
University of Southampton

Towards the Development of an
Electoral Count System using

Formal Methods

Mairead Meaghe r

A thesis submitted in foLGhnent for the degree of

M a s t e r of Ph i lo sophy

in the

Faculty of Engineering and Applied Science

Department of Electronics & Computer Science

November, 2001

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
ELECTRONICS & COMPUTER SCIENCE

Master of Philosophy
TOWARDS THE DEVELOPMENT OF AN ELECTORAL COUNT

SYSTEM USING FORMAL METHODS
by Mairead Meagher

Techniques which use mathematical principles to develop computer systems
are collectively known as Formal Methods. Formal Methods are usually
applied to computer systems when correctness and soundness are primarily
important.

A system to count votes is an example of such a system. This work
includes the specification of, and the full development of part of, such an
electoral system. When developing the system, a number of interesting issues
arose, the examination of which became a significant part of this work.

The development of a system using formal methods entails taking a
speciGcation, written using mathematics and, moving, step by step, towards
eventual implementation. We call these steps refinement steps. There are
two main kinds of refinement - data refinement where we move from using
abstract data in our descriptions to using more concrete data and algo-
rithmic refinement where we introduce programming-like constructs. The
traditional strategy is to proceed with data refinement and then with algo-
rithmic refinement. In this thesis a strategy of mixing these approaches is
examined, e.g. applying algorithmic refinement first. This strategy is found
to be useful and to result in elegant solutions.

A fundamental tenet of refinement is that at each point in the develop-
mental cycle (including the starting specification and the eventual imple-
mentation), the user should be unaware of any 'behind the scenes' activity.
This means that the interface to the user should not change. However, it
may happen that part of the specification is written in terms of parame-
terised abstract data. Then data refinement will change the interface. This
issue is examined in this work and a workaround is provided for checking
the correctness of this tricky refinement step.

Two paths of development are used in the work. The first is that of
using Z and Morgan's Refinement Calculus. The B Method is then used for
the main part of the thesis. The specification of the systems are written in
Z and B. The development of parts of each are found in the main body of
the text.

Contents

Introduction 12
1.1 Brief History of Project 12
1.2 Related Work
1.3 Weakest Precondition
1.4 Refinement

1.4.1 Introduction to Refinement
1.4.2 Data Refinement

1.5 Introduction to B
1.6 Introduction to Z

1.6.1 The Z Specification Notation
1.6.2 Refinement of Z Specifications

1.7 Refinement Calculus and The B Method
1.7.1 Morgan's Refinement Calculus
1.7.2 Refinement in The B Method
1.7.3 Differences Between the Two Techniques

1.8 Dot Notation

13
14
15
15
16
17
20
20
21
22
22
23
24
25

2 The Development of a Z Specification 26
2.1 Introduction 26
2.2 Pre-processing of Votes 27

2.2.1 Z Specification of Pre-processing 28
2.2.2 Approach Taken to Development 29

2.3 Refinement of make_ballot 30
2.3.1 Data Refinement under Functional Abstraction In-

variant 30
2.3.2 From Z to Specification Statement 30
2.3.3 From Specification Statement to Code For MakeBallot 33
2.3.4 Code For Procedure MakeBallot 40

2.4 Refinement of insert 40

2.4.1 Supporting Definitions 42
2.4.2 Definition of insert Using Functional Programing . . . 42
2.4.3 Calculational derivation of pointer algorithms from

tree operations 44
2.4.4 Producing Code from Functional Definition of insert . 45

2.5 Refinement of Pre-processing 48
2.5.1 From Z to Specification Statement 49
2.5.2 From Specification Statement to Code for pre-processing 50

2.6 Moving From the Specific to the Generic 51
2.7 Conclusions 52

Performing Algorithmic Refinement before D a t a Refinement
in B 54
3.1 Introduction 54
3.2 Laws of Distribution of Data Refinement 55
3.3 Examples to Illustrate Laws 56

3.3.1 Distribution Over Basic Assignment, Using D a t R e f 1 56
3.3.2 Distribution Over Generalised Assignment, Using Da-

tRef 2 56
3.3.3 Distribution Over Sequence, Using D a t R e f 3 59
3.3.4 Distribution Over IF statement. Using D a t R e f 4 . . . 59
3.3.5 Distribution Over the Introduction of a Local Variable

using D a t R e f 5 61
3.3.6 Distribution Over Loop Introduction, Using D a t R e f 6 62

3.4 Current Practice with Loop Introduction 64
3.5 Conclusions 64

Interface Refinement in B 67
4.1 Introduction 67
4.2 Operations and Procedures 67
4.3 Refinement of Procedures in B 69
4.4 Examples of Data Refinement of Procedures 70

4.4.1 Example 1 - Data Refinement of a Parameter 70
4.4.2 Example 2 - Data Refinement of a Return Type . . . 71
4.4.3 Example 3 - Data Refinement of Both Return Type

and Parameter 71
4.5 Workaround 72

4.5.1 Underlying Theory of Workaround 73
4.5.2 Implementation of Workaround 75

4.6 Conclusions 76

5 Case Studies in B Development 78
5.1 Introduction 78
5.2 Design Issues - B Method and C + + ' s S.T.L 78
5.3 Description of System 80
5.4 Case Study 1 - Pre-Processing 83

5.4.1 Development of Make_Ballot 85
5.4.2 Development of Pre_Process 92

5.5 Case Study 2 - Setting up First Count 96
5.6 Conclusions 101

6 Conclusions 105
6.1 Conclusions 105
6.2 Future Work 107

A Waterford Inst i tute of Technology
Academic Council Election
Count Rules 110
A.l Election Procedures of Academic Members to the Academic

Council 110
A.2 Rules for Academic Council Election (Academic Members)

(Abridged Form) I l l
A.3 Rule For Election or Exclusion (RuFEE) 112

A.3.1 Election 112
A.3.2 Exclusion 112

A.4 Rules for Academic Council Election (Academic Members) . 113

B Z Specification of an STV electoral sys tem, specifically
Waterford Inst i tute of Technology's Academic Council elec-
tion. 120
B.l Introduction 120
B.2 Global Declarations 121
B.3 Pre-Processing of Voting Papers 122

B.3.1 Z Specification of Pre-processing 123
B.4 Counting of Ballots 124
B.5 Count Operation 142

C Laws used in Refinement Calculus Example 143

D B Specification of Academic Council count 145
D.l Introduction 145

D.2 B Specification 147
D.2.1 Overall Election 147
D.2.2 Global Variables 150
D.2.3 Bags - Paper and Ballot 152
D.2.4 Pre-Processing of Votes 157
D.2.5 Counting Functions 159
D.2.6 Ordering Functions 175
D.2.7 Candidate Balance Functions 183

Bibliography 185

List of Figures

1.1 Machine M and associated Refinement N 18

2.1 Code for procedure MakeBaUot 41
2.2 Definition of Insert 44
2.3 Generic Directed Update 45
2.4 Generic Directed Update After First Algorithmic Refinement 46

3.1 Data Refinement Laws 57
3.2 Basic Assignment 58
3.3 How to introduce loops early. This framework will allow early

introduction of loops to be checked using the B-Toolkit. . . . 65

4.1 Simple Operation Refinement 68
4.2 Operation Refinement with parameter and return value . . . 68
4.3 Example of refinement of operation with parameter being

data refined 71
4.4 Example of refinement of operation with return type being

data refined 72
4.5 Example of refinement of operation with both return type

and parameter being data refined 73
4.6 Structure of Machines for Workaround for Interface Refine-

ment The refinement of operation x <— first{xseq) in MA-
CHINE Ml, by the operation y <— cfirst{yseq) in MACHINE
M2 can be checked according to the framework above 77

5.1 Mulitset of papers machine 81
5.2 Multiset of ballots machine 82
5.3 Mulitset of ballots machine... contd 83
5.4 Abstract Specification of pre-processing 84
5.5 First Loop Introduction on Make^Ballot 87
5.6 Make^Ballot after the introduction of intermediate variable bb. 88

5.7 Make-Ballot after first data refinement 88
5.8 Calculating intermediate variable bb 89
5.9 Data-refined loop for calculating bb 90
5.10 Algorithmically-refined pre-processing 93
5.11 Abstract Specification of 96
5.12 First Loop Introduction in Setup^First-Count 97
5.13 First Data Refinement in Setup^First-Count 99
5.14 Second Data Refinement in Setup^First-Count 100
5.15 ConcreteVoteMass Machine 102
5.16 ConcreteVoteMass Machine., contd 103
5.17 Implementation of Setup-First-Count 104

A c k n o w l e d g e m e n t s

I would like to take this opportunity to thank my supervisor, Prof. Michael
Butler. His generosity, patience, respect and help to me during this time
has made working with him a profoundly developmental, rewarding and
inspirational experience. He has been truly exceptional.

Thanks are due to the following from W.I.T.: to Paul Barry, Head of De-
partment of P & Q, for his help in timetabling matters, Eric Martin, Head of
School of Science, Tony McFeely, Returning Officer of the Academic Coun-
cil Election Count, and all in Computer Services, for their help in technical
matters. Thanks are also due to the Institute Management Committee for
their help in facilitating study leave to pursue this study full-time for a short
period.

I also acknowledge the help and hospitality I received from members of
the DSSE group in the University of Southampton during my trips over
there.

Thanks are due to lb Sorenson of B-Core(UK) Ltd. for his help with
the B-Toolkit.

I very much appreciate the help received during this time from Micheal
O Foghlu, Willie Donnelly, Eamon de Leastar, Michael Brennan, Jimmy
McGibney, Richard Lacey, Shane Dempsey, and Gary McManus. Outra-
geous thanks are due to Kieran Murphy for his 'help' with (Or,
roughly translated, for saving my life.)

My friends have, to my surprise and relief, stuck by me for the last
four years. For that and for the various and innumerable kindnesses and
support, I thank you all. A special thanks to (not in order of appearance!):
Ann Clancy, P.J. Cregg, Claire Keary, Mary Keating, Mary Lyng, Ann
Prendergast, Alice McDermott, Eamon Molloy, Laura Murphy, Louis Nevin,
Tom O Toole, Ann Prendergast, Richard Vaughan and Cathy Walsh.

My family, as always, have given me support and understanding (and
the occasional chance of a 'break' &om work!) emd many thanks are due to
them.

To
Martin and Philly Meagher,

my parents.

10

"Mathematics, rightly viewed, possesses not only truth, but supreme
beauty - a beauty cold and austere, like that of sculpture, without

appeal to any part of our weaker nature, without the gorgeous
trappings of painting or music, yet sublimely pure, and capable of a

stern perfection such as only the greatest art can show."

B e r t r a n d Russe l l

11

Chapte r 1

In t roduc t ion

This chapter introduces the reader to the main story of the project contained
in this work. Some background information is needed for later chapters,
some well-known areas and some conventions used throughout. The areas
that are fundamental to this work but well known are briefly dealt with.
The discussions are biased towards what we need for this work and as such
do not serve as comprehensive guides to these areas. The references given
provide such comprehensive coverage.

1.1 Brief His tory of P ro jec t

The plan for this work was based around writing the specification and devel-
oping the implementation of the counting system for the Waterford Institute
of Technology's Academic Council Election of Academic Members using for-
mal methods. The rules for this election are contained in Appendix A. The
plan was to write the specification using Z [30] and develop the implemen-
tation using Morgan's Refinement Calculus [23].

The Z specification for this system is presented in Appendix B. An
examination of the Z specification will show that the specification relies
heavily on the axiomatic-definition style of function specification. The ulti-
mate election count 'operation' (which is the only operation schema in the
specification) is specified using calls on the axiomatically defined functions.
This style was used as the usual state-based approach of completely sepa-
rate operation schemas did not suit this type of system. As the development
progressed, we found that the Z-specification through Morgan's refinement
was not yielding neat solutions. This may have been due to the nature of
the original problem (not naturally state-based). This part of the project is

12

1 - Introduction 13

discussed in more detail in Chapter 2.
Because of the inherent difficulties involved, it was decided to switch to

the B Method. The B Method incorporates the entire suite of development
stages. The re-writing of the Z specification using the B Method was not
difficult. The translated specification using the B Method is contained in
Appendix D.

When we started looking at the refinement process using the B Method,
however, interesting challenges arose. Whereas theoretically it seemed pos-
sible and often very desirable to proceed with algorithmic refinement before
data refinement, this was not directly supported in the tools available to us.
This led to work on the examination of the feasibility and soundness of this
seemingly unused approach. This work is reported on in Chapter 3 and in
[9],

We adopted the approach of using stateless machines. This meant that
the only conduit for data between machines waa through operations' pa-
rameters and return values. As these operations were originally specified
using abstract parameters and return values, the data refinement of these
operations led to change of interface of operations. Refinement is interface-
preserving in the B Method. This led to a examination of this area and the
development of workarounds which is reported in Chapter 4.

We have used parts of the system specified using the B Method and de-
veloped them to implementation stage using standard B Method techniques
and also the techniques developed during the course of this work. These
case studies are presented in Chapter 5.

1.2 Rela ted Work

We look at related work under two headings:

• Specification of voting systems

• Case studies involving data refinement early in the life-cycle.

Specification of voting systems

A voting system is a popular choice for case studies in speciEcation as the
rules are already well specified, tried and tested. Proportional Representa-
tion (PR) is a system where voters cast their vote 'in order of preference'
for a list of candidates, usually in a multi-seat constituency. Single Trans-
ferable Vote (STV) is a particular (but usual) variant of PR[11]. Mukherjee

1 - Introduction 14

& Wichmann[25] present a full speciGcation of a PR system using STV in
VDM[18]. The specification is animated using SML[21] as part of the pro-
cess of validating the speciEcation. No post-specification development takes
place.

PoppIeton[26] uses the specification of an STV variant of a PR system,
written using Z[30] as a case study to examine functional decomposition in
Z. Again, no post-specification development takes place.

Case studies involving data refinement early in t h e life cycle

We have seen how the relative order of data refinement and algorithmic
refinement is an important aspect of this work. This notion is not often
discussed. It seems that if practitioners wish to use an order other than
data refinement and then algorithmic refinement, (which is the only one
directly supported by the B tools(i.e. the B-Toolkit and Atelier-B)) they use
the workaround (described in Section 3.4), with the 'layered development'
approach as described in Section 1.5.

Fraer presents a case study which looks at the classic Minimum Spem-
ning Tree in [13]. In this case study, both the data structures used in imple-
mentation and the algorithm used on them are complex. The algorithm is
introduced on the abstract data types to successfully simplify this step. It
is implemented using 'layered development', incorporating the workaround
approach.

In a case study of a Distributed Load Balancing System[31], Walden
proceeds with some algorithmic refinement before data refinement. The
author concludes that the inability to introduce loops at anything but the
final stage is restrictive. Again, this problem is solved within the available
structures of the B-Toolkit.

In case studies on application of the B-Method to CICS[15], and Railway
Signalling Systems[10], the authors use the 'layered design' approach.

In his paper on pointer implementation of tree structures[8], Butler in-
troduces algorithmic refinement before data refinement. The B Method is
not used. The resultant technique is used in Chapter 2 of this work.

1.3 Weakest Precondi t ion

Much of the underlying theory used in this work is fundamentally based on
the use of Dijkstra's weakest precondition [12]. We define what we mean by

[14]:

1 - Introduction 15

Definit ion 1 wp(S,R) is the set of all states such that execution of S begun
m ony one o/ guamMteecf (o m a amount o/ m
a state satisfying R.

So, for example

tup('a; := a; + 1', z < 1) = i < 0

We use the notion of weakest precondition to define semantics of com-
mands, specifications and even refinement. For commands, for example, if
for all postconditions we know which preconditions will guarantee termi-
nation satisfying the postcondition, then we say we know the meaning or
aemazitzca of the command.

For example, the semantics of assignment can be defined as follows:
For any postcondition

wp{w := E,A) = A[w\E]

where the formula can be obtained by replacing in all occurrences
of w by E.

Semantics of other programming constructs may be found in [23].

1.4 Ref inement

In this section, we examine what we mean, intuitively as well as formally,
by refinement. As much of the later work deals with data refinement, it is
specifically discussed here.

1.4 .1 I n t r o d u c t i o n t o R e f i n e m e n t

We deal with systems being developed using Formal Methods. Such systems
are originally specified using abstract data types. The eventual implemen-
tation will involve concrete data types and algorithms working on these. To
get from the abstract specification to the concrete implementation, we re-
peatedly refine the previous program. Refining a program means making it
less abstract whilst preserving the previous refined program's properties. A
refined program is observationally indistinguishable from the previous pro-
gram and is 'at least as good' for the customer. Each successive refinement
should move the program towards executability. This is done by

removing non-determinism

1 - Introduction 16

• introducing programming language-like structures (closer to executabil-
ity)

• repleicing abstract data types with concrete data types.

Back & Butler [4] describe reHnement as a '...correctness-preserving
transformation ... between (possibly abstract, non-executable) programs
which is transitive, thus supporting stepwise refinement, and is monotonic
with respect to program constructors, thus supporting piecewise refinement'.

We can categorize refinement into two main categories

• Algorithmic refinement

• Data Refinement

Data refinement involves introducing change into the type of data being
worked on (introduces concrete data types). Algorithmic refinement involves
introducing more concrete programming language-like structures to work on
the data, leaving the structure of the data unchanged, e.g. introducing a
loop.

More formally, using the theory of weakest pre-condition [12], the fol-
lowing definition of algorithmic refinement holds [23]:
For any commands S and T, we say that S is refined by T, writing 5 C T,
exactly when for all postconditions q we have

g) ^ wp(r , g).

From this definition, we can see that both a weakening of a pre-condition and
a strengthening of post-condition or making a more non-deterministic tran-
sition are refinements. A Refinement Calculus based on [23] has been built
around the different refinement rules. These rules show how, for example,
to correctly introduce algorithmic structure to a specification statement.

1 .4 .2 D a t a R e f i n e m e n t

Using the weakest pre-condition theory, we can define what we mean by
data refinement [8, 24]. Data refinement involves replacing abstract program
variables with concrete program variables, preserving an abstraction relation
between them. Let 5 be a statement with program variables u, a and let
r be a statement with variables u, c (a represents the abstract variables
that are replaced by the concrete variables c while u represents variables

1 - Introduction 17

that are common to both S and T). S is data refined under abstraction
relation R, written S Qn T, if the following holds: for all postconditions q
not containing c, we have

R A wp{S, q) wp{T,3 a • R A q) (1.1)

We also make use of the least data-refinement of a statement [32]. Again,
let 5 be a statement with program variables a, and let R be an abstraction
relation relating a and c, then the least-refined statement on program vari-
ables c which is also a data refinement of S under R is denoted S J.
It is the least refined data refinement of S under R. So;

' ^ C;; g] and

• S Qft T (T is a data refinement of S)

=> g]| C 7 .

1.5 In t roduc t ion to B

The B Method [1] is a formal method which encompasses the entire lifecycle
of the development of a system (theory and tool support). The specification,
refinement and implementation phases of the development are represented
by sets of Abstract Machines. A machine is an encapsulation of a state
(determined by a set of variables) and set of operations. The notation used
is Abstract Machine Notation (AMN).

AMN specifies state transitions using generalised substitutions. A gen-
eralised substitution is an abstract mathematical programming construct,
built up from basic substitutions x \= e corresponding to assignments to
state variables, via e.g. the following operators:

Operators on Generalised Substitutions A M N Syntax
f I g PRE f THEN g END

VAR ^ IN g END
= = > ^) ANY u WHERE f THEN ^

6"!; % 5"!; (sequence operator)
5"! II % I?! II 52 (parallel operator)
WHILE E DO ^ WHILE E DO ^

INVARIANT / INVARIANT /
VARIANT e VARIANT e

END END

1 - Introduction 18

MACHINE M

CONSTANTS/
PROPERTIES f (/)
VARIABLES
INVARIANT
INITIALISATION
OPERATIONS
Opi =

END

REFINEMENT #
REFINES M

VARIABLES
INVARIANT J(u,
INITLA.LISATION y(i/)
OPERATIONS
Opi =

T;
END

Figure 1.1: Machine M and associated Refinement N

Note that the sequence operator (^i; S2) is not currently allowed at the
specification stage.

Each machine may have an associated REFINEMENT which contains
refinements of the operations of the original machine. Each REFINEMENT
may, in turn, have an associated REFINEMENT which contains further
operation refinement. Eventually a REFINEMENT will have an associated
IMPLEMENTATION. This concludes the development process.

The machine M of Fig. 1.1 introduces the (set of) state variables u. There
may be a constant relationship between some of these variables. These re-
lationship (s) are contained in the INVARIANT I{u). Each variable must
be initialised in the INITIALISATION. These initialisations must not, of
course, violate the invariant. The OPERATIONS section contains the spec-
ification of the operations of the system, written using AMN.

In this work, we use the CONSTANTS .. PROPERTIES section exten-
sively, due to the style of our specification. Firstly we declare the constants
and then give them appropriate properties, e.g. type and further specifica-
tion. It is used for mathematical functions, e.g.
CONSTANTS double
PROPERTIES (iouWe E A

Vn.(n 6 N A double(n) = n * 2)
Normally, as above, data or state is managed through the manipulation of
state variables It is, however, possible to have machines with no
variables - we call them stateless machines. In this case, data is managed
through the use of input parameters m) and return values ou().
This is the approach taken in this work.

1 - Introduction 19

The (set of) state variables v contained in REFINEMENT N in Fig. 1.1
will be linked formally with MACHINE M's set of variables u through the
INVARIANT J(u,

Operations are refined by introducing v instead of u (data refinement)
and by introducing new algorithmic constructs e.g. sequence, alternation
(algorithmic reRnement). Note that operation refinement is, fundamentally,
interface-preserving. This follows from the principle that the user (who
has originally specified the operation) should be unaware of any 'behind-
the-scenes' refinement activity. From their point of view, they specify an
operation with an interface. They expect an implementation of exactly
that operation. We have mentioned that we use stateless machines in this
work and that this means that we depend on the parameters of and return
values from operations to port data. The interfaces to these operations will
be specified using abstract data types and the final operations will have
interfaces containing data refined concrete data types. We need to have
correct refinements between non-interface preserving reGnements. This issue
is discussed in Chapter 4.

We have discussed the meaning and use of weakest precondition in Sec-
tion 1.3. When using the B Method, the previously described wp{S, R) is
written in the form [S]R.

Refinements must be correct. Using the B Method, when we introduce
REFINEMENTS, resulting proof-obligations must be discharged to prove
the correctness of the step. The full set of proof-obligations resulting from
each introduction is contained in [1], For instance, one of the main proof
obligations for the refinement of operation S from Fig. 1.1 is

/ A J A [S]true => [T]-i J Operation Ref inement (1.2)

The Operation Refinement proof-obligation states that for any concrete
step of T there is some abstract step of S that establishes the retrieve
relation. It is also called the

Abrial [1] shows that (1.2) implies (1.1).
Using the B tools, the proof-obligations resulting from a refinement step

can be generated. The more trivial of them can be automatically discharged
by the tools.

A number of REFINEMENTS are usually necessary before we make the
final step of introducing an IMPLEMENTATION. IMPLEMENTATION is a
special case of a REFINEMENT, with a few further constraints. The main
constraint is that no further refinements can take place. The other main

1 - Introduction 20

constraints are to do with independence from other implementations and
ensuring that the implementation is concrete. Whereas the introduction
of all algorithmic structures is allowed at REFINEMENT stage in the B
Method, in practice, no current B tools will allow the introduction of loops
before the implementation stage. This seeming anomeily leads us to the work
of Chapter 3.

A set of Abstract Machines can be structured using classical techniques,
e.g. top-down, by grouping different related parts of the system into dif-
ferent MACHINES for instance, in the case of the specification. The entire
system can be integrated by the use of the INCLUDES, USES, SEES, and
IMPORTS clauses. This ability to share other MACHINES (for example)
means that general MACHINES can be re-used. When using the B Tools,
any changes to any of the machines in such a hierarchy will result in the
need for the appropriate machines to be re-analysed. Also, when using the
B Tools, it is possible to get an overview of the specification and design as
presented in a layered horizontal manner [5].

Larger developments are structured using a technique called 'layered de-
velopment'. The original specification is decomposed into a number of linked
subsystem descriptions. The idea is that each subsystem can be refined sep-
arately into code, independent of the design choices made in implementing
the other subsystems. A subsystem SSI that makes use of the functionality
of another subsystem SS2 only accesses the abstract specification of SS2
and not any of its refinements. Each if the separate refinement sequences
are termed jeiiefopmenfa. They are the 'layers' in the 'layered

system development'.
A full description of the B Method is contained in Abrial [1]. Other

useful works are available in [20, 27, 34]

1.6 In t roduc t ion to Z

In this work, we are interested in the full formal development of a system. Z
[30] is a specification notation. We need to use a separate technique to move
towards implementation of the Z specification. In this section, we introduce
the Z notation. The alternatives available on how to proceed to refinement
are mentioned.

1.6 .1 T h e Z Spec i f i ca t ion N o t a t i o n

The formal specification notation, Z, is based on Zermelo-Fraenkel (hence
Z) set theory and first-order predicate logic. It was initiated by J.R. Abrial

1 - Introduction 21

and developed by the Programming Research Group in Oxford since the
1970's. Z is a method of presenting mathematics in a readable framework.
The main Z construct is the schema where we draw attention to some things
of importance in the system and describe the relationships between elements
of that system. For example, if we wish to model a (simple) stock control
system, we have

[STOCK] The set of all possible stock items

We have a system state

StockSystem

carried : FSTOCK

corrzed = /ei/e/

The declarations of 'state' variables are above the hne. The predicates or
'invariants' of the system are below the line. These describe the relationship
between variables that must never be violated. We have operation schemas,
which, though syntactically the same as system state schemas, describe the
effect of an operation on (imported) systems as defined by their system
states.

We may need mathematical functions. To specify these, we use axiomatic
Once specified, these functions are globally accessible. For in-

stance, if we wish to specify the double function which returns the double
of any natural number, we would write it aa follows:

: N —> N

Vn : N •
double{n) = n * 2

Z is suited to state-based systems. These are systems whose behaviour
can be described by the effect of operations on state. If the operations
themselves are complex, then the use of mathematical functions, as specified
using axiomatic definitions can simpli^ the operation for the reader. The Z
specifications written in Chapter 2 and Appendix B rely heavily on the use
of axiomatic definitions.

1.6 .2 R e f i n e m e n t of Z Spec i f i ca t ions

In his definitive book on Z, [30], Spivey gives an introduction to refinement.
A more detailed description of a refinement process applicable to Z specifi-

1 - Introduction 22

cations is given by Woodcock &: Davies in [33]. Morgan [23] shows how to
calculate the program from the specification. His technique (which we refer
to as Morgan's Refinement Calculus) is not Z specific but generally use-
ful. King explores the differences between Z and the Refinement Calculus
in [19]. In our work (specifically in Chapter 2), we use Morgan's Refine-
ment Calculus to refine systems originally specified using the Z specification
notation.

1.7 Ref inement Calculus and The B M e t h o d

We use two techniques of refinement during this work. These are Morgan's
Refinement Calculus and the B Method.

In this section, we briefly describe the two techniques, highlighting the
differences between them. We re-visit the topic of their diEerences in Sec-
tion 6.1 where we offer some judgements on the relative merits of each ap-
proach.

1.7 .1 M o r g a n ' s R e f i n e m e n t Calcu lus

A full description of the Refinement Calculus is contained in [23]. What is
presented here is a brief description of the technique, concentrating on the
strategies involved in the entire life-cycle.

We treat everything as a program, some programs are executable. We
repeat refining the program until we reach an executable program.

A program is specified in the form

w : []

where

• u; is the set of variables whose values may change during program
execution

• pre describes the initial state [precondidion)

• post describes the final state {postcondition)

The following is a strategy to (starting with a Z specification) choose a
refinement path, and derive an implementation.

1 - Introduction 23

1. Rewrite the Z specification of the operation/function in terms of Mor-
gan's 'pTiogmm' (pre, post).

2. Introduce more concrete data types. Link abstract and concrete data
types using 'retrieve relations'. (This is the data refinement step).

3. Attempt to derive a best-guess at a possible, efficient implementation
of the operation/function on the concrete data types. This is usu-
ally done by guessing a number of possible implementations, and then
costing them using techniques as described in, e.g. [2]. Use this to
guide the direction of the remainder of our refinement steps. (The
advantage of this step is that we now have a structure to aim for and
the implementation will be efficient.)

4. Restructure (e.g.break up) the program derived in step 2 to guide
refinement (according to structure derived in step 3).

5. Work on separate ^programs' until they are executable, using Morgan's
Refinement Caclulus [231.

We apply the laws of Refinement Calculus, all of which are contained
in [23] and some of which are re-written in Appendix C to the various
programs. So, using sequential composition, we break down the program
into a number of programs, using top-down design techniques. Each of
these programs will be further refined using a separate refinement path by
repeatedly applying the laws as 'appropriate'. Note the direction of the
effort in this case.

1. Choose a law that you think is appropriate.

2. Attempt to prove the proviso of the rule.

3. If the proviso has been proven, then the refinement law is applicable
and the resulting refinement step is correct.

1.7 .2 R e f i n e m e n t in T h e B M e t h o d

We have mentioned that the B Method encompasses the entire lifecycle of
system development. So, starting with a specification written using the B
Method, we can eventually derive a correct implementation, all within the
B Method. A typical strategy of a B development would be as follows:

1 - Introduction 24

1. Write the original machine which contains the specification, using
AMN.

2. Guess at an implementation, in the same manner as in the previous
section.

3. Proceed with refinement, repeatedly making the machine more con-
crete w.r.t. data and/or algorithmic structure.

4. Stop when the machine (now called IMPLEMENTATION) is imple-
mentable.

In this case, note the direction of effort. As part of each 'further refinement',
the process is :

1. Write the refinement based on the previous available machine.

2. Attempt to discharge the resulting proof-obligations. If this is possi-
ble, then the refinement step is correct.

1.7 .3 D i f f erences B e t w e e n t h e T w o T e c h n i q u e s

Apart from the obvious syntactic differences, the main differences in ap-
proach are as follows:

o Direction of Effort: In the case of Z - Refinement Calculus, the user
must 'guess' which law is applicable, prove the proviso and then, if
successful, applying the law will result in a correct refinement step.
In the case of the B Method, the further refinement is guessed, the
resulting proof-obligations are mechanically derived. If these proof-
obligations can be discharged, then the refinement is correct.

• Step Sizes: In the extreme case, using the B Method, we could
proceed directly from specification to implementation. The resulting
proof-obligations could be difficult, but should be possible if the step
is a correct refinement. In practice, the steps are chosen to produce
more easily discharged proof-obligations. In the case of Morgan's Re-
finement Calculus, laws are applied one (or in some cases two) at a
time.

• Readability: In the case of the B Method, the entire 'program' is
always together. (During the process, 'chunks' of code may be re-
named as operations, but if the operation is appropriately named, the

1 - Introduction 25

overall view is still available in one place.) This makes the process
clean and readable. When using Morgan's Refinement Calculus, how-
ever, the original program, which is usually broken up using sequential
composition, takes many separate refinement paths.

1.8 Dot Nota t ion

When using schemas in Z [30], we can access an element of an instance of
that schema using the dot notation, e.g.

_ Coordinate
: Z
: Z

If we have mypoint : Coordinate then we can access mypoint.xpart or my-

There is no corresponding notation in the B Method. Using the B
Method, if we have = = (Z x Z) and an instance :
Bcoonfzna^e.We need functions to return component parts of pairs, for el-
ements of bpoint. We have (for instance) two functions. fi{bpoint) is the
xpart of the co-ordinate and f2{bpoint) is the ypart of the co-ordinate. The
definitions of these functions are usually obvious. We introduce (an over-
loaded) dot notation as syntactic sugar for these functions, so bpoint.xpart
returns the xpart (or first component) of bpoint, the same as fi{bpoint) and
bpoint.ypart returns the ypart (or second component) of bpoint, the same as
f2{bpoint). It should be clear from the name of component part (e.g. xpart)
which component is being accessed. If it is not obvious, it will be clearly
stated. We use this syntactic sugar from now on.

Chapte r 2

T h e Development of a Z
Specification

2.1 In t roduc t ion

In this chapter, we start with a Z specification and formally develop an
implementation using Morgan's Refinement Calculus [23] and techniques
described in Butler [8], We produce Pascal-like code.

The sub-system we examine in this chapter is part of the overall sys-
tem, the counting of votes in an electoral count system. An implementation
of a PR system, known as STV, is used [11]. This particular system is
based largely on the rules of election for Seanad Eireann [28] and is tailored
to count the votes polled to elect the academic elected membership of the
Academic Council in Waterford Institute of Technology, Ireland. (Each aca-
demic member of staff can vote to elect 13 members from the academic staff).
The main modification from the Seanad Eireann rules is the need for gender
and school balance in the elected members cohort. The full set of rules as
used are available in 'Academic Council Election Rules', Appendix A.

The input to this system is a collection of votes, which are then counted
according to our set of rules. The main output of the system is the list of
elected candidates. The raw input can contain errors, either accidentally
or deliberately introduced by the voter. A decision was taken to specify
the counting system based on validated votes (which we call ballots). We
therefore need to specify (and implement) this preprocessing of the input.
The development of this preprocessing is the subject of this chapter.

26

2 - Development of a Z Specification 27

2.2 Pre -p rocess ing of Votes

At the abstract level, the input is modelled as a sequence of papers where
a paper is a partial function from candidate to N and bag T == T Ni,
where for b G bag T and item G dom{b), b{item) returns the number of
occurrences of in the bag. This raw input poper is processed to become
what we term a ballot. The operation which deals with this has an abstract
specification called The preprocessing of the sequence of papers
returns a bag of ballots and has an abstract specification of p7ie_proceaa. Not
all votes will be valid, so some input will be discarded.

Valid preferences on a paper are that set of preferences that are unique,
contiguous and start at one. Duplicate preferences (e.g., two candidates
have preference 3 associated with them) are disregarded as are all higher
preferences on the paper. A skip in preferences (e.g., the voter expresses
preferences 1,2,4,5 but no 3) invalidates all preferences after the skipped
preference (in this case, only 1,2 are valid). The ballot holds only valid
preferences and uses an injective sequence such that the first element of the
sequence is the candidate whose preference was 1, etc. (No other candidate
will have been validly assigned preference 1). It may happen that a paper
has no valid preferences (e.g., if two candidates are given preference 1), in
which case the ballots sequence will be empty. This is termed a spoiled vote
and is not added to the (resultant) bag of ballots.

In the specification, the input paper is modelled as a function Cand -+> N
so as to model the physical voting paper as closely as possible. The validated
vote (which we call a ballot) is modelled as a sequence of Candidates in
order of the voter's preference. A weight is associated with each ballot for
counting purposes. At the end of pre-processing the votes, the weight of each
ballot is 1000. There may be duplicate ballots. Obviously, each duplicate is
important. What may not be so obvious is that each duplicate ballot is dealt
with equivalently. It is thus appropriate to model the collection of ballots
as bags of ballots at the end of preprocessing.

The refinement process results in an implementation that takes as input
an array of voting papers. The output from the process is a binary search
tree where each node contains a ballot and the number of times the ballot
occurs. The binary search tree is used because it is an efficient method of
grouping the duplicate ballots.

Our first step is to take the Z specification of the preprocessing of the
votes and refine this into specification statements as described in Morgan
[23]. Next, we manipulate that specification statement to break it into more
manageable statements. Finally, we refine each of the statements using

2 - Development of a Z Specification 28

appropriate techniques.

2 .2 .1 Z Spec i f i ca t ion of P r e - p r o c e s s i n g

We have the following type:

[Candidate] The set of all possible candidates for election.

We also have three global variables:

no_con(Zs : N The number of candidates nominated for election
(i.e. the number that appear on the voting paper),

no-Votes : N The number of votes cast,
no-voters : N The number of eligible voters.

We use the following definitions of Ballot and Paper as follows:

_ Ballot
: iseq

i/o/ue : Z

-1000 < value < 1000

Paper == Candidate -+> Ni

Note that we are expecting non-zero preferences. Valid preferences on a
voting paper start at 1 and are unique, increasing and contiguous. We
specify a function which returns the first non-unique, non-contiguous or non-
existent preference. This number minus 1 is the number of valid preferences
on the voting paper. All preferences between 1 and this number are valid.

find^firstJiole^or^dup : Paper —> N

find-first-hole^or^dup {paper) =
min{n : N | n : 1 .. no^cands -|- 1 A ^paper""(\ {n} j) ^ 1}

The next function takes the voting paper and returns a (valid) Ballot with
invalid preferences stripped. This means that, for instance, a spoiled vote
will have no valid preferences.

make-ballot : Paper —> Ballot

make-hallot{paper) =
<3 pref 1 . . find-first-hole-or-dup{paper) — 1 <1 paper"

value -w 1000 >

2 - Development of a Z Specification 29

The following function takes a sequence of voting papers and returns a se-
quence of Ballots.

mo&eaegBa/Zok : seq f oper —» seq

= map segpopers

The following function throws away empty ballots. These are invalid
papers (or spoiled votes) that were stripped down to empty ballots.

throwawayempties : seq Ballot —> seq Ballot

fullseq I" {b : Ballot | h G vanfullseq A ^{b.preference) > 0 • 6}

The following function takes in the sequence of voting papers and pro-
duces a bag of preprocessed ballots. As a sequence is Snite, then items
returns a finite bag of Ballots. We call this type finBagBallot.

p?ie_prDcega : seq Paper —̂

(motesegBonota (gegpoperg)))

Note that the following definition of map is assumed:

mop : (% —> y X geg %) —» aeg F

map / s = { n : l . . # s « n i - ^ / (^ (^))}

2 .2 .2 A p p r o a c h Taken t o D e v e l o p m e n t

We examine the problem specification in three parts, using a bottom-up
approach.

1. make_ballot. The production of a validated ballot from an unvali-
dated paper. This is dealt with in Section 2.3.

2. insert. Insertion of one ballot into the binary search tree. We examine
this development in Section 2.4.

3. pre-process. This part takes the collection of unvalidated papers,
validates them (using make_balIot) and inserts them (using insert)
into the collection of validated ballots under certain conditions. We
examine this development in Section 2.5

2 - Development of a Z Specification 30

The development of parts 1 and 3 are relatively straightforward using
standard techniques. However, in the case of 2, we find that because of
the use of a concrete recursive data structure, i.e. binary search trees, it
is more appropriate to appeal to functioneil programming techniques and
specifically techniques developed in Butler [8]. These provide the basis for a
mechanical approach to reSning trees (aa defined using recursive functions)
to pointer implementations. We examine the three parts separately. We look
at the development of part 1 carefully, as an example of standard Morgan's
Refinement Calculus. We look at the development of part 2 showing how
the Butler technique [8] works. We finally give an overview of the (standard
Morgan-type) development of part 3.

The refinement steps which use Morgan's Refinement Calculus [23] ref-
erence laws which are included in Appendix C.

2.3 Ref inement of niake_ballot

2 .3 .1 D a t a R e f i n e m e n t under Funct iona l A b s t r a c t i o n Invari-
ant

In this section, we use a special type of data refinement, i.e. where the
abstraction invariant is functional. We use the following from from [22]:

The following is always valid where a is the set of abstract variables, c
is the set of concrete variables, x the set of common variables and A7 is the
abstraction invariant:

a,x : [pre, post] c,x :[{3a • AI A pre), (3 a • AI A post)]

Given that AI is functional, this means we can write AI = a = / (c)
= 'Using the one point rule'
G, a;:[ii = / (c) A pre, a = / (c) A

'If post does not contain any initial variables'
c,a; : [p7ie[a\/(c)], poa([a\/(c)]]
We use this law for data refinement where the abstraction invariant is func-
tional. It is called Law C9 and appears in Appendix C

2 .3 .2 Prom Z t o Spec i f i ca t ion S t a t e m e n t

Supporting Definitions

We have used Paper and Ballot as the abstract models. We now begin to
move towards a concrete representation and define two new types, CPaper

2 - Development of a Z Specification 31

whose instances will be a concrete representation of Paper and CBallot
whose instances will be a concrete representation of BoZZoL Note that we
use the progranuning-like structure of a record which we call fiec.

Type CPaper = = array [1 .. no_cands] of
rec

cand:Candidate;
ppref: N ;

end;

CBallot = = rec

bpref: array[l .. no_cands] o/ Candidate;
value: N;
size: N;

end;

Retrieve Relations

The following retrieve relations define the relationship between the ab-
stract(ap) and concrete(cp) Paper and ab8tract(ab) and concrete(cb) Bal-
lots. cp is an instance of type CPaper and cb is an instance of type CBallot.

{c I—> n I 3 i : 1 .. no^cands • cp[i].cand = c A cp[i].ppref = n}

abat = = o6a(c6) = < p/ie/ {n c6.pre/[7%] | n E 1 .. cb.azze},
value cb.value l>

Calculation of a Specification Statement for make_baIlot

We will look at writing a specification statement which refines the make^ballot
function as specified.
So:

ab : [ab = make^ballot{ap)]
C/2 'Law C9 data refinement (functional)'

cb : [abs{cb) = make^ballot{abs{cp))]

where R = ap = absp{cp) A ab = absb{cb)
To get to the next step, we wish to strengthen the postcondition, using Law
C8. If next^step => abs{cb) = make-ballot{abs{cp)) then
cb : [abs{cb) = make^ballot[abs{cp))] C cb : [nextstep]

2 - Development of a Z Specification 32

The technique we use to find a specification statement is to find such a
next-step. Look at L.H.S. of the equation abs{ch) = make^ballot{{abs(cp))

L.H.S. = <3 pref -w {n i—> cb.bpref[n] | n G i .. cb.size},

'concentrate on the pref binding '

= {n I—> c I c = cb.bpref[n] A n £ 1 .. cb.size}

R.H.S. = <pref 1 .. find^first^hole^or^dup{abs{cp) — 1 <1 {abs(cp))"',

value ^ 1000 >

'Similarly, look at the pref binding '

— 1 . . — 1 < (o6a(cp))""

= 'Rewrite find_first_hole_or_dup'

1 . . : N | {no} [) ^ 1} — 1) <

= 'Rewrite abs(cp)'

1 .. {min{no : N | # { c i—> n | 3 i : 1 .. no.-cands •

cp[i] = c A cp[i].ppref = n A n > 0}'"

d { n o } D ^ 1} - 1)

<l{n I—i- c I 3 ? : 1 .. no-cands •

cp[i].cand — c A cp[i].ppref[i] = n A n > 0}~

= 'Let HOD = min{no : N | # { n i—> c | 3 i : 1 .. no^cands •

cp[%].caW = c A cp[%].pp?ie/ = n A n > 0}

d {^^o} D # 1} - 1 '

1 .. HOD <1 (n I—;• c I 3 i : 1 .. no^cands •

cp[i].cand = c A cp[i].pref = n A n > 0}

= 'From definition of <l'

(n 1-̂ c I 3 i : 1 .. no-cands • cp[i\.cand = c A cp[i].ppref = n A

n > 0 A n € 1 .. HOD}

= e 1 . . .H'OD A n > 0 = > n E l . . JIOD'

(n I—> c I 3 i : 1 .. no...cands • cp[i].cand = c A cp[i].ppref = n A

M E 1 . . i r o D }

2 - Development of a Z SpeciEcation 33

The following implies the equality of L.H.S. and R.H.S.

cb.size = HOD A
cb.value = 1000 A
V n ; 1 .. cb.size • 3 i : 1 .. no^cands »

c;)[2].canc(= c6.6pre/[7i] A

This leads to the refinement
cb:[abs(cb) = make_ballot(abs(cp))]
C 'Law C8 strengthen postcondition'

cb : [cb.size =
min{no : N | i—> c | 3 i : 1 .. no^cands •

cp[i].cand — c A cp[i].ppref = n A n > 0}(| {no} D ^ 1}
- 1 A

cb.Wue — 1000 A
V n : 1 .. cb.size * 3 % : 1 .. no^cands •

cp[i].cand = c A cp[i].ppref = n /\ c = ch.bpref[n]]

Note there is no precondition, only postcondition. We introduce a procedure
to name this code, called MakeBallot. We will return to this later when all
the code has been refined.
ab := make_ballot(ap) C MakeBallot(cb, cp)
where

procedure MakeBaUot{re{ cb : Ballot, val cp : Paper)=
c6 : [c6.s%ze =

min{no : N | ^ { n i—> c | 3 z : 1 .. no^cands •
cp[(].can(f = c A cp[i].ppre/ = A ?% > 0}(] {no} 1}

- 1 A
cb.value = 1000 A
V n : 1 .. cb.size • 3 i : 1 .. no-cands •

cp[i].cand = c A cp[i].ppref = n A c = cb.bpref[n]]

2 .3 .3 Prom Spec i f i ca t ion S t a t e m e n t t o C o d e For M a k e B a l l o t

Our first task is to examine the specification statement. A number of inter-
mediate steps are needed for an efficient implementation. Wis break up the
overall program into three smaller programs. An intermediate data struc-
ture, b, is used during the stripping of the votes (where duplicates, etc. are
'thrown away'). The first two programs (b:[INIT] and b:[INIT, MID])

2 - Development of a Z Specification 34

deal with the calculation and population of b. The final program, (b:[MID,
END]) deals with building up the final ballot, cb, from the intermediate b.

b is an array of records. The record contains two fields, cand containing a
candidate and no, containing a number. b[i].cand contains a candidate that
appears at preference i in the voting paper (in error, there may be a number
of different candidates at this preference). b[i].no contains the number of
candidates who have preference i marked against their names. When b is
populated from a voting paper, we can strip down to the valid preference by
noting that the first b[i].no not equal to 1 is the first non-valid preference.
Everything up to this preference is copied into the ballot as valid.

Breaking Down Specification Statement

In this and subsequent sections, we use the following extra notation for
w : [p?Te,poa(] for clarity, i.e.

w : pyie

Also we label the pre and/or post, for later use, e.g.

pre (Labell)
w :

post (Label2)

Using sequential composition, the original program given in the preceding
section is refined to

C 'Law C7 sequential composition'

I [var b •
True

h[l].no .. h[no^cands\.no = 0 (INIT) '

(INIT)

b :

Vp : 1 .. no^cands • 3 setindices : PN |
setindices = {n : N | cp[i].ppref = p A n. G 1 .. no^cands} •
setindices ^ 0 => (MID)

h[p].no = ^setindices A
3% : N I % € sefmdzcea #

2 - Development of a Z Specification 35

c6 :

d (MID) ^

cb.aize = : N | i—» c | 3 z : 1 . . no-cands •
.coW = c A = n A M > 0 }
d {no} D # 1} - 1

c6. wo/we = 1000 A (END)
V n : l . . cb.size • 3i : 1 .. no^cands •

.cand = c A cp[i].ppref = n A c = cb.bpref[n]

We will take each of the programs in turn, i.e. b:[True, INIT], b:[INIT,
MID] and cb:[MID, END]. We look at the refinement of b:[True, INIT]
in detail and give the main structure for the work involved in refining the
remaining two programs, i.e. b:[INIT, MID] and cb:[MID, END].

Refinement of b:[True, INIT]

True
b :

b[l].no .. b[no^cands].no = 0 (INIT)

C Law C7 sequential composition and

Law C4 introduce local variable'

I [var k •

b, k : [b[l].no . .&[&- lj.no = 0]; (2.1)

b, k : [b[l\.no .. h[k — l].no = 0,

b[l].no .. b[k — l].no = 0 A k = no^cands + 1] (2.2)

(2.1) C 'Law C2 assignment'

A; := 1

(2.2) C 'Law C5 iteration

Inv = b[l].no .. b[k-l].no = 0,

G = k ^ no_cands +1

Variant - no_cands+l -k '

do k ^ no-cands + 1 —>

b : [b[l].no .. b[k — l].no = 0 A & ̂ no-cands,

b[l\.no . .h[k — l].no = 0 A <

2 - Development of a Z Specification 36

0 < + 1 — A < + 1 —

od

C 'Law C3 following assignment'

b : [b[l].no .. b[k — l].no = 0 A k no^cands + 1,

b[l].no .. h[k].no = Q/\k<k + l< no_cands\, <

k •= k + 1

C 'As k > k+1 => k > ^ 1 < V < Vq '

b : [b[l].no .. b[k — l].no = 0 A k ^ no^cands + 1,

6[1] .. b[k].no = 0] <

C 'Law CI assignment'

h[k].no := 0

This leads to the following code:

I [var k*
k:= 1;
do k ^ no-cands +1 —»

b[kj.no := 0;
k:= k+1;

od

Ref inement of b:[INIT, MID]

For clarity, b is indexed by 1 to max_pref and cp by 1 to no_cands. These
two values are equal as the maximum legal preference is exactly equal to
the number of candidates (no 'holes' allowed, i.e. preferences must start at
1 and be contiguous). Thus b:[INIT, MID] becomes:

b •. [b[l\.no .. b[max^pref].no = 0,
V p : 1 .. moz-pTie/ #

3 setindices = {si : N | cp[si].ppref = p A a* E 1 .. no-co/i&s} A
b[p].no = ^setindices A

3 i : N 1 i G setindices • cp [i .cand = b[p].cand

2 - Deveiopment of a Z SpecMcation 37

For clarity, we will name the predicate :

P{k) = Vp : 1 .. max^pref \ k E 1 .. no^cands + 1 •
3 : N | cp[az].pp7Te/ = p A az E 1 .. A:} A

6[p].no = #se(m(f%cea A
setmdzcea ^ 0

3 i : N I i € setindices • cp[i].cand = b[p].cand

As we will refine this using iteration, with the following Invariant, Guard
and Variant:

Guard = k < no^cands

-i(? = k > no^cands

(also k G 1 .. no_cands+l)

=> —iG = k = no-cands + 1

Variant = no_coM(fa + 1 — &

C 'Law C6 leading assignment, followed by Law C5 iteration,

followed by Law C3 following assignment '

M I D C I [var k •

k := 1;

do A: < no^cands —>

Inv{k) A G
b :

Inv{k + 1)

k := k + 1]

od

Note that there are 2 possibilities for any k

1. cp[k].ppref E l . . max_pref (valid preference)

2 - Development of a Z Specification 38

2. cp[k].ppref 0 1 . . max-pref (invalid preference)

We apply Law CI alternation for the next refinement. This leads to the
following:

C 'Law CI alternation on 2 possibilities for k as above'

if cp[k].ppref El., max^pref

cp[A:].ppne/ G 1 .. A
/nf (A:) b :
Inv{k + 1)

Q cp[A:].ppre/ 0 1 . . —»

cp[A;].ppre/ ^ 1 . . m&r.pzie/ A
b :

+ 1)

(VAL)

(INVAL)

fi

... C 'Using standard Refinement Calculus Techniques'

if cp[k].ppref e 1 . ^
b[cp[k].ppref].no := b[cp[k].ppref].no + 1;
b[cp[k].ppref].cand := cp[k].cajid;

fi

(In the case that cp[k].ppref is invalid, (INVAL), the preference is ignored.)

Refinement of cb:[MID, END]

The specification statement is written out, labelling the component parts
for ease of use.

E N D = c6 : [Vp : 1 .. no^cands + 1 •

3 setindices =

{si : N I si G 1 .. no^cands A cp[si].ppref = p} A

b[p].no = 41^setindices A

(Pre) setindices ^ 0 =>

: N I i 6 setindices • cp[i].cand = b[p].cand,

2 - Development of a Z Specification 39

(SIZE^

(C A N D)

(VALUE)

A

A

cb.aize = : N |

1—> c I 3 z : 1 .. no^cands •

= c A c^[i].ppre/ = n A

n E 1 . . 7io_c(m&s}

Vn : 1 .. cb.size •

; 1 .. no^t

cp[i].cand = c A cp[i].ppref = n A c = cb.bpref[n]

: 1 .. no^cands

c^.i/a/we = lOOOl

= 'rewrite in terms of components'

c6 : [f7%, SIZE A C A N D A VALUE]

C 'sequential composition'

c6 : [jore, ;FYe /\ 1312513]; (2.3)

c6 : A SIZE, SIZE A CAND]; (2.4)

c6 : [SIZE A C A N D , SIZE A C A N D A VALUE] (2.5)

The following refinements are standard but long. We show the results. Take
each statement separately:

(2.3) C .. C .. C ..

I [var k •
k:=0;
do b[k+l].no = 1 ^

k :=k+l ;
od;
cb.size := k;

(2.4) C .. C

var k

2 - Development of a Z Specification 40

k:=l ;

do k < cb.size -4
cb.bpref[k] := b[k].cand;
k:= k+1;

od

(2.5) C

cb.value;= 1000

2 .3 .4 C o d e For P r o c e d u r e M a k e B a l l o t

Now we can put the component parts of the code in a procedure called
MakeBallot as shown in Fig. 2.1. As all instances of k are separate and
distinct, we use only one k.

2.4 Ref inement of insert

In this section, the operation of inserting an item (a valid ballot) into a binary
search tree is examined. Each node on the binary search tree needs to hold
information of how many duplicate ballots exist, so each node's data part will
contain both an information part (containing the ballot information) and a
count part (holding the number of occurrences of the particular ballot).

In Butler [8], an approach to the derivation of correct algorithms on
trees given recursive functions on trees (including insert) is described. This
approach is used here. The rehnement of insert thus involves two stages.
Firstly, the operation insert is defined on a binary search tree (of type l^iee)
using functional programming and recursion techniques, as described in [6]
and taking into account the presence of the count (number of copies) part.
Importantly, this definition is appropriate for use with [8]. We define the
tree structure using recursion. We 'plug-in' the recursive definition according
to the technique described in [8], apply the rules and transformations and
produce a correct implementation.

2 - Development of a Z Specification 41

procedure MakeBallot(ref cb:Ballot; val cp:Paper) =
var k:integer;
var b: array[l .. no_cands] of

rec
no:integer;
cand: Candidate;

\ \ Initialisation of intermediate variable b
k:= 1;
do k ^ no_cands +1 —»

b[k].no := 0;
k:= k+1;

od
k:= 1;

\ \ Calculating size of valid ballot and transferring to cb.
do k < no-cands —>

if cp[k].ppref G 1 . .max^pref —>
b[cp[k].ppref].no := b[cp[k].ppref].no + 1;
b[cp[k].ppref].caiid := cp.cand;

fl;

k := k+1;
od
k:=0;
do b[k+1].no = 1 —»

k:=k+l ;
od;
cb.size := k;
k :=l ;
do k < cb.size

cb.bpref[k] := b[k].cand;
k:= k+1;

od
\ \ Assigning value to weight.
cb.value := 1000;

Figure 2.1: Code for procedure MakeBallot

2 - Development of a Z Specification 42

2 .4 .1 S u p p o r t i n g De f in i t i ons

The type we use for the tree structure in the recursive definition is:

= e | x lyee x 7}iee)

and

/(em = /n/o x

Note, we will use the abstraction function bag, bag having the usual mean-
ing. Specifically, when dealing with trees:

bag E = 0 (2.6)

bag(bin{{a,b),L,R)) = bag LU {a b} U bag R (2.7)

'doms distinct'

We will move onto an implementation of the tree using the following con-
crete types Pointer Structures

TypelV^eP^r = POINTER TO ATode;

Data = RECORD

info : CBallot]

: mteger;

END;

Node = RECORD

root : Data]

Left, Right : TreePtr;

END;

2 .4 .2 D e f i n i t i o n of insert U s i n g Funct iona l P r o g r a m i n g

This treatment is based on Bird & Wadler [6]. We define an (insert x t)
baaed on a binary search tree with the usual meanings except that the root
information part contains the number of occurrences of the ballot as well as
the ballot.
The general definition of insert is

2 - Development of a Z Specification 43

(z7wer(a; () = bag (^) W [z]

and leads to the following:
Case t = e

bag{insert x e) = bag e l+) [x]

= 0 W gz]|

= {a; t-» 1} 'from (2.6)'

— 6ag(6m(a;,l),E, e) 'from (2.7)'

4=%?tser(a;6 = 6m((a;,l),e, e)

Case t ^ E

(= no(fe((a, 6),i^, A)

Lemma on W and bags:
bag (node((a,b), L, R) x]| = "because of ordering on binary search trees"

[hag L1+) Ix] U {a HH' 6} U bag R x < a

bag L U {o 6 + 1} U bag R x = a

2) U {o i-» 6} U (6ag .R W |[z^) z > o

subcase x < a
bag(insert x node(a,b), L, R))

= bag{ node{{a, b), L, R)) W |a;|

= 'Lemma l+l'

{bag L l±l |a;J) U {a i—» 6} U bag R

= 'Rewrite'

bag{insert x L) VJ {a ^ b} U bag R

= 'From (2.7)'

(no(fe((a, 6), (maer(a; ^) ,^)

'Remove bag'

<= maer(a; no(fe((o, 6),Z,, A) = no(fe((o, 6),(zTwer(a; .L),A)

2 - DeveJopmeDt of a Z Sped^catjon 44

= MO(fe((a;,l),E, e)

%7we7i(z,no(fe((a, 6),%,, A) — ifa; = o—^no(fe((a, 6 + l),i^, j!)

Qa: < a —+ noc!e((o, 6), (znaer((a; TZ)

[]a; > a ^ 6o(fe((o, 6), Z, (maer((a: jZ))

fi

Figure 2.2: Definition of Insert

subcase x > a
Proof similar and leads to

<= zTigGTi z noc!e((a, 6), .L, A) = no(fe((a, 6), (mae/t a; A))

subcase x = a

bag{insert x node{{x, b),L, R)) = bag {node{{x, b), L, R) l±l IxJ)

= 'lemma'

bag L U {a; i—> 6 + 1} U bag R

= 'from (2.7)'

bag{node{{x, b + 1), L, R)

= 'Remove bag'

<(= %7%6e7ia;node((a;, = no&((a;,6 + l),.L, A)

This leads to the definition of insert as shown in Fig. 2.2.

2 .4 .3 Calcu la t iona l der ivat ion of p o i n t e r a l g o r i t h m s f r o m t r e e
o p e r a t i o n s

The derivation of correct algorithms involving pointers, especially those orig-
inally specified using recursion (e.g. trees) is difficult. A technique has been
described in [8] that provides rules that allow recursive functions on trees
to be transformed into imperative algorithms on pointers. We call this the
'Butler technique' during this discussion.

2 - Development of a Z Specification 45

Generic Directed Update (UPD):

= E l

[/ fD(node(6,1, A)) = if Cr(node(6,1, A)) E2(node(6,1, A))
[] Ci(node(6,2), A)) -4 node(6, TZ)
Q CR{node{b, L, R)) node (6 ,L , UPD{R))
fi.

Where for any (s.t. CT'((), GZ (̂() &nd GA(() are mutually
exclusive and exhaustive.

Figure 2.3: Generic Directed Update

The approach taken in the paper is as follows: The specification for a
generic update on a tree structure is presented. It is shown here as Fig. 2.3.
Users of the technique should 'match' the generic terms with the speciAc
terms in the users specific problem. Algorithmic refinement is immediately
applied and the generic refinement is presented for the generic update as
specified. This refinement is shown here as Fig. 2.4. This is easily rewrit-
ten by the user to match the specific problem using the matched terms. A
small amount of further refinement is necessary at this point before the in-
troduction of pointers via data refinement. This data refinement is applied
through the use of many rules called
These rules are presented based on the generic components of the tree and
matching to the specific is again required. Examples of a some transforma-
tions are:

>S[] = Pi <S[ti •= e\ = = Pi : = nil.

{ A (i = 6]| = = == nil

iS| right{ti) J = pi".right. 5 | left{ti) = e J = = Pi^.left = nil

As can be seen, application of the transformations is straightforward.
From the user's point of view, therefore the only overhead is matching the
generic components in the original specification to the specific components of
their specific problem. Apart from the extra refinement mentioned directly
before the application of data refinement, no further proof is necessary.

2 .4 .4 P r o d u c i n g C o d e f rom Funct iona l D e f i n i t i o n of insert

The 'Butler Technique' as described in the previous section is used mechan-
ically in this section to produce code.

2 - Development of a Z SpecMcation 46

Imperative version of Generic Directed Update:

c
i f i = e —> t \= El
[] t # E A -4 t := E2(^)
Q (^ e A ^ c r (()

I [var m • m := ();

do t/m ^ E A -I CT{t/m)

i f m := (left)

[| CR{t/m) —> {Is^Node{t/m)] m := (right)
fi

od;
{ m E A m ^ () A

{CL{t/front{m)) => last{m) = left) A
{CR{t/front{m)) => last{m) = right) };

i f t/m = e ^ t := t[m\El]
[] t/m ^ e t := t{m\E2{t/m)]
fi]|

fi.

Figure 2.4; Generic Directed Update After First Algorithmic Refinement

2 - Development of a Z Specification 47

Wis describe the components of the tree as follows:

A)) = 1

right{node(b, L, R)) =R

=a;

coMn((a;, y) =?/

The recursive definition of insert given in Fig. 2.2 is matched to the generic
directed update given in Fig. 2.4 using the following equalities:

.Bl = no(fe((a, l) ,e, e)

CT{t) = a = info{root{t))

CL{t) = a < info{root(t))

= a >

E2{node{{a, b), L, R)) = node{{a, b + 1), L, R)

Thug this leads to the following refinement of {l8Whole(ti)} ^ ti := insert(a)
(ti), using the above

if ti = e —> t i : = node((a,l), e, e);
Q t i ^ e A a = info(root(ti) —>• t i := node((a,b+l) , L, R); (2.8)

[] t i 7̂ e A a 7̂ info (root (ti) —»
|[var mi • mi := < > ;
d o t i \ m ^ 6 A a ^ info(root(ti \ mi))

if a < info(root(ti \ mi))
{l8_node(ti \ mi) } mi := mi <left>

Q a > info(root(ti\ mi)) —>
{Is_Node(ti\ mi) } mi:= mi <right>

fl
od
{mi E paths(t) A m ^ < > A
(a < info(root(ti \ front(mi)) V a > info (root(ti \ &ont(mi))) A

^Normally, IsWhole(ti) will be true when applying this rule. We assume tha t this is
the case.

2 - Development of a Z Specification 48

(a < mfo(root(ti\ front(mi)) la8t(mi) = left) A
(a > info(root)(ti\ front(mi)) => last(mi) = right) };
if t i \ mi = e —> ti ;= t i [mi \ node((a,l), e, e)] (2.9)
Q ti \ mi ^ 6 ^

info((x,y), L, R) := info((x,y), L, R)[m \ info((x, y+1), L, R) / m] (2.10)
fill

fi

We need to further examine and refine statements (2.8), (2.9) and (2.10).
Then the paths are transformed to pointers, (from [8]) and yields the fol-
lowing code:

procedure Insert(val a:CBallot; ref piTreePtr)
if p = nil new(p); pi'.root, pi".right, pi".left := (a,l), nil, nil;
Q p ^ nil A a = pi'.root.info —» pi'.root.count := pi'.root.count+l;
Q p ^ nil A a ^ pi".root.info

|[var qi, ri # qi := p;
d o qi ^ nil A a ^ q i ' . roo t . in fo

if a < qi'.root.info ^ qi, ri := q^left, qi;
Q a > qi'.root.info qi, ri qi".right, qi;
fi

od
if qi = nil —>

I [var P2 #
new(p); pg'.root, P2".left, p2".r ight;= (a , l) , nil, nil;

if a < ri".root.info —> ri^.left, qi ;= pg, pg;
Q a > rr.root.info —» rr.right, qi := ps, pg;
A
] |

Q qi ^ nil qi".root.count ;= qi".root.count+l;
f i

] |

fl

2.5 Ref inement of Pre-process ing

In this section, we look at the overall specification of pre-process and refine
it using both the work already done on make-ballot (see Section 2.3) and

2 - Development of a Z Specification 49

znsefi (see Section 2.4). The details of each refinement step are not included
as they are standard.

2 .5 .1 F r o m Z t o Spec i f i ca t ion S t a t e m e n t

Supporting Definitions

The input for the entire pre-process (abstract) is seq Paper and the concrete
version is

Type CSeqPapers = = ree
papers: array[l .. no_voters] of CPaper;
no_vot es: integer;

end

Retrieve Relations

Given that cp is of type CSeqPapers,

aseqpapers = abs(cp) = {i : 1 .. cp.no-votes • i i—> cp.papers[i\}

Given ctree is of type BTree and abag is of type bag Ballot and where ©
^ indicates the tree is a sub-tree of (2 or 'is-a-component-ofas described
in Morgan [23]:

= o6s(c^7iee) = {(Z, (r : BTVee; | (roo(, (f, @ c(ree *

Calculation of Specification Statement for pre-process

We examine the the specification statement for pre-process

abag : [abag = pre-process {aseqpapers)]

^abs
ctree : [abs{ctree) = pre-process{abs{conarrpapers))]

We now work on the two sides of the equation above as before. This
gives us (eventually, using standard techniques including strengthening post-
conditions which allows us the extra variables of no-valid and no-invalid)

2 - Development of a Z Specification 50

the specification statement:

C 'Law C8 strengthen postcondition'
cfree, :

[V i : 1 .. cp.no-votes •
3 cb : CBallot \ M akeB allot {cb, cp.papers[i]) • cb.size > 0

3 root : Info] tl,tr : BTree | {root, tl, tr) @ ctree A
root.info = cb A
root.count = : 1 .. cp.no.-Votes] jb : CBallot |

MakeB allot {jb, cp .paper\j]) A jb = ch • j} A
: N I % E 1 . . cp.no-'uofeg; c6 : CBoHot |

MakeB allot {ch, cp .papers[i]) A cb.size > 0 • i } A
noAnvalid = jj^{i : N | i G 1 .. cp.no.^votes] cb : CBallot |

MakeBallot{cb, cp.papers[i]) A ch.size = 0 • «}]

2 .5 .2 F r o m Spec i f i ca t ion S t a t e m e n t t o C o d e for pre -proces s ing

The Invariant for the main loop of this sub-program is:

y i : 1 .. k — 1 •
3 ch : CBallot | M akeB allot {cb, cp .papers[i\) • cb.size > 0 =>

3 root : Info] tl,tr : BTree \ {root, tl, tr) @ ctree A
root.info = cb A
root.count = #{j : 1 .. k — l; jb : CBallot |

MakeB allot {jb, cp.paper [j]) A jb = cb • j} A
no^valid = : N | i G 1 .. A; — 1; cb : CBallot |

M akeB allot {ch, cp.papers[i]) A cb.size > 0 • i } A
noAnvalid = : N | ? G 1 .. A; — 1; cb : CBallot |

M akeB allot {cb, cp.papers[i]) A cb.size = 0 # %}

with Guard = k < cp.no.votes. Variant = cp.no_votes - k - 1
So program as specified in specification statement above is refined by

var k:int;
next_b: CBallot;

k:= 0;
no_vahd :=0; noJnvalid := 0; tree = nil;
do k < cp.no_votes —»

MakeBallot(next_b, cp.papers[k]);
if next_b.size > 0

Insert(next_b, tree);

2 - Development of a Z Specification 51

no_valid := no_valid+l;
[] next_b.size = 0 —>

no_invalid := no_invalid + 1;
fi
k:= k+1;

od

2.6 Moving From the Specific to t h e Generic

Our examination has been based on a specific problem from om- case study.
If we abstract its generic pattern, we find that the problem is that of a se-
lective mapping, where we process each of a collection of items and insert
the processed item into another collection, if a certain condition p holds for
the processed item. We have a generic specification for the problem, where
s is the original sequence, / is the function which processes the elements of
that sequence, the resultant 6 is a bag of the processed elements using the
selective mapping based on the condition p. n is the number of successfully
mapped elements:
b := items{map f s) f p); n := #6
This has the generic solution:
c .. c .. c

var X »
b:= 0 ; n;= 0;
for i = l . . # 8 do

x:= f(s[i]);
if p(x) then

b:= b 1+) [X I
n : = n + l

fi
od

This is an interesting general problem. Another, possibly more useful ap-
proach to this problem would be to prove the general solution and move to
the specific. This is seen as further work.

2 - DeveJopineDt of a Z Speci^catioji 52

2.7 Conclusions

The work in this Chapter consisted of a thorough development starting with
a Z-specification. Not all details are presented as many of the refinements
are long but standard. The development was broken down into three parts,
as described in Sections 2.3 for processing one vote, 2.4 for inserting one
processed vote into the tree and 2.5 calls the above procedures in order to
process the entire collection of votes and produce a collection of processed
votes. During the development of the insertion into the binary search tree,
it was found that Morgan's Refinement Calculus did not fit easily with the
insertion. This was at least partly due to the fact that the binary search tree
is a recursive data structure. We looked at the use of functional program-
ming techniques [6] and applying the Butler [8] technique to the resultant
structures. This was found to be very useful and led to a mechanical type
solution.

However, at this relatively early stage in the project, we felt that this
paradigm (of Z specification followed by Morgan's Refinement Calculus) had
caused us difficulties, for example

• the need to use the non-standard Butler technique as the recursive
data type caused difBculties.

• there was no tool support available to help with the refinement route.
This is seen as a big disadvantage of this paradigm.

• when proofs were long and complex, it was difficult to keep track of
the proofs. The proof illustrated in Section 2.3.3 (that of b:[INIT])
is neither long nor complex, but it is not trivial to keep track of each
separate path. Neither is it easy to see the overview of the path even
when great care is used to present the material.

It should be noted that an interesting property of the Butler technique
is that algorithmic refinement takes place before data refinement. This was
seen to be successful and pointed the way for further examination of this
strategy in general.

These problems led us to look towards and decide on moving to the B
Method for the development of our system. The tool support was a major
factor. Also the structure of the B machines means that at any point, the
entire operation is viewable, at least at the highest level machine.

The case-studies (on parts of the system) using the B Method and dif-
ferent concrete data structures are presented in Chapter 5.

2 - Development of a Z Specification 53

This chapter, therefore, summarises our work done using Morgan's Re-
Hnement Calculus [23] and the Butler technique as described in [8]. It is
presented as a valid development.

Chap te r 3

Per forming Algori thmic
Ref inement before D a t a
Ref inement in B

3.1 In t roduc t ion

The standard approach in the development of formal systems is to apply
data refinement and then proceed with algorithmic refinement on the con-
crete data types. In this chapter, we investigate the strategy of introducing
algorithmic refinement before data refinement. We present the underlying
theory of distribution of data refinement over algorithmic structures. The
formal treatment is elucidated by the use of simple examples.

This idea of mixing the relative order of algorithmic refinement and data
refinement is not new in formal methods in general. In Chapter 2, we use a
technique described in [8] which applies algorithmic refinement before data
refinement. Nor is this mixing of relative order new in the B Method in
particular. It is indeed part of the theory of the B Method [1]. However, it
does not seem to be used (directly) in practice. Neither the B-Toolkit nor
Atelier-B at present support this approach directly. (The workaround that
is currently used in the B-Toolkit is presented in Section 3.4.)

Our treatment of this approach relies on work [8, 16, 32] which simplifies
the data refinement step over algorithmically refined programs by providing
rules on the distribution of data refinement.

By implementing the strategy of algorithmic refinement before data re-
finement in the B Method, we get the benefits of the B Method's tool support
coupled with a strategy which, it is felt, makes loop introduction and proving

54

3 - Performing Algorithmic Refinement before Data Refinement 55

eaaier.
Much of the work in this chapter is based on work presented in [9].

3.2 Laws of Dis t r ibut ion of D a t a Ref inement

Our approach is to, immediately from speciRcation, introduce algorithmic
structures. These algorithmic structures are based on abstract data types.
Ensuing data refinement, therefore, will be on algorithmic structures.

We have discussed the idea of least data refinement in Section 1.4.2.
5] is the least data refinement of 5).

Rules for distributing through the structure of S may be found in
[8, 16, 22, 24, 32]. Some of these rules are repeated in Fig. 3.1, rewritten
using the notation of the B Method. The first rule D a t R e f 1 deals with data
refinement of a basic assignment statement. DatRef 2 shows the conditions
under which nondeterministic assignments may be data refined. DatRef 3
shows that distributes through sequential composition. The two rules,
DatRef 4 and DatRef 6 show that distributes through if-statements
and loops provided the guards are equivalent under the abstraction relation.
Note that the abstract B loop will normally have an associated variant and
invariant. These will not be explicitly carried forward in later refinements
as they are only required when the abstract loop is first introduced in a
refinement step. The fifth rule, DatRef 5 deals with the data refinement
of blocks with local variables. Note that OQ, CQ are global to the statement.
ai ,ci are local to S. The proof obligation (Vai,ci • R) <=> R shows
that R deals with global variables (<%,%) only. The final proof obligation,
(@ai e 5") = 5" states that we expect S to initialise oi. Note that Q may
involve oo, % as well as oi, ci, but .R does not involve oi, ci, only oo,

We will look at the affect of data refinement on a •procedure in the next
chapter, Chapter 4.

We calculate a data refinement of a statement S under R by calculating
a refinement of S | . For example, we wish to data refine (under R) the
sequential composition represented by 82- Given that 5"!] E
and ^2 1 C 5*2, and appealing to the data refinement laws of Fig. 3.1,
then;

^1; % { C 1; 1 c

So,

Some interesting properties of C and Oji are:

3 - Performing Algorithmic Refinement before Data Refinement 56

• S C/j T A T Q U S Qfi U

• 5* c T A r Cjij U S C/j U

3.3 Examples to I l lus t ra te Laws

In this section, we illustrate the Data Refinement Laws as presented in
Fig. 3.1, using simple examples.

In the first example, we present the MACHINE and REFINEMENT as
they would appear. For the remaining examples, we use segments rather
than the entire MACHINE or REFINEMENT.

An interesting part of this work is to examine how the practice of apply-
ing algorithmic refinement before data refinement compares with the more
usual approach of iizce Whereas we do not attempt, in this work, to

compare both approaches, we attempt intuition-based com-
parisons in some of the non-trivial examples. We concentrate, however, in
illustrating the laws in this section and draw from work presented in [9] to
make the comparisons.

3 .3 .1 D i s t r i b u t i o n Over Bas i c A s s i g n m e n t , U s i n g D a t R e f 1

Example
If we take a very simple assignment of (common variable) aa; to an abstract
variable aa. The concrete version of the variable is cc. this is shown in
Fig. 3.2.

This refinement is correct according to the Data Refinement Law Da-
tRef 1, because
aa = 2* cc ^ aa = 2 * cc

3 .3 .2 D i s t r i b u t i o n Over Genera l i s ed A s s i g n m e n t , U s i n g D a -
t R e f 2

Example
We look at an example where we non-deterministically assign a member
of a set to a variable. The (data) refined version of the set is a sequence,
whose range is equal to the original set. The refined program will involve
non-deterministically assigning an index of the sequence to an integer vari-
able. Given a type AType, the following makes up the Abstraction Relation

3 - Performing Algorithmic Refinement before Data Refinement 57

p A R ^ E = F
CDailRLef 1)

2);% E {?} % :=] C w :;= f

R A Q A p => (3 a ' * ([o, c := a', c']R) A P)

p T]H[E%\f :==̂ o := o')] c: @!c'.(<9 ===> c := c')

f i ;] ::]; 9;] (iDaLtRef 3)

p A R Gi <=> Hi, each i
- (IDaitRef 4)

(DatRef 2)

P R E p T H E N IF Gi T H E N 5i
ELSE IF <% T H E N % . . .

ELSE IF On T H E N E N D J
c:][F j?! TTiiigrf 5i .

ELSE IF Hn T H E N 5„] E N D

i? ^ (3 ai, ci • <5)
(V ai, ci • R) <;=^ R

= * (DatRef 5)

VAR ai IN .9 END]| C VAR ci IN g |

p A jZ => G <=> #
(Dsitlleif 6)

i)RjB f, TTIilEIsr W H i i j i s D() jBisnC)
c: \\rHiiLi3 ff D()

Figure 3.1: Data Refinement Laws

3 - Performing Algorithmic Refinement before Data Refinement 58

MACHINE BasicAssignM

VARIABLES xx, aa
INVARIANT

22; € N A
00 e N

INITIALISATION
CT ;= 0 II

OPERATIONS
aimpZe&sazgM =

XX := aa

END

c

REFINEMENT BasicAssignR
ItEFIIVISS jgoazcvlasignLAf
VARIABLES cc
INVARIANT

aa — 2 ^ cc

INITIALISATION cc := 0

OPERATIONS
gimp/easazgn =

XX := 2 * cc
END

Figure 3.2: Basic Assignment

A,(between abstract aa;, and concrete y?/, 5̂"):

A = E A 5"̂ E A
z i € A 2/y 6 l..canf(v4ae() A
ran SS = ASet A card[ASet) = card{SS) A

aa; = 6'5'(i/3/)

The original code is

P R E f 0 T H E N
A N Y xx' W H E R E xx' G ASet T H E N

/yrr* • T 'T*

KAJIXJ # \JijkAJ

E N D

According to the Data refinement rule, DatRef 2 if

A A cc' E 1 . . . carc((5'5') A v45'e(0
=> 3oo'*[aa, cc:=:oo', cc'](A A ^ 0)

then the following is a refinement.

A N Y 2/3/' W H E R E 1/3/' e l . . c W (g g) T H E N
3/2/ := 2/2/'

E N D

This is, indeed the case. [ASet ^ 0 => 3 aa' • aa' G ASet. Also cc' G
l..card{SS) =4> [cc := cc']{cc G l..card{SS).)

3 - Performing Algorithmic Refinement before Data Refinement 59

3 .3 .3 D i s t r i b u t i o n Over Sequence , U s i n g D a t R e f 3

We look a refinement over sequence. We look at the program

B E G I N
2/2/ := 00 * 66

E N D

(v/y, oo, 66 E N). oa and 66 are abstract variables and are related to con-
crete variables, as usual via an abstraction relation. This abstraction rela-
tion could (and often would) lead to complex computation for aa and 66.
We therefore split the evaluation of the abstract variables by introducing
sequence (we assume the existence of (1 and 2̂ aheady, (1, (2 E N). So, the
first, algorithmic refinement is:

B E G I N
il := aa;
f 2 : = 66;
2/2/ := n * (2

E N D

We introduce the (very simple) abstraction relation, R, as: aa = 2 *
CO A 66 = 3 * c6 A CO E N A c6 E N

We can therefore distribute the data refinement across the sequence, us-
ing DatRefS. Noting that

00]| = := 2 * CO
^(aa,66),(co,c6)^ (2 := 66] = (2 := 3 * c6

and that tl, t2, yy are common variables, then the data refinement of above
is:

B E G I N
tl -.= 2* ca;
t2 := 3 * c6;
y := tl * t2

E N D

3 .3 .4 D i s t r i b u t i o n Over IF s t a t e m e n t , U s i n g D a t R e f 4

We look at a simple program which checks if a word is present in a dictionary
88 part of a spell check program. The abstract data model of the dictionary

3 - Performing Algorithmic Refinement before Data Refinement 60

is a set of words. We wish to represent this as a sequence of words, ordered
in some pre-defined order. So the program should establish the following:
[wrd G dictset A ans = TRUE) V (wrd 0 dictset A ans = FALSE)

The full text of the invariants of both machine and refinement (which
makes up i?, the abstraction relation) is as follows:

R= wrd G WORD A dictset £ PWORD A

(fzckeg E A dzctseg = mn

Whereas the fact that the sequence is ordered is the main advantage of this
refinement (and we specify this in the usual way), the exact ordering method
is not of interest to us here.

We immediately introduce an IF statement which refines the original
specification. (The proof is trivial and not included). We then apply data
refinement to the IF statement.
Introduce IF statement

P R E E lyOAD T H E N
IF wrd € dictset T H E N

ans := TRUE
ELSE

ans := FALSE
E N D

Apply Data Refinement

IF wrd E ran dictseq T H E N
ans := TRUE

ELSE
ans := FALSE

E N D

The change is correctness-preserving, because, according to the data refine-
ment law DatRef 4

wrd G WORD A
= mn dzckeg A

dictseq E Ordered{WORD) wrd G dictseq <=*- wrd E ran dictseq

and

3 - Performing Algorithmic Refinement before Data Refinement 61

The alternative approach is to use the data refinement first, i.e. to the post-
condition. This gives us a post-condition of:
(s E ran dictseq A ans = TRUE) V (s ^ ran dictset A ans = FALSE)
When we apply algorithmic refinement to this, i.e. introduce the IF..THEN
statement, then we get
IF s G ran dictseq T H E N

ans := TRUE
ELSE

ans := FALSE
E N D
We have achieved the same result in both cases.

3 .3 .5 D i s t r i b u t i o n Over t h e I n t r o d u c t i o n of a Local Variable
us ing D a t R e f 5

We look at a simple example of a basic assignment within a local variable
block. The original program is as follows:

VAR aa IN aa := xx E N D

We choose a concrete variable cc, with the retrieve relation, .R, being cc =
2 * aa. (Both aa and cc are of type N.) This leads us to a refinement of :

VAR cc I N cc := 2 * xx E N D

We prove this refinement in two steps, first the outer, V A R statement, using
Law DatRef 5 and then the inner statement, using D a t R e f 2.

Using DatRef 5, the outer refinement is correct. R is the invariant on
global variables. In our case, aa; is the only global variable and invariant,
R is True. Q is the invariant on the local variables, i.e. aa and cc, and is
cc — 2 * oa A cc E N A aa E N. the statement to be refined is aa := aa;
The first proof obligation is therefore:
True => (3 aa, cc • cc = 2 * aa A aa G N A cc E N)
This is easily discharged. The second proof obligation is:
V aa, XX • R R
and again is easily discharged. The third proof obligation is written
(@aa * aa := zr) = aa := aa;.
This again is trivially proven.

Next, we distribute data refinement over the statement .9 under using
Law DatRef 2. In order to do this, we rewrite the statement S as @aa' •
[aa' — XX ==> aa := aa'). This is refined by @cc'*(cc' = 2*xx => cc := cc')

3 - Performing Algorithmic Refinement before Data Refinement 62

if the following condition holds (DatRef 2):
cc = 2* aa A cc E N A aa G N A cc' = 2 * xx A True
=> (3 aa' • {[aa, cc := aa', cc']cc = 2 * aa) A aa' = xx
'Using One-Point Rule'
=> [ao, cc := zr, 2 * n j c c = 2 * ao
= True
This proves that this is a correct refinement.

3 .3 .6 D i s t r i b u t i o n Over L o o p I n t r o d u c t i o n , U s i n g D a t R e f 6

This is one of the most interesting and rewarding examinations. When
we mentioned that B-Toolkit or Atelier-B do not fully support algorith-
mic refinement followed by data refinement, it should be noted that neither
support tool allow loop introduction before the implementation stage. (It
follows that no further refinement can be applied). There are workarounds
possible, and used. An example of such a workaround is described in Sec-
tion 3.4.

We look at the approach based on the distribution of data refinement
over the loop based on abstract data, as specified in D a t R e f 6.

The example we look at has as an abstract variable a finite partial func-
tion (which we use aa a bag, i.e. % N). We wish to produce another,
new bag where each element of the domain is processed in some way. Our
first data refinement is to refine the partial function to a sequence of pairs of
(X X N). As usual, we look at the approach of seeing the original machine op-
eration applying the loop introduction, and then applying data refinement.
The original program looks like:

process E)—» y

B E G I N

new/" := | 3^p.(pp E dom ^ A aa; = pn)ceaa(pp) A ^(pp) = nn)}
E N D

We immediately introduce a loop, with invariant:

LI =

= 3pp.(pp E proceasecf Aproceaa(pp)=aa; A
#(PP) = nm) } A

prToceasej C jom
variant card{dom ff — processed)

3 - Performing Algorithmic Refinement before Data Refinement 63

B E G I N
pmcesaed, := 0 , 0 ;
WHILE dom ff — processed ^ 0 D O

VAR pp IN
pp :E (fom — pmcesgeii;
proceasecf := pmcesaecf U {pp};
newf newf U {process(pp) i—> ff{pp)}

E N D
E N D

E N D

We will now introduce the data refinement to the loop, and we wish
to refine the partial function to a sequence containing the pairs, as in the
abstraction relation,

A = f f = ran ss A

= can:((sa) A
gg E x N) A
pmceasecf = {aa;| 3M.(MEl..m(fea;A sg(m<jea;).aa: = aa;)} A
iWei E 0..canf(aa) A
pp = rr.xx

This gives us the following loop;

gg := 0 ,0 ;
WHILE index < card{ss) DO

VAR rr IN
rr := ss(mc!ea;);
mder := mcfea; + 1;
ss := ss''[process{rr.xx) i—> rr.nn];

E N D
E N D

This is a refinement because (using Data Refinement Law)
p A A => dom f f — processed <=> index < card{ss).
Also
-PiiJJ,processed),{ss,index) rr

II

VAR pp IN
pp :E (fom — proceaseff;
pmcease(f processecf U {pp}

E N D H

3 - Performing Algorithmic Refinement before Data Refinement 64

C

index := index + 1

and
,processed),{ss,index) ir

'^R II
VAR pp IN

pp :E (fom
new/ := new/ U {pmcegg(pp) i—> #(pp)}

E N D]
VAR rr IN

rr := ss(index);
ga := aa"[pn)ceag(rr.2a;) t-» TT.zm]

E N D

c

3.4 Cur ren t Prac t ice wi th Loop In t roduc t ion

We have mentioned that current tools do not allow the early introduction
of loops using the above techniques (distributing data refinement through
abstract loops). There is however a workaround that is currently used [29].
It involves introducing a loop early (as we do throughout this work), as an
implementation. This %mp/emen(a(%on is based on abstract types. The loop
control and loop body (baaed on abstract types) are separately (data) refined
and eventually implemented. By joining the eventual implementation to the
'original' loop implementation, we have the full, data and algorithmically
refined and implemented code. The technique is shown in Fig. 3.3.

Whereas this workaround approach is in line with the 'layered develop-
ment' strategy used in the B Method, it is felt that it does not result in
clear intermediate steps. The loop guard and loop body are so logically
associated that to separate them in this way seems excessive.

3.5 Conclusions

The techniques discussed in this chapter allow the introduction of loops
early in the refinement cycle using laws of distribution of data refinement
as shown in Fig. 3.1 and as presented in [9]. This is a sound and clear
approach. Workarounds to this approach are currently used, as discussed in
Section 3.4 and such machines can be checked using the B-Toolkit. This is
an obvious advantage. Another point to be made about the workaround is

3 - Performing Algorithmic Refinement before Data Refinement 65

Refines

Imports

Includes

Refines

Machine

Implementation

b <— guard =

var bh IN
66 <— guard]

Body;
bh <— guard]

c W (a a)

Figure 3.3: How to introduce loops early. This framework will allow early
introduction of loops to be checked using the B-Toolkit.

3 - Performing Algorithmic Refinement before Data Refinement 66

that there is no room in this approach for further algorithmically refining a
loop. This seems reasonable but may require further thought and work.

The approach we suggest is that of allowing data refinement at any stage
during development, using the laws as described in this chapter. This is the
Erst time that these laws have been used in this way. It is a cleaner, more
elegant approach

Chap te r 4

Interface Refinement in B

4.1 In t roduc t ion

Refinements on operations in the B Method are interface-preserving [1].
This is fundamental and sensible. Refining operations whose operations are
based on abstract data types is thus not supported using standard tech-
niques. In this chapter, we categorize these operations which need spe-
cial care. We call these special operations proiWureg. We provide a rule
which tells us under which conditions non interface-preserving refinements
are valid. A workaround is also provided so that this refinement step can be
checked by current B tools. Much of the work in this chapter is based on,
and develops, work originally presented in [9].

4.2 Opera t ions and Procedures

In this section, we discuss B Method operations in general, and our special
procedures in particular.

In the B Method, operations allow us to manipulate the state variables.
For each operation, we specify the inputs, outputs and its effect on state
variables. For example, we can have a simple operation as shown in Fig. 4.1.
In this case, only state variable x is affected by the original operation. The
refinement is standard and shown. (The proof is standard, straightforward
and not shown.) The interface remains unchanged during refinement. The
user can use Assign without knowing that concrete y is used instead of
abstract z. This is fundamental. The user should never need to be aware of
what is happening behind the interface. The user's only concern is that what
is delivered is as least as good for the user as what was specified (including

67

4 - Interface Refinement in B

MACHINE M

VARIABLES a;
INVARIANT I E N

INITIALISATION a; := 0
OPERATIONS

X := 10

END

c

REFINEMENT A
REFINES M
VARIABLES ,/
INVARIANT 3/ E N A

y = X * 2
INITIALISATION y := 0
OPERATIONS

Assign

END
y : = 2 0

Figure 4.1: Simple Operation Refinement

MACHINE M

VARIABLES a:
INVARIANT I E N
INITLA.LISATION a;
OPERATIONS
ret <— Add(in) =

PRE E N
ret := X + in

END
END

c

REFINEMENT A
REFINES M
VARIABLES ?/
INVARIANT 3/ E N A

X = y *2
INITIALISATION 3/ := 0
OPERATIONS
ret <— Add{in) =

ret := y *2 + in
END

Figure 4.2: Operation Refinement with parameter and return value

The B Method supports parameterised operations. We categorise these
operations according to nature of the parameters.

The first category of operation is that when both return type and pa-
rameters are common i.e. they do not need to be data reHned
during development. A simple example is as shown in Fig. 4.2.

In this case, re(and m remain unchanged during the refinement step.
This refinement is thus fully supported by the B Method. Again, the proof
is straightforward and not shown.

The next category of operation is that whose return types and param-
eters are based on abstract data types. In order to implement these op-
erations, we need to data refine (possibly) both the return types and the
parameters. This changes the interface, thus violating a fundamental tenet

4 - Interface ReGnement in B 69

of the B Method. The user is now aware of the changes necessary during
development. There are many practical cases, however, when it is appropri-
ate to specif such operations. One such case is a system which is speciGed
using stateless machines (machines that have no state variables). Parame-
ters are thus the only available conduit for movement of information. The
operations are originally specified using abstract data, but as usual must be
implemented using concrete data. A change of interface is thus necessary.
This change of interface during development is not currently supported using
standard techniques.

For the purposes of this work, we categorise these special operations, call
them and note that they need special care. Wis deEne
88 follows:

Definit ion 2 Procedures are B operations any of whose parameters or re-
tum ore on dato w/izc/i Wff cAange cfurzng
according to Rule ProcRef.

The rule which tells us under which circumstances a refinement involv-
ing a change of interface is correct, stated as Rule ProcRef is presented
in Section 4.3. It is useful to establish a structure under which such a
non-standard refinement can be written and checked using B tools. This
workaround and underlying theory are discussed in Section 4.5.

4.3 Ref inement of P rocedures in B

The following law shows us under which circumstances data refinement of
procedures is valid.

% <— .Aproc(oi) =
C2 <— C^mc(ci) = C

g/ ^ ^ C Cg <— C^rcic(cQ

where a, c are formal parameters, a', c' are actual parameters.

(ProcRef)

This means that the code of the original procedure is da ta refined accord-
ing to the laws of distribution of data refinement as detailed in Chapter 3.
The interface changes and is specified in terms of the concrete data.

4 - Interface Refinement in B 70

4.4 Examples of D a t a Ref inement of Procedures

We look at three examples, one where only the input parameter is data
refined, one where only the output parameter is data refined and finally one
where both input and output parameter are data refined. In each case there
will be either a gluing invariant between the input parameters, a gluing
invariant between the return types, or both, depending on which are being
data refined. We show the entire machine when some state is being data
refined. In the final example, when we use stateless machine, we simply show
the operation and specify the gluing invariants separately for clarity. In all
cases, we assume that sets % and F are available via, e.g. the inclusion of
a Global Data machine.

4.4.1 Example 1 - Data Refinement of a Parameter

The first example takes an operation which returns the position of an (input)
element of a sequence. The abstract sequence, s, is one of X, whereas the
concrete sequence, ar, is one of Y. So we need to data refine state variables
as well as the parameter. The return type is a common variable. The gluing
invariant, is J}// E Y —> % A s = mop ar and relates the pareimeters
xel and yel. Further specification of this partial function is not of interest
to us here. It may, for instance, specify a function that proceaaes a member
of Y to produce a particular X. This is shown in Fig. 4.3.

In order to be able to thus data refine the pmceduTie poa
we use the data refinement law as written in Section 4.3. We need to show
that pos := s"'{xel)] C pos := sr""{yel) where R is the invariant
contained in the machine. According to law D a t R e f 1 in Chapter 3, this
reduces to showing that R => s'"{xel) = sr"'{yel), where R is the invariant
of the REFINEMENT. The invariant implicitly includes the specification of
J/iV, but we add that Ij^{yel) = xel .

s'"{xel) = sr'"{yel)
= 3n • xel I—> n E A

yel !—> n G sr~
= 3 n • n xel € a A

n I—> yel E
4= xel = IiNiyel) A sr = map IJN S

Therefore, the refinement as shown is valid.

4 - Interface Refinement in B 71

MACHINE M

VARIABLES s
INVARLUNT 5 6

INITIALISATION a := 0
OPERATIONS
^05 <— s/iowpoa(a;eZ) =

PRE xel G ran s
THEN

poa := a'^(a;e/)
END

END

C

REFINEMENT
REFINES M
VARIABLES gr
INVARIANT

sr E weg F A
V y : ran sr •
3 n : dom sr •

R 1-̂ E a =>
n ^ y E sr

INITIALISATION ar 0
OPERATIONS
pos <— cshowpos{yel) =

poa := ar'^(3/e/)
END

Figure 4.3: Example of refinement of operation with parameter being data
refined

4.4 .2 E x a m p l e 2 - D a t a R e f i n e m e n t of a R e t u r n T y p e

In this example, illustrated in Fig. 4.4, the return type is data refined and
the parameter is a common variable. It uses the same data as Example 1. In
this case, the input to the operation is a position (of the sequence) and the
output of the operation is the element of the sequence at that position. In
the abstract operation this will be an (abstract) element of type X, whereas
the concrete operation will return a (concrete) element of type Y. Again,
the elements of the sequences are related by a gluing invariant (in this caae
IOUT) which is the same as the J/yv of the previous example.

As with the first example, we need to show that the law for data refine-
ment of procedures is obeyed. The proof is similar to that in Example 1
and not shown.

4 .4 .3 E x a m p l e 3 - D a t a R e f i n e m e n t of B o t h R e t u r n T y p e
and P a r a m e t e r

In this example, both the return type and parameter are data refined. This
is a simple operation which returns the first element of a sequence, provided
that the sequence is non-empty. The operation is contained in a stateless
machine. In the case of the abstract operation, the first element of a sequence

4 - Interface Refinement in B 72

MACHINE M

VARIABLES s
INVARIANT a E zaeg %

INITIALISATION s := 0
OPERATIONS
xel <— showel{pos]

PRE pos G dom a
THEN

xel := s{pos)
END

END

C

REFINEMENT A
REFINES M
VARIABLES sr
INVARIANT

gr E iaeg y A
V y : ran sr •
3 n : dom sr •

n I—̂ lour iy) E s =>
n I—» 2/ E ar

INITIALISATION ar
OPERATIONS
?/e/ -I— caAoweZ(poa) =

yeZ := ar(poa)
END

0

Figure 4.4: Example of refinement of operation witli return type being data
refined

of %'s is returned. In the data refined version the first element of the
corresponding sequence of F's is returned. We show the gluing invariants
separately. 7}^ is the gluing invariant for the parameters, i.e. the sequences.

shows the correspondence between the elements of the sequence (again,
possibly a pmcegging type of function).

ILN = xseq = map abs yseq
loUT = E F —> X A

X = abs{y)

The operations are shown in Fig. 4.5
The proof obligation (from law in Section 4.3) is easily discharged and

not shown.

4.5 Workaround

As we have discussed, when a procedure is refined, its interface changes.
The B tools do not at present support this non interface-preserving data
refinement. In this section, we look at a technique that allows us to check
that the data refined procedure is a correct refinement. The workaround
is presented in two sections for clarity. In Section 4.5.1, the underlying

4 - Interface Refinement in B 73

OPERATIONS

PRE
igeg E aeg(%) A

%seg ^ 0
THEN

I %aeg(l)
END

OPERATIONS
C y <— c/irat(?/geg)

2/ := i/aeg(l)

Figure 4.5: Example of refinement of operation with both return type and
parameter being data refined

theory of the workaround is shown. It is conceptual and uses the example
of one machine's operation being refined by another machine's operation. It
is however, not directly usable with current B tools. Section 4.5.2 shows,
using a simple example, how to use the ideas presented in 4.5.1 to produce
a structure which is usable in current B tools.

4.5.1 Underlying Theory of Workaround

Refinements using the rule for procedures discussed in Section 4.3 can be
checked with the B tools by using the following technique. Assume we have

% <— v4pmc(ai) = vl
and
C2 <— Q)roc(ci) ^ C,

where ai, are linked by and 02, C2 are linked by is an
operation of machine Mi and is an operation of machine M2. We
want to check that Cproc is a data refinement of Aproc. We cannot do
this directly. Instead, we construct machines M{ and respectively with
operations fzioc' as follows:

In abstract M{ :
C2 <— f7%ic'(ai)=

V A R % IN 02 <— Aproc{ai) ; cg : I OUT E N D

In concrete M^:
C2 <— Proc'{ai)=

VAR ci IN ci : Ijpj ; C2 <— Cproc{ci) E N D

4 - Interface Refinement in B 74

(Note that we use the new notation c : / whose older form was c :E {c | / }) .
Now the two operations have the same interface and the tool can be used
to check that the 'concrete' Froc' is refined by abstract Proc'.

According to the above structure, showing that the abstract Proc' is re-
fined by the concrete Proc' is equivalent to showing that A is data refined by
C under A To prove this, we need to show that C
is a 'sufficient condition' for
v a r % in A; C2 : IQUT e n d C v a r ci in ci : J/iv; C e n d

Structure of Proof: The proof is shown at two levels. Firstly, the over-
all structure is shown. One of the steps, which is justified using different
techniques (i.e including weakest precondition calculus) is fully developed
separately. Note that when quantifying over all g's during the proof, q is
independent of oi anda2(oi is input only, and og is a local variable).

var 0/2 IN A] C2 : I OUT end
C 'body of var is independent of ci
v a r <%, ci in A; cg : IQI/T e n d

C 'strengthen initialisation'
v a r 02, ci I I/N A IQC/T IN A; cg : IQUT e n d

C 'assertion can be introduced because of initialisation condition'
v a r og, ci I //TV A LOUT IN {IIN A IQUT}', A; C2 ; IQUT e n d

C 'step
var og, ci I J/iv A I OUT IN C end
C 'C independent of %, louT independent of ci
var ci in ci : Ijpj; C end

Next, we look at 'step by using wp calculus and the usual definition
of 6* C T precisely when wp{S,q) ^ wp{T,q) over all q. Below, assume
universal quantification over q :

i :^(var 02, ci I T/jv A A loc/r}; ^4; C2 : end , g)
= 'wp calculus - local var'

V 02, ci I /fAf A A /oc/r}; C2 : g)
= 'wp calculus - sequence'
Vo2, ci I 7/^ A A ioc/r}, iup(v4,Vc2 : g))
= 'wp calculus - assertion'
V 02, Ci I JfTV A * (/fN A A V C2 : => ?))
=> 'since ^

4 - Interface Refinement in B 75

V 02, ci I Ifj\[A louT • wp{C, 3 a i , 0 2 • Iin A IQUT A V C2 : IQUT* =>
=> 'pred calculus and monotonicity'
Vog, ci I A 3 01, % * g)
= 'ai, 02 not in postcondition'
Vog, ci I /fAT A * wp(C', g)
= 'wp calculus'
wp(var 02, ci | IJJM A louT m C end, q)

This method is therefore sound. The inspiration for this structure was
based on properties of data refinement described by von Wright [32]. There,
the gluing invariant is represented as a predicate transformer rather than a
predicate. Let a be a gluing predicate transformer. It is shown that ' 5 is
data refined by T under a ' is equivalent to:

5; a C a; T,

where 5 C T is standard algorithmic refinement. Operationally, a can be
viewed as a command that (nondeterministically) transforms an abstract
state into a concrete state. For standard data refinement, predicate trans-
former a may be constructed from a gluing invariant / as c :

4.5.2 Implementat ion of Workaround

The description of the workaround above is clear. However, it cannot be
implemented directly. This is mainly due to the fact that sequence (;) is
not allowed in B machines, at least not presently. To work around this, we
specify an original, 'dummy', 'mixed' operation, cg <— Proc'{ai) without
sequence. It is only necessary that this operation may be refined to the
operation as written in M{ above. This operation is then refined to the
operation as written in above. We illustrate this structure in Fig. 4.6,
using the example procedure already used in Section 4.4.3. We re-use the
gluing invariants //at and I OUT from the example and note that they would
appear in the CONSTANTS...PROPERTIES section in the appropriate RE-
FINEMENTs.

Having the machines structured as in Fig. 4.6, we can use the workaround
described in Section 4.5.1. The two refinements in Fig. 4.6 echo the oper-
ations contained in the machines M[and Mg in Section 4.5.1 which are in
turn refinements of the original 'dummy' operation contained in M3.

The significant property of the 'dummy' operation y <— mixedfirst{xseq)
as originally specified in MS is that it can be refined by the namesake oper-
ation contained in MRS. The workaround, whose underlying soundness was

4 - Interface Refinement in B 76

described in Section 4.5, can be implemented now by checking that M3RR
is indeed a refinement of M3R using the B tools directly.

4.6 Conclusions

In this chapter, the use of parameterised operations in B has been examined.
The operations which need special care are categorised and named proce-
dures. A law is presented to show when the refinement of these procedures is
valid. As this is a non-standard strategy, a workaround is presented which
allows the user to check the non interface-preserving refinement using the
current B tools. This workaround is shown to be sound.

4 - Interface Refinement in B 77

MACHINE M l

OPERATIONS
X <— first(xseq) =

PRE
E seg(%) A

$aeg ^ 0
THEN

X := xseq(l)
END

END

MACHINE M2

OPERATIONS
2/ <— =
PRE

3/seg E aeg(y) A
2/aeg ^ 0

THEN
?/ := 2/aeg(l)

END
END

MACHINE M3

OPERATIONS
y <— mM;eo[/irs(aeg(%seg)
PRE

FALSE
THEN

2/ :E
END

END

c

REFINEMENT M3A
/*c.f. */
REFINES MS
INCLUDES M l

OPERATIONS
3/ <— m^e(^ra(seg(3;seg)

VAR X IN
a; <— y;ra^(iaeg);

2/ :E {{/ I /o[/T}
END

END

REFINEMENT
/*c.f. * /
REFINES M3jZ
INCLUDES M2

OPERATIONS
y <— mixedfirst{xseq) =

VAR
2/aeg IN
2/seg :E {i/aeg | T/jy};
y <— cfirst(yseq)

END
END

Figure 4.6; Structure of Machines for Workaround for Interface Refinement
The refinement of operation x <— first{xseq) in MACHINE Ml, by the
operation <— cyirs((3/aeg) in MACHINE M2 can be checked according to
the framework above.

Chap te r 5

Case Studies in B
Development

5.1 In t roduc t ion

This chapter describes the developmental process of two parts of the over-
all W.I.T. Academic Council (A.C.) Election system as described in Ap-
pendix A and specified in Z in Appendix B and as specified in the B Method's
AMN in Appendix D. The two parts of the system which we develop are:

• the pre-processing of votes

• the setting up of the first count

In Chapter 2, we developed (the pre-processing) part of the W.I.T. A.C.
Election system from the Z Specification in Appendix B. This was done
mostly using Morgan's Refinement Calculus [23]. As discussed in Section 2.7,
the development was not straightforward. We decided to approach the de-
velopment of the system (starting with the same pre-processing part) using
the B Method. We took the opportunity to re-examine our choice of concrete
data structure and this resulted in a fundamenteil change thereof.

5.2 Design Issues - B M e t h o d and CH—h's S.T.L.

Having decided to move to using the B Method, we decided to take a fresh
look at our concrete data structure. The development towards the binary
search tree was difficult, though its properties led to an efficient implemen-
tation. Our new solution needed to be at least as efficient. Our choice of

78

5 - Case Studies in B Development 79

new concrete data structure wag contained in the C + + Standard Template
Library (S.T.L.). We model (some of) the existing S.T.L. libraries and then
only need to refine to the level of the library.

C + + programs call on a large number of functions from the Standard
C + + Library. These functions provide essential services such as input and
output. Of the many libraries, (currently) 13 constitute the Standard Tem-
plate Library. These define numerous templates that implement useful and
efficient algorithms and the containers that these algorithms can work on. A
container is a class that contains other objects. An example of a container
is a list. S.T.L. defines a template for a list, i.e. a list which contains generic
items, together with algorithms/functions for inserting, deleting items, etc.

For a fuller discussion of C + + S.T.L., see [7]. There are many very
useful on-line tutorials, e.g. [17].

There are many containers in S.T.L.. The container that we choose for
our system is called the multiset. The multiset is the most appropriate
container to store items where duplicates occur. We use a multiset to model
the input (abstractly a bag of papers) and the output (abstractly a bag of
ballots).

They are an efRcient mechanism for storing multiple occurrences of items,
e.g., an insert into a multiset is of order log N. They are modelled here (as
a B Machine) as a sequence of items (in our case a ballot or paper). In
implementation, multisets work by using an ordering function (supplied by
the user on instantiation of a multiset). The order of the sequence is defined
by a constant (e.g., foperOnier) which is local to the machine.
There is an invariant on the multisets stating that they are always ordered
according to this function.

The implementation is not as simple as modelled as we can see from
the (supplied) costings of the different operations. A complex 'behind the
scenes' structure delivers an efficient mechanism with a simple interface. We
model these multisets, and the 'call' of these operations in the development
will simply be rewritten as calls to the actual C + + S.T.L. code.

We need two types of multiset machines, the multiset containing concrete
papers and the multiset containing concrete ballots. A desired construct
would be a generic multiset machine of the form

M A C H I N E Multiset{Datatype, X^Order),

where Datatype is the data being stored and X-.Order defines the order in
which the data part of Datatype is sequenced. We could instantiate this
machine in both ways. This, however, is not easily done in B because of

5 - Case Studies in B Development 80

the constraints on machine parameters (does not allow functions or complex
data types). Inelegant workarounds are possible, but we present two separate
machines, MultisetPapers (Fig. 5.1) and MultisetBallots (Figs. 5.2 and 5.3).
Obviously, all multiset machines should have the same operations speciGed
and implemented. The figures present only those operations used specifically
for the case studies in this Chapter. The machines use what we will later
describe as concrete data types of

Cfoper = x N)

5.3 Descript ion of System

The first part of the system that we develop is the pre-processing of votes.
This sub-system has been described in Section 2.2. In the treatment of this
chapter, we make some changes to the specification of Chapter 2. The first is
that we ignore the 'weight' of the ballots. It was felt that this omission made
the process clearer for the reader without losing any of the main character
of the work. The second change is that we model the input, in this instance
as a bag of papers rather that as a sequence of papers. The third change is
that bags are now total functions.

At the abstract level, the input is modelled as a bag of papers where
bag T = = T —> Ni, where b{item) returns the number of occurrences of

in the bag. This raw input poper is processed to become what we term
a ballot. The operation which deals with this has an abstract specification
called Make_Ballot. The pre-processing of the bag of papers returns a bag of
ballots. Not all votes will be valid, so some input will be discarded. The first
case study will deal with this overall operation, whose abstract specification
is called fre_froceaa and includes the operation

The first step (pre-processing of votes into validated ballots) having
been completed, we proceed to the counting of the ballots. This is effected
through a series of ^counts'. The result of the first count is that each can-
didate will have 'allocated' to him/her the ballots on which they appear as
first preference. Note that because of the pre-processing step, each ballot
will have (at least) a first preference. The setting up of this first count
(Setup^First^Count) is the subject of our second case study. Note that in
the specification, we use stateless machines. We specify the (parameterised)
operations using mathematical functions defined in the CONSTANTS and
PROPERTIES clauses. The final operation simply calls these functions.

5 - Case Studies in B Development 81

M A C H I N E MulitsetPapers
C O N S T A N T S faperOnfer
P R O P E R T I E S

faperOnfer E P(aeg(Cfoper)) /* Set of all Ordered sequences */
VARIABLES

mae(popers, / * The sequence containing the papers */
/* The multiset which indicates the current
position in the multiset. */

I N V A R I A N T
msetpapers 6 seq{CPaper) A
iter E 1.. card {msetpapers) + 1 A
msetpapers E PaperOrder

O P E R A T I O N S
Start = iter ;= 1;

<— CowM((poper) =
P R E

paper G CPaper
T H E N

number := co?%(({nn | MM G N A mse(popers(Mn) = paper}
E N D

paper <— GetNext =
P R E

iterNotAtEnd
T H E N

poper := mse(papers(%(er) || %(er := %(er + Coun((poper);
E N D

D E F I N I T I O N S
iterNotAtEnd = [iter < card (msetpapers))

E N D

Figure 5.1: Mulitset of papers machine

5 - Case Studies in B Development 82

M A C H I N E MultisetB allot
C O N S T A N T S
P R O P E R T I E S

BallotOrder G ¥{seq{CBallot))
VARIABLES msethallots
I N V A R I A N T S

A
msethallots G BallotOrder

INITIALISATION
msethallots := 0

O P E R A T I O N S
Multilnsert{item, number) =
P R E

item G CBallot A number G N
T H E N

A N Y msetballots', aa, bb W H E R E
msethallots = aa"66 A
msetballots' = aa^{nn i—> item \ nn G 1 . . number ybb A

T H E N
msetballots := msethallots'

E N D
END;

MakeEmpty = msethallots ;= 0;

number <— Count{ballot) =
P R E

G CBallot
T H E N

number := card{{nn \ nn G N A msethallots(nn) = ballot}
E N D

6a//ot <— GetNext =
P R E

iterNotAtEnd
T H E N

6a//oi := msetballots (iter) || iier := iter + Count {ballot)-,
E N D

bh <— CurrentBallot =
hh := msetballots (iter);

Figure 5.2: Multiset of ballots machine

5 - Case Studies in B Development 83

Start =iter := 1;

MoveToNextBallot =iter ;= iter + C'ount{msetballots{iter))
E N D

Figure 5.3: Mulitset of ballots machine... contd.

Part of this case study has been presented as part of [9]. The specification
of the f re_f mceas part has been changed (from the paper) to use bags as
total functions and to use a neater specification.

5.4 Case S tudy 1 - P re -P roces s ing

The speciAcation of the pre-processing using bags as total functions is ag
written in Fig. 5.4. The specification use two global functions. The first is
a special map function that works on bags, which we call mapt.

mapb E ((foper ^ x (6og Paper)) —̂ A
^(f^, 66). (jO'" E Paper —> A 66 E foper =>

niaP6(#, 66) =
'̂ 3/2/ (3/2/ : | Zaa;.(aa: E foper A #(3%) = yy | 66(aa;))))

The second is a standard restrict function, written for bags (as total func-
tions):

restrict E [hag Ballot x FBallot) —> bag Ballot A
Y{bb, ss).{bb e bagBallots A ss E VBallot =>

reg^rzct(66,gg) = A 3/^.(3/3/EBo/W|0)<-|-(aa <1 66))

Before we specify the parameterised operations, we introduce a few types.
The raw input is modeled as simply a partial function from Candidate to
N. The type is called Paper. The validated form of the paper is modelled
as an injective sequence of Candidates in order of preference. This type is
called Ballot. In summary, the types are as follows:

Paper = Candidate -h- N
Ballot = iseq[Candidate).

We have a system-wide constant called no.canck and stands for the number
of registered candidates. It is an important number as it limits the size of
both the paper and the ballot.

5 - Case Studies in B Development 84

C O N S T A N T S
make^ballot,

P R O P E R T I E S
make-ballot G Paper Ballot A

V poper. (paper € foper =>
make^ballot{paper) =

I nn e l..no_can(fg + 1 A card(paper'^[{nn}]) ^ 1}) — 1)
< poper'^)

A

pre_procesa E 6ag Paper —̂ 6ag A
V 6agpapera.(6agpapers E bag Paper =>

pre_procegg(6agpapera) =
reg(ric(((mopt (maA;e_WZo(, 6agpapera)),

{ballot I ballot 6 Ballot A card{ballot) > 0})

O P E R A T I O N S
6ag6aZZo(s ^— Pre_P?i3ceas(6agpapera) =
P R E

bagpopers E 6ag Paper
T H E N

6ag6aZZo(a := pre_proceaa(6agpaperg)
E N D

Figure 5.4: Abstract Specification of pre-processing

5 - Case Studies in B Development 85

The first part of the first case study illustrates the development of the
Make-Ballot operation. The abstract paper is a function from Candidate
to N and, if we invert the function, we have a relation from preferences to
candidates at that preference. If we call the lowest non-unique preference >
1 first-skip-or-dup{licate), i.e., the lowest preference either to appear more
that once (duplicate) or not at all (causing a skip in the order of preferences),
then it follows that all preferences between 1 and firstskip-or^dup — 1 ap-
pear exactly once. Thus, if we domain restrict the inverted abstract paper's
function between 1 and — 1, we have a sequence. This
sequence contains the candidates in order of preference and is the abstract
ballot. This sequence is injective as it is formed from an inverted func-
tion. It may happen that all preferences are used 'correctly', i.e., the size
of the abstract ballot is no^cands. This case is dealt with by the use of
nn G l..no-cands + 1 in the definition of make-.baUot{paper).

The rest of the first case study illustrates the development of the Pre^Process
operation which takes a collection of ballots, each returned by the Make^Ballot
operation, and inserts them into an output bag under certain conditions.

5.4.1 Development of Make_Ballot

The abstract specification of Make^Ballot is as follows;

ahallot <— Make-Ballot[apaper) =
P R E

draper 6 f oper
T H E N

:= moA;e_W/o((apoper)
END.

When we substitute for make-ballot in the assignment, we get

aballot := (l..min{{nn | nn G l..no_cands 4- 1 A card{apaper'~" [{nn}]) ^ 1}) — 1
<

If we let

/ira(_g/Mp_or_(iup = | 6 A co)Ti(opaper'"[{mn}]) ^ 1}),

then the above can be rewritten as

aballot := (1..firstskip-or-dup — 1) <1 apaper^.

5 - Case Studies in B Development 86

The R.H.S. of the assignment statement can be simplified, using the defini-
tion of <1 to

{ MM i-» cc I MM E — 1 A cc i-» ym 6 apaper }.

We explore the two possible paths of development, the style of algo-
rithmic refinement first. We take the following approach on deciding on the
shape of our implementation: We guess at a possible implementations. Hav-
ing this possible implementation means that we have something to aim for
which helps us to make decisions during development. Using this approach
means that for our case studies, we start with the same specification and
expect to arrive at a similar implementation using both styles of develop-
ment.

Make_Ballot - Algorithmic Refinement Follov^^ed by Data Refine-
ment

We look directly for a loop invariant based closely on the structure of the
specification, as follows:

LIi = aballot = { nn i—» cc | nn G l..so_/ar — 1 A cc i—» nn E apaper }.

The guard of the loop is so^far < first^skip^or^dup. We introduce the loop
shown in Fig. 5.5. Note that apaper""(soJar) is well defined since:

opaper E -4-> N A ao_/or <
^ Vm.(m G 1.SO Jar => card {apaper[{ii}]) = 1

l..go_yar < apaper'" E N -«-> CaTicfWak.

Most of the proof obligations generated from the introduction of this
loop are easily discharged. We have a close look at the P-Rule [34], i.e.,
LIi A (7 => [Body]LIi.

[aballot{soJar) := apaper^{soJar)]
[so Jar := so Jar + 1]

{aballot = { nn cc | nn e l..soJar — 1 A cc i—> nn E apaper })

= [a6a(/o((so_/ar) := opaper'"(so_/ar)]
(a6aZ/o(= { nn i—» cc | nzi E l..ao_/ar A cc i—> nm E apaper })

— (aWZo(<4- {ao_/ar w apaper'"(ao_/ar)})
= { nn I—> cc I nn E l..ao_/ar A cc nn E apaper }

4= aballot = { nn cc | nn G l..soJar — 1 A cc i-+ nn E apaper }
= LIi.

5 - Case Studies in B Development 87

VAR IN
ao_/or := 1;
WHILE so-far < first^skip-or^dup D O

o6o/Zo((so_/or) := apaper'^(so_/or);
so-far := so Jar + 1;

I N V A R I A N T Lh
V A R I A N T first^skip^or^dup — so Jar
E N D

E N D

Figure 5.5: First Loop Introduction on Make^Ballot

The loop requires further refinement as the calculation of firstskip^or^dup
and of apoper'^(ao_/ar) are nontrivial. We construct a local VEiriable, 66
which has the following value:

{1..7io_con(kx{(±,0)} < f
{ M t—> (coW, no) I M G mn(opaper) A

comd E apGper'^[{M}] A
no = [{#}]) }.

Here ± represents a special null candidate.
Each pair at position ii contains a candidate with preference ii associ-

ated in apaper and the number of candidates at this preference. When this
number is 1, the candidate of the pair is the unique candidate at this pref-
erence. A pre-condition of the former loop is that bb = BE. We introduce
the local variable, bb with its property in Fig. 5.6.

We proceed with data refinement on the above loop with the assertion
that bb = BB holds. We also take advantage of this refinement step to
replace aballot by cballot using the following simple gluing invariant

Gil = aballot = cballot.

We proceed as follows: The outermost VAR statement is refined using Law
DatRef 6 from Fig. 3.1. This does not result in any change in the intro-
duced variables, but distributes the data refinement inside the statement.
We accordingly apply Law DatRef 3 from Fig. 3.1 to the sequentially com-
posed statements in the VAR statement. This means tha t each component
statement will be data refined using GIi as R. There is no change in the
first two statements. The third is more interesting. It is a loop and we apply

5 - Case Studies in B Development 88

VAR 66 I N
so-far, bb := 1 ,0;
bb := BB ;
P R E bb = BB T H E N

W H I L E so-far < first^skip^or^dup DO
aballot{so-far) := apaper^[so^far)]
so Jar := so^far + 1;

E N D
E N D

E N D

Figure 5.6: Make_Ballot after the introduction of intermediate variable bb.

VAR so Jar, bb I N
so Jar, bb := 1 ,0 ;

66 := ;
W H I L E bb{soJar).no = 1 DO

cballot{soJar) := bb{soJar).cand;
so Jar := so Jar + 1;

E N D
E N D

Figure 5.7: Make^Ballot after first data refinement

Law DatRef 5 from Fig. 3.1. We can show that

bb = BB ^ so Jar < first^skip^or^dup = bb{sojar).no = 1 A
bb = BB => apaper^{soJar) = bb{soJar).cand.

The data refined version of Fig. 5.6 is shown in Fig. 5.7.
Next, we refine the calculation of the local variable bb using the loop

shown in Fig. 5.8. The loop invariant is:

LI2 = bb = {l..n0-cands X {(±,0)} <+
t—> (cancf, no) | M E <1 apoper) A

E (processecf < apoper)'^[{M}] A
no = card {{processed < apaper)"^ [{ii}])}

A

pzTocesaed C c(om(a,paper).

Again, the main proof is easily discharged.

5 - Case Studies in B Development 89

VAR processed IN
:= x {(_L,O)},0;

WHILE dom{apaper) — processed ^ 0 D O
VAR currcand, index IN

currcancf :E (fom(apajDer) — pmceaged ;
index := apaper{currcand) ;
bh[index).cand := currcand ;
hh{index).no := bb{index).no + 1 ;
proceaaecf := pmceaaai U {cuTTcoMd}

E N D
I N V A R I A N T 172
V A R I A N T card{dom{apaper) — processed)
E N D

E N D

Figure 5.8: Calculating intermediate variable 66.

We now apply data reHnement to the code in Fig. 5.8. We replace an ab-
stract paper, represented as a partial function, by a sequence of
N pairs.

Cfoper E x N).

We use GTg to relate these:

GI2 = apaper = ran{cpaper).

Furthermore, we wish to reduce non-determinism. We introduce a new (in-
dexing) variable, ao_/ar. We replace the non-deterministic choice of the
next candidate to be processed by the next in sequence of cpaper, i.e.,
cpaper {so-far). The new invariant is:

GI3 = processed = {c | 3m • (i i G l..so_/ar — 1 A cpaper{ii).cand = c)} A
so-far G l..no-cands + 1.

We can show that

(3̂ 2 A => (fom(opaper) — procesgec! ^ 0 — go_/ar — 1 < conf(cpaper)
T>1 currcand :G dom{apaper) — processed]

C currcand := cpaper {so-far), cand
Vl index := apaper {currcand)] C index := cpaper {so-far) .pref

pmceasecf := pmceaged U {ci/TTcancf}]| C ao_/ar := so_/ar + 1.

5 - Case Studies in B Development 90

VAR so^far IN
so^far ;= 1;
W H I L E so^far ^ card{cpaper) DO

VAR currcand, index IN
curTicanj := cpoper(so_/or).caM(f;

:= cpoper(so_/or).p?Te/;
bb{index).cand := currcand]
bh{index).no := bb{index).no + 1;
so Jar := so Jar + 1;

E N D
E N D

E N D

Figure 5.9: Data-refined loop for calculating bb

Using the data refinement rules, the loop of Fig. 5.8 (excluding the initiali-
sation of 66) is datarrefined by the loop of Fig. 5.9. The initialisation of 66
to l..no_con(k x {(_L,0)} is easily refined by a loop that interates i through
l..no^cands setting each bb{i) to (_L, 0). We omit this for reasons of space.

This concludes the development of the concrete version of Make-Ballot,
which we refer to as using algorithmic refinement before
data refinement.

Make_Ballot - Data Refinement Followed by Algorithmic Refine-
ment

We now visit the more usual approach taken in B developments. We imme-
diately apply data refinement to the abstract specification. We then proceed
with algorithmic refinement. We start at the same point and end with the
same code using both styles, ag discussed in Section 5.4.1. For reasons of
space, we simply state the loop invariants without showing the resultant
code. The development of the code should be obvious from the statement
of the invariants.

We start by showing the result of data refining the operation Make^Ballot
using gluing invariants GI2 and GIi. We introduce a name for the data re-
fined first-skip-or^dup, called cjrst^skip^or^dup.

mm({ nn | mn E l..no_can&s 4-1 A ^ 1 }.

5 - Case Studies in B Development 91

cballot i— C-Make^Ballot[cpaper)=
P R E

cpaper E x N)
T H E N

cballot := {nn i—> cc | nn E l..c^first^skip^or_dup — 1) A
cc I—» nn E mn(cpoper)}

END.

Wis use the same structure as in the previous section, but with concrete
variables. Similarly, we use an intermediate variable {cb) to help us build
up cballot. The property for cb is

c6 = x {_L,0} <4-
{ M I—» (coW, no) I M E mn(mM(cpoper)) A

mW E (mn(cpaper))'̂ [{%%}] A
MO = canf((mn(cpaper))'^ [{%%}]) },

and we introduce a loop to calculate cb using the following loop invariant:

2̂ .74 = c6 = 1..7io_con&sx{_L,0} <1-
{ M I—» {cand,no) \ ii G ran{ran{l..so^far — 1 <1 cpaper)) A

caW E m)i(l..ao_/ar — 1 < cpoper)""[{%%}] A
no = mnf(7ian(l..ao_/or — 1 < cpoper)'^[{H}] } A

so^far G l..no^cands + 1.

Note the similarity with LI2. The main difference is the use of an index
so^far rather than a set processed. This increases the complexity of the
reasoning slightly at the concrete level.

We need to calculate the initial value of cb (as with bb before) and so
present the following loop invariant to calculate the initial value for cb. Note
the similarity to J3 from the previous section.

L/5 = l..so_/ar <\ cb = l..so^far — 1 x {(_L, 0)} A
so^far G l.no.-cands + 1.

Next, we present the 'main' loop invariant, i.e., to calculate cballot.

LIQ = cballot = {nn cc | nn E l..so_/ar — 1 A cc 1—s- nn G ran{cpaper)} A
so^far G l..no-cands + 1.

This is very similar to LIi. Using these loop invariants, we derive the same
refined code as resulted from the previous section.

5 - C a s e Studies in B Development 9 2

The invariants are similar, with the concrete version being slightly more
complex. However, we reHned to a more deterministic version in one step
with the loop introduction step involving LI4. When we applied algorithmic
refinement first, (see Fig. 5.8), the first loop had more non-determinism.

5.4.2 Development of Pre_Process

Having developed the code for C^Make^Ballot, we move on to the higher
level, i.e., the container and how the (abstract) bag of papers gets trans-
formed into the (abstract) bag of ballots. The Pre^Process operation is
specified in Fig. 5.4. In this section, we look at the concrete data types
used for the implementation of this operation. We look at both styles of
development as in Section 5.4.1.

Pre_Process - Algorithmic Refinement Followed by Data Refine-
ment

In this section, we apply algorithmic refinement immediately and then pro-
ceed with data refinement. We are required to refine:

The main loop invariant is:

IT? G
bagballots =

((map ())
{ballot I ballot G Ballot A card{ballot) > 0})

A

proceasecf C (iom(6a^piipera).

Looking at the post-condition of Pre^Process, we immediately introduce
a loop as shown in Fig. 5.10. It CEin be shown that all the proof obligations
can be discharged.

We now apply data refinement techniques as described in Chapter 3 Sec-
tion 3.2. bagballots is replaced by msetballots of the MultisetBallots machine
of Figs. 5.2 and 5.3. bagpapers is replaced by msetpapers of the Multiset-
Papers machine of Fig. 5.1. We use the transformations and discharge the
proof obligations. The gluing invariant between bagpapers, bagballots and

5 - Case Studies in B Development 93

<— f7ie_f7ioceaa(6Ggpapers)=
P R E bagpapers E bag Paper
T H E N

V A R processed IN
:= 0 , 0 ;

WHILE {dom{bagpapers) — processed) ^ 0 D O
VAR pp, bb IN

pp :€ ((fom(6ogpaperg) — pzioceaaed) ;
bb <— Make^Ballot(pp)]
I F ca7tf(66) > 0
T H E N

bagballots :=
<+- {66 i—̂ + 6agpopera(pp)}

E N D ;
pvTocesaed := processed U {pp}

E N D
I N V A R I A N T Lh
V A R I A N T card (dom {bagpapers) — processed)
E N D

E N D
E N D

Figure 5.10: Algorithmically-refined pre-processing

5 - Caae Studies m B DeveJopment 94

maê boZZo ŝ is

GZi = bagpaper = items{nn i—» ap | ran{msetpapers{nn)) = ap} A

baghallots = items {msetballots)

One of the main transformations is that of the loop guard. Given

GI5 = processed = { ap | 3 cp • {cp E mprocessed /\ ap = ran{cp)) },

we can show that

Gl̂ i A GI5 =>

dom{Papers) — processed ^ 0 = ran{msetpapers) — mprocessed ^ 0.

Within the loop body we use:

GTg = PP = mp A

bb = cb.

The transformations on the statements and expressions using gluing in-
variant GI4 A GI5 A GIQ are then as follows:

P| bagballots := 0 J C msetballots := 0
D|[pp :€ dom(6agpapera) — pmceaaed { C

mp :E mn()7wetpaperg) — mprocaaaaf
VI bb <— Make^Ballot{pp)] C ch <— C-MakeSallot(mp)
VI bagballots := bagballots <+ {bb 1—> bagballots (bb) + bagpaper s{pp)} J C

cani({nn | mse^papera(nn) = /^p}))
VI processed U {pp}] C mprocessed U {mp].

5 - Case Studies in B Development 95

This leads to the following program:

P R E msetpapers G multisetPapers T H E N
V A R mprocessed IN

mprocesgecf := 0 , 0 ;
W H I L E ran{msetpapers) — mprocessed ^ 0 D O

VAR mp, cb IN
mp :E nzn(77we(papers) — mpMPcesaecf ;
cb <— C^Make^Ballot{mp) ;
I F canf(c6) > 0 T H E N

Multilnsert{cb, card{nn | msetpapers(nn) = mp})
E N D ;
mprocessed := mprocessed U {mp};

E N D
E N D

E N D
E N D .

Next, we refine the nondeterministic selection of mp in the loop body
and become more specific about which member we choose. The refinement
step replaces mprocessed by iter using the following gluing invariant:

GIj = mprocessed = ran{l..iter — 1 < msetpapers).

We can show that

The refined program is defined in terms of the multiset machines (Fig. 5.1
and Figs. 5.2 and 5.3):

MakeEmpty;
Start;
W H I L E D O

mp <— GetNext]
cb <— C^Make^B allot {mp);
I F cW(c6) > 0 T H E N

E N D
E N D .

This concludes the first path for Pre^Process.

5 - Case Studies in B Development 96

C O N S T A N T S

setup^first^count

P R O P E R T I E S

A

V(6ag6a//ok, concf).
{bagballots € bag Ballot A

cand G {cc | bal G dom bagballots A bal{l) = cc} =>

| 66(1) = coW})

O P E R A T I O N S

B E G I N
wn := se(wp__^rat_cou7it(6ag6aZ/o^)

E N D

Figure 5.11: Abstract Specification of Setup-First^Count

5.5 Case S tudy 2 - Set t ing u p Firs t Coun t

The second case study looks at setting up the first count. For this case
study, we use state variables and the main operation is parameterless. The
specification is written in Pig. 5.11 and is part of a machine that has as
state the variables vm and bagballots. The setting up of the first count
entails aasociating each (validated) ballot with that ballot's Hrst preference
candidate at count one.

The abstract vm is a VoteMass. VoteMass is the (abstract) structure
type to hold the details of the counts. It is defined as:

VoteMass = Candidate -h. (N -h- bag Ballot)

bagballots is of type bag Ballot and contains the validated ballots from the
previously described pre-processing.

The first step is to immediately introduce a loop with the following Loop

5 - Case Studies in B Development 97

Setup ^First^Count=
VAR processed IN

:= 0 ,0 ;

W H I L E {dom{haghallots) — processed) ^ 0 D O
V A R 66 , cond I N

66 :E ((fom(6og6aZZots) — processed) ;
cand := 66(1);
vm{cand){l) := vm{cand){l) U

{ 6 6 I—̂ bagbaUots{bb)}
pmcegsed := U {66}

E N D
I N V A R I A N T I /g
V A R I A N T card{dom{bagballots) — processed)
E N D

E N D

Figure 5.12: First Loop Introduction in Setup ^First-Count

Invariant:

=

V cand : allcandidates •
im(coW)(l) — 7ies(nc((6ag6aZWa,{66 | 66(l) = caM(f A 66Epn)ceage(f}) A

pnoceaseii C dom(6og6aZ/o^s).

This leads to the program in Fig. 5.12. The proof-obligations are dis-
charged but not shown as they are standard.

Next, we proceed with data refinement. We proceed with data refinement
in two stages, for clarity. Firstly, we data refine our vm to a less abstract
vmpos. The second data refinement step is to data refine vmpos to a more
concrete cvm.

We proceed with the first data refinement, vmpos has the following type:

ybkMasgf oa = -M (N PN)

vmpos holds the positions of (or pointers to) the ballots in the msetballots
instead of the actual ballots from before. So the gluing invariant is as follows:

GTg =
y{cand, count).{cand 6 dom vm A count G dom{vm{cand)) •

vmpos {cand) (count) =
{pZace I m6e^6aZZot(pZoce) G (fom im(camd)(coun()}

5 - Case Studies in B Development 98

The next gluing invariant Gig specifies a new cprocessed. Whereas processed
is the set of that have been dealt with, cproceaaed is corresponding
set of positions (in msetballots) of the ballots that have been dealt with. So
the gluing invariant is;

G cprocesaej = | E proceaaai}

We distribute this set of data refinements across the code of the program
of Fig. 5.12.

proceaaeff := 0] C cpmceased := 0
VI vm := 0 1 E vmpos := 0
VI dam bagballots — processed 7̂ 0 J C

1 . . — cproceased ^ 0
VI bb :E {dam bagballots — processed) | C

neiupoa :E (l . .canf(mae(W/o(a) — cpmcegaed);
bb := msetballots[newpos)

V\ vm{cand){l) U {bb 1—> bagballots(bb)} J C
wnpoa(con(f)(l) := !m2pos(can(f)(l) U

{nn I msetballots(nn) = bb}
proceasecZ := pfoceaaetf U {66} { C

cprocessed := cprocessed U {nn | msetballots(nn) = bb}

The resultant program is given in Fig. 5.13 and is part of a machine
which includes vmpos and msetballots as state. This program is less ab-
stract, but still contains a non-deterministic choice of the next ballot to be
processed. This non-determinism can be removed by the use of a further
data refinement, introducing a counter called iter, so the next ballot to be
chosen is the next available in msetballots.

G/10 = cprocessed = 1 .. iter — 1 A
iter E 1.. card {msetballots) + 1

We distribute this data refinement across the code of the program of Fig. 5.13

5 - Case Studies in B Development 99

Setup ^First^Count=
VAR cprocessed IN

wn, cproceaaed := 0 , 0 ;
WHILE (1 .. card{msetballots) — cprocessed) ^ 0 DO

VAR bb , cand , newpos IN
netupog :E (1 . . — cpmcegaetf);
bb := msetballots{newpos) ;
cand : = 66(1);

!mT,pos(con(f)(l) := wn(can(f)(l) U
{nn I msetballots{nn) = 66};

cpmceaaecf := cpmcessec! U {nn | mse(6ono(g(n?%) = 66}
E N D

E N D
E N D

Figure 5.13: First Data Refinement in Setup^First-Count

as follows:

P| cprocessed := 0] C iter := 1
P | 1 .. card{msetballots) — cprocessed 7̂ 0] E

< carc!()7we^6o//ok)
VI newpos :G (1 .. card[msethallots) — cprocessed);

66 : = msetballots{newpos)] C
newpos ;= iter;
bb := msetballots{newpos) C
66 := mae^6aZ/o(a(%(er)

V\ cprocessed := cprocessed U {nn \ msetballots {nn) = 66}] C
i<er := %(er + cord({7m | mse(6oZ/o(g(nn) = 66})

This leads to the less non-deterministic, data refined program as written
in Fig. 5.14.

Our next data refinement introduces our final concrete data structure. It
uses sequences. These sequences will be implemented using linked lists. The
concrete data structure is of the type C_VbkMas5, deRned as follows:

C_Vb(eM(wa = x aeg(N x geg N))

Associated with each candidate is a sequence, each element of which con-
tains a count number and the sequence of positions of ballots associated

5 - Case Studies in B Development 100

V A R %(erIN
impoa, %(er := 0 ,1 ;
WHILE [iter < card{msethallots)) DO

VAR bb, cand IN
bb := msetbaUots{iter);
cand : = 66(1);

M7ipoa(c(m(f)(l) := impos(caW)(l) U
{nn I msetballots{nn) = hh]

iter := iter + card{{nn | msetballots{nn) = 6 6 })
E N D

E N D
E N D

Figure 5.14: Second Data Refinement in Setup^First^Count

with this candidate at this count. As it may not be obvious how to access
each of the elements of cvm, we use the following (where i is the position in
the sequence of our candidate of interest):
cim(%).can(f yields the candidate of interest.
cvm(i).countlist yields the sequence or 'list' of counts for our candidate of
interest.
cvm{i).countlist{j).countnumber yields the count number which is at posi-
tion j of the sequence associated with our candidate of interest.
cum(z).coum(/w((j).coun(6oZ/o(a yields the sequence of positions of the bal-
lots associated with the candidate of interest at position of the sequence.
The gluing invariant between vmpos and cvm is as follows;

Gill = y{i, j, cand, count).{i G 1 .. no^cands A
e 1 .. A

cand = cvm{i).cand A
count G dom{ran cvm{i).countlist(j)) A

vmpos{cand){count) = ran{ran cvm{i).countlist(j)) [countnumher))

We introduce the machine ConcreteVoteMass in Figs. 5.15 and 5.16 and use a
strategy similar to that used in the Multiset machines from before. We define
the machine with operations which will be useful to us for this problem. The
next data refinement is then to rewrite the operation Setup^First^Count in
terms of the ConcreteVoteMass machine. This machine, which is based

5 - Case Studies in B Development 101

on sequences, would be implemented using linked lists, using techniques aa
described in [20]. This refinement path is not shown.

In the ConcreteVoteMass machine, we use the mathematical function
makeseq which returns an injective sequence from a set as specified in the
following way:

Vga.(s8 E iaeg N A as) = gg)

This leads to an implementation defined in terms of the MultisetBallot
machine (Figs. 5.2 and 5.3) and the ConcreteVoteMass Machine (Figs. 5.15
and 5.16). This implementation is shown in Fig. 5.17.

5.6 Conclusions

The two case studies completed above have illustrated techniques discussed
in earlier chapters. Specifically, we have employed the technique of applying
algorithmic refinement as a first step throughout. This heis led to clear
solutions and straightforward proofs in most circumstances. We also applied
the technique of data refining interfaces as needed because of some of the
operations' interfaces being based on abstract data types.

Interface refinement was used on both of the high-level operations in the
case studies, i.e. Pre^Process and Setup^First^Count. We applied a fur-
ther interface refinement in the first case study - Pre^Process. A clue as
to when we need interface refinement within the operations can be found
in the abstract specification. Well structured specifications are clear and
hide complex parts by appropriately naming small parts of the specifica-
tions. This can be implemented by the use of mathematical functions
(in the CONSTANTS.. PROPERTIES part of the MACHINE), e.g. the
make^ballot function led to the Make^Ballot procedure. When this non-fiat
structure is used, this is our hint that the implementation of overall specifi-
cation may have an internal call to an operation. Because the mathematical
function has been defined in terms of data that will have to change, we deal
with them as procedures as defined in Section 4.2.

Note the structure of both our (high level) abstract specifications in the
case studies, in Figs. 5.4 and 5.11. In the case of Pre^Process, the function
pre-process calls another function, make-ballot. An operation Make-Ballot
(a procedure) uses the function make-ballot. The operation is refined, using
interface refinement.

5 - Case Studies in B Development 102

M A C H I N E Concrete VoteMass
VARIABLES cvm
I N V A R I A N T S cvm G C^VoteMass
INITIALISATION Initcvm
O P E R A T I O N S

A N Y ss W H E R E
(fom (m7z(g)) = A
card{s) = card{allcandidates)

T H E N
ctm := sa

END;

bh <— CountExists[count, cand) =
P R E

count G N A cand G allcandidates
T H E N

66 E (ran cim)(caW))))
END;

pos <— FindCandIndex{cand) =
P R E

cand G allcandidates
T H E N

A N Y a W H E R E
= coW

T H E N
^05 :=

E N D
END;

pog <— count, cand) =
P R E

count G N A cand G allcandidates
T H E N

A N Y M W H E R E
cwn(Fzn(fCand/n(fea;(con(f)).coun((2a((M).count = count

T H E N
pos := ii;

E N D
END;

Figure 5.15: ConcreteVoteMass Machine

5 - Case Studies in B Development 103

insertjVeiuCount(count, cand) =
P R E

count E N A cond E a/Zconcficfatea A
^ CountExists {count, cand)

T H E N
A N Y condmcfea; W H E R E

candindex = FindCandIndex{cand)
T H E N

cvm{candindex).countlist : =
cim(can(fznde%).countZigt"[count []]

E N D
E N D

7haert#ewBanota(count, cond, stortpog, number) ^
P R E

count E N A cond E o//can(f%(fates A
atartpog E l . . conf(?7wetW/ota) A
startpos + number < card{msethallots) A
CountEa%sta(count, cand)

T H E N
A N Y candindex, countindex, ii W H E R E

candindex = FindCandIndex{cand) A
countzndea; = fm(fCount/n(fea;(can((, count)

T H E N
cwn (cancfmjea;). countZist (countincZea;). countbaZZotg
cwn (conjmtfea;). countZiat (countindez). countboZZota
"7naA:eseg(gtartpo5 .. startpoa + number — 1)

E N D
END;

DEFINITIONS
C_VbteM&s5 G aeg(Can(Z%(Zate x geg(N x aeg N))

Figure 5.16: ConcreteVoteMass Machine., contd.

5 - Case Studies in B Development 104

SetupFirstCount =
Initcvm\
Start] /* Go to start of Ballots */
W H I L E UerNotAtEnd D O

VAR bb, cand IN
bb <— CurrentBallot]
cand := bb{l);
IF CountExists{l, cand)
T H E N

InsertNewBallot[1, cand, iter, num);
ELSE

coW);
%(er, mum)

E N D
Moi/e Zo(;

E N D
E N D

Figure 5.17: Implementation of Setup^First^Count

In the case of Setup^First^Count, the specification is flat. No further
operations are used, so no further interface refinement is required.

It may be noted that the overall structure of the process is cleaner and
neater in this chapter than in the earlier Chapter 2 where a case study
was examined. This may be due to the more appropriate technique having
been used. It is probably more due to the fact that the work done in this
chapter was attempted later than that of the earlier chapter. Therefore,
more experience was brought into the work of this chapter.

Chapte r 6

Conclusions

6.1 Conclusions

We have described, using examples, how to apply data refinement after
algorithmic refinement in B. We have used laws on distribution of data
refinement to implement the former approach based on [8, 16, 22, 24, 32].

We make some comparisons, albeit intuitive, between developments us-
ing both the standard approach of data refinement first and vice versa. Some
tentative conclusions on these comparisons are:

Invariants tend to be simpler when the loop is introduced immediately,
i.e. before data reHnement. This leads to slightly easier reasoning
when proving the loop.

In some cases, the removal of non-determinism in the 'choice of next
element to be processed' in the loop was more elegant in the case of
algorithmic refinement first. This may have been due to that fact that
data refinement was introduced in two stages, (after loop introduction)
firstly maintaining, and then eliminating non-determinism. The 'two-
stage proof wag not as complex as the 'all-in-one' version of the data
refinement first.

We suggest that this developmental style of algorithmic refinement be-
fore data refinement is (at least) worthy of examination. We suggest that
this approach be seen as an alternative to the more standard approach. It
is sometimes (but not always) appropriate. It may not be appropriate, for
example, when the algorithmic structure is determined more by the concrete
data structures than the abstract data structures. Also, it may often be use-
ful to mix approaches, i.e., perform some algorithmic refinement then some

105

6 - CondusJODg 106

data refinement, more algorithmic refinement etc. More work needs to be
done to formulate a set of heuristics on when either approach is appropriate.

There are many ways to data refine an abstract data type, depend-
ing on style and priorities of implementation. In general there are fewer
abstract data types used in developments than concrete data types. De-
velopers should find that it is easier and quicker to gain proficiency in the
introduction of algorithmic structures on the fewer number of abstract data
types than in the introduction of same with concrete data types. Loop
introduction, the proof obligations of which are difficult to discharge, is an
example of where the developer can build up a useful set of solution patterns
more quickly on loops involving abstract data types than on loops working
on concrete data types.

At present, neither the B-Toolkit nor Atelier-B fully support algorith-
mic refinement before implementation stage. The extensions suggested are
to support this activity by incorporating the Data Refinement Laws (e.g.
those mentioned in Fig. 3.1) and allowing algorithmic refinement during the
refinement stage.

Presently, refinement (sensibly) must be interface-preserving. As dis-
cussed in Chapter 4 and illustrated in the case studies, however, in some
cases it is necessary. A rule for allowing us to introduce a correct refinement
step involving interface refinement is presented in Section 4.2. This allows
us to progress soundly. However, as this rule is not presently implemented in
the B-Toolkit, we present a workaround for checking non interface-preserving
refinements in the B-Toolkit in Section 4.5.

We used C-t—H's S.T.L. during development of the case studies. The
motivation for its use is presented in Section 5.2. Whereas the limited nature
of the case studies meant that we did not fully develop the idea, we found
that the resulting efficiency from using S.T.L. and its data types was a good
enough reason to explore the area.

We used the idea of overloaded dot notation in Section 5.4.1. This allows
us to access elements of a pair conveniently and is syntatic sugar for the Z-
like fst and snd functions. We found this to be useful.

During both case studies, we used the approach of early in the develop-
ment guessing a possible implementation. We use this to guide us through
the development path as discussed in Section 1.7.

We discussed the main technical differences between Morgan's Refine-
ment Calculus and the B Method in Section 1.7. We now draw some com-
parisons between each technique.

• Firstly, let us look at the B Method. The developer can see the en-

6 - Conclusions 107

tire operation together, albeit with possibly some operation/function
calls, no matter at what stage the development is. The context is al-
ways clear. However, when using Morgan's Refinement Calculus, the
program is broken up (using sequential composition) and each piece is
separately refined. When developing a program of any reasonable com-
plexity, this leads to many different paths. It becomes quite difficult
to keep track of the paths. It is also tricky to have an overview on the
development process throughout. The development of Section 2.3.3
is a short one but it is not easy to see the development path at a
glance. This is particularly problematic when novice users are using
this approach.

In the B Method, it is possible (albeit not necessary or usual) to go
directly, in one step from specification to implementation. The proof-
obligations would then have to be discharged (assuming automatic
generation of proof obligations by the B-Toolkit). This is not a prac-
tical approach for anything but the simplest of systems as usually
such proof obligations would be difficult to discharge. However it does
nicely illustrate the difference between the two approaches. It is com-
pletely up to the user to drive the entire process in the case of Morgan's
ReEnement Calculus.

• We have mentioned tool support in our presentation of motivations
for moving towards using the B Method. There is no commercially
available tool support for Morgan's Refinement Calculus. The avail-
ability of tool support is a significant advantage for the B Method. It
is hard to envisage any real-world systems being developed without
such significant tool support.

6.2 Fu tu re Work

The work as presented leads us to suggest a number of different areas for
future work.

In this work, we have presented a new approach to refinement, i.e. al-
gorithmic refinement before data refinement. We have not thoroughly ex-
amined when this approach is better or more appropriate. (We discuss it
at an intuitive level). We have not explored under what criteria 'better' or
'more appropriate' could be decided. It would be useful to examine this
area more closely. Perhaps an examination of the types and numbers of
proof-obligations generated in each case would be a starting point. This

6 - Conclusions 108

could lead to a quantifiable way of judging the relative merits of different
developments which would be very useful.

We have used S.T.L. as the target code and environment in the Case
Studies. We discussed why we decided on S.T.L. in Chapter 5. The main
benefit of using S.T.L. is that the algorithms and data structures work well
to give us efficient implementations. We make the (sensible) assumption
that whereas C + + including S.T.L. are not formally proven, we assume
them to be correct as they are widely used and thus exhaustively tested.

Future work in this area would be to specify all of S.T.L. libraries in
the B Method, so that all the S.T.L. is available to the formal practitioner
easily. The development of 'design patterns' of problems which lead to
S.T.L. implementations could lead to re-use of some specification - to - code,
bringing with it with the usual benefits of re-use of proofs, etc.

In this work, we started using Z specification and developing the imple-
mentation using Morgan's Refinement Calculus [23]. As discussed, this did
not work well. We then moved on to work with the B Method [1] which
worked better and which we used for the remainder of the work. It would
be interesting to compile a comprehensive description of the differences be-
tween these two approaches to refinement. An examination of when each is
more appropriate would also be interesting.

Our strategy when developing sub-systems was to look at the specific
problem and develop that. Another approach would be to solve generic
problems or subsystems and re-use these generic solutions to particular
problems. Wis have looked at one generic problem, that of 'selective map-
ping' and shown the generic solution, in Section 2.6. Further work could be
done on abstracting the generic patterns of more of the problems that we
have dealt with in this work. This generic problems could then be solved,
resulting in useful problem patterns with available solutions.

The original plan of this work was to implement the counting of votes in
an electoral system, the rules of which are presented in Appendix A. The
specification is presented, both in the Z notation (Appendix B) and using
the B Method (Appendix D).

As the work progressed, we moved from our original paradigm of Z spec-
ification followed by Morgan's Refinement Calculus to the B Method. Al-
though we were satisfied that the B Method was the appropriate choice for
development, its use led us to examine a number of areas, the results of
which are presented in Chapter 3 and Chapter 4.

This meant that there was a shift in emphasis away from 'pure' imple-
mentation. Consequently, the full system as specified has not been fully
implemented. An obvious area of future work is to fully implement the

6 - Conclusions 109

voting system. This would be interesting as:

• a number of very interesting challenges arose from a careful examina-
tion of the issues arising out of the development of what was a small
part of this real-life system. The development of the remainder of the
system and similar careful examination could, we believe, raise more
interesting points.

• as a system for counting votes is a mission-critical system. Formal
Methods is a very appropriate developmental technique. It would act
as a useful real-life example. It may have commercial value as currently
there are plans to computerise part of the Irish General Election.

Appendix A

Water ford Ins t i tu te of
Technology
Academic Council Elect ion
Count Rules

A . l Election P rocedures of Academic M e m b e r s to
t he Academic Council

1. The number of members to be elected shall be thirteen.

2. There shall be a minimum of 40% or 6 candidates from each gender.
(We call this the 'gender constraint'). This is a legal requirement.

3. There shall be a minimum of two persons from each of the four schools
elected subject to there being sufficient candidates. (We call this the
'school constraint')

4. There shall be a minimum of one person from the Department of Adult
Education elected subject to there being sufRcient cemdidates. (Wis call
this the 'department constraint')

5. In considering the counting of votes, the rules as set down in Rules
for Academic Council Election (Academic Members) will be used. An
abridged form is seen below.

110

Academic Council Election - Count Rules 111

A.2 Rules for Academic Council Elect ion (Aca-
demic Members) (Abridged Form)

1. All valid papers are grouped by first preference votes and candidates
are ordered in descending order of Erst preferences. Each vote is given
a weight of 1000.

2. The quota is calculated
quota =

{number of valid votes * 1000)/(number of vacancies + 1) + 1

3. If, at the end of any count, a candidate has a total weight of votes
greater than the quota, check should that candidate be elected (see
Section A.3). If this is not allowed, then exclude the candidate ac-
cording to rule 7. If it is allowed to elect the candidate, deem the
candidate to be elected and distribute the candidate's surplus in the
following manner

4. If the candidate's votes come from first preferences only, then transfer
all votes according to rule 6.

5. If the candidates votes come from a mixture of first preferences and
transfers, then transfer the last bundle to be transferred according the
rule 6.

6. Calculate the total weight of transferable votes. If the total weight
of transferable votes is greater then surplus, transfer each vote in the
bundle (to the continuing candidate indicated as the next available
preference) with a decreased weight,

=

old weight * [surplus/total weight of transferable papers)
If the total weight of transferable votes is less than or equal to the
surplus, transfer all votes in bundle with same weight as before.

7. If, at the end of any count, no candidate has reached the quota and
there are more continuing candidates than vacancies, a candidate must
be excluded. Working backwards from the candidates with the lowest
vote weight, check can the candidate be excluded (see Section A.3).
If this candidate's exclusion is allowed by RuFFE, then distribute the
transferable votes, leaving the weights unchanged. If the candidate
cannot be excluded (see Section A.3), check the next lowest candidate
and so on. For candidates that cannot be excluded, do not exclude,

Academic Council Election - Count Rules 112

do not elect. These candidates will eventually be elected, without
necessarily reaching the quota.

8. STOP when either the number of elected candidates = 13 or (more
likely) the number of elected candidates + number of continuing can-
didates = 13. At this point all continuing candidates may be deemed
to be elected.

A.3 Rule For Election or Exclusion (R u F E E)

For this rule, a candidate is seen as belonging to a subset of candidates,
either elected, continuing or excluded.

A. 3.1 Election

When a candidate reaches or exceeds the surplus, before deeming that can-
didate to be elected, it must be checked that the following condition holds:

If the candidate is elected and this brings the number elected to n, there
is a subset of the continuing candidates, of size 13 - n which, if elected will
ensure that the set of 13 elected candidates will obey the gender, school and
department constraints.

If this is the case, then the candidate is deemed to be elected.
If this is not the case, the candidate will not be elected as his/her election

will disallow the possibility of the 13 candidates including him/her ever
obeying the gender, school, and department constraints. Furthermore, the
candidate is excluded and his/her votes will be transferred as per rule 7
(abridged rules).

A. 3.2 Exclusion

If a candidate needs to be excluded in order to proceed (there being no
surplus available), starting at the lowest candidate, check that the following
condition holds:

If the candidate is removed from the set of continuing candidates and
placed in the set of excluded candidates, there is a subset of continuing
candidates, of size 13 - n (n = the number if elected candidates) that, if
elected, will ensure that the set of 13 elected will obey the gender, school
and department constraints.

If this condition holds, then exclude the candidate and proceed to trans-
fer the candidate's votes as per rule 7 (abridged rules).

Academic Council Election - Count Rules 113

If this condition does not hold this means that it will be necessary to elect
this candidate (eventually) to ensure that the final set of elected candidates
obey the gender and school constraints. Do not exclude the candidate. Do
not elect the candidate. The candidate will be elected without necessarily
reaching the quota.

If because of this rule, the lowest candidate cannot be excluded, proceed
to find the next lowest candidate and apply the rule to check if this candidate
can be excluded. If not go to the next lowest candidate and so on.

A.4 Rules for Academic Council Elect ion (Aca-
demic Members)

1. The Academic Council election returning officer shall reject any ballot
papers that are invalid.

2. The Academic Council election returning officer shall then ascertain
the number of first preferences recorded on the ballot papers for each
candidate, and shall then arrange the candidates on a list (hereinafter
called the order of preferences) in the order of the number of first
preferences recorded for each candidate, beginning with the candidate
for whom the greatest number of first preferences is recorded. If the
number of first preferences recorded for any two or more candidates
(hereinafter called 'equal candidates') is equal, the Academic Council
election returning officer shall ascertain the number of second prefer-
ences recorded on all the ballot papers for each of the equal candidates,
and shall arrange the equal candidates as amongst themselves on the
order of preferences in the order of the second preferences recorded
for each such candidate, beginning with the candidate for whom the
greatest number of second preferences is recorded. If the number of
first and second preferences recorded for any two or more equal can-
didates is equal, the Academic Council election returning officer shall,
in like manner, ascertain the number of third preferences recorded on
all the ballot papers for each of such last-mentioned equal candidates,
and arrange such candidates on the order of preferences accordingly,
and so on until all the candidates are arranged in order on the or-
der of preferences. If the number of first, second, third, and all other
preferences recorded for any two or more equal candidates is equeJ
the Academic Council election returning officer shall determine by lot
the order in which such candidates are to be arranged on the order of

Academic Council Election - Count Rules 114

preferences.

3. The Academic Council election returning officer shall then arrange the
valid ballot papers in parcels, according to the order of preferences.

4. For the purpose of facilitating the processes prescribed by these Rules,
each valid ballot paper shall be deemed to be of the value of one
thousand.

5. The Academic Council election returning officer shall then count the
number of ballot papers in each parcel, and in accordance with the
preceding Rule credit each candidate with the value of the valid ballot
papers on which a first preference has been recorded for such candidate.

6. The Academic Council election returning officer shall then add to-
gether the values in all the parcels and divide the full total value by
a number exceeding by one the number of vacancies to be filled. The
result increased by one, any fractional remainder being disregarded,
shall be the value sufficient to secure the return of a candidate. This
value is in this Schedule called the 'quota'.

7. If, at the end of any count or at the end of the transfer of any parcel, or
sub-parcel of an excluded candidate or of a candidate deemed not to be
a continuing candidate, the value credited to a candidate is equal to or
greater than the quota, that candidate shall, subject to the provisions
of the subsequent Rules and RuFEE(Rule for Election or Exclusion),
be deemed to be elected.

8. If at the end of any count the value credited to a candidate is greater
than the quota and the election of the candidate obeys RuFEE, the
surplus of the candidate (in this Rule referred to as the elected candi-
date) shall be transferred to the continuing candidate or candidates
indicated on the voting papers in the parcel or sub-parcel of the elected
candidate Eiccording to the next available preferences recorded thereon,
and the following provisions shall apply to the making of such transfer:

9. If the value credited to the elected candidate arises out of original votes
only, the Academic Council election returning officer shall examine
all the ballot papers in the parcel of the elected candidate and shall
arrange the transferable papers therein in sub-parcels according to the
next available preferences recorded thereon and shall make a separate
sub-parcel of the non-transferable papers;

Academic Council Election - Count Rules 115

(a) If the value credited to the elected candidate arises partly out
of original and partly out of transferred votes or out of trans-
ferred votes only, the Academic Council election returning officer
shall examine the ballot papers contained in the sub-parcel last
received by the elected candidate and shall arrange the transfer-
able papers therein in further sub-parcels according to the next
available preferences recorded thereon and shall make a separate
sub-parcel of the non-transferable papers:

(b) In either of the cases referred to in the foregoing sub-paragraphs
(a) and (b) the Academic Council election returning officer shall
ascertain the number of ballot papers and their total value in
each sub-parcel of transferable papers and in the sub-parcel of
non-transfer able papers;

(c) If the total value of the papers in all the sub-parcels of transfer-
able papers is equal to or less than the said surplus, the Academic
Council election returning officer shall transfer each sub-parcel of
transferable papers to the continuing candidate indicated thereon
ag the voter's next available preference, each paper being trans-
ferred at the value at which it was received by the elected candi-
date, and where the said total value is less than the said surplus)
the non-transferable papers shall be set aside aa not elective, at
a value which is equal to the difference between the said surplus
and the said total value;

(d) If the total value of the papers in all the sub-parcels of trans-
ferable papers is greater than the said surplus, the Academic
Council election returning officer shall transfer each paper in such
sub-parcel of transferable papers to the continuing candidate in-
dicated thereon as the voter's next available preference, and the
value at which each paper shall be transferred shall be ascer-
tained by dividing the surplus by the total number of transferable
papers, fractional remainders being disregarded except that the
consequential loss of value shall be noted on the result sheet;

(e) A surplus which arises on the completion of any count shall be
dealt with before a surplus which arises at a subsequent count;

(f) When two or more surpluses arise out of the same count, the
largest shall be first dealt with and the others shall be dealt with
in the order of their magnitude;

(g) If two or more candidates have an equal surplus arising out of
the same count, the surplus of the candidate credited with the

Academic Council Election - Count Rules 116

greatest value at the earliest count at which the values credited
to those candidates were unequal shall be first dealt with, and
where the values credited to such candidates were equal at all
counts, the Academic Council election returning officer shall deal
first with the surplus of the candidate who is highest in the order
of preferences, subject to RuFEE.

10. (a) If at the end of any count no candidate has a surplus and one
or more vacancies remain unfilled, the Academic Council election
returning officer shall exclude the candidate (in this Rule referred
to as the excluded candidate) then credited with the lowest value
subject to RuFEE and shall transfer his/her papers to the contin-
uing candidates respectively indicated on the ballot papers in the
parcel or sub-parcels of the excluded candidate as the voter's next
available preference, and shall credit such continuing candidates
with the value of the papers so transferred, and the following
provisions shall apply to the making of such transfer:

(b) The parcel containing original votes shall first be transferred, the
transfer value of each paper being one thousand;

(c) The sub-parcels containing transferred votes shall then be trans-
ferred in the order in which and at the value of which the excluded
candidate obtained them;

(d) For the purpose of determining whether a candidate is a contin-
uing candidate the transfer of each parcel or sub-parcel shall be
regarded as a separate count;

(e) In the transfer of each parcel or sub-parcel, a separate sub-parcel
shall be made of the non-transferable papers which shall be set
aside at the value at which the excluded candidate obtained them

(f) If, when a candidate has to be excluded under this Rule, two
or more candidates are each then credited with the same value
and are lowest regard shall be had to the total value of original
votes credited to each of those candidates and the candidate with
the smallest such total value shall be excluded, and where such
total values are equal regard shall be had to the total value of
votes credited to each of those candidates at the earliest count
at which they had unequal values, and the candidates with the
smallest such total value at that count shall be excluded, and if
those candidates were each credited with the same total value of

Academic Council Election - Count Rules 117

votes at all counts that one of those candidates who is lowest in
the order of preferences shall be excluded, subject to RuFFE.

11. On every transfer made under these Rules, each sub-parcel of papers
transferred shall be placed on top of the parcel or sub-parcel (if any)
of papers of the candidate to whom the transfer is made and that
candidate shall be credited with the value ascertained in accordance
with these Rules of the papers so transferred to him/her.

12. (a) If at the end of any count the number of candidates deemed to be
elected is equal to the number of vacancies to be filled, no further
transfer shall be made.

(b) When at the end of any count the number of continuing candi-
dates is equal to the number of vacancies remaining unElled, the
continuing candidates shall thereupon be deemed to be elected.

(c) When the last vacancies can be filled under this Rule, no further
transfer shall be made.

13. At the end of every count the Academic Council election returning
officer shall record on a result sheet in the prescribed form the total of
the values credited to each candidate at the end of that count and also
the value of the non-transferable papers not effective on that count
and the loss of value on that count owing to disregard of fractions.

14. While the votes are being counted the ballot papers shall so far as it
is practicable be kept face upwards and all proper precautions shall be
taken by the Academic Council election returning officer for preventing
the numbers on the backs of the ballot papers being seen.

15. (a) Any candidate or his/her agent may, at the conclusion of any
count, request the Academic Council election returning officer to
re-examine and recount all or any of the ballot papers dealt with
during that count, and the Academic Council election returning
officer shall forthwith re-examine and recount accordingly the bal-
lot papers indicated.

(b) The Academic Council election returning officer may at his/her
discretion recount ballot papers either once or more often in any
case in which he/she is not satisfied as to the accuracy of any
count.

Academic Council Election - Count Rules 118

(c) Nothing in this Rule shall make it obligatory on the Academic
Council election returning officer to recount the same parcel of
ballot papers more than once.

16. In these Rules:

(a) The expression 'continuing candidate' means any candidate not
deemed to be elected and not excluded;

(b) The expression 'first preference' means the figure '1' standing
alone, the expression 'second preference' means the figure '2'
standing alone in succession to the figure '1', and the expression
'third preference' means the figure '3' standing alone in succession
to the figures '1' and '2' set opposite the name of any candidate,
and so on;

(c) The expression 'next available preference' means a second or sub-
sequent preference recorded in unique consecutive numerical or-
der for a continuing candidate, the preference next in order on
the ballot paper for candidates already deemed to be elected or
excluded being ignored;

(d) The expression 'transferable paper' means a ballot paper on which,
following a first preference, a second or subsequent preference is
recorded in numerical order for a continuing candidate;

(e) The expression 'non-transferable paper' means a ballot paper

i. on which no second or subsequent preference is recorded for
a continuing candidate; or

ii. on which the names of two or more candidates (whether con-
tinuing or not) are marked with the same number, and are
next in order of preference; or

iii. on which the name of the candidate next in order of pref-
erence (whether continuing or not) is marked by a number
not following consecutively after some other number on the
voting paper or by two or more numbers; or

iv. which is void for uncertainty;

(f) the expression 'original vote' in regard to any candidate means
a vote derived from a ballot paper on which a first preference is
recorded for that candidate;

(g) The expression 'transferred vote' in regard to any candidate means
a vote derived from a ballot paper on which a second or subse-
quent preference is recorded for that candidate;

Academic Council Election - Count Rules 119

(h) The expression 'surplus' means the number by which the total
value of the votes, original and transferred, credited to any can-
didate exceeds the quota;

(i) The expression 'count' means (as the context may require) either

i. All the operations involved in the counting of the first pref-
erences recorded for candidates; or

ii. All the operations involved in the transfer of the surplus of
an elected candidate; or

iii. All the operations involved in the transfer of the votes of an
excluded candidate; or

iv. The transfer in pursuance of these Rules of the papers of a
candidate deemed not to be a continuing candidate;

(j) The expression 'deemed to be elected' means deemed to be elected
for the purpose of counting, but without prejudice to the decla-
ration of the result of the election;

(k) The expression 'determine by lot' means determine in accordance
with the following directions, that is to say:

the names of the candidates concerned, having been written on
similar slips of paper, and the slips having been folded so as
to prevent identification and mixed and drawn at random, the
candidates concerned shall as amongst themselves be arranged on
the order of preferences in the order in which the slips containing
their names are drawn, beginning with the candidate whose name
is on the slip drawn first.

Appendix B

Z Specification of an S T V
electoral system, specifically
Wate r fo rd Ins t i tu te of
Technology's Academic
Council election.

B . l In t roduc t ion

This documents contains a specification for the process of counting the votes
polled in a STV electoral system. The particular system used is based largely
on the rules of election for Seanad Eireann, the upper house of parliament in
Ireland. These rules have been modified for use in the election of academics
for the Waterford Institute of Technology's Academic Council Election. The
main modification needed is to take into account the need for gender and
school balance in the elected members cohort. The full set of rules are
available in the document 'Academic Council Rules'.

This document breaks up the specification into a number of parts

• Global declarations

• Operations needed to pre-process voting papers - this gets rid of spoiled
votes, strips off any duplicates at the 'end' of the vote and produces a
neater 'Ballot' which is processed.

120

Z Specification of Academic Council Election Rules 121

Operations needed to count the votes, transfer votes from elected mem-
bers, eliminated, choosing next count's activities, etc. .

• System state and overall operation of count.

B.2 Global Declarat ions

The first basic type is that of CAND which contains the information for
each candidate. This will be used as part of a more used Candidate type.

[CAjVD]

There must be a minimum 40% from each gender in the elected cohort.
There must also be an (aspirational) minimum &om each school. There must
be as part of candidates information, values indicating to which gender and
school candidate belongs. The following free types are declared:

GENDER :;= male | female

SCHOOL ::= science | engineering | business | humanities

The schema Candidate will be used throughout the specification.

_ Candidate
cand :
gender : GENDER
school : SCHOOL

The process of changing what is known as 'voting papers' (input as a
sequence of papers, each of which is a function from Candidate to that
Candidates preference) to what are known as Ballots is described in the
next section. The Ballot schema includes the preference sequence and the
Ballot's value or weight.

_ Ballot
pfie/eTience : iseqCan(fWo(e

: Z

-1000 < value < 1000

Z Specification of Academic Council Election Rules 122

As it is necessary to record duplicate ballots, bags of ballots are used
throughout the specification. For some operations, the finiteness of these
bags are necessary, so the following is used throughout to indicate a bag of
ballots:

finBagBallot == {B : hag Ballot | d o m 5 G F 5 }

A number of shorthand types are defined that will be used throughout
the specification. The main function throughout the specification is declared
as VoteMass. This is a function which links a Candidate with Bags of Ballots
for each count. It resembles the physical model, where a pigeonhole structure
is used and a Candidate's ballots from different counts are separated with
labelled sheets. FunctBag describes each candidate's pile of ballots. The
model to hold nontransferable votes, NonTransfers, is simply a pile of ballots,
separated by count.

VoteMass == Candidate -h (N -h- finBagBallot)
FunctBag = = N finBagBallot
NonTransfers = = N -h- finBagBallots
Paper == Candidate -h- N

B.3 Pre-Process ing of Voting P a p e r s

It is assumed that voting papers which are the main input to the count
process can be described as a function from Candidate to a natural number.
The input of voting papers will be in a sequence (this is a straighforward
way of modelling the physical input - if this seems that this could lead to a
breach of the secretness of the poll, then this can be further examined)

These papers are pre-processed, which involves

1. getting rid of spoiled votes

2. stripping away any preferences that are non-contigous or duplicated,
leaving the leading preferences intact.

For valid papers, the preference part is changed to a sequence (this is
possible, because now preferences are contigious and non-duplicated). The
Ballot type emcompasses this. A value (sometimes known as weight) is also
associated with a Ballot.

Z Specification of Academic Council Election Rules 123

B.3.1 Z Specification of Pre-processing

Note that we are expecting non-zero preferences. Valid preferences on a
voting paper start at 1 and are unique, increasing and contiguous. We
specify a function which returns the first non-unique, non-contiguous or non-
existent preference. This number minus 1 is the number of valid preferences
on the voting paper. All preferences between 1 and this number are valid.

find^first^hole^or^dup : Paper —> N

(paper) =
: N I M : 1 .. + 1 A {n} D ^ 1}

The next function takes the voting paper and returns a (valid) Ballot with
invalid preferences stripped. This means that, for instance, a spoiled vote
will have no valid preferences.

make^ballot : Paper —> Ballot

(paper) =
<pre/ 1 .. /zn(f__^ra(_/io/e_or_dup(poper) — 1 < poper'^,

i?aZue 1000>

The following function takes a sequence of voting papers and returns a se-
quence of Ballots.

makeseqBallots : seq Paper —» seq Ballot

maA;eaegBa/Zots(gegpaperg) = mop aegpopera

This function throws away empty ballots. These are invalid papers (or
spoiled votes) that were stripped down to empty ballots.

throwawayempties : seq Ballot —> seq Ballot

throwaway empties {fullseq) =
fullseq [• [h : Ballot | b € laxifullseq A ^{b.preference) > 0 * 6 }

The following function takes in the sequence of voting papers and pro-
duces a bag of preprocessed ballots. As a sequence is finite, then items
returns a finite bag of Ballots. We call this type finBagBallot.

pre-process : seq Paper —> finBagBallot

pre_proceaa(segpapera) =
z(ema (tArowaiuayemp^zes (mateaegBaZZo&s (segpaperg)))

Z Specification of Academic Council Election Rules 124

Note that the following definition of map is assumed:

map : ^ y x seg %) —̂ aeg F

map / g = {n : 1 .. * n i-> / (s (n))}

Back to old stuff
This can be called as Ballots = pre_process(Allpapers?) where allpapers

is an input which is a sequence of the unprocessed papers.

It may be necessary to record the spoiled votes in certain circumstances.

spoiled^votes : seq Paper seqPaper

V allpapers : seq Paper •

{paper : Paper | find^first^hole^or^dup{paper) = 1 }

B.4 Count ing of Ballots

This section deals with the operations to transfer votes, choose next candi-
date to deal with etc. These operations will be used in the final section in
the schema operation count.

There are some standard bag functions that will be needed to deal with
bags of ballots.

bagvalue will used to calculate the total value of a bag of ballots.

bagvalue : finBagBallot —̂ N

hagvalue^ = 0
V b : Ballot; n : Ni •

bagvalue{b h-s- n} = b.value * n
V51, B2 : finBagBallot •

bagvalue{Bl i±l B2) = bagvalueBl + bagvalueB2

bagrange is a bag union generic function that takes a function from some
generic type to a bag of ballots and returns a bagunion of the the range of
the function.

Z Specification of Academic Council Election Rules 125

bagrange : (X finBagBallot) -w- finBagBallot

bagrange = |]
Y X : X] B : finBagBallot •

bagrange{x B} = B
y f , g : X ^ finBagBallot | d i s j o i n t (dom/, dom g) •

bagrange{f U g) = {bagrange /) l±l {bagrange g)

The next stage is building up the operations for counting the ballots.
To count the total number of valid votes, totalcount is used.

totalCount : finBagBallots N

V Ballots : finBagBallots •

totalCount {Ballots) = bagvalue Ballots

When counting votes, we need to total a candidates Ballots:

x N) ^ N
V countno : N; candfunct ; FunctBag •

totalvaloffunct{candfunct, countno) =
hagvalue{bagrange{l .. countno) O candfunct)

A function is required to calculate the total weight of candidates at a
given count. This value, when added to non-transferables and loss of weight
is constant for each count because votes and values of votes are travelling
around within the 'count mass' and do not leak.

: (N x x P + Z

y count : N; vm : VotcMass; ; c : Candidate •
) = 0

y count : N; vm : VoteMass] c : Candidate •
totalweightofCandidates{count, vm, {c}) =
totalvaloffunct{vm c, count)

y count : N; vm : VoteMass-, 51, S2 : P Candidate •
im, 5'! U ^2) =

im, 5'2)

weightatcount totals the weight of transferred ballots and non-transferables
at this count, i.e. the traffic at a particular count. Note that this does not

Z Specification of Academic Council Election Rules 126

include 'loss of value' (value lost due to remainders). This will be calculated
in an invariant by stating that weight at each count + loss of value = 0.

: (N x ybteMoas x > Z

Vcot/nt : N; wn : VbkMasa; *
weightatcount{count, vm, nontrans) =
bagvalue bagrange{c : Candidate | c G domvm A

count E dom{vm c) • vm c count}
+ hagvalue{nontrans count)

findquota calculates the quota which is the minimum number of votes a
candidate must have (normally) to be elected. (A candidate may in certain
circumstances be elected without reaching the quota).

'iBallots : finBagBallot] no^seats : N •
no_5'eo(a) =

{totalcount{Ballots) div {noseats + !)) + !

In the W.I.T. Academic Council election, there are gender and school
constraints (see Rules of Election). Briefly, this means tha t there must be
at least 40% of eeich gender (this currently translates to 5 out of 12) and a
minimnm (currently 2 out of 12) from each of the four schools. The gender
minimums are statutory and it is assumed that on embarking on a count
that the condition holds that there are at least the minimum number of
candidates from each gender running for election. (In practice, it is the
duty of the returning o&cer to ensure that this is the case and the election
process cannot take place until the matter is resolved).

Whereas the gender minimums are statutory, the school balance are more
aspirational. Under the condition that there are not sufficient candidates to
satisfy the school minimum as laid down in minSchool?, the mimimum be-
comes the number of candidates available. The following functions calculate
the minimum number &om each school to be used for checking the school
balance later.

y AllCandidates : P Candidate] minschool : N •
findsciencemin{AllCandidates, minschool) =
min{^{c ; Candidate | c G AllCandidates A c.school = science],

minschool)

Z Specification of Academic Council Election Rules 127

: P CaricfWiife x N —> N

y AllCandidates : P Candidate] minschool : N •
findbusmessmin{AllCandidates, minschool) =
min{^{c : Candidate | c € AllCandidates A c.school = business}

, mmsc/iooZ)

/zMcfengmeerzmgmm : P x N —» N

y AllCandidates : P Candidate; minschool : N •
findengineeringmin{AllCandidates, minschool) =

: Candidate | c G AllCandidates A c.school = engineering}
, minschool)

AllCandidates : P Candidate] minschool : N •
findhumanitiesmin{AllCandidates, minschool) =
min(^{c : Candidate \ c G AllCandidates A c.school = humanities},

miywcAooZ)

We now define the function to check the gender balance.This will be
called e.g.

eZecW) E
7%o_aea(a,

The gender and school constraints are ensured as follows; Before a can-
didate is elected or eliminated the following check is made; Is there a subset
of continuing candidates, when added to the already elected candidates will
make up a cohort of size no_seats so that the cohort obeys the gender and
school constraints. When eliminating a candidate, the candidate could be
needed, e.g. the Candidate could be one of only two candidates from a
particular school (where 2 is the minimum form each school). Election of a
particular candidate could make it impossible to achieve this balance (e.g.
if the minimum from each gender is 5 out of 12 candidates, if the system
elects the eight candidate from either gender this will destroy any possibility
of being able to achieve the balance.)

Z Specification of Academic Council Election Rules 128

: (N x N x N x P
Ca?%(fWote X P

Vmmgen, mmac/ioo/, no_gea(s : N; : P CandWo(e #
GeMan(f5'cAooZBa/anced(mmgen, miviac/iooZ, no_aea(a, Can<i%(fa(es) =
{con(mwmg, eZecW : P CanjWa^e |
continuing C AllCandidates A
elected C AllCandidates A d i s j o i n t {elected, continuing) A

#eZecW + = no_aeo^a A
{ c : Candidate | c G AllCandidates A c.gender = male • c} >

mmgen A
{ c : Candidate \ c E AllCandidates A c.gender = female • c} >

mmgen A
^ { c : Candidate | c E A c.acAoo/ = acience # c} >

yzM(kczencemm(AZZCon(fWa(eg, mmac/iooZ) A
#{c : Candidate | c G AllCandidates A c.school = business • c} >

yzm(f6uameagmm(v4ZZCanc!2(fo(ea, mifwcAooZ) A
{ c : Candidate | c G AllCandidates A c.school = engineering • c} >

_^7%(fengmeenngmm(y4/ZCo7i(fz(fa(ea, mznac/ioof) A
{ c : Candidate | c G AllCandidates A c.school = humanities • c} >

findhumanitiesmin{AllCandidates, minschool) •
(coM^mwmg, e/ec(e(f)}

To order continuing candidates, we follow the rules as specified in the
rules for ordering(see Election Rules). If two candidates are tied when all
tests are carried out, i.e. they have equal number of first preferences, second
preferences etc., then the order is imposed randomly or, as described, by
'drawing by lot'. This is specified by defining a sequence whose range is the
set of elements who need to be ordered.

: PN -M seqN

: P N |
3 sx : seqN | ran sx = setofcands A ^setofcands = ^sx •

(fmw_62/_/o((ae(o/con(fs) = aa;

A function is defined to take in a votemass, the current count and the
set of candidates to be ordered and returns the sequence of candidates in

Z Specification of Academic Council Election Rules 129

order. The set of candidates are assumed to be continuing as a diSerent
ordering is needed on elected candidates.

Jhonfer : (x N x P ^ seq Can jWote

V w i : Vb̂ eM&sg; : N; : P Concfzdote |
3 orderedseq : seq Candidate | ran orderedseq = setcands •

y i,j : dom orderedseq \ i < j •

onieneffseg j , V
OTrfeneiiaeg i, co^/Tit) =

totalvaloffunct{vm orderedseq j, count) A
((3 c : N I 1 .. count •

onferecfaeg %, c) >
onferetkeg j , c) A

V ic : c + 1 .. count •
totalvaloffunct{vm orderedseq i, ic) =
^oW'!;oZo^)%c((2m onfereckeg j , zc)) V

(V c : 1 .. count •
07%(ere(fseg z,c) =
onfeTieckeg j , c) A

j}) = (%,;))))) #

cow?%(, sekofick) = ordeneckeg

A candidate is deemed to be elected at the earliest possible opportunity,
i.e. at the first count which the candidates combined value of ballots is
over or equal to the quota. At this point it can be decided whether the
candidate should be elected or eliminated, depending on the gender and
school constraints. It is necessary to know the number of the count when
the candidate reached the quota for the first time.

yirs(cotinto7;er : (VbkMasa x x x N) -w N

y vm : VoteMass] cand ; Candidate] Ballots : FinBagBallots;
: N |

3 n : N •
totalvaloffunct{vm cand, n — 1) < findquota{Ballots, noseats) A

cand, n) > no_aeo(s) #
_^rstcotin<ofer(tm, cond, Bo/fok, no_geo(g) — n

Z Specification of Academic Council Election Rules 130

When deciding which candidate to process next, if there are a number
of candidates who have reached the quota, getnextoverquota returns that
candidate.

(x N x P x x N x N x N)

Vimi : Vb(eMass; : N; no_aeak : N |
3 : P aegot;e?iegguo(a : aegCon(fWa(e |

= {c : Co7i(fWa(e |
c 0 dealtwith{vm, count — 1, AllCandidates, Ballots,

no-seats, mingen, minschool)) A
totalvalojfunct{vm c, count) >
findquota{Ballots, no^seats)} A

ran sego(;eregguo(a = 07;e?TeggKo(o A
Vi,j : dom seqovereqquota \ i < j •

z,BoZZo^s, no_aeo^) <
BafZo&s, ?%o_seo<g)) V

(yirako'un^o'uer(im,aego'ueregguo(a %,BGZZofs, no_sea(a) —
_^ra(couM(o?;er((mi, aegoi;e?Teggifo(o j , BoZZo(a, no_aea(a)) A
SpnefcoTitseg : aegConcfWo^e |

yirs^coun^o(;er(im, aego(;e?Teggwo(o i,
BaZZo â, no_aeo^s) — 1,

overeqquota) •
p)Te(;con(aeg'^(gegoi'e?:egguo^o %) <
p7Te'ucoMtseg'̂ (segoT;efiegg2fo(a j)) #

gê 7ie3;̂ 07;e/Tguo(o(%m%, 5o/fo^s, A/ZCanc!%(fa(ea,
no-seats, mingen, minschool) =

Aeod aegoifeTieggwoto

If there are no candidates over quota to be dealt with, the next option
is to find the next suitable candidate for elimination. The lowest candidate
in the order of continuing candidates is the first to be checked (gender and
school balance wise), next lowest and so on until the first lowest candidate
is found to obey the school and gender balance checks .

Z Specification of Academic Council Election Rules 131

: P ConcfWafe x Vb(eMogs x
N x P Ca7i(f%(fo(eg x N x N x N

CoTidWa^e

y continuing, AUCandidates : F Candidateslvm : VoteMass]
count, mingen, minschool, no^seats : N |
3 contseq : seq Candidate] pos : 1 .. jj^contseq |

ran contseq = continuing A

(con^mmng \ (con^seg pog},
ran e/ec(e(keg(wM, coun^, mmgen, mmacAooZ, no_seota)) E
GenandSchoolBalanced{mingen, minschool, no^seats, AllCandidates) A
-I 3 opos : pos + 1 .. contseq #
(con(mmng\{con(aeg opos},
ran eZec(eckeg(im, coun^, mmgen, mmgc/iooZ, no_sea(s)) E
GenandSchoolBalanced{mingen, minschool, no^seats, AllCandidates) •

ge^mez^(oea;cZu(fe(coR(mumg, im, coun(,
mmgen, mmscAoo/, MO_aeata) =

conseg pos

A list of candidates who have been processed (on at each count) is needed
at certain stages in the specification, dealtwith produces a set of such can-
didates. It calls /zviffneifcaTic! which itself calls but on an earlier
count.

: (ybteMass x N x P x yiM5ag.Ba/Zo(x N x N x

Vim : Vb^eMoss; cozt^t : N; v4Z/Ca?%dWa(es : P
Ballots : finBagBallots', no^seats, mingen, minschool : N |

3 dealtw : P Candidate |
V i : 1 .. count •
/zndMea;<cond(vm, z, ran con(seg(im, v4/ZCon(f%daf:es),

AllCandidates, Ballots, no^seats, mingen, minschool) G
A

^ dealtw = count •
cowrî , .4ZZCoWWo^es, BoHok, 7%o_aeo(s,
mingen, minschool)) =

dealtw

Z Specification of Academic Council Election Rules 132

decides which is the next appropriate action, elect or elim-
inate a candidate and calls the appropriate operations.

x N x P x x
N X N X N)

-++

y vm : VoteMass; count : N; AllCandidates : P Candidate;
Ballots : finBagBallots;

no^seats, mingen, minschool : N •
findnextcand{vm, count, AllCandidates, Ballots, no^seats,

mingen, minschool) =
if
{c : | c, coun^) >

findquota{no^seats, Ballots)}
\dealtwith{vm, count — 1, etc) ^

no_aea(a, mmgen, mzTwc/iooZ)
eZae

ge(nea;t<oe3;cu(fe(im, .AZZCancZWaka,
?%o_aeâ a, mmsc/ioo/)

To find a candidate's surplus, the quota and candidates present vote is
needed.

/indsuTyZua : Vb^eMoas x x x N -++ N

y vm : VoteMass; cand : Candidate; Ballots •. finBag Ballots;
no^seats : N •

findsurplus{vm, cand. Ballots, noseats) =
let totalvote = totalvalojJunct{vm max domvm cand);

quota = findquota{Ballots, no^seats)
in totalvote — quota

e7%(f

A function is needed to return the next preference candidate on a Ballot.
This candidate must be a continuing candidate. There may be no such
candidate (in this case the Ballot is deemed to be non-transferable). Note
that the preference part of the Ballot is injective.

Z Specification of Academic Council Election Rules 133

V 6 : Ballot] currcand : Candidate] continuing : P Candidate |
#(((6.p?ie/e)ience'^(cumcan(f) .. #6.p?ie/e)ience) 1 b.pTie/erence)!'

continuing) > 0 •
nea:(p)Te/(5, cumconii, =

/ieo(f(((6.pre/e)Tence'^(currcan(f) .. #6.pre/e7ience)
1 b.pre/ereyice) com(mmng)

When a candidate's ballots are being transferred, it is always the last
set of ballots (only), modelled as a bag of ballots, that was assigned to the
candidate that is transferred. To prepare for this, the following function
takes the bag of ballots last assigned to the current candidate and returns
a function from Candidate to a bag of ballots where this function deSnes
where each ballot should transfer to, if that place exists. The value of each
Ballot is not changed here.

-+4 (^Candidate -w finBagBallots)

y lastbag : finBag Ballots] currcand : Candidate]
continuing : P Candidate \

3 candwithbags : Candidate -+^ finBagBallots •
V b : Ballot] n : N |
6 I—» ri € A
(6, currcancf, confmumg) 6 domnei^pre/ «

For transferring purposes, it is handy to have a function that returns the
bag of ballots which is non-transferable, given the current set of continuing
candidates.

Z Specification of Academic Council Election Rules 134

finBagBallots

y lastbag : finBagBallots] currcand : Candidate]
contmumg : P Ca/icfWofe |

3 nontransfers : finBagBallots \
V b : Ballot] n : N |

b n E lastbag A

(6, currcand, continuing) 0 d o m nextpref •

b n E nontransfers •

nontransferables{lastbag, currcand, continuing) = nontransfers

The following function returns the bag of ballots to be transferred. This
will be used for calculation of transferweight.

finBagBallots

y lastbag : finBagBallots] currcand : Candidate]
continuing : P Candidate |

3 transfers : finBagBallots |
V b : Ballot] n ; N |

6 I—> n E lastbag A
(6, E domnea;(pre/ #

6 n € transfers •

Throughout the transfer process, it is often necessary to change the
values of each ballot in a bag of ballots by a given factor. The following
function effects this change.

y bag : finBagBallots] factor : N |
3 changcdbag : finBagBallots |

V b : Ballot] n : N | 6 i—> n G bag •
3 b' : Ballot •
t'.'uaZue = b.'uo/ue */ac(or A
b'.preference = b.preference •

b' n E changebag •
changeweight{bag, factor) = changedbag

Z Specification of Academic Council Election Rules 135

The following function transfers the ballots last received by the candi-
date. The weight of transferred votes depends primarily on whether non-
transferables need to be dealt with. Non-transferables may need to be 'par-
tially' transferred. The elected candidate should be left with a weight exactly
equal to the quota. This means that the candidates receiving ballots will
get ballots with a fraction of the weight of the original ballot. The transfer
weight is defined below.

Z Specification of Academic Council Election Rules 136

(mna/ere/ecfed :
(ComcfWak x x jVomThzTia/era x Nx

x N x P CaM(fWa(e)
-w (yb^eMoaa x ^onThiMg/ers)

let lastbag == vm currcand max{domvm currcand);
transferbag == preparetransbag{lastbag, currcand, continuing);
weightedtransferbag =

changeweight{transferbag, surplus div transferablevalue);
surplus == findsurplus{vm, currcand, Ballots, noseats);
transferable = transfarables {lastbag, currcand, continuing);
transferablevalue == bagvalue{transferables);

= = ct/rrcantf, con^mmng);
nontransaway =

div6ogWue(nom(mma/em6/ea)));
nontranstont = changeweight{nontransaway,—l);
transnont =

((swzpZwg * —1) div
—1)

in
: CoMjWo^e; : yb^eMoas; coun(: N;

BoZZots : MO_aeo(a : N; cozifmumg : P Candzcfote |
3vm' : VoteMass; nt' : NonTransfers •
(let transferbag'

if surplus < transferable

eke
= transferbag

m
V c : Candidate | c G dom transferbag

vm' c = vm c U {count transferbag' c}
end) A

{c : Co7i(fWo(e | c E dom^mna/erbog} U < im' =
{c : Candidate | c E dom transferbag}lJ

{currcand} ^ vm A
((attrpZwa > (mna/emWewZue A
vm' currcand = vm currcand U {count transnont} A
nt = nt') V
(aiizyW < (m7%a/eni6/e?;a/ue A
vm' currcand = vm currcand U {count {transisnt W nontransaway)}

= »(U {count I—> non(7ianaton(}))
tmna/e7ieZec(e(f(cumcoMd, count, BoZZota, no_aea(a, contmmng)

(im', nt')
end

Z Specification of Academic Council Election Rules 137

When a candidate is eliminated, the ballots are transferred to the next
preference candidate, if they exist, or to non-transferables. The weights of
the ballots remain the same as the el iminated candida tes total will be 0 at

the end of the operation.

-H- (VoteMass, NonTransfers)

let = wn cumcaMck moa;(domim c^irrcoMii);
ci^rrcon(f, con(mumg);

y currcand : Candidate; vm : VoteMass] nt : NonTransfers] count : N;
: P

3vm' : VoteMass, nt' : NonTransfers \
(V c : Candidate | c G dom transferbag •

vm' c = vm c U {count i-^ transferbag c} A
Vc : Candidate | c 0 dom transferbag U {currcand} •

vm' c = vm c A

vm' currcand = vm currcand U
{coi/nt — 1), —1)} A

currconcf, contmmng)
A U {count noM(m7w/em6fea}) V

{nontransferables{lastbag, currcand, continuing) =) A nt' = nt))) «
transfereliminated{currcand, vm, nt, count, continuing) = {vm', nt')

The next function returns the sequence of elected candidates, at a par-
ticular count.

Z Specification of Academic Council Election Rules 138

e k c f e & s e g : y b k A f o a s x N x P x N x N x N -t->

s e q C a m d W o t ^ e

V w i : Vb^eMogg; : N; : P
mingen : N; minschool : N; no^seats : N |

3 dealtwithoverquota, electeddealtwith, overquotanotdw,
<o6ee/ec(e(f : seq Ca7ic!%(fo<e |

dealtwithoverquota =
squash{c : Candidate; cut : N | cnt : 1 .. count — 1 A

cn() = c A
totalvaloffunct{vm c, cnt) > findquota{Ballots, noseats) »

i-» c}
ran electeddealtwith C ran dealtwithoverquota A

(Vi : 1 .. electeddealtwith »
[AllCandidates\

dealtwith{vm, % — 1, AllCandidates, Ballots, noseats, mingen, minschool),
ran(l .. <leZeĉ e(f

-I 3 ot/iercona : P C(mdWa(e |
o^Aercamck C (ran \ ran A

> 0 #
3 oseq : seq Candidate | ran oseq = ran electeddealtwith U othercands #
V i : 1 .. ^oseq •
{AllCandidates\

z — 1, ylZ/Can(fWa(ea, no_gea(a, mmgen, mmscAooZ)
ran{l .. i < electeddealtwith))
€ (7enGn(f5'c/zooZBaZanced(mmgen,m%7wcAooZ,no_seo(a,^H(7<i?%(f%da(ea) A
ran overquotanotdw fl dealtwith{vm, count, AllCandidates, Ballots,

no_aea^s, mmgen, mmscAooZ) =A
V c : ranoverquotanotdw »

totalvaloffunct{vm c, count) > findquota{Ballots, no^seats) A
overquotanotdw =

Inorder{vm, count, AllCandidates\
dealtwith{vm, count — 1, AllCandidates, Ballots,

no_aeo(s, mmgem, mznacAooZ)) A
ran (o6eeZec(ej C A
tobeelected = overquotanotdw \ ran tobeelected A
Vi : 1 .. ^tobeelected •

%, Ba/Zots, no_5eo(a, mmgen, mzTwc/ioof),
ran U ran(l . . z <1 (oteeZec^ecf)) E

GenandSchoolBalanced{minschool, mingen, no^seats, AllCandidates) A
-1 3 more : P Candidate | more C ran overquotanotdw \ ran tobeelected A

^more > 0 •
3 oseq : seq Candidatd \ ran oseq = ran tobeelected U more •

Z Specification of Academic Council Election Rules 139

I V i ; 1 . . ^ o s e q •

I
I {dealt'with{vm, i — 1, AllCandidates, Ballots, no_seats, mingen, minschool)
I U (r E m (l . . < o s e g)) ,

I ran U rEin(l ..%)<] oaeg)

I E GenandSchoolBalanced{mingen, minschool, noseats, AllCandidates)

I •

I (o6ee/ec(e(f

A function is defined to order continuing candidates at a particular count:

: Vb^eMoas x N x P -t-» seq

: N; ylZ/Co)%<iWâ eg : PCoMdWa^ea |
3 : P CaniiWa^ea; cseg : seq Cand%do(eg |
continuing = AllCandidates\

{c : CoMdWak; : 1 . . — 1 |
c = findnextcand[vm, cnt, AllCandidates, Ballots,

no_seak,mmgen,m27wcAoof) # c}
U{c : Candidate |

totalvaloffunct{vm c, count) >
findquota(Ballots, no-seats)} A

cseq = Inorder{vm, count, continuing) •
contseq{vm, count, Ballots, noseats) = cseq

The following function chooses the next candidate to deal with and either
elects (and transfers) or eliminates (and transfers).

Z Specification of Academic Council Election Rules 140

x VbteMoas x x Nx
P x x N x N x N) —

{VoteMass x NonTransfers)

y cand : Candidate] vm : VoteMass; nt : NonTransfers] count : N;
AllCandidates : P Candidate] Ballots : finBagBallots]
mingen, minschool, no^seats : N |

let = ran
e k c W = rem ekc(e(keg(im, BoZZok,

mmgem, mzzwc/ioo/, no_aea(a)
in

n(') =
if

{conff}, e/ecW U {ca?id}) 6
GenandSchoolBalanced{mingen, minschool, noseats, AllCandidates) A
toWi'aZo_^7ic((wn cand, coun^) > no_geats))
then

^mfw/ere/ec<ed(camc(, im, ?i(, coun(, BofZok, no_aea(a, com^mmng)
eke

transfereliminated{cand, vm, nt, count. Ballots, noseats, continuing)
eMc!

The election count process will terminate if

1. The number of elected candidates is equal to the number of seats to
be filled.

2. The number of elected candidates + the number of continuing candi-
dated is equal to the number of number of seats to be filled.

The following function take as input the number of seats to be filled and
returns each possible set of pairs of (elected, continuing) sets of candidates
which will lead to termination of the process.

/iMw/iej : N —> P(P CoM(f%do(e x P CondWo^e)

V no_seats : N •
finished{no^seats) =

{seZec(ed, scon(: P Con(fz(fo(e |
se /ecW — no_aea(g # (geZecW, scont)}

U
{ae/ec(ed; : P CoMcfWâ e |

+ #ae /ecW = no_sea^a # (ae/ected, aco7i()}

Z Specification of Academic Council Election Rules 141

This function recursively calls itself until the count is finished, i.e. as
defined above.

: (VbkMoaa x jVonThizw/ers x N x
/inBagBa/Zok x N x N x N x P CancfWo^e)

(Vb(eMosg X jVonThzTw/era)

Vfm : Vb^eMoas; : #onTkins/ers; % : N,
mmgen, mmgc/ioo/, 7io_aea(s : N; : P #
e/ec(zoM_coi2n((im, %, mmgeri, mzTiacAoo/, no_sea^s,

AUCandidates)

let continuing = = ran contseq{vm, i, AllCandidates);
elected == ran electedseq{vm, i, AllCandidates, Ballots,

mmgen, mznsc/iooZ, no.geak);
nextcand == findnextcandQ

in
z/(e/ec(e(f, com^mwng) E _^mgAec!(no_aeo(a)
eZae
let{vm', nt') =
e/ec^ofie/zmma^e

{findnextcand
(vm, i, AllCandidates, Ballots, no^seats, mingen, minschool),
vm, nt, i, AllCandidates, Ballots, mingen, minschool, no^seats)

m
election-count {vm', nt', i + 1, Ballots, mingen, minschool,

7%o_gea(s, .Af/Cand* jo(es)

This will be called as

(votemassl, non^transferablesl) = election^count{setupfirstcount{Ballots), 2)

setup firstcount takes the pre-processed ballots and 'deals them out' ac-
cording to their first preferences. No weight change is needed.

setup firstcount : finBagBallots x P Candidate —VoteMass

y Ballots •. finBagBallots-, AllCandidates |
3 vm' : VoteMass |

V b : Ballot; n : N | 6 i—> n G Ballots •
3^ c : Candidate | c G AllCandidates A head b.preference = c

b n E vm' c 1 •
setupfirstcount{Ballots, AllCandidates) = vm'

Z Specification of Academic Council Election Rules 142

B.5 Count Opera t ion

Fineilly, the operation for counting is deHned.

_ Count
VbfmgPapera? : seq(CaM(fWa(e -«-> N)
AllCandidatesl : P Candidate
mingen?, mmgc/ioo/, : N
Ballotsl : finBagBallots
votemassl : VoteMass
non-transferahlesl ; NonTransfers
/oag_o/_i;oZue : N -t-» N
aege/eckcf! : seq Can<iWa(e
e/ec(e(f! : P
apozW_';;o(eg! : 8eq(Con(fWa^e -t-» N)

Baf/ok! = p7ie_pmceaa(ybfmgf opera?)

election-.count{setupfirstcount{Ballots\, AllCandidatesl),, 2,
Ballotsl, mingenl, minschooll, noseats)

spoiled-votesl = spoiledvotes{VotingPapers7)
seqelectedl = electdseq{votemassl, max{dom{c : Candidate |

c E dom 'uotemass! •
votemassl\)

, AllCandidatesl, Ballotsl, mingen?, minschooP., noseats)
Vi : 1 .. maxdom.{c : Candidate \ c G domvotemassl • votemassl c}

+loss^of^value i = 0

Appendix C

Laws used in Ref inement
Calculus Example

The following laws are adapted from Morgan [23] Appendix C - Summary
of Laws. These laws are used in the development of a program, when in-
troducing algorithmic refinement using Morgan's Refinement Calculus in
Chapter 2. They are re-numbered for clarity and they appear in alphabeti-
cal order

Law CI alternation
If pre ^ GG, then

w : [pre,
C if (i • Gi w •. [Gi A pre, post]) fl

Law C2 assignment
If pre ^ post[w\E], then

w,x : [pre, post] Q w := E

Law C3 following assignment
For any term E,

[pre, post]
C w, a; : [pre,post[x\E]\,

X := E

Law C4 introduce local variable
If X does not occur in w, pre or post then

w : [pre, post] C | [var x : T] and inv • w, x : [pre, post]] |

143

Refinement Calculus - Laws Used 144

Law C5 iteration
Let the be any formula; let V, the be any integer-
valued expression. Then, if G is the Guard and
inv A -iG => post then

w : [
C do G ^

lu : [m?; A G, mi; A (0 < F < Vg)]
od

Law C6 leading assignment
For disjoint w and a;,

w, X := E, f [w\E] = w := E] x := F

Law C7 sequential composition
For any formula mid, where neither mid or post contain initial variables:

w : [pTie,] C w : [pTie,] ; w : [mW,]

Law C8 strengthen postcondition
If ^ then

w : [pre , post] C w : [pre , post']

The following law is adapted from Morgan & Vickers [22] and deals with
a special kind of data reGnement, i.e. when the abstraction invariant(A) is
functional. The justification is found in 2.3.1
Law C9 data refinement (functional)
If R = a = / (c) (functional) (a is abstract, c is concrete) and when the
postcondition does not refer to initial variables:
o : [p/ie, C;; c : [p7ie[o\/(c)], pW[a\ / (c)]]

Appendix D

B Specification of Academic
Council count

D . l In t roduc t ion

This appendix contains the specification of the counting system of the Aca-
demic Council voting system. The rules of this system are written in Ap-
pendix A. There are slight differences in this specification to the parts of the
system as specified in the Case Studies of Chapter 5. The main difference
is that the ballot in this case contains a weight whereas in the Case Study
this is not the case. As the original value of the weight is always 1000 and
during refinement it was spotted that it was unnecessary and wasteful to
hold the ballots' weight at the start. However, this change has not been
pulled through to this specification.

This specification is presented as a valid specification, written using B's
AMN. We present the MACHINES. The order in which they are presented
follows a top-down approach. The driving operation is contained in the
Election MACHINE which is presented first. The order of presentation of
Machines is as follows:

• Election

• Global Variables

• BooLTYPE

• BallotBag

• PaperBag

145

B Specification 146

• P-Prepare^B allots

• Counts

• CountingFunctions

• GetNextCandidate

• Ordering Functions

• FindBalanceMins

B Speci^cadoji 147

D.2 B Specification

D . 2 . 1 Overal l E l e c t i o n

M A C H I N E Election

/*This machine contains the main driving operation of the system.
countvotes returns the results of the election.*/
SEES

OrderingFunctions,
BallotBag,
Bool-TYPE,

FindBalanceMins,
GetNextCandidate,
Counts,

P-Prepare^B allots

VARIABLES Vbfes,

Result

I N V A R I A N T
Votes E BagPapers A

E N A

E N A

E N A

{no-seats > 0 => min^gen =
min{{nn \ nn EN A nn > no^seats * min^genpercent/100}) A

no^seats = 0 ^ min^gen = 0) A
E N A

E D E A 4 jZTMEJVT ^ N A

E A

.Reauk E weg(Co?i(fWa^e *

B SpecHcation 148

INITIALISATION
Votes := 0 II
no-seats := 0 ||
min^genpercent := 0 ||
miri-gen := 0 ||
minschool := 0 ||
min^dept := DEPARTMENT x {0} ||
Candidates := 0 ||
Result :=<>

O P E R A T I O N S
enterdata =

B E G I N
Votes ;G Paper -h- N ||
?%o_aeots :E N II
min_genpercent ;G N ||

:E N ||
:E DEPAArMEAFT —> N

E N D ;

/ * This is the main driving operation of the system. The Results
contain a sequence of pairs, each pair containing a Candidate
and the action associated with that Candidate. The order of the
sequence indicates the order that the actions took place.
All required information is contained here. */

B E G I N
A N Y W H E R E

Ballots G BagBallots A Ballots = P^prepare^ballots(Votes)
T H E N

ANYyira(?m,gwo(a W H E R E
E yb^eMoas A E N A

firstvm = Setup^First^Count(Ballots, Candidates) A
quota = Find-Quota(BaUots, noseats)

T H E N
ANY (fw WHERE

vm E VoteMass A nt E NonTransfers A dw E DealtWith A
vm ^ nt ^ dw =
Election-Count [firstvm, 0 , 0 , 2, Ballots, Candidates, min^gen,

no_aeo(a, guo(o)

B Specification 149

T H E N
Results := dw

E N D
E N D

E N D
E N D

E N D

B Specification 150

D . 2 , 2 Globa l Variables

M A C H I N E GlobalVariables

D E F I N I T I O N S
= = /f/LAfZ? x >< .SCffOCUL x

= = P(CoM(fWa(e);
VbkMasa = = CancfWok -w (N -t-» BagBoZZots);
Paper = = ConcZWok -t-» N;
Dealt With == iseq{Candidate x ACT)]
NonTransfers == N -+» BagBallots]
MmDep(= = N;
BagPapers == Paper -++ Ni;
Paper = = CandWo^e -t-y N;

= = aeg(Can(iWa(e) x N x
BagBallots == Ballot -t-> Ni

SETS
AL4MB; /*deferred until candidates oGcially entered */
GENDER = {male, female}]
5'C^OOi, = {engmeerzng, Auameas, gczerice,
DEPARTMENT = {adult^ed, other}]
/* As adult_ed is the only special case, I ignore the department of others,
except to state that they are not in adult_ed. If an other department is
similarly prescribed, then this department can be added in. If the
condition for adult_ed is dropped, then simply change the mapping
of adult_ed to zero (in deptmin) or change candidates to other. */
A C T = {eZec(, e icWe};
SIGN = {pos, neg}

C O N S T A N T S
school,
gentfer,
nome,
c(epar(men(

B Specification 151

P R O P E R T I E S
school G Candidate —> SCHOOL A
gender E Candidate —> GENDER A
name E Candidate —> NAME A

E Concfzcfafe ^ A

V(nn, gg, ss, dd).{nn G NAME A gg e GENDER A
aa E (fd E =>

gg, as, dd) = sa A

gender(nM, gg, ss, dd) = gg A
nome(nn, gg, ss, dd) = A

gg, ss, dd) = dd

E N D

MACHINE BooLryPE

/* This machine simply introduces the boolean type*/

SETS gOOI =

E N D

B Specification 152

D . 2 . 3 B a g s - P a p e r a n d Ba l lo t

M A C H I N E BallotBag

/* These operations are specific to the structure , based
on bags of ballots. We will use these during the count */

SEES
GlobalVariables

I N C L U D E S
GenericBag (Ballot)

CONSTANTS
pfie/eTiences,
fo/we,
gzgn,
valueballot,
signballot,

hagvalue,
bagmnge,
totalballotvalue

P R O P E R T I E S
pre/erencea € A

N X —» N A

signGNx SIGN—> SIGN A
valueballotEBallot —> N A
signballotEBallot SIGN A
V (pre/iWoZ, sg7i).(p7ie/Egeg(Con(fWo(e) A w f e N A

preferences[pref val i—> sgn) = pref A
value{val i—> sgn) = val A
sign(val i—> sgn) = sgn A
valueballot {pref t—> val i—> sgn) = val A

i—» t—» ggn) = ggzi))

B Specification 153

e ((N x x (N x 5'iGAr)) —̂ (N x A
V(B1, B2).(B1 E N X A B2 E N x (

{3{val, sgn).{val E N A sgn G SIGN A
((a%gn(Bl) = poa A a2pn(B2) = poa A
iioZ = 'uaZ'ue(Bl) + t;o/ue(B2) A agn = poa) V
{sign{Bl) = neg A sign{B2) = neg A
val = value{Bl) + value{B2) A sgn = neg) V
(a%gM(Bl) = poa A azgn(B2) = neg A
value{Bl) >= value{B2) A
val = value(Bl) — value{B2) A sgn = pos) V
{sign{Bl) = pos A sign{B2) = neg A
value{Bl) < value{B2) A
val = value{B2) — value{Bl) A sgn = neg) V

(a%gn(Bl) = Meg A aign(B2) = poa A
faZue(Bl) > = 1/0(^6(52) A

val = value{Bl) — value{B2) A sgn = neg) V
(azgM(Bl) = meg A szgm(B2) = poa A
value{Bl) < value{B2) A
val = value{B2) — value{Bl) A sgn = pos)) A

plus^minus{Bl, B2) = val i—> sgn))))

bagvalue G BagBallots —» N x SIGN A
6agt;o/ue() = 0 i—> poa A
y{bballot, nn).{bballot G Ballot A nn G Ni =»

bagvalue{bballot i—> nn) = valueballot{bballot) x nn i—> signballot(bballot)) A
y{ABagBallots, BBagBallots).

{ABagBallots G BagBallots A BBagBallots E BagBallots => (
bagvalue{hagplus{ABagBallots, BBagBallots)) =

plus^minus{bagvalue{ABagBallots), bagvalue{BBagBallots))

))
A
bagrange E (N -t-> BagBallots) BagBallots A
6ogmnge({}) - {} A
y{ABagBallots, nn).{ABagBallots G BagBallots A nn G N ^ (

bagrange{nn i—> ABagBallots) = ABagBallots)) A
, g g) .

W 6 N -H BagBaZZo(a A gg E N gogBo/Zo<a A
dom n (fom gg = 0

6ogmnge(_^ U gg) = 6agpZ'ua(6ognz7%ge(_̂), 6ogmMge(gg))
)

B Specification 154

A
totalballotvalue G BagBallots —> N x SIGN A
\f ABagBallots.{ABagBallots G BagBallots =>

totalballotvalue{ABagB allots) = hagvalue{ABagBallots)

B Specification 155

M A C H I N E PaperBog

SEES

GlobalVariables

C O N S T A N T S

Paper^tcount,

P R O P E R T I E S
Paper^count G BagPapers -h- {Paper > — >> NAT) A

E (B a g f opera) =>

foper_co26n((6g) = Aaa:.(aa; € f o p e r | 0) < + 6 g)

A
Paper^tcount G {{BagPapers) x Paper) -h> NAT A
/ * total function version of count */
V(6g,aa;).(6g E (B o g f o p e r a) A aa; 6 Poper

faper_tcou?%((6g i—» la;) = (foper_coiin((6p))(za:))
A
f oper_6agpZwa E (B o g f opera) x (B o g f opera) -+-> (B o g f opera) A

f oper_6ogmmua E (B o g f opera) x (B o g f o p e r a) -t-> (B o g f opera) A

V(o6og, 66og, a3;).(o6og E (Bogf opera) A 66og E (Bogf opera) A zz E Poper =>
Paper^tcount{Paper^bagplus{abag, bbag),xx) =

foper_tcou7%((o6og,3zc) + foper_(co^^n((66og,a%) A

foper_koi/n<(foper_6ogmmit8(o6og, 66og),Z2;) —
max{{Paper^tcount{abag,xx) — Paper-.tcount{bbag,xx),0}))

VARIABLES
p6og

I N V A R I A N T
pbag E BagPapers

INITIALISATION
pbag := 0

O P E R A T I O N S
nn -f— bagcount =

156

B E G I N

E N D
E N D

B Specification 157

D . 2 . 4 P r e - P r o c e s s i n g of Votes

M A C H I N E P^Preparc-Ballots (no^cands)

SEES

BallotBag ,
PoperBog

C O N S T A N T S
P-prepare^ballots ,
P^make^bag^hallots ,

P^find-first^hole^or^dup
PROPERTIES

P^find^first-hole-or-dup G Paper —> N A
V paper . (paper G Paper =>

P^find^first^hole^or^dup (paper) =
min ({ nn | nn E 1 .. no^cands + 1 A

card (paper "̂ [{ nn }]) 7̂ i } }))
A
P^make^ballot E Paper —Ballot A
V paper . (poper E Poper

preferences (P^make^ballot (paper)) =
1 .. P^find^first^hole^or^dup (paper) — i O paper A

valueballot (P^make^ballot (paper)) = 1000 A
signhallot (P^make^ballot (paper)) = pos)

A
P^throwaway-empties G BagBallots —> BagBallots A
V bballot . (bballot G BagBallots =4-

P^throwaway^empties (bballot) =
{ bb I 66 G dom (bballot) A preferences (66) = 0 } •€ bballot)

A
P^make^bag^ballots G BagPapers —> BagBallots A
V bpapers . (bpapers G BagPapers =>

P^makeJ}agJ)allots (bpapers) =
{ bb , nn | 66 G Ballot A nn G Ni A
3 pp . (pp E dom (6papera) A 66 =

f_moA;e_6a(Zo((pp) A nn = 6papera (pp)) })

B Specification 158

A
P-prepare^ballots G BagPapers BagBallots A
V E Bagf opera =>

fLp/iepo7ie_6aZZota (bpaperg) =
P-throwaway^empties (P-make^hag^ballots (bpapers)))

V A R I A B L E S

I N V A R I A N T
allvotes G BagPapers A
procballots G BagBallots

INITIALISATION
allvotes ;= 0 II
procballots := 0

O P E R A T I O N S

B E G I N
procballots := P^prepare^ballots (allvotes)

E N D
E N D

B Specification 159

D . 2 . 5 C o u n t i n g F u n c t i o n s

SEES
GlobalVariahles ,

BallotBag ,
B o o L r y p E ,

FindBalanceMins ,

C O N S T A N T S

C%onge_v4/L
Do^Transferexcl ,
Transfer^Excluded ,
meai ,
Do^o-count ,
#07L2hiMa/em6Zeg ,
2i%7%a/em6Zea ,
TV-ons/eTi-EZecW,
Prepare^ Transbag,
Find-Surplus ,

vie/ ,

Finished ,
Count ,

P R O P E R T I E S
Change-Weight G BagBallots x N —» BagBallots A
V (bag , factor) . (bag G BagBallots A factor G N =>

3 changedbag . (changedbag G BagBallots A
y (bb , nn) . { bb E Ballot A nn G N A 65 i—> nn G bag =>

3 bb" . { bb" E Ballot A
valueballot { bb") — valueballot (bb) x factor A
p7ie/e?iences (66") = pfie/erences (66) A

signballot (bb") = signballot { bb) A
66" nM G c/iangej6ag)) A

B Specification 160

Change^ Weight (bag , factor) = changedbag))

A
Change^AlLWeights G (Candidate -h- BagBallots) x N —>

(Candidate -++ BagBallots) A
V (transbag , factor) . (transbag E Candidate -h- BagBallots A

/ac(or E N =>
3 . (wezg/itecfbog E CancfWate -i-» A (

V (cc , 66) . (cc € dom ((mna6ag) A 66 6 ran (tmn56ag) A
cc I—» 66 E transbag =>

3 bb" . (66" E BagBallots A
bb" = Change^ Weight (66 , factor) A
cc I—» 66" E wezg/ife(f6ag)) /\

(^mns6ag , /ac^or) = we%^AW6og)))
A

B Specification 161

Do_7hzna/e7iea;cZ E x Vb^eMoas x jVonThz/w/ers

X N X N X 6 ' e (C (m d W o (e s - +

VoteMass x NonTransfers A
V (CUTTCQTZĈ , um , , stf6cou?i(,) .

(cumcon(f E Comdziia^e A wn E VbiteMoas A E A

cown(E N A atibcoun^ E N A confmumg E 5'e(Can(fWateg =>

3 (cuTT^og , (mma/er^ag , no/i^mns/era , wn" , n(") .
(
currbag E BagBallots A
transferbag G Candidate -h- BagBallots A
vm" £ VoteMass A nt" E NonTransfers A
currbag = vm (currcand) (subcount) A
transferbag = Prepare-Transbag (currbag , currcand , continuing) A
nontransfers = Non_Transferables (currbag , currcand , continuing) A
V cand . (cand E dom (transferbag) =>

E dom ((cond)) A

vm" (cand) = vm (cand) U { count i—> transferbag (cand) } V
(0 dom ()) A

w i " (conci) =
(can(i) ' ^ { i—» (cancf) () ,

(mns/er6ag ()) })) A

V cand . (cand G Candidate A cand E dom (vm) A
cand 0 dom (transferbag) ^

t m " (coMc!) = tmi (concf) A

(E dom () A ^ 0 A

U { coun(I—> bagpZua () , nozitmng/ers) } V

(E N A ^ dom ((cz/rrcancZ)) A

non(mna/era ^ 0 A nit" = U { t—> nonfm/is /era }) V

(= 0 A))) A

Do-Transferexcl (currcand , vm , nt , count , subcount , continuing) =
I—>))

A

B Specification 162

G ConcfWate x Vb^eMasa x AToMThi/w/era x

D e o Z (M ^ z (/ i X N X N X N X 5 ' e (C a M (f W i i (e s —^

VoteMass x NonTransfers A
V (ci^mcond , um , , cfw , cowTî , att^coun^ , g^/oto , aZZcandzcfa^ea) .

(cuTTCond E Candi ja fe A E Vb^eMoaa A E A/̂ on7}ia?%a/era A

dw E DenZ^Wi^A A coun^ E N A au6coim(E N A E N A

aZ/candWa^ea E 5'e(Ca?%dWo^ea =>

3 (con^mumg , maa;aw6couM() . (co;%(mwmg E .9e(Can(fWo(ea A (

continuing —
allcandidates —
dom (ran (1 .. count — 2 < dw)) —
{ cc I cc E o//coMc!i(fo(ea A

tfaZtfe ((ô aZnoZojg'uTiĉ ((cc) , count — ^)) > guo(o } A
maa;au6coun(= max (dom ((cumcoMd))) /^

(aubcount > moa;ai/6co%/nt A

3 E VbteMoaa A (

= wn <- { cumcan(f i—»
(currcand) U

{ count I—»
C/iomge_PKezg/it (6agmnge (wn (cumcand)) , ^) }

} A
Transfer^Excluded (currcand , vm , nt , dw , count , suhcount ,

quota , allcandidates) =
wm" t—» nt)) V

(aubcount < maa;au6cown(A

3 (vm" , nt") . (vm" E VoteMass A nt" € NonTransfers A
i m " I—> Mt" = Do-Thma/cT^eic/ (c u n r a n j , , nt , coi/nt ,

autcount , contznmng) A

Tkzna/er_^3;cZu(fe(f (ci/rrcanc! , wn , n(, , cottnf , au6coim(,
quota , allcandidates) =

Transfer^Excluded (currcand , vm" , nt" , dw , count ,
next (subcount , dom (vm (currcand)))
, guoto , oHcondzcfotea)))))))

A

B Specification 163

/lezt E N x P (N) — > N A

V (curmo , se() . (ae(E P (N) A cu?mo E N A curmo E se(=>
3 nez(no . (nea;(Mo E U { max (aet) + ^ } A

curmo .. nea;<no = { ci/rmo , } A
nez((curmo , sef) =))

a

B Specification 164

Do_(i_co^/n^ E VbteMoas x N x x '̂e^CamdWo^ea x
A^ori7hins/era x BagBo/Zok x N x N x N x MmDep^ x N —>
yb(eMoaa x ATonZhzna/ers x A

V (, a/fcandWates , nozLtrona/era , 66oZZota ,
no_seata , mmgefi , mmac/ioo/ , mmdep(, giio(o) .
(vm G VoteMass A count G N A dealt^with G DealtWith A
allcandidates G SetCandidates A non^transfers E NonTransfers A
bballots G BagBallots A no^seats G N A mingen G N A
minschool E N A mindept G MinDept A quota G N =>
3 (continuing , cand , act , vm" , nt" , dw") .

(contmmng C aZZcoMcZWafea A cond E aZfca?%(iWatea A oc(E /ICT A
vm" G VoteMass A nt" E NonTransfers A dw" E DealtWith A

=

allcandidates —
dom (ran (i .. count — 2 <i dealt^with)) —
{ cc I cc E a/ZcondWô ea A

i;aZtie ((I'm (cc) , cown(— ̂)) > guofa } A
cand act =

Find^Next^Cand (vm , count , dealt^with ,
allcandidates , bballots , no^seats ,
mmgen , m%7iac/ioo/ ,) A

(act = elect A
wa" i-> = 7hms/er_Mec^e(f (cancf , I'm , MozL^mna/era ,

coun(, guo(o , comtinumg)
V
(ac(= ea;c/u(fe A
vm" f—> nt" =

Transfer^Excluded (cand , vm , non^transfers , dealt-with ,
count , min (dom (vm (cand))) , quota , allcandidates))) A

dw" = dealt-with «— (cand i-̂ act) A
Do^a^count (vm , count , dealt-with , allcandidates ,

non^transfcrs , bballots , noseats , mingen , minschool ,
mmcfept ,) =

im" I-+ I-+ (fw"))
A

B Specification 165

E Ca?%(fWa(e x Vb^eM&sa x TVonThiTia/erg x

N X N X 5'e^Candija(es —>

Vb^eMosa x #on7yt ins/erg A

V (ct̂ rrconcf , , con^mumg) .
(cwmcon<j E Can(fW(i(e A w n E Vb^eMoas A E jVoziTV-aTw/era A

coun^ E N A guo^a E N A con^mumg E ^e^CoMdWa^ea =>

3 (lastc , lasthag , transferbag , weightedtransferbag , surplus ,
transferables , transferablevalue , nontransferables , nontransaway ,
nontranstont , transnont , transisnt , transferbag" , vm" , nt") .
(lastc E N A lastc = max (dom (vm (currcand))) A
lastbag E BagBallots A

= 'um (currrand) (Zaa(c) A

transferbag G Candidate -t-> BagBallots A
<mna/er6og = f?iepa7ieL7hina6ag (Zaa(6og , cumcancZ ,) A

wezgMed^mna/er6og E -w BogBaZfo^a A

weightedtransferbag =
C%ongeL_4ZLWe%g/i(a ((mna/er6ag , ati/pZua / (mna/embZei/a/ue) A

aufy/ua E N A

awr])Ztfa = Fm(L5'ufp/ua ((cumconfi) , guota) A

(mns/em6/ea E BagBoZZo^a A

^mna/em6/ea — 7hi7ia/em6fea (/oatbng , CT^rrcand ,) A

(mna/embZefafue E N A

<m7ia/em6Zeiia/ue = ivake (6agi;aZ'ue (^nma/em6/ea)) A

nontransferables =
Non^Transferables (lastbag , currcand , continuing) A

nontransaway —
CAonge_iye%g/i((non(rana/em6/ea ,

^ X (a w f p Z u a — < m n s / e r o 6 / e t ; o / u e) /

woZue (6agfoZue (non^razia/emtZea))) A

7%on̂ ?TZ7ia(oM^ — C/iange_W^eigA(() A

transnont =
CAoMge_PKe%g/i< ((mna/embZea , awrp/%/a x J / (nzna/emb/ei'a/ue) A

(niTiaian^ = (tmna/em6/ea , ^) A

wn" E VbfeMoaa A nf" E Aron7}ia?ia/era A

B Specification 166

transferbag" G Candidate -i-> BagBallots A
(s u r p W < A

(mMg/erbag" = V

(siifyZua > fTmTM/embZei'aZwe A (mna/erbog" = ^7ia?%a/er6og)) A

V cand . (cand G dom (transferbag") =>
w n " (coMff) = (concf) U

{ count I—> transferbag" (cand) }) A
{ cand I cand G dom (transferbag) } U
{ currcand } < vm" =
{ cand I cand G dom (transferbag) }
U { currcand } < vm A

(surplus > transferablevalue A
Tmi" (cunicancf) =

(ci/rrcamd) U { coun(i—» } A

V

(surplus < transferablevalue A
(cumconcf) =

(cumconcf) U

{ I—> AagpZug () } A

U { count nonfmTwtoTif })) / \

Transfer^Elected (currcand , vm , nt , count , quota , continuing) =
vm" I—> nt"))

A

E B a g B o Z Z o k x C o n d W a t e x 5 ' e t C o n (f W o t e g —>

(Ca/icfzcfote -t-» jBag^oZZots) A

V (m6og , curyicafid , confmumg) .
(m6og E jBogBaZZota A cuTTcanj E Con(fWo(e A

continuing G SetCandidates =>
3 nextcandbag . (nextcandbag G Candidate -+» BagBallots A

V (ballot , nn) .
(ballot G Ballot A nn G N A ballot i—> nn G inbag A
ballot 1-̂ currcand t—» continuing G dom (Next-Pref)
ballot I—s- nn G

nextcandbag (Next^Pref (ballot , currcand , continuing))) A
f)iepare_TkzMa6ag (, cu?Tcond , contmmng) = Ti&rkondbag))
A

B Specification 167

x N -t-> N A

V (/bag , gtfo^o) . (/bag E A gwo^o E N =>

FincLSurplus (fbag , quota) =
quota —
value (totalvaloffunct (fbag , max (dom (fbag)))))

A

Next-Pref E Ballot x Candidate x SetCandidates -h- Candidate A
V (ballot , currcand , continuing) . (ballot E Ballot A

currcancf E A conhmtfmg E A

(pre/erenceg ()) "^ (cuTTcanc!) + ^ .
card (p?ie/e?Tencea ()) < pre/e/iencea ()

> ^ 0 =>
3 (pre/e?ience , ai'a2Za6/e) .

(pre/enence E iseq (ContfWa^e) A atioiZobZe E N -t^ CoMcfitfote A

p?ie/er%nce = pre/erenceg (6aZZo() A

available =
pTTe/ezience (cuzTconcf) + ^ .
card (pTie/ereMce) <] pzie/eTience > A

Next^Pref (ballot , currcand , continuing) =
(min (dom (aiio%/o6/e)))))

A

B Specification 168

E BagBoZ/ota x x 5'e(Can(f%(fatea —>

BagBallots A
A^07i_7hi?%a/em6Zea E Bo^BaZZo^s x Can(f%(fa^e x S'etContfWo^es —»

BagBallots A
V (inbag , currcand , continuing) .

(m6og E BogBaZ/o(g A ci/rrconcf E A

continuing E SetCandidates =>
3 (tm7%a/erg , non(m?%a/era) .

(transfers 6 BagBallots A nontransfers E BagBallots A
V (ballot , nn) .

(ballot G Ballot A nn G N A ballot hh- nn G inbag =>
ballot I—> currcand i—> continuing G

dom (Next^Pref) A
ballot nn G transfers V
(ballot currcand ^ continuing 0

dom (AFe3±_f?ie/) A

ballot I—> nn G nontransfers)) A
(mbag , ctimcond ,) = (mna/era A

Non^Transferables (inbag , currcand , continuing) = nontransfers)
A

5'e^wp_f%ra(_Coun(E x ^e^CancfWafes —̂ ybfeM&ss A

V (, oncandWaks) .
(bagballots G BagBallots A allcandidates G SetCandidates =>
3 vm" . (vm" G VoteMass A

V (ballot , nn) . (ballot G Ballot A nn G N A
ballot t—> nn G bagballots =>
3 cand . (cand G allcandidates A

first (pre/ersnces ()) = co/id A

I—̂ nn E wn" (cancf) (^))) A

Setup^First^Count (bagballots , allcandidates) = vm"))
A

B Specification 169

fmzs/iecf E x 5'e(Ca)%(fWo(ea x N x N x N x N x

MinDept -t-> BOOL A
V (, Mo_seâ a ,

mmgen , m%)i5cAoo(, mmcfepf) .
(dealt^with E Dealt With A allcandidates G SetCandidates A
coun^ E N A Mo_aeo(a E N A mmgem E N A

mmacAoo/ E N A mmdep(E MmDep^ =>

3 (e/ec(e(f , eic/wcfej , riea) .

(eZecW E ^e(Co7idWo(ea A eicZucfecf E 5'e(Can(fWa<ea A

res G BOOL A
eZec^ej =

{ can(f I mncf E CancfWo^e A

3 ii . (ii E 1 .. count — 2 A
fst (dealt-with [ii)) = cand A
snd (dealt^with { ii)) = elect) } A

ezc/wc(eii =
{ cand I concf E CamdWa^e A

3 M . (M E J . . — & A /s^ ((feo//LW%(/i (M)) = can(f A

and (<jeoZLW(A (%%)) = ea;cZu(fe) } A

(card (elected) = no^seats V
(card (allcandidates) — card (excluded) = noseats A
6aZancepoaaz6Zg (, eZeĉ ec! ,

— ea;cZuc!e(f — eZectej , no_aeo(a ,
minqen , minschool , mindept) = TRUE) A

7^5 = V

(card (elected) < noseats A
(card (allcandidates) — card (excluded) > no^seats V
6aZancepoaaz6Ze (oZZco/idzdaka , eZeĉ ed ,

— ea;cZuc!e(f — eZec(e(f , no_aeo(a ,
mingen , minschool , mindept) = FALSE) A

res = FALSE)) A
fmiaAed (, oZZcandWaka , , Mo_seo(a ,

mmgen , mmacAoo/ ,) =
rea))

A

B Specification 170

E iseq (Co?%(fWa^e) x ^ iseq (ConcfWii^e x v4CT') A

V (scand , act) . (scand E iseq (Candidate) A act € ACT =>
3 o^/ieracaW . (ot/iergcancf E iseq (x) A

V concf . (cancf E ran (gcozid) =>
otherscand (scand (cand)) = cand act) A

v4(fcLAc(zo7i (gcand , oc() = o^/ierscan(f))
A

B Specification 171

Election^Count G VoteMass x NonTransfers x DealtWith x N x
BagBa/Zo&s x x N x N x x N x N —>
VoteMass x NonTransfers x DealtWith A

\/{vm, nt, dw, count, bagballots, allcandidates, mingen, minschool,
mmcfept, no_seok, guo(a).

{vm G VoteMass A nt E NonTransfers A dw £ DealtWith A
count G N A bagballots G BagBallots A
oZ/canffzdaka E A mmgen E N A mmac/iooZ E N A

E A no.aea^s E N A E N ^

{Finished{dw, allcandidates, count, no^seats,
mingen, minschool, mindept) = TRUE A

(3 (confmumg, eZecW).
E A eZec^ed E 5'e(Con(fWa<es A

continuing = allcandidates — dom (ran (1.. count — 1 <1 dw))—
{cc I cc G allcandidates A

?;a!ue((oWuo/oj^nc^(um(cc), — 1)) > = guota} A

e /eckd = {camd | mnd E A 3 M.(M E 1 . . counf A

fst{dw{ii)) = cand A
= e/ec()} A

3 dw".{dw" E DealtWith A

((canf (e / ecW) — no_gea(g A dw'' — (fw) V

(ca?T(f(efecW) < no_aeo(a A

c o n f (e / e c W) + cani(con(mumg) = ?io_gea(g A

dw" = dw ^

o//can(ZWotes, cor(f(a/Zconii%(fa(ea))), eZec^) A

J5/ec(zon_Cotfn((wn, dw, coun(, 6og6a//o(s,
mmgen, mzfwc/ioof, no_aeo(a, guo(o) =

vm i—^ntt—>- dw")
))))
V
{Finished{dw, allcandidates, count, no_seats,

mingen, minschool, mindept) = FALSE A
{3{vm", nt", dw").

{vm" G VoteMass A nt" G NonTransfers A dw" G DealtWith A
Do_a_coun<(um,

no_gea(a, mmgem, mmac/ioo/, mmc(ept, guo(a) —
vm" t—» nt" I—> dw" A

B Specification 172

Election-.Count{vm, nt, dw, count, hagballots, allcandidates,
mmgen, mznac/iooZ, mo_aeo^s, gtfo(a) =

Election-Count{vm", nt", dw", count + 1, bagballots, allcandidates,
mmgen, mzfiac/iooZ, no_geo^s,)))

B Specification 1 7 3

M A C H I N E Counting functions
/* This contains functions to count the total value of a
candidate's votes and a function to calculate the quota */

SEES

BallotBag

C O N S T A N T S
totalvaloffunct ,

PROPERTIES
totalvaloffunct E FunctBag x N —» N x SIGN A
V (E N A E

totalvaloffunct (candfunct , countno) =
^ <1)))

A
Find-Quota E BagBallots x N —> N A
V (ballots , no-seats) . (ballots E BagBallots A no^seats E N =>

Find-Quota (ballots , noseats) =
(hagvaluc (ballots)) / (noseats + 1) + 1)

Cross-references

BagBallots
g/GAT

tagwoke
bagvalue

GlobalVariables

BallotBag
BallotBag
BallotBag

DEFINITIONS

SETS
CONSTANTS

CONSTANTS

CONSTANTS

DEFINITIONS
FunctBag ==
CandsBallots

E N D

N -H- BagBallots;
== N -M (N -t-» BagBallots)

B Specification 174

Cross-references for Countingfunctions
BagBallots GlobalVariables
BallotBag
GlobalVariables
SIGN GlobalVariables
bagrange BallotBag
bagvalue BallotBag
BallotBag

DEFINITIONS

MACHINE

MACHINE

SETS

CONSTANTS

CONSTANTS

CONSTANTS

B SpeciScation 175

D . 2 . 6 Order ing Func t ions

M A C H I N E GetNextCandidate

SEES
G/obaZ Variat/ea,

BallotBag,

FindBalanceMins

C O N S T A N T S

First^count-over,

(7e(_nez(_ofer_guo(a,
Get_nezt_to_ea;c/ude,
Find^Next^Cand

P R O P E R T I E S
fst € {Candidate X ACT) —>• Candidate A
a W E (Cancfzdate x ^ C T) —» y l C T A

V(cc, ac).(cc E CoWWa^e A oc E vlCT
fst{cc I—> ac) = cc A
snd{cc I—> ac) = ac)

A
Fzrgf:_coun(_o!;er E Vb^eM&sg x x N -w N A

/*Partial function - only applicable when candidate is over quota*/
V(um, coW, no_can(k).

(t m E Vb^eMoaa A cantf E A guota E N A 7io_canck E N

F%rg(_coi^n(_oiier(wn, con(f, guo(a) =
min{{nn | nn G N A

value{totalvalojfunct{vm{cand), nn)) >— quota})

B Specification 176

A
Ge(_Rea;(_oiier_guo^a E (Vb(eM(wa x N x ^e(Co7idzdotesx

.9e(Can<i%(fa(es x BogBaHok x N x Nx
N X N X MmDep^ x ,9e(C(m(fi(fo(esx
^'efContfzjo^ea x N)

-w (CancfWa^e x ylCT) A
ouergi^o^o, oZZcancfa, 66aZZo(5, no_con(k,

gwo(a, mmgem, mmac/iooZ, mmdep^, eZecW, contmmng, no_seo(a).
(wn E yb(eMo6S A coun(E N A oi/efiguo^a E 5'e(CanjWo(es A
allcands E SetCandidates A bballots E BagBallots A
no_canc(s E N A guo(o E N A mmgefi E N A
minschool E N A mindept E MinDept A elected G SetCandidates A
con^mwmg E ^e(CaM(fWa(es A no_aea(s E N =>

(3 (/co'un(o2;er, ear/zes^, cazij, (fo).
(/cown(oi;er E ConcfWa^e -w N A
/cou?% ôt;er = A co?%(f%.(c(m(f2 E |

f2ra(_coun(_o^;er(im, mncfz, gwo^a)) A
earZ%es(= mm(mn,/coun(ofer) A
c a n j = /(w<(fu(_m_order(?;m, ear/%ea(, oi;e?Tgtfoto,

allcands, bballots, no^cands)) A
do G ACT A

((6oZamcepoga%6Ze(aHcaM(fa, e/ec^ecZ U co)%c(,

con^mmng — coM(f, no_sea(s, mmgefi,
minschool, mindept) = TRUE A

(fo = e/ec()
V
(6a/ancepoasz6/e(a//coM&s, eZec(e(f U cavid,

con(mmmg — coM(f, no_aea(a, mmge)i,
minschool, mindept) = FALSE A

(fo = eic/wcfe)) A
Get^next-Over-quota{vm, count, overquota, allcands, bballots,

no-cands, quota, mingen, minschool, mindept, elected,
mo_sea(a) =

cand do
))

B Specification 177

A

Ge(_nea;(_(o_ea;cZu(fe E (Vb^eMasg x N x

5'e(CaM(fWo(ea x x 5'e(C(m(f%ja(eax

BagBaZZo(a x N x N x N x N x M m D e p t) —»

(CaMcfWa^e x ACT") A

/*need to insist on balance*/
V(2m, C02̂ 7%(, eZecte(Z, con(mmng, a/Zcancfa, 66oZZo ,̂ mo_ca?%(fa,

no_gea^8, mmgen, mzTwc/iooZ,
(i m E Vb(eMaaa A coun^ E N A e/ec^ec! E 5'e(Con(f%(fa(es A

contmwmg E ^e(Can(iWa(ea A oZ/canck E 5'etCaM(fWo(ea A

bballots E BagBallots A no^cands G N A noseats E N A
mingen E N A minschool E N A mindept G MinDept ^

3o?'tfe?ie(f.(oniere(f E seg(Conc!Wote) A

onfevW = fu^_m_o?'Tc(er(?m%, coun(, ofZcanck,
66aZZo(g, no . conck) A

3poa.(j)os E l . . c<zni(onfe?W) A

Vp^.(pp E l . , poa ^
6oZo7iceposai6Ze(o/ZcaM(fs, ekctec(,

con^mumg — onfe7ie(f(pp), no_5eo(s, mmgen,
minschool, mindept) = FALSE) A

balancepossible (allcands, elected,
continuing — ordered (pa s), no^seats,
mingen, minschool, mindept) = TRUE A

Ge(_7%ea:(_^o_ezc/u(fe(im, eZec(e(f, contmiimg, aZ/coMcfs, 66oZZô a,
no-COTick, no_seak, mmgen, mmsc/iooZ, =

orG!e7Te(f(poa) w eicZiiiie)
))

A

B Specification 178

Find^Next^Cand G {VoteMass x N x DealtWithx
x BagBaZ/ota x N x N x Nx

x N) —»
(ConffWok X ^ c r) A

oZ/caMd%(fa(e5, 66o/Zo^a, MO_sea(a,
mmgeM, mmacAooZ,

(tm E Vb^eAfosa A coun(E N A E Dea/(PKz(A A
allcandidates E SetCandidates A bballots E BagBallots A
no_sea(a E N A mmgen E N A mmsc/iooZ E N A
mindept E MinDept A quota E N =>

(3(o!;efiguo^a, con(mmng, e k c W , camd, ac) .

(oiieviguo^o E A
con(mumg E 5'e(CandWa(ea A cand E CandWa^e A
oc E A eZeĉ ecf E ^e(Con(f%da(ea A
owerguo^a — {cc | cc E a//canc!%(fa(es A

Wue((oWWo_^nc^(?;m(cc), count — 1))
>= quota}—

dom{ran{l .. count — 1 <1 dealt^with)) A
contmumg =

oZZconcfzcfafeg—
.. count — 1 <l

{cc I cc € allcandidates A
W'ue(foWWojg'unct(im(cc), count — 1))
>— quota} A

eZected = {can(f | cancf E CandWote A
3 a.(a G dom dealt^with A
fst{dealt^with{ii)) = cand A
snd{dealt-.with{ii)) = elect)} A

((oi/erguota ^ 0 A
cand t—» oc =

Get_next_over^quota{vm, count — 1, overquota,
allcandidates, bballots, card{allcandidates), quota,
mingen, mtnac/iooZ, mmcfept, e/ected, continmng,
no_aeata)) V

(ot;eTiguota = 0 A
cand t—̂ oc =

Get_nert_to_ea;c/ude(um, count — 1, eZecte(f,
continuing, allcandidates, bballots, card {allcandidates),
no-seats, mingen, minschool, mindept)

))A

B Specification 179

c!eaZf_W(A, aZZcamdzdotea, tbaZZots,
no^seats, mingen, minschool, mindept, quota) =

con(f I-+ ac))
)
E N D /* Machine GetNextCandidate*/

B Specification 180

M A C H I N E OrderingFunctions

SEES
B o o L r y p E ,
BallotBag,
GlobalVariables,

FindBalanceMins

C O N S T A N T S
Tie/,

Order^of-Preferences,

P R O P E R T I E S
VoteMassatPref E BagBallots x SetCandidates x N —> VoteMass A

y[bballots, allcandidates, preference).{bballots G BagBallots A
oZZcan jWafes E A pre/erence E N

3 E ybteMogg A

V(66, nn).(66 E A %?% E N A 66 i—» E 66aZZô =>
3ca?2(f.(coM(f E A

pre/e7Temcea(66)(pre/erence) = cayid A

66 t-+ nm E u m (c o W) (l)) A

ybfeAfaaaa(fre/(66o//o<g, ancoM(fWa(ea,pre/e)ience) = wn)))
A

B Specification 181

Order_o/_Pre/e)iencea E BagBaZZotg x 5'e(CoM(fWo(ea x N —»

%aeg(Ca?%<jWate) A

/* After the first count, the ballots are arranged in 'order of
preferences' according to "Rules for Academic Council Election
(Academic Members)" Rule 2. This order of preference is used
later in case of ties between candidates. */
V{bballots, allcandidates, no^cands).{bhallots E BagBallots A

allcandidates G SetCandidates A no^cands G N =4>
3 E A onfezie&seg = oZZcoWztfafes A

V(M, E (fom onfe/ie&seg A E (fom OMfevieiiaeg A M < j;' =>

{3 pref .{pref E l . , no^cands A
/* pref is the first time there's a diffence*/

pre/)(o7tfen2ckeg(w)), 1)) >
re/ (

aZZcaWWo(eg,pre/)(onfe7ie(keg(jij)), 1)))
A

E l . , pre/ — 1 =>
{value{totalvaloffunct[VoteMassatPref (

bballots, allcandidates, pp){orderedseq{ii)), 1)) =
value (totalvaloffunct (VoteMassatPref (

6WZok, o//caWz(fo(eg,pp)(oniere&seg(jiy)), 1))))))
V

/ * If EiU equal, 'draw lots' */
(Vpp.(pp E l . . no_can(k

{value{totalvaloffunct(VoteMassatPref (
bballots, allcandidates, pp){orderedseq{ii)), 1)) =

t;afue((oWi;aZo^ncf(Vb(eM(Lssa^f?'Te/(
66aZZo<s, oZZcoWz(fa(ea,pp)(onfere(keg(j;)), 1)))))

) / * or * / A

C)?T(er_o/_f?ie/e?iencea(5WZo(g, aZ/can(fWa(ea,n,o_coM(fa) = ordeTie&seg
))

A

B Specification 182

PutAri-order E (VoteMass x N x SetCandidates x
x x N) —»

weg(Can(fz(ia(e) A

V(7wi, aetcan&s, a/Zcanck, no_canck).
wn € Vb^eMoaa A couM^ E N A ge(coMck E 5^e(Con(fi j o (e s A

a/Zcanck E 5'e(Can(fWoteg A 6oZZok E BogBa/Zo(a A no .canck E N =>

3onfe/ie6keg.(o?%(e7ie&seg E iaeg(Can(f%(fa(e) A

mM OMfeyieckeg = aekoMck A

V(w,jj) . (M E (fom onfeTiedseg A j ; E (fom onferedaeg A M < j)

(Wue((oWWo_^nc((wi(o?Tfe7Wgeg(H)), coun()) <
i;a/ue((o(a/!;aZo_0'unc((onfefiecfgeg(jj)), count)))
V
(Wue((oWWo_^?%c(((;m(orYfe7Wgeg(H)), count)) =
i'aZue(toto(Wojg^nc((im(onfe7iedseg(ji;')), count)) A

(3 (fwtmg_c.((fzatmg_c E l . , count A

uo/ue(totaZuo/o_^nct(wn(ordereckeg(M)), dwtmg_c)) <
uaZue(totafuoZoj8'unct(tm(onfe7Wseg(ji;)), (f%gtmg_c)) A

V cc.(cc E l . . j%gtmg_c — 1 =>
uaZue(totafua/Oj@'i/nct(uyn(onfe7ie(keg(n)), cc)) =
uaZue (totaZi;aZoj8^nct ((OTzfevWaeg (j)')), cc))
)

))
V
(Vcc.(cc E l . , count =>

value{totalvalojfunct{vm{orderedseq{ii)), cc)) =
ua/ue (toto/uaZojQ'i/nct (um (oncfeyieckeg ()) , cc)))
A

07ider_o/_fre/e7Tenceg(66aZZotg, oZZcan(fs, no.conck)
(o?%fe)Wseg(M)) <

Order- of-Preferences (bballots, allcands,
no_can(fs) (onie)ieckeg(j)'))

))
) A

Put-in-order{vm, count, setcands, allcands, bballots, no-cands) =
onfcTiedseg))

E N D

B Specification 183

D.2.7 Candidate Balance Functions

M.ACTAI'N'EFindBalanceMins

SEES
GlobalVariables,

C O N S T A N T S
yZfi&scAooZmm,

nurrif ronig ender,
balancepossible

P R O P E R T I E S
yZncfacAooZmm G x x N) —» N A

cacAooZ E A

mzykscAooZ E N

findschoolmin{AllCandidates, cschool, minschool) =
min{{card{cc | cc E AllCandidates A school{cc) = cschool},

minschool})

)
A

E x —> N A

V(ca)%(fs, gcA).(can(fs E 5'e(Can(f2c!a^ea A gcA E ^

num-from-School{cands, sch) =

co)Tc(({cc I CC E cdMck A acAoo/(cc) = gcA })

)
A
num^from^gender E {SetCandidates X GENDER) —> N A
\/(cands, gen).(cands E SetGandidates A gen E GENDER

7ii/m_yh)m_gen(fer(can(fa,gen) =
coni(cc I cc E conck A gender (cc) = gen)

)
A

B Specification 184

Wonceposs%6/e E x 5'e(Can(f%c(o(ea x 5'e(Con(fWo(eax

N X N X N X M m D e p f) —»

A

V(v4/ZCaM(fWo(ea, eZec(ed, con^mmng, no_seafg, mmgen, mzTWcAooZ,
(yl//C(m(fWa^ea € .9e(Can(fWo(ea A

elected 6 SetCandidates A continuing E SetCandidates A
mo_aea(s E N A m m g e n E N A mz/wcAoof E N A

mindept E MinDept ^
6oZa?2ceposa26/e(v4ZZCan(fWa(ea, eZecW, no_aea(a,

mingen, minschool, mindept) =
bool{

3 (o6eeZecW.((o6eeZecW E 5'e(Con(fi(fa(e5 A

(o6eeZec(e(f ^ A

cono((e/ec(e(f) + canf((o6eeZec^e(f) = no_seo<a A

y gen.{gen E GENDER =>
num^from^gender{elected U toheelected, gen) >— mingen) A
y sch.{sch E SCHOOL ^

:ium_yh)m_scAoo/((o6ee/ec(e(f U ekc^af, gc/i) > =

findschoolmin{AllCandidates, sch, minschool)) A
E DEPAjZTMEArr

canf({cc I cc E eZecW U ^obeeZec^ed A

(fepa?ime7%^(cc) = o!p(}) > =
maa;(mm(fep<(d!p(), 0))

/ * b o o l * /

Bibliography

[1] J.-R. Abrial. T/ie B-Boot/ Asazgnmg (o Meanmga. Cambridge
University Press, 1996.

[2] Aho, Up croft & Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

[3] R.J.R. Back. Correctness Preserving Program Refinements: Proof The-
ory and Applications. Tract 131, Mathematisch Centrum, Amsterdam,
1980.

[4] R.J.R. Back & M.J. Butler. Fusion and simultaneous execution in the
refinement calculus. Acta Informatica, 35:921-949, 1998.

[5] B-Core(UK)Ltd, B-Toolkit User's Manual, B-Core(UK) Ltd. 1997.

[6] R. Bird & P. Walder, Introduction to Functional Programming, Prentice
Hall, 1988.

[7] U. Breyman. Designing Components with the C-h-h STL: A New Ap-
proach to Programming. Addison Wesley, 1998.

[8] M.J. Butler. Calculational Derivation of Pointer Algorithms from Tree
Operations. Science of Computer Programming, 33 (1999) 221-260.

[9] M.J. Butler & M. Meagher. Performing Algorithmic Refinement before
Data Refinement in B. In Conference Proceedings - ZB2000:Formal Spec-
ification and Development in Z and B, pages 324 - 343, Lecture Notes in
Computer Science, 1878, Springer, 2000.

[10] B. Dehbonei & F. Mejia. Formal Development of Safety-critical Soft-
ware Systems in Railway Signalling. In M.G. Hinchey & J.P. Bowen, edi-
tors, Applications of Formal Methods, Prentice Hall, 1995.

185

i86

[11] Derbyshire &: Derbyshire. o/^/ie tyor/(f (".Sncf
Oxford Helicon, 1996. ISBN 185 986 1148.

[12] E.J. Dijkstra. A Discipline of Programming . Prentice-Hall, 1976.

[13] R. Fraer. Minimum Spanning Tree. In E. Sekerinski & K. Sere, editors.
Program Development by Refinement. Case Studies using the B Method.
Formal Approaches to Computing and Information Technology. Springer,
i9a&

[14] D. Gries. The Science of Programming. Texts and Monographs in Com-
puter Science, Springer, 1989.

[15] J.P. Hoare.Application of the B-Method to CICS. In M.G. Hinchey &
J.P. Bowen, editors. Applications of Formal Methods, Prentice Hall, 1995.

[16] C.A.R Hoare, He Jifeng, and A. Sampaio. Normal form approach to
compiler design. 30:701-739, 1993.

[17] http://www.sgi.com/Technology/STL

[18] C.B. Jones, Systematic Software Development using VDM (2nd Edi-
tion), Prentice Hall, 1990.

[19] S. King. Z and the refinement calculus. In D. Bjorner, C.A.R. Hoare
and H. Langmaack, editors, VDM'90:VDM and Z - Formal Methods in
Software Development, Kiel, volume 428 of Lecture Notes in Computer
6'c%e?ice. Springer, 1990.

[20] K. Lano. The B Language and Method - A Guide to Practical Formal
Development. Formal Approaches to Computing and Information Tech-
nology. Springer, 1996.

[21] D. MacQueen, R. Harper & R. Milner. Standard ML. Technical Report
ECS-LFCS-86-2, Department of Computer Science, University of Edin-
burgh,1986.

[22] C.C. Morgan & T. Vickers, editors. On the Refinement Calculus. Formal
Approaches to Computing and Information Technology. Springer, 1994.

[23] C.C. Morgan. Programming from Specifications (2nd Edition).
Prentice-Hall, 1994.

[24] J.M. Morris. Laws of data refinement. Acta Informatica, 26:287-308,
1989.

http://www.sgi.com/Technology/STL

BIRLaDGRAj^ry 187

[25] P. Mukherjee & B.A. Wichmann. STV: A Case Stuy in VDM. National
Physical Laboratory, Teddington, UK, 1993.

[26] M.R. Poppleton. The Single Transferable Voting System: Functional
Decomposition in Formal Specification. From - Conference Proceedings -
IWFM'97 1st Irish Workshop in Formal Methods , Pages 1 - 18, 1997.

[27] K.A. Robinson. Introduction to the B Method. From Program Devel-
opment by Refinement, E. Sekerinski and K. Sere (Eds), Springer, 1999.

[28] Seanad Aireann. Seanad General Election, February 1993, Government
Publications, 1993.

[29] I. Sorenson to M. Meagher - Private Correspondence(e-mail), 12/11/99.

[30] J. Michael Spivey. The Z Notation: a Reference Manual. Prentice Hall,
2nd edition, 1992.

[31] M. Walden. Distributed Load Balancing. In E. Sekerinski & K. Sere,
editors, frogmm 6?/ Coae wamg (/le B
Method. Formal Approaches to Computing and Information Technology.
Springer, 1998.

[32] J. von Wright. The lattice of Data Refinement. Acta Inform., 31 (2)
(1994) 105-135.

[33] J. Woodcock & J. Davies. Using Z, Specification, Refinement and Proof,
Prentice Hall, 1996.

[34] J.B. Wordsworth. Software Engineering with B. Addison-Wesley, 1996.

