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1. INTRODUCTION

Widespread acceptance of composite structures requires confidence in their load-
catrying capacity. For this reason it is necessary to be able to predict accurately the
strength of a particular composite. Most available strength information is based on
uniaxial stress states, though practical applications involve at least biaxial loading
Unlike isotropic materials, the strength of composites is directionally dependent.
Furthermore, failure in some of the plies (constituting a laminated composite) need
not necessarily mean rupture of the total laminate, since the multiplicity of layers
provide alternate load paths.

This report briefly reviews the more commonly employed failure criteria. Sufficient
theory is included to make the report self-contained. Because strength theories are
conceived pnmarily to predict onset (and not mode) of failure, the macroscopic
viewpoint is predominant. Finally, in view of large structures requiring to be analysed
for progressive failure, an outline is given of an approach which could be adapted for
practical analysis.



2. ANALYTICAL BACKGROUND
2.1 Orthotropic Elasticity

While several of the strength criteria do not in themselves address whether the
material is elastic or inelastic, composite lamination theory does involve constitutive
response. Usually this is linear elastic, orthotropic behaviour. The generalised Hooke's
law can be written as (SHENOI and WELLICOME (1993)):

0; = Caubu (1)

where gj; is the stress tensor, g;; is the strain tensor and Cjy is the 4th order stiffness or
material tensor. Symmetry reduces the number of independent stiffness components
to 21 for even the most general, anisotropic material in three dimensions. If the
response 1s orthotropic such that 1-, 2- and 3-directions are the three axes of material
symmetry, then there are only nine independent material constants.

The plies of most structural components are subjected to plane stress. The constitutive
relationship for an orthotropic lamina in a state of plane stress (63 = 13 = 133 = 0)
may be written as:

o, o - . £, (2)
{O'g'f}z Oyt =|0n On - )
Tialy O O O s t¥il,

where the components of the reduced stiffness matrix Q;; are

Ou =Ly [ (1-vvy) (3)
On =Ep/(1-vy,vy)

Qa = Vi oy 1 (1~ vipvy))

Qs = Gy

Qe =0y =0

Vil =vyky

E;i, En, vi; and Gy, are the four independent elastic constaats of the lamina with

respect to the axes (1-2) of material symmetry. Transforming Eqn. 2 into the
orthotropic laminate axes system results in

. O, |t e (4)
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where —Q,-,- are the transformed reduced stiffnesses given by CHRISTENSEN (1979)
as

0, = U, +U, c0s(26) + U, cos(46) (5)
0, = U, - U, 008(26) + U, cos(46)

0, = U, —U, cos(48)

O = Us —U; cos(48)

O, = —1U, sin(260) - U, sin(40)

O = —1U, 5in(26) + U, sin(46)
and the elastic constants are

U, =%(3Qn +305, +20, +40 (6)
U, = %(Qu -0n)

Uy = 5(Qn + On ~ 20, —4Q))

Uy =3(Qy +20y, +60,; ~40,)

Us = 5(0n +0n —20,, +40Q4)

Small k represents the kth layer of the laminate and © is the angle measured counter-
clockwise from the laminate positive x-axis of the lamina. Eqn. 2 can be inverted to
yield the strains £ as a function of material comptiance S and the stress o.

& S” - - o, (7)
{ey.} =& ¢ =8, S, .. o,
ylz k S16 S% Sﬁﬁ k T2 &

where the lamina compliance matrix is S;; is given by

[s}=lof” (3)
and

Sy =1/E, (%)
S, =1fE22

Sp=-vplE,=~v, [/ Ey

Se =1/G,,

Similarly, Eqn. 7 can be transformed to the principal material axes x-y of the laminate
to become



£, Se - ] ]o. (10)
Y Sie % S |7

-~

where, like the transformed stiffnesses, the transformed compliances  S; depend
only on Ej;, E, Gy, vy and 6. Stresses and strains can be converted from lamina
(local) 1-2 axes to the laminate (global) x-y axes through the use of the transformation
matrix T as below

{0'12}:[T]{O'xy}a”d{grz}=[T]{3n} (11)
and

{oo}=[1T" {on}anale, } =[1]"{s,} (12)
where

cos’ @ . .. (13)
[T] ={ sin*@ cos’ &
—sinfcos® sinfcosd cos’ H-sin’ @

2.2 Lamination Theory

From classical plate theory, the laminate strains &,y at a distance z from the mid-plane
are given by

fe} = {e°}+ 2{x} (14)

where £ represents the mid-plane (or membrane) strains and x represents the plate
curvatures. Substituting Eqn. 14 into Eqn. 4 and integrating through the thickness h of
the plate yields the following expression

M 31

where the extensional, coupling and bending stiffnesses matrices are given by



(AwByaDy): IQ;(LZ,ZZ)dZ (16)

N and M are the resultant force and moment vectors respectively, acting per unit
length of the lamnate, 1.e.

(NI,Ny,N,y; MI,My,sz) = j(a'i,af,,rfy;za:,zaf,,zrfy)dz (17)

In general, the matrices Ay, By, D;; are all complete and symmetric as defined in Eqn.
16. If the laminate lay-up is symmetrical in geometry and the material properties
about z = 0, then By = 0 and the bend-stretch coupling matrix vanishes. Stiffness
components A]], Azz, A]z, A66: D1, Do, Dlz, and D56 are pOSiﬁve definite. A, A26:
D¢ and Dy can be made equal to zero for laminates made up entirely of plies at 0- or
90-degrees to the laminate axes. For angle ply laminates (18) fabricated from a large
number of alternating lamina, D¢, Dyg, A and Ay are quite small compared to the
other stiffness components.

Eqns. 22 can be inverted to yield the following

gl _ A" B'"{{N (18)
'y cC' D'I\M

where

A=4-B.D7C (19)
B'=B.D"

C'=D"" ("

D' = D™

and

A =4" (20)
B =478

C'=B.A"

D'=D-B AR

For any laminate of known lamina elastic properties (E;;, E, vi» and G;;) and
subjected to forces N and moments M, the strains in any ply relative to the laminate
axes can be calculated from Eqgns. 18. From the strains and knowing the stiffness
properties of the laminate, the stresses too can be determined. Thus having evaluated
the stress and strain history in any ply of the laminate, imminence of lamina failure
can be determined from one of several possible criteria. Some of these are described
in the next section.



3, FAILURE CRITERIA
3.1 General Comments

With macroscopically homogeneous but orthotropic materials, development of a
strength theory has often involved extending one of the isotropic analyses to account
for orthotropy. It may be reasonable with homogeneous materials to base structure
strength on the initial combination of loads which causes the postulated failure
strength envelope or criterion to be reached. For laminates, a criterion is typically
applied on a ply-by-ply basis and the load carrying capability of the entire composite
is predicted using lamination theory outlined in Section 2. A laminate is sometimes
assumed to fail analytically when the strength criterion of any one of its laminae is
reached. While load distribution usuaily occurs within a laminate when one of the
plies fails, this need not imply total failure of the laminate.

Several of the more commonly used composite strength theories are outlined below.
Although some of the failure theories were originally postulated in three-dimensions,
most laminates are subjected to two-dimensional stress; so only those forms of
criteria are presented here. In addition to the specific references mentioned below,
various anisotropic failure theories are reviewed in SENDECKYJ (1972), VICARO
and TOLAND (1975) and STH and SKUDRA (1985).

3.2 Maximum Strain Theory

This criterion states that a ply of a laminate has failed when either its longitudinal,
transverse or shear strain reaches a limiting value determined from simple one-
dimensional, uniaxia! stress experiments. The minimum common envelope of the
superposition of the interaction failure diagrams of al! the individual plies related to
the principal material axes of the laminate becomes the failure diagram of the
laminate. From Eqn. ... and with the strains equalling experimentally determined
limiting values €,; and &,y, the maximum strain criterion becomes

{Em}z[&. : ]{0:} (21)
€ayy Sy Su |l

for the case of ty; = 0. Upon re-arranging,

&y Sy
) =S___o-1 (22)
12 12
_fw _Su
S S 1
) 2

Eqns. 22 represent two straight lines in the o,-0, co-ordinate space system which
define the failure of an orthotropic lamina. Utilisation of the limiting strains in
tension and compression results in this failure envelope consisting of two straight



lines in each quadrant. Superposition of the laminate failure envelope for varying
values of 1y, produces the complete laminate failure envelope.

3.3 Maximum Stress Theory

JENKINS (1920) extended the concept of the maximum normal or principal stress
theory to predict the strength of planar orthotropic materials such as wood. With this
theory, it 1s postulated that failure in a lamina will occur when any one of the stresses
o), G OF T3 attains a respective maximum value oy, Gy O Tpou.

If a unidirectionaily reinforced laminate subjected to uniaxial tension ¢ at some angle

8 to the fibres, then the maximum allowable loading according to this theory is the
smallest of the following three equations

Ty (23)

For comparison, if the strength were to be predicted according to the maximum strain
criterion of Section 3.2, then the corresponding expressions become (JONES (1975))

o= S (24)
cos’ §—v,,sin’ @
o
o=— 5 b1}
sin® @— v, cos @
—_ 7'-!ZU
sinfcos@

The only difference between these maximum stress and strain predictions is the
inclusion of the Poisson’s ratio terms.

3.4 Hill’s Criterion

Under plane stress, HILL (1950) proposed that failure would initiate when the
magnitude of the stresses reach the following condition

2 2 2
1 25
O P e e R C B "
Oy T Ow O Tou Tyay




Hitl assumed that the yield (failure) stresses are the same in tension and compression.,
i.e. there is no Bauschinger effect. Unlike the two previous criteria, the Hill theory
contains interaction among the stress components and therefore involves combined
modes of failure.

3.5 Tsai-Hill Theory

This postulates the imminence of failure in a ply is evident when

2 2 2
Gy o’fu Tyy Ty

This equation is obtained from the Hill criterion of Eqn. 25 by assuming oy = 130y
for fibre reinforced composites (AZZI and TSAI (1965)). This is very similar to the
theory proposed by NORRIS (1950) to examine failures in wood. This too provides
interaction of the stresses and is therefore a criterion that can be employed in mixed
modes of failure. The one drawback is that the interaction is fixed and that it does not
distinguish between compressive and tensile strengths; this is overcome by the next
criterion to be examined.

3.6 Tsai-Wu Theory

In an effort to predict experimental results more accurately, TSAl and WU (1971)
proposed a failure surface of the form

flo) = Fo, +i0, =1 .with..i,j=12,,6 (27)

where F; and F;; are second and fourth order lamina strength tensors. The linear stress
terms account for the possible differences in the tensile and compressive strengths.
The quadratic stress terms are similar to those in the Tsai-Hill formulation and
describe the ellipsoid stress space. The Fj; (i#)) terms are new. Off-diagonal terms of
the strength tensor provide independent interactions among the stress components.
Under plane stress conditions this failure criterion becomes

Fo, + Fy0, + Fo s + 1,01 + Fp05 +2F,0,0, + Fyuog = 1 (28)

where



F=(oh) ~(o%) (29)

with the notations as before and the superscript T/C in the failure strength values
denoting tensile/compressive modes. It must be noted that uniaxial strength values, by
themselves, are not adequate. To determine F,, biaxial tests are required (WU
(1972)).

3.7 Discussion

The four failure theories (noting that the Hili theory leads on to the Tsai-Hill
criterion) discussed in the previous sub-sections are representative and most widely
used ones. The validity and applicability of a specific theory depends on the
convenience of application and agreement with experimental results. Furthermore,
failure modes, and thus the failure criteria, depend greatly on material properties and
type of loading. A comparison of the four theories is given in Table 1 on the next

page.

The maximum stress/strain theories, for example, are more applicable when brittle
behaviour is predominant, typically in the first quadrant of the failure envelope with
g2 2 0. Of the two, only the maximum strain theory allows for a small degree of
interaction through Poisson’s ratio effect. These theories are conceptually easy to use;
however, they do contain three sub-criteria each. The necessary experimental
parameters can be obtained from standard uniaxial tests.

The interactive theories, such as the Tsai-Hill and Tsai-Wu, may be more applicable
when ductile behaviour under shear or compression loading is applicable. They also
cater for mixed-mode failure scenarios. The Tsai-Wu theory is mathematically
consistent and relatively simple to use. The additional coefficients in this theory allow
for distinction between compression and tension strengths. A comprehensive
materials testing programme, including some biaxial tests, are required to accurately
determine the many materials parameters that are required.



Most of the experimental data available for comparison with the theoretical
predictions is in the first quadrant. These type of data are easily gathered by uniaxial
tensile testing. Given the usual scatter of data, all four major theories give a
satisfactory comparison with test results. More substantial differences among the
approaches emerge in other quadrants where compressive failure stresses and modes
are present. Here, it appears that the Tsai-Wu theory fits the data best (DANIEL and

ISHAI (1994)).

In terms of applicability, it is best to consider all theories because the materials in ail
cases need not be the same and hence may exhibit brttle or ductile behaviour

depending on the dominant loading mode and material make-up.

Table 1: Comparison of failure theories

Theory Physical Basis Operational Required
Convenience Experimental
Characterisation
Maximum stress | Tensiie behaviour | Inconvenient Few parameters by
of brittle matenal; simple testing
No stress interaction
Maximum strain | Tensile  behaviour | Inconvenient Few parameters by
of brittle material; simple testing
Some stress
interaction
Tsai-Hill Ductile  behaviour | Can be | Biaxial testing s
of anisotropic | programmed; needed in addition
materials; Different functions | to  uniaxial test
Curve fitting for | required for tensile | cases
heterogeneous and  compressive
matenials strengths
Tsai-Wu Mathematically General and | Numerous
consistent; comprehensive; parameters;
Reliable “curve | Operationally Comprehensive
fitting™ simple experimental
programme needed

10




4. FAILURE ANALYSIS OF MULTIDIRECTIONAL LAMINATES
4.1 Types of Failure

Two main types or definitions of failure need to be considered: (a} initial or First Ply
Failure (or FPF) and (b) Ultimate Laminate Failure (ULF). In the first case, the
laminate is deemed to have failed when the first ply or lamina reaches the failure
loads/stress levels. In the latter, failure is assumed to have occurred when the ultimate
or final level is reached, when the laminate can take up no further load at all. The FPF
approach is conservative but it can be used with relatively low safety factors. The
ULF approach is more advanced and requires a more precise definition of the loading
conditions and stress distributions. In aircraft and some boat applications, the practice
is to use FPF approach. For instance, in the aircraft industry, the general practice is to
limit operational strains in carbon-epoxy to 0.4%. In the boat industry, where
sandwich configuration is used, the practice is to limit skin strains in glass-epoxy
construction to about 0.6%. Both the FPF and ULF approaches are considered below.

4.2 FPF of Symmetric Laminates; In-Piane Loading

Given a symmetric laminate under general in-plane loading, the average laminate
stresses are given by

a, ) N, (30)
O'y :}1‘ Ny
T«\J‘ N’J‘

where h is the laminate thickness. The laminate strains are equal to the reference
plane strains and are related to the forces by the Eqn. 18. These strains, in global x-y
axes context, can be converted to the principal axis system for an individual lamina
by using the relationship given in Eqn. 11. From these ply strains, the corresponding
stresses can be calculated from Eqn. 2.

For the FPF approach, the selected failure criterion is applied to the state of stress in
each layer separately. Thus, for a state of stress (o}, 02, T12), in layer k, the state of
stress at failure is Sg(o,, 02, T12 )k, Where Sy is safety factor for layer k. Substitution of
the critical or failure stress in the Tsai-Wu criterion of Eqn. 28, for instance, leads to

FSp0,+ 8,0, + FSpt, +F Spoi+....=1 (31)
or
aSy +bS, ~1=0 (32)

where

11



a‘_’Fno'f"'Fzzo'g"'Faﬁrfz"'zEzo'laz (33)
b=Fo +Fo,

The solutions to the quadratic in Egns. 32 and 33 are

—-b+vb* +4a (34)

2a

—b—vb* +4a

Sﬁ’ B 2a

where the Sq, 1s the safety factor for layer k with the actual state of stress (o, 63, T)5)
and Sy, is the safety factor when the state of stress is negative, i.e. (-0}, -G3, -713). The
procedure above is carried out for all layers of the laminate to find the minimum
values of Sy, and Sg,. These minimums are the safety factors of the laminate based on
the FPF approach for the actual and reversed loadings.

4.3 Computational Procedure for FPF Analysis

The procedure for the determination of safety factors consists of the following steps.

Step 1 Enter basic lamina properties (E;;, Ex, Gya, vi2)

Step 2 Compute ply stiffnesses, using Egn. 3

Step 3 Enter orientation of principal material axes for layer k, 6,

Step 4 Calculate transformed layer stiffnesses using Eqns. 5, 6

Step 5 Enter through-the-thickness co-ordinates for layer k, hy and hy

Step 6 Calculate laminate stiffness matrices A, B, D using Eqn. 16

Step 7 Calculate laminate compliance matrices A’, B/, D' using Eqns. 19, 20

Step 8 Enter mechanical loading, i.e. forces N, moments M

Step 9 Calculate reference plane strains €°, and curvatures k from Eqn. 18

Step 10 Calculate layer strains €,., with respect to the structura! global axes,
using Eqn. 14

Step 11 Calculate layer strains g,., with respect to principal material axes,
using Eqn. 11

Step 12 Calculate layer stresses ¢;.; with respect to principal material axes,
using Eqn. 2.

Step 13 Enter lamina strengths o, etc. and calculate Tsai-Wu coefTicients
using Eqn, 29

Step 14 Calculate layer safety factors Sp./Sy, from Eqn. 34 and thence the
laminate safety factor 3

Step 15 Determine laminate strength components F by applying unit stress in

each direction and using Eqn. 35.

12



(35)

4.4 Progressive and Ultimate Laminate Faiture

Progressive failure of a lamina within the laminate consists of cracking of the lamina
upto a characteristic limiting crack density. Following this FPF, failure process
continues upto ULF, which is usually higher than FPF.

The process can be explained by examining the stress-strain response of a multi-
directional laminate under tensile loading, see Figure 1 below. Initially, the laminate
behaves linearly, with the slope of the stress-strain curve equalling the initial
modulus, E,, upto a point (1), where the first ply fails. After this ply reaches its
maximum crack density (i.e. the characteristics damage state), its effective transverse
modulus drops to E;’ and the laminate modulus drops to a value E,". If the material
behaves in a brittle manner, then the modulus will drop suddenly. It will be
manifested by a horizontal or vertical shift in the stress-strain curve, depending on
whether the test is conducted under load or strain control respectively. Under
increasing load, the specimen will respond linearly with a stress-strain slope equal to
the reduced modulus E," upto the point (2), where the next ply or plies will fail.
Again, if the ply or plies fail suddenly in a brittle manner, there will be a further drop
in modulus to a value, E,®. This value corresponds to the laminate with all the
failed plies to date discounted or reduced in stiffness. The progressive failure
continues o a point, say, (3) where ultimate failure takes place.

At each stage of failure there is a corresponding strength. The ratio of the FPF and
ULF values, 4, 1s an indicator of ply efficiency; it depends on the matenal system and
laminate lay-up.

Bl

¢L= FPF {36)

E"-"JI

Figure 1 : Stress-Strain Response of a Multidirectional Laminate
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4.5 Analysis of Progressive Laminate Failure

The determination of the ultimate strength of a laminate requires an interactive
procedure taking into account the damage progression in the various plies. The
computational scheme involved comprises the following steps.

Steps 1-15  Same as in Section 4.3

Step 16 Identify failed fayer k;, under i loading cycle from Sg; = (Stk)mm.

Step 17 Determine laminate strength components [ FXJ,} for the i loading
cycle _

Step 18 Check if strength for the i® load cycle, F', is higher than the strength
at the previous load cycle F'

Step 19 If the answer is “yes”, the damaged lamina, k;, is replaced by one
having the following properties

El =nE, (37)

Ey =nkE,

Gikz' =r,Gy

Vf'z =hVp

where 1y, 1, 1y, are the stiffness reduction factors, obtained previously from

experimentation or analysis. Conservatlvely, n =1, =r1; =0, 1.e. complete ply

discount.

Step 20 Go to i+1 load cycle and recalculate modified laminate stiffnesses, A,
B, D and compliances, A’, B, IY. Repeat all steps upto 18 above. In
step 13, the lamina strength of the failed layer is made artificially high
to avoid repeated failure indication of the failed layer

Step 21 If the answer to the question in Step 18 is “no”, then ultimate failure
occurs at the i-1 load cycle, i.e. F'= F”

14
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