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Blind Equalisation Schemes for Dispersive Stationary and Mobile Channels

by Spyros Vlahoyiannatos

In this thesis the problem of blind equalisation of stationary and fading mobile channels is investigated.
Blind equalisers achieve a bandwidth economy by eliminating the training overhead, often invoked in
trained channel equalisation. The family of blind equalisers found in the literature is critically ap-
praised and the achievable performance is evaluated by computer simulations. We focus our attention
on the set of per—survivor processing based techniques as well as on the Bussgang techniques. A

specific application is also considered in the context of digital video broadcasting.

An extension of the well-known constant modulus algorithm, namely the DFE-CMA [1,2], is proposed
for equalising channels having a long inverse impulse response. This algorithm is characterised in terms
of its performance and convergence in comparison to the conventional constant modulus algorithm.
It is found that the proposed algorithm outperforms the conventional constant modulus algorithm for

transmissions over channels exhibiting impulse responses having equal-weight taps.

The extension of blind equalisation using channel decoding assisted feedback is also considered in the
thesis. The corresponding modified per-survivor processing algorithm is iteratively invoked in order
to provide improved joint data detection and channel estimation, by utilising the enhanced-reliability
feedback of the channel decoder. The application of the M-algorithm is also considered in order to
reduce the complexity of this blind turbo equalisation algorithm for transmissions over channels having
a high number of CIR taps. The performance of this algorithm is evaluated by computer simulations
and it is found that it improves the performance of non-iterative per—survivor processing, owing to

the employment of the channel decoding feedback.

Finally, different channel coding techniques were invoked and benchmarked in conjunction with the
above blind turbo-PSP equaliser. Specifically, a range of convolutional coding, turbo convolutional

coding, trellis—coded modulation and turbo trellis-coded modulation assisted blind turbo-PSP schemes

were comparatively studied.
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Chapter 1

Trained and Blind Equalisation

Prologue

In mobile communications the channel is hostile, containing dispersive multipath components, and
its characteristics are perpetually changing due to the mobility of the user. The signal, which is
transmitted over this time-variant channel suffers from fast as well as shadow fading and it is contam-
inated by the Intersymbol Interference (ISI) inflicted by multipath propagation. In order to be able
to demodulate the signal, we have to remove the ISI. This can be achieved either by convolving the
received signal with an appropriate sequence, namely with the channel equaliser’s impulse response
or by estimating the Channel’s Impulse Response (CIR) and then restoring the original transmitted
signal by ‘reversing’ the channel’s effects with the aid of channel estimation) . Both of these methods
will be highlighted in more depth during our further discourse in the context of blind equalisation.

The conventional method of channel equalisation is performed by means of estimating the CIR with
the aid of a “known” sequence, which is also known at the receiver and is transmitted periodically.
This sequence is referred to as the training sequence, which constitutes a transmission overhead, be-
cause it could have been used for transmitting useful information. For example, in GSM, 26 bits are
used for equaliser training in each burst containing 116 information bits, which results in an overhead
of 22.4%. Moreover, in mobile communications, due to the mobility of the user terminal, occasionally
the connection can be lost completely. In this case, the need for equaliser adaptation “from scratch”
arises, which means that there is no information at all about the CIR, until the next transmission
burst arrives at the receiver. A blind equaliser may be more suitable for this situation, because it is
designed to adapt to an unkown CIR without any information about it, which could be used for the
initialisation of the channel equaliser. For example, in a multipoint network, every time a network

connection between two network points is down, it is inefficient to send a training sequence to restore

1



this connection.

Substantial research efforts have been dedicated to blind equalisation in an effort to avoid the use of
a training sequence, resulting in so-called blind equalisation techniques, which extract the appropriate
information required for channel equalisation from the received signal. A range of different methods
have been proposed by numerous authors for blind equalisation using various equaliser structures [3-7].
As the need for blind equalisers has grown in recent years, modifications of these basic algorithms have

been proposed, which are referred to in the references.

The organisation of the thesis is as follows:

e In the first chapter we are introducing the problem of channel equalisation. The chapter is
divided into two sections. In the first section trained equalisation techniques are introduced and
discussed, while in the second section a rudimentary introduction to basic blind equalisation

schemes is offered. A convergence study and a study on the equaliser parameter control are also

given.

e In Chapter 2 comparative performance results are given for some of the blind equalisers discussed
in Chapter 1 and performance comparison conclusions are drawn. An application of blind
equalisers to digital video broadcasting is also considered, extending the specifications system
to include turbo coding and higher—order modulation along with blind equalisation in order to

increase the system’s robustness while increasing the bandwidth and coping with more severe

channel distortion.

e In Chapter 3 a decision feedback assisted extension of the constant modulus algorithm is proposed
and studied. Performance results show that this algorithm provides better performance than

the conventional constant modulus algorithm in equalising channels with long inverse impulse

response.

e In Chapter 4 an iterative technique combining convolutional channel coding with per—survivor
processing is proposed. This technique enhances the performance of per survivor processing by

iteratively providing a—priori feedback from the channel decoder back to the equaliser’s input.

e In Chapter 5 the turbo~-PSP technique of Chapter 4 is extended by replacing the convolutional
channel coding with coded modulation techniques. Performance results in this chapter indicate

that the fading channels performance is improved.

e Finally, in Chapter 6 conclusions are drawn on the pre-existing as well as the novel research

results of this thesis and further research proposals are presented.



Chapter 1 Trained and Blind Equalisation 1.1 Introduction to Equalisation

Next, we outline the novel contributions of this thesis:

e An illustrative overview of previously proposed blind equalisation algorithms is presented to-
gether with a performance evaluation and comparison in terms of performance and complex-
ity [8,9]. We evaluated the performance gain of switching to decision—directed equalisation after
blind convergence. The parameter control issue of these algorithms is studied, focusing on the
constant modulus algorithm and the relationship between the equaliser’s parameters and its
performance in terms of convergence speed and precision was evaluated experimentally. The
convergence of Bussgang equalisers is also studied, confirming and providing an insight to pre-
viously published results. Finally an application of blind equalisers to a digital broadcasting
application [10,11] was proposed and studied, improving the overall system performance and

proposing an extension of the system’s specifications.

e The DFE-CMA [1,2] is proposed, providing an extension to the convential constant modulus
algorithm, which offers improved performance for channels with long inverse impulse response.
A convergence analysis shows that under a certain assumption the convergence region of this

algorithm does not include the length—dependent local minima of the Bussgang equalisers.

e The turbo-PSP algorithm [12] is proposed, combining per survivor procesing with turbo equal-
isation. Per survivor processing is extended to include a—priori input provided iteratively by a
convolutional channel decoder. The performance of a per survivor processing equaliser is there-
fore improved by the channel decoder’s output. Pilot phase estimation is proposed for removing
the phase ambiguity associated with blind equalisers. It is shown that with only a minor propor-
tion of symbols in the order of 2% we can achieve negligible performance degradation, compared

to perfect phase estimation.

e The turbo-PSP algorithm is extended to employ coding modulation techniques [13] in substitu-
tion of convolutional coding. Different channel coding techniques were compared and the results
show that by replacing convolutional coding with trellis coded modulation we can improve the

fading channel performance of turbo-PSP.

1.1 Introduction to Equalisation

1.1.1 Introduction

Multipath propagation is a common problem arising in digital communications. Its main cause can

be viewed as the signal arriving to the receiver from more than one paths as a result of multiple

3



1.1 Introduction to Equalisation 1.1 Introduction to Equalisation
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Figure 1.1: Stylised channel impulse response h(t)

reflections. Assuming that X (f) is the spectrum of the transmitted signal z(t), H(f) is the spectral
domain transfer function of the channel, Y(f) is the received signal’s spectrum and E(f) is the

spectrum of the Additive White Gaussian Noise (AWGN) we can form the equation:
Y(f)=H(f) X(f)+ E(f). (1.1)
Upon translating Equation (1.1) to the time domain we have:
y(t) = h(t) = z(t) + e(t), (1.2)

where * stands for convolution. The impulse response of a typical mobile channel may appear like
the stylised function given in Figure 1.1. The convolution of h(¢) with the transmitted signal results
in intersymbol interference (ISI) since not only the current transmitted bits, but also previous bits
influence the received signal at any instant. This situation is undesirable because, besides the additive
noise, the signal received during the current signalling interval is corrupted by the signals due to
the bits transmitted during both previous and past signalling intervals. These neighbouring signals
constitute a second noise-like term, referred to as Convolutional Noise.

Using sampled values at time instant ¢ = nT Equation (1.2) takes the form:
{y(n)} = {hn} * {z(n)} + {e(n)}, (1.3)

where “*" means convolution. In order to restore the original signal sequence {z(n)} from the received
q

sequence {y(n)}, we can convolve {y(n)} with another sequence {c,} mimicking the ‘inverse’ of the

4



Chapter 1 Trained and Blind Equalisation 1.2 Linear Trained Equalisers

y(n) . A
am) Transmitter Channel Equaliser z(n) Decision | a(n)
Circuit
e(n)
Training
Sequence
Generator

Figure 1.2: A simplified equalised system

channel’s effects, yielding:
{z(n)} = {en} * {hn} «{z(n)} + {cn} * {e(n)}. (1.4)

A number of methods have been suggested for determining the sequence {c, }, when a-priori informa-
tion in the form of an equaliser training sequence is available, which will be discussed later. Figure 1.2
shows a typical trained equaliser of this kind, where the knowledge of the training sequence is exploited
by the equaliser at the receiver. In this scheme, the training sequence is transmitted periodically for
the duration of certain time intervals. During these time intervals the training bits are used by the
equaliser for estimating the optimum equaliser coefficients, which will then be used to equalise the
channels’s impact on the information bits before deciding upon the binary value of the most likely

transmitted bit. In the following sections, we present typical trained equalisers.

1.2 Linear Trained Equalisers [14], [15]

The general form of a linear equaliser is shown in Figure 1.3. As we can see from Figure 1.3, the
decision symbol a(n) at time n is based on the equalised symbol z(n), which is formed by the suitably
weighted successive signal values y(n — N),---,y(n + N), where 2N + 1 is the equaliser’s length,
followed by a decision circuit. Hence the equaliser is capable of cancelling the channel’s effects over

a duration of 2N + 1 consecutive symbol intervals. In mathematical terms, the equalised symbol at

time n is given by:
N

z(n) = Z ¢ - y(n —1). (1.5)

i=—N
The equaliser weights are adjusted so as to minimise the multipath channel’s distortions, based on a
certain minimisation criterion. Depending on the specific criterion they satisfy, linear trained equalisers

can be divided into a number of categories, which are presented in the next sections.
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Figure 1.3: Typical linear equaliser

1.2.0.1 Zero—Forcing Equalisers

According to the so—called Zero-Forcing (ZF) approach [15], [9] we estimate the channel’s impulse

response (CIR) h, and then attempt to cancel its effects, producing a new sequence ¢, so that:
{cn} * {hn} ={1,0,0,.. .}, (1.6)

where {} denotes a set and the equal sign here denotes equality between sets. If Equation (1.6) holds,
then the system is perfectly equalised having no residual ISI. According to this approach, the channel
is regularly sounded by transmitting a specific training sequence also known at the receiver and an
estimate of the CIR coeflicients {h,} is obtained. Considering H(z) and C(z) as the z—transform of

the signals {hy} and {¢,}, respectively, and following the procedure described in [9] we obtain:

1
C(z)-H(z) = 1:>C’(z):H(Z) =
En:é 27" = _ 1 =
i=0 i - Z?:O hmz_m
. 1
cy = h—o
bm = __Z_’Z-:o_lh_c_%_— (1.7)

where ¢é denotes an estimate of ¢ and Equation (1.7) is an approximation applicable to finite-duration
CIRs. Estimates of the CIR {h,} can be obtained by sounding the channel at regular intervals. Zero-

forcing equalisers can be used in low—noise environments, when the ISI is the main factor in signal

6



Chapter 1 Trained and Blind Equalisation 1.2 Linear Trained Equalisers

corruption. However, in their attempt to invert the channel’s transfer function they neglect the effect

of noise [9], which renders them unsuitable for high-noise environments. A more suitable equaliser for

such environments is highlighted in the next section.

1.2.0.2 Least Mean Squares Equalisers

The Least Mean Squares (LMS) equalisers [14], [15] use the equaliser training sequence for estimating
the equaliser coefficients, so as to minimise the mean squared value of the error between the signal

z(n) at the input of the decision device and the transmitted symbol a(n):

e(n) = z(n) — a(n) (1.8)

yielding:
MSES) — Efle(n)/?, (1.9)

where E[] is the expectation over all possible transmitted {a(n)} and received {a(n)} data sequences.
We can differentiate the Mean Squared Error (MSE) term in Equation (1.9) with respect to the tap—
vector ¢ of the equaliser, in order to obtain the tap—values of the equaliser tap vector ¢ that minimise
the MSE. Assuming an equaliser constituted by 2V + 1 taps, ranging from —N to N, we obtain € as

a solution of the above linear system as [9]:

N
> &-b(i,j) =h_j, j=-—N,...,N, (1.10)
i=—N
where
—+c0
b(i,5) = Y yn—1i)-yln—4), i,j=-N,...,N (1.11)
n=—oo

is the autocorrelation function of the sequence {y(n)}. In matrix form, Equations (1.10) can be

rewritten as:
Ryy -¢=h, (1.12)

where Ryy is a matrix containing the coefficients b(7, j):

b(—N,—N) b(—N,—N +1) b(—N,N)
b(—N +1,—N) b(-N+1,-N+1) ... b(—-N+1,N)
Ryy = : ;
b(N—-1,—N) bN-1,-N+1) ... bN-1,N)
b(N,—N) b(N,—N +1) b(N,N)

7



1.2 Linear Trained Equalisers 1.2 Linear Trained Equalisers

¢ is the (2N + 1)x1 dimensional vector of the estimated equaliser coefficients:
é=[t_N,6_Ni1,-..,en—1,¢n]T, (1.13)
and h is the (2IV + 1)x1 vector of the channel’s impulse response at time instant n:
h=[hn,bNn_1,-..,h_N] . (1.14)

The matrix B has a so-called T'dplitz structure if the signal y(n) is stationary, that is if its statistical

properties are independent of the actual time instant of the observation, i.e.:
b(i+n,j+n)=>5(i,7), Vn. (1.15)

The optimum equaliser coefficients are given as the solution of the linear system (1.12). We can solve
this system of equations by inverting matrix B or by using a recursive solution. In order to avoid
solving a (2N +1)x(2N +1) system of equations we can use an iterative procedure, which estimates the
equaliser tap coefficients at each stage using, for example, the classical steepest descent algorithm [9]

as follows:
et = &) _ AV, 4y J(n), (1.16)

where V.u) is the gradient vector with respect to the vector ¢®) which is defined in Appendix C
while J(n) is the MSE function, as defined in Equation (1.9) and the (k + 1)-th iteration is carried
out for all the vector components é; at the n—th time instant. This relationship leads to the final form

of the classic LMS equaliser coefficient update algorithm, which is expressed as [14], [15]:
et = &®) — Ay*(n)e(n), (1.17)

where y(n) = [y(n—N),y(n—N+1),...,y(n+N)]? physically represents 2N + 1 successive received
signal samples around the sampling instant n. From Equation (1.17) we can observe that for the
optimum equaliser coefficients, i.e. when the vector & does not change from one iteration to another,

the remaining update term should have zero mean value, i.e.:
Ely*(n)e(n)] = 0. (1.18)

This implies that for the optimum equaliser coefficients the error signal e(n) is uncorrelated to the
received signal y(n). The choice of the iteration step-size parameter A in Equation (1.17) is impor-

tant, since small values of A result in slow, but accurate convergence, while larger values result in
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Figure 1.4: Decision—directed equalised system

faster but less accurate convergence of & to its optimum value. The LMS approach is superior to
the ZF technique because, besides the intersymbol interference, it can also combat the effect of noise,

since the error term of Equation (1.8) takes into account both of these two factors of signal corruption.

1.2.0.3 Deciston—Directed Equalisers

The general form of a Decision-Directed (DD) equalised receiver is shown in Figure 1.4. As it can
be seen from this figure, the equaliser coefficients are constantly updated, even when the training
sequence is not transmitted, by using the output of the equaliser after a decision has been made with
respect to the most likely transmitted symbol. In other words, the decision device’s noise—free output
signal a(n) is used as a training sequence. This decision—directed approach can be very robust when
the decisions are correct, that is if the signal to noise ratio is sufficiently high and the channel does not
change rapidly, compared to the time interval between adjacent transmissions of the training sequence.
When these two restrictions are satisfied, the use of the decision—directed scheme results in fast and
robust convergence.

By defining the error as [9]:

400 N 2
) =3 lam) = Y -k |, (1.19)
n=—oo k=—N

where a(n) is the transmitted signal and y(n) is the received signal at time instant n, we can find the

equaliser coefficients, which minimise e¢(n) as in [9]:

zN: éb(i k) =T(), i=-=N,...,N, (1.20)
k=—N
where
¥i)= 3 almyln—9) (1.21)
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and b(, k) is the autocorrelation of y(n), as defined in Equation (1.15). More explicitly, b(i, k) = bji—k|
is considered to depend only on the difference |i — k|, implying that y(n) is stationary, since we have
assumed that the channel does not change rapidly. Clearly, ¥(z) is the correlation between the trans-
mitted and received signals, namely a(n) and y(n). As with the other equalisers, we can either solve
the linear system of equations (1.20) or use an iterrative procedure similar to (1.16) that of Equation
(1.16).

Decision—directed equalisers are similar to blind equalisers, since in this type of equalisation no training
sequence is available at the receiver, which therefore has to “guess” the original information symbols

a(n) in order to estimate the error and, accordingly, to adjust the equaliser coefficients.

1.2.0.4 Recursive Least Squares Equalisers

The so—called Recursive Least Squares (RLS) equalisers [14], [15] constitute a class of fast converging
least squares equalisers, which use the incoming new data samples to update the old estimates of
the equaliser coefficients. They use a computationally more demanding algorithm, than the classical

steepest descent technique. We define the MSE term following Haykin [15] as:

MSEWELS) = }E B(n,i)|e(d)|% (1.22)
=1
where
e(1) = a(i) — z(1) (1.23)

with a(7) and z(7) being the transmitted and the equalised received symbol at the input of the dicision
device of Figure 1.2, respectively. More explicitly, the signal z(i) is given by the convolution of the

received signal and the equaliser coefficients as:

N1 H
2(i) = Y cyli—k) = (™) - y(3), (1.24)
k=0
where
™ = (e, eV, (1.25)

is the equaliser vector at time n, or equivalently at the nth iteration and

y(i) = [y(@),y(i —1),...,y(i = N+ 1)]" (1.26)

10
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is the received signal vector. The weighting factor §(n, ) is used to ensure that new samples are given
more emphasis in the MSE function of Equation (1.22), than older ones. Therefore, a rational choice

for B(n,1) is a negative exponentially decaying weighting function [15]:
B(n,i) = w" " (1.27)

In order to find the optimum equaliser coefficients, which minimise the MSE term of Equation (1.22),
we differentiate this error term with respect to the equaliser vector ¢, following the procedure described

in [9] or by Haykin in [15]. By doing so we arrive at:

®(n)-&™ =g(n), (1.28)
where
B(n) =) w" - y(@)-y7(), (1.29)
i=1
or more explicitly:
y(4) - y* (4) y(i)* -yt — N +1)
. yi—1)-y(@) ... ylE-1)-y(i-N+1)
B(n)=> w' " : : : (1.30)
i=1
yli—N+2)-y*(¢) ... yi—N+2)-y*(1—N+1)
yi—N+1)-y*(@) ... y(—N+1)-y*1—N+1)
y()
) ) y(i—1)
g(n) = Zw”_iY(i)a* (1) = g(n) = Z’w"_i -a” (1) 5 (1.31)
1=1 1=1 y(i N+ 2)
y(it — N +1)

and & is the RLS estimate of the equaliser vector ¢(™), as defined in Equation (1.25). In order to

estimate the equaliser tap gains & we can invert the matrix ®(n), yielding:
¢™ =& 1(n) . gn). (1.32)

Following the detailed considerations and calculations presented in [15] or [9], which are reproduced

in Appendix B, we arrive at the RLS algorithm as:

e =&V 4 k(n) - £*(n), (1.33)

11
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Figure 1.5: A typical Decision-Feedback Equaliser

where
C wlam— y(n)
k(n) = T 0Ty T () ®L(n — 1)y () (1.34)
§(n) = a(n) — ()" y(n) (1.35)
& tn)=wl®@ (n—1) —wlkn)yI(n)® (n - 1). (1.36)

The matrix ®~1(n) is the estimate of the inverse of ®(n) at the n—th time interval. Clearly, matrix
additions and multiplications render this technique more complex, than the previous ones presented so
far. In return, this equaliser converges to the optimum solution significantly faster, than the previously
discussed ones. However, when applying the RLS algorithm in rapidly fading channel environments,

its channel tracking capability is dictated by the duration of the time-domain window employed.

1.2.0.5 Decision—Feedback Equalisers

In automatic control systems it is desirable to use a negative feedback-based structure, since it im-
proves their tolerance to noise. This happens because the negative feedback section generally decreases
the system’s gain—-bandwidth product and consequently reduces the noise at the output of the system

proportionately to the reduced bandwidth.

Decision—Feedback equalisers (DFFEs) [14], [15] constitute a modification of their linear counterparts.
These equalisers, besides the feedforward filter seen in Figure 1.3, also employ a feedback filter similar
to the feedforward filter, but using as their input the noise—free output of the decision device. A
general DFE structure is shown in Figure 1.5. Assuming that the feedforward equaliser coefficients
¢; have already been computed, using for example one of the previously mentioned techniques, we
can estimate the feedback coefficients b;, which minimise the error. We express the error between the

equalised signal z(n) at the input of the decision device and the estimate of the transmitted signal

12
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a(n) as:

e(n—0) = E[|2(n - 6) — a(n - 3)*], (1.37)

where J is a delay associated with the DFE structure. This delay is physically interpreted as the time
necessary for the feedforward filter to produce a correct decision to be fed to the input of the feedback
filter. Using the minimisation method presented in [9], where the transmitted symbol estimate a(n—J)
has been assumed correct, i.e. equal to the transmitted symbol a(n — §), we arrive at the following

estimate of the feedback coefficients:

Ny-1
b = Z th5+i+j; i=1,..., Ny, (1'38)
j=1

where h; is the channel impulse response. This CIR can be obtained by the receiver upon sounding
the channel.

There are numerous other ways of estimating the DFE coefficients, each one resulting in a new DFE
design. The DFE structure can be used instead of linear equaliser schemes generally improving the
achievable performance. However, since the feedback section uses the output of the decision device,
the false decisions must be rare for the DFE to perform well. In other words, at high SNR values the
DFE is bound to work significantly better than linear equalisers. For this reason, as we will see in

Chapters 4 and 5, various robust feedback techniques have been devised, which invoke more reliable

symbol decisions based on channel coding.

1.2.0.6 Epilogue

The equalisers we have presented so far have the common characteristic of using a training sequence,
which is transmitted periodically and is also known at the receiver. This implies that the channel is
periodically sounded. Clearly, as has already been mentioned, this sequence creates a transmission
overhead by absorbing a certain fraction of the transmitted bits, which could have been used as
information bits.

Following the above brief introduction of the most basic trained equalisers, we can now proceed to the
most important part of this treatise, which is the extension of these equalisers to the blind scenario.
In order to equalise the received signal without the use of a training sequence, one has to estimate
the CIR purely on the basis of the received signal. More explicitly, the parameters of the equaliser
have to be estimated jointly with the signal, since they are unknown. This can be achieved by using
statistical estimation techniques. The feasibility of using blind equalisation in mobile communications

applications is still an open research issue. In [16] an interesting discussion was presented on this topic.

13
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In the next section, we investigate blind equalisation techniques and discuss various issues related to

their design.

1.3 Overview of Blind Equalisers

1.3.1 Introduction

Blind channel equalisation has been attracting scientific interest since 1952, when Bussgang published
his original study of a scheme now known as the “Bussgang algorithm” [17]. Following Bussgang’s
study, the topic of blind equalisation has continued to attract both academic as well as practical
attention. In recent years researchers have intensified their efforts in this field due to the definition
of a range of important video broadcast standards. The Pan-European Satellite-based Digital Video
Broadcast (DVB-S) [18], the terrestrial DVB-T [19] and the cable-based DVB-C [20] systems con-
stitute a family of harmonised systems, where both the DVB-S and the DVB-C schemes recommend
blind equalisation. In this section, we offer a comprehensive overview of these techniques, focusing
on two particular families of methods, namely on the so-called Bussgang algorithms and on the joint
channel impulse response (CIR) and data sequence estimation. This section is structured as follows.
In Subsection 1.3.2 we provide a brief historical perspective. The basic principles of blind equalisa-
tion are discussed in Section 1.3.3, followed by an overview of the so—called Bussgang equalisers in
Section 1.3.5. In Section 1.3.6 we discuss algorithms which have the common characteristic of nor-
malisation of the equalised signal power. Section 1.3.7 is dedicated to a discussion on convergence. In
Section 1.3.9 joint data and channel estimation techniques are discussed. The second-order statistics
based algorithms’ principles are highlighted in Section 1.3.10. The basic principles of the fourth-order
statistics based channel estimation and equalisation algorithms using the so—called “polycepstra” are
summarised in Section 1.3.11. Complexity comparisons are provided in Section 1.3.12. Finally, in the
next chapter the performance of these equalisers is studied comparatively. Let us now commence our

discourse with a historical perspective.

1.3.2 Historical Background

In Figure 1.6, we give a historical perspective on the most important blind equalisation techniques in
communications, as they appeared in the literature. Blind equalisation was originally contrived for
equalising benign wireline based links, such as telephone lines or for stationary point to point microwave
links, where the channel’s characteristics varied slowly and hence there was no need for employing

frequent and explicit channel sounding with the aid of a training sequence. In 1975 Sato [3] proposed

14
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Figure 1.6: A brief history of blind equalisation
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an algorithm for blind equalisation, which is now widely known as the “Sato’s algorithm”. Five years
after Sato’s publication, the blind equalisation problem was further studied for example by Benveniste,
Goursat and Ruget in [26], where a sufficient condition for the convergence of a blind equaliser was
established by the well-known Benveniste-Goursat—Ruget theorem as well as in [32], where a new
algorithm was proposed. At the same time Godard [4] introduced a criterion, namely the so—called
“constant modulus” (CM) criterion, leading to a new class of blind equalisers. Following Godard’s
contribution a range of studies were conducted employing the constant modulus criterion. Foschini [27]
was the first researcher to study the convergence properties of Godard’s equaliser assuming an infinite
equaliser length. Later, Ding et al. continued this study [22] and provided an indepth analysis of
the convergence issue in the context of a realistic equaliser. Although numerous researchers studied
this issue, nevertheless, a general solution is yet to be found. A plethora of authors have studied
Godard’s equaliser, rendering it the most widely studied and applied blind equaliser. A well-known
algorithm of the so—called Bussgang type [17,33] was also proposed by Picchi and Prati [21]. Their
“Stop—and-Go” algorithm constitutes a combination of the Decision-Directed algorithm [15] with
Sato’s algorithm [3]. After 1991, a range of different solutions to the blind equalisation problem were
proposed. Seshadri [6] suggested the employment of the so—called M—-algorithm, as a “substitute” for
the Viterbi algorithm [34] for the blind scenario, combined with the so—called “least mean squares
(LMS)” based CIR estimation. This CIR estimation was replaced by “recursive least squares (RLS)”
estimation by Tzou, Raheli and Polydoros [23,35], combining the associated channel decoding with
the CIR estimation, leading to what was termed as “Per-Survivor Processing”. Since then a number

of papers have focused on this technique [23, 30, 36-47].

Prior to Seshadri’s algorithm, Tong et al. [28] proposed a different approach to blind equalisation, which
used oversampling in order to create a so—called “cyclostationary” received signal, and performed CIR
estimation by measuring the autocorrelation function of this signal and by exploiting this signal’s
cyclostationarity. This technique was also applied to the case of ‘sampling’ the received signals of
different antennas (instead of oversampling the signal of a single antenna) and further extended by
Moulines et al. using a different method of CIR estimation, namely the so—called subspace method
in [29]. Furthermore, Tsatsanis and Giannakis suggested that the cyclostationarity can be induced by
the transmitter upon transmitting the signal more than once in each symbol interval [48]. A number
of further contributions have also been published in the context of these techniques [49-64]. Finally,
one of the first attempts of designing a blind equaliser, which would be more efficient in terms of both
equalisation accuracy and convergence speed, than the family of Bussgang techniques at the cost of
extra complexity was made by Hatzinakos and Nikias [5], who proposed a more sophisticated approach
to blind equalisation by exploiting the so—called “tricepstrum” of the received signal. Until today, the

blind equalisation problem is an open research topic, attracting significant amount of research. A
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general answer to the fundamental question “Under what circumstances is it preferable to use a blind

equaliser to a trained—equaliser ?7 is yet to be provided.

Despite the scarcity of reviews on the topic, in the context of the Global System of Mobile Com-
munications known as GSM an impressive effort was made by Boss, Kammeyer and Petermann [16],
who also proposed two novel blind algorithms. We recommend furthermore the fractionally-spaced
equalisation review of Endres et al. [65] and the Constant Modulus overview of Johnson et al. [66]
based on a specific type of equalisers, namely on the so—-called “fractionally-spaced” equalisers. A
review of subspace-ML multichannel blind equalisers was provided by Tong and Perreau [67]. Further
important references are the monograph by Haykin [15], the relevant section by Proakis [14] and the
blind deconvolution book due to Nandi [68]. Comparative performance studies between various blind
equalisers have also been performed. We recommend the second-order statistics—based comparative
performance studies of Becchetti et al. [69], Kristensson et al. [70] and Altuna et al. [71], which is based
on the mobile environment as well as the second—order statistics and PSP-based comparative study
of Skowratanont and Chambers [72]. Furthermore, we recommend the fractionally-spaced Bussgang
algorithm based comparative performance study by Shynk et al. [73], the CMA comparative perfor-
mance study of Schirtzinger et al. [74] and the comparative convergence study by Endres et al. [75].

Let us now review the basic principles of blind equalisation in the next section.

1.3.3 Blind Equalisation Principles

1.3.4 Introduction

In this section we will introduce and discuss a range of blind equalisation principles, mainly focusing
on the Bussgang techniques [17,33]. Since Sato’s original study in 1975 [3], blind equalisation has

attracted significant scientific interest due to its potential in terms of:

o Overhead reduction. Training sequences sacrifice bandwidth in order to assist in determining the
CIR, hence assisting equalisation. Blind equalisers do not need training sequences and therefore

conserve bandwidth.

e Simplification of point to multipoint communications systems or broadcast. When a commu-
nications link is reset, equaliser adjustment “from scratch” is necessary. In this case, using a

training sequence is inefficient, since the transmitter has to retransmit the training sequence

specifically for each receiver, which is reset.

In Figure 1.7 the basic factors affecting the design of an equaliser are shown. In situations, where

invoking trained equalisation is feasible, increased bandwidth efficiency is the main motivation behind
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Figure 1.7: Contradictory design factors in the design of blind equalisers

using blind equalisation instead of trained equalisation, since the training sequence wastes a substantial
fraction of the available bandwidth. The delay that an equaliser exhibits represents the amount of time
that we can afford to wait, before the information is actually delivered from the equaliser to the other
modules of the communication system. In some cases, for example when transmitting data files in a
non-real-time fashion, delay is of no importance. However, the transmission integrity requirements of
non-real-time data links are typically significantly higher than those of the delay—sensitive interactive
speech or video links. More explicitly, in scenarios such as in a real-time interactive video telephone,
the total system delay has to be confined to less than 100ms for maintaining ‘lip—synchronisation’. The
required performance of an equaliser is defined by the application for which it is designed. The average
Bit Error Ratio (BER) as well as the burst Bit Error Ratio performance is a measure of the equaliser’s
ability to deliver correct hard-decision information. The Mean-Squared-Error (MSE) is another
measure of performance, which quantifies the ability of an equaliser to deliver good soft-decision
outputs. Both performance criteria are commonly measured and plotted against the Signal-to-Noise—
Ratio (SNR). The implementational complexity of an equaliser is typically increased when the expected
performance of the equaliser is higher. The task in this case is to exploit the equaliser’s tolerable
complexity in an efficient manner, so that the performance versus complexity ratio is maximised. The
adaptation speed is the equaliser’s ability to rapidly adapt the equaliser’s coefficients to CIR changes.
This characteristic is essential in violently fluctuating mobile communications channels but is of less
significance for cable-based channels or any other channels, which can be modeled as quasi—stationary.
Furthermore, blind equalisers typically require a substantial number of input symbols, before they
can converge, so that they can circumvent the lack of training information. For this reason their

adaptation speed is a crucial factor in the case of real-time links. Finally, the convergence of an
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equaliser is not always guaranteed. Specifically, some blind equalisers have been shown to converge to
spurious undesirable local minima, which can potentially lead them to deliver completely erroneous
output symbols [22]. These situations have to be avoided when blind equalisers are used, provided

that appropriate counter measures can be contrived at an acceptable complexity.

Here we curtail our discourse on the interpretation of Figure 1.7, although a range of further interesting
design trade—offs can be gleaned from it. We note, however, that throughout this thesis we will refer

to these design factors as measures of the equalisers’ applicability to certain scenarios.

We will now proceed to describe the fundamental problem of blind equalisation in more depth. In
our initial discussions the communication system parameters will be assumed to be time—invariant.
This constraint is not necessary in general, although it is beneficial in terms of complexity reduction.
Furthermore, the additive noise will be assumed to be Gaussian and white. Let us assume that the
input bits, resulting from any encoder prior to modulation, are mapped into complex Quadrature Am-
plitude Modulation (QAM) [9] input symbols a(n) transmitted at time instant n. These transmitted
symbols are filtered by the CIR h; and then the noise e(n) is added to them, resulting in the received

symbols y(n) at time instant n in the form of:

y(n) = i h; - a(n — 1) + e(n), (1.39)
i=—L1

where L; and Ly are the length of the CIR’s pre— and post—cursor sections surrounding the main
tap (measured in terms of the number of transmitted symbols), respectively. An equaliser is typically
placed after the channel in order to remove the channel-induced dispersion, as it is shown in Figure 1.8.
Blind equalisation involves finding the ‘best’ equaliser filter, which regenerates the input symbols a(n)
at the receiver, without any knowledge of the CIR upon exploiting the knowledge of the distribution
of the input QAM symbols. If the equaliser has N; feedback and Ny feedforward taps {c;}, then the

equalised symbols will be of the form:

z(n) = | > ciryln—i) (1.40)
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and upon using Equation (1.39) we have:

La+Ns Ns
z(n) = Z t;-a(n —1i) + Z ci-e(n—1), (1.41)
i=—L1—N; i=—N1

where {;} = {h;} * {¢;} is the convolution of the CIR with the equaliser filter, representing the total
transfer function of the cascaded system constituted by the channel plus the equaliser. Assuming that
the noise power is low compared to the power of the received signal, we can observe that the blind
equalisation problem corresponds to estimating the suitable equaliser impulse response, which reduces
the first term at the right-hand side of Equation (1.41) to only one of the summation terms. In this

case, the cascaded system’s impulse response tap—vector t takes the form of:
t:(07”'707A707"'70)7 (142)

where A is a complex constant. This is the only case that corresponds to zero intersymbol interference
(ISI). Assuming that the strongest signal path is located at time instant 0, Equation (1.41) can also

be expressed as:

Lo+Ny Ns
z(n) =to-a(n) + Z ti-a(n—1)+ Z ci-e(n—1i). (1.43)
i=—Li;—Ny, 1#0 i=—Np

The first term of Equation (1.43) is the useful one, including the one and only path at time 0. The
second term is the ISI term, which is also referred to as convolutional noise [9]. This is because this
term is a noise term, as far as the receiver is concerned and since it is the result of the convolution
of the CIR h; and the equaliser’s impulse response ¢; with the input signal a(n). This is usually the
main noise contributor at the initialisation of the equalisation process and it is reduced further during
the stages of the equalisation process, leaving only the real noise term as the sole signal impairment,
when the equalisation is perfect. Finally, the third term of Equation (1.43) is the noise term e(n),

convolved with the equaliser’s impulse response ¢;, since the noise has been filtered by the equaliser.

A problem similar to blind equalisation is the problem of blind deconvolution [76]. In blind deconvo-
lution the aim is to perform joint channel and data estimation in a non-real time fashion, which is a
fundamental difference with respect to the blind equalisation problem. The received signal is stored
and then deconvolved in order to produce the CIR together with the input signal. This is the case, for
example, when seismic signals are considered [77]. We have no knowledge of the signal emerging from
the crust of the earth or of the channel that exists between the source of this signal and our receiver,
hence we attempt to record the signal in order to deconvolve it later. When a channel estimation is

available to us, we can estimate the input signal in two ways. A feasible approach is to use a sequence
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Figure 1.9: Classification of blind equalisers

estimation technique, such as the Viterbi algorithm [34]. Another approach is to produce an inverse
filter of the channel and to perform filtering with the aid of this inverse filter. We will discuss this

technique in more detail in Section 1.3.9.

Let us now point out an important aspect of channel equalisation, noting that if the distribution of
the equaliser’s input signal is Gaussian, then the equalised signal of Equation (1.41) is also Gaussian
distributed [76]. This is true even if there is more than one term in the sum which are non-zero,
i.e. even if ISI exists. Conversely, provided that the distribution of the equaliser’s input signal is
Gaussian, the equalised signal constituted by a sum of “independent identically distributed (i.i.d.)”
Gaussian variables is also a Gaussian variable irrespective of whether there is residual ISI at its output.
In this case, equalisation is impossible, since the equaliser cannot distinguish the zero-ISI equalised
signal sequence from the other possible candidate sequences, which contain ISI. In other words, it
is impossible to equalise the received signal, since the zero-ISI candidate received signal sequence
is indistinguishable from the other ISI-contaminated candidate sequences. Hence blind equalisation
cannot be performed, if the distribution of the equaliser’s input signal is Gaussian. Fortunately, the
uniform distribution of typical QAM data sources is far from the Gaussian, which renders the received

signal amenable to blind equalisation.

Blind channel identifiability issues have been discussed by Benveniste, Goursat and Ruget in [26] and

by Huang and Gustaffson in [78] among others.

The equalisers alluded to in this section are classified in Figure 1.9. Following the above general

discussions on blind equalisibility, let us now proceed with the overview of the family of Bussgang
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techniques in the next section.

1.3.5 Bussgang Blind Equalisers

In this section we set out to characterise a range of basic equaliser schemes involving the class of
“Bussgang” techniques dating back to 1952 [17]. In our discussion we will consider the following

signal vectors, which obey the notations of Figure 1.8:

a(n) = [aln+Ni+L),...,a(n— Ny — Ly)]" (1.44)
y(n) = [yn+MN),...,y(n— No)]" (1.45)
c = [e_ny,--emy)T (1.46)
t = [ENi—Lis-- - ENgt L] (1.47)
e(n) = [e(n+Ny),... e(n—N)" (1.48)
h_r, hr, 0 0 0
0 h_g, hi, 0 0
H= (1.49)
0 ... 0 h.p, ... b, O
0 0 ... 0 hez, ... hi,

where T denotes transpose, * denotes conjugate and ¥ denotes the Hermitian matrix. From these

definitions the following matrix relationships hold:

y(n) = H-a(n) (1.50)

t = HT .c (1.51)
2(n) = ¢ y(n) (1.52)
z(n) = t7-an) +c’ - e(n). (1.53)

Explicitly, Equation (1.50) describes the received signal y(n) as the convolution of the transmitted
signal a(n) and the CIR h;. Equation (1.51) reflects the convolution of the CIR with the equaliser’s
impulse response and Equation (1.52) characterises the equaliser’s output signal z(n) as the convolution
of the received signal y(n) with the equaliser’s impulse response ¢;. Following these definitions, a

general form of the Bussgang equaliser update Equations [17] can be expressed as:

22



Chapter 1 Trained and Blind Equalisation 1.3 Overview of Blind Equalisers

where g{z(n)} is a non-linear zero-memory function of the equalised output z(n) and X is the so-
called “step-size” parameter, controlling the speed and the accuracy of the equaliser’s convergence.

The condition for attaining convergence in the mean value for these algorithms is [15]:
Elz(n) - y*(n)] = Elg{z(n)} - y*(n)] (1.55)

or

Elz(n) -y*(n —4)] = Blg{z(n)} -y"(n = 1)}, i=—Ni,---, Na. (1.56)

Upon multiplying each side of this equation by the relevant equaliser tap coeflicient ¢; and summing

the results for ¢ = —Ny,- -, Ny as in [15], we obtain:
Elz(n) - z*(n)] = Elg{z(n)} - 2" (n)]. (1.57)

If instead of multiplying by ¢} we had multiplied by ¢;_,, assuming that the equaliser has an infinite

number of taps, then Equation (1.57) would take the form of:
Elz(n) - 2% (n — k)] = Elg{z(n)} - 2" (n — k)], (1.58)

which reflects the so—called Bussgang property that is satisfied by the Bussgang algorithms, when the
equaliser length is doubly infinite. When both the feedforward and feedback equaliser lengths are
sufficiently high, then the Bussgang property is approximately satisfied. In the strict sense, however,
only Equation (1.57) is satisfied. When the equaliser has converged, then the equalised symbols z(n)

approximate the transmitted symbols a(n) and Equation (1.57) becomes:
Elz(n) - g{z(n)}] = Ella(n)|”] = 1, (1.59)

provided that the input power is normalised.

The problem of finding the optimum Bussgang equaliser corresponds to finding the function ¢g{z(n)},
which provides the best estimate of the corresponding transmitted symbol a(n) for each equalised
symbol z(n), whilst satisfying Equation (1.59). According to the Maximum Likelihood (ML) criterion,
this can be achieved by setting g{z(n)} = Efa(n)|z(n)], i.e. setting g{z(n)} equal to the expected (or
most probable) value of the transmitted symbol, given the equalised symbol at time n, z(n). Note
here that we are investigating zero—memory solutions, that is only the value of the current equalised
symbol is taken into account in the process and no previous values. In order to find this expected
value, we have to estimate the distribution f,(z) of the equalised symbols z(n). During the equaliser’s

initialisation, in general the equalised signal contains ISI. If during this initialisation phase we ignore
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the channel noise by assuming that the ISI is the main signal impairment at this stage, then this means
that the equalised signal consists of a number of transmitted signal replicas, each having a different
delay and weight. When the number of these replicas is sufficiently high, according to the central
limit theorem we can approximate the distribution of the equalised symbols z(n) with a Gaussian
distribution. In our analysis in this section we shall assume that the central limit theorem condition
can be invoked since there is a sufficiently high number of ISI terms. In practical situations the
presence of six to eight ISI terms is sufficient for the central limit theorem to become applicable.
Assuming also M-level QAM transmissions, the expected value giving the estimate of g{z(n)} obeys
the following form, which is similar to the one given in [76] for pulse-amplitude modulation (PAM):

M g e lem) -2 207
gnr{z(n)} = Ela(n)|z(n)] = Z—f\fl A (1.60)

where the coefficients A; constitute the signal amplitudes associated with the QAM constellation and
o? is the variance of the noise, consisting of two components, namely the convolutional noise and the
Additive White Gaussian Noise (AWGN) induced by the channel. An estimate of the noise variance
o? must be available for the evaluation of Equation (1.60). However, the function g{z(n)} is only
the optimum one under the assumption of a Gaussian distribution for the composite noise, which
is produced by the ISI plus the channel’s additive noise. Depending on this distribution, different
Bussgang algorithms exist. The well-known Godard (or CMA) [4], Sato [3], Benveniste-Goursat [26]
or Stop-and-Go [21] algorithms constitute a few such algorithms. We will describe each of them in

the forthcoming paragraphs and discuss their characteristics.

As an illustration, in Figure 1.10 we have plotted the real part of the function g{(z)}, evaluated from
Equation (1.60), for the algorithm of gprr{z(n)} = Ela(n)|z(n)] under the assumption of —20dB
additive Gaussian noise power. The real part of a 16-QAM signal can take four discrete values,
symmetrically distributed around the origin. The estimated signal, which approximates the most
likely transmitted signal, should be close to these legitimate constellation points. We observe that
this is the case, when the above ML algorithm is used, under the assumption of low noise (20dB
below the signal level). In this low-noise scenario, the ML algorithm estimates the transmitted signal
as the constellation symbol, which is closest to the equalised symbol z(n) at time instant 7. This is
illustrated in Figure 1.10 by the four levels, corresponding to the four discrete values that the real
(or the imaginary) part of a 16-QAM signal can assume. If the noise variance is not sufficiently low,
however, then the surface of Figure 1.10 loses its resemblance to the 16-QAM constellation. This is
shown in Figure 1.11, where the noise variance was assumed to be —10dB, i.e. 10dB higher than in
Figure 1.10. When no CIR information is available, it might be extremely optimistic to assume that,

even without channel noise, the power of the ISI-induced noise would be as low as —20dB. In fact
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it might be well over 0dB, thus rendering the 16—(QAM pattern unrecognisable in the received signal.
The approximation of the estimation function g{z(n)} for each Bussgang algorithm is given in a 2D
plot in [76] for 8-level PAM, where the signals are real-valued. Similar figures can be generated by
extending the approach of [76] to the case of 16-QAM, where the signals assume complex values, as
can be seen in the 3D plots of Figures 1.10 and 1.11.

An alternative interpretation of the function g{z(n)} can be observed by considering a “cost—function”
J{z(n)}. The minimisation of this cost-function leads to the desired equaliser tap values, according
to the wide-spread steepest descent algorithm [15]:

i) _ olm) _ . dJ{z(n)}

G (1.61)

el

which physically implies that the taps ¢(™ at instant n are modified by the derivative of the cost—
function — after weighting by the step-size A — in the direction of minimising the cost—function. Ac-
cording to Equations (1.61) and (1.54) the following relationship holds between g{z(n)} and J{(z(n)}:

8J{z(n)}

9e =Y () (z(n) = g{z(n)}. (1.62)

Again, in simple, but conceptually feasible terms Equations (1.61) and (1.62) can be interpreted as

updating each tap of the equaliser on the basis of the gradient of the error term
€(n) = z(n) — g{z(n)} (1.63)

with respect to (wrt) a specific tap. Depending on the polarity of the cost—function’s derivative wrt
a specific tap, this tap is updated according to the step—size A, such that in the next step it reduces
e(n) — hence the negative sign in Equation (1.61). Upon using the differentiation rules with respect

to a vector given in Appendix C, we can readily arrive at:
g{z(n)} = 2(n) = J {z*(n)}, (1.64)

where " denotes the derivative and the associated difference quantifies the discrepancy of the equalised
output z(n) and the derivative of the cost—tunction given by Equation (1.62). Equation (1.64) will
be useful, when we consider the Bussgang cost—functions individually and derive the corresponding

equaliser tap update algorithms.

Again, in all of our discussions, we employ QAM [9] and the general structure of the equaliser is shown
in Figure 1.12. As we can see from this figure, the blind equaliser coeflicients are updated using the

knowledge of the received signal vector y(n), the equalised signal z(n), the phase-corrected equalised
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y(n) . z(n) | Phase Z(r)e‘j‘D Decision A
s—+Equalizer Tracking Circuit a(n)
Phase <
Tracking
Update
Equalizer
- Coefficients
Update
{

Figure 1.12: Equaliser structure used in Bussgang techniques

signal z(n)e™7? and the estimated signal a(n). We note, however, that a specific Bussgang equaliser
may not make use of all of these signals in order to update its equaliser tap coefficients. It depends on
the algorithmic implementation, which of these signals are invoked in the tap update process. What
is common, however, to all Bussgang algorithms is that the error estimate in Equation (1.63) will be a

function of the equalised symbol z(n) at time n only, i.e. they are based on a zero-memory estimation.

In the equalisers presented in this section the sampling rate is identical to the signalling-rate — or
Baud-rate, that is we use only one sample per symbol period. These equalisers are referred to as
symbol-spaced schemes, as opposed to fractionally-spaced equalisers, which use more than one sample
per symbol in order to equalise the channel. A typical example of fractionally-spaced equalisers is
constituted by the family of second—order cyclostationary statistics based blind channel estimation
algorithms [7]. In the context of Bussgang schemes, the extension of these equalisers to fractionally
spaced arrangements is relatively straightforward. Such algorithms have been reported in the literature
for example by Pei and Shih in [79] or by Dogancay and Kennedy in [80]. They have been further
studied for example by Endres, Johnson and Green in [81], by LeBlanc, Fijalkow and Johnson in [82],
by Endres, Halford, Johnson and Giannakis in [65], by Magarini ef al. in [83] and by Papadias and
Slock in [84].

Before proceeding to the discussion of Sato’s algorithm, we note that the Bussgang zero—memory
function g{z(n)} of Equation (1.54) can be extended to the non-zero-memory case, if we take into
consideration more than one equalised symbols in generating the error function of Equation (1.63).
This was proposed by Yang for the CMA in [85] but more on this will be discussed in Chapter 3. Let

us now consider a range of Bussgang algorithms in a little more depth in the forthcoming subsections.
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1.3.5.1 Sato’s Algorithm [3]

Sato’s pioneering contribution in 1975 [3] described the first blind equalisation algorithm proposed,
which was designed for real-valued signals and PAM. However, its extension to complex—valued signals
and QAM is straightforward, especially in the spirit of Godard’s publication of the well-known CMA
(4], which was derived for complex—valued QAM signals. Sato’s algorithm dedicated to real valued

signals z(n) uses the following cost—function [3]:
S _ 2
J9(n) = B [(2(n) - 1?], (1.65)

where v is Sato’s scaling coeflicient and E[], again, represents the expectation over all possible trans-
mitted data sequences. It is clear that this cost—function is forcing the absolute value of the equalised
signal to a fixed value . This is a plausible policy to pursue, when Binary Phase Shift Keying (BPSK)
is used, but not for any other multilevel PAM scheme. For these multilevel constellations the min-
imisation of the Sato cost—function of Equation (1.65) may not seem to lead to the correct update of
the equaliser taps at each iteration. Nonetheless, experimental experience shows that the minisation
of Equation (1.65) may still lead to convergence to the desired zero-ISI equilibrium, although not in
all cases, as we shall see in Section 1.3.7. The associated complex Sato cost—function can be defined
as in [32]:

J%(n) = B[(|Re{z(m)}| = 9)*] + B [(Im{z(nm)}| — 7)?] . (1.66)

The steepest descent algorithm — which results from the cost—function of Equation (1.66) - can be

found by determining the gradient of the cost—function with respect to the equaliser tap vector c.

Alternatively, using Equation (1.64) we obtain:
9sate{z(n)} = csgn(z(n)), (1.67)

where the complex “signum” function is given by:
csgn(z(n)) = sgn(Re{z(n)}) +j - sgn(Im{z(n)}). (1.68)

In Figure 1.13 a plot similar to these in Figures 1.10 and 1.11 is given for Sato’s algorithm. Clearly,
this surface does not follow the four legitimate values of the 16-QAM constellation pattern of Figure
1.10, it is constituted into two planes. All the other Bussgang algorithms follow a pattern similar to

that of Sato’s algorithm and none of them follows the specific 16-QAM constellation pattern of the
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Figure 1.13: The real part of the function g{z(n)} in Equation (1.67) plotted against the real part of
the equalised symbol z(n) for different Sato algorithm. The modulation used is 16-QAM.

ML algorithm seen in Figure 1.10. Sato’s algorithm [3] is thus given, according to Equation (1.54) by:
) = (™ — . y*(n) - 59(n), (1.69)

where €9%°(n) is the Sato—error defined as:
59 (n) = z(n) — 7 - csgn(z(n)). (1.70)

Explicitly, the tap vector ¢ in Equation (1.69) is adjusted according to the correction term A -y*(n) -
€3 (), where Sato’s error term €%°(n) depends on the cost—function of Equation (1.66). As it can
be seen from Equation (1.70), this algorithm uses only the sign of the equalised output values z(n) in
order to update the equaliser coefficients. This implies that the exact value of z(n) is ignored. Clearly,
an error in the polarity of z(n) is less probable, than an error in its exact value, when compared to
the actual transmitted value a(n). Therefore, Sato’s algorithm has the advantage that it avoids using
the generally error-prone exact value of z(n), in favour of invoking the less spurious polarity of it. In
the case of symmetric multilevel PAM transmissions, for which the algorithm was originally proposed,
Re{z(n)} assumes equi—probable positive and negative values. Using suitable coding and taking into
account only the sign of z(n) implies ignoring the fine-resolution channel effects. The same idea can
be adopted for QAM transmissions, where Re{z(n)} and Im{z(n)} can be treated as two independent

PAM constellations.

Setting the value of the scaling coefficient v in Equation (1.69) is very important, since it actually

directs the signal z(n) to the point of its convergence, i.e. to the original constellation points. A way
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Figure 1.14: The cost—function of Sato’s algorithm in Equation (1.66) in the context of square 16-QAM
against the complex plane of the equalised signal z(n)

of achieving this is by constraining the mean value of the error update term of Equation (1.69) to zero.

Therefore, the optimum value is set for v in the minimum mean squared error sense. This optimum

value was set by Sato [3] to:

_ Bla(n)?
= Bllam)] (1)

for real valued signals. This is the only value of -y, which sets the mean value of the error term in

Equation (1.70) to zero. For complex—valued transmitted signals v is given by a similar relationship:

_ E[Re{a(n)’}] _ E[Im{a(n)’}] (1.72)
) } |

7= ERe{Ja®)]}] ~ ElIm{a(m)}]’

Sato’s cost—function Having presented Sato’s algorithm, we will now take a closer look at the

cost—function of this algorithm in order to explain some of the

algorithm’s properties. In Figure 1.14 the cost—function is plotted against the complex plane of the
equalised symbol z(n) seen at the input of the decision device in Figure 1.2. When the equaliser reaches
convergence, this equalised signal should cluster around the constellation points of the modulation
scheme used, in this example 16-QAM. However, despite these expectations, we can clearly observe
that the cost-function of Sato’s algorithm exhibits minima only at the four points (£, +vj). More
explicitly, the observed minima represent actual constellation points only for QPSK and BPSK. By

contrast, for 16-QAM, the minima do not represent constellation points. This, of course, does not
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mean that the algorithm does not converge for 16-QAM. What it implies is that in blind equalisation
the “desired” state of equilibrium does not satisfy the condition that the equalised symbol is precisely
equal to the transmitted symbol. As it has already been mentioned, this is because the receiver does
not “know” what the transmitted symbol was, since no training sequence is used. We will see later
that different Bussgang—type equalisers exhibit different types of minima in terms of their related
cost—functions and this is reflected in their convergence properties. From Figure 1.14 we also observe
that at the point z(n) = 0 the cost—function exhibits a local maximum. Local maxima are unstable
points for these equalisers, since by using the negative gradient of their cost—function, we ensure
that only local minima can be stable extrema. This is augmented in more depth in Appendix C.2.
The above-mentioned characteristics do not prove the convergence of Sato’s algorithm, but provide a
deeper physical interpretation of these properties.

Having described Sato’s algorithm, which was historically the first blind equaliser proposed, we will
now present a modification of this algorithm.

Signed—Sato algorithm [86] A modified version of Sato’s algorithm, referred to as the “Signed-Sato”
technique was proposed by Weerackody, Kassam and Laker in [86]. According to this approach, the

error signal is altered by taking only its sign into account, modifying Equation (1.69) as follows [86] :
M) =™ — . y*(n) - csgn(e®(n)). (1.73)

This algorithm performs the e¢sgn() function on the error term of Equation (1.70) rendering the update
procedure insensitive to the error’s actual value. One of the consequences of this is that when the
equaliser is approaching convergence, the “almost correct” values of the equalised symbols are not
exploited by the equaliser adaptation procedure. This implies that the convergence accuracy of this
algorithm must be poorer than that of Sato’s. On the other hand, faster convergence is achieved.

We observe the following properties of this algorithm, compared to Sato’s algorithm:

Its complexity is somewhat lower since the csgn() function eliminates some multiplications, as

we will see in Section 1.3.12.

e Its convergence has an increased dependence on the step—size parameter in the sense that a

smaller X is required for convergence, as compared to Sato’s A.

e Its convergence speed is higher.

e Its robustness appears to be better. This is because it only uses the sign of the error, which is

less likely to be wrong than the noise—contaminated error itself.
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1.3.5.1.1 Switching to Decision—Directed Equalisation After reaching the converged steady-
state, maintaining the same step—size as during the convergence phase would result in poor equalisation
performance. One should decrease the step—size, when convergence is accomplished, so that a better
convergence accuracy is achieved. Ideally, one would want to switch to decision—-directed equalisation,
which could be combined with any of the equaliser coefficient computation techniques of Chapter 1.1,
i.e. the LMS or RLS algorithms, for example. In order to accomplish this, we have to ensure that
there are no decision errors at the receiver, otherwise a catastrophic performance degradation could be
inflicted by the decision errors. If we could have this ‘ideal side-information’, then decision-directed
adaptation would be applicable, which would act effectively as explicit equaliser training. However,
the decision—directed equalisation works even in conjunction with a non—zero, but sufficiently low bit
error rate. An early study on this issue has been carried out by Mazo in [87], where he identified the
local minima of the decision—directed algorithm in the case of Pulse Amplitude Modulation (PAM)
based transmission. Quite clearly, these minima depend on the modulation scheme used and on the

number of equaliser taps, which in turn depend on the channel characteristics.

A more appropriate application of decision—directed equalisation is found in scenarios when explicit
symbol-reliability information is available at the receiver, which can be generated for example with
the aid of the channel decoder. In fact channel coding assisted schemes constitute the most promising
improvements of blind equalisers designed for mobile channels. Simulations using Sato’s algorithm
during the initial phases of communication and switching to decison-directed mode after convergence
are given in Section 2.5, using the conventional Sato algorithm as benchmarker. It is shown in Sec-
tion 2.5 that employing the DD-enhanced algorithm provides a BER improvement, which is higher
for higher-order QAM and for high SNR values, since for high SNRs the decision—directed errors are
less frequent. For a deeper discussion on error—detection the reader is referred to [88-93]. Having

described Sato’s algorithm, let us now consider the so—called “Constant Modulus Algorithm”, which

was proposed by Godard in [4].

1.3.5.2 Constant Modulus Algorithm [4]

A more general algorithm was proposed by Godard for blind equalisation in [4] and also by Treichler

in [94], which was further generalised later by Shalvi and Weinstein in [95]. Its related cost—function
is defined as:
1

g Pl = Bpl']; (1.74)

JP9) (n) =
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which will be elaborated on below. Godard’s original algorithm and all other related algorithms
use only ¢ = 2 and this is the case that we will focus on from now on. One can observe that Sato’s
algorithm in Equation (1.66) is similar to the CMA of Equation (1.74), when we have p = 1 and ¢ = 2.
The reason for considering the difference betweeen the amplitude of z(n) and a constant R, instead of
the actually transmitted symbol a(n), is that in blind equalisation we attempt to match the equalised
signal not to the actually transmitted sequence, which is never available, but to its statistics, which of
course is known at the receiver. Given this cost—function, the coefficient adjustment algorithm using
the steepest descent technique of Equation (1.61) can then be invoked. The value of the parameter
R, has to be matched to the constellation in a way similar to the setting of v for Sato’s algorithm
in Equation (1.66). Clearly, this algorithm forces only the amplitude of the received signal to match
a desired mean value, but ignores the phase. Consequently, the phase of the received signal might
have arbitrary variations. Godard suggested that equalising only the magnitude of the signal should
be adequate. The associated phase ambiguity can be removed by using differential phase encoding,
which is congenial to the nature of blind equalisation. Indeed, a sign ambiguity is related to any blind
equaliser, stemming from the fact that the QAM constellations are symmetric with respect to the z
and y—axes. As it is clear from the definition of the CMA’s cost—function in Equation (1.74), in the
case of pure phase modulation, the equaliser’s output z(n) will be constrained to a constant value
and the algorithm will readily converge [4]. A variation of this algorithm, which solves the problem

of the arbitrary phase rotation is the so—called Modified-CMA, presented in the next section. Using

Equations (1.64) and (1.74) we obtain:
gouma(z(n)) = 2(n) - [1 = |2(n)|? + B3] . (1.75)

Substituting this Equation into Equation (1.54) we readily arrive at the equaliser tap update equation

of the CMA [4]:
D =™ — X.y*(n) - z(n) - [|z(n)[2 - RQ] . (1.76)

The value of Ry can be found by constraining the mean value of the update term of Equation (1.76)
equal to zero, assuming that the equalised signal z(n) is equal to the transmitted signal a(n) with
its phase rotated by a random value, i.e. assuming that the state of perfect equalisation has been

reached. The procedure of determining Ry is exactly the same as the one, which was used to compute

Sato’s scaling coefficient v, yielding [4]:

(1.77)

In Figure 1.15, the CMA’s cost—function is plotted against the complex plane of the equalised symbol
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Figure 1.15: The cost—function of Equation (1.74) for the CMA in the context of square 16-QAM
against the complex plane of the equalised signal z(n)

z(n) at the decision device’s input seen in Figure 1.2, in the same way as it was done for Sato’s
algorithm in Figure 1.14. It is plausible that the minima of this cost-function are on the circle
of radius \/Rp. As in the case of Sato’s algorithm, the algorithm’s adaptation procedure does not
attempt to force the equalised symbol to be equal to the transmitted one, except in the case of
pure phase modulation, such as for example for M—PSK. The difference between Sato’s and Godard’s
algorithms is exactly this point. Specifically, while Sato’s algorithm favours QPSK or BPSK, the
CMA favours any pure phase modulated constellation, i.e. PSK, in which case, convergence becomes
accurate. By using star QAM as in [9], we can force the equaliser to converge to a circle, or even to a
pair of circles, as in the case of the twin-ring Star 16-QAM constellation. However, it is shown in [9]
that this constellation is not optimum in the sense of noise resilience, since the Euclidean distance
amongst its constellation points is lower than that of square 16—~QAM [9]. One can readily visualise
that by appropriately allocating points on the z(n) plane, we can generate cost—functions, matching
certain geometric patterns, each one giving rise to a different adaptation algorithm, which has its own
properties. In this sense, an “optimum” equaliser would originate from a cost—function exhibiting local
minima as close to the constellation points as possible. In the extreme case, when the local minima fall
exactly on the constellation points, the cost—function has to be a polynomial of degree equal to at least
twice the number of the constellation points, since only such a polynomial can have this number of
local minima. This would imply using a high—-order cost—function, and hence the resulting adaptation

algorithm of which would be prone to instability. Small variations caused by additive noise can drive
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the equaliser to instability. However, the same will happen when the equaliser’s initialisation does not

set it to its region of convergence, which is usually the case.

Having introduced Godard’s classic CMA, let us now consider an important modification of it in the

next section.

Signed—CMA A modification of this algorithm, similar to that of Sato’s described in Section 1.3.5.1,
is the so—called “Signed—CMA” proposed by Weerackody, Kassam and Laker in [96]. This algorithm

uses the cost—function:

J(n) = E|[Re{z(n)}| + [Im{z(n)} — Rs|], (1.78)

where Rg is a constant. The minimisation of this cost—function with respect to the equaliser’s tap

vector c¢ is described in Appendix D.3, which results in the following update equation [96]:
) = ™ — X y*(n) - sgn(|Re {z(n)}] + |Im {z(n)}| — Rs) - csgn(z(n)) (1.79)

where, again, csgn() is defined as in Equation (1.68). It is clear from Equation (1.79) that the error
signal expressed as sgn(|Re {z(n)}| + |[Im {z(n)}| — Rg) - csgn(z(n)) which multiplies y*(n) in the up-
date formula of Equation (1.79) results in quantised values of the form {41, +5}. This, in turn, results
in forcing the equaliser to converge to the circumference of a 45° rotated square in the signal space,
instead of a circle, as Godard’s algorithm would. As an illustration, in Figure 1.16 the corresponding
convergence trajectories are drawn for the CMA and for the Signed-CMA algorithms in the case of
square 16-QAM. In Figure 1.17, the error—surface of the Signed~CMA algorithm is drawn against
the complex plane of the equalised signal, for square 16-QAM. As in the case of the Signed-Sato
algorithm [86] of Section 1.3.5.1, this algorithm uses a decision based only upon the sign of the error
and should be considered only in conjunction with a variable step—size parameter, in order to switch
to a low step-size after convergence was attained.
A generalisation of Godard’s algorithm was proposed by Shalvi and Weinstein in [95]. For this algo-
rithm the cost—function to be minimised is the so—called Kurtosis of the equalised signal z(n), defined
as [5]:

K(2) = E[|z(n)[*] - 2- E*[|z(n)[*] - | Elz*(n)]|” (1.80)

for complex—valued equalised symbols z(n). The algorithm resulting from this cost—function is detailed
in [95], where it is shown that this generalised algorithm results in Godard’s algorithm as a special
case. Following this algorithm, Shalvi and Weinstein proposed their so-called super-exponential
algorithm [31], which uses 4-th order cumulants and converges at a nearly super-exponential speed.

Cumulant-based blind equalisation algorithms have been proposed for example in [25,97-101]. As
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Figure 1.16: Godard (a) versus Sign—-Godard (b) convergence trajectories for 16-QAM according to
Equations (1.74) and (1.78) respectively [96]
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Figure 1.17: The cost—function of Equation (1.78) for the Signed-CMA algorithm in the context of
square 16-QAM against the complex plane of the equalised signal z(n)
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an important extension of Godard’s algorithm, Wesolowsky’s modified CMA is presented in the next

section.

1.3.5.3 Modified Constant Modulus Algorithm [102]

Another modified version of Godard’s CMA [4] was proposed by Wesolowsky in [102], employing a

cost—function, which relies on both the real and imaginary parts of the equalised signal z(n) [4]:

J(n) = Bl(|Refz(m)}® -~ Ror) +
(1Tm{z(m)}” - Rz,z)Z]- (1.81)

The idea behind this cost—function, as compared to the CMA cost—function of Equation (1.74) is
that both the real and imaginary parts of the signal are forced to a constant value and, therefore,
the random phase ambiguity of the CMA now becomes only 90°. This is meaningful in pure phase
modulation, in which case the CMA may converge to an arbitrarily phase—shifted solution. For QAM
though, the 90° symmetry of the constellation makes it possible for both algorithms to converge to a

90° phase-shifted solution. Following the same procedure as in the context of the other algorithms,

based on Equations (1.61) and (1.62) we obtain:

clntl) = ln) _
—X-y*(n) - [Re[z(n)] - ((Relz(n)])? — Rar)
+5 - Im{z(n)} - ((Im{z(M)})? = Ra1 )] (1.82)
guema(z) = z—(Re{z}- ((Re{z})’ = Rop) +
j (Im{z}- ((Im{=})’ = Rz1))). (1.83)

The values of Rz r and Ry can be found using the same method as for the other algorithms, namely

by constraining the mean value of the update terms in Equation (1.82), yielding [4]:

_ E[(Re{a(m)})']

Ry p = - [(Re {a(n)}ﬂ (1.84)
_ E[(Im{a(n)))']

B B et )?] ()

As for all other Bussgang algorithms, in Figure 1.18 the error surface of Equation (1.81) is plotted
against the complex plane of the equalised signal for 16-QAM. It is shown that while the CMA cost-

function of Equation (1.74) has minima on a circle, the MCMA has its own minima at four points,
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Figure 1.18: The cost—function of Equation (1.81) for the Modified-CMA algorithm in the context of
square 16-QAM against the complex plane of the equalised signal z(n)

just like Sato’s algorithm, while using fourth—order statistics instead of second-order statistics, as is
the case for Sato’s algorithm. It was shown by Wesolowsky [102] that the MCMA exhibits slightly
faster convergence than the classical CMA, in particular for medium-distortion channels. It also offers

slightly better steady—state performance, as will be shown in Chapter 2. Let us turn our attention to

considering the Benveniste-Goursat algorithm [32].

1.3.5.4 Benveniste-Goursat Algorithm [32]

In Sato’s algorithm [3], the error signal was expressed in Equation (1.70), which is repeated here for

convenience:

5% (n) = 2(n) — v - csgn(z(n))-

The error term is used to update the equaliser coefficients, according to Equation (1.69). This error
signal is however non—zero, when the signal is perfectly equalised, except in the case of QPSK, since
v is a constant value, reflecting the statistics of a(n), while z(n) generally takes its values from a
multilevel constellation, when the SNR is sufficiently high and the equaliser has converged. This
results in inaccurate steady—state behaviour along with small error fluctuations around the point of
equilibrium associated with the minimum error. In other words, even near the optimum equaliser

setting, not every tap update drives the equaliser towards the desired equilibrium. In order to remedy
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these deficiencies, Benveniste and Goursat [32] considered the decision—directed error signal expressed

as:
PP (n) = z(n) — a(n), (1.86)

which becomes zero, when equalisation has been accomplished, giving a good-steady state perfor-
mance. On the other hand, this error signal cannot be employed during the equaliser’s initial conver-
gence phase, since at the beginning of the equalisation process the decisions concerning z(n) are often
erroneous and this would drive the coefficient update equation to an ill-conditioned state. Combining
the error signals in Equation (1.70) and (1.86), each one scaled by a certain weight, Benveniste and

Goursat [32] formulated a new error signal as:
eBC(n) = k1 - PP (n) + ky - |€PP(n)] - €54°(n), (1.87)

where k1 and ks are the corresponding weighting factors. This error signal is zero, when equalisation
is perfect and, at the same time, it is not as error-prone as a purely blind decision—directed (DD)
approach would be at start up, since then the influence of Sato’s error term ¢5%°(n) in Equation (1.70)
offers better error estimation. Using this combined error signal we readily arrive at the Benveniste—

Goursat (B-G) algorithm [32], adjusting the equaliser taps according to:
M) = ™ — X\ y*(n) - 5C%(n). (1.88)

A good choice for k; and kg in Equation (1.87) would be to initialise the algorithm with a large
ko/k1 ratio and decrease the ratio, when the equaliser is close to convergence in order to render
the steady-state equalisation more accurate. This philosophy is similar to the idea of switching to

decision—directed mode, when the equaliser has converged.

The related g{z(n)} function in this case can be found by comparing Equations (1.54) and (1.88),
yielding [76]:
9(2) = z(n) — k1 - PP (n) + ky - PP (n)| - 57 (n). (1.89)

Having discussed the Benveniste—Goursat algorithm, we will now consider another DD-like algorithm

in the next section, namely the stop—-and-go algorithm by Picchi and Prati [21].

1.3.5.5 Stop—and-Go Algorithm [21]

In the previous algorithms the equaliser coeflicient update is inevitably occasionally wrong due to
the statistical nature of the algorithms. This leads to a reduced convergence speed and also to a

degradation of the steady—state performance of the equaliser. In order to avoid this impediment to
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some degree, Picchi and Prati [21] suggested an algorithm, which decides whether a specific received
symbol should contribute to the update process and updates the equaliser coefficients, only when it
has decided that this would bring their values closer to their steady state ones. The algorithm used
for updating the coefficients is the classic error feedback algorithm with the decision-directed error

expressed as in Equation (1.86), which is repeated here for convenience:

Two variables, namely f, r and f, 1 are introduced in [21], each of which defines a measure of the
probability that the update of the real or imaginary part of the equaliser coefficients is correct. Natu-
rally, the actual probability is unknown at the receiver, but it can be estimated using the philosophy of
the Sato-type error of Equation (1.70), setting f, r and f, s to 1 and 0, depending on our confidence

in the success of the update, as [21]:

1 if sgn(Re[ePP(n)]) = sgn(Re[e>¥*°(n)])
0 if sgn(Re[cPP(n)] # sgn(Re[e5*°(n)])

(1.90)

and
1 if sgn(Im{ePP(n)}) = sgn(Im{e°¥°(n)})

0 if sgn(Im{ePP(n)}) # sgn(Im{e’¥°(n)}).

Jng= (1.91)

Practically this implies that the update of the real part of the equaliser coefficients only takes place

when:
Re[z(n)] > v and Rela(n)] < Re[z(n)] ]
or 0< Re[z(n)] <~y and Rela(n)] > Re[z(n)] . (1.02)
or —y < Re[z(n)] <0 and Re[a(n)] < Re[z(n)]
or  Re[z(n)]< -y and Reld(n)] > Re[z(n)] |

The graphical interpretation of this is given in Figure 1.19 where the “go” regions — i.e. the regions
for which the equaliser decides to perform an update — are shown in the equalised complex symbol
plane z(n). From this we can infer that the “correct” values for z(n) are those ones that are expected
to bring a(n) closer to . This issue was richly illustrated in [21] in geometrical terms. This is a

plausible, but certainly imperfect criterion. The probabilities of making a false update decision are

also calculated in [21].

With the aid of these definitions we can form the algorithm using the classical error feedback algorithm

of Equation (1.54), but involving both the real and imaginary parts of the error, enabled or disabled
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Figure 1.19: A graphical interpretation of the decision areas of the Stop—and-Go algorithm in the
context of Equations (1.90) and (1.91) for 16—-QAM. The 135°-rotated lines correspond to the regions
where the real part of the decision—directed error can be used for updating while the 45°-rotated lines
correspond to the regions, where the imaginary part of the error can be used for updating

by fn,r and fp 1, as follows:
o) = ¢ — X-y*(n) - | fo,nRe{ePP ()} + jifn, 1 Im{ePP(n)}] . (1.93)

A simple modification of this algorithm, which was suggested by Choi, Hwang and Song in [103],
uses a CMA-type error term, instead of the Sato error term of Equation (1.70), in order to form the

decisions concerning the validity of the equaliser update at each symbol. This error term is of the

form:
e“MA = 2. (|z(n)|? = R,)?, (1.94)

where the symbols z(n) and Rp are defined in Section 1.3.5.2. This error term corresponds to circular—
type regions in the complex equalised symbol domain z(n). The decision regions, in a similar fashion
to the Stop—and—Go algorithm using the Sato error update of Figure 1.19, are portrayed in Figure 1.20.
It is not intuitive, why an equalised symbol in these regions is more likely to update the coefficients
correctly, than in the non—shadowed regions of Figures 1.19 and 1.20. However, we can say that when
the equalised signal falls into these areas, then the decision—directed error term of Equation (1.86)
becomes similar to the blindly detected Sato-type (or CMA-type) error term of Equation (1.94) and

hence this signal can be used more confidently for updating the equaliser coefficients. This is because
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in the context of Equations (1.93) and (1.94) for 16-QAM. The 45%-rotated lines correspond to the
regions where the real part of the decision—directed error can be used for updating while the 135°-
rotated lines correspond to the regions, where the imaginary part of the error can be used for updating
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this error term comes from a blind estimator and its mean value is always zero. In the opposite
scenario, when the equalised signal z(n) falls outside these areas, then the equaliser is simply not
updated. Another observation is that any algorithm which is used to describe the blindly-estimated
error, like Sato’s algorithm or the CMA, would characterise the shape of the shadowed regions. For
example, Sato’s algorithm in Equation (1.69), which is based on the sign function, gives rectangular
areas while the CMA of Equation (1.76), which is based on constant signal magnitude, gives circular
regions. Close observation of Figures 1.19 and 1.20 reveals that the basic areas of equaliser updating

in the two figures are similar; the difference is only in the shape of these regions.

This algorithm is expected to have an advantage over the previous algorithms of Sections 1.3.5.1-
1.3.5.4, since it uses Equations (1.91)-(1.92) for rejecting unreliable coefficient updates and to render
the convergence more steady and accurate. Nevertheless, the algorithm’s convergence is hampered to

a certain degree, since it does not use all the incoming symbols for updating the equaliser coeflicients.

Finally, again, we present the symbol estimation function g{z(n)} corresponding to this algorithm,

which is readily found by observing Equations (1.54) and (1.93), yielding:

g{z(n)} = 2(n) — [fa,n - Re{ePP ()} + jfu, - Im{PP(n)}] . (1.95)
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Figure 1.21: Combined channel plus equaliser system model considered by the super—exponential
algorithm

Having reviewed the most important Bussgang algorithms, we now discuss the so-called “normalised

algorithms” in the next section.

1.3.6 Normalised Algorithms

The philosophy of the normalised algorithms differs from that of the Bussgang techniques of Section
1.3.5 in that they use an equaliser update term, which is divided by the square of the Lo-norm of

the received signal vector. This appears as a normalisation of y, which explains the term “normalised”.

1.3.6.1 The Super—Exponential Algorithm [31]

In this section a fast—converging blind equaliser is presented, which was proposed by Shalvi and
Weinstein in [31]. The combined channel plus equaliser system—model is depicted in Figure 1.21. In
the absence of ISI the combined channel plus equaliser scheme is expected to have a Kronecker—¢§
impulse response, which is ensured by this algorithm. Tts design was the result of the authors’ efforts
to find a simple equaliser, which would converge only to the desired response and at a rapid rate. The
algorithm is formulated by denoting the ¢—th entry of the combined channel plus equaliser scheme’s

impulse response vector, by #; and by updating the i—th coefficient according to the following basic

relationships:
t; = (&) () pg>0,p+qg>2 i=0,-,2N+1 (1.96)
" t:
t; = L (1.97)
It
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where t' is the combined vector of the channel plus equaliser scheme’s impulse response and |[t']| is
its Ly norm given by:

lit')] = (1.98)

while t* denotes the complex conjugate of t. It is clear that Equations (1.96) force all but one of
the coefficients to converge to zero, and the remaining one to a magnitude of unity. Alternatively,
Equations (1.96) encourage the equaliser’s impulse response taps to diverge towards instability, due to
the powers to which the taps ¢; are raised. Moreover, it forces the coefficients to converge rapidly, since
they are raised to high powers. This boosts the speed of convergence for this algorithm, ultimately
obeying a nearly exponential rate, hence its name. Furthermore, Equations (1.97) normalise the
combined channel plus equaliser scheme’s tap vector, ensuring that the vector t" always has a unity
norm, preventing it from diverging. Since a coefficient ¢; may potentially converge to either a unity
or a zero magnitude and since the vector t” has a norm of unity according to (1.98), the only stable
points of convergence for this system are the points for which one coefficient has a unity magnitude
and the rest are zero. This solution is the one which corresponds to the condition of zero ISI and,
consequently, it is the desired response. The only ambiguity that exists for these points of convergence
is concerning which of the coefficients has the unity magnitude, and the associated phase of this
coefficient. These ambiguities are present in all blind equalisers and they are inherent in their nature.
Having described the algorithm in terms of the combined channel plus equaliser impulse response,
Shalvi and Weinstein proposed an equaliser adaptation procedure corresponding to the above equations
[31]. This adaptation procedure is based on higher-order statistics (cumulants) and the order of the

statistics required depends on the values of p and ¢ in Equations (1.96). The algorithm is described

by the following equations [31]:

¢ = R!.q, (1.99)
¢ = \/ﬁ (1.100)
where . -
[R];; = E[y(nE*H‘ZL)(;y”é? — (1.101)
d]; = = (2(n) :pi 2" (n) - Giy"(n —4)) (1.102)

L(a(n) :p;a*(n) 1 q+1)
and y(n) is the received signal, a(n) is the transmitted signal, z(n) is the equalised signal at time
instant » and ¢, ¢* are the equaliser vector and the normalised equaliser vector respectively. Fur-
thermore, the definition and properties of the cumulants (functions of the form L()) are given in

Appendix F. It is clear that this algorithm has an inceased complexity because of the matrix inversion
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involved in Equation (1.99) and due to the cumulants that have to be evaluated in Equation (1.102)
for performing the updates. A method for estimating the cumulants is given in [31] for p = 2 and
g = 1. For large p or ¢ values, the complexity is significantly increased. On the other hand, global
convergence is guaranteed and at a nearly super-exponential speed. A first—order approximation of
the super—exponential algorithm was also provided in [31], which led to the CMA. Additionally, it has
been shown by Gu and Tong [104] that under certain circumstances the convergence characteristics
of the super-exponential algorithm are similar to those of the CMA, since both algorithms exhibit
only length—dependent undesirable local minima. Several further studies have been conducted in the
context of this algorithm since it was proposed [105]. A range of additional modifications have also
been proposed in [106], while in [107] its extension to the RLS is proposed. In [108] the algorithm’s

extension to the fractionally—spaced case is considered and finally in [109] a reduced—complexity mod-

ification is suggested.

1.3.6.2 Normalised CMA [110]

This algorithm, proposed by Papadias and Slock in [110], uses a different approach from the classical

CMA. In mathematical terms the cost—function to be minimised is formulated as:
min men ||ctD — c®))3 (1.103)

where [|x||5 is the Loy—norm of the vector x, which is defined as:

N
x5 = |zl (1.104)
i=1
under the constraint that the estimate Z(n) of the equalised symbol z(n) is constrained to take a
value from the set of ‘legitimate’ symbols of the constellation d(n). More explicitly, the constraint is
that
Z(n) =d(n) (1.105)

where
#(n) =y (n) - "D (1.106)

is the dot—product of the received vector y(n) and the equaliser tap vector c¢("*1) physically giving an
estimate Z(n) of the equalised symbol of z(n), by filtering the received signal y(n) using the updated

equaliser taps ¢t rather than the old ones, ¢(™. The cost—function of Equation (1.103) can be

physically interpreted as an equalisation technique which converges when the equaliser taps do not
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significantly change from the iteration n to n + 1. To elaborate a little further, the quantity d(n) in
Equation (1.105) can be either the actually estimated symbol of the QAM constellation in the context
of the decision—directed approach yielding d(n) = a(n), or a point on the circle having a radius of /R,
and centred at zero in Figure 1.16(a) in the context of the CMA approach. Alternatively d(n) may
assume one of the points {£+, +jv} in Figure 1.16 for Sato’s approach in Section 1.3.5.1, at time n.
The constraint of Equation (1.105) is often referred to as a ‘hard constraint’, which is difficult to satisfy.

A modification of this constraint is the so—called ‘soft constraint’, which is easier to implement [110]:
mitigensn ][y ()13 - 1™ = ™ + - [2(n) — d(n) . (1.107)

At this stage we assume that d(n) is known, however, during our further discourse in this section
we will give the best choices for it [110]. The original minimisation problem of Equation (1.103)
can be viewed as a special case of the generalised constraint of Equation (1.107). In fact, this soft
constraint represents a weighted combination of the cost—function minimisation in Equation (1.103)

and the previous hard constraint. The minimisation of Equation (1.107) leads to the following update

equations [110]:

D) _ o) _ oy Y e
A g )~ dm) (1108)

where A = p/(1+ p) and

dn) = R, - sign(z(n)) for CMA (1.109)

a(n) for DD,

and where sign(re/?) = e/® removes the magnitude » and retains the phase information e/®.
We can observe the basic difference in comparison to the Bussgang techniques of Section 1.3.5, which
is the normalisation of the received vector y(n) by its Ly norm in Equation (1.108). The philosophy of
this equaliser is that it reaches convergence, when its coeflicients change only slightly at each iteration,
that is if ¢t ~ ¢(™ and also Equation (1.105) is satisfied, which means that the estimated equalised
symbols belong to the desired set. When DD equalisation is employed, Equation (1.105) implies that
the estimation Z(n) of z(n) is perfect, provided that the associated decision was error—free. In the case
of the CMA, the equalisation is imperfect, if the modulation is not purely phase modulation, i.e. the
constellation points are not on a circle, as in Figure 1.16(a). This implies that the ISI does not become
zero, it rather oscillates around zero. This point was made earlier, in the context of our discussion
on the CMA. The Normalised CM algorithm (NCMA) considered here can also be readily extended
to the RLS technique, which guarantees fast adaptation in exchange for its higher complexity. In
order to achieve this, one only has to replace the DD error of the constraint in Equation (1.105) with

the weighted sum of errors, as in Equation (1.22) and proceed as in Section 1.2.0.4, based on the
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calculations of Appendix B. This algorithm, is referred to as the affine projection algorithm, which

was proposed by Ozeki and Umeda [111].

1.3.6.3 Soft Constraint Algorithm [112]

The Soft Constraint Satisfaction (SCS) algorithm, which was contrived by Constantinides et al. in
[112], relies on an approach similar to that of the NCMA. The criterion that has to be satisified is the
same as in Equation (1.103), but the constraint of Equation (1.105) is different. In mathematical terms

the constraint requires the magnitude of the equalised samples to be constant, which is formulated as:
|2(n)|* = R, (1.110)

where again, the equalised samples are given by:

#(n) =y (n) - Y, (1.111)
In order to find a practical solution, again, the constraint of Equation (1.110) is relaxed so that

it becomes incorporated in the minimisation process and we attempt to find an algorithm, which

minimises the following cost—function:
min g 1™ — ™3 4 - (E)? — R2). (1.112)

The resulting algorithm is [112]:

oY) el) = £, (1.113)

n+l) _ o(n) _
Ty

¢l

where a step—size parameter A was introduced and #(n) is estimated as

e
A= T el Ry —

while R is a constant to be determined on the basis of [112] by setting the mean value of the error
term in Equation (1.113) to zero, when the system is close to convergence. In this case A =~ 1,

2(n) =~ R - sign(z(n)) and R is determined as [112]:

_ Ela(n)l’]
R= E et (1.115)

Using A # 1 the algorithm does not satisfy Equation (1.112) exactly, only approximately. By com-
paring Equations (1.108) and (1.113) as well as setting A = 1, the algorithm becomes the same as the
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NCMA.

It is shown in [112] that the Soft Constraint algorithm has better convergence properties, than the
CMA, as well as the Sato and the Normalised CMA algorithms in terms of convergence probability.

A generalised version of the algorithm is given in [112] using not one, but multiple constraints. This
algorithm involves matrix inversions and it is rather demanding in terms of computational complexity.
Having reviewed a range of Bussgang algorithms, let us now consider some of the associated conver-

gence issues in the next section.

1.3.7 Convergence Issues

1.3.7.1 State of the Art

In this section, the convergence properties of the Bussgang equalisers are discussed and the problems
associated with them are explored. These issues attracted the attention of researchers as early as
1980, when Benveniste, Goursat and Ruget proved the convergence of a class of blind equalisers,
under an assumption for the distribution of the transmitted signal and the assumption of an infinitely
parametrised equaliser, Godard also studied the convergence of the algorithm he proposed [4]. Later,
in 1985, Foschini [27] provided a proof of the convergence of the CMA, when the length of the equaliser
is doubly infinite, i.e. when both the number of the feedforward and the feedback taps of the equaliser
was infinite. It was not until a few years later that Ding et al. [22] proved that when the equaliser
is not of infinite length, then there can be undesirable stable local minima, depending on the CIR.
Ding et al. arrived at this conclusion by considering a special class of channels, namely the so—called
“autoregressive” channels, and by finding the local minima of a CMA equaliser for these channels.
Their theory presented in [113] also revealed that the local minima of the CM A based Baud-rate spaced
Bussgang equaliser correspond to local minima of all other Baud—rate spaced Bussgang equalisers for
the same channel, arising from the fact that the equalisers do not have an infinite length. These
minima are thus referred to as length-dependent minima [114]. Algorithm-dependent minima do not
exist in the family of CMAs, but do exist in Sato’s algorithm [115], in the context of the Benveniste~
Goursat algorithm [32] and in conjunction with the Stop-and-Go algorithm [114]. The above two
CMAs and also the Shalvi-Weinstein algorithms [31] exhibit only length-dependent local minima. It

has to be mentioned that a general solution for the convergence of the Bussgang equalisers is still an

open research issue.

The regions around undesirable local minima have also been studied by Ding et al. [116,117] and
by Johnson et al [118], while initialisation strategies have been proposed by Li and Ding in [119].

Moreover, it has been indicated that the convergence performances of the CMA and the Shalvi-
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Weinstein algorithms are similar to each other and also similar to the performance of the LMS (or
Wiener) receiver [104,120,121]. Finally, dynamic convergence issues have been treated, for example,

in [122-124]. Similar studies have recently been conducted also for fractionally—spaced equalisers

59,81, 125,126].

1.3.7.2 Convergence in the Absence of Channel Noise

In this overview we give a basic analysis model for the convergence of Bussgang equalisers and interpret
some well-established results. We commence this analysis with a convergence analysis of the CMA.
We consider a noiseless environment, which simplifies our discussion. We recall the error term of the

CMA’s equaliser tap update formula from Equation (1.76):
CMA () = y*(n) - 2(n) - (J2(n)]’ — Ry). (L.116)

This error term is basically the derivative of the CMA’s cost—function in Equation (1.74) with respect
to the equaliser tap vector. The points at which the mean value of this error term becomes zero define
the local minima, maxima and saddle points of this algorithm. Therefore, in order to find the possible

local minima, we have to evaluate the local minima of the following equation:
y*(n) - 2(n) - (|2(n)|* = Ry) = 0. (1.117)

By substituting the vectors from Equation (1.44) to (1.49) into Equation (1.117) and taking the

expectation we have:

=H*-T-t,
(1.118)
where
T = pdiag(|t;|* 1)+
IR i s
—2-diag(|t-m %+ [tra]?), (1.119)
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or
K . .
pa- (Jl* = 1) + 3 Dk Ky ki [te* =7 (1.120)
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and p; = E[|a(n)|’], while K1 = Ni + L1, K3 = Ny + Ly. The candidate stationary points will satisfy

the set of equations:
H"-T-t=0. (1.121)

The resulting equations may have two types of solutions. We can assume that the null-space of matrix

H* is trivial, i.e. we assume that:

H*-x=0=x=0. (1.122)

As long as the number of the taps is finite, the channel matrix H* is an (N7 +No+1) x (N1 +No+ Ly +Lj)
dimensional matrix, which has less rows than columns. A system characterised by H* - x = 0 in
conjunction with such a matrix H* always has an infinite number of non-trivial solutions. If the
equaliser has an infinite number of feedforward and feedback taps though, then the situation changes.
We can see that the channel matrix H of Equation (1.49) now has an infinite number of rows and
columns, thus being a square matrix having linearly independent rows, which implies that the system
characterised by Equation (1.122) has only the trivial solution. This was shown differently by Ding et
al. in [113]. For the moment, we will assume that the matrix has a trivial nullspace. In this case we

can find the stationary equilibrium points of the algorithm by finding the solution of the following set

of equations:
T-t=0. (1.123)

The solution of these equations can be found to be any vector t, which has some zero entries and some
non-zero values, all exhibiting the same magnitude. Since the vector t is constituted by the convolution
of the CIR with the equaliser’s impulse response, ideally t would be a Dirac delta function. The vectors
t having more than one non-zero components represent saddle points, yielding unstable equilibria,
which do not affect the equaliser’s convergence performance. This can be shown by examining the
second derivative of the tap update formulae in Equation (1.76) with respect to the equaliser tap vector
c. The second derivatives can be found in the same way as the first derivatives, with the exception

that now the derivative is with respect to the conjugate of the equaliser tap vector ¢, yielding:

Jcnaln) e
T =_H*"-T H 1.124
fcdct ’ ( )
where
T = jpadiag(2lti|* — 1) +
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202 - (1t + Tt 1 —

—2'diag(lt-K1[2>"'>“K2’2)) (1125)
or
, (2082 = 1) + 2u2 K2 2 =4
[T = pa - (2[8] ) Ha Zk__Kl,k;éJ k| J (1.126)
b -t - 3 i # 7

The positive definiteness of a matrix A can be verified by considering the term x? - A - x*. In our

case, this term becomes:

HY .x)T. T . (H . x)*. (1.127)

From this relationship we observe that if the matrix T is positive (negative) definite, then the matrix
H* T -HT is also positive (negative) definite. Therefore, it is sufficient to estimate the positive
definiteness of T'. By examining the sub-determinants of T', we can easily see that if only one entry
of the vector t is non—zero, then all of the sub-determinants have the form p% and are positive, which
implies that the matrix is positive definite and the associated error surface point is a local minimum.
Finally, all the other solutions, for which more than one component of the vector t is non—zero, have

positive and negative subdeterminants for the matrix T', thus constituting saddle points.

The stationary points of the Modified CMA [102] of Section 1.3.5.3 have a similar form to the stationary
points of the CMA [4] of Section 1.3.5.2, as explored by Wesolowsky in [102], since the cost—functions

of these two algorithms are similar.

Above we have found the stationary and saddle points of the CMA under the assumption that the
rows of the channel matrix are linearly dependent. In general, this assumption is not true, unless
the number of feedforward and feedback taps of the equaliser is infinite. In practice, however, for a
number of taps, that is substantially higher than the channel order, this is approximately true. In
practical cases the number of taps is sufficiently high, when it is more than three times the channel
order. Ding et al. showed in [22,113] that if the number of equaliser taps is not infinite, depending
on the form of the CIR, undesirable equilibria may be present. The authors considered a specific
channel, namely the autoregressive channel and found the undesirable equilibria associated with this
channel. These are length—dependent equilibria, which are likely to exist in a similar form for every
other Bussgang equaliser. This can be seen, if we recall Equation (1.118). The multiplicative matrix
H* in Equation (1.118), which is responsible for the undesirable equilibria explored by Ding et al. [22],

stems from the y* factor multiplying the error term in Equation (1.54). This equation is common
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to all Bussgang equalisers, which implies that the term H* will exist for any other algorithm of this
type and therefore all these algorithms will exhibit these unstable equilibria. Interestingly, the same
term is encountered in the context of the LMS equaliser of Section 1.2.0.2, which indicates that there
should be a correspondence between the local minima of the Bussgang algorithms exhibiting only
length—-dependent local minima and the LMS equaliser. In fact, it has been shown by Zeng in [120] as
well as by Li and Tong in [119] that there is a one-to—one correspondence between the local minima
of the CMA and those of the LMS algorithms under certain assumptions, including amongst others,
that the modulation scheme used is BPSK and that the noise variance is low. Therefore, despite the
lack of a proof for the general correspondence of the CMA’s minima with the LMS minima, at least
under certain specific circumstances this has been shown to be true. In Appendix E the above result

is confirmed using a similar procedure.

1.3.7.3 Convergence in the Presence of Channel Noise

Let us now focus on the situation, where channel noise is inflicted and we repeat the same analysis

under this assumption. In this case in Equation (1.117) we make the following substitutions:

y(n) = H-a(n)+e(n) (1.128)

z(n) = tT-a(n)+cl-en), (1.129)

where all the signals and vectors have been defined in Equations (1.44)—(1.49). We consider the mean

values of these signals over the following two random variables:

e the QAM symbols a(n), which are assumed to be independent identically distributed (i.i.d.) and

e the noise samples e(n), which are assumed to be uncorrrelated, having a zero mean value and a

variance of 02, but no specific distribution is assumed for them.

Under these assumptions Equation (1.117) becomes (Appendix G):

H'- Tt +0% - (208" lc|t + 2p]lt]2c — Rac) + o [}ci]%i]i + 20 {Ciz |ck12} _—
ki ;

(1.130)

where [4;]; symbolises a column of matrix A, the i—th element of which is A; and o} is the 4-th order
moment of the noise samples’ distribution. Comparing Equations (1.121) and (1.130) we observe the
existence of three extra additive terms, all of which exist only because of the additive noise. Due

to its complexity, to date no general solution of Equation (1.130) has been found. The stationary
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points of the error surface in Sato’s algorithm were explored in [115], while the stationary points of
the modified CMA of Section 1.3.5.3, which were explored in [102], are similar to those of the CMA.
A different type of analysis, suggested by Shynk and Chan in [127], assumed that the convolutional
noise is normally distributed and provides similar results. Fractionally-spaced equalisers of this type
have also been studied. It has been shown by Ding et al. [59,126] that a sufficient condition for
the existence of only one desirable global minimum is that the equaliser’s length is at least equal
to the channel’s delay spread and, at the same time, there are no common zeros for the subchannels
created by considering the z—transform of the oversampled channel. This condition implies that for the
channel to be correctly equalised, the subchannels should be uncorrelated, so that invoking sampling
more than once per symbol interval provides us with independent information. More explicitly, the
subchannels are defined as the CIRs, which are delayed, with respect to the symbol-spaced CIR, by
a fraction of the symbol interval. In mathematical terms, this means that the subchannel 1 would be

defined as:
hy = [h(=L1 - T+i-Ty), - h(Ly - T+ - Ty)]" (1.131)

where T' is the symbol duration and T = T'/A, while A is the oversampling factor. In other words this
means that the associated subchannels are reasonably diverse. Endres et al. [81] have also explored
the scenario, where the first of these conditions was not met. In closing, we note that the extension
of Bussgang equalisers to fast RLS estimation based schemes has been proposed by Douglas et al.

in [128] as well as by Papadias and Slock in [110].

1.3.7.4 Avoiding the Undesirable Equilibria of Bussgang Equalisers

1.3.7.4.1 Detecting Ill-Convergence In this section we will propose a way of overcoming the
problem of undesirable equilibria of the Bussgang blind equalisers of Section 1.3.7.2. The idea goes
back to 1994, when Dogancay and Kennedy [129] studied the feasibility of testing for the convergence
of a decision—directed equaliser provided that only the probability distribution of the input sequence,
which is BPSK, is known. In this study we follow a different procedure. In order to decide whether

the equaliser has converged or not, we will statistically test the following hypothesis:
e H1: The equaliser has converged. In this case |t;| = 1 for some 7 and ¢; = 0 for 7 # 1.
o H2: The equaliser has not converged. In this case there are more than one j indices for which

t; # 0.
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Figure 1.22: The PDF of the real or imaginary component of the equalised signal under H1 for QPSK
for various channel SNRs

If H1 is valid, then the equalised signal will be of the following form:
z(n) = a(n—08)+ > ci-e(n—1), (1.132)
i

where § is the equaliser decision’s delay (which can be zero) and e(n) represents the noise samples,
which we assume to be uncorrelated white Gaussian noise. An obvious way of testing the hypothesis
HI is to test, whether the distribution of the equalised symbols matches the type of distribution
that we would expect under H1. In Figure 1.22 we have plotted the Probability Density Function
(PDF) of the real or imaginary part of the equalised noise-contaminated symbols for QPSK under the
hypothesis H1 for various channel SNRs. The same plot is given in Figures 1.23 and 1.24 for 16-QAM
and 64-QAM respectively. We observe that the PDF approaches the Gaussian distribution when the
SNR is low and the discrete uniform distribution of the QAM symbols when the SNR is high. Based
on the measured pdf of the equalised symbols we can run a statistical inference test — such as for
example the Kolmogorov—Smirnov or the Chi-square test [130] — to decide whether the H1 hypothesis
is valid. If in reality the hypothesis H2 is valid instead of H1, then the distribution of the equalised
symbols is that of numerous weighted uniformly distributed variables, stemming from the ISI, plus
numerous weighted Gaussian distributed variables having a zero mean value, which stem from the

noise filtered by the equaliser. Hence, the latter component becomes a non-white Gaussian variable.
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Figure 1.23: The PDF of the real or imaginary part of the equalised signal under H1 for 16-QAM for
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Figure 1.24: The PDF of the real or imaginary part of the equalised signal under H1 for 64-QAM for

various channel SNRs

55



1.3 Overview of Blind Equalisers 1.3 Overview of Blind Equalisers

The former component is no longer the uniform distribution, which it was under H1. Ill-convergence
can be detected, if the hypothesis H2 is detectable on the basis of recognising the above-mentioned

bi-modal PDFs.

1.3.7.4.2 Avoiding Ill-Convergence Situations Once an ill-convergence situation has been
detected, the task of avoiding this situation arises. This can be achieved by re-initialising the equaliser
far from the current point of convergence. The question in this case is how the equaliser taps should
be re-initialised. Various initialisation strategies have been suggested for blind equalisers [131,132],
but the generic solution to this problem is difficult to find. A conceptually simple way of achieving
this would be to retain all the unstable equaliser tap sets in memory and to re—initialise the equaliser
far from these tap sets. The equaliser vector’s trajectory could also be used for providing information
about the region of the unstable equilibrium so that the reinitialisation point can be adjusted to be
sufficiently far from this region. If the equaliser converges again to another undesirable equilibrium,
then the unstable tap sets stored in memory are updated. This procedure assumes, however, that the

channel is time-invariant. The equaliser is never “allowed” to return to the tap setttings that have

already been classified as unstable.

1.3.8 Controlling the Equaliser Parameters

When designing a linear blind equaliser, an important issue to be considered is how to set the equaliser
parameters. The basic parameters to be set are the equaliser order and the step—size. Naturally, in
specific equalisers there may be a range of other extra parameters to be set. For example, a Benveniste—
Goursat equaliser of Section 1.3.5.4 also requires the adjustment of the k1 and ky parameters. In a
study concerning this issue, which was conducted by Wesolowsky in [133], a procedure of smoothly

switching between two different sets of step-sizes and filter orders is proposed for the Stop-and-Go
algorithm.

Selecting the equaliser order appropriately is crucial, which has to be based on an estimation of the
channel’s impulse response. Both the length and the shape of this CIR is of importance. If the CIR
duration is underestimated, then the equaliser order may not be sufficiently high and the resultant
residual IST will corrupt the signal. On the other hand, increasing the equaliser order indiscriminately

is detrimental, since:

e The equaliser complexity will be increased. It has to be noted, however, that the complexity
of linear equalisers increases only linearly with the number of equaliser taps, as will be seen in

Section 1.3.12 and therefore the complexity increase is not significant.
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e The speed of convergence will be decreased as a result of the parallel adaptation of an increased

number of equaliser taps.

e The convolutional noise will be increased. Usually, when the equaliser has converged to a de-
sirable point, the equaliser taps around the main tap have a large value, while the taps which
are substantially delayed with respect to the main tap have relatively small values. When the
number of equaliser taps is increased, the small-valued blind equaliser taps, which are far from

the main tap, are often not updated correctly, since their optimum values are too small.

A way of overcoming the problems of excessive equaliser order is to retain a high number of equaliser
taps and to estimate which of the equaliser taps are similar in terms of their magnitude to the value of
the step—size. These taps are close to zero and their contribution to the equalisation process is random
and therefore unnecessary. By forcing them to zero we can eliminate some taps, once the system has
decided that they are insignificant. This reduces both the associated complexity and the convolutional
noise. In order to determine, which taps can be eliminated during the equalisation process, we should
identify the specific taps having relatively low values with respect to the main taps, which also exhibit
a large variance with respect to their mean value, implying that these values are changing randomly,
rather than converging. The equaliser’s step—size, on the other hand, is responsible for the speed of
convergence and also for the accuracy of convergence of the blind equalisers concerned. When the
CIR is time-variant, the equaliser has to able to adapt to the CIR changes. The Bussgang equalisers
do not exhibit fast convergence characteristics that would allow them to adapt to the typically rapid

CIR variations occuring in mobile environments, except when the mobile speed is low and hence the

CIR is slowly varying.

If the CIR does not change significantly during a transmission frame, invoking the blind equaliser
in a forward-inverse manner, as seen in Figure 1.25 following Letaief et al. [134], can equalise the
channel, provided that a sufficiently high number of QQAM symbols can be processed. More explicitly,
in Figure 1.25 this involves feeding the equaliser with the received input frame a(n),---,a(n — N),
then continuing by feeding the time-reversed frame a(n — N),---a(n) to the equaliser and so forth,
until the equalisation becomes perfect. Again, this procedure is illustrated in Figure 1.25. One might
wonder, why we actually need to reverse the signal input to the equaliser during the odd-indexed
iterative steps. The answer lies in an assumption that all these equalisers have to satisfy in order to
work, namely that the input signal is i.i.d.. Independence is the assumption, which is violated when we
feed the same input frame several times to the equaliser. By occasionally reversing the input frame,
we create pseudo-randomness, as in turbo-equalisation for example [135], and hence the equaliser
converges more rapidly. When randomness does not exist in the transmitted data, then the Bussgang

equelisers fail to converge to the ideal point of equilibrium. Instead, they converge to points, which
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Figure 1.25: Forward-inverse equalisation scheme [134]

are shifted with respect to the ideal point in the vector space and this shift is a function of the exact
correlation between the transmitted data symbols. However, we use the word “randomness” in the
sense that the correlations between the data, from the first to the last, are all zero. In practical cases
some correlation exists amongst the data symbols. This correlation implies a low—pass filtered power
spectral density and the bandwidth of the corresponding hypothetical low—pass filter has a substantial
influence on the Bussgang equaliser’s convergence. If this bandwidth is sufficiently high with respect
to the reciprocal of the equaliser’s adaptation time, then ’sufficient randomness’ is present for the

equaliser’s convergence point to be associated with a low BER performance degradation.

As has been mentioned already, a small step—size guarantees good convergence accuracy, while a
large step—size results in poor acccuracy and it also might drive the equaliser to instability. Each
equaliser has its own convenient range of step—size values to be used, which also depends on the
modulation scheme used. In one of the original contributions on Bussgang blind equalisers, Godard [4]
suggested using a variable step-size for his constant-modulus equalisers. Commencing with a large
step—size ensures fast adaptation towards the point of convergence and then reducing the step-size

upon approaching convergence offers the required accuracy.

Another point that we will emphasize here is the inter—dependence of the step—size and the equaliser

order. Specifically, concerning the interactions between the step—size parameter and the equaliser
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order, it should be noted that increasing the number of equaliser taps generally requires a smaller
step-size value for avoiding instability, while maintaining the same accuracy. This becomes plausible,
if we recall a point we made concerning the equaliser order, namely that the higher the equaliser
order, the higher the convolutional noise, provided the equaliser order is already sufficiently high for
removing the ISI. By decreasing the step—size, the equaliser converges with better accuracy and this
reduces the convolutional noise, which was engendered by the increase in the number of taps. The
above statements are true not only for linear equalisers. They are more general and all the blind
equalisers of iterative nature obey these properties. For example, the sequence estimation techniques,
which will be presented in Section 1.3.9 also use LMS (or RLS) type channel estimation that have the
same characteristics as the iterative Bussgang techniques. Various studies of the equaliser parameter—
control issues have been conducted [136-139]. Below we give a more indepth analysis of the equaliser

parameters’ influence on the achievable performance.

1.3.8.1 Convergence Accuracy

In order to find the optimum equaliser order for a given channel, it is beneficial to observe the Mean
Squared Error (MSE) of the equalised signal measured with respect to the input signal, which is

defined as:
MSE = E[|z(n) — a(n)|*]. (1.133)

The right equaliser order is the one which gives the minimum MSE. Therefore, the MSE has to be
evaluated as a function of the equaliser order, which is typically an arduous task. This is a very
complicated function to estimate. However, we will invoke some useful approximations, which will
simplify this function. We commence by noting that if e(n), t, ¢ and a(n) are as defined in Equations

(1.44)—(1.48), then with the aid of Equation (1.53) we can express the MSE term of Equation (1.133)

as:

MSE E UtTa(n) +cle(n) — a(n)ﬂ
= F [(tTa(n) +cTe(n) — a(n) (@ (n)t* + e (n)c* - a*(n))]

2 (116112 = 2Re{ts} + 1) + o?|lc|[?, (1.134)

where ||x||? is the Ly—norm of vector x, o2 is the noise variance, us is the mean value of the square of
the transmitted QAM symbols a(n) and ¢ is the delay associated with the equaliser’s convergence to
a delayed solution. Furthermore, we have assumed that the noise is uncorrelated with the input signal
a(n), implying that no co—channel interference exists. It can be seen from Equation (1.134) that the

non-zero MSE is the result of two corrupting factors, namely that of:
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e the additive noise (term o2 - ||c||?)

e the intersymbol interference (term uo (||t]|*> — 2Re{ts} +1)).

Let us now study these two factors separately in the next paragraphs.

Firstly, the effect of additive channel noise incorporates the filtering of the noise term by the equaliser.
As we can see in Equation (1.134), this filtering results in the noise power being multiplied by the Lo
norm ||c|[? of the equaliser vector c. Therefore, we expect a degradation of the MSE due to noise,
which is not exactly equal to the genuine channel noise power, but rather to the sum of the noise
power and the Lo norm of the equaliser vector, when expressed in the logarithmic domain, in terms of
dB. This will be used to investigate the excess ISI which is produced by the noise’s influence on the

equaliser’s tap estimation, as we will see in the next section. Secondly, the ISI exists for three basic

reasons:

e the number of taps of the equaliser is insufficient

e despite the sufficiently high equaliser order there exists a non-zero steady—state MSE for the

equaliser associated with the specific modulation scheme and the equalisation algorithm used

e the additive noise power is sufficiently high for limiting the blind equaliser’s capability of esti-

mating the right tap values.

e imperfect transmitter and receiver filtering, which results in ISI.

1.3.8.1.1 Channel Order Mismatch The first of these reasons simply implies that the number of
equaliser taps is lower than that necessary for near—perfect equalisation, i.e. for attaining a sufficiently
low IST in the absence of additive noise. The behaviour of the Bussgang equalisers, when their number
of taps is low and the channel noise power is also low, is similar to that of the LMS equaliser. This
is because in this case the generally superior LMS equaliser exhibits an MSE performance, which is
dictated by the limited number of equaliser taps. In this case, by designing the LMS equaliser required
for the channel encountered we can estimate its transfer function and the corresponding ISI for each

equaliser order. This procedure is shown by means of a simulation example in Figure 1.26.

1.3.8.1.2 Steady-State MSE The second one of the above-mentioned reasons is true generally
for the family of blind equalisers, since they usually exhibit a steady-state error. For example the
classic CMA has a zero steady—state error, when used in conjunction with QPSK but a non—zero MSE

when used for 16— or 64—QAM. This can be readily interpreted by observing the tap—update procedure
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Figure 1.26: MSE as a function of the equaliser order for QPSK and 16-QAM using the CMA. The
channel model used is the one-symbol delay CIR as given in Figure 1.27. The LMS MSE is again given
as a benchmark performance curve. We can observe that while the MSE curve of QPSK coincides
with that of the LMS because of the zero mean squared value of the update term of Equation (1.76),
the 16-QAM exhibits a non-zero steady-state MSE.

of this algorithm from Equation (1.76), which is repeated here for convenience:
M) = ™ y* (n)z(n) (J2(n) 2= Ry). (1.76)

Explicitly, the update term Ay*(n)z(n)(|z(n)|? — R,) will give zero variance for all PSK symbols, since
in this case it is identically zero for all the phasors of the modulation constellation, but it will give
a non—zero variance for 16— or 64-QAM, since in this case there exist points in the constellation for
which the term is non-zero. In fact this is the case for all the constellation points. In Figure 1.26
this is demonstrated for the CMA algorithm in the context of both QPSK and 16-QAM. Because
of the non—zero mean squared value of the update term of Equation (1.76), a modulation—-dependent
IST term will set a lower limit for the MSE which cannot be removed. It can be seen in Equation
(1.76) that this MSE limit depends quadratically on the step-size parameter A. Explicitly, this is
because of the linear dependence of the blind estimation error of Equation (1.76) on A, which results
in a quadratic dependence on A in terms of the MSE. Indeed, plotting the converged-state MSE for
the CMA based equaliser in the context of 16-QAM as a function of the equaliser order for different
A values corroborates this observation, as it is seen in Figure 1.28. The channel model used in this

example is given in Figure 1.27.

We will now give a mathematical justification of these observations based on the Bussgang blind
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Figure 1.27: The two-path CIR model used in the simulations in this section
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Figure 1.28: MSE for the CMA step—size values of A = 0.005 and 0.0005 as a function of the equaliser
order for 16-QAM using the CMA. The channel model used is the one-symbol delay CIR given in
Figure 1.27. The LMS MSE is given as a lower limit, since this is a trained equaliser, which gives a
benchmark performance. The curves corresponding to the two A values are separated by 10dB, which
corresponds to the square of the difference between the two A values in terms of dB.
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equalisers of Section 1.3.5. In general, a Bussgang blind equaliser updates the equaliser taps according

to the update formula of Equation (1.54), which is repeated here for convenience:
" =c™ = X y*(n) - e(n), (1.135)

where e(n) is the algorithm-specific estimation error. For example, by observing the CMA’s tap

update formula of equation (1.76), we can easily see that the error becomes:
ecmaln) = —z(n) - (J2(n)|* — Ry). (1.136)

Using Equation (1.135), we can arrive at the MSE term for a Bussgang equaliser pursuing the following

approach. The equalised symbol at the input of the decision device in Figure 1.2 at time n is given

by:

dn) = by oy
= ¢l (Ha(n) =t],a(n)
G2 (e Ay () el - 1) - (Ha(n)
yHa(n) — Ay (n — 1)Ha(n)

_ T
- C(n—l

= t{,paln) — A (n - HHTHa(n)e(n — 1). (1.137)

Note that the index (,) in the subscript indicates the n—th iteration. The MSE can be expressed with

the aid of this equation as:
MSE=E Uta_l)a(n) —xa¥ (n — )HYHa(n)e(n ~ 1) — a(n)ﬂ , (1.138)
which can be simplified to:
MSE = iy (|[H2 + 1 — 2Re{ts}) + Af1 + A2 o, (1.139)
where

fi = 2Re{E [tHa* (n)af (n — 1YHTHa(n)e(n — 1) — a*(n)a? (n — 1)HTHa(n)e(n — 1)]
(1.140)

fo = Elaf(n—1)H"Ha(n)a” (n - 1)H H'a* (n)e(n — P (1.141)
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Equation (1.139) consists of three terms. The first term represents the error produced by the residual
ISI, which becomes zero, when the combined channel plus equaliser impulse response vector t takes
the ideal form of (1,0,...,0), i.e. when the equaliser manages to supress all the ISI. The second
term of Equation (1.139) is a A-dependent term, which has a mean value determined by higher order
moments according to Equation (1.140). Finally, the third term is a A\?>-dependent term which also
exhibits a mean value related to higher order moments as seen in Equation (1.141). The reason we have
not simplified Equation (1.139) is that it actually depends on the algorithm—specific error estimate
€(n — 1). This error is generally not entirely uncorrelated with the transmitted symbol vector a(n),
which renders the calculation of Equation (1.139) more complicated. Moreover, the channel impulse
response must also be known for evaluating the terms of Equation (1.139). What is important here is
that we observe the A\®-related dependence of the MSE in Equation (1.139) that we also observed in
the simulation example of Figure 1.28. Experimental evidence suggests that the term f; is insignificant

compared to the term fo, which is responsible for the A>~dependence of the MSE in Equation (1.139)

in the case studied.

By contrast, the dependence of the MSE on the equaliser order is implicit in all three terms of Equation
(1.139). The step-size dependence of the first term is indirect, because the more taps the equaliser
has, the more taps will contribute to the Lo—norm of the vector t. In excess of a certain number of
taps, increasing the equaliser order will not improve the MSE, but it will create more non-zero terms
in the Ly—norm of t. The dependence of f; and fo on the number of equaliser taps is not explicit
because of the complexity of Equations (1.139), but the equaliser order determines the dimension of

the arrays and matrices in these equations, which in turn determine the effects of channel noise on

the equaliser taps.

1.3.8.1.3 The Effect of Noise on the Equaliser Tap Adaptation Having studied the infiuence
of the equalisation algorithm, the equaliser order and the step—size on the residual ISI, we will now
focus our attention on the influence of channel noise on the equaliser tap estimation. It is expected
that due to channel noise the equaliser will have a degraded performance, which will exceed the excess
MSE directly introduced into the receiver by the additive channel noise. In other words, if we have
a channel SNR of +15dB, then we expect an MSE value in the range of [-10,---,—15]dB, since
the noise will affect the equaliser’s tap estimation process, resulting in imperfect equalisation, even if
the equaliser order is sufficiently high. The gravity of this performance degradation depends on the
specific type of equaliser, the equaliser order, the CIR and the modulation scheme used. In Figure
1.29 the MSE performance of a CMA-assisted 16—-QAM modem is shown for different SNR values.

As in all previous sections, we will now provide a mathematical characterisation of the effects of
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Figure 1.29: MSE as a function of the equaliser order and the SNR for a CMA-assisted 16-QAM
modem. The channel model used is the one-symbol delay CIR given in Figure 1.27. In these curves,
the MSE due to the channel’s AWGN has been subtracted, in order to quantify the direct influence of
the channel noise on the equaliser tap estimation process, which enhances the ISI. We observe that for
a sufficiently large number of taps the equaliser’s performance is only slightly affected by this effect,
except when the SNR is low. For SNRs as low as 10dB the noise’s influence is approximately 2dB
while for all other SNR values it is less than 1dB. Note that these MSE curves exhibit a positive slope
for high SNRs, because the MSE in Equation (1.139) is bound to depend linearly on the number of

taps.

channel noise. We commence by referring to Equation (1.137), which is rewritten as:
t(n) = tnory — AH' -y (n — Le(n — 1), (1.142)

In this form, noting that

y(n—1)=Ha(n —1) +e(n — 1), (1.143)
we can rewrite Equation (1.142) as:
tin) = t(no1) — AH” - (H*a*(n — 1) + e(n — 1))e(n — 1). (1.144)

The mean value of the update term of this equation, which is constituted by the second term, can be

formulated as:
E[At] = Elt(n) — t(n_1)] = AE [(HTH*a*(n —De(n—1) +H e(n — 1))e(n — 1))] . (1.145)

Since the error term e(n — 1) of Equation (1.145) may contain terms such as the equalised symbols

z(n), which are corrupted by the channel noise, the mean value of At in Equation (1.145) depends
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on the algorithm-specific error term. For example, for the CMA, this error term can be found after

lengthy calculations, yielding:

E[At] = \HT (H* T -t+0?- (QMQH*HC”Zt + 2pus[t]%c - RQC) + o} [[C¢|20iL + 20* [ci Z ICHQJ )
. (1.146)

where o} and T were defined in Section 1.3.7. Equation (1.146) indicates that the mean value of the
update term is generally non—zero. This explains the observed fact that the noise actually affects the
equaliser’s ability to converge to the optimum point of equilibrium. From Equation (1.146) we can
also observe that At depends both on the power and on the 4-th order moment of the channel noise,
as well as on the step-size parameter A\. For a low noise power, the 4-th order moment diminishes
in the sum, but for a high noise power both terms of Equation (1.146) become important. Finally,
according to Equation (1.145) the step-size A and At are linearly related to each other, hence the
MSE corresponding to this type of ISI is proportional to A%. Note however that this ISI term is not
the predominant ISI contribution in Equation (1.146), except when the noise power is sufficiently
high in order to render At of Equation (1.146) sufficiently high for driving the vector t to a state
of convergence, which is associated with a higher ISI than the ISI produced by the other factors,

discussed in the previous paragraphs.

1.3.8.2 Convergence Speed

1.3.8.2.1 Noiseless Environment In this section we study the convergence behaviour of the
blind equalisers, as before, focusing on the CMA equaliser, and provide simulation examples for
justifying our conclusions. We commence with the zero—noise assumption, which will assist us in
understanding the equaliser’s behaviour without corrupting effects or impairments. We will firstly
make a remark which stems directly from the CMA tap—update formula of Equation (1.76). Since
the coefficient update is “limited” by the step—size A at each symbol interval, this parameter controls
the speed of convergence. In conjunction with a large step—size the equaliser is expected to converge
faster, provided that the step-size is not so high as to affect the equaliser’s convergence capability.
This limitation will be discussed later in this section. In fact, when the step—size is sufficiently small,
it is the only factor which limits the speed of convergence. This is evidenced by Figure 1.30, where
the MSE learning curves are portrayed for 16-QAM using the CMA and for different equaliser orders.
It is clear that all learning curves have the same slope at their initial stage of convergence. When
A is small, then it determines the slope of the curve during the learning stage. In other words, this
slope is determined by A. We can also observe in this figure that the variation in the convergence

speed for different number of equaliser taps is simply due to the fact that each MSE curve reaches its
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Figure 1.30: MSE learning curves for different equaliser orders in the context of 16-QAM using the
CMA. The channel model used is the one-symbol delay CIR given in Figure 1.27. We can observe that
in all cases the slope of the curve at the initial stage is the same. However, their difference manifests
itself in the steady—state MSE, which depends on the order of the equaliser. Suitable averaging of the
MSE has been performed by using intervals of 1000 symbols and taking the average in these intervals
so that the random fluctuations are smoothened

steady—state after a different convergence time. For example, the 4-tap curve reaches its steady—state
earlier, since this steady-state MSE is the highest, while the 12-taps curve reaches its steady-state
later, since its steady—state MSE is the lowest and hence it requires more “learning” time. In Figure
1.30 suitable averaging of the MSE has been performed by using intervals of 1000 symbols and taking
the average in these intervals so that the random fluctuations are smoothened. In Figure 1.31 learning
curves are provided for different step—size values, exhibiting a different slope for each curve. We can
also observe the difference in terms of their steady-state MSE, which was studied in the previous
section. We can see that there is an MSE floor level, which depends on the step-size, since a lower
step-size value is associated with a more stable steady—state performance. Based on the discussions
of the previous paragraph on the achievable convergence accuracy we can also give a more explicit
reason for the A-dependence of the convergence slope by recalling Equation (1.137), which describes

the MSE of a Bussgang equaliser. We can rewrite this equation as:
by = b(no1) — AH' - y"(n — Le(n — 1), (1.147)

Since the update of the complex combined channel plus equaliser impulse response vector t is pro-
portional to A, the slope of the learning curve is also expected to be proportional to A, provided that

the multiplier of X is constant. In fact, it is not, because the estimation error e¢(n) is approaching
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Figure 1.31: MSE learning curves for different step—size values A in the context of 16-QAM using the
CMA. The channel model used is the one-symbol delay CIR given in Figure 1.27. We can observe
that the slope of the curve at the initial convergence stage is proportional to A. In fact, the 0.0005
step-size gives a —2.5x107*dB/symbol slope, the 0.001 step-size gives a —5x10~*dB/symbol slope,
while the 0.005 step-size gives a —2.5x1073dB /symbol slope. These values correspond to the step-size
differences in dB. Suitable averaging has been performed in the MSE as in Figure 1.30.

zero, as the equaliser approaches convergence. Nonetheless, the convergence speed of a blind equaliser
of this type is low, which renders the multiplier of A slowly varying, especially at the initial stage
of convergence. We can observe this in Figure 1.31, where the learning curves have an initial slope

depending on A, which is gradually reduced and becomes zero, when convergence is reached.

1.3.8.2.2 Effect of Noise on the Convergence Speed In this paragraph we study the effect
of channel noise on the convergence speed of blind equalisers. As we have already mentioned in the
previous paragraph dedicated to the issues of convergence accuracy, when the noise power is low, the
only effect of the channel noise is a steady—state MSE floor, which cannot be removed. According to
Equation (1.134) this error floor corresponds to the sum of the noise power and the Lg norm of the
equaliser vector, expressed in terms of dB, as it was argued before, in Section 1.3.8.1. Nevertheless,
when the noise power is high, the equaliser’s convergence rate becomes poor. This phenomenon
also contributes to the MSE floor, which becomes higher than what would be expected by the mere
superposition of channel noise on the received signal. As a result, the convergence speed is increased
under noisy conditions. This is because the noisy MSE floor level is higher, than the noiseless MSE
floor, and hence it is reached within a reduced time in comparison to the lower noiseless MSE floor.

The above statements are justified with an example in Figure 1.32. In this figure we have plotted the

68



Chapter 1 Trained and Blind Equalisation 1.3 Overview of Blind Equalisers

"5 N T T T A T ¥
% Noisless —+—
‘xx 1 5 d B ““““ Koo
WK XX 20d B - woreees
XY 25dB @
-10 - x y‘x"('x*x—xfx‘x%%xse****xx.x‘xx,x*%x_x_x.x-x»xx*;ex*x—x—xx_*‘,
L x
w W X x***‘x*******xxxxx****xx*xx»*****x%
(ép] '1 5 B .";3_ M
go)
E A"EA
B8a,_
'EI‘ELE'E'E'B'B'E‘E-E}'E-ﬂvg»g«ﬂE|~E}»EI-B'B‘E'E}-EE‘E"E'BDVE'B,B b
20 + 4
L T SN o cton. e

50000 100000 150000 200000
Symbol Index

Figure 1.32: MSE learning curves for various SNR values for 16-QAM using the CMA. The channel
model used is the one-symbol delay CIR given in Figure 1.27

MSE learning curves for different channel SNR values for 16-QAM using the CMA over the channel
of Figure 1.27. We can readily observe that the noise is creating an SNR-dependent MSE floor level,

increasing the convergence speed for lower SNRs.

Having highlighted the characteristics of the most salient Bussgang algorithms, let us now consider

joint CIR and data estimation techniques.

1.3.9 Joint Channel and Data Estimation Techniques

Joint channel and data detection techniques constitute the blind equivalent of sequence estimation
algorithms. These techniques have originally been used for data estimation, when the CIR was known.
In this case the Viterbi algorithm is invoked to estimate the data sequence, assuming that the state
machine is now produced by the channel instead of by the channel encoder. Here, instead of equalising
the received signal, we estimate the CIR together with the ML data sequence, assuming that the CIR
estimate is sufficiently accurate. Originally, Seshadri [6] observed that it may be risky to invoke the
Viterbi algorithm [34] retaining only the strongest surviving path at each instant for the blind scenario,
since by assuming perfect CIR knowledge, we would discard all the surviving paths but one. This
would be a bad tactic at the initial stages of the algorithm, when the CIR estimation is poor. In
fact, the less paths that are eliminated in favour of other paths the better the performance of this
algorithm in the blind detection scenario. However, keeping all possible states would correspond to a

computationally intensive algorithm, since the number of states grows exponentially with the channel
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Figure 1.33: Per—survivor processing using the M-algorithm

length. Instead, Seshadri suggested that the so—called M-algorithm [140] should be used, retaining
M number of surviving paths at each trellis state, as a compromise between retaining the full number
of states or just one of them. He also suggested that the CIR estimation should be initialised and
updated at any symbol interval using an LMS estimator. Each survivor path of the trellis should
keep its own data plus CIR estimate, as illustrated in Figure 1.33. Here only the stylised trellis states
and the associated M number of trellis transitions are indicated. For a deeper exposure to the M-
algorithm the interested reader is referred to [140]. The LMS estimation was extended to RLS-based
estimation by Xie et al. [141] for the case of multiuser communications, where the interference was
due to K users, each having p distinct propagation paths of the dispersive channel. Raheli et al. [23]
suggested that the robustness of this algorithm to noise would be boosted by protecting the data by
channel coding and by performing joint channel decoding and sequence estimation. They introduced
the term Per—Survivor Processing (PSP) and showed the applicability of this technique using RLS to
fast fading channels, owing to its fast convergence.

In this section, we give a brief overview of joint CIR and data estimation using this technique. The
definitions of the variables are the same as in Figure 1.8 and Section 1.3.5. Additionally, we define
h=1[h_p, -, hr,|T as the estimated CIR. Any transition from state s, to state s,y1 in the trellis

of Figure 1.33, describing the evolution of the state-machine modelling the channel, is due to the
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estimated transmitted symbol vector a(s, — sp+1) = &(n). The estimated received symbol §(n)
for this transition at time n is then given by the convolution of the tentatively assumed transmitted
symbol vector 4(n) and the CIR h(™ assumed, which is formulated as a7 (n) - h(™). Each surviving

path in the trellis of Figure 1.33 will have its own CIR and data estimate. The LMS CIR estimation

algorithm for each surviving path will then be [6]:

L
D = A~ x-a%(m) - | y(n) - 387 (n) - BM(n) | (1.148)
=0

'

9(n)

which is similar in its philosophy to the tap—update formula of Equation (1.135), updating ¢ using
the step-size A depending on the error term in the round brackets (). The LMS CIR and data estimator

can be replaced by an RLS estimator according to the following equations [15,23]:

B(s,) = Zw"—ia*(z)aT(z‘):P”l(sn)

1=0
_ P(sy)a*(n
ko) = a7 mPEa ™)
Plons) = o (P(sn) — Klsne)a? ()P (s0))
(s = 5s1) = 3w y(i) — a7 ()W (7)
=0
D(spe1) = h(sp)+k(spr1)e(sn = Sns1)- (1.149)

This CIR and data estimator provides fast adaptation and renders the estimator applicable to fast

fading channels, since in this scenario reliable re-converging after a fading-induced error burst is of

prime importance.

The blind data and CIR estimator presented in this section has some significant differences wrt the

Bussgang blind equalisers of the previous section. Namely:

e In contrast to stand-alone equalisation, there is no filter simulating the inverse of the CIR
e The convergence is significantly faster and more accurate

e This technique can be combined with channel decoding

As for the other blind equalisation techniques discussed, numerous studies have provided insight into
this method. The associated practical considerations and a range of modifications were studied by
Chugg and Polydoros in [36], while in [37] the associated performance was studied both theoretically
and by simulations. In [38] and [39], Hidden Markov Model (HMM) theory was applied to the problem
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of joint data detection as well as CIR estimation and performance results were given for the so—called
Gaussian Minimum Shift Keying (GMSK) modulation invoked in a Time Division Multiple Access
(TDMA) scenario. In [40] the employment of fuzzy logic was proposed for the calculation of the
associated decision metrics. In [41] and [42] the acquisition performance of a PSP detector was
evaluated and “smart” initialisation strategies were explored. In [43] the algorithm was adapted to
make use of soft statistics and to include error prediction. Finally, in [30] a genetic algorithm was
applied for estimating the CIR, and the Viterbi algorithm was then invoked. For more research on

blind sequence estimation techniques the reader is also refered to [142-146].

1.3.9.1 Complexity Reduction

As we have already mentioned, when the channel’s delay spread is high, most joint data detection
and channel estimation techniques become prohibitive in terms of complexity. The same happens in
the context of PSP. The complexity of PSP is substantial even for transmissions over low—dispersion
channels, especially for high—-order QAM schemes, as we will se in Section 1.3.12. In some scenarios,
however, a high—delay—spread channel may consist of two or more multipath components that are far
from each other. In this case, assuming a higher number of CIR taps is unnecessary. Only the effects
of the taps having highest magnitude should be equalised, assuming that all others are zero. In this
approach, the complexity is significantly reduced and channels exhibiting a higher dispersion can be
equalised using the PSP technique. We refer to this technique as Reduced-Channel PSP. The task
in this case is that of deciding which of the taps can be eliminated. An adaptive algorithm should
be employed, which will decide when the value of a tap is very close to zero and can therefore be
eliminated and when the channel estimation is inadequate and more channel estimation taps need to

be allocated. Performance results will be presented for the two WATM channels of Figures 2.3(a) and

(b) in Chapter 2 using this technique.

Let us now consider the family of second—order statistics based techniques.

1.3.10 Blind equalisation Using Second—Order Cyclostationary Statistics

Using second-order statistics [147], in general, is significantly more efficient, than invoking higher-
order statistics. This is because less samples are needed, in order to generate the required statistics,
implying higher convergence speed and better stability. Nevertheless, second—order statistics are not
applicable in all cases of interest. Specifically, in the case of blind equalisation, the CIR is not
identifiable from second—order statistics, when we sample at the Baud-rate, i.e. at one sample per

symbol period [7]. In 1991 Tong et al. [28] exploited the fact that by employing oversampling, the
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received signal becomes so—called cyclostationary, implying that the associated statistical properties
become periodic in time [147]. Exploiting this cyclostationarity, Tong et al. proposed a method of
CIR estimation, using second-order statistics. More recently, in 1995 Moulines et al. [29] observed
that the same happens, when we are taking the input of multiple sensors — such as multiple antennas
for example — at Baud-rate, i.e. without resorting to oversampling. Finally, in 1997, Tsatsanis and
Giannakis [54], [48] proposed another substitute for oversampling at the receiver, namely inducing
cyclostationarity at the transmitter, instead of oversampling at the receiver. All these ideas lead to a
range of similar methods applicable to CIR estimation, which are based on second-order statistics.

Let us invoke oversampling and denote the symbol interval by 7', while the sampling interval by T,
so that "= T - A, where A is the oversampling factor. We also assume as in the rest of this chapter
that the channel’s memory extends from — LT to LyT. The channel memory limits do not have to be

multiples of the symbol interval T, it is simply notationally convenient. We observe the system over

the time interval [nT, (n + 1) - T, using the linear model of:

y(n) = H(n) - a(n) + e(n), (1.150)

where

y(n) = [y(nT),y(nT + Ts),...,y(nT + (A — 1)T5)]T (1.151)

represents the received signal vector at time instant n,

[ h_LlT(n) e hLQT(n)
h_ n h 7
H(n) - LlT?f-TS( ) ' LQT-fTTs( ) (1152)
L h~L1T+(A—1)Tg (n) ... hL2T+(A—1)T5 (n) ]

is constituted by the channel’s impulse response taps {h;(n)} for ¢ = —L;T,- -, LoT +(A — 1)Ts at

time nT’,
a(n) = [a((n+ L)T),...,a((n — L)T)F (1.153)

is the transmitted data vector and
e(n) = [e(nT), e(nT + Ts), ..., e(nT + (A — 1)Ts)]” (1.154)

is the channel noise vector.

We now point out the equivalence of oversampling the received signal with rendering the transmitted

signal cyclostationary and also its equivalence to involving the outputs of A number of ’sensors’
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or antennae. The former [48] involves transmitting the same output A times sequentially, instead
of just once. This way the transmitted signal becomes cyclostationary and the same happens to
the corresponding received signal sampled at the Baud-rate, when the channel is stationary for the
duration of processing. If we consider the transmitter’s Baud-rate to be A-times lower than the

receiver’s Baud-rate, then the received signal would be the same as in the previous scenario.

Upon using the outputs of multiple sensors or antennae [29], we can observe that the output of each
sensor — say for example that of the +—th sensor — is equivalent to the output of oversampling at time

instants of iTs,7 =0,---,A — 1 in the [0, (A — 1)Ts] space.

Having shown the above equivalences, we will now proceed to discussing the formation of second-
order statistics based algorithms. Let us consider the autocorrelation matrix of the received signal

y(nT + 1Ts) over the time interval i7" at time instant nT":

Ryy(i5n) = Ely(n) y"(n—1)]
(1.150)

+e(n)ef (n — i), (1.155)

where y(n) was defined in Equation (1.151). The two terms in the middle of this expression have a zero

mean value, since they are the product of independent variables. Thus, Equation (1.155) becomes:
Ryy(i;n) = H(n) - Raa(i;n) - HY (n — i) + Ree(4;7). (1.156)

The CIR estimation process consists of estimating the CIR matrix H using measurements of the
autocorrelation matrix Ry (n) according to Equations (1.155) and (1.156), assuming that the auto-
correlation of the transmitted signal Raa(i; k) is known. Tong et al. [7] invoked the assumption that
the input data source produces completely uncorrelated symbols a(n), while Hua et al. [58] adapted
the method to work with correlated input signals. Furthermore, while in Tong’s algorithm [7] the
noise was assumed to have some known properties, in [49] a variation was proposed, which assumed
no knowledge concerning the channel noise. In order to estimate the CIR matrix H in Equation
(1.152), we must also have knowledge of the noise’s correlation. The noise samples cannot be assumed

to be uncorrelated (white), since they are generated at a higher rate, than the Baud-rate and since
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the receiver’s lowpass filtering imposed autocorrelation upon it. This autocorrelation function has the
same shape as the impulse response of the receiver filter, since the noise was white before this filtering

and hence its autocorrelation function was a () function.

There are various ways of performing CIR estimation at this stage. Some algorithms, such as that
proposed by Tong et al., [7,28], estimate the CIR by assuming that the noise is white — not a valid
assumption in general — and the transmitted sequence is also white. In our forthcoming deliberations
the channel is assumed to be static. This is an assumption stipulated, in order to simplify our
study. The CIR matrix H of Equation (1.152) is then estimated by performing the so—called “singular
value decomposition (SVD)” [148] of Ryy(0) and Ry, (1) and then by performing a range of further
algebraic calculations. In other algorithms [48] iterative procedures have been proposed, exhibiting
lower complexity, but having an asymptotically similar performance. After estimating the CIR matrix
H of Equation (1.152) and ignoring the effect of noise in Equation (1.150), we can invert H in order
to extract the original information symbols a(n) from the received sequence y(n), using the following

LMS estimator:
cous = H - y(n), (1.157)

where H? satisfies:
H H=1 (1.158)

and it is the “pseudo-inverse” [120] of the CIR matrix. The input signals have been assumed to be

ii.d. variables with a normalised power of unity, while the noise has been neglected.

An important advantage of the second-order statistics based algorithms — compared to the fam-
ily of the linear equalisers — is that they are asympotically accurate. Simulations presented in [7]
demonstrate this accuracy in performance terms and also show that the second—order statistics based
algorithms exhibit fast convergence, typically within a few symbols. This concludes our discussions
on the second-order statistics based algorithms. For more detailed discussions on this issue the reader
is referred to [7,28] and also to [49-51]. In [52] a different method of estimating the CIR matrix H
of Equation (1.152) is proposed for the “multiple channel” scenario, using so—called “outer-product
matrix decomposition”. In [53,54], the transmitter—induced cyclostationarity algorithms are explored,
while in [55] the cyclostationarity—based method is applied to an Orthogonal Frequency Division Mul-
tiplexing (OFDM) receiver. In [56], a modification of Tong’s original method [7] is proposed, while
in [57] a general study of the cyclostationary method is given. The effects of non-i.i.d. signal distri-
butions are studied in [58] and in [59]. In [60] the second—order statistics based methods are adapted
to the so—called source separation problem, where for example the wanted and interfering signals are

separated. In [61] the subspace method is applied to the suppression of both intersymbol interference
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and multiple-access interference. In [62] the case of unknown noise distributions is considered. Finally,
in [63], the so—called “Column-Anchored Zeroforcing Equalisation (CAZE)” is proposed and studied.
Having presented an introduction to the family of second—order statistics based techniques, let us now

consider a range of so—called “polycepstra—oriented” algorithms in the next section.

1.3.11 Blind Channel Estimation and Equalisation Using Tricepstra

The last class of blind equalisation algorithms discussed here involves fourth—-order — rather than
second—order — statistics of the received signal, in order to estimate the inverse of the CIR and to
equalise its effects. A number of algorithms belonging to this class were proposed by Hatzinakos and
Nikias in [5] and also by Mendel in [149]. This algorithm, referred to as the Tricepstrum Equalisation
Algorithm (TEA), employs the complex cepstrum of the so—called fourth—-order cumulants (the tri-
cepstrum is defined in Appendix F) of the received signal sequence sampled at the Baud-rate. These
algorithms are capable of identifying both so—called “minimum and maximum-phase” channels, which
we will characterise more explicitly during our further discourse. Below we briefly introduce the TEA

using the fourth—order cumulants and tricepstra as defined in Appendix F.

In this context we aim to equalise a channel having a z—domain channel transfer function of H(z). We
consider H(z) as the product of a minimum-phase [15] section — where the z—domain transfer function
of the channel has all its zeros inside the unit circle — and a maximum—phase section — where the z—
domain transfer function of the channel has all its zeros outside the unit circle. This is formulated
as [5]:

H(z)=A-I(z71) - O(z), (1.159)

where A is a constant and I(z7!) and O(z) are polynomials of the form T/, (1 —a;27") and T (1 -
ajz) respectively, with |a;] < 1, M is the number of channel zeros inside the unit circle and K is
the number of channel zeros outside the unit circle. A simple manifestation of a minimum-phase
channel exhibits a CIR, where the main tap associated with the time instant 0 is the largest one. The
polynomial I(z~ ') is a minimum-phase polynomial, while O(z) is a maximum-phase polynomial. In
order to equalise this channel under the so—called Zero-Forcing (ZF) constraint — implying that the
combined CIR and equaliser impulse response is forced to zero at sampling instants n # 0 — we use

an equaliser, having a transfer function of C(z), which is the inverse of that of the channel [5]:

1 1
H(z)  A-I(z1)-0(2)

C(z) = (1.160)

Then the cascaded channel and equaliser transfer function constitutes an ideal channel. If instead of

the ZF equaliser we use a decision—feedback equaliser (DFE) having a feedforward transfer function
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G(z)

©— V(z)

-+

Figure 1.34: The DFE filter structure.

of V(z) and a feedback transfer function of G(z), then the equaliser’s transfer function will have the

form [5]:

() = L)

where V(z) and G(z) are the feedforward and feedback section’s transfer function, respectively, as

shown in Figure 1.34. The feedback filter must be realisable. A possible choice for V(z) and G(z)

is [5]:
* z—~1
Viz) = %52 (1.162)
14+G(z) = I(z™hH-0%(z71). (1.163)

Then the system C(z) - H(z) is perfectly equalised and the feedforward section V' (z) of the DFE is an
all-pass filter having zeros inside and poles outside the unit circle, while the feedback filter G(z) is a
minimum-phase filter. In order to construct the DFE we have to find an estimate of the coefficients of
the feedforward and feedback filters. Equivalently, we have to find an estimate of the poles and zeros

of the two equaliser filters. This can be achieved using the fourth-order cumulants of the received

signal.

We form the received signal y(n) as the convolution of the transmitted signal a(n) with the CIR {h,},

plus a zero—mean additive Gaussian stochastic process e(n), as follows:
y(n) = a(n) * hy, + e(n). (1.164)

We recall from Appendix F that the tricepstrum c,(m,n,[) of the received signal y(n) is related to

the tricepstrum ¢j,(m,n, 1) of the CIR by [5]:
cy(m,n,l) = cp(m,n,l), (m,n,l) # (0,0,0). (1.165)

This implies that in the tricepstrum domain the received signal is equal to the CIR. Therefore, esti-
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mating the received signal’s tricepstrum directly gives us the CIR’s tricepstrum. The problem then
becomes that of estimating the CIR in terms of its tricepstrum representation. It was shown in [5] that
it is sufficient to consider tricepstra in the form of ¢,(K,0,0) (K integer). We recall from Appendix

F the following relationship:

p
ST AL (m —I,n,1) — Ly(m + I,n+ 1,1+ I)] +
Ly (

I=1

q
+ 3 BULy(m— Jyn—Jl = J) — Ly(m + J,n,1)] =

J=1
= —mLy(m,n,l)

where
—AK) K =1,....,p
K - ¢y(K,0,0) =

B-K) K —=—_1... —q.

i

This relationship is in fact a system of linear equations, which can be solved by iterative methods, as
shown in Appendix F. However, the estimation of the CIR and the equaliser filters is quite an elaborate

task and hence the associated derivation was relegated to Appendix F, following the approach of [5].

An estimate of these algorithms’ complexity compared to the Bussgang algorithms’ complexity was also
given by Hatzinakos and Nikias in [5], where the complexity of the former appears to be significantly
higher, a fact which was mentioned before. As a trade-off, the simulations presented in [5] indicate
the superiority of the TEAs in terms of convergence speed, as well as in terms of their ability to
equalise non—minimum phase channels, which are often encountered in fading mobile channels. For

more detailed investigations of these techniques the reader is referred to [5,97,150-153].

Having presented an overview of a range of basic blind equaliser structures, we will now provide a

summary of their complexity.

1.3.12 Complexity Evaluation

In this section the complexity of the various blind equalisers presented is evaluated. We commence
our discussions by considering the complexity of the Bussgang algorithms. The complexity of all the
Bussgang techniques is similar and it is relatively low. For simplicity, in this section we will assume that
the number of equaliser taps is 2N +1, i.e. N1 = Ny = N, according to the notation we have used so far.
The equaliser’s complexity depends only on the number of equaliser taps, 2N +1, and it is on the order
of N, which is indicated as O(N). An estimate of the number of real additions and multiplications
required for each algorithm per equalised symbol interval is presented in Table 1.1. Here, we have

assumed that the complex variables are represented in the memory of the associated arithmetic unit
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@lgorithm ‘ Additions ‘ Multiplications ‘ Memory ‘
CMA [4] 16L + 10 16L + 13 4L + 4
Sato [3] 16L +8 16L 4 10 4L +4
B-G [32] 16L + 17 16L 4 19 4L +4
Modified-CMA [102] 16L + 8 16L + 14 4L + 4
Stop—and—-Go [21] 16L +8 20L + 10 4L +4
NCMA [110] 8L+ 17 8L + 23 2L +5
Soft—Constraint [112] 8L + 18 8L +20 2L +5
Super-Exponential (p = 2, = 1) [31] | O(L?) O(L®) O(L)

Table 1.1: Complexity estimate of the Bussgang techniques of Section 1.3.5, assuming 2N +1 ~ 2L+1,
where L is the channel’s memory

l | Additions | Mult/ions | Memory ‘

Viterbi Q¥ (16L +9Q +2) | Q?F(16L +8Q +4) | Q?*(7 +4L)
M-algorithm | M(16L +9Q +2) | M(16L +8Q +4) | M(7+4L)

Table 1.2: Complexity estimate of the sequence estimation algorithms of Section 1.3.9

in terms of their real and imaginary parts. We have also assumed that the number of equaliser taps,
namely 2N + 1, is approximately equal to the channel’s memory of 2L + 1, i.e. 2N + 1= 2L + 1 and
that the square root evaluation required for the computation of |¢”?(n)| in the Benveniste-Goursat
algorithm of Section 1.3.5.4 is performed with the aid of 4 real additions and 2 real multiplications.
The square root in this case is calculated by the approximate formula of /1 +z =~ 1 + 5 — %2 + 3’;'1—%3,
which is the first four terms of the Taylor expansion of V1 +z =~ 322, ﬁ-z—s,%“—?’) - z™, for z close to
zero. One could take into account more terms in the series in order to render the error estimation
more accurate. Finally, in Table 1.1 we have also included an estimate of the memory requirements of
each algorithm. In addition to the Bussgang algorithms the table incorporates the super—exponential
algorithm, which does not belong to the family of Bussgang algorithms, but exhibits similarities with
the CMA. A complexity estimate of the PSP-based algorithms of Section 1.3.9 is obtained similarly
to the previously introduced Bussgang algorithms of Section 1.3.5 by calculating the total number
of additions and multiplications as well as the associated memory requirements. Considering that
the convolution of the CIR with the estimated sequence in Equation (1.148) is only calculated once
for each survivor transition and stored in memory (thus saving unnecessary further calculations), the
associated complexity results are summarised in Table 1.2. These complexity figures refer to one
symbol interval. The complexity arising from convolutional decoding, if channel coding is used, is
ignored in these calculations. In Table 1.2 M is the number of survivors in Figure 1.33 that we retain

at each step of the M—-algorithm of Section 1.3.9 and @ is the number of possible signal constellation

points, i.e. Q = 2K for a K-bit per symbol modulation scheme.
By comparing Tables 1.1 and 1.2 we observe that the complexity of the sequence estimation techniques
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(aided by LMS-based CIR estimation) is exponentially increasing with the dispersion or the memory
of the channel L, i.e. it is of O(Q"), when the Viterbi algorithm is used, implying that channels having
long CIRs cannot be equalised by this sequence estimation technique. By contrast, the complexity
of the Bussgang techniques is only O(L) and it is only linearly increasing. However, the situation
changes when the M-algorithm is used instead of the full search algorithm in the context of the
sequence estimation based techniques and we see from Table 1.2 that the complexity also becomes
O(L), except that in this case we also have a multiplicative factor of M. Note furthermore that the
complexity also depends on the number of phasors in the modulation constellation according to the
exponential relationship of Q%%, where @ is the number of phasors in the QAM constellation. Again,
from these tables we conclude that the Bussgang algorithms are attractive for long CIRs, since in this
case the sequence estimation techniques exhibit an excessively high computational complexity. By
contrast, for short CIRs the sequence estimation techniques offer significant performance advantages
at an affordable complexity, as it will become explicit in the next chapter. However, as will be seen in
Chapter 2, channels exhibiting very long CIRs cannot be equalised using Bussgang equalisers either

due to the excessive enhancement of convolutional noise associated with the large number of equaliser

taps required for equalisation.

Finally, the normalised linear algorithms of Sections 1.3.6 exhibit a similar complexity and properties
to the Bussgang equalisers, apart from the super—exponential algorithm, which is far more complex as

a result of its O(L?) dependence on L caused by the calculation of the cumulants in Equation (1.102).

Having presented a rudimentary overview of various blind equalisation methods, we note the emergence
of a recent approach, based on Neural Networks (NN). For more details concerning NN-based blind
methods the reader is referred to [24,154-158]. Another approach which is not considered in this

thesis is the Figen Vector Algorithm by Jelonnek, Boss and Kammeyer [159].

1.4 Summary

The family of basic blind equaliser techniques which were presented in this section appear promising in
terms of mitigating the channel-induced dispersion. The type of best-suited blind equaliser depends
on the specific application concerned. A PSP channel estimator would be ideal for a CIR having only
a few low—delay taps in conjunction with low-order modulation schemes. However, when the number
of CIR taps increases, this technique becomes prohibitive in terms of its computational complexity. In
this case the M—algorithm based approximation is capable of reducing the complexity of the algorithm
at the cost of a degraded performance. The severity of performance degradation will depend on factors,

such as the shape of the CIR, the specific QAM scheme used, the noise and the number of retained
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states M. Since the available processing power offered by the state—of-the art processors increases,
the affordable complexity of the channel equaliser also increases. Nonetheless, long CIRs require an
exponentially increased equaliser complexity and the M-algorithm based approximation will always

suffer from the reduced number of states.

On the other hand, the Bussgang techniques are adequate for channels exhibiting moderate or high
dispersion, since their complexity is only linearly increased upon increasing the number of equaliser
taps. Their performance, however, is not as high as that obtained by the PSP based equalisers in
terms of their achievable speed of convergence and in terms of their convergence robustness in the
presence of channel noise and ISI. The undesirable local minima, which have been found to exist in such
equalisers, appear to be only of theoretical importance, when the equaliser has an adequate number of
taps. Moreover, convergence detection techniques have been proposed and reinitialisation strategies
have been suggested, in order to ensure that this issue will not affect the equaliser’s performance.
High-IST scenarios are of particular importance in mobile communications applications. However, as

complexity is also an issue in conjunction with light-weight portable terminals, these algorithms are

amenable to such applications.

Finally, the algorithms, which explicitly use statistical estimations are quite complex and, even though
they seem to be asymptotically convergent, they were only briefly touched upon in this treatise. On
the other hand, blind neural network algorithms were investigated by the authors, but they were found
to exhibit convergence to undesired local solutions, when the initialisation was not in the vicinity of
the desired point of equilibrium and therefore they were not researched further.

Having characterised a range of blind equaliser techniques, in the next chapter we will provide perfor-

mance results for some of these equalisers.
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Chapter 2

Performance Results

In this section we present the associated comparative performance results for the algorithms described
in Sections 1.3.5 and 1.3.9. Two different types of results are presented, commencing with Bit Error
Rate (BER) learning curves, which offer a measure of the algorithms’ convergence speed. The second
set of results is concerned with the average BER curves of the algorithms over a dispersive Gaussian
channel. The modulation schemes involved are 16-QAM and 64-QAM [9]. The associated signal

constellations are shown in Figures 2.1 and 2.2.

2.1 Channel Models

Three different channels were used in our comparative study. The first one is a typical worst—case
Wireless Asynchronous Transfer Mode (WATM) channel, while the second one is a Shortened WATM
(SWATM) CIR, both of which are presented in Figure 2.3. These indoor CIRs were generated with the
aid of finding the line-of-sight path and the four longest—delay paths in a 100x100x3m3 hall at a WATM
transmission rate of 155 Mbit/s [9]. The third channel used in our comparative study is a simple one-
symbol-delay channel, which is shown in Figure 2.4. This channel may characterise a satellite link,
where due to the directional parabolic antenna used, only one or two multipath components may arrive
at the receiver. The difference between the WATM, SWATM and the one-symbol-delay channel is
that while the former two channels exhibit multipath components at several symbols’ delay, the latter
exhibits only one additional multipath component at a delay of one symbol. These different CIRs will
be used for demonstrating the fact that different equalisers may be appropriate for different channels.

All CIRs are assumed to be real, having no imaginary part.
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x 1000 x 1100 x 0100 x 0000

x 1001 x 1101 x 0101 x 0001

x 1011 x 1111 x 0111 x 0011

x 1010 x 1110 x 0110 x 0010

Figure 2.1: 16-QAM constellation

100000 x 101000x 111000x 110000 x x 010000 x 011000 x 001000 x 000000
100001 x 101001 x 111001 x 110001 x x 010001 x011001 x001001 x 000001
100011 x 101011x 111011 x 110011 x x 010011 x 011011 x 001011 x 000011
100010 x 101010x 111010x 110010 x x 010010 x 011010 x 001010 x 000010
100110x 101110 x 111110x 110110 x x 010110 x 011110 x 001110 =x 000110
100111 x 101111x 111111x 110111x x 010111 x 011111 x 001111 x 000111
100101 x 101101 x 111101 x 110101 x x 010101 x 011101 x 001101 x 000101
100100 x 101100 x 111100x 110100x x 010100 x 011100 x 001100 x 000100

Figure 2.2: 64-QAM constellation
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Time Delay (ns) Time Delay (ns)
0 25 50 75 100 125 150 175 200 225 250 275 300 325
i 1L 1 1 1 ) L 13 1

0 25 5.0 ’{5 1(?0 1%5 15’0 I’{S 290 2%5 2§O 275 390 325 Lo /o 200 2L
0.9 - r 0.9 o
0.8+ F 0.8 F
0.7 r 0.7 1 -
0.6 - 0.6 L
0.5 o 0.5 L
0.4 4 - 0.4 3
0.3 B 0.3 r
0.2+ o 0.2 -
0.1+ - 0.14 N

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Number of symbol intervals Number of symbol intervals

The WATM channel The Shortened-WATM channel

Figure 2.3: (a) The WATM and (b) Shortened WATM channels

Path amplitude

0.6

0 1 delay (xT)

Figure 2.4: The one-symbol-delay channel used in the simulations
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2.2 Learning Curves

In this section, the associated BER learning curves of the blind equalisers of Sections 1.3.5 and 1.3.9
are presented for the CIRs of Figures 2.3 and 2.4. The step—size parameter \ is common for all the
Bussgang algorithms, which was chosen to be 5 - 107%, while the Benveniste-Goursat parameters of
Equation (1.88) are k1 = 1, ky = 5. For the PSP-based sequence estimation algorithm, the step-size
in Equation (1.148) is 10~2 and only M=Q survivors were retained, where Q is the number of symbols
in the QAM constellation. The WATM channel simulations associated with the CIR of Figure 2.3(a)
are presented in Figure 2.5 for 16-QAM and in Figure 2.8 for 64-QAM. An equaliser length of 68
taps was employed and the Signal-to-Noise ratio (SNR) was 30dB. The corresponding SWATM and
one-symbol-delay CIR based results are presented in Figures 2.6 and 2.7 as well as in 2.9 and 2.10
for 16-QAM as well as 64-QAM, respectively. As we see, the CIR spread was gradually shortened
from 68 to 10 and then to 2. Observe that for the M-algorithm of Figure 1.33 we only presented BER
results in Figures 2.7 and 2.10 over the shortest one-symbol-delay CIR. In order to quantify the BER
associated with the learning curves, we have averaged the values of BER recorded for numerous 1000-
symbol intervals, which was necessary due to the data-dependent performance of the blind equalisers
of this type, which typically resulted in a different performance for different 1000-symbol runs. This

was a consequence of the fact that not all of the incoming data symbols drive the equaliser to the

point of convergence.

From these curves we can infer a range of observations concerning the convergence speed of each of

the tested algorithms.

o The M-Algorithm converges at a higher speed, than any of the Bussgang algorithms considered.
A reason for this is the employment of a larger step—size value, which could not have been used

for the Bussgang algorithms, since this would result in poor tracking performance.
e Sato’s algorithm converges at a medium to slow speed.

o Godard’s algorithm converges with about the same speed as Sato’s and its convergence is faster

for higher-order QAM.

e The MCMA algorithm converges at a medium speed, but its convergence is faster for higher—

order QAM, as we can see from Figures 2.8 and 2.9 for 64-QAM.

e The Benveniste-Goursat algorithm converges rapidly only for low—order QAM, and we can see
from Figures 2.5 and 2.6 that for 16-QAM it converges faster, than any of the other Bussgang

algorithms. For higher—order constellations, such as 64-QAM, it converges significantly slower.
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Figure 2.5: BER learning curves over the WATM channel of Figure 2.3(a) for 16-QAM at SNR=30dB
using a 68-tap equaliser obeying the schematic of Figure 1.12
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Figure 2.6: BER learning curves over the Shortened WATM channel of Figure 2.3(b) for 16-QAM at

Bit Index

SNR=20dB using a 30-tap equaliser obeying the schematic of Figure 1.12
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Figure 2.7: BER learning curves over the one-symbol-delay channel of Figure 2.4 for 16-QAM at
SNR=20dB using a 10-tap equaliser obeying the schematic of Figure 1.12

0-25 T T T i
Sato ——
 CMA
02| Modified-CMA
Stop-and-Go =~
2N M-algorithm ---o--
0.15 f,
o i
| j
o i
0.1
0.05 ¢ P i [ffi”_“;l':r:g:::;:tg:..;:*;'t:_,,';gtt,.'.“J‘E:jf_\j?fi;:;_\_ g R
O E L 1 1 1
0 500000 1e+06 1.5e+06 2e+06 2.5e+06
Bit Index

Figure 2.8: BER learning curves over the WATM channel of Figure 2.3(a) for 64-QAM at SNR=30dB

using a 68—tap equaliser obeying the schematic of Figure 1.12
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Figure 2.9: BER learning curves over the Shortened WATM channel of Figure 2.3(b) for 64-QAM at
SNR=20dB using a 30-tap equaliser obeying the schematic of Figure 1.12
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Figure 2.10: BER learning curves over the one-symbol-delay channel of Figure 2.4 for 64-QAM at

SNR=30dB using a 10-tap equaliser obeying the schematic of Figure 1.12

89




2.3 Phasor Diagrams 2.3 Phasor Diagrams

WATM | SSWATM | TC
M-Algorithm 550 550 3700
Sato 30000 25000 80000
CMA 35000 40000 55000
MCMA 35000 20000 60000
Benveniste—-Goursat | 20000 15000 -
Stop—~and—Go 75000 25000 -

Table 2.1: The number of symbols required for each algorithm to converge in the context of 16-QAM
transmissions over the WATM and Shortened WATM channels of Figures 2.3(a) and (b) as well as
over the simple one-symbol-delay channel of Figure 2.4, which is labelled as TC (Test Channel). The
convergence is detected by estimating the slope of the BER. When this slope becomes zero or positive,
then convergence is assumed to have been reached. The SNR is 30dB.

WATM | S-WATM TC
M-Algorithm 4150 3000 6000
Sato 50000 50000 120000
CMA 55000 35000 110000
MCMA 45000 45000 115000
Benveniste-Goursat | 75000 55000 150000
Stop—and-Go 320000 200000 600000

Table 2.2: The number of symbols required for each algorithm to converge in the context of 64—QAM
for transmissions over the WATM and Shortened WATM channels of Figures 2.3(a) and (b) as well
as over the simple one-symbol-delay channel of Figure 2.4, which is labelled as Test Channel (TC).
The convergence is detected by estimating the slope of the BER. When this slope becomes zero or
positive, then convergence is assumed to have been reached. The SNR is 30dB.

e The Stop—and—Go algorithm is definitely the slowest algorithm in all cases, since it is not always

able to iterate.

In Tables 2.1 and 2.2 an estimate of the number of symbols needed for the convergence of each
algorithm is given. The converged state was defined as the state, where the BER has ’just’ reached
its steady state value and does not change significantly thereafter. The channel SNR is kept at 30dB.

Having presented a comparative simulation study of the convergence speed of the blind equalisers of
Sections 1.3.5 and 1.3.9, we will now give an illustration of the blind equalisers’ convergence by means

of the associated phasor diagrams [9].

2.3 Phasor Diagrams

In this section some phasor diagrams are presented for the various algorithms considered. We are
observing the phasor diagram at the equaliser’s output at different stages of convergence, each giving

an idea of how the equaliser is converging. In Figures 2.11 and 2.12, the phasor constellation is
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Figure 2.11: The 16-QAM phasor constellation over the one-symbol-delay channel of Figure 2.4 after
40000 symbols at an SNR=30dB using a CMA 10-tap equaliser obeying the schematic of Figure 1.12

plotted in the complex plane for a CMA-based equaliser having 10 taps, equalising the one-symbol-
delay channel of Figure 2.4, when 16-QAM is used. Two snapshots are shown. In the first the equaliser
is reaching convergence, but still exhibits residual ISI. In the second snapshot, the equaliser has almost
converged. These snapshots demonstrate how the equaliser is adapting and slowly approaching the
state of convergence. When it has converged, the residual impairments are the convolutional noise,
which is rather small, and the additive channel noise, which has also been chosen to be low, so that
the convergence can be better observed. At this state, the equalised signal is confined to small regions
around the legitimate QAM constellation points and the diameter of these regions depends basically
on the SNR and on the residual ISI, which produces convolutional noise. Finally, in Figures 2.13 and
2.14 the phasor diagram is shown for the case of 64-QAM. Having presented our comparative results

for the convergence speed of the blind equalisers, we will now investigate the accuracy of convergence.

2.4 Performance over Gaussian Channels

In this section the steady-state average BER curves are presented as a function of the bit—-SNR over
the WATM and Shortened WATM channels of Figure 2.3, as well as over the one-symbol delay channel
of Figure 2.4 using 16-QAM and 64-QAM. The bit—SNR is defined as the SNR per bit, i.e. the signal
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Figure 2.12: The 16-QAM phasor constellation over the one-symbol-delay channel of Figure 2.4 after
60000 symbols at an SNR=30dB using a CMA 10-tap equaliser obeying the schematic of Figure 1.12
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Figure 2.13: The 64-QAM phasor constellation over the one-symbol-delay channel of Figure 2.4 after
70000 symbols at SNR=35dB using a CMA 10-tap equaliser obeying the schematic of Figure 1.12
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Figure 2.14: The 64-QAM phasor constellation over the one-symbol-delay channel of Figure 2.4 after
180000 symbols at an SNR=35dB using a CMA 10-tap equaliser obeying the schematic of Figure 1.12

power per bit over the noise power per bit. In mathematical terms we have:

SNR

. 2.1
Number of bits per symbol (2.1)

Bit-SNR =

The equaliser characteristics are the same as in Section 2.2. For the M-algorithm, the channel
estimator takes into consideration only the CIR taps that indeed exist using the 5-tap CIR of Figure

2.3(a), thus reducing the number of calculations. The associated curves are presented in Figures 2.15

to 2.20.

Note here that following the classical initialisation strategy — that is initialising the equaliser tap vec-
tor to ¢’ = (1.2,0,---,0)7 as suggested by Godard [4] - is inadequate for the Stop-and-Go equaliser
to converge to the desired equilibrium. Instead, the equaliser converges to an undesirable equilibrium
associated with the combined CIR plus equaliser tap vector of t' = (0.74,0.48,0,---,0)”. For the
equaliser to converge to the correct equilibrium, the initialisation has to be closer to the desired equilib-
rium. For example, initialising the equaliser with the tap vector (1.2, —0.9,0.6,0,---,0)7 is adequate.
This phenomenon is directly related to the nature of this algorithm and the undesirable equilibrium is
clearly an algorithm-dependent equilibrium. This is why this phenomenon is not observed in the other
equalisers. From these curves we can infer some observations concerning the accuracy of convergence

for each of the tested algorithms, which exhibits itself in terms of the residual BER at a given SNR
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Figure 2.15: Gaussian BER versus SNR curves for the WATM channel of Figure 2.3(a) for 16-QAM
using a 68-tap equaliser obeying the schematic of Figure 1.12 and for the M—Algorithm obeying the
trellis of Figure 1.33, using the 5—path CIR of Figure 2.3(a).
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Figure 2.16: Gaussian BER versus SNR curves for the Shortened WATM channel of Figure 2.3(b)

for 16-QAM using a 30-tap equaliser obeying the schematic of Figure 1.12 and for the M-Algorithm
obeying the trellis of Figure 1.33 using the 3—path CIR of Figure 2.3(b).
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Figure 2.17: Gaussian BER versus SNR curves for the one-symbol-delay channel of Figure 2.4 for
16-QAM using a 10-tap equaliser, obeying the schematic of Figure 1.12 and for the M—Algorithm
obeying the trellis of Figure 1.33 using the 2-path CIR of Figure 2.4.
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Figure 2.18: Gaussian BER versus SNR curves for the WATM channel of Figure 2.3(a) for 64-QAM
using a 68—tap equaliser obeying the schematic of Figure 1.12 and for the M—Algorithm obeying the
trellis of Figure 1.33 using the 5-path CIR of Figure 2.3(a).
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Figure 2.19: Gaussian BER versus SNR curves for the Shortened WATM channel of Figure 2.3(b)
for 64-QAM using a 30-tap equaliser obeying the schematic of Figure 1.12 and for the M—Algorithm
obeying the trellis of Figure 1.33 using the 3—path CIR of Figure 2.3(b).
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Figure 2.20: Gaussian BER versus SNR curves for the one-symbol-delay channel of Figure 2.4 for

64-QAM using a 10-tap equaliser, obeying the schematic of Figure 1.12 and and for the M—Algorithm
obeying the trellis of Figure 1.33 using the 2-path CIR of Figure 2.4.
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after reaching the steady—state. We note furthermore that at the SNR concerned, namely at 30dB,

the converged—-state—accuracy of the various techniques becomes explicit also from Figures 2.5 to 2.9.

The M-algorithm provides the best performance.
Sato’s algorithm converges with a medium accuracy.

Godard’s algorithm converges with a medium convergence accuracy, which is improved for low—

order QAM.

The Modified-CMA algorithm offers a good accuracy, which is even better for higher—order
QAM.

The Benveniste—-Goursat algorithm exhibits excellent accuracy, especially in conjunction with

higher-order QAM.
The Stop-and—Go algorithm has a good convergence accuracy, especially in the context of BPSK.

While for 16-QAM the BER curves do not tend to exhibit residual errors, tending toward
BER= 0 for high SNRs, the same does not hold for 64—QAM over the WATM channel. This is,
because these channels contain multipath components spread to several symbols’ delays. This,
in turn, means that the equaliser should also have a high number of taps. However, a blind
equaliser having a high number of taps is usually not feasible due to their limited accuracy. We
can extend the order of these equalisers and improve the associated BER, but only up to the

point, where the equaliser starts to enhance the ISI and the associated convolutional noise.

The WATM channel is a channel containing multipath components scattered over a delay of
67 symbols. The equalisation of this channel would involve a very long equaliser of about 80
taps. In the blind scenario, this is impractical, since the equaliser’s resolution is not sufficiently
high. Hence beyond a certain length, the taps of these equalisers which are located far from the
center tap do not effectively contribute to the equalisation process. Furthermore, they enhance
the convolutional noise by increasing the ISI. Besides that, the speed of convergence is linearly
dependent on the equaliser order and it becomes low for such high—order equalisers. This can
be viewed in the Figure 2.21, where the MSE is plotted against the equaliser order for a specific
example. In this case, the algorithms used were the CMA and the LMS or Wiener filter, which is

a trained benchmarker used for comparison. The modulation was 16-QAM and the environment

was noiseless.
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Figure 2.21: MSE as a function of the equaliser order for 16-QAM using the CMA-based equaliser
and a noiseless scenario. The channel model used is the one-symbol delay channel as given in Figure
2.4. The LMS-based MSE is given as a lower limit, as this is a non-blind equaliser which gives a
benchmark performance. Clearly, for small number of taps the blind equaliser curve coincides with
the LMS benchmark curve, while for larger number of taps the CMA produces large MSE, attaining
a minimum at about 14 taps, which is the ideal setting for this scenario.

2.5 Simulations with Decision—Directed Switching

In this section, we briefly explore the possibility of switching to decision—directed equalisation after
the convergence of the blind equaliser. It is expected that for low SNR values this would drive the
equaliser away from convergence — since the blind decision-directed equaliser is generally unstable
— and therefore, at low SNRs switching to DD mode would be disastrous. Nevertheless, when the
SNR is sufficiently high, switching to DD mode is expected to assist the equaliser in converging with
a better accuracy. This is indeed what we observed in our investigations. Explicitly, this technique
improved the performance of blind equalisation and the improvement was higher, when the order of
the QAM constellation was higher. This can be explained by the fact that when the SNR is high,
the DD technique is powerful. This property can be exploited more readily in the context of higher—
order QAM constellations, than in lower—order schemes, since the SNR is typically higher for the
higher-order QAM schemes, where the distances between constellation points are smaller. In Figures
2.22 and 2.23 the associated improvement is shown for the case of the CMA and for 16-QAM as well
as for 64-QAM, respectively. It can be observed that the improvement is modest for 16-QAM, but
it is around 1dB for 64-QAM at a BER of 1073. Having studied the range of blind equalisation

solutions in the previous subsections, a prominent application of the algorithms in the context of the
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Figure 2.22: Gaussian BER versus SNR curves for the one-symbol-delay channel of Figure 2.4 for

16-QAM using a 10-tap equaliser obeying the schematic of Figure 1.12 for the CMA using switching
to decision—directed equalisation after convergence
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Figure 2.23: Gaussian BER versus SNR curves for the one-symbol-delay channel of Figure 2.4 for

64-QAM using a 10-tap equaliser obeying the schematic of Figure 1.12 for the CMA using switching
to decision—directed equalisation after convergence
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Pan-European Satellite-based Digital Video Broadcast (DVB-S) [18] system [10] will be presented in

the next section.

2.6 Application to Digital Video Broadcasting'

2.6.1 Introduction

In recent years three harmonised Digital Video Broadcasting (DVB) standards have emerged in Eu-
rope for terrestrial [19], cable-based [20] and satellite-oriented [18] delivery of DVB signals. The
dispersive wireless propagation environment of the terrestrial system requires concatenated Reed—
Solomon [130, 160] (RS) and rate compatible punctured convolutional coding [130, 160] (RCPCC)
combined with Orthogonal Frequency Division Multiplexing (OFDM) based modulation [161]. The
satellite~based system employs the same concatenated channel coding arrangement, as the terres-
trial scheme, while the cable~based system refrains from using concatenated channel coding, opt-
ing for RS coding only. Both of the latter schemes employ, furthermore, blind-equalised multi-level
modems [161]. Lastly, the video codec used in all three systems is the Motion Pictures Expert Group’s
MPEG-2 codec. These standardisation activities were followed by a variety of system performance
studies in the open literature [162-165]. Against this background, in this section we employ turbo-
coding based improvements to the satellite-based DVB system [18] and present performance studies of
the proposed system under dispersive channel conditions in conjunction with a variety of blind chan-
nel equalisation algorithms. The transmitted power requirements of the standard system employing
convolutional codecs can be reduced upon invoking more complex, but more powerful turbo codecs.
Alternatively, the standard quaternary or 2-bit/symbol system’s bit error rate (BER) versus signal-
to-noise ratio (SNR) performance can almost be matched by a turbo-coded 4-bit/symbol 16-level
quadrature amplitude modulation (16—QAM) based scheme, while doubling the achievable bit rate
within the same bandwidth and hence improving the associated video quality. This is achieved at the
cost of an increased system complexity. This system offers a testbed for a real-life application of blind

equalisation techniques under mild channel dispersions.

The remainder of the section is organised as follows. A succinct overview of the turbo-coded and
standard DVB satellite scheme is presented in Section 2.6.2, while our channel model is described in
Section 2.6.3. A brief summary of the blind equaliser algorithms employed is presented in Section 2.6.4.
Finally, the performance of the improved DVB satellite system is examined for transmission over a

dispersive two—path channel in Section 2.6.5.

!This section is based on joint work with my colleague Chee~Siong Lee [10], whose contributions in the field of both
video compression and channel coding are gratefully acknowledged
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Figure 2.24: Schematic of the DVB satellite system.

2.6.2 DVDB Satellite Scheme

The block diagram of the DVB satellite (DVB-S) system [18] is shown in Figure 2.24, which is
composed of a MPEG-2 video encoder (not shown in the diagram), channel coding modules and
a quadrature phase shift keying (QPSK) modem [161]. The bitstream generated by the MPEG-2
encoder is packetised into frames of 188-byte long, which are then randomised by the scrambler, the

details of which can be obtained from the DVB-S standard [18].

Due to the poor error resilience of the MPEG-2 video codec, powerful concatenated channel coding
is employed. The concatenated channel codec comprises a shortened Reed—Solomon (RS) outer code
and an inner convolutional encoder. The 188-byte MPEG-2 video packet is extended by the Reed-
Solomon encoder [130, 160] with parity information to facilitate error recovery to form a 204-byte
packet. The Reed-Solomon decoder can then correct up to eight erroneous bytes for each 204-byte
packet. Following this, the RS—coded packet is interleaved by a convolutional interleaver and further

protected by a half-rate inner convolutional encoder with a constraint length of 7 [130,160].

Furthermore, the overall code rate of the concatenated coding scheme can be adapted by variable
puncturing, not shown in the figure, which supports code rates of 1/2 (no puncturing) as well as 2/3,

3/4, 5/6 and 7/8. The parameters of the convolutional encoder are summarised in Table 2.3.

Convolutional Coder Parameters
Code Rate 1/2
Coustraint Length

n

k

Generator Polynomials (octal format)

_OND N T

171, 133

Table 2.3: Parameters of the CC(n,k,K) convolutional inner encoder of the DVB-S modem.
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Figure 2.25: Block diagram of turbo encoder.

In addition to implementing the standard DVB-S system as a benchmark, we have improved the
system’s performance with the aid of a turbo codec [135,166]. The block diagram of the turbo
encoder is shown in Figure 2.25. The turbo encoder is constructed of two component encoders. Each
component encoder is a half-rate convolutional encoder, whose parameters are listed in Table 2.4.
The two component encoders are used to encode the same input bits, although the input bits of the
second component encoder are interleaved before encoding. The output bits of the two component
codes are punctured and multiplexed, in order to form a single output bitstream. The component
encoder used here is known as a half-rate recursive systematic convolutional encoder (RSC) [167]. It
generates one parity bit and one systematic output bit for every input bit. In order to provide an
overall coding rate of one half, half the output bits from the two encoders must be punctured. The
puncturing arrangement used in our work is to transmit all the systematic bits from the first encoder

and every other parity bit from both encoders.

Readers interested in further details of the DVB-S system are referred to the DVB-S standard [18].
The performance of the standard DVB-S system and that of the turbo coded system is characterised

in Section 2.6.5. Let us now briefly consider the multipath channel model used in our investigations.

2.6.3 Channel Model

The DVB-S system was designed to operate in the 12 GHz frequency band (K—band). Within this
frequency band, tropospheric effects such as the transformation of electromagnetic energy into thermal
energy due to induction of currents in rain and ice crystals lead to signal attenuations [169,170]. In the
past 20 years, various researchers have concentrated their efforts on attempting to model the satellite

channel, typically within a land mobile satellite channel scenario. However, the majority of the work
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Turbo Coder Parameters

Turbo Code Rate 1/2

Input block length 17952 bits

Interleaver Type Random

Number of turbo decoder iterations 8

Turbo Encoder Component Code Parameters

Component Code Encoder Type Convolutional
Encoder (RSC)

Component Code Decoder Type Log-MAP [168]

Coustraint Length 3

n 2

k 1

Generator Polynomials (octal format) 7,5

Table 2.4: Parameters of the inner turbo encoder used to replace the DVB-S system’s convolutional
coder (RSC: recursive systematic code).

conducted for example by Vogel and his colleagues [171-174] concentrated on modelling the statistical

properties of a narrowband satellite channel in lower frequency bands, such as the 870MHz UHF band

and the 1.5GHz L-band.

However, our high bitrate DVB satellite system requires a high bandwidth, hence the video bitstream
is exposed to dispersive wideband propagation conditions. Recently, Saunders et. al. [175,176] have
proposed the employment of multipath channel models to study the satellite channel, although their

study was concentrated on the L-band and S-band only.

Due to the dearth of reported work on wideband satellite channel modelling in the K-band, we have
adopted a simpler approach. The channel model employed in this study was the two—path (nT)-
symbol spaced impulse response, where 7' is the symbol-duration. In our studies we used n = 1 and
n = 2. This corresponds to a stationary dispersive transmission channel. Our channel model assumed
that the receiver had a direct line-of-sight with the satellite as well as a second path caused by a
single reflector probably from a nearby building or due to ground reflection. The ground reflection

may be strong, if the satellite receiver dish is only tilted at a low angle.

Based on these channel models, we studied the ability of a range of blind equaliser algorithms to
converge under various path delay conditions. In the next section we provide a brief overview of
the various blind equalisers employed in our experiments, noting that the readers who are mainly
interested in the system’s performance may proceed directly to our performance analysis section,

namely to Section 2.6.5.
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Figure 2.26: Two-path satellite channel model with either a one-symbol or two—symbol delay.

2.6.4 The Blind Equalisers

In this section the blind equalisers used in the system are presented. The following blind equalisers

have been studied:

e The Modified Constant Modulus Algorithm (MCMA) of Section 1.3.5.3 [102]
e The Benveniste-Goursat Algorithm (B-G) of Section 1.3.5.4 [32]
e The Stop-and-Go Algorithm (S-a~G)of Section 1.3.5.5 [21]

e The Per—-Survivor Processing (PSP) Algorithm of Section 1.3.9 [23], using the M-algorithm with

M equal to the number of symbols in the constellation.

A summary of the various equalisers’ parameters is given in Table 2.5.

Having described the components of our enhanced DVB-S system, let us now consider the overall

system’s performance.

2.6.5 Performance of the DVB-S Scheme

In this section, the performance of the DVB-S system was evaluated by means of simulations. Two

modulation types were used, namely the standard QPSK and the enhanced 16-QAM schemes [161].
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Step—size | No. of Initial
A Equal. Tap-
Taps Vector
Benveniste-Goursat | 5x10~* 10 (1.2,0,---,0)
Modified-CMA 5x10~% 10 (1.2,0,---,0)
Stop-and-Go 5x10~% 10 (1.2,0,---,0)
PSP (1 sym delay) 1072 2 (1.2,0)
PSP (2 sym delay) 1072 3 (1.2,0,0)
Table 2.5: Summary of the equaliser parameters used in the simulations. The tap-vector (1.2,0,---,0)

indicates that the first equaliser coefficient is initialised to the value 1.2, while the others to 0

The channel model of Figure 2.26 was employed. The first channel model had a one-symbol second—
path delay, while in the second one the path—delay corresponded to the period of two symbols. The
average BER versus SNR per bit performance was evaluated after the equalisation and demodulation
process, as well as after Viterbi [130] or turbo decoding [166]. The SNR per bit or E,/N, is defined

as follows:

SNR per bit = 10loglo% +6 (2.2)

where S is the average received signal power, N is the average received noise power and §, which is

dependent on the type of modulation scheme used and channel code rate (R), is defined as follows:

1

. 2.3
R x Bits per modulation symbol (2:3)

5= 1010910

Our results are further divided into two subsections for ease of discussion. First, we will present the
system performance over the one-symbol delay two—path channel in Section 2.6.5.1. Next, the system
performance over the two-symbol delay two-path channel is presented in Section 2.6.5.2. Lastly, a

summary of the system performance is provided in Section 2.6.5.3.

2.6.5.1 Transmission Over the Symbol-spaced Two—path Channel

The linear equalisers’ performance was quantified and compared using QPSK modulation over the
one-symbol delay two—path channel model of Figure 2.27. Since all the equalisers’ BER performance

was similar, only the Modified CMA results are shown in the figure.

The equalised performance over the one symbol-spaced channel was inferior to that over the non-
dispersive AWGN channel. However, as expected, it was better than without any equalisation. An-
other observation for Figure 2.27 was that the different punctured channel coding rates appeared to
give slightly different bit error rates after equalisation. This was because the linear blind equalisers re-

quired uncorrelated input bits in order to converge. However, the input bits were not entirely random,
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(b) Same as (a) but enlarged in order to show performance difference of the blind
equaliser, when different convolutional code rates are used.

Figure 2.27: Average BER versus SNR per bit performance after equalisation and demodulation
employing QPSK modulation and one-symbol delay channel (NE: Non-Equalised; MCMA:
Modified Constant Modulus Algorithm). 106
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Figure 2.28: Average BER versus SNR per bit performance after equalisation and demodulation
employing QPSK modulation and the one-symbol delay two—path channel of Figure 2.26, for
the Benveniste-Goursat algorithm, where the input bits are random (No CONV) or correlated (CONV
7/8) as a result of convolutional coding having a coding rate of 7/8.

when convolutional coding was used. The consequences of violating the zero—correlation constraint
are not generally known. Nevertheless, two potential problems were apparent. Firstly, the equaliser
may diverge from the desired equaliser equilibrium [22]. Secondly, the performance of the equaliser is
expected to degrade, owing to the violation of the randomness requirement, which is imposed on the

input bits in order to ensure that the blind equalisers will converge.

Since the channel used in our investigations was static, the first problem was not encountered. Instead,
the second problem was what we actually observed. Figure 2.28 quantifies the equalisers’ performance
degradation due to convolutional coding. We can observe a 0.1dB SNR degradation, when the convo-

lutional codec creates correlation among the bits for this specific case.

The average BER curves after Viterbi or turbo decoding are shown in Figure 2.29(a). In this figure,
the average BER over the non—dispersive AWGN channel after turbo decoding constitutes the best
case performance, while the average BER of the one-symbol delay two—path MCMA-equalised rate
7/8 convolutionally coded scenario exhibits the worst case performance. Again, in this figure only
the Modified-CMA was featured for simplicity. The performance of the remaining equalisers was
characterised in Figure 2.29(b). Clearly, the performance of all the linear equalisers investigated was

similar.

It is observed in Figure 2.29(a) that the combination of the Modified CMA blind equaliser with turbo

decoding exhibited the best SNR performance over the one-symbol delay two—path channel. The only
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Figure 2.29: Average BER versus SNR per bit performance after convolutional or turbo decoding
for QPSK modulation and one—symbol delay channel (NE: Non-Equalised; B—G: Benveniste—
Goursat; S—a—G: Stop-and-Go; MCMA: Modified Constant Modulus Algorithm; PSP: Per-

Survivor-Processing).
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comparable alternative was the PSP algorithm. Although the performance of the PSP algorithm was
better at low SNRs, the associated curves cross over and the PSP algorithm’s performance became
inferior below the average BER of 1073. This happens due to the iterative nature of turbo decoding,
which is in contrast to the combined equalisation and non-iterative channel decoding of PSP. It is
well recognised that iterative channel decoders typically exhibit a better performance for high SNRs,
than their non-iterative counterparts. In this case, despite the fact that the Modified CMA exhibites
considerably worse performance than PSP, if it is used in conjunction with non-iterative channel
decoding, when turbo coding is employed, its performance is dramatically improved, especially for
high SNRs. Although not shown in Figure 2.29, the Reed-Solomon decoder, which was concatenated
to either the convolutional or the turbo decoder, became effective, when the average BER of its input
was below approximately 1074, In this case, the PSP algorithm performed by at least 1dB worse in

the area of interest, which is at an average BER of 1074,

A final observation in the context of Figure 2.29(a) is that when convolutional decoding was used, the
associated Fp/N, performance of the rate 1/2 convolutional coded scheme appeared slightly inferior
to that of the rate 3/4 and the rate 7/8 scenarios beyond certain Ej/N, values. This was deemed to
be a consequence of the fact that the 1/2-rate encoder introduced more correlation into the bitstream
than its higher rate counterparts and this degraded the performance of the blind channel equalisers,

which performed best, when fed with random bits.

Having considered the QPSK case, we shall now concentrate on the enhanced system, which employed
16-QAM under the same channel and equaliser conditions. In Figure 2.30 and Figure 2.31, the
performance of the DVB system employing 16-QAM is presented. Again, for simplicity, only the
Modified CMA results are given. In this case the ranking order of the different coding rates followed
our expectations more closely in the sense that the lowest coding rate of 1/2 was the best performer,

followed by rate 3/4 codec, in turn followed by the least powerful rate 7/8 codec.

The Stop-and—Go algorithm has been excluded from these results, since it does not converge for high
SNR values. This happens, because the equalisation procedure is only activated, when there is a high
probability of correct decision—directed equaliser update. In our case, the equaliser is initialised far
from its convergence point and hence the decision—directed updates are unlikely to be correct. In the
absence of noise this leads to the update algorithm being permanently de—-activated. If noise is present
though, then some random perturbations from the point of the equaliser’s initialisation can activate
the Stop—and-Go algorithm and can lead to convergence. We made this observation at medium SNR

values in our simulation study. For high SNR values though, the algorithm did not converge.

It is also interesting to compare the performance of the system for the QPSK and 16-QAM schemes.

When the one-symbol delay two—path channel model of Figure 2.26 was considered, the system was
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(b) Same as (a) but enlarged in order to show performance difference of the blind
equaliser, when different convolutional code rates are used.

Figure 2.30: Average BER versus SNR per bit after equalisation and demodulation for 16—~QAM over

the one—symbol delay two—path channel of Figure 2.26 (MCMA: Modified Constant Modulus
Algorithm).
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Figure 2.31: Average BER versus SNR per bit after Viterbi or turbo decoding for 16—QAM over
the one—symbol delay two—path channel of Figure 2.26 (B—G: Benveniste-Goursat; S—a—G:
Stop—and-Go; MCMA: Modified Constant Modulus Algorithm; PSP: Per—Survivor-Processing).

capable of supporting the use of 16-QAM with the provision of an additional SNR per bit of ap-
proximately 4 — 5dB. This observation was made by comparing the performance of the DVB system
when employing the Modified CMA and the half-rate convolutional or turbo code in Figure 2.29 and
Figure 2.31 at a BER of 107*. Although the original DVB-Satellite system only employs QPSK
modulation, our simulations had shown that 16-QAM can be employed equally well for the range
of blind equalisers that we have used in our work. This allowed us to double the video bitrate and
hence to substantially improve the video quality. The comparison of Figures 2.29 and 2.31 also reveals
that the extra SNR requirement of approximately 4 — 5dB of 16—-QAM over QPSK can be eliminated
by employing turbo coding at the cost of a higher implementational complexity. This allowed us to

accommodate a doubled bitrate within a given bandwidth, which improved the video quality.

2.6.5.2 Transmission Over the Two—symbol Delay Two—path Channel

In Figures 2.32 (only for the Benveniste-Goursat algorithm for simplicity) and 2.33 the corresponding
BER results for the two-symbol delay two-path channel of Figure 2.26 are given for QPSK. The

associated trends are similar to those in Figures 2.27 and 2.29, although some differences can be

observed, as listed below:
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e The “cross—over point”, beyond which the performance of the PSP algorithm was inferior to
that of the Modified CMA in conjunction with turbo decoding is now at 10~*, which is in the

range, where the RS decoder guarantees an extremely low probability of error.

e The rate 1/2 convolutional decoding was now the best performer, when convolutional decoding

is concerned, while the rate 3/4 scheme exhibited the worst performance.

Finally, in Figure 2.34, the associated 16—-QAM results are presented. Notice that the Stop—and-Go
algorithm was again excluded from the results. Furthermore, we observe a high performance difference
between the Benveniste—Goursat algorithm and the Modified CMA. In the previous cases we did not
observe such a significant difference. The difference in this case is that the channel exhibits an
increased delay spread. This illustrated the capability of the equalisers to cope with more widespread
multipaths, while keeping the equaliser order constant at 10. The Benveniste-Goursat equaliser was

more efficient, than the Modified CMA in this case.

It is interesting to note that in this case, the performance of the different coding rates was again in the

expected order, the rate 1/2 being the best, followed by the rate 3/4 and then the rate 7/8 scheme.

If we compare the performance of the system employing QPSK and 16-QAM over the two-symbol
delay two-path channel of Figure 2.26, we again observe that 16—QAM can be incorporated into
the DVB system, if an extra 5dB of SNR. per bit is affordable in power budget terms.
However, only the B—G algorithm is worthwhile considering here out of the three linear
equalisers of Table 2.5. This observation was made by comparing the performance of the DVB

system when employing the Benveniste-Goursat equaliser and the half-rate convolutional coder in

Figure 2.33 and Figure 2.34.

2.6.5.3 Performance Summary of the DVB-S System

Table 2.6 provides an approximation of the convergence speed of each blind equalisation algorithm of
Table 2.5. It is clear that PSP exhibited the fastest convergence, followed by the Benveniste-Goursat
algorithm. In our simulations the convergence was quantified by observing the slope of the BER curve,
and finding when this curve was reaching the associated residual BER, implying that the BER has
reached its steady-state value. Figure 2.35 gives an illustrative example of the equaliser’s convergence
for 16-QAM. The Stop-and-Go algorithm converges significantly slower than the other algorithms,
which can also be seen from Table 2.6. This happens because, during the startup, the algorithm is

de—activated most of the time, an effect which becomes more severe with an increasing QAM order.
We now define the average peak signal-to—mnoise ratio (PSNR) for the one-symbol delay and two—
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(b) Same as (a) but enlarged in order to show performance difference of the blind
equaliser, when different convolutional code rates are used.

Figure 2.32: Average BER versus SNR per bit performance after equalisation and demodulation

for QPSK modulation over the two—symbol delay two—path channel of Figure 2.26 (B-G:
Benveniste-Goursat).
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Figure 2.33: Average BER versus SNR per bit performance after convolutional or turbo decoding
for QPSK modulation over the two—symbol delay two—path channel of Figure 2.26 (B-G:
Benveniste-Goursat; S—a—G: Stop-and-Go; MCMA: Modified Constant Modulus Algorithm; PSP:

Per-Survivor-Processing).
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Figure 2.34: Average BER versus SNR per bit performance (a) after equalisation and demodulation
and (b) after Viterbi or turbo decoding for 16—QAM over the two—symbol delay two—path chan-
nel of Figure 2.26 (B—G: Benveniste-Goursat; S—a—G: Stop—and-Go; MCMA: Modified Constant
Modulus Algorithm; PSP: Per—Survivor-Processing).
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B-G | MCMA | S-a-G | PSP
QPSK 1 sym 73 161 143 0.139
QPSK 2 sym 73 143 77 0.139
16-QAM 1 sym | 411 | 645 1393
16-QAM 2 sym | 359 | 411 1320

Table 2.6: Equaliser convergence speed (in miliseconds) measured in the simulations, given as an
estimate of time required for convergence when 1/2 rate puncturing is used (x sym: x-symbol delay
two—path channel and x can take either the value 1 or 2).

Bit Index (x1000)
0 250 500 750 1000 1250 1500

0 250 500 750 1000 1250
Time (msec)

Figure 2.35: Learning curves for 16-QAM, one-symbol delay two—path channel at SNR=18d5.
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symbol delay two-path channel model of Figure 2.26 as:

7]’Lv:0 Zi\n/[:() 2552

Zglv:O Zn]\{:o A? , (24)

PSNR = 10[0910

where A is the difference between the uncoded pixel value and the reconstructed pixel value. The
variables M and N refer to the dimension of the image. The maximum possible 8-bit represented pixel
luminance value of 255 was used in Equation 2.4 in order to mitigate the PSNR’s dependence on the
video material used. The average PSNR is then the mean of the PSNR values computed for all the

images constituting the video sequence.

Tables 2.7 and 2.8 provide a summary of the DVB-Satellite system’s performance tolerating a PSNR
degradation of 2dB, which was deemed to be nearly imperceptible in terms of subjective video degra-
dations. The average BER values quoted in the tables refer to the average BER achieved after Viterbi
or turbo decoding. The channel SNR is quoted in association with the 2dB average video PSNR
degradation, since the viewer will begin to perceive video degradations due to erroneous decoding of

the received video around this threshold.

Mod. Equaliser Code CSNR | Ep/Ny
(dB)
QPSK | PSP(Rate 1/2) 53| 53
QPSK | MCMA Turbo (1/2) 5.2 5.2
16QAM | MCMA Turbo (1/2) | 136 | 10.6
QPSK | MCMA Conv (1/2) 9.1 9.1
16QAM | MCMA Conv (1/2) 172 | 142
QPSK | MCMA Conv (3/4) 11.5 9.7
16QAM | MCMA Conv (3/4) | 202 | 154
QPSK | B-G Conv (7/8) | 13.2| 108
16QAM | B-G Conv (7/8) | 21.6 | 162

Table 2.7: Summary of performance results over the dispersive one-symbol delay two—-path AWGN
channel of Figure 2.26 tolerating a PSNR degradation of 2dB.

Tables 2.9 and 2.10 provide a summary of the SNR per bit required for the various system config-
urations. The BER threshold of 10™* was selected here, since at this average BER after Viterbi or
turbo decoding, the RS decoder becomes effective, guaranteeing near error—free performance. This

also translates into near unimpaired reconstructed video quality.

Finally, in Table 2.11 the QAM symbol rate or Baud rate is given for different puncturing rates and for
different modulation schemes, based on the requirement of supporting a video bit rate of 2.5 Mbit/sec.
We observe that the Baud rate is between 0.779 and 2.73 MBd, depending on the coding rate and the

number of bits per modulation symbol.
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Mod. Equaliser Code CSNR | Ey/Ny
(dB)
QPSK | PSP (Rate 1/2) a7 47
QPSK | BG Tutbo (1/2) | 59| 59
16QAM | B-G Turbo (1/2) 13.7 10.7
QPSK | B-G Conv (1/2) 80| 80
16QAM | B-G Conv (1/2) | 17.0| 14.0
QPSK | B-G Conv (3/4) 121 103
16QAM | B-G Conv (3/4) | 21.1| 163
QPSK | BC Conv (7/8) | 134 11.0
16QAM | MCMA Conv (7/8) | 29.2| 238

Table 2.8: Summary of performance results over the dispersive two-symbol delay two-path AWGN
channel of Figure 2.26 tolerating a PSNR degradation of 2dB.

Mod. Equaliser Code Ey/No
QPSK | PSP(Rate 1/2) 6.1
QPSK | MCMA Turbo (1/2) 5.2
16QAM | MCMA Turbo (1/2) | 10.7
QPSK | MCMA Conv (1/2) 11.6
16QAM | MCMA Conv (1/2) 15.3
QPSK | MCMA Conv (3/4) 10.5
16QAM | MCMA Conv (3/4) | 164
QPSK | B-G Conv (7/8) 11.8
16QAM | B-G Conv (7/8) | 17.2

Table 2.9: Summary of system performance results over the dispersive one—symbol delay two—path
AWGN channel of Figure 2.26 tolerating an average BER of 1074, which was evaluated after Viterbi

or turbo decoding but before RS decoding.

Mod. Equaliser Code Ey /Ny
QPSK | PSP(Rate 1/2) 5.6
QPSK | B-G Turbo (1/2) 5.7
16QAM | B-G Turbo (1/2) | 10.7
QPSK | B-G Conv (1/2) 9.2
16QAM | B-G Conv (1/2) 15.0
QPSK | B-G Conv (3/4) 12.0
16QAM | B-G Conv (3/4) 16.8
QPSK | B-G Conv (7/8) 11.7
16QAM | MCMA Conv (7/8) | 26.0

Table 2.10: Summary of system performance results over the dispersive two-symbol delay two—path
AWGN channel of Figure 2.26 tolerating an average BER of 1074, which was evaluated after Viterbi

or turbo decoding but before RS decoding.
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2.7 Summary

Punctured Rate | 4-QAM 16-QAM
Baud Rate | Baud Rate
(MBd) (MBd)
172 2.73 1.37
3/4 1.82 0.909
7/8 1.56 0.779

Table 2.11: The channel bit rate for the three different punctured coding rates and for the two
modulation schemes used.

2.7 Summary

This chapter has characterised the performance of selected blind equalisers. The Busssgang equalisers
exhibit a low complexity, but require a considerable number of symbols to converge. Moreover, their
convergence accuracy is mediocre. By contrast, the M-algorithm appears to be the best choice in
performance terms, giving the best convergence speed and tracking performance at the cost of a higher

complexity, depending on the channel’s delay spread and the number of survivors M.

An application example of using blind equalisation techniques was also presented in the context of a
satellite-based DVB system. It was found that the employment of turbo channel coding resulted in
about 5dB gain in comparison to the standard convolutional coding based scheme. The associated
power budget savings can be invested for example into employing 16-QAM instead of 4-QAM, which
exhibites a factor two higher throughput. This doubled throughput can then be used either for
doubling the number of DVB channels supported in a given bandwidth, or for increasing the video
quality of each fixed-bandwidth channel. Further research has to confirm these findings also in different

wireless propagation scenarios. A range of further wireless video communications issues are addressed

in [10,177].
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Chapter 3

Soft Decision—Feedback Equalisation
Using the Constant Modulus
Algorithm

3.1 Introduction

Having introduced a range of blind equalisers and having studied their performance, in this chapter we
propose a novel blind equalisation technique, based on the well-known CMA, which was characterised
in Section 1.3.5.2. We extend the CMA-based equaliser [4] by making use of soft feedback information
input to a DFE similar to the equalisers dicsussed in Section 1.2.0.5. This equaliser is constituted
by an infinite impulse response filter and as such it is potentially unstable. Similar work has been
reported in [178], where a lattice—form CMA based Decision-Feedback Equaliser (DFE) using the
Shtrom-Fan cost function was explored and in [179], where a predictive DFE-CMA was proposed.
Furthermore, in [180] two different blind DFE systems were explored using combinations of the CMA
and the Shtrom-Fan cost functions for the forward and the feedback parts of the equaliser, respectively.
Finally, in [181], a modified version of the CMA, namely the MCMA was extended to a DFE.

The chapter is organised as follows. The proposed equaliser is described in Section 3.2. In Section
3.3 the associated convergence issues of this equaliser are discussed and in Section 3.4 the equaliser’s

performance is evaluated with the aid of computer simulations.

3.2 System Description

The communications system under consideration is shown in Figure 3.1. In the proposed scheme the
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Figure 3.1: Equalised communications system

information bits are differentially encoded in order to be able to demodulate the information, when the
blind equaliser converges to a sign-reversed solution. The differentially coded bits are then mapped
to the Quadrature Amplitude Modulation (QAM) symbols a(n). These symbols are convolved with
the CIR h; and are contaminated by the channel noise e(n), yielding the received symbols y(n) as:
Ly
y(n) = Z hi-a(n —1) +e(n). (3.1)
i=—11

The restoration of the original information bits is performed by the DFE-CMA equaliser. We will
describe the operation of this equaliser below. The DFE-CMA equaliser performs channel equalisa-

tion and delivers the equalised signal z(n) as the output of a feedforward and a feedback filter. In

mathematical terms the equalised signal is given by:

T

z(n) =c - y(n) +wl -z(n—1) (3.2)

where ¢ = [co,c1,---,cn]” and w = [wo, wy,---,zp]T are the feedforward and feedback equaliser
coefficients respectively, y(n) = [y(n),y(n — 1), ,y(n — N)]T is the received signal vector and z(n —
1) =[2(n—1),2(n—2),---,2(n— N—1)]" is the equalised signal vector. If we consider the z-transform

of this relationship, we arrive at:

C(z) C(z)

= (z) = m-f](z) A(2), (3.3)

Z(2)
where Z(z), Y(z) and A(z) are the z-transforms of the equalised, received and transmitted signals
respectively, while H(z), C(z) and W (z) are the CIR and the equaliser’s feedforward and feedback
vectors in the z-domain, respectively. If the channel was described by a linear model having a finite
number of taps, then all that this system would have to do to equalise Y (z) would be to find W (z),
so that 1 + W (z) = H(z). By contrast, if the channel’s transfer function also contains poles, then the

feedforward section would also have to be active, so that (1 + W(z))/C(z) = H(z). By considering
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the CMA cost function [4], we can similarly formulate the cost function for this algorithm as:
2
J(n) = lem)’ = (]2 - R) ", (3.4)

where Ry is the constant used in the CMA. By utilising the classic gradient descent algorithm, we can
now find the equaliser coefficient update procedure by differentiating the cost function of Equation (3.4)

with respect to (wrt) both the feedforward and feedback coefficients, yielding the update algorithm

of:
M a1y % (3.5)
w® = w1 _ . %’ (3.6)

where A is the step-size parameter, controling the learning rate of the equaliser. Before proceeding

further, we need to find the expressions for the derivatives of Equation (3.4) wrt ¢ and w:

n ZT n— ZH n —
W = g 1) 2D o) () + 2 ) e
and
aJ(n) . 0z" (n — 1) . oz (n—1)
e 2-e(n)- |z (n)Tw+z(n)(z (n—1)+—-———a—;v-————-w)]. (3.8)

As we observe from Equations (3.7) and (3.8), the calculation of the gradients requires an estimate
of the derivative of the equalised vectors with respect to the equaliser feedforward and feedback tap-
vectors. These derivatives are constituted by matrices and their elements will be close to zero, when
the equaliser is close to convergence, however these low—valued elements are needed in order to bring
the equaliser to this point. In order to estimate these derivatives we develop a recursive loop. Firstly,

we define the following variable matrices and vectors:

¢ = crtjer (3.9)
zT n ZT n
Crr(n) Cri(n) | ‘8&:;) 8«"j‘c(z ) (3.11)
- ZT n ZT n .
Cir(n) Ci(n) 632;) 8rslc(f :
dz” -
C(n) = Za((:”) = Crr(n) — Crr(n) + §(Cri(n) + Crr(n))
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C()—aZH(”) ~ Crr(n)+C i(C e

n) = —5. = Cgrr(n) + Ci(n) + j(Cri(n) IR (1))
Wgr(n) Wri(n) _ a_g%v%) 6_129%\7(}@
Wir(n) Wi(n) a?—ff,?—) '6"25@

W )_(9ZT(n) i W (W W

n e = RR(N) 11(n) + j(Wri(n) + Wir(n)).

JH

W) = 2 = Wra(n) + Wanln) + 5(Wia(n) ~ Win(n),

With these definitions, Equations (3.7) and (3.8) become:

W) 4 etm)- 05+ 2(n) -y*(n) + z8(n) - ((Crm - Wi~ Crm - wi) +
zr(n) - (CrRr - w1+ Cir - WR) + j(2r(n) - ((Cr1- WR — C11 - W1) +
zr(n) - (Cr1- w1+ Ci1- wr))))]
= 4.e(n)-[052z(n) y*(n)+ ( ‘TVR .—WI ) ( Crr —Cri ) . ( 2r(n)
JWI JWR Cir Ci zr(n)
3;(:) = 4-e(n) - [0.5 2(n) 2" (n—1) + zr(n) - (Wrr - WR — WIr - WI) +

zi(n) - (WRrr - w1+ Wir - wr) + j(zr(n) - (Wgr1- wr — W11 - w1) +

zi(n) - (Wrr - w1+ Wi+ wr))))]

= 4d-e(n) (0.5 2(n) z*(n—1) + ( R ) ( Wrr —Wri ) . (
JWI JWR Wir Wi

(3.12)

(3.13)

(3.14)

|

(3.15)

zr(n) .
zr(n)

(3.16)

From these definitions and from Equation (3.2) we can derive the recursion for the gradients as:

Crr(n)-f = 0.5-yr(n)+(Crr(n—1) - wr ~ Cir(n 1) - wy)
Cri(n) - f = -05-yi(n)+ (Cri(n—1) wr — Cu(n —1) - wi)
Cir(n)-f = 05 -y1(n) +(Cr(n—1)-wr + Crr(n —1) - wi)
Cu(n)-f = 05-yr(n)+ (Cu(n—1) wr + Cri(n — 1) - wi)

Wgrr(n)-f = 05-zr(n—1)+ (Wrr(n—1) - wgp - Wir(n—-1) - w

Wri(n) £ = —05-z1(n—1)+ (Wailn —1) - wg = Wig{n—1) - w

Wir(n)-f = 05-z1(n—1) + (Wim(n — 1) - wr + Wrr(n — 1) - w)
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Step 1: | Calculate the equalised signal according to (3.2)

Step 2: | Calculate the update of the derivatives according to (3.19) and (3.20)

Step 3: | Shift matrices C and W one column deleting the least recent column and
replace with the column from the recursion of the previous step

Step 4: | Update the equaliser coefficients according to (3.5), (3.6) and (3.15), (3.16)

Table 3.1: The steps of the algorithm.
Wi(n)-f = 05-zr(n—1)+ (Wn(n—-1) -wr + Wgi(n —1) - wy), (3.18)

where £ = [1,0,0,---,0]7 is a column vector used to extract the first column of the matrix, which it
multiplies. The matrices C(n) and W(n) actually contain the N most recent columns of the derivative
of the received and equalised signals respectively, with respect to the relevant equaliser tap-vector.
Therefore, at every update, these columns are shifted so that the most obsolete one is replaced by
the recently updated column from Equations (3.17) and (3.18). We can further streamline Equations

(3.17) and (3.18) as:

C C — w —W C C
rRrR Cri ()£ = 05- ( YR VI (n) + R 1) RR Cri (n—1) (3.19)
Cir Cir \ Y1 ¥R Wi WR Cir Ci
\%% \%% z -1z w —-wW %% \%%
RR RI (n) £ =05 R I (n—1)+ R 1 RR RI (n—1).
Wi Wiy Z1  ZR W[ WR Wir Wi
(3.20)

The equaliser tap-update algorithm is therefore given by:

cm = ey e(n)- (z*(n) - C(n—1)-w+z(n) (y*(n) + Cln—1) - w*)) (3.21)

w® = wiD _Xen)- (2(n) W(n—1) - w+2zn)(z"(n—1) + Wn—1)-w")), (3.22)

The proposed equaliser coefficients-update algorithm is given in the form of a set of steps, which are

summarised in Table 3.1.

3.3 Convergence Issues

In this section we discuss the convergence properties of the DFE-CMA algorithm. The stationary
points of the algorithm are identified and the similarities with the CMA are highlighted. We commence
the analysis by considering the total transfer function of the channel plus equaliser system denoted
by t = [to,t1, - ,tx]|’. Naturally, K may tend to infinity, but we will consider it to be finite for

the moment. With this notation, the stationary points of the algorithm can be found by setting the
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derivatives of the cost function with respect to the equaliser coeflicients, which are given by Equations

(3.7) and (3.8), to zero:

7 2! (n — zH (1, —
a}{;i) = 2-¢(n)- [ (n)- % W+ z(n) - (v*(n) + ?_—(BC——Q-W*)] =0 (3.23)
n z! (n — 7z (n —

T
We will assume that we can ignore the contributions of the terms BZTa(fv_l) , BzHg‘Z’l) and % gcl_l),

Hin_ 1) . . . . . :
8%5—2——12 since they are relatively small compared to the received and the equalised signals, respectively.

This is a valid assumption when the equaliser is close to convergence, i.e. in the vicinity of a desirable
equilibrium, since in this case the equalised symbols are rather insensitive to the equaliser’s coefficients.
In the implementation of this algorithm these terms are not taken into account at all, which implies
that the assumption of ignoring them is justified. However, we have no evidence as to whether

these terms may actually create undesirable local minima for the equaliser. Under this assumption,

Equations (3.23) and (3.24) become:

e(n)-z(n)-y*(n) = 0 (3.25)
e(n)-z(n)-z'(n—1) = 0. (3.26)
The first of these equations is the same as the relevant equations for the CMA, namely Equation

(1.117), which was originally studied in [22,27] and [102] in the context of a modified CMA version.

The stationary points defined by Equation (3.25) are as follows:

e Local minima are:

— the points of the form: t = [0,---,0,e7%,0,---,0]7 and

— the channel-dependent local minima exhibited by equalisers having a finite length.

e Saddle points are:

— the point t = 0 and

— the points of the form t = [0,---,0,el¢1 ...l ¢m (... 0]T.

Note furthermore that for a point to be a local minimum of the DFE-CMA algorithm in terms of
the cost function of Equation (3.4) it has to be a local minimum of both Equations (3.25) and (3.26).
We will now consider Equation (3.26) to investigate the associated stationary points. After some

averaging calculations over all possible transmitted symbols a(n), assuming that they are independent

126



Chapter 3 Soft Decision-Feedback Equalisation Using the CMA 3.3 Convergence Issues

identically distributed (i.i.d), this Equation (3.26) reduces to the following system:

it 6 oty | [ S(0) 0
0 15t it || f() 0
0 0 & - ti, Fts) | =10 [, (3.27)
00 0 0 ¢ Flte) 0

where f(t;) is defined as f(t;) = (pa(Jt:]> — 1) + 2u3 >1i [tf®) - ti, where again we have defined
pi = Ella(n)|!], with a(n) representing the complex input QAM symbols. By examining Equation
(3.27) we readily see that it accepts the trivial solution t = 0, as well as solutions, which obey #; =0
fori < 0 and t; # 0, f(¢;) = 0 for ¢ > 6. This solution gives the following system of equations for
1> 6

pa(lts? = 1) +2u5 Y |6* =0, i =6,---,G. (3.28)
124

Equation (3.28) can be rewritten as:

pa 203 o 243 |ts]° 4
25 pa oo 2u3 top|® Ha
A el IR I (3.29)
23 213 - s ltal? pha

The solution of Equation (3.29) is given by:

‘2:])2: Ha ] — .
1| S (e e (3.30)

which corresponds exactly to the CMA’s stationary points, as it was shown in [27]. We have found

that the stationary points can assume one of the following forms:

o [0,---,0,e7% ... el®c~s 0 ...]7 where G —J+1 defines the number of non-zero vector entries,

which are similar to the CMA’s stationary points, having the sole difference that in this case the CIR
does not play a multiplicative role. Therefore the requirement of an infinite number of equaliser taps is
not necessary in this case. At this stage we have to ascertain which of the stationary points are minima,
saddle points and maxima. Explicitly, we only want the points of the form [0,---,0,¢7%,0,---,0]7 to
be local minima and all the other points to be unstable equilibria. It is easy to see that this is true,

since the cost function of this algorithm is the same as the cost function of the CMA. Foschini [27] has
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Figure 3.2: Two and three-path channel models used in the performance comparison.

studied the stationary points of this cost function, which are the same for the proposed DFE~-CMA as
well. Foschini also proved that only the tap vector having a single non-zero element - i.e. the vectors
of the form [0, ---,0,e7%,0,- - ,0]7- constitute a minimum and all the others - i.e. the vectors of the
form [0,---,0]% as well as [0,---,0,e/"% ... e/ ?6-5]T @G # § - are saddle points. This also proves
that the DFE-CMA cost function, which is the same, also assumes only the above non-zero tap vector

as a minimum.

What we can observe from the study of this equaliser’s convergence is that under the assumption that
the terms of Equations (3.19) and (3.20) are not used in the equaliser update process, the equaliser
does not converge to any length—dependent local minima, unlike the CMA. This is due to the fact that
the feedback introduced to its input is constituted by the convolution of the total system’s impulse
response with the input symbols, but it does not incorporate the filtering effect of the channel, as
evidenced by Equation (3.26), where the vectorial term multiplying the error e(n) is now z*(n — 1),
instead of the term y*(n) of Equation (3.25). As we have already observed in Section 1.3.7, it is exactly
this term which gives rise to the length—dependent undesirable equilibria, inherent in the CMA.

Having discussed the convergence of the DFE-CMA, we will now characterise its performance.

3.4 Performance Results

In this section the proposed algorithm is benchmarked against the classic CMA [4], demonstrating
the improved performance of the DFE-CMA, when the channel is difficult to equalise, since the CIR
contains two or three equal paths. In Figure 3.2 the channel models used are shown. In Figure 3.3
the equaliser’s Mean Squared Error (MSE) learning curves are plotted for Quadrature Phase Shift
Keying (QPSK) using the two-path channel model of Figure 3.2 for a Signal-to-Noise-Ratio (SNR) of
30dB. Observe the substantially improved performance of the DFE-CMA, explained by the fact that

a reduced number of taps is needed, thus inflicting less convolutional noise. The step-size parameter
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Figure 3.3: The MSE learning curves for QPSK, using the two-path model of Figure 3.2. The DFE-
CMA has two feedback taps and one feedforward tap.

) is 5x107*. In Figure 3.4 the same performance curves are given for 16-QAM and for the three-path
channel model of Figure 3.2. Again, we observe better performance for the DFE-CMA, combined in
this case with slower convergence. It is expected that the convergence of the DFE-CMA will be faster
than that of the CMA, as a consequence of its reduced number of taps. On the other hand, since a DFE
is typically less stable than its open-loop counterpart in the sense that it can diverge more easily from
the desirable point of equilibrium, it may require more time to move towards the point of equilibrium.
We can also observe in Figure 3.4 that the MSE of the DFE-CMA is not monotonically decreasing after
convergence. This is due to the statistical variation of the algorithm’s operation due to the statistically
different nature of the data processed. The MSE curve will fluctuate around the mean value after
the algorithm has converged. Following the above arguments, what we actually see in Figure 3.4 and
also in Figure 3.3 is that after an initial period of slow or no convergence the DFE “switches” to fast
convergence mode and then converges in a “waterfall” fashion. On the other hand, the conventional
CMA would require more taps to give a similar performance, and hence the convolutional noise would
increase the MSE. In Table 3.2 we give a complexity estimate for the update of the DFE-CMA and
the classic CMA, based on the number of real additions and multiplications required at each symbol
interval. In this table M is the number of feedback taps, while N is the number of feedforward taps.

It is clear from Table 3.2 that in general the DFE-CMA is more complex, because its complexity

depends on M?, even when we use only one feedforward tap. However, in the situations of interest
1Y

129



3.4 Performance Results

3.4 Performance Results

MSE (dB)

100 200 300

400 500

Symbol Index (x1000)

Figure 3.4: The MSE learning curves for 16-QAM, using the three-path CIR model of Figure 3.2.

The DFE-CMA has two feedback taps and one feedforward tap.

Algorithm Additions Multiplications

DFE-CMA 16M(M + N) +31M + 15N — 16 | 8M(M + N) +29M + 13N
DFE-CMA (N =1) | 16M? +47M + 15 8M?2 +37TM + 21

CMA 4N +2 4N + 4

Table 3.2: Complexity estimation of the DFE-CMA and the CMA.
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Figure 3.5: The minimum MSE as a function of the number of equaliser taps for 16-QAM using
the two- and three-path channel models of Figure 3.2 at an SNR of 30dB. The DFE-CMA has two

feedback taps and one feedforward tap.

the number of feedback taps required is determined by the channels’s delay spread in terms of the
number of symbol intervals and it is rather small, while for these channels a high-order CMA based
equaliser would be required. As an example, in Figure 3.5 we plot the minimum MSE as a function
of the number of equaliser taps at an SNR of 30dB. We observe that the DFE-CMA MSE function
has a minimum, depending on the channel model and also on the SNR. In this graph we observe the

expected minimum introduced as a result of two factors:

e The additive channel noise, implying that the MSE cannot be less than a certain threshold and
e The convolutional noise, which exists because of:

— the finite equaliser length and

— due to the fact that this is a blind equaliser and it does not converge with infinite precision,

especially in the presence of additive channel noise.

Similar minima exist in the CMA MSE function at a larger number of taps. It is clear that in the
two-path channel scenario the DFE-CMA requires only one feedback tap, while the CMA requires at
least 20 taps. In Table 3.2 we also observe that the corresponding complexities are 78 real additions

and 64 real multiplications for the DFE-CMA and 82 real additions and 84 real multiplications for
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the CMA. Therefore, in this case the CMA is more complex while its performance is inferior to that

of the proposed algorithm.

3.5 Summary

In this chapter a novel blind equaliser was presented and studied, extending the conventional CMA
to the DFE-CMA scheme. This equaliser provides a solution to the problem of reversing the effects
of a nonminimum phase channel, such as the channels described by a Z-transform of having zeros on
the unit circle. The impulse response of the equaliser required to by such channels is long and thus
the equaliser requires a high number of taps. In the case of CMA-based blind adaptation, due to the
fact that during the equaliser’s initialisation such channels inflict severe ISI, often slow and inaccurate
convergence is encountered. The benefit of this equaliser in comparison to the conventional CMA is
that its feedback section provides implicit training information in the absence of transmission errors.
In this case there is no need for a high number of taps. Instead, the number of equaliser taps required is
equal to the number of CIR taps. For transmissions over other types of channels similar performance
ia attained to that of the CMA, but at a potentially higher complexity. This complexity increase
is typically on the order of L, L being the number of CIR taps. Finally, when the approximation
of neglecting the terms of Equations (3.19) and (3.20) from the calculation of the update terms in
Equation (3.22) is used, then this equaliser, unlike the CMA, is incapable of converging to any channel-
(otherwise referred to as “length—-") dependent undesirable local minima, due to its feedback section.
We have to note here, however, that this equaliser, as a DFE, is more prone to instabilities, than the
conventional CMA, in particular when the initialisation is far from the desired point of equilibrium
and the value of the step—size is not sufficiently low.

Finally, the application of this equaliser in various channel environments requires optimisation with
respect to the number of feedforward and feedback taps. Further research related to this technique
has to consider this optimisation together with the possibility of blindly detecting the type of the CIR,
in order to automatically “decide” on the required tap—vector lengths.

Having presented the DFE-CMA equaliser in this chapter, we will now focus our attention on present-
ing a novel class of blind equalisers, combining PSP based channel estimation and channel decoding

in an iterative fashion.
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Chapter 4

Combined Blind Equalisation and
Channel Decoding: Turbo—PSP

4.1 Introduction

Blind equalisation has attracted significant research interests during recent years. The blind equaliser
proposed in this treatise belongs to the class of sequence estimation techniques. It incorporates a
Per-Survivor Processing (PSP) based equaliser [6], modified appropriately, in order to produce soft
outputs as in [135, 182, 183] and it involves channel coding not only for protecting the transmitted
data from the additive noise induced by the channel, but also for assisting the PSP equaliser during
convergence by utilising a feedback loop.

As we will see in Section 4.5, this novel blind equalisation technique exhibits good performance in
terms of its output Bit Error Rate (BER). Explicitly, a BER comparable to that of a trained turbo

equaliser is attained at the cost of a modest complexity increase.

This chapter is organised as follows. The communications system is characterised in Section 4.2,
while in Section 4.3 the proposed turbo-PSP equaliser is described. Specifically, in Sections 4.3.1 —
4.3.2 its separate modules are discussed, while in Section 4.4 the associated phase ambiguity problem

is addressed. Finally, in Section 4.5 performance results are provided for both static and fading

dispersive channels.

4.2 System Description

The communications system under consideration is shown in Figure 4.1. The information bits are

encoded by a convolutional encoder and then punctured in order to produce the necessary coding
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Figure 4.1: Equalised communications system

rate. The coded bits are then interleaved in order to disperse the channel’s bursty errors as well as to
enhance the turbo-equaliser’s performance and then mapped to the QAM constellation symbols a(n).
These symbols are convolved with the Channel’s Impulse Response (CIR) h; and then the channel

noise e(n) is added, yielding the received symbols y(n) as:

Lo
y(n) = Z hi-a(n —1i) + e(n) (4.1)
i=~L
The restoration of the original information bits is performed by the turbo-PSP equaliser. This

equaliser performs two basic functions: blind channel equalisation and channel decoding, in an it-

erative fashion. We will describe the operation of the turbo—PSP equaliser in the next section.

4.3 Turbo—PSP Equaliser Description

The turbo—PSP equaliser performs joint channel equalisation and channel decoding using the schematic
shown in Figure 4.2. In this figure the symbol IT denotes the interleaver. The system consists of a
PSP [6] equaliser, forwarding the so—called LogLikelihood Ratio values LLR., to the subsequent de-
interleaver, which are defined as:

Prob(Bit = 1)

" Prob(Bit =0)] " (42)

LLR(Bit) =1
The operational principle of the system is as follows. Firstly, the PSP equaliser attempts to remove
the Intersymbol Interference (ISI) from the received signal and at the same time performs demod-
ulation, providing the bit LLR values, which are input to the channel decoder. Subsequently, the

channel decoder provides better soft estimates of the PSP equaliser’s output, which is then used as
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Figure 4.2: The turbo-PSP equaliser

“a—priori” information for the next iteration of the PSP equaliser. Following a number of iterations,

the impairments of the channel are gradually removed from the signal.

Let us now discuss the turbo-PSP equaliser in more detail. The equaliser’s a—priori LLR values,
LLR¢; priori are used as a-priori knowledge, assisting the module in providing improved confidence
values at its output. These values stem from the channel decoded information, which are then sub-
stracted from the equaliser’s output LLR,, in order to provide the input LLRg, of the subsequent
de—interleaver. This subtraction takes place so that in the next iteration the consequent channel de-
coder takes into account only the equaliser’s contribution, but not the equaliser’s a—priori values, which
had been provided by the channel decoder itself. This concept is similar to that used in trained turbo
equalisation [182], although the lack of training information requires the replacement of the MAP
equaliser by a PSP equaliser. Following the PSP-based equalisation, the de-interleaver rearranges
the LLRE, values according to the interleaving algorithm used. Following the de-interleaver, the Soft
Output Viterbi Algorithm (SOVA) performs channel decoding based on the Mazimum A-Posterior:
(MAP) criterion and provides the LLRS, as well as LLRIC, values for its coded and decoded out-
puts, respectively. The coded LLR values are again interleaved, so as to align them with the channel
output symbols. The resultant LLR values LLRZ; Priort are then fed back to the PSP equaliser as
a—priori values.

Having described the functions of the component modules of the turbo-PSP equaliser in Figure 4.2,

we will now proceed to highlighting the operation of these components. We commence with the most

important module, namely the PSP equaliser.
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Figure 4.3: State transitions from time k& — 1 to k.

4.3.1 The PSP equaliser

Per-survivor processing was initially proposed by Seshadri in [6] in 1991. Seshadri modified the
Viterbi algorithm [34], in order to render it applicable to the scenario where no channel information
is available. This was achieved by considering that each surviving sequence in the trellis carries its
own channel estimation, which is updated at every symbol instant. Additionally, Seshadri proposed
the use of the M-algorithm [140] in order to invoke several surviving estimates and to counteract the
possibility of a CIR initialisation drastically different from the actual CIR. More explicitly, when this
algorithm is utilised, M surviving sequences are kept at every stage of the trellis search for each state.
This approach makes the estimation process less vulnerable to the initial CIR estimate. Clearly, when
M is equal to the number of states this is the special case which corresponds to the classic Viterbi
Algorithm (VA). This algorithm was termed Per—Survivor Processing (PSP) by Polydoros et al. [23].
A novel variant of this algorithm is invoked in the context of the turbo—PSP equaliser, in order to
provide soft outputs. This is achieved [183] by considering the following equation:

Prob(z = +1ly,d)

Prob(zy = —1ly,d |’ (4.3)

LLRey(zy) = In

where y represents the received symbol vector and d represents the a—priori values of the equaliser,
generated by the channel decoder’s SOVA. In order to estimate the above probabilities, following the
approach of [183], we consider the state transitions from time k£ —1 to k and then to £+ 1, as seen in

Figure 4.3. As we can see from Figure 4.3, the probability Prob(z; = +1|y,d) can be viewed as that
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of an event which can take place only if three separate events coincide. Thus, this probability can be
expressed as the product of three probabilities. The first one is the probability ak_l(s') of being in
state s at time k — 1, given the received symbol vector yj<x for time 4 < k, while the second one is
the probability v (s, s) of moving to state s at time k, given that at time k — 1 we were at state s’
and that the received symbol vector y. Finally, the third associated probability is that of being in
state s at time k, namely (j(s), given the received symbol vector yj-x for time 7 > k. With these

considerations, the LLR of Equation (4.3) becomes:

'

Yy st @h-1(8) - k(s 8) - Bi(s)

S ome 1 1) (5 5) (o) (44

LLR(zy) = In

The calculation of the values of o and 3 can be performed recursively, using the values of v, according

to the relationships [183]:

ar(s) = > (s, s) - ap1(s) (4.5)

Biei(s) =S (s, 8) - Bi(s). (4.6)

Initial values have to be assumed for the recursive calculation of & and 8 in Equations (4.5) and (4.6).
To set these values we can set the encoder to the all-zero state at both the beginning and end of each
transmission frame. In our case, the serially concatanated encoder is considered to be the channel, and
this initialisation implies transmitting “tailing” symbols, which correspond to all-zero bits at both
the beginning and at the end of the frame. The number of these tailing symbols has to match the
total delay spread of the CIR. This can be viewed as training, as it suggests transmitting information,
which is known a-priori to the receiver. Nonetheless, tailing bits are required in order to provide

initialisation and they are typically part of trained systems as well. In this case, the initialisation

takes place as:

ap(s) = 1 (4.7)
op(s) = 0, E#0 (4.8)

(4.9)
Br(s) = 1 (4.10)
Bi(s) = 0, k#K, (4.11)

where K is the last symbol interval of the frame. It can easily be observed that at the beginning
and end of the frame the initialisation allows any state to exist. This is because the PSP equaliser
can converge to any phase-shifted solution and in this case the initial and final states are different

from the zero state. Phase-shifted solutions are not encouraged, but they can always exist and this
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initialisation protects the equaliser in any case. Finally, the values of ¥ can be obtained during the

per—survivor processing, according to the following equation:

!

v(s,s) = Fi(k, s/,s) . Fg(k,sl,s) (4.12)

, 1 M N
Filks,s) = eap ("mz jy(k) — 9 (s ,s>:2)
3=1
(4.13)

, 1
Fyk,s,s) = exp (5 Za?l . L(ml)> , (4.14)
=1

where o? is the noise variance, the transmitted signal energy is assumed to be normalised to unity,
L(z;) denotes the equaliser’s a—priori values LLRg; Priort seen in Figure 4.2, #; is the estimated input
bit value associated with the transition from state s to state s (it can be either —1 or +1), @ is the
number of bits per symbol in the QAM constellation, y(k) is the received symbol at time k, @,g) (s, )
is the estimated received symbol at time k if the previous state was s, the survivor index was ¢ and
the current state is s. Finally, M is the number of survivors per state. This equation is an extension

of the associated equation for the trained turbo equaliser, for which the channel estimate is global [183].

Finally, the CIR estimate update, which takes place at every symbol instant, can be performed by
using the Least Mean Squares (LMS) [6] or the Recursive Least Squares (RLS) [23, 141] algorithm,
where the latter provides fast convergence in exchange for a higher complexity. We opted for the LMS

algorithm, according to which the CIR vector h(™® at time n is updated as:
B = "D+ X a*(n) - (y(n) ROV - a(n)), (4.15)

where A is the step—size controlling the speed and the accuracy of convergence, 4(n) is the estimated
transmitted symbol vector at the state concerned, y(n) is the received symbol at symbol instant n
and * denotes the complex conjugate.

The complexity of this algorithm depends directly on the number of states to be processed. This
number is a function of NX1tL2 where N is the number of symbols in the QAM constellation and
Ly + Loy + 1 is the number of channel paths. The exponential makes the algorithm computationally
demanding for channels with long impulse responses. However, the M-algorithm approximation can

deliver similar performance for such channels, by retaining a small number of states.
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4.3.2 The Soft Output Viterbi Algorithm

The SOVA of the channel decoder operates similarly to the corresponding module of the trained turbo
equaliser [135,182,183]. Bearing in mind the above point, it is readily seen that the o and § values
can be calculated according to the trellis state transitions, described by the same recursive formulae,
namely Equations (4.5) and (4.6) as for the PSP equaliser. The difference is in the calculation of the

v values, which are now given by:
/ 1 &
V(s ,8) = exp (5 ' Ziﬁi(k)L(u’Uz‘(k))) ) (4.16)
i=1

where n is the number of coded bits output by the convolutional encoder for each k—bit input word,
Z;(k) is the estimated input bit at instant & during the transition from state s to state s, which can
be either +1 or —1, and L(z;(k)) is its LLR value, which is the input of the SOVA. Finally, as for the

case of the PSP equaliser, the LLR of the decoded output bit u; at instant & is given by:

!

Zs'—>s,ﬂk=+1 ap-1(s ) 719(3” 5) - Bk(s)]
s upm1 Wh-1(8") (s’ 8) - Br(s) ]

LLR(ug) = In [ (4.17)

The LLR values of the coded bits also have to be fed back to the PSP equaliser, improved by the

decoder, which are given by:

Sy a1 Who1(8) k(s 5) ﬁk(s)} ' (4.18)

LLR(:EIC) =i !:Zs'—w,zk:—l ak—l(‘s,) ' fyk(sl’ S) ) ’Bk (S)

Another module used in our system is the puncturer, which is capable of providing different code
rates, while keeping the convolutional coding rate fixed. The puncturer selects a number of bits from
the output block of the convolutional encoder, which is less than the block length. By doing so, some
bits are actually discarded and this results in a decreased code rate. The inverse procedure is carried
out by the depuncturer, which inserts zero LLRs (i.e. bits that are ’1’ with a probability of 0.5)
in the locations, where bits have been discarded by the puncturer, implying that for these locations

no information is available for the relevant bits. However, in this contribution no puncturing was used.

4.3.2.1 The Turbo-Coded Turbo-PSP

An extension of the turbo-PSP equaliser employing turbo coding [135] instead of convolutional has
also been considered. In a turbo encoder the convolutional encoder is replaced by two half-rate

convolutional encoders, as shown in Figure 4.4. Half of the input bits, namely the systematic bits,
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Figure 4.5: The turbo decoder

were directly fed to the output by the puncturer and the other half of the bits are encoded by both
Encoder 1 and also by Encoder 2, in the latter case after interleaving. The output of the two encoders
is multiplexed so that half of the bits of each encoder are passed to the turbo encoder’s output.
The turbo decoder is illustrated in Figure 4.5. The operation of this module is similar to that of
the turbo equaliser, taking into account that in this case the equaliser module has been replaced by
another convolutional decoder. Details of various turbo decoding algorithms can be found for example
in [184].

Having described the most important components of the proposed turbo-PSP equaliser, we will now

address the closely related issue of differential coding.
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4.4 Differential Coding

Blind equalisers may converge to a tap setting, which is rotated in the complex plane, as compared to
the ideal setting. Specifically, when QAM is employed, the symmetry of the modulation constellation
implies that the blind equaliser may converge to four different settings, each corresponding to one of
the four quadrants of the complex plane. A common solution to this problem inherent in any blind
equaliser is the employment of differential encoding. Seshadri [6] observed this phenomenon for the
case of a PSP equaliser. For the turbo—PSP equaliser, however, this solution cannot be used, since
differential encoding and decoding of soft values would have to be performed. However, the differential
encoding of soft values results in converging to zero soft values. This is due to the fact that, unlike
differential decoding, during defferential encoding an erroneous decision propagates further than the
next bit. The problem can be avoided by performing differential encoding in a block basis rather than
in a bit basis. In other words, differential encoding can be performed by taking into account a whole
block of bits in deciding on the value of a specific bit, rather than taking into account only the value of
the next bit. This technique requires exponentially increased complexity and is therefore impractical.
Thus, other techniques of overcoming this problem have to be used. We will describe an appropriate
method below.

It can be observed that the equaliser typically converges to that specific setting, which it has been
initialised closest to. If the initialisation is close to the correct setting, then the equaliser will converge
and in the next iteration the equaliser will be fed with a—priori values, which will improve its new CIR
estimate and its soft output values. By contrast, if the equaliser’s initialisation is closer to a setting
which is not the correct one, then it will start converging to this particular setting. However, the SOVA
will be fed with phase-rotated values and in the next iteration the equaliser’s a—priori values will drive
the equaliser to instability. A way of overcoming this problem is to shift the estimated CIR in phase,
so that it matches the actual CIR as closely as possible. The problem that arises is that of estimating
the phase shift. This can be achieved by initially invoking the PSP equaliser without iterations and
transmitting a series of pilot symbols. As we will see in the next section, a few training pilot symbols
can be transmitted, resulting in a minor decrease of the bandwidth. After the selection of the right
coordinate quadrant, equalisation continues as before. The number of iterations is adjusted according

to an estimate of the grade of convergence provided by the equaliser.

4.5 Performance Results

In this section we present performance results for the turbo PSP—equaliser described in Section 4.3.

The results are based on computer simulations. The channels assumed are static or fading, having the
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Figure 4.6: The CIRs used in our simulations

Frame length (bits) 174
Interleaver type Bit
Interleaver block length 5x174
Carrier frequency 1900MHz
Symbol rate 2.6MBaud
Doppler speed 48Km/h
Code rate 1/2
Convolutional generator polynomial 1 17ocT
Convolutional generator polynomial 2 13ocT
Turbo convolutional generator polynomial 1 1700t
Turbo convolutional generator polynomial 2 17ocT
Equaliser step—size 5x10~3

Table 4.1: The turbo-PSP equaliser parameters used in the simulations.

CIRs given in Figure 4.6. Iteration or convergence control has been considered in two different ways.
In Detector 1 (D1) the variance of the input LLR values of the de-interleaver was measured and then
its slope was estimated by taking four samples into account. The LLR variance provides an estimate of
our confidence in the LLR values, since the higher the absolute values of these LLRs, the more confident
the decisions. The associated LLR variance is expected to increase iteration after iteration and reach
its peak value, when the iterations can no longer improve the BER. This condition is detected by
estimating the slope of the variance by utilising the least squares method and taking into account the
last four values of the LLR variance in the calculation of the slope. According to D1 the iterations are
curtailed when the slope becomes less than a threshold value, which was selected to be zero. According
to our second detector (D2) the variance of the difference between the previous and current equaliser
output LLRs is measured and compared against a fixed threshold. The iterations are curtailed, when
the variance becomes less than the threshold. In our simulations D1 and D2 are evaluated both in
terms of their performance and complexity reduction. The general turbo-PSP equaliser’s parameters

are given in Table 4.1. In Figure 4.7 the BER versus Bit SNR curves are given for both QPSK and
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Figure 4.7: BER versus Bit SNR curves over static channels, exhibiting the impulse responses shown
in Figure 4.6 and using the turbo—PSP equaliser parameters given in Table 4.1. The iteration control
obeyed D1.

16-QAM and also for turbo—coded QPSK using 4 iterations, over the static channels of Figure 4.6. It
is clear that using turbo coding instead of convolutional coding improves the performance, although
it increases the complexity of the system. In this specific system, the complexity is eight times the
complexity of the convolutional coded system but the number of iterations of the turbo equaliser also
has to be taken into account. In this case the associated complexity was approximately the same for
both convolutional and turbo coding.

The Bit SNR is defined as:
E,

IBPS- E,’ (4.19)

Bit SNR =

where F, is the average QAM signal power, E, is the average noise power and IBPS is the number of
information bits per symbol, i.e. the number of convolutional coded bits per symbol. This definition
assists in the realistic assessment of the benefits of using strong convolutional coding for protecting
the data.

In Figure 4.8 a comparison is given between D1 and D2 for QPSK over the static channels of Fig-
ure 4.6(a). Finally, in Figure 4.9 we portrayed the associated average number of iterations for both
detectors D1 and D2. Firstly, we demonstrated in Figure 4.8 that the BER is not affected by the
choice of D1 or D2. This implies that both detection methods assign a sufficiently high number of
iterations for correct decoding. The number of iterations required by D1 is lower than that of D2 at

low SNRs and higher than that of D2 at high SNRs. This can be readily interpreted, if we consider
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Figure 4.8: Comparison between D1 and D2 in terms of their BER versus Bit SNR performance. The
channel is assumed to be static, obeying the impulse response of Figure 4.6(a) and the turbo-PSP
equaliser parameters are given in Table 4.1. The variable t denotes the “threshold”.
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Figure 4.9: Comparison between D1 and D2 in terms of the average number of iterations versus
Bit SNR curves. The channel is assumed to be static, having the impulse response shown in Figure
4.6(a) and the turbo-PSP equaliser parameters are given in Table 4.1. The variable t denotes the

“threshold”.
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that in D1 the noise does not affect the slope as much as in D2, since we take into account three pre-
vious samples of the LLR variance in addition to the current one, which implies that we are emplying
averaging. Moreover, there is a minimum required number of iterations for this detection scheme,
since it contains memory and this implies a delay. This minimum required number of iterations does
not depend on the SNR. In D1 the convergence detection is dominated by this minimum number of
iterations. By contrast, D2 takes into account only the current value of a variance and therefore it
detects convergence immediately, when this value becomes less than a threshold, independently of any
previous values. At high SNRs the number of iterations required directly depends on the threshold
value and convergence is typically achieved within a few iterations. At low SNRs, however, conver-
gence is not readily obtained due to the excessive noise and hence typically a large number of iterations
is necessary. In Figure 4.9 we observe that a lower threshold used for D2 requires more iterations,
which was expected. We also observe in Figure 4.8 that the BER performance is good, approaching
the performance of a turbo equaliser using perfect channel estimation for a sufficiently large number
of iterations. This is because the PSP equaliser requires a considerable number of input symbols to
converge, especially for higher—order QAM. The feedback loop of the PSP equaliser using the channel
decoder’s output information expedites convergence. The larger the number of iterations, the better
the convergence of the PSP equaliser. Finally, in Figure 4.10 we have plotted the BER versus bit
SNR curves for different but fixed numbers of iterations. The modulation schemes used is QPSK, the
turbo-PSP equaliser parameters are given in Table 4.1 and the channel is the static channel of Figure
4.6(a). We can observe from Figure 4.10 that no significant performance improvement is achieved
after three iterations, implying that employing three iterations would be sufficient in this particular
case.

In Figure 4.11 we provide BER performance results for the 2- and 3-path fading channels of Figure
4.6 using the parameters given in Table 4.1. The performance is again high compared to the bench-
marker using perfect CIR estimation. It is anticipated that the performance will become better when
transmitting over the 3-path channel, than that over the 2—path channel, since it is less probable for
three paths to fade at the same time than for two paths. A comparison similar to that over the pre-
viously studied static channels is given for D1 and D2 in Figure 4.12. Finally, in Figure 4.13 we have
portrayed the associated average number of iterations for comparison. We observe again in Figure
4.12 that the associated BER performance is similar for D1 and D2, whilst the number of iterations
is now clearly lower for D2, even at low SNRs. This is because in the previous static channel’s case
the channel’s z-domain transfer function contained a zero on the unit circle, rendering convergence
slower and less accurate. This resulted in a larger number of iterations required for the variance to
be below the threshold value. In the fading channel’s case, such channel transfer functions do not

occur very frequently, hence the associated convergence is typically faster. Similarly, D1 also requires
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Figure 4.10: BER versus bit SNR curves for different but fixed numbers of iterations. The channel is
assumed to be static, having the impulse response shown in Figure 4.6(a) and the turbo-PSP equaliser
parameters are given in Table 4.1.
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Figure 4.11: BER versus Bit SNR curves over fading channels having the impulse responses shown in
Figure 4.6 and using the turbo-PSP equaliser parameters given in Table 4.1.
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Figure 4.12: Comparison between D1 and D2 in terms of their BER versus Bit SNR curves. The
channel is assumed to be Rayleigh fading, obeying the impulse response of Figure 4.6(a) and the
turbo—-PSP equaliser parameters are given in Table 4.1.
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Figure 4.13: Comparison between D1 and D2 in terms of the required average number of iterations
versus Bit SNR. The channel is assumed to be Rayleigh fading, using the impulse response of Figure
4.6(a) and the turbo-PSP equaliser parameters are given in Table 4.1. The variable t denotes the

“threshold”.
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Figure 4.14: BER comparison between perfect phase estimation (PPE) and pilots based phase estima-
tion. The channel is assumed to be static or fading, the impulse response of which is shown in Figure
4.6(a) and the turbo-PSP equaliser parameters are given in Table 4.1.

less iterations in this case for the same reason. However, the number of iterations has to exceed a
minimum in order to overcome the memory effect associated with this detector. In the performance
results presented so far the phase rotation problem has been neglected and the phase estimation has
been assumed to be perfect. In a more realistic scenario, a few pilot symbols can be used to estimate
the phase, without creating a significant overhead. For example, if we use three pilots out of 174
symbols of a transmission frame, then the overhead is around 1.7%. This corresponds to a shift of
about 0.07dB, if we take it into account in the BER versus Bit SNR curves, which is almost negligible.
In Figure 4.14 we have plotted the BER curves for both the static and fading channels of Figure 4.6
using both perfect phase estimation (PPE) with three pilot symbols. The performance is clearly very
similar for both the static and fading channels and even for low SNR values and for twin—pilot assisted
estimation. This justifies the employment of the phase estimation approach.

In the simulation results presented so far the parameter M of the M-algorithm was equal to the total
number of trellis states. However, transmitting over higher—delay channels is a task, which imposes a
higher complexity due to the fact that the number of states encountered is exponentially related to the
number of channel paths. We will now show the effect of reducing the number of states considered on
the performance and complexity of the algorithm. In Figure 4.15 we have plotted the BER against the
Bit SNR for the three-path static channel of Figure 4.6 for different number of trellis states considered.

As we can see from this figure, the reduction of the number of retained trellis states results in a shift of
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Figure 4.15: BER comparison for different number of states M, employing QPSK. The channel is
assumed to be a three-tap equal-weight static channel, the impuise response of which is shown in
Figure 4.6(b) and the turbo-PSP equaliser parameters are given in Table 4.1.

the BER curve towards higher SNRs, i.e. in a reduction of the performance of the system. However,
this performance reduction is less than 1dB, when we employ only half of the maximum number of
states. In Figure 4.16 the same plot is given for a four-tap equal-weight channel. We can see that, in
this case retaining only half of the total number of states gives a similar performance to that, when
retaining a higher number of states. On the same note, when retaining 15 states, accounting for about
one fourth of the total number of states, imposes only about 1dB SNR performance degradation at
BER = 107%. Thus, retaining a lower number of states is adequate for this equaliser and the required

proportion of states in relation to the total number of states is lower for higher—dispersion CIRs, when

aiming for a given target performance.

Finally, having discussed the effect of reducing the number of states in the turbo-PSP algorithm, in
Figure 4.17 we have plotted the achievable coding gain at a BER of 10™* as a function of the decoding
complexity for both the convolutional and turbo—coded schemes, in the latter case in conjunction with
four turbo iteration loops. The coding gain is defined as the SNR gain of using channel coding as
opposed to not using channel coding at a certain BER and it is measured in dB. In our estimate the
complexity was deemed to depend on that of the channel decoder. Under this assumption, the turbo-
coded system has a complexity which is O(2K - N - L) with N being the number of iterations of the

turbo channel decoder and L being the number of turbo equaliser iterations, assuming that the figure
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Figure 4.16: BER comparison for different number of states M, employing QPSK. The channel is
assumed to be a four-tap equal-weight static channel and the turbo-PSP equaliser parameters are

given in Table 4.1.
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Figure 4.17: The coding gain as a function of complexity for convolutional and turbo-coded turbo-
PSP schemes. The channel is assumed to be static, the impulse response of which is shown in Figure
4.6(a) and the turbo-PSP equaliser parameters are given in Table 4.1.

2K—1 which is the complexity of each of the two MAP channel decoders, is multiplied by two, since
there are two such constituent decoders, and also by the number of iterations, V. The specific codes
used optimum generator polynomials both for the convolutional and for the turbo codes. As seen
in Figure 4.17, it was found that the coding gain was higher for the convolutional coded turbo-PSP

scheme at a low complexity, while this performance trend was reversed for a higher complexity.

4.6 Summary

A novel blind equaliser was proposed, jointly performing channel equalisation and channel decoding
by combining turbo equalisation with PSP. We achieved this by feeding channel decoding information
back to the PSP equaliser as a—priori information and repeating this process in an iterative fashion.
This enhanced-reliability feedback information output by the channel decoder enhances the equaliser’s
performance in terms of its robustness against channel noise and also in terms of its convergence
capability, provided that the soft feedback information does not contain an excessive number of errors.
Clearly, this technique enhances the performance of the PSP based channel equaliser iteration by
iteration. However, when the soft LLR feedback information applied by the channel decoder to the
equaliser is unreliable, then the PSP equaliser may be driven to instability. As in the case of a

conventional PSP based equaliser, the associated exponentially increasing complexity can be reduced
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by employing the M-algorithm, that is by retaining a limited number of trellis states, when the highly
dispersive CIR requires a long channel equaliser trellis, which would result in an excessive complexity.
In this case, the PSP equaliser will perform worse than in the conventional open loop scenario, since
its a-priori feedback will generally be more error—prone. Nevertheless, we found that this performance
degradation is not significant for CIR durations of up to four symbol intervals. We also found that
this performance degradation decreases when the CIR duration increases and the proportion of the
total number of states retained is kept the same. Thus, taking into account that the simulated CIRs

represent worst case scenario, we anticipate that this equaliser can cope with higher channel order and

limited complexity.

The number of iterations used was controlled by using a convergence detection algorithm. This
algorithm is not optimum and if improved, it can reduce the number of iterations and the associated
complexity required.

The sign ambiguity issue, inherent in blind equalisation, could not be solved by simply employing
differential coding. This is because the turbo equaliser would require a differential encoder processing
soft inputs, which would require an excessive complexity. Nonetheless, this issue has been resolved
by using a low number of pilot symbols. In fact, using pilot symbols for estimating the phase has
proven to be a very good trade—off between the performance degradation imposed by using differential
encoding and the bandwidth reduction incured by sending pilot symbols, rather than transmitting

information.

Having introduced and discussed the convolutionally—coded turbo-PSP algorithm, in the next chapter

we will introduce a modification of this algorithm employing coded modulation schemes.
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Chapter 5

Combined Trellis—Coded Modulation
and Turbo Equalisation?

5.1 Introduction

After having introduced the turbo-PSP concept in the previous chapter, we will now introduce a
modification of this algorithm, which employs combined modulation and channel coding techniques
and benefits from invoking symbol- instead of bit— based decoding. This method exploits the en-
hanced data protection offered by Trellis-Coded Modulation (TCM) [185] or Bit-Interleaved Coded
Modulation (BICM) [186] and exhibits good performance in terms of its output Bit Error Rate (BER).

Explicitly, a BER comparable to that of a trained turbo equaliser is attained at the cost of a modest
complexity increase.

The chapter is organised as follows. The communications system is described in Section 5.2, while in
Section 5.3 the proposed coded modulation turbo-PSP equaliser is described. Specifically, in Section
5.4 the encoder and decoder used in the coded modulation schemes are detailed. Finally, in Section

5.5 performance results are provided for fading dispersive channels.

5.2 System Description

The communications system under consideration is shown in Figure 5.1. The information bits are
mapped to QAM symbols by a channel encoder, which can be a trellis coded modulation encoder [185],

a turbo trellis coded modulation encoder [187] or a convolutional encoder in the case of BICM [186].

'This chapter is based on joint work with my colleague Michael Soon Ng, whose contribution is gratefully acknowledged
(13]
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Figure 5.1: Equalised communications system

The QAM symbols are then interleaved, in order to disperse the channel’s bursty errors as well as
to enhance the turbo-equaliser’s performance, generating the transmitted QAM symbols a(n). These
symbols are convolved with the Channel’s Impulse Response (CIR) h; and then the channel noise e(n)

is added, yielding the received symbols y(n) as:

Ly
y(n) = Z h; - a(n —1i) + e(n). (5.1)
i=—L;
The restoration of the original information bits is performed by the turbo—PSP equaliser. In the next

section we provide further details concerning the operation of the turbo-PSP equaliser using TCM,

TTCM and BICM.

5.3 Turbo—-PSP Equaliser Description

The turbo—PSP equaliser performs joint channel equalisation and coded modulation decoding using
the schematic shown in Figure 5.2. The operation of this system is the same as that of the turbo-
PSP equaliser using convolutional coding, as highlighted in Section 4.2. The sole differe