UNIVERSITY OF SOUTHAMPTON

SAMARIUM DIIODIDE MEDIATED CASCADE RADICAL CYCLISATIONS OF METHYLENECYCLOPROPANE DERIVATIVES

By
Faye Charlotte Watson
Doctor of Philosophy
FACULTY OF SCIENCE
DEPARTMENT OF CHEMISTRY

OCTOBER 2001

UNIVERSITY OF SOUTHAMPTON

Abstract
FACULTY OF SCIENCE
CHEMISTRY
\section*{Doctor of Philosophy}
\section*{Samarium Diiodide Mediated Cascade Radical Cyclisations of Methylenecyclopropane Derivatives}

By Faye Charlotte Watson

This thesis is concerned with the synthesis, and radical cyclisations of methylenecyclopropane derivatives. Special interest is given to developing samarium diiodide mediated cascade radical cyclisations to create polycyclic systems.

Chapter 2 describes the synthesis of cyclopentanone ($\mathbf{1 6 0}$ and 171) and cyclohexanone cyclisation precursors ($\mathbf{1 8 4}$ and $\mathbf{1 8 5}$), and the investigations into their cascade cyclisation to produce bicyclic diols $\mathbf{1 6 2}$ and 186. The cyclisations of these precursors were found to be stereoselective due to chelation control with the samarium(III) ion. Chapter 3 describes the samarium diiodide mediated cascade cyclisation of methylenecyclopropyl cyclohexanone adducts with a pendant alkene or alkyne. The cascade reactions were found to proceed with high yields and diastereoselectivity, which was dependent on the presence of co-solvent HMPA or MeOH.

Chapter 4 reports the investigations into the synthesis of natural product dihydrotournefortiolide $\mathbf{1 5 4}$ via a key radical cyclisation step using samarium diiodide Cyclisations precursors $\mathbf{2 7 0}$ and $\mathbf{2 7 1}$ were synthesised from ethyl acetoacetate and preliminary studies into the cyclisations of such adducts were investigated.

Chapter 5 outlines the samarium diiodide mediated radical cyclisations of simple α, β unsaturated ketones as model studies towards the natural product dihydrotournefortiolide 154.

Nothing happens unless first a dream. Carl Salsberg

Contents

Preface I
Acknowledgements II
Abbreviations III
Chapter 1. Introduction

1. Methylenecyclopropane 1
1.1 Biological Background 1
1.2 Chemical Background 1
1.3 Synthesis of Methylenecyclopropane and Substituted 2 Methylenecyclopropanes
1.4 Reactions of Methylenecyclopropanes 4
[3+2] Cycloadditions 5
1.5 Intramolecular Radical Cyclisations 6
Regioselectivity 7
Stereoselectivity 9
1.6 Intramolecular Radical Cyclisations to Form Bicylic Products 10
1.7 Tandem Radical Cyclisations 11
1.8 Radical Cyclisations of Methylenecyclopropane Derivatives 12
1.9 Tandem Radical Cyclisations of MCP Derivatives 14
2. Samarium (II) Iodide 15
2.1 Solvent Effects 19
2.2 Tandem Radical Reactions using SmI_{2} 21
2.3 Disconnection of Paeonilactone B 22
2.4 Cyclisation Studies Towards Paeonilactone B 23
2.5 Cyclisation Studies Towards Paeonilactone A 25
3. Program of Work 28
Chapter 2. Model Studies
4. Introduction 30
5. Synthesis of Cyclopentanone Precursors 32
6. Preparation of Samarium Diiodide 35
7. Cyclisation of Precursors 35
4.1 Reaction Mechanism 37
4.2 Proof of Stereochemistry 38
8. Synthesis of Cyclohexanone Precursors 41
9. Cyclisation of Precursors 43
6.1 Reaction Mechanism 44
6.2 Proof of Stereochemistry 45
10. Conclusions 47
Chapter 3. Cascade Cyclisations Leading to Tricyclic Products
11. Introduction 48
12. Synthesis of Propargyl Ether Precursors 48
13. Cyclisation of Propargyl Ether Precursors 51
3.1 Propargyl Ether Isomer 198 52
3.2 Reaction Mechanism 52
3.3 Proof of Stereochemistry 52
3.4 Explanation of Stereochemistry 53
3.5 Propargyl Ether Isomer 199 54
3.6 Reaction Mechanism 54
3.7 Proof of Stereochemistry 55
3.8 Explanation of Stereochemistry 55
14. Synthesis of Allyl Ether Precursors 56
15. Cyclisation of Allyl Ether Precursors 57
5.1 Allyl Ether Isomer 215 57
5.2 Proof of Stereochemistry 58
5.3 Stereoselectivity 59
5.4 Allyl Ether Isomer 216 60
5.5 Stereochemistry 61
16. Conclusions 62
Chapter 4. Towards a Natural Product - Dihydrotournefortiolide
17. Introduction 63
18. Disconnection of Dihydrotournefortiolide 64
19. Synthesis of Cyclisation Precursors 68
3.1 Initial Studies 68
3.2 Towards Cyclisation Precursors 71
20. Cyclisation of Natural Product Precursors 74
4.1 Cyclisation of Precursor 270 74
21. Conclusions 77
Chapter 5. Model Studies Towards Natural Product
22. Introduction 78
23. Investigations Into the Introduction of a Competitive Cyclisation 80
24. Cyclisations of Simple Cyclic α, β-Unsaturated Ketones 89
25. Conclusions 93
Chapter 6. Experimental
General Experimental 94
Instrumental 94
Experimental For Chapter 2 96
Experimental For Chapter 3 113
Experimental For Chapter 4 125
Experimental For Chapter 5 139
References 145
Appendix 150

Preface

The research described in this thesis was carried out under the supervision of Prof. Jeremy Kilburn at the University of Southampton between October 1998 and October 2001. No part of this thesis has been previously submitted at this or any other University.

Acknowledgements

I would like to thank Prof. Jeremy Kilburn for his encouragement and supervision during the course of this research.

I would also like to thank the BBSRC for providing the financial support of the project.

I must thank Mrs Joan Street and Mr Neil Wells for all their help with NMR experiments, Dr. John Langley and Miss Julie Herniman for their constant help with obtaining mass spectra, and Dr Mark Light for the X-ray crystallography work.

A special thanks to Mell Tyte, Lee Patient and especially Neil Wells for taking the time to proof read this thesis and for their constructive advice.

I would like to take this opportunity to thanks all my friends for their constant support and friendship; Fay Thomas for having the same name as me and confusing everyone we meet; Mell Tyte for the chats, alcohol and "cheese" support, (I am still not convinced it is me that is the bad influence!); Niggle Swain for being Niggle and Sara Chunn for putting up with him; Emma Shepherd for the long talks, shopping trips and massive car park bills; Alex Saint-Dizier for always being Dizzy and unconventional; Lee for making my last year in the lab. not quite so scary and for the endless games of pool (One day I will win a game!); Jon "if you didn't have a boyfriend I'd do you" Underwood for his amazing poledancing skills; Neil Wells for all the sober support, cinema trips and arm aching darts games; Richard "computerman" Fitzmaurice for his wonderful knowledge of EndNote (you really should get out more); Chlöe and the rats for endless sleepless nights and early morning wake up calls, and also the Kilburn group members past and present who made doing a PhD more fun than I ever imagined it could be.

I would also like to thank my mum, dad and brother Lee for their full support and for always keeping faith in me.

Last but not least I would like to say "Thanks to John", for getting me through the good and the bad times of my PhD and putting up with me for all this time.

Abbreviations

Ac	acetyl
AIBN	2,2'-Azobisisobutyronitrile
APCI	atmospheric pressure chemical ionisation
aq.	aqueous
brs	broad singlet
BuLi	butyl lithium
cat.	catalytic
CI	chemical ionisation
COD	cyclooctadiene
d	doublet
dba	dibenzylideneacetone
DCM	dichloromethane
de	diastereomeric excess
DEPT	distortionless enhancement by polarisation transfer
DIBAL-H	diisobutylaluminium hydride
DMA	N, N-dimethylacetamide
DMF	N, N-dimethylformamide
DMPU	N, N-dimethyl- N, N-propylene urea
DMSO	dimethylsulfoxide
ether	diethyl ether
eq.	equivalent
h	hour
HMPA	hexamethylphosphoramide
i	iso
IR	Infrared spectroscopy
J	coupling constant
LUMO	lowest unoccupied molecular orbital
m	multiplet
MCP	methylenecyclopropane
min	minute
n	normal

NBS
nmr
nOe
p
PCC
petrol
q
R_{f}
RT
SOMO
t
t
TEA
THF
THP
TMS

N -bromosuccinimide
nuclear magnetic resonance
nuclear Overhauser enhancement
para
pyridinium chlorochromate
petroleum ether b.p. $40-60^{\circ} \mathrm{C}$
quartet
retention factor
room temperature
singly occupied molecular orbital
tert
triplet
triethylamine
tetrahydrofuran
tetrahydropyran
trimethylsilyl

CHAPTER 1

INTRODUCTION

1. METHYLENECYCLOPROPANE

1.1 BIOLOGICAL BACKGROUND

1

2

3

Figure 1
The methylenecyclopropane moiety 1 can be found in natural products such as Hypoglycin A 2, which is an unnatural amino acid isolated from the arillus and seeds of unripe ackee (Blighia sapida). When ripe the ackee fruit is part of the Jamaican diet but ingestion of Hypoglycin A from unripe fruit has been mistakenly attributed as the cause of Jamaican vomiting sickness. ${ }^{1}$ The actual cause is methylenecyclopropaneacetic acid $\mathbf{3}$, which results from metabolic degradation of hypoglycin A^{2}

1.2 CHEMICAL BACKGROUND

Methylenecyclopropane derivatives have been used in synthetic transformations over the past 15 years and were chosen for their surprising stability accompanied with a high level of ring strain. The structure of methylenecyclopropane 1 has been determined by microwave spectroscopy. ${ }^{3}$ The $C(2)-C(3)$ bond length and the $C(2)-C(1)-C(3)$ bond angle are larger compared with those of cyclopropane 4 due to steric strain imposed on the ring by the exocyclic double bond (Figure 2). Indeed upon hydrogenation of the double bond $13.0 \mathrm{kcal} / \mathrm{mol}$ of strain energy is released. ${ }^{3}$

4

5

Figure 2

1.3 SYNTHESIS OF METHYLENECYCLOPROPANE AND

 SUBSTITUTED METHYLENECYCLOPROPANES.Methylenecyclopropane (MCP) $\mathbf{1}$ is a volatile olefin with a boiling point of $11^{\circ} \mathrm{C}$ that can be stored in ampules. It is commercially available (Fluka) but methylenecyclopropane can be synthesised in a number of ways.
Dichloropropene 7 , prepared by chlorination of methallyl chloride $\mathbf{6}$, can be dechlorinated with magnesium to give MCP (Scheme 1). ${ }^{4}$

Scheme 1
Heating of pyrazoline $\mathbf{8}$ also produces methylenecyclopropane $\mathbf{1}$, but this time the driving force is the loss of nitrogen (Scheme 2). ${ }^{5}$

Scheme 2
However, methylenecyclopropane has been best prepared by the treatment of methallyl chloride $\mathbf{6}$ with base to afford an allyl carbene 9 , which in turn yields a mixture of methylenecyclopropane 1 and methylcyclopropene 10 (Scheme 3). ${ }^{6}$

Scheme 3
Methylcyclopropene $\mathbf{1 0}$ can be converted into methylenecyclopropane $\mathbf{1}$ using 'BuOK/'BuOH.

There are two main methods to prepare substituted methylenecyclopropanes:

1) by the addition of methyl chlorocarbene to a suitably functionalised alkene to give a cyclopropyl compound such as 12, followed by dehydrohalogenation (Scheme 4). ${ }^{7}$

Scheme 4
2) by deprotonation and alkylation of the methylenecyclopropane ring (Scheme 5) ${ }^{8,9}$

Scheme 5
Methylenecyclopropane $\mathbf{1}$ can be deprotonated with ${ }^{\mathrm{n}} \mathrm{BuLi}$ and reacted with a variety of electrophiles such as trimethylsilylchloride, alkylbromides and carbonyl compounds. ${ }^{8,9}$

Sequential deprotonation and alkylation of MCP proceeds regioselectively to give 1,2disubstituted methylenecyclopropanes, such as 17 (Scheme 6). ${ }^{10}$

Scheme 6

However, the presence of Si directs the second deprotonation onto the silicon-bearing carbon to give a 1,1-disubstituted product, such as 19 (Scheme 7). ${ }^{8,11}$

Scheme 7

1.4 REACTIONS OF METHYLENECYCLOPROPANES

Methylenecyclopropane, due to its inherent ring strain, has been the subject of many mechanistic investigations. Its derivatives have served as key intermediates in synthetic sequences ${ }^{8,9}$ and it has a broad chemistry of its own (Scheme 8). ${ }^{8,9,12-14}$ They are unlike three membered heterocycles which have a tendency to react via open chain 1,3 dipolar intermediates. Reactive methylenecyclopropane derivatives have been used in numerous reactions and due to the alkene moiety can undergo electrophilic additions, carbene additions and Diels-Alder reactions, leaving the cyclopropane ring intact in the products (Scheme 8). ${ }^{8,9,12-14}$

Scheme 8

[3+2]CYCLOADDITIONS

Significant interest lies in the synthesis of five membered rings via cycloaddition reactions. Methylenecyclopropane can undergo transition metal catalysed $[3+2]$ cycloadditions with alkenes to form five membered rings by the cleavage of either the distal or proximal bond of the cyclopropyl ring (Figure 3).

Figure 3

The nickel or palladium catalysed reactions between methylenecyclopropane and an alkene or alkyne have received considerable attention (Scheme 9). ${ }^{12}$ Palladium or nickel catalysts facilitate this cycloaddition process equally although the regiochemical outcome of the reactions is highly dependent on the nature of the metal and it is associated ligands. Nickel catalysts, particularly in the absence of phosphine ligands, favour formation of products derived from cleavage of the proximal bond of the cyclopropane (path B), whereas palladium catalysts yield cycloadducts derived from distal bond cleavage (path A) (Scheme 9). ${ }^{12}$

Scheme 9
Intramolecular [3+2] cycloadditions can also occur (Scheme 10). ${ }^{15}$

Scheme 10

1.5 INTRAMOLECULAR RADICAL CYCLISATIONS

Intramolecular cyclisation reactions have found much use in natural product synthesis, especially for the formation of five membered rings. ${ }^{16}$ The efficiency of the intramolecular cyclisation is the result of less negative activation entropies compared with those of the intermolecular analogues (Scheme 11). ${ }^{17}$

Scheme 11

REGIOSELECTIVITY

For intramolecular cyclisations the radicals can cyclise in two possible ways, exo or endo (Scheme 12). Baldwin has defined a system to classify types of cyclisation and has suggested guidelines for which cyclisations will be favoured. ${ }^{18}$

24
a) exo

b) endo

26

Scheme 12
5-Hexenyl 24 and 6-heptenyl 27 radicals both cyclise in the exo manner, in accordance with Baldwin's rules, to give the less thermodynamically favoured primary radicals 25 and 28 (Scheme 13).

Scheme 13
Beckwith has explained the observed regioselectivities using stereoelectronic arguments. ${ }^{19}$ The addition of an alkyl radical to an olefin proceeds via an unsymmetrical transition state in which three atoms involved in bond breaking and bond formation are at the corners of an obtuse triangle orthogonal to the nodal plane of the π system 30 (Figure 4). The overriding frontier molecular orbital interaction in this transition state is that between the radical SOMO and the alkene LUMO $\left(\pi^{*}\right) \mathbf{3 1}$. Therefore, transition states 32 and 33 are favoured for the cyclisations (Figure 4). The synthesis of 6-membered rings via cyclisation of 6-heptenyl radicals is synthetically less useful than the synthesis of 5-membered rings since the rate of cyclisation is twenty times slower. The decrease in rate leads to an increase in the amount of reduced uncyclised product and to competition by 1,5-allylic hydrogen abstraction. ${ }^{20,21}$

30

31

32

33

Figure 4
The regiochemistry of cyclisations can be affected by substitution on the alkene, ${ }^{19}$ probably due to steric influence, but substituents at the radical centre have only small effects (Scheme 14).

Scheme 14

STEREOSELECTIVITY

Beckwith has defined a set of guidelines governing ring closure of substituted hexenyl radicals, ${ }^{22}$ which explains the observation that 1 - or 3 - substituted 5 -hexenyl radicals give preferentially cis products, and that 2 - and 4 - substituted radicals give predominantly trans products (Scheme 15).

Scheme 15

In Beckwith's model the early transition state resembles a cyclohexane ring and prefers a chair-like structure to a boat-like structure, and the substituents preferentially adopt pseudo-equatorial positions (Figure 5). ${ }^{23}$

Figure 5
However, this effect does not satisfactorily account for the results observed for the cyclisation of 1 -substituted radicals and it is thought that additional stereoelectronic factors may be important in this case. ${ }^{24}$

1.6 INTRAMOLECULAR RADICAL CYCLISATIONS TO FORM BICYCLIC PRODUCTS

Model studies by Beckwith ${ }^{25-29}$ and RajanBabu ${ }^{30}$ with cyclohexenyl radicals show that intramolecular 5-exo cyclisations onto an alkene moiety result in cis fused products as well as a new methyl chiral centre (Scheme 16). Assuming that the reaction goes through a chair-like transition state, then if the allyloxy group is equatorial the major product will be the cis-fused syn product 45. However, if the allyloxy group is held axially then the cis-fused anti product 46 is the major product.

Scheme 16

1.7 TANDEM RADICAL CYCLISATIONS

Tandem and cascade radical cyclisation reactions are of interest because they allow the rapid construction of several C-C bonds in a single reaction step and are therefore more efficient than step-wise synthesis. Consequently, they can provide elegant routes to complex polycyclic compounds and natural products. ${ }^{31-35}$
There are many radical cyclisations in the literature, for example:

1) Tandem cyclisation to produce (\pm)-hirsutene 51 (Scheme 17). ${ }^{36}$

Scheme 17
Tributyltin hydride is used to generate radical 48 which undergoes a 5-exo cyclisation onto the alkene followed by a further 5-exo cyclisation onto the alkyne to yield hirsutene $51 .{ }^{36}$ Although tertiary radical 49 is relatively stable the second 5-exo cyclisation is driven by the formation of a σ - bond with the loss of a π-bond and is therefore energetically favoured.
2) Cascade cyclisation to produce a steroid ring construction (Scheme 18). ${ }^{37}$

$\left\{\begin{array}{l}\text { transannular } \\ \text { cyclisation }\end{array}\right.$

$\left\lvert\, \begin{aligned} & \text { consecutive } \\ & 6 \text {-endo-trig cyclisations }\end{aligned}\right.$
$\left\lvert\, \begin{aligned} & \text { 9-endo-trig } \\ & \text { macrocyclisation }\end{aligned}\right.$

Scheme 18

Radical 53 is generated from the acylselenide 52 and undergoes a sequence of 6-endotrig cyclisations to produce tertiary radical $\mathbf{5 4}$ which is in equilibrium with primary radical 55. 55 undergoes a 9 -endo-trig cyclisation and transannulation to produce the steroid-like structure $57 .{ }^{37}$

1.8 RADICAL CYCLISATIONS OF

METHYLENECYCLOPROPANE DERIVATIVES

Radical cyclisations of methylenecyclopropyl substituted alkyl radicals have been utilised in an effort to develop new and efficient approaches to larger ring systems. The methylenecyclopropane unit was used as a radical trap, which provides a number of possible pathways that the radical cyclisation can follow (Scheme 19). ${ }^{38}$

Scheme 19
Initial endo cyclisation of $\mathbf{5 8}$ might be favoured, due to less steric hinderance encountered on such a pathway, which would lead to a relatively stable cyclopropyl radical 59. Alternatively, exo cyclisation of $\mathbf{5 8}$ would lead to an intermediate cyclopropyl methyl radical $\mathbf{6 0}$, which would be expected to open rapidly, to give either ring expanded methylenecycloalkyl radical 61, via 'endo' ring opening, or cycloalkylmethyl radical 62, via 'exo' ring opening. Kinetically there is no clear preference for either ring opening, however 'exo' ring opening would give a thermodynamically less favourable primary radical. Such cyclopropyl 'exo' ring openings are often reversible and consequently result in the thermodynamically favoured product 61. ${ }^{39}$

Investigations by Destabel have shown that (methylenecyclopropyl)propyl radical generated from, for example, $\mathbf{6 3}$ cleanly gave methylenecyclohexane $\mathbf{6 4}$ which resulted from a 5-exo cyclisation, followed by the 'endo' ring opening of the intermediate cyclopropylmethyl radical (Scheme 20). ${ }^{10,11,38}$

Scheme 20
It was therefore concluded that (methylenecyclopropyl)propyl radicals can be expected to cyclise exclusively in 5-exo fashion, followed by 'endo' ring opening to give the ring expanded methylenecyclohexane product.
(Methylenecyclopropyl)butyl radical generated from bromides such as $\mathbf{6 5}$, gave a mixture of products resulting from exo and endo cyclisation and also from straightforward reduction (Scheme 21). ${ }^{10,11,38}$

Scheme 21
Cyclisation of (methylenecyclopropyl)pentyl radical derived from, for example, 69 simply gave the reduced, uncyclised product (Scheme 22). ${ }^{10,11,38}$

Scheme 22

1.9 TANDEM RADICAL CYCLISATIONS OF

METHYLENECYCLOPROPANE DERIVATIVES

Continuing the investigations with radical cyclisations of methylenecyclopropane derivatives, Santagostino showed that cyclisation of 71 ultimately led to the tricyclic compounds 75 and 76 via the spirocyclic vinyl radical 74 (Scheme 23). ${ }^{40,41}$ Radical 72 generated from bromide 71, cyclises onto methylenecyclopropane and then opens to give methylenecyclohexane radical 73. Intramolecular cyclisation of radical 73 onto the alkyne moiety affords the reactive vinyl radical 74, which can further cyclise onto the methylenecyclohexane with the observed $3: 1$ regioselectivity. ${ }^{40,41}$ Several other examples of tandem cyclisations involving methylenecyclopropane derivatives have also been described. ${ }^{42,43}$

Scheme 23
A major disadvantage of these previous syntheses is that they use tributyltin hydride, which is very toxic, and difficulties can occur in the removal of tin residues.

2. SAMARIUM(II) IODIDE

Radical reactions in the past have traditionally concentrated on the tin hydride method to generate radicals from alkyl halides. However, a number of alternative methods exist, ${ }^{44,45}$ one of which utilises samarium diiodide. SmI_{2} has made a significant contribution to synthetic methodology during the last twenty years, and became of general interest and importance during 1980, when Kagan and co-workers developed a convenient 'in situ' synthesis. ${ }^{46}$ Since then, SmI_{2} has rapidly become an established reagent through the work of Kagan, ${ }^{46,47}$ Curran, ${ }^{48}$ Inanaga, ${ }^{49}$ Molander, ${ }^{50}$ and many others.
SmI_{2} is unusual because it is a powerful, yet selective, one-electron reducing agent that can be prepared in moderate concentration (0.1M) in THF. Samarium powder reacts smoothly with 1,2-diiodoethane in THF to give samarium diiodide (Scheme 24). ${ }^{46}$

Scheme 24
Solutions of samarium diiodide are deeply coloured e.g. blue in THF, purple in HMPA-THF, deep green in MeOH-THF; additionally Sm^{3+} salts are light yellow or orange and this allows the progress of the reaction to be followed by simply watching
the colour change. Samarium diiodide reactions proceed slowly in THF, but are greatly accelerated by the presence of a co-solvent, such as HMPA or MeOH. Samarium diiodide ligated to HMPA is a very powerful reductant; it is well established that electron-donating ligands will increase the reduction potentials of low valent metals. Samarium diiodide can have many ligands, so it is probably ligated to several HMPA molecules, thus increasing the reaction rate of the samarium-mediated reactions. ${ }^{48}$

Samarium diiodide mediated transformations can be split into three main groups:

1) Functional Group Reductions

Functional group reductions include the reduction of sulfoxides and sulfones, epoxides, halides (and related leaving groups), conjugated double bonds and carbonyl groups (Scheme 25). ${ }^{48}$

2) Reductive Coupling of Halides with π-Bonds

These transformations show similarities to the addition of organolithium or Grignard reagents to carbonyls, however Molander ${ }^{51}$ and Inanaga ${ }^{52}$ have demonstrated that samarium diiodide can mediate transformations, which are not readily conducted by standard Grignard-type procedures (Scheme 26).

Scheme 26

3) Reductive Coupling of two π-bonds

Includes pinacol couplings and reductive couplings of carbonyls with both conjugated and isolated alkenes. ${ }^{48}$ Detailed studies by Molander investigated the intramolecular cyclisations of ketyl radicals onto unactivated alkenes (Scheme 27). ${ }^{53}$ Ketone $\mathbf{8 2}$ was reduced to ketyl radical $\mathbf{8 3}$ using a solution of samarium diiodide in THF with HMPA and ${ }^{\mathrm{t}} \mathrm{BuOH}$. Ketyl radical 83 undergoes a cyclisation onto the unactivated alkene to give primary radical 84 , which is further reduced by another equivalent of samarium diiodide to yield anion 85. Protonation from ${ }^{\mathrm{t}} \mathrm{BuOH}$ furnishes the alcohol 86.
However, if the cyclisation was not favoured, ketyl radical 83 could be reduced to its corresponding anion, followed by quenching to yield alcohol 87 . Thus, for a cyclisation to happen it must occur before the ketyl radical is further reduced.

Ketyl radical 83 could cyclise in a 5-exo or a 6 -endo manner as before (Scheme 12). However, the 6-endo cyclisation is not favoured and no cyclohexyl product was observed due to the poor orbital overlap in the 6-endo transition state 90 (Scheme 28). The 5-exo cyclisation gave cyclopentyl products $\mathbf{9 1}$ and $\mathbf{9 2}$ in an overall yield of 86% and $\mathrm{a}>150: 1$ diastereomeric ratio. Major isomer 91 was obtained through transition state 88 , which has the π-system and the ketyl oxygen gauche to each other allowing the cyclisation to occur smoothly. However, when the π-system and the ketyl oxygen are eclipsed 89 electronic repulsions occur ${ }^{24}$ and the cyclisation is disfavoured and therefore only a small amount of isomer $\mathbf{9 2}$ was observed.

Scheme 28

Chelation with the $\mathrm{Sm}(\mathrm{III})$ ion can also play a major role in the stereochemical outcome of a cyclisation reaction. Intramolecular H -bonding $\mathbf{9 5}$ or chelation with the Sm(III) ion 96 allow both alcohols to end up on the same side of the cyclohexane ring to afford cis diol 97 in 95% yield (and $4: 1$ ds with the methyl group at C1 down)
(Scheme 29). ${ }^{53}$

94

95

Scheme 29
The stereochemistry of the major diastereomeric diol 97 was established using single crystal X-ray analysis. ${ }^{53}$ In the absence of HMPA, only reduction of the ketone is observed with no cyclisation.

2.1 SOLVENT EFFECTS

The diastereoselectivity of a samarium diiodide cyclisation reaction can be influenced by the additive/co-solvent used. Molander has conducted in-depth studies on a range of ketones, such as $\mathbf{9 8}$, to observe the effect that the additives HMPA and DMPU have on the reductive radical cyclisation (Table 1). ${ }^{54}$

98
99
100

Reaction conditions	$\mathbf{9 9}$	de\%	$\mathbf{1 0 0}$	$\mathbf{9 8}$
HMPA (8 equiv.)	100	>99	0	0
HMPA (4 equiv.)	100	>99	0	0
HMPA (2 equiv.)	98	96	2	0
No additive	62	92	5	33
DMPU (8 equiv.)	62	94	2	36

Table 1 The effects of the additives HMPA and DMPU on the reductive radical cyclisation of ketone 98.

In general, the results from Molander's work indicate that with increasing concentration of HMPA the rate of hydrogen abstraction of $\mathbf{1 0 2}$ to give $\mathbf{1 0 3}$ decreases relative to that of cyclisation of $\mathbf{1 0 2}$ to give 104 (Scheme 30). ${ }^{54}$ Molander suggests in the absence of HMPA, THF complexes with Sm (II) and is present when the samarium ion coordinates to the carbonyl before the reduction. The THF is then available as a hydrogen donor for the conversion of $\mathbf{1 0 2}$ to give $\mathbf{1 0 3}$ and hence as the cyclisation rate decreases for different substrates the amount of $\mathbf{1 0 3}$ increases. As HMPA is added to the reaction mixture it complexes with Sm (II) and displaces THF from the Sm (II) coordination sphere. Therefore HMPA is effectively shielding the reacting carbonyl centre from hydrogen atom donors allowing the cyclisation to occur. In this process the relative rate of hydrogen abstraction of $\mathbf{1 0 2}$ to give $\mathbf{1 0 3}$ decreases with respect to the rate of cyclisation. ${ }^{54}$

Scheme 30
An increase in diastereoselectivity was also observed with increasing HMPA concentration, which could be due to the bulky HMPA ligands destabilising the transition state that leads to the minor diastereomeric carbocycles. The transition state has the alkene moiety nearly eclipsed with the ketyl oxygen. ${ }^{54}$
Replacement of HMPA with DMPU gave lower yields of cyclised products and also a small decrease in stereoselectivity. ${ }^{54}$ This small decrease in stereoselectivity with DMPU was also seen in Curran's synthesis of (\pm)-hypnophilin (Scheme 31). ${ }^{55}$ Aldehyde 106 was cyclised with samarium diiodide in the presence of HMPA or DMPU. Tricyclic alcohol 107 was obtained exclusively in 57% yield with HMPA, when DMPU was used alcohol 107 was obtained in slightly better yield but another diastereoisomer 108 was also present in 6% yield. ${ }^{55}$

Scheme 31
HMPA is extremely toxic and so work by Procter investigated using alcohol cosolvents instead in the cyclisation of $\mathbf{1 0 9}$ (Table 2). ${ }^{56}$ The alcohol is not only a proton source but it also increases the reducing potential of samarium diiodide. Cyclisations using EtOH and ${ }^{t} \mathrm{BuOH}$ were slow and did not give good stereoselectivity. Using
water as co-solvent gave the highest stereoselectivity but only a 44% yield of cyclobutane. In the presence of MeOH as co-solvent high stereoselectivity was observed and a good yield (66%). However, when HMPA was added this yield decreased to 35%. ${ }^{56}$

Co-solvent	Additive	Time/min	$\mathbf{1 1 0}: \mathbf{1 1 1}$	Yield
$\mathrm{H}_{2} \mathrm{O}$		<1	$4.5: 1$	44
MeOH		5	$4: 1$	66
MeOH	HMPA	<1	$4: 1$	35
EtOH		85	$1: 1$	84
${ }^{\mathrm{t}} \mathrm{BuOH}$		540	$1: 2$	53

Table 2 Samarium diiodide cyclisations of 109 using alcohols as co-solvent

The optimal conditions proved to be MeOH:THF (1:4), which gave a high stereoselectivity and good yield. ${ }^{56}$

2.2 TANDEM RADICAL REACTIONS USING SAMARIUM DIIODIDE

Tandem reactions are possible due to the ability of samarium diiodide to promote both one and two electron processes, ${ }^{55}$ which can happen in any combination or order. We are interested in the radical-radical sequential processes, ${ }^{57,58}$ of which there are few examples in the literature. ${ }^{55,59,60}$ In order to work efficiently each radical cyclisation step must compete with reduction of the radical species to an anion, which would terminate the tandem sequence. One prominent example is the synthesis of (\pm) hypnophilin 113 by Curran (Scheme 32). ${ }^{55}$
Aldehyde $\mathbf{1 0 6}$ is reduced to a ketyl radical by samarium diiodide, which initially undergoes a 5-exo-trig cyclisation, followed by a 5-exo-dig cyclisation to give $\mathbf{1 1 2}$.

Scheme 32
Another example is Motherwell's synthesis of spirocycle cyclohexanone 118, which was formed in 79% yield when ketone $\mathbf{1 1 4}$ was treated with samarium diiodide and after fragmentation of the cyclopropane (Scheme 33).

115
116
Scheme 33

2.3 DISCONNECTION OF PAEONILACTONE B

Previous work within the group considered cyclisations of alkyl radicals onto the methylenecyclopropane moiety. ${ }^{10,11,38,40,41,43,61}$ The main direction of the work was to extend the methodology using ketyl radicals in the total synthesis of a natural product. ${ }^{62}$ Cascade radical cyclisations were employed to show that a reasonably
complex natural product could be made in a short number of steps, and to demonstrate control of regio- and stereoselectivity in the key cyclisation step. ${ }^{62}$

A retrosynthetic analysis of paeonilactone B 119 (Scheme 34) suggested that the cisfused bicyclic methylenecyclohexane $\mathbf{1 2 0}$ could be prepared by a 5 -exo cyclisation of methylenecyclohexyl radical $\mathbf{1 2 1}$ onto a pendant alkyne, and $\mathbf{1 2 1}$ could, in turn arise from cyclisation of ketyl radical $\mathbf{1 2 3}$ onto the methylenecyclopropane unit with subsequent 'endo' ring opening. ${ }^{62}$

119
Paeonilactone B

124

120

123

121

Scheme 34

2.4 CYCLISATION STUDIES TOWARDS PAEONILACTONE B

Ketones $\mathbf{1 2 5}$ and $\mathbf{1 2 6}$ were synthesised and obtained as a separable mixture of diastereoisomers. ${ }^{63}$ Treatment of ketone $\mathbf{1 2 5}$ with SmI_{2} and HMPA gave the desired bicyclic product as a mixture of $\mathbf{1 2 0}$ and $\mathbf{1 2 7}$, in a $10: 1$ ratio and 63% yield. The same mixture of bicyclic products was obtained when DMPU was used as an alternative to HMPA but in a lower yield and in a $1.5: 1$ ratio (Scheme 35). ${ }^{63}$ However, treatment of ketone $\mathbf{1 2 6}$ with either additive gave the bicyclic product $\mathbf{1 2 7}$ in a good isolated yield and only a trace of the other diastereoisomer 120 (Scheme 35).

125

126
120

127

Starting material	Additive	Yield (\%)	$\mathbf{1 2 0}: \mathbf{1 2 7}$
$\mathbf{1 2 5}$	HMPA	63	$10: 1$
$\mathbf{1 2 6}$	HMPA	79	$<1: 30$
$\mathbf{1 2 5}$	DMPU	40	$1.5: 1$
$\mathbf{1 2 6}$	DMPU	62	$<1: 30$

Scheme 35
The relative stereochemistry of the product is effectively determined in the first step and it seems likely that this proceeds through a chair-like transition state allowing the prop-2-ynyl ether substituent to adopt a pseudo-equatorial position (Scheme 36). ${ }^{62}$

Scheme 36
Due to the bond angles of the methylenecyclopropyl group, the alkene moiety appears to be staggered between the oxygen of the ketyl radical and the methyl group. When HMPA is used as a co-solvent the $\mathrm{OSm}^{\text {III }}(\mathrm{HMPA})_{n}$ group is very bulky and so it adopts a pseudo-equatorial position $\mathbf{1 2 8}$ to avoid a 1,3-diaxial interaction with $\mathrm{H}_{\mathrm{A}}, \mathbf{1 2 9}$. Therefore, the product has the tertiary alcohol and the ether oxygen cis to each other in the bicyclic product 120. Replacement of HMPA with DMPU reduces the steric bulk of the $\mathrm{OSm}^{\mathrm{III}} \mathrm{L}_{\mathrm{n}}$ group, leading to a lower selectivity for conformer 128. When neither HMPA nor DMPU are present then the ketyl methyl becomes sterically dominant, which leads to a reversal in selectivity. However, the other diastereoisomer $\mathbf{1 2 6}$ is not
likely to proceed via a chair-like transition state, since the prop-2-ynyl ether substituent would be forced into a severely hindered axial orientation, so the first step of the cyclisation may well go through a boat-like transition state. In the boat-like transition state the alkene appears to be eclipsed with either the methyl group $\mathbf{1 3 0}$ or the oxygen of the ketyl radical 131. The preferred conformer is now $\mathbf{1 3 0}$ as it alleviates the electronic repulsion between the ketyl oxygen functionality and the alkene π^{*} and so the product observed has the tertiary alcohol on the opposite side of the cyclohexane ring to the ether oxygen 127. This preference is unaffected by replacing HMPA with DMPU. ${ }^{62}$

A short series of functional group transformations permitted elaboration of $\mathbf{1 2 0}$ to give paeonilactone B 119 (Scheme 37). ${ }^{62}$

120

1) $\mathrm{Et}_{3} \mathrm{SiOTf}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$
2) CrO_{3}, pyridine, $\mathrm{DCM}, \mathrm{RT}$

3) $\mathrm{PhSH}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}$
4) $\mathrm{O}_{3}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$
5) $\mathrm{Me}_{2} \mathrm{~S}$

Scheme 37

2.5 CYCLISATION STUDIES TOWARDS PAEONILACTONE A

Having successfully completed the total synthesis of paeonilactone B, work was directed towards the synthesis of paeonilactone A , which involved the formation of a new stereocentre. ${ }^{62}$ Allyl ether $\mathbf{1 3 4}$ was synthesised and treated with SmI_{2} in the presence of HMPA. A 1:1 mixture of diastereoisomers $\mathbf{1 3 8}$ and $\mathbf{1 3 9}$ were obtained in a
35% yield. If the cyclisation of the allyl ether $\mathbf{1 3 4}$ occurred via a boat-like transition state, analogous to the propargyl ether $\mathbf{1 2 6}$ (vide infra), then the methylenecyclohexyl radical 135 would be formed essentially as a single diastereoisomer. The radical could then cyclise further to give the mixture of diastereoisomers 136 and 137. The only difference between these diastereoisomers is the stereochemistry at the new methyl group (Scheme 38). ${ }^{62}$

Scheme 38
The stereochemical outcome of the cyclisation can be readily explained by Beckwith ${ }^{25}$ ${ }^{29}$ and RajanBabu's ${ }^{30}$ earlier studies discussed in the introduction (Scheme 16).
Cyclisation of the other allyl ether isomer $\mathbf{1 4 0}$ using the same conditions gave a single diastereoisomer 143 in a poor yield of 17%. However, the dimeric product 144 was also found in a 25% yield, which had the same stereochemistry as the diastereoisomer 143 (Scheme 39). ${ }^{64}$

Scheme 39
The ketyl radical is formed, which cyclises via a chair-like transition state, as for the propargyl ether $\mathbf{1 2 5}$, to give methylenecyclohexyl radical 141. Radical 141 then undergoes a further cyclisation onto the alkene moiety to give isomer 143 exclusively. Although the cyclisations of the allyl ethers failed to give the correct stereochemistry for paeonilactone A itself, it proved possible to make 6-epi paeonilactone A 148
(Scheme 40). ${ }^{62}$

145

1) $\mathrm{Et}_{3} \mathrm{SiOTf}$, $\xrightarrow{\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}}$

146 (70\%)
2) $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$,
$\mathrm{NaIO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CCl}_{4}$

147 (22\%)
Scheme 40

To conclude, short and efficient routes to the total synthesis of natural products paeonilactone B and 6-epi paeonilactone A were realised, using a stereoselective cascade radical cyclisation as the key step. ${ }^{62}$

3. PROGRAM OF WORK

Previous work within the group has established basic guidelines for the cyclisation of radicals onto the methylenecyclopropane moiety. ${ }^{10,11,38,40,41,43,61}$ Further research had incorporated these cyclisations into a range of tandem cyclisations to yield polycyclic systems. ${ }^{63}$ The established methodology was then used to show its synthetic usefulness by total synthesis of the bicyclic natural products paeonilactone B and 6-epi paeonilactone $A .{ }^{62}$ The main objective of this project was to extend this methodology to develop cascades for efficient syntheses of tricyclic compounds such as tricycle 153 (Scheme 41). Tricycle 153 could arise from a cyclisation reaction, using samarium diiodide, of allyl ether 149. On treatment with samarium diiodide, allyl ether 149 could be reduced to ketyl radical 150 , which could undergo a 5 -exo cyclisation onto the MCP moiety, followed by an 'endo' ring opening to yield secondary radical 152. Further 5-exo cyclisation followed by another equivalent of samarium diiodide could give an anion which could be quenched with a proton source to yield tricycle 153 (Scheme 41).

Scheme 41

Once the methodology has been developed fully work could be directed towards total synthesis of complex natural products, such as dihydrotournefortiolide 154 (Figure 6). ${ }^{65}$

154
Figure 6

Whether such a synthesis of the tricycles would prove to be diastereoselective and provide the correct relative stereochemistry of the methyl group required for the natural product remained to be investigated by experiment.

CHAPTER 2

MODEL STUDIES

1. INTRODUCTION

The aim of this research was to extend the methodology developed with methylenecyclopropane cyclisations for efficient syntheses of tricyclic compounds, for example 153 (Scheme 42).

$\xrightarrow[\text { HMPA, }{ }^{\mathrm{t}} \mathrm{BuOH}]{\mathrm{SmI}_{2}, \text { THF, }}$

Scheme 42
To understand the cyclisations for such complex systems, model studies with alcohols 155, which were expected to lead to bicyclic compounds 159 were first investigated. The ketyl radical could now be generated from a cyclic ketone instead of a methyl ketone, as in the case of paeonilactone B. Thus, we were interested in preparing ketone $\mathbf{1 5 5}$, which on treatment with samarium diiodide it was hoped would lead to bicyclic product 159 (Scheme 43). Ketone 155 could be reduced to ketyl radical 156 using samarium diiodide and undergo a 5-exo cyclisation onto the MCP moiety to give primary radical 157. 'Endo' ring opening, followed by further reduction of the radical to an anion and quench with a proton source could give bicycle 159.

Scheme 43
It was envisaged that the cyclisation reaction could occur with control of stereochemistry from chelation of the alcohol and ketyl radical to the samarium ion 161 to furnish diol 162 with the two alcohol groups on the same side of the ring system (Scheme 44).

Scheme 44

Previous work by Matsuda studied the samarium diiodide induced ketone-olefin coupling of cyclohexanone derivatives, such as 163 (Scheme 45). ${ }^{66}$ Bicyclic product 164 was obtained with good stereochemical control.

Scheme 45

The proposed transition state of the ketyl radical suggests that the cyclisation occurs under chelation control. After an initial single-electron reduction of the ketone by
samarium diiodide, chelation of the β-hydroxy group with the samarium bound to the ketyl radical gives the 6 membered ring ketyl intermediate 165 (Figure 7). The oxygens are held cis to each other and are both therefore on the same side of the bicyclic product $\mathbf{1 6 4}$ after the cyclisation. ${ }^{66}$

Figure 7

2. SYNTHESIS OF CYCLOPENTANONE PRECURSORS

Methylenecyclopropane 1 was prepared by treating readily available methallyl chloride $\mathbf{6}$ with sodium amide to give an allyl carbene, leading to a mixture of isomers 10 and 1 (1:5.5 ratio of methylcyclopropene 10 : methylenecyclopropane 1) (Scheme 3). ${ }^{67}$

Scheme 3
Methylcyclopropene $\mathbf{1 0}$ was converted into methylenecyclopropane $\mathbf{1}$ using ${ }^{t} \mathrm{BuOK} / \mathrm{BuOH}$.

Ketoester 166 was protected using ethylene glycol ${ }^{68}$ and then reduced using excess lithium aluminium hydride ${ }^{69}$ to produce alcohol 167 in good yield (71%) (Scheme 46).

Scheme 46
A Swern oxidation ${ }^{70}$ converted alcohol 167 to aldehyde 168 in excellent yield (97\%)
(Scheme 46). Methylenecyclopropane was reacted with ${ }^{\mathrm{n}} \mathrm{BuLi}$ to produce a methylenecyclopropane anion, which added to the aldehyde to give diastereoisomers 169 and 170 in adequate yield ($18 \%, 16 \%$ respectively) (Scheme 47).

Scheme 47
The mixture of diastereoisomers 169 and 170 were separated using flash column chromatography. The two diastereoisomers were deprotected separately using toluene sulfonic acid and wet acetone to yield the desired products $\mathbf{1 6 0}$ and 171 in yields of 75% and 55% respectively (Scheme 48).

Scheme 48

X-ray crystallographic studies of the two alcohol isomers 160 and 171 showed that the relative stereochemistry of the alcohol and the cyclopentane proton are the same, and only differs at the methylenecyclopropane ring (Figure 8 and Figure 9).

Figure 8 Isomer 160

Figure 9 Isomer 171

The generation of diastereoisomers $\mathbf{1 6 0}$ and $\mathbf{1 7 1}$ provided the cyclisation precursors in an acceptable overall yield.

3. PREPARATION OF SAMARIUM DIIODIDE

Initially preparation of samarium diiodide was attempted by reaction of samarium metal with diiodomethane according to Molander's method (Scheme 49). ${ }^{53}$

$$
\mathrm{Sm}+\mathrm{ICH}_{2} \mathrm{I} \xrightarrow{\mathrm{THF}, 2 \mathrm{~h}} \mathrm{SmI}_{2}+: \mathrm{CH}_{2}
$$

Scheme 49
The reaction was attempted on several occasions, however, despite the rigorously dry and degassed conditions employed the formation of samarium diiodide could not be achieved.

Therefore, samarium diiodide was generated using Curran's conditions (Scheme 50). ${ }^{55}$

$$
\mathrm{Sm}+\mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{I} \xrightarrow{\mathrm{THF}, 1.5 \mathrm{~h}} \mathrm{SmI}_{2}+\mathrm{CH}_{2}=\mathrm{CH}_{2}
$$

Scheme 50

The addition of diiodoethane to samarium powder proved successful and generated a blue solution of the desired samarium(II) iodide for use in the cyclisation of the precursors.

4. CYCLISATION OF PRECURSORS

With both diastereoisomers 160 and 171 in hand, the SmI_{2} cyclisations were attempted using three general sets of conditions. ${ }^{53,55,71}$

1) Molander's method whereby HMPA was added to a solution of SmI_{2} followed by the addition of the substrate and ${ }^{\mathrm{t}} \mathrm{BuOH}$ over $90 \mathrm{~min} .{ }^{53}$
2) The reverse addition method by Curran where the solution of samarium diiodide was added to a solution of the substrate, ${ }^{\mathrm{t}} \mathrm{BuOH}$ and HMPA in THF over 5 min. ${ }^{55}$
3) A procedure by Procter was employed, whereby MeOH was added to the samarium diiodide solution as a co-solvent ($\mathrm{MeOH} / \mathrm{THF}$ 1:4 mixture). ${ }^{71}$

Having determined the general methods for achieving cyclisation, we sought to investigate them further in order to optimise conditions (Table 3).

Reaction Conditions	160	162	172	173	Overall yield
Add SmI_{2} to substrate, HMPA, THF, ${ }^{t} \mathrm{BuOH}$.					
$-78^{\circ} \mathrm{C}, \mathrm{HMPA},{ }^{\text {t }} \mathrm{BuOH}$	-	10\%	-	-	10\%
Add substrate to SmI_{2}, HMPA or MeOH in THF.					
$0^{\circ} \mathrm{C}, \mathrm{HMPA},{ }^{\text { }} \mathrm{BuOH}$	-	10\%	30\%	15\%	55\%
$0^{\circ} \mathrm{C}, \mathrm{HMPA}$	-	12\%	26\%	12\%	50\%
$-78^{\circ} \mathrm{C}, \mathrm{HMPA},{ }^{\text {' }} \mathrm{BuOH}$	-	18\%	-	12\%	30\%
$-78^{\circ} \mathrm{C}, \mathrm{HMPA}$	-	13\%	4\%	10\%	27\%
	30\%	9\%	25\%	6\%	-
$0^{\circ} \mathrm{C}, \mathrm{MeOH}$	-	47\%	5\%	-	52\%
$-78^{\circ} \mathrm{C}, \mathrm{MeOH}$	-	67\%	-	-	67\%

Table 3 Cyclisations of cyclopentanone 160

At higher temperatures all three products were observed with HMPA as co-solvent, but at lower temperatures the yield of the eliminated product 172 was reduced significantly and the yield of diol 162 slightly increased. The reaction yields were largely unaffected by the presence of ${ }^{\mathrm{t}} \mathrm{BuOH}$. However, using a $\mathrm{MeOH} / \mathrm{THF}$ (1:4) mixture as
solvent, as described by Procter, ${ }^{71}$ at $-78^{\circ} \mathrm{C}$, gave a clean reaction to diol $\mathbf{1 6 2}$ in 67% yield.

4.1 REACTION MECHANISM

Using the information gathered from these studies, a mechanism for the cyclisation can be proposed (Scheme 51).

Scheme 51

Ketone 160 is reduced to ketyl radical 174 by SmI_{2}, which undergoes a 5 -exo cyclisation, followed by an 'endo' ring opening to yield cyclohexane radical 175. Dimerisation can occur at this point to yield dimer 173, which is surprising, given the high concentration of samarium diiodide in the reaction but is precedented by previous work from within the group. ${ }^{64}$ A further equivalent of SmI_{2} then reduces radical 175 to produce an anion intermediate, which can be protonated with ${ }^{\mathrm{t}} \mathrm{BuOH}$ or MeOH to produce the desired diol 162 or eliminate to give product 172. Compound 172 also provided evidence for the chelation control of the stereochemistry (Figure 10).

Figure 10 Intermediate 176
The axial position of the alcohol group of anion intermediate $\mathbf{1 7 6}$ holds it antiperiplanar to the anion of the intermediate and therefore facilitates elimination of the alcohol group; this would not be possible if the alcohol was equatorial.

4.2 PROOF OF STEREOCHEMISTRY

The stereochemistry of cyclised products $\mathbf{1 6 2}$ and $\mathbf{1 7 3}$ has been proven by crystal structure (Figure 11 and Figure 12) which showed the bicyclic product 162 was cis fused. The two alcohol groups also ended up cis to each other, which suggests chelation control by the samarium metal fixes both alcohol groups below the plane of the ring (Figure 10).

Figure 11 Diol 162

An inseparable mixture of isomers were observed for dimer 173, however a crystal structure was obtained from a single crystal of one of the isomers showing the stereochemistry to be cis fused as for the monomer 162 (Figure 12).

Figure 12 Dimer 173

It was assumed that the bicyclic product $\mathbf{1 7 2}$ was also cis fused as indicated by literature precedent for the closure of cycloalkyl radicals onto tethered alkenes ${ }^{26-29}$ and since it is presumably derived from the same pathway that produces the cis fused products 162 and 173 .

The cyclisation was repeated using the other isomer 171 (Table 4).

Reaction Conditions	$\mathbf{1 7 1}$	$\mathbf{1 6 2}$	$\mathbf{1 7 2}$	$\mathbf{1 7 7}$	Overall yield
$-78^{\circ} \mathrm{C}, \mathrm{HMPA},{ }^{ } \mathrm{BuOH}$	-	51%	14%	-	65%
$-40^{\circ} \mathrm{C}, \mathrm{HMPA},{ }^{ } \mathrm{BuOH}$	30%	20%	15%	18%	-
$0^{\circ} \mathrm{C}, \mathrm{HMPA},{ }^{\mathrm{t}} \mathrm{BuOH}$	-	10%	30%	-	40%
$0^{\circ} \mathrm{C}, \mathrm{MeOH}$	-	35%	-	40%	75%
$-78^{\circ} \mathrm{C}, \mathrm{MeOH}$	-	41%	-	32%	73%

Table 4 Cyclisations of cyclopentanone 171

The bicyclic compounds $\mathbf{1 6 2}$ and $\mathbf{1 7 2}$ were again observed with the same stereochemistry as previously, which is not surprising as we can assume the compounds are cis fused due to literature precedent ${ }^{26-29}$ and the stereochemistry at C 1 and C 2 in the starting material remains the same after cyclisation (Table 4).
Ketone $\mathbf{1 7 1}$ does not undergo dimerisation upon treatment with samarium diiodide but instead was reduced to the alcohol $\mathbf{1 7 7}$ prior to cyclisation. This has been attributed to a less favourable cyclisation conformation (Scheme 52). Assuming the cyclisation of isomer $\mathbf{1 6 0}$ goes through a chair like transition state 161 with the samarium bound ketyl oxygen in an equatorial position, then the cyclisation occurs smoothly as the alkene moiety is positioned gauche to the ketyl C-O bond. However, ketone $\mathbf{1 7 1}$ has the alkene group eclipsed with the ketyl C-O bond in the transition state $\mathbf{1 7 8}$ and so due to electronic repulsions the cyclisation is not favoured (as shown in the introduction (Scheme 28)) and consequently the radical is reduced to the anion 179 and quenched with a proton to give the observed diol 177. Presumably in order to maintain the chelated intermediate the protonation of $\mathbf{1 7 8}$ must occur from the axial direction.

Scheme 52

The stereochemistry for reduced compound 177 can be explained by looking at transition state 178, which shows the new alcohol group on the same side of the cyclopentane ring as H 1 . Keck has also reported that the samarium diiodide mediated reduction of β-hydroxy ketones can be highly diastereoselective. ${ }^{72}$

5. SYNTHESIS OF CYCLOHEXANONE PRECURSORS

Having successfully synthesised and investigated the cyclisation of the cyclopentanone precursors, work was directed towards the cyclohexanone series. The synthetic route to the cyclohexanone cyclisation precursors was identical to that previously illustrated for the cyclopentanone series. Ethylene glycol was used to protect ketoester $\mathbf{1 8 0}{ }^{68}$ which was then reduced to alcohol $\mathbf{1 8 1}$ using lithium aluminium hydride ${ }^{69}$ in excellent yield (93\%) (Scheme 53). A Swern ${ }^{70}$ oxidation was used to convert alcohol $\mathbf{1 8 1}$ to aldehyde $\mathbf{1 8 2}$ in good yield (88%) (Scheme 53).

Scheme 53
Aldehyde $\mathbf{1 8 2}$ proved unstable so it was purified and used quickly. To that effect methylenecyclopropane was treated with ${ }^{n} \mathrm{BuLi}$ at $-40^{\circ} \mathrm{C}$ to yield the methylenecyclopropane anion and aldehyde $\mathbf{1 8 2}$ was added to give alkylated product 183 as a mixture of two diastereoisomers. Once again it proved possible to separate the diastereoisomers by careful flash column chromatography (Scheme 54). The major isomer 183a was a solid and a crystal structure was obtained (Figure 13). The stereochemistry of the minor isomer 183b was not determined but could be inferred from the stereochemistry of the cyclisation products (vide infra) and also from comparison to the cyclopentane series i.e. only the stereochemistry at the methylenecyclopropane ring differs in the two diastereoisomers.

Figure 13 Isomer 183a
Ketals 183a and 183b were deprotected separately to produce the ketones 184 and 185 respectively (Scheme 54).

183b
pTsOH,
acetone/water

184 (73\%)

185 (64\%)

Scheme 54

6. CYCLISATION OF PRECURSORS

The cyclisation of the cyclohexanone precursor 184 was investigated using different procedures and reaction conditions (Table 5).

Reaction Conditions	$\mathbf{1 8 4}$	$\mathbf{1 8 6}$	$\mathbf{1 8 7}$	$\mathbf{1 8 8}$	$\mathbf{1 8 9}$	Overall yield of cyclised products
Add substrate to Smi,$~$ HMPA/MeOH in THF.						
$0^{\circ} \mathrm{C}, \mathrm{HMPA},{ }^{ } \mathrm{BuOH}$	-	9%	14%	20%	-	43%
$-78^{\circ} \mathrm{C}, \mathrm{HMPA}, \mathrm{BuOH}$	-	10%	15%	15%	-	40%
$-78^{\circ} \mathrm{C}, \mathrm{THF}$	-	-	5%	-	47%	5%
$0^{\circ} \mathrm{C}, \mathrm{MeOH}$	-	19%	28%	-	-	47%
$-78^{\circ} \mathrm{C}, \mathrm{MeOH}$	-	62%	35%	-	-	97%
$-78^{\circ} \mathrm{C}, 2 \mathrm{MeOH}$	-	63%	-	-	-	63%

Table 5 Cyclisation of cyclohexanone 184

When HMPA was used as co-solvent a mixture of cyclised products was obtained and these results were largely unaffected by changing the temperature. Without any cosolvent the major product was the reduced diol 189. However, using MeOH as a cosolvent gave a much cleaner reaction and higher yields of cyclised products.

6.1 REACTION MECHANISM

The results were analogous to the cyclopentanone series and the mechanism proposed earlier (Scheme 55). 5-exo cyclisation of ketyl radical 190 onto the methylenecyclopropane moiety followed by 'endo' ring opening gives 191. Further reduction of radical 191 gives the corresponding anion, which is then quenched with a proton from ${ }^{\mathrm{t}} \mathrm{BuOH}$ or MeOH to afford diol $\mathbf{1 8 6}$, or by elimination of water to give alcohol 187. Again, it was found that dimerisation of radical 191 occurred to furnish dimer 188.

Scheme 55

6.2 PROOF OF STEREOCHEMISTRY

The stereochemistry of the elimination product 187 was established using Xray crystallography, which shows a cis fused ring system (Figure 14). It was deduced that bicyclic product $\mathbf{1 8 6}$ was cis fused from extensive nmr studies. These studies proved problematic as broad peaks were observed as a result of ring flipping, that would not occur had the ring fusion been trans. The stereochemistry at C 1 and C 2 is defined from the starting material. The stereochemical outcome of the reaction presumably arises, again from chelation control to furnish both alcohols on the same side of the ring system (as with the cyclopentanone precursors). The dimer is assumed to have the identical stereochemistry as the bicyclic diol 186 as it is presumably derived from the dimerisation of two cyclohexyl radicals 191 (Scheme 55). Further support for this stereochemistry came from the studies in the cyclopentanone series (Figure 12) that reacted in an analogous fashion.

Figure 14 Elimination product 187

The best methods of cyclisation were repeated using the other isomer 185 as substrate (Table 6).

Reaction Conditions	$\mathbf{1 8 5}$	$\mathbf{1 8 6}$	$\mathbf{1 8 7}$	Overall yield of cyclised products
$0^{\circ} \mathrm{C}, \mathrm{MeOH}$	-	44%	$\mathbf{1 7 \%}$	61%
$-78^{\circ} \mathrm{C}, \mathrm{MeOH}$	-	50%	12%	62%
$0^{\circ} \mathrm{C}, \mathrm{HMPA},{ }^{\mathrm{t}} \mathrm{BuOH}$	20%	7%	4%	11%
$-78^{\circ} \mathrm{C}, \mathrm{HMPA},{ }^{\mathrm{t}} \mathrm{BuOH}$	26%	9%	5%	14%

Table 6 Cyclisation of cyclohexanone 185

Cyclisation of isomer 185 gave similar results to those obtained with 184 with MeOH as a co-solvent. However, a poor reaction was observed with HMPA as a co-solvent. The overall yields of cyclised products were lower for the minor isomer $\mathbf{1 8 5}$ than for the major isomer 184, which could be attributed to the transition states of the cyclisations (Scheme 56). Cyclisation of isomer 184 proceeds via transition state 192, which has the ketyl C-O bond gauche to the alkene group.

$]$

Scheme 56
However, isomer 185 undergoes cyclisation via transition state 193, which has the alkene bond eclipsing the ketyl C-O bond which disfavours cyclisation due to electronic repulsion and hence the yields for the cyclisation are lower.

7. CONCLUSIONS

The aims of the model studies using the cyclopentanone and cyclohexanone alcohols were to see if the key cyclisation step using samarium diiodide would work and also to observe the levels of stereocontrol that could be achieved. We observed that the stereochemistry of the alcohols was controlled by chelation of the samarium bound to the ketyl oxygen with the oxygen of the alcohol. Additionally, a number of methods were attempted for the cyclisation step and it was found that using HMPA as a co-solvent gave lower yields and a mixture of cyclised compounds. However, when MeOH was used as a co-solvent the yields were increased and the desired cis diol was obtained as the major product.

CHAPTER 3

CASCADE CYCLISATIONS LEADING TO

TRICYCLIC PRODUCTS

1. INTRODUCTION

Studies with the cyclopentanone and cyclohexanone derivatives (Chapter 2), showed that the samarium diiodide mediated cyclisation could successfully be used to produce bicyclic compounds, with chelation control. The next direction of the research was to extend this methodology to radical cascade cyclisations to obtain tricyclic products, such as $\mathbf{1 9 5}$, from propargyl or allyl ethers 194 (Scheme 57).

Scheme 57

2. SYNTHESIS OF PROPARGYL ETHER PRECURSORS

The two propargyl ether diastereoisomers 196 and 197 were prepared from the alcohols 183a and 183b, described in chapter 2. Alcohol 183a was treated with base and then propargyl bromide to afford propargyl ether 196. However, this proved troublesome and many methods were employed before the transformation was optimised (Table 7). ${ }^{73,74}$

Reagents and conditions	Starting material 183a	Propargyl ether 196
1) $\mathrm{NaH}, \mathrm{DMPU}, \mathrm{THF}$ 2) Propargyl bromide	100\%	-
1) $\mathrm{NaH}, \mathrm{THF}$, reflux, 90 min 2) $\mathrm{NBu}_{4} \mathrm{I}$, propargyl bromide, RT	100\%	-
1) $\mathrm{NaH}, \mathrm{THF}$, reflux, 90 min 2) $\mathrm{NBu}_{4} \mathrm{I}$, propargyl bromide, reflux	100\%	-
1) $\mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ 2) Propargyl bromide	60\%	25\%
1) $\mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ 2) Propargyl bromide, $\mathrm{NBu}_{4} \mathrm{I}$	Decomposition	
1) KH , cat. 18 -crown- 6 , THF 2) Propargyl bromide	50\%	38\%
1) KH , stoich. 18 -crown- 6 , THF 2) Propargyl bromide	10\%	79\%

Table 7 Different methods of propargylation of alcohol 183a

Using sodium hydride as the base proved consistently unsuccessful with THF as a solvent, even at higher temperatures and only starting material was ever observed. Tetrabutylammonium iodide ${ }^{75}$ was added as a phase transfer catalyst but no product was formed even when the reaction was heated to reflux. ${ }^{74}$ However, when THF was replaced with DMF, propargyl ether 196 was produced in a low yield (25%). Therefore, potassium hydride accompanied with 18 -crown- 6 was employed in place of sodium hydride. ${ }^{73}$ Catalytic amounts of 18 -crown- 6 led to an increase in the yield of propargyl ether, however the yield was increased further on using stoichiometric amounts of 18 -crown-6 to a good 79%. With the results from the first isomer in hand, the most successful reaction conditions were applied to the other isomer. (Table 8)

Reagents and conditions	Starting material 183b	Propargyl ether 197
1) $\mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$	100%	-
2) Propargyl bromide		
1) KH, cat. 18-crown-6, THF	25%	72%
2) Propargyl bromide		

Table 8 Different methods of propargylation of alcohol 183b

The best method for the second isomer proved to be potassium hydride with a catalytic amount of 18 -crown-6, followed by propargyl bromide to produce propargyl ether 197 in 72% yield. ${ }^{73}$ In this case use of stoichiometric 18 -crown- 6 did not give a further improvement of yield.

Propargyl ethers 196 and 197 were deprotected using toluene sulfonic acid and wet acetone to yield ketones 198 and 199 in yields of $\mathbf{7 8 \%}$ and 84% respectively (Scheme 58).

Scheme 58

3. CYCLISATION OF PROPARGYL ETHER PRECURSORS

3.1 PROPARGYL ETHER ISOMER 198

Chelation of the samarium(III) ion to the ketone and alcohol was important in the cyclisations of alcohols 184 and $\mathbf{1 8 5}$. As a consequence of adding the propargyl group to the alcohol this chelation would be weakened and thus the chelation effect can be investigated.
Cyclisations with isomer 198 were attempted using either MeOH or HMPA as cosolvent (Table 9). ${ }^{53,71}$

Reagents and conditions	$\mathbf{1 9 8}$	Tricycle 200
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$	-	60%
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$	-	60%
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{HMPA},{ }^{\mathrm{H}} \mathrm{BuOH}, 0^{\circ} \mathrm{C}$	-	45%
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{HMPA},{ }^{\circ} \mathrm{BuOH},-78^{\circ} \mathrm{C}$	-	50%

Table 9 Cyclisations of propargyl ether 198

Cyclisation of propargyl ether 198 using samarium diiodide with ' $\mathrm{BuOH} / \mathrm{HMPA}$ in THF at $-78^{\circ} \mathrm{C}$ gave the tricyclic ether $\mathbf{2 0 0}$ in 50% yield and pleasingly as a single diastereoisomer. An improved yield of 60% was obtained using a MeOH/THF (1:4) solvent system, although change of reaction temperature did not appear to alter the yield.

3.2 REACTION MECHANISM

Samarium diiodide reduces ketone 198 to ketyl radical 201 (Scheme 59), which undergoes a 5-exo cyclisation, followed by an 'endo' ring opening to produce radical 203. The reaction then undergoes a further 5-exo cyclisation onto the alkyne moiety.

Scheme 59
An extra equivalent of SmI_{2} may be used to reduce the radical to produce an anion intermediate, which can be protonated with ${ }^{\mathrm{t}} \mathrm{BuOH}$ or MeOH to produce the cis fused cyclic ether 200.

3.3 PROOF OF STEREOCHEMISTRY

The stereochemistry of tricycle 200 can be deduced by considering the coupling constants from the ${ }^{1} \mathrm{H}$ nmr spectrum (Figure 15). H1 couples to H 2 and H 3 giving a triplet with coupling constant of 4 Hz , which implies H 1 is equatorial. The stereochemistry at C 1 and C 2 is derived from the starting material so H 1 and H 3 are trans to one another and are therefore both equatorial as in 206, which is consistent with the observed coupling constant of 4 Hz . The signal for H 2 in the ${ }^{1} \mathrm{H} \mathrm{nmr}$ is a ddd ($J=4,7$ and 11 Hz), which implies that it is axial, as in $\mathbf{2 0 6}$, and is consistent with the expectation that cyclisation of radical intermediate 203 would give a cis fused tetrahydrofuran ring.

206

Figure 15

3.4 EXPLANATION OF STEREOCHEMISTRY

The stereochemistry observed can be explained by chelation of the ketyl radical and the propargyl ether by the samarium. Although chelation of the propargyl ether to the ketyl-bound samarium is not as effective as that of the free alcohol (Chapter 2), the preferred conformation of the ketyl radical derived from 198 can still be expected to place substituents on the starting cyclohexyl ring in an equatorial orientation as in 207 (Scheme 60). Therefore, the cyclopropyl alkene bond can be placed gauche to the $\mathrm{C}-\mathrm{O}$ bond and the cyclisation onto the methylenecyclopropane can occur with ease leading to tricycle 200 with the observed stereochemistry.

Scheme 60

3.5 PROPARGYL ETHER ISOMER 199

Similar reaction conditions were attempted on the other propargyl ether isomer 199 (Table 10).

Reagents and conditions	$\mathbf{1 9 9}$	Bicycle 208
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$	-	74%
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$	24%	51%
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{HMPA},{ }^{ } \mathrm{BuOH}, 0^{\circ} \mathrm{C}$	-	70%
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{HMPA}, \mathrm{BuOH},-78^{\circ} \mathrm{C}$	-	75%
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{HMPA}, 0^{\circ} \mathrm{C}$	-	60%
$\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{DMPU},{ }^{\mathrm{C}} \mathrm{BuOH}, 0^{\circ} \mathrm{C}$	40%	20%

Table 10 Cyclisation of propargyl ether 199

The cyclisations for the isomer 199 all gave bicycle 208 in yields of up to 75% and no tricyclic products were observed.

3.6 REACTION MECHANISM

Ketone 199 does not undergo a 5-exo cyclisation onto the methylenecyclopropane moiety but instead the reaction goes via a 6-exo cyclisation onto the alkyne group to give methylenecyclopropane derivative 208 (Scheme 61).

Scheme 61

3.7 PROOF OF STEREOCHEMISTRY

The stereochemistry of bicycle 208 has been proven using X-ray crystallography, and shows a cis fused ring system with the methylenecyclopropane group still intact (Figure 16).

Figure 16 Bicycle 208

3.8 EXPLANATION OF STEREOCHEMISTRY

The stereochemistry, and the way in which the cyclisation occurs, can again be explained by looking at the ketyl radical intermediate and the role played by chelation as was demonstrated by the model studies and invoked for the cyclisation of $\mathbf{1 8 5}$
(Chapter 2). Presumably, in the case of propargyl ether 199 the analogous transition state leads to the cyclopropyl alkene bond being eclipsed with the ketyl C-O bond 211, which is disfavoured as a result of electronic repulsion (Scheme 62). Instead the cyclisation proceeds via intermediate 212, although this does require breaking the weak chelate to the propargyl ether.

Scheme 62

4. SYNTHESIS OF ALLYL ETHER PRECURSORS

Having successfully synthesised a tricyclic framework using the propargyl ethers, work was directed towards the synthesis of the same tricyclic framework containing an additional chiral centre. Allyl ethers 149 could hopefully be cyclised using samarium diiodide to make tricycles, such as 153 with the new stereocentre at the methyl group.

$\xrightarrow[\text { HMPA, }{ }^{\text {t } \mathrm{BuOH}}]{\mathrm{SmI}_{2}, \mathrm{THF},}$

Scheme 63
Alcohols 183a and 183b were treated separately with NaH , followed by allyl bromide to give allyl ethers 213 and 214 in good yields (79% and 72%) (Scheme 64).

Potassium hydride with 18 -crown- 6 was also attempted but as the yields were not significantly improved the milder sodium hydride method was used.

1) $\mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$
$\xrightarrow{\text { 2) allyl bromide }}$

Scheme 64
Isomers 213 and 214 were deprotected separately using toluene sulfonic acid and wet acetone to yield ketones $\mathbf{2 1 5}$ and 216 in moderate yields of $\mathbf{4 0 \%}$ and 68% respectively (Scheme 65).

213

214
pTsOH $\xrightarrow{\text { acetone } / \text { water }}$
 $\xrightarrow{\text { acetone / water }}$

Scheme 65

5. CYCLISATION OF ALLYL ETHER PRECURSORS

5.1 ALLYL ETHER ISOMER 215

Cyclisations were attempted on isomer 215 and the stereochemistry of the new chiral centre investigated (Table 11).

Reaction conditions	$\mathbf{2 1 7}$	$\mathbf{2 1 8}$
$\mathrm{SmI}_{2}, \mathrm{MeOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$	70%	20%
$\mathrm{SmI}_{2}, \mathrm{HMPA}, \mathrm{THF},{ }^{\mathrm{t}} \mathrm{BuOH},-78^{\circ} \mathrm{C}$	5%	50%

Table 11 Cyclisation of allyl ether isomer 215

The cyclisation of allyl ether $\mathbf{2 1 5}$ yielded two different diastereoisomers 217 and 218. The only difference between these two products was the stereochemistry at the new methyl group. The results were interesting because using MeOH as co-solvent for the cyclisation afforded one major diastereoisomer 217 but when employing HMPA the other diastereoisomer 218 was dominant. The mechanism for the reaction was analogous to that for the cyclisation of propargyl ether 198 (Scheme 59).

5.2 PROOF OF STEREOCHEMISTRY

The stereochemistry of isomer 217 has been proven by X-ray crystallography, which shows the anti-methyl substituent (Figure 17).

Figure 17 Tricycle 217

The stereochemistry of isomer 218 can be inferred from the following considerations. Cyclisation of propargyl ether 198 gave the tricyclic product as a single isomer. Since the cyclisation of allyl ether $\mathbf{2 1 5}$ presumably follows the same mechanism via intermediate 220 (as a single isomer) the two diastereoisomers formed must differ at the new chiral centre produced in the final cyclisation. The stereochemistry of both isomers has been defined by nOe studies (Figure 18), which support the above assumption. The stereochemistry at C 1 and C 2 is derived from the starting allyl ether 215. 1rradiation of H 1 of isomer 217 (stereochemistry confirmed by X-ray crystallography) gave a 0.7% enhancement of the methyl group and vice-versa. Irradiation of the methyl group also gave a 0.8% enhancement with H 2 , which suggested that the methyl group, H 1 and H 2 were all on the same side of the ring (as seen from the crystal structure).

217

Figure 18 Important nOe cross peaks
However, irradiation of H 1 in isomer 218 gave a 0.9% enhancement with H 3 and none with the methyl group. Further nOe's from H 4 to the methyl and H 5 to H 3 confirm that $\mathrm{Hl}, \mathrm{H} 3$ and H 5 are all on the same side of the tetrahydrofuran ring.

5.3 STEREOSELECTIVITY

The unexpected reversal of stereoselectivity can be understood with reference to Beckwith ${ }^{25-29}$ and RajanBabu's ${ }^{30}$ detailed studies of the cyclisation of cyclohexyl radicals onto pendant allyloxy groups (Scheme 16), which demonstrated that if the cyclisation goes through a chair-like transition state, then if the allyloxy group is equatorial to the cyclohexyl ring the new stereocentre will be the cis-fused syn product 45. However, if the allyloxy group is held axially then the cis-fused anti product 46 is observed.

44

45

46

Scheme 16
Assuming that allyl ether 215 cyclises via a weakly chelated intermediate 219 , then the resulting cyclohexyl radical intermediate $\mathbf{2 2 0}$ will have the allyloxy substituent in an axial position, which should cyclise to give the anti-methyl substituent 217 according to Beckwith/RajanBabu (Scheme 66). ${ }^{25-30}$ Flipping the conformation of $\mathbf{2 2 0}$ breaks the weak chelation of the allyl ether oxygen to the samarium metal. This may be favoured in the presence of HMPA and gives $\mathbf{2 2 1}$ with the allyloxy substituent in an equatorial position, which should cyclise to give the syn-methyl substituent 218.

Scheme 66

5.4 ALLYL ETHER ISOMER 216

Cyclisations using samarium diiodide were attempted on allyl ether 216 (Table
12). Cyclisation of allyl ether isomer 216 gave the bicyclic ether 222 , which was obtained via a 6-exo cyclisation onto the allyl ether instead of the cyclopropyl alkene
bond as was observed for propargyl ether 199. Bicyclic product 222 was formed in very good yields of up to 73%.

Reaction conditions	$\mathbf{2 2 2}$
$\mathrm{SmI}_{2}, \mathrm{MeOH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$	72%
$\mathrm{SmI}_{2}, \mathrm{MeOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$	73%
$\mathrm{SmI}_{2}, \mathrm{HMPA}, \mathrm{THF},{ }^{\mathrm{t}} \mathrm{BuOH}, 0^{\circ} \mathrm{C}$	70%
$\mathrm{SmI}_{2}, \mathrm{HMPA}, \mathrm{THF},{ }^{ } \mathrm{BuOH},-78^{\circ} \mathrm{C}$	70%

Table 12 Cyclisations of allyl ether isomer 216

5.5 STEREOCHEMISTRY

The stereochemistry of bicycle $\mathbf{2 2 2}$ can be established by comparison with bicycle 208 produced from cyclisation of propargyl ether 199. Both cyclisations follow the same mechanism and have the same stereochemistry in their starting materials. The only difference is bicycle $\mathbf{2 2 2}$ has a new stereocentre at the methyl group. The stereochemistry at the methyl group can be assumed to be trans to the alcohol group by reference to the cyclisation of $\mathbf{2 2 3}$ described by Molander (Scheme 67). ${ }^{53}$ Molander's work showed that the stereochemistry at the new ethyl group in the product 224 was trans to the alcohol as would be expected for cyclisations mediated by samarium diiodide, which proceed with the alkene avoiding electronic repulsion from the ketyl radical oxygen. ${ }^{53}$

223

224

Scheme 67

6. CONCLUSIONS

Initially a tricyclic skeleton was obtained in good yield after cyclisation of propargyl ether 198, which showed the radical cascade reaction was successful. However, the isomeric propargyl ether 199 only gave a bicyclic product with the methylenecyclopropane still intact. An analogous bicyclic compound was also produced from the same isomer of the allyl ethers 216. However, samarium diiodide mediated cyclisation of allyl ether $\mathbf{2 1 5}$ gave a very interesting result and under suitable solvent conditions, a stereoselective route to tricyclic ethers was obtained. Thus, using the $\mathrm{MeOH} / \mathrm{THF}$ (1:4) solvent system gave one tricyclic isomer as the major product, but if HMPA was substituted for MeOH then the stereochemistry at the new methyl chiral centre was reversed.

CHAPTER 4

TOWARDS A NATURAL PRODUCT DIHYDROTOURNEFORTIOLIDE

1. INTRODUCTION

With the methodology and stereochemistry firmly established ${ }^{76}$ work was directed towards the synthesis of a complex natural product. Tricyclic skeleton 217, produced from cyclisation of allyl ether 215 with samarium diiodide and $\mathrm{MeOH} / \mathrm{THF}$ in good yield, has the correct stereochemistry for natural product dihydrotournefortiolide to be a possible target. ${ }^{65,77}$ A number of tricyclic natural products have been isolated ${ }^{78,79}$. For example 9-oxo-11 β, 13-dihydrotournefortiolide $154{ }^{65,77}$ and stoebenolide 225 (Figure 19), ${ }^{78}$ both of which are members of the eudesmane family.

Tricyclic skeleton
217

9-oxo-11 β, 13-dihydrotournefortiolide 154

Stoebenolide 225

Figure 19
Dihydrotournefortiolide 154 was first isolated from Artemisia tournefortiana, one of the Spanish species of the genus Artemisia (Fam. Compositae, tribe Anthemideae). A previous synthesis of dihydrotournefortiolide $\mathbf{1 5 4}$ has been described by Pedro, starting from artemusin 226 (Scheme 68). ${ }^{65,80,81}$

Scheme 68
1,2 Hydrogenation was carried out using Wilkinson's catalyst, followed by dehydration to give tricycle 227. Oxone was used for epoxidation of the double bond. The epoxide was opened using PhSeNa and the phenylselenium group was removed using Raney Ni giving alcohol 228. Epimerisation of the lactone ${ }^{82}$ followed by protection of the ketone using ethanedithiol produced thioketal 229. Removal of the thioketal ${ }^{83}$ afforded alcohol 230, which was finally oxidised using PCC^{84} to afford the natural product dihydrotournefortiolide $154 .{ }^{65}$

2. DISCONNECTION OF DIHYDROTOURNEFORTIOLIDE

A retrosynthetic analysis of dihydrotournefortiolide 154 suggested that it might be obtained from precursor 233 by one of two possible cyclisation modes leading to tricycle 231 or 232 (Scheme 69).

Scheme 69
The cyclisation of the α, β-unsaturated ketone 233 could happen by one of two pathways (Scheme 70 and Scheme 71).

Scheme 70
Ketyl radical $\mathbf{2 3 6}$ could be produced from reduction of ketone $\mathbf{2 3 3}$ with samarium diiodide, which could undergo a 5-exo cyclisation, followed by an 'endo' ring opening to produce radical 238. This radical could undergo a further 5-exo cyclisation, followed by reduction of the radical to an anion that may be quenched by protonation from methanol to afford tricycle 231 (Scheme 70).
However, the ketyl radical can also be delocalised to give radical 240 (Scheme 71).
From the β-position 240 could undergo a 5-exo cyclisation onto the methylenecyclopropane moiety, followed by an 'endo' ring opening to give cyclohexyl
radical 242. A 5-exo cyclisation followed by further reduction of the radical to an anion, which could be quenched by protonation from methanol would furnish tricyclic compound 232.

Scheme 71
Either method would give a suitable building block to make the natural product, as tricycle 231 has the double bond and methyl group in place but contains a tertiary alcohol (Scheme 72), whereas tricycle 232 has the other methyl group in place and a ketone which could be readily converted to the required alkene.

Scheme 72
If the cyclisation gave tricycle 232 then a short series of functional group manipulations could give the natural product (Scheme 73). ${ }^{85,86}$

Scheme 73
However, if tricycle 231 was produced then the following steps might produce the natural product (Scheme 74). ${ }^{85-88}$

Scheme 74
Allyl ether $\mathbf{2 3 3}$ could be prepared from ketoester 234, which in turn could be made from ethyl acetoacetate 235 (Scheme 69)

Scheme 69

3. SYNTHESIS OF CYCLISATION PRECURSORS

3.1 INITIAL STUDIES

Work began with an attempt to synthesise the ketone precursor 233 using a method described by Paquette. ${ }^{89}$ Ketoacid 245 was treated with thionyl chloride and refluxed in toluene to produce lactone 246 in poor yield, particularly on a large scale (small scale 42%, large scale 16%) (Scheme 75).

Scheme 75

Unfortunately, the subsequent reaction with the enolate of methyl acetate did not give the desired product $\mathbf{2 4 8}$, and as a consequence this method was abandoned. A new route was attempted as also described by Paquette, ${ }^{89}$ which relies on introduction of a bromide followed by transmetallation and ethox ycarbonylation.

Thus, ketone 249 was reacted with NBS in carbon tetrachloride in an attempt to prepare bromide 250 according to Paquette's method (Scheme 76). ${ }^{89}$

4) Ethanediol, H^{+}

Scheme 76
The reaction was attempted several times but without success and so another method was tried.

Ethyl acetoacetate $\mathbf{2 3 5}$ was protected using ethanediol ${ }^{90}$ and then reduced to alcohol 254 using lithium aluminium hydride ${ }^{69}$ in good yield (87%). Alcohol 254 was converted to the iodide $\mathbf{2 5 5}$ in yields of up to 86% using iodine, PPh_{3} and imidazole (Scheme 77). ${ }^{91}$

Scheme 77
The dianion of ethyl acetoacetate was prepared, using sodium hydride and butyl lithium, ${ }^{92}$ and reacted with iodide 255 (Scheme 78). When concentrated acid was used in the work up, cyclised product 234 was produced in poor yield (26%), whereas when weak acid was added the uncyclised product $\mathbf{2 5 6}$ was produced in equally poor yield (25\%).

Scheme 78

The conversion of $\mathbf{2 5 6}$ to $\mathbf{2 3 4}$ was attempted using the literature method by Funk employing Lewis acid $\mathrm{TiCl}_{4},{ }^{93}$ but this gave a mixture of products and a low yield. It was found that the uncyclised product 256 could be readily converted into 234 using concentrated HCl in quantitative yield.
In an attempt to increase the poor yield of the cyclisation, HMPA was added, in order to make the dianion more reactive (Scheme 79). ${ }^{94}$

Scheme 79

The reaction was attempted initially with 4 equivalents of HMPA, ${ }^{94}$ and subsequently repeated with 2 equivalents of HMPA. As there was no detriment to the yield it was deemed preferable to use the minimum amount of HMPA necessary due to its toxicity. With a concentrated acid work up cyclised product 234 was obtained in a gratifyingly improved yield (58\%). With a weak acid work up the uncyclised product 256 was produced, again in a better yield (60%).

Due to the success of the synthesis of cyclised compound 234 a one-step process was attempted. Ethyl acetoacetate 235 was treated first with sodium hydride followed by butyl lithium to give the dianion, ${ }^{92}$ which was subsequently reacted with methyl vinyl ketone (Scheme 80).

Scheme 80
Unfortunately, cyclised product 234 was never observed after repeated attempts and as a viable route existed the reaction was abandoned.

3.2 TOWARDS CYCLISATION PRECURSORS

Protection of α, β-unsaturated ketones using ethanediol has been studied by De Leeuw. ${ }^{95}$ These investigations showed the effect different acids had on the reaction (Scheme 81). Ethanediol and pTsOH gave the double bond out of conjugation 259 in 100% yield, however ethanediol and fumaric acid gave 100% of 258 with the double bond retained in its original position.

Scheme 81

Ketoester 234 was protected using ethanediol and acid: when pTsOH was used only product 261 was produced with the double bond out of conjugation (48% and 50% starting material 234) as expected, whereas when fumaric acid was used a $3: 1$ mixture of $\mathbf{2 6 0 : 2 6 1}$ was observed (36% and $\mathbf{1 4 \%}$ respectively) (Scheme 82). The products were easily separated by column chromatography.

Scheme 82
The protection was also attempted using different solvents to enable the reaction temperature to be changed, for example benzene and xylene. However the reactions were not as clean and the yields were lower than observed with toluene (Scheme 82).

The protecting group was also introduced using a method by Noyori, ${ }^{96}$ which gave the α, β-unsaturated product in good yield (70\%) (Scheme 83).

Scheme 83

Neopentyl glycol was also used as a protecting group instead of ethanediol but only starting material and a mixture of inseparable compounds were observed.

Conjugated ester 260 was reduced using lithium aluminium hydride ${ }^{68}$ in very poor yield (38%) followed by oxidation using Collins reagent. ${ }^{97}$ Unfortunately a crude yield of only 40% was observed, consisting of a mixture of three inseparable compounds (Scheme 84).

Scheme 84

A different method of synthesising aldehyde 263 was adopted. Ester 260 was treated with DIBAL-H, ${ }^{98}$ but again no aldehyde was produced so a new route was needed. On protection of ketoester $\mathbf{2 3 4}$ with ethanediol and pTsOH the double bond moved "out-of-conjugation", therefore upon deprotection it was hoped it would move back. Following this premise work began using the "out-of-conjugation" protected ester 261. Ester 261 was reduced using lithium aluminium hydride ${ }^{68}$ to give alcohol 264 in good yield (84%). A Swern oxidation ${ }^{70}$ was used to convert alcohol 264 to aldehyde $\mathbf{2 6 5}$ in excellent yield (98%) (Scheme 85). Oxidation of alcohol 264 was also attempted using Collins reagent ${ }^{97}$ but only a low yielding mixture was produced.

Scheme 85
Methylenecyclopropane $\mathbf{1}$ was reacted with ${ }^{\mathrm{n}} \mathrm{BuLi}$ to produce a methylenecyclopropane anion, which reacted with aldehyde $\mathbf{2 6 5}$ to give diastereoisomers 266 and 267 in good yield (3:2 respectively 75\% overall) (Scheme 86). However, it proved very difficult to purify the diastereoisomers 266 and 267 after separation so the compounds were used crude in the following reactions. Alcohols 266 and 267 were treated separately with NaH , then allyl bromide to afford allyl ethers 268 and 269.

Scheme 86
Unfortunately, after deprotection using pTsOH and wet acetone the double bond did not move back into conjugation. The reaction was forced using sodium methoxide in methanol to give α, β-unsaturated cyclisation precursors $\mathbf{2 7 0}$ and $\mathbf{2 7 1}$ in up to 85% and 78% yields respectively (Scheme 87).

268
270 (85\%)

269

1) pTsOH
acetone/water
2) NaOMe , MeOH

Scheme 87
However, the overall yield for the synthesis from ethyl acetoacetate $\mathbf{2 3 5}$ was very low ($\sim 8.5 \%$ for $\mathbf{2 7 0}$ and $\sim 7.5 \%$ for 271 over 9 steps) and so only small amounts of cyclisation precursor were produced. The stereochemistries have not been assigned due to the lack of material.

4. CYCLISATION OF NATURAL PRODUCT PRECURSORS

4.1 CYCLISATION OF PRECURSOR 270

Using the best conditions established from the model studies (Chapter 3), ${ }^{76}$ α, β-unsaturated ketone 270 was added to samarium diiodide in $\mathrm{MeOH} / \mathrm{THF}(1: 4)$ as solvent. Unfortunately no tricyclic compounds were observed, the only product being the starting material with the double bond reduced 273 (Scheme 88). Presumably precursor 270 is reduced to ketyl radical $\mathbf{2 3 6}$ with samarium diiodide leading to 237. A further equivalent of samarium diiodide reduces radical 237 to anion 272, which can be quenched by protonation from methanol to furnish ketone 273 in 48% yield.

Scheme 88
A possible reason for the failure of the reaction was the high concentration of samarium diiodide in the reaction mixture, as the substrate was added to the solution of SmI_{2}. To overcome this problem the reaction was attempted using the reverse addition of samarium diiodide. When the SmI_{2} was added dropwise to the substrate a different result was observed (Scheme 89).

273

276
THF

274

275

Scheme 89

Ketone $\mathbf{2 7 3}$ was presumably produced as before, followed by reduction of the ketone to ketyl radical 274, which underwent a 5-exo cyclisation and an 'endo' ring opening to give cyclohexyl radical 276 (Scheme 89). A 5-exo cyclisation onto the alkene moiety gave a tricyclic radical, which was reduced further to the anion followed by protonation from methanol to yield tricycle 277 in poor yield (6\%). The stereochemistry of 279 can be inferred by comparison with the tricyclic compounds described in chapter 3. Assuming cis fusion on both the cyclisations, H 2 would therefore be cis to H 1 and the alcohol group would be cis to H 3 (Figure 20). Comparison with the tricycles $\mathbf{2 1 7}$ and $\mathbf{2 1 8}$ described in chapter 3 would give the methyl group on the furan ring cis to H 2 . NMR studies on 279 revealed that H 1 couples to H 3 with a coupling constant of 3 Hz and to H 2 with a coupling constant of 5 Hz (Figure 20), which implies H 1 is equatorial 279 (Figure 20). A coupling constant of 3 Hz between H 1 and H 3 implies H 3 would be equatorial, which gives a trans relationship between H 1 and H 3 . A coupling constant of 11 Hz suggests axial coupling of H 3 to H 4 , which would put H 3 trans to H 4 and cis to the methyl group on the cyclohexane ring.

Figure 20
Reduced starting material was also observed in a 10% yield (Scheme 89). Precursor 270 was reduced to the ketyl radical 236 , which was reduced with an extra equivalent of samarium diiodide and quenched to yield alcohol 278.

The stereochemistry of alcohol $\mathbf{2 7 8}$ can be assumed to be the 1,3 anti compound i.e. the stereochemistry at the alcohol will be opposite to that of the allyl ether (as explained in the model studies in chapter 2).

The reverse addition cyclisation was attempted on the other precursor isomer 271, unfortunately the reaction was not as clean and no products could be isolated from the reaction mixture.

5. CONCLUSIONS

The synthesis of the cyclisation precursors proved problematic due to the migration of the double bond in and out of conjugation. A few of the synthetic steps also caused problems due to erratic yields. However, upon cyclisation of precursor 270 a number of different compounds were produced. Unfortunately none of them were the desired tricyclic products, so work was directed towards cyclisations of simpler α, β-unsaturated ketones to try and develop optimised conditions for the cyclisation and to see whether it would prove possible to obtain the tricyclic compounds for the natural product synthesis.

CHAPTER 5

MODEL STUDIES TOWARDS NATURAL PRODUCT

1. INTRODUCTION

A number of problems arose whilst attempting to synthesise the natural product dihydrotournefortiolide. As a consequence bringing through enough compound to investigate the cyclisation in detail proved very difficult (Chapter 4). Investigations were therefore directed towards model studies of samarium diiodide mediated cyclisations of simpler α, β-unsaturated carbonyl compounds.
α, β-Unsaturated esters can behave in many different ways under treatment with samarium diiodide depending on the additives used. For example, under optimised conditions, various substituted α, β-unsaturated esters can be rapidly and selectively reduced without affecting co-existing isolated double or triple bonds (Scheme 90). ${ }^{99}$

Scheme 90
For example, α, β-unsaturated ester 280 was treated with SmI_{2}-DMA- ${ }^{\mathrm{A}} \mathrm{BuOH}$ in THF to give ester 281 in very good yield. However, if the additive DMA was replaced with HMPA then an intermolecular dimerisation occurred at the β position of the α, β unsaturated esters (Scheme 91). ${ }^{100,101}$

Scheme 91

Work by Inanaga ${ }^{49}$ has demonstrated the samarium diiodide induced reductive crosscoupling of carbonyl compounds with α, β-unsaturated esters. The reaction was greatly accelerated by the addition of HMPA (Scheme 92).

Scheme 92
A mechanism was postulated by Fukuzawa ${ }^{102}$ that involved reduction of ketone 284 to ketyl radical 286 with subsequent coupling to an allylic radical 287 generated by a one-electron transfer from samarium diiodide to the α, β-unsaturated ester 285
(Scheme 92). A proton from an alcohol was then incorporated into the α-carbon of the ester group followed by cyclisation to provide γ-lactone 289.

Simple α, β-unsaturated ketones such as cyclohexenone 290 have been reported in the literature to undergo dimerisation upon treatment with samarium diiodide in THF with HMPA to give dimer 291 (Scheme 93). ${ }^{103}$

Scheme 93

2. INVESTIGATIONS INTO THE INTRODUCTION OF A

COMPETITIVE CYCLISATION

The main direction of this work was to investigate cyclisations of a simple α, β unsaturated ketone 292 with a pendant alkene, which could in principle undergo a 5exo cyclisation upon treatment with samarium diiodide via $\mathbf{2 9 3}$ or $\mathbf{2 9 6}$ to give either 295 or 298 respectively (Scheme 94).

Scheme 94
Alternatively treatment of $\mathbf{2 9 2}$ with samarium diiodide might simply lead to reduced products or dimers (Scheme 95).

Scheme 95
Work began by synthesising the cyclisation precursor $292 .{ }^{104}$

Scheme 96
Diketone $\mathbf{3 0 2}$ was refluxed in benzene with allyl alcohol and toluene sulfonic acid using Soxhlet apparatus to yield α, β-unsaturated ketone 292 in 42% after distillation. ${ }^{104}$ When the same reaction was attempted using toluene as solvent, a mixture of isomers was observed.

Initially precursor 292 was treated with 2.5 equivalents of samarium diiodide in THF with MeOH as a co-solvent (Scheme 97). A single product was obtained in 50% yield which, proved to be the unexpected tetracycle 303.

Scheme 97
The structure of tetracycle 303 was determined by extensive nmr studies and X-ray crystallography (Figure 21).

Figure 21 Tetracycle 303
The proposed mechanism for the formation of $\mathbf{3 0 3}$ begins with formation of $\mathbf{2 9 3}$ which dimerises via 296 to give 299 with the two methyl groups trans to each other.

Alternatively a single radical 296 could add (Michael addition) to enone 292.
Protonation of one of the enolates with methanol, followed by an intramolecular aldol condensation gives cis fused cyclised product $\mathbf{3 0 5}$. Ketone $\mathbf{3 0 5}$ is reduced to ketyl radical 306 by an additional equivalent of samarium diiodide and now undergoes a 5exo cyclisation onto the alkene moiety to produce primary radical 307. Samarium diiodide reduces radical 307 to anion 308 , which is quenched by a proton source to furnish tetracycle 303 (Scheme 98).

Scheme 98

Different methods and conditions were applied to precursor 292 in an attempt to alter the reaction pathway and obtain the desired bicyclic compounds 295 or 298 (Table 13).

Reaction Conditions	292	303
Add substrate to SmI_{2} and co-solvent in THF.		
1) $2.5 \mathrm{eq} . \mathrm{SmI}_{2}, \mathrm{MeOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$		50\%
2) $2.5 \mathrm{eq} . \mathrm{SmI}_{2}, \mathrm{MeOH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$		20\%
3) 2.5 eq. $\mathrm{SmI}_{2}, \mathrm{HMPA},{ }^{\text { }} \mathrm{BuOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$	Decomposed	
4) $4 \mathrm{eq} . \mathrm{SmI}_{2}, \mathrm{MeOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$		67\%
5) 4 eq. $\mathrm{SmI}_{2}, \mathrm{HMPA},{ }^{\text {' } \mathrm{BuOH}, \mathrm{THF},-78^{\circ} \mathrm{C}}$	Decomposed	
6) 4 eq. $\mathrm{SmI}_{2},{ }^{\text {t }} \mathrm{BuOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$	Decomposed	
7) 4 eq. $\mathrm{SmI}_{2}, \mathrm{MeOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$, addition of substrate over 6 hours.		60\%
8) 4 eq. $\mathrm{SmI}_{2}, \mathrm{MeOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$, addition of substrate over 1 minute.		62\%
9) 4 eq. $\mathrm{SmI}_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$	Decomposed	
Add SmI ${ }_{2}$ to substrate, co-solvent, THF, ROH.		
10) 4 eq. $\mathrm{SmI}_{2}, \mathrm{MeOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$	24\%	46\%
11) 4 eq. $\mathrm{SmI}_{2}, \mathrm{HMPA},{ }^{\text {' }} \mathrm{BuOH}, \mathrm{THF},-78^{\circ} \mathrm{C}$	Decomposed	
12) 4 eq. $\mathrm{SmI}_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$	Decomposed	
13) 4 eq. $\mathrm{SmI}_{2}, 4$ eq. $\mathrm{MeOH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$	26\%	42\%

Table 13 Cyclisation of α, β-unsaturated ketone 292

When HMPA was used as co-solvent no tetracycle was produced and a mixture of inseparable and unidentifiable products was obtained (Entries 3, 5 and 11). The same result was observed using ${ }^{\text {t }} \mathrm{BuOH}$ as a proton source without HMPA, and also in the absence of any co-solvents (Entry 6 and 9). When MeOH was used as co-solvent tetracycle 303 was obtained. On normal addition with 2.5 equivalents of samarium diiodide the reaction proceeded better at lower temperatures (Entry 1). Increasing to 4 equivalents of samarium diiodide gave slightly higher yields (Entry 4).

Slow addition of the substrate to samarium diiodide should have reduced the concentration of substrate in the reaction mixture potentially allowing the radical more time to cyclise. However, the rate of addition of the substrate to the samarium diiodide had minimal effect on the overall yield of the tetracycle 303 (Entries 7 and 8). Slow addition of samarium diiodide to the precursor (reverse addition) would lower the concentration of samarium diiodide in the reaction mixture, which might also allow the radical to cyclise before it could dimerise with another radical. However, upon reverse addition the reaction appeared to be slower and never went to completion but again led to tetracycle $\mathbf{3 0 3}$ as the only product (Entries 10 and 13). Increasing the concentration of MeOH in the reverse addition reaction also seemed to have no impact on the overall yield (Entry 13).

Thus under all conditions tried tetracycle $\mathbf{3 0 3}$ was the only product ever obtained, but the conditions could be optimised to obtain a 67% yield of tetracycle 303 (Entry 4).

Further investigation of the literature showed that Cabrera ${ }^{103}$ had reported a related cyclodimerisation of α, β-unsaturated ketones. Thus treatment of ketone 309 with samarium diiodide, HMPA in THF led to cyclopentanol 313. Cabrera proposed that ketone 309 was reduced using SmI_{2}-HMPA in THF to produce radical 310, which adds to another α, β-unsaturated ketone to yield diketone radical 311. The radical was reduced by an additional equivalent of samarium diiodide to give anion 312, which could undergo an intramolecular aldol condensation to yield β-hydroxy ketone $\mathbf{3 1 3}$ (Scheme 99). ${ }^{103}$

Scheme 99

Cabrera reported several examples of acyclic α, β-unsaturated ketones which undergo this cyclodimerisation reaction (Scheme 100). ${ }^{103,105,106}$

Scheme 100
Cabrera's work also considered simple cyclic α, β-unsaturated ketones, however for these substrates only simple dimerisation was observed (Scheme 101). ${ }^{103}$

320

290

321

293
(87\%)

Scheme 101

Interestingly dimerisation of $\mathbf{3 2 2}$ was reported to give dimer $\mathbf{3 2 3}$ with the two methyls cis, which is in contrast to the dimerisation of 292 which gave the methyls trans 299.

The stereochemistry of cyclic product $\mathbf{3 1 5}$ was proven by nOe studies to show that only one diastereoisomer was formed. Cabrera proposed that the stereochemistry observed arose from chelation control between the samarium ion and the two ketone groups (Scheme 102). ${ }^{103}$

Scheme 102

In Cabrera's study the cyclodimerisation required the use of samarium diiodide in THF with HMPA, but the absence of any proton source. If an alcohol was present only reduction of the double bond was observed. ${ }^{103}$ However, with the cyclisation of 292, methanol is present but a cyclodimerisation reaction does occur. The cyclisation of ketone 314 was therefore attempted using our optimised conditions, which gave diol 328 (Scheme 103).

Scheme 103

The reactions gave a $1: 1$ mixture of diastereoisomers of diol 328 in very good overall yields. Changing the temperature from $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ made no real difference to the yields.
The stereochemistry of diastereoisomers 328a and 328b has not been determined unambiguously, however the reaction mechanism may be the same as in Cabrera's work (Scheme 102), which should give ketone 315. A further equivalent of samarium diiodide present in the reaction would reduce ketone 315 to a ketyl radical, which could be reduced further to the anion and quenched with a proton source. If this process is not stereoselective then two diastereoisomers would be observed. However, it cannot be ruled out that the reaction mechanism does not follow Cabrera's work and two diastereoisomers of the intermediate ketone are produced, which can then be reduced stereoselectively (as demonstrated in work by Keck^{72}) to obtain only two diastereoisomeric products.
The reaction was repeated using methyl vinyl ketone 329 with the intention of obtaining diol 330, however no identifiable products could be obtained (Scheme 104).

Scheme 104

3. CYCLISATIONS OF SIMPLE CYCLIC α, β-UNSATURATED

KETONES

Cyclisations were also attempted with cyclic α, β-unsaturated ketones cyclopentenone $\mathbf{3 2 0}$ and cyclohexenone $\mathbf{2 9 0}$ which Cabrera reported did not cyclodimerise using his conditions (Scheme 101).

Initially, work began by cyclising cyclohexenone 290.(Table 14).

Reaction conditions	$\mathbf{3 3 4}$	$\mathbf{3 3 5}$	Overall yield
4 eq. $\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$	47%	21%	68%
4 eq. $\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$	54%	25%	79%
3 eq. $\mathrm{SmI}_{2}, \mathrm{THF}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$	45%	22%	67%

Table 14 Cyclisations of cyclohexanone 290

The results observed differ from the literature precedent. ${ }^{103}$ Two diastereoisomers 334 and $\mathbf{3 3 5}$ were produced from the cyclisation of cyclohexanone 290. The stereochemistry of tricycle 334 was proven using X-ray crystallography (Figure 22), which is in agreement with the stereochemistry of tetracycle 303 . The tricycle is cis fused and the protons at C7 and C5 are trans as before with 303, (and in contrast to the reported dimerisation of 322).

Figure 22 Tricycle 334

It is assumed that the stereochemistry of the two diastereoisomeric products 334 and 335 only differs at the secondary alcohol, which is consistent with the coupling constants at that centre (Figure 23). The ${ }^{1} \mathrm{H}$ nmr spectrum for 334 shows H 1 as a broad singlet, which implies very small coupling constants that are consistent with equatorial couplings as in 336. For diastereoisomer 335, however H 4 is a doublet triplet ($J=5,12 \mathrm{~Hz}$), implying two axial couplings, consistent with the alcohol being in the equatorial position 337.

334

335

337

Figure 23
An attempt was made to isolate intermediate ketone $\mathbf{3 3 8}$ using fewer equivalents of samarium diiodide to prevent the final reduction (Scheme 105).

Scheme 105
However, when treated with only 1.2 eq. of samarium diiodide in MeOH and THF at $78^{\circ} \mathrm{C}$, the dimer 291 was formed exclusively.

When cyclopentenone $\mathbf{3 2 0}$ was treated with 4 equivalents of samarium diiodide in THF with MeOH at $0^{\circ} \mathrm{C}$, tricycle $\mathbf{3 4 3}$ was formed in a 71% yield and as a single diastereoisomer (Scheme 106).

Scheme 106
The reaction was repeated at $-78^{\circ} \mathrm{C}$ and the same tricycle was produced with a reduced yield of 45%.
It was not possible to assign the stereochemistry of $\mathbf{3 4 3}$ unambiguously. The initial dimerisation gives intermediate 341 presumably with the two protons at C 1 and C 2 trans given that this was clearly found for cyclisation of 290 and 292 (Scheme 106). However, unlike the cyclisation of cyclohexenone 290, cyclisation of cyclopentenone 320 gave the tricycle 343 as a single diastereoisomer, implying that the reduction of the ketone intermediate $\mathbf{3 4 2}$ must be stereoselective. Coupling constants for H 1 do not help in the assignment of this centre and thus far we have been unable to determine the stereochemistry (Figure 24).

Figure 24

The cyclisation of α, β-unsaturated ketone 344 was also attempted but no product 345 was observed (Scheme 107).

Scheme 107

4. CONCLUSIONS

The samarium diiodide mediated radical cascade cyclisations of simple α, β unsaturated ketone 292 using $\mathrm{MeOH} / \mathrm{THF}$ co-solvents provided a surprising but efficient route to tetracycle 303. Whilst this result was frustrating from the standpoint of synthesising dihydrotournefortiolide $\mathbf{1 5 4}$ by cyclisation of $\mathbf{2 7 0}$, it does offer an unforeseen route into new chemistry. Commercially available α, β-unsaturated compounds were also cyclised using these optimised conditions and showed some interesting divergence from existing literature that may merit further study. From these model studies we can conclude that it is unlikely the natural product dihydrotournefortiolide 154 could have been synthesised by cyclisation of $\mathbf{2 7 0}$.

CHAPTER 6

EXPERIMENTAL

GENERAL EXPERIMENTAL

Whenever possible solvents and reagents were purified according to the procedures outlined in Perin and Armarego, "Purification of Laboratory Chemicals", Pergamon Press, 3rd Edition (1989). ${ }^{107}$

All reactions requiring anhydrous conditions were conducted in flame-dried or ovendried apparatus under a static, inert atmosphere.

Flash column chromatography was performed according to the procedure outlined by Still, ${ }^{108}$ using Sorbsil C60, 40-60 mesh silica.

Solvents were all commercial grade and used without further purification unless otherwise stated. THF was distilled from benzophenone ketal, DCM was distilled from calcium hydride, and petrol was distilled and the fraction boiling between $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ was used throughout.

Methylenecyclopropane was handled using the experimental methods as described by Binger and Thomas. ${ }^{8,9}$

INSTRUMENTAL

Proton nmr spectra were all obtained at 300 MHz on a Bruker AC 300 spectrometer, and at 400 MHz on a Bruker DPX 400 spectrometer. Peak positions are quoted against the δ scale relative to the residual chloroform signal ($\delta 7.27$) or to an internal standard of tetramethylsilane ($\delta 0.00$), using the following abbreviations: singlet (s), doublet (d), triplet (t , quartet (q), multiplet (m), broad singlet (br s).

Carbon-13 NMR spectra at 75 MHz were obtained on a Bruker AC 300 and at 100 MHz were obtained on a Bruker DPX400 spectrometer. The multiplicities of the signals are indicated in parentheses, using the following abbreviations: quaternary carbon, tertiary (1), secondary (2) and primary (3), and in some cases were elucidated using the distortionless enhancement by phase transfer (DEPT) spectral editing technique with second pulse at 135°.

IR spectra were recorded on a Bio-Rad Golden Gate ATR FT-IR spectrometer.
Mass spectroscopy data was obtained on a ThermoQuest TraceMS gas chromatography mass spectrometer configured for open access operation.

X-ray diffraction data was obtained from an Enraf Nonius KappaCCD diffractometer, the structure determined by direct methods using the program SHELXS97 ${ }^{109}$ and refined using SHELXL97. ${ }^{110}$

EXPERIMENTAL FOR CHAPTER 2

1

Methylenecyclopropane 1

Using a modification of the method of Binger, ${ }^{67}$ methallyl chloride $6(280 \mathrm{~mL}$, 2.84 mol) was added dropwise over 9 h to a rapidly stirred suspension of sodium amide ($139 \mathrm{~g}, 3.56 \mathrm{~mol}$) in dry n-dibutyl ether (400 mL) at $110-130^{\circ} \mathrm{C}$ under a slow stream of nitrogen. The reaction mixture was refluxed for a further 12 h using a cold finger condenser at $-40^{\circ} \mathrm{C}$. Acetone was removed from the cold finger condenser and replaced with warm water ($30-40^{\circ} \mathrm{C}$). The products were condensed in cold traps (ca. $-78^{\circ} \mathrm{C}$). The top layer was ammonia, which was allowed to boil away. The bottom layer ($120 \mathrm{~mL}, 96 \mathrm{~g}, 1.778 \mathrm{~mol}, 63 \%$) contained methylenecyclopropane $\mathbf{1}$ and methylcyclopropene 10 in a ratio of 5.5:1.
The mixture was added to a solution of ${ }^{\mathrm{t}} \mathrm{BuOH}(1.32 \mathrm{~g}, 0.018 \mathrm{~mol})$ and DMSO (40 mL), at $0^{\circ} \mathrm{C}$ under a flow of nitrogen, and ${ }^{\mathrm{t}} \mathrm{BuOK}(1.33 \mathrm{~g}, 0.012 \mathrm{~mol})$ in DMSO (20 mL) was added. The reaction mixture was left for 3 h at $-60^{\circ} \mathrm{C}$, allowed to warm to $10^{\circ} \mathrm{C}$ over 2 h and then to room temperature overnight. The cold finger was warmed to $45^{\circ} \mathrm{C}$ over 4 h . The methylenecyclopropane $1(120 \mathrm{~mL}, 96 \mathrm{~g}, 1.778 \mathrm{~mol}, 100 \%)$ was trapped in vessels at $-78^{\circ} \mathrm{C}$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.43\left(2 \mathrm{H}\right.$, br s, $\left.=\mathrm{CH}_{2}\right), 1.09\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}_{2}\right)$;
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 130.7, 102.9 (2), 2.5 (2);
All data agrees with that previously reported by Binger. ${ }^{111}$

166

Ethyl 1,4-dioxaspiro[4.4]nonane-6-carboxylate 166

Following the method of Albizati, ${ }^{68}$ ethyl cyclopentanone-2-carboxylate (23.2 $\mathrm{mL}, 0.160 \mathrm{~mol}$), ethylene glycol ($20.2 \mathrm{~mL}, 0.362 \mathrm{mmol}$) and pTsOH ($353.4 \mathrm{mg}, 1.860$ mmol) were refluxed in toluene (150 mL) overnight, collecting water using Dean-Stark
apparatus. The reaction mixture was concentrated in vacuo, $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ was added and washed with aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated in vacuo to give ester $166(27.8 \mathrm{~g}, 0.139 \mathrm{~mol}, 87 \%)$ as a yellow oil, $\mathrm{R}_{\mathrm{f}}=0.41$ ($30 \% \mathrm{EtOAc}$-petrol);
$\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 2975,2879,1731,1372,1212,1083,1037$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.20-4.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.05-3.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right)$,
$2.63(1 \mathrm{H}, \mathrm{dd}, J=8,5 \mathrm{~Hz}, \mathrm{CH}), 2.20-1.60\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3}\right), 1.25(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, CH_{3});
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 172.5,118.5,65.3$ (2), 64.6 (2), 60.5 (2), 52.4 (1), 36.9 (2), 27.0
(2), 22.2 (2), 14.4 (3);
m/z (CI+): $201[\mathrm{M}+\mathrm{H}]^{+}(100 \%)$;
All data agrees with that previously reported by Paulsen. ${ }^{112}$

167

1,4-dioxaspiro[4.4]non-6-ylmethanol 167

Following the method of Ferris, ${ }^{69}$ ethyl 1,4-dioxaspiro[4.4]nonane-6carboxylate $166(15.0 \mathrm{~g}, 0.075 \mathrm{~mol})$ in THF (30 mL) was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(8.54 \mathrm{~g}, 0.225 \mathrm{~mol})$ in THF $(80 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature over 1 h , and left to stir overnight. $\mathrm{Et}_{2} \mathrm{O}$ (150 mL) was added to the reaction mixture and $\mathrm{NaOH}(4 \mathrm{M})$ was added until a white precipitate persisted. The reaction mixture was filtered, the residue washed with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~mL}$), and the combined organic layers were concentrated in vacuo. The crude product was purified using flash column chromatography, eluting with petrol and gradually increasing the polarity to 50% EtOAc-petrol to give alcohol $167(8.42 \mathrm{~g}$, $0.053 \mathrm{~mol}, 71 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.60(75 \%$ EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3380,2950,2873,1460,1091$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.95-3.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.57-3.54(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{OH})$, $2.80(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} 2 \mathrm{OH}), 1.85-1.45\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 119.1,64.7$ (2), 64.2 (2), 62.6 (2), 47.2 (1), 35.8 (2), 25.9 (2), 21.5 (2);

All data agrees with that previously reported by Paulsen. ${ }^{112}$

168

1,4-dioxa-spiro[4.4]nonane-6-carbaldehyde 168

Following the method of Swern, ${ }^{70}$ oxalyl chloride ($2.65 \mathrm{~mL}, 0.030 \mathrm{~mol}$) in DCM (100 mL) was cooled to $-70^{\circ} \mathrm{C}$ and stirred vigorously. DMSO ($4.49 \mathrm{~mL}, 0.063$ $\mathrm{mol})$ in DCM (10 mL) was added at $<-50^{\circ} \mathrm{C}$ and the reaction was stirred for 2 min . 1,4-dioxaspiro[4.4]non-6-ylmethanol $167(4.00 \mathrm{~g}, 0.025 \mathrm{~mol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was added over 5 min at $<-50^{\circ} \mathrm{C}$ and the reaction was stirred for a further 15 min . TEA ($17.8 \mathrm{~mL}, 0.127 \mathrm{~mol}$) was added at $<-50^{\circ} \mathrm{C}$ and the reaction mixture was warmed to room temperature. Water (100 mL) was added and the reaction mixture was washed with DCM ($5 \times 50 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo to yield aldehyde $168(3.80 \mathrm{~g}, 0.024 \mathrm{~mol}, 97 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.58(30 \%$ EtOAc-petrol);
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.59(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{CHO}), 3.97-3.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right)$, $2.78(1 \mathrm{H}, \mathrm{dt}, J=3,8 \mathrm{~Hz}, \mathrm{CHCHO}), 2.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}} \mathrm{CHCHO}\right), 1.85-1.60(5 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{B} \mathrm{CHCHO}$ and $\left.\left(\mathrm{CH}_{2}\right)_{2}\right)$;
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 201.5$ (1), 118.6, 64.9 (2), 64.7 (2), 58.2 (1), 37.0 (2), 24.0 (2), 22.2 (2);

Aldehyde 168 was difficult to purify and was used directly in the next reaction.

170
rac-(S)(6R)-1,4-dioxaspiro[4.4]non-6-yl[(1R)-2-methylenecyclopropyl]methanol 169 and rac-(S)(6R)-1,4-dioxaspiro[4.4]non-6-yl[(1S)-2methylenecyclopropyl]methanol 170
${ }^{n} \operatorname{BuLi}(2.22 \mathrm{M}, 16 \mathrm{~mL}, 0.04 \mathrm{~mol})$ was added to methylenecyclopropane $1(2.7$ $\mathrm{mL}, 0.04 \mathrm{~mol})$ in THF $(20 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The reaction temperature was allowed to rise to $0^{\circ} \mathrm{C}$ over 30 min and held at $0^{\circ} \mathrm{C}$ for a further 30 min . The reaction was
allowed to warm to room temperature for 15 min before cooling to $-78^{\circ} \mathrm{C} .1,4$-dioxa-spiro[4.4]nonane-6-carbaldehyde $168(3.7 \mathrm{~g}, 0.02 \mathrm{~mol})$ in THF (10 mL) at $-78^{\circ} \mathrm{C}$ was added via cannula to the methylenecyclopropane anion. The reaction mixture was allowed to warm to room temperature overnight, quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ether ($5 \times 10 \mathrm{~mL}$) and the organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography, eluting with petrol and gradually increasing polarity to $30 \% \mathrm{Et}_{2} \mathrm{O}-$ petrol to yield the ($\mathrm{S}, \mathrm{R}, \mathrm{R}$) isomer 169 ($901 \mathrm{mg}, 4.29 \mathrm{mmol}, 18 \%$) and the ($\mathrm{S}, \mathrm{R}, \mathrm{S}$) isomer 170 ($820 \mathrm{mg}, 3.90 \mathrm{mmol}, 16 \%$), both as yellow oils.

Data for diastereoisomer $169 \mathrm{R}_{\mathrm{f}}=0.44\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3445,2960,2875,892$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.50\left(1 \mathrm{H}, \mathrm{s}\right.$ with fine splitting, $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.37(1 \mathrm{H}, \mathrm{s}$, $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 3.96-3.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.39(1 \mathrm{H}, \mathrm{dd}, J=9,2 \mathrm{~Hz}, \mathrm{CHOH}), 3.14(1 \mathrm{H}$, br s, OH), $2.23\left(1 \mathrm{H}, \mathrm{td}, J=9,2 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right), 2.00-1.55(7 \mathrm{H}, \mathrm{m}$, cyclopropyl CH , $\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right), 1.18(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$), 0.90(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 134.3, 118.9, 103.7 (2), 72.3 (1), 64.4 (2), 64.4 (2), 50.3 (1), 36.8 (2), 22.3 (2), 21.7 (2), 19.9 (1), 7.1 (2); m/z (CI+): $193[\mathrm{M}-\mathrm{OH}]^{+}(100 \%), 211\left[\mathrm{M}+\mathrm{H}^{+}(2 \%)\right.$;
HRMS $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}-\mathrm{OH}]^{+}$requires 193.1229, found 193.1232.

Data for diastereoisomer $170 \mathrm{R}_{\mathrm{f}}=0.34$ ($50 \% \mathrm{Et}_{2} \mathrm{O}$-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3447,2960,2879,886 ;$
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.40-5.30\left(2 \mathrm{H}\right.$, br s with fine splitting, $\left.=\mathrm{CH}_{2}\right), 3.95-3.80(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.31(1 \mathrm{H}, \mathrm{dd}, J=9,2 \mathrm{~Hz}, \mathrm{CHOH}), 3.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.15(1 \mathrm{H}, \mathrm{td}, J$ $\left.=9,2 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right), 2.05-1.55\left(7 \mathrm{H}, \mathrm{m}\right.$, cyclopropyl $\left.\mathrm{CH},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right), 1.30(1 \mathrm{H}, \mathrm{tt}, J=$ $9,2 \mathrm{~Hz}$, cyclopropyl CH), 1.07 ($1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 133.1,118.9,103.9$ (2), 72.5 (1), 64.4 (2), 64.4 (2), 51.0 (1), 36.9
(2), 22.3 (2), 21.7 (2), 20.2 (1), 9.1 (2);
m/z (CI+): 193 [M - OH] ${ }^{+}$(40\%);
HRMS $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 211.1334, found 211.1341.

160
rac-(2S)-2-\{(R)-1-hydroxy-1-[(1R)-2-methylenecyclopropyl]methyl\}cyclopentan-1-one 160
rac-(S)(6R)-1,4-dioxaspiro[4.4]non-6-yl[(1R)-2-methylenecyclopropyl] methanol 169 ($840 \mathrm{mg}, 4.00 \mathrm{mmol}$) in acetone/water ($100 \mathrm{~mL} / 10 \mathrm{~mL}$) was stirred with pTsOH ($914 \mathrm{mg}, 4.80 \mathrm{mmol}$) for 3 days. The reaction mixture was concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solution was washed with aq. $\mathrm{NaHCO}_{3}(50$ mL) and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 50 \mathrm{~mL})$. Organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography, eluting with $10 \% \mathrm{Et}_{2} \mathrm{O}$-petrol and gradually increasing the polarity to $35 \% \mathrm{Et}_{2} \mathrm{O}$-petrol to yield deprotected ketone 160 ($500 \mathrm{mg}, 3.01 \mathrm{mmol}, 75 \%$) as a white solid, $\mathrm{R}_{\mathrm{f}}=0.51\left(70 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol);
Melting point: $73-75^{\circ} \mathrm{C}$ (Recrystallised from hot EtOAc);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3436,3080,2990,2960,2873,1715$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.52\left(1 \mathrm{H}, \mathrm{d}\right.$ with fine splitting, $\left.J=2 \mathrm{~Hz},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.39(1 \mathrm{H}, \mathrm{d}$, $\left.J=2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 3.68(1 \mathrm{H}, \mathrm{dd}, J=9,2 \mathrm{~Hz}, \mathrm{CHOH}), 2.45-1.90\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right)$, $1.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}), 1.68(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$), 1.21(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH), 0.91 ($1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 220.8, 133.0, 104.6 (2), 72.6 (1), 54.2 (1), 39.2 (2), 23.6 (2), 20.9
(2), 19.8 (1), 7.6 (2);
m/z (CI+): $149[\mathrm{M} \mathrm{-} \mathrm{OH}]^{+}(100 \%) ;$
Microanalysis: Found C, $72.20 ; \mathrm{H}, 8.48 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.26 ; \mathrm{H}, 8.49 \%$;
Stereochemistry was confirmed by X-ray crystallography.

171
rac-(2S)-2-\{(R)-1-hydroxy-1-[(1S)-2-methylenecyclopropyl]methyl\}cyclopentan-1one 171
rac-(S)(6R)-1,4-dioxaspiro[4.4]non-6-yl[(1S)-2-methylenecyclopropyl]
methanol 170 ($763 \mathrm{mg}, 3.63 \mathrm{mmol}$) in acetone/water ($100 \mathrm{~mL} / 10 \mathrm{~mL}$) was stirred with pTsOH ($830 \mathrm{mg}, 4.36 \mathrm{mmol}$) for 3 days. The reaction mixture was concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solution was washed with aq. NaHCO_{3} (50 $\mathrm{mL})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. Organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using column chromatography, eluting with $10 \% \mathrm{Et}_{2} \mathrm{O}$-petrol and gradually increasing the polarity to $35 \% \mathrm{Et}_{2} \mathrm{O}$-petrol to yield deprotected ketone 171 (330 mg , $1.99 \mathrm{mmol}, 55 \%)$ as a white solid, $\mathrm{R}_{\mathrm{f}}=0.50\left(70 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol $)$;

Melting point: $65-67^{\circ} \mathrm{C}$ (Recrystallised from hot EtOAc);
$\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3411,3180,3075,2965,2883,1712$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.40\left(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.35(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$,
$\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 3.61(1 \mathrm{H}, \mathrm{dd}, J=9,3 \mathrm{~Hz}, \mathrm{CHOH}), 2.40-2.05\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 1.80(1 \mathrm{H}, \mathrm{m}$, CHCO), $1.65(\mathrm{lH}, \mathrm{m}$, cyclopropyl CH$), 1.35(\mathrm{IH}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH), 1.10 ($1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 221.0,132.4,104.6$ (2), 72.7 (1), 54.6 (1), 39.1 (2), 23.6 (2), 20.9 (2), 20.3 (1), 8.5 (2);
m/z (CI+): $149[\mathrm{M}-\mathrm{OH}]^{+}(100 \%)$;
Microanalysis: Found $\mathrm{C}, 72.25 ; \mathrm{H}, 8.57 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.26 ; \mathrm{H}, 8.49 \%$;
Stereochemistry was confirmed by X-ray crystallography.

General Method for the Preparation of SmI_{2} solution:

Using a modification of the method of Molander, ${ }^{53}$ samarium metal (452.9 mg , 3.01 mmol) was weighed out and transferred to flame dried glassware under an Ar atmosphere. The metal was flame dried and degassed THF (20 mL) was added followed by freshly purified $\mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{I}(509.4 \mathrm{mg}, 1.81 \mathrm{mmol}) .{ }^{55}$ The mixture was
stirred at room temperature for 2 h and the resulting deep blue solution was used directly to effect the following reductive cyclisation reaction.

Typical procedure:

rac-(3aR, 7S, 7aR)-4-methyleneperhydro-3a,7-indenediol 162, rac-(3aR, 7S)-4-methylene-2,3,3a,4,5,7a-hexahydro-1H-3a-indenol 172 and rac-di(3aR, 7S, 7aR)-4-methyleneperhydro-3a,7-indenediol 173.

Following the procedure by Molander, ${ }^{53}$ HMPA ($1.05 \mathrm{~mL}, 6.02 \mathrm{mmol}$) was added to SmI_{2} (0.15 M solution in $\mathrm{THF}, 10 \mathrm{~mL}, 1.50 \mathrm{mmol}$) to give a purple solution. The solution was cooled to $0^{\circ} \mathrm{C}$, rac-(2S)-2-\{(R)-1-hydroxy-1-[(1R)-2methylenecyclopropyl]methyl $\}$ cyclopentan-1-one $160(100 \mathrm{mg}, 0.60 \mathrm{mmol})$ and ${ }^{\mathrm{t}} \mathrm{BuOH}(89 \mathrm{mg}, 1.20 \mathrm{mmol})$ in THF (10 mL) were added over 90 min and the reaction mixture was allowed to warm to room temperature. The crude mixture was then washed with aq. citric acid (1 g in 20 mL water) and extracted with 1:1 EtOAc-petrol (5 x 25 mL). The combined organic phase was washed with brine (25 mL), water (25 mL), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to neat EtOAc to give alcohols 162 ($10 \mathrm{mg}, 0.06 \mathrm{mmol}, 10 \%$), 172 ($30 \mathrm{mg}, 0.20 \mathrm{mmol}, 30 \%$) and 173 ($15 \mathrm{mg}, 0.05 \mathrm{mmol}, 15 \%$).

Data for 162 obtained as colourless crystals, $\mathrm{R}_{\mathrm{f}}=0.30$ ($60 \% \mathrm{EtOAc}$-petrol);
Melting point $=119-121^{\circ} \mathrm{C}$ (Recrystallised from hot EtOAc);
$\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3306,2923,2850,1454,1034 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $5.11\left(1 \mathrm{H}, \mathrm{s}\right.$ with fine splitting, $\left.=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.90(1 \mathrm{H}, \mathrm{s}$ with fine splitting, $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 3.43(1 \mathrm{H}, \mathrm{ddd}, J=10,8,4 \mathrm{~Hz}, \mathrm{CHOH}), 2.49(1 \mathrm{H}, \mathrm{dt}, J=15,5$ $\left.\mathrm{Hz},=\mathrm{CCH}_{A} \mathrm{H}_{\mathrm{B}}\right) 2.20-1.40\left(10 \mathrm{H}, \mathrm{m},=\mathrm{CCH}_{\mathrm{A}} H_{B}, \mathrm{CH}_{2} \mathrm{CHOH},\left(\mathrm{CH}_{2}\right)_{3}, \mathrm{CHCHOH}\right) ;$ $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 150.5,108.7$ (2), 83.3, 72.0 (1), 58.1 (1), 37.3 (2), 35.1 (2), 29.9 (2), 26.7 (2), 21.3 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 151[\mathrm{M}-\mathrm{OH}]^{+}(30 \%), 133\left[\mathrm{M}-\mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(100 \%) ;$
HRMS $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}-\mathrm{OH}]^{+}$requires 151.1123, found 151.1129;
Stereochemistry was confirmed by X-ray crystallography.

Data for $\mathbf{1 7 2}$ obtained as a yellowish oil, $\mathrm{R}_{\mathrm{f}}=0.81$ ($60 \% \mathrm{EtOAc}$-petrol);
$\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3397,3075,2946,2870,1714,1017$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.56(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 5.39(1 \mathrm{H}, \mathrm{dq}, J=10,2 \mathrm{~Hz},=\mathrm{CH}), 5.10$
$\left(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.91\left(1 \mathrm{H}, \mathrm{s}\right.$ with fine splitting, $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 2.95\left(1 \mathrm{H}, \mathrm{m},=\mathrm{CCH}_{A} \mathrm{H}_{\mathrm{B}}\right)$,
$2.46\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CCH}_{\mathrm{A}} H_{B}\right), 2.30-1.40\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH},\left(\mathrm{CH}_{2}\right)_{3}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 147.5,130.2(1), 123.3$ (1), 105.5 (2), 81.8, 50.3 (1), 36.2 (2),
32.2 (2), 29.5 (2), 21.2 (2)

LRMS could not be obtained for this compound.

Data for $\mathbf{1 7 3}$ obtained as yellow crystals within a yellow oil, $\mathrm{R}_{\mathrm{f}}=0.11(60 \% \mathrm{EtOAc}-$ petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3339,2948,2880,1461,1038 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.15\left(1 \mathrm{H}, \mathrm{s}\right.$ with fine splitting, $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.00(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}$ $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.87\left(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 3.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.12(1 \mathrm{H}, \mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{CHOH})$, $2.76(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{CHOH}) 2.42-1.20\left(20 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CCH}_{2}, 2 \mathrm{x}\left(\mathrm{CH}_{2}\right)_{3}, 2 \mathrm{x}\right.$ $\mathrm{CHCHOH}, 2 \times \mathrm{CHCH} 2 \mathrm{C}=$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 149.6,146.2,109.1(2), 107.1$ (2), 82.0, 79.7, 72.1 (1), 69.8 (1), 57.9 (1), 50.8 (1), 47.1 (1), 43.3 (1), 37.2 (2), 36.0 (2), 34.2 (2), 26.4 (2), 26.0 (2), 23.3
(2), 20.2 (2), 18.8 (2);
m/z (APCI+): $333[\mathrm{M}+\mathrm{H}]^{+}(100 \%)$;
HRMS could not be obtained for this compound;
Stereochemistry was confirmed by X-ray crystallography.

rac-(3aR, 7S, 7aR)-4-methyleneperhydro-3a,7-indenediol 162 and rac-(1R, 2S)-2\{(R)-1-hydroxy-1-[(1S)-2-methylenecyclopropyl]methyl\}cyclopentan-1-ol 177

Following the method of Procter, ${ }^{71}$ to $\mathrm{SmI}_{2}(0.15 \mathrm{M}$ solution in THF, 10 mL , $1.50 \mathrm{mmol})$ and $\mathrm{MeOH}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar , was added rac-(2 S)-2\{(R)-1-hydroxy-1-[(1S)-2-methylenecyclopropyl]methyl\}cyclopentan-1-one 171 ($100 \mathrm{mg}, 0.60 \mathrm{mmol}$) in THF (5 mL) over 45 min . The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($128 \mathrm{mg}, 0.61 \mathrm{mmol}$). The aqueous layer was then extracted with EtOAc ($5 \times 10 \mathrm{~mL}$), and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography, eluting with petrol and gradually increasing the polarity to neat EtOAc to give diols $162(35 \mathrm{mg}, 0.21 \mathrm{mmol}, 35 \%)$ and 177 (40 mg , $0.24 \mathrm{mmol}, 40 \%$);

Data for compound 177 was obtained as a viscous oil, $\mathrm{R}_{\mathrm{f}}=0.53$ (55% EtOAc-petrol); $V_{\max }\left(\mathrm{cm}^{-1}\right): 3311,2954,2874,1431,1013 ;$
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.43-5.38\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 4.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHOH}\right), 3.48(1 \mathrm{H}$, dd, $J=9,2 \mathrm{~Hz}, \mathrm{CHOH}), 3.25(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 2.00-1.50\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right.$, CHCHOH , cyclopropyl CH), $1.32(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$), 1.10(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 133.1,104.1$ (2), 76.6 (1), 75.1 (1), 49.5 (1), 35.6 (2), 22.2 (2), 22.1 (2), 21.5 (1), 8.8 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 151[\mathrm{M}-\mathrm{OH}]^{+}(70 \%), 133\left[\mathrm{M}-\mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(100 \%)$;
HRMS $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}-\mathrm{OH}]^{+}$requires 151.1123, found 151.1129.

All data for compound $\mathbf{1 6 2}$ agrees with that reported above.

180

Ethyl 1,4-dioxaspiro[4.5]decane-6-carboxylate 180

Following the method of Albizati, ${ }^{68}$ ethyl 2-cyclohexanone carboxylate (23.5 $\mathrm{mL}, 0.147 \mathrm{~mol}$), ethylene glycol ($18.5 \mathrm{~mL}, 0.332 \mathrm{mmol}$) and pTsOH ($324.4 \mathrm{mg}, 1.705$ mmol) were refluxed in toluene (150 mL) overnight, collecting water using Dean-Stark apparatus. The reaction mixture was concentrated in vacuo, diluted with $\mathrm{Et}_{2} \mathrm{O}$ (200 mL) and washed with aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo to give ketal 180 ($30.4 \mathrm{~g}, 0.142 \mathrm{~mol}, 97 \%$) as slightly yellow oil, $\mathrm{R}_{\mathrm{f}}=0.4$ ($30 \% \mathrm{EtOAc}$-petrol);
$\delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.15\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00-3.85(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 2.63(1 \mathrm{H}, \mathrm{dd}, J=8,5 \mathrm{~Hz}, \mathrm{CH}), 2.10-1.25\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right), 1.28(3 \mathrm{H}, \mathrm{t}, J=$ $7 \mathrm{~Hz}, \mathrm{CH}_{3}$);
$\delta \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 172.5,108.8,65.0$ (2), 64.7 (2), 60.4 (2), 50.1 (1), 34.8 (2), 27.4 (2), 23.5 (2), 23.1 (2), 14.4 (3);

All data agrees with that previously reported by Albizati. ${ }^{68}$

181

1,4-Dioxaspiro[4.5]dec-6-yl methanol 181

Following the method of Ferris, ${ }^{69}$ ethyl 1,4-dioxaspiro[4.5]decane-6carboxylate $\mathbf{1 8 0}(15.0 \mathrm{~g}, 0.070 \mathrm{~mol})$ in THF (10 mL) was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(7.50 \mathrm{~g}, 0.197 \mathrm{~mol})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and allowed to warm to room temperature over 30 min , the reaction mixture was left to stir overnight. $\mathrm{Et}_{2} \mathrm{O}(140 \mathrm{~mL})$ was added to the reaction mixture and $\mathrm{NaOH}(4 \mathrm{M}, c a .15 \mathrm{~mL})$ was added until white precipitate was formed. The reaction mixture was filtered and the residue washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were concentrated in vacuo to give alcohol $181(11.2 \mathrm{~g}, 0.065 \mathrm{~mol}, 93 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.38$ (60% EtOAc-petrol);
$V_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3424,2937,1447,1089 ;$
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.95\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{O}\left(\mathrm{CH}_{2}\right) \mathrm{O}\right), 3.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.45(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 2.85(1 \mathrm{H}, \mathrm{s}$ with fine splitting, OH$), 1.87-1.15\left(9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 111.5,64.4$ (2), 64.1 (2), 63.3 (2), 45.7 (1), 34.1 (2), 27.0 (2), 24.3 (2), 23.5 (2);

All data agrees with that previously reported by Albizati. ${ }^{68}$

182

1,4-Dioxaspiro[4.5]decane-6-carbaldehyde 182

Following the method of Swern, ${ }^{70}$ oxalyl chloride ($4.43 \mathrm{~mL}, 0.035 \mathrm{~mol}$) in DCM (100 mL) was cooled to $-70^{\circ} \mathrm{C}$ and stirred vigorously. DMSO ($5.14 \mathrm{~mL}, 0.073$ $\mathrm{mol})$ in DCM (10 mL) was added at $<-50^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 2 min. 1,4-Dioxaspiro[4.5]dec-6-yl methanol $181(5 \mathrm{~g}, 0.029 \mathrm{~mol})$ in DCM (10 mL) was added over 5 min at $<-50^{\circ} \mathrm{C}$ and the reaction was stirred for a further 15 min . TEA ($20.4 \mathrm{~mL}, 0.145 \mathrm{~mol}$) was added at $<-50^{\circ} \mathrm{C}$ and the reaction mixture was allowed to reach room temperature. Water $(150 \mathrm{~mL})$ was added to the reaction mixture, washed with DCM ($4 \times 50 \mathrm{~mL}$) and combined organic layers were concentrated in vacuo. The crude product was purified using flash column chromatography, eluting with petrol and gradually increasing the polarity to 30% EtOAc-petrol to give aldehyde $182(2.3 \mathrm{~g}, 0.014 \mathrm{~mol}, 47 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=$ 0.53 (30\% EtOAc-petrol);
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.76(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}, \mathrm{CHO}), 4.00-3.83\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right)$, $2.45(1 \mathrm{H}, \mathrm{ddd}, J=10,5,1 \mathrm{~Hz}, \mathrm{CHCHO}), 1.90-1.15\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right)$;
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 203.6 (1), 109.3, 64.9 (2), 64.7 (2), 56.1 (1), 34.7 (2), 24.4 (2), 23.5 (2), 23.4 (2);

All data agrees with that previously reported by Huet. ${ }^{113}$

rac-(S)(6R)-1,4-Dioxaspiro[4.5]dec-6-yl[(1R)-2-methylidenecyclopropyl]methanol 183a and rac-(S)(6R)-1,4-Dioxaspiro[4.5]dec-6-yl[(1S)-2-methylidenecyclopropyl] methanol 183b
${ }^{n} \mathrm{BuLi}(2.53 \mathrm{M}, 7.67 \mathrm{~mL}, 0.019 \mathrm{~mol})$ was added to a solution of methylenecyclopropane ($1.49 \mathrm{~mL}, 0.022 \mathrm{~mol}$) in THF $(20 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The temperature was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 30 min and held at $0^{\circ} \mathrm{C}$ for a further 30 min . The reaction was allowed to reach room temperature for 15 min before cooling to $-78^{\circ} \mathrm{C} .1,4$-Dioxaspiro[4.5]decane-6-carbaldehyde $182(2.2 \mathrm{~g}, 0.013 \mathrm{~mol}$) in THF (10 mL) at $-78^{\circ} \mathrm{C}$ was added via cannula to the methylenecyclopropane anion. The reaction mixture was allowed to warm to room temperature overnight. The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 50 \mathrm{~mL})$ and the organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography, eluting with petrol and slowly increasing polarity to $10 \% \mathrm{Et}_{2} \mathrm{O}$-petrol to yield alcohol $183 \mathrm{a}(1.50 \mathrm{~g}, 6.696 \mathrm{mmol}, 54 \%)$ as a white solid and as a single diastereoisomer and alcohol $\mathbf{1 8 3 b}$ ($750 \mathrm{mg}, 3.348 \mathrm{mmol}$, 27%) as a colourless oil;

Data for diastereoisomer 183a $\mathrm{R}_{\mathrm{f}}=0.63$ (30% EtOAc-petrol); Melting point: $43-45^{\circ} \mathrm{C}$ (Recrystallised from hot EtOAc);
$\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3503,2988,2935,2889,2857,1160,921$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.58\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.44\left(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.12-3.88$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.57(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CHOH}), 3.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.01-1.18$ $\left(11 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}, 2 \mathrm{x}\right.$ cyclopropyl CH$), 0.90(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 134.8,111.8,103.7$ (2), 72.9 (1), 64.7 (2), 64.0 (2), 47.6 (1), 34.7
(2), 25.2 (2), 23.6 (2), 22.6 (2), 18.8 (1), 7.3 (2);
m/z (CI+): $225[\mathrm{M}+\mathrm{H}]^{+}(5 \%), 207[\mathrm{M}-\mathrm{OH}]^{+}(100 \%)$;
Microanalysis: Found C, 69.37; H, 9.12. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.61$; H, 8.99\%;
Stereochemistry was confirmed by X-ray crystallography.
Data for diastereoisomer 183b $\mathrm{R}_{\mathrm{f}}=0.48$ (30% EtOAc-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3515,3065,2935,2889,1163,921 ;$
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.40\left(2 \mathrm{H}, \mathrm{s}\right.$ with fine splittings, $\left.=\mathrm{CH}_{2}\right), 4.05-3.84(4 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.53(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CHOH}), 3.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.00-1.18(11 \mathrm{H}, \mathrm{m}$, $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}, 2 \times$ cyclopropyl $\left.\mathrm{C} H\right), 1.08(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$;
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 133.0,111.8,104.0(2), 72.5(1), 64.7$ (2), $63.9(2), 48.4(1), 34.6$
(2), 25.2 (2), 23.7 (2), 22.7 (2), 19.3 (1), 9.2 (2);
m/z (CI+): $207[\mathrm{M} \mathrm{-} \mathrm{OH}]^{+}(100 \%)$;
HRMS: $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}-\mathrm{OH}]^{+}$requires 207.1385, found 207.1394.

184
rac-(2S)-2-\{(R)-1-hydroxy-1-[(1R)-2-methylenecyclopropyl]methyl\}-1cyclohexanone 184
rac-(S)(6R)-1,4-Dioxaspiro[4.5]dec-6-yl[(1R)-2-methylidenecyclopropyl]
methanol 183a ($850 \mathrm{mg}, 3.80 \mathrm{mmol}$) in acetone/water ($150 \mathrm{~mL} / 15 \mathrm{~mL}$) was stirred with pTsOH ($866 \mathrm{mg}, 4.55 \mathrm{mmol}$) overnight. The reaction mixture was concentrated in vacuo. $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and washed with aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 30% EtOAc-petrol to yield ketone $184(501.8 \mathrm{mg}, 2.79 \mathrm{mmol}, 73 \%)$ as a viscous oil.
$\mathrm{R}_{\mathrm{f}}=0.68$ ($30 \% \mathrm{EtOAc}$-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3448,2990,2945,2875,1696$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.43\left(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.30(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}$, $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 3.50(1 \mathrm{H}, \mathrm{dd}, J=8,3 \mathrm{~Hz}, \mathrm{CHOH}), 2.45-1.48\left(10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\right.$, cyclopropyl CH$), 1.15(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$), 0.80(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 214.3,133.4,104.3$ (2), 72.4 (1), $55.5(1), 42.7(2), 27.7(2)$,
27.5(2), 25.0 (2), 18.1 (1), 7.5 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 163[\mathrm{M}-\mathrm{OH}]^{+}(100 \%) ;$
HRMS: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires 180.1150, found 180.1156;
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}-\mathrm{OH}]^{+}$requires 163.1123, found 163.1128;
Stereochemistry was confirmed by X-ray crystallography.

rac-(2S)-2-\{(R)-1-hydroxy-1-[(1S)-2-methylenecyclopropyl]methyl\}-1cyclohexanone 185
rac-(S)(6R)-1,4-Dioxaspiro[4.5]dec-6-yl[(1S)-2-methylidenecyclopropyl] methanol 183b ($390 \mathrm{mg}, 1.74 \mathrm{mmol}$) in acetone/water ($75 \mathrm{~mL} / 7.5 \mathrm{~mL}$) was stirred with pTsOH ($397 \mathrm{mg}, 2.09 \mathrm{mmol}$) overnight. The reaction mixture was concentrated in vacuo. $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and washed with aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. Organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography eluting with petrol, and gradually increasing the polarity to 30% EtOAc-petrol to yield ketone $\mathbf{1 8 5}(200.7 \mathrm{mg}, 1.12 \mathrm{mmol}, 64 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.70$ (50% EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3441,3071,2933,2864,1701$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.43\left(1 \mathrm{H}, \mathrm{s}\right.$ with fine splitting, $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.37(1 \mathrm{H}, \mathrm{s}$ with fine splitting, $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 3.50(1 \mathrm{H}, \mathrm{dd}, J=9,3 \mathrm{~Hz}, \mathrm{CHOH}), 2.90(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{OH})$, $2.60-1.62\left(10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\right.$, cyclopropyl CH$), 1.39(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl $\mathrm{CH}), 1.12(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 214.7,133.3,104.6$ (2), 73.2 (1), 56.0 (1), 42.9 (2), 28.0 (2),
27.7 (2), 25.2 (2), 19.0 (1), 9.2 (2);
m/z (CI+): 163 [M - OH] ${ }^{+}$(100\%);
HRMS: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires 180.1150, found 180.1157;
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}-\mathrm{OH}]^{+}$requires 163.1123, found 163.1124 .

rac-(1R, 4aS, 8aR)-4-methyleneperhydro-1,4a-napthalenediol 186, rac-(4aS, 8aR)-5-methylene-1,2,3,4,4a,5,6,8a-octahydro-4a-napthalenol 187 and dimer 188

Following the procedure by Molander, ${ }^{53} \mathrm{HMPA}(0.77 \mathrm{~mL}, 6.02 \mathrm{mmol})$ was added to the $\mathrm{SmI}_{2}(0.11 \mathrm{M}$ solution in THF, $10 \mathrm{~mL}, 1.10 \mathrm{mmol}$) to give a purple solution. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, rac-(2S)-2-\{(R)-1-hydroxy-1-[(1R)-2methylenecyclopropyl]methyl \}-1-cyclohexanone 184 ($80 \mathrm{mg}, 0.44 \mathrm{mmol}$), ${ }^{\text {t }} \mathrm{BuOH}$ (66 $\mathrm{mg}, 0.88 \mathrm{mmol}$) in THF (10 mL) was added over 90 min and the reaction mixture was allowed to warm to room temperature. The crude mixture was washed with aq. citric acid (1 g in 20 mL water) and extracted with 1:1 EtOAc-petrol ($5 \times 25 \mathrm{~mL}$). The combined organic phase was washed with brine (25 mL), water (25 mL), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography eluting with petrol, and gradually increasing the polarity to neat EtOAc to give alcohols 187 ($7 \mathrm{mg}, 0.04 \mathrm{mmol}, 9 \%$), 186 ($10 \mathrm{mg}, 0.62 \mathrm{mmol}$, 14%) and 188 ($32 \mathrm{mg}, 0.09 \mathrm{mmol}, 20 \%$);

Data for $\mathbf{1 8 7}$ obtained as a single crystal in a viscous colourless oil, $\mathrm{R}_{\mathrm{f}}=0.85(55 \%$ EtOAc-petrol);
$\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3432,2930,1687,1014 ;$
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.64(1 \mathrm{H}, \mathrm{dq}, J=10,3 \mathrm{~Hz},=\mathrm{CH}), 5.41(1 \mathrm{H}, \mathrm{dq}, J=10,2 \mathrm{~Hz}$, $=\mathrm{CH}), 5.09\left(1 \mathrm{H}\right.$, s with fine splitting, $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.85(1 \mathrm{H}$, s with fine splitting,
$\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 2.96\left(2 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CCH}_{2}\right), 2.28(1 \mathrm{H}$, br s, OH$), 2.00-1.25(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}$, $\left(\mathrm{CH}_{2}\right)_{4}$;
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 147.6,131.0(1), 124.3$ (1), 107.3 (2), $75.2,58.1$ (1), 36.3 (2),
34.2 (2), 28.5 (2), 24.4 (2), 23.6 (2);
m/z (CI+): $147[\mathrm{M} \mathrm{-} \mathrm{OH}]^{+}(100 \%) ;$
HRMS could not be obtained on this compound.
Stereochemistry was confirmed by X-ray crystallography.

Data for $\mathbf{1 8 6}$ obtained as a yellow oil, $\mathrm{R}_{\mathrm{f}}=0.41$ (55% EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3349,2929,2858,1647,1446,1060,989,940,901$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at 323 K$): 4.92\left(1 \mathrm{H}\right.$, s with fine splittings, $\left.=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.87(1 \mathrm{H}, \mathrm{s}$ with fine splittings, $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 3.76(1 \mathrm{H}, \mathrm{q}, J=5 \mathrm{~Hz}, \mathrm{CHOH}), 3.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $2.62\left(1 \mathrm{H}, \mathrm{ddd}, J=14,11,5 \mathrm{~Hz},=\mathrm{CCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 2,46(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.06(1 \mathrm{H}, \mathrm{dt}, J=14$, $\left.5 \mathrm{~Hz},=\mathrm{CCH}_{\mathrm{A}} H_{B}\right), 1.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 1.78(1 \mathrm{H}$, dddd, $J=14,11,5,4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}} \mathrm{CHOH}\right), 1.73-1.20\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{B} \mathrm{CHOH}, \mathrm{CHOH}, \mathrm{CH}_{\mathrm{A}} H_{B},\left(\mathrm{CH}_{2}\right)_{3}\right)$;
$\delta_{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ at 323 K): 149.7, 109.4 (2), $75.0,71.7$ (1), 50.4 (1), 36.4 (2), 32.1 (2), 28.0 (2), 26.0 (2), 24.4 (2), 23.4 (2);
m/z (CI+): $182[\mathrm{M}]^{+}(20 \%), 165[\mathrm{M}-\mathrm{OH}]^{+}(45 \%), 147\left[\mathrm{M}-\mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(100 \%) ;$
HRMS: $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires 182.1307, found 182.1311.
Data for $\mathbf{1 8 8}$ obtained as colourless oil, $\mathrm{R}_{\mathrm{f}}=0.12(55 \%$ EtOAc-petrol)
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3341,2949,2888,1458,1031 ;$
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.13\left(2 \mathrm{H}\right.$, br s, $\left.2 \mathrm{x}=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.79\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{x}=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.01$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{CHOH}$), 2.34-0.90 (24H, br m, $2 \mathrm{x}=\mathrm{CCH}_{2}, 2 \mathrm{x}\left(\mathrm{CH}_{2}\right)_{4}, 2 \mathrm{x}$ $\mathrm{CHCHOH}, 2 \times \mathrm{CHCH}_{2} \mathrm{C}=$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 153.4,106.0$ (2), $73.3,69.5$ (1), 51.2 (1), 46.5 (1), 33.1 (2), 32.7 (2), 29.2 (2), 21.1 (2), 19.4 (2);
m / z (APCI+): $363[\mathrm{M}+\mathrm{H}]^{+}(100 \%)$;
HRMS could not be obtained for this compound.

rac-(1R, 4aS, 8aR)-4-methyleneperhydro-1,4a-napthalenediol 186, rac-(4aS, 8aR)-5-methylene-1,2,3,4,4a,5,6,8a-octahydro-4a-napthalenol 187

Following the method by Procter, ${ }^{71}$ to a solution of $\mathrm{SmI}_{2}(0.11 \mathrm{M}$ solution in THF, $10 \mathrm{~mL}, 1.10 \mathrm{mmol}$) and $\mathrm{MeOH}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar, was added rac-(2 S) $-2-$ $\{(\mathrm{R})$-1-hydroxy-1-[(1S)-2-methylenecyclopropyl]methyl\}-1-cyclohexanone 185 (80 $\mathrm{mg}, 0.44 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($128 \mathrm{mg}, 0.61 \mathrm{mmol}$). The aqueous layer was then extracted with EtOAc ($5 \times 10 \mathrm{~mL}$), the combined organic extracts were dried
over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol, and gradually increasing the polarity to neat EtOAc to give alcohols 186 ($61 \mathrm{mg}, 0.33 \mathrm{mmol}, 76 \%$) and $187(9 \mathrm{mg}$, $0.05 \mathrm{mmol}, 12 \%$;

All data for $\mathbf{1 8 6}$ and $\mathbf{1 8 7}$ agrees with that previously reported above.

rac-(4aS, 8aR)-5-methylene-1,2,3,4,4a,5,6,8a-octahydro-4a-napthalenol 187 and rac-(1R, 2S)-2-\{(R)-1-hydroxy-1-[(1S)-2-methylenecyclopropyl] methyl)cyclohexan-1-ol 189

To a solution of $\mathrm{SmI}_{2}\left(0.11 \mathrm{M}\right.$ solution in THF, $10 \mathrm{~mL}, 1.10 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under Ar , was added rac-(2S)-2-\{(R)-1-hydroxy-1-[(1R)-2methylenecyclopropyl]methyl $\}$-1-cyclohexanone 184 ($80 \mathrm{mg}, 0.44 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($128 \mathrm{mg}, 0.61 \mathrm{mmol}$). The aqueous layer was then extracted with EtOAc ($5 \times 10 \mathrm{~mL}$), and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography eluting with petrol, and gradually increasing the polarity to neat EtOAc to give alcohols $187(4 \mathrm{mg}, 0.022 \mathrm{mmol}, 5 \%)$ and $189(38 \mathrm{mg}, 0.207 \mathrm{mmol}$, 47%;

Data for $\mathbf{1 8 9}$ obtained as colourless oil, $\mathrm{R}_{\mathrm{f}}=0.32$ (30% EtOAc-petrol);
$V_{\max }\left(\mathrm{cm}^{-1}\right): 3327,2989,2928,2857,1450$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.38\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.32\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 3.72(1 \mathrm{H}$, $\left.\mathrm{dt}, J=4,10 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHOH}\right), 3.23(1 \mathrm{H}, \mathrm{dd}, J=3,9 \mathrm{~Hz}, \mathrm{CHCHOH}), 3.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 2.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.94(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHOH}), 1.75-1.53\left(5 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right.$, cyclopropyl CH$), 1.29(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$), 1.25-1.10(4 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{2}\right), 0.80(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 133.3,105.2$ (2), 77.8 (1), 72.5 (1), 49.7 (1), 36.2 (2), 27.1 (2), 26.0 (2), 25.0 (2), 19.1 (1), 8.1 (2);
m/z (CI+): $182[\mathrm{M}]^{+}(22 \%), 165[\mathrm{M}-\mathrm{OH}]^{+}(100 \%) ;$

HRMS: $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires 182.1307, found 182.1311.
All data for $\mathbf{1 8 7}$ agrees with that previously reported above.

EXPERIMENTAL FOR CHAPTER 3

196
rac-(S)-1-[(6R)-1,4-dioxaspiro[4.5]dec-6-yl]-1-[(1R)-2-
methylenecyclopropyl]methyl (2-propynyl)ether 196
Following a modified procedure by Lautens, ${ }^{73}$ potassium hydride (35\% dispersion in oil, $1.53 \mathrm{~g}, 0.013 \mathrm{~mol}$) was weighed in a flame dried round bottom flask and washed with petrol ($3 \times 10 \mathrm{~mL}$). The remaining petrol was taken off by vacuum. Dry THF (20 mL) was added and the solution was cooled to $0^{\circ} \mathrm{C}$. rac-(S)(6R)-1,4-Dioxaspiro[4.5]dec-6-yl[(1R)-2-methylidenecyclopropyl]methanol 183a (2 g, 8.93 mmol) in THF (5 mL) with 18 -crown- 6 ($236 \mathrm{mg}, 0.89 \mathrm{mmol}$) were added slowly at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 60 min prior to the addition of propargyl bromide (80% dispersion in oil, $1.7 \mathrm{~mL}, 0.02 \mathrm{~mol}$). The reaction mixture was allowed to reach room temperature and stirred for two days. The reaction mixture was quenched by the addition of water and extracted with DCM ($5 \times 25 \mathrm{~mL}$). The combined DCM layers were washed with water ($3 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 35% EtOAc-petrol to yield propargyl ether $\mathbf{1 9 6}(900 \mathrm{mg}, 3.43 \mathrm{mmol}, 38 \%)$ as a pale yellow oil, $\mathrm{R}_{\mathrm{f}}=0.74$ (20% EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3397,3290,2931,2862,2192,1085,1057,927,889$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.40\left(2 \mathrm{H}, \mathrm{s}\right.$ with fine splittings, $\left.=\mathrm{CH}_{2}\right), 4.21(2 \mathrm{H}, \mathrm{dq}, J=2,16$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.00-3.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J=1,9 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 2.27$ $(1 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}, \mathrm{CCH}), 1.90-1.30\left(9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right.$, cyclopropyl $\mathrm{CH}, \mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}$, $\left.\mathrm{CHCHOCH}_{2}\right), 1.27\left(1 \mathrm{H}, \mathrm{dt}, J=4,13 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{B}\right), 1.18(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$, $0.78(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 132.1,110.7,104.5$ (2), $81.4,78.3$ (1), 74.3 (1), 64.9 (2), 64.8 (2), 56.4 (2), 49.5 (1), 35.8 (2), 25.7 (2), 24.3 (2), 24.2 (2), 19.6 (1), 7.1 (2); $\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 207\left[\mathrm{M}-\mathrm{HOCH}_{2} \mathrm{CCH}\right]^{+}(97 \%)$.

197
rac-(S)-1-[(6R)-1,4-dioxaspiro[4.5]dec-6-yl]-1-[(1S)-2methylenecyclopropyl]methyl (2-propynyl)ether 197

Following a modified procedure by Lautens, ${ }^{73}$ potassium hydride (35\% dispersion in oil, $1.15 \mathrm{~g}, 0.01 \mathrm{~mol}$) was weighed in a flame dried round bottom flask and washed with petrol ($3 \times 10 \mathrm{~mL}$). The remaining petrol was taken off by vacuum. Dry THF (20 mL) was added and the solution was cooled at $0^{\circ} \mathrm{C}$. $\operatorname{rac}-(\mathrm{S})(6 \mathrm{R})-1,4-$ Dioxaspiro[4.5]dec-6-yl[(1S)-2-methylidenecyclopropyl]methanol 183b (1.5 g, 6.70 mmol) in THF (5 mL) with 18 -crown- 6 ($177 \mathrm{mg}, 0.67 \mathrm{mmol}$) were added slowly at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 60 min prior to the addition of propargyl bromide (80% dispersion in oil, $1.3 \mathrm{~mL}, 0.01 \mathrm{~mol}$). The reaction mixture was allowed to reach room temperature and stirred for two days. The reaction was quenched by the addition of water and extracted with DCM ($5 \times 25 \mathrm{~mL}$). The combined DCM layers were washed with water ($3 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 35% EtOAc-petrol to yield propargyl ether $197(1.26 \mathrm{~g}, 4.82 \mathrm{mmol}, 72 \%)$ as a pale yellow oil, $\mathrm{R}_{\mathrm{f}}=0.61(20 \%$ EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3425,3267,2934,2864,1083,926,893$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.35\left(2 \mathrm{H}, \mathrm{s}\right.$ with fine splittings, $\left.=\mathrm{CH}_{2}\right), 4.30(2 \mathrm{H}, \mathrm{dq}, J=2,16$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.00-3.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right) \mathrm{O}\right), 3.45\left(1 \mathrm{H}, \mathrm{dd}, J=1,9 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 2.30$ $(1 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}, \mathrm{CCH}), 1.84-1.41\left(9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right.$, cyclopropyl $\mathrm{CH}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$, $\left.\mathrm{CHCHOCH}_{2}\right), 1.36(1 \mathrm{H}, \mathrm{tt}, J=2,9 \mathrm{~Hz}$, cyclopropyl CH), $1.27(1 \mathrm{H}, \mathrm{dt}, J=5,13 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{A}} H_{B}\right), 1.19(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 131.9,110.3,104.7$ (2), 81.0, 77.4 (1), 74.3 (1), 64.8 (2), 64.7
(2), 56.3 (2), 49.9 (1), 36.1 (2), 25.7 (2), 24.2 (2), 24.2 (2), 18.7 (1), 10.6 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 207\left[\mathrm{M}-\mathrm{HOCH}_{2} \mathrm{CCH}\right]^{+}(100 \%)$.

198
rac-(2S)-2-[(R)-1-[(1R)-2-methylenecyclopropyl]-1-(2-propynyloxy)methyl] cyclohexan-1-one 198
rac-(S)-1-[(6R)-1,4-dioxaspiro[4.5]dec-6-yl]-1-[(1R)-2-
methylenecyclopropyl]methyl (2-propynyl)ether 196 ($600 \mathrm{mg}, 2.29 \mathrm{mmol}$) in acetone/water ($50 \mathrm{~mL} / 5 \mathrm{~mL}$) was stirred with $\mathrm{pTsOH}(523 \mathrm{mg}, 2.75 \mathrm{mmol}$) for 3 days. The reaction mixture was concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solution was washed with aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 50% EtOAc-petrol to yield deprotected ketone $198(389 \mathrm{mg}, 1.79 \mathrm{mmol}, 78 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.73$ (20\% EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3272,3079,2937,2861,2173,1707,1077,894$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.52\left(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.48(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.28\left(2 \mathrm{H}, \mathrm{dq}, J=2,16 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J=4,9 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right)$, $2.56-1.60\left(11 \mathrm{H}, \mathrm{m}, \mathrm{CCH},\left(\mathrm{CH}_{2}\right)_{4}\right.$ cyclopropyl $\left.\mathrm{CH}, \mathrm{CHCHOCH} 2\right), 1.27(1 \mathrm{H}, \mathrm{tt}, J=2,9$ Hz , cyclopropyl CH$), 0.87(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 211.2,134.1,105.0(2), 80.8,78.8$ (1), 74.2 (1), 57.4 (2), 55.4
(1), 42.5 (2), 27.7 (2), 27.3 (2), 24.8 (2), 18.1 (1), 7.2 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 219[\mathrm{M}+\mathrm{H}]^{+}(12 \%), 163\left[\mathrm{M}-\mathrm{HOCH}_{2} \mathrm{CCH}\right]^{+}(100 \%)$;
HRMS: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 219.1385, found 219.1386.

rac-(2S)-2-[(R)-1-[(1S)-2-methylenecyclopropyl]-1-(2-propynyloxy)methyl] cyclohexan-1-one 199
rac-(S)-1-[(6R)-1,4-dioxaspiro[4.5]dec-6-yl]-1-[(1S)-2-
methylenecyclopropyl]methyl (2-propynyl)ether 197 ($1.00 \mathrm{~g}, 3.82 \mathrm{mmol}$) in acetone/water ($75 \mathrm{~mL} / 7.5 \mathrm{~mL}$) was stirred with $\mathrm{pTsOH}(870 \mathrm{mg}, 4.58 \mathrm{mmol})$ for 3 days. The reaction mixture was concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solution was washed with aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 50% EtOAc-petrol to yield ketone 199 ($700 \mathrm{mg}, 3.21 \mathrm{mmol}, 84 \%$) as a colourless oil, $\mathrm{R}_{\mathrm{f}}=$ 0.61 (20% EtOAc-petrol);
$V_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3283,2940,2864,1708,1075,899$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.22\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.16\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.12(2 \mathrm{H}$, $\left.\mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.44\left(1 \mathrm{H}, \mathrm{dd}, J=4,8 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 2.50-1.39(11 \mathrm{H}, \mathrm{m}, \mathrm{CCH}$, $\left(\mathrm{CH}_{2}\right)_{4}$ cyclopropyl $\left.\mathrm{CH}, \mathrm{CHCHOCH} 2\right), 1.21(1 \mathrm{H}, \mathrm{tt}, J=2,9 \mathrm{~Hz}$, cyclopropyl CH$), 1.03$ (1H, m, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 210.5,131.1,104.8$ (2), $80.3,77.7$ (1), 73.8 (1), 57.1 (2), 55.4
(1), 41.8 (2), 26.6 (2), 26.5 (2), 23.9 (2), 17.4 (1), 9.5 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 219[\mathrm{M}+\mathrm{H}]^{+}(12 \%), 163$ [$\left.\mathrm{M}-\mathrm{HOCH}_{2} \mathrm{CCH}\right]^{+}(100 \%)$;
HRMS: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 219.1385, found 219.1380.

rac-(3aR, 5aS, 9aR, 9bR)-5-dimethyleneperhydronaptho[1,2-b]furan-5a-ol 200
Following the procedure by Molander, ${ }^{53}$ HMPA ($0.64 \mathrm{~mL}, 3.67 \mathrm{mmol}$) was added to the $\mathrm{SmI}_{2}(0.09 \mathrm{M}$ solution in THF, $10 \mathrm{~mL}, 0.93 \mathrm{mmol})$ to give a purple
solution. The solution was cooled to $-78^{\circ} \mathrm{C}$, rac-(2S)-2-[(R)-1-[(1R)-2-
methylenecyclopropyl]-1-(2-propynyloxy)methyl] cyclohexan-1-one 198 ($80 \mathrm{mg}, 0.37$ mmol), ${ }^{\mathrm{t}} \mathrm{BuOH}(54 \mathrm{mg}, 0.73 \mathrm{mmol})$ in THF (10 mL) was added over 90 min and the reaction mixture was allowed to warm to room temperature. The crude mixture was washed with aq. citric acid (1 g in 20 mL water) and extracted with 1:1 EtOAc-petrol ($5 \times 25 \mathrm{~mL}$). The combined organic phase was washed with brine (25 mL), and water (25 mL), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography eluting with petrol and gradually increasing the polarity to neat EtOAc to give tricycle $200(41 \mathrm{mg}, 0.185 \mathrm{mmol}, 50 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.59$ (20% EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3457,3074,2932,2860,1448,1047,997,940,901,738 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.95\left(1 \mathrm{H}\right.$, br s, cyclohexene $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.93-4.90(2 \mathrm{H}, \mathrm{m}$, cyclohexene $=\mathrm{CH}_{\mathrm{A}} H_{B}$, furan $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.80\left(1 \mathrm{H}\right.$, br s, furan $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.47(1 \mathrm{H}, \mathrm{d}, J$ $\left.=13 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.19\left(1 \mathrm{H}, \mathrm{dt}, J=13,2 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right) 3.81(1 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}$, $\mathrm{CHOCH} 2), 2.61(1 \mathrm{H}$, ddd, $J=4,7,11 \mathrm{~Hz}, \mathrm{CHC}=), 2.49(1 \mathrm{H}, \mathrm{dd}, J=11,15 \mathrm{~Hz}$, $\left.=\mathrm{CCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.19\left(1 \mathrm{H}, \mathrm{dd}, J=7,15 \mathrm{~Hz},=\mathrm{CCH}_{\mathrm{A}} H_{B}\right), 2.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.92(1 \mathrm{H}, \mathrm{dt}$, $J=11,4 \mathrm{~Hz}, \mathrm{CHCHOCH} 2), 1.68-1.05\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 151.7,146.9,111.5$ (2), 104.5 (2), 84.2 (1), $73.0,70.0$ (2), 45.5 (1), 42.7 (1), 35.7 (2), 33.6 (2), 27.1 (2), 25.6 (2), 23.6 (2);
m/z (CI+): 203 [M - OH ${ }^{+}$(100%);
HRMS: $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$requires 238.1807, found 238.1811.

208
rac-(1R, 4aS, 8aR)-4-methylene-1-[(1S)-2-methylenecyclopropyl]perhydro-4aisochromenol 208

Following the procedure by Procter, ${ }^{71}$ to a solution of $\mathrm{SmI}_{2}(0.09 \mathrm{M}$ solution in THF, $10 \mathrm{~mL}, 0.93 \mathrm{mmol}$) and $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar , was added rac-(2 S)-2-[(R)-1-[(1S)-2-methylenecyclopropyl]-1-(2-propynyloxy)methyl] cyclohexan-1-one 199 ($80 \mathrm{mg}, 0.37 \mathrm{mmol}$) in THF (5 mL) over 45 min . The reaction mixture was stirred
for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($128 \mathrm{mg}, 0.61 \mathrm{mmol}$). The aqueous layer was extracted with DCM ($5 \times 10 \mathrm{~mL}$), and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give bicycle 208 ($60 \mathrm{mg}, 0.27 \mathrm{mmol}$, $74 \%)$ as a white solid, $\mathrm{R}_{\mathrm{f}}=0.33$ ($20 \% \mathrm{EtOAc}$-petrol);

Melting point: $84-86^{\circ} \mathrm{C}$ (Recrystallised from hot EtOAc);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3413,3074,2935,2862,1448,1044,997,951,908 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.35\left(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}\right.$, methylenecyclopropyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.33$
$\left(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}\right.$, methylenecyclopropyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.00\left(2 \mathrm{H}, \mathrm{s}\right.$, cyclohexene $\left.=\mathrm{CH}_{2}\right)$, $4.33\left(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz},=\mathrm{CCH}_{A} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.01\left(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz},=\mathrm{CCH}_{\mathrm{A}} H_{B} \mathrm{O}\right) 3.46(1 \mathrm{H}$, $\left.\mathrm{dd}, J=2,9 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 2.19(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}) 1.85-1.16\left(11 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}, 2 \mathrm{x}\right.$ cyclopropyl $\mathrm{CH}, \mathrm{CHCHOH}$), $1.03(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 144.5,132.5,111.7$ (2), 104.6 (2), 79.0 (1), $72.5,70.7$ (2), 49.0 (1), 37.9 (2), 26.4 (2), 24.6 (2), 22.9 (2), 17.8 (1), 10.1 (2);
m/z (CI+): 203 [M - OH] ${ }^{+}$(63\%);
Microanalysis: Found C, 76.32; H, 9.10. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.33 ; \mathrm{H}, 9.15 \%$;
Stereochemistry was confirmed by X-ray crystallography.

213
rac-(6S)-6-\{(R)-1-(allyloxy)-1-[(1R)-2-methylenecyclopropyl]methyl\}-1,4dioxaspiro[4.5]decane 213

To a suspension of $\mathrm{NaH}(0.4 \mathrm{~g}, 0.01 \mathrm{~mol}, 60 \%$ dispersion in oil) in DMF (20 mL) under argon, was added rac-(S)(6R)-1,4-Dioxaspiro[4.5]dec-6-yl[(1R)-2methylidenecyclopropyl]methanol $183 \mathrm{a}(1.5 \mathrm{~g}, 6.70 \mathrm{mmol})$ in $\mathrm{DMF}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 1 h . Allyl bromide ($0.93 \mathrm{~mL}, 0.01$ mol) was added at $0^{\circ} \mathrm{C}$ and the reaction was stirred at room temperature overnight. Water was added and extracted with DCM ($4 \times 25 \mathrm{~mL}$). The DCM layers were washed with water ($3 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography eluting with
petrol and gradually increasing the polarity to 30% EtOAc-petrol to give allyl ether $213(1.4 \mathrm{~g}, 5.30 \mathrm{mmol}, 79 \%)$ as a yellow oil, $\mathrm{R}_{\mathrm{f}}=0.76(20 \% \mathrm{EtOAc}$-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3436,3071,2928,2869,1128,1025,882 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.84(1 \mathrm{H}, \mathrm{ddt}, J=17,10,5 \mathrm{~Hz},=\mathrm{CH}), 5.38(1 \mathrm{H}$, br s, methylenecyclopropyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.36\left(1 \mathrm{H}\right.$, br s, methylenecyclopropyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.19$ $\left(1 \mathrm{H}, \mathrm{dq}, J=17,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.02\left(1 \mathrm{H}, \mathrm{dq}, J=10,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.13$ $\left(1 \mathrm{H}, \mathrm{ddt}, J=13,5,2 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.93-3.76\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{\mathrm{A}} H_{B}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.01$ $(1 \mathrm{H}, \mathrm{dd}, J=9,1 \mathrm{~Hz}, \mathrm{CHOCH} 2), 1.84-1.41\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right.$, cyclopropyl CH , $\mathrm{CHCHOCH} 2), 1.31-1.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.14(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$)$, $0.73(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 135.4,135.3$ (1), 115.9 (2), 109.6, 103.2 (2), 78.3 (1), 70.1 (2), 63.9 (2), 63.8 (2), 48.4 (1), 34.7 (2), 24.6 (2), 23.7 (2), 23.3 (2), 19.8 (1), 6.5 (2); $\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 265[\mathrm{M}+\mathrm{H}]^{+}(10 \%), 207\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right]^{+}(100 \%)$;
HRMS: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}]^{+}$requires 264.1725, found 264.1722.

rac-(6S)-6-\{(R)-1-(allyloxy)-1-[(1S)-2-methylenecyclopropyl]methyl\}-1,4dioxaspiro[4.5]decane 214

To a suspension of $\mathrm{NaH}(0.27 \mathrm{~g}, 6.7 \mathrm{mmol}, 60 \%$ dispersion in oil) in DMF (15 mL) under argon, was added rac-(S)(6R)-1,4-Dioxaspiro[4.5]dec-6-yll(1S)-2methylidenecyclopropyl]methanol $\mathbf{1 8 3 b}(1.00 \mathrm{~g}, 4.46 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 1 h . Allyl bromide $(0.67 \mathrm{~mL}, 7.14$ mmol) was added at $0^{\circ} \mathrm{C}$ and the reaction was stirred at room temperature overnight. Water was added and extracted with DCM ($4 \times 25 \mathrm{~mL}$). The DCM layers were washed with water ($3 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 30% EtOAc-petrol to give allyl ether 214 ($848 \mathrm{mg}, 4.46 \mathrm{mmol}, 72 \%$) as a yellow oil, $\mathrm{R}_{\mathrm{f}}=0.77$ (20% EtOAc-petrol); $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3434,3063,2931,2865,1131,1035,893$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.85(1 \mathrm{H}, \mathrm{ddt}, J=17,10,5 \mathrm{~Hz},=\mathrm{CH}), 5.34(2 \mathrm{H}$, br s, methylenecyclopropyl $\left.=\mathrm{CH}_{2}\right), 5.19\left(1 \mathrm{H}, \mathrm{dq}, J=17,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.04(1 \mathrm{H}$, dq, $J=10,2 \mathrm{~Hz}$, allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.16\left(1 \mathrm{H}, \mathrm{ddt}, J=13,5,2 \mathrm{~Hz}, O C H_{A} \mathrm{H}_{\mathrm{B}}\right), 3.97-3.78$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{\mathrm{A}} H_{B}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, J=9,1 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 1.84-1.43(8 \mathrm{H}, \mathrm{m}$, $\left(\mathrm{CH}_{2}\right)_{3}$, cyclopropyl $\mathrm{CH}, \mathrm{CHCHOCH}_{2}$), 1.37-1.14 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, cyclopropyl CH$), 1.04$ ($1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 136.3(1), 136.2,116.2$ (2), 110.6, 104.4 (2), 79.6 (1), $71.5(2)$, 64.8 (2), 64.7 (2), 49.7 (1), 35.5 (2), 25.3 (2), 24.5 (2), 24.5 (2), 19.7 (1), 10.5 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 265[\mathrm{M}+\mathrm{H}]^{+}(8 \%), 207\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right]^{+}(100 \%)$;
HRMS: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M} \mathrm{-} \mathrm{H}]^{+}$requires 263.1647, found 263.1645.

215
rac-(2S)-2-\{(R)-1-(allyloxy)-1-[(1R)-2-methylenecyclopropyl]methyl\}cyclohexan-1-one 215
rac-(6S)-6-\{(R)-1-(allyloxy)-1-[(1R)-2-methylenecyclopropyl]methyl\}-1,4dioxaspiro[4.5]decane $213(1.20 \mathrm{~g}, 4.55 \mathrm{mmol})$ in acetone/water ($170 \mathrm{~mL} / 17 \mathrm{~mL}$) was stirred with $\mathrm{pTsOH}(1.04 \mathrm{~g}, 5.45 \mathrm{mmol})$ overnight. The reaction mixture was concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solution was washed with aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 25% EtOAc-petrol to yield ketone 215 (400 mg , $1.82 \mathrm{mmol}, 40 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.79$ (20\% EtOAc-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3067,2940,2858,1699,1066,889 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.90\left(1 \mathrm{H}, \mathrm{ddt}, J=17,10,5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.45(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, methylenecyclopropyl $\left.=\mathrm{CH}_{2}\right), 5.25\left(1 \mathrm{H}, \mathrm{dq}, J=17,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.14(1 \mathrm{H}$, $\mathrm{dq}, J=10,2 \mathrm{~Hz}$, allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.21\left(1 \mathrm{H}, \mathrm{ddt}, J=13,5,1 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.99(1 \mathrm{H}$, ddt, $\left.J=13,5,2 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}, J=4,9 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 2.60-1.60(10 \mathrm{H}$, $\mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}$, cyclopropyl $\left.\mathrm{CH}, \mathrm{CHCHOCH}_{2}\right), 1.25(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$)$, 0.85 ($1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 211.4,135.5(1), 134.4,116.3$ (2), 104.5 (2), 78.6 (1), 71.0 (2), 55.2 (1), 42.2 (2), 27.2 (2), 27.0 (2), 24.6 (2), 18.3 (1), 6.9 (2);
m/z (CI+): $221[\mathrm{M}+\mathrm{H}]^{+}(12 \%), 163\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}\right]^{+}(100 \%)$;
HRMS could not be obtained on this compound.

rac-(2S)-2-\{(R)-1-(allyloxy)-1-[(1S)-2-methylenecyclopropyl]methyl\}cyclohexan-1one 216
rac-(6S)-6-\{(R)-1-(allyloxy)-1-[(1S)-2-methylenecyclopropyl]methyl\}-1,4dioxaspiro[4.5]decane 214 ($700 \mathrm{mg}, 2.65 \mathrm{mmol}$) in acetone/water ($100 \mathrm{~mL} / 10 \mathrm{~mL}$) was stirred with pTsOH ($605 \mathrm{mg}, 3.18 \mathrm{mmol}$) overnight. The reaction mixture was concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solution was washed with aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 20% EtOAc-petrol to yield ketone 216 (396 mg , $1.82 \mathrm{mmol}, 68 \%$) as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.83$ ($20 \% \mathrm{EtOAc}$-petrol);
$\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3067,2947,2857,1705,1070,889 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.85\left(1 \mathrm{H}, \mathrm{ddt}, J=17,10,5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.42(1 \mathrm{H}, \mathrm{d}, J=2$ Hz , methylenecyclopropyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.35(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, methylenecyclopropyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.25\left(1 \mathrm{H}, \mathrm{dq}, J=17,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.13(1 \mathrm{H}, \mathrm{dq}, J=17,2 \mathrm{~Hz}$, allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.23\left(1 \mathrm{H}, \mathrm{ddt}, J=13,5,1 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.08(1 \mathrm{H}, \mathrm{ddt}, J=13,5,1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{\mathrm{A}} H_{B}\right), 3.52(1 \mathrm{H}, \mathrm{dd}, J=8,4 \mathrm{~Hz}, \mathrm{CHOCH} 2), 2.50-1.55\left(10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right.$, cyclopropyl $\left.\mathrm{CH}, \mathrm{CHCHOCH}_{2}\right), 1.42(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$), 1.10(1 \mathrm{H}$, m, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 211.1,135.7$ (1), 131.8, 116.4 (2), 104.7 (2), 78.3 (1), 71.4 (2), 55.9 (1), 42.1 (2), 26.9 (2), 26.8 (2), 24.3 (2), 18.3 (1), 9.8 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 221[\mathrm{M}+\mathrm{H}]^{+}(2 \%), 163\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}\right]^{+}(100 \%)$;
HRMS, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires 220.1463 found 220.1465 .

rac-(3R, 3aR, 5aS, 9aR, 9bR)-3-methyl-5-methyleneperhydronaptho[1,2-b]furan-
5a-ol 218 5a-ol 218

Following the procedure by Molander, ${ }^{53} \mathrm{HMPA}(0.41 \mathrm{~mL}, 2.27 \mathrm{mmol}$) was added to the $\mathrm{SmI}_{2}(0.12 \mathrm{M}$ solution in THF, $5 \mathrm{~mL}, 0.58 \mathrm{mmol})$ to give a purple solution. The solution was cooled to $-78^{\circ} \mathrm{C}$, rac-(2S)-2-\{(R)-1-(allyloxy)-1-[(1R)-2methylenecyclopropyl]methyl \}cyclohexan-1-one $\mathbf{2 1 5}$ ($50 \mathrm{mg}, 0.23 \mathrm{mmol}$) and ${ }^{\mathrm{t}} \mathrm{BuOH}$ ($33.7 \mathrm{mg}, 0.45 \mathrm{mmol}$) in THF (5 mL) were added over 90 min and the reaction mixture was allowed to warm to room temperature. The crude mixture was washed with aq. citric acid (1 g in 20 mL water) and extracted with $1: 1$ EtOAc-petrol ($5 \times 10 \mathrm{~mL}$). The combined organic phase was washed with brine (10 mL), and water (10 mL), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography eluting with petrol and gradually increasing the polarity to neat EtOAc to give tricycle $218(25 \mathrm{mg}, 0.12 \mathrm{mmol}, 50 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=$ 0.58 (20% EtOAc-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3472,3079,2921,2854,1445,1037,1004,941,898 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.00\left(1 \mathrm{H}\right.$, br s, $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.89\left(1 \mathrm{H}\right.$, br s, $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 3.90(1 \mathrm{H}, \mathrm{t}$, $\left.J=8 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 3.75\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOCH}_{2}\right), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J=8,10 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right)$, 2.50-1.20 $\left(13 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}, \mathrm{CHCH}_{3}, \mathrm{CHCOH}, \mathrm{CHCHO},=\mathrm{CCH}_{2}\right), 0.94(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7$ $\mathrm{Hz}, \mathrm{CH}_{3}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 147.0, 111.9 (2), 86.1 (1), 73.2 (2), $72.0,46.1$ (1), 39.7 (1), 38.0
(1), 36.1 (2), 33.6 (2), 28.3 (2), 26.7 (2), 24.1 (2), 12.2 (3);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 223[\mathrm{M}+\mathrm{H}]^{+},(17 \%), 205[\mathrm{M}-\mathrm{OH}]^{+}(100 \%) ;$
HRMS, $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires 222.1620 found 222.1617;
nOe studies were used to determine stereochemistry.

217
rac-(3S, 3aR, 5aS, 9aR, 9bR)-3-methyl-5-methyleneperhydronaptho[1,2-b]furan-

5a-ol 21

Following the procedure by Procter, ${ }^{71}$ to a solution of $\mathrm{SmI}_{2}(0.12 \mathrm{M}$ solution in THF, $5 \mathrm{~mL}, 0.58 \mathrm{mmol})$ and $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar , was added rac-(2 S)-2-$\{(\mathrm{R})$-1-(allyloxy)-1-[(1S)-2-methylenecyclopropyl]methyl $\}$ cyclohexan-1-one 215 (50 $\mathrm{mg}, 0.23 \mathrm{mmol}$) in THF (5 mL) over 45 min . The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($128 \mathrm{mg}, 0.61 \mathrm{mmol}$). The aqueous layer was extracted with $\operatorname{DCM}(5 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give tricycle 217 ($35 \mathrm{mg}, 0.16 \mathrm{mmol}$, 70%) as a white solid, $\mathrm{R}_{\mathrm{f}}=0.41$ ($20 \% \mathrm{EtOAc}$-petrol);
Melting point: $76-78^{\circ} \mathrm{C}$ (Recrystallised from hot EtOAc);
$\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3405,3084,2916,2854,1440,1061,1004,924,898$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.92\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.88\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.10(1 \mathrm{H}$, dd, $\left.J=9,8 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 3.86\left(1 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 3.27(1 \mathrm{H}, \mathrm{ddd}, J=9,5,1$ $\left.\mathrm{Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right), 2.30\left(1 \mathrm{H}, \mathrm{dd}, J=14.5,9 \mathrm{~Hz},=\mathrm{CCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 2.21(1 \mathrm{H}, \mathrm{dd}, J=14.5,6.5$ $\left.\mathrm{Hz},=\mathrm{CCH}_{\mathrm{A}} H_{B}\right), 2.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.86(1 \mathrm{H}, \mathrm{ddd}, J=9,5,4 \mathrm{~Hz}, \mathrm{CHCOH}), 1.78$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHOH}), 1.65-1.10\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 148.4,110.8(2), 81.6$ (1), 74.0 (2), $73.2,45.6$ (1), 44.3 (1), 38.8
(1), 35.5 (2), 33.5 (2), 26.6 (2), 24.9 (2), 23.4 (2), 19.0 (3);
m/z (CI+): 205 [M - OH] ${ }^{+}$(100\%);
Microanalysis: Found $\mathrm{C}, 75.59 ; \mathrm{H}, 10.05$: $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.63 ; \mathrm{H}, 9.97 \%$;
X-ray crystallography and nOe studies were used to determine stereochemistry.

222
rac-(1R, 4aS, 4aS, 8aR)-4-methyl-1-[(1S)-2-methylidenecyclopropyl]perhydro-4aisochromenol 222

Following the procedure by Molander, ${ }^{53}$ HMPA ($0.64 \mathrm{~mL}, 3.67 \mathrm{mmol}$) was added to the $\mathrm{SmI}_{2}(0.09 \mathrm{M}$ solution in THF, $10 \mathrm{~mL}, 0.93 \mathrm{mmol})$ to give a purple solution. The solution was cooled to $-78^{\circ} \mathrm{C}$, rac-(2S)-2-\{(R)-1-(allyloxy)-1-[(1S)-2methylenecyclopropyl]methyl $\}$ cyclohexan-1-one 216 ($80 \mathrm{mg}, 0.37 \mathrm{mmol}$) and ${ }^{\mathrm{t}} \mathrm{BuOH}$ ($54 \mathrm{mg}, 0.73 \mathrm{mmol}$) in THF (10 mL) were added over 90 min and the reaction mixture was allowed to warm to room temperature. The crude mixture was washed with aq. citric acid (1 g in 20 mL water) and extracted with $1: 1 \mathrm{EtOAc}$-petrol ($5 \times 25 \mathrm{~mL}$). The combined organic phase was washed with brine (25 mL), water (25 mL), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography eluting with petrol and gradually increasing the polarity to neat EtOAc to give bicycle 222 ($61 \mathrm{mg}, 0.28 \mathrm{mmol}, 75 \%$) as a colourless viscous oil, $\mathrm{R}_{\mathrm{f}}=0.33$ (20% EtOAc-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3456,3074,2924,2859,1449,1054,985,940,877 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.34$ (2 H , s with fine splittings, methylenecyclopropyl $=\mathrm{CH}_{2}$), $3.65\left(1 \mathrm{H}, \mathrm{dd}, J=11,5 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 3.45\left(1 \mathrm{H}, \mathrm{t}, J=11 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right), 3.34(1 \mathrm{H}, \mathrm{dd}$, $\left.J=9,2 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 2.23-1.00\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3},\left(\mathrm{CH}_{2}\right)_{4}, 3 \times\right.$ cyclopropyl CH$), 0.75$ ($3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 132.5,104.2$ (2), 78.7 (1), 71.7, 70.2 (2), 48.2 (1), 37.7 (2), 30.3 (1), 25.8 (2), 23.1 (2), 22.7 (2), 17.7 (1), 9.9 (2), 8.7 (3);
m/z (CI+): 205 [M - OH] ${ }^{+}$(100%);
HRMS: $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}-\mathrm{OH}]^{+}$requires 205.1592 found 205.1600.

EXPERIMENTAL FOR CHAPTER 4

253

Ethyl-2-(2-methyl-dioxolanyl)-acetate 253

Following the method of Kelly, ${ }^{90}$ ethylene glycol ($25.7 \mathrm{~mL}, 0.46 \mathrm{~mol}$), ethyl acetoacetate $235(30.0 \mathrm{~mL}, 0.23 \mathrm{~mol})$ and $\mathrm{pTsOH}(0.44 \mathrm{~g}, 2.30 \mathrm{mmol})$ were refluxed together in toluene (200 mL) for 20 hours using Dean Stark apparatus to remove water. The reaction mixture was cooled and concentrated in vacuo. $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added and washed with aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and concentrated in vacuo to give a colourless oil which was distilled (88-92 ${ }^{\circ} \mathrm{C} / 10 \mathrm{~mm} \mathrm{Hg} ;$ lit..90 bp. $99.5-101{ }^{\circ} \mathrm{C} / 17-18 \mathrm{~mm} \mathrm{Hg}$) to give ketal $253(32 \mathrm{~g}, 0.184$ mol, 80%) as a colourless oil;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.15\left(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.89\left(4 \mathrm{H}, \mathrm{s}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right)$, $2.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{COOEt}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right)$ and $1.28\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.5,107.6,64.8$ (2), 60.5 (2), 44.2 (2), 24.5 (3), 14.2 (3); All data agrees with that reported by Kelly. ${ }^{90}$

254

2-(2-Methyl-dioxolanyl)-hydroxyethyl 254

Following the method of Albizati, ${ }^{68}$ ethyl-2-(2-methyl-dioxolanyl)-acetate 253 $(15 \mathrm{~g}, 86.0 \mathrm{mmol})$ was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(6.5 \mathrm{~g}, 0.17 \mathrm{~mol})$ in THF (100 mL) at $0{ }^{\circ} \mathrm{C}$ and stirred overnight. $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ was added and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes. $\mathrm{NaOH}(4 \mathrm{M})$ was added carefully to the mixture until a white heavy precipitate persisted. The mixture was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and concentrated in vacuo to give alcohol $254(10.0 \mathrm{~g}, 0.076 \mathrm{~mol}$, 87%) as a colourless oil $\mathrm{R}_{\mathrm{f}}=0.33$ ($50 \% \mathrm{Et}_{2} \mathrm{O}$-petrol);
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.97\left(4 \mathrm{H}, \mathrm{s}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.76\left(2 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.80$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.95\left(2 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ and $1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 110.5,64.6$ (2), 59.0 (2), 40.4 (2), 24.0 (3);

All data agrees with data reported by Albizati. ${ }^{68}$

255

2-(2-Methyl-dioxolanyl)-iodoethane 255

Following the method of Motherwell, ${ }^{91}$ triphenylphosphine ($10.4 \mathrm{~g}, 0.04 \mathrm{~mol}$), imidazole ($3.1 \mathrm{~g}, 45.0 \mathrm{mmol}$) and finally iodine ($10.8 \mathrm{~g}, 40.0 \mathrm{mmol}$) were added to a stirred solution of 2-(2-methyl-dioxolanyl)-hydroxyethyl 254 ($3.5 \mathrm{~g}, 30.0 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and acetonitrile $(20 \mathrm{~mL})$. The solution was stirred for 30 minutes. The resulting red solution was diluted in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, washed with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \times 50$ mL), water ($3 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The residue was triturated with petrol ($5 \times 20 \mathrm{~mL}$), filtered, concentrated in vacuo. The crude mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give iodide 255 ($6.22 \mathrm{~g}, 0.026 \mathrm{~mol}, 86 \%$) as a light brown oil $\mathrm{R}_{\mathrm{f}}=0.58$ ($50 \% \mathrm{Et}_{2} \mathrm{O}$-petrol);
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.99-3.87\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.15\left(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{I}\right)$, $2.29\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}\right)$ and $1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 109.9, 65.0 (2), 44.4 (2), 23.9 (3), -2.12 (2);
m/z (CI+): $243[\mathrm{M}+\mathrm{H}]^{+}(25 \%)$;
All data agrees with data reported by Trost. ${ }^{114}$

234

Ethyl 2- methyl-6-oxocyclohex-1-ene-1-carboxylate 3d and ethyl 6-(2-methyl-1,3-dioxaolan-2-yl)-3-oxohexanoate 3e.

Following the method of DeMilo, ${ }^{94}$ to a stirred suspension of sodium hydride $(0.91 \mathrm{~g}, 0.023 \mathrm{~mol})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and under an argon atmosphere, was added dropwise ethyl acetoacetate 235 ($2.7 \mathrm{~g}, 0.021 \mathrm{~mol}$). After stirring for 30 min , $\mathrm{nBuLi}(9.5 \mathrm{~mL})$ was added and the resulting solution stirred for an additional 30 min at $0^{\circ} \mathrm{C}$. Following the addition of HMPA $(7.22 \mathrm{~mL})$ and stirring for 15 min 2-(2-methyl-
dioxolanyl)-iodoethane $\mathbf{2 5 5}$ ($5 \mathrm{~g}, 0.021 \mathrm{~mol}$) was added and the mixture was stirred overnight at room temperature. The reaction mixture was split into two (a and b).
a) The reaction was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ and stirred for 5 min . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was washed with water (3×50 mL) and brine ($2 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give ketal $\mathbf{2 5 6}$ ($2.29 \mathrm{~g}, 0.013 \mathrm{~mol}$, 60%) as a slightly yellow oil, $\mathrm{R}_{\mathrm{f}}=0.39$ (30% EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 2983,2882,1738,1707,1046,731$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.03\left(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.80-3.74\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right)$, $3.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CO}\right), 2.41\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.50\left(4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right)$, $1.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 171.4,167.6,110.1,65.0$ (2), 61.7 (2), 49.7 (2), 43.2 (2), 38.4 (2), 24.2 (3), 18.4 (2), 14.5 (3);

All data agrees with that previously reported by Funk. ${ }^{93}$
b) The reaction was quenched by the careful addition of concentrated HCl and stirred for 15 min . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was washed with water ($3 \times 50 \mathrm{~mL}$) and brine ($2 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give cyclohexenone $234(2.18 \mathrm{~g}, 0.012 \mathrm{~mol}, 58 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.35(30 \%$ EtOAc-petrol);
$\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 2978,2927,2876,1722,1672,1372,736$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.30\left(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.50-2.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 2.06-1.97 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}$), $1.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 195.2,167.0,160.2,133.4,61.4$ (2), 37.0 (2), 31.7 (2), 22.3 (3), 21.8 (2), 14.3 (3);

All data agrees with that previously reported by Funk. ${ }^{93}$

261

Ethyl 7-methyl-1, 4-dioxaspiro[4.5]dec-7-ene-6-carboxylate 261

Following a modified procedure of Kelly, ${ }^{90}$ ethyl 2-methyl-6-oxocyclohex-1-ene-1-carboxylate $234(1 \mathrm{~g}, 5.49 \mathrm{mmol})$, ethylene glycol ($0.61 \mathrm{~mL}, 0.011 \mathrm{~mol}$) and $\mathrm{pTsOH}(105 \mathrm{mg}, 0.055 \mathrm{mmol})$ were refluxed in toluene (25 mL) overnight, collecting water using Dean-Stark apparatus. The reaction mixture was concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solution was washed with aq. $\mathrm{NaHCO}_{3}(3 \times 50$ mL). The organic layer was dried over MgSO_{4} and concentrated in vacuo. The crude material was purified using flash column chromatography eluting with $20 \% \mathrm{Et}_{2} \mathrm{O}$ petrol and gradually increasing polarity to $50 \% \mathrm{Et}_{2} \mathrm{O}$-petrol to yield ketal 261 (596 mg , $2.64 \mathrm{mmol}, 48 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.81$ (30% EtOAc-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 2988,2887,1733,1138,746$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.60(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}), 4.22\left(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.05-$
$3.96\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.05(\mathrm{HH}, \mathrm{s}, \mathrm{COCH}), 2.31-2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 1.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CCH}_{3}\right), 1.61-1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 171.5,129.7,124.5$ (1), 108.6, 65.2 (2), 64.8 (2), 61.2 (2), 55.9
(1), 28.1 (2), 24.1 (2), 22.5 (3), 14.6 (3);
m/z (CI+): $227[\mathrm{M}+\mathrm{H}]^{+}(100 \%)$;
HRMS, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}$ requires 226.1205, found 226.1206.

260

261

Ethyl 7-methyl-1, 4-dioxaspiro[4.5]dec-6-ene-6-carboxylate 260 and ethyl 7-methyl-1, 4-dioxaspiro[4.5]dec-7-ene-6-carboxylate 261

Following a modified procedure of De Waard, ${ }^{95}$ ethyl 2- methyl-6-oxocyclohex-1-ene-1-carboxylate 234 ($8.7 \mathrm{~g}, 0.048 \mathrm{~mol}$), ethylene glycol (122 mL) and fumaric acid ($461 \mathrm{mg}, 0.40 \mathrm{mmol}$) were refluxed in toluene (75 mL) overnight, collecting water using Dean-Stark apparatus. The reaction mixture was concentrated
in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The solution was washed with aq. NaHCO_{3} ($3 \times 100 \mathrm{~mL}$). The organic layer was dried over MgSO_{4} and concentrated in vacuo. The crude material was purified using column chromatography eluting with $20 \% \mathrm{Et}_{2} \mathrm{O}$ -petrol and gradually increasing polarity to $50 \% \mathrm{Et}_{2} \mathrm{O}$-petrol to yield ketal $260(3.9 \mathrm{~g}$, $0.017 \mathrm{~mol}, 36 \%)$ as a colourless oil and ketal $261(1.5 \mathrm{~g}, 0.007 \mathrm{~mol}, 14 \%)$ as a colourless oil.

Data for product 260, $\mathrm{R}_{\mathrm{f}}=0.67$ (30% EtOAc-petrol);
$\nu_{\max }\left(\mathrm{cm}^{-1}\right): 2988,2948,2866,1728,1661,1072,741$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.29\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.13-3.97\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right)$, $2.14\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 1.92-1.76\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.36$ ($3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 168.5,145.3,129.0,107.2,65.6$ (2), 60.8 (2), 34.1 (2), 31.7 (2), 21.5 (3), 20.0 (2), 14.7 (3);

All data for product 261 agrees with that reported above.

262

(7-methyl-1, 4-dioxaspiro[4.5]dec-6-en-6-yl)methanol 262

Following a modified method of Ferris, ${ }^{69}$ ethyl 7-methyl-1, 4-dioxaspiro[4.5]dec-6-ene-6-carboxylate $260(3.90 \mathrm{~g}, 0.017 \mathrm{~mol})$ in THF (10 mL) was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(1.31 \mathrm{~g}, 0.035 \mathrm{~mol})$ in THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and allowed to warm to room temperature over 1 h , and the reaction mixture was left to stir overnight. $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added to the reaction mixture and $\mathrm{NaOH}(4 \mathrm{M})$ was added until only white precipitate was formed. The reaction mixture was filtered and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were concentrated in vacuo. The crude material was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 50% EtOAc-petrol to give alcohol $262(1.20 \mathrm{~g}, 6.52 \mathrm{mmol}, 38 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=$ 0.24 (40% EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3461,2937,2876,2821,1667,1051,731$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.95-3.88\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 2.23(1 \mathrm{H}$, br s, OH $), 1.93\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz},=\mathrm{CCH}_{2}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.63-1.53(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$);
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 142.2,130.4,109.6,65.1$ (2), 58.2 (2), 33.3 (2), 32.3 (2), 20.5 (2), 19.8 (3);
${ }^{\mathrm{m}} / \mathrm{z}(\mathrm{CI}+): 141\left[\mathrm{M}+\mathrm{H}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right]^{+}(100 \%)$.

264

(7-methyl-1, 4-dioxaspiro[4.5]dec-7-en-6-yl)methanol 264

Following a modified method of Ferris, ${ }^{69}$ ethyl 7-methyl-1, 4-dioxaspiro[4.5]dec-7-ene-6-carbox ylate 261 ($1.5 \mathrm{~g}, 0.007 \mathrm{~mol}$) in THF (5 mL) was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(0.51 \mathrm{~g}, 0.013 \mathrm{~mol})$ in $\mathrm{THF}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and allowed to warm to room temperature over 1 h , and was left to stir overnight. $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added to the reaction mixture and $\mathrm{NaOH}(4 \mathrm{M})$ was added until a white precipitate was formed. The reaction mixture was filtered and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were concentrated in vacuo. The crude material was purified using column chromatography eluting with petrol and gradually increasing the polarity to 50% EtOAc-petrol to give alcohol 264 (1.08 g, $0.006 \mathrm{~mol}, 84 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.30(40 \% \mathrm{EtOAc}$-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3522,2958,2882,1667,1107,741$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.40(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 4.00-3.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.74(1 \mathrm{H}$, dd, $\left.J=3,12 \mathrm{~Hz}, \mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J=8,12 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{B} \mathrm{OH}\right), 3.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 2.21(1 \mathrm{H}, \mathrm{brd}, J=8 \mathrm{~Hz}, \mathrm{CHCO}), 2.13-2.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 1.80(1 \mathrm{H}, \mathrm{dt}, J=$ $\left.13,8 \mathrm{~Hz}, \mathrm{CCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 1.68(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{\mathrm{A}} H_{B}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 131.8,123.7$ (1), 111.9, 65.1 (2), 64.6 (2), 62.9 (2), 50.4 (1), 27.7 (2), 24.3 (2), 22.3 (3);
m/z (CI+): $185[\mathrm{M}+\mathrm{H}]^{+}(100 \%)$;
HRMS: $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}]^{+}$requires 184.1099, found 184.1109.

265

7-methyl-1, 4-dioxaspiro[4.5]dec-7-ene-6-carbaldehyde 265

Following the method of Swern, ${ }^{70}$ oxalyl chloride ($56 \mu \mathrm{l}, 0.650 \mathrm{mmol}$) in DCM (5 mL) was cooled to $-70^{\circ} \mathrm{C}$ and stirred vigorously. DMSO ($96 \mu \mathrm{l}, 1.360 \mathrm{mmol}$) in DCM (1 mL) was added at $<-50^{\circ} \mathrm{C}$ and the reaction was stirred for 2 min . (7-Methyl1, 4-dioxaspiro[4.5]dec-7-en-6-yl)methanol 264 ($100 \mathrm{mg}, 0.543 \mathrm{mmol}$) in DCM (1 mL) was added over 5 min at $<-50^{\circ} \mathrm{C}$ and the reaction was stirred for a further 15 min . TEA ($0.380 \mathrm{~mL}, 2.72 \mathrm{mmol}$) was added at $<-50^{\circ} \mathrm{C}$ and the reaction mixture was warmed to room temperature. Water (30 mL) was added and the reaction mixture was washed with DCM ($5 \times 5 \mathrm{~mL}$) and combined organic layers were concentrated in vacuo. The crude material was purified using flash column chromatography, (prewashed with 1% TEA in DCM), eluting with petrol and gradually increasing polarity to 30% EtOAc-petrol to yield aldehyde $265(97 \mathrm{mg}, 0.53 \mathrm{mmol}, 98 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.83$ (30% EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 2958,2902,1717,1672,1026,736$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.47(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{CHO}), 5.75(1 \mathrm{H}, \mathrm{s}$ with fine splitting, $\mathrm{C}=\mathrm{CH}), 4.03-3.96\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 2.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHCHO}), 2.34-2.24(2 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{CCH}_{2}\right), 1.92-1.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2}\right), 1.65\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 198.7$ (1), 127.4, 125.6 (1), 107.6, 65.4 (2), 64.9 (2), 62.1 (1), 29.6 (2), 24.2 (2), 22.1 (3);

The aldehyde was unstable and was used directly into the next reaction.

266

267

(7-methyl-1,4 -dioxaspiro[4.5] dec-7-en-6-yl)(2-methylidenecyclopropyl)

 methanol 266 and 267${ }^{\mathrm{n}} \mathrm{BuLi}$ ($2.24 \mathrm{M}, 4.8 \mathrm{~mL}, 0.011 \mathrm{~mol}$) was added to methylenecyclopropane 1 $(4.8 \mathrm{~mL}, 0.011 \mathrm{~mol})$ in THF $(10 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The reaction was allowed to rise to 0
${ }^{\circ} \mathrm{C}$ over 30 min and held at $0^{\circ} \mathrm{C}$ for a further 30 min . The reaction was allowed to reach room temperature for 15 min before cooling to $-78{ }^{\circ} \mathrm{C}$. 7-Methyl-1, 4-dioxaspiro[4.5]dec-7-ene-6-carbaldehyde $265(1.9 \mathrm{~g}, 0.01 \mathrm{~mol})$ in THF (5 mL) at -78 ${ }^{\circ} \mathrm{C}$ was added via cannula to the methylenecyclopropane anion. The reaction mixture was allowed to warm to room temperature overnight, quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 10 \mathrm{~mL})$ and the organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude material was separated using flash column chromatography, eluting with petrol and gradually increasing polarity to $30 \% \mathrm{Et}_{2} \mathrm{O}-$ petrol to yield isomer 266 ($1.06 \mathrm{~g}, 4.50 \mathrm{mmol}, 45 \%$) and isomer $267(708 \mathrm{mg}, 3.00$ mmol, 30%), both as light yellow oils.

Data for diastereoisomer $266 \mathrm{R}_{\mathrm{f}}=0.49$ (30% EtOAc-petrol);
Data for diastereoisomer $267 \mathrm{R}_{\mathrm{f}}=0.33$ (30% EtOAc-petrol);
Neither diastereoisomer could be obtained free of impurities by flash column chromatography and so were used directly in the next reaction

268

6-[(allyloxy)(2-methylidenecyclopropyl)methyl]-7-methyl-1,4-dioxaspiro[4.5]dec-

 7-ene 268To a suspension of sodium hydride ($64.8 \mathrm{mg}, 1.62 \mathrm{mmol}, 60 \%$ dispersion in oil) in DMF (2.5 mL) under argon, was added (7-methyl-1,4-dioxaspiro[4.5] dec-7-en-6-yl)(2-methylidenecyclopropyl) methanol 266 ($255 \mathrm{mg}, 1.08 \mathrm{mmol}$) in DMF (1 mL) at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 1 h . A yellow solution occurred. Allyl bromide ($0.15 \mathrm{~mL}, 1.73 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the reaction was stirred at room temperature overnight. Water was added and extracted with DCM (4 x 5 mL). The combined DCM layers were washed with water ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 30% EtOAc-petrol to give ketal $268(217 \mathrm{mg}, 0.788 \mathrm{mmol}, 73 \%)$ as a yellow oil, R_{f} $=0.89$ (30% EtOAc-petrol);
$\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3020,2924,2894,1439,1084,993,916$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.91\left(1 \mathrm{H}, \mathrm{ddt}, J=17,10,5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.59(1 \mathrm{H}$, br s, $=\mathrm{CH}), 5.45\left(2 \mathrm{H}, \mathrm{s}\right.$ with fine splittings, methylenecyclopropyl $\left.=\mathrm{CH}_{2}\right), 5.25(1 \mathrm{H}, \mathrm{dq}, J=$ $17,2 \mathrm{~Hz}$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.11\left(1 \mathrm{H}, \mathrm{dq}, J=10,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.28(1 \mathrm{H}, \mathrm{ddt}, J=$ $\left.13,5,2 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.00-3.91\left(5 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right), 3.13(1 \mathrm{H}, \mathrm{dd}, J=9,2$ $\mathrm{Hz}, \mathrm{CHO}), 2.40-1.52\left(6 \mathrm{H}, \mathrm{m}\right.$, cyclopropyl $\left.\mathrm{CH},\left(\mathrm{CH}_{2}\right)_{2}, \mathrm{CHCHOCH}_{2}\right), 1.89(3 \mathrm{H}, \mathrm{br}$ s, $\left.\mathrm{CH}_{3}\right), 1.30(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$), 0.89(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 136.0,135.6$ (1), 131.6, 123.6 (1), 115.9 (2), 110.3, 104.0 (2), 80.8 (1), 70.3 (2), 64.6 (2), 64.3 (2), 53.1 (1), 27.7 (2), 25.0 (3), 24.4 (2), 21.2 (1), 7.0 (2);
m/z (CI+): $277[\mathrm{M}+\mathrm{H}]^{+}(34 \%), 219\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right]^{+}(72 \%) ;$
HRMS: $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}]^{+}$requires 276.1725, found 276.1721.

269

6-[(allyloxy)(2-methylidenecyclopropyl)methyl]-7-methyl-1,4-dioxaspiro[4.5]dec-

 7-ene 269To a suspension of sodium hydride ($68.6 \mathrm{mg}, 1.72 \mathrm{mmol}, 60 \%$ dispersion in oil) in DMF (2.5 mL) under argon, was added (7-methyl-1,4 -dioxaspiro[4.5] dec-7-en-6-yl)(2-methylidenecyclopropyl) methanol 267 ($270 \mathrm{mg}, 1.14 \mathrm{mmol}$) in DMF (1 mL) at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 1 h . A yellow solution occurred. Allyl bromide ($0.16 \mathrm{~mL}, 1.83 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the reaction was stirred at room temperature overnight. Water was added and extracted with DCM (4 x 5 mL), DCM layers were washed with water ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 30% EtOAc-petrol to give ketal 269 ($220 \mathrm{mg}, 0.798 \mathrm{mmol}, 70 \%$) as a yellow oil, $\mathrm{R}_{\mathrm{f}}=0.85$ (30\% EtOAc-petrol);
$\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3023,2924,2896,1444,1089,926$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.92\left(1 \mathrm{H}, \mathrm{ddt}, J=17,10,5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}$,
$=\mathrm{CH}), 5.48\left(2 \mathrm{H}, \mathrm{q}, J=2 \mathrm{~Hz}\right.$, methylenecyclopropyl $\left.=\mathrm{CH}_{2}\right), 5.25(1 \mathrm{H}, \mathrm{dq}, J=17,2 \mathrm{~Hz}$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.12\left(1 \mathrm{H}, \mathrm{dq}, J=10,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.33(1 \mathrm{H}, \mathrm{ddt}, J=13,5,2$
$\left.\mathrm{Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.05\left(1 \mathrm{H}, \mathrm{ddt}, J=13,5,2 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right), 3.98-3.88(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 3.26(1 \mathrm{H}, \mathrm{dd}, J=9,1 \mathrm{~Hz}, \mathrm{CHOCH} 2), 2.24-1.55(6 \mathrm{H}, \mathrm{m}$, cyclopropyl CH , $\left.\left(\mathrm{CH}_{2}\right)_{2}, \mathrm{CHCHOCH} 2\right), 1.89\left(3 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{3}\right), 1.50(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$)$, $1.10(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 135.7(1), 132.2,131.1,124.2$ (1), 116.1 (2), 110.2, 104.7 (2),
80.8 (1), 70.7 (2), 64.5 (2), 64.2 (2), 53.1 (1), 28.1 (2), 25.0 (3), 24.3 (2), 20.3 (1), 12.0
(2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 277[\mathrm{M}+\mathrm{H}]^{+}(20 \%), 219\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right]^{+}(100 \%)$;
HRMS could not be obtained on this compound.

2-[(allyloxy)(2-methylidenecyclopropyl)methyl]-3-methylcyclohex-3-en-1-one 268a

6-[(Allyloxy)(2-methylidenecyclopropyl)methyl]-7-methyl-1,4-dioxaspiro[4.5]dec-7-ene 268 ($80 \mathrm{mg}, 0.29 \mathrm{mmol}$) in acetone/water ($10 \mathrm{~mL} / 1 \mathrm{~mL}$) was stirred with pTsOH ($66.2 \mathrm{mg}, 0.35 \mathrm{mmol}$) overnight. The reaction mixture was concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solution was washed with aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 10 \mathrm{~mL})$. Organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 25% EtOAc-petrol to yield ketone 268a (70 mg , $0.30 \mathrm{mmol}, 104 \%$ crude $)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.89$ (30% EtOAc-petrol);

269a

2-[(allyloxy)(2-methylidenecyclopropyl)methyl]-3-methylcyclohex-3-en-1-one 269a

6-[(Allyloxy)(2-methylidenecyclopropyl)methyl]-7-methyl-1,4-dioxaspiro[4.5]dec-7-ene 269 ($65 \mathrm{mg}, 0.24 \mathrm{mmol}$) in acetone/water ($10 \mathrm{~mL} / 1 \mathrm{~mL}$) was stirred with $\mathrm{pTsOH}(53.8 \mathrm{mg}, 0.29 \mathrm{mmol})$ overnight. The reaction mixture was concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solution was washed with aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 10 \mathrm{~mL})$. Organic layers were combined, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified using column chromatography eluting with petrol and gradually increasing the polarity to 25% EtOAc-petrol to yield deprotected ketone 269 a (60 mg , $0.259 \mathrm{mmol}, 108 \%$ crude $)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.85$ ($30 \% \mathrm{EtOAc}$-petrol);

Allyl ethers 268a and 269a were used directly into the next reaction without further purification.

2-[(allyloxy)(2-methylidenecyclopropyl)methyl]-3-methylcyclohex-2-en-1-one 270
2-[(Allyloxy)(2-methylidenecyclopropyl)methyl]-3-methylcyclohex-3-en-1one 268a ($70 \mathrm{mg}, 0.30 \mathrm{mmol}$) in $\mathrm{MeOH}(0.5 \mathrm{~mL}$) was added to $\mathrm{NaOMe}(0.7 \mathrm{mg}$ in 1 $\mathrm{mL} \mathrm{MeOH})$ at $0^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction mixture was allowed to warm to room temperature over 30 min , quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{x}$ 2 mL) and the organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 15% EtOAc-petrol to yield allyl ether 270 ($59 \mathrm{mg}, 0.255 \mathrm{mmol}, 85 \%$) as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.79$ ($30 \% \mathrm{EtOAc}$-petrol); $v_{\max }\left(\mathrm{cm}^{-1}\right): 3071,2992,2924,2869,1656,1626,1074,986,912,879$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.82\left(1 \mathrm{H}, \mathrm{ddt}, J=17,10,5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.43(1 \mathrm{H}, \mathrm{m}$, methylenecyclopropane $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.35(1 \mathrm{H}$, s with fine splittings,
methylenecyclopropane $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.16\left(1 \mathrm{H}, \mathrm{dq}, J=17,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.05$ $\left(1 \mathrm{H}, \mathrm{dq}, J=10,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.24\left(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 3.88(1 \mathrm{H}, \mathrm{ddt}$, $\left.J=13,5,2 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 3.80\left(1 \mathrm{H}, \mathrm{ddt}, J=13,5,2 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right), 2.32(4 \mathrm{H}, \mathrm{t}, J=6$ $\left.\mathrm{Hz},\left(\mathrm{CH}_{2}\right)_{2}\right), 2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.89\left(2 \mathrm{H}\right.$, quintet, $\left.J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.80(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH), $1.06(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$), 0.89(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 197.4,158.3,134.2$ (1), 133.5, 133.5, 115.4 (2), 103.0 (2), 75.1
(1), 68.8 (2), 36.8 (2), 33.0 (2), 21.2 (2), 20.7 (3), 18.4 (1), 5.8 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 175\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right]^{+}(100 \%)$;
HRMS could not be obtained for this compound.

2-[(allyloxy)(2-methylidenecyclopropyl)methyl]-3-methylcyclohex-2-en-1-one 271
2-[(Allyloxy)(2-methylidenecyclopropyl)methyl]-3-methylcyclohex-3-en-1one 269a ($60 \mathrm{mg}, 0.26 \mathrm{mmol}$) in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added to $\mathrm{NaOMe}(0.6 \mathrm{mg}$ in 1 $\mathrm{mL} \mathrm{MeOH})$ at $0^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction mixture was allowed to warm to room temperature over 30 min , quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{x}$ 2 mL) and the organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to 15% EtOAc-petrol to yield allyl ether 271 ($47 \mathrm{mg}, 0.203 \mathrm{mmol}, 78 \%$) as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.72$ (30% EtOAc-petrol); $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3076,2918,2854,1651,1617,1069,985,916,872 ;$ $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.82\left(1 \mathrm{H}, \mathrm{ddt}, J=17,10,5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, methylenecyclopropane $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.16\left(1 \mathrm{H}, \mathrm{dq}, J=17,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.10$ $\left(1 \mathrm{H}, \mathrm{s}\right.$ with fine splittings, methylenecyclopropane $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.06(1 \mathrm{H}, \mathrm{dq}, J=10,2$ Hz , allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.19\left(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 3.83(2 \mathrm{H}$, br dt, $J=6,2 \mathrm{~Hz}$, $\left.\mathrm{CHOCH}_{2}\right), 2.32\left(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{COCH}_{2}, \mathrm{CCH}_{2}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.92(1 \mathrm{H}, \mathrm{m}$,
cyclopropyl CH), $1.89\left(2 \mathrm{H}\right.$, quintet, $\left.J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.06(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH), $0.89(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH$)$;
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 196.8,158.4,134.2(1), 133.4,131.2,115.7$ (2), 103.0 (2), 74.9
(1), 68.7 (2), 37.0 (2), 32.9 (2), 21.3 (2), 20.7 (3), 18.5 (1), 9.0 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 233[\mathrm{M}+\mathrm{H}]^{+}(5 \%), 175\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right]^{+}(100 \%)$;
HRMS: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}$ requires 233.1542 found 233.1543 .

273
2-[(allyloxy)(2-methylidenecyclopropyl)methyl]-3-methylcyclohexan-1-one 273
Following the procedure by Procter, ${ }^{71}$ to a solution of $\mathrm{SmI}_{2}(0.10 \mathrm{M}$ solution in THF, $5 \mathrm{~mL}, 0.48 \mathrm{mmol}$) and $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar , was added 2-[(allyloxy)(2-methylidenecyclopropyl)methyl]-3-methylcyclohex-2-en-1-one 270 (45 $\mathrm{mg}, 0.19 \mathrm{mmol}$) in THF (5 mL) over 45 min . The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($64 \mathrm{mg}, 0.30 \mathrm{mmol}$). The aqueous layer was extracted with $\operatorname{DCM}(5 \times 5 \mathrm{~mL})$, and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give allyl ether 273 ($21 \mathrm{mg}, 0.09 \mathrm{mmol}, 48 \%$) as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.83$ (30% EtOAc-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3068,2945,2856,1700,1070,885 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.82\left(1 \mathrm{H}, \mathrm{ddt}, J=17,10,5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.43-5.39(2 \mathrm{H}, \mathrm{m}$, methylenecyclopropane $\left.=\mathrm{CH}_{2}\right), 5.19\left(1 \mathrm{H}, \mathrm{dq}, J=17,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.07(1 \mathrm{H}$, dq, $J=10,2 \mathrm{~Hz}$, allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.20\left(1 \mathrm{H}, \mathrm{ddt}, J=13,5,2 \mathrm{~Hz}, O C H_{A} H_{B}\right), 3.84(1 \mathrm{H}$, ddt, $\left.J=13,5,2 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right), 3.21\left(1 \mathrm{H}, \mathrm{dd}, J=9,4 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 2.35-2.20(4 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right), 1.92-1.28\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CHCH}_{3}, \mathrm{CHCHO}\right.$, cyclopropyl CH$), 1.24(1 \mathrm{H}, \mathrm{tt}, J$ $=9,2 \mathrm{~Hz}$, cyclopropyl CH$), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.85(1 \mathrm{H}, \mathrm{m}$, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 174.4,135.2(1), 134.2,116.6$ (2), 104.6 (2), 80.7 (1), 70.2 (2), 61.6 (1), 41.5 (2), 34.7 (1), 31.5 (2), 23.8 (2), 20.7 (3), 18.2 (1), 7.1 (2); m/z (CI+): $235[\mathrm{M}+\mathrm{H}]^{+}(7 \%) ;$

HRMS: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{+}$requires 233.1541, found 233.1538.

3,9-dimethyl-5-methyleneperhydronaphtho[1,2-b]furan-5a-ol 278 and 2-

[(allyloxy)(2-methylenecyclopropyl)methyl]-3-methyl-2-cyclohexen-1-ol 279
To a solution of 2-[(allyloxy)(2-methylidenecyclopropyl)methyl]-3-methylcyclohex-2-en-1-one 270 ($20 \mathrm{mg}, 0.086 \mathrm{mmol}$) in THF (4 mL) and MeOH (1 mL) at $-78^{\circ} \mathrm{C}$ under argon was added a solution of samarium diiodide (0.05 M solution in THF, $5 \mathrm{~mL}, 0.22 \mathrm{mmol}$) via cannula over 45 min . The reaction mixture was stirred for 2 h and allowed to warm to room temperature. Brine (3 mL) and citric acid (64 mg , $0.30 \mathrm{mmol})$ were added. The aqueous layer was then extracted with $\mathrm{DCM}(5 \times 5 \mathrm{~mL})$, and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give tricycle 277 (1.2 $\mathrm{mg}, 0.005 \mathrm{mmol}, 6 \%)$ as a colourless oil and alcohol 279 ($2 \mathrm{mg}, 0.009 \mathrm{mmol}, 10 \%$) as a slightly yellow oil;

Data for tricycle 277, $\mathrm{R}_{\mathrm{f}}=0.81$ (30% EtOAc-petrol);
$\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3486,3094,2924,2864,1651,1370,1097$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, resolution enhanced): $4.90\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.24\left(1 \mathrm{H}, \mathrm{dd}, J=9,7 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.20(1 \mathrm{H}, \mathrm{dd}, J=5,3 \mathrm{~Hz}, \mathrm{CHO}), 3.30$ $\left(1 \mathrm{H}, \mathrm{dd}, J=9,5 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right), 2.37\left(1 \mathrm{H}, \mathrm{dd}, J=14,10 \mathrm{~Hz},=\mathrm{CCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 2.24(1 \mathrm{H}, \mathrm{dd}$, $\left.J=14,7 \mathrm{~Hz},=\mathrm{CCH}_{\mathrm{A}} H_{B}\right), 2.17-1.20\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}, \mathrm{CHCH}_{3}, \mathrm{CHCHCH}_{3},\left(\mathrm{CH}_{2}\right)_{3}\right)$, $1.15\left(1 \mathrm{H}, \mathrm{dd}, J=11,3 \mathrm{~Hz}, \mathrm{CHCHOCH}_{2}\right), 1.06\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02(3 \mathrm{H}, \mathrm{d}, J=$ $7 \mathrm{~Hz}, \mathrm{CH}_{3}$);
m/z (CI+): $219[\mathrm{M} \mathrm{-} \mathrm{OH}]^{+}$(100\%);

Data for alcohol $279 \mathrm{R}_{\mathrm{f}}=0.58$ ($30 \% \mathrm{EtOAc}$-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3422,3094,2933,2864,1646,1069,955$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, resolution enhanced): $5.90(1 \mathrm{H}$, dddd, $J=17,11,6,5 \mathrm{~Hz}$,
$\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 5.56\left(1 \mathrm{H}, \mathrm{m}\right.$, methylenecyclopropane $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.43(1 \mathrm{H}, \mathrm{m}$,
methylenecyclopropane $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.26\left(1 \mathrm{H}\right.$, ddt, $J=17,2,2 \mathrm{~Hz}$, allyl $\left.=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.15$
$\left(1 \mathrm{H}, \mathrm{ddt}, J=10,2,2 \mathrm{~Hz}\right.$, allyl $\left.=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOH}), 3.96(1 \mathrm{H}, \mathrm{ddt}, J=$ $\left.13,5,2 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 3.88\left(1 \mathrm{H}, \mathrm{ddt}, J=13,6,2 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B}\right), 3.85(1 \mathrm{H}, \mathrm{d}, J=8$ $\left.\mathrm{Hz}, \mathrm{CHOCH}_{2}\right), 2.10-1.96\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, cyclopropyl CH$), 1.88-1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.69$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.68-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.26(1 \mathrm{H}, \mathrm{tt}, J=9,2 \mathrm{~Hz}$, cyclopropyl CH$), 0.97$ (1H, m, cyclopropyl CH);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 135.7$ (1), 134.9, 132.4, 116.9 (2), 104.1 (2), 80.2 (1), 77.6, 69.7 (2), 65.1 (1), 32.8 (2), 31.7 (2), 20.7 (3), 20.0 (1), 18.0 (2), 7.6 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+): 217[\mathrm{M}-\mathrm{OH}]^{+}(8 \%), 177\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right]^{+}(38 \%), 159\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right]^{+}(100 \%)$.

EXPERIMENTAL FOR CHAPTER 5

2-(allyloxy)-3-methylcyclopent-2-en-1-one 292.

Following a modified procedure by Pirrung, ${ }^{104}$ dione $302(5 \mathrm{~g}, 0.044 \mathrm{~mol})$, allyl alcohol ($3.11 \mathrm{~g}, 0.054 \mathrm{~mol}$) and $\mathrm{pTsOH}(424 \mathrm{mg}, 0.002 \mathrm{~mol}$) were refluxed in benzene (125 mL) overnight, removing water using molecular sieves in the Soxhlet apparatus. The reaction mixture was cooled and quenched with $\mathrm{NaOH}(1 \mathrm{M})$ and brine. The organic layer was dried over MgSO_{4} and concentrated in vacuo. The crude mixture was distilled $\left(82-84^{\circ} \mathrm{C} / 10 \mathrm{~mm} \mathrm{Hg}\right)$ to give ether $292,(2.8 \mathrm{~g}, 0.018 \mathrm{~mol}, 42 \%)$ as a yellow oil, $\mathrm{R}_{\mathrm{f}}=0.63$ (30% EtOAc-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3076,2978,2918,2864,1691,1631,1390,990,926$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.97(1 \mathrm{H}, \mathrm{ddt}, J=17,10,6 \mathrm{~Hz},=\mathrm{CH}), 5.32(1 \mathrm{H}, \mathrm{dq}, J=17,2$
$\left.\mathrm{Hz},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.21\left(1 \mathrm{H}, \mathrm{dq}, J=10,1 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.70\left(2 \mathrm{H}, \mathrm{dt}, J=6,1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 2.48-2.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.40-2.36 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 208.2,155.9,152.0,134.5$ (1), 118.1 (2), 71.2 (2), 33.3 (2), 27.6 (2), 15.3 (3);
m/z (CI+): $153[\mathrm{M}+\mathrm{H}]^{+}(100 \%)$;
All data agrees with that previously reported by Ponaras. ${ }^{115}$

303
rac-(1R, 5R, 6S, 9R, 10R)-13-(allyloxy)-5,9,10-trimethyl-3-oxatetracyclo [8.2.1.0 ${ }^{2,6} .0^{2,9}$]tridecane-1,6-diol 303

Following the procedure by Procter, ${ }^{71}$ to a solution of $\mathrm{SmI}_{2}(0.26 \mathrm{M}$ solution in THF, $10 \mathrm{~mL}, 2.62 \mathrm{mmol}$) and $\mathrm{MeOH}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar, was added 2-(allyloxy)-3-methylcyclopent-2-en-1-one 292 ($100 \mathrm{mg}, 0.658 \mathrm{mmol}$) in THF (5 mL)
over 45 min . The reaction mixture was then stirred for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($128 \mathrm{mg}, 0.61 \mathrm{mmol}$). The aqueous layer was then extracted with DCM ($5 \times 10 \mathrm{~mL}$), and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give diol $303(67 \mathrm{mg}, 0.218 \mathrm{mmol}, 67 \%)$ as a white solid, $\mathrm{R}_{\mathrm{f}}=0.56(30 \%$ EtOAc-petrol);

Melting point: $116-118^{\circ} \mathrm{C}$ (Recrystallised from EtOAc-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3362,3052,2953,2869,1464,1266,1099,936 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.86(1 \mathrm{H}, \mathrm{ddt}, J=17,11,5 \mathrm{~Hz},=\mathrm{CH}), 5.24(1 \mathrm{H}, \mathrm{dq}, J=17,2$ $\left.\mathrm{Hz},=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.10\left(1 \mathrm{H}, \mathrm{dq}, J=10,2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 4.14(2 \mathrm{H}, \mathrm{dt}, J=17,2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 3.89\left(1 \mathrm{H}, \mathrm{dd}, J=9,7 \mathrm{~Hz}, \mathrm{OCH}_{A} \mathrm{H}_{\mathrm{B}} \mathrm{CHCH}_{3}\right), 3.82\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOCH}_{2}\right), 3.11(1 \mathrm{H}$, dd, $\left.J=11,9 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{A}} H_{B} \mathrm{CHCH}_{3}\right), 2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}^{1} H_{A} \mathrm{H}_{\mathrm{B}}\right)$, $1.83\left(1 \mathrm{H}, \mathrm{dt}, J=7,13 \mathrm{~Hz}, \mathrm{C}^{2} H_{A} \mathrm{H}_{\mathrm{B}}\right), 1.60-1.27\left(6 \mathrm{H}, \mathrm{m}, \mathrm{C}^{1} \mathrm{H}_{\mathrm{A}} H_{B}, \mathrm{C}^{2} \mathrm{H}_{\mathrm{A}} H_{B},\left(\mathrm{CH}_{2}\right)_{2}\right)$, $0.87\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 136.1(1), 116.8$ (2), 94.5, 93.4, 87.5, 84.8 (1), 72.5 (2), 72.2 (2), 52.5, 47.2, 45.1 (1), 37.0 (2), 30.1 (2), 29.0 (2), 27.6 (2), 15.0 (3), 14.5 (3), 9.2 (3); m/z (CI+): $309[\mathrm{M}+\mathrm{H}]^{+}(18 \%), 291[\mathrm{M}-\mathrm{OH}]^{+}(62 \%), 233\left[\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right]^{+}$ (100\%);

Microanalysis: Found C, 69.96; H, 9.38. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$ requires C, 70.10; H, 9.15\%;
Stereochemistry was confirmed by X-ray crystallography.

343

Tricyclo [5.2.1.0 $\left.{ }^{2,6}\right]$ decane-1,3-diol 343

Following the procedure by Procter, ${ }^{71}$ to a solution of $\mathrm{SmI}_{2}(0.5 \mathrm{M}$ solution in THF, $10 \mathrm{~mL}, 4.88 \mathrm{mmol}$) and $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar , was added cyclopentenone $\mathbf{3 2 0}$ ($100 \mathrm{mg}, 1.218 \mathrm{mmol}$) in THF (5 mL) over 45 min . The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($128 \mathrm{mg}, 0.61 \mathrm{mmol}$). The aqueous layer was then extracted with DCM ($5 \times 10 \mathrm{~mL}$), and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo.

The crude reaction mixture was purified by flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give diol 343 ($72 \mathrm{mg}, 0.423$ $\mathrm{mmol}, 71 \%)$ as a colourless oil, $\mathrm{R}_{\mathrm{f}}=0.25$ (30% EtOAc-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3328,2943,2864,1459,1306,1109$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.50(1 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{CHOH}), 3.32(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.62(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 2.01(1 \mathrm{H}, \mathrm{q}, J=9 \mathrm{~Hz}, \mathrm{CHCHCOH}), 1.92(1 \mathrm{H}, \mathrm{dd}, J=6,9 \mathrm{~Hz}, \mathrm{CHCOH}), 1.87$ ($1 \mathrm{H}, \mathrm{dq}, J=9,2 \mathrm{~Hz}, \mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}$), 1.86-1.19 ($9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}, 3 \times \mathrm{CH}$) , $1.16(1 \mathrm{H}, \mathrm{dq}, J=9$, $2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{B}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 85.0,76.5(1), 52.8$ (1), 50.4 (1), 40.2 (2), $37.0(1), 36.8$ (2), 36.2 (2), 29.8 (2), 29.7 (2);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+$ at $\mathrm{T}=150 \mathrm{~K}): 169[\mathrm{M}+\mathrm{H}]^{+}(2 \%)$;
HRMS: $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{+}$requires 167.1072 found $167.1078, \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}-\mathrm{OH}]^{+}$ requires 151.1122 found 151.1123 .

rac-(1S, $2 \mathrm{~S}, 3 \mathrm{R}, 7 \mathrm{R}, 8 \mathrm{R}$) Tricyclo[6.3.1.0 ${ }^{2,7}$]dodecane-1,3-diol 334 and rac-(1S, 2S, 3S, 7R, 8R)Tricyclo[6.3.1.0 ${ }^{2,7}$]dodecane-1,3-diol 335.

Following the procedure by Procter, ${ }^{71}$ to a solution of $\mathrm{SmI}_{2}(0.5 \mathrm{M}$ solution in $\mathrm{THF}, 10 \mathrm{~mL}, 4.17 \mathrm{mmol}$) and $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar , was added cyclohexenone 290 ($100 \mathrm{mg}, 1.042 \mathrm{mmol}$) in THF (5 mL) over 45 min . The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($128 \mathrm{mg}, 0.61 \mathrm{mmol}$). The aqueous layer was then extracted with $\mathrm{DCM}(5 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and gradually increasing the polarity to EtOAc to give diol 334 (55 mg , $0.281 \mathrm{mmol}, 54 \%)$ as a white solid and diol $335(26 \mathrm{mg}, 0.133 \mathrm{mmol}, 25 \%)$ as a pale yellow solid,

Data for tricycle $334 \mathrm{R}_{\mathrm{f}}=0.36$ (30% EtOAc-petrol);
Melting point: $101-103^{\circ} \mathrm{C}$ (Recrystallised from EtOAc-petrol);
$\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3362,2924,2859,1454,1331,1109$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOH}), 2.68(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}, \mathrm{CHOH}), 2.13$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 1.76-1.17\left(16 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2}, 3 \times \mathrm{CH}, \mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 1.12(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}$, $\mathrm{CH}_{\mathrm{A}} H_{B}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 83.2,69.4$ (1), 49.2 (1), 45.5 (2), 43.2 (1), 42.7 (2), 41.9 (1), 32.8 (2), 28.1 (2), 26.6 (2), 22.3 (2), 19.2 (2);
m/z (CI+): 179 [M - OH] ${ }^{+}$(100\%);
Microanalysis: Found $\mathrm{C}, 73.39 ; \mathrm{H}, 10.39 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 73.43 ; \mathrm{H}, 10.27 \%$; Stereochemistry was confirmed by X-ray crystallography.

Data for tricycle $335 \mathrm{R}_{\mathrm{f}}=0.19$ (30% EtOAc-petrol);
Melting point: $110-112^{\circ} \mathrm{C}$ (Recrystallised from EtOAc-petrol);
$\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3343,2943,2869,1464,1356,1133 ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.98(1 \mathrm{H}, \mathrm{dt}, J=5,12 \mathrm{~Hz}, \mathrm{CHOH}), 3.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 2.45$
($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), 1.96-1.15 ($17 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}, 3 \times \mathrm{CH}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 82.0,67.5(1), 52.0(1), 42.7$ (1), 42.3 (2), 42.2 (2), $41.0(1)$, 31.0 (2), 28.1 (2), 25.3 (2), 20.5 (2), 19.8 (2);
m/z (CI+): $197[\mathrm{M}+\mathrm{H}]^{+}(48 \%), 179[\mathrm{M}-\mathrm{OH}]^{+}(100 \%)$;
Microanalysis: Found C, $73.11 ; \mathrm{H}, 10.39 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 73.43 ; \mathrm{H}, 10.27 \%$.

328a

328b

2-(1-hydroxyethyl)-1,3,3,4,4-pentamethyl-1-cyclopentanols 328a and 328b

Following the procedure by Procter, ${ }^{71}$ to a solution of $\mathrm{SmI}_{2}(0.41 \mathrm{M}$ solution in THF, $10 \mathrm{~mL}, 4.08 \mathrm{mmol}$) and $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar , was added $314(100 \mathrm{mg}$, 1.020 mmol) in THF (5 mL) over 45 min . The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before the addition of brine (3 mL) and citric acid ($128 \mathrm{mg}, 0.61 \mathrm{mmol}$). The aqueous layer was then extracted with DCM ($5 \times 10 \mathrm{~mL}$), and the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The crude reaction mixture was purified using flash column chromatography eluting with petrol and
gradually increasing the polarity to EtOAc to give product 328 ($46 \mathrm{mg}, 0.230 \mathrm{mmol}$, 45%) as a colourless oil and product $\mathbf{3 2 8 b}$ ($44 \mathrm{mg}, 0.220 \mathrm{mmol}, 43 \%$)
Data for compound 328a, $\mathrm{R}_{\mathrm{f}}=0.29$ ($30 \% \mathrm{EtOAc}$-petrol);
$v_{\max }\left(\mathrm{cm}^{-1}\right): 3313,2698,2943,2874,1365,1168,936,887$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.08(1 \mathrm{H}$, quintet, $J=6 \mathrm{~Hz}, \mathrm{CHOH}), 2.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.50$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.92(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{CHCHOH}), 1.58\left(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right)$, $1.55\left(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{B}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COH}\right), 1.26(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CHOH}\right), 0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.77(3 \mathrm{H}, \mathrm{s}$, CH_{3});
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 78.8,67.5$ (1), 62.3 (1), 56.3 (2), 44.7, 42.3, 34.3 (3), 25.2 (3), 23.7 (3), 23.3 (3), 22.8 (3), 19.4 (3);
$\mathrm{m} / \mathrm{z}(\mathrm{Cl}+$ at $\mathrm{T}=150 \mathrm{~K}): 183[\mathrm{M}-\mathrm{OH}]^{+}(10 \%)$;
HRMS: $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 201.1855 found 201.1859.

Data for compound $\mathbf{3 2 8 b}, \mathrm{R}_{\mathrm{f}}=0.25$ (30\% EtOAc-petrol);
$v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3333,2963,2864,1370,1158,941,862$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.26(1 \mathrm{H}, \mathrm{dq}, J=1,6 \mathrm{~Hz}, \mathrm{CHOH}), 1.91(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}$, $\left.\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 1.66\left(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{B}\right), 1.52(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCHOH}), 1.32(3 \mathrm{H}$, s, $\left.\mathrm{CH}_{3} \mathrm{COH}\right), 1.30\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{3} \mathrm{CHOH}\right), 1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.79$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 79.7,68.2$ (1), 61.4 (1), 58.5 (2), 46.9, 42.7, 32.6 (3), 26.1 (3), 25.3 (3), 24.0 (3), 23.5 (3), 21.4 (3);
$\mathrm{m} / \mathrm{z}(\mathrm{CI}+$ at $\mathrm{T}=150 \mathrm{~K}): 183[\mathrm{M}-\mathrm{OH}]^{+}(45 \%)$;
HRMS: $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 201.1855 found 201.1843.

REFERENCES

M. Lai and L. Liu, J. Am. Chem. Soc., 1991, 57, 6344.
S. Ramaswamy, K. Prasad and O. Repic, J. Org. Chem., 1992, 6344, P. Binger and H. M. Buchi, Top. Curr. Chem., 1987, 135, 77. J. T. Gragson, K. W. Greenlee, J. M. Derfer and C. E. Boord, J. Am. Chem. Soc., 1953, 75, 3344.
M. H. Chang and R. J. Crawford, Can. J. Chem., 1981, 59, 2556.
J. R. Salaun, J. M. Conia and J. Champion, Organic Syntheses, 1977, 57, 36.
S. Arora and P. Binger, Synthesis, 1974, 801.
E. Sternberg and P. Binger, Tetrahedron Lett., 1985, 26, 301.
E. Thomas, Tetrahedron Lett., 1983, 24, 1467.
C. Destabel, J. D. Kilburn and J. Knight, Tetrahedron, 1994, 50, 11267.
C. Destabel, J. D. Kilburn and J. Knight, Tetrahedron Lett., 1993, 34, 3151.
R. T. Lewis, W. B. Motherwell, M. Shipman, A. M. Z. Slawin and D. J. Williams, Tetrahedron, 1995, 51, 3289.
P. Binger, Angew. Chem., Int. Ed. Engl., 1972, 11, 433.
D. Aue, R. Lorens and G. Helwig, J. Org. Chem., 1979, 44, 1202.
M. Lautens, Y. Ren and P. H. M. Delanghe, J. Am. Chem. Soc., 1994, 116, 8821.
D. P. Curran, C. P. Jasperse and T. L. Felvig, Chem. Rev., 1991, 91, 1237.
B. Giese, Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon Press, 1986,
J. E. Baldwin, J. Chem. Soc. Chem. Commun., 1976, 734.
A. L. Beckwith and C. H. Schiesser, Tetrahedron, 1985, 41, 3925.
P. J. Parsons, D.C. Lathbury and I. Pinto, J. Chem. Soc. Chem. Commun., 1988, 81.
P. J. Parsons, A. D. Borthwick and S. Caddick, Tetrahedron, 1992, 48, 10655.
A. L. Beckwith, C. J. Easton and A. K. Serelis, J. Chem. Soc. Chem. Commun., 1980, 482.
A. J. Beckwith, Chem. Soc. Rev., 1993, 22, 143.
A. J. Beckwith, I. Blair and G. Phillipou, J. Am. Chem. Soc., 1975, 96, 1613.
A. J. Beckwith and D. M. Page, Tetrahedron, 1999, 55, 3246.
A. J. Beckwith, Tetrahedron, 1981, 3073.
A. J. Beckwith, G. Phillipou and A. K. Serelis, Tetrahedron Lett., 1981, 22, 2811.
A. J. Beckwith, C. H. Schiesser, A. Wallner and D. H. Roberts, Tetrahedron Lett., 1985, 26, 3349.
S. Wolff and W. C. Agosta, J. Chem. Res. Synop., 1981, 78.
T. V. RajanBabu, Acc. Chem. Res., 1991, 24, 139.
D. P. Curran and S. C. Kuo, J. Am. Chem. Soc., 1986, 108, 1106.
D. P. Curran, S. -B. Ko and H. Josien, Angew. Chem., Int. Ed. Engl., 1995, 34, 3683.
M. Malacria, Chem. Rev., 1996, 96, 289.
M. Malacria, M. R. Elliot and A. -L. Dhimane, J. Am. Chem. Soc., 1997, 119, 3427.
T. Takahashi, S. Tomida, Y. Sakamoto and H. Yamada, J. Org. Chem., 1997, 62, 1913.
D. P. Curran and D. M. Rakiewics, Tetrahedron, 1985, 41, 3943.
G. Pattenden, S. Handa and W. -S. Li, J. Chem. Soc. Chem. Commun., 1998 , 312.
C. Destabel and J. D. Kilburn, J. Chem. Soc. Chem. Commun., 1992, 596. W. B. Motherwell, R. A. Batey, P. Grice, J. D. Harling and H. S. Rzepa, J. Chem. Soc. Chem. Commun., 1992, 942.
M. Santagostino and J. D. Kilburn, Tetrahedron Lett., 1994, 35, 8863.
M. Santagostino and J. D. Kilburn, Tetrahedron Lett., 1995, 36, 1365.
D. J. Penfold, K. Pike, A. Genge, M. Anson, J. Kitteringham and J. D. Kilburn, Tetrahedron Lett., 2000, 41, 10347.
K. G. Pike, C. Destabel, M. Anson and J. D. Kilburn, Tetrahedron Lett., 1998, 39, 5877.
D. P. Curran, Synthesis, 1988, 417.
D. P. Curran, Synthesis, 1988, 489.
H. B. Kagan, J. L. Namy and P. Girard, J. Am. Chem. Soc., 1980, 102, 2693.
H. B. Kagan, J. L. Namy and J. Souppe, Tetrahedron Lett., 1983, 24, 765.
D. P. Curran, T. L. Felvig, C. P. Jasperse and M. J. Totleben, SynLett., 1992, J. Inanaga, K. Otsubo and M. Yamaguchi, Tetrahedron Lett., 1986, 27, 5763.

5 V. Bargues, G. Blay, B. Garcia, C. L. Garcia and J. R. Pedro, Tetrahedron, 1995, 5609.
66 M. Kito, T. Sakai, K. Yamada, F. Matsuda and H. Shirahama, SynLett., 1993, 158.
G. A. Molander in Organic Reactions, ed. L. A. Paquette, J. Wiley \& Sons Inc., New York, 1994, vol. 46, p. 211.
G. A. Molander, J. B. Etter and P. W. Zinke, J. Am. Chem. Soc., 1987, 109, 453.
J. Inanaga, K. Ishikawa and M. Yamaguchi, Chem. Lett., 1987, 1485.
G. A. Molander and J. A. McKie, J. Org. Chem., 1995, 60, 872.
G. A. Molander and J. A. McKie, J. Org. Chem., 1992, 57, 3132.
D. P. Curran, T. L. Fevig and R. L. Elliot, J. Am. Chem. Soc., 1988, 110, 5064.
D. J. Procter, D. Johnston, C. F. McCusker and K. Muir, J. Chem. Soc., Perkin Trans. 1, 2000, 681.
G. A. Molander and C. R. Harris, Chem. Rev., 1996, 96, 307.
G. A. Molander and C. R. Harris, Tetrahedron, 1998, 54, 3321.
W. B. Motherwell and R. A. Batey, Tetrahedron Lett., 1991, 32, 6649.
W. B. Motherwell, R. A. Batey and J. D. Harling, Tetrahedron, 1996, 52, 11421.
C. Destabel, J. Knight and J. D. Kilburn, Tetrahedron, 1994, 38, 11289.
R. J. Boffey, W. G. Whittingham and J. D. Kilburn, J. Chem. Soc., Perkin Trans. 1, 2001, 487.
R. J. Boffey, M. Santagostino, J. D. Kilburn and W. G. Whittingham, J. Chem. Soc. Chem. Commun., 1998, 1875.
R. J. Boffey, W. G. Whittingham and J. D. Kilburn, Tetrahedron Lett., 1999, 40, 5625.
R. Köster, S. Arora and P. Binger, Angew. Chem., Int. Ed. Engl., 1969, 8, 205. K. F. Albizati, S. R. Hitchcock, F. Perron and V. A. Martin, Synthesis, 1990, 1059.
J. P. Ferris and R. W. Trimmer, J. Org. Chem., 1976, 41, 13.
D. Swern, A. J. Mancuso and S.-L. Huang, J. Org. Chem., 1978, 43, 2480. D. Johnston, C. M. McCusker and D. J. Procter, Tetrahedron Lett., 1999, 40, 4913.
G. E. Keck, C. A. Wager, T. Sell and T. T. Wager, J. Org. Chem., 1999, 64, 2172.
M. Lautens and Y. Ren, J. Am. Chem. Soc., 1996, 118, 9597.
P. Rochet, J. -M. Vatèle and J. Goré, Synthesis, 1994, 8, 795.
J. March, Advanced Organic Chemistry, 4th ed., Wiley, New York, 1992, 364.
F. C. Watson and J. D. Kilburn, Tetrahedron Lett., 2000, 41, 10341.
J. F. Sanz and J. A. Marco, Liebigs. Ann. Chem., 1990, 541.
A. F. Barrero, J. E. Oltra and M. Àlvarez, Tetrahedron Lett., 1998, 39, 1401.
L. Cardona, B. Garcia, M. C. Muñoz, F. I. Navarro and J. R. Pedro, Recueil, 1997, 527.
G. Blay, L. Cardona, B. Garcia and J. R. Pedro, J. Org. Chem., 1993, 58, 7204.
G. Blay, L. Cardona, B. Garcia and J. R. Pedro, Tetrahedron Lett., 1992, 33, 5253.
E. Piers and K. F. Cheng, Can. J. Chem., 1968, 46, 377.
A. E. Greene, J. C. Muller and G. Ourisson, J. Org. Chem., 1974, 39, 2. E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.
K. B. Sharpless, P. H. J. Carlsen, T. Katsuki and V. S. Martin, J. Org. Chem., 1981, 46, 3936.
K. Mori and H. Mori, Tetrahedron, 1985, 41, 5487.
M. T. Reetz, J. Westermann and S. -H. Kyung, Chem. Ber., 1985, 118, 1050.
M. T. Reetz, B. Wenderoth, R. Peter, R. Steinbach and J. Westermann, J. Chem. Soc. Chem. Commun., 1980, 1202.

Belmont and L. A. Paquette, J. Org. Chem., 1985, 50, 4102.
T. R. Kelly, L. Ananthsubramanian, K. Borah, J. W. Gillard, R. N. Goerner, P. F. King, W. G. Trang and J. Vaya, Tetrahedron, 1984, 40, 4569.
H. Corlay, R. T. Lewis, W. B. Motherwell and M. Shipman, Tetrahedron, 1995, 51, 3303.
S. N. Huckin and L. Weiler, Can. J. Chem., 1974, 52, 2159.
R. L. Funk, J. F. Fitzgerald, T. A. Olmstead, K. S. Para and J. A. Wos, J. Am. Chem. Soc., 1993, 115, 8849.
C. J. Lee and A. B. DeMilo, Synth. Comm., 1996, 26, 153. J. W. De Leeuw, E. R. De Waard, T. Beetz and H. O. Huisman, Recueil, 1973, 92, 1047.
R. Noyori, T. Tsunoda and M. Suzuki, Tetrahedron Lett., 1980, 21, 1357.
R. Ratcliffe and R. Rodehorst, J. Org. Chem., 1970, 35, 4000.
D. Romo, R. M. Rzasa, H. A. Shea, K. Park, J. M. Langenham, L. Sun, A. Akhiezer and J. O. Liu, J. Am. Chem. Soc., 1998, 47, 12237.

99 J. Inanaga, S. Sakai, Y. Handa, M. Yamaguchi and Y. Yokoyama, Chem. Lett., 1991, 2117.

100 J. Inanaga, Y. Handa, T. Tabuchi, K. Otsubo, M. Yamaguchi and T. Hanamoto, Tetrahedron Lett., 1991, 32, 6557.

101 Y. Fujita, S. Fukusumi and J. Otera, Tetrahedron Lett., 1997, 38, 2121.
102 S. Fukuzawa, A. Nakanishi, T. Fujinami and S. Sakai, J. Chem. Soc., Perkin Trans. 1, 1988, 1669.

103 A. Cabrera, R. Le Lagadec, P. Sharma, J. L. Arias, R. A. Toscano, L. Velasco, T. Gaviño, C. Alvarez and M. Salmón, J. Chem. Soc., Perkin Trans. 1, 1998, 3609.

104 M. C. Pirrung, V. K. Chang and C. V. DeAmicis, J. Am. Chem. Soc., 1989, 111, 5824.
A. Cabrera, N. Roasa, C. Alvarez, P. Sharma, A. Toscano, M. Salmón and J. L. Arias, Polyhedron, 1996, 15, 2971.

107 D. D. Perin and W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd ed., Pergamon Press, 1989,
W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.

109 G. M. Sheldrick, Acta Cryst., 1990, 467.
110 G. M. Sheldrick, University of Gottingen, Germany, PhD Thesis, 1997.
111 R. Köster, S. Arora and P. Binger, Liebigs. Ann. Chem., 1973, 1219.
112 H. Paulsen and U. Maab, Chem. Ber., 1981, 114, 346.
113 F. Huet, Synthesis, 1985, 496.
114 B. M. Trost and R. A. Kunz, J. Am. Chem. Soc., 1975, 97, 7152.
115 A. A. Ponaras, J. Org. Chem., 1983, 48, 3866.

Appendix

University of Southampton - Department of Chemistry
EPSRC
Universty of Southampton - Department of Chemis

160
Table 1. Crystal data and structurc refinement.
dentification code
Empirical formula
Empirical Tormula
Formula weight
Temperature
Crystal system
Crysta system
pace group
Unit cell dimensions
${ }_{Z}{ }^{\text {Volume }}$
Density (calculated)
Absorption coefficient
F(000)
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Complctencss to $\theta=24.70^{\circ}$
Refinement method
Data / restraints $/$ parameters
Goodncss-ol-fit on F^{2}
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
R indices (all data)
Largest diff. peak and hole

99 SOT010
${ }_{\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}}$
166.21
$150(2) \mathrm{K}$
${ }_{0.71073}^{150(2) K}$
Monoclinic
P_{2} / c
$a=14$
$\begin{aligned} & a=14.6687(13) \AA \\ & b=5.2792(4) \AA\end{aligned} \quad \beta=100.41(4)^{\circ}$ $b=5.2792(4) \AA$
$c=11.8019(17) \AA$ $c=11.8019(17) \AA$
$898.89(17) \mathrm{A}^{3}$
898.818
4
$1.228 \mathrm{Mg} / \mathrm{m}^{3}$
0.084 m

360
$0.40 \times 0.20 \times 0.02 \mathrm{~mm}^{3}$
$0.40 \times 0.20 \times 00^{\circ}$
2.82
.17
$-17 \leq h \leq 17,-6 \leq k \leq 6,-13 \leq l \leq 13$
11893
$1523\left[R_{m m}=0.0957\right]$
0.9983 and 0.9672

Full-matrix least-squares on F^{2}
${ }_{1.006}^{1523 / 0}<165$
1.006
$R 1=0.0447, w R 2=0.0972$
$R I=0.043,021$
$R I=0.0793, w R 2=0.11$
0.167 and $-0.216 \mathrm{c} \AA^{-3}$

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Cell
determination: DirAx (Duisenherg, A.I.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect:

Data collection software, R. Hoofl, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. twinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp.
307-326; C. W. Carter, Jr. \& R. M. Swect, Eds. Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing J. Appl. Cryst. 30 (1997) 421-426). Structure solution SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), Universily of Göltingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Walkin, L. Pearcc and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

Special details: All hydrogen atoms werc located from the difference map and fully refined.
Table 2. Atomic coordinates [$\times 10^{4}$], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and sitc occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{\prime \prime}$ tensor.

Atom	x	y	z	$U_{\text {eq }}$	S.o.f.
O1	$2551(1)$	$2186(3)$	$3376(1)$	$34(1)$	1
O2	$2967(1)$	$1163(3)$	$719(1)$	$36(1)$	1
C1	$3068(1)$	$45(3)$	$32000(2)$	$20(1)$	1
C2	$4028(2)$	$13(4)$	$3873(2)$	$33(1)$	1
C3	$4276(2)$	$-2640(4)$	$3524(2)$	$34(1)$	1
C4	$3754(2)$	$-2899(4)$	$228(2)$	$31(1)$	1
C5	$2835(1)$	$-1537(4)$	$2279(2)$	$26(1)$	1
C6	$2332(2)$	$-475(3)$	$1145(2)$	$28(1)$	1
C7	$1967(2)$	$-2491(4)$	$288(2)$	$30(1)$	1
C8	$1118(1)$	$-2080(4)$	$-568(2)$	$32(1)$	1
C9	$1061(2)$	$-3800(5)$	$369(2)$	$38(1)$	1
C10	$694(2)$	$-829(4)$	$-1468(2)$	$40(1)$	1

Table 3. Bond lengths $[\AA \AA]$ and angles [${ }^{\circ}$.

01-C1	1.221(2)	C5-C6	1.514(3)
O2-C6	1.428 (2)	C6-C7	$1.499(3)$
$\mathrm{Cl}-\mathrm{C} 2$	1.506 (3)	C7-C8	1.472(3)
C1-C5	1.515(3)	C7-C9	1.531 (3)
C2-C3	1.523(3)	C8-C10	1.308(3)
C3-C4	1.534(3)	C8-C9	1.465 (3)
C4-C5	1.528 (3)		
O1-C1-C2	125.51(18)	C8-C7-C6	120.86(18)
O1-C1-C5	124.99(18)	C8-C7-C9	58.37(14)
C2-C1-C5	109.49(16)	C6-C7-C9	120.07(19)
$\mathrm{Cl}-\mathrm{C2}-\mathrm{C} 3$	104.65(17)	C10-C8-C9	148.5 (2)
C2-C3-C4	103.81(17)	C10-C8-C7	148.3(2)
C5-C4-C3	104.31(17)	C9-C8-C7	$62.85(14)$
C6-C5-C1	112.69(16)	C8-C9-C7	$58.78(14)$
C6-C5-C4	117.65(17)		
C1-C5-C4	104.14(16)		
O2-C6-C7	111.61(16)		
O2-C6-C5	106.91(16)		
C7-C6-C5	113.01(16)		

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{2} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
O1	$40(1)$	$35(1)$	$27(1)$	$-6(1)$	$6(1)$	$6(1)$
O2	$44(1)$	$38(1)$	$26(1)$	$6(1)$	$3(1)$	$-11(1)$
C1	$31(1)$	$27(1)$	$211)$	$2(1)$	$8(1)$	$-2(1)$
C2	$33(1)$	$37(1)$	$29(1)$	$-3(1)$	$2(1)$	$-2(1)$
C3	$31(2)$	$36(1)$	$34(1)$	$1(1)$	$2(1)$	$4(1)$
C4	$36(1)$	$30(1)$	$29(1)$	$2(1)$	$9(1)$	$3(1)$
C5	$30(1)$	$26(1)$	$23(1)$	$1(1)$	$6(1)$	$-3(1)$
C6	$29(1)$	$30(1)$	$26(1)$	$-11)$	$7(1)$	$1(1)$
C7	$29(1)$	$34(1)$	$27(1)$	$-5(1)$	$5(1)$	$3(1)$
C8	$32(1)$	$34(1)$	$28(1)$	$-6(1)$	$1(1)$	$1(1)$
C9	$38(1)$	$39(1)$	$36(1)$	$0(1)$	$1(1)$	$-8(1)$
C10	$36(2)$	$49(2)$	$31(1)$	$-2(1)$	$0(1)$	$-2(1)$

Table 5. Hydrogen coordinates [$\times 10^{4}$] and isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right.$].

Atom	x	y	z		$U_{\text {cq }}$	S.o.f.	
H2A	4071(14)	320(40)	4683(19)		43(6)	1	
H2B	4431(15)	1300(40)	3631(17)		38(6)	1	
H3A	4951(16)	-2890(30)	3600(17)		34(6)	1	
H3B	4049(14)	-3880(30)	4008(17)		36(6)	1	
H4A	3660(13)	-4730(40)	2037(16)		33(5)	1	
H4B	4057(15)	-1990(40)	1738(19)		43(6)	1	
H5	2432 (14)	-2670(40)	2550(18)		32(5)	1	
H6	1794(13)	$510(30)$	1305(14)		25(5)	1	
H7	2415(15)	$-3500(40)$	71(18)		37(6)	1	
H9B	1007(14)	$-5700(40)$	195(17)		45(6)	1	
H99	752(15)	$-3340(40)$	982(19)		39(6)	1	
H10B	1033 (16)	430(40)	-1877(19)		50(6)	1	
H10A	$62(18)$	-1090(40)	-1770(20)		$55(7)$	1	
H2O	2776(17)	1460(40)	10(20)		$57(8)$	1	
Table 6. Hydrogen bends [\AA and ${ }^{\circ}$].							
D-II \cdots A		$d(D-\mathrm{II})$		$d(1 \mathrm{H} \cdots A)$		$d(D \cdots A)$	\angle (DIIA)
$\frac{\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{Ol}^{\text {i }}}{\text { Stammery }}$		0.85(3)		2.03 (3)		$2.858(2)$	166(2)
Symmetry transformations used to generate equivalent atoms:$\text { (i) } \mathrm{x},-\mathrm{y}+1,2, \mathrm{z}-1,2$							

University of Southampton - Department of Chemistry
EPSRC EPSRC National Crystallography Service

Hixmix

Table 1. Crystal data and structure refinement.
171

Identification code	99SOT005
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$
Formula weight	166.21
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P_{21} / c
Unit cell dimensions	$\begin{aligned} & a=14.584(2) \AA \\ & b=5.2345(6) \AA \end{aligned} \quad \beta=92.550(6)^{\circ}$
Volume	$911.4(3){ }^{\AA}{ }^{3}$
Z	
Density (calculated)	$1.211 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.083 \mathrm{~mm}^{-1}$
$F(000)$	360
Crystal	Colourless Needle
Crystal size	$0.02 \times 0.05 \times 0.1 \mathrm{~mm}^{3}$
θ range for data collcction	$3.41-24.71^{\circ}$
Index ranges	$-17 \leq h \leq 17,-6 \leq k \leq 6,-14 \leq 1 \leq 14$
Reflections collected	12224
Independent reflections	$1546\left[R_{t m t}=0.1281\right]$
Completeness to $\theta=24.71^{\circ}$	99.7\%
Rcfinement method	Full-matrix least-squares on F^{2}
Data / restraints / paramelters	1546/0/165
Goodness-of-fit on F^{2}	0.969
Final R indices $\left[F^{2}>20\left(F^{2}\right)\right]$	$R 1=0.0506, w R 2=0.1051$
R indices (all data)	$R I=0.1175, w R 2=0.1307$
Largest diff. peak and hole	0.172 and $-0.169 \mathrm{c} \AA^{\AA^{-3}}$

Diffractometer: Nonius KappaCCD area detector (ϕ scans and w scans to fill Ewald sphere). Cel determination: DitAx (Duisenbers, A.l. M.(1992). I. Appl. Cryst. 25, 92-96.) Data collection: Collect (Colkece
Data collection soffware, R. Hoofl, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (7 Owinowski \& W. Miner, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, parl A, pp 07-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cyyst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Crys. 30 (1997) 421--42(G). Structure solution
SHELXS97 (G. M. Sheldrick, Acta Crys. (1990) A46 467-473). Structure refinement: SHELXLD 9 (G. M SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: Shtex XI, 97 (G. M. M. Wakin, L. Pearce and C. K. Prout, Chemical Crystallegraphy Laboratory, University of Oxford, 1993).
pectal details: All hydrogen atoms were located from the difference map and fully refined.
Table 2. Atomic coordinates $\left[\times 10^{+}\right.$, equivalent isotropic displacement parameters $\left\{\hat{\Lambda}^{2} \times 10^{3}\right.$) and site occupancy actors. $U_{\text {cq }}$ is detined as one third of the trace of the orthogonalized $U^{t \prime}$ tensor.

Alom	x	y	z	$U_{\text {sp }}$	S.o.f.
01	7569(1)	2126(3)	3842(1)	47(1)	1
02	$8075(1)$	$1157(3)$	$1064(2)$	49(1)	1
Cl	8088(2)	$432(5)$	$3561(2)$	38(1)	1
C 2	$9031(2)$	-70(6)	4071 (3)	$45(1)$	1
C3	9272(2)	$-2718(6)$	366.3 (3)	47(1)	1
C4	$8777(2)$	$-2901(6)$	$2504(2)$	42(1)	1
C5	7872(2)	-1500(5)	$2643(2)$	$37(1)$	1
C6	$7397(2)$	-316(5)	$1611(2)$	$38(1)$	1
C7	$6.9677(2)$	-2278(5)	$837(2)$	44(1)	1
C8	$6177(2)$	-1392(8)	$36(3)$	$59(1)$	1
$\mathrm{Cl}_{\mathrm{Cl}}$	$6013(2)$	-3040(5)	$993(2)$	$52(1)$	1
C10	5437(3)	-4256(7)	1612(3)	67(1)	1

$\mathrm{OL}-\mathrm{Cl}$	1.222(3)	C5-C6	$1.520(3)$
${ }^{02-C 6}$	$1.434(3)$	C6-C7	$1.501(3)$
$\mathrm{C} 1-\mathrm{C}_{2}$	$1.502(4)$	C7-C9	1.468(4)
$\mathrm{Cl}-\mathrm{Cs}$	$1.515(3)$	C7-C8	$1.537(4)$
C2-C3	$1.519(4)$	C8-C9	1.440)(4)
$\mathrm{Cl}^{-\mathrm{C} 4}$	$1.536(4)$	C4-C10	1.308(4)
C4-C5	$1.526(4)$		
O1-Cl-C2	$125.9(2)$	$\mathrm{O}_{2}-\mathrm{C} 0-\mathrm{CS}$	$106.9(2)$
O1-Cl-C5	124.92)	$\mathrm{C}_{7}-\mathrm{C} 5-\mathrm{C5}$	112.6 (2)
$\mathrm{C2-Cl}-\mathrm{C}^{5}$	$109.5(2)$	C9-C7-C6	118.8(2)
$\mathrm{Cl}-\mathrm{Cl}_{2} \mathrm{C} 3$	$104.5(2)$	$\mathrm{C9}-\mathrm{C7} 7 \mathrm{CS}$	58.1 (2)
$\mathrm{C} 2-\mathrm{C}_{3} \mathrm{C} 4$	$103.9(2)$	$\mathrm{C} 6-\mathrm{C7}-\mathrm{C8}$	117.3 (3)
$\mathrm{C} 5-\mathrm{CH}-\mathrm{C} 3$	$104.22)$	$\mathrm{Cy}-\mathrm{C8}-\mathrm{Cl}_{7}$	58.69 (2)
Cl-C5--C6	112.8 (2)	C10-C9-C8	$149.5(4)$
C1-5-5-C4	104.3 (2)	$\mathrm{Cl} 10-\mathrm{Cy}-\mathrm{Cl}_{7}$	147.1(3)
C6-C5-C4	118.22)	$\mathrm{C} 8-\mathrm{C}-\mathrm{C} 7$	63.3 (2)
O2-C6-C7	111.5(2)		

Table 4. Anisotropic displacement paraneters $\left[\AA^{2} \times 10^{3}\right\}$. The anisotropic displacemen
lactor exponent takes the form: $-2 \pi^{2} \mid h^{2} a^{2} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}$.

Alom	U^{11}	U^{12}	U^{32}	v^{23}	U^{13}	U^{12}
01	$53(1)$	$51(1)$	$36(1)$	$-5(1)$	$0(1)$	$6(1)$
O 2	$53(1)$	$55(1)$	$38(1)$	$8(1)$	$-4(1)$	$-10(1)$
C 1	$47(2)$	$38(2)$	$31(2)$	$2(1)$	$6(1)$	$0(1)$
C 2	$52(2)$	$45(2)$	$37(2)$	$-7(1)$	$-4(2)$	$1(2)$
C 3	$47(2)$	$48(2)$	$45(2)$	$3(1)$	$2(2)$	$2(2)$
C 4	$49(2)$	$40(2)$	$37(2)$	$0(1)$	$6(2)$	$-1(1)$
C 5	$40(2)$	$38(2)$	$33(2)$	$1(1)$	$6(1)$	$-4(1)$
C 6	$40(2)$	$42(2)$	$32(2)$	$-1(1)$	$4(1)$	$-4(1)$
C 7	$45(2)$	$52(2)$	$35(2)$	$-8(1)$	$-1(1)$	$-2(2)$
C 8	$61(2)$	$75(3)$	$38(2)$	$-3(2)$	$-9(2)$	$-10(2)$
C 9	$53(2)$	$59(2)$	$43(2)$	$-13(2)$	$2(2)$	$-10(2)$
C 10	$68(3)$	$73(2)$	$62(3)$	$-13(2)$	$8(2)$	$-23(2)$

Table 5. Hydrogen coordinates [$\times 10^{4}$] and isoltopic displacement parameters $\left[\hat{A}^{2} \times 10^{3}\right]$.

Atom	x	y	z	$U_{\text {cg }}$	S.of.
12 A	9421(19)	1270(50)	3780(20)	$55(8)$	1
H2B	$9069(17)$	$260(40)$	4860(20)	48(8)	1
H3A	$9051(17)$	-3910(40)	$4160(20)$	$41(7)$	1
H3B	$9940(20)$	-2920(40)	$36.30(20)$	$46(8)$	1
H4A	$9106(17)$	-1960(40)	1960(20)	$45(8)$	1
H4B	$8701(16)$	$-4740(50)$	2280(19)	$45(7)$	1
15	7475(17)	-2650(50)	2970(20)	38(7)	1
116	$6876(15)$	880(40)	1854(16)	$28(6)$	1
${ }^{117}$	7373 (19)	-3620(50)	$620(20)$	53(8)	1
118 A	${ }^{6140)(19)}$	-2080(50)	-670(30)	${ }^{60}(9)$	1
H8B	$5990(20)$	450(70)	40(20)	$77(11)$	1
II10A	$4790(20)$	$-4230(50)$	1430(20)	67(10)	1
${ }^{\text {H110B }}$	$5680(20)$	$-5150(60)$	$2260(30)$	$80(12)$	1
H2O	7840(20)	$1640(60)$	440(30)	$88(13)$	1

Table 6. Hydrogen bonds $\left[\AA\right.$ and ${ }^{\circ}$.

$0-\mathrm{II} \cdots A$	$d(D-\mathrm{II})$	$d(\mathrm{II} \cdots)$	$d(D \cdots A)$	$\angle(D 1 A)$
$02-112 \mathrm{O} \cdots \mathrm{O}^{i}$	$0.85(4)$	$2.04(4)$	$2.870(3)$	$168(3)$

(i) $x,-y+1 / 2, z-1 / 2$

University of Southampton. Department of Chemistry
EPSRC EPSRC National Crystallography Service

162
Table 1. Crystal data and structure refinement.

99SOT020

$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$
Identification code
Empirical formula
Empirical formula
Formula weight
Temperature
Temperature
Wavelength
Crystal system
Space group
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
${ }_{F}^{\text {Absorption coefficient }}$
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collccted
Independent reflections
Complcetencss to $\theta=25.03$
Max. and min. transmission
Refinement method
Data i restraints $/$ paramelers
Goodncss-ot- - it on F^{2}
Goodness-off-fit on Γ^{2}
Final R indices $\left[F^{2}>2 \alpha\left(F^{2}\right)\right]$
Extinction coefficient
Largest diff. peak and holc
68.23
${ }_{0.71073}^{185}$
Monoclinic
C 2
$a=23.3173(9) \AA$
\AA
$a=23.3173(9) \AA \AA$
$b=8.2296(4) \AA$
$b=8.2296(4) \mathrm{A}$
$c=21.4400(8) \AA$
$3593.1(3) \dot{A}^{3}$
3593.1
16
1244
$1.244 \mathrm{Mg}^{-1} \mathrm{~m}^{3}$
${ }_{1472}^{0.08 .5}$
${ }^{1472}$ Colourless plate
$0.30 \times 0.20 \times 0.05 \mathrm{~mm}^{3}$
$3.06-25.03^{\circ}$
$-26 \leq h \leq 27,-9 \leq k \leq 9,-25 \leq l \leq 25$
11371
$5667\left[R_{\text {tut }}=0.0453\right]$
99.6%
0.9958 and 0.9751

Full-matrix least-squares on F^{2}
6ul-marix 19
1.010
$R I=0.0454, w R 2=0.0841$
$R 1=0.0758, \omega R 2=0.0947$
0.161 and $-0.171 \mathrm{e} \AA^{-3}$
$\beta=119.149(2)^{\circ}$
\square

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Cell determination: DirAx (Duisenbcrg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect.
Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp $307-326$; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H1 Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, Universily of Oxford, 1993)

Special details: All hydrogen atoms were placed in idealised positions and refined using a riding model.
Table 2. Atomic coordinales [$\times 10^{4}$], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy Table 2. Atomic coordinales $\left.\times 10^{\wedge}\right]$, equivalent isolropic displacement paramel
factors. $U_{\text {u }}$ is defincd as one third of the trace of the orthogonalized $U^{y \prime}$ tensor.

Alom	x	y	z	$U_{\text {cq }}$	S.o.f.
0101	1508(1)	14239(4)	-651(1)	35(1)	1
0102	2758(1)	18101(4)	1224(1)	$28(1)$	1
C101	1709(2)	20211(7)	525(2)	36(1)	1
C102	1595(2)	18614(6)	441(2)	$31(1)$	1
C103	930(2)	17941(7)	-76(2)	35(1)	1
C104	989(2)	16750(6)	-587(2)	33(1)	1
C105	1453(2)	15391(6)	-173(2)	27(1)	1
C106	2138(2)	16010(6)	$339(2)$	25(1)	1
C107	2565(2)	14693(6)	870(2)	$31(1)$	1
C108	2463(2)	$14879(7)$	1525 (2)	$34(1)$	1
C109	2040(2)	16387(6)	1394(2)	$24(1)$	1
C110	2122(2)	17360(5)	833(2)	21(1)	1
0201	2031(1)	21618(4)	2693(1)	35(1)	1
0202	-226(1)	23216(4)	1720(1)	27(1)	1
C201	-491(2)	19962(8)	1824(2)	36(1)	1
C202	22(2)	20334(6)	1736(2)	$27(1)$	1
C203	499(2)	19045(7)	1771(2)	32(1)	1
C204	1202(2)	19509(6)	$2334(2)$	$32(1)$	1
C205	1377(2)	21152(6)	2170(2)	25(1)	1
C206	913(2)	$22479(5)$	2151(2)	20(1)	1
C207	992(2)	24071(6)	1828(2)	$28(1)$	1
C208	591(2)	$23814(7)$	1014(2)	35(1)	1
C209	116(2)	22414(6)	$898(2)$	26(1)	1
C210	187(1)	22042(6)	$1634(2)$	21(1)	1
0301	-2086(1)	24879(4)	2413(1)	35(1)	1
0302	113(1)	23093 (4)	$3162(1)$	27(1)	1
C301	471(2)	26303(8)	$3171(2)$	38(1)	1
C302	-48(2)	26003(6)	3248(2)	25(1)	1
C303	-515(2)	27295(7)	3217 (2)	$32(1)$	1
C304	-1221(2)	26875(7)	2681(2)	$35(1)$	1
C305	-1404(2)	25258(6)	2870(2)	25(1)	1
C306	-965(2)	23887(5)	2861(2)	22(1)	1
C307	-1052(2)	22330(6)	$3179(2)$	28(1)	1
C308	-625(2)	$22566(6)$	3993(2)	$32(1)$	1

C309	$-129(2)$	23929(6)	$4095(2)$	29(1)		
C310	-230(1)	24294(6)	3341 (2)	22(1)		
0401	$3658(1)$	27144(5)	5718(1)	$45(1)$		
0402	$2255(1)$	23230(4)	$3946(1)$	311)		
C401	$3329(2)$	$21156(7)$	$4508(2)$	$40(1)$		
C402	$3433(2)$	$22719(6)$	$4580(2)$	$25(1) \quad 1$		
C403	$4104(2)$	2343667	$5045(2)$	$39(1) \quad 1$		
C404	$4092(2)$	$24645(7)$	$5579(2)$	$39(1) \quad 1$		
C 405	3608 (2)	$25990(6)$	$5198(2)$	$26(1) \quad 1$		
${ }^{\text {c } 406}$	2912(2)	25333(6)	$4739(2)$	24(1) 1		
C407	2449(2)	$26617(7)$	$4226(2)$	$39(1) \quad 1$		
C408	2484(2)	$26430(7)$	$3535(2)$	$39(1) \quad 1$		
C409	2908(2)	24032(6)	$3633(2)$	$26(1) \quad 1$		
C410	2892(2)	23979(6)	$4231(2)$	$24(1) \quad 1$		
Table 3. Bond lengths [$\hat{\chi}$] and angles $\left[{ }^{\circ}\right]$.						
O101-C105		1.447 (5)		0301-C305	$1.438(4)$	
0102-C110		$1.436 .(4)$		O302-C310	1.438(5)	
C101-C102		$1.335(7)$		C301-C302	$1.322(5)$	
C102-C103		1.506 (6)		C302.-C303	1.500 (6)	
C102-C110		$1.509(6)$		C302-C310	$1.511(6)$	
C103-C104		1.526 (6)		C303-C304	1.520 (5)	
C104-C105		$1.507(6)$		C304-C305	$1.512(7)$	
$\mathrm{ClO5-ClO}_{6}$		$1.519(5)$		C305-C306	$1.530(6)$	
C106-C107		$1.535(6)$		C306-C307	1.511(6)	
C106-C10		1.547 (6)		C306-6310	$1.546(4)$	
C107-C108		1.543 (5)		C307-C308	$1.543(5)$	
C108-C109		$1.524(7)$		C308-C309	$1.548(6)$	
C109-C110		$1.535(5)$		C309-C310	$1.544(5)$	
O201-C205		$1.436(4)$		O401-C405	1.426 (5)	
O202-C210		$1.436(5)$		O402-C410	1.440(4)	
C201-C202		1.332(5)		C401-C402	$1.304(7)$	
C202-C210		$1.502(6)$		C402-C403	$1.505(6)$	
C202-C203		$1.512(6)$		C402-C410	1.520 (1)	
C203-C204		$1.538(5)$		${ }^{\mathrm{C} 403-\mathrm{C} 404} \mathrm{C} 404 \mathrm{C} 405$	1.527(7)	
C204-C205		$1.502(7)$			$1.506(6)$	
C205-C206		$1.524(5)$		C405-C406	1.530(5)	
C206-C207		$1.534(6)$		C406-C407	1.528 (6)	
C206,-C210		1.549(4)		C406-C410C407-C4198	1.542 (6)	
C207-C208				$1.531(6)$		
C208-C209		1.542(5)			C408-C409	$1.530(7)$
C209-C210		$1.532(4)$		C409-C410	1.520(5)	
C101-C102-C103		121.8(4)		C104-C105-Cl06	112.1(4)	
$\begin{aligned} & \mathrm{C} 101-\mathrm{ClO2-Cl10} \\ & \mathrm{Cl03-C102-C110} \end{aligned}$		122.9(4)		C105-C106-C107	111.94 (4)	
		115.3 (4)		C105-C106-C110	111.6 (3)	
$\begin{aligned} & \mathrm{C103-C102-C110} \\ & \mathrm{Cl02-C103-C104} \end{aligned}$		$110.0(3)$		C107-C106-C110	1029(3)	
C105-C104-C103		110.1 (3)		C106-C107-C108	105.8(3)	
0101-C105--C104		$110.73)$		C109-C108-C107	106.7(3)	
O101-C105-C10\%				C108-C109-C110	104,64,3)	

O102-C110-C102	111.4(4)	C402-C403-C404	111.1(3)
O102-C110-C109	104.6(3)	C405-C404-C403	110.7.3)
C102-C110-Cl09	114.5(3)	O401-C405-C404	108.1(3)
O102-C110-C106	110.1 (3)	O401-C405-C406	113.2(3)
C102-C110-C106	$113.2(3)$	C404-C405-C406	11.7 (4)
$\mathrm{C109-C110-C106}$	102.4(3)	C407-C406-C405	112.0.4)
C201-C202-C210	123.2(4)	C407-C406-C410	102.9(3)
C201-C202-C203	121.3(5)	C405-C406-C410	$111.5(3)$
C210-C202-C203	115.4(3)	C406-C407-C408	106.0(4)
C202-C203-C204	110.1 (4)	C409-C408-C407	106.5(3)
C205-C204-C203	110.3 (3)	C410-C409-C408	104.5(3)
O201-C205-C204	111.3 (3)	O402-C410-C402	110.8(4)
O201-C205-C206	107.4(3)	O402-C410-C409	107.9(3)
C204-C205-C206	112.4(3)	C402-C410-C409	114.3 (3)
C205-C206-C207	112.643	O402-C410-C406	106.23)
C205-C206-C210	$111.5(3)$	C402-C410-C406	114.4(3)
C207-C206-C210	101.8(3)	C409-C410-C406	102.6(4)
C206-C207-C208	104.7(4)		
C209-C208-C207	$106.2(3)$		
C208-C209-C210	106.0(3)		
0202-C210-C202	112.1(3)		
0202-C210-C209	104.7(3)		
C202-C210-C209	$115.4(3)$		
0202-C210-C206	108.6 (3)		
C202-C210-C206	$112.4(3)$		
C209-C210-C206	102.9(3)		
C301-C302-C303	123.4(5)		
C301-C302-C310	121.7(4)		
C303-C302-C310	114.8(3)		
C302-C303-C304	$111.644)$		
C305-C304-C303	$110.0(4)$		
0301-C305-C304	111.8(3)		
0301-C305-C306	110.9 (3)		
C304-C305-C306	111.5 (3)		
C307-C306-C305	$112.5(3)$		
C307-C306-C310	103.44)		
C305-C306-C310	111.3 (3)		
C306-C307-C308	104.4(3)		
C307-C308-C309	106.1 (3)		
C310-C309-C308	105.6(3)		
O302-C310-C302	112.0(3)		
0302-C310-C309	108.9 (3)		
C302-C310-C309	114.3 (3)		
O302-C310-C306	104.7(3)		
C302-C310-C306	113.9(3)		
C309-6310-C306	102.1(3)		
C401-C402-C403	122.6(4)		
C401-C402-C410	123.5.54)		
C403-C402-C410	113.8 (4)		

Table 4. Anisorropic displacement parameters $\left[\hat{A}^{2} \times 10^{3}\right]$. The anisoltopic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{2} U^{2} U^{1}+\cdots+2 h k a^{2} b^{*} U^{12}\right]$.

Atem	u^{11}	U^{22}	U^{33}	U^{23}	U^{3}	U^{12}
0101	$25(1)$	$46(2)$	32(1)	$-17(1)$	13(1)	-8(1)
0102	22 (1)	35(2)	26(1)	-3(1)	10(1)	-7(1)
ClO_{1}	47(3)	23(4)	32(2)	1 (2)	16(2)	2(2)
$\mathrm{ClO2}^{10}$	28(2)	41(4)	25(2)	$1(2)$	13(2)	1(2)
C 103	26(2)	$35(4)$	$35(2)$	$4(2)$	7 (2)	$7(2)$
C 104	25(2)	33(3)	27(2)	-4(2)	2(2)	$0(2)$
C105	26(2)	31(3)	23(2)	-4(2)	11(2)	0 (2)
C106	19(2)	33(3)	22(2)	$1(2)$	10(1)	-12)
C107	24(2)	30(3)	32(2)	-1(2)	$8(2)$	2 (2)
C108	39(2)	30(3)	30(2)	7 (2)	$15(2)$	$1(2)$
C109	$29(2)$	24(3)	$21(2)$	4(2)	12(2)	12)
C 10	18(2)	21(3)	$20(2)$	-3(2)	7 (1)	-2(2)
0201	18(1)	48(2)	30(1)	-11(1)	6 (1)	2(1)
0202	$22(1)$	38(2)	22(1)	$1(1)$	$10(1)$	$7(1)$
C 201	30(2)	48(4)	$29(2)$	-4(2)	13(2)	-9(2)
C202	26(2)	33(3)	17(2)	-4(2)	7(2)	-6(2)
C 203	30(2)	26(3)	$29(2)$	-1(2)	6 (2)	-7(2)
C 204	$25(2)$	33(4)	$29(2)$	2 (2)	$7(2)$	$8(2)$
C205	21(2)	36(3)	$18(2)$	-5(2)	$9(1)$	-5(2)
C206	21(2)	20(3)	$20(2)$	$0(2)$	10(1)	$1(2)$
C207	24(2)	26(3)	30(2)	2(2)	11(2)	-2(2)
C 208	43(2)	39(4)	$28(2)$	2 (2)	20(2)	$-5(2)$
C 209	22(2)	30(3)	21(2)	$4(2)$	8 (2)	1(2)
C210	19(2)	27(3)	18(2)	1(2)	10(1)	5(2)
0301	18(1)	53(2)	28(1)	-15(1)	$7(1)$	-3(1)
0302	22(1)	33(2)	$24(1)$	4 (1)	$9(1)$	10(1)
C301	40(2)	40(4)	32(2)	-7(2)	18(2)	-18(2)
C302	20(2)	32(3)	1.3(2)	-1(2)	1(1)	-6, 2)
C303	$31(2)$	25(3)	33(2)	-1(2)	10(2)	$5(2)$
C304	$34(2)$	26 (3)	$34(2)$	$1(2)$	$8(2)$	$5(2)$
C305	$16(2)$	34(3)	20(2)	-4(2)	4(1)	$5(2)$
C306	17(2)	30(3)	18(2)	-3(2)	$7(1)$	-1(2)
C307	$31(2)$	27(3)	$29(2)$	-1(2)	16(2)	-5(2)
C308	$35(2)$	344)	30(2)	$6(2)$	17(2)	-5(2)
C309	$29(2)$	40(4)	$19(2)$	1(2)	11(2)	2(2)
C310	18(2)	27(3)	24(2)	-2(2)	$11(1)$	$3(2)$
0401	27(1)	$67(3)$	$44(2)$	-32(2)	$19(1)$	$-10(1)$
0402	$25(1)$	39(2)	30(1)	-11(1)	14(1)	$-13(1)$
C401	4012)	30(4)	$42(2)$	$4(2)$	$15(2)$	$5(2)$
C402	30(2)	17(3)	23(2)	3(2)	10(2)	$4(2)$
ClH_{3}	28(2)	28(4)	44(2)	-3(2)	$4(2)$	11(2)
$\mathrm{C4} 44$	31(2)	34(3)	32(2)	0 (2)	$1(2)$	2 (2)
C 405	22(2)	30(3)	$26(2)$	$-10(2)$	122)	$-5(2)$
C406	$26(2)$	$27(3)$	$261(2)$	-3(2)	$16(2)$	$-3(2)$

C407	$31(2)$	$41(4)$	$38(2)$	$-8(2)$	$12(2)$	$7(2)$
C 408	$36(2)$	$36(4)$	$34(2)$	$8(2)$	$8(2)$	$8(2)$
C 09	$25(2)$	$30(3)$	$22(2)$	$0(2)$	$11(2)$	$-5(2)$
C 410	$17(2)$	$32(3)$	$21(2)$	$1(2)$	$9(1)$	$-4(2)$

Table 5. Hydregen coordinates $\left[\times 10^{4}\right]$ and isorropic displacement parameters $\left[\lambda^{2} \times 10^{0}\right]$.

Atom	x	y	z	$U_{\text {cg }}$	S.o.f.
H1A	1330(20)	21020 (80)	$270(20)$	68(15)	1
H1B	2130(20)	20650(70)	880(20)	57(13)	1
H11C	$-560(20)$	18780(90)	1930(30)	110(20)	1
H1D	$-764(15)$	20720(50)	1814(17)	28(11)	1
H1E	$543(14)$	$27500(50)$	$3095(14)$	17(9)	1
H1F:	$791(18)$	25250(70)	3210(20)	74(16)	1
H1G	$3690(19)$	$20420(70)$	$4777(19)$	45(12)	1
H111	2860(17)	$20660(60)$	4215(18)	34(10)	1
113 A	$629(18)$	18850(60)	$-360(20)$	58(13)	1
${ }^{\text {II3B }}$	$735(15)$	$17350(600)$	$200(17)$	40(11)	1
${ }^{\text {II3C }}$	428(15)	18910(60)	1273(18)	38(10)	1
${ }^{\text {H3D }}$	$393(16)$	17910(70)	1911(18)	$39(12)$	1
H3E	-472(13)	27380(50)	$3725(16)$	17(8)	1
H3F	--371(15)	28340(60)	3134(18)	29(11)	1
H3G	4250(18)	$24060(70)$	$4710(20)$	70(14)	1
${ }^{123} \mathrm{H}$	$4409(17)$	$22480(60)$	5257(19)	49(12)	1
$\mathrm{H}_{4} \mathrm{~A}$	1205 (17)	$17300(60)$	-854(19)	55(12)	1
H4 $\mathrm{B}^{\text {c }}$	$548(15)$	$16250(60)$	-960(16)	40(10)	1
$\mathrm{H}_{4} \mathrm{C}$	1254(14)	19440(60)	2794(16)	$26(9)$	1
H44D	1534(19)	18710(70)	2346(19)	$59(14)$	1
H4E	$-1273(14)$	26720(60)	2173(16)	31(9)	1
H44F	-1476(16)	$27710(60)$	2659(17)	30(11)	1
${ }^{\text {II4G }}$	3969(16)	$24020(60)$	$5905(17)$	44(11)	1
H44	$4536(17)$	25080(60)	$5909(17)$	49(12)	1
H5A	1278(14)	14650(50)	$93(15)$	$21(9)$	1
${ }_{\text {HSB }}$	1363(12)	$21130(50)$	1701(15)	$16(8)$	1
${ }^{\text {Hisc }}$	$-1344(11)$	$25410(40)$	3354(13)	$2(7)$	1
IISD	3750(14)	26490(50)	4842(16)	26(10)	1
H6A	$23366(13)$	$16550(50)$	$49(16)$	$30(9)$	1
	984(10)	$22600(40)$	2671(12)	1(7)	1
1 HCO	$-1071(14)$	23730(50)	2367(17)	38(10)	1
${ }^{16 \mathrm{D}}$	$2753(12)$	$24920(50)$	$50365(15)$	$23(9)$	1
H7A	$24.55(16)$	13640(60)	6.59(16)	32(10)	1
178	3040(16)	14860(50)	1042(15)	$36(10)$	1
H7C	$1467(13)$	$24250(40)$	1961(13)	$9(8)$	1
H7D	$867(18)$	$25060(60)$	2027 (19)	42(12)	1
H77E	--866(17)	21430 (60)	3026(19)	33(11)	1
117 F	-1555(17)	22090 (60)	$2997(18)$	53(1.3)	1
${ }^{177}$	1984(14)	$26340(40)$	$4163(15)$	$28(8)$	1
H711	2580(20)	$27830(80)$	$4450(219)$	$79(16)$	1
H8A 48 C	$2236(17)$ $355(18)$	13930(60)	${ }^{1566(18)}$	46(13)	1
H8C	$355(18)$	24920(70)	781(19)	43(12)	1

H8D	898(16)	23650(60)	797(18)	$55(12)$	1
H8E	-920(13)	$23010(50)$	4192(14)	24(8)	1
H8F	-361(17)	21540 (70)	4256(18)	38(12)	1
H8G	2034(16)	26100(50)	3121(18)	43(11)	1
H8H	$2639(19)$	27400(70)	3440(20)	$59(15)$	1
H9A	$2195(13)$	16950(50)	1826(16)	18(8)	1
H9B	1548(15)	16150(60)	1181(16)	34(10)	1
н9 В	2884(17)	14870(50)	1948(18)	47(11)	1
H9C	-364(14)	22830(50)	554(14)	23(9)	1
H9D	237(16)	$21420(70)$	$720(17)$	$30(11)$	1
H9E	330(15)	23820(50)	4416(15)	25(9)	1
H9F	-219(16)	24990(70)	4308(18)	35(11)	1
H9G	3368(15)	25250(50)	3788(15)	27(9)	1
$\mathrm{H}^{\text {H }} \mathrm{H}$	2740(15)	$24210(60)$	3177(18)	44(11)	1
H10A	1090(16)	13830(40)	-954(16)	42(10)	1
H10B	2320(20)	21050(70)	$2600(30)$	108(19)	1
H10C	-2115(14)	24470(50)	2034(16)	$30(10)$	1
H10D	$3300(20)$	27410(70)	5680(20)	98(19)	1
H11A	2910(20)	18540(60)	$910(20)$	93(16)	1
H11B	-112(18)	$23160(60)$	2177(18)	78(15)	1
H11C	$518(17)$	22890(50)	3535(18)	$56(11)$	1
H11D	2169(18)	22670(50)	3530(20)	$66(14)$	1

Table 6. Hydrogen bonds [\AA and ${ }^{\circ}$].

D-H. \cdots	$d(\mathrm{D}-\mathrm{H})$	$d(\mathrm{H} \cdots \mathrm{A})$	$d(D \cdots A)$	$\angle(D H A)$
O101-H10A \cdots O202 ${ }^{\text {a }}$	0.93(3)	1.95 (3)	2.868(3)	170(3)
O102-H11A \cdots O101 ${ }^{\text {i }}$	0.96(5)	1.80 (5)	2.714(3)	157(4)
O201-H10B \cdots O301 ${ }^{\text {iii }}$	0.92 (4)	1.89 (5)	$2.801(3)$	179(5)
O202-H118 \cdots O302	0.88(3)	1.91(3)	$2.796(2)$	178(4)
O301-H10C...O102 ${ }^{\text {w }}$	0.85(3)	1.97(3)	$2.805(4)$	168(3)
O302-1111C...O401	0.91 (3)	1.91(4)	$2.808(3)$	172(4)
	0.84(5)	1.944)	2.710(4)	154(4)
O402-II11D - O201	0.93(4)	1.88(4)	2.807(4)	177(4)

University of Southampton - Department of Chemistry
EPSRC National Crystallography Service

173
Table 1. Crystal data and structure refinement.

Identification code
Empirical formula
Formula weight
Temperature
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption cocfficient
$F(000)$
Frystal
Crystal
Crystal size
θ range for data collcection
Index ranges
Reflections collected
Complecteness to $\theta=25.02^{\circ}$ Absorplion correction. Max. and min. transmi Refinement method
Data $/$ restraints $/$ parameters
Goodness-ofl-fil on F^{2}
Final R indices $\left[F^{2}>2 \alpha\left(F^{2}\right)\right]$
R indices (all data)
Extinction coefficien
Largest diff. peak and hole

$\beta=100.005(5)^{\circ}$
$b=11.0202(5)$ $=15.8724(6)$ ${ }_{4}^{1795.31(13) \mathrm{A}^{3}}$
$1.237 \mathrm{Mg} / \mathrm{m}^{3}$
${ }_{728}^{0.084 \mathrm{~m}}$
ss Block
$2.99-25.02^{\circ}$
$-15 \leq h \leq 12,-13 \leq k \leq 11,-18 \leq 1 \leq 18$
$3167\left[R_{m m}=0.0363\right]$

Full-matrix leasl-squarcs on F^{2}
$R 1=0.0717, w R 2=0.102$
0.189 and $-0.178 \mathrm{c} \AA^{-3}$

Diffractometer: Nonius KappaCCD area detector (ϕ scans and wo scans to fill Ewald sphere). Cell determination: DirAx (Duisonberg, A.J.M.(1992). I. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect:
Data collection software, R. Hoofi, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. Olwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular CYystallography, part A, pp 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Acadernic Press). Absorption correction: SORTAV (R.
 Sheldrick (1997), University of Göttingen, Gcrmany). Graphics: Cameron - A Molccular Graphics Package. (D
M. Watkin, L. Pcarce and C. K. Prout, Chemical Cryslallography Laboratory, University of Oxford, 1993)

Special details: All hydrogen atoms were focated from the dificerence map and fulfy refined.
Table 2. Atomic coorrdinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{c q}$ is defined as one third of the trace of the orthogenalized U^{y} iensor.

Atom	x	y	z	$U_{\text {cq }}$	S.o.f.
01	$2169(1)$	4759(1)	-636(1)	$29(1)$	1
02	-1626(1)	2274(1)	-1393(1)	$28(1)$	1
03	$2992(1)$	$5768(1)$	$874(1)$	27 (1)	1
04	$5645(1)$	$5695(1)$	1381(1)	$31(1)$	1
C1	-1211(2)	1535(2)	$309(1)$	34(1)	1
C2	-193(2)	1856(2)	-36(1)	25(1)	1
C3	-302(2)	$2195(2)$	-967(1)	23(1)	1
C4	$336(2)$	1.304(2)	-1508(1)	30(1)	1
C5	$507(2)$	2028(2)	-2303(1)	4011)	1
c6	474(2)	3377(2)	-2055(1)	344)	1
C7	390(2)	$3395(2)$	-1098(1)	25(1)	1
C8	1721(2)	$3540(2)$	-521(1)	$25(1)$	1
C9	$1653(2)$	$3302(2)$	$419(1)$	$24(1)$,
C10	1146(2)	2002(2)	$490(1)$	2713)	1
C11	$2909(2)$	3554(2)	$1077(1)$	24(1)	1
C 12	2906(2)	4804(2)	1488(1)	$25(1)$	1
C 13	40466(2)	$5000(2)$	$221001)$	$26(1)$	1
C14	$4103(2)$	4246(2)	$3026(1)$	$32(1)$	1
C15	5543 (2)	$4258(2)$	3453(1)	$41(1)$	1
C16	6,293(2)	4842(2)	2806 (1)	33(1)	1
C 17	5381(2)	$4751(2)$	1950(1)	26(1)	1
C18	5374 (2)	3542(2)	1482(1)	26 (1)	1
C19	$6.325(2)$	$2736(2)$	1642(1)	$32(1)$	1
C20	$4215(2)$	3343(2)	$769(1)$	27(1)	1

Table 3. Bond lenghths $[\mathcal{A}]$ and angles $\left[{ }^{\circ}\right]$.

$\mathrm{Ol}-\mathrm{C8}$	1.444(2)	C9-C11	$1.552(2)$
$\mathrm{OL}_{2-\mathrm{C}}$	1.43122(19)	C18-C19	1.322(3)
$03-\mathrm{Cl} 2$	$1.455(2)$	$\mathrm{C} 18-\mathrm{C} 20$	$1.520(2)$
$04-\mathrm{Cl} 7$	1.452(2)	$\mathrm{C18-C17}$	$1.525(3)$
C9-C8	$1.529(2)$	$\mathrm{Cl1}-\mathrm{Cl} 2$	$1.524(2)$
C9-C10	$1.537(2)$	C11-C20	$1.542(2)$

C12-C13	$1.516(2)$	C8-C7	1.532(2)
C13-C14	1.532 (3)	$\mathrm{C2}-\mathrm{Cl}$	$1.324(2)$
C13-C17	1.543(2)	C6-C7	$1.537(2)$
C10-C2	$1.505(2)$	C6-C5	$1.539(3)$
C3-C2	$1.509(2)$	$\mathrm{Cl}_{6} 6 \mathrm{Cl} 5$	$1.536(3)$
C3-C4	$1.532(2)$	C4-C5	1.529(3)
$\mathrm{Cl}_{3-\mathrm{Cl}}$	$1.538(2)$	$\mathrm{Cl}_{4} \mathrm{C} 15$	$1.536(3)$
C17-C16	1.520(2)		
$\mathrm{Cr}_{-\mathrm{Cl}-\mathrm{Cl}}$	107.80(14)	C13-C14-Cl5	105.01(15)
$\mathrm{C}_{8-\mathrm{C} 9-\mathrm{Cl1}}$	116.73 (13)	C16-C15-C14	106.31(16)
C10-Cy-Cl1	112.22 (14)	C4-C5-C6	106.43(16)
C19-C18-C20	$121.26(18)$		
C19-C18-C17	123.55(17)		
$\mathrm{C} 20-\mathrm{Cl}^{-}-\mathrm{Cl} 7$	115.09(14)		
C12-C11-C20	$109.85(14)$		
C12-C11-C9	112.69(14)		
C20-C11-C9	116.57(14)		
O3-C12-C13	$105.69(13)$		
O3-C12-C11	111.61(13)		
C13-C12-C11	113.09(14)		
C12-C13-C14	118.13(15)		
C12-C13-C17	113.46(14)		
Cl4-C13-C17	103.07(14)		
$\mathrm{C} 2-\mathrm{Cl} 10-\mathrm{Cl}$	$110.89(15)$		
C18-C20-C11	111.89 (14)		
$02-\mathrm{C} 3-\mathrm{C} 2$	$112.34(13)$		
O2-C3-C4	104.56(14)		
$\mathrm{C} 2-\mathrm{C3}^{-\mathrm{C} 4}$	$115.12(15)$		
$02-\mathrm{C3-C7}$	108.67(13)		
C2-C3-C7	112.87(14)		
$\mathrm{CH}_{4} \mathrm{C3}-\mathrm{C7}$	102.47(14)		
O4-C17-Clib	109.58(14)		
O4-C17-C18	107.82(13)		
C16-C17-C18	$116.24(16)$		
$04-\mathrm{Cl} 7-\mathrm{Cl} 3$	110.49(14)		
$\mathrm{Cl}_{16-\mathrm{Cl}} 7-\mathrm{Cl} 3$	$101.69(14)$		
C18-C17-C13	110.91 (14)		
O1-C8-C9	110.67 (14)		
O1-C8-C7	107.46(14)		
C4-C8-C7	112.00(13)		
C1-C2-C10	122.17(17)		
$\mathrm{Cl}-\mathrm{Cl}-\mathrm{C} 3$	122.78(16)		
C10-C2-C3	114.89(14)		
C7-C6-C5	$105.82(15)$		
C8-C7-C6	$112.98(14)$		
$\mathrm{CB-C7}_{-63}$	$113.92(14)$		
$\mathrm{C6}-\mathrm{C7}-\mathrm{C}_{3}$	103.40(14)		
C17-C16-C15	104.95(15)		
C5-C4-C3	104.59(10)		

Table 4. Anisoltropic displacement parameters [$\left.\hat{A}^{2} \times 10^{3}\right]$. The anisotropic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{w^{2}} U^{11}+\cdots+2 h k a^{* *} b^{*} U^{12}\right]$.

Atom	$U^{\prime \prime}$	U^{22}	U^{3}	U^{23}	l^{13}	U^{12}
01	25(1)	$29(1)$	$31(1)$	4(1)	4(1)	-5(1)
O2	22(1)	32(1)	30(1)	-4(1)	-1(1)	O(1)
03	26(1)	26(1)	27(1)	2(1)	0 (1)	2(1)
04	$25(1)$	32(1)	$37(1)$	7 (1)	$5(1)$	-2(1)
Cl	27(1)	42(1)	$32(1)$	3(1)	0 (1)	-5(1)
C2	27(1)	$22(1)$	27(1)	-1(1)	${ }^{3}(1)$	0 (1)
C3	19(1)	$24(1)$	25(1)	-2(1)	$-1(1)$	-1(1)
C4	28(1)	33(1)	29(1)	-4(1)	3 (1)	4(1)
$\mathrm{C5}$	40(1)	49(2)	$31(1)$	-1(1)	8(1)	10(1)
C6	33(1)	43(1)	25(1)	$3(1)$	0 (1)	-5(1)
C7	24(1)	27(1)	24(1)	1(1)	$1(1)$	2(1)
C8	22(1)	26(1)	$27(1)$	1(1)	5 (1)	0 (1)
C9	19(1)	$26(1)$	$25(1)$	1(1)	$2(1)$	$3(1)$
ClO	28(1)	$28(1)$	$24(1)$	$2(1)$	$2(1)$	-2(1)
$\mathrm{Cl1}$	$21(1)$	$28(1)$	24(1)	$3(1)$	3(1)	0 (1)
C 12	21(1)	27(1)	27(1)	$0(1)$	4(1)	1(1)
C 13	24(1)	26(1)	28(1)	-2(1)	$2(1)$	1(1)
Cl 4	$29(1)$	41(1)	26 (1)	-1(1)	4(1)	-2(1)
Cl 15	33(1)	$56(2)$	30(1)	$5(1)$	-2(1)	1(1)
${ }^{\text {Cl6 }}$	23(1)	$39(1)$	34(1)	0 (1)	-2(1)	1(1)
C17	22(1)	$31(1)$	27(1)	2(1)	4(1)	-2(1)
C18	19(1)	$31(1)$	$27(1)$	4(1)	$5(1)$	-1(1)
C19	28(1)	32(1)	$34(1)$	1(1)	4(1)	3(1)
C20	24(1)	28(1)	28(1)	$-2(1)$	3 (1)	3(1)

Table 5. Hydrogen coordinates $\left[\times 10^{4}\right]$ and isotropic displacenent parameters $\left[\hat{\Lambda}^{2} \times 10^{3}\right]$.

Atom	x	y	z	$U_{\text {cq }}$	Sor.
III	-2020(20)	2870(20)	-1121(14)	$60(7)$	1
IIIA	-2062(18)	1475(16)	-18(1)	31(5)	1
H1B	-1122(17)	1365(17)	959(13)	42(5)	1
HiC	2910(20)	4680(20)	-898(15)	78(8)	1
H_{3}	2640(20)	$5510(20)$	354(14)	60(7)	1
$114 \wedge$	-244(19)	585(19)	-1649(12)	39(5)	1
114B	1190(18)	$1005(17)$	-1149(11)	$38(5)$	1
114 C	4940(20)	$5900(20)$	1040(14)	(6317)	1
H5A	-220(20)	1850(20)	-2788(14)	$59(7)$	1
${ }^{155}$	133020)	1850(20)	-2482(14)	$61(6)$	1
If6A	-.337(19)	$3769(18)$	-2415(12)	$44(6)$	1
HeB	$1256(19)$	3843(19)	-2166(1)	$45(6)$	1
117	-140(15)	4090(16)	-944(10)	$21(4)$	1
118	2371(15)	2943(16)	-696(10)	23(4)	1

$1{ }^{1} 9$	986(16)	$3836(16)$	567(10)		22(4)	1	
1110A	$119(16)$	1814(16)	1086(12)		$30(5)$	1	
$\mathrm{H}^{\text {H0B }}$	1812(17)	1393(17)	$289(11)$		38(5)	1	
H11	2900 (14)	2990 (16)	1566(11)		$22(4)$	1	
II12	2043(15)	4898(14)	1693 (9)		16(4)	1	
1113	4059(16)	$58611(17)$	2374(10)		$27(5)$	1	
H14A	3523(18)	$4598(19)$	$3381(12)$		$45(6)$	1	
H14B	$3805(18)$	$3420(20)$	2896(12)		43(6)	1	
I115A	5870(20)	3450(20)	3619(14)		$59(7)$	1	
H15B	5670(20)	4740(20)	3990(15)		$69(7)$	1	
H16A	$7159(18)$	$4463(17)$	$2826(11)$		$34(5)$	1	
${ }^{11168}$	$6.4344(18)$	5730(20)	2930(12)		$49(6)$	1	
II19A	${ }^{6,309(15)}$	$1995(17)$	1306 (11)		$24(5)$	1	
${ }^{\text {m119B }}$	7122 (18)	$2887(18)$	$2125(12)$		40 (5)	1	
II20A	$4237(16)$	2481(18)	534(11)		$34(5)$	1	
H20B	4276 (16)	3916(17)	273(11)		30(5)	1	
Table 6. Hydrogen bonds [$\hat{\AA}$ and $\left.{ }^{\circ}\right\}$.							
$D-\mathrm{H} \cdots \mathrm{A}$		$d(D-\mathrm{II})$		$d(1)$		$d(D \cdots A)$	$\angle(D H M)$
$02-\mathrm{H1} \cdots \mathrm{O}^{\text {3 }}$		0.92(2)		$1.89(2)$		$2.7864(18)$	164(2)
O1-H1C...O4 ${ }^{\text {i }}$		0.94 (3)		1.81 (3)		$2.7425(16)$	173(2)
O4-114C…03		0.90 (2)		2.01(2)		2.7936 (17)	$145(2)$
$03-\mathrm{H}_{3} \cdots \mathrm{O}_{1}$		0.89(2)		1.77(2)		2.6455(17)	$1199(2)$

University of Southampton - Department of Chemistry
EPSRC
EPSRC National Crystallography Service

183a
Table 1. Crystal data and structurc refinement.

Identification code	00SOT059	
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$	
Formula weight	224.29	
Temperaturc	$150(2) \mathrm{K}$	
Wavelength	0.71073 A	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$a=8.0208(16) \AA$	$\alpha=79.19(3){ }^{\circ}$
	$b=8.6714(17) \AA$	$\beta=69.41(3)^{\circ}$
	$c=9.761(2) \hat{\Lambda}$	$\gamma=69.97(3)^{\circ}$
Volume	595.3 (2) λ^{3}	
Z	2	
Density (calculated)	$1.251 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption cocfficient	$0.087 \mathrm{~mm}^{-1}$	
F(000)	244	
Crystal	Colourless Block	
Crystal size	$0.45 \times 0.15 \times 0.13 \mathrm{~mm}^{3}$	
θ range for data collection	$3.02-27.50^{\circ}$	
Index ranges	$-10 \leq h \leq 10,-11 \leq k \leq 11,-12 \leq 1 \leq 12$	
Reflections collected	6,467	
Independent reflections	$2709\left[R_{m t}=0.0490\right]$	
Completeness to $\theta=27.50^{\circ}$	98.4\%	
Max. and min. transmission	0.9892 and 0.9618	
Refinement method	Full-matrix least-squares on F^{2}	
Data ; restraints ; paramelers	${ }_{\text {2709 }}^{2705} 10 / 146$	
Goodncss-or-fil on F^{2}		
Final R indices $\left[F^{2}>2 \alpha\left(F^{2}\right)\right]$	$R I=0.0431, w R 2=0.1119$	
R indices (all data)	$\begin{aligned} & R I=0.0544, ~ w R 2=0.1208 \\ & 0 \end{aligned}$	
Largest difl. peak and hole		

Diffractometer: Nonius KappaCCD arca detector (ϕ scans and ω scans to fill Ewald sphere). Cell determination: DirAx (Duiscnberg, A.I.M.(1992). J. Appl. Cryst. 2 , 92-929.).) Data collection: Collect (Collect:
Data collection software, R. Hoofl, Nonius B.V., 1998). Data reduction and cell refinement: Data collcction software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z.
Otwinowski \& W. Minor, Methods in Enzvmology (1997) Vol. 276. Macromolecular Crystallography, part A, p 307-326; C. W. Carter, JT. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M
Sheldrick (1997), University of Götlingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

Special details: All hydrogen atoms werc placed in idealised positions and refined using a riding model.
Table 2. Atomic coordinates [$\times 10^{4}$], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right.$] and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{n \prime \prime}$ tensor

Atom	x	y	z	$U_{\text {eq }}$	S.o.f
01	2868(1)	4056(1)	6345(1)	24(1)	1
02	482(1)	4097(1)	$8501(1)$	$25(1)$	1
03	723(1)	$6991(1)$	$5355(1)$	33(1)	1
C1	1537(2)	$6539(1)$	$7644(1)$	20(1)	1
C2	$3286(2)$	7107(2)	$6948(1)$	$26(1)$	1
C3	$4669(2)$	$6359(2)$	7816(2)	$31(1)$	1
C4	$5199(2)$	4488 (2)	$7965(1)$	27(1)	1
C5	$3470(2)$	$3907(1)$	$8652(1)$	24(1)	1
C6	$2090(2)$	$4651(1)$	7789(1)	$20(1)$	1
C7	323(2)	3153(2)	$7538(2)$	33(1)	1
C8	2264(2)	2646(2)	$6460(2)$	31(1)	1
C9	39(2)	7324(1)	$6872(1)$	23(1)	1
C10	-712(2)	9166 (1)	6923(1)	25(1)	1
C11	-2157(2)	9879(1)	8243(1)	26(1)	1
C12	-2749(2)	10040(2)	$6949(1)$	30(1)	1
C13	-2604(2)	10111(2)	$9628(1)$	32(1)	1

Table 3. Bond length $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

01-C8	1.4350(15)	C3-C4	$1.5225(18)$
O1-C6	$1.4414(14)$	C4-C5	1.5241 (17)
02-C7	1.4192(15)	C5-C6	$1.5204(16)$
02-C6	$1.4306(14)$	C7-C8	1.5084(19)
03-C9	$1.4338(14)$	C9-C10	$1.5061(16)$
C1-C2	1.5330(16)	C10-C11	$1.46366(18)$
C1-C6	$1.5354(16)$	C10-C12	$1.5414(17)$
C1-C9	$1.5361(16)$	C11-C13	$1.3069(18)$
C2-C3	$1.5264(18)$	C11-C12	$1.4672(17)$
C8-O1-C6	106.05(9)	C2-C1-C9	113.95(9)
C7-02-C6	108.99(9)	C6-C1-C9	112.57(9)
C2-C1-C6	110.01(9)	C3-C2-C1	111.33 (10)

C4-C3-C2	111.28 (10)
C3-C4-C5	111.06 (10)
C6-C5-C4	111.26 (10)
O2-C6-O1	105.73(9)
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{CS}$	108.83(9)
$\mathrm{OL}-\mathrm{C6}-\mathrm{C} 5$	110.64 (9)
$02-\mathrm{Cb-Cl}$	110.82(9)
$\mathrm{OL}-\mathrm{C}-\mathrm{Cl}$	$109.09(9)$
$\mathrm{CS}_{5} \mathrm{Cl} \mathrm{l}_{-\mathrm{Cl}}$	111.58(9)
02-C7-C8	103.67(10)
O1-C8-C7	$101.77(10)$
O3-C9-Cl0	$106.95(10)$
O3-C9-Cl	112.40(9)
$\mathrm{Cl0}-\mathrm{Cy}-\mathrm{Cl}$	112.70(10)
$\mathrm{Cl1}-\mathrm{Cl} 0-\mathrm{C} 9$	119.54 (10)
$\mathrm{C11-C10-C12}$	$58.38(8)$
$\mathrm{C}_{4}-\mathrm{Cl} 10-\mathrm{Cl2}$	118.99(11)
$\mathrm{C13-C11-C10}$	147.73(12)
C13-C11-C12	148.69 (12)
C10-C11-C12	63.46 (8)
$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl} 10$	58.16 (8)

Table 4. Anisontropic displacement parameeters $\left|\AA^{2} \times 10^{3}\right|$. The anisotrepic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{3} 2 U^{1}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$

Alom	$U^{\prime \prime \prime}$	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
O	$24(1)$	23(1)	23(1)	-7(1)	-1(1)	-8(1)
O_{2}	$22(1)$	25(1)	$26(1)$	-2(1)	-1(1)	-111)
03	$39(1)$	31(1)	24(1)	-5(1)	$-13(1)$	$0(1)$
Cl	$21(1)$	18(1)	$20(1)$	-2(1)	-4(1)	-5(1)
Cl^{2}	$2 \mathrm{2F}(1)$	$21(1)$	$31(1)$	$2(1)$	${ }^{-9}(1)$	-11(1)
C	$28(1)$	$30(1)$	40)(1)	-1(1)	-14(1)	-13(1)
${ }^{\mathrm{C} 4}$	$21(1)$	$28(1)$	33 (1)	-1(1)	$-9(1)$	-7(1)
C_{5}	$23(1)$	21(1)	$25(1)$	1(1)	-7(1)	$-5(1)$
${ }^{\mathrm{C} 6}$	$18(1)$	$20(1)$	$20(1)$	$-3(1)$	-2(1)	-7(1)
${ }^{C 7}$	$30(1)$	$38(1)$	$38(1)$	-7(1)	$-9(1)$	$-17(1)$
C8	$31(1)$	$27(1)$	${ }^{37(1)}$	-10(1)	$-10(1)$	-9(1)
$\mathrm{Cl}^{\text {c }}$	$22(1)$	$21(1)$	$22(1)$	-1(1)	-6(1)	-4(1)
C10	24(1)	$21(1)$	$26(1)$	$2(1)$	-6(1)	-6(1)
C11	$24(1)$	$17(1)$	$32(1)$	$0(1)$	-6(1)	-6(1)
Cl^{2}	27(1)	$23(1)$	$34(1)$	0 (1)	-11(1)	-2(1)
C 13	35(1)	26(1)	$34(1)$	-4(1)	-6(1)	-10(1)

Table 5. Hydregen cootdinates [$\times 10^{4}$] and istrepic displacement paramelers $\left[\AA^{2} \times 10^{3}\right]$

184
Table 1. Crystal data and structure refinement.

Diffractometer: Nonius KappaCCD arca detecior (ϕ stans and ω scans to fill Ewald sphere). Cell determination: DirAx (Duisenberg, A.I. M.(1992). I. Appl. Cryst. 25, ,92-46.) Data collection: Collect (Collect: Data collection soliware, R. Hoofl, Nonius B.V., 1998). Data reduction and cell refinement: Denzo ($($.
Otwinowski \& W. Minor, Methods in Enzzmology (1997) Vol. 276: Macromolecular Crsstallography, part A Olwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolectlar Crystallography, part A, pp.
$307-326$ C W. W. Carter, J. \& R. M. Swelt, Eds., Academic Pross). Absorption correction: SOKIAV (R. II. Blessing, Acta Cryst. A51 (1995) 33-37; R. IL. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHEL XI. 97 (G. M Sheldrick (1997). University of Götlingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. Special . Watin, Pearce and C. K. Prout, Chemical Crystallography laboratory, University of Oxford, 1993).
Wial details: All hydrogen atoms were localed from the difference map and fully refined.
Table 2. Atomic coordinates $\left[\times 10^{4} \mid\right.$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{\text {bq }}$ is defined as one third of the trace of the orthegonalized U^{p} tensor.

Atom	x	y	z	$U_{\text {uq }}$	Sof.
01	$6451(2)$	3354(3)	10070(1)	$33(1)$	1
02	$4837(2)$	-327(3)	$9078(1)$	33(1)	1
Cl	6357(3)	4077(4)	9427(2)	$28(1)$	1
C2	7488(4)	5633(5)	$9255(2)$	34(1)	1
C3	7937(3)	4993 (6)	8524(2)	$33(1)$	1
C4	66.33 (3)	4787(5)	$7880(2)$	$35(1)$	1
C5	$5609(3)$	3006(5)	$8053(2)$	$32(1)$	1
C6	5046 (3)	$3541(5)$	8784(2)	$25(1)$	1
C7	$4096(3)$	1772(5)	8998 (2)	26(1)	1
C8	2676 (3)	1563(5)	$8436(2)$	$28(1)$	1
C9	1517(3)	3393 (6)	8412 (2)	$36(1)$	1
C10	13655 (3)	1162(5)	8728 (2)	$30(1)$	1
$\mathrm{Cl1}$	649(4)	-174(6)	9084.42)	$38(1)$	1

Table 3 . Bend lengths $[A]$ and angles $[\circ]$.

Of-C ${ }^{\text {d }}$	1.228 (3)	$\mathrm{C}_{-5} \mathrm{C}$	1.542(4)
$\mathrm{O}-\mathrm{C} 7$	$1.428(3)$	$\mathrm{C}_{6} \mathrm{C} 77$	$1.526(4)$
$\mathrm{Cl}-\mathrm{C} 2$	$1.505(4)$	C7-C8	1.511(4)
C1-C6	1.515 (4)	C8-C10	$1.476(4)$
$\mathrm{C} 2-\mathrm{C}$,	1.527(4)	C8-C9	1.545 (4)
$\mathrm{C} 3-\mathrm{C} 4$	1.51.3(4)	C9-C10	1.467(4)
$\mathrm{C4}-\mathrm{C} 5$	$1.519(4)$	C10-C11	$1.306(4)$
$01-\mathrm{Cl}-\mathrm{C} 2$	120.4(3)	O2-C7-C6	108.0(2)
O1-Cl-C6	122.7(2)	C8-C7-C6	113.6 (2)
C2-C1-C6	116.9(3)	C10-C8-C7	118.3 (2)
$\mathrm{Cl}-\mathrm{Cl}_{2} \mathrm{C} 3$	112.0(3)	C10-C8-Cy	58.03 (18)
$\mathrm{C} 4-\mathrm{C3}-\mathrm{C} 2$	$110.7(3)$	C7-C8-Cy	119.3 (3)
C3-C4-C5	$110.7(3)$	C10-C9-C8	$58.65(18)$
$\mathrm{C}_{4-\mathrm{C5}-\mathrm{Cb}_{6}}$	111.7(2)	C11-C10-C9	148.4(3)
$\mathrm{Cl}-\mathrm{Cl}_{1-\mathrm{Cl}}$	112.5 (2)	C11-C10-C8	147.9(3)
$\mathrm{Cl}-\mathrm{Co}-\mathrm{C5}$	117.1(2)	C3-C10-C8	63.3 (2)
$\mathrm{C7}-\mathrm{Cb}^{-\mathrm{CS}}$	114.1(2)		
O2-C7-C8	$110.2(2)$		

187

Identification code	$9950 T 024$
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$
Formula weight	164.24
Temperature	$150(2) \mathrm{K}$
Wavclength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$\begin{array}{ll} a=23.812(5) \AA \\ b=9.449(2) \AA \\ c & =18.724(4) \AA \end{array} \quad \beta=113.41(3)^{\circ}$
Volume	$3866.3(14) \mathrm{A}^{3}$
z	16
Density (calculated)	$1.129 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.070 \mathrm{~mm}^{-1}$
$F(000)$	1440
Crystal	Colourless Block
Crystal size	$0.10 \times 0.08 \times 0.05 \mathrm{~mm}^{3}$
θ range for data collcction	$3.06-22.22^{\circ}$
Index ranges	$-25 \leq h \leq 25,-10 \leq k \leq 10,-19 \leq 1 \leq 19$
Rellections collected	8070
Independent reflections	$2420\left[R_{\text {gtr }}=0.0781\right]$
Completencss to $\theta=22.22^{\circ}$	99.1 \%
Max. and min. rransmission	0.9965 and 0.9930
Relinement method	Full-matrix least-squares on F^{2}
Data / restrains / parameters	2420/0/220
Goodness-of-fit on F^{2}	0.979
Final R indices $\left[F^{2}>2 \alpha\left(F^{2}\right)\right]$	$R 1=0.0924, w R 2=0.2556$
R indices (all data)	$R 1=0.1674, w R 2=0.3170$
Extinction coefficient	$0.006(2)$
Largest diff. peak and hole	0.425 and $-0.204 \mathrm{c} \mathrm{A}^{-3}$

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Cell
determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect:

Data collection software, R. Hoofl, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z Otwinowski \& W. Minor, Methods in Enzymology, (1997) Vol. 276: Macromolecular Crystallography, part A, pp.
$307-326 ;$ C. W. Carter, Jr. \& R. M. Swcet, Eds., Academic Press). Absortion correction: SORTAV (R H, Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M Sheldrick (1997), University of Götingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory University of Oxford, 1993)

Special details: All hydrogen atoms were placed in idealised positions and refined using a riding model.
Table 2. Atomic coordinates $\left[\times 10^{4}\right.$], equivalent isotropic displacement parameters $\left[\hat{A}^{2} \times 10^{3}\right]$ and sitc occupancy
factors. $U_{\text {eq }}$ is defined as one hivd f the race factors. $U_{c q}$ is defined as one third of the trace of the orthogonalized $U^{\prime \prime}$ tensor

Atom	x	y	z	$U_{\text {ceq }}$	S.o.f.	
C101	6310(4)	4248(8)	1771(4)	123(2)	1	
C102	6407(3)	2912(7)	1680(4)	102(2)	1	
C103	6876(4)	2392(9)	1389 (5)	$137(3)$	1	
C104	$7180(5)$	1161(13)	$1761(7)$	180(4)	1	
C105	7017(4)	397 (9)	2276 (5)	$135(3)$	1	
C106	6474(3)	820(6)	2480(4)	91(2)	1	
C107	6161(4)	-492(7)	$2618(5)$	131(3)	1	
C108	5855(4)	-1351(7)	1890(5)	136(3)	1	
C109	5389(3)	-455(7)	$1259(5)$	123(2)	1	
C110	5682 (3)	$879(6)$	1096(4)	101(2)	1	
C111	${ }_{5044(3)}$	1732(6)	1850(3)	$86(2)$	1	
011	$5615(2)$	$2323(4)$	2119(2)	100(1)	1	
C201	$3736(3)$	$1108(8)$	427(5)	124(2)	1	
C202	3626 (3)	$2449(7)$	274(4)	95(2)	1	
C203	$3120(4)$	2989(9)	-478(4)	124(3)	1	
C204	2820(3)	4296 (10)	-328(6)	131(3)	1	
C205	3012(3)	5005(8)	318(5)	108(2)	1	
C206	3541(3)	4573(6)	997(4)	86(2)	1	
C207	3882(3)	$5879(7)$	1476(4)	$113(2)$	1	
C208	4193(3)	$6719(7)$	1061 (4)	116(2)	1	
C209	4654(3)	$5795(7)$	899(4)	101(2)	1	
C210	4344(3)	4490 (6)	418 (3)	85(2)	1	
C211	3988(3)	3663(6)	$809(3)$	$83(2)$	1	
021	4414(2)	$3069(5)$	1507(2)	104(1)	1	
Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$].						
C101-C102		$1.307(8)$		C108-C109		1.518(9)
C102-C103		$1.505(9)$		C109-C110		1.530(8)
${ }^{\text {C102-C111 }}$		$1.520(8)$		C110-C111		$1.555(8)$
${ }^{\text {C103-C104 }}$		$1.401(12)$		C111-O11		1.420(6)
C104-C105		$1.379(11)$		C201-C202		$1.302(8)$
C105-C106	C106-C111	$1.539(10)$		C202-C203		$1.533(9)$
C106-C107		$1.520(8)$		C202-C211		$1.541(8)$ $1.507(10)$
C107-C108		$1.502(9)$				1.297(10)

C205-C206	$1.449(9)$	C208-C209	1.524(8)
C206-C211	$1.514(7)$	C209-C210	$1.533(7)$
C206-C207	1.552(8)	C210-C211	$1.536(7)$
C207-C208	1.497 (8)	C21-O21	$1.413(6)$
C101-C102-C103	$123.9(6)$		
C101-C102-C111	122.5 (6)		
C103-C102-C111	$113.7(5)$		
C104-C103-C102	113.8 (6)		
C105-C104-C103	$123.2(8)$		
C104-C105-C106	122.4 (7)		
C11-C106-C107	112.1(5)		
C111-C106-C105	109.6(5)		
C107-C106-C105	$110.4(6)$		
C108-C107-C106	112.4 (6)		
C107-C108-C109	$110.2(6)$		
C108-C109-C110	111.3(6)		
C109-C110-C111	112.2(5)		
O11-C111-C106	$108.2(4)$		
O11-C111-C102	109.55		
C106-C111-C102	108.775)		
O11-C11-C100	108.04 (5)		
C106-C111-C110	112.1 (5)		
C102-C11--C110	$110.2(5)$		
C201-C202-C203	$122.8(6)$		
C201-C202-C211	124.8(7)		
C203-C202-C211	112.44)		
C204-C203-C202	111.1(6)		
C205-C204-C203	$125.4(7)$		
C204-C205-C206	122.3(7)		
C205-C206-C211	$113.7(5)$		
C205-C206-C207	$110.9(6)$		
C211-C206-C207	109.4(5)		
C208-C207-C206	112.0)(5)		
C207-C208-C209	$110.1(6)$		
C208-C209-C210	111.2 (5)		
C209-C210-C211	$111.0(4)$		
O21-C211-C206	$108.9(4)$		
O21-C211-C210	$108.2(4)$		
C206-C211-C210	$113.2(5)$		
$021-\mathrm{C} 211-\mathrm{C} 202$	$108.4(5)$		
C206-C211-C202	$108.2(5)$		
C210-C211-C202	$109.9(4)$		

Table 4. Anisotropic displacement parameters $\left\{\AA^{2} \times 10^{3}\right\}$. The anisotropic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	$U^{\text {l }}$	U^{22}	U^{33}	U^{33}	U^{13}	U^{12}
${ }^{C 101}$	$151(6)$	100(5)	128(6)	15(4)	$66(5)$	-13(4)
ClO_{1}	$125(5)$	$84(4)$	128(5)	6 (4)	$83(5)$	-4(4)
C103	$145(7)$	144(6)	168(7)	$12(6)$	111(6)	$-14(5)$
${ }^{\mathrm{Cl} 104}$	149(8)	$201(10)$	249(12)	$8(9)$	143(9)	1(8)
${ }^{\mathrm{C} 105}$	$97(5)$	142(6)	143(7)	$-13(5)$	$23(5)$	23 (5)
${ }^{C 106}$	${ }^{89(4)}$	87(3)	$97(4)$	20(3)	$36(4)$	$6(3)$
$\mathrm{ClO}^{\text {c1 }}$	1366 (6)	$109(5)$	$135(6)$	29(5)	$39(5)$	-20(5)
${ }^{\text {C108 }}$	$130(6)$	110(5)	$148(7)$	7 (5)	34(6)	$-23(5)$
$C 109$ $C 110$	$112(5)$ $108(5)$	$105(5)$	$147(7)$	$5(5)$	45(5)	-8(4)
Cl 10 Cl 11	$108(5)$ $8.3(4)$	$109(4)$ $99(4)$	${ }^{89} 94(4)$	$7(4)$	44(4)	12(4)
011	$83(4)$ $87(3)$	$99(4)$ $122(3)$	$94(4)$ $110(3)$	$7(4)$ $10(2)$	$53(4)$ $601(3)$	$15(3)$ $17(2)$
C 201	$129(6)$	102(5)	$157(7)$	$-20(5)$	74(5)	-12(4)
C 202	$97(4)$	$96(5)$	$101(5)$	$-14(4)$	$49(4)$	$-18(4)$
$\mathrm{C}_{2} 203$	$128(6)$	134(6)	$83(5)$	-8(4)	14(5)	-50(5)
C 204	$84(5)$	146(7)	134(8)	$45(6)$	13(5)	--8(5)
C205	$78(5)$ $80(4)$	127(5)	$116(6)$	$5(5)$	34(5)	$-5(4)$
$C 206$ $C 207$	$80(4)$	$97(4)$	$97(4)$	2(3)	51(4)	3 (3)
2007 $\mathrm{C208}$	$126(5)$	110(4)	121(5)	-25(4)	$68(5)$	$-19(4)$
C208 $C 209$	$116(5)$	$117(5)$	$141(6)$	-48(4)	78(5)	$-37(4)$
C2109	$96(4)$	117 (5)	${ }^{100(5)}$	-15(4)	48(4)	$-27(4)$
C210	${ }^{80}(4)$	99(4)	$85(4)$	-4(3)	43(3)	-6(3)
C211	73(3)	$110(4)$	${ }^{644} 4$ (4)	$5(3)$	24(3)	-4(3)
021	$80(3)$	1300(3)	86 (3)	10(2)	17(2)	$-1(2)$

Table 5. Ifydrogen coordinates $\left[\times 10^{4}\right]$ and isotropic displacement paramoters $\left[\AA^{2} \times 10^{3}\right\}$.

Alom	x	y	z	$U_{\text {cq }}$	S.of.
H10G	6542	4956	1651	148	1
H10ri	6007	4511	1957	148	1
$\mathrm{H1OC}$	6670	2206	823	164	1
H1OD	7181	3149	1464	164	1
H104	7516	837	1653	216	1
H105	7248	-421	2514	162	1
H106	66.36	138.	2972	109	1
Hios	f_{5848}	-1086	3020	157	1
m10F	5851	-200	2818	157	1
H1\%	56.49	-2179	2004	163	1
1100	6167	-170.4	1708	163	1
11108	50.57	-181	1423	148	1
[110B	5205	-1019	776	148	1
1111 A	5359	1489	727	121	1
1111 B	5964	61.7	847	121	1

H11	5312	2632	1739	150	1
H201	3497	418	64	148	1
H20J	4054	819	900	148	1
H20E	3296	3210	-863	148	1
H20F	2808	2240	-700	148	1
H204	2460	4627	-741	157	1
H205	2798	5838	346	130	1
H206	3390	4002	1334	104	1
H20C	3586	6443	1580	136	1
H20D	4191	5558	1984	136	1
H20G	4306	7539	1385	139	1
H20H	3885	7083	565	139	1
H20A	4978	5489	1398	122	1
H20B	4849	6354	613	1222	1
H21A	4658	3867	362	102	1
H21B	4060	4790	-108	102	1
H21	4760	3431	1613	156	1

Table 6. Hydrogen bends [\AA and ${ }^{\circ}$].

$D-\mathrm{H} \cdots A$	$d(D-\mathrm{H})$	$d(\mathrm{H} \cdots A)$	$d(D \cdots A)$	$\angle(D \mathrm{HH} A)$
O11-H11				
$\mathrm{O} 21-\mathrm{H} 21 \cdots \mathrm{O} 11$	0.84	2.05	$2.718(6)$	136.4

University of Southampton - Department of Chemistry
EPSRC EPSRC National Crystallography Service

-

Table 1. Crystal data and structure refinement. 208

Identification code	00 sot057
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$
Formula weight	220.30
Temperature	293(2) K
Wavelcngth	0.71073 A
Crystal system	Monoclinic
Space group	${ }_{P 2} / \mathrm{c}$
Unit cell dimensions	$a=11.7383(3) \AA$
	$b=10.1001(2) \AA \quad \beta=92.982(9){ }^{\circ}$
Volume	$c=21.5543(7) \AA^{\text {A }}$
V	${ }_{8}^{2551.97(12) A}$
Density (calculated)	$1.147 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.075 \mathrm{~mm}^{-1}$
F (000)	$9(0)$
Crystal	Colourless Plate
Crystal size	$0.12 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$
θ range for data collection	$3.21-25.09^{\circ}$
Index ranges	$-14 \leq h \leq 13,-12 \leq k \leq 12,-24 \leq I \leq 25$
Reflections collected	1.3700
Independent reflections	$4402\left[R_{n u n}=0.0673\right]$
Completeness to $\theta=25.09^{\circ}$	97.1%
Max. and min. Lransmission	0.9963 and 0.9911
Refinement method	Full-matrix least-squares on F^{2}
Data /restraints / parameters	4402;0;354
Goodness-of-fit on F^{2} Final R indices $\left[F^{2}>20\left(F^{2}\right)\right]$	0.860 $R 1=0.0526, w R 2=0.1101$
R indices (all data)	$R 1=0.1370, w R 2=0.1306$
Extinction coefficient	$0.0039(9)$
$\underline{\text { Largest diff. peak and hole }}$	0.269 and $-0.139 \mathrm{c} \AA^{-3}$

Table 4. Anisotropic displacement parameters $\left\{\hat{\Lambda}^{2} \times 10^{3}\right\}$. The anisotropic displacemen factor exponcont takes the form: $-2 \pi^{2}\left[h^{2} a^{3^{2}} U^{11}+\cdots+2 h k a^{*} b^{*} U^{h 2} \mid\right.$.

Atom	U^{11}	U^{22}	U^{33}	U^{33}	U^{13}	U^{12}
O1	541)	47(1)	53(1)	-9(1)	--5(1)	-3(1)
02	87(1)	56(1)	40(1)	-2(1)	4(1)	3 (1)
Cl	55(2)	$39(1)$	40(2)	$-1(1)$	3 (1)	$0(1)$
C2	$51(2)$	42(1)	42(2)	-3(1)	-3(1)	1(1)
0	$59(2)$	44(1)	$40(2)$	$-3(1)$	3(1)	$-7(1)$
C4	$61(2)$	38(1)	40(2)	-4(1)	7(1)	$-1(1)$
C	55(2)	$53(1)$	$66(2)$	-7(1)	2(2)	3(1)
C6	$81(2)$	52(2)	$68(2)$	-1(2)	6 (2)	7 (2)
C7	54(2)	$56(1)$	$56(2)$	-10(1)	$10(2)$	-3(1)
C8	$62(2)$	76(2)	84(2)	-12(2)	16(2)	-16(2)
C9	$79(2)$	$66(2)$	102(3)	$-17(2)$	23(2)	-29(2)
C 11	75(2)	45(1)	44(2)	-8(1)	12(1)	-4(1)
C 10	$66(2)$	60(2)	77(2)	-20(2)	$4(2)$	-13(1)
Cl 2	97(3)	57(2)	77(2)	-17(1)	$-19(2)$	22(2)
Cl 3	$108(3)$	412)	70(2)	-8(2)	$5(2)$	-4(2)
C14	$158(4)$	${ }^{97}(3)$	203(5)	-50(3)	-83(4)	$49(3)$
O1'	$60(1)$	48(1)	55(1)	-8(1)	10(1)	-6(1)
O2'	$56(1)$	47(1)	$50(1)$	$8(1)$	-12(1)	-11(1)
Cl^{\prime}	40(1)	43(1)	$51(2)$	-2(1)	-2(1)	$-2(1)$
C'	$40(1)$	$39(1)$	$46(2)$	$0(1)$	2(1)	-4(1)
${ }^{3}$	$40(1)$	$39(1)$	42(2)	2(1)	-4(1)	$-1(1)$
C4'	$37(1)$	$42(1)$	49(2)	$5(1)$	-8(1)	-4(1)
CS°	$51(2)$	54(1)	64(2)	$3(1)$	$9(2)$	-5(1)
C^{\prime}	$61(2)$	$53(2)$	(642)	$8(2)$	0 (2)	-6(1)
Cl^{1}	$45(2)$	$45(1)$	71(2)	$-6(1)$	-10(1)	-2(1)
cs	$47(2)$	${ }_{60} 6(2)$	$90(2)$	-4(1)	$-4(2)$	$5(1)$
C9	$59(2)$	48(1)	80(2)	-10(1)	-3(2)	12(1)
Cl°	(62)	$46(1)$	59(2)	$\cdots 5(1)$	-3(2)	$1(1)$
$\mathrm{C} 11^{\prime}$	$49(2)$	38(1)	72(2)	$-5(1)$	-9(1)	-5(1)
C12'	$81(2)$	$6.5(2)$	$71(2)$	-3(2)	7 (2)	-40(2)
C13'	$71(2)$	40(2)	10003)	$2(2)$	-1(2)	-5(1)
C14'	178(4)	139(4)	103(4)	$-18(3)$	353)	-99(4)

Table 5. Hydrogen conordinates $\left[\times 10^{4}\right]$ and isolropic displacement parameters $\left\{\AA^{2} \times 10^{3}\right\}$.

Axom	x	y	z	$U_{\text {sq }}$	S.of.
H2	6361	5734	3081	150(17)	1
H1	6251	3130	2228	$38(6)$	1
H_{2}	8027	4063	2222	49 (6)	1
H_{51}	4747	4686	2184	$517)$	1
1158	4402	5392	1554	$59(7)$	1
177 A	8335	4128	1173	$58(7)$	1

177B	7425	5252	1070	6667	1	
H8A	9534	5546	1747	$59(7)$	1	
188	9222	6202	1100	$88(10)$	1	
119 A	7896	7566	1534	81(10)	1	
H919	9059	7731	1920	92(9)	1	
H_{11}	7085	2402	1051	$57(7)$	1	
II10A	8449	6376	26.96	$80(9)$	1	
H110B	7528	7480	2576	$66(7)$	1	
1114A	8586	101	2291	$220(20)$	1	
11148	910%	1518	2111	139(16)	1	
$112{ }^{\prime}$	5784	7271	-1306	72(9)	1	
H11'	6542	10061	-707	$39(6)$	1	
$\mathrm{H}_{2}{ }^{\prime}$	8125	8921	-1015	$39(6)$	1	
${ }^{15} 5^{\prime} 1$	5210	8798	-204	$46(6)$	1	
${ }^{155}$	5498	8297	474	$68(8)$	1	
$177{ }^{1} 1$	9346	9070	-135	$53(6)$	1	
H^{172}	8563	8126	232	$55(7)$	1	
HS^{\prime}	10104	${ }^{6930}$	-89	$63(7)$	1	
H8'2	9833	7352	-782	$62(8)$	1	
1197	8457	5665	-90	73(9)	1	
192	9154	5221	-657	$76(8)$	1	
H10C	7210	5523	-959	$68(7)$	1	
H100	7990	6449	-1337	$56(7)$	1	
H111	8480	11004	40	$41(6)$	1	
1114 C	83.52	12855	-1544	158(19)	1	
11140	9028	11480	-1435	$170(20)$	1	
H6D	$6368(16)$	$5310(20)$	$-100(9)$	$45(6)$	1	
${ }^{16} 6$ B	6080(20)	$8070(20)$	1966(12)	$80(9)$	1	
${ }^{116 C}$	5658 (19)	$6080(20)$	422(11)	$57(8)$	1	
${ }^{\text {H13 }}$ B	6240(20)	$300(20)$	$1281(13)$	78 (9)	1	
${ }^{116}{ }^{\text {a }}$	$4860(20)$	$7540(20)$	1660)(12)	$67(8)$	1	
1138 C	${ }^{64300(30)}$	$12470(30)$	-442(15)	117(11)	1	
11136	$7620(20)$	13110(30)	-4n(13)	$96(9)$	1	
1113A	$5830(20)$	840(20)	1929(14)	$81(10)$	1	
Table 6. Hydrugen boinds [A and $\left.{ }^{\circ}\right]$.						
D- $11 \cdots$				$d(11 \cdots A)$	$d(D \cdots A)$	$\angle(D I M)$
$02-12 \cdots(1) 2^{\text {i }}$				2.05	2.820(2)	156.7
				2.03	2.845(2)	171.5

University of Southampton - Department of Chemistry
EPSRC
EPSRC National Crystallography Service

217
Table 1. Crystal data and structure refinement.

Identification code	00SOT135	
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$	
Formula wcight	222.32	
Temperature	150(2) K,	
Wavelength	0.71073 A	
Crystal system	Triclinic	
Unit cell dimensions	P-1	
	$a=11.8071(4) \AA$	$\alpha=101.9669(17)^{\circ}$
	$b=13.1670(7) \hat{A}$	$\beta=108.241(2)^{\circ}$
	$c=17.5307(10) \AA$	$\gamma=91.136(5)^{\circ}$
Volume	$2521.6(2) \AA^{3}$	
z	8	
Density (calculated)	$1.171 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.076 \mathrm{~mm}^{-1}$	
$F(000)$	976	
Crystal	Cokerrless Block	
Crystal size	$0.30 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$	
θ range for data collcction	3.14-23.25 ${ }^{\circ}$	
Index ranges	$-12 \leq h \leq 12,-14 \leq k \leq 14,-19 \leq 1 \leq 19$	
Reflections collected	20596	
Independent reflections	$6863\left[R_{i m}=0.1897\right]$	
Completencss to $\theta=23.25^{\circ}$	94.6 \%	
Max. and min. transmission	0.9924 and 0.9775Full-matrix lcast-squares on F^{2}	
Refinement method		
Data $/$ restraints / parameters	$68663 / 0 / 582$	
Goodnoss-ol-fil on F^{2}	0.912	
Final R indices $\left[F^{2}>2 \alpha\left(F^{2}\right)\right]$	$R I=0.0985, w R 2=0.2297$	
R indices (all data)	$R 1=0.1663, w R 2=0.2902$$0.023(4)$	
Extinction cocfficient		
Largest diff. peak and hole	0.488 and $-0.571 \mathrm{c} \AA^{\circ}{ }^{-3}$	

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Cel determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data colle ction: Collect (Collect: Dia collcction software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (307-326; C. W. Carter, Jr. \& R. M. Swect, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

Special details: All hydrogen atoms were placed in idealised positions and refined using a riding model.
Table 2. Atomic coordinates [$\times 10^{4}$], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right.$] and site occupancy factors. $U_{c q}$ is defined as one third of the trace of the orthogonalized U^{\dagger} tensor

Alom	x	y	z	$U_{\text {eq }}$	S.o.f.
C1	1658(4)	6140(3)	3082(3)	24(1)	1
C2	3011(4)	6243(4)	$3264(3)$	29(1)	1
C3	$3382(4)$	5749(4)	2539(3)	$36(1)$	1
C4	2789(5)	6200(4)	1796(3)	42(2)	1
C5	1422(4)	$6078(4)$	1579(3)	$36(1)$	1
C6	$1005(4)$	$6533(3)$	2300(3)	$25(1)$	1
C7	$1095(4)$	7741 (3)	2459(3)	$28(1)$	1
C8	-758(5)	8382(5)	2070(4)	$51(2)$	1
C9	-480(4)	8263(4)	2965 (4)	37(1)	1
C 10	868(4)	$8300(4)$	3229 (3)	$31(1)$	1
C11	1491(4)	7864(4)	3992 (3)	$33(1)$	1
C 12	1291(4)	66833 (4)	3789(3)	27(1)	1
C13	802(5)	6197(4)	4218(4)	43(2)	
C14	-977(5)	9067(5)	3485(5)	$68(2)$	1
C15	-1920(4)	8220(3)	-1053(3)	22(1)	1
C16	-1173(4)	7871 (3)	-284(3)	$28(1)$	1
C17	-1583(4)	6760(4)	-293(4)	39(1)	,
C18	-2912(4)	$6656(4)$	-394(4)	40(1)	1
C 19	-3682(4)	6992(3)	-1159(3)	$32(1)$	1
C20	-3259(4)	8098(3)	-1166(3)	20(1)	1
C21	-36206(4)	8901 (3)	-531(3)	24(1)	1
C22	-5192(4)	$9735(4)$	-1245(3)	$36(1)$	1
C23	-4028(4)	10335(3)	-1157(3)	$31(1)$	1
C24	-3141(4)	10022(3)	-421(3)	24(1)	,
C25	-1814(4)	10138(3)	-356(3)	28(1)	1
C26	-1558(4)	4356 (3)	-1024(3)	24(1)	1
C27	-1100(4)	9632(4)	-1.551(3)	$35(1)$	1
C28	-4108(5)	11509(4)	-1030(4)	59(2)	1
C29	-6.559(4)	13017(3)	4007(3)	$25(1)$	1
C30	-6639(4)	13638(4)	4820(3)	34(1)	1
C31	-7904(5)	13590(4)	4849(4)	43(2)	1
C32	-8426(5)	12459(4)	4689(4)	47(2)	1
C33	-8363(4)	11829(4)	3866(3)	37(1)	1

C34	-7105(4)	11881(3)	3817(3)	25(1)	1		C23-C28	1.525 (7)	C40-C41	1.321(7)
C35	-6.313(4)	$11209(3)$	4354(3)	27(1)	1		C24-C25	1.537(6)	C43-07	$1.434(5)$
C36	-6056(5)	9727(4)	3467(4)	40(2)	1		C25-C26	1.502(6)	C43-C54	$1.521(7)$
C37	-5061(4)	10550(4)	3572(3)	30(1)	1		C26-C27	1.313(6)	C43-C48	$1.532(6)$
C38	-5006 (4)	11277(3)	43753)	24(1)	1		C29-05	$1.437(5)$	C43-C44	1.542(6)
C39	-4466(4)	12399(4)	4539(3)	32(1)	1		C29-C30	1.521 (7)	C44-C45	$1.517(7)$
C40	$-5266(4)$	13033(3)	4001(3)	27(1)	1		C29-C40	$1.530(6)$	С45-c46	$1.509(8)$
C41	-4842(5)	13602(4)	3596(4)	43(2)	1		C29-C34	$1.544(6)$	C46-C47	$1.529(7)$
C42	-3878 (5)	10093(4)	$3565(4)$	45(2)	1		C30-C31	$1.511(7)$	C47-C48	1.528(7)
C43	-8454(4)	16597(3)	8281(3)	$25(1)$	1		C31-C32	$1.536(7)$	C48-C49	$1.538(\mathrm{r})$
C44	-7903(4)	17737(4)	8529(3)	$33(1)$	1		C32-C33	$1.533(7)$	C49-08	$1.425(5)$
$\mathrm{C45}$	-8348(5)	18289(4)	7827(4)	43(2)	1		C33-C34	$1.515(6)$	C49-C52	$1.515(7)$
C46	-8117(5)	17722(4)	7056(4)	$46(2)$	1		C34-C35	1.540(6)	C50-08	$1.437(6)$
C47	$-8667(4)$	16592(4)	6796 (3)	37(1)	1		C35-06	1.441(5)	C50-C51	$1.505(7)$
C48	-8246(4)	16014(3)	7491(3)	24(1)	1		C35-C38	1.532(6)	C51-C56	$1.518(7)$
C49	-6956(4)	15726(3)	$7612(3)$	25(1)	1		C36-06	$1.425(6)$	C51-C52	$1.532(6)$
C50	-7153(5)	13960(4)	$7098(4)$	37(1)	1		C36-C37	$1.524(6)$	C52-C53	$1.517(7)$
C51	-6952(4)	$14112(4)$	$8007(3)$	30(1)	1		C37-C38	$1.510(7)$	$\mathrm{C}_{5} 3-\mathrm{C} 54$	1.520 (6)
$\mathrm{C5} 2$	-6426(4)	15250(3)	8349(3)	23(1)	1		C37-C42	1.534(6)	C54-C55	$1.324(7)$
C53	-6652(4)	15816(4)	$9127(3)$	30(1)	1		C38-C39	1.531(6)		
C54	-7949(4)	16047(4)	8981 (3)	$26(1)$	1		C39-C40	$1.510(7)$		
C55	-8595(5)	15771(4)	$9413(4)$	41(2)	1					
CSO_{6}	-6149(5)	13351(4)	8405(4)	43(2)	1		O1-C1-C12	109.3(4)	O3-C15-C20	106.6(3)
01	1266(3)	$5039(2)$	$2886(2)$	$31(1)$	1		$\mathrm{OL}-\mathrm{Cl}-\mathrm{C}_{2}$	107.7(3)	C16-C15-C20	$111.3(4)$
02	184(3)	8025 (3)	$1791(2)$	40(1)	1		C12-C1-C2	112.8 (4)	O3-C15-C26	109.5 (4)
03	-1756(3)	$7556(2)$	-1760(2)	$30(1)$	1		O1-C1-C6	105.4(3)	C16-C15-C26	$111.8(4)$
04	-4006(3)	$8922(2)$	-810(2)	$35(1)$	1		$\mathrm{Cl}_{2}-\mathrm{Cl}-\mathrm{Cl}_{6}$	110.3(4)	C20-C15-C26	$108.9(3)$
05	-7263(3)	13520(2)	3386(2)	30(1)	1		$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	111.094)	C17-C16-C15	111.7(4)
Of	-6715(3)	10122(2)	4003(2)	$35(1)$	1		$\mathrm{C}_{3}-\mathrm{C2}-\mathrm{Cl}$	113.14)	C18-C17-C16	$110.8(4)$
07	-9713(3)	16669(2)	$8126(2)$	32(1)	1		C2-C3-C4	111.3(4)	C19-C18-C17	112.5 (4)
08	-6906(3)	$14947(2)$	$6927(2)$	$32(1)$	1		$\mathrm{Cl}^{-\mathrm{C4}-\mathrm{C} 5}$	110.2 (4)	C18-C19-C20	111.1 (4)
Table 3. Bond lengths [A] and angles [${ }^{\circ}$].							$\mathrm{Cb}_{5} \mathrm{C5}-\mathrm{C} 4$	113.0(4)	C15-C20-C19	112.3.3)
							$\mathrm{C}_{5}-\mathrm{Cb}-\mathrm{Cl}$	$112.7(4)$	C15-C20-C21	113.3 (3)
$\mathrm{Cl}-\mathrm{O}$				C11-Cl2			$\mathrm{CS}_{5-\mathrm{C6}-\mathrm{Cl}}$	110.44 (4)	C19-C20-C21	109.7(4)
Cl_{-12}				$\mathrm{Cl2}^{-\mathrm{Cl} 3}$		$1.328(7)$	$\mathrm{Cl}_{1-\mathrm{Cb}-7}$	112.4(4)	O4-C21-C24	104.4(3)
$\mathrm{Cl}-\mathrm{C}_{2}$				C15-03		1.430(5)	O2-C7-C10	$105.3(4)$	$\mathrm{O}_{4} \mathrm{C} 21-\mathrm{C} 20$	109.3 (4)
$\mathrm{Cl}-\mathrm{Cb}$				C15-C16		$1.529(7)$	O2-C7-C6	107.8(4)	$\mathrm{C} 24-\mathrm{C} 21-\mathrm{C} 20$	$114.3(4)$
$\mathrm{C} 2-\mathrm{C3}$				C15-C20		$1.531(6)$	C10-C7-C6	115.9(4)	O4-C22-C23	108.1(4)
$\mathrm{C}_{3}-\mathrm{C} 4$				C15-C26		$1.533(6)$	${ }^{\mathrm{O} 2-\mathrm{Cl}-\mathrm{Cy}}$	1188.44)	$\mathrm{Cl2}^{2}-\mathrm{C23-C24}$	102.6(4)
$\mathrm{C} 4-\mathrm{C} 5$				$\mathrm{Cl} 6-\mathrm{C} 17$		1.528(6)	Cl4-C9-C10	115.4(5)	C22-C23-C28	$113.1(4)$
$\mathrm{CS}_{5} \mathrm{C}$				C17-C18		$1.523(7)$	C14-C3-C8	114.0.5)	$\mathrm{C} 24-\mathrm{C23-C28}^{\text {23-24 }}$	$113.1(4)$
$\mathrm{CH}_{(17} \mathrm{C} 7$				C18-C19		1.523(7)	C10-Cy-C8	$100.3(4)$	$\mathrm{C} 23-\mathrm{C24-C21}^{\text {cen }}$	$101.4(4)$
$\mathrm{C7}-\mathrm{O2}$				C19-C20		$1.534(5)$	$\mathrm{Cl}^{\mathrm{Cl}-\mathrm{Cl}}$ - Cl	$102.9(4)$	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25^{\text {c }}$	116.2 (4)
C7-C10				C20-C21		$1.542(6)$	$\xrightarrow{\mathrm{Cl}-\mathrm{ClO-Cl1}}$	$113.7(4)$	$\mathrm{C}_{21-\mathrm{C} 24-\mathrm{C25}}$	113.7(4)
$\mathrm{CS}-\mathrm{OL}^{2}$				C21-04		1.437(5)	$\mathrm{Cl}_{\text {Cl2-C11-C10 }}$	$116.7(4)$ $110.9(4)$	$\mathrm{C} 26-\mathrm{C} 25-\mathrm{C} 24$ $\mathrm{C} 27-\mathrm{C} 26-\mathrm{C} 25$	$111.3(4)$ $1224(4)$
$\mathrm{C8}-\mathrm{C} 9$				C21-C24		$1.525(0)$	C13-C12-Cl	$110.9(4)$ $124.1(4)$	${ }_{\text {C27-C26-C25 }}$	$122.4(4)$ $123.34)$
C9-Cl4				$\mathrm{C} 22-04^{\text {c }}$		$1.426(1)$	C13-C12-C11	124.1(4)	$\xrightarrow{\mathrm{C} 27-\mathrm{C} 26-\mathrm{Cl} 20-\mathrm{Cl} 5}$	$123.3(4)$ $114.2(4)$
C10-C11				${ }^{\mathrm{C} 22-\mathrm{C23}}$		$1.519(6)$	Cl-C12-C11	$115.3(4)$	$05-\mathrm{C} 2-\mathrm{C} 30$	$105.6(4)$
				C23-C24		$1.523(7)$	O3-C15-C16	$108.5(3)$	O5-C29-C40	$109.7(4)$

C30-C29-C40	$111.5(4)$	C55-C54-C53	122.8(5)							
$\mathrm{OS}^{\text {- }} \mathrm{C} 29-\mathrm{C} 34$	108.6(4)	$\mathrm{CS5}_{-\mathrm{C} 44-\mathrm{C43}}$	122.8 (4)	Table 4. Anisotropic displacement parameters $\left[\hat{\AA}^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent lakes the form: $-2 \pi^{2}\left[h^{2} a^{n^{2}} U^{14}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.						
$\mathrm{C30}-\mathrm{C} 29-\mathrm{C} 34$ $\mathrm{C} 40-\mathrm{C} 29-\mathrm{C} 34$	$111.3(4)$ $110.0(4)$ 110.	$\mathrm{CS3}^{\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4-\mathrm{C} 43}$	114.4(4)							
C40-C29-C34 $\mathrm{C} 31-\mathrm{C} 30-\mathrm{C} 29$	$110.0(4)$	$\mathrm{CB}_{3} \mathrm{O} 2-\mathrm{C} 7$	$108.8(4)$							
C30-C31-C32	112.4(4)	C36-06-C35	$108.0(3)$	Alom.	U^{11}	U^{12}	U^{33}	U^{23}	U^{13}	U^{12}
C33-C32-C31	110.4(4)	C49-08-C50	$106.443)$							
C34-C33-C32	112.3(4)			C1	24(3)	$11(2)$	31(3)	3 (2)	$0(2)$	-2(2)
C33-C34-C35	$110.9(4)$			${ }^{\text {C2 }}$	$34(3)$ $28(3)$	16(3)	$36(3)$ $45(4)$	7(2)	8 83)	$5(2)$
${ }^{\text {C33-C34-C29 }}$	$111.8(4)$			$\begin{aligned} & \mathrm{C}_{3} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 28(3) \\ & 49(3) \end{aligned}$	$37(3)$ $45(4)$	454) $34(4)$	$12(3)$ $11(3)$	123 $15(3)$ 15	9(2)
C35-C34-C29	113.4(4)			$\begin{aligned} & \mathrm{C} 4 \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 49(3) \\ & 38(3) \end{aligned}$	$\begin{aligned} & 45(4) \\ & 37(3) \end{aligned}$	$34(4)$ $31(3)$	${ }_{6}^{11(3)}$	15(3)	$9(3)$
O6-C35-C38	103.5 (3)			C5 Cb	$\begin{aligned} & 38(3) \\ & 28(3) \end{aligned}$	$37(3)$ $16(3)$	$31(3)$ $30(3)$	$6(3)$ $7(2)$	$11(3)$ $5(2)$	$10(2)$
O6-C35-C34	$109.7(4)$			C7	38(3)	$16(3)$ $15(3)$	30(3)	72(2)	$5(2)$ $4(2)$	$4(2)$ $0(2)$
C38-C35-C34	$113.7(4)$			C8	38(3)	$53(4)$	$73(5)$	128(4)	16(3)	O2) $7(3)$
$\mathrm{O}^{06-\mathrm{C} 36-\mathrm{C} 37}$	$108.9(4)$			C9	32(3)	24(3)	${ }^{6} 3(4)$	24(3)	$20(3)$	$9(2)$
C38-C37-C36	$101.9(4)$			${ }^{1} 10$	$36(3)$	$13(3)$	43 (4)	$11(3)$	$9(3)$	$7(2)$
C38-C37-C42	$114.7(4)$			$\mathrm{Cl1}^{1}$	42(3)	$18(3)$	35(3)	$5(3)$	7 73)	$8(2)$
C36-C37-C42	$113.2(4)$			$\mathrm{Cl2}^{2}$	26(3)	22 (3)	33(3)	$11(2)$	7 (2)	$11(2)$
C37-C38-C39	117.6(4)			${ }_{C 1} 13$	$57(4)$	$36(3)$	$55(4)$	22(3)	$36(3)$	27(3)
C37-C38-C35	102.7(4)			${ }_{C 14}^{C 15}$	$58(4)$	50(4)	$115(7)$	$32(4)$	$46(4)$	32(3)
C39-C38-C35	$113.1(4)$			Cl Cl Cl Cl	${ }^{244(3)}$	$13(2)$ $17(3)$	29(3)	$4(2)$	$8(2)$	$5(2)$
C40-C39-C38	112.6(4)			${ }^{C 16}$	$34(3)$ $39(2)$	17(3)	34(3)	9(2)	${ }_{7}^{11(2)}$	$4(2)$
C41-C40-C39	121.3(5)			Cl Cl	$39(3)$	27(3)	$48(4)$ $57(4)$	18(3)	${ }^{7(3)}$	6 (2)
C41-C40-C29	123.3.5)			C18 C19	$46(3)$	$\begin{aligned} & 19(3) \\ & 13(3) \end{aligned}$	$57(4)$	22(3)	12(3)	${ }^{4(2)}$
${ }^{\text {C39 - }} \mathrm{C} 40-\mathrm{C} 29$	$115.3(4)$			$\begin{aligned} & \mathrm{C} 19 \\ & \mathrm{CzO} \end{aligned}$	$31(3)$ $22(2)$	$13(3)$ $17(3)$	48(4) 26(3)	$5(3)$ $8(2)$	8(3)	-1(2)
O7-C43-C54	$110.3(4)$ $109.2(4)$			${ }_{2} 21$	2202 203	$17(3)$ $23(3)$	$26(3)$ $28(3)$	$8(2)$ $7(2)$	${ }^{11(2)} 7$	4(2)
$\mathrm{C}_{54-\mathrm{C} 43-\mathrm{C} 48}$	$110.9(4)$			C_{2}	33(3)	$39(3)$	$40(4)$	13(3)	15(3)	$11(2)$
07-C43-C44	104.9(3)			C_{2}	$35(3)$	$19(3)$	40(4)	$10(3)$	$11(3)$	$12(2)$
$\mathrm{C} 54-\mathrm{C43-C44}^{\text {c }}$	110.5 (4)			${ }^{2}$	$27(3)$ $26(3)$	$14(2)$	$31(3)$ $44(4)$	${ }_{8}^{2(2)}$	$10(2)$	$5(2)$
C48-C43-C44	110.9(4)			C_{26}	20(2)	${ }_{24}\left(\frac{3}{}\right.$	28(3)	8(2)	${ }_{\substack{13(2) \\ 6(2)}}$	1(2)
C45-C44-C43	111.54 (4)			C27	$31(3)$	39(3)	$46(4)$	22(3)	$19(3)$	$9(2)$
C46-C45-C44	$112.1(4)$			C28	$59(4)$	$30(3)$	$80(5)$	20(3)	$4(4)$	14(3)
C45-C46-C47	111.00 (5)			C29	$37(3)$	$19(3)$	20(3)	$11(2)$	3(2)	$9(2)$
C48-C47-C46	112.2(4)			C30	47(3)	$28(3)$	30(3)	10(3)	12(3)	8 (2)
C47-C48-C43	$111.9(4)$			C 31	644)	34(3)	$37(4)$	8(3)	23(3)	$20(3)$
C47-C48-C49	$111.1(4)$			${ }^{632}$	$41(3)$	54(4)	${ }^{644} 5$	$26(3)$	32(3)	$20(3)$
C43-C48-(4)	114.2(4)			C33	37(3)	33(3)	50(4)	$16(3)$	2013)	13 (2)
O8-C49-C52	104.2(3)			C34 +35	$24(3)$ $35(3)$	26(3)	28(3)	15(2)	$5(2)$	5 (2)
08-C49-C48	110.7(4)			$\begin{array}{r}035 \\ 036 \\ \hline 036\end{array}$	$35(3)$ $52(3)$	$23(3)$	25(3)	13(2)	7 (2)	(12)
$\mathrm{CS2}^{\text {-C49-C48 }}$	114.3 (4)			$\bigcirc 37$	31(3)	24(3)	52(4)	$17(3)$ $16(3)$	$266(3)$ $10(2)$	$12(2)$ $6(2)$
$08-\operatorname{c50}-\mathrm{C51}$	108.7(4)			$\bigcirc 38$	$26(3)$	$26(3)$	26(3)	16(3)	10(2)	\%(2)
C50-C51-C52	103.044)			39 4 4	$30(3)$ $35(3)$	$31(3)$	$33(3)$	16(3)	3 (2)	0 (2)
C56-C51-C52	$113.2(4)$			${ }_{C} 41$	- 40 (3)	42(3)	$27(3)$ $55(4)$	$6(2)$ 2063	$10(2)$ $17(3)$	$1(2)$ $3(2)$
C49-C52-C53	114,0(4)			C42	49(3)	47(4)	59(4)	$27(3)$	32(3)	$23(3)$
C49-C52-C51	101.94 (4)			C43	15(2)	$19(3)$	37(3)	2(2)	$7(2)$	3(2)
C53-C52-C51	$116.5(4)$			${ }^{4} 4$	28(3)	$19(3)$	47(4)	-1(3)	11(3)	$2(2)$
C52-C53-C54	$112.9(4)$			C45	36(3)	14(3)	73(5)	$11(3)$	8(3)	$4(2)$
				C46	53(4)	27(3)	${ }^{67}(5)$	32(3)	17(3)	10(2)

C47	$36(3)$	$33(3)$	$45(4)$	$19(3)$	$13(3)$	$8(2)$
C 48	$22(3)$	$21(3)$	$28(3)$	$8(2)$	$5(2)$	$2(2)$
C 49	$28(3)$	$17(3)$	$35(3)$	$11(2)$	$15(2)$	$3(2)$
$\mathrm{C50}$	$48(3)$	$19(3)$	$53(4)$	$11(3)$	$26(3)$	$8(2)$
$\mathrm{C51}$	$30(3)$	$24(3)$	$43(4)$	$12(3)$	$17(3)$	$6(2)$
C 52	$15(2)$	$21(3)$	$3(3)$	$11(2)$	$10(2)$	$3(2)$
$\mathrm{C53}$	$22(3)$	$30(3)$	$40(4)$	$16(3)$	$9(2)$	$4(2)$
$\mathrm{C54}$	$30(3)$	$24(3)$	$22(3)$	$-1(2)$	$9(2)$	$3(2)$
$\mathrm{C5}$	$45(3)$	$38(3)$	$48(4)$	$12(3)$	$25(3)$	$8(2)$
$\mathrm{C56}$	$41(3)$	$30(3)$	$72(5)$	$28(3)$	$27(3)$	$17(2)$
01	$36(2)$	$12(2)$	$40(2)$	$0(2)$	$9(2)$	$0(1)$
02	$40(2)$	$34(2)$	$53(3)$	$31(2)$	$12(2)$	$14(2)$
03	$34(2)$	$23(2)$	$29(2)$	$-3(2)$	$10(2)$	$5(1)$
04	$26(2)$	$32(2)$	$56(3)$	$13(2)$	$23(2)$	$9(1)$
05	$44(2)$	$20(2)$	$27(2)$	$10(2)$	$9(2)$	$14(2)$
06	$37(2)$	$18(2)$	$59(3)$	$21(2)$	$20(2)$	$6(1)$
07	$22(2)$	$18(2)$	$51(3)$	$0(2)$	$9(2)$	$4(1)$
08	$43(2)$	$18(2)$	$48(3)$	$10(2)$	$30(2)$	$6(1)$

Table 5. Hydrogen coordinates [$\times 10^{4}$] and isouropic displacement paraneters $\left[\AA^{2} \times 10^{3}\right]$.

Atom	x	y	z	$U_{\text {qq }}$	S.of
II2A	3303	6992	3436	35	1
II2B	3395	5915	3729	35	1
H3A	3160	4988	2397	43	1
H13,	4263	5863	2688	43	1
H14^	3017	5835	13.19	50	1
H4B	3070	6948	1918	50	1
H5A	1056	6425	1123	43	1
H5B	1139	5327	1383	43	1
H_{6}	137	6889	2137	30	1
117	1901	8001	2466	34	1
H8A	-1519	7970	1715	61	1
H8B	-840	9122	2046	61	1
119	-809	7554	2958	44	1
110	1188	9046	3349	37	1
H11A	2360	8079	4186	40	1
H11B	1170	8156	4441	40	1
H13A	667	5459	4079	52	1
H113B	587	6589	4663	52	1
1114 A	-1854	8982	3267	10.	1
H14B	-6.89	9766	3474	101	1
$\mathrm{H14C}$	-712	8978	4054	101	1
H16A	-321	7908	-252	33	1
	-1241	8351	212	33	1
H17A	-1431	61268	-753	46	1
H17B	-1117	6.576	229	46	1
H188	-3164	5421	-430	48	1
H18B	-3045	7089	99	48	1
III9A	-4527	6970	-1171	39	1

H53A	-6133	16480		9354		35	1	
H53B	-6427	15385		9543		35	1	
H55A	-8249	15412		9836		49	1	
H55B	-9403	15931		9300		49	1	
H56A	-6057	13491		8994		64	1	
H56B	-5362	13434		8337		64	1	
H56C	-6510	12637		8142		64	1	
H1	1161	4787		2385		46	1	
H3	-2281	7047		-1941		45	1	
H5	-7350	13147		2917		45	1	
H7A	-10094	16118		7803		48	1	
Table 6. Hydrogen bonds [$\left.{ }^{\text {a and }}{ }^{\circ}\right]$.								
D-H*A			$d(D-H)$		$d(\mathrm{H} \cdots \mathrm{A})$		$d(D \cdots A)$	$\angle(D H 1)$
O1-H1 \cdots O7 ${ }^{\text {i }}$			0.84		2.37		2.776(4)	110.7
			0.84		1.98		2.770(5)	155.7
07-H7A \cdots O1 ${ }^{\text {i }}$			0.84		1.95		$2.776(4)$	167.8

Symmeiry transformations used to generate equivalent atoms:
$\begin{array}{ll}\text { (i) }-x-1,-y+2,-z+1 & \text { (ii) }-x-1,-y+2,-z\end{array}$

University of Southampton - Department of Chemistry

EPSRC

303
Table 1. Crystal data and structure refinement.

Identification code	01SOT074	
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$	
Formula weight	308.40	
Temperature	1200 (2) K	
Wavelength	0.71073 §	
Crystal system	Triclinic	
Space group	$P-1$	
Unit cell dimensions	$a=9.6537(19) \AA$	$\alpha=94.77(3)^{\circ}$
	$b=10.664(2) \AA$	$\beta=97.10(3)^{\circ}$
	$c=15.994(3){ }^{\text {® }}$ A	$\gamma=90.01(3)^{\circ}$
Volume	1628.2 (6) A^{3}	
z	4	
Density (calculated)	$1.258 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.087 \mathrm{~mm}^{-1}$	
F(000)	672	
Crystal	Colourless plate	
Crystal size	$0.15 \times 0.10 \times 0.01 \mathrm{~mm}^{3}$	
θ range for dala collection	$3.08-23.26{ }^{\circ}$	
Index ranges	${ }_{9719}^{-10} 5 h \leq 10,-11 \leq k \leq 11,-17 \leq l \leq 17$	
Reflections collected		
Independent reflections	$3783\left[R_{s t \prime}=0.1274\right]$	
Complctencss to $\theta=23.26{ }^{\circ}$	81.0\%	
Max. and min. transmission	0.9991 and 0.9871	
Refinement method	Full-matrix lcast-squares on F^{2}	
Data / restraints / parameters	3783/24,402	
Goodness-0f-fit on F^{2}	1.229	
Final R indices $\left[F^{2}>20\left(F^{2}\right)\right]$	$R 1=0.1287, w R 2=0.3349$	
R indices (all data)	$R 1=0.2082, w R 2=0.3785$$0.023(8)$	
Extinction coefficient		

Largest diff. peak and hole
0.898 and $-0.386 \mathrm{c}^{-3} \mathrm{~A}^{-3}$

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphcre). Cell determination: DixAx (Duiscnberg, A.J.M.(1992). J. Appl. Cyst. 25, 92.96.) Data collection: Collect (Collcet: Data collection software, R. Inooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (/
Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography par1 A, pp Owinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Cyssallography, part A, pp.
307-325; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. II Blcssing, Acta Cryst. A51 (1995) 33-37; R. II. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution: SHELXS 97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Gëttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (iD.
M. Wakini, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).
special details: All hydrogen atoms were placed in idcalised positions and refined using a riding nodel.
Table 2. Atomic coordinates [$\times 10^{4}$], cquivalent isotropic displacement parameters $\left[\hat{A}^{2} \times 10^{3}\right]$ and site occupancy actors. $U_{c q}$ is defined as one third of the trace of the orihogonalized U^{u} tensor

Atom	x	y	z	$U_{\text {ca }}$	S.o.
Cl	$-3027(9)$	1473(9)	3445 (6)	26(3)	
C2	-3724(11)	1051(11)	4153(6)	40(3)	
C	$-3140(13)$	384(12)	4731 (9)	$60(4)$	
C4	-818(9)	$1541(9)$	$2930(6)$	$22(2)$	
C 5	$751(9)$	1459(9)	$3245(6)$	24(3)	
C6	938(10)	31(8)	3160(6)	$26(3)$	
C7	$-69(10)$	-457(9)	2371(6)	$26(3)$	
C8	-715(9)	756 (9)	$2085(6)$	$20(2)$	
C9	$391(9)$	151099)	$1689(6)$	$19(2)$	
Cl 10	$1394(9)$	2003(9)	2499(6)	$22(3)$	
C11	1191(10)	3473 (9)	$2495(7)$	29(3)	
C 12	$879(10)$	3708(9)	1579(6)	$23(3)$	
Cl 3	$-125(10)$	$2657(9)$	1200(6)	$22(3)$	
Cl_{4}	-70(10)	$2208(9)$	270(6)	24 (3)	
Cl 5	$1154(9)$	1314(9)	358(6)	21(2)	
C16	69(10)	$3246(9)$	-321(6)	$26(3)$	
Cl 7	$2842(9)$	1715(10)	2423 (6)	33(3)	
C18	1263(10)	$2062(10)$	4127(6)	$37(3)$	
01	-1625(6)	$975(6)$	3486(4)	30(2)	
02	-2004(6)	608(6)	1539(4)	26(2)	
03	1018 (6)	$669(6)$	1099(4)	$25(2)$	
04	-1508(6)	$3091(6)$	1354(4)	22(2)	
C19	$9405(10)$	$6440(11)$	$3477(7)$	$36(3)$	
C20	10355(10)	5870(11)	4142(7)	38(3)	
C21	11419(16)	$6407(15)$	4633(9)	87(5)	
C22	6989(9)	(6588(10)	2944 (6)	$26(3)$	
C23	$5542(10)$	$6438(9)$	3283 (6)	22(2)	
C24	$5352(10)$	$4976(9)$	$3188(6)$	$29(3)$	
C25	$6034(10)$	4.44(9)	2388(6)	$25(3)$	
C26	${ }_{6} 6.54(9)$	5749(9)	$2103(6)$	$21(3)$	
C 27	$5307(9)$	$6.500(9)$	1723 (6)	$19(2)$	
C28	$4631(10)$	$7021(9)$	2515 (6)	$26(3)$	
C29	4827(10)	$8500(9)$	2523(6)	25.3)	1

C30	$4760(9)$	$8716(9)$	$1602(6)$	$20(2)$
C31	$5653(10)$	$7631(9)$	$1214(6)$	$21(2)$
C32	$5196(10)$	$7218(8)$	$310(6)$	$22(3)$
C33	$3959(9)$	$6320(10)$	$370(6)$	$26(3)$
C34	$4808(10)$	$8232(9)$	$-305(6)$	$27(3)$
C35	$3083(9)$	$6713(10)$	$2489(7)$	$34(3)$
C36	$5409(11)$	$7039(10)$	$4144(6)$	$30(3)$
05	$8050(7)$	$5944(6)$	$3497(4)$	$31(2$
06	$768(6)$	$56616(9)$	$1540(4)$	$26(2)$
07	$4426(6)$	$5679(6)$	$1114(4)$	$28(2)$
08	$7044(6)$	$8074(6)$	$1368(4)$	$25(2)$

Table 3. Bond lengths [\mathcal{A}] and angles [$\left.{ }^{\circ}\right]$.			
$\mathrm{Cl}-\mathrm{O} 1$	$1.450(10)$	C19-C20	1.486(14)
$\mathrm{Cl}-\mathrm{C} 2$	$1.485(13)$	C20-C21	1.313 (17)
C2-C3	$1.289(16)$	C22-05	$1.449(11)$
C4-01	1.422(10)	C22-C26	$1.535(14)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.541(12)$	C22-C23	$1.566(13)$
C4-C8	$1.543(13)$	C23-C36	1.491(13)
$\mathrm{C}_{5} \mathrm{C} 18$	$1.525(13)$	C23-C24	$1.563(13)$
$\mathrm{CS}_{-2 \mathrm{Cb}}$	1.530(13)	C23-C28	$1.590(13)$
$\mathrm{C5}-\mathrm{Cl0}$	1.563(13)	C24-C25	$1.547(1.3)$
$\mathrm{C6}-\mathrm{C} 7$	$1.548(13)$	C25-C26	$1.511(12)$
C7-C8	$1.517(13)$	C26-06	$1.424(10)$
$\mathrm{C8}-\mathrm{O}_{2}$	1.430(11)	C26-C27	$1.550(13)$
C8-C9	1.562(13)	C27-07	$1.446(11)$
C9-03	1.431(10)	C27-C28	$1.558(13)$
C9-C13	$1.556(12)$	C27-C31	1.5688(12)
C9-C10	$1.572(13)$	C28-C35	1.525 (13)
C10-C17	1.496 (12)	C28-C29	$1.588(14)$
C10-Cl1	1.581(13)	C29-C30	$1.503(12)$
C11-Cl2	$1.501(13)$	C30-C31	1.574(12)
C12-C13	$1.518(13)$	C3i-08	$1.409(11)$
C13-04	$1.456(10)$	C31-C32	$1.489(12)$
C13-C14	$1.531(1.3)$	C32-C33	$1.521(12)$
$\mathrm{Cl}^{4-\mathrm{Cl} 5}$	$1.519(12)$	C32-C34	$1.536(12)$
$\mathrm{Cl}_{4}-\mathrm{Cl} 6$	$1.531(12)$	C33-07	$1.439(11)$
C15-03	1.440(10)		
C19-05	$1.415(11)$		
O1-Cl-C2	109.8(8)	C4-C5-C10	100.577
C3-C2-C1	124.6(11)	$\mathrm{CS}_{5-\mathrm{Cb}-\mathrm{C7}}$	105.67 (
$\mathrm{O}-\mathrm{C4}-\mathrm{CS}$	$110.4(8)$	C8-C7-C6	101.67
Ol-C4-C8	$114.8(8)$	02-C8-C7	$115.2(8)$
$\mathrm{CS}_{-\mathrm{C4}-\mathrm{C8}}$	94.5 (7)	$02-\mathrm{C8}-\mathrm{Cl}_{4}$	114.47)
C18-C5-C6	$113.2(8)$	C7-C8-C4	102.697
$\mathrm{Cl}_{18-\mathrm{C5}-\mathrm{C4}}$	$117.7(8)$	O2-C8-Cy	111.977
$\mathrm{Cl}_{6} \mathrm{C5}-\mathrm{C}_{4}$	200.2(8)	C7-C8-C9	109.1 (8)
C18-C5-C10	115.9(8)	C4-C8-C9	102.57
C6-C5-C10	107.5(8)	$03-\mathrm{Ca}-\mathrm{Cl}_{3}$	106.1 (7)

O3-C9-C8	108.3(7)	C25-C24-C23	104.4(7)	C9	2066	$11(6)$	24(6)	-5(4)	2(4)	2(5)
C13-C9-C8	117.7(7)	C26-C25-C24	104.3(8)	C10	$17(5)$	14(6)	$33(6)$	4 (4)	-6, 4)	-10(4)
$\mathrm{O}^{3}-\mathrm{C} 9-\mathrm{Cl} 10$	115.3(7)	$\mathrm{O}^{\mathrm{O}-\mathrm{C} 26-\mathrm{C} 25}$	116.3 (8)	$\mathrm{Cl1}^{1}$	$20(6)$	$15(7)$	$53(8)$	-3(5)	8 (5)	-9(5)
C13-C9-C10	108.57)	${ }^{0} 06-\mathrm{C} 26-\mathrm{C} 22$	116.57 (C 12	22(6)	$17(7)$	$30(7)$	6 (5)	4(4)	1(5)
C8-C9-Clo	101.3 (7)	C25-C26-C22	$102.4(8)$	$\mathrm{C13}$	$24(6)$	15 (6)	$29(6)$	$5(5)$	10(4)	-4(5)
C17-C10-C5	117.098)	$\mathrm{O}^{\mathrm{O}-\mathrm{C} 26-\mathrm{C} 27}$	111.177	${ }_{C 14} \mathrm{C} 15$	$25(6)$	$21(7)$	$27(6)$	$9(5)$	4(4)	$5(5)$
$\mathrm{Cl7-C10-Cy}$	112.5 (8)	C25-C26-C27	$108.2(7)$	C 15	$20(6)$	24(7)	$21(6)$	$8(5)$	3(4)	0 (5)
C5-C10-C9	104.3 (7)	C22-C26-C27	$100.9(7)$	${ }^{\mathrm{Cl}} 16$	$29(6)$	23(7)	27(6)	8 (5)	6 (5)	-8(5)
$\mathrm{C} 17-\mathrm{Cl0}-\mathrm{Cl} 1$	$108.5(8)$	07-C27-C26	109.3 (7)	Cl_{1}	28(6)	$35(7)$	$35(7)$	-1(5)	1(5)	3 (5)
C5-C10-C11	112.08)	07-C27-C28	$115.65(7)$	Cl 8	$32(6)$	38(8)	$36(7)$	-8(6)	-2(5)	2 (6)
C9-C10-C11	101.4 (7)	C26-C27-C28	$103.447)$	01	27(4)	31(5)	$36(5)$	14(3)	$12(3)$	1(4)
C12-C11-C10	105.1(8)	07-C27-C31	104.1 (7)	02	18(4)	17(4)	$41(5)$	$5(3)$	0 (3)	-9(3)
$\mathrm{C} 11-\mathrm{C12-C13}$	104.78)	C26-C27-C31	116.1 (7)	03	29(4)	21(4)	25(4)	-2(3)	$8(3)$	O(3)
O4-C13-C12	$105.8(7)$	C28-C27-C31	$108.7(7)$	${ }^{04}$	18(4)	17(4)	$3074)$	3 3(3)	$5(3)$	0 (3)
$\mathrm{O}_{4} \mathrm{Cl} 13-\mathrm{Cl} 4$	$112.2(7)$	${ }^{\mathrm{C} 35-\mathrm{C} 28-\mathrm{C} 27}$	$115.1(8)$	Cl_{19}	17(6)	43(8)	$47(8)$	7 (9)	$3(5)$	$-7(6)$
$\mathrm{C12-C13-C14}$	116.988	C35-C28-C29	109.1 (8)	$\mathrm{C}_{2}{ }^{\text {a }}$	${ }^{19(6)}$	$45(8)$	$45(8)$	$-2(6)$	-6,(5)	2 (6)
${ }^{\mathrm{O} 4-\mathrm{Cl3}} \mathrm{Cl}^{\text {c }}$	114.2 (7)	$\mathrm{C} 27-\mathrm{Cr}^{\text {- }} \mathrm{C2} 29$	$103.4(7)$	${ }^{2} 21$	$\left.{ }^{97} \mathbf{9 7} \times 13\right)$	95(13)	70(12)	14(10)	$9(10)$	14(11)
$\mathrm{Cl2}_{2} \mathrm{Cl} 3-\mathrm{C} 9$	$103.6(8)$	C35-C28-C23	111.78 (8)	${ }^{C 22}$	$6(5)$ $26(6)$	$36(7)$ 137	37(7)	12(5)	6 (4)	$1(5)$
$\mathrm{C} 14-\mathrm{Cl} 3-\mathrm{C} 9$	104.2(7)	C27-C28-C23	$104.2(7)$	${ }^{2} 23$	$26(6)$	${ }^{13(7)}$	23(6)	$-2(5)$	-6(4)	-4(5)
C15-C14-C13	$100.37)$	C29-C28-C23	113.1 (8)	${ }^{C 24}$	$27(6)$	${ }^{26}(8)$	$33(7)$	$6(5)$	$2(5)$	-6,5)
C15-C14-C16	115.0(8)	C30-C29-C28	103.58 (8)	${ }^{C 25}$	29(6)	516)	42(7)	10(5)	$5(5)$	$-3(5)$
C13-C14-Cl6	115.6 (8)	C29-C30-C31	105.097	C26 C 27	$14(5)$ 2065	${ }^{21(7)}$	$31(7)$ $33(5)$	${ }^{8(5)}$	${ }^{7(4)}$	-4(5)
$03-\mathrm{Cl} 5-\mathrm{Cl} 4$	$105.6(7)$	O8-C31-C32	$113.5(8)$	${ }^{\mathrm{C} 27}$	2065)	75)	23(5)	$-1(4)$	$4(4)$	-8(4)
C4-O1-C1	$112.1(7)$	08-C31-C27	$115.5(7)$	C28 C 24	$21(6)$	16(7)	4078	2 (5)	0 (5)	$2(5)$
C9-03-C15	$108.5(7)$	C32-C31-C27	105.667	C29 $C 30$	22(6)	$35(8)$	${ }^{19}(6)$	$-9(5)$	10(4)	6 6,
O5-C19-C20	107.4(9)	O8-C31-C30	105.377	630 $C 31$	10(5)	9(6)	407 300 0	$2(5)$	${ }^{2(4)}$	-4(4)
C21-C20-C19	$127.7(13)$	C32-C31-C30	$114.8(7)$	C31 +32	$21(5)$ $23(6)$	${ }^{11(5)}$	$30(6)$ $36(7)$	$6(4)$ $4(5)$	-4(4)	-8(4)
$05-\mathrm{C} 22-\mathrm{C} 26$	112.8 (8)	C27-C31-C30	101.977	$\begin{array}{r}\text { C32 } \\ C 3 \\ \hline\end{array}$	23, ${ }_{17}(6)$	6(1)	$36(7)$	$4(5)$	$3(4)$	$-5(5)$
$05-\mathrm{C22-C23}$	$109.7(7)$	C31-C32-C33	$102.3(7)$	633 $C 34$	$17(6)$ $26(6)$	$32(7)$ $35(7)$	$30(7)$ $21(6)$	$2(5)$ $5(5)$	$7(4)$ $5(4)$	$-3(5)$ $8(5)$
$\mathrm{C} 26-\mathrm{C} 22-\mathrm{C} 23$	$96.2(7)$	$\mathrm{C}_{31-\mathrm{C} 32-\mathrm{C34}}$	118.388	C34 35	20(6)	$35(7)$ $27(7)$	$21(6)$ $51(8)$	$5(5)$ $-3(5)$	$5(4)$ $0(5)$	$8(5)$ $4(5)$
C36-C23-C24 $\mathrm{C} 36-\mathrm{C} 23-\mathrm{C} 22$	$114.5(8)$ $117.78)$	${ }_{\text {C33-C32-C34 }}$	$113.2(8)$ 104.67 1	$\bigcirc 36$	$38(7)$	$32(7)$	518) $38(7)$	$-3(5)$ $4(6)$	085 $8(5)$ 8	$4(5)$ $-9(6)$
C36-C23-C22	$117.7(8)$ $99.388)$	O7-C33-C32 $\mathrm{Cl} 4-05-\mathrm{C} 22$	104.6 (7) $112.97)$	05	$30(4)$	2665	$38(5)$	14(3)	-3(3)	-91(4)
C36-C23-C28	116.5 (8)	C33-07-C27	109.9 (7)	06	23(4)	22(4)	$34(4)$	5(3)	$9(3)$	$4(3)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 28$	109.2(8)			07 08	333(4)	23(4)	25(4)	4 4(3)	$-5(3)$	$-4(4)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{Cl} 2$	97.1 (7)			Os	21(4)	18(4)	36(5)	2(3)	5 53)	$-4(3)$

Table 4. Anissuropic displacement parameters $\left\{\AA^{2} \times 10^{3}\right\}$. The anisotropic displacement factor exponent takes the form: $\left.-2 \pi^{2} h^{2} h^{a^{2}} U^{13}+\cdots+2 h k a^{*} b^{2} U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C1	24(6)	23(7)	347)	(15)	11(5)	1(5)
C2	377)	64(y)	$23(7)$	23(6)	6 6)	$5(6)$
C3	49(9)	60(10)	93(12)	15(8)	24(8)	-3(8)
C4	$24(5)$	13(5)	3015)	5(4)	10(4)	$-4(4)$
C	14(5)	$27(7)$	33(7)	125)	$0(4)$	-5(5)
C6	$25(6)$	13(7)	$42(7)$	$9(5)$	10(5)	$2(5)$
C7	2669	19(7)	$32(7)$	-5(5)	$5(5)$	10(5)
C8	21(6)	10(9)	30(6)	2(5)	4(4)	-8(5)

Table 5. Hydregen coordinates $\left\{\times 10^{4}\right]$ and isolropic displacement paraneters $\left[\AA^{2} \times 10^{3}\right]$.

Alom	x	y	z	$U_{\text {cal }}$	Soof.
1118	-3570	1175	2899	31	1
H118	-2987	2404	3483	31	1
H_{2}	-4666	1290	4181	48	1
H13A	-2198	128	4723	79	1
H13B	-3650	148	516.5	79	1
1 I 4	-1110	2425	2842	26	1
H6A	697	-344	3670)	31	1
${ }_{\text {H }} \mathrm{H} / \mathrm{B}$	1914	-182	3083	31	1
117A	442	-889	1932	31	1

H7B	-784	-1038	2520	31	1
H111^	407	3750	2808	35	1
H118	2049	3930	2757	35	1
H12A	1742	3675	1302	27	1
H123	443	4540	1515	27	1
$\mathrm{H}_{1} 4$	-936	1706	58	28	1
H15A	1123	708	-148	25	1
I115B	2050	1786	429	25	1
H16A	-759	3779	-336	39	1
H16B	152	2865	-891	39	1
H16C	903	3758	-113	39	1
H17A	3173	2101	1934	50	1
H178	3009	802	2347	50	1
1117 C	3475	2053	2937	50	1
H188	803	1654	4.547	55	1
H18B	1041	2960	4157	55	1
H18C	2276	1961	4244	55	1
112	-2302	-133	1532	38	1
114 A	-2089	2500	1222	32	1
1119 A	9407	7367	3589	43	1
H19B	9714	6.229	2915	43	1
${ }_{120}$	10171	5016	4221	45	1
H21A	11654	7261	4583	105	1
H21B	11953	5943	5038	105	1
H22	7242	7424	2862	31	1
$1124 \wedge$	5826	4.977	3690	34	1
1124B	4350	4738	3115	34	1
1258	6806	3957	2522	30	1
$1125 B$	5339	4127	1945	30	1
[129A	4072	8453	2784	30	1
H29B	5739	8781	2836	30	1
1130 A	5158	95.50	1531	23	1
H30B	3783	8668	1326	23	1
1132	5961	6710	93	26	1
H33A	3122	6788	428	31	1
H33B	3843	5716	-138	31	1
1334 A	4535	7828	-874	41	1
H34B	5615	8788	-311	41	1
1134 C	4028	8726	-121	41	1
H35A	2748	7076	3009	50	1
H35B	2948	5798	244)	50	1
H135C	25.59	7067	2040	50	1
H36A	5547	7950	4152	53	1
1136 B	6117	6697	4555	53	1
${ }^{13} 36 \mathrm{C}$	4477	6863	4292	53	1
116	7943	4889	1548	39	1
118	7581	7501	1219	38	1

O2-H2 ${ }^{2} \mathrm{O}^{1}$	0.84	2.00	$2.835(9)$	172.8
O4-114^응	0.84	2.12	2.737 (9)	130.2
$06-116 \cdots 4^{4 i}$	0.84	2.00	2.828(8)	168.8
08-188.06	0.84	2.11	$2.707(9)$	127.3

University of Southampton - Department of Chemistry
EPSRC National Crystallography Service
(8)

334
Table 1. Crystal data and structure refinement.

01 sot117

Identification code
Empirical formula
Formula weigh
Temperaturc
Crystal system
Space group
Unit cell dim
Unit cell dimensions

Volume
Density (calculated)
Absorption coefficient
$\underset{\substack{\text { FiOOO } \\ \text { Crystal }}}{ }$
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collccted
Independent reflections
Compleceness to $\theta=27.49$
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on r^{2}
Final R indices $\left[F^{2}\right)^{2}$
Final R indiccs $\left[F^{2}>2 \phi\left(F^{2}\right)\right]$
R indices (all dala)
Largest diff. peak and hole

$\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$ 196.28
 196.28
 ${ }_{0}^{293(2) K} \mathrm{~K} \AA$

Monoclinic
$P 2_{1 / c}$
$\begin{array}{ll}P 2_{1} / c & \\ a=12.081(2) \AA & \alpha=90^{\circ} \\ b=8.9358(18) \AA & \beta=113.24(3)^{\circ} \\ c=11.019(2) \AA & \gamma=90^{\circ}\end{array}$
$1093.0(4) \hat{X}^{3}$
${ }_{1}^{4} .193 \mathrm{Mg} / \mathrm{m}^{3}$
$0.079 \mathrm{~mm}^{-1}$
${ }_{\text {Plate; colourlcss }}^{432}$
Plate; colourless
$0.18 \times 0.14 \times 0.02 \mathrm{~mm}^{3}$
$2.93-27.49^{\circ}$
$-14 \leq h \leq 15,-11 \leq k \leq 11,-14 \leq l \leq 13$
8144
$2485\left[R_{t m}=0.0778\right]$
8.9%
Semi-empirical from equivalents
0.9984 and 0.9859
uli-matrix leasl-squares on F^{2}
$2485 / 0 / 130$
0.974
0.974
$R 1=0.0525, w R 2=0.1076$
$R 1=0.0525, w R 2=0.1076$
$R 1=0.1316, w R 2=0.1325$

Diffractometer: Enraf Nonius KappaCCD area detector (ϕ scans and ω scans to fill Ewald sphere). Data collection and cell
refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing,

Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Program used to solv
structure:
SHELXS97 (G. M. Sheldrick, Acla Cryst. (1990) A46 467-473). Program used to refine structure: SHELXL97 (G. M. Sheldrick
(1997), Universily of Götlingen, Germany).

Further information: hup://www.soton.ac.uk/~xservice/strat.htm
Special details:
Chirality: $\mathrm{Cl}=\mathrm{S}, \mathrm{C} 5=\mathrm{S}, \mathrm{C} 7=\mathrm{R}, \mathrm{C} 8=\mathrm{S}, \mathrm{C} 9=\mathrm{R}$.

Table 2. Atomic coordinates $\left[\times 10^{9}\right]$ equivalent isotropic displacement prameters $\left[\AA^{2} \times 10^{3}\right]$ and sitc occupance factors. $U_{\text {cq }}$ is delised as one thixd of the trace of the orthogenalized U^{4} tensor.

Atom	x	y	z	$U_{\text {cq }}$	S.o.j.
C 1	6680 (2)	4534(2)	9341(2)	$43(1)$	1
C2	$6665(2)$	$5860(2)$	10196(2)	$62(1)$	1
C3	7757(2)	$5835(2)$	11504(2)	$68(1)$	1
C4	8918(2)	$5476(2)$	11342(2)	$68(1)$,
C5	$8761(2)$	$4199(2)$	10373(2)	$51(1)$	1
C6	78033(2)	4622(2)	$90433(2)$	50(1)	1
C7	8225 (2)	2776 (2)	10706(2)	42(1)	1
C8	$6847(1)$	3046(2)	10112(2)	37(1)	1
C9	$6114(2)$	$1721(2)$	9316 (2)	40(1)	1
C 10	$6596(2)$	268(2)	10035(2)	52(1)	1
C 11	$7916(2)$	$-19(2)$	10299(2)	(221)	1
C 12	8572(2)	$1381(2)$	10143(2)	$51(1)$	1
O1	$5589(1)$	$4594(1)$	$8184(1)$	$67(1)$,
02	$6124(1)$	1723(1)	8014(1)	$49(1)$	1

$\mathrm{Cl}-\mathrm{Ol}$	1.429(2)
$\mathrm{Cl}-\mathrm{Cb}$	$1.518(3)$
C1-C2	1.518(2)
C1-C8	1.548(2)
$\mathrm{C} 2-3$	1.523 (3)
C2-112A	0.9770
C2-112B	0.9700
C3-C4	1.516 (3)
C3-133	0.9700
C3-133	0.9700
$\mathrm{C} 4-\mathrm{C} 5$	1.523(3)
C4-I14A	0.9700
C4-H14B	0.9700
CS^{-68}	1.514(3)
$\mathrm{CS-C7}^{\text {c }}$	1.537(2)
C5-115	0.9800
C 6 - H 6 A	0.9700
C6-1/ 6 B	0.9700
C7-C12	1.523(2)
C7-C8	$1.549(2)$
C7-117	0.9800
C8-C9	1.530 (2)
$\mathrm{C} 8-\mathrm{HI} 8$	0.9809
C9-02	$1.439(2)$
C) $\mathrm{ClO}^{\text {a }}$	$1.513(2)$
C9-1H9	0.9800
$\mathrm{C} 10-\mathrm{Cl}$	1.526 (3)
C10-H10A	0.9700
C10--II10B	0.9701)

C11-C12	$1.526(2)$
C11-illa	0.9700
C11-111]	0.9700
C12-II12A	0.9700
C12-H12B	0.9700
O1-111	0.8200
O2-H2	0.8200
O1-C1-C6	113.14(16)
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$	106.95(14)
$\mathrm{Cr}_{1}-\mathrm{Cl}_{1-\mathrm{C} 2}$	108.90(15)
$01-\mathrm{Cl}-\mathrm{C} 8$	113.37(13)
$\mathrm{C} 0-\mathrm{Cl}-\mathrm{C8}$	103.29(13)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C8}$	111.19(15)
$\mathrm{Cl}-\mathrm{C2}-\mathrm{C} 3$	110.93(15)
Cl-C2-II2A	109.5
C3-C2-122A	109.5
$\mathrm{Cl}-\mathrm{C2}-\mathrm{H} 2 \mathrm{~B}$	109.5
C3-C2-H2B	109.5
H12A-C2-H2B	108.0
C4-C3-C2	112.81(17)
C4-C3-113A	109.0
C2-C3-H3A	109.0
C4-C3-H3B	109.0
C2-C3-H3B	109.0
H3A-C3-H3B	107.8
$\mathrm{C}-\mathrm{C4}-\mathrm{C5}$	$112.12(16)$
C3-C4-I14A	109.2
C_{5}-C4- H 4 A	109.2
C3-C4- H 4 B	109.2
$\mathrm{C} 5-\mathrm{C} 4$ - H 4 B	109.2
114A-C4-114B	107.9
$\mathrm{Cb}_{6} \mathrm{C} 5-\mathrm{C} 4$	109.13 (16)
$\mathrm{Cl}_{6}-\mathrm{C5}-\mathrm{C} 7$	101.80(14)
C4-C5-C7	113.55 (16)
C6-C5-15	110.7
C4-C5-115	110.7
C7-C5-II5	110.7
C5-C6-Cl	$100.66(15)$
	111.6
C1- $-66-\mathrm{H} 6 \mathrm{~A}$	111.6
С5-C6-H6B	111.6
C1-C6-H6B	111.6
H6^-C6-116B	109.4
$\mathrm{Cl2-C7-C5}$	$111.73(15)$
C12-C7-C8	$112.19(13)$
C5-C7-C8	104.73(14)
C12-C7-117	109.4
C5-C7-117	109.4

$\mathrm{C9}-\mathrm{C8}-\mathrm{Cl}$	115.44 (14)
C9-C8-C7	113.86 (13)
$\mathrm{Cl}-\mathrm{C8}-\mathrm{C} 7$	104.54(12)
C9-C8-H8	107.5
Cl-C8-H8	107.5
C7-C8- H 8	107.5
O 2 - $\mathrm{C} 9-\mathrm{Cl} 10$	111.68(13)
O2-C9-C8	$109.86(13)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$110.34(14)$
O2-C9-[19	108.3
C10-C9-H9	108.3
$\mathrm{C} 8-\mathrm{C}-\mathrm{II} 9$	108.3
C9-C10-C11	113.67(14)
Cy-C10-1110A	108.8
C11-C10-H10^	108.8
C9-C10-H10B	108.8
C11-C10-[110B	108.8
H10A-C10-I10B	107.7
$\mathrm{Cl0-C11-C12}$	$112.99(15)$
$\mathrm{C} 10-\mathrm{Cl1}-\mathrm{H11} \mathrm{~A}$	109.0
C12-C11-H11A	109.0
C10-C11-H11B	109.0
C12-C11-H118	109.0
H11A-C11-H11B	1078
C7-C12-C11	112.74(15)
C7-C12-H12A	109.0
$\mathrm{C} 11-\mathrm{Cl2}-\mathrm{H} 12 \mathrm{~A}$	109.0
C7-C12-H12B	109.0
C11-C12-H12B	109.0
1112A-C12-H12B	107.8
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{H} 1$	109.5
C9-02-112	109.5

C 9	$35(1)$	$44(1)$	$39(1)$	$-3(1)$	$14(1)$	$-7(1)$
C 10	$59(1)$	$41(1)$	$52(1)$	$22(1)$	$20(1)$	$-10(1)$
C 11	$63(2)$	$45(1)$	$72(2)$	$991)$	$21(1)$	$6(1)$
C 12	$39(1)$	$51(1)$	$57(1)$	$5(1)$	$12(1)$	$6(1)$
O 1	$55(1)$	$51(1)$	$66(1)$	$6(1)$	$-7(1)$	$11(1)$
O 2	$51(1)$	$51(1)$	$37(1)$	$-6(1)$	$9(1)$	$-10(1)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left\{\AA^{2} \times 10^{3}\right\}$ The anisoterpic displacement
factor expenent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\cdots+2 h k a^{\star} b^{*} U^{22}\right]$.

Atom	U^{11}	U^{22}	u^{33}	U^{23}	U^{13}	U^{12}
Cl	400(1)	$39(1)$	$42(1)$	2(1)	8(1)	O(1)
C2	64(1)	41(1)	84(2)	-7(1)	341)	-2(1)
C3	90(2)	$52(1)$	${ }_{67} 72$	-23(1)	35(1)	-22(1)
C4	63(2)	62(2)	$67(2)$	-10(1)	12(1)	-23(1)
CS	40(1)	$51(1)$	$59(1)$	-2(1)	17(1)	-9(1)
C6	$61(1)$	43(1)	$50(1)$	f(1)	$25(1)$	$-9(1)$
C7	37(1)	47(1)	33(1)	4(1)	$5(1)$	-4(1)
C8	371)	41(1)	33(1)	$-1(1)$	14(1)	$4(1)$

Elementary my dear Watson

Sherlock Holmes

