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Non-linea,r realisations of the groui)s SU(2) and 80(1,4) are analysed, described 

by the coset spaces SU(2)/U(1) and S0(l ,4) /S0(l ,3) . The analysis consists of 

determining the transformation properties of the Goldstone bosons, constructing 

the most general possible Lagrangian for the realisations and finding the metric of 

the coset space. The Lie algebras of special unitary groups are studied and their 

projection operators are determined, leading to a general method for construct-

ing the Lagrangian for a non-linear realisation of a special unitary group. The 

Lie algebra of SU(4) is looked at in depth and its homomorphism with S0(6) 

allows a full specification of the most general Lagrangian for the coset space 

4)0SO(2). 
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Preface 

Original work starts at the very end of Chapter 4. The contents of Cha^ater 5 

have been laresented by me in an internal group seminar but never published. The 

majority of the work in the sections of Chapter 6 concerning SU(4) and S0(6) is 

original and has been accepted for publication to the Journal of Physics A as a 

paper entitled 'How orbits of SU(N) can describe rotations in S0(6)' , (authors 

K J Barnes, J Hamilton-Chaiiton and T R Lawrence) as well a.s being presented 

by me in an internal group seminar. Likewise, the work presented in Chapters 7, 

8 and 9 is original (except where otherwise stated). 
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In general, I would like giÂ e my thanks to the past and present members of the 
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Chapter 1 

Introduction 

The importance of Lie group symmetries in particle physics has long been under-

stood, with Wigner's classification of the unitary representations of the Poincare 

group underpinning much of modern particle physics[l] and a local U(l) sym-

metry motivating the introduction of the electromagnetic gauge Aeld described 

by quantum electrodynamics. The idea of introducing a gauge field to in order 

to maintain a local symmetry was extended to the (non-Abelian) isotopic spin 

grou}) in 1955 [2] and in the following year to the Poincare groui) [3], where it 

was shown to be the gravitational held as described by general relativity. 

The roots of the research i^resented in this thesis, however, lie in the 1960s, in 

two topics which were studied in such different ways that it was not i^roved until 

after nearly a decade of research that they were two sides of the same coin. In-

terestingly, these were both initiated largely by pa^aers submitted for laublication 

in Nuovo Cimento in 1960. Goldstone's paper [4] looked at the possible inter-

pretations of a situation in which a Lagrangian contains a scalar field or scalar 

multiplet with an imaginary mass. If such a Lagrangian has a discrete symmetry, 

the minima of the potential part of this Lagrangian must be discrete, whereas if 



it has a continuous symmetry the potential has a contimions set of degenerate 

minima. For example, the Lagrangian 

A 
(i-i: 

is invariant under an 0(2) transformation of the doublet and with negative, 

the potential looks like: 

Figure 1.1: 0(2) invariant potential with degenerate minima 

To obtain physical fields, one must redefine the scalar fields such that one of the 

minima represents the vacuum state of the system - picking a minimum in this 

way breaks the symmetry (or at least part of it). Furthermore, following the field 

redefinition, some of the fields are massless (a Aavour of why this occurs is given 

in Section 2.3). 

This paper was followed by another [5] in which these conclusions were restated 

in a more general form: whenever a Lagrangian is invariant under a continuous 

symmetry group but its vacuum is not, there will be spinless fields of zero mags 

present. These are known as Goldstone bosons. It wag shown that this theorem 

is generally valid for symmetries in Lorentz covariant theories [5, 6]; the 

extension of Goldstone's method of symmetry breaking to the case of a 



symmetry is the famous Higgs mechanism [T]. All of these papers were concerned 

with a way of going from a Lagrangian which is explicitly invariant under a given 

group of symmetries to a vacuum which is not invariant under all of them (though 

it may be invariant under a subgroui) of these symmetries), which can be applied 

regardless of the particular group chosen. 

Gell-Mann and Levy's i^aper [8], by contrast, was classic i)henomenology, con-

cerning pion decays in a system of pions and nucleons. In such a system, the 

current which transforms neutron into i^roton could be split up into a vector i^art 

and an axial part. This paper described and considered three different models in 

which the axial vector current satisfied a certain condition, which it was shown 

led to a particular form for the decay rate which agreed with experiment (or 

would do if an unknown form factor behaved as expected). 

In the second of these models, the nucleons transform as a rei^resentation of S0(4) 

but the pions only transform as a representation of its S0(3) (vector) subgroup. 

(We will look more closely at what this means in Chapter 2.) A fourth scalar 

(meson) field called c ' is introduced; under the remaining - axial - part of S0(4), 

-TT and cr' transform into each other, that is to say the i)ions and the c ' together 

form a multiplet of S0(4). 

In the third model the cr' field is eliminated from the Lagrangian by constraining 

the modulus (the iength ' ) of this held: 

+ = ( 1 . 2 ) 

where C is a constant, so that 

a' = —\/C'^ — TT̂  (1.3) 

Wherever a ' previously appeared in the Lagrangian, then, it is now replaced 



by this non-linear function of ;r. This model therefore became known as the 

'non-linear sigma modeF. 

This idea of involving a scalar field non-linearly in the Lagrangian so that the 

full symmetries of the system (typically those of the 'chiral groups^ SU(2)®SU(2) 

%S0(4) or SU(3)0SU(3)) were not explicit, became increasingly po^Dular through 

the 1960s. Much of the research was essentially phenomenological, considering 

one particular realisation of one particular group [9]. A notable exception was the 

work of Callan, Coleman. Wess and Zumino in 1969 [10, 11]. This demonstrated 

how, given any Lie groui)^ and any Lie subgroup, it was iDossible in theory to de-

rive the most general Lagrangian in which the subgroup waa linearly represented 

but the rest of the symmetries were realised non-linearly. These papers form the 

starting point for this thesis and will be reviewed in detail in Chapters 2 and 3. 

They differ from their predecessors both by virtue of their geometric approach 

and by the generality of their application. 

The geometry of these non-linear realisations was examined further by Isham 

[12], who introduced the concepts of Killing vectors and of a metric (i^romi^ted 

by Meetz [13]). and later by Boulware and Brown [14]. 

Salam and Strathdee [1-5] drew attention to the fact that in any such 'phenomeno-

logical Lagrangian' there are always terms involving a set of scalar fields, but 

none of these terms are pure i^owers of the fields - in particular there is no term 

quadratic in the fields, that is, they are massless. They proved that if a non-linear 

realisation of a particular group were obtained from a linear one, the vacuum 

could not be invariant under the full grou^). Goldstone's theorem then implied 

that there were massless scalars present in the non-linear realisation, which were 

exactly the fields identified bv Callan. Coleman, Wess and Zumino. Also, if one 

^Strictly speaking, this should be a linear Lie group (see, for example, Vol. 1 of [16]), but we 
will follow the convention of particle physics and use the phrase Lie group' in the understanding 
that it is a linear Lie group we are talking about. 



were to specify that a system of fields is invariant under a Lie groni) G while the 

system's vacuum state is invariant under a subgroup one could ask whether 

there is a general method of determining the couplings between the Goldstone 

bosons and the other helds - Salam and Strathdee showed that in any such case 

the methods of Callan, Coleman, Wess and Zumino would do just this. In this 

way of looking at things, a non-linear realisation was just the effective theory 

resulting from the spontaneous breaking of a symmetry. (A more explicit com-

parison of the Lagrangians obtained from the methods of [11] and those from a 

spontaneous symmetry breaking scheme was carried out by Honerkami) [17] for 

the case of the chiral groups.) 

Aided in their understanding of non-linear realisations by these papers, research-

ers in the area spent the next three years applying the methods of Callan, Cole-

man, Wess and Zumino and Isliam to the chiral groups, culminating in the paper 

of Barnes, Dondi and Sarkar [18]. 

In this thesis we shall analyse various non-linear realisations. The first of these 

analyses, SU(2)/U(1), haa been done before [19] - we shall just reproduce this 

work as a simple example of how to apply the above theory. The second, 

S0( l ,4) /S0( l ,3) . has not been done before, but the formal manipulations are 

almost identical to those of SU(2)/U(1). For both of these non-linear realisations, 

we will determine the transformation proi^erties of the fields involved (using the 

Killing vector method) and construct the most general possible Lagrangian. From 

this Lagrangian, we will obtain a metric, where the coordinates are the Goldstone 

fields themselves^. 

In the latter part of the thesis, we concentrate on SU(N) groups, in particular 

-Whenever there is an even number of such real fields, they may be combined into complex 
fields; for certain non-linear realisations the resulting complex metric is particularly useful to 
anyone wishing to supersymmetrise the realisation [23, 24. 25, 26] 



SU(4), and by way of a homomori^hism, on S0(6). We make a general study of the 

geometry and algebra associated with the Lie algebras of these groups and then 

turn to the problem of specifying the Lagrangian and Anding the metric for non-

linear realisations of the groups. By using the machinery of projection operators, 

we are able to And very general forms of the required quantities for a large 

class of realisations, those with 'automorphism conjugate u-vectors". However, 

these expressions assume one can find the projection o^^erators appropriate to 

the realisation. This we do for particular realisations of SU(4), or equivalently of 

S0(6). including S0(6)/S0(4)GS0(2). These we shall see have 'automorphism 

conjugate u-vectors' so for SO(6)/SO(4)0SO(2) we will completely s^^ecify the 

Lagrangian. 

Chapter 2 will begin by introducing the key concepts of a coset and a coset 

space which underlain the whole of this work. It will be seen that there is an 

initmate connection between the description of the coset space and the nature 

of the Goldstone fields. The bulk of this cha^ater will be spent looking at the 

transformation properties of the coset space and hence the Goldstone fields, using 

the coset space SU(2)/U(1) as an example. This analysis will be exactly that of 

[19], in which the field transformations are described in terms of the Killing 

vectors. 

CUiapter 3 introduces the 'standard field' description of the other particles that 

may be involved in the non-linear realisation. After looking at how these fields 

transform, we will look at how" to construct the most general possible Lagrangian 

from the Goldstone fields and the standard fields, following the prescription given 

by [11]. Aiost of the cha^ater is involved with defining 'covariant derivatives' for 

the fields which transform in the same way aa the fields themselves. Again, we 

shall see how to do all this for SU(2)/U(1) - we will obtain each term in the 

Lagrangian involving these covariant derivatives, and from the term involving 



the cova,riant derivatives of the Goldstone fields we will extract the metric of the 

coset si)ace. 

In Chapter 4 we start to look in detail at the properties of specific Lie alge-

bras. We start off with the simplest (non-Abelian) example of all, SU(2). We 

describe the effects of similarity transformations on the vectors of the defining 

representation and see how this can be used to define the elements of the adjoint 

representation (of both the group and the algebra). We also identify a set of pro-

jection operators for each of these representations, which are so im^^ortant in the 

non-linear realisations of higher-dimensional SU(N) grou^DS. We go on to look at 

the special orthogonal groû DS S0(3), S0(4), S0(5), S0(l ,3) and S0(l,4), making 

full use of homomorphisms between the groups. We consider the ')'-ma,trices of 

the si)inor representations and their products, as well as identifying projection 

operators for the spinor re%Dresentation of S0(3) and the Weyl representation of 

This understanding of the Lie algebraa of S0(l ,3) and S0(l,4) is put to use 

in Chapter 5, which deals with the non-linear realisation S0( l ,4) /S0( l ,3) . For 

this realisation we find the transformation properties of the Goldstone fields, the 

covariant derivatives and the metric, just as for SU(2)/U(1) in Chapters 2 and 3. 

Indeed, we also double-check this metric by introducing a method for obtaining 

it from the Killing vectors. 

In Chapter 6 we go back to studying the intrinsic properties of Lie algebras. We 

see that SU(2) is something of a special caae among the s^aecial unitary groups 

- the algebras of the higher-dimensional SU(N) all have additional features. We 

take a geometric approach to studying these features, baaed on the work of Michel 

and Radicati [27]. Although the bulk of this paper si^ecifically concerns SU(3), 

they also outline a general way of describing the Lie algebra, of any SU(N) group; 

after reviewing this theory we then api^ly it to SU(4). We see how the elements 



of the Lie algebra fall into four distinct classes or 'strata'. We also look at two 

bilinear operators on the Lie algebra which are related to the symmetric and 

antisymmetric strncture constants. The final section notes that this Lie algebra 

contains the same elements as the Lie algebras of the two spinor representations 

of 80(6) and the space of matrices spanned by the products of S0(4) 'y-matrices. 

This means that the strata of SU(4) can be seen as strata of S0(6). In this 

section we focus particularly on the SU(2), S0(3) and S0(4) subsets of S0(6) 

rotations, which gives us a deeper understanding of the geometry. Seen in this 

way the symmetric structure constants take on an unexpectedly simple form. 

Chapter 7 starts by extending the definition of the elements of the adjoint rep-

resentation of the Lie algebra of SU(2) to higher-dimensional SU(N). These ele-

ments act as tensor operators on the elements of the defining representation of 

the algebra and are constructed using the antisymmetric structure constants. We 

define a similar set of tensors based on the symmetric structure constants. We 

use the geometric properties of the i^rojection operators of the defining repre-

sentation to derive explicit forms for particular combinations of the projection 

operators of the representation. These are all the tensors we will employ 

in constructing a general Lagrangian for a non-linear realisation of SU(N). We 

close the chapter by finding explicit forms for these tensors for S0(6), by using 

the homomorphism with SU(4). 

In Chapter 8 we set about trying to derive the covariant derivatives of an arbi-

trary non-linear realisation of SU(N) - these constitute a full specification of the 

most general possible Lagrangian. Given a set of (defining rei^resentation) pro-

jection operators relating to an arbitrary element of the coset space, we derive an 

expression for a key quantity, known as f in terms of the tensor o^^erators 

and the traceless laarts of the defining representation projection operators . For 

a large class of realisations (those with 'automorphism conjugate u-vectors') we 



are able to extract the vital information, resulting in general expressions for the 

covariant derivatives at the end of the chapter. 

Having identified the covariant derivatives for a general SU(N) coset space, as-

suming the projection operators for that space to be known, in Chapter 9 we 

turn to a particular class of coset spaces of SU(4). for which we can determine 

the projection operators. We note some of the proiaerties of this class and use 

these properties to find the i^rojection operators for an arbitrary element of the 

coset space. We are able to i^rovide a check on our result by using a method re-

lating to the eigenvalues of the element. Each of these spaces has 'automorphism 

conjugate u-vectors\ so at this point we have completely si)ecified the larojection 

operators the covariant derivatives for the realisations. However, we further 

find that we are able to express one of the terms in the covariant derivative of 

the Goldstone helds in a more convenient form, giving us derivatives which look 

very much like those of the chiral non-linear realisations in [18]. 

Again, we can use the homomorphism to express all these results in SO(G) terms. 

Using the simple form of the symmetric structure constant we find simple expres-

sions for the various vectors and invariants needed to construct the projection 

operators, explicitly in this basis. We end the chapter by demonstrating that the 

coset space SO(6)/SO(4)0SO(2) belongs to the class for which we have identified 

the covariant derivatives. 

Finally, a note on ranges of indices. Throughout this thesis, we will stick to 

the following conventions. Whenever the indices a,6, c apiaear they run over the 

values 1,2. Similarly, the indices / ' . j , w i l l always run over 1,2,3. Whenever 

we are considering compact groups, so the metric of the Lie algebra is Euclidean 

(positive definite), greek indices will run 1,2,3,4. but when we come to consider 

the SO(t,s) group, we shall follow convention and use the index 0 to re^Dresent 

a timelike direction; in such cases the greek indices will run 0,1,2,3 (this will be 



clarified in Section 4.5). (We assume the fields to be functions of normal four-

dimensional Minkowski spacetime, so whenever the index /.( represents si)acetime, 

for example in it is assumed to run 0,1.2.3.) 

The variety of Lie algebras and their subspaces we shall be working with means 

that it is not practical to rigidly dehne ranges of the u^aper case indices. We shall 

endeavour to deAne them as and when they are introduced, chapter by chapter. 

However, wherever possible, the following guidelines are observed. The indices 

are only used in the final chapter where they range over 5,6. When we 

work with a ^/-dimensional representation of a group, the indices 6% T. D, I run 

1 , . . . , ( / (these are largely used for projection operators). For SU(N) groups and 

their coset s^^aces, an .4, B, C, D-index on a generator indicates it is a generator 

associated with the coset space, while a f . Q. ^-index indicates it is a generator of 

the subgroup. The indices 7, V, 1 in such cases run over all the groui) indices, 

from 1 to the dimension of the group. For special orthogonal groups, an arbitrary 

group index may be denoted by any capital letter upto and including f . 

10 



Chapter 2 

Coset Spaces and Goldstone 

Bosons 

2.1 Lie A l g e b r a s as Vec to r Spaces 

Any element of an /^-dimensional Lie group may be written e~'* where x is a 

vector in an ??-dimensional vector space. For example, an element of SU(2) (in 

the defining representation) may be written as e"'* where x = is a vector 

in a 3-dimensional real vector space whose elements are 2 x 2 matrices. We can 

choose a basis set (of matrices) for this space - in the case of SU(2) the most 

common choice of basis is the set of generators given by half the Pauli matrices: 

T 1 

,(72 = I ° j = t ^ ^ I 
i 0 / W - 1 

11 

where cri = 



For all SU(N) and SO(t,s) groups (the ones we shall be looking at), if we take the 

commutator of any two vectors in this vector space we get another vector in the 

space, or at least a vector in the space multiplied by a complex constant. In the 

Ccise of unitary groups (all the vectors in the space are hermitian), this constant 

is purely imaginary, so following the notation and normalisation of Michel and 

Radicati [27], we can define the o^^erator /\: 

For all SU(N) and SO(t.s) groups the matrix X/\y is an element of the vector space 

(it iies in the algebra\ or the operator /\ is an 'algebra' of the vector space). The 

y\-algebra is. of course, a linear algebra, in that 

(cix + cgy)/, z = - ^ [(cix + cgy), z] = [x, z] - Ĉ2 [y, z] = cix^z + czyAZ 

(2.3) 

where Ci, C2 aic numerical coefhcients 

so we can write the commutator of any two vectors as a linear sum of commutators 

of basis vectors. The vector space is known as the Lie algebra, although the set 

of all commutation relations between the generators is often referred to also as 

the Lie algebra - it is always clear from the context which is meant. 

The "components' of the vector x = ^^7/ are the parameters These can be 

thought of as coordinates on the space. Indeed, if we re^Dlace the basis vectors 

2"/ by the normal Cartesian basis vectors, our vector space becomes the familiar 

?)-dimensional s^^ace of real numbers, with the being the Cartesian coordinates 

of a vector in this s^aace. This is defining a mapping from the (n-dimensional) 

Lie algebra to the (??-dimensional) space of real numbers: 

12 



% 

Figure 2.1: Mapping from the Lie algebra to R" 

2.2 Cose t s a n d Cose t Spaces 

In the basis of the generators, then, we can write an element ^ of a Lie group G 

aa 

g = e / = L2. , n >.4) 

where is the dimension of the group. 

Let be a subgroup of G'. Then 

where f = 1 m where 7?? is the dimension of ^ 

2.5) 

We now define a left coset to be the set of elements ^^7 = {^/? V/? € 

note that each p is in its own coset (Right cosets can be similarly defined 

but they will not ])e used in this work; therefore whenever the word 'coset' is 

used in the remainder of this thesis I will always be referring to a left coset.) 

(2.4) is not the only way of writing to construct we instead decompose it 

13 



into two factors. For example, the elements of SU(2) may be written 

g = e"2'^'^' 2 = 1,2,3 (2.6) 

or alternatively we may ex^Dress them as follows: 

^ a = 1,2 (2.T) 

(We will be working a lot with elements of SU(2). As the metric for the algebra 

is positive definite there is no distinction between, for example, and - we 

are free to raise and lower indices as we wish. However, for clarity, and to make 

things easier when we come to look at groni^s like S0(l,4) for which this is not the 

case, we shall ensme throughout this thesis that we keep the notation covariant, 

that is we keep our indices balanced.) 

The elements of the U(l) subgroup generated by Tg = (73 are 

A. = (2.8) 

The elements of are then given by 

(2.9) 

= V6'^} (2.10) 

In the context of broken symmetry, the part of the symmetry under CV that is 

associated with the Cg is broken, while the part associated with 0-3 survives. The 

Cq are thus known as 'broken generators\ 

Note in the above that if two groups elements have the same values of but 

different values of they lie in the same coset. It is thus only the that 
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distinguish between different cosets. We therefore define the element Z as the 

part which distinguishes between cosets - in this laarticular case, it is 

I = ( 2 . 1 1 ) 

or in general for a Lie group 

2 = ^2^2) 

where .4 = n? + 1 , . . . , ??, 

so each coset is re^^resented by one value of Z - it is much simpler to work with 

1 than with the entire coset. (Note that the 1 in (2.11) is a representative of the 

coset in (2.10), as indeed is gr.) 

We now define the coset space to be the space of all of the cosets, so each 

point in the s^^ace is a coset, represented by a i^articular value of //(LL,'-"̂ ); that 

is to say, there is a one-to-one ma^aping from the coset space to the siaace of all 

/^(w^). The space clearly has — ??? dimensions - one for each of the which 

distinguish the cosets. 

2.3 G o l d s t o n e Bosons 

Now consider a situation where we ha^'e a Lagrangian which is invariant under 

transformations in the group G but the vacuum states are only invariant under 

Let us look at what happens if we a^^ply group elements to one such vacuum 

state, If two elements of (9 have the same values of but different values 

of (i.e. they lie in the same coset) they map (̂ o to the same vacuum state. 

Converselv, if thev have the same values of but different values of u;"̂ , the^' 
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map ^0 to diEerent vacuum states. The coset space thus represents the set 

of transformations which map one vacuum state into a different vacuum state. 

The connection between these transformations and the Goldstone bosons that 

occur in spontaneous symmetry breaking can be seen by the following simple, 

rather heuristic argument. (A rigorous discussion of these details of spontaneous 

symmetry breaking lies outside the scope of this thesis, but may be found in [5] 

or any textbook dealing with the subject, such as [28].) 

Consider a i^otential I of a scalar multiplet which transforms as an rZ-dimensional 

representation of SU(2) (i.e. ,9 = 1 . 2 , . . . The minima of the vacuum occur 

when 

+ ( 6 ' ) ' + . . . + = a (2.13) 

- we take these minima to be invariant under the U( l ) subgroup in (2.8). (This 

is like an (/-dimensional version of the i)otential in Figure 1.) Under the transfor-

mation the vacuum state is transformed into a different vacuum 

state, as discussed above. Taylor expanding I (^'^) under this transformation and 

evaluating at we get 

BV 
y(i(A:) = y ( ^ ^ ) + ^ ^1(^0 + 

1 

2 
8L(i)n5L(t\) . 

(2.14) 

The second order term looks like a mass term: 

0^^/00 (2.15) 

The <;6Q is just a set of numbers and contains no variables; rather the variables in 
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are the coset space parameters: 

(2 .16) 

so regardless of the reiDresentation, in this SU(2)/U(1) case is always a 

function of two helds, one for each of the coset space parameters. 

Now is a minimum of so 4 ^ at this point is zero. Also, the Lagrangian is 

invariant under SU(2), so the potential is invariant under the action of 2; on 0'^. 

Thus to second order from (2.14) we obtain 

i.e. our two Aelds are massless. 

= 0 (2.1%: 

It should be clear from this argument that in general we have one massless held 

for each coset space parameter - these are the Goldstone bosons. Note that 

by a,s8igning particular values to each of these parameters, we assign particular 

amplitudes to each of the Goldstone fields. In particular, if we set all the coset 

81)ace parameters to zero, each of the Goldstone boson amplitudes are zero. There 

is thus a one-to-one mapping between the space of Goldstone helds and the space 

of coset space i^arameters, which maps the origin of one space into the origin of 

the other: alternatively we can think of this a,s changing coordinates on a space 

from coset space parameters to Goldstone helds. 

2.4 G o l d s t o n e field t r a n s f o r m a t i o n s 

We would like to determine the transformation properties of the Goldstone bosons 

- that is, to determine the transformation properties of the vector space described 
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above. We can now see the advantage of decomi^osing ^ into a coset space part and 

a subgroup part: Z is a simple function of the vector space whose coordinates are 

the or alternatively the Goldstone fields. In order to find the transformation 

properties of the vector space, we therefore start by looking at the (rather simple) 

transformation i^roperties of Z. 

Under the action of ^ G G, it is clear that the coset g'jif will transform into 

another coset: 

where E G 

However, we may write a coset as a product of a particular ^ with the 

subgroup (as in equation (2.10) ), so this is equivalent to saying: 

p(Zv^) = (2.19) 

which implies for L that 

gL = L'h (2.20) 

where /? G 

By Zy' here we mean a new point' in the coset space: 

( 2 . 2 1 ) 

IS 



2.4.1 A Simple E x a m p l e 

To see how this helps us find the transformation properties of the vector space 

(as parametrised by the coset space parameters), it is once again easiest to use 

an example. The example we shall use is the simplest possible example; we look 

at the transformation of the considered above (that of SU(2)/U(1) ) under the 

U(l) subgroup: 

pZ, = /?(^^)Z, (2.22) 

with /?((̂ '̂ ) given by (2.8) (with replaced by c^^). We can always multiply by 

the identity in the form which makes the right-hand side look more like 

the right-hand side of (2.20): 

p i = AI(/r^/?,) = (/;i,/r^)/? (2.23) 

We might therefore expect to have f Let us try calculating -

we start by expanding the Z in (2.11) as a power series. 

= Ae-:^ (2.24) 

+ ^ ( - ^ ^ ' ' ( 7 j ( - ^ ^ % ) ( - ^ T c ) + . . . ] / r ' (2.25) 

— 1—h—d"aah ^ — aa)h ^h{ — —d''ai,)h 

+ l / 7 ( - ^g ' ' <7 j / ? -V7( -^e%) /? -^ / , ( - ^^ ' ( 7 j / 7 - ' + . . . (2.26) 

= 1 - + ^ ( - ^ A g " ( 7 , / 2 - ' ) ( - ^ M % / 7 - ' ) 

+ ^ ( — ^ ) ( — ^ ) ( — ^ ) + -- (2.27) 

= (2.28) 
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Now we just need to determine For this it is easiest to use not 

in the form (2.8) but in an equivalent trigonometric form: 

— 1 cos — icTs Sin — 

(2.29) 

(2.30) 

and similarly /? = I c o s ^ + io-gsin^. Substituting these into ^ 

and using the product rule for the cr's 

(7/(7; = l(̂ ,y + ie,, (7;̂  (2.31) 

and the trigonometric identities 

2 sin — cos — = sin o!) and 2 sin" — = 1 — cos (6 9 9 ) 

we And after a little calculation 

= ( ^ cos^' — ^'sincp )(7i4-(^ sin (6 +^ ' cos^ ' ) c r2 (2.32) 

Thus we can indeed write hL{9")h ^ as IJ = L{6'") where 9"^ is given by 

9'̂  = 9̂  cos 0^ — 9^ sin 

sin cos 

:2.33) 

;2.34) 

or in matrix form 

9'^ 

g"^2 

cos (6'̂  — sin (6'̂  

sin (6̂  cos (6'̂  9'-
[2.35) 

i.e. is transformed as a doublet of U(l) . This is a linear transformation: 

each is just a linear sum of ^"s. This is actually the case for any such coset 
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space G ' / ^ - if we act on Z, with the subgroup 77 we find that the coset space 

parameters transform as a representation of 77. 

Finding the transformation of the ^''s was particularly simple in this case. There 

are several reasons for this: the Abelian nature of 77 certainly helped, but also 

the fact that 7̂ ' = allowed us to use a helpful property of the similarity 

transformation of an exponential. This, of course, will not be possible if we look 

at transformations under ^ ^ 77. Also, we have only found how the ^''s transform 

- we would like to see how the Goldstone fields themselves transform, though in 

general we only need to know the transformation properties under an infinitesimal 

transformation. 

We shall address these two issues in turn, which will allow us to give a general i)re-

scriiation for finding the transformation properties of the Goldstone helds which 

w îll be valid for all the transformations we will be considering in this thesis. 

2.4.2 T h e O u t e r Involii t ive A u t o m o r p h i s m 

When we consider the transformation of 7, under the action of elements of G 

which are not in the subgroup 77, there is no simple technicpie for obtaining 7' 

from (2.20) which is valid for all (9/77. However, the three coset spaces we will 

be considering have a useful pro^^erty which allows us to o])tain an ecpiation for 

7'^ from (2.20). To get a feel for the meaning of this property, let us look at the 

commutators of the generators of G'. In general, we may write the commutator 

of two generators as 

= (2.36) 
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using the conventional normalisation, where / / a r e a set of totally antisymmet-

ric structure constants (we will consider these in more detail in later chapters). 

We may decompose these relations into three sets (this is following an argument 

in [14]). Firstly, we have the commutator of two generators of As 77 is a 

group, the commutator must close onto generators of / f . Therefore we have, for 

f , 0 , 7? = 1 , . . . , m where m is the dimension of 

[7f,rQ] = i / pQ^% (2.37) 

Note that all the for A = + 1 , . . . . ?? (where ??. is the dimension of G) are 

zero. From the antisymmetry of the structure constants this then means that all 

of the are zero, so for the commutator of a subgroup generator with a coset 

space generator, we have 

(2.38) 

- i.e. this commutator closes onto the coset space generators. 

Finally, we can look at the commutator of two coset space generators. In general, 

this is a linear sum of both subgroup and coset space generators: 

[^4, % ] = i / 4 g ^ r p + i/xB^Tc (2.39) 

However, the three coset siaaces we will be considering belong to a class known 

as 'symmetric spaces' for which all of the zero. Thus for these. (2.39) 

reduces to the simple form 

[ r4 , rg] = i f4B^r f (2.40) 

just closing onto the subgroup generators; thus the algebra has a 'Zg grading 
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structured Note that if we map each of the coset space generators into —214 

(but do not alter the subgroup generators), the commutators (2.37), (2.38) and 

(2.40) are unaffected. However, this is not true for the commutator (2.39), so the 

algebra admits the 'outer involutive automorphism' 

7 . 4 ^ ^ 4 = -7 .4 (2.41) 

if and only if the coset space is symmetric. This laroperty is particularly useful 

to us as we can use it to derive an exiaression for 7,'̂  from (2.20). First, note that 

under this automorphism. /*, defined by (2.5) is unaffected, while using the forms 

of Z} and f given in (2.12) and (2.21) we see that and Thus 

applying the automorphism to (2.20) we get 

^Z-^ = Z'-^/z (2.42) 

where ^ ^ if p lies entirely in the subgroui) or ^ ^ if ^ lies entirely in the 

coset space. Now we invert this exiaression: 

z r ' = / r ^ z ' 

and premultiply it by equation (2.20): 

We can thus use this expression to obtain Z'^ for any ^ in the same w ây as we 

used L' = AZ/?"^. 
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2.4.3 Killing vec to r s 

We can use the above equation to find how the coset space parameters trans-

form under any transformation in G. We would, however, like to know how 

the Goldstone bosons transform, at least to first order, under such transforma-

tions. 

Recall that the Goldstone fields can be thought of as an alternative coordinate 

basis for the coset space to the parameters one which has the same origin - we 

are now thinking of the space as a 'field space^^. We have denoted the invariance 

group of the Lagrangian G and we shall see in Chapter 3 that the Lagrangian and 

the metric of the space are very closely related and share an invariance group, 

i.e. G is the isometry grou}) of the field space. 

We shall denote the Goldstone fields . Under an isometry transformation of 

the field space, they transform as 

^ (2.45) 

where the are quantities known as Killing vectors (satisfying Killing's ecjua-

tion = 0) which clearly fully specify the first order transformation of 

the field space coordinates under the isometry. We can also Taylor expand the 

resulting from these transformations in powers of which in principle we 

know how to find: 

uM^ 

^For SU(2)/U(1), this space looks like the surface of a sphere[19] 

24 



but we see from above that so we therefore have 

We can use this to find the Killing vectors. To do so, we simply need to find the 

first order variation in and the derivative The first of these we can do 

easily from (2.4 

= + (2.48) 

giving us the important result 

(2.49) 

Let us now see how to use this to obtain the Kilhng vectors of SU(2)/U(1). 

2.4.4 T h e Kill ing vec to r s of S U ( 2 ) / U ( 1 ) 

We will search first for the Killing vectors relating to the linear transformation 

(2.22). We start by identifying and 

^ ^ = e 2''' = 1 — —<̂""(73 + (9((6'̂ )^ (2.50) 

= -^(^"(73 (2..51) 

and similarly 5g ^ = ^6^(73 so in this case 

(73] (-2.52) 
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To calculate this commutator, or for that matter the derivative on the right-

hand side of (2.49), we will need an explicit expression for as a linear sum of 

generators. We obtain this in much the same way as we got the trigonometric 

expression for A. We start with given by the square of (2.11), which is an 

exponential of the vector ^ Writing as a power series will give us 

terms in increasing powers of this vector. By using the product rule for the cr's, 

we find that 

(g"<7j"^(g i )^ l + (g")"l (2.53) 

We now define 

^ = y(gl )2 + (g2)2 (2.54) 

and 

go 
n" = y (2.55) 

(We will see in Section 4.2.1 that what we are doing here is in a very precise 

sense defining the 'length' of the vector ^ and an associated unit vector. We will 

always use a bold typeface for vectors of the algebra and a normal tyi^eface for 

their lengths.) 

With these definitions 
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Now calculating as a linear sum of generators is easy: 

(2.57) 

= (2.58) 

= 1 - + . . . (2.59) 

= lcos6) —if^^o-gsin^ (2.60) 

Once again using the product rule for cr's, the commutator in (2.52) is then easily 

found to be 

[Z .̂cTs] —2en,3'')7°(76sin^ (2.61) 

so using (2.49) and (2.52) we obtain 

f ) j 2 

= (2.62) 

To find a helpful form of we have to understand a little about the vectors 

in this situation. In the same way that the are components of a vector 0 in 

the coset space part of the algebra, the fields Vl/" are components of a vector M 

in the coset space part of the algebra. So far. we have considered a completely 

general form of the vector ^ and similarly the held amplitudes are com^^letely 

arbitrary. We are only working with the to help us get a handle on the field 

ami^litudes and we can considerably simph' things if we now choose to work with 

a 0 which lies in the same direction in the coset space as M. This choice entails 

no loss of generality in the held amplitudes and any other choice corres^Donds 

simply to taking linear combinations of the helds. which we are always free to 

do. (It will turn out that leaving the magnitude of the vector 0 as an arbitrary 

function of the helds TIf = - other than being one-to-one and resi^ecting 

the same origin - does not unnecessarily complicate the calculations.) 



With ^ and M lying in the same direction, they clearly share a unit vector 

i.e. 

g" = ^77"; A r = = 1 (2.63) 

From these relations we can derive the useful identities 

d^ . 
' " ' a A f " dj)/ " 

9 fi 

and we can then use the fact that 

gM,?" a A/" 

to derive 

(2.65) 

c)??" 1 
= (2.66) 

Differentiating in the form (2.60) and using these identities we then And 

. «dg . sing sing . ^ dg 
l;%a s m P - — — l(T(t + ( 7 6 - ^ - ; ])%&)? Cb COS ( 2 . 6 l 

aAf" dAf ' " " A / " A / 

so substituting into (2.62) we get 

ea3 n'cfe = ~ + naii'^ah— — naii'ai, cot ^ 3 (2.68) 

Now this looks very long and messy, but actually all but one of the terms on the 

right hand side are zero, as can be seen by taking the trace of both sides, which 

gives us 

dM 
0 = 2 I i»aTT7 ) ^ 3 Ag = 0 (2.69) 
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so all that survives of the above exi:)ression is 

from which we see that is a vector with components 

A'̂  = M " e / 3 (2.71) 

Thus we have found the Killing vector which describes - through (2.45) - the 

transformation of the Goldstone fields under the U(l) subgroup to hrst order: 

A/'' ^ Af'' = (2.T2) 

- again, this is a linear transformation; it is, as could be expected, the transfor-

mation of a vector of SU(2) under the U(l) subgroup, as we will see in Section 

4.2.2. 

Let us now briefly recap what we have done so far in this section. We started by 

looking at the transformation properties not of the Goldstone helds themselves 

but of the coset space representative f . We showed that Z transformed according 

to (2.20). We then noted that for symmetric coset spaces we could make use 

of the involutive automorphism and doing so we obtained an equation for 

equation (2.44). However, our ultimate aim was an expression for the first order 

transformation of the Goldstone fields. To And this, we expanded the left-hand 

side of (2.44) as a power series in the transformation parameter and similarly 

Taylor expanded the right-hand side in this same parameter and equated the first 

order variations. Writing the first order variation in the fields as we thus 

obtained (2.49). 

We then focused on the i^articular example of how the Goldstone fields of SU(2)/ 
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U( 1) transform under elements of the U( 1) subgroup. Once we had found suitable 

descriptions of and the Killing vectors were relatively easy to And. 

Having used this method to find the subgroup Killing vectors, we now turn to 

the transformations of the fields under other elements of SU(2). In fact, as a 

general group element may be decomposed in the form (2.7), we can restrict our 

attention to transformations under elements of the form 

In this case, ^ so equating hrst order variations of the left and right sides of 

(2.49) gives us 

i A r 2 
= (2.73) 

Inserting (2.60) and (2.67), using the product rule for the cr̂ s and equating coef-

ficients of we get 

a a , 1 . sin<9 ^ sin^ 
-1(7;, COS 6/ — s m c' = — ! » ( , s m c^-riTT — i(7u , , + (7c 

dA/ ' " " A / 

dg 

dM 
iMgM'̂ O-cCOS -̂;̂  ) A'̂  (2.74) 

Again, we can take the trace of both sides, which gives us 

= - ^ " 6 (2.75) 

Substituting this back in, then dividing by isin^/7(/ and rearranging we get 

cot ^ cot ^ (2.76) 
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The easiest way to equate coethcients of the generators (components of the vec-

tors) is to multiply by another cr and take the trace. Doing this finally gives us 

the Killing vector: 

= Af cotg(,^; - 7/,76) + " " " 6 ^ (2.77) 

We therefore see that the transformation of the Goldstone helds in this caae is 

given by 

A/'' ^ A r == M" + .1/cot^((6" - (2.78) 

to first order in where of course ^ — ^(M). Unlike the transformation under 

the subgroup, this is a non-linear transformation - the first order variation involves 

a complicated function of the fields. We say that the Goldstone fields, rather than 

forming a (linear) representation of form a of G. 

Finally, it is worth noting that although we chose for this transformation not 

to calculate = A'/; and opted instead to look at the first order variations of 

we could have multiplied gr directly into iv. The calculation and 

the result are very messy indeed, but one does get an answer of the required form 

the only feature of any interest to us is that in general is a function of 

both (;!)'' and i.e. of the transformation parameters and the Goldstone fields. 

(We shall need to be aware of this in the next chapter.) 
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Chapter 3 

Constructing a Lagrangian 

3.1 S t a n d a r d F ie lds 

In the last chapter we saw how whenever a Lie group symmetry is broken, a set of 

massless Goldstone bosons occur. We considered these helds as though they were 

the only ones present in the system and indeed Goldstone's theorem does nof 

require that other fields are i^resent, either in the broken or the unbroken theory. 

A consecjuence of this is that the Goldstone bosons must transform as a realisation 

of (9 on their own: under the action of an element of G, each Goldstone boson is 

transformed into combination of Goldstone bosons without involving other helds; 

we saw in the last chapter that in general this is a combination. 

However, from a particle physics perspective, we are generally interested in in-

volving fermionic and/or other bosonic helds in the theory which interact with 

the Goldstone bosons. Furthermore, as we want our non-linear theory to arise as 

a consequence of spontaneous symmetry breaking in a lineai' theory, these other 

helds must result from fields in the linear theory, that is, in a theory in which they 

transform as a representation of G'. In breaking the symmetry, we redefine these 
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fields such that the new fields, known ag 'standard fields', transform linearly only 

under ^ and transform non-linearly under the rest of G (just as the Goldstone 

bosons do). 

Unlike the Goldstone bosons, it is not necessarily true that the standard fields 

form a realisation of G on their own. Indeed if we involve the Goldstone bosons 

in the redefinition, the transformation of the standard fields will involve the 

Goldstone bosons and consequently be non-linear as rec^uired and the Lagrangian 

will naturally include interactions between the standard fields and the Goldstone 

bosons. 

What we want, therefore, is a way to redefine a field multiplet of G, say 0'^, 

involving the Goldstone bosons in the definition in such a, way that the redefined 

fields, say transform aa a re^^resentation of 77. They will then form a non-

linear realisation of G together with the Goldstone bosons. Such a redefinition is 

given in [10]; it is easiest to follow in the case where 0'^ transforms as the defining 

representation of G' (so 6' = 1, 2 , . . . , (/ where (/ is the dimension of the defining 

representation): 

In particular, for h G H, 

^ (3.2) 

The standard fields are then given in terms of the original multiplet and 

the Goldstone bosons by 

/ 7" - 1 = (1 -^ )^0 ' (3.3) 
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We can then easily see that under the action of G 77 the standard helds trans-

form as the defining representation: 

= (3.G) 

= (3.7) 

We also need to know how these fields transform under elements of G' which are 

functions only of the coset space parameters. We can find this in much the same 

wav: 

= (3.10) 

= (3.13) 

but from (2.20), Zv' = /? where /? 

is a function of the Goldstone bosons 

If 0'^ transforms as some other representation of G': 
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we simply note that, by definitioH (of a representation), 

r i9)#r(9 ' )^ = rtiw'jf , (3.161 

for any two elements E G'. Thus all of the above calculations are equally 

valid for in this representation, so we end up with 

(3.17) 

3.2 C o n s t r u c t i n g a Lag rang i an 

Having seen what fields we may include in our non-linear realisation and how 

they transform, we would now like to construct a Lagrangian for the system. 

As a whole, the Lagrangian must be Lorentz invariant and invariant under G. 

These restrictions actually allow us to determine the form of each term in the 

Lagrangian, as we shall now see^. 

For a normal, linear theory, the Lagrangian is composed of kinetic terms for each 

field, ma,s8 terms for the massive fields and interaction terms. The mass terms 

have form 

for scalars, and 

for fermions. 

^Actually, if we on]y require that the action be invariant under G, we may include extra 
terms in the action which are not invariant under transformations of G, but change by a 
total derivative[29, 30]. D'Hoker and Weinberg have shown that these terms are in one-to-one 
correspondence with the generators of the fifth cohomology class of G/n[31] . For SU(2)/U(1), 
which we consider in this chapter, this claas is zero so there are no extra terms. 
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For our non-linear realisation it is clear from the transformations derived in the 

last chapter that such a term for the Goldstone bosons is invariant under / f , 

but not the whole of G, so we cannot include such a term in the Lagrangian. 

(That is, the Goldstone bosons are massless, as they should be.) Indeed, it is 

observed in [15] that 7)/'̂  cannot appear without derivatives. For the standard 

helds, on the other hand, we see from the transformations in the last section that 

if a polynomial in 0'^ is allowed in the linear theory (is invariant under G) the 

same polynomial in is allow^ed in the non-linear realisation. 

We now turn to terms involving derivatives. First we note that the Goldstone 

bosons do not transform as representations of so neither do their derivatives. 

This means that the normal kinetic term for scalars in the linear theory is not 

invariant under the whole of G. Obviously we cannot just throw away this term if 

we want our Goldstone bosons to be real, dynamical fields, so we must add other 

terms to it such that the sum of the terms is invariant. This is analogous to the 

case of a gauged symmetry where a gauge field is added to a Lagrangian to make 

it invariant under local transformations - this is usually achieved by constructing 

covariaiit derivatives which involve the gauge fields and, following [11], we will 

adopt precisely the same approach. Our 'kinetic term' thus has the form 

(with .4 once again running over the coset si^ace indices and // running over the 

spacetime indices) 

where is a 'co\;%riant derivative^ of the form 

-|- something 

yet to be determined. 
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For standard fields the problem is similar - again the normal spacetime derivatives 

are not invariant: 

a.v'"' ^ (s.is) 

so we need to find a covariant derivative which transforms in the same way 

as i.e. 

^ (3.19) 

To And these covariant derivatives we again turn to the work of Coleman ef 0/ 

[10. 11]. They use a laarticularly complicated and subtle argument to justify a 

particular form for these covariant derivatives - we shall present a basic outline 

of this argument here and then show that the forms that are obtained have the 

correct laro^^erties. 

We think of the and the 0^ as coordinates on a manifold. The action of 

a group element on this manifold falls into two parts: the action on the 71/̂  is 

given by multiplying the element into while the action on the is given 

simply by acting on the helds with the api^ro^ariate representation of the element. 

Under the action of the Goldstone bosons are therefore transformed away, 

while the 0'^ are transformed into standard fields. This transformation therefore 

takes us from a set of coordinates which ha\'e a very complicated behaviour under 

the action of elements of G' which are not in ^ to a set of coordinates with a 

l^articularly simple behaviour under this action. 

Now if we consider the coordinates on this manifold as functions of space-

time, we can also ask about the transformation properties of the gradients of 

the fields. The important quantity here is the dilference between the coordi-

nates evaluated at two neighbouring i^oints in space time, and 
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+ + (For the moment we shall supi^ress the spacetime 

indices and write as a;.) We know that both of these have complicated trans-

formation pro^Derties iinder the action of elements of G which are not in , but 

at leaat the former can be simi)lified by multiplying by and the latter will 

vary inAnitesimally from this. 

Take as an example the action of on the gradient of the Goldstone fields. If 

we act on the fields themselves by multiplying by we must act on 

the gradient of the helds by multiplying 

lim lim 

by However, as the transformation of by is a special case of 

(2.20), we can use take a ^-variation of both sides of (2.20) to find and, 

using exponential forms of f and A, it turns out to be 

I-^(:r)(^I = -iL^^-^(&r)r4 - i,/^(&T)rf (3.20) 

where is the vector in the exponential of 

which, as we remarked at the end of the last chapter, is a function of the helds 

^It is a vector in the sense that it is an element of a vector space, the Lie algebra. We shall 
see in Chapter 4 that this means that it transforms as a vector if you act on it with a groui) 
element by conjugation. However, all the transformations we will be considering will be applied 
by acting with a group element on L and these induce transformations on {8x)Tp\ under 
such transformations I'I^(Sx)Tp does not transform as a vector. The same goes for {SX)TA, 
as we shall see on the next page. 
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and therefore of .r. Thus (reinstating the spacetime indices) 

hm _ ^ -1 / I _ 

is a sum of a vector of the coset space and a vector of the subgroup (see foot-

note), both of which are derivatives with respect to which, the argument goes, 

transform in a very straightforward manner. It would seem logical that the part 

in the coset space is at least related to the covariant derivative of the Goldstone 

fields, while the part in the subgroup comes from the /?(?y(^T)) which describes 

the transformation of the standard fields, so we might expect this to be connected 

with the covariant derivative of the standard fields. 

Now, for a given coset space such as SU(2)/U(1), if we can i)ut Z in a trigonomet-

ric form, we can of course find directly. We shall do precisely this in the 

next section, where we shall see that does indeed naturally fall into two 

terms, one in the coset siaace part of the algebra and one in the subgroup part 

- there are no terms involving the identity matrix. The two terms are usually 

written (u^^to a factor) aa and res^^ectively: 

L — — — (a ,̂ -hv^,) (3.21, 

(For exami^le, for SU(2)/U(1) we may write these vectors and v,, = 

To see how these vectors are related to the covariant derivatives, we need to use 

r = (3.22) 

(from (2.20) ) and invert it (to obtain the transformation law for Zv" )̂ and dif-
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ferentiate it (to obtain the transformation law for The inverse is 

I ' - i = (3.23) 

and the differential is 

= ^((a^I)/7-^ + (3.24) 

so multiplying them together we get 

= /7l-^(a^I)/?-^ + WX/7-") (3.25) 

This is the transformation law for i.e. 

^ + Ac)X/r') (3.26) 

Now A does not contain any coset space generators so therefore neither does 

Therefore we see by comparing (3.26) and (3.21) that and v ,̂ 

transform according to 

a|, — Aa ,̂/) ^ (3.27 

= )̂ (3.28) 

We see that a^ haa the correct transformation properties to be a covariant deriva-

ti^'e by noting that 

a^a^ —̂  Aa^'a^/) ^ (3.29) 

40 



so that tiXa^'a^) is an invariant under the action of G. Taking the trace just 

contracts tire components - again, we show this for SU(2)/U(1) (we shall not 

look at the general caae here because the normalisation of vectors of special 

orthogonal groups is different from that of special unitary groups, as we will see 

in Chapter 4) 

tr(a^a^) = tr(a^o-''a^cr6) = (3.30) 

Thus with 

(3.31) 

the kinetic term is invariant as required. 

(We will calculate this for the case of SU(2)/U(1) in the next section and we will 

see that D^AM does take the expected form + something and what nor-

malisation this gives the kinetic term. Furthermore, note that if we were to add 

another quantity to which transforms in the same way, so the transformation 

property of D ^ ' a s a whole remains the same, we would get unwanted terms in 

which would spoil its invariance. Thus the form of the covariant 

derivative we have found is the only one w^iich leads to an invariant kinetic term.) 

We now turn to the derivatives of the standard helds. The 0'^ transform lin-

early under G' and therefore so do their derivatives (indeed these are the 

derivatives in the linear theory). It must be the case, then, that 

i . S 

transforms in the same waA" as 

1 - ^ $ ^ = V' 
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(this is following an argument in [15]), so it seems that the 'something' we need 

to add to the usual partial derivative of the standard fields to get the covariant 

derivative is just Actually, as suggested on the previous page, we only 

need the — part of This is because to construct a covariant deriva-

tive, we need to add on to the partial derivative a term which transforms in such 

a way as to cancel the inhomogeneous term in (3.18) - that is, its transformation 

must contain a derivative of r(A). The term of this form in the transformation of 

(Z'^c)^Z)r^ can be seen from (3.28) to lie entirely in the — p a r t . Let us 

now see that this cancellation does occur - that the combination 

does transform in the same way as (we will work with standard helds trans-

forming as the defining representation of ^ for simplicity but the following is 

valid for any representation). 

^ + (3.32) 

— (^^/))V' + -|- /?<9̂ ,(/? (3.33) 

but 

= 1 A(a^/)-^) + (c)^/z)/?-^ = 0 => A(a^/r^) = -(a^.A)/?-^ (3.34) 

so the fourth term becomes 

which does indeed cancel the first term, leaving us with 

- 4/?v,,r = A f ) (3.35) 

This combination thus clearlv does transform in the same way as the standard 
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fields themselves and is therefore the covariant derivative we have been looking 

for. 

We close this section by summarising the above theory for the exami)le of a system 

which contains only fermionic standard fields which have no self-interaction terms 

(fourth order self-coui^lings and so forth). For such a system, the demands of 

invariance under G and Lorentz invariance impose the following form on the 

Lagrangian: 

+ i f (3.36) 

where 

(3.37) 

and is given by (3.31), with and defined by (3.21). The first term 

in the Lagrangian contains the normal kinetic term for the Goldstone bosons, 

and also self-interaction terms, while the interactions between the 

Goldstone bosons and the standard fields are contained in the second term, cour-

tesy of the v^. 

3.3 S U ( 2 ) / U ( 1 ) 

Let us now And the covariant derivatives for our simple exami^le of Sti(2)/U(l). 

The easiest way to find a useful form of is to start with Z, in trigonometric 

form, which we get by replacing by ^ in (2.57): 

Z, = = 1 cos iŷ ^Ca sin — (3.38) 
9 9 
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The .T-dei)endence of the has clearly gone into the ^ and the , so the differ-

ential of this is 

(7̂ /L — — — 1 Sill ~Ui_t(7 — —71 (7a COS — — 1(7^ Sill — 

while 1"^ is just 

2 = 1 cos — + i7?''(7u sin -

Aiultiplying these together and using (2.5G) and the identities 

^ a 1 1 2 sin - cos - = sm 6/ and sin' —H cos" — = 1 
? 9 9 ? 

we get 

- ;^sin^(7-a^/in'' + siu'̂  (3.41) 

We can simplify the last of these terms by using the product rule for the c 's and 

by noting that 

= 1 => = 0 => ?2"<9̂ ,?7a = 0 

which gives us 

i i ^ 
L ^d/^iL = —~n 'o'ad^iO — — sill 0(j,,5 ,̂77° -j- i sin" —n"d^n. tab 

I.e., 

a,, = + sin 
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aud 

1 • • 9 ^ a r) b 3 - - v ^ = ISm- -77. 

We have yet to put in the form + something. As both ^ and ??" 

are defined in terms of the this is not difhcult to do. We will, however, need 

some identities. We start by diEerentiating 

= + (3.4T) 

=> nhd/jAI'' = Mriijdijrr^ + = d^M (3.48) 

where we have used (3.42) and the fact that y?/" is a unit vector. Substituting 

(3.48) into (3.47) we get 

1 

M 

while 

Thus the covariant derivative for the Goldstone bosons becomes 

Similarly, we can now write the covariant derivati^'e for the standard fields aa 

sin^ (3.53) 
Z 717 z 
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but = 0, SO 

(This is all derived, albeit in a slightly more involved way. in [19].) 

Having found the covariant derivatives, it is worth a close look at the term con-

taining in (3.36). 

1 
-(c)''M, - ,%.,7^c)^A4) 

dAf 

X f „ M , 

(3.53) 

Now 

(3..5T 

and similarlv 

)7n')^(^" — ""'^c) = 0 

w hile 

((̂ ^ — ;)M77'')(̂ " — " "''"c 

SO 

-D'^M^D.Ar -.9' 'A/6^,Ar 
/ d^ 

I d M 
7?',?, + 

sin 9 

M 
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Note that if we consider the i^ower series expansion of 

= ciA/ + czA'f + + . . . (3.61) 

(there is no constant term as we know that if all the coset space laarameters are 

zero the amplitudes of the Goldstone fields are all zero) then it is clear that in 

the limit of small A/, 

d^ g 
[3.62) 

Also, in this limit 

A ,3.63) 
A/ ,1/ 

so two of the terms in the above invariant quantity vanish: 

^D'^A'/.D.Ar (3.64) 

Thus if we take the fields to be normalised such that ^ Af for small , the 

first term in a power series expansion of A/"̂  is the normal kinetic term, 

as exi^ected. 

Finall)\ we promised in the introduction that we would identify a metric for our 

non-linear realisation. The Brst to identify a metric for a non-linear realisation 

was Meetz[13]. He was concerned with the realisation of SU(2)0SU(2) obtained 

from the constraint (1.2). In the linear sigma model, one can define an 'interval 

for the (Sat) held s^^ace: 

d.s^ = (d;r)'^ (dcr')^ (3.65) 

This is clearly G=SU(2)@SU(2) invariant. On eliminating the o"' field, this be-



comes 

= gjjdTr'dTi-' (3.6G) 

where is the (iioii-Aat) metric for the coset space, ds^ is still G-invariant, and 

therefore so is 
dTT' dTT-' ; . 

This is valid for any choice of coordinates on the field space; in general for the 

non-linear realisation G/H. the c^uantity 

is G-invariant[12]. However, we have already shown that the only invariant ol 

this form is tr(a^a'') = For SU(2)/U(1) this is given by (3.60), so 

the metric is the quantity in sc^nare brackets: 

9 be — 

d g y / s i ng 

Hi) I i t 
— 726)7.c) [3.6, 

(note that it is symmetric). 

48 



Chapter 4 

Introduction to Lie Algebras and 

Projection Operators 

4.1 P r o j e c t i o n O p e r a t o r s 

We have seen in the last two chapters how important it is to be able to write 

iL = . an arbitrary element of the coset space, as a linear sum of the broken 

generators For each coset space we tackle we will need to be able to calculate 

this exponential. The exi^onential of such a matrix is defined by its power series: 

^ ^ + . . . (4.1) 

where 1 is the identity matrix of the same dimension aa the generators and where 

+ + . . . (4.2) 
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If the generators involved all anticommute with each other and the sum of the 

square terms is proportional to the identity, (as is the case with any element of 

SU(2), for example), calculating this exponential becomes trivial, as every term 

in the power series is proportional either to 1 or to "̂̂ 214 so the entire series can 

be written as a linear sum of 1 and 

If this is not the case, the easiest way to And the exponential is to introduce 

objects called projection operators. A set of projection operators is a set of 

matrices of the same dimension as the generators, denoted f , which by definition 

have the properties 

The set is a complete set if 

= l (4.4) 
T 

or in terms of components, 

These properties means that any polynomial in the projection o^^erators reduces 

to a linear sum, so the only combinations of these matrices that can be formed 

are linear ones. If we only have two projection operators, say and f " , every 

such linear sum can be written as a linear sum of f + + P" = 1 and — P~. i.e. 

every traceless matrix which can be written in terms of the i^rojection oiDerators 

is a multiple of f + — f " . This combination has the pro^Derty 

(p+ _ = P + P + _ p + p - _ p - p + + p - p - = p+ + p - = 1 (4 6) 
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This means that if (a scalar multii^le of) the vector we want to exponentiate 

squares to the identity we can write it as the difference of two projection operators. 

We will shortly see how to do this for an arbitrary SU(2) vector. However, this 

is of limited use as if (a scalar multiple of) the vector does square to the identity, 

we may calculate its exponential directly as remarked above. If this is not the 

case we clearly need more than two projection operators. 

The simi^lest projection o^^erators are those with a single 1 somewhere along the 

leading diagonal and zeros everywhere else. For a ?2-dimensional group represen-

tation. we clearly need n of these to form a complete set: 

/ 1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 / 

/ 0 0 0 0 0 

0 1 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 7 

/ 0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

\ 

/ 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 1 0 

0 0 0 0 0 

\ 

/ 

/ 

\ 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

\ 

y 

By api^lying these o^aerators to a n-dimensional vector (a multiplet of the 

)?-dimensiona] representation) we can project out the individual components 
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(Aelds): 

\ 

0 0 0 0 0 \ 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 1 0 

0 0 0 0 0 y 

/ \ 

<;̂.3 

<?!'4 

A, y 

0 \ 

0 

0 

\ 0 y 

(hence the name). Clearly any diagonal ?? x n matrix can be written as a linear 

sum of these matrices. If we want to exponentiate a matrix with off-diagonal 

components, we can think of a similarity transformation reducing it to a diagonal 

matrix; 

= rZ = c i f ^ + cgf" + . . . + ' (4. 

which we can then invert: 

z = = ci6'f + C26'f '6 '- ' + . . . + c„.5'P"6' 2 c - i / —1 (4.8) 

The set of operators ^ satisfies all the conditions ((4.3) and (4.4)) to be a 

complete set of projection operators: 

0 if r f L' 

if 2̂  = ^/ 
(4.9) 

, s ' f + . . . + = 6' ( f ' + + . . . + f " ) 6'-^ = - 1 

(4.10) 

so we can write any vector of a Lie algebra as a linear sum of projection operators, 

providing we can find the appropriate set. 

This similarity transformation acting on the multi^Dlet corresponds to a field re-
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definition and the new larojection operators project out various suiaerpositions of 

states. 

Such similarity transformations do not give us every complete set of projection 

operators for the groui) representation, as we can always acid together projection 

operators - the sum of two projection operators is always another larojection 

operator: 

^ f = 0 if 7, y all different (4.11) 

f ^ f ^ (4.12) 

(the logical extreme of adding projection oi^erators to get new ones is of course 

when you just have one projection operator which is the identity). However, 

doing this obviously reduces the number of vectors which can be expressed in 

terms of the set and in general if we want to ex^aonentiate an ;? x ??. matrix we 

will want a set of ?? projection operators. 

To calculate a given Z, i.e. to exponentiate an arbitrary linear sum of the broken 

generators, we must find a set of projection operators which we can write the sum 

in terms of. Once we have found such a set and written our coset space vector 

as a linear sum of them, (say x = ^ ^ + . . . + exponentiating it 

is easy: 

+ ' + 9 ' P " + . . . + )" + . . . 
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= ( f ' + f ^ + . . . + f " + . . . + ") 

_ 1 1 " + . . . + 

+ ̂  + . . . + + . .. 

= + + (4.13) 

The generators are now all contained in the projection operators, so the coset 

space element is expressed as a linear sum of the generators, with coefEcients of 

the form Cie""''' +C2e"'^ +- - .+CHe""^" (where Ci, C2, - - - , purely numerical). 

Note that if one of the set of projection operators does not appear in the 

expression for x, it still appears in the expression for the exponential with a 

coefhcient of e° = 1, due to the identity matrix appearing in the expansion being 

a sum of all projection operators. 

4.2 SU(2) 

4.2.1 Def in ing r e p r e s e n t a t i o n 

The fundamental representation of SU(2) is the doublet. In quantum mechanics, 

we can onh' ever determine one component of a doublet's angular momentum (or 

isospin) at any one time, the com^^onent in the z-direction. This is because the 

SU(2) angular momentum (or isospin) group only has one diagonal generator, 

which is taken to be the one associated with the z-component, TL = I s = jcg-

(This generates a U(l) Cartan subgroup.) If we wish to project out the two 

components of the doublet, we must construct two projection o^Derators to do 
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this: 

= I = (4.14) 

= = (4.15 

and we may use the diagonal generator to do this. In this case, the expressions 

for the projection operators are obvious: 

(4.16) 

(4.17 

(Note that for any SU(N) or SO(t,s) group, any traceless diagonal matrix in 

the group's algebra can be written as a linear sum of the diagonal generators, 

so any diagonal matrices, including the diagonal projection oi^erators, can be 

constructed from the diagonal generators and the unit matrix 1.) 

We just have two projection operators, so every matrix in the algebra which can 

be written in terms of these two is a multiple of f + — f " = erg, that is, any 

diagonal vectoi' can be written a.s 

X = - f - ) (4.18) 

We can think of this vector aa lying along the same direction as Tg and <73, 

with ^3 being a measure of the 'length' of the vector. Every vector s^^ace, by 

definition, has some definition of Uength' or 'distance' associated with it, so we 

would like a definition in this case which allows us to take the generators or the 

cr's as an orthonormal basis with the ^'s as their coefficients or 'components . 
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The dehnitioii of the square of the length of x that we will use (following the 

conventions of Michel and Radicati[27]) is 

(x, x) = ^tr(x^) (4.19) 

The factor at the beginning is matter of convention, de^Dending on what multiple 

of the generators you wish to use as your basis vectors. However, we will find 

that for SU(N) and SO(t,s) groups, it is usually most convenient to deal with 

quantities which are given by doubling the generators when constructing projec-

tion operators. (For SU(2) these are obviously the Pauli matrices.) The factor of 

^ in the above expression is then the appropriate one: 

(o-,, cr j = ^tr((7^) = ^tr(l) = 1 (4.20) 

We can see this is a sensible definition by considering the length of a vector 

(x,x) = ^tr(x^) (4.21) 

= -.r'T''tr((7;Cr^) (4.22) 

-a-'.r-' tr( l6y + icij (Tt) (4.23) tr(l6y + ieî ĉ 

= (4.24) 

(here I have used for the coefficients of cr, as I do not want to cause confusion 

with the coefficients of - the usual grou}) parameters - which are precisely 

double those used above: .r' = ^^'). 

We can generalise this to a scalar product of two vectors: 

(x,y) = ^ t r (xy ) (4.2-5) 
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- then if y = , 

(x ,y) = z'2/; (4.26) 

These dehiiitions allow us to describe a set of vectors as orthogonal if their scalar 

products are all zero and orthonormal if they also each have unit length. For 

example, the basis of the cr's is orthonormal: 

(cr'.crj) = ltr((T'(7j) = ;^tr(l(^]) = (4.27) 

Having found the projection operators for the diagonal group elements, we would 

now like to find the projection operators for a matrix in the algebra with off-

diagonal components. (Vectors associated with the coset space SU(2)/U(1) are 

clearly all of this type.) Given such a matrix, we can do this by finding a similar-

ity transformation which diagonalises the matrix and then applying the inverse 

transformation to the diagonal projection operators. 

Now it is a well-known fact that any hermitian matrix can lae diagonalised 1)y 

a unitary (and hence invertible) similarity transformation. As every vector x of 

the SU(2) algebra is hermitian, we can api^ly a unitary similarity transformation 

to it to get a diagonal vector d in the algebra: 

= d (4.26) 

Conversely, any such vector can be obtained by applying a unitary similarity 

transformation (the inverse transformation) to the appro%)riate diagonal vector: 

= X (4.29) 

The here is a 2 x 2 unitarv matrix. Furthermore, it is easy to see that this 
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transformation does not alter the length of the vector - any overall scaling from 

the 6' is cancelled by an inverse scaling from 6'"^ (the transformation as a whole 

is 'special or \mimodiilar'). It is not surprising, then, that this transformation 

corresi^onds to an SU(2) rotation of the vector - we will study this in depth in 

the next section. 

For SU(2) we have seen that every diagonal vector is proportional to the diagonal 

generator Ts. This means that every vector x is proportional to - that 

is, it can be obtained by applying an SU(2) transformation to (73 (which will 

give you another unit vector) followed by a simple scaling. This is obvious if you 

bear in mind the homomorphism between SU(2) and the group of rotations in 

3-dimensional space (see Section 4.3.1). By applying an arbitrary SU(2) trans-

formation to (73, then, we obtain the arbitrary unit vector where are the 

components of the unit vector in the basis given by the Pauli matrices: 

= 1 (4.30) 

Any matrix in the SU(2) algebra can then be written as one of these unit vectors 

multiplied by a scaling factor, by factoring out its length: 

X = a-'o"; = where = -\/(x, x) = \/z'a;, (4.31) 

just as we did for ^ in Section 2.4.4. To find the projection operators for such a 

matrix, we just apply the same SIi(2) (similarity) transformation to the diagonal 

projection o^^erators. This gives us 

M (4.32) 

f - = (4.33) 

With this form of and f " , every matrix in the algebra is a multiple of 
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f + — f 

While our previous projection oiaerators were constructed with exi^licit reference 

to the diagonal U(l) subgroup, these new forms do not relate to any particu-

lar subgroup. However, they still satisfy the defining properties of ^Drojection 

operators: 

f = ^(1 ± 77'cr,)(l j : yi-'cTj) = -(1 ± ( 7 , ( 4 . 3 4 ) 

but 

= 1 (4.35) 

so = P^ as required and 

" = f " f = - ( 1 + n'(7i)(l — yi-'c,) = - ( 1 — = - ( 1 — 1) = 0 
4 ' 4 ' 4 

(4.36) 

We can now exponentiate an arbitrary vector in the algebra easily: 

g-ig'T, _ ^ ^_igf++iep- ^ g - i ep+ ^ g&ep-
(4.37) 

This is clearly equivalent to the trigonometric form of we used in the last two 

chapters with 7?°(7Q rei)laced by n'o-;. 
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4.2.2 A d j o i n t r e p r e s e n t a t i o n 

Definit ion of t he adjo in t r ep resen ta t ion 

We usually think of the defining representation of SU(2) as acting on a dou-

blet and transforming it into another doublet. We can also, however, consider 

an element of the defining representation acting on a vector in the algebra by 

conjugation: 

X -4 x ' = (4.38) 

This is a similarity transformation of the vector using a 2 x 2 special unitary 

matrix and corresponds simply to an SU(2) rotation of the vector. Such a trans-

formation preserves all scalar products and lengths: 

1 1 1 
xy ^ ^ t r ( x y ) ^ -tr(^xy^-^) = - t r ( x y ) (4.39) 

In the baais of the Pauli matrices we can think of the SU(2) similarity transfor-

mation as rotating the components of the vector into each other: 

(4.40) 

To find out what these components of the transformed vector are. we take the 

scalar product of both sides with cr': 

= (;r'^cr,(/'%(%-') (4.41) 

. 1 • 1 

o-̂ ) (4.42) 

1 , , 
= %tr(^(7,^ (4.43) 
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or writing the right-hand side as the action of a rotation matrix 

(4.44) 

This is the definition of the adjoint representation^ of SU(2) - the adjoint re^are-

sentation of such a group element is often written 

(Ad(^)) / = (4.45) 

It is 3-dimensional (the matrix indices L j run over 1,2,3) and we can show that 

this mapping is indeed homomorphic - the rule for combining elements, and 

therefore the commutator and anticommutator structure, is preserved - as follows. 

If under the action of an SU(2) element f/i, 

X x' = giX f̂i ^ 

we can then apply a second transformation: 

x" = )x((/2m)"^ (4.46) 

so 

(Ad(^r2))^;/' = (Ad(^f2))^;(Ad(^i))-'f:r' = (Ad((/2^i))^',f' (4.4T) 

or 

Ad(̂ f2) Ad(^i) = Ad(^f2m) (4.48) 

By considering infinitesimal SU(2) transformations we can find the generators of 

^See, for example, Vol. 2 of [16] 
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the adjoint representation. To first order an element g of SU(2) looks like 

^ % 1 Sg — 1 — ~S0 (7̂  (4. 

so, using (2.31) and the resulting commutator, as well as the tracelessness of the 

ct'S. 

[Ad(l + 
1 
^ tr ' 1 — 

= - t r 

= 5^ — —59^ tr{€-' l;l5li\ + kl^limCm) + 0{S6)' 

(4.50) 

(4.51) 

(4.52) 

(hence the form of the linear transformation of the Goldstone fields in (2.72) 

We observe that the identity of the defining representation maps to 

1 0 0 

0 1 0 

0 0 1 / 

the identity matrix in the adjoint representation, while cr;̂ . maps to 

(ad(crA:))/ = -2iE/A- 4.53) 

Note that we use the lower-case ad to denote the adjoint representation of the 

Lie algebra - an arl)itra.ry element of the algelara can then be written 

(ad(-g^0-,)) / = - i g V A : = i ^ % . ' (4.54) 
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in this rei^resentation. (We will look at this for a general SU(N) group in Section 

7.1, where we will introduce a different, more appropriate notation for the adjoint 

representation of an element of the Lie algebra.) 

P r o j e c t i o n ope ra to r s of t he adjoin t r ep resen ta t ion 

In the defining representation we had two projection o^^erators, f + and f a n d 

we could w^rite any element of the algebra as a multiple of _P+ — f T h i s allowed 

us to express an arbitrary group element as a linear sum of these projection 

operators (see (4.37) ). In the adjoint representation we have an expression lor 

an arbitrary group element, Ad(^), in terms of the corresi)onding element of the 

defining representation, We can write this too in terms of f and f " by 

substituting (4.37) into (4.45). 

(Ad(^) ) / = ^tr(e-2^'"^-(T;e&^'"'(7,) 

(e-2^P+ +e2^f-)cr: ' (e2^f+ +e -^^ f - ) (7 , 

= ^ t r ( f+ (7^ f+(7 j + ^e '^ t r ( f - (7- ' f+a , ) + ^e-'^tr(f+(7^f-<7,) 

+ ^ t r ( f - (7 J f - (T , ) (4.55) 

It is worth comparing and contrasting this with (4.37). Both expressions have 

one term involving an exponential (of a multiple of ^) and another term involving 

its inverse. In (4.37), the coefficients of these exponentials are the two projection 

operators, f + and f t h e difference of w^hich is the vector we are exponentiating, 

upto a numerical factor. 

For the adjoint representation, which we know is 3-dimensional. we should be 

able to construct three projection operators^. Let us suggest that an arbitrary 

-'The techniques for constructing projection operators for the adjoint representation of a 
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element of the algebra can once again be written, npto a factor, as a difference 

of two of these projection operators: 

(ad(x)) / = = -ig77^e/\ oc - f " ) / (4.56) 

Now (Ad(^) ) / can be written as an exponential power series in (ad(x) ) / : the 

above expression would then allow us to write it in terms of f The first 

term in the power series will be 1 = f ^ f ^ f It is easy to see that, just as 

for the defining representation. 

_ p2^2 ^ p l p l _ p l p 2 _ p2p l ^ p2p2 = p i ^ (4 5%) 

although this is no longer equal to the identity, and 

^ 1 ^ ^ ^ ^ ^ (4.58) 

so that once again the odd powers are proportional to f ^ ^ and the even 

powers are proportional to Calculating this exponential will then give 

us coefficients for f ^ and f ^ of the same form as we got for f + and f " in (4.37). 

As noted above, we already have precisely these coefhcients in (4.55). This would 

seem to indicate that (4.55) is in reality, an expression for (Ad(gf))/ as a linear 

sum of f f To demonstrate this, we must show that the tensors in (4.55) 

have projection operator qualities and that the element of the algebra we are 

exponentiating is proportional to the difference of the appropriate two projectors. 

general SU(N) group were established by Barnes and Delbourgo[21], based on earlier work on 
SU(3) by Rosen[32] and Barnes[22] - we will come back to this more general theory in Section 
7.2. 
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For example, by substituting in (4.32) and (4.33) we can write 

1 1 
- t r ( f "cr,) = — tr (cr-'cr, -|- ) (4.59) 
2 8 

then, by re^aeatedly using (2.31), we get 

- tr(f ' ' '<T' ' f "(T,) = ^(^^ — — i??^'e/;:) (4.60) 

If this is to be a projection operator, say f it must have the property 

( f l ) / ( f : ) / - = ( f l ) / : (4.61) 

To show this we note that 

(4.62 

(from the fact that these are unit vectors), that 

= 0 (4.63) 

(as one factor is symmetric on ? and j and the other is antisymmetric) and that 

= (4.64) 
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We then have 

- 77, 

1 
— ^ 7 1 , — (fz,;?/' — ^^)) (4.66) 

1 
((̂ '̂ — 7̂ ,7?.̂  — i)*'e ; u 

as required. 

Similarly, we find that 

- t r ( f (T-'P"''(T,) = - (^ . - n,)7-' +i?i^e/^) 

which has the proiaerties 

-((^;' - ;z,77'' + i)? e//) ((̂ t — 

and 

-.7 Ml, 
= 0 (4.70) 

We therefore denote 

= - t r ( f+(7 ' ' f - (T , -(6- — 7?,)?.' - (4.71) 
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and 

(T-'f+cr,) = (4.72) 

noting that this choice satisfies (4.56): 

( a d ( x ) ) / = - i g , ? & / , = - P " ) / (4.73) 

(Note also that all of these tensors commute, so that f ^ = 0 also tells us that 

= 0 . ) 

Finally, the other two tensors turn out to be equal: 

-tr(f"'"(T-'f"'"(7,) - t r ( f " 0 - ' f " ( T ; ) — — ( 4 . 7 4 ) 

These ap^aear added together in (4.5-5): 

-tr(f"'"(7''f"'"(7;) + - t r ( f" (7 '^f"(7 , ) = n,??/ (4.75) 

and we know from (4.62) that this quantity squares to itself. If we think of 

writing (Ad(^ ) ) / as an exponential power series in ( a d ( x ) ) / , only appears 

in the identity term, so the part of (Ad(^) ) / which does not have a ^-dependent 

coefhcient must be f We therefore sus^Dect that (4.75) is To show this, we 

only need to show that f ^ = 0. This is quite trivial: 

-((^' — ± ± = 0 (4.76) 

We therefore have our third projection o^^erator: 

= tT(P~^ a' P'^ a f ) = tv{P~ a-' P~ a,) = Uiiv' (4.77) 



Note that the three form a comi^lete set: 

p i ^ p2 ^ p3 _ ^ . + f 3 = ^ . (4.78) 

We brieSy recap the main results of this section. For the adjoint rei^resentatioii 

of SU(2), defined by the homomorphic ma^^ping (4.45), there are three projection 

operators, given by (4.71). (4.72) and (4.77). Any element of the algebra may be 

written as 

(ad(x)) / - -i^^'e/A-

for an appro^^riate and is thus pro^^ortional to f ^ Exponentiating the 

element of the algebra then proceeds exactly as it did for the defining represen-

tation in (4.37), except for the fact that we now have a which occurs in the 

expression for the group element with a coefhcient of e° = 1. The expression for 

the group element ends up as 

.J _ _L I p S (Ad(^))/ = f ' e - " ' + f ' e ' " + (4.79) 

in agreement with (4.55). or 

(Ad(^f))/ = [̂ ((̂ ^ - - i)/e/t)]e"'^ + [^(^' -

(4.80) 

(of course this can be rearranged to give trigonometric coefhcients). 
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4.3 SO(3) 

4.3.1 Spiiiors 

The elements of any special orthogonal group may be written 

where the generators are traceless matrices which are antisymmetric on the 

indices .4 and as are the i^arameters (the ranges of .4, 5 are explained 

below.) If the grou}) is compact, the generators are also liermitian and obey the 

following commutation relations 

?C'D] = —i((̂ Bc7l4D — + .̂4D?BC') (4.82) 

The (compact) group of x special orthogonal matrices is known as SO(N) 

and is isomorphic to the group of rotations in TV dimensions. 

Unlike the SU(N) groups, the lowest dimensional representations of special or-

thogonal groups are not always the defining representations, aa these grou^as have 

spinor representations. S0(2N-|-1) has one 2^-dimensional s^ainor representation 

for which we can construct 2A/̂  + 1 "^-matrices which obey the Clifford algebra 

{1.4,15} = 2<̂ _4gl (4.83) 

If we then take the generators for this rep. to be given by 

7l4B = -^h_4 , lB] (4.84) 

the Lie algebra of the group is automatically satisfied. (We will use this rule 

69 



for all SO(s) groups, to keep the metric positive, but when we come to look at 

SO(t,s) groups we will change the sign - see Section 4.5.1.) 

For S0(3) this means that we have one two-dimensional spinor representation 

with three 'y-matrices. The generators for this two-dimensional representation 

are 

i l2 — —12] J-23 — —J-32 131 — —J-13 

each of which generates an S0(2) subgroup isomorphic to a group of rotations in 

a plane. From (4.82), they satisfy the Lie algebra 

[^12, 723] =1^31 

[r23,T3i] = iri2 

[r3i,ri2] = iT23 

Observe that if we make the replacement 7̂ ,̂ — w e get the algebra of SU(2), 

so these groups are homomorphic. This homomori^hism tells us that SU(2) forms 

a representation of S0(3) (though not in this case a faithful one) which we know 

is two-dimensional with generators 7}. = Thus the generators of the two-

dimensional representation of S0(3) - the spinor re^^resentation - are given by 

(4.83) 

I.e. 

712 — 7 23 — 7 3% — -172 

We can now ask what the -^-matrices look like. We are looking for three matrices 

which satisfy (4.83) and, from (4.84) and (4.83), 

(4.86) 



These conditions are obviously satisfied by 

1':' = (Tf (4.8T) 

For special orthogonal grou^as, as for si^ecial unitary groups, it is often easier to 

work with matrices which are given by doubling the generators - we will call them 

These are products of gammas for the spinor representation: 

o-_4B = (4.88) 

= —i'')'_4l.B if . 4 ^ . 8 (4.89) 

but are also well defined for other representations. From (4.82) it is clear they 

have the commutation relations 

— —2i((̂ gC'(7'.4f) — — (̂ BD(7'v4C' + v̂4Z)(7'gC') (4.90) 

For the spinor rei^resentation of S0(3), it is clear that each of these cr's is a Pauli 

matrix, so they form an orthonormal basis for the s^^ace of all traceless, hermitian 

2 x 2 matrices. (In Section 4.4.3 we will look at the analogous situation for S0(4) 

and S0(5)J 

P r o j e c t i o n ope ra to r s of t h e spinor r ep re sen ta t i on 

We have seen that the fundamental spinor of SO(3) is nothing other than the 

doublet of SU(2). This means that the projection operators for the s^ainor re^)-

resentation of S0(3) are simply those of the defining rei^resentation of SU(2). 

However, we would like to be able to express them in terms of the vectors of the 

S0(3) algebra. To do this, we must find what a unit vector in this algebra looks 



like. We start by noting that 

a ' - ) = ,7") = (4.91 

so 

so the square of the length of cj'-'cr,; is 

2Lc''-'w;j = 2w;̂  (4.93) 

which implies that a unit vector has the form 

1 
, f (T 

\ / ^ \/2 

where 

(4.94) 

"u = — (4.95) 

Therefore the projection o^aerators for the spinor representation of S0(3) are: 

P+ = i ^ + i n ' V . A (4.96) 

P- = i (^1 - (4.97) 

4.3.2 Def in ing r e p r e s e n t a t i o n 

Just for the sake of com^Dleteness, we note here that in the same way that SU(2) 

forms a representation of S0(3). (the defining representation of) S0(3) forms a 



representation of SU(2). We know that it is three-dimensional. However, we have 

already studied the three-dimensional representation of SU(2) (there is only one 

npto equivalence) - it is the adjoint representation. The homomorphic mapping 

(4.45) can therefore also be seen aa the mapping from the spinor rei^resentation 

to the defining representation of S0(3). 

4.4 SO(4) and SO(5) 

4.4.1 Spinor R e p r e s e n t a t i o n s 

S0(4) is an S0(2N) group so we know that its elements may be written 

e = e (4.98) 

where = 1 , . . . ,4, with the generators and cr's again satisfying the commu-

tation relations (4.82) and (4.90). 

Now S0(2N) has two 2^^"^-dimensional spinor rei^resentations. For the direct 

sum of these (known as the Weyl representation) we can construct 2̂ /̂ "y-matrices 

which again obey the Clifford algebra (4.83) and the generators and cr 's for this 

representation are given by (4.84) and (4.89). 

To find the gammas for S0(4) we note that if a set of ")-matrices for a group 

S0(2N-1), labelled (with, obviously, jFf = 1 , . . . ,2A^ — 1) anticommute 

amongst themselves and all square to the unit matrix, so do the matrices 

IH ( 1 ) 
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Furthermore, the matrices 

0 1 
;2 jV = I I and 7 2 A r + ] = I I (4.100) 

also square to one and anticommute with each of the . Clearly the set com-

posed of the and have the correct Clifford algebra to be the gammas for 

the group S0(2N) and if we add "ygyv+i to these we get a valid set of gammas for 

S0(2N+1). So if we start with the gamma matrices of S0(3) as given in (4.87), 

the gamma matrices of S0(5) from this method are: 

}4 = 1 1 75 = (4.101) 
1 0 

where each entry is 2 x 2. (Incidentally, we could multiply any of these gammas by 

-1 if we wanted to, as it would still square to one and > — {7.4, 7g} = 0 

so the anticommutations would still hold.) The first four of these are the gammas 

of S0(4). so by using (4.89) the cr's for the Weyl representation are: 

0 la. 

A: I 0 

0 

The fifth is used to construct the projection operators 

(4.10:: 

= - (1 + Is) = (4.103) 
9 

and = — (1 — 75) = j I (4.104) 



which project out the right-handed and left-handed spinors: 

P' 
\2 

\ 3 

\ y 

\2 

0 

\ 0 / 

(TA- 0 

0 0 
= cr-j (4.105) 

= ^ (4.106) 
0 0 

p i \2 

\ 3 

\ \4 / 

0 \ 

0 

\ 3 

\ \4 / 

0 0 

0 

0 0 

0 — 

= (Tj; (4.107 

(4.108) 

(I will be using the i^hrase 'spinor' to refer to the multiplet which transforms 

under a spinor representation.) 

4.4.2 T h e H o m o m o r p h i s m w i t h SU(2) Q SU(2) 

Now certain linear combinations of the generators generate an SU(2) subgroup 

which acts only on the right-handed spinor: 

0 

0 0 
(4.109) 

- we shall denote this subgroup ,ST"(2)R. Similarly, the orthogonal combinations 

generate an 5'[^(2)L subgroup which acts solely on and therefore commutes 



with 5'[/(2)R: 

0 0 
= = \ " " I (4J10) 

(for example, cr^ = § ((7i2 + (734) aiid 0-3=:^ (<712 - (734) ). 

Remembering that the generators form a basis for the vector space of all 

taking linear combinations in this way corresi^onds to changing basis in this space, 

from an S0(4) basis to an 5'[^(2)R 0 6'[/(2)L basis. We can therefore rewrite an 

element of the S0(4) Lie algebra as an element of the 6'[^(2)R G; 6'[^(2)L algebra. 

(T't + % — (7̂ , ) (4.111 ) 

= + + (4.112) 

(4.113) 

in the Weyl representation, where 

+ (4.114) 

and 

Lc'^^=u;'-'Q/-2w''"* (4.115) 

What we are doing here is to think of o",, and cw as generating 'vector' and 'axial 

subsets of the S0(4) transformations (or 'rotations' and 'boosts' in Euclidean 

four-space, R'^). We then write the 'vector' generators as e(y'((7^ + <%][;') and the 

'axial' generators as (<7̂  — crĵ ), that is we take combinations of them which 

generate a pair of mutually commuting SU(2) subgroups, .5'[^(2)L aiid 6'[/(2)R. 

By manipulating the entire S0(4) vector, we can thus break it into an ,5'['(2)R 



3-vector (the quantity + and an 5'[/(2)L 3-vector 

P ro j ec t i on O p e r a t o r s 

Let us see how to use this homomorphism to find projection operators for S0(4). 

Now is an spinor. The projection operators for this SU(2) sub-

group are obviously 

= (4.116) 

and 

= (4.117 

where = | | in 2 x 2 block notation (this is clearly just f and ??' 
0 0 

is a unit vector: 

(4.118) 

We can. of course, obtain such a unit vector in the usual way from by 

dividing by its length, 

Similarly is an 6'[/^(2)L spinor and the projection operators for 6'[/(2)L are 

= 

and 

= (4.120) 

I I 



, , 0 0 . . 
where 1 = I | in 2 x 2 block notation and ?? is a unit vector: 

0 1 

= 1 (4.121) 

We can, of course, rewrite these in S0(4) terms: 

+ + + (4.122) 

+ — + (4.123) 

+ (4.124) 

^ ^ ^ ^ (4.125) 

but in practice when exponentiating an S0(4) vector it can be easier to rewrite 

the vector in 6'[/(2) G) ,$'[/(2) terms, as in (4.112). 

4.4.3 Clifford A l g e b r a S t r u c t u r e s of SO(4) a n d SO(5) 

In the same way that the Pauli matrices form a basis for the space of all 2x2 

traceless, hermitian matrices, the '/-matrices of S0(4) and their products form 

a basis for the space of all 4x4 traceless, hermitian matrices. As this is a 15-

dimensional space, we require 11 such products as well a.s the four "y-matrices. 

From the Clifford algebra, the square of any -matrix is just the identity, while 

the product of two diEerent "ĵ s is proportional to a (7, for example: 

cri3 = - - h ' i , l 3 ] = - i l i 7 3 ( 4.126) 
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and we have seen there are six of these. Similarly, the product of all four 'j^s is just 

as can be seen by multiialying them in the Weyl representation using (4.101). 

(The order in which they are multiplied can only make the difference of a sign 

due to the Clifford algebra.) The remaining four matrices we can get as products 

of three different ")̂ s, or ecjuivalently they are products of "yg = —I'i"y2l3'74 with 

one of the e.g. 

1721314 = - n i l s (4.127) 

where the factor of i ensures hermiticity. However, we know that together with 

the Is is one of the "/-matrices of S0(5), so this quantity is one of the cr's of 

S0(5). In general, we have 

(4.12b) 

4.5 SO(l ,3 ) and SO(l ,4 ) 

4.5.1 Weyl R e p r e s e n t a t i o n 

S0(l ,3) is isomorphic to the group of rotations in Minkowski spacetime. Elements 

of the group still have the form (4.98) where /.(,// now run 0 ,1 ,2 ,3 , with the 0 

rei^resenting the timelike direction. The generators are still traceless and are still 

antisymmetric on /< and v, but are no longer all hermitian and the}' now satisfy 

the commutation relations 

+ (4.129) 

< y 



where is the Minkowski metric: 

/ 

v 

1 0 0 0 

0 - 1 0 0 

0 0 - 1 0 

0 0 0 - 1 

(4.130) 

/ 

Note that the overall sign has changed from the Euclidean caae; this is to ensure 

that the subset of generators T,; generate an S0(3) subgroup with the commuta-

tion relations we expect for S0(3). In terms of the cr's, the commutation relations 

look like: 

(4.131: 

As for S0(4), S0(l,3) has two 2-dimensional spinor representations, with the -y-

matrices for the direct sum (the Weyl representation) obeying a Clifford algebra: 

(4.132) 

This time, to ensure the correct commutation relations for the generators, we 

take 

t, 1.1 u 

if ^ 

(4.133) 

(4.13 

To And the -matrices for S0(l ,3) we first note that the anticommutator of any 

two different -matrices of S0(4) is zero and this is unaffected if we multiply any 

of them by a numerical factor. Next we note that the 'y4 of S0(4) squares to 

the identity, as does the -yo of S0(l ,3) . The remaining three ^"s square to 1 for 

S0(4), but to —1 for S0(l ,3). Thus we can obtain a valid set of -^s for S0(l ,3) 
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from those for S0(4) by multiplying the by i and taking -yo of S0(l,3) to be 

equal to the of S0(4), giving us: 

(4.135) 

Using (4.134) we thus And: 

(To, : , ^ | (4.136) 
0 (Tt 

The extension to 80(1,4) is the obvious one. The metric becomes 5-dimensional 

with an extra —1 on the diagonal. This means that the fifth 'y-matrix must square 

to —1 and is of course taken to be i times the of S0(5). 

4.5.2 Clifford A l g e b r a S t r u c t u r e s of S O ( l , 3 ) and S O ( l , 4 ) 

We found for S0(4) and S0(5) that we could construct 15 products o f s , or 16 

if we include the identity. The same can be done for S0(L3) and S0(l ,4) . We 

have already seen the and how to take products of two different ones to get 

s. The product of all four gives 

10711213 = -75 (4.13T) 

The remaining four can again either be written as products of three of the or 

as i^roducts or commutators of one of the with 75. However, in this case, we 

should be a little careful with our use of As we are now using an indefinite 
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metric, the value of changes as we raise and lower indices. In particular 

60123 = (4.1:: 

so if we are to use this tensor we should be careful to point out what sign con-

vention we are using. If we adopt the convention that 60123 = 1, we have as the 

final four matrices (the remaining (r\s of S0(l,4)): 

(4.139) 

Finally, in the next chai^ter we will be considering a coset space for which the 

broken generators are the a^s's. In the same way that for SU(2)/U(1) it i^roved 

useful to have an expression for (TaCt, it would be to our benefit in the next 

chapter if we can now derive an expression for (7̂ 5(71,5: 

(4.140) 

using the Clifford algebra (we keep the )/55 rather than replacing it with -1 because 

we want to maintain covariance on all our indices). We can write the product of 

the -̂  's as half the sum of the commutator and the anticommutator: 

1 1 

CfisCf/s = — i)755C''̂ i/ (4.141) 

From this we can see that 

( (7̂ ,5 . <T,/5 ) — ̂  (4.142) 

and 

— 3)7559/̂ ,/I (4.143) 
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Clifford Algebra S t ruc tu re s of O t h e r SO(t ,s) G r o u p s 

For each S0(2N) group, we can construct a set of products of the -y's (including 

the identity matrix and the 's themselves) and by multiiDlying by i where appro-

priate we may make them all hermitian. For 80(4), as we have seen, there were 

16 (including 1), while for S0(6) there are 64 - in general, there will be enough 

to form a complete basis for the set of all hermitian matrices of the dimension of 

the Weyl representation. (For example, the 16 matrices in the Clifford algebra 

structure of S0(4) form a basis for the set of all hermitian 4 x 4 matrices, while 

for S0(6) the Weyl representation is 8-dimensional - as we will see in Section 6.3 -

and the 64 products form a basis for the set of all hermitian 8 x 8 matrices.) The 

procedure is much the same: you start with 1 and the and take i^roducts of 

increasing numbers of (different) "̂ ŝ, or ec^uivalently take commutators and an-

ticommutators alternately. For matrices with more than N indices, the number 

of indices may be reduced (as for 17̂ 5 above) by contracting with an appropriate 

e-tensor. The last of these is always proi^ortional to 'y27v+i-

For SO(t,s) groups with an indefinite metric, the i^rocess is just the same; the 

only difference is that the 'j 's with spatial indices are antihermitian rather than 

hermitian. 
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C h a p t e r 5 

SO(l ,4) /SO(l ,3) 

5.1 Ob ta in ing t h e Kill ing Vectors 

5.1.1 P re l imina r i e s 

We have now established more than enough background to tackle our second 

coset space, S0(1,4)/S0(L3). We will see that this coset space shares many 

of the features of SU(2)yU(l) and we will need very little of the machinery we 

developed in the last chapter. 

Au element of G' = S0(l ,4) is usually, aa we have already seen, written 

with an element of 77 = S0(l ,3) written 

= (5.i; 

AB 

84 



but in order to identify Z, we need to write ^ in a form equivalent to (2.T). In 

fact, we will subsume the factor of 2 resulting from the antisymmetry into the 

coset space parameters: 

so that Z,, defined by (2.12), is in this case 

I = (5.3) 

Our hrst task is to find the Killing vectors of the Goldstone fields (remember, 

there is one for each coset siaace parameter). We know how to do this if our coset 

space admits the automorphism (2.41), so let us show that it does by decomposing 

the commutation relations for the generators in the form (2.37)-(2.39): 

[7^^, (5.4) 

= (5.5) 

These clearly have the required Z2 grading structure. This means that we can 

use equation (2.49), or rather its equivalent for this situation: 

y}r'2 
+ (5.T) 

to determine the Killing vectors A'^g. (Here the A ^^'s are the parameters of the 

transformation - the equivalent of the (6' for SU(2)/U(1).) To do this, we must 

of course And each of the other quantities in this equation. If we concentrate on 
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the action under the subgroui) to start with, we see that the nature of is 

ol)vious from (5.1): 

(5.8) 

and, as A = A. 

(5.9) 

We now want to find as a linear sum of the generators, as we did in Section 

2.4.4. We start with given by the square of (5.3), which is an exponential of 

By using (4.143), (assuming the generators to be in the si)inor represen-

tation), we see that 

(5.10) 

As remarked in Section 4.1, this feature ensures that we will not need projection 

operators. Indeed, it is remarkably similar to the case for SU(2)/U(1) and we 

would expect the rest of the analysis to be along the same lines with an eventual 

expression for looking very like (2.60). We therefore pro^aose to split into 

a magnitude and a direction. 

This is where the one extra subtlety of this coset space comes in. For SU(2)/U(1), 

^ lay in a 2-dimensional subsi^ace of the Lie algebra of SU(2), which has 

positive definite metric. In this case, is a vector-like part of the antisymmetric 

5-tensor that is, it is a tensor which is constrained such that its second 

index lies in the direction. Because the 5-dimensional space it lives in has an 

indefinite metric, we must be careful raising and lowering its indices, so we would 

be unwise to treat it as a vector Indeed, in (5.10) we have kept the 5\s in 

as (fixed) tensor indices which are raised and lowered with ?/.5.5̂ s. (Note that this 
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practice means that, nnlike indices which are summed over, we may have more 

than one covariant and one contravariant 5 in a term.) Thus rather than dealing 

with a unit vector, we will introduce a unit tensor, so that 

= (5.11) 

As the metric is indefinite, the tensor is timelike for some cosets and spacelike 

for others. We therefore have a two-way choice: we may adopt a timelike unit 

tensor, in which case for spacelike cosets w and the components of will be 

imaginery, or we may adopt a spacelike unit tensor, in which case for timelike 

cosets LU and the components of 7?̂ ^ will be imaginery. (Null cosets are a si^ecial 

cage which cannot be dealt with in this way. We clearly cannot write a timelike 

or spacelike as with null, as then would have to be infinite; 

conversely we cannot use a timelike or spacelike for null.) For now, we 

will opt for a timelike unit tensor: 

"""77^5 = 1 (5.12) 

as this gives us the results which look most like those of SU(2)/U(1), though we 

will describe in tlie final section of this chapter how the results would differ if we 

had chosen a s^Dacelike unit tensor. 

With this definition 

= 1 (5.13) 
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and then 

= 1 — ilon^^a^i':, — — '̂"1 + —u;̂ yî '̂ (r̂ 5 + • • • (5.15) 

= 1 cos w — sin w (5.16) 

We now just need Once again we let and lie in the same direction, 

so thev share a unit vector: 

= Af,?/'" (5. IT 

This allows us to derive two identities analogous to those of SU(2)/U(1): 

c)w dw 
10.16, 

(5.19) 

Therefore 

<91̂  . dw . sinw . sinw . du; 
^ - I T , ; — + - m„5ii T.: 

(5.20) 

5.1.2 A n Aside: t h e u n e x p e c t e d p r o j e c t i o n o p e r a t o r s of 

S O ( l , 4 ) / S O ( l , 3 ) 

Let us quickly note a ^aroperty of this coset ŝ Dace which is at odds with what we 

might have expected at this stage. An arbitrary unit vector of the coset ŝ Dace 

may be written and squares to the identity. In analogy with SU(2), this 
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may be written as the diEerence of two i)rojection operators: 

+ (5.21) 

f - - ( l — (5.22) 

so a vector of arbitrary length u; is 

w f + - w f - (5.23) 

However, we noted in Section 4.1 that in general, to express an ?? x )? matrix as a 

linear sum of projection operators, we will want a set of n projection operators, 

but there are no two-dimensional re^^resentations of S0(l ,4) . Indeed, the spinor 

reiaresentation of S0(l,4) is four-dimensional, so we would expect to need four 

projection operators if we were dealing with in this representation. In 

general these would all have different coefhcients in the linear sum. 

The reason that we only need two projection operators in this case, with one 

arbitrary invariant Lc', is that an arbitrary vector of S0( l ,4 ) /S0( l ,3 ) is not an 

arbitrary 4 x 4 traceless, hermitian matrix. All the vectors of the coset space 

belong to a special class of vectors. We shall look at such classes, or 'strata', 

for the case of SU(N) algebras in Chapter 6, where we shall see exami)les of 

subgroups of SO(6) which are entirely com^^osed of vectors of one stratum. We 

will return to this particular coset space in Section 9.6.2, where we will show how" 

all the vectors belong to the same special class. 

5.1.3 T h e l inear Kil l ing vec to r s 

We are now ready to substitute all the Cjuantities we have found into (5.7). Using 

(5.8), (5.9) and (5.16), we find that the left-hand side is a commutator, which we 
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can evaluate using (5.5) to get 

sinu;(?/^^(7^5 - (5.24) 

Using (5.20) for the right-hand side and equating coefficients of A '̂̂  (which are, 

of course, independent variables), we therefore find 

M sin w ( c r , , ^ ) = 
dw sinw 

+ .7̂ 5 — 

"̂ A5 
Sin u,' 
j t 

COS LU 

Once again, we can take the trace of both sides to find that 

dcu 

d M 
A':: 

'5.25) 

= 0 (5.26) 

which we can substitute back in to get 

'5.27 

Finally, we take the scalar product with cr ^ which gî ^es us 

A",;; = mn'h,,„stsi - = m"-{<h„k - 'hj': (5.28) 

Note that this is. as should be expected, antisymmetric under ,1/ <4̂  z/. 

The transformation law for the Goldstone bosons is then 

= + A ' \Ar" -

= .ir^^ + 2A' \Ar^ 

(5.29) 

(5.30) 

(5.31) 
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5.1.4 T h e non- l inear Kil l ing vec tors 

Now we turn to the transformations of the Goldstone fields under elements of the 

coset si^ace. From (5.3) we see that in this case. 

(5.32) 

thus, using (4.143) and (5.16), 

SgL^ + L^Sg ^ = —iÂ '®cr̂ ,5 cos w — 1A''®?2̂ ,5 sin w [5.33) 

Substituting this and (5.20) into (5.7), we obtain (by equating coefhcients of A'̂ )̂ 

(7̂ 5 cosLt,' — il7?^5 sinu; 
due' sinu; 

+ a , , — 

.A5 Sin uj .'\5 du 
»p5n CTAs-n- + Mpsn CTAs cos w 

M d M 
A':: 

;5.34) 

Taking traces (and rearranging) gives us 

d.lf 
;5.35) 

which we can substitute back in to get 

sinw g5 d^f 

M dc 
Sin lC 

M 
COSuU 

<T 
/.'fS dM 

TIf COtw((T^5 - )Z 5̂M'̂ ''o'A5) + "j "^5?^ 
ClLL.' 

5.36) 

[5.37 
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Again, we can take a scalar product with to give us the Killing vector: 

A';; = cot (5.38) 

- remarkably similar to (2.77) for SU(2)/U(1). Note that we could have used 

instead of in (5.32). We would then be finding the Killing vector A'g^. This 

would interchange (̂5 5^ in (5.34) and hence in (5.37). Contracting with 

would then give us 

A'g - + (5.39) 

= — Af COtw((̂ |̂  — 77^5""'̂ ) j — ( 5 . 4 0 ) 

as could be expected. (Knowing that the Killing vector has this antisymmetry 

will be important at the end of this chapter.) 

5.2 F ind ing t h e Co var iant Der iva t ives 

Our next task is to construct a Lagrangian for S0( l ,4) /S0( l ,3) , which, following 

the %)rescription of Chapter 3, means calculating We start with Z in the 

trigonometric form 

Z; = = 1 cos sin ^ (5.41) 

The .r-dei)endence is in the u,' and the 77̂ 5, so the differential of this is 

= — — 1 sin —d/̂iLO — i(T,/5 sin — — —ri' '̂ (7,̂ 5 cos — (5.42) 

We now want to multiply by the inverse of (5.41) to get and simplify 

the resulting expression; the stages of this calculation are precisely equivalent to 
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those in equations (3.40)-(3.43). with the same trigonometric identities, but with 

the product rule for the cr's now being (4.141) and with = 0 replaced by 

= 0. The result is 

L ^ d f ^ i L = — — n ' ^ u„^di^i(jj — — sin Lt/'(7,̂ 5 <9̂,77. —isin"—??'' 5̂ ,7? 

— -sin'̂ w)/55n^^?T''̂ (Tp!,c)̂ ,LU (5.43) 
4 

We now note that in the final term, is symmetric under the interchange 

of and zv while (Tp,, is antisymmetric, so the last term is zero. Thus we split up 

into 

sin )o-„5 (5.44) 

and 

— — — —isin'—7ys5)7/̂ <9^7?'̂ <7p;, (5.46) 

We saw in Section 3.2 that tr(a'^a^) oc is an invariant, from which we 

deduced that has the right properties to be a covariant derivative. We also 

remarked that the normalisation of vectors of special orthogonal algebras is dif-

ferent from the normalisation of vectors of SU(2)/U(1). for example - in this case, 

the normalisation is given by (4.142): 

tr(a^a^) = 2a[;5a^''(cr"\ cr̂ )̂ = 40^50^'' (5.47) 

We now want to put the covariant derivative oc into the form 

something. Again, we use the same techniques as for SU(2)/U(1) to obtain the 
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replacements 

fe»-" • a 
(5.48) 

and 

(5.49 

so that becomes 

< = (5.50) 

du/' sill I 

Similarly, we can now write the covariant derivative for the standard fields as 

D ,̂;0 — d^xh ~ — — d îip — — sin" —J755n''^(5^M'" — n' 'dftM)<7p^4^ (5.52) 

- again, the laat term is zero because of the symmetry of and the antisym-

metry of (Tp̂ , so 

= dfiv' — s i n " —m''^d^m' p^%i (5.53) 

Once again, we will have a closer look at the term in the Lagrangian involving the 

covariant derivative of the Goldstone fields. The quantities and 

which occur in have the same properties as 77°7?6 and which we now 

recognise as the i^roperties of projection operators^. 

^In Chapter 8 we will get a feel for why the projection operators of the adjoint represen-
tation emerge naturally in the expressions for the covariant derivatives and - for the case of 
SU(N) groups - we will see how sin and cos coeiBcients come to be associated with particular 
combinations of these operators 
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We thus And that 

dw \ / sin w 
77 + 

dM M 
:-5.54) 

It makes sense to use the same normalisation for the fields as for SU(2)/U(1) and 

to take 

1 1 1 
trfa^a,. 5.55) 

5.3 A useful double-check on t h e me t r i c 

From (5.54) it is clear that the metric for this coset space is given by 

du,' \ / sm w 
6f/)5A3 — ( ) ?̂ p5MA5+ ( , ^ ) (^S'/pA — Mpŝ î xs) (0. 

dM M 

However, we can check this using the following expression: 

where B, C are coset space indices and / ranges over all of the group's indices 

and the inverse metric is defined bv 

(5.58) 

Boulware and Brown [14] cite a similar expression, but we use the notation of an 

inverse metric rather than a contra\"ariant metric because in this thesis indices 

are raised and lowered using the Minkowski (group) metric rather than the 

coset space metric. The construction of the metric from Killing vectors was first 

performed by Isham[12] for the case of chiral groups and his expression for the 
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metric was used by Barnes, Doncli and Sarkar[18] in a, similar manner to the 

following. 

For the coset space S0( l ,4 ) /S0( l ,3 ) , (5.57) becomes 

( ^ - ^ o c = A';^A''"^ (5-59) 

As the non-linear Killing vectors are linear sums of the projection operators 

and squaring them in this way is trivial: 

C0t̂ cu((̂ ĵ  — 72 ,̂5??"'') + 
d7)/ 

dw )7;,577 

(5.60) 

A'^^A '̂ ^ is not difRcult to calculate either; with a little work one hnds 

A ' f / r " pA _ - ' / " ) / " ) = 2Af"7r''/""((^;; - ,2^57?"") (5.61) 

Adding these two together, we thus have 

= 27/"''7;"" i\f'(cot"u.' + 1)((^' — 7*̂ 577' ) + ( , ' 1 ni_t5n 
dL 

M ' c O S e c ' w ( , ^ : - 7 ? ^ 5 7 ? ' ^ ' ) + ( ^ ) 77̂ 577'"' 
d. 

5.62) 

The fact that this sum is still written in terms of projection oiaerators also makes 

inversion easA\ If a vector can be wi itten 

its inverse is sim^^ly 
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as can easily be seen: 

^ ^2p2 + ___)( j _ p l + I f 2 + . _ _ 
(3-

f ^ + f ^ + . . . = 1 :5.63) 

The inverse of , which is proi^ortional to the metric, is therefore 

'/bo 

Sin' w. . / d' 
''/55'/w — M(7 5M,/5 ) + dA/ 

(5.64) 

in agreement with (5.56). 

5.4 Resu l t s w i th a spacelike uni t t enso r 

Finally, we remark on how the calculations and results dilfer if we take to be 

spacelike rather than timelike. We start with the expression for (5.16), which 

changes ii] a very simple manner - the sin and cos are re^alaced by sinh and cosh. 

The identity (5.18) just changes sign, while (5.19) becomes 

c))? 1/5 1 

M 
5.65) 

Perhai)s unsurprising, these changes have no overall impact on the linear Killing 

vectors. However, the non-linear Killing vector becomes 

A'g — A/cothw((^' + ^) — 
dJ)/ 

ClLJ 
;5.66) 

The eEect on the expression for Z (5.43) is just the same as for the 

sin and cos are replaced by sinh and cosh, while the identities (5.48) and (5.49) 
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become 

(5.6T) 

and 

a / ? " = + 7%'̂ ^2,56),Ar5) (5.68) 

The Anal results are 

dM 
/7̂ ^̂ 2pS 4-

sinh 
"fS. (.5.69) 

D^;/' = <9̂ V' - - ^ s i n h ^ (5.70) 

and 

A?) 

+ 
sinh L 

Af 
(<̂ o + ))jo5"'̂ ^) (.5.71) 
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C h a p t e r 6 

M o r e Lie Algebras 

So far we have studied two non-linear realisations based on the coset spaces 

SU(2)/U(1) and (S0L4) /S0(L3) . These both had the properties that the broken 

generators all anticommiite and the scjuare of an arbitrary vector of the coset 

si^ace is laroportional to 1. As remarked in Section 4.1 this vastly simplifies 

calculations. 

In the rest of this thesis we concentrate on SU(N) grou^DS, in particular SU(4), 

and by way of a homomorphism, on S0(6). The coset spaces of these groû DS 

do not in general have these properties and we will see that trying to determine 

the properties of the associated non-linear realisations is a, different laroposition 

entirely. For a start, the Lie algebras we will be using have features which are 

totally absent in those we have studied so far. Fortunately, these new features are 

common to all of these coset spaces (when dressed in the appropriate language) 

and this allows us to develo]^) a standard set of technic^ues. 

In this chapter, we will be looking at features of the Lie algebras of the grou^^s 

we intend to use, from a geometrical i^oint of view. This study is very much self 

contained and has been submitted as a paper entitled 'How orbits of SU(N) can 
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describe rotations in S0(6) ' to the Journal of Physics A, (authors K. J. Barnes, 

J. Hamilton-Charlton and T. R. Lawrence). 

In the next chapter, we will go on to look at how to define tensor o^aerators 

for a general SU(N) group and their algebraic properties, which will allow us to 

determine the co\'ariant derivatives and metrics for the non-linear realisations of 

SU(N) as described in Chapter 1; however, for now we limit our study to the 

vectors of Lie algebras. We start by looking at the common features of the Lie 

algebras of s^^ecial unitary groups. 

6.1 Genera l S U ( N ) 

The elements of any special unitary group may be written 

^ = (6.1) 

where the A/ are a set of — 1 traceless, hermitian Â  x Â  matrices which are 

twice the generators 7}. As we did in Section 4.2.1, we denote an arbitrary vector 

of the Lie algebra 

X = O^Ti = —O^Xj = X] (6.2) 

with the scalar product of two such vectors given by (4.25). Like the c's of SU(2), 

the A's form an orthonormal basis: 

(A^,Aj) = (^j (6.3) 
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and have the product rule 

Ay A J A -̂ + A; 
A? 

(6.4) 

where and are respectively totally symmetric and totally antisymmet-

ric nnder rearrangements of J, A'. (Note that for SU(2), the A/ are the Pauli 

matrices and the are all zero. For higher-dimensional SU(N), they are not 

all zero.) 

The group SU(N) has A' — 1 diagonal A's, which are usually labelled Aŝ Ag, 

Ai5,... ,Av2_i. Any diagonal vector of the algebra can then be written as a 

linear sum of these. For example, for SU(3), the diagonal A's are 

/ 1 0 0 ^ 

0 - 1 0 

y 0 0 0 y 

and As = 
1 

/ 1 0 0 ^ 

0 1 0 

\ 0 0 - 2 / 

(6.5) 

Now if we act on these by conjugation by a group element 

X — x ' = gfXgf ^ ( 6 . 6 ) 

we get new matrices with the same eigenvalues (this is once again a unitary 

similarity transformation on Hermitian matrices). Because the eigenvalues of A3 

and A§ are different, it is not possible to use a group element in this way to 

transform one into the other. 

We can effect all the possible unitary similarity transformations on a vector (say 

Ag) by acting on it with all the group elements by conjugation, which will give 

us all the vectors in the algebra with the same eigenvalues (1, -1, 0). Thus under 

this action of the grou]̂ ) on its own algebra - which, as we have seen in SU(2) 

is the action of the adjoint representation - the algebra falls into (is partitioned 
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into) distinct orbits. 

Two matrices have the same eigenvalues if they have the same characteristic 

equation. The general characteristic ecjuation for an x traceless, hermitian 

matrix is 

- . . . - i7v(x)l = 0 (6.7) 

where lA (x) is invariant under the action of the group and is dehned by 

^^(x) = ^ t r |x^' - ^ i / ( x ) x ^ " ' I = 0 (6.8) 
1 = 2 

For SU(2) this is a c^uadratic equation 

n 

with one invariant, the square of the length of x 

1 

x" — i2 (x ) l = 0 (6.9) 

/2(x) = (x ,x) = ;^trx^ (6.10) 

while for SU(3). for example, it is a cubic ec^uation with the two invariants 

1 
[x) = (x,x) and ')3(x) = - t r x ' (6.11 

To proceed with the study of these Lie algebraa. we turn to the work of Michel 

and Radicati[27]. This work is based on the notion that when the symmetric 

structure constants are non-zero, vectors in the space in general have non-trivial 

anticommutators. Besides the /.-algebra (2.2), one can then deAne another (lin-
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early independent) algebra on the vector siaace based on the anticommntator: 

Xvy = ^ { x , y } - ^ l t r ( x y ) (6.12) 

This definition ensnres that x^y is both hermitian and traceless and that this 

relation is preserved under the group action: 

Xvy -3̂  ((7X^f-^)v(5ry5'"^) = + ^yx(/"^) ^ l t r ( ^ x y ( / - ^ 

= ^ ^ ( x y + yx)^f ^ ^ l t r (xy) 
•> 

- . - 1 = ^(xvy)^ (6.13) 

(this is obviously true of the /^-algebra as well). Furthermore, these are the only 

linearly inde^aendent algebras on the s^aace which are invariant under the action 

of the group. Another way of saying this is that under the automorphism ol the 

algebra generated by the adjoint representation of SU(N), only operators of the 

form 

x i y - axvy + ./̂ X/\y G R (6.1:̂  

are i^reserved and give a vector in the space for x and y . (For SU(2), Xvy = 0.) 

6.1.1 r -vec to rs and q-vec tors 

For A" > 2, (the cases for which there is a non-trivial y-algebra), there exist sets 

of vectors with i)articular values of the — 1 invariants which lead to a simpler 

characteristic equation than the general case (6.T). One such set is the set of unit 

103 



r-vectors, defined by 

l2(r) = l T3(r) = ')4(r) = . . . = 0 (6.15) 

For every r-vector. there is a corresponding q-vector: 

q,- - - 7 = = = r v r (6.16) 

which has a quadratic characteristic equation: 

q v q = - ^ ^ q (6JT) 

and, from (6.12), clearly commutes with r. 

The beauty of this approach is that it is invariant under the grou^^'s action on 

the vector space - that is. it is independent of baais (as transforming from one set 

of basis vectors to another corresponds to a similarity transformation). However, 

many i^eoi^le are more at home working with comiaonents of vectors rather than 

the index-free style we are using. We therefore look in Ai^pendix 1 at what the 

above relations imply for the comi^onents of the q-vectors and r-vectors of SU(3) 

if we explicitly choose the basis of the Gell-Mann A-matrices. 

Now SU(3) is a rank 2 group (this can be seen from the fact that there are 

two diagonal generators). This means that if we take a \'ector x we can always 

And another vector which commutes with it and - assuming them to be linearly 

independent - we can then use these two vectors to construct a i)lane of mutu-

ally commuting vectors (an Abelian subalgebra). No other vectors in the Stl(3) 

algebra then commute with the entirety of this plane. Section 111.4 of [27] is con-

cerned with showing that in any such Cartan i^lane there are three unit positive 

q-vectors and six unit r-vectors, which are the roots of SU(3) for the plane. (We 
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also show in Appendix 1 that (r, q, ) = 0 so that for any Cartan plane, a unit 

r-vector and its corresi^onding q-vector in that plane form an orthonormal basis.) 

In general for SU(N), as Michel and Radicati state in Appendix 3 of [27], the 

r-vectors of any Cartan (maximal Abelian) subspace of SU(N) are the roots of 

that space. For the diagonal Cartan subspace, which we denote Cj, one way in 

which these can be found is to construct the weights using the eigenvalues of the 

diagonal generators and take the differences of them - we will see this for SU(4) 

in Section 6.2. For SU(3), this procedure yields the information that one of the 

diagonal A's, A3, is a unit r-vector, with the other one, Ag, its associated q-vector. 

It is important to note that as the r-vectors are defined in terms of the invari-

ants, under the group action an r-vector is transformed into another r-vector. 

Furthermore, all lengths, scalar products, /\- and ^-relations are preserved - in 

particular, c^-vectors are transformed into other q-vectors and an orthonormal 

basis is transformed into another orthonormal basis. 

6.1.2 O r b i t s a n d S t r a t a 

It should be noted that for any vector x not every group element acting on it 

transforms it into another vector. If a group element ^ commutes with it, 

X —x' = pxg"^ = = X (6.18) 

Such elements form a group called the little group or isotroiay groul) of x, or in 

terms of the group action on the vector s^aace they are the stabiliser of x under 

this action. We can always express such an element as an ex^aonential of a second 
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vector. 

p = e-'y (6.19) 

and by considering the i)ower expansion of this it is clear that ^ commutes with 

X if and only if y commutes with x. So the isotropy grou^) of x is just a subgroup 

of SU(N) generated by the centraliser of x in the algebra (the set of vectors which 

commute with it). 

The centraliser of a vector depends on its eigenvalues. We can see this by looking 

at diagonal vectors of SU(3). For example, if we take a diagonal vector whose 

eigenvalues are all different (such as A3), it will obviously commute with any other 

diagonal matrix. It will not, however, commute with any generator of an SU(2) 

subgroup with off-diagonal components, such as 

A7 = 

/ 0 0 0 ^ 

0 0 

y 0 0 y 

because (due to the dimension of the fundamental representation of SU(2)) any 

identity' element for such a subgroup must have at least two I's along the leading 

diagonal, or at any rate two eigenvalues of the same value. So the largest sub-

algebra such a vector commutes with is the (Cartan) subalgebra of all diagonal 

vectors, the algebra of U(l) G' U(l). Hence the stabiliser of any vector with all 

eigenvalues different is U(l) 0 U(l). 

Ag, however, has a repeated eigenvalue. This means that it acts as an identity 
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for the SU(2) group generated by 

A] = 

\ 

0 1 0 

1 0 0 

0 0 0 
7 \ 

0 - i 0 

i 0 0 

0 0 0 / 

/ 1 0 0 

0 — 1 0 

y 0 0 0 / 

as well as with the U(l) it generates itself. The isotropy group for such a vector 

with a repeated eigenvalue is therefore SU(2)C'U(1)^U(2). Clearly the centrahser 

of two equivalent matrices is the same (upto equivalence) as the /^-algebra is pre-

served under similarity transformations, so all the vectors in one orbit necessarily 

have the same stabiliser. The orbits thus fall into two distinct sets - those with 

a U(l) 0 U(l) stabiliser and those with a U(2) stabiliser. These sets are known 

as 's trata\ 

It is worth noting that for any SU(N) there is always one stratum which has 

as its isotropy group SU(N-l)@U(l)%iU(N-l) and one stratum which has as its 

isotropy group the Cartan subgroui) U(l) '3iU(l) . . .U(l) , known aa the 'gener 

stratum (as discussed in [3( 

ic 

6.2 SU(4) 

We now want to apply all of the above theory for SU(4), which has a 15-

dimensional Lie algebra. The A's which form a basis for this s^aace have the 

product rule 

( 6 . 2 0 ) 

101 



so the anticommutators are non-zero: 

{-^7, A -̂ ( 6 . 2 1 ) 

Three of these A's are diagonal: 

A.I 

1 

0 

0 

0 

0 0 0 

- 1 0 0 

0 0 0 

0 0 0 

/ 

As — —%= 
1 

1 0 

0 1 

0 0 

0 0 

0 0 

0 0 

-2 0 

0 0 

Ais = 
1 

A 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 

0 

0 

- 3 / 

(for an ex^^licit matrix representation of all fifteen based on the Gell-Mann A's of 

SU(3), see, for example, [34]). 

For an arbitrary vector in the Lie algebra, the characteristic equation is 

— ")2(x)x^ — l'.3(x)x - l4 (x) l = 0 

with ')2(x) and ')3(x) given by (6.11) and 

14 4fx) = - tr (x̂ ^ — ')2(x)x^' = y t r x ^ - ^(trx'^)^ 
4 o 

As the anticommutators are non-zero, there is a ^-product given by (6.12) with 
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N=4: 

Xvy = {x, y} - (x, y )1 (6.24) 

in particular. 

XvX - 2x ' — '-)2(x)l (6.25) 

6.2.1 r -vec to r s a n d q-vectors of Cj 

We haÂ e a set of unit r-vectors deAned by (6.15), so their characteristic equation 

becomes 

x " ( x " - l ) = 0 (6.26) 

- their eigenvalues are thus 1,-1, 0, 0. 

For the diagonal Cartan subs^aace Cd, which in this case is 3-dimensional, we can 

show that this is in agreement with the statement that the r-vectors are the roots 

of the subspace by using the method outlined in Section 6.1.1. 

The weights of Cj are constructed from the eigenvalues of Ag, Ag and Ai^: 

/ / = ' ' ' ' (6.2 
2^2\/3'2y6y \ 2'2\/3'2\/6 
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The roots are then just the differences of these 

= ± (1 ,0 ,0 ) 

± i 3 ' ^ 

1 ^ 
9 ' ^ 

± I - ^ 
' 2 ^ 2 / 3 " V 3 

± I - - —*— 
2 ^ 2 y 3 V 3 

±:9^ ' = ± l - i ^ . O (6.30) 

± 0'^'^ — ± I 0, 7=, A/^ 
V3^ V 3 

written as row vectors. More explicitly, the r-vectors are, for example, 

/ 

ri = '̂")3A3 )23 )8Ag ^ '̂̂ )i5AI5 — •iA3 + ^ A s 

0 0 

0 1 

0 0 

0 0 

0 0 

0 0 

- 1 0 

0 0 

Similarly, 

r2 — + — A s 

/ 1 0 

0 0 

0 0 

y 0 0 

0 0 

0 0 

- 1 0 

0 0 

r.i = A, 

V 

1 0 0 0 

0 - 1 0 0 

0 0 0 0 

0 0 0 0 

(6.33 

(these are the three diagonal unit r-vectors of the SU(3) subgroup generated by 

A %,A2,,'. , Ag) 

/ 1 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

- 1 

\ 
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1-5 
1 . 1 , 

.-A3 + ^ A , + 
'2 
3A.5 -

V 

re 

0 0 0 

0 1 0 

0 0 0 

0 0 0 

\ 

0 ^ 

0 

0 

- V 

0 0 0 0 

0 0 0 0 

0 0 1 0 

0 0 0 - 1 y 

In a diagram of Cd, these roots form the familiar polyhedral root lattice: 

Tg — -̂ 3 

Figme 6.1: The SU(4) root lattice 

To obtain the q-vectors of Cj, we just use (6.16) with N=4 

qi = 
1 

71 

- 1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 

0 

0 

-1 J 

' H , 
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q2 
1 

1 

0 

0 

0 

0 0 

-1 0 

0 1 

0 0 

0 ^ 

0 

0 

- 1 / 

qs 
1 

7 ! 

/ 1 0 

0 1 

0 0 

y 0 0 

0 

0 

- 1 

0 

0 ^ 

0 

0 

- V 

(6.38) 

q4 - q i qs qa q6 -qs (6.39) 

Note that for each of these. 

q ' = 9^ (q.q) = 1 

but also, from (6.25). 

(6.40) 

qvq = 0 (6.41) 

in agreement with (6.17). Note that each q-vector acts as an identity for its 

r-vector (upto a factor of l / \ /2 ) : 

q^r 
1 

(6.42) 

so each r-vector is orthogonal to its associated q-vector. (Indeed, a cj-vector such 

as qs must be orthogonal to both rg and rg, as q^ = —qs-) 

An r-vector and its associated q-vector thus form an orthonormal baais for a plane, 

l)ut to form a complete basis for CA we clearly need three linearly independent 

vectors. The most obvious set that comes to mind is the set of three independent 
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diagonal q-vectors, qi,q2,q3. Indeed, 

/ / 

(qi.q2) = 
1 

tr 

\ 

\ 
- 1 

0 

0 

0 

- 1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

- 1 0 0 

0 1 0 

0 0 1 y 

\ 

0 0 

-1 0 

0 1 

0 0 

0 

0 

0 

- 1 

w 

// 

and similarly for (qi^qs) and (q2,q3), so they form an orthonormal set. We can 

therefore express any vectors of the subspace as linear combinations of these three 

q-vectors. The vectors we have considered so far are 

-̂ 3 

Al5 

^ ( q 2 — qi) 

\/6 
('2q3 — qi — q2 

" ^ ( q i + q2 + qs) . 4 / 

ri 

1-2 = 

1-3 = 

^ ( q 3 - q , ) 

^ ( q 3 - q i ) 

1 

71 
(q2 — qi) 

1-4 = 

l-R = 

; ^ ( q 3 + q2) 

; ^ ( q 3 + qi) 

1 

v/2 
(q2 + qi) 
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6.2.2 Non-d iagona l C a r t a n Si ibspaces 

We can consider non-diagonal Cartan snbspaces by looking at what happens to Ca 

under the grou}) action. Recall that all /^-relations are preserved under the group 

action, so the Cartan subalgebra is preserved. This means that Cj is transformed 

into another Cartan subsi^ace, and as stated in Section 6.1.1, any orthonormal 

basis we take for Cj is transformed into an orthonormal basis for the new Cartan 

subspace. 

Furthermore, as any vector x in the algebra can be diagonalised to one lying in 

Cj by the action of the appropriate group element it follows that by applying 

the inverse transformation to Cj we get the Cartan subspace containing x. Thus 

we can ol^tain any Cartan subspace by acting on Cj with the a^Dpropriate group 

element. 

If, as above, we take the set = qi ,q2,q3 to be our orthonormal basis for 

Cj, under the group action this is transformed into another set of orthonormal 

q-vectors (see Figure G.2). 

X -4̂  x ' = ^xp ^ 

Figure 6.2: Transformation of q, under the group action 
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Hence we see that any vector can be written as a linear sum of three q-vectors: 

(6.51) 

q2 = (6.52) 

(6.53) 

with the appropriate 

The group action also preserves the v-relations of the vectors. As the ^-algebra 

is linear, we only need to consider the ^-relations of the q-vectors we are using as 

a basis. For commuting, orthogonal vectors, (6.24) becomes 

xvy = 2xy (6.54) 

then using (6.37)-(6.38) we find 

qivQz = — \/2q3 (6.55) 

qivQs = — \/2q2 (6.56) 

q2vq3 = — \/2qi (6.57) 

or using the tensor introduced in [27], 

q.vq; = - \ / ^7 / , / ' q t (6.58) 

(this tensor acts like the modulus of it takes the value 1 if f,,;, A; are all 

different, otherwise it takes the value 0). 

115 



6.2.3 Orb i t s a n d S t r a t a 

As pointed out in [33], in SU(4) there are four strata. We shall label them the 

q-stratum (in analogy with [27]), the r- s- and t-strata. 

i) q - s t r a t u m 

This stratum is com^aosed of vectors with two distinct eigenvalues, both with a 

multiplicity of 2. Remembering they must be traceless, this means that they 

must diagonalise to the form 

/ 

\ 

a 0 0 0 

0 a 0 0 

0 0 —a 0 

0 0 0 —a 

\ 

(6.59) 

/ 

which is the general form of a q-vector. Hence every vector in this stratum is a 

q-vector. d commutes with the SU(2) group generated by 

Ai = 

/ 

\ 

0 1 0 0 \ 

1 0 0 0 

0 0 0 0 

0 0 0 0 y 

/ 

A, 

v 

0 - i 0 0 ^ 

i 0 0 0 

0 0 0 0 

0 0 0 0 y 

/ i 

0 

0 

\ 0 

0 0 0 

- 1 0 0 

0 0 0 

0 0 0 

\ 

and with the SU(2) group generated by 

/ n n n n \ 

A 13 

0 0 0 0 

0 0 0 0 

0 0 0 1 

0 0 1 0 

A 14 

/ 0 0 0 0 ^ 

0 0 0 

0 0 0 

0 0 i 

/ 

re 

/ 

0 0 0 

0 0 0 

0 0 1 

0 0 0 

0 

0 

0 

- 1 
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as well as with the U(l) it generates itself. The isotropy group of the q-stratum 

is therefore SU(2) 0 SU(2) 0 U(l). 

As all q-vectors of a given length are related by similarity transformations, the 

q-stratum contains one orbit for each length of q-vector. An alternative way to 

see this is by looking at the values of the three invariants ''y2(q), 

Using the fact that each cj-vector squares to (which can be obtained from 

(6.25) and (6.41) ), we see that 

73 (q) = 0 (6 .60) 

Similarly, from the characteristic ecjuation and the square of q, we obtain 

l4(q) -^(72(q))^ (6.6i: 

so two q-vectors with the same length have the same characteristic equation and 

therefore lie in the same orbit. (For example, we can act upon q2 by conjugation 

with the special unitary - and orthogonal - matrix 

/ 1 0 0 0 ^ 

0 0 1 0 

0 0 0 1 

0 1 0 0 

to get qs.; 
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ii) r - s t r a t u m 

This stratum contains r-vectors such as 

/ 

\ 

0 0 0 

0 0 0 

0 0 1 

0 0 0 

0 ^ 

0 

0 

- V 

but it also contains other vectors with the same multiplicities of eigenvalues, such 

HS 

/ 

As = 
1 

V 

1 0 0 0 

0 1 0 0 

0 0 - 2 0 

0 0 0 0 

\ / - 2 

0 

/ \ 

0 0 0 \ 

- 2 0 0 

0 3 0 

0 0 1 y 

All three of these commute with the SU(2) group generated by Ai, A2, A3. They 

also commute with the U( 1) they generate themselves as well as with a U( 1) group 

generated by one other linearly independent vector. For example, commutes 

with the SU(2) grou]^), its own U(l) group and the U(l) group generated by its 

associated q-vector, qs = —qe- The isotropy group of the r-stratum is therefore 

SU(2) 0 U(l) G U(l). 

The above three matrices have different eigenvalues and therefore different char-

acteristic equations, or equivalently different values of ")2, I3 and as can easily 

be verified. In i)articular, unit r-vectors by definition have 'yg = '')'4 = 0. We 

may ask what the consequences of these conditions are (individually) for the 

eigenvalues. Firstly, if = 0, the characteristic equation becomes 

XX l3(x)) = 0 (G.6L 
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so one eigenvalue is zero. Secondly, if I3 = 0, the characteristic ec^uation becomes 

x'̂  - ^2(x)x^ — l'4(x)l = 0 (6.63) 

- a quadratic equation in x^. This only has two roots, so x^ can have at most 

two eigenvalues, for example 

/ 0 0 0 ^ 

X = 

\ 

0 0^ 0 0 

0 0 6^ 0 

0 0 0 6̂  / 

By removing the trace from this, we see that XvX is a q-vector. }br x in the 

r-stratum. this implies that x has the form 

/ 

X = 

a 0 0 

0 a 0 

0 0 6 

0 0 0 

\ 

where, to ensure the tracelessness of x. 

a + a + 6 — 6 = 2o = 0 a = 0 (6.64) 

hence x is an r-vector. (This is obvioush' true for non-diagonal vectors as well as 

diagonal ones.) 

Finally, if ^ 0, which is the case for the last of the above three matrices, 

the characteristic equation becomes 

(x — l)(x^ + x^ — ")3(x)l) = 0 (6.65) 
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80 one of the eigenvalues is 1. 

iii) s - s t r a t u m 

This stratum is composed of vectors with a tri^ale eigenvalue. From the trace-

lessness condition, we find that there are only eight diagonal unit vectors in this 

stratum: 

/ . 

Si = 
1 

7 6 

0 

-1 

0 

0 

0 

0 

- 1 

0 

\ 

qi + q2 + qs) (6.66) 

S2 
1 

V 

1 0 0 0 

0 3 0 0 

0 0 — 1 0 

0 0 0 - 1 

— — 92 + qs) 

S3 = 
1 

7 ! 

- 1 0 0 0 

0 - 1 0 0 

0 0 3 0 

0 0 0 — 1 

- ^ ( q i + q2 - qs) 
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S4 
1 

7 6 

1 0 0 0 

0 - 1 0 0 

0 0 - 1 0 

0 0 0 3 

\/3 
—qi — 92 — As) (6.69) 

as well as —Sj, —S2, —S3 and —S4 — A15 

For any vector in this stratum, there is a similarity transformation which diago-

nalises it to 

/ 

\ 

a 0 0 

0 0 0 

0 0 o 

0 0 0 

0 

0 

0 

-3a 

\ 

/ 

where o is a real number. Calculating the invariants for this vector, we find they 

are 

-y? = 60' 73 — —80 , 74 = 3a" 

Clearly, vectors with a triple eigemWue a and those with a trii)le eigenvalue — o 

have the same value of ')2 (the same length) and the same value of but their 

values of ")3 have oi^posite signs. Thus for a given length of vector there are two 

distinct orbits in this stratum and 'yg distinguishes between them. This is much 

the same as the situation for c^-vectors in SU(3), as discussed in [27]. 

Finally, using the same arguments a.9 for the previous two strata, the isotropy 

grou^) of this stratum is SU(3) 0 U(l) (recall it was noted in Section 6.1.2 that 

there is always such a stratum). 
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iv) t - s t r a t u m 

This is the generic stratum: it is composed of vectors with all eigenvalues di&rent, 

for example 

/ 

\ 

1 0 

0 2 

0 0 

0 0 

0 0 

0 0 

-3 0 

0 0 

\ 

/ 

( I 

0 

0 

\ 0 

0 0 

- 1 0 

0 2 

0 0 

0 

0 

0 

- 9 

\ 

/ 

For the second of these, ')3 = 0. This is true for any vector which diagonalises to 

the form 

X = 

/ 0 0 

-a 0 

0 6 

0 0 

0 

0 

0 

- 6 

\ 

so for any such vector XvX is a q-vector. 

Clearly vectors in this stratum only commute with the Cartan subgi'ouiD, i.e. the 

isotro^ay group is U(l) G U(l) G U(l) . 

6 . 3 S O ( 6 ) 

6.3.1 Spinor r e p r e s e n t a t i o n s 

The elements of S0(6) take the form (4.81), where the parameters and the 

generators are, as always, antisymmetric under the interchange of .4 and 

which run 1 , . . . ,G. The generators and cr's again satisfy the commutation 

122 



relations (4.82) and (4.90). 

6) has two 2^"^ = 4-dimensional spinor representations. For the direct sum 

of these we can construct six -matrices which again obey the CliEord algebra 

(4.83). To find these, we take the ")''s of S0(5) to be the of the method 

described in Section 4.4.1 and use this inductive method to obtain the gammas 

of S0(7): 

0 

0 

0/ 
\ 

0 0 0 

0 0 (Ti 

0 CT; 0 

— (Ti 0 0 

0 0 i l 0 

0 0 0 - i l 

- i l 0 0 0 

^ 0 i l 0 0 y 

1 0 0 0 

0 1 0 0 

0 0 - 1 0 

0 0 0 -1 

— 

/6 

/ 0 0 0 i l ^ 

0 0 i l 0 

0 - i l 0 0 

^ - i l 0 0 0 y 

/ 0 0 1 0 ̂  

0 0 0 1 

1 0 0 0 

0 1 0 0 

(G.70) 

(6.71) 

\ 

(6.72) 

/ 

Again we can take products of the first six of these to obtain the cr's for the Weyl 

representation and use the last to construct the projection opeiators 

f k = ^ (1 + 77 

/ 1 0 0 0 

0 1 0 0 

0 0 0 0 

0 0 0 0 

\ 

(6.73) 

/ 
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= - (1 - 77) 

/ 0 0 0 0 ^ 

0 0 0 0 

0 0 1 0 

0 0 0 1 y \ 

(6.T4) 

with which we can project out the (r's for the two spinor reiaresentations. We 

find that the cr's for the right-handed spinor are 

— (7; 

(7;. 0 

0 

-0", 

0 

0 i(7. 
':"46 

<7,1 r, = 

—1(7 ̂  

0 1 

1 0 

(7i 0 

0 —(7; 

0 il 

- i l 0 

crll = 
1 0 

0 - 1 

(6.75) 

(6.T6) 

(6.77) 

while the c's for the left-handed spinor are 

(7; 
k 

0 

0 O-A-

0 -(7; 

-CT; 0 

0 -i(7, 

i(7/ 0 

= 

^46 — 

CT; 0 

0 —(7, 

0 il 

- i l 0 

1 

0 

- 1 0 

0 1 

(6.78) 

(6.79) 

(6.80) 

6.3.2 Connec t i ons w i t h SO(4) 

All of the above matrices are 4 x 4 traceless hermitian matrices, so they must lie in 

the Clifford algebra structure of S0(4), or alternatively, in the algebra of SU(4). 

In this subsection, we identify each of the cr's of the two si)inor representations 
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with the matrices of the Clifford algebra of S0(4). 

We start by noting that the in the above two spinor representations which 

generate the subgroup of rotations in the first four dimensions - we will call this 

subgroup - haÂ e precisely the same form aa they do in the Wey] representa-

tion of S0(4) (see (4.102)). Indeed, together with the 0-̂ .5 they form an S0(5) 

subgroui), so we might expect the above (7̂ 5 to be the <7̂ 5 discussed in Section 

4.4.3: if we commute the appropriate -j 's in (4.101) we see this is correct. 

This means by elimination that and (Tsg must be linear combinations of other 

matrices of the Clifford algebra structure, i.e. the of S0(5). In fact, by 

inspection, we see that for the right-handed spinor, the are just the of 

S0(4) and similarly <7.56 is the of S0(4). with signs reversed for the left-handed 

siainor. 

6.3.3 T h e g e o m e t r y of t h e a lgebra of SU(4) in a n SO(6) 

basis 

We have shown that the cr's of the spinor representations of S0(6) form a basis 

for the space of all 4 x 4 traceless Hermitian matrices. This means that there is 

a one-to-one mapping between these and the A's of SU(4) - this can be thought 

of as a change of axes in the algebra. (Incidentally, this mapi^ing preserves the 

commutation relations - the algebras of SU(4) and S0(6) are then said to be 

isomorphic^, which in this case gives a liomomorphism l^etween the two groups.) 

We should therefore be able to couch all of the results we obtained for SU(4) in 

the language of S0(6). It turns out that this is remarkably easy and in many 

ways this is the more natural descriiation. 

^See. for example, Vol. 2 of [16] 
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The obvious place to start is with the diagonal Cartan subsi^ace. For SI'(4), 

we found three q-vectors in this space - these are, upto a factor, precisely the 

diagonal generators of S0(6): 

(6.8I: 

(6 .82 

(6.83) 

Using (6.45)-(6.4T) then gives us the mapping betw^een the diagonal S0(6) gen-

erators and the diagonal SU(4) generators: 

A3 = —(o'l2 + ^34) (6.b4) 

. ^ ^ ( - . . , + . 3 4 ) + ^ . As — cri2 + o ' 3 4 ) - l — ( 6 . 6 5 ) 

Ais — — — C34 + <?'.L̂ ) (6.b6) 
v6 

We then have the r-vectors. Two of these, rs and r^, can be written in terms of 

qi and q2, i.e. can be written in terms of the diagonal generators of "H: 

1 1 
I'S = " ^ ( ^ 2 — qi) = —(Cl2 + <̂ 34) (6.b( ) 

Te = - ^ ( ^ 2 + qi ) = '̂ {^12 — (7'34) (6.b8) 

- these are what we called and in Section 4.4.2. Similarly, the other diagonal 

r-A"ectors are sums and differences of the diagonal S0(6) generators, for example 

1 1 
r2 = - qi) = -(0-34 + (T,̂ ) 

126 



- if we consider other S0(4) subgroups, e.g. in the (T3,A'4,.T5,:r6)-space, these 

are then the corresponding and 6'[/(2)L diagonal generators, q, and 

r i , r 2 , . . . r 6 are shown in this basis in Figure 6.3 (the r-vectors given by the 

negatives of these are omitted). 

C34 

Figure 6.3: Diagonal q-vectors and r-vectors in the S0(6) basis 

v- re la t ions be tween a ' s 

We now turn to non-diagonal vectors. A key to this is looking at SU(2) subgroups 

of S0(6). Start by noting that for each generator in the Weyl representation, aa 

the -y's anticommute and square to the identity. 

= i - n n v r = - I ' / u i ' / i J 

= i n i u i j = 1 

(6.89) 

(6.90) 

(with no sums) so for the two spinor representations, it is also true that the 

generators square to the identity: 

(6.91: 

1 2 / 



This has an interesting consequence: 

— — tr((T/j) ' l = 21 — — X 41 = 0 (6, 

i.e. all S0(6) generators are q-vectors^. 

We then note that sets of generators such as {(724, (725, form S0(3) subgroups 

of S0(6) (rotations in the (a;;, 3-4, a;5)-subspace). Now S0(3) « SU(2), and we 

know that upto an overall length, all the vectors in an SU(2) algebra have the 

same eigenvalues (lie in the same orbit). This means that in any S0(3) subgroup, 

all the vectors are c^-vectors, and for any i)air of generators which share an index, 

say (7 4B and (e.g. (724 and (T25), their v-pi'oduct is zero as we can always 

find an S0(3) subgroup they fall in. {<T4g,(7 4c%o'gC'}: 

T/JvCr/A" = 0 (6.93) 

(no sum) 

Note that this implies that for any S0(3) subgroup, ^3 = 0 and '̂4 — —%1'2. so 

there is only one indeiaendent invariant which varies from vector to vector. This 

is one of many cases we will see in which a subspace of the algebra has fewer 

arbitrary invariants than the algebra as a whole (this is, in fact, why we only 

needed one invariant for S0(1,4)/S0(L3), as we shall see in Section 9.6.2). 

Now consider two generators with all indices different, for example CM and 

0-35. They are two mutually commuting generators of an S0(4) subgroup, < 

(713. (Ti4, <713,0-34, (735,(745 >- They satisfy (7/jv(7fj = 0 (no sum) and (7/̂ (̂7^Ai, = 0̂  

so a unitar}" transformation can be used to transform them into another pair 

of mutually commuting q-vectors. We could, for example, diagonalise them, to 

-we only explicitly use the R and L superscripts when they are required for an expression 
to make sense - in general, it is clear which representation is being used f rom the context 
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get two of the three diagonal q-vectors (of the same length). If we do this to 

obtain, for example, <712 and (734, we can see from the algebra that applying this 

transformation to the entire S0(4) subgroup will give us the S0(4) subgroup "H. 

Whichever generators we get after diagonalising <714 and <735, we know from 

(6.5.5)-(6.5T) that taking their ^-product we get the other diagonal generator 

which generates the S0(2) subgroup orthogonal to the S0(4) the first two lie in 

(upto a factor). All this is obviously preserved under the unitary transforma-

tion, so the v-product of <714 and (735 generates an S0(2) subgroup orthogonal to 

< <713, (T'lSi <7'34, <7'35, <7'45 i.e. (7i4V<7'35 (X <̂ 26-

So we know that if (7;j and <7/̂ -̂  have any indices in common, cr/jvC/Yi ' 0, 

but if they do not, c/jvCAZ, oc where TIf, / , J, A, To find the 

proportionality, we go back to the 8-dimensional Weyl representation. It can 

be shown using the Clifford algebra and the orthogonality of the c 's that for 

/ , J, A', Z, all dilferent, 

{cr/j, ^ tr((7;j, cr/^%)l = (6.94) 

For example. 

{cri2.eras} - ^ tr(cri2,(735)! = -2')ii'2i'3l'5 (6.93) 

However, in the same way that for S0(4) we had = —I1I2I3I4. foi' S0(6) we 

have 

17 - illl2l'3l4l'5l6 = ^ ^ Q ^ ^ (6.96) 

and we know from the Clifford algebra that the ^ s anticommute with each other 

and square to the identity. We can use this information to obtain any string of 
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four such as (6.95) as a product of -)? and a c-matrix: 

-"y-CTiG = -Ill2l3l'4l576l476 = - l l l273l '5 (6.97) 

Observe that every anticommutation introduces a minus sign, so in general we 

have 

:^tr(cr/j,(TA%)l = (6.98) 

CJKL*'" ( , ' I 16 99) 
0 -cr^/A" 

for 7, J, A'.Z, all diEerent. (The factor of 2 in the right-hand side of (6.95) re-

sults from the fact that ')'T0'64 is also included in the sum.) This implies for the 

individual spinor representations, together with (6.93), that 

= ( 6 . 1 0 0 ) 

and 

( 6 . 1 0 1 , 

Thus on changing from a basis where the group s parameters have a single vec-

tor index, such as the basis of the A's, to the S0(6) basis where they have an 

antisymmetric i^air of indices, we are rei^lacing the totally symmetric structure 

constant with the totally antisymmetric tensor of rank six, 

Note that among other things, these equations contain the information that if 

we ai^ply the algebra (6.24) to the vectors of the Weyl rei^resentation of SO(4) it 

does not close. Indeed, the Clifford algebra structure of S0(4) can be defined as 

the minimal extension of this vector space such that the algebra does close. 
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r -vec tors and q-vectors in SO(4) subgroups 

We have begun to see the power of studying the geometry of this Lie algebra 

in the S0(6) basis - so far we have seen that each 'basis vector' is a q-vector 

and the symmetric structure constants take a remarkably simple form. We can 

gain further insight into how the structure of this algebra can be described by 

rotations by looking at S0(4) subgroups of S0(6). 

Every S0(4) subgroup is homomorphic to SU(2) G SU(2) and we know from 7/ 

how to take orthogonal combinations of commuting S0(4) generators (c^-vectors) 

to get the ,S'f^(2)R G,S'[^(2)L generators (r-vectors). We also know that all vectors 

of a given length in one of these SU(2) subgroups lie in the same orbit, so by 

rotating rs we see that all vectors of the form (in the 6'[^(2)R subgroup) are 

r-vectors and similarly all 6'[^(2)L vectors are r-vectors'^. This is obviously true of 

the 6'[/(2)R and 5'[^(2)L vectors of on?/ S0(4) subgroup of S0(6). Furthermore, by 

applying these 5'f/^(2)Fi and 6'f^(2)L rotations to = :^ (c3 +(7'3) 

we see that any vector that has 'ecjual parts' in 5'f'(2)R and 6'['(2)L: 

q = 

(i.e. its 6'[^(2)R and 6T/̂ (2)L components have ec^ual magnitude) is a q-vector. 

Let us write this expression explicitly for a q-vector in in terms of (T/j's: 

q = — + CTii) + ?7 '̂((T3i -|- (T24) + + <̂34 ) 

-|-??̂ (̂(T23 — Cri4) + — <72̂ ) -|- )?.̂ (̂(7i2 — 0'34)) (6.102) 

- ^ -I- )?^ )̂o-23 -t- ()7^^ -I- 72̂ )̂(731 + 

-t-()7^^ — -I- ()?^^ - 71̂ )̂(724 -I- (;?^^ — M^̂ )(734) (6.103) 

^These subalgebras therefore also only have one arbitrary invariant, 'ys 
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There are a number of interesting examples of such q-vectors obtained by equating 

components of 72̂  and 

= 77; : q = ^ (?î (723 + ??̂ cr3i + n'̂ (7'i2) 

- any element of the vector i)art of 7/ 

Tif = = 77, : q = ^ + 77̂ (724 + 72̂ (734) 

- any element of the axial part of 

= f/j'. "2 = - ^ 2 , "3 = -M3 : q = ^ ("^^(723 + 77̂ (̂724 + 7?̂ <̂734) 

- any element of S0(3) in (a:2,:i'3',:^'4)-space 

'3 : q = ̂  (?;̂ ĉri4 + 77̂ (̂731 + 7)̂ (712) 

- any element of %/above S0(3) 

77̂  - —7?.̂ ,7%2 = "2 ' "3 

n = —7? 77̂  = 772 T ^̂ 3 — ^^^3 ' q = ^ + "^^0'34) 

- any element of S0(3) in (Ti,^'3,.T4)-space 

"i ̂ — 7?̂ , Mg = —)%2 , "3 = »3 : q = ^ (?T̂ ^O'23 + M^̂ Cr24 + )7^0'l2) 

- any element of %/a.bove S0(3) 

7?̂  = -77^, 77̂  — -772 . ̂ 3 = "3 = q = ^ (n^^<7]4 + 77̂ (̂724 + )7^^0'l2) 

- any element of S0(3) in (Ti,:7'2,a'4)-space 

= 77̂ . 772 = "2 ̂  "3 = -"3 : q = ̂  ('7̂ ĉr23 + + "̂ '̂ <?'34) 

- any element of above S0(3) 

Note that unitary transformations in (the adjoint representation of) the ,S'L'(2)R 

subgroup of S0(6) transform one 6'[^(2)p; vector into another, but there exist 

other unitary transformations in S0(6) which transform an 5'["(2)R vector into 

a vector in the corresponding 67^(2)^ subgroup or even a vector in a completely 

different SU(2) subgroup, as all the unit r-vectors in S0(6) lie in the same orbit 

(aa their eigenvalues are the same). Similarly, acting on a q-vector in with a 

unitary transformation in 9^ % 6'[^(2)R 0 6T'̂ (2)L will transform it into another 
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q-vector in "H, but there exist S0(6) transformations which will transform it into 

a q-vector in a completely different SO(4) subgroup. 

C o m m u t i n g sets of vec tors 

Finally, if one wishes to make use of all of this theory, it is usually important to 

have a clear and thorough understanding of which vectors of the algebra commute. 

It is all too easy, when considering all the subgroups of rotations in S0(6), to 

get confused about which vectors commute, so in this subsection we present this 

problem and its solutions as clearly and precisely as possible. We have already 

found the centralisers of the various strata in Section 6.2.3, but it would be helpful 

to review this in the language we have used in this section. 

Firstly we took as an example of a q-vector the matrix 

1 0 

0 1 

0 0 

0 0 

0 

0 

- 1 

0 

0 \ 

0 

0 

- V 

which is clearly just a multiple of cgg. We observed that , besides the U(l) % 

S0(2) grou}) it generates, it commutes with two SU(2) groups, which we are now 

calling and 6'f^(2)L; it should be noted that these two make up "K, the 

S0(4) orthogonal to this subgroup. So the isotropy group is SU(2) O S 1.1(2) 6 

U(l) or S0(4) 0 S0(2). 

For the r-vectors, we looked most closely at rg. We noted that it commutes with 

the whole of ^'['^(2)^, as well as with the U(l) group it generates itself, which is 

the diagonal part of 5'&'̂ (2)L. Finally, it commutes with its associated c^-vector, 

which is, upto a factor, CsG - this clearly acts as an identity for both SU(2) groups. 
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to which it is orthogonal. 

We can now think of i^icking a vector in the algebra, choosing an orthogonal 

vector it commutes with and then picking a third vector which is orthogonal to 

both of the first two and commutes with them. For example, we can start with 

a q-vector. We have already found that any orthogonal vector which commutes 

with it must lie in the algebra of the S0(4) which commutes with the S0(2) 

it generates. However, we have the whole S0(4) space to choose from, which 

contains q-vectors, r-vectors and vectors which are neither. If we pick one of the 

q-vectors in this S0(4) as our second vector, the third must be a vector in the 

S0(4) which commutes with it and is orthogonal to it. This uniquely defines 

a third q-vector (upto a change of length) - we can see this from whose 

centraliser in % is the U(l) 0 U(l) generated by (7i2 and However, if we 

pick an r-vector as our second vector, this is a vector in a right (or left) SU(2) 

subgroup of the S0(4) and commutes with the whole of the left (or right) SU(2) 

subgrou}), so although we know our third vector must be another i-vector, we 

have the whole of an SU(2) subgroup to choose from. 

Now start with an r-vector. Its isotropy group is SU(2) 0 U(l) G U(l) , where the 

algebra of the SU(2) is composed entirely of r-vectors and the U(l) orthogonal 

to the r-vector is generated by a single q-vector. We could take a q-vector from 

the U(l) and an r-vector from the SU(2), in which case the cj-vector is uniciuely 

defined (upto a change of length), whereas we are free to choose any r-vector 

from the SU(2). Ŵ e can also ask whether there are any r-vectors or q-vectors in 

the algebra of SU(2) Q U(l) other than these. Take the example of rs which lies 

in 6'['^(2)R. We know that 

= \/2q3 and rgyrG = - \ / 2 q 3 

We are aaking whether there are any r-vectors or cj-vectors which are linear sums 
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of qa and an ,$'[/(2)L vector. These equations are preserved under 2)R and 

,$'[/(2)L transformations. By applying these transformations to the r-vectors on 

the left-hand sides of these equations we can get any 6'L'̂ (2)R or 2)L vector. 

However, these transformations are in the stabiliser of qs, so the right-hand sides 

are unaffected. Hence for any 5'[/̂ (2)Ft or ,S'[/(2)L r-vector, 

r^r = ± \ /^q3 

So the vectors we are interested in are linear sums of an ,S'[/̂ (2)L r-vector and 

its q-vector, that is, they lie in a i^lane spanned by the 6'[/(2)L 

r-vector and its corresponding cj-vector. If we look at the plane containing 

and qs in Figure 6.3, we see that jzrg and jzqg are the only r-vectors and ĉ -

vectors in this i^lane. It is not possible to take a linear sum of an r-vector and 

its corresponding q-vector to get another r-vector or q-vector, therefore the only 

r-vectors and c^-vectors in the algebra of an SU(2) G U(l) isotropy group are the 

r-vectors in the SU(2) algebra and the cj-vector which generates the U(l). 

Finally, it is worth noting that if we take the first vector to be in the t-stratum, 

we have a choice for our second vector of any vector in a plane (generating a L( l ) 

G U(l) which commutes with the U(l) generated by the hrst vector). Having 

chosen this, the third vector is uniquely defined (upto a change of length). 
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C h a p t e r 7 

Tensor o p e r a t o r s of S U ( N ) 

In order to find the covariant derviatives of a non-linear realisation of SU(N), we 

need to work with Z for the realisation, as a. linear sum of broken generators. This 

requires, as mentioned before, the use of projection operators of (the defining 

rei^resentation of) SU(N). These may be constructed from a set of \i-vectors . 

which are a generalisation of the s-vectors dehned in Section 6.2.3. However, in 

the next chapter, we will endeavour to construct a general form for which 

will clearly involve the derivatives of these projection operators. In doing this, 

we will be following in the footsteps of Barnes who construct just such 

an exi^ression for SU(N)'X)SU(N)/SU(N) - this paper demonstrates the intimate 

connection between these derivatives and the projection operators of the af/yo/n/ 

representation of ,SU(N). 

In this chapter we therefore carry out an analysis of the adjoint rei^resentation 

of SU(N), much as we did for SU(2) in Section 4.2.2. This will necessarily be 

more involved for SU(N) as there are new features in the Lie algebra. In Section 

7.1 we look at the much-studied f- and d-tensors of SU(N) and note some useful 

identities. (The former are related to ad(x).) In Section 7.2 we dehne the u-
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vectors and look at some of their properties. In Section 7.3 we turn to the adjoint 

representation projection operators. The complete set of these was identified by 

Barnes and Delbourgo[21]; however, we shall only be concerned with a subset, 

which are analogous to (4.71) and (4.72). By using the identities of Section 7.1 

and the u-vector properties of Section 7.2, we are able to obtain simiale forms 

for the symmetric and antisymmetric combinations of these operators. We close 

the chapter by using the homomorphism between SU(4) and S0(6) explored 

in Section 6.3 to investigate the form of the f- and d-tensors and the adjoint 

rei^resentation projection operators in the S0(6) description. 

7.1 A d j o i n t r e p r e s e n t a t i o n of s u ( N ) 

In Section 4.2.2 we saw how the adjoint representation of an element of SU(2) 

is defined: acting with the element on a vector of the algebra by conjugation is 

ecjuivalent to acting on the components with a 'rotation^ matrix - this matrix is 

the adjoint representation of the group element. Using just the orthonormality of 

the Pauli c-matrices, we showed that the general form of the matrix for a group 

element ^ is 

^ ( ^ ) / = (Ad(^r))/ = ^tr(^o-'^-^(7j 

As the A's of SU(N) are also orthonormaL this definition extends trivially to 

SU(N): 

(Ad(6f))7'^ = ^tr((/A'^^-^A/) (7.1) 

Again, this mapping is homomorphic. 

To find the adjoint rei^resentation of the algebra we once again consider infinites-
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imal transformations. We now have 

( A d ( l + ^^))/'^ — — tr 7.2) 

= (A-^,A;) + ^(^g"'tr([A-".AA-]A;) + 0(,̂ gr (T.3) 

= (A-̂ ^ Ay) -

= + (7.4) 

so 

(ad(. /UA-))/^ = 2 i . / \ f n / (T.5) 

Let us look more closely at this quantity. Like the rotation matrix A(^), this acts 

as an operator on the comiDonents of a vector: 

= (7.6) 

i.e. it transforms the vector y thus: 

y = y ' = ^'^A; = (2iy\/'^A\/^'^)Af (7.7) 

We know that the structure constant arises from the commutator of two 

A s, so it is no surprise to learn that this transformation itself is a commutation: 

[x, y] = [.r^'AA^^-^Aj] = a'̂ '̂ /'̂ [AA-,Aj] = 2i.r^^^'^/AV^A/ = (2iT^\/^AV^/'^)Af 

(7.8) 

To get X/\y we just multii^ly both sides by —i/2 

x^y = (7.9) 
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but the left-hand side is now a vector of the Lie algebra; the components of this 

vector are then 

= (7.10) 

Clearly, the operator acting on the vector y is equivalent to the rank-2 tensor 

operator acting on its components. We shall adoi^t the notation of [27] 

and denote this operator that is 

= (7.11) 

(for SU(2), this is obviously just the familiar This is clearly linear on the 

.1" argument: 

(/ar+/3!/)^J = o(A)^J+./^(/i/)^J (7.12) 

We can, in the same manner, define an operator nsing the ^-algebra -

Xvy = (7.13) 

naturally gives us the definition 

( 4 ) " j = (;.14) 

(in this cage we do not technically need to stagger the indices, as this oi^erator is 

clearly symmetric on its free indices). 

In [35] many identities are derived for the symmetric and antisymmetric structure 

constants and these are rephrased in terms of the / r and in [27]; for exam^^le, 
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the Jacobi identity may be written in terms of the structure constants as 

(7.15) 

or in terms of the operators as 

= (7.16) 

There is a similar relation for the commutator of / r and 

LfT,(/2/] = fLA3/ (7.r<) 

Three more of these relations will be useful to us: 

+ Zg/fL = ./irv!/ (7.18) 

(7.19) 

and 

- 2.T > < 1/ + 2 (x ,y )1 (7.20) 

where the tensor .r > < ?/ is the outer product of x and y: 

(T><:^)/ '^ = .rf^'^ (7.21) 

140 



7.2 T h e u -vec to r s of S U ( N ) 

7.2.1 Def in ing t h e u-vec tors 

To look at the connections between the projection o^aerators of the defining rep-

resentation those of the adjoint representation and the f- and d-tensors, we 

split the f i n t o two parts. Each of the f h a a a trace of 1 and therefore is not 

a vector of the Lie algebra, but we may write it as a vector of the algebra plus a 

trace term: 

p' = j l + u' i. 92^ 

This clearly haa a trace of 1; it also has the property 

1 
(A/, - — tr(A/) + Aj) = U; i. 9; 3) 

(these components are called in [21]). 

For the diagonal projection operators (those shown explicitly in Section 4.1 with 

a single 1 and all other elements 0), the 'u-vectors' take a i^articularly simple 

matrix form: 

u , = — 

/ A" 

v 

- 1 0 0 0 

0 - 1 0 ••• 0 

0 0 — 1 • • • 0 

0 

0 0 0 0 - 1 

\ 

/ 
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/ 

u:, = 
1 

iv 

- 1 0 0 ... 

0 7 V - 1 0 . . . 

0 0 - 1 . . . 

0 0 0 0 

0 \ 

0 

0 

0 

- 1 / 

etc. 

For SU(4), by comparison with (6.66)-(6.69), we see that 

u. 
4 -ST (7.24) 

In general, these are vectors of the stratum with isotropy group SU(N-1)0U(1) 

%U(N-1), mentioned at the end of Section 6.1.2. 

7.2.2 P r o p e r t i e s of i i -vectors 

Recall that we get non-diagonal projection operators from the diagonal ones by 

ai)i)lying unitary similarity transformations. This means that we are acting with 

a group element on the u-vectors (the trace term is obviously unaffected by this 

action). This, we know, transforms the set of u-vectors into another set of vectors 

in the same stratum^ with the same v-products, ^-products and scalar products. 

These products can be found from the basic properties of the projection operators, 

(4.3). 

Firstly, we see from the diagonal cage that the u-vectors all commute. This means 

^ As the u-vectors are defined by the properties of the associated projection operators, which 
are preserved under the transformation, a set of u-vectors is always transformed into another 
set of u-vectois 
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that 

u'^u^ - = ^=u ' ^vU^ + ("-23) 
2 \ / A' A-

(using (6.12) ), so 

+ + (T.26) 

= ^ 1 + -^ (u^ + U^) + - ^ U ^ v U ^ + 

If 6' ^ r we know that this is zero, so that 

(ii'^,u^) = - ^ (T.28) 

(we aheady knew they could not be orthogonal as there are A' of them and they 

commute, while the Cartan subs^^ace is only (A'̂  — l)-dimensional) 

and 

u^vU^ = + u^) (7.29) 

Similarly, if s = T, the property f = p'~ implies that 

2 ^ ( -30) 

and 

u ' ' v U ^ = f \ / 7 Y - - ^ ) u ^ (T.31) 

(remember that we never haÂ e any implied sum on the ,5% T, [/-indices). 
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7.3 A d j o i n t r e p r e s e n t a t i o n p r o j e c t i o n o p e r a t o r s 

Recall that the adjoint representation of SU(2) is 3-dimensional and for each 

vector of the algebra x = a set of three projection operators may be defined: 

= -tr(f"(7' 'f"'"cr,) = 

= tr(f"'"cr'f"'"(7;) = tr(f"(7' 'f"(7;) = 

The adjoint representation of SU(N) is — l)-dimen8ional and therefore (for 

each vector of the algebra) there are — 1 projection operators[21]. In this 

section, we will be concerned with — 1) of these, given by 

( f ^ ^ ' ) / = ^ t r ( f '̂A-̂ ) r ^ (7.32) 

or, more i^recisely, their symmetric combinations 

( p r r ^ = l t r ( f ^A; f^ 'A '^ ) + ^ t r ( f^ 'A/f^A'^) T ^ L' (7.33) 

(these are themselves i^rojection operators and are symmetric under the inter-

change of / and J due to the cyclicity of the trace) and their antisymmetric 

combinations 

_ l t r ( f^A/f^ 'A-^) - ^ t r ( f^ 'A/f^A-^) 7 f (7.34) 

(which do not have projection operator properties). 
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We know that for any vector of the Lie algebra x, there are projection operators 

of the defining representation, of the form (7.22). We now want to substitute this 

expression into (7.32) to find a general expression for the f T h i s is analogous 

to the way we substituted f ' ' ' = ^(1 d: ??'(7,) into (7.32) for SU(2), except here 

the u'̂  are as yet unknown functions of x: 

= u'^(x) (7.35) 

(We shall see how to determine the u'^ a,s functions of x for certain coset spaces 

of SU(4) in Chapter 9.) 

The tensor forms we obtain for the f themselves are not particularly elegant, 

but by judicious use of the identities in Section 7.1 we can And simple forms for 

their symmetric and antisymmetric combinations. For example, for the symmet-

ric combinations, simply substituting (7.22) and using the orthonormality of the 

A's gives us 

l̂ pST pTSyJ _ tr[A/(u'^ + u^)A"^] + —^ tr[A'^(u'^ + u^)A/] 
ix" ziv 2i\ 

-t--tr(u^AfU^A'^) + ^tr(u^Afu'^'A'^) (7.36) 

To simplif}" this, we need a cou^^le of identities which can be derived from those 

given in Section 7.1 (the derivations are given in Appendix 2): 

tr(A/xA'^) +tr(A'^xA/) = ^:=(c/^.)^ (7.37) 

and 

tiixA/yA"^) -t-tr(yA/xA'^) — — ( x , y ) ^ ^ + (7.36) 
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Using these gives iis 

,pst^pts,j , i ^ sj + 
A'2 V 

6 ^ 7 " (T.39) 

Now we know that u'^ and commute, so by (T.16) and commute. The 

anticommutator in the last term then reduces to a product. Similarly, we can use 

the scalar iModuct and the v-pi'oduct of and (7.28) and (7.29), to cancel 

the other terms, leaving us with 

( f ^ ^ + f ^ ^ ) f = 4(AsAT)^ r (7.40) 

Finding the antisymmetric combinations is much the same. 

( f ^ ^ - f ^ ^ ) / = : ^ t r [ A ; ( u ^ - u ^ ) A ' ^ ] - : ^ t r [ A ' ^ ( u ^ - u ^ ) A / ] 

+ ^tr(u'^A/u^A'^) — ^tr(u^Afu'-'A'^) 6' ^ 7(7.41) 

We can now use 

tr(A/xA'^) — tr(A'^xA/) — 4i(yi.)/'^ (7. 

and 

tr(xA;yA'^) - tr(yA/xA-^) = 4[y, . . /^] / - + tr(A;[x,y]A'^) 

(7.43) 

(also derived in A^apendix 2) and the fact that the u-vectors commute to get 
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( p s r _ ^ - A ^ 4 T ) / 5' f r 

(T.44) 

It is actually possible to use the identities in Section 7.1 to eliminate the 

from this last equation. We shall go through the technique for doing this in some 

detail, as it will involve some concepts which will be of use to us later. These 

concern the properties of the operators and the u > < u operators. 

First consider the operator 

> < 7 ,^) / = (7.45) 

(these operators are called f4i\PBy in [21] and they are related to the other A' — 1 

projection oi^erators of the adjoint representation which we have not looked at). 

We act on an arbitrary vector of the algebra, x, with this operator: 

(»'' > < u ^ ) / T j = = uf(u:^,x) (7.46) 

or in coordinate-free notation, 

» ' ^ > < u ^ x = (u^,x)u'^ (T.47) 

(this is how the operator X ^ is originally defined in [27]). So we end ûD with 

a scaled version of the vector u'̂ . provided x is not orthogonal to u^. Contrast 

this with the action of /„s on x: 

y;,gX = u'̂ AX = —-(u'^x —xu'^) (7.48) 
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This is actually orthogonal to all of the u-vectors, including 

= - ^ ( t r (u^u ' ^x ) —tr(u^xu'^)) (7.49) 

= —- (tr(u'^u^x) — tr(u'^u^x)) (7.50) 

= 0 (7.51) 

where we have cycled the second trace and used the fact that the u-vectors 

commute in the hrst. This means that 

X w^/^fX = (u^,u'^/\x)u^' = 0 (7.52) 

for all X. Similarly, 

X w^x = (u^,x)u'^/\u'' = 0 (7.53) 

for all X, i.e. 

> < X = 0 (7.54) 

for any three u-vectors U'̂ , . 

We can now make use of this property in adapting equation (7.20) to our pur^aose. 

Again, this is done in A^apendix 2. with the hnal result 

(7.55) 

Substituting this into (7.44) we finally find 

(7.56) 
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7.4 Tenso r o p e r a t o r s of SO(6) 

We saw in section 6.3 that all of the properties of the su(4) Lie algebra can 

been seen in an so(6) 'description^ This can obviously be extended to the tensor 

operators. In i^articular, the f- and d-tensors have a particularly simple form in 

this description. The o^Derator is an element of the adjoint representation of 

the so(6) Lie algebra and may be written 

= (7.37) 

where the are the structure constants of S0(6). From the Lie algebra, 

we have 

(7.38) 

we can then take a scalar product with <7̂ ^̂  to give us 

fuki"" = - W ) - i m i i f i s - W ) 

- s y s f j ) + SjiASi'S^ - i f i * ' ) ] (7,59) 

From this we find that 

( . f . ( 7 . 6 0 ) 

- we note that this has all the symmetries we ex^^ect of it. Similarly, 

has the simple form 

(f4)/j^^^ = (7.61) 
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We can now tnrn to the projection operators f We know that these are 

projection operators constructed from the f and the generators. We would 

therefore expect to have 

such that these still have projection operator qualities. To find the normalisation 

apiDiopriate for f t o be a projection operator, we look at the paper in which 

it was first shown that 

is a projection operator for SU(N), [21]. and see that we require an identity 

equivalent to (4.3) of that paper: 

^tr(A^,V)tr(A;y) = t r ( X y ) - ^ t r . V t r Y 

where _V and }' are arbitrary hermitian matrices (not necessarily traceless), using 

S0(6) (7 s in lalace of A's. In Appendix 3 we find such an identity: 

tr((7^'^.V)tr(cr/./y) = 8tr(_Vy) — 2tr.V t r l ' 

With this, it is trivial to find the normalisation which ensures that 

for 6 ' T : 

150 



= 8A;̂  t r ( f - 2A:̂  t r ( f t i ( f ^)(T.64) 

= 8/ĉ  t r ( f ^(7A%f - 2A;̂  t r ( f (7.65) 

= 8A;̂  t r ( f - 2A;̂  t r ( f ^(7;,%) t r ( f ^ f (7.66) 

= 8&-^tr(f^o-A-^f^(7'"'") (7.67 

The correct normalisation is clearly 

8A-̂  = A- =:> A- - -
8 

I.e. 

(f^^)A-A'^ = ^tr(f''(7A%f^<T"-") (7.68) 
b 
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Chapter 8 

Lagrangians of SU(N) s igma 

models 

8.1 The Content of 

The purpose of this chai^ter is to determine the general form of the Lagrangian of 

a non-linear realisation of SU(N), otherwise known as an SU(N) sigma model. We 

know from Chapter 3 that the Lagrangian for a non-linear realisation is uniquely 

speciAed for a gî ên set of standard fields by the covariant derivatives and 

and that these may be found by calculating and si)litting it up into 

and parts. Our main task, then, is to And an expression for for a 

general SU(N) sigma model. As we are working with Lie algebras in which the 

generators do not mutually anticommute (there is a non-trivial v-alg^hra), this 

will require the use of projection operators. 

To guide us in this task, we may make use of the work of Barnes ef 

a/ [18], who found the equivalent ex^aression for the chiral sigma models, 

SU(N)0SLT(N)/SU(N). It will turn out that the basic approach of this paper 
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is one we can emulate, though some of the methods used in the paper are not 

directly applicable to the coset spaces we are looking at. The starting point is 

to consider Z as a function of the arbitrary vector for the coset space, which 

may be written aa a linear sum of i^rojection operators: 

g = = (8.1: 

(we always write sums over the projection operators indices. 5' = 1 ,2 , . . . ,A/, 

explicitly; so if no summation is shown, none is imi)lied). Z, then has the general 

form 

= (8.2 

as can be seen from (4.13). (We will look at how to carry out the decomi^osition 

(8.1) in the next chapter, and will find it for certain coset spaces of SU(4)). The 

derivative obviously contains derivatives of both the and the 

= ^ ( ) (g.s) 

The derivatives are related to the projection operators of the adjoint re^^re-

sentation studied in the last chapter. We shall see precisely what the connection 

between them is in Section 8.1.1, drawing on arguments in [18]. The coefhcients 

will be studied in Section 8.1.2, where we will gain a much clearer under-

standing of their significance. In both of these sections we will obtain expressions 

which will be very useful in simplifying when we calculate it in Section 

8.2. In the form of f we end up with at the end of this section, the terms 

involving look very much like their ecpiivalents for the chiral sigma models. 

It is also i^ossible to bring the terms involving the into a form like their 

chiral ecjuivalent. but we are princiiaally interested in coset spaces of SU(4), for 
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which an alternative form is more appropriate, as we shall see in the next chapter. 

The final section looks at howr to split into its and parts for certain 

symmetric s^^aces. 

8.1.1 Der iva t ives of 

Recall that the are functions of x - or in this case the arbitrary element of 

the coset space - which is in tnrn a function of the Goldstone fields 71:/̂ . W'e can 

therefore write the derivatives in the following way: 

The quantity 
d. .SI 

looks like a tensor (with / and .4 tensor indices and an 5' 'labeF), so we might 

expect to be able to write it aa a linear sum of the projection operators of the 

adjoint representation. Again, [18] points the way to doing so. In general, ^ can 

be exi^ressed as a power series in M. This means that M commutes with i.e. 

its lies in the Cartan subspace of Therefore M = 71̂ ^ Ag may be written as a 

Hnear sum of the f 

(8.5) 
s 

(remembering that we ex^^licitly write sums on the 6', 7", [/^-indices rather than 

implying them. In [18], the coefhcients are written as lower-case yi^s.) 
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Now act on this from the left with one of the projection operators, say f 

^ (8 .6) 

then differentiate with respect to and rearrange: 

(8.7 

Substitute (8.5) into the right-hand side: 

and multiply from the right by a second projection oi^erator, say f Dividing 

both sides by — Mg then gives 

f (8.9) 
c)Af'4 

Aiore generally, for two different projection operators f a n d f ^ , 

- A/;. 

(All of the above is covered on page 401 of [18].] 

To find an expression for 

tp'^ap''= 18.10) 

from this, we make use of the ^Dioperties of projection oi^erators. First we note 

that as the f f o r m a complete set, 

a p i /)pi 
- r ( f ' + f " + . . . + f ^ ) (8.11) 
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and 

Adding these together gives us 

a pi A pi >) pi 
2 ^ = ( f ' + f ' + . . . + f ' ^ ) 4 T T + ' + f ' + . . . + f ^ ) (8.13) 

However, 

Therefore 

^ f ' p ' + + #^P : ' + P ' # ^ + ... + + P - ^ ' S 

(8.13) 

Also, 

/) pi f ) p T 

T + l T 7 7 T f ^ = 0 (8.16) 

for t ^ i, which we can use to obtain 

a P ' _ 8 P ' p2 _ a P l p . 3 _ , WLpA: _ f f l n . 

(8.17 

We can now substitute (8.10) in to this to get 

1 
+ . . . + ' ) (8.1^^ 
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This is getting very close to what we were after; we have quantities of the form 

on the right-hand side w^hich we know are involved in some of the 

adjoint representation projection operators. To get the final expression, we use 

the following procedure: 

Substituting (8.18) into the left-hand side of this, we finally get 

(8.20, 

or in general 

^ ^ (8 .22 ) 

so that 

3..p' = Z i F - 4 p ( P " + ^ " ) j X , a , A / < 
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8.1.2 u -vec tors and eigenvalues 

To see the deeper significance of the consider diagonalising the coset space 

vector ^ using a group element 

-1 

/ 0 

0 ^2 

\ 

\ 0 0 

:8.2.5) 

" y 

where the /(,$ are the eigenvalues of ^ and are the diagonal projection o^aerators 

p} 

1 0 

0 0 

0 0 

0 

0 

p! 

0 0 -. 

0 1 

0 

0 
1 ^ 1 + "d 

y 0 0 - - 0 y 

etc. Ai)plying the inverse transformation we get 

1 
^ ^ A'.5.9 ^pd9 - + 9 [8.26) 

but api^lying such a transformation to the diagonal u-vectors gives another valid 

set of u-vectors (with all the same pro^^erties), so 

— 1 + g 
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are a valid set of i^rojection operators. Thus we have found the decomposition of 

^ into projection operators: 

0 = (8.2?: 

i.e. the in equation (8.1) are just the eigenvalues of which we can find by 

solving the characteristic equation of 

This clarifies the nature of the decomi^osition - writing the f a s u-vectors plus 

trace terms 

+ (8 .28) 

5 

= + (8-29) 
s s 

we see that the left-hand side has no trace, so that 

(8.30) 

and 

^ ] 0'g = 0 (8.31) 
5 

which is just the condition that the sum of the eigenvalues is zero. 

For a completely arbitrary vector of SU(N), this is the only restriction on the 

eigenvalues. However, some coset spaces ha\'e algebras consisting entirely of 

vectors in a stratum with repeated eigenvalues. For example, in Chapter 9 we 

shall identify a coset space of SU(4) whose algebra consists entirely of vectors 

^Many papers on non-linear realisations and finite t ransformations of SlJ(N) are based on 
this approach, such as those by Rosen[32] and Bincer[36] 
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in the r-stratnm and another whose algebra consists entirely of vectors in the q-

stratnm. Indeed, all of the coset spaces we will study in detail in Chapter 9 have 

the property i3(^) = 0 for every vector of the space, which, as we saw in Section 

6.2.3, means that we can only identify two independent eigenvalues (matching 

the two arbitrary independent invariants i2(^) and i'4(^) ). 

8.2 

We now move on to the core of this chapter: calculating 2/ We start with 

the expression (8.2) for Z, which has an inverse 

= (8.32) 

and a derivative given by (8.3). Multiplying these together, we get 

^ ^ (8.33) 

The in the first term can be replaced by a u'^ by using (7.22): 

^ f ^ " 9 ^ (8.34) 

and then noting that by differentiating (8.31) the first of these terms is zero: thus 

(8.33) becomes 

^ 5 S.T 
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To deal with the second term, we substitute in (8.23): 

s,r s.r [̂ f̂ T 

Once again, we can use (T.22) to eliminate the f i n favour of the u'^, giving us 

l ^d^jj = — - y d^,9'c; 
s 

+ E E 

To see how this hel̂ DS, let us consider the product u'^Aj. By using (6.4) we see 

that 

u-^Aj - t/'^^A/Aj - — i(yu5')j^^A;,-

but from (10.24), 

tr(u'^AjA^^) = ^('^^tr(A/AjA^) = — 2i(/;,s)j^^ 

so 

u^Aj = ^ " j l + - tr(u'^AjA^ )AA- (8.40) 
A z 

Look at the second term on the right-hand side. Using the fact tha t u'^ = P- — 

161 



and inserting 1 = 

— tr(u'^AjA^ )A -̂ = — tr ^ — — 1 )AjA^^ ^ A/̂ - (b.41) 

= ^ t r A;: - ^ t r (A jA" ' )A ; , (8 .42 ) 

= ^ ( f ^ ^ ) / ' A A - - ^ A j (8.43) 

Thus 

u^Aj — Aa- — — A j (8.44) 

We can then substitute this into the second term on the right-hand side of (8.37) 

to get 

S,T U^T - ^ ' v 

S.T U^T - " t 

| : « 5 l + a„A/-^(8.45) 

However, we have in here the laroduct 

( f^^ ' 4- = 4(/,,7/^u);^(<j = 4(/^r/^rU'^).4 

which we know to be zero. Therefore 

E E ^ vr '-P"' + 
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The terms where T = S sum to 

but we would like to bring out the symmetric and antisymmetric combinations; 

we can do this by si^htting this in half and relabelling on one half: 

I E M' - (8.47 

1 , ^rrc. rr. 

L-
1 

= E 
S<[' ' (-' 

Similarly, the terms where 6' 7 but 5' — sum to 

.4 

s#r " 
M : - I 

A ^ - Af^ 

- w 

- E ' , „ (8.50) 
i l j - 'Ws 

which naturally fall into symmetric and antisymmetric combinations if we break 

the exponential u^ato into a sine and a cosine: 
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+ COS ( i p " - p"}) ""AA-fltM" (S.51) 
2 / /.4 

and all other terms are zero. Therefore 

5<r 5 ^'-T 

5<r 

+ cos ( i P ' ^ - P ^ ' ) j " \ K d , M ^ 

a<T " ^ 

( " k z l z ] ,/>«• _ p T s A 
4 

Having i^erformed this maniianlation, (8.3T) becomes 

5 
8^-e' 

sm ' — -

6'<^ - ^ 

where f a n d are given by (7.40) and (7.56). 

The second and third terms of this expression, are, as promised, very similar to 
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those in equations (4.7) and (4.8) of [18]. We could in principle make the first 

term take the same form aa the first term of (4.7) by introducing the remaining 

— 1 projection o^^erators of the adjoint representation, called pa/3 by Barnes 

a/[18, 21]. (These are related to the > < operators.) In actual fact, for 

SU(4), as we shall see in the next chapter, it makes more sense to rewrite this 

term in terms of the operators g; X %. For this reason, we shall for this chapter 

leave this term as it stands. 

8.3 and 

8.3.1 Automorphism c o n j u g a t e u-vec tors 

We now specialise to the case of SU(N) coset spaces whose commutation relations 

have the Z^gradiiig structure of a symmetric space, as described in Section 2.4.2. 

If the outer involutive automori^hism can be effected on each u-vector by the 

action of a group element, it is possible to show that the first two terms of (8.53) 

form the part of while the third term forms the part. This is 

easiest to see for a particular Lie algebra - we will take su(4) as an example. 

For su(4), we know that for a given Cartan subsi)ace, there are four u-vectors. In 

general, these are composed of a i^art in the subalgebra and a part in the coset 

space part of the algebra: 

u"̂  = u^'^Xp + (8.54) 
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Written in this way, takes the form 

+ + (8.55) 

= + (8.56) 

Under the outer involutive automorphism, the lengths are preserved: 

( u \ u ^ ) (u^.u-^) = (w^^Af - »̂ -̂ A_4, u^^Aq - (/^Ag) (8.5T) 

= (u^^Af,,/.'^QAQ) + (u^'^A^,u^^AB) (8.58) 

Furthermore, if there is a group element which carries out this automorphism, 

the other invariants i3(u'^) and l4(u'^) are preserved and u'^ lies in the same orbit 

as u" .̂ 

However, we know that each of the u"̂  are functions of ^ - in general, they may be 

expressed as a power series in ^ (we will find such expressions for the u-vectors of 

certain coset spaces of SU(4) in Section 9.2). As ^ is a vector of the coset space, 

under the automorphism 

^ (8.59) 

^ g" (8.60) 

(9̂  ^ (8.61) 

etc.. so u'̂  ma.}" also be expressed as a power series in This means that both 

u'̂  and u ^ lie in the C^artan subsi^ace of and we know from the diagonal case 

that for any Cartan subspace, there are only four vectors in the same orbit as u'̂  

(see Section 6.2.3) - u \ u^, u'̂  and u^. Thus all of the u"̂  must be members of 

the set < >. This is the idea of 'automorphism conjugate^ u-vectors: each of 

the u'^ has an 'automorphism conjugate' u"̂  also in the set. Note that if am' of 
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the u-vectors He in the subalgebra, they are self-conjugate. 

What is more, we can use this to deduce further properties of the Let us take 

a different example. Say that for a given non-linear realisation of SU(3) we have 

three u-vectors, two of which form a conjugate pair: 

= u^. 

^ may be written 

6 = 6'^vl^ + (8 .62) 

but if we take the automorphism conjugate of this ecjuation we get 

—^ -|- -|- 4- 4- (8.63) 

=>0 = — ( 8 . 6 4 ) 

by comparing these, we see that 

^3 = 0 

(this is not surprising because is self-conjugate and so lies in the subgroup) and 

therefore we would not ex^aect it to appear in the expansion of the coset space 

vector ^) and 

g; = 

i.e. the eigenvalues associated with two conjugate u-vectors are 0i)%)0site and 

equal. 

This is all obviously also true for the as we can write M as a linear sum 

of the same u-vectors (see equation (8.5) ) and M also changes sign under the 

automorphism, the same reasoning tells us that for u'^ = u^. 
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Once again, we will see in Section 9.2 that for a whole class of coset spaces of 

SU(4) the u-vectors fall into such automori^hism conjugate pairs. 

8.3.2 Us ing t h e a u t o m o r p h i s m t o d e c o m p o s e L'^djjL 

It should now be clear how to identify which terms in (8.53) lie in the subalgebra 

and which in the coset space of the algebra - we simi)ly a^aply the automorphism 

to each term and determine whether or not it changes sign. 

This is particularly easy for the first term, which is a linear sum of the u-vectors 

just as ^ is. Just like the coefficients for two conjugate u-vectors are eciual 

and opposite, while self-conjugate u-vectors have zero coefficient. If we number 

the u-vectors such that = u^, = u'^. etc., the automorphism acts just a.s 

it would for 6: 

(8.65) 

so overall this cjuantity has changed sign. Therefore lies in the coset 

space part of the algebra. 

The other parts of (8.53) are not cjuite so straightforward. The second is perhaps 

easiest to deal with if we note that 

+ = 4 (y , s / , r )^A;a ,M-" (8.6G) 

= 4(ii-^A(u^A^^,M))'^Af (8.67) 

= 4u^/ , (u^A^,M) (8.68) 
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Now numbering the u-vectors as above, we consider just one term in the sum: 

sin 

I I T T M f I 

Under the automorphism, this transforms as 

sin \ / sin ' — 

" I j / ; - W ^ " " I 

= I I 

sin 
= -"M i T f r i i f I 

sin 
= mI-MI I 

[8.69) 

Similarly, 

s m . t f l 
- 4 i I I u \ ( u \ a „ M ) -+ 4i I • I u \ ( u \ a , . M ) (SJO) 

By using this reasoning it is not hard to see that each term in the sum is trans-

formed into the negative of another term, so the entire sum changes sign under 

the automorphism. Therefore 

sm ''&Z& 

lies in the coset space part of the algebra. 
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We can deal with the third part of (8.53) in much the same way. Using (7.56) we 

can write 

Again, we consider the transformation of just one term of the sum: 

sin^ u\u^A(u^ — (8.72) 

_ sin^ I u^/^u'^/^(u^ - u^)/\^^M 

- j / ' + A / ; 1 

2 /^2 ^4 , . 
A U AI U " U J \ 4 

sin^ I -^——^ i u^Au'^Afu^ - u^)A<9,,M 

sin^ I ) u^Au'*A(u^ - u'')Ac)^M 
- Jlf; \ 4 

(8.73) 

and similarly 

sin^ ^ ) u'̂ Au'̂ A(u^ — u'^)Ac);,M (8.74) T T " 
8i ' 

^ sin' u \ u \ ( u ^ - u")Aa»M 

(8.75) 

In this case, each term is transformed exactly into another term in the sum, so 

the entire sum is invariant under the automorphism. Therefore 

' E M'.. - W t I ^ P " - P " ) a > ' A M 
•J ^ r \ / D s r / \ ;) Â -4 

lies in the subalgebra. 
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We have thus shown that breaks into and parts as described at 

the start of this section. This means that for these i)articular symmetric spaces, 

the covariant derivatives are 

sm ' ^ 

(8.76) 

,in \ 
: 6 I r f . f I'M 

I 

/ s in I ^ 
^ , , ' " ^ 8 / : , + 8 z (s.Ti 

5<T \ 'S " 7 

and 

^ (8.78) 

^ ] ^ r z ^ s i n ^ (A^./'„r(/^T - /,s)).4^Afa,,7)f-^V' 

(8.79) 
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Chapter 9 

Coset spaces of SU(4)%SO(6) 

9.1 I n t r o d u c t i o n 

All sii(N) algebraa are composed entirely of traceless. bermitian matrices. 

Consider the matrix 

/ n n o ; n \ 

\ 

0 0 2i —i 0 

0 0 1 3 - 2 i -31 

- 2 i 1 0 0 0 

i 3 + 2i 0 0 0 

0 31 0 0 0 7 

This has the interesting property that all of its odd powers are traceless. Indeed, 

any matrix that can be partitioned thus: 

0 .4 

.4' 0 
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haa this property. 

Some subspaces of su(4) are entirely composed of vectors of this type. We have 

already seen how so(3) snbalgebraa and sn(2)R and 8u(2)L siibalgebras have the 

laroperty 33(x) = § t rx^ = 0 for every vector x in the subalgebra, but we also 

saw in 6.2.3 that there are vectors of SU(4) with this property. There 

exist coset spaces of SU(4), some (but not all) containing generic vectors, for 

which "y3(x) = 0 for every vector of the space. One example^ is the coset space 

SU(4)/SU(2)R0SU(2)LGU(1) generated by 

/ 0 0 1 0 

0 0 0 0 

1 0 0 0 

0 0 0 0 

\ 

As 

/ 0 0 - i 0 ^ 

0 0 0 0 

i 0 0 0 

0 0 0 0 y 

Afi = 

/ 0 0 0 0 

0 0 1 0 

0 1 0 0 

0 0 0 0 

\ 

y 

At = 

/ 0 0 0 0 

0 0 - i 0 

0 i 0 0 

y 0 0 0 0 / 

Ac, = 

0 0 0 1 

0 0 0 0 

0 0 0 0 

1 0 0 0 

A 1 0 — 

0 0 0 

0 0 0 

0 0 0 

i 0 0 

- 1 

0 

0 

0 

All = 

\ 

0 0 0 0 

0 0 0 1 

0 0 0 0 

0 1 0 0 

A I 2 = 

\ 

0 0 0 0 

0 0 0 - i 

0 0 0 0 

0 i 0 0 / 
(which is clearly homomorphic to SO(6)/SO(4)0SO(2) - we shall examine it in 

the S0(6) formulation in Section 9.G.2), so all of the vectors in the coset space 

^One example of a coset space for which ')3(x) = 0 for every vector of the space but does 
Mof contain generic vectors is the coset space SU(4)/SU(3)(3U(1)[3T] 
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have the form 

^ 0 A 

.4* 0 

Such coset spaces are always symmetric spaces, as the /^-product of two vectors 

is always an element of the subalgebra: 

1 
9 

(9.1) 

(see Section 2.4.2). These are the main subject of this chapter. Let ns identify 

some basic pro^aerties of the generic vectors of these coset spaces. 

Recall that the condition 'y3(x) = 0 reduces the characteristic equation for a 

4 x 4 traceless. hermitian matrix, (6.22), to a cjuadratic ec^uation in x^, so hag 

at most two distinct eigenvalues, both appearing twice and that XvX is then a 

({-vector. However, we also know that for a vector, x, x^ and x'̂  are all 

linearly independent, or equivalently, x, x^x and XyXvX are all linearly indei^en-

dent (the fourth power is related to the others by the characteristic equation). 

Furthermore, they all commute; therefore x. XvX and x^xyx - or x, x^ and x^ 

minus their traces - must form a basis (though not necessarily an orthonormal 

one) for a Cartan subspace, for which we know there are three orthoiiormal unit 

q-vectors (upto a sign). 

Thus for a generic vector of SU(4) with the property ')3(x) = 0 we can say the 

following: there are two linearly independent unit q-vectors which are linear sums 

of X and x^x^x (which we shall call and q^). while XvX is i^roi^ortional to a 

third (c^^), and all three commute. 

In the last chapter, we found a general form of L ^ ^ d ^ , L which was valid for any 

SU(N) coset space, based on the decomposition of an arbitrary vector ol the coset 

space in terms of projection operators, (8.1). As promised, we shall now look at 
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how to do this decomi^ositioii - in two equivalent ways - for a coset space of the 

a])ove tyi^e. 

9.2 q-vectors for an arbitrary vector 

9.2.1 Ob ta in ing t h e q-vectors 

By combining (7.24) with equations (6.66)-(6.69) we already have expressions for 

the diagonal u-vectors of SU(4) in the orthonormal basis of the diagonal unit 

cj-vectors: 

. — + 92 + q.s) {9-2) 

qi —qz + qs) (9--^) 

Ai + Aa — 9.3) (9-4) 

- q i - q ^ - q s ) (9 5) 

1 1 
Ud = 

2 \ ^ 
1 

Ud = 
2 \ ^ 

1 
Ud = 

2 v ^ 

4 1 
Ud = 

2 ^ 

However, we are interested in a non-diagonal Cartan subspace. We discussed in 

Section 8.1.2 how the properties of the projection operators are preserved 

under the transformation Thus, under the change of basis q, — 

q| = the vectors 

u 
1 

2\/2 
— q ' j + q ^ + q'j) (9.6) 

- - ^ ^ ( q i - q2 + q's) (^.z) 

= ; ^ ( q ; + q ^ - q ^ ) (9.8) 

= 
1 

2\ /^ 
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are a valid set of u-vectors. With this established, finding a set of u-vectors we can 

use in our analysis is ec^uivalent to finding the c{-vectors for the Cartan subspace 

of an arbitrary coset space vector. As the Cartan subspace of an arbitrary vector 

is the same as that for its associated unit vector, we shall work with the unit 

vector in order to find the relevant q-vectors: we can then easily generalise to a 

vector of arbitrary length at the end. 

We now refine our notation for coset space vectors, denoting an arbitrary wfifY 

coset space vector x, and its Cartan subspace We further define the vector y 

to be with its trace removed and z to be x^ with its trace removed: 

y = — ^ 1 tr — ^ 1 (9.10) 

z = x^ — ^ I t r x ^ (9-11) 

and recall that these form a basis for We can rearrange these definitions to 

find x^ and xy: 

x^ = y - | - ^ l (9.12) 

xy — z — ^ x + - 1 trx'^ (9.13) 

Other products can be found using the characteristic equation: 

xz = yH—-xtrx '^ + - 1 trx^ (9.14) 

y^ = ^^xtrx^-l-Yltrx'^ —^1 (9.15) 
0 4 4 

yz = ^ z - t - ^ y t r x ' ^ - k ^ x t r x ^ - ^ x - k ; ^ l t r x ' ^ (9.16) 
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1 1 1 1 . 3 1 . . 1 
= - - z t r x ' ^ + - y t rx^ + + - x t r x ' ^ + g l t i + —l(trx-^)^ - - 1 

(9.17) 

Remembering that ti x = t r y = t r z = 0, we can easily And the trace of each of 

these, which allows us to calculate the v-pi'oducts: 

XvX = 2y (9.18) 

Xvy = 2z —X (9.19) 

1 

6' 
XvZ = 2y + -X tr x^ (9.20) 

2 
yvy = ^ x t r x (9.21) 

yvZ = z + ^ y t r x ^ + ; ^ x t r x ^ —x (9.22) 

1 . 1 2 
ZvZ = —-ztrx'^ + - y t r x ^ + y + - x t r x ^ (9.23) 

Note that we can rearrange the first two of these to see how to change basis from 

X, x^ and x^ minus their traces to x, XvX and XyXvX: 

y = :^xvx (9.24) 

and 

z = ;^x + ^XvXvX (9.25) 

Due to the nature of the characteristic equation it is easier to determine the q-

vectors in terms of x, y and z, but we shall re-express them in terms of x, XvX 

and XvXvX once we have found them as they are easier to handle in this form 

and it will be more in keeping with the existing literature. 
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As the q-vectors we are seeking lie in the subspace spanned by x, y and z, we 

can write 

q- = a ,x + (9.26) 

where a , , a r e real numbers. We can determine the values of the coefficients 

by using the q-vector property q^q' = 0 (this is equivalent to what Barnes e/ 0/ 

do for SU(3) in [20]; the main differences being that their calculation is to obtain 

the angle a in the Cartan plane with basis r and q,. while we are identifying the 

coefficients in a 3-dimensional Cartan space where the basis is the set of 

q, ). Employing the above identities then gives us 

1 2 . r, 
2a?y + 4a; J,z - 2a,/?;x + 4 a n : y + -oHiXt rx^ + ^,/^,^xtrx'^ 

o .) 
1 . 1 , . 

+2/?f'y,z + - A l f Y tr x'̂  + Aivx tr x'̂  - 2,^,3,x - fz tr x'̂  

+ trx^ + -ŷ ^̂y + ^-^^^xtrx^ = 0 (9.27) 

However, x, y and z are all linearly independent, so by equating coefficients 

—2a;/?;4-ga/'}itrx'^ + ^/^^trx'^4-/);')itrx'^ —2/?;')i + ^l';"trx^ = 0 (9.2b) 

2a'̂  + 4an , + tr tr x'̂  + = 0 (9.29) 

4a,A + 2 / % , - l i f t r x 3 = 0(9.30) 

To find the q-vectors we must solve these equations. When trx^ = 0, 

(9.30) reduces to 

,JX2a;' + iv) = 0 (9.31) 

so either 

= —2ai or /?, = 0 
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If-}; = —2a;\, (9.28) and (9.29) give us: 

2a;/3Xl — trx'^) = 0 (9.32) 

and 

2a?(l — trx^) = 0 (9.33) 

so for an arbitrary value of trx'^, we get 

Q; = 0 =4> 7, = 0 (9.34) 

so that , aa expected, we have a q-vector proportional to x^x: 

93 = A y = :^AxvX (9.35) 

To normalise this q-vector, we need (y ,y ) , which is easily found to be 

(y ,y ) = ^ t r x ^ - ^ = 2 i 4 ( x ) - k ^ (9.36) 

So our normalised cj-vector is 

q^ = ±(2 'y4(x)-k^) zy (9.3T 

If /̂ ; = 0. both sides of (9.28) and (9.30) are zero, but (9.29) gives us a coupled 

ecjuation in a, and We obviously cannot have 7, = 0, as then a, , and 'y, 

would all be zero. However, any other choice of O; and which satisfies this 

equation corresponds to a particular c^-vector (of a particular length). We can 

get unnormalised c|-vectors by, say, setting "); = !; equation (9.29) then gives us 
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2a'̂  + 4a; + - tr x + 1 

=> a, = — 1 ± \/—^'4(x) 

so two unnormalised q-vectors in the (x, z)-si)ace are 

= ^ - 1 + X + z qi' 

and 

- 1 - \ / - l 4 ( x ) j X + Z 

We now want to normalise these. The process is much the same as it was for q^. 

However, (not surprisingly), the factor y—i4(x) keeps making an appearance, 

so we dehne 

- ^trx-i 

With this definition, we finally get for our three q-vectors: 

qi 

q2 

qs 

= ± ( 2 / - 4 / , ' ^ ) - 2 [ ( _ i + ^ ) x + z ] 

= ±(2p^ + 4 / 9 ' ^ ) " 2 [ ( _ i _ p ) x + z ] 

or, using (9.24) and (9.25), 

q] — 

q2 

qs 

= ib-

1 1 1 1 

YP " ^ 2 
- / ) ) ^ X + - — — /? ) z X v X v X 

1 1 1 1 1 

. - ( 2 
+ ^ ) 2 X + - ( - + / ) ) 2 X v X v X 

± ( 2 - 8 / ) - ? X v X 
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Note that there is a pole in the normalisation factor of when T4(x) = 0 or 

when i'4(x) = — However, we saw in Section 6.2 that a unit vector with 

= i4(x) = 0 is (by definition) an r-vector, while a unit vector with T'3(x) = 

0.34(x) = — ̂  is a cj-vector, is similarly ill-defined for r-vectors and q^ for 

cj-vectors. 

It can be shown that the scalar product of any (linearly independent) pair of these 

is zero as expected and that they satisfy the v-relations of qi ,q2,q3 provided we 

pick an appropriate set of signs. For example, we could take + signs on all of the 

vectors in (9.41)-(9.43) to get the desired result 

qjvqj = (9-47 

This is not a unique choice, though. If we change the sign of a single q-vector the 

three relations are not preserved, for example qi^qg 7̂  — if make the 

replacement q^ — S i m i l a r l y , if we change the sign of all three the relations 

are not preserved. However, if we change the sign of two of them, the relations 

are all preserved (try, for example, q^ —— Qn Qz Also, of course, we 

are also perfectly free to renumber them. 

9.2.2 q -vec tors in H and s i g n / n u m b e r i n g conven t ions 

To develop a set of sign conventions/numbering conventions we recall from Sec-

tion 6.3 how we viewed the vectors of SU(4) as vectors of S0(6), concentrating 

particularly on those in "M, the subgroup of rotations in the first four dimensions. 

Consider an arbitrary vector in this subgroup. 
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We now have two ways of finding the projection operators for this vector. The 

hrst is that described in Section 4.4.2; this provides a set of projection operators 

which we now number in the logical way: 

— 
1 

2 
(9.48 

= 
1 

2 
(9.49 

p3 _ 1 

2 
(1^ + (9.50 

Alternatively, we can use the method outlined in the last section. First we divide 

by its length to get the associated unit vector, x. Now 

I ^ ° I (9.-52) 
0 

CTk 

SO the length is - \ / T h e r e f o r e 

_ 1 / 0 

From this we can obtain Xvx: 

XyX = 2x^ — 1 (9.54) 

2 / 0 \ (wR)^ + (cc'L)2 / 1 0 

+ t 0 (w^)^l / (w^)'^ + (wL)^ W 1 

, R \ 2 / , L \ 2 

,R \2 _L \2 

1 0 

0 - 1 

(9.55) 
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Note in this case x(xvx) is traceless, i.e. 

(x,xvx) = 0 (9.56) 

This makes it particularly easy to And XyXvX: 

= 2 x ( x „ x ) = ^ o " ' - J ' . . ' 

Finally we have 

1 / 0 

from which we can obtain 

(9.58) 

(L.'R)2 + (wL)2 
(9.59) 

Now. substituting our expressions for x, XyX, x^xyx and ,9 into (9.44)-(9.46) we 

find our q-vectors; taking them to be numbered as in (9.44)-(9.46) with plus signs 

for each, we get after a little work: 

" ' " • s i 0 - „ \ a A ~ v / z l 0 

- 1 

We can then use (9.6)-(9.9) in conjunction with (7.22) to get the projection 

operators: 

f " = Tf ) 
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L _ L \ 

p'4 = ± (iL + ,,L^L^ 

Clearly, this does not correspond with the projection operators we got from con-

sidering the 6'[^(2)R and 5'[/(2)L parts. If instead, 

qi 

q2 

,1 1 ,1 
+ - ( - - / ) ) zxvxvx 

— + /))^X+—(—+/)) 2x^XvX 

" A' 

q.3 X\,X 

(9.60) 

(9.61) 

(9.62) 

(9.63) 

(9.64) 

(9.65) 

we get the desired result. Indeed, in the special case where our vector of is 

diagonal, -4 cr^, and our q-vectors reduce to (6.81)-(6.83). 

Recall that the reason we were hnding these c^-vectors was to be able to obtain 

a form for the u-vectors and i^rojection operators of a generic vector as used in 

the last chapter. These u-vectors and projection o^^erators are defined without 

reference to diagonal vectors, so we did not %)ut primes on them. Similarly, we 

now have expressions for the cj-vectors corresponding to a generic vector with the 

proi^erty trx'^ = 0, which are defined without reference to diagonal vectors and 

which we can write our u-vectors and larojection o^aerators in terms of; therefore 
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we shall drop the primes and simply write that for a generic x with t rx^ = 0: 

qi = 

q2 = 

qs = = (•) 

^XvXvX 

+ + -XvXvX 

8p^) 2XvX 

(9.66) 

(9.6T) 

(9.68) 

note the single invariant /), as we have set '')'3 = 0 and factored out the length 

72-

The relevant n-vectors and projection operators are then given by 

1 
u = 

U' 

u 

u = 

2\/2 
1 

2 ^ 
1 

2\/2 

57?' 

, —qi + q2 + qa) 

!qi - q-z + qs) 

, qi + q2 — qs) 

-qi - q2 - qs) 

(9.69) 

(9.T0) 

(9.71) 

(9.72) 

and (7.22). Note that as qi and q2 are in the coset space while qs is in the 

snbgroni), if the algebra admits the outer involutive automorphism - as it does 

for all coset spaces whose vectors are all of the form 

0 .4 

.4" 0 

these u-vectors fall into automori^hism conjugate i^airs: 

~ 1 
U = U 

u ' = u^ (9.73) 
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9 . 2 . 3 t r x ' ^ ^ 0 

Let us now have a quick look at the case for vectors which do not have the 

property trx^ = 0. 

We start again with the three equations (9.28)-(9.30). We note that the answers 

are nonsensical if Q/; = 0, aa then we get from (9.29) that a , = 0 and consequently 

from (9.28) that = 0. The plan therefore is to set = 1, obtain corresponding 

values for a, and substitute these three into (9.26) and then normalise the 

resulting c^-vectors. 

We can start by noting that when 'y, = L (9.29) reduces to 

2ay + 4a, + /^^^(x) + 2")4(x) 4-2 = 0 (9-^4) 

which we can rearrange to get an equation for 

= ^ 4 " 4a; + 2"y4(x) + 2) (9.75) 
l'3(x) 

Similarly. (9.30) reduces to 

/^i(4a: + 2) = i'3(x) (9.76) 

Combining these two ecpiations we get a cubic ec^uation for a, : 

o? 4- + (2 — /9'̂ )a; — + - = —-l3(x) ' (9.77) 

Unfortunately the solutions to this ecpiation are long and messy. Ob^'iously, the 

corresi^onding values for obtained by substituting these into (9.75) or (9.76) 

are just as bad, and normalising the resulting c(-vectors simply makes them worse. 
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However, it is worth noting that it is i^ossible to factorise the left-hand side of 

this equation: 

(a, + 1 + + 1 -

which is valid for any value of T'3(x) other than zero. So for sufficiently small 

')3(x), we have the following aiaproximate solutions: 

0; = — 1 — — - (9.79) 

and to obtain more accurate solutions one could use numerical methods. 

9.2.4 X in t h e bas is of t h e u-vec tors 

Before we go on to look at the other method for finding the u-vectors, it is 

instructive to find expressions for x for the case trx'^ = 0 in terms of the Cj-

vectors and also in terms of the u-vectors/projection operators. 

From (9.66) and (9.67) we get 

1 i 1 i 
X = - ( - - / ) ) 2 q i + ( - + / ) ) 2 (9.80) 

We can also use (9.2)-(9.5) to get 

1 
qi = - ^ ( - u ^ + u^ + u ^ - u ' * ) (9.81) 

\/2 

q2 = + u" — u'*) (9.82) 
v2 
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Thus 

1 1 I 1 1 , 
H u ' + ( - ( j - - ( i + ^/j j i U" 

+ 
1 1 ' 

• I + u" + 
1 1 ,1 1 

u 

(9.83) 

+ (% + - (% + P-

(9.84) 

9.3 Consequences of the eigenvalue equation 

We now turn to the second way to find the u-vectors for an arbitrary vector 

of the coset space. This is almost the above procedure in reverse: we find the 

decomposition of the vector in terms of the n-vectors, then similarly find the 

decomposition of its powers in terms of the u-vector.9, then finally invert the 

relations. We discussed this decomposition of an arbitrary vector of the coset 

space in Section 8.1.2, and saw that if we write such a vector as a linear sum 

of projection oi^erators or ii-vectors, the coefhcients are the eigenvalues of the 

vector. It was remarked that these can be found by solving the characteristic 

equation. In this case the characteristic equation is (6.6-3). Solving this for a unit 

vector gives us the eigenvalues: 

/ ' 5 

1 
9 

+ 

y4(^) + 

)4(x) + -

1 

2 

1 
9 

1 
^ ( x ) + 

y4(x) + - (9.85) 
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According to the argument in Section 8.1.2, the coefhcients in (9.83) and (9.84) 

should be these eigenvalues - this is easy to see by squaring the coefRcients; for 

example: 

= (9.86) 

= — + |^74(x) + —̂  ^ (9.67) 

So solving the eigenvalue equation leads us to precisely the expansion (9.83) for 

X. This is. in principle, all we need to And the four u-vectors in terms of x. XvX 

and XvXyX: we can use (7.29) and (7.31) to find exi)ressions for x^x and x^xvx 

as linear sums of the u-vectors; together with the fact that the u-vectors add up 

to zero (this is obvious as the projection operators form a complete set) this is 

sufficient to find the four u-vectors. (It is just solving four linear equations in 

four unknowns.) However, we will not do this here as we have already found our 

u-vectors in the last section and checked the form of the resulting expression for 

X . 

9.4 L ^ d i ^ i L for SU(4) coset s p a c e s 

Let us recap what we found in the last chapter and what we have done so far in 

this chapter. We showed that for any coset s^^ace of an SU(N) group, given the 

decomposition of an arbitrary vector of that s^^ace 

6 = Q-^Xa = 
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takes the form (8.53). If the ii-vectors of the space form automor-

phism conjugate laairs, the hrst two terms in this expression form the part 

while the third term forms the part. For coset spaces of SU(4) for which 

tr^^ = 0 for every vector in the space, we have found the above decomposi-

tion; furthermore we have shown that if the space is also a symmetric one (e.g. 

SU(4)/SU(2)0SU(2)@U(1)) the u-vectors do fall into these pairs. As remarked 

at the end of Section 8.2 it is possible to rewrite the first part of the right-hand 

side of (8.53) in terms of (y, > < % (using techniques equivalent to those given in 

[18]) - this is what we shall do in this section. 

We start by comparing and contrasting our two expressions for in two different 

bases. In the case of ^ the 6)"̂  are the components of the vector ^ in 

a coordinate system whose basis is the set of The matrix nature of ^ is 

contained entirely in the A s - the are just numerical coefhcients. Furthermore, 

the A_4 form an orthonormal basis set. Similarly, the are the comi:)onents of ^ 

in a coordinate system whose basis is the set of however, these are unlike the 

A/ in several ways: they are mutually commuting and they are neither orthogonal 

nor normalised, as can be seen from (T.28) and (7.30). 

The u'̂  are a set of four vectors, in the case of SU(4), lying in the 3-dimensional 

Cartan subspace containing Also in this subspace is Barnes e/ 

a/ construct from the u'^ a set of orthonormal vectors in the Cartan subspace. 

which they call and are defined by equation (3.8) of [18]. For the coset spaces 

of SU(4), we already have such an orthonormal set - the cj-vectors; indeed, these 

are simpler functions of the U'̂  than the relevant . We can rewrite ^ in the 

orthonormal baais of the q-vectors by deHning a unit vector x = and using 

(9.80): 

6 = f ) x = c{aO"'' (9.88) 
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where a = L 2 and 

r ' = - « ( i - p ) 5 , «« = e ( i + p ) j . 

(these are the equivalent of the in [IS]). We would also like to rewrite 

5 

in terms of the q-vectors. Now we already know the decomposition ^ 

from (9.83) - the are just linear sums of the 

^ ^ ^ ^ (9.90) 

% = < ' ( - ( j - 5 P ) ' + ( j + 5 P ) ' ) = ^ ( f " ' + <'") 

^4 = + 

We thus use this in conjunction with (9.69)-(9.T2) - not surprisingly, this gives us 

(9.94) 
s 

Now, if we are to use to And the metric for the realisation, we need to 

extract a from this. We therefore write 

To take this further, we recall that M has an analogous decomposition to 

M = M ^ ^ 
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where we have the same ii-vectors (as they lie in the same Cartan snbspace) and 

the have the same form aa the but with different values of the invariants: 

M[ 

A/1 

M 
1 1 a 
4 " 2^^^' ^ 

1 

Af 
1 

4 

1 
= M -

1 
'4 9 

(9.96) 

(9.9T) 

(9.98) 

(9.99) 

M can therefore be expressed in the same way in the basis of the same q-vectors: 

M = q.Ar (9.100) 

but with different values of the invariants: 

Af''" = A^(^ + \ ) ^ (9.101) 

We then view the aa functions of Af 

E (9.102) 

In order to evaluate the differential 

aA/ //6 

(which is essentially a rotation matrix - a Jacobian matrix - describing the change 

of baais from the A's to the q s), we take a scalar laroduct of (9.100) with a 
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q-vector: 

(M,q&) = ( q , , ( 9 . 1 0 3 ) 

^ Ar^ = (9.104) 

(where covariant and contravariant a,6-indices have the same sign.) In differen-

tiating this expression, we must be careful. Remember, what we have done is to 

take a vector M = and construct /mn? three q-vectors. then decompose 

the vector into a linear sum of two of these, gg is therefore a function of 

This transformation from the basis of the A's to the basis of the q-vectors is (fe-

on M - if we i^ick a different M, we must find new q's. Differentiating 

(9.104) with resi^ect to therefore gives us 

= % + + ,9.105, 

where we have used the expression which comes from taking com-

ponents of (9.100). This is wheie we differ from Barnes p/ oZ, who only admit 

the hrst of these terms in equation (3.33) of [18]. However, substituting this into 

(9.102), we get 

(9.106) 

K 

(9.107 

and we can show that the second of these terms is zero. To do this we note that 
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if we write out the 6's explicitly, we have a term involving 

and a term involving 

^4 

Using (9.81)-(9.82) and (T.22), we can rewrite these as linear sums of 

which, from (8.22) we see are linear sums of 

Thus the second term of (9.107) contains lots of terms of the form 

which must be zero from (7.54). 

Thus we are left with 

E 
f ) 0 " a 

(9.108) 

This is the form we were after. Substituting this into (8.53), we get 

sm 
+2 

#3 T 
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We close this section by noting that we could also rewrite the other terms using 

q^s and the and but the results are not pretty. For example, using 

(9.69)-(9.72) as well as (9.90)-(9.93) and similar relations between the and 

the the second term in the square brackets becomes 

sin 

1 ( a» i . , [9 l 2 s i n | g | s i n [ g j p l \ 

1 / 2sin[%] 2sin[% sin J- I ! : — ^ 1 -I _̂2Û  IXAl ;—)ll 1 ( 
\/2 \ ^ y 

2 s i n [ ^ i 1 / s i n [ - ^ y ^ ] 2 s i n [ ^ ] ^ s i n ^ ^ j J | / rz \7 
+ ^ UlTl 7̂775 ^ A ,r«i , I A.J-4 

@"'+@ 

(AlA2).4 (9.110) 

9.5 Cova r i an t De r iva t i ve s a n d M e t r i c 

We are now in a situation where we can state the covariant derivatives for a whole 

class of coset spaces, with every quantity in the expressions being known. For 

any coset space of SU(4) in which tr^^ = 0 for every vector of the coset space 

07)(/ the commutation relations have the Zo-gi^ding structure. 

//a Sin ' — -
I j A, 

(9.111] 
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and 

2^^ 

so 

>lfl//a Sin — 
D . M " = a „ M ' I (». X < / ' )®.4g j^ + 8 ^ I (9J13) 

5<T -5 

and 

y i ^ sin^ ^ ^ (A'?A7'(A,T - y;,5)).4^Api/' 

(9.114) 

The q-vectors and n-vectors in this are those of ec^uations (9.66)-(9.72), which 

can be constructed either from the powers of M or those of 0, as both are generic 

vectors in the same Cartan siibspace. The A f " , and TIfg are given by 

equations (9.89), (9.101), (9.90)-(9.93) and (9.96)-(9.99) respectively, where 

and 

\ = A/-14 ( ' ^ ) = y t r ( ^ ) (9.116) 

Finally, let us determine the metric for this non-linear realisation. If we try to 

calculate Vlfg, it is clear from the last section that the cross-terms will 

all vanish. The products of -|- are obvious, but we will need to know 

what the products of (% > < g^)^ 4'8 look like. Using the orthonormality of the 

196 



q's, the i^rodiict is just 

(g. > < > < = ^ac(g'' > < 

(9.117 

Therefore 

B 

V - A" (9.118) 

with the metric being the quantity in square brackets: 

6̂ .40' (9 16 V 
5<r 

A i n \ 2 

\ - Af4 
(A.AT)^c (9.119) 

r 

9.6 N o n - l i n e a r r ea l i s a t ions of SO (6) 

Once again, we are able to use the homomorphism between SU(4) and S0(6) to 

rephrase our results, so that they express the pro^aerties of non-linear realisations 

of S0(6). Each term in (9.109) is a linear' sum of A's, so is a A^ector of S0(6) 

(upto a factor of i). We can therefore simply replace the A's with cr's and change 

each /-index to an /J-pair , with the appropriate normalisation: 

I = ( % > < 9 ) 

sin ?~̂ T 

.4B O-IJ 
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^ (9.120) 

(where <T/j is an arbitrary generator of S0(6) while cr^g is a broken generator). 

The operators (% X (f '^^ + and ( f '^^ — are then 

given by 

(% > < g )̂̂ '̂ .4B = (9.121) 

= l tr(f '"(7.4gf^(7"' ' ) + ^tr(f:r^_4gP^(7^^) = 4(AsAr) i -^ 
b O 

(9.122 

and 

: P ^ - P ^ ' ) a b " = i WP^<r . „ J^< r ' ' ) - (9.123) 
b b 

= 4i[y^sy^T(/^T-/^g)]_4B^'^ (9.124) 

(see Section T.4) with (/ug).4B^'^ given by (7.60). For symmetric s^aaces in which 

tr^^ = 0 for every vector of the coset space, (9.120) can then be split in the 

obvious way, giving covariant derivatives analogous to (9.113) and (9.114). The 

metric is 

9AB CD = (</' X «'),4B + M ; - A 4 j 

(9.12.5) 

Due to the simplicity of the y-relations of the S0(6) spinor representations, we 

can also find relatively simple expressions for x, x^x and XvXvX, as we shall now 

see. We shall also And ex^^ressions for the invariants t rx^ and /). 
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9.6.1 Vec tors and invar ian ts of SO(6) 

First we want to define a unit vector. To do this we need to know that the scalar 

product of two cr's is 

(9.126) 

It is easy to see that this is the correct exiaression by considering, for example, 

the scalar product of criz with (7i2, cr2i and (T23. From (6.91) it can be seen that 

((7l2iO'l2) = 2 

as given by the above expression; this also implies that 

(<Tl2,(72l) = - 2 

- also in agreement. Finally, we know that the scalar product of two different cr's. 

e.g. <712 and <723, is zero (they are orthogonal). 

The square of the length of an arbitrary vector is then 

= i^''^^i^'''^(o'^B,crCD) (9.127) 

= — ( 9 . 1 2 8 ) 

= (9.129) 

Defining the scalar w by 

cu = \ / w ( 9 . 1 3 0 ) 

the magnitude of is then 2u,\ so we can dehne a unit vector x: 
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X = (9.131) 
2LL' 9 

where is a 'unit tensor': 

= ^ = 1 (9.132) 
lu LL̂  LI/ 

The next vector we need is Xvx; this is simply 

Similarly 

X v X = : -n^^77''"^(7_4gvCCD = (9.133) 

XvXvX = -77'^^n''"^7i^^ec'DEf^^crABvO'GAr (9.134) 
6 

- (9.135) 
b 

= (9.136) 

where we have used an identity for the contraction of two e's. 

We can get trx^ by writing 

x^ = ^xvx + - l (9.13T) 
2 2 

so that 

trx^ = (x,xvx) + - t r x (9.138) 

= (9.139) 
6 

= — ( 9 . 1 4 0 ) 
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= ec'DEfB.4) (9.141) 

= (9.142) 

while we obtain /) by squaring (9.137): 

= ^(xvx)^ + ^ x v x + ^ l (9.143) 

=>trx^ = ^ (xvx ,xvx) + l (9.144) 

= 1 + CTAZ.) 

= 1 + (9.145) 
b 

= 3 + 4??.'"̂ ?̂7"̂ '̂ ??,gj?7./-/J (9.146) 

=>'y4(x) = ^ t r x ' ' - ; ^ = ^ + (9.147) 

= - + (9.148) 

/) = \ / - i ' 4 ( x ) = (9.149) 

9.6.2 P r o p e r t i e s of coset spaces of SO(6) 

The coset spaces of SU(4)R::S0(6) we have found the q-vectors and u-vectors for 

are those with the i^roperty tr x^ - 0. which from (9.142) we can see is equivalent 

to insisting that 

It is possible to identify particular coset spaces contained in S0(6) for which this 

is guaranteed to be the case for all A'ectors. For example, for the ,90(5) subgroui) 

of rotations in the hrst five dimensions, it is clear that in the i^roduct 

it is not possible for all six indices to be diEerent. so any coset space ol S0(5) 

has the above property. Similarly, if we look at the coset space S0(6) /S0(4) , it 

is generated by < > so in the indices of the product 

201 



either a 5 or a 6 (or both) must be repeated. Hence the algebra of the coset space 

S0(6)/S0(4) is also composed entirely of vectors for which tr — 0, as are those 

of the two subspaces of this coset space, S0(6)/S0(5) and S0(6)/S0(4)@S0(2). 

This can be seen from the spinor representations. It is clear from the form of the 

generators given in (6.75)-(6.80) that the coset space SO(6)/SO(4)0SO(2) is one 

of the type discussed in Section 9.1 where every vector of the coset space has the 

form 

^ 0 .4 

/l" 0 

If we include the generator crse in our coset space, the general form of a vector is 

where c is a real number; it is not hard to show that the trace of the cube of this 

is also zero. Such a coset space, however, is not necessarily a symmetric space as 

the /^-product of two vectors is not necessarily a vector of the sublagebra. 

This would seem to suggest that equation (9.109) is valid for each of the coset 

spaces S0(6)/S0(4), S0(6)/S0(5) and SO(6)/SO(4)0SO(2) and that the co-

variant derivatives are given by (9.113) and (9.114) for S0(6)/S0(4)@S0(2). 

However, we should explicitly check which of these are symmetric si^aces, besides 

which there is a subtlety for S0(6)/S0(5). 

SO(6)/SO(4) 

This is homomorphic to SU(4)/SU(2)C)SU(2). 

For the spinor representations of S0(6), we can decompose the commutation 
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relations (4.82) as follows: 

t,x - (9.150) 

t , , - (9.151) 

— 
(9.152) 

Tse] = 0 (9.153) 

(9.154) 

[7^6, TLe] = i r , . (9.155) 

(9.156) 

[7^5,756] = — 
(9.157) 

i7;,5 (9.158) 

The coset space S0(6)/S0(4) is generated by we can see from the 

last three commutators that the commutator of two of these generators does not 

always close onto the subalgebra. Hence S0(6)/S0(4) is not symmetric. 

SO(6)/SO(5) 

S0(6)/S0(.5) is generated by It can be seen from the commutators above 

that this space is symmetric, but in this case it is also worth looking at the v-

algebra, (6.100)-(6.101). Note that the v-product of any two broken generators 

is zero. This is equivalent to saying that they all square to the identity and 

anticommute with each other - precisely the conditions under which projection 

operators are not required to find the covariant derivatives. Indeed, the projection 

operators developed in this chapter are based on M and ^ being generic vectors 

of SU(4); however, we can see from these v-relations that for a general vector 

0 = (7^6+ ̂ ^̂ (756 of S0(6)/S0(5) that = 0. Therefore this is a coset space 

for which there are no generic vectors - every vector of the space is a q-vector. 
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These two conditions are clearly equivalent: 

1) All the coset space generators square to the identity and anticommiite with 

each other 

2) Every vector of the coset space is a q-vector 

Other examples of subspaces of S0(6) for which this is true are S0(5)/S0(4), 

S0(4)/S0(3), . . . - the fact that every vector of the 8ubs])ace is a q-vector means 

that each vector only hag two distinct eigenvalues and only one inde^^endent 

invariant. For sigma models based on these coset siaaces, then, we would expect 

to get results akin to those of SU(2)/U(1) - this is precisely what we found for 

S0(l ,4) /S0(l ,3) , the 'Minkowski version' of S0(5)/S0(4)^. 

SO(6)/SO(4)@SO(2) 

S0(6)/S0(4)@S0(2) is homomorphic to SU(4)/SU(2)@SU(2)@U(1) and is gen-

erated by It is a symmetric space and the generators do not all anti-

commiite. The algebra spanned by these generators does include generic vectors 

of SU(4) - for example, the vector 

/ 0 0 \/2 - 1 + i 0 \ 

0 0 0 \ / 2 + 1 - i 
0"35 + <7.36 + V2cr46 

\ 

- 1 - i 0 0 0 

0 \/2 + l + i 0 0 

has the eigenvalues \ /4 + 2\/2, \ / 4 — 2\/2, — s/4 2\/2, — \ /4 — 2^/2. 

-'However, if we only require that the action is invariant under S0 (6 ) , we may add one extra 
term to the Lagrangiaii for S 0 ( 6 ) / S 0 ( 5 ) which changes by a total derivative[31]. This is not 
the case for S 0 ( 6 ) / S 0 ( 4 ) or SO(6)/SO(4)0SO(2), for which there are no extra terms possible. 
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For a generic we can define the vectors x, XvX and XvXyX, as well as the 

invariant as in Section 9.6.1; in this case these reduce to the following (with 

= .5,6): 

X : (7̂  Y (9.159) 

(9.160) 

XvXvX = 4x — (9.161) 

(9.162) 

The covariant derivatives are then (from (9.120)) 

( g ^ X 

- 2 E 
Sill 

M; 

(9.163) 

and 

D,.V' 
4 

5:<T 
4 

(9.164) 
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Chapter 10 

Conclusions 

In this chapter we summarise om" main findings and take a brief look at potential 

avenues for further research. 

To start with we saw how the transformations of Goldstone bosons could be de-

scribed by Killing vectors and how the Lagrangian for a non-linear realisation of 

a Lie group is composed of a mass term for standard fields and terms involving 

covariant derivatives of standard fields and Goldstone bosons. We saw how the 

Killing vectors and covariant derivatives are related to the Yoset space represen-

tative' Z, particularly for 'symmetric spaces'. A trigonometric/hyperbolic form 

of Z proved easy to obtain for the coset spaces SU(2)/U(1) and S0( l ,4 ) /S0( l ,3 ) . 

We were then able to go on and hnd the Killing vectors and covariant derivatives. 

For each of these coset spaces, we were also able to rephrase the term involving 

covariant derivatives of the Goldstone bosons as the contraction of two normal 

partial derivatives with a metric for the space. 

For a general coset space of SU(N), we found that such a form of Z, was not easy 

to obtain. Due to the non-trivial nature of the v-algebra, the Lie algebra was 

partitioned into 'strata' and to obtain Z as a linear sum of generators one had to 
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use projection operators based on vectors of one particular stratum (u-vectors). 

In seeking the covariant derivatives Z; had to be differentia,ted, which introduced 

tensor projection operators belonging to the adjoint representation. By using 

certain relations for the vectors and tensor operators, we were able to find a 

general form for valid for any SU(N) coset space. For symmetric spaces 

with 'automorphism conjugate' u-vectors, it was i)ossible to break this into 

and parts and thus to And the covariant derivatives. 

For SU(4) we were able to identify four strata. One of these, the cj-stratum, 

had three orthonormal members in every Cartan subalgebra. This allowed us 

to rewrite the first term of the expression for in a form (9.109) more 

in keeping with the known results for chiral SU(N) @ SU(N)[18]. We were also 

able to use the homomorphism with S0(6) to write the tensor operators in this 

expression explicitly as tensor operators of S0(6). 

However, for a general coset space of SU(4), although we understood the meaning 

of the various invariants and tensors in this expression, we did not And expressions 

for each of them in terms of our original coset space vector It was only when 

we limited ourselves to coset spaces for which i3(^) = 0 for every ^ that we were 

able to construct u-vectors, and hence projection operators, from as well as 

finding explicit forms for the invariants. Again, we could use the homomorphism 

with S0(6) to write the vectors and invariants explicitly as vectors and invariants 

of S0(6). We saw that the coset space SO(6)/SO(4)@SO(2) has only vectors of 

the form 

^ 0 .4 

.4* 0 

and is therefore a symmetric space with = 0 for every vector. Such coset 

spaces were seen to have automori^hism conjugate u-vectors, so we could split the 

expression for into and parts and thus hnd the covariant derivatives 
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aiid the metric. 

What we have blatantly not addressed is the Killing vectors of S0(6)/S0(4) 

GS0(2). Had we not gone through all the mechanics of Chapter 8. we might 

naively assume that once we have found as a linear sum of the generators, we 

could simply substitute it into an equation of the form of (2.49) and from there 

obtaining the Killing vectors would be much the same as for SU(2)/U(1) and 

S0(1,4)/S0(L3). However, as we have seen, these coset spaces are much simpler 

than SO(6)/SO(4)0SO(2). This time, the feature that makes the difference is 

that for SU(2)/U(1) and S0( l ,4 ) /S0( l ,3 ) , only the hrst power of x appears in 

the expression for whereas for S0(6) /S0(4)GS0(2) , the projection operators 

in the expansion of contain x XyXvX. On differentiating x = for 

SU(2)/U(1), for example, one gets 

f)'X_ 1 

gA/'' M 

so 

j 
( 10 .2 ) 

and the second of these terms vanishes when we take the trace to find — 0. 

For S0(6)/S0(4)'3;S0(2). on the other hand, we also have to deal with 

a(xvxvx) 
X .4B 

which produces (non-vanishing) contractions of varying numbers of 77's with 

Without resorting to projection operators, we know of no way of separating these. 

Equally, we cannot use the techniques of Barnes, Dondi and Sarkar[18], as their 

methods of finding the Killing vectors are based on the chiral nature of the coset 

spaces they are considering. The key to finding these Killing vectors once again 
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appears to be expressing the derivative of Z, or in this case in terms of the 

projection operators of the adjoint representation. Any results obtained using 

this technique may, of course, be checked against the metric using the method of 

Section 5.3. 

For a realisation with an even number of Goldstone helds, of course, it is always 

possible to take pairs of these real Aelds and combine them into complex ones -

create 'complex coordinates^ for the held space. For a two-dimensional coset space 

there is onl}' one way of doing this, while for a higher-dimensional coset space 

there are many such possible pairings. The partial derivatives of the Goldstone 

helds can then be expressed in terms of the partial derivatives of the complex 

fields, with an associated complex metric. For a set of complex fields, .4/, (with 

/ running from 1 to half the dimension of the coset space) the term involving the 

metric will then fall into three parts, one with one with and 

one with By i^lacing restrictions on the functions of the invariants of 

the fields, it is possible to chose a coordinate basis - 'stereographic coordinates' 

- such that the first and last of these terms vanish, leaving just the 

term. 

For those interested in supersymmetric sigma models, the resulting complex met-

ric (denoted can be very useful. A two-form, known as the Kahler form, can 

be constructed from it, and Zumino has shown[23] that if the exterior derivative 

of this two-form is zero (in which case the complex space is said to be a Kahler 

manifold) a supersymmetric version of this realisation is given simply by replacing 

the complex helds by chiral superhelds. The Lagrangian density in superspace is 

given by the Kahler potential dehned by 

(10.3) 

If the original coset space is two-dimensional - for example SU(2)/U(1) - the as-
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sociated complex space has only one complex dimension and the exterior deriva-

tive of any two-form of such a space is trivially zero. It can be shown that for 

S0( l ,4) /S0( l ,3) the complex manifold is not a Kahler manifold by exphcit cal-

culation. We know that for SU(4)/SU(2)0SU(2)0U(1)%SO(G)/SO(4)0SO(2)^ 

on the other hand, the complex manifold Kahler, not by explicit calculation, 

but from a theorem of Borel[38]. This theorem states that for a coset space 

if is the centraliser of a direct product of U(l) groups in G, then the 

complex version of ( 3 / ^ is Kahler. In this case, ^ is the centraliser of the fi-

nal U(l), generated by crsg. (This is not the same as saying that the centraliser 

of ^ in G is a direct product of U(l) groups, as can be seen with the example 

SU(4)/SU(2)RGSU(2)L.) It would, however, be useful to show explicitly that this 

complex space is Kahler. (One problem that may arise is choosing which helds 

to combine into com^alex coordinates. The natural choices in SU(4) notation are 

somewhat different from the natural choices in S0(6) notation.) 

If one can obtain the Kahler form for this complex space and show that it satisfies 

the Kahler condition, one can then test whether it satisfies the more stringent 'hy-

perKahler' conditions - if a realisation is hyperKahler, it will admit an extended 

(N=2) supersymmeti'y[24, 25. 26]\ 

It is worth noting that the group S0(6) naturally occurs in sui^ersymmetric 

field theories: it is the R-symmetry group of N=4 conformally-invariant field 

theories[39]. This fact has been made use of by Maldacena[40], who has con-

jectured that Type IIB string theory on an x 5'̂  background (which has 

isometry group S0(2,4)@S0(G) ) is dual to an N=4 conformally-invariant field 

^ All of this assumes that the fields inhabit normal four-dimensional space-time. If the theory 
is based on two-dimensional space-time, a Kahler manifold will admit N = 2 supersymmetry, 
while a hyperKahler manifold will admit N = 4 supersymmetry. The re has been a lot of interest 
over the years in two-dimensional sigma models and the field of research has close connections 
with string theory. This provides yet another avenue for further research into the realisations 
described in this thesis. 
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theory in Minkowski spacetime. From the point of view of the symmetries of 

the two theories, this is quite i)lausible, as the field theory, as well as being in-

variant under the S0(6) R-symmetry is invariant under the conformal group in 

Minkowski space, which is homomorphic to the group S0(2,4). Neither of these 

symmetries are observed in nature, so for this conjecture to have any physical 

relevance, these symmetries must be broken at low energies^. We have dealt with 

broken S0(6) symmetries in this thesis. Is it possible to adapt the methods we 

have used to the case of S0(2,4)? Judging by the similarity of S0(l ,4) /S0(l ,3) 

to S0(5)/S0(4) one would think so. However, in this case we have to extend 

the methods for S0(6) to non-unitary matrices, which is considerably more dif-

ficult. For S0(6), the action of the group partitioned the algebra into orbits, 

with, for example, all the generators in the same orbit. For S0(2,4) this does 

not api^ear to be the case, as can be seen even looking at the action under a 

non-compact one-parameter subgroup. (Elements of such a subgroup involve hy-

perbolic rather than trigonometric functions of the group parameter.) However, 

this did not prevent us from obtaining results for S0( l ,4) /S0( l ,3) . It remains 

to be seen whether this is a pathological case because of the algebra being com-

posed entirely of (non-hermitian versions of) q-vectors, or whether our method 

of analysing this coset space contains hints as to how to deal with a generic case 

such as SO(2,4)/SO(4)0SO(2) or SO(2,4)/SO(1,3)0SO(1,1). 

Even if we could adapt our methods to such cases, the realisations we are 

analysing would not re^Dresent broken global conformal symmetry. This is be-

cause the symmetries we are considering are internal symmetries of a set of fields 

which take values on a completely se^aarate and unchanging spacetime, whereas 

-Non-linear realisations have also been considered in the context of supergravity. A solution 
of the 11-dimensional supergravity equations is a space of the form x M ' where Vlf' is a 7-
dimensional Einstein space. The non-linear realisations forming 7-climensional Einstein spaces 
have iDeen catalogued [41] aud the geometric properties of some of them have been studied in 
depth[42]. These also have connections with the AdS/CFT correspondence[43]. 
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conformal symmetry is a symmetry of the underlying spacetime itself. Non-linear 

realisations of this spacetime symmetry have been studied, though it is more com-

mon to consider the breaking to the Poincare group for obvious reasons[44, 45]. 

(The conformal group is composed of boosts, rotations, translations, special con-

formal transformations and dilatations. S0(2,4) /S0(l ,3)080(1,1) therefore con-

tains translations and special conformal transformations while S0(2,4)/'P, where 

"P is the Poincare grou^), comprises special conformal transformations and dilata-

tions.) If it were possible to adapt our methods to the case of S0(2,4), it would be 

inteiesting to compare our results with those from the methods of these papers. 

Finally, while this thesis has focused on breaking global symmetries, it is in 

principle possible to consider gauged versions of these symmetries being broken. 

Again, non-linear realisations of local symmetries were first considered by Cole-

man. Callan, Wess and Zumino[ll] and their work was expanded upon by Salam 

and Strathdee[15]. It may also be helpful to note in such a study that unbroken 

gauged SU(4) symmetry would look like a four-colour version of QCD, while lin-

ear representations of gauged conformal symmetry have been analysed by Kaku, 

Townsend and Van Nieuwenhuizen[46]. 

However, for groups with non-zero symmetric structure constants, such as Stj(4), 

one must be aware of what hapi)ens at the quantum level. Just as for global 

symmetries of this kind there may be extra terms in the Lagrangian (see foot-

note in 9.6.2), for the gauge theories processes involving the gauge fields which 

break G-inva,riance are possible[47]. These anomalies have been studied recently 

for particular classes of realisation which include the realisations of S0(6) we 

focussed on (S0(6)/S0(5) and S0(6)/S0(4) as 'anomaly free embeddings of 

and SO(6)/SO(4)0SO(2) as a symmetric si)ace)[48]. For these realisations, it is 

possible to preserve local 77-invariance by adding extra, terms to the action and 

to obtain the true effective action from the expression for the anomaly. 
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A p p e n d i x 1 

Consider a unit r-vector of SU(3): 

( r . r ) = 1 (10.4) 

In the basis of the Gell-Mann A's. it may be written 

r = / A ; (10.5) 

so that the normalisation condition is 

( r , r ) = 7'^r'^(A/,Aj) = = 1 (10.6) 

It ha.s an associated c|-vector: 

q,. = Tyr (lO.T) 

= \/3r^ ^ I t r r ^ (10.8) 
\ /3 

= \/3r^r'^A/Aj ^ l ( r , r ) (10.9) 
v 3 

= -k cW '̂̂ AA-) — ̂ 1 (10.10) 

= (10.11) 
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If we also write in terms of components: 

q = g^AA- (10.12) 

we see that we get the result 

(10.13) 

The relation 

q v q = - q (10.14) 

in terms of components looks like 

xk) — -^c/cj'^ltii^sjjl + dij^^ xi^) — —q xk 

=4- c/̂  = — \ / 3 q ^ q ' \ . l ( 1 0 . 1 5 ) 

Finally, Aiichel and Radicati give a third relation between an r-vector and its 

associated q-vector which we have not put in the main body of the thesis: 

q,.vr = i-vqr = r (10.16) 

In terms of comiDonents, this looks like 

+ (Z/j'UA-) - t r ( & ; j l + = / U M 0 . 1 7 ) 
J v 3 3 

=> = r^^AjJO.18) 

=> 7'̂  = (10.19) 
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Note that from (10.8) we have 

(r,q,.) = ^ t r ( rq r ) = ^ t r ^\/3r^ — - ^ r t r r ^ ^ (10.20) 

but t r r = 0 and trr^ = 3"y3(r) - 0 

so 

[r ,qr) = 0 (10.21) 
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Appendix 2 

10.1 S y m m e t r i c combina t ions 

The hrst thing we want to derive in this ap^^endix is an expression for the trace 

of a product of three A's. We start by writing this product as 

= -{A/AA", A"̂ } + -[AfAA", A"̂ ] (10.22) 

Noting that the trace of a commutator is zero, we therefore have 

trfA/AA-A-") = ^tr{A;AA\A-"} (10.23) 

= tr{l, A"̂ } + tr{Af,, A"̂ } + — t r { A 2 , , A } 

= 2f/n^-'̂  + 2i///{'^ (10.24) 

where we have used the product of two A's, (6.4). 

This has several consequences which are of use to us. The first is that if we 

contract with a vector f ^ and symmetrise, using the definition of we have 

tr(A/xA'^) +tr(A'^xA/) = —^(fZ^?); (10.25) 
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The next is that we can And tr(A/{x,y}A'^): 

{ x , y } = - ^ l ( x , y ) + ^ x v y (10.26) 

tr(A/{x,y}A'^) = ^(x,y)tr(AfA'^) + -^(xvy)^tr(A;AA-A'^)(10.27) 
A \/A' 

= + (10.28) 

Thirdly, 

[Af,.A/] = 21/2,7^^ AM (10.29) 

#- [x, A/] = 2i.r^yf,/^^AM (10.30) 

tr([x, AfjyA-^) - 2ia-^^^yz,/^tr(AA/AA A'̂ ) (10.31) 

= 2i.r^^^^/[,;^^(2c/MA'^ + 2iyMA''̂ ) (10.32) 

= - ^ { J , . d , ) / (10.33) 

We can use these results to find tr(xAfyA'^) + tr(yA/xA'^) which is vital in finding 

a general form for symmetric combinations of adjoint representation projection 

operators (see Section T.3): 

tr(xAfyA'^) + tr(yA;xA'^) = tr([x. A/jyA"^) + tr(AfXyA'^) + tr([y, A/jxA"^) 

+ tr(AjyxA'^)( 10.34) 

= tr([x,Af]yA'^) + tr([y,Af]xA'^) + tr(A;{x.y}A'^) 

YY 

(10.35) 

Substituting in the identity (7.18) this reduces to 

tr(xA/yA'^) + tr(yAfxA'^) = -^(x ,y)^^ + (10.36) 
A' 
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Note that the left-hand side is symmetric under the interchange of / and J , 

therefore the right-hand side must also be symmetric on these indices; this means 

that = {A,/ ; ,}/ . 

10.2 A n t i s y m m e t r i c combina t ions 

Similarly, 

tr(xA/yA'^) - tr(yA/xA'^) = tr([x, A/jyA"^) -|- tr(A/xyA'^) - tr([y, A/jxA"^) 

— tr(AjyxA'^) (10.37) 

= tr([x, AfjyA"^) -tr([y,A;]xA'^)-|-tr(Af[x,y]A'^) 

= + tr(Af[x,y]A'^) 

(10.38) 

Finally, if we contract (10.24) with a vector and antisymmetrise, we get 

tr(AfxA'^) — tr(A'^xAf) = 4i(/r)f'^ (10.39) 

10.3 Simpl i fy ing 

Taking x = u-^^y = in (T.20) and postmultiplying by we get 

+ 2(u'^, (10.40) 
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Now use (7.19) on the hrst term and the commutativity of the /^^s on the second 

+ 2(U^, U^)Ar (10.41) 

and then the n-vector properties (7.28), (7.29) and (7.31) 

/V 1 
= ) 4 . / , r - - - ) - -y (10.42) 

Repeating the process for the on the right gives us 

= A"/; (10.43) 

Finally, noting from (7.17) that we obtain 

= 2vA^As/jT (10.44) 

219 



Appendix 3 

Let % and }' be two 4 x 4 hermitian matrices: 

X = a l + }' = /?! + (10.45) 

Then, using our scalar product of two cr's. 

tr(cr^'^.Y)tr(cr;jy) = (atrcr^"^ + 

= (0 + 8f//'^)(0 + 86jj) (10.46) 

= 64o^-^6/j (10.47) 

However, we also have 

tr(.Y}') = a / ^ t r l + f/'^6^^tr(cr/j(TA%) (10.48) 

- 4a;a + 2f/'^6^^(cr/j,cry^-i,) (10.49) 

= 4a/^ + 8o^'^6/j (10.50) 

and 

tr _V tr } = a tr 1/3 tr 1 = IGa/? (10.51) 
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Thus for any hermitian .V and 1 , 

tr((7^'^.V)tr(<7/j} ) = 8tr(.Vy ) — 2 t r^Yt r l (10.52) 
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