiating

(9.104) with respect to M* therefore gives us

()ﬁ[”b C) b ! N 0( b 7 ‘
gt = Oadn + M d\qf =M 0—1/153 (9.105)

where we have used the expression M? = ¢PAM" which comes from taking com-
ponents of (9.100). This is where we differ from Barnes ef al, who only admit
the first of these terms in equation (3.35) of [18]. However, substituting this into

(9.102), we get

Sa 0™ B e 0" Oqy o4 Y106
Zu Ol = Qim0 + qug? M e = E 0, M (9.106)

o’ ()qB 9 M- )A]

KN b 00" ¢
- <1 OM g @ M S g O

DAs37m AL
(9.107)

and we can show that the second of these terms is zero. To do this we note that
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if we write out the b's explicitly, we have a term involving

dqp
IMA

and a term involving
gt
aMA

Using (9.81)-(9.82) and (7.22). we can rewrite these as linear sums of

<0P5>
oM+ ) 5

which, from (8.22) we see are linear sums of

(<flls \fUT );&B

Thus the second term of (9.107) contains lots of terms of the form
G0 67 (fus Fur)an = (6o >< ¢ 5(fus fur )X

which must be zero from (7.54).

Thus we are left with

1

4%@ M* AR (9.108)

S w08 = 4, <
)

This is the form we were after. Substituting this into (8.53), we get

00//!1

_1- . i.f 174 byI
L ()“L = —5()Mﬂ] [((Ia > (g ) 4m

o (st

D
DD v v

S<T
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. 2 , [0, — 0 .
o oagA § 2 S T ST TS I ;
+aﬂ J] s A[g _ ju,% S111 < 4 > (P - P )A /\] (()109)

We close this section by noting that we could also rewrite the other terms using
q’s and the 8”7 and A", but the results are not pretty. For example, using
(9.69)-(9.72) as well as (9.90)-(9.93) and similar relations between the Mg and

the A%, the second term in the square brackets becomes

V2 \ MM M M MY M

sin <9/ :6/ ) - re
2 (P 4 P15y,
A1 /
S<T Mg — My
(AR 2sinf] 2sinffR) sm[ZHO)
NG Mu1 _ \["’ M * M M4 M (/3 )a
1 sin| 9”1 5'/” 23111[%} 23111[‘9‘,\/%} Sm[g/dgm] 231
‘|‘7§ Mo U"’ + M B A2 - MM 4 M2 (fqr_))A
1 [ sin gﬂl\/;&m] 2 sin[%] 2 sin( f//l—} 9111[—‘“'9”1\%0”2} .
" ‘ ) - 2= (f2)4

3111[9”1 9//'7:]

S gl g2
+f< _ ol ]><fqlﬂ,o), (9.110)

M — A2 M 4 A2

9.5 Covariant Derivatives and Metric

We are now in a situation where we can state the covariant derivatives for a whole

class of coset spaces, with every quantity in the expressions being known. For

anv coset space of SU(4) in which tr@® = 0 for every vector of the coset space
and the commutation relations have the Zs-grading structure,

(9 -6l

P& sin | =5+

.9 afa ; ) ST Ts\B
a, —‘d#A[ (g. >< ¢ ) W+2;W(P + P )a AB

(9.111)
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and

i ; 2 L (05— ; ,
__,-;-vl, = 9,M* > TN ( — T) (P71 — PTPhp (9112
n s<r s 0T

SO

99" sin (—)
B Q B a1
8y =2 9.113
A5 T 2 00— i (fushur)a | | )

D, MP =0, M| (q. >< ¢")P4

and

i , (05— 0 S
A 2 : c2 s P W
Dﬂz* - dﬂu + du ‘[ A[/ ‘1% sin ( 4 > ( fu~ fu ( fu: ))A )\PL

(9.114)
The ¢-vectors and u-vectors in this are those of equations (9.66)-(9.72), which
can be constructed either from the powers of M or those of 8, as both are generic

vectors in the same Cartan subspace. The 6", M, # and M} are given by

equations (9.89), (9.101), (9.90)-(9.93) and (9.96)-(9.99) respectively, where

0 1 1. /6 .
p= ,\/——74 (5) = \/5 — Ztr <§> (9.115)

and

M 11 /M _
N T LN e 9.116
\ \/ "‘(M) \/2 i (M) (9.116)

Finally. let us determine the metric for this non-linear realisation. If we try to
calculate D, MPBD* Mg, it is clear from the last section that the cross-terms will
all vanish. The products of P°7 + PT%’s are obvious, but we will need to know

what the products of (g, >< ¢")%4’s look like. Using the orthonormality of the
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q’s, the product is just

(g2 >< ") alg- >< ¢MB = P iqend™ = (Qu. 4004 ¢%C = 8uc(¢® >< ¢*) 4"

(9.117)
Therefore
- . ) , 6)9"” 09//
¥ B H A — AN Y A ou T b ey I a
D, MPD*Mpg 0 M70"Me |(¢" >< )" g 5o
7 ' 2
sin <93;9T> |

1163 | =l | (efr)S| (9018)

ML — AL
2N\

with the metric being the quantity in square brackets:

b - ag" 90" sin <_—;.l_> ) |
gac = (¢" >< ¢ )ac a +16Z ———— | (fus fur)ac (9.119)

GM" DM — \ M-

9.6 Non-linear realisations of SO(6)

Once again, we are able to use the homomorphism between SU(4) and SO(6) to
rephrase our results, so that they express the properties of non-linear realisations
of SO(6). Each term in (9.109) is a linear sum of A's, so is a vector of SO(6)
(upto a factor of i). We can therefore simply replace the A’s with ¢’s and change

each [-index to an [.J-pair, with the appropriate normalisation:

agl!(l
Zonm

L7'9,L = _%aﬂ,MAB [(q(, >< ),

o ( /_) /T> ST TS\IJ
2 ‘ ___......_:.‘_—, Pu P S / .
* Z ML — M5 ( + Jip| oL

S<T
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/ 2 , [0 — 0% .
+0, MAP Z —— sin’ (¥> (P57 — P19y "oy (9.120)
= M{ — M} 4

(where oy is an arbitrary generator of SO(6) while 045 is a broken generator).
The operators (¢, >< ¢V 45, (P?T + PT5)L7 and (P31 — PT7) 4517 are then

given by

(0 >< ¢")"7 a8 = ¢ din (9.121)

) ) 1 . . 1 ,
(P74 PTG = cw(PPoapP o) 4 s t(PToap Poo™’) = 4(fus fur ) ip
(9.122)
and
e o 1 . . 1 ‘ G ; e
(P — P19 ,5" = —te(PoupPTol’) - gtr(PTaABPba”) (9.123)
- 4i[fusfuT(fuT - fus)]ABlJ (9124)

1 given by (7.60). For symmetric spaces in which

(see Section 7.4) with (f,s)4B
tr8? = 0 for every vector of the coset space, (9.120) can then be split in the
obvious way, giving covariant derivatives analogous to (9.113) and (9.114). The
metric is

e\ 2
09//” ()92/ ‘ S (’—2—“

b c . ,
gapcp = (¢ >< ¢ )aBcp=——r + 16 T (fusfur)aBcD

IM™ A" .

(9.125)

Due to the simplicity of the \-relations of the SO(6) spinor representations, we
can also find relatively simple expressions for x, x,x and X XyX. as we shall now

see. We shall also find expressions for the invariants trx? and p.
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9.6.1 Vectors and invariants of SO(6)

First we want to define a unit vector. To do this we need to know that the scalar

product of two o’s is
(0'.4B~,0'C,'D) :2(6‘405BD_5AD(5BC') (912())

It is easy to see that this is the correct expression by considering, for example,
the scalar product of o5 with o9, 091 and o43. From (6.91) it can be seen that

(012.012) =2

as given by the above expression; this also implies that

- also in agreement. Finally, we know that the scalar product of two different o’s.

e.g. 012 and o3, is zero (they are orthogonal).

5.

AB

The square of the length of an arbitrary vector w*?o4p is then

(w‘4B0'44B7w‘CDO'CD) = u)ABwCD(O'AB.O"CD) (9127)
= QwABuJCD((SA(j(gBD - (5.4D5BC') (()128)
= 4wBu,p (9.129)
Defining the scalar w by
W =" uJABu,‘AB (()130)

the magnitude of w*Po 45 is then 2w, so we can define a unit vector x:
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. JAB . o R
where n1f = iT 1$ a ‘unit tensor':

AB 2
AB W WA W :
N nap = —=— =1
w w w=
The next vector we need is xyx; this is simply
1 AB_CD 1 AB_CD EF
XyX = En' n TapvOcp = Zn n CABCD OEF
Similarly
1, , . .
XvXyX = 377,‘4B71CD??,EFGCDEFGHUABVO'GH
O
1 , : ,
AB_CD,_ EF GH . 1J
= g‘n n-oonT €opEF €ABGH O1J

= o+ S neyors

where we have used an identity for the contraction of two €’s.
We can get trx® by writing

, 1
2 2

p)

so that

irx

[SEIE

trx” = (x,xXyX)+

1 . . :
= :'nABnCDnEF
O
1 45 ~
— —?Y,AB’NCDNEF

4

, GH ~
¢cpEr (0aB.OGH)

GH .
ccper” (84c0BH — 04aH0BG)

(9.131)

(9.132)

(9.133)

(9.134)

(9.135)

(9.136)

(9.137)

(9.138)
(9.139)

(9.140)



1, , , ,
= ZNAB”CD"EF(6C'DEFAB — €CDEFBA) (9.141)
1 -n B ,
== Sn‘ABn(‘D?ZEFc’ABCDEF (9.142)
while we obtain p by squaring (9.137):
, 1 1 1 o
xt = Z(xvx)2 +3xvx + 71 (9.143)
, 1
= trx' = S0, xvx) + 1 (9.144)
= 1+ 3—_)71‘4BncDnC’HnUGABC:DEF&'GHU]‘L(GER oKL)
1. e ‘ ,
= 14 gzz‘4B7vcD‘nGH'77,]‘]€‘4BC«DEF6GHUEF (9.145)
= 34+ ngmpr (9.146)
, T, 1 : : 1 14
= v4(x) = —4—t1‘ x? — 3 = 3 + 0Ty ey — 3 (9.147)
1 : s o
= —+ Dl ne g, (9.148)
, 1 ,
= p =X = \/WGH??J‘]??G.J’IUH 7 (9.149)

9.6.2 Properties of coset spaces of SO(6)

The coset spaces of SU(4)=SO(6) we have found the ¢-vectors and u-vectors for
are those with the property tr x® = 0. which from (9.142) we can see is equivalent
to insisting that

AP E ey peppr =0

It is possible to identify particular coset spaces contained in SO(6) for which this
is guaranteed to be the case for all vectors. For example, for the SO(5) subgroup
of rotations in the first five dimensions, it is clear that in the product n48nPntt
it is not possible for all six indices to be different. so any coset space of SO(5)
has the above property. Similarly, if we look at the coset space SO(6)/S0(4). it

is generated by < 7,5, 7,6, T56 > so in the indices of the product nABncly
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either a 5 or a 6 (or both) must be repeated. Hence the algebra of the coset space
SO(6)/SO(4) is also composed entirely of vectors for which trx* = 0, as are those

of the two subspaces of this coset space, SO(6)/SO(5) and SO(6)/SO(4)@S0(2).

This can be seen from the spinor representations. It is clear from the form of the
generators given in (6.75)-(6.80) that the coset space SO(6)/SO(4)SO(2) is one
of the type discussed in Section 9.1 where every vector of the coset space has the

form

0 A
A0

If we include the generator osg in our coset space, the general form of a vector is

where ¢ is a real number: it is not hard to show that the trace of the cube of this
is also zero. Such a coset space, however, is not necessarily a symimetric space as

the r-product of two vectors is not necessarily a vector of the sublagebra.

This would seem to suggest that equation (9.109) is valid for each of the coset
spaces SO(6)/SO(4), SO(6)/SO(5) and SO(6)/SO(4)©SO(2) and that the co-
variant derivatives are given by (9.113) and (9.114) for SO(6)/SO(4)=S0(2).
However, we should explicitly check which of these are symmetric spaces, besides

which there is a subtlety for SO(6)/SO(5).

S0O(6)/SO(4)

This is homomorphic to SU(4)/SU(2)0SU(2).

For the spinor representations of SO(6), we can decompose the commutation

]
)
Q]



relations (4.82) as follows:

(T Torl = —=i(6,,Tor — 6, T — 6,0y + 6,010) (9.150)
(T Ts) = —i(8,,Tus — 0,,T0s) (9.151)
[T Ths) = —i(8"" Ty — 6,,T6) (9.152)
(T, Ts] = 0 (9.153)
(Tus. Tys] = iT,, (9.154)
(T Tos] = 1T, (9.155)
(Ts5.Tos] = 18,56 (9.156)
(T, Tse] = —iT} (9.157)
[Te. Tse) = 1T (9.158)

The coset space SO(6)/50(4) is generated by T, T,6. T56; we can see from the
last three commutators that the commutator of two of these generators does not

always close onto the subalgebra. Hence SO(6)/50(4) is not symmetric.

SO(6)/SO(5)

SO(6)/SO(5) is generated by T)6. T56. It can be seen from the commutators above
that this space is symmetric, but in this case it is also worth looking at the -
algebra, (6.100)-(6.101). Note that the y-product of any two broken generators
is zero. This is equivalent to saying that they all square to the identity and
anticommute with each other - precisely the conditions under which projection
operators are not required to find the covariant derivatives. Indeed, the projection
operators developed in this chapter are based on M and € being generic vectors
of SU(4): however, we can see from these -relations that for a general vector
0 = 0"%0 6+ 0056 of SO(6)/SO(5) that 6,68 = 0. Therefore this is a coset space

for which there are no generic vectors - every vector of the space is a g-vector.
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These two conditions are clearly equivalent:

1) All the coset space generators square to the identity and anticommute with

each other
2) Every vector of the coset space is a ¢-vector

Other examples of subspaces of SO(6) for which this is true are SO(5)/S0(4
0(4)/S0O(3). ... - the fact that every vector of the subspace is a g-vector means
that each vector only has two distinct eigenvalues and only one independent
invariant. For sigma models based on these coset spaces, then, we would expect
to get results akin to those of SU(2)/U(1) - this is precisely what we found for

SO(1,4)/S0O(1.3), the ‘Minkowski version’ of SO(5)/SO(4

SO(6)/S0(4)2S0(2)

SO(6)/SO(4)©S0(2) is homomorphic to SU(4)/SU(2)@SU(2)2U(1) and is gen-
erated by T,s.T,6. It is a symmetric space and the generators do not all anti-
commute. The algebra spanned by these generators does include generic vectors

of SU(4) - for example, the vector

0 0 V2 —1+i 0
0 0 0 V241 -1
T35 + 036 + V2045 =
V2 —1—1i 0 0 0
0 V241 +i 0 0

has the eigenvalues '\/4 + ‘Zﬁ, \/4 —2v/2, —'\/4 + 22, —‘\/ﬂjﬂ 24/2.

?However, if we only require that the a(’fion is invariant under SO(6), we may add one extra
term to the Lagrangian f(n SO(6)/SO(5) which changes by a total derivative[31]. This is not
the case for SO{6)/S0O(4) or SO(6)/SO(4 ’f\SO( ), for which there are no extra terms possible.



For a generic 8, we can define the vectors x, xyx and xyxyx, as well as the

invariant p, as in Section 9.6.1; in this case these reduce to the following (with

X.Y =5.6):

x=n""0o,x

X

VY pA
xyX = " 0" €, xy o

XyXyX = 4x — Sn* ¥ nyo,x

oy 1
p = \/ 20X Y, xny — 1

The covariant derivatives are then (from (9.120))

a&//a

DM = 20,M" {(qa >< )Y

2

+2 -
S<T

and

4
My — My

D = d,0+0, MY Z
S<T

4

N
=
[

(G0
sin <__._.l

ML — Mj,

(9.159)

(9.160)

(9.161)

(9.162)

(9.163)

Ly !
Siﬂz (95 T> (PDT o PTb)uAXp’\O'ﬁ)‘\

(9.164)



Chapter 10

Conclusions

In this chapter we summarise our main findings and take a brief look at potential

avenues for further research.

To start with we saw how the transformations of Goldstone hosons could be de-
scribed by Killing vectors and how the Lagrangian for a non-linear realisation of
a Lie group is composed of a mass term for standard fields and terms involving
covariant derivatives of standard fields and Goldstone bosons. We saw how the
Killing vectors and covariant derivatives are related to the ‘coset space represen-
tative’ L. particularly for ‘symmetric spaces’. A trigonometric/hyperbolic form
of L proved easy to obtain for the coset spaces SU(2)/U(1) and SO(1,4)/50(1,3).
We were then able to go on and find the Killing vectors and covariant derivatives.
For each of these coset spaces, we were also able to rephrase the term involving
covariant derivatives of the Goldstone bosons as the contraction of two normal

partial derivatives with a metric for the space.

For a general coset space of SU(N), we found that such a form of L was not easy
to obtain. Due to the non-trivial nature of the -algebra, the Lie algebra was

partitioned into ‘strata’ and to obtain L as a linear sum of generators one had to
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use projection operators based on vectors of one particular stratum (u-vectors).
In seeking the covariant derivatives L had to be differentiated, which introduced
tensor projection operators belonging to the adjoint representation. By using
certain relations for the vectors and tensor operators, we were able to find a
general form for L=10, L, valid for any SU(N) coset space. For symmetric spaces
with ‘automorphism conjugate’ u-vectors, it was possible to break this into a,

and v, parts and thus to find the covariant derivatives.

For SU(4) we were able to identify four strata. Omne of these. the ¢-stratum,
had three orthonormal members in every Cartan subalgebra. This allowed us
to rewrite the first term of the expression for L7'd,L in a form (9.109) more
in keeping with the known results for chiral SU(N) @& SU(N)[18]. We were also
able to use the homomorphism with SO(6) to write the tensor operators in this

expression explicitly as tensor operators of SO(6).

However, for a general coset space of SU(4), although we understood the meaning
of the various invariants and tensors in this expression, we did not find expressions
for each of them in terms of our original coset space vector 8. It was only when
we limited ourselves to coset spaces for which v3(8) = 0 for every 8 that we were
able to construct u-vectors, and hence projection operators, from 6, as well as
finding explicit forms for the invariants. Again, we could use the homomorphism
with SO(6) to write the vectors and invariants explicitly as vectors and invariants
of SO