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In this thesis the problem of blind equalisation of stationary and fading mobile channels is investigated. 

Blind equalisers achieve a bandwidth economy by eliminating the training overhead, often invoked in 

trained channel equalisation. The family of blind equalisers found in the literature is critically ap-

praised and the achievable performance is evaluated by computer simulations. We focus our attention 

on the set of per-survivor processing based techniques as well as on the Bussgang techniques. A 

specific application is also considered in the context of digital video broadcasting. 

An extension of the well-known constant modulus algorithm, namely the DFE-CMA [1,2], is proposed 

for equalising channels having a long inverse impulse response. This algorithm is characterised in terms 

of its performance and convergence in comparison to the conventional constant modulus algorithm. 

It is found that the proposed algorithm outperforms the conventional constant modulus algorithm for 

transmissions over channels exhibiting impulse responses having equal-weight taps. 

The extension of blind equalisation using channel decoding assisted feedback is also considered in the 

thesis. The corresponding modified per-survivor processing algorithm is iteratively invoked in order 

to provide improved joint data detection and channel estimation, by utilising the enhanced-reliability 

feedback of the channel decoder. The application of the M-algorithm is also considered in order to 

reduce the complexity of this blind turbo equalisation algorithm for transmissions over channels having 

a high number of CIR taps. The performance of this algorithm is evaluated by computer simulations 

and it is found that it improves the performance of non-iterative per-survivor processing, owing to 

the employment of the channel decoding feedback. 

Finally, different channel coding techniques were invoked and benchmarked in conjunction with the 

above blind turbo-PSP equaliser. Specifically, a range of convolutional coding, turbo convolutional 

coding, trellis-coded modulation and turbo trellis-coded modulation assisted blind turbo-PSP schemes 

were comparatively studied. 
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Chapte r 1 

Trained and Blind Equalisat ion 

Prologue 

In mobile communications the channel is hostile, containing dispersive multipath components, and 

its characteristics are perpetually changing due to the mobility of the user. The signal, which is 

transmitted over this time-variant channel suffers from fast as well as shadow fading and it is contam-

inated by the Intersymbol Interference (ISI) inflicted by multipath propagation. In order to be able 

to demodulate the signal, we have to remove the ISI. This can be achieved either by convolving the 

received signal with an appropriate sequence, namely with the channel equaliser's impulse response 

or by estimating the Channel's Impulse Response (CIR) and then restoring the original transmitted 

signal by 'reversing' the channel's effects with the aid of channel estimation) . Both of these methods 

will be highlighted in more depth during our further discourse in the context of blind equalisation. 

The conventional method of channel equalisation is performed by means of estimating the CIR with 

the aid of a "known" sequence, which is also known at the receiver and is transmitted periodically. 

This sequence is referred to as the training sequence, which constitutes a transmission overhead, be-

cause it could have been used for transmitting useful information. For example, in GSM, 26 bits are 

used for equaliser training in each burst containing 116 information bits, which results in an overhead 

of 22.4%. Moreover, in mobile communications, due to the mobility of the user terminal, occasionally 

the connection can be lost completely. In this case, the need for equaliser adaptation "from scratch" 

arises, which means that there is no information at all about the CIR, until the next transmission 

burst arrives at the receiver. A blind equaliser may be more suitable for this situation, because it is 

designed to adapt to an unkown CIR without any information about it, which could be used for the 

initialisation of the channel equaliser. For example, in a multipoint network, every time a network 

connection between two network points is down, it is inefficient to send a training sequence to restore 
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this connection. 

Substantial research efforts have been dedicated to blind equalisation in an effort to avoid the use of 

a training sequence, resulting in so-called hlind equalisation techniques, which extract the appropriate 

information required for channel equalisation from the received signal. A range of different methods 

have been proposed by numerous authors for blind equalisation using various equaliser structures [3-7]. 

As the need for blind equalisers has grown in recent years, modifications of these basic algorithms have 

been proposed, which are referred to in the references. 

The organisation of the thesis is as follows; 

® In the first chapter we are introducing the problem of channel equalisation. The chapter is 

divided into two sections. In the first section trained equalisation techniques are introduced and 

discussed, while in the second section a rudimentary introduction to basic blind equalisation 

schemes is offered. A convergence study and a study on the equaliser parameter control are also 

given. 

a In Chapter 2 comparative performance results are given for some of the blind equalisers discussed 

in Chapter 1 and performance comparison conclusions are drawn. An application of blind 

equalisers to digital video broadcasting is also considered, extending the specifications system 

to include turbo coding and higher-order modulation along with blind equalisation in order to 

increase the system's robustness while increasing the bandwidth and coping with more severe 

channel distortion. 

» In Chapter 3 a decision feedback assisted extension of the constant modulus algorithm is proposed 

and studied. Performance results show that this algorithm provides better performance than 

the conventional constant modulus algorithm in equalising channels with long inverse impulse 

response. 

• In Chapter 4 an iterative technique combining convolutional channel coding with per-survivor 

processing is proposed. This technique enhances the performance of per survivor processing by 

iteratively providing a-priori feedback from the channel decoder back to the equaliser's input. 

» In Chapter 5 the turbo-PSP technique of Chapter 4 is extended by replacing the convolutional 

channel coding with coded modulation techniques. Performance results in this chapter indicate 

that the fading channels performance is improved. 

» Finally, in Chapter 6 conclusions are drawn on the pre-existing as well as the novel research 

results of this thesis and further research proposals are presented. 
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Next, we outline the novel contributions of this thesis: 

® An illustrative overview of previously proposed blind equalisation algorithms is presented to-

gether with a performance evaluation and comparison in terms of performance and complex-

ity [8,9]. We evaluated the performance gain of switching to decision-directed equalisation after 

blind convergence. The parameter control issue of these algorithms is studied, focusing on the 

constant modulus algorithm and the relationship between the equaliser's parameters and its 

performance in terms of convergence speed and precision was evaluated experimentally. The 

convergence of Bussgang equalisers is also studied, confirming and providing an insight to pre-

viously published results. Finally an application of blind equalisers to a digital broadcasting 

application [10,11] was proposed and studied, improving the overall system performance and 

proposing an extension of the system's specifications. 

» The DFE-CMA [1,2] is proposed, providing an extension to the convential constant modulus 

algorithm, which offers improved performance for channels with long inverse impulse response. 

A convergence analysis shows that under a certain assumption the convergence region of this 

algorithm does not include the length-dependent local minima of the Bussgang equalisers. 

9 The turbo-PSP algorithm [12] is proposed, combining per survivor procesing with turbo equal-

isation. Per survivor processing is extended to include a-priori input provided iteratively by a 

convolutional channel decoder. The performance of a per survivor processing equaliser is there-

fore improved by the channel decoder's output. Pilot phase estimation is proposed for removing 

the phase ambiguity associated with blind equalisers. It is shown that with only a minor propor-

tion of symbols in the order of 2% we can achieve negligible performance degradation, compared 

to perfect phase estimation. 

« The turbo-PSP algorithm is extended to employ coding modulation techniques [13] in substitu-

tion of convolutional coding. Different channel coding techniques were compared and the results 

show that by replacing convolutional coding with trellis coded modulation we can improve the 

fading channel performance of turbo-PSP. 

1.1 In t roduc t ion to Equalisat ion 

1.1.1 I n t r o d u c t i o n 

Multipath propagation is a common problem arising in digital communications. Its main cause can 

be viewed as the signal arriving to the receiver from more than one paths as a result of multiple 
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Figure 1.1: Stylised channel impulse response h{t) 

reflections. Assuming that X { f ) is the spectrum of the transmitted signal x{t), H { f ) is the spectral 

domain transfer function of the channel, Y { f ) is the received signal's spectrum and E { f ) is the 

spectrum of the Additive White Gaussian Noise (AWGN) we can form the equation: 

y ( / ) = # ( / ) . x ( / ) + E ( / ) . (1 .1 ) 

Upon translating Equation (1.1) to the time domain we have: 

i/(t) = A(() * a:(() + e(f), (1.2) 

where * stands for convolution. The impulse response of a typical mobile channel may appear like 

the stylised function given in Figure 1.1. The convolution of h{t) with the transmitted signal results 

in intersymbol interference (181) since not only the current transmitted bits, but also previous bits 

influence the received signal at any instant. This situation is undesirable because, besides the additive 

noise, the signal received during the current signalling interval is corrupted by the signals due to 

the bits transmitted during both previous and past signalling intervals. These neighbouring signals 

constitute a second noise-like term, referred to as Convolutional Noise. 

Using sampled values at time instant t = nT Equation (1.2) takes the form: 

{2/W} = * {a;(n)} 4- {e(n)}, (1.3) 

where means convolution. In order to restore the original signal sequence {x{n)} from the received 

sequence {y(n)}, we can convolve {y{n)} with another sequence {c„} mimicking the 'inverse' of the 
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a(n) a(n) 
Transmitter Channel Equaliser 

z(n) 

Figure 1.2: A simplified equalised system 

channel's effects, yielding: 

Decision 
Circuit 

a(n) 

Training 
Sequence 
Generator 

{ ^ W } = {Cn} * + {Cn} * (1.4) 

A number of methods have been suggested for determining the sequence {c„}, when a-priori informa-

tion in the form of an equaliser training sequence is available, which will be discussed later. Figure 1.2 

shows a typical trained equaliser of this kind, where the knowledge of the training sequence is exploited 

by the equaliser at the receiver. In this scheme, the training sequence is transmitted periodically for 

the duration of certain time intervals. During these time intervals the training bits are used by the 

equaliser for estimating the optimum equaliser coefficients, which will then be used to equalise the 

channels's impact on the information bits before deciding upon the binary value of the most likely 

transmitted bit. In the following sections, we present typical trained equalisers. 

1.2 Linear Trained Equalisers [14], [15] 

The general form of a linear equaliser is shown in Figure 1.3. As we can see from Figure 1.3, the 

decision symbol a(n) at time n is based on the equalised symbol z{n), which is formed by the suitably 

weighted successive signal values y{n — N), • • • ,y(n + N), where 2N + 1 is the equaliser's length, 

followed by a decision circuit. Hence the equaliser is capable of cancelling the channel's effects over 

a duration of 2N + 1 consecutive symbol intervals. In mathematical terms, the equalised symbol at 

time n is given by: 
N 

(1.5) 
-AT 

The equaliser weights are adjusted so as to minimise the multipath channel's distortions, based on a 

certain minimisation criterion. Depending on the specific criterion they satisfy, linear trained equalisers 

can be divided into a number of categories, which are presented in the next sections. 
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y(n) y(n-l) 

A C(-N) A__c(-N+2) A C(-N+3) | ,_C(N-2) ^ 

y(n-2) y(n-3) y(n-2N+2) 
z ' 

y(n-2N+l) 
Z z ' Z 

y(n-2N) 

c(N-l) 

Decision 
Circuit 

c(N) 

Figure 1.3: Typical linear equaliser 

1.2.0.1 Zero-Forcing Equalisers 

According to the so-called Zero-Forcing (ZF) approach [15], [9] we estimate the channel's impulse 

response (CIR) hn and then attempt to cancel its effects, producing a new sequence c„ so that: 

{Cn} * {An} = {1,0,0, . . (1.6) 

where {} denotes a set and the equal sign here denotes equality between sets. If Equation (1.6) holds, 

then the system is perfectly equalised having no residual ISI. According to this approach, the channel 

is regularly sounded by transmitting a specific training sequence also known at the receiver and an 

estimate of the CIR coefficients {/i„} is obtained. Considering H{z) and C{z) as the z-transform of 

the signals {hn} and {c„}, respectively, and following the procedure described in [9] we obtain: 

C ( z ) . ^ ( z ) 1 C(z) 

E 
1 = 0 

Cm Z 

Co 

Cm — 

V" h 

1 

ho 

2^1=0 
hn 

(1.7) 

where c denotes an estimate of c and Equation (1.7) is an approximation applicable to Bnite-duration 

CIRs. Estimates of the CIR {hn} can be obtained by sounding the channel at regular intervals. Zero-

forcing equalisers can be used in low-noise environments, when the ISI is the main factor in signal 

6 
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corruption. However, in their attempt to invert the channel's transfer function they neglect the effect 

of noise [9], which renders them unsuitable for high-noise environments. A more suitable equaliser for 

such environments is highlighted in the next section. 

1.2.0.2 Least Mean Squares Equalisers 

The Least Mean Squares (LMS) equalisers [14], [15] use the equaliser training sequence for estimating 

the equaliser coefficients, so as to minimise the mean squared value of the error between the signal 

z{n) at the input of the decision device and the transmitted symbol a(n): 

6(M) = z(n) — G(n) (1.8) 

yielding: 

(1.9) 

where _B[] is the expectation over all possible transmitted {o(n)} and received {a{n)} data sequences. 

We can differentiate the Mean Squared Error (MSB) term in Equation (1.9) with respect to the tap-

vector c of the equaliser, in order to obtain the tap-values of the equaliser tap vector c that minimise 

the MSE. Assuming an equaliser constituted by 2N + 1 taps, ranging from —N to N, we obtain c as 

a solution of the above linear system as [9]: 

N 

^ Ci - 6(z, j ) = J = -AT, . . . , / f , 
i=-N 

where 
+00 

(1.10) 

(1.11) 

is the autocorrelation function of the sequence {y{n)}. In matrix form. Equations (1.10) can be 

rewritten as: 

Ryy • C = h. (1.12) 

where Ryy is a matrix containing the coefficients b{i,j): 

( 

R •yy 

6(—jV, —W) 6(—iV, —iV + 1) 

6(-Ar + i , -A r ) 6(- ;v + i , - j v + i ) 

6(JV-1,-Ar) 6 ( j V - l , - # + l) 

6(Ar, - ; v ) 6(.̂ V, +1) 

6(-A^,Ar) 

b{—N + 1, N) 

. 6 (Ar- i ,Ar) 

6(#,Ar) y 
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c is the (2N + l )x l dimensional vector of the estimated equaliser coefficients: 

c = [c-AT, , CY\r_i, (1-13) 

and h is the (27V + l )x l vector of the channel's impulse response at time instant n: 

h = [/i/v,/liV-i, . . . , ( 1 . 1 4 ) 

The matrix B has a so-called Tdplitz structure if the signal y{n) is stationary, that is if its statistical 

properties are independent of the actual time instant of the observation, i.e.: 

6(i + n, j + n) = 6(i, j ) , Vn. (1.15) 

The optimum equaliser coefficients are given as the solution of the linear system (1.12). We can solve 

this system of equations by inverting matrix B or by using a recursive solution. In order to avoid 

solving a (2A^ + l)x(2iV + l) system of equations we can use an iterative procedure, which estimates the 

equaliser tap coefficients at each stage using, for example, the classical steepest descent algorithm [9] 

as follows: 

c ( ^ + ^ ) = c W - A V e w J ( n ) , (1.16) 

where Vg(t) is the gradient vector with respect to the vector which is defined in Appendix C 

while J (n) is the MSE function, as defined in Equation (1.9) and the {k + l ) - th iteration is carried 

out for all the vector components c, at the n - th time instant. This relationship leads to the final form 

of the classic LMS equaliser coefficient update algorithm, which is expressed as [14], [15]: 

g(^:+i) _ _ Ay*(ri)e(n), (1.17) 

where y(n) = [y(n — N),y{n — jV + 1 ) , . . . , y{n + N)]'^ physically represents 2N + 1 successive received 

signal samples around the sampling instant n. From Equation (1.17) we can observe that for the 

optimum equaliser coefficients, i.e. when the vector c does not change from one iteration to another, 

the remaining update term should have zero mean value, i.e.: 

^[y'(M)e(M)] = 0. (1.18) 

This implies that for the optimum equaliser coefficients the error signal e(n) is uncorrelated to the 

received signal y{n). The choice of the iteration step-size parameter A in Equation (1.17) is impor-

tant, since small values of A result in slow, but accurate convergence, while larger values result in 
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Figure 1.4: Decision-directed equalised system 

faster but less accurate convergence of c to its optimum value. The LMS approach is superior to 

the ZF technique because, besides the intersymbol interference, it can also combat the effect of noise, 

since the error term of Equation (1.8) takes into account both of these two factors of signal corruption. 

1.2.0.3 Decision-Directed Equalisers 

The general form of a Decision-Directed (DD) equalised receiver is shown in Figure 1.4. As it can 

be seen from this figure, the equaliser coefficients are constantly updated, even when the training 

sequence is not transmitted, by using the output of the equaliser after a decision has been made with 

respect to the most likely transmitted symbol. In other words, the decision device's noise-free output 

signal a{n) is used as a training sequence. This decision-directed approach can be very robust when 

the decisions are correct, that is if the signal to noise ratio is sufficiently high and the channel does not 

change rapidly, compared to the time interval between adjacent transmissions of the training sequence. 

When these two restrictions are satisfied, the use of the decision-directed scheme results in fast and 

robust convergence. 

By defining the error as [9]: 

e n 
+00 / N 

== ^ I o W - ^ - A) I , (1.19) 

where a{n) is the transmitted signal and y{n) is the received signal at time instant n, we can find the 

equaliser coefficients, which minimise e(n) as in [9]: 

N 

where 

%&(%,&) = #(%), i = -N,...,N, 
k=-N 

H a(n)2/(m-%), 
n = — w 

9 

(1.20) 

(1.21) 
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and b(i, k) is the autocorrelation of y(n), as defined in Equation (1.15). More explicitly, b{i, k) = b\i — k\ 

is considered to depend only on the difference \i — k\, implying that y{n) is stationary, since we have 

assumed that the channel does not change rapidly. Clearly, is the correlation between the trans-

mitted and received signals, namely a{n) and y(n). As with the other equalisers, we can either solve 

the linear system of equations (1.20) or use an iterrative procedure similar to (1.16) that of Equation 

(1 .16) . 

Decision-directed equalisers are similar to blind equalisers, since in this type of equalisation no training 

sequence is available at the receiver, which therefore has to "guess" the original information symbols 

a{n) in order to estimate the error and, accordingly, to adjust the equaliser coefficients. 

1.2.0.4 Recursive Least Squares Equalisers 

The so-called Recursive Least Squares (RLS) equalisers [14], [15] constitute a class of fast converging 

least squares equalisers, which use the incoming new data samples to update the old estimates of 

the equaliser coeScients. They use a computationally more demanding algorithm, than the classical 

steepest descent technique. We define the MSB term following Haykin [15] as: 

= ^/3(n,%)|e(%)|^, (1.22) 
i=l 

where 

e(i) = a(%) — z(%) (1 23) 

with a{i) and z{i) being the transmitted and the equalised received symbol at the input of the dicision 

device of Figure 1.2, respectively. More explicitly, the signal z{i) is given by the convolution of the 

received signal and the equaliser coefficients as: 

N—1 
- A;) = - y(%), (1.24) 

k=0 

where 

= (1.25) 

is the equaliser vector at time n, or equivalently at the n th iteration and 

y W = 2/(% - 1) , . . . , ! / (%- AT + 1)]^ (1.26) 

10 
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is the received signal vector. The weighting factor /3(n, i) is used to ensure that new samples are given 

more emphasis in the MSE function of Equation (1.22), than older ones. Therefore, a rational choice 

for P{n,i) is a negative exponentially decaying weighting function [15]: 

/3(n, i) = w^' (1.27) 

In order to find the optimum equaliser coefficients, which minimise the MSE term of Equation (1.22), 

we differentiate this error term with respect to the equaliser vector c, following the procedure described 

in [9] or by Haykin in [15]. By doing so we arrive at: 

$(n) - = g(n), (1 .28) 

or more explicitly: 

' -yW -y 
i=l 

H, (1.29) 

$(n) = 
1=1 

%(%) - %'(%) 7/(%)* -1/(% - 1) 

!/(* - 1) - JV + 1) 

2/(%-Ar + 2).!/*(%) . . . 3/(%-Ar + 2).i/*(%-Ar + l) 

^ ^ ( % - A r + l ) . ^ * ( % ) . . . 2/( i -JV + l) ?/*(%-AT+ 1) y 

/ 

s W = 1 2 ^ " 'yWa*(%) => g(M) = ' o ' W 
i = l i=l 

2/(%) 
2/(* - 1) 

\ 

(1.30) 

(1.31) 

y{i — N + 2) 

\̂  ̂ (%-AT + i) y 

and is the RLS estimate of the equaliser vector cW, as defined in Equation (1.25). In order to 

estimate the equaliser tap gains we can invert the matrix $ (n ) , yielding: 

;(") = $ ^(n)'g(n). (1.32) 

Following the detailed considerations and calculations presented in [15] or [9], which are reproduced 

in Appendix B, we arrive at the RLS algorithm as: 

^(n) _ g(n 1) - I - k ( n ) • ̂ * ( n ) . (1.33) 

11 
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Feedback Filter 

y(p-i) 

2̂) *(1) 

z(n-d) 

a(n-d) 

Figure 1.5; A typical Decision-Feedback Equaliser 

where 

k(n) = 
w ^(n —l)y(n) 

1 + — l )y (n) 

= o(n) - y(n) 

#~^(n) = — 1) — w~~^k(n)y^ (n)^"^ (n — 1). 

(1.34) 

(1.35) 

(1.36) 

The matrix is the estimate of the inverse of $ (n ) at the n - th time interval. Clearly, matrix 

additions and multiplications render this technique more complex, than the previous ones presented so 

far. In return, this equaliser converges to the optimum solution significantly faster, than the previously 

discussed ones. However, when applying the RLS algorithm in rapidly fading channel environments, 

its channel tracking capability is dictated by the duration of the time-domain window employed. 

1.2.0.5 Decision-Feedback Equalisers 

In automatic control systems it is desirable to use a negative feedback-based structure, since it im-

proves their tolerance to noise. This happens because the negative feedback section generally decreases 

the system's gain-bandwidth product and consequently reduces the noise at the output of the system 

proportionately to the reduced bandwidth. 

Decision-Feedback equalisers {DFEs) [14], [15] constitute a modification of their linear counterparts. 

These equalisers, besides the feedforward filter seen in Figure 1.3, also employ a feedback filter similar 

to the feedforward filter, but using as their input the noise-free output of the decision device. A 

general DFE structure is shown in Figure 1.5. Assuming that the feedforward equaliser coefficients 

Ci have already been computed, using for example one of the previously mentioned techniques, we 

can estimate the feedback coefficients 6%, which minimise the error. We express the error between the 

equalised signal z(n) at the input of the decision device and the estimate of the transmitted signal 

12 
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0(71) aa: 

e(n —J) — E |z(n — , (1-37) 

where ^ is a delay associated with the DFE structure. This delay is physically interpreted as the time 

necessary for the feedforward filter to produce a correct decision to be fed to the input of the feedback 

filter. Using the minimisation method presented in [9], where the transmitted symbol estimate a{n — S) 

has been assumed correct, i.e. equal to the transmitted symbol a{n — S), we arrive at the following 

estimate of the feedback coefficients: 

N f - l 

hi — ^ , i—1,... jiV ,̂ (1.38) 
i=i 

where hi is the channel impulse response. This CIR can be obtained by the receiver upon sounding 

the channel. 

There are numerous other ways of estimating the DFE coefficients, each one resulting in a new DFE 

design. The DFE structure can be used instead of linear equaliser schemes generally improving the 

achievable performance. However, since the feedback section uses the output of the decision device, 

the false decisions must be rare for the DFE to perform well. In other words, at high SNR values the 

DFE is bound to work significantly better than linear equalisers. For this reason, as we will see in 

Chapters 4 and 5, various robust feedback techniques have been devised, which invoke more reliable 

symbol decisions based on channel coding. 

1.2.0.6 Epilogue 

The equalisers we have presented so far have the common characteristic of using a training sequence, 

which is transmitted periodically and is also known at the receiver. This implies that the channel is 

periodically sounded. Clearly, as has already been mentioned, this sequence creates a transmission 

overhead by absorbing a certain fraction of the transmitted bits, which could have been used as 

information bits. 

Following the above brief introduction of the most basic trained equalisers, we can now proceed to the 

most important part of this treatise, which is the extension of these equalisers to the blind scenario. 

In order to equalise the received signal without the use of a training sequence, one has to estimate 

the CIR purely on the basis of the received signal. More explicitly, the parameters of the equaliser 

have to be estimated jointly with the signal, since they are unknown. This can be achieved by using 

statistical estimation techniques. The feasibility of using blind equalisation in mobile communications 

applications is still an open research issue. In [16] an interesting discussion was presented on this topic. 

13 
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In the next section, we investigate bhnd equalisation techniques and discuss various issues related to 

their design. 

1.3 Overview of Blind Equalisers 

1.3.1 I n t r o d u c t i o n 

Blind channel equalisation has been attracting scientific interest since 1952, when Bussgang published 

his original study of a scheme now known as the "Bussgang algorithm" [17]. Following Bussgang's 

study, the topic of blind equalisation has continued to attract both academic as well as practical 

attention. In recent years researchers have intensified their efforts in this field due to the definition 

of a range of important video broadcast standards. The Pan-European Satellite-based Digital Video 

Broadcast (DVB-S) [18], the terrestrial DVB-T [19] and the cable-based DVB-C [20] systems con-

stitute a family of harmonised systems, where both the DVB-S and the DVB-C schemes recommend 

bhnd equalisation. In this section, we ofi'er a comprehensive overview of these techniques, focusing 

on two particular families of methods, namely on the so-called Bussgang algorithms and on the joint 

channel impulse response (CIR) and data sequence estimation. This section is structured as follows. 

In Subsection 1.3.2 we provide a brief historical perspective. The basic principles of blind equalisa-

tion are discussed in Section 1.3.3, followed by an overview of the so-called Bussgang equalisers in 

Section 1.3.5. In Section 1.3.6 we discuss algorithms which have the common characteristic of nor-

malisation of the equalised signal power. Section 1.3.7 is dedicated to a discussion on convergence. In 

Section 1.3.9 joint data and channel estimation techniques are discussed. The second-order statistics 

based algorithms' principles are highlighted in Section 1.3.10. The basic principles of the fourth-order 

statistics based channel estimation and equalisation algorithms using the so-called "polycepstra" are 

summarised in Section 1.3.11. Complexity comparisons are provided in Section 1.3.12. Finally, in the 

next chapter the performance of these equalisers is studied comparatively. Let us now commence our 

discourse with a historical perspective. 

1.3.2 Histor ical B a c k g r o u n d 

In Figure 1.6, we give a historical perspective on the most important blind equalisation techniques in 

communications, as they appeared in the literature. Blind equalisation was originally contrived for 

equalising benign wireline based links, such as telephone lines or for stationary point to point microwave 

links, where the channel's characteristics varied slowly and hence there was no need for employing 

frequent and explicit channel sounding with the aid of a training sequence. In 1975 Sato [3] proposed 

14 



Chapter 1 Trained and Blind Equalisation 1.3 Overview of Blind Equalisers 

Bussgang algorithm [17] (1952) 

1970-

Sato's algorithm [3] 

Benveniste-Goursat-Ruget theorem [26] 1980 Godard's CMA [4] 

Foschini's convergence study [27] 

Polycepstra methods (Hatzinakos et al.) [5 
Cyclostationarity algorithm (Tong et al.) [28 

Super-exponential (Shalvi et al.) [31 
Seshadri's algorithm [6 

Subspace method (Moulines et al.) [29 

Blind genetic algorithm (Chen et al.) [30] 

1990-

2000-

Picchi and Prati's " Stop-and Go" [21] 

Ding's convergence study [22] 
Wesolowski's ModiSed-CMA 
Per-survivor processing (Polydoros et al.) [23] 
Neural-network approach (Kechriotis et al. ) [24] 

Eigenvector algorithm (Boss et al.) [25] 

Figure 1.6: A brief history of blind equalisation 
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an algorithm for blind equalisation, which is now widely known as the "Sato's algorithm". Five years 

after Sato's publication, the blind equalisation problem was further studied for example by Benveniste, 

Goursat and Ruget in [26], where a sufficient condition for the convergence of a blind equaliser was 

established by the well-known Benveniste-Goursat-Ruget theorem as well as in [32], where a new 

algorithm was proposed. At the same time Godard [4] introduced a criterion, namely the so-called 

"constant modulus" (CM) criterion, leading to a new class of blind equalisers. Following Godard's 

contribution a range of studies were conducted employing the constant modulus criterion. Foschini [27] 

was the first researcher to study the convergence properties of Godard's equaliser assuming an infinite 

equaliser length. Later, Ding et al. continued this study [22] and provided an indepth analysis of 

the convergence issue in the context of a realistic equaliser. Although numerous researchers studied 

this issue, nevertheless, a general solution is yet to be found. A plethora of authors have studied 

Godard's equaliser, rendering it the most widely studied and applied blind equaliser. A well-known 

algorithm of the so-called Bussgang type [17,33] was also proposed by Picchi and Prati [21]. Their 

"Stop-and-Go" algorithm constitutes a combination of the Decision-Directed algorithm [15] with 

Sato's algorithm [3]. After 1991, a range of different solutions to the blind equalisation problem were 

proposed. Seshadri [6] suggested the employment of the so-called M-algorithm, as a "substitute" for 

the Viterbi algorithm [34] for the blind scenario, combined with the so-called "least mean squares 

(LMS)" based CIR estimation. This GIR estimation was replaced by "recursive least squares (RLS)" 

estimation by Tzou, Raheli and Polydoros [23,35], combining the associated channel decoding with 

the CIR estimation, leading to what was termed as ^^Per-Survivor Processings^ Since then a number 

of papers have focused on this technique [23,30,36-47]. 

Prior to Seshadri's algorithm, Tong et al. [28] proposed a different approach to blind equalisation, which 

used oversampling in order to create a so-called "cyclostationary" received signal, and performed CIR 

estimation by measuring the autocorrelation function of this signal and by exploiting this signal's 

cyclostationarity. This technique was also applied to the case of 'sampling' the received signals of 

different antennas (instead of oversampling the signal of a single antenna) and further extended by 

Moulines et al. using a different method of CIR estimation, namely the so-called subspace method 

in [29]. Furthermore, Tsatsanis and Giannakis suggested that the cyclostationarity can be induced by 

the transmitter upon transmitting the signal more than once in each symbol interval [48]. A number 

of further contributions have also been published in the context of these techniques [49-64]. Finally, 

one of the first attempts of designing a blind equaliser, which would be more efficient in terms of both 

equalisation accuracy and convergence speed, than the family of Bussgang techniques at the cost of 

extra complexity was made by Hatzinakos and Nikias [5], who proposed a more sophisticated approach 

to blind equalisation by exploiting the so-called "tricepstrum" of the received signal. Until today, the 

blind equalisation problem is an open research topic, attracting significant amount of research. A 
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general answer to the fundamental question Under what circumstances is it preferable to use a blind 

equaliser to a trained-equaliser ?" is yet to be provided. 

Despite the scarcity of reviews on the topic, in the context of the Global System of Mobile Com-

munications known as GSM an impressive effort was made by Boss, Kammeyer and Petermann [16], 

who also proposed two novel blind algorithms. We recommend furthermore the fractionally-spaced 

equalisation review of Endres et al. [65] and the Constant Modulus overview of Johnson et al. [66] 

based on a specific type of equalisers, namely on the so-called "fractionally-spaced" equalisers. A 

review of subspace-ML multichannel blind equalisers was provided by Tong and Perreau [67]. Further 

important references are the monograph by Haykin [15], the relevant section by Proakis [14] and the 

blind deconvolution book due to Nandi [68]. Comparative performance studies between various blind 

equalisers have also been performed. We recommend the second-order statistics-based comparative 

performance studies of Becchetti et al. [69], Kristensson et al. [70] and Altuna et al. [71], which is based 

on the mobile environment as well as the second-order statistics and PSP-based comparative study 

of Skowratanont and Chambers [72]. Furthermore, we recommend the fractionally-spaced Bussgang 

algorithm based comparative performance study by Shynk et al. [73], the CMA comparative perfor-

mance study of Schirtzinger et al. [74] and the comparative convergence study by Endres et al. [75]. 

Let us now review the basic principles of blind equalisation in the next section. 

1.3.3 B l ind Equal i sa t ion Pr inc ip les 

1.3.4 In troduc t ion 

In this section we will introduce and discuss a range of blind equalisation principles, mainly focusing 

on the Bussgang techniques [17,33]. Since Sato's original study in 1975 [3], blind equalisation has 

attracted significant scientific interest due to its potential in terms of: 

• Overhead reduction. Training sequences sacrifice bandwidth in order to assist in determining the 

CIR, hence assisting equalisation. Blind equalisers do not need training sequences and therefore 

conserve bandwidth. 

• Simplification of point to multipoint communications systems or broadcast. When a commu-

nications link is reset, equaliser adjustment "from scratch" is necessary. In this case, using a 

training sequence is inefficient, since the transmitter has to retransmit the training sequence 

specifically for each receiver, which is reset. 

In Figure 1.7 the basic factors affecting the design of an equaliser are shown. In situations, where 

invoking trained equalisation is feasible, increased bandwidth efficiency is the main motivation behind 
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Delay 
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Figure 1.7: Contradictory design factors in the design of bhnd equalisers 

using blind equalisation instead of trained equalisation, since the training sequence wastes a substantial 

fraction of the available bandwidth. The delay that an equaliser exhibits represents the amount of time 

that we can afford to wait, before the information is actually delivered from the equaliser to the other 

modules of the communication system. In some cases, for example when transmitting data files in a 

non-real-time fashion, delay is of no importance. However, the transmission integrity requirements of 

non-real-time data links are typically significantly higher than those of the delay-sensitive interactive 

speech or video links. More explicitly, in scenarios such as in a real-time interactive video telephone, 

the total system delay has to be confined to less than 100ms for maintaining 'lip-synchronisation'. The 

required performance of an equaliser is defined by the application for which it is designed. The average 

Bit Error Ratio (BER) as well as the burst Bit Error Ratio performance is a measure of the equaliser's 

ability to deliver correct hard-decision information. The Mean-Squared-Error (MSE) is another 

measure of performance, which quantifies the ability of an equaliser to deliver good soft-decision 

outputs. Both performance criteria are commonly measured and plotted against the Signal-to-Noise-

Ratio (SNR). The implementational complexity of an equaliser is typically increased when the expected 

performance of the equaliser is higher. The task in this case is to exploit the equaliser's tolerable 

complexity in an efficient manner, so that the performance versus complexity ratio is maximised. The 

adaptation speed is the equaliser's ability to rapidly adapt the equaliser's coefficients to CIR changes. 

This characteristic is essential in violently fluctuating mobile communications channels but is of less 

significance for cable-based channels or any other channels, which can be modeled as quasi-stationary. 

Furthermore, blind equalisers typically require a substantial number of input symbols, before they 

can converge, so that they can circumvent the lack of training information. For this reason their 

adaptation speed is a crucial factor in the case of real-time links. Finally, the convergence of an 
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Figure 1.8; Equalised communications system 

equaliser is not always guaranteed. Specifically, some blind equalisers have been shown to converge to 

spurious undesirable local minima, which can potentially lead them to deliver completely erroneous 

output symbols [22]. These situations have to be avoided when blind equalisers are used, provided 

that appropriate counter measures can be contrived at an acceptable complexity. 

Here we curtail our discourse on the interpretation of Figure 1.7, although a range of further interesting 

design trade-offs can be gleaned from it. We note, however, that throughout this thesis we will refer 

to these design factors as measures of the equalisers' applicability to certain scenarios. 

We will now proceed to describe the fundamental problem of blind equalisation in more depth. In 

our initial discussions the communication system parameters will be assumed to be time-invariant. 

This constraint is not necessary in general, although it is beneficial in terms of complexity reduction. 

Furthermore, the additive noise will be assumed to be Gaussian and white. Let us assume that the 

input bits, resulting from any encoder prior to modulation, are mapped into complex Quadrature Am-

plitude Modulation (QAM) [9] input symbols a{n) transmitted at time instant n. These transmitted 

symbols are filtered by the CIR hi and then the noise e(n) is added to them, resulting in the received 

symbols y{n) at time instant n in the form of: 

L2 
3 / W = 1 ] A i - o ( n - % ) + e ( n ) , 

i=—Li 

(1.39) 

where Li and L2 are the length of the CIR's pre- and post-cursor sections surrounding the main 

tap (measured in terms of the number of transmitted symbols), respectively. An equaliser is typically 

placed after the channel in order to remove the channel-induced dispersion, as it is shown in Figure 1.8. 

Blind equalisation involves finding the 'best' equaliser filter, which regenerates the input symbols a(n) 

at the receiver, without any knowledge of the CIR upon exploiting the knowledge of the distribution 

of the input QAM symbols. If the equaliser has Ni feedback and N2 feedforward taps {cj}, then the 

equalised symbols will be of the form: 

N2 

i=—Ni 

(1.40) 
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and upon using Equation (1.39) we have: 

L2+N2 N2 
^ - %) + ^ ci ' e(n - %), (1-41) 

i——Li —Ni i=-~Ni 

where {ti} = {hi} * {c,} is the convolution of the CIR with the equaliser filter, representing the total 

transfer function of the cascaded system constituted by the channel plus the equaliser. Assuming that 

the noise power is low compared to the power of the received signal, we can observe that the blind 

equalisation problem corresponds to estimating the suitable equaliser impulse response, which reduces 

the first term at the right-hand side of Equation (1.41) to only one of the summation terms. In this 

case, the cascaded system's impulse response tap-vector t takes the form of: 

t = (0, - -, 0, 0, . . . , 0), (1.42) 

where A is a complex constant. This is the only case that corresponds to zero intersymbol interference 

(ISI). Assuming that the strongest signal path is located at time instant 0, Equation (1.41) can also 

be expressed as: 

L2+N2 N2 
z{n) = to • a{n) + ^ ti • a{n — i) + ^ Ci-e{n — i). (1.43) 

i=—Li—Ni, 27^0 i=—Ni 

The first term of Equation (1.43) is the useful one, including the one and only path at time 0. The 

second term is the ISI term, which is also referred to as convolutional noise [9]. This is because this 

term is a noise term, as far as the receiver is concerned and since it is the result of the convolution 

of the CIR hi and the equaliser's impulse response q with the input signal a{n). This is usually the 

main noise contributor at the initialisation of the equalisation process and it is reduced further during 

the stages of the equalisation process, leaving only the real noise term as the sole signal impairment, 

when the equalisation is perfect. Finally, the third term of Equation (1.43) is the noise term e(n), 

convolved with the equaliser's impulse response Cj, since the noise has been filtered by the equaliser. 

A problem similar to blind equalisation is the problem of blind deconvolution [76]. In blind deconvo-

lution the aim is to perform joint channel and data estimation in a non-real time fashion, which is a 

fundamental difference with respect to the blind equalisation problem. The received signal is stored 

and then deconvolved in order to produce the CIR together with the input signal. This is the case, for 

example, when seismic signals are considered [77]. We have no knowledge of the signal emerging from 

the crust of the earth or of the channel that exists between the source of this signal and our receiver, 

hence we attempt to record the signal in order to deconvolve it later. When a channel estimation is 

available to us, we can estimate the input signal in two ways. A feasible approach is to use a sequence 
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Figure 1.9: Classification of blind equalisers 

estimation technique, such as the Viterbi algorithm [34]. Another approach is to produce an inverse 

filter of the channel and to perform filtering with the aid of this inverse filter. We will discuss this 

technique in more detail in Section 1.3.9. 

Let us now point out an important aspect of channel equalisation, noting that if the distribution of 

the equaliser's input signal is Gaussian, then the equalised signal of Equation (1.41) is also Gaussian 

distributed [76]. This is true even if there is more than one term in the sum which are non-zero, 

i.e. even if ISI exists. Conversely, provided that the distribution of the equaliser's input signal is 

Gaussian, the equalised signal constituted by a sum of "independent identically distributed (i.i.d.)" 

Gaussian variables is also a Gaussian variable irrespective of whether there is residual ISI at its output. 

In this case, equalisation is impossible, since the equaliser cannot distinguish the zero-ISI equalised 

signal sequence from the other possible candidate sequences, which contain ISI. In other words, it 

is impossible to equalise the received signal, since the zero-ISI candidate received signal sequence 

is indistinguishable from the other ISI-contaminated candidate sequences. Hence blind equalisation 

cannot be performed, if the distribution of the equaliser's input signal is Gaussian. Fortunately, the 

uniform distribution of typical QAM data sources is far from the Gaussian, which renders the received 

signal amenable to blind equalisation. 

Blind channel identifiability issues have been discussed by Benveniste, Goursat and Ruget in [26] and 

by Huang and Gustaffson in [78] among others. 

The equalisers alluded to in this section are clagsified in Figure 1.9. Following the above general 

discussions on blind equalisibihty, let us now proceed with the overview of the family of Bussgang 
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techniques in the next section. 

1.3.5 B u s s g a n g B l ind Equal isers 

In this section we set out to characterise a range of basic equaliser schemes involving the class of 

^^Bussgang" techniques dating back to 1952 [17]. In our discussion we will consider the following 

signal vectors, which obey the notations of Figure 1.8: 

t jVi—Li ; • • • 5 Â̂ 2+-fj2] 

e(n) = [e{n + Ni),..., e{n - N2)]'^ 

H 

h-Li 0 . . . 0 0 

0 h-L^ . . . A2,2 0 . . . 0 

\ 

0 

\ / 

(1.44) 

(1.45) 

(1.46) 

(1.47) 

(1.48) 

(1.49) 

0 /j-Li • • • ^L2 0 

0 0 . . . 0 /i-Li . . . hi^ 

where ^ denotes transpose, * denotes conjugate and ^ denotes the Hermitian matrix. From these 

definitions the following matrix relationships hold: 

y W 

t 

z(n) 

z(?i) 

H • a(n) 

H ^ c 

- y(M) 

t'' • a(n) + • e(n) 

(1.50) 

(1.51) 

(1.52) 

(1.53) 

Explicitly, Equation (1.50) describes the received signal y{n) as the convolution of the transmitted 

signal a{n) and the CIR hi. Equation (1.51) reflects the convolution of the CIR with the equaliser's 

impulse response and Equation (1.52) characterises the equaliser's output signal z{n) as the convolution 

of the received signal y{n) with the equaliser's impulse response c*. Following these definitions, a 

general form of the Bussgang equaliser update Equations [17] can be expressed as: 

_ g(n) — X y*(yi) - [z(n) — g {z(n)}] 
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where g{z(n)} is a non-linear zero-memory function of the equalised output z(n) and A is the so-

called "step-size" parameter, controlling the speed and the accuracy of the equaliser's convergence. 

The condition for attaining convergence in the mean value for these algorithms is [15]; 

- y* W ] = E[g{z(n)} - y*(n)] (1.55) 

or 

e[z(n)-2/*(n-%)]=e[g{z(n)} '3 /*(n-z)] , % = -,^^2. (1.56) 

Upon multiplying each side of this equation by the relevant equaliser tap coefficient c* and summing 

the results for i = —Ni, - - -, jVg as in [15], we obtain: 

E[z(n) • z*{n)] — E[g{z{n)} • z*{n)]. (1.57) 

If instead of multiplying by c* we had multiplied by c*_^, assuming that the equaliser has an infinite 

number of taps, then Equation (1.57) would take the form of: 

E[z(n) - z*(n — t)] 2̂  E[g{z(n)} - z*(n — A)], (1.58) 

which reflects the so-called Bussgang property that is satisfied by the Bussgang algorithms, when the 

equaliser length is doubly infinite. When both the feedforward and feedback equaliser lengths are 

sufficiently high, then the Bussgang property is approximately satisfied. In the strict sense, however, 

only Equation (1.57) is satisfied. When the equaliser has converged, then the equalised symbols z{n) 

approximate the transmitted symbols a{n) and Equation (1.57) becomes: 

E[z(n) - 9{z(n)}] = E[|o(M)|^] = 1, (1.59) 

provided that the input power is normalised. 

The problem of finding the optimum Bussgang equaliser corresponds to finding the function g{z{n)}, 

which provides the best estimate of the corresponding transmitted symbol a(n) for each equalised 

symbol z{n), whilst satisfying Equation (1.59). According to the Maximum Likelihood (ML) criterion, 

this can be achieved by setting g{z(n)} = .B[a(n)|z(n)], i.e. setting g{z(n)} equal to the expected (or 

most probable) value of the transmitted symbol, given the equalised symbol at time n, z{n). Note 

here that we are investigating zero-memory solutions, that is only the value of the current equalised 

symbol is taken into account in the process and no previous values. In order to find this expected 

value, we have to estimate the distribution fz{z) of the equalised symbols z{n). During the equaliser's 

initialisation, in general the equalised signal contains ISI. If during this initialisation phase we ignore 
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the channel noise by assuming that the ISI is the main signal impairment at this stage, then this means 

that the equalised signal consists of a number of transmitted signal replicas, each having a different 

delay and weight. When the number of these replicas is sufficiently high, according to the central 

limit theorem we can approximate the distribution of the equalised symbols z{n) with a Gaussian 

distribution. In our analysis in this section we shall assume that the central limit theorem condition 

can be invoked since there is a sufficiently high number of ISI terms. In practical situations the 

presence of six to eight ISI terms is sufficient for the central limit theorem to become applicable. 

Assuming also M-level QAM transmissions, the expected value giving the estimate of g{z{n)} obeys 

the following form, which is similar to the one given in [76] for pulse-amplitude modulation (PAM): 

where the coefficients constitute the signal amplitudes associated with the QAM constellation and 

cr̂  is the variance of the noise, consisting of two components, namely the convolutional noise and the 

Additive White Gaussian Noise (AWGN) induced by the channel. An estimate of the noise variance 

(T̂  must be available for the evaluation of Equation (1.60). However, the function g{z{n)} is only 

the optimum one under the assumption of a Gaussian distribution for the composite noise, which 

is produced by the ISI plus the channel's additive noise. Depending on this distribution, different 

Bussgang algorithms exist. The well-known Godard (or CMA) [4], Sato [3], Benveniste-Goursat [26] 

or Stop-and-Go [21] algorithms constitute a few such algorithms. We will describe each of them in 

the forthcoming paragraphs and discuss their characteristics. 

As an illustration, in Figure 1.10 we have plotted the real part of the function g{{z)}, evaluated from 

Equation (1.60), for the algorithm of gML{z{n)} = E[a{n)\z{n)] under the assumption of —20dB 

additive Gaussian noise power. The real part of a 16-QAM signal can take four discrete values, 

symmetrically distributed around the origin. The estimated signal, which approximates the most 

likely transmitted signal, should be close to these legitimate constellation points. We observe that 

this is the case, when the above ML algorithm is used, under the assumption of low noise {20dB 

below the signal level). In this low-noise scenario, the ML algorithm estimates the transmitted signal 

as the constellation symbol, which is closest to the equalised symbol z{n) at time instant n. This is 

illustrated in Figure 1.10 by the four levels, corresponding to the four discrete values that the real 

(or the imaginary) part of a 16-QAM signal can assume. If the noise variance is not sufficiently low, 

however, then the surface of Figure 1.10 loses its resemblance to the 16-QAM constellation. This is 

shown in Figure 1.11, where the noise variance was assumed to be —lOdB, i.e. lOdB higher than in 

Figure 1.10. When no CIR information is available, it might be extremely optimistic to assume that, 

even without channel noise, the power of the ISI-induced noise would be as low as — 20d_B. In fact 
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Figure 1.10: The real part of the function g{z{n)} in Equation (1,60) plotted against the complex 
-plane for ML detection assuming Gaussian noise having —20dB variance for 16-QAM. 
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Figure 1.11: The real part of the function g{z{n)} in Equation (1.60) plotted against the complex 
z(n)-plane for ML detection assuming Gaussian noise having —lOdB variance for 16-QAM. 
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it might be well over OdB, thus rendering the 16-QAM pattern unrecognisable in the received signal. 

The approximation of the estimation function g{z{n)} for each Bussgang algorithm is given in a 2D 

plot in [76] for 8-level PAM, where the signals are real-valued. Similar figures can be generated by 

extending the approach of [76] to the case of 16-QAM, where the signals assume complex values, as 

can be seen in the 3D plots of Figures 1.10 and 1.11. 

An alternative interpretation of the function g{z{n)} can be observed by considering a "cost-function" 

J{z{n)}. The minimisation of this cost-function leads to the desired equaliser tap values, according 

to the wide-spread steepest descent algorithm [15]: 

c(«+l) = e(») - A . (1.61) 

which physically implies that the taps at instant n are modified by the derivative of the cost-

function - after weighting by the step-size A - in the direction of minimising the cost-function. Ac-

cording to Equations (1.61) and (1.54) the following relationship holds between g{z{n)} and J{(z(n)}: 

Again, in simple, but conceptually feasible terms Equations (1.61) and (1.62) can be interpreted as 

updating each tap of the equaliser on the basis of the gradient of the error term 

e(n) = z(n) - g{z(n)} (1.63) 

with respect to (wrt) a specific tap. Depending on the polarity of the cost-function's derivative wrt 

a specific tap, this tap is updated according to the step-size A, such that in the next step it reduces 

e(n) - hence the negative sign in Equation (1.61). Upon using the differentiation rules with respect 

to a vector given in Appendix C, we can readily arrive at: 

g{z(n)} = z(n) - / {z*(n)} , (1.64) 

where ' denotes the derivative and the associated difference quantifies the discrepancy of the equalised 

output z(n) and the derivative of the cost-function given by Equation (1.62). Equation (1.64) will 

be useful, when we consider the Bussgang cost-functions individually and derive the corresponding 

equaliser tap update algorithms. 

Again, in all of our discussions, we employ QAM [9] and the general structure of the equaliser is shown 

in Figure 1.12. As we can see from this figure, the blind equaliser coefficients are updated using the 

knowledge of the received signal vector y(n), the equalised signal z(n), the phase-corrected equalised 
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Figure 1.12: Equaliser structure used in Bussgang techniques 

signal z(n)e~^'^ and the estimated signal d(n). We note, however, that a specific Bussgang equaliser 

may not make use of all of these signals in order to update its equaliser tap coefficients. It depends on 

the algorithmic implementation, which of these signals are invoked in the tap update process. What 

is common, however, to all Bussgang algorithms is that the error estimate in Equation (1.63) will be a 

function of the equalised symbol z{n) at time n only, i.e. they are based on a zero-memory estimation. 

In the equalisers presented in this section the sampling rate is identical to the signalling-rate - or 

Baud-rate, that is we use only one sample per symbol period. These equalisers are referred to as 

symbol-spaced schemes, as opposed to fractionally-spaced equalisers, which use more than one sample 

per symbol in order to equalise the channel. A typical example of fractionally-spaced equalisers is 

constituted by the family of second-order cyclostationary statistics based blind channel estimation 

algorithms [7]. In the context of Bussgang schemes, the extension of these equalisers to fractionally 

spaced arrangements is relatively straightforward. Such algorithms have been reported in the literature 

for example by Pei and Shih in [79] or by Dogancay and Kennedy in [80]. They have been further 

studied for example by Endres, Johnson and Green in [81], by LeBlanc, Fijalkow and Johnson in [82], 

by Endres, Halford, Johnson and Giannakis in [65], by Magarini et al. in [83] and by Papadias and 

Slock in 

Before proceeding to the discussion of Sato's algorithm, we note that the Bussgang zero-memory 

function g{z{n)} of Equation (1.54) can be extended to the non-zero-memory case, if we take into 

consideration more than one equalised symbols in generating the error function of Equation (1.63). 

This was proposed by Yang for the CM A in [85] but more on this will be discussed in Chapter 3. Let 

us now consider a range of Bussgang algorithms in a little more depth in the forthcoming subsections. 

27 



1.3 Overview of Blind Equalisers 1.3 Overview of Blind Equalisers 

1.3.5.1 Sato's Algorithm [3] 

Sato's pioneering contribution in 1975 [3] described the first blind equalisation algorithm proposed, 

which was designed for real-valued signals and PAM. However, its extension to complex-valued signals 

and QAM is straightforward, especially in the spirit of Godard's publication of the well-known CMA 

[4], which was derived for complex-valued QAM signals. Sato's algorithm dedicated to real valued 

signals z{n) uses the following cost-function [3]: 

J ^ W = E [ ( | z W | - 7 ) " ] , (1.65) 

where 7 is Sato's scaling coefficient and E[], again, represents the expectation over all possible trans-

mitted data sequences. It is clear that this cost-function is forcing the absolute value of the equalised 

signal to a fixed value 7. This is a plausible policy to pursue, when Binary Phase Shift Keying (BPSK) 

is used, but not for any other multilevel PAM scheme. For these multilevel constellations the min-

imisation of the Sato cost-function of Equation (1.65) may not seem to lead to the correct update of 

the equaliser taps at each iteration. Nonetheless, experimental experience shows that the minisation 

of Equation (1.65) may still lead to convergence to the desired zero-lSI equilibrium, although not in 

all cases, as we shall see in Section 1.3.7. The associated complex Sato cost-function can be defined 

as in [32]: 

J^(n) = E [(|Ae{z(yi)}| - 7)^] ^ [(|7m{z(m)}| - 7)^] . (1.66) 

The steepest descent algorithm - which results from the cost-function of Equation (1.66) - can be 

found by determining the gradient of the cost-function with respect to the equaliser tap vector c. 

Alternatively, using Equation (1.64) we obtain; 

= cagn(z(n)), (1.67) 

where the complex "signum" function is given by; 

c5gn(z(M)) = agn(.Re{z(M)}) -I-j - sgn(7m{z(n)}). (1.68) 

In Figure 1.13 a plot similar to these in Figures 1.10 and 1.11 is given for Sato's algorithm. Clearly, 

this surface does not follow the four legitimate values of the 16-QAM constellation pattern of Figure 

1.10, it is constituted into two planes. All the other Bussgang algorithms follow a pattern similar to 

that of Sato's algorithm and none of them follows the specific 16-QAM constellation pattern of the 
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Figure 1.13: The real part of the function g{z{n)} in Equation (1.67) plotted against the real part of 
the equalised symbol z{n) for different Sato algorithm. The modulation used is 16-QAM. 

ML algorithm seen in Figure 1.10. Sato's algorithm [3] is thus given, according to Equation (1.54) by: 

= cW - A . y ' ( n ) . (1.69) 

where E^"*°(m) is the Sato-error defined as: 

^ _ cagn(2(n)). (1.70) 

Explicitly, the tap vector c in Equation (1.69) is adjusted according to the correction term A • y*(n) • 

where Sato's error term depends on the cost-function of Equation (1.66). As it can 

be seen from Equation (1.70), this algorithm uses only the sign of the equalised output values z(n) in 

order to update the equaliser coefficients. This implies that the exact value of z(n) is ignored. Clearly, 

an error in the polarity of z{n) is less probable, than an error in its exact value, when compared to 

the actual transmitted value a(n). Therefore, Sato's algorithm has the advantage that it avoids using 

the generally error-prone exact value of z{n), in favour of invoking the less spurious polarity of it. In 

the case of symmetric multilevel PAM transmissions, for which the algorithm was originally proposed, 

Re{z{n)} assumes equi-probable positive and negative values. Using suitable coding and taking into 

account only the sign of z{n) implies ignoring the fine-resolution channel effects. The same idea can 

be adopted for QAM transmissions, where Re{z{n)} and Im{z{n)} can be treated as two independent 

PAM constellations. 

Setting the value of the scaling coefficient 7 in Equation (1.69) is very important, since it actually 

directs the signal z{n) to the point of its convergence, i.e. to the original constellation points. A way 
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Figure 1.14: The cost-function of Sato's algorithm in Equation (1.66) in the context of square 16-QAM 
against the complex plane of the equalised signal z{n) 

of achieving this is by constraining the mean value of the error update term of Equation (1.69) to zero. 

Therefore, the optimum value is set for 7 in the minimum mean squared error sense. This optimum 

value was set by Sato [3] to: 

^ = (1.71) 

for real valued signals. This is the only value of 7, which sets the mean value of the error term in 

Equation (1.70) to zero. For complex-valued transmitted signals 7 is given by a similar relationship: 

7 = 
E[Re{a{n)'^}] _ E[Im{a{n)'^}] 

E[Re{\a{n)\}] E[Im{\a{n 
(1.72) 

Sato's co s t - func t ion Having presented Sato's algorithm, we will now take a closer look at the 

cost-function of this algorithm in order to explain some of the 

algorithm's properties. In Figure 1.14 the cost-function is plotted against the complex plane of the 

equalised symbol z{n) seen at the input of the decision device in Figure 1.2. When the equaliser reaches 

convergence, this equalised signal should cluster around the constellation points of the modulation 

scheme used, in this example 16-QAM. However, despite these expectations, we can clearly observe 

that the cost-function of Sato's algorithm exhibits minima only at the four points (±7, ±7^). More 

explicitly, the observed minima represent actual constellation points only for QPSK and BPSK. By 

contrast, for 16-QAM, the minima do not represent constellation points. This, of course, does not 
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mean that the algorithm does not converge for 16-QAM. What it implies is that in blind equalisation 

the "desired" state of equilibrium does not satisfy the condition that the equalised symbol is precisely 

equal to the transmitted symbol. As it has already been mentioned, this is because the receiver does 

not "know" what the transmitted symbol was, since no training sequence is used. We will see later 

that different Bussgang-type equalisers exhibit different types of minima in terms of their related 

cost-functions and this is reflected in their convergence properties. Prom Figure 1.14 we also observe 

that at the point z(n) = 0 the cost-function exhibits a local maximum. Local maxima are unstable 

points for these equalisers, since by using the negative gradient of their cost-function, we ensure 

that only local minima can be stable extrema. This is augmented in more depth in Appendix C.2. 

The above-mentioned characteristics do not prove the convergence of Sato's algorithm, but provide a 

deeper physical interpretation of these properties. 

Having described Sato's algorithm, which was historically the first blind equaliser proposed, we will 

now present a modification of this algorithm. 

S igned-Sa to a lgor i thm [86] A modified version of Sato's algorithm, referred to as the '^Signed-Sato^^ 

technique was proposed by Weerackody, Kassam and Laker in [86]. According to this approach, the 

error signal is altered by taking only its sign into account, modifying Equation (1.69) as follows [86] : 

g(n+i) _ g(n) _ ^ _ y*(n) - csgn(6'^(n)). (1-73) 

This algorithm performs the csgn{) function on the error term of Equation (1.70) rendering the update 

procedure insensitive to the error's actual value. One of the consequences of this is that when the 

equaliser is approaching convergence, the "almost correct" values of the equalised symbols are not 

exploited by the equaliser adaptation procedure. This implies that the convergence accuracy of this 

algorithm must be poorer than that of Sato's. On the other hand, faster convergence is achieved. 

We observe the following properties of this algorithm, compared to Sato's algorithm: 

• Its complexity is somewhat lower since the csgn{) function eliminates some multiplications, as 

we will see in Section 1.3.12. 

• Its convergence has an increased dependence on the step-size parameter in the sense that a 

smaller A is required for convergence, as compared to Sato's A. 

» Its convergence speed is higher. 

• Its robustness appears to be better. This is because it only uses the sign of the error, which is 

less likely to be wrong than the noise-contaminated error itself. 
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1.3.5.1.1 Switching to Decision—Directed Equalisation After reaching the converged steady-

state, maintaining the same step-size as during the convergence phase would result in poor equalisation 

performance. One should decrease the step-size, when convergence is accomplished, so that a better 

convergence accuracy is achieved. Ideally, one would want to switch to decision-directed equalisation, 

which could be combined with any of the equaliser coefficient computation techniques of Chapter 1.1, 

i.e. the LMS or RLS algorithms, for example. In order to accomplish this, we have to ensure that 

there are no decision errors at the receiver, otherwise a catastrophic performance degradation could be 

inflicted by the decision errors. If we could have this 'ideal side-information', then decision-directed 

adaptation would be applicable, which would act effectively as explicit equaliser training. However, 

the decision-directed equalisation works even in conjunction with a non-zero, but sufficiently low bit 

error rate. An early study on this issue has been carried out by Mazo in [87], where he identified the 

local minima of the decision-directed algorithm in the case of Pulse Amplitude Modulation (PAM) 

based transmission. Quite clearly, these minima depend on the modulation scheme used and on the 

number of equaliser taps, which in turn depend on the channel characteristics. 

A more appropriate application of decision-directed equalisation is found in scenarios when explicit 

symbol-reliability information is available at the receiver, which can be generated for example with 

the aid of the channel decoder. In fact channel coding assisted schemes constitute the most promising 

improvements of blind equalisers designed for mobile channels. Simulations using Sato's algorithm 

during the initial phases of communication and switching to decison-directed mode after convergence 

are given in Section 2.5, using the conventional Sato algorithm as benchmarker. It is shown in Sec-

tion 2.5 that employing the DD-enhanced algorithm provides a BER improvement, which is higher 

for higher-order QAM and for high SNR values, since for high SNRs the decision-directed errors are 

less frequent. For a deeper discussion on error-detection the reader is referred to [88-93]. Having 

described Sato's algorithm, let us now consider the so-called Constant Modulus Algorithm''', which 

was proposed by Godard in [4]. 

1.3.5.2 Constant Modulus Algorithm [4] 

A more general algorithm was proposed by Godard for blind equalisation in [4] and also by Treichler 

in [94], which was further generalised later by Shalvi and Weinstein in [95]. Its related cost-function 

is defined as: 

= ^ e [ | | z w r - apl"], (1.74) 
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which will be elaborated on below. Godard's original algorithm and all other related algorithms 

use only q = 2 and this is the case that we will focus on from now on. One can observe that Sato's 

algorithm in Equation (1.66) is similar to the CMA of Equation (1.74), when we have p = I and q = 2. 

The reason for considering the difference betweeen the amplitude of z{n) and a constant Rp instead of 

the actually transmitted symbol a(n), is that in blind equalisation we attempt to match the equalised 

signal not to the actually transmitted sequence, which is never available, but to its statistics, which of 

course is known at the receiver. Given this cost-function, the coefficient adjustment algorithm using 

the steepest descent technique of Equation (1.61) can then be invoked. The value of the parameter 

Rp has to be matched to the constellation in a way similar to the setting of 7 for Sato's algorithm 

in Equation (1.66). Clearly, this algorithm forces only the amplitude of the received signal to match 

a desired mean value, but ignores the phase. Consequently, the phase of the received signal might 

have arbitrary variations. Godard suggested that equalising only the magnitude of the signal should 

be adequate. The associated phase ambiguity can be removed by using differential phase encoding, 

which is congenial to the nature of blind equalisation. Indeed, a sign ambiguity is related to any blind 

equaliser, stemming from the fact that the QAM constellations are symmetric with respect to the x 

and y-axes. As it is clear from the definition of the CMA's cost-function in Equation (1.74), in the 

case of pure phase modulation, the equaliser's output z{n) will be constrained to a constant value 

and the algorithm will readily converge [4]. A variation of this algorithm, which solves the problem 

of the arbitrary phase rotation is the so-called Modified-CMA, presented in the next section. Using 

Equations (1.64) and (1.74) we obtain: 

= 'z(n) - [1 - . (1.75) 

Substituting this Equation into Equation (1.54) we readily arrive at the equaliser tap update equation 

of the CMA [4]: 

c("+i) = — A • y*(?T.) • 2;(n) • \z{n)\^ — R2 • (1.76) 

The value of R2 can be found by constraining the mean value of the update term of Equation (1.76) 

equal to zero, assuming that the equalised signal z{n) is equal to the transmitted signal a{n) with 

its phase rotated by a random value, i.e. assuming that the state of perfect equalisation has been 

reached. The procedure of determining R2 is exactly the same as the one, which was used to compute 

Sato's scaling coefficient 7, yielding [4]; 

In Figure 1.15, the CMA's cost-function is plotted against the complex plane of the equalised symbol 
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Figure 1.15: The cost-function of Equation (1.74) for the CMA in the context of square 16-QAM 
against the complex plane of the equalised signal z{n) 

z{n) at the decision device's input seen in Figure 1.2, in the same way as it was done for Sato's 

algorithm in Figure 1.14. It is plausible that the minima of this cost-function are on the circle 

of radius As in the case of Sato's algorithm, the algorithm's adaptation procedure does not 

attempt to force the equalised symbol to be equal to the transmitted one, except in the case of 

pure phase modulation, such as for example for M-PSK. The difference between Sato's and Godard's 

algorithms is exactly this point. Specifically, while Sato's algorithm favours QPSK or BPSK, the 

CMA favours any pure phase modulated constellation, i.e. PSK, in which case, convergence becomes 

accurate. By using star QAM as in [9], we can force the equaliser to converge to a circle, or even to a 

pair of circles, as in the case of the twin-ring Star 16-QAM constellation. However, it is shown in [9] 

that this constellation is not optimum in the sense of noise resilience, since the Euclidean distance 

amongst its constellation points is lower than that of square 16-QAM [9]. One can readily visualise 

that by appropriately allocating points on the z{n) plane, we can generate cost-functions, matching 

certain geometric patterns, each one giving rise to a different adaptation algorithm, which has its own 

properties. In this sense, an "optimum" equaliser would originate from a cost-function exhibiting local 

minima as close to the constellation points as possible. In the extreme case, when the local minima fall 

exactly on the constellation points, the cost-function has to be a polynomial of degree equal to at least 

twice the number of the constellation points, since only such a polynomial can have this number of 

local minima. This would imply using a high-order cost-function, and hence the resulting adaptation 

algorithm of which would be prone to instability. Small variations caused by additive noise can drive 
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the equaliser to instability. However, the same will happen when the equaliser's initialisation does not 

set it to its region of convergence, which is usually the case. 

Having introduced Godard's classic CMA, let us now consider an important modification of it in the 

next section. 

Signed-CMA A modification of this algorithm, similar to that of Sato's described in Section 1.3.5.1, 

is the so-called proposed by Weerackody, Kassam and Laker in [96]. This algorithm 

uses the cost-function: 

J(n) = E [\Re {z{n)}\ + \Im {z{n)} - , (1.78) 

where Rs is a constant. The minimisation of this cost-function with respect to the equaliser's tap 

vector c is described in Appendix D.3, which results in the following update equation 

_ gW _ ^ . y*(Ti) - ggn,(|Ee{z(n,)}| + - Eg) - csgn(z(n,)) (1-79) 

where, again, csgn{) is defined as in Equation (1.68). It is clear from Equation (1.79) that the error 

signal expressed as sgn{\Re {z{n)}\ + \Im {z{n)}\ — Rs) • csgn{z{n)) which multiplies y*(n) in the up-

date formula of Equation (1.79) results in quantised values of the form {±1, This, in turn, results 

in forcing the equaliser to converge to the circumference of a 45° rotated square in the signal space, 

instead of a circle, as Godard's algorithm would. As an illustration, in Figure 1.16 the corresponding 

convergence trajectories are drawn for the CMA and for the Signed-CMA algorithms in the case of 

square 16-QAM. In Figure 1.17, the error-surface of the Signed-CMA algorithm is drawn against 

the complex plane of the equalised signal, for square 16-QAM. As in the case of the Signed-Sato 

algorithm [86] of Section 1.3.5.1, this algorithm uses a decision based only upon the sign of the error 

and should be considered only in conjunction with a variable step-size parameter, in order to switch 

to a low step-size after convergence was attained. 

A generalisation of Godard's algorithm was proposed by Shalvi and Weinstein in [95]. For this algo-

rithm the cost-function to be minimised is the so-called Kurtosis of the equalised signal z{n), defined 

as [5]: 

= .B[|z(M)|'̂ ] — 2 - — |.B[z^(n)]|^ (1.80) 

for complex-valued equalised symbols z{n). The algorithm resulting from this cost-function is detailed 

in [95], where it is shown that this generalised algorithm results in Godard's algorithm as a special 

case. Following this algorithm, Shalvi and Weinstein proposed their so-called super-exponential 

algorithm [31], which uses 4-th order cumulants and converges at a nearly super-exponential speed. 

Cumulant-based blind equalisation algorithms have been proposed for example in [25,97-101]. As 
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(a) (b) 

Figure 1.16; Godard (a) versus Sign-Godard (b) convergence trajectories for 16-QAM according to 
Equations (1.74) and (1.78) respectively [96] 

16-QAM points 

Cost function J(n) 

1 

0.8 

Re{z(n)} 1 

0.5 lm{z(n)} 

Figure 1.17: The cost-function of Equation (1.78) for the Signed-CMA algorithm in the context of 
square 16-QAM against the complex plane of the equalised signal z{n) 
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an important extension of Godard's algorithm, Wesolowsky's modified CMA is presented in the next 

section. 

1.3.5.3 Modified Constant Modulus Algorithm [102] 

Another modified version of Godard's CMA [4] was proposed by Wesolowsky in [102], employing a 

cost-function, which relies on both the real and imaginary parts of the equalised signal z(n) [4]: 

(1.81) 

The idea behind this cost-function, as compared to the CMA cost-function of Equation (1.74) is 

that both the real and imaginary parts of the signal are forced to a constant value and, therefore, 

the random phase ambiguity of the CMA now becomes only 90°. This is meaningful in pure phase 

modulation, in which case the CMA may converge to an arbitrarily phase-shifted solution. For QAM 

though, the 90° symmetry of the constellation makes it possible for both algorithms to converge to a 

90° phase-shifted solution. Following the same procedure as in the context of the other algorithms, 

based on Equations (1.61) and (1.62) we obtain: 

r ( " + l ) = c(n) _ 

- A - y*(n) - [.Re[z(m)] - ^(j(e[z(n)])^ -

+ ; - - ^(7m{z(n)})^ -

z — (Ae{z} - ^(Ae{z})^ — .Rz.a) + 

; - Ag,/))). 

(1.82) 

(1.83) 

The values of i?2,i? and i?2,/ can be found using the same method as for the other algorithms, namely 

by constraining the mean value of the update terms in Equation (1.82), yielding [4]: 

^2,1 = 

E {Re {a 

E (j^e {o 

E (7771 {o( 

E (7m {o( 

(1.84) 

(1.85) 

As for all other Bussgang algorithms, in Figure 1.18 the error surface of Equation (1.81) is plotted 

against the complex plane of the equalised signal for 16-QAM. It is shown that while the CMA cost-

function of Equation (1.74) has minima on a circle, the MCMA has its own minima at four points, 
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16-QAM points 

Cost function J(n) 

0.4 

Re{z(n)} 0.5 

-1 lm{z(n)} 

Figure 1.18; The cost-function of Equation (1.81) for the Modified-CMA algorithm in the context of 
square 16-QAM against the complex plane of the equalised signal z{n) 

just like Sato's algorithm, while using fourth-order statistics instead of second-order statistics, as is 

the case for Sato's algorithm. It was shown by Wesolowsky [102] that the MCMA exhibits slightly 

faster convergence than the classical CM A, in particular for medium-distortion channels. It also offers 

slightly better steady-state performance, as will be shown in Chapter 2. Let us turn our attention to 

considering the Benveniste-Goursat algorithm [32]. 

1.3.5.4 B e n v e n i s t e - G o u r s a t A lgor i thm [32] 

In Sato's algorithm [3], the error signal was expressed in Equation (1.70), which is repeated here for 

convenience: 

^ _ C5gn(z(n)). 

The error term is used to update the equaliser coefficients, according to Equation (1.69). This error 

signal is however non-zero, when the signal is perfectly equalised, except in the case of QPSK, since 

7 is a constant value, reflecting the statistics of a(n), while z{n) generally takes its values from a 

multilevel constellation, when the SNR is sufficiently high and the equaliser has converged. This 

results in inaccurate steady-state behaviour along with small error fluctuations around the point of 

equilibrium associated with the minimum error. In other words, even near the optimum equaliser 

setting, not every tap update drives the equaliser towards the desired equilibrium. In order to remedy 
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these deficiencies, Benveniste and Goursat [32] considered the decision-directed error signal expressed 

aa: 

— 6(n), (1.86) 

which becomes zero, when equalisation has been accomplished, giving a good-steady state perfor-

mance. On the other hand, this error signal cannot be employed during the equaliser's initial conver-

gence phase, since at the beginning of the equalisation process the decisions concerning z(n) are often 

erroneous and this would drive the coefficient update equation to an ill-conditioned state. Combining 

the error signals in Equation (1.70) and (1.86), each one scaled by a certain weight, Benveniste and 

Goursat [32] formulated a new error signal as: 

E^°(n) = Ai . €^^(n) + Az - |E^^(M)| - e^''^°(n), (1.87) 

where ki and k2 are the corresponding weighting factors. This error signal is zero, when equalisation 

is perfect and, at the same time, it is not as error-prone as a purely blind decision-directed (DD) 

approach would be at start up, since then the influence of Sato's error term in Equation (1.70) 

offers better error estimation. Using this combined error signal we readily arrive at the Benveniste-

Goursat (B-G) algorithm [32], adjusting the equaliser taps according to: 

g(n+l) _ g(n) _ (1.88) 

A good choice for ki and k2 in Equation (1.87) would be to initialise the algorithm with a large 

k2/ki ratio and decrease the ratio, when the equaliser is close to convergence in order to render 

the steady-state equalisation more accurate. This philosophy is similar to the idea of switching to 

decision-directed mode, when the equaliser has converged. 

The related g{z{n)} function in this case can be found by comparing Equations (1.54) and (1.88), 

yielding [76]: 

g(z) = z(n) — Ai - e^^(n) + A2 - |6^^(n) | - 6'^''*°(n). (1.89) 

Having discussed the Benveniste-Goursat algorithm, we will now consider another DD-like algorithm 

in the next section, namely the stop-and-go algorithm by Picchi and Prati [21]. 

1.3.5.5 S t o p - a n d - G o Algorithm [21] 

In the previous algorithms the equaliser coefficient update is inevitably occasionally wrong due to 

the statistical nature of the algorithms. This leads to a reduced convergence speed and also to a 

degradation of the steady-state performance of the equaliser. In order to avoid this impediment to 
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some degree, Picchi and Prati [21] suggested an algorithm, which decides whether a specific received 

symbol should contribute to the update process and updates the equaliser coefficients, only when it 

has decided that this would bring their values closer to their steady state ones. The algorithm used 

for updating the coefficients is the classic error feedback algorithm with the decision-directed error 

expressed as in Equation (1.86), which is repeated here for convenience: 

= z(n) - 0(71). 

Two variables, namely fn^R and fn,i are introduced in [21], each of which defines a measure of the 

probability that the update of the real or imaginary part of the equaliser coefficients is correct. Natu-

rally, the actual probability is unknown at the receiver, but it can be estimated using the philosophy of 

the Sato-type error of Equation (1.70), setting fn^R and fn,i to 1 and 0, depending on our confidence 

in the success of the update, as [21]: 

y _ . 1 if 

0 if sgn{Re[e^^(n)] ^ sgn{Re[e^'^^"{n)]) 

and 

f 1 if sgn{Im{e^^(n)}) = sgn{Im{e^'^^°{n)}) 

0 if sgn{Im{e^^(n)}) ^ sgn{Im{e^"'^"{n)}). 

Practically this implies that the update of the real part of the equaliser coefficients only takes place 

when: 

j(e[z(n)] > 'y and Ae[6(m)] < JZe[z(n)] 

or 0 < < gf and Ae[a(n)] > Ae[z(n)] 

or —7 < Re[z{n)] < 0 and Re[a{n)] < Re[z{n)] 

or JZe[z(n)] < —-y and _Re[a(n)] > Ae[z(n)] 

The graphical interpretation of this is given in Figure 1.19 where the "go" regions - i.e. the regions 

for which the equaliser decides to perform an update - are shown in the equalised complex symbol 

plane z{n). From this we can infer that the "correct" values for z{n) are those ones that are expected 

to bring a(n) closer to 7. This issue was richly illustrated in [21] in geometrical terms. This is a 

plausible, but certainly imperfect criterion. The probabilities of making a false update decision are 

also calculated in [21]. 

With the aid of these definitions we can form the algorithm using the classical error feedback algorithm 

of Equation (1.54), but involving both the real and imaginary parts of the error, enabled or disabled 

(1.92) 
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Figure 1.19: A graphical interpretation of the decision areas of the Stop-and-Go algorithm in the 
context of Equations (1.90) and (1.91) for 16-QAM. The 135°-rotated lines correspond to the regions 
where the real part of the decision-directed error can be used for updating while the 45°-rotated lines 
correspond to the regions, where the imaginary part of the error can be used for updating 

by and /n,;, aa follows: 

("+!) = cW - A - y*(m) - (1.93) 

A simple modification of this algorithm, which was suggested by Choi, Hwang and Song in [103], 

uses a CMA-type error term, instead of the Sato error term of Equation (1.70), in order to form the 

decisions concerning the validity of the equaliser update at each symbol. This error term is of the 

form: 

z- (|z(m)|' (1-

where the symbols z{n) and Rp are defined in Section 1.3.5.2. This error term corresponds to circular-

type regions in the complex equalised symbol domain z(n). The decision regions, in a similar fashion 

to the Stop-and-Go algorithm using the Sato error update of Figure 1.19, are portrayed in Figure 1.20. 

It is not intuitive, why an equalised symbol in these regions is more likely to update the coefficients 

correctly, than in the non-shadowed regions of Figures 1.19 and 1.20. However, we can say that when 

the equalised signal falls into these areas, then the decision-directed error term of Equation (1.86) 

becomes similar to the blindly detected Sato-type (or CMA-type) error term of Equation (1.94) and 

hence this signal can be used more confidently for updating the equaliser coefficients. This is because 
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Figure 1.20: A graphical interpretation of the decision areas of the Modified-Stop-and-Go algorithm 
in the context of Equations (1.93) and (1.94) for 16-QAM. The 45°-rotated lines correspond to the 
regions where the real part of the decision-directed error can be used for updating while the 135°-
rotated lines correspond to the regions, where the imaginary part of the error can be used for updating 

this error term comes from a blind estimator and its mean value is always zero. In the opposite 

scenario, when the equalised signal z{n) falls outside these areas, then the equaliser is simply not 

updated. Another observation is that any algorithm which is used to describe the blindly-estimated 

error, like Sato's algorithm or the c m a , would characterise the shape of the shadowed regions. For 

example, Sato's algorithm in Equation (1.69), which is based on the sign function, gives rectangular 

areas while the CMA of Equation (1.76), which is based on constant signal magnitude, gives circular 

regions. Close observation of Figures 1.19 and 1.20 reveals that the basic areas of equaliser updating 

in the two figures are similar; the difference is only in the shape of these regions. 

This algorithm is expected to have an advantage over the previous algorithms of Sections 1.3.5.1-

1.3.5.4, since it uses Equations (1.91)-(1.92) for rejecting unreliable coefficient updates and to render 

the convergence more steady and accurate. Nevertheless, the algorithm's convergence is hampered to 

a certain degree, since it does not use all the incoming symbols for updating the equaliser coefficients. 

Finally, again, we present the symbol estimation function g{z{n)} corresponding to this algorithm, 

which is readily found by observing Equations (1.54) and (1.93), yielding: 

g{z(n)} = z(n) - . 
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y(n) a(n) z(n) 
Channel Equalizer 

Channel-Equalizer 

t 

Figure 1.21: Combined channel plus equaliser system model considered by the super-exponential 
algorithm 

Having reviewed the most important Bussgang algorithms, we now discuss the so-called "normalised 

algorithms" in the next section. 

1.3.6 N o r m a l i s e d A l g o r i t h m s 

The philosophy of the normalised algorithms differs from that of the Bussgang techniques of Section 

1.3.5 in that they use an equaliser update term, which is divided by the square of the L2-norm of 

the received signal vector. This appears as a normalisation of y, which explains the term "normalised". 

1.3.6.1 The Super-Exponential Algorithm [31] 

In this section a fast-converging blind equaliser is presented, which was proposed by Shalvi and 

Weinstein in [31]. The combined channel plus equaliser system-model is depicted in Figure 1.21. In 

the absence of ISI the combined channel plus equaliser scheme is expected to have a Kronecker-J 

impulse response, which is ensured by this algorithm. Its design was the result of the authors' efforts 

to find a simple equaliser, which would converge only to the desired response and at a rapid rate. The 

algorithm is formulated by denoting the i - th entry of the combined channel plus equaliser scheme's 

impulse response vector, by ti and by updating the %-th coefficient according to the following basic 

relationships: 

ti = 
h 

(1.96) 

(1.97) 
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where t' is the combined vector of the channel plus equaliser scheme's impulse response and ||t'|| is 

its L2 norm given by: 

\ 
N2+L2 

%=——2,1 

while t* denotes the complex conjugate of t. It is clear that Equations (1.96) force all but one of 

the coefficients to converge to zero, and the remaining one to a magnitude of unity. Alternatively, 

Equations (1.96) encourage the equaliser's impulse response taps to diverge towards instability, due to 

the powers to which the taps ti are raised. Moreover, it forces the coefficients to converge rapidly, since 

they are raised to high powers. This boosts the speed of convergence for this algorithm, ultimately 

obeying a nearly exponential rate, hence its name. Furthermore, Equations (1.97) normalise the 

combined channel plus equaliser scheme's tap vector, ensuring that the vector t" always has a unity 

norm, preventing it from diverging. Since a coefficient ti may potentially converge to either a unity 

or a zero magnitude and since the vector t" has a norm of unity according to (1.98), the only stable 

points of convergence for this system are the points for which one coefficient has a unity magnitude 

and the rest are zero. This solution is the one which corresponds to the condition of zero ISI and, 

consequently, it is the desired response. The only ambiguity that exists for these points of convergence 

is concerning which of the coefficients has the unity magnitude, and the associated phase of this 

coefficient. These ambiguities are present in all blind equalisers and they are inherent in their nature. 

Having described the algorithm in terms of the combined channel plus equaliser impulse response, 

Shalvi and Weinstein proposed an equaliser adaptation procedure corresponding to the above equations 

[31]. This adaptation procedure is based on higher-order statistics (cumulants) and the order of the 

statistics required depends on the values of p and q in Equations (1.96). The algorithm is described 

by the following equations [31]: 

c' == (1.99) 

' ° x / c ' + R c " 

where 

and y{n) is the received signal, a(n) is the transmitted signal, z{n) is the equalised signal at time 

instant n and c , c" are the equaliser vector and the normalised equaliser vector respectively. Fur-

thermore, the definition and properties of the cumulants (functions of the form L{)) are given in 

Appendix F. It is clear that this algorithm has an inceased complexity because of the matrix inversion 
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involved in Equation (1.99) and due to the cumulants that have to be evaluated in Equation (1.102) 

for performing the updates. A method for estimating the cumulants is given in [31] for p = 2 and 

q = 1. For large p or q values, the complexity is significantly increased. On the other hand, global 

convergence is guaranteed and at a nearly super-exponential speed. A first-order approximation of 

the super-exponential algorithm was also provided in [31], which led to the CMA. Additionally, it has 

been shown by Gu and Tong [104] that under certain circumstances the convergence characteristics 

of the super-exponential algorithm are similar to those of the CMA, since both algorithms exhibit 

only length-dependent undesirable local minima. Several further studies have been conducted in the 

context of this algorithm since it was proposed [105]. A range of additional modifications have also 

been proposed in [106], while in [107] its extension to the RLS is proposed. In [108] the algorithm's 

extension to the fractionally-spaced case is considered and finally in [109] a reduced-complexity mod-

ification is suggested. 

1.3.6.2 Normalised C M A [110] 

This algorithm, proposed by Papadias and Slock in [110], uses a different approach from the classical 

CMA. In mathematical terms the cost-function to be minimised is formulated as; 

(1.103) 

where [jxHg is the .Lg-norm of the vector x, which is defined as: 

N 

11̂ 112 = (1.104) 
i = l 

under the constraint that the estimate z{n) of the equalised symbol z(n) is constrained to take a 

value from the set of 'legitimate' symbols of the constellation d{n). More explicitly, the constraint is 

that 

z{n) = d{n) (1.105) 

where 

= y^()^)' (1.106) 

is the dot-product of the received vector y(n) and the equaliser tap vector physically giving an 

estimate i (n) of the equalised symbol of z{n), by filtering the received signal y{n) using the updated 

equaliser taps rather than the old ones, cW. The cost-function of Equation (1.103) can be 

physically interpreted as an equalisation technique which converges when the equaliser taps do not 
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significantly change from the iteration n to n + 1. To elaborate a little further, the quantity d{n) in 

Equation (1.105) can be either the actually estimated symbol of the QAM constellation in the context 

of the decision-directed approach yielding d{n) = a(?i), or a point on the circle having a radius of 

and centred at zero in Figure 1.16(a) in the context of the CMA approach. Alternatively d{n) may 

assume one of the points {±7, ±J7} in Figure 1.16 for Sato's approach in Section 1.3.5.1, at time n. 

The constraint of Equation (1.105) is often referred to as a 'hard constraint', which is difficult to satisfy. 

A modification of this constraint is the so-called 'soft constraint', which is easier to implement [110]: 

mimg(n+i)||y(m)||2 - - cw | |2 + / / ' |z(m) — (1.107) 

At this stage we assume that d{n) is known, however, during our further discourse in this section 

we will give the best choices for it [110]. The original minimisation problem of Equation (1.103) 

can be viewed as a special case of the generalised constraint of Equation (1.107). In fact, this soft 

constraint represents a weighted combination of the cost-function minimisation in Equation (1.103) 

and the previous hard constraint. The minimisation of Equation (1.107) leads to the following update 

equations [110]: 

g(n+i) _ gW _ . (z(n,) - d(M)) (1.108) 

where A = /i/(l + /i) and 

I Rp • sign(z{n)) for CMA 
o!(n) = j * " (l109) 

a(n) for DD, 

and where sign{re^'^) = removes the magnitude r and retains the phase information 

We can observe the basic difference in comparison to the Bussgang techniques of Section 1.3.5, which 

is the normalisation of the received vector y(n) by its L2 norm in Equation (1.108). The philosophy of 

this equaliser is that it reaches convergence, when its coefficients change only slightly at each iteration, 

that is if « c(") and also Equation (1.105) is satisfied, which means that the estimated equalised 

symbols belong to the desired set. When DD equalisation is employed, Equation (1.105) implies that 

the estimation z{n) of z{n) is perfect, provided that the associated decision was error-free. In the case 

of the CMA, the equalisation is imperfect, if the modulation is not purely phase modulation, i.e. the 

constellation points are not on a circle, as in Figure 1.16(a). This implies that the ISI does not become 

zero, it rather oscillates around zero. This point was made earlier, in the context of our discussion 

on the CMA. The Normalised CM algorithm (NCMA) considered here can also be readily extended 

to the RLS technique, which guarantees fast adaptation in exchange for its higher complexity. In 

order to achieve this, one only has to replace the DD error of the constraint in Equation (1.105) with 

the weighted sum of errors, as in Equation (1.22) and proceed as in Section 1.2.0.4, based on the 
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calculations of Appendix B. This algorithm, is referred to as the affine projection algorithm, which 

was proposed by Ozeki and Umeda [111]. 

1.3.6.3 Soft Constraint Algorithm [112] 

The Soft Constraint Satisfaction (SCS) algorithm, which was contrived by Constantinides et al. in 

[112], relies on an approach similar to that of the NOMA. The criterion that has to be satisified is the 

same as in Equation (1.103), but the constraint of Equation (1.105) is different. In mathematical terms 

the constraint requires the magnitude of the equalised samples to be constant, which is formulated as: 

= (1.110) 

where again, the equalised samples are given by: 

i (n) = y^(n) • (1.111) 

In order to find a practical solution, again, the constraint of Equation (1.110) is relaxed so that 

it becomes incorporated in the minimisation process and we attempt to find an algorithm, which 

minimises the following cost-function: 

+ // - (|z(n)|^ — A^). (1.112) 

The resulting algorithm is [112]: 

c(n+i) = cW _ 2 . y*(n) - (z(M) - z(m)), (1.113) 
iiy WII2 

where a step-size parameter A was introduced and z{n) is estimated as 

while i? is a constant to be determined on the basis of [112] by setting the mean value of the error 

term in Equation (1.113) to zero, when the system is close to convergence. In this case A « 1, 

z{n) % R • sign{z{n)) and R is determined as [112]: 

Using A ^ 1 the algorithm does not satisfy Equation (1.112) exactly, only approximately. By com-

paring Equations (1.108) and (1.113) as well as setting A = 1, the algorithm becomes the same as the 
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NOMA. 

It is shown in [112] that the Soft Constraint algorithm has better convergence properties, than the 

CMA, as well as the Sato and the Normalised CMA algorithms in terms of convergence probability. 

A generalised version of the algorithm is given in [112] using not one, but multiple constraints. This 

algorithm involves matrix inversions and it is rather demanding in terms of computational complexity. 

Having reviewed a range of Bussgang algorithms, let us now consider some of the associated conver-

gence issues in the next section. 

1.3.7 Convergence Issues 

1.3.7.1 State of the Art 

In this section, the convergence properties of the Bussgang equalisers are discussed and the problems 

associated with them are explored. These issues attracted the attention of researchers as early as 

1980, when Benveniste, Goursat and Ruget proved the convergence of a class of blind equalisers, 

under an assumption for the distribution of the transmitted signal and the assumption of an iniinitely 

parametrised equaliser, Godard also studied the convergence of the algorithm he proposed [4]. Later, 

in 1985, Foschini [27] provided a proof of the convergence of the CMA, when the length of the equaliser 

is doubly infinite, i.e. when both the number of the feedforward and the feedback taps of the equaliser 

was infinite. It was not until a few years later that Ding et al. [22] proved that when the equaliser 

is not of infinite length, then there can be undesirable stable local minima, depending on the CIR. 

Ding et al. arrived at this conclusion by considering a special class of channels, namely the so-called 

"autoregressive" channels, and by finding the local minima of a CMA equaliser for these channels. 

Their theory presented in [113] also revealed that the local minima of the CMA based Baud-rate spaced 

Bussgang equaliser correspond to local minima of all other Baud-rate spaced Bussgang equalisers for 

the same channel, arising from the fact that the equalisers do not have an infinite length. These 

minima are thus referred to as length-dependent minima [114]. Algorithm-dependent minima do not 

exist in the family of CM As, but do exist in Sato's algorithm [115], in the context of the Benveniste-

Goursat algorithm [32] and in conjunction with the Stop-and-Go algorithm [114]. The above two 

CMAs and also the Shalvi-Weinstein algorithms [31] exhibit only length-dependent local minima. It 

has to be mentioned that a general solution for the convergence of the Bussgang equalisers is still an 

open research issue. 

The regions around undesirable local minima have also been studied by Ding et al. [116, 117] and 

by Johnson et al [118], while initialisation strategies have been proposed by Li and Ding in [119]. 

Moreover, it has been indicated that the convergence performances of the CMA and the Shalvi-
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Weinstein algorithms are similar to each other and also similar to the performance of the LMS (or 

Wiener) receiver [104,120,121], Finally, dynamic convergence issues have been treated, for example, 

in [122-124]. Similar studies have recently been conducted also for fractionally-spaced equalisers 

[59,81,125,126]. 

1.3.7.2 Convergence in the Absence of Channel Noise 

In this overview we give a basic analysis model for the convergence of Bussgang equalisers and interpret 

some well-established results. We commence this analysis with a convergence analysis of the CM A. 

We consider a noiseless environment, which simplifies our discussion. We recall the error term of the 

CMA's equaliser tap update formula from Equation (1.76): 

, C M A (n) = y*(M) - . (|z(n)|^ - ^(2). (1.116) 

This error term is basically the derivative of the CMA's cost-function in Equation (1.74) with respect 

to the equaliser tap vector. The points at which the mean value of this error term becomes zero define 

the local minima, maxima and saddle points of this algorithm. Therefore, in order to find the possible 

local minima, we have to evaluate the local minima of the following equation: 

y*(n) - z(n) - (|z(n)|^ - %) = 0. (1.117) 

By substituting the vectors from Equation (1.44) to (1.49) into Equation (1.117) and taking the 

expectation we have: 

where 

E y*(M) -z(n) - (|z(n)|^ - A2)] 

= E Î H* • a*(n) • (a^(ri) • t) • {z*{n)z{n) - %)] 

E |H* • (a*(n) • a^(n)) • t • (^{t^a*{n)) • (a^(n)t) - i?2) 

E H* • ((a* • a^)(t • t^)(a* • a^) — R2 • (a* • a t-H T\ 

H* T t. 

(1.118) 

T = Ii4^diag{\ti\'̂  - 1) + 

/j,l • ( t t ^ + -

- 2 - 1^,' " , 1^)), 
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or 

and fj,j = E[\a{n)\^], while Ki = Ni + Li, K2 = N2 + L2- The candidate stationary points will satisfy 

the set of equations: 

H* T t = 0. (1.121) 

The resulting equations may have two types of solutions. We can assume that the null-space of matrix 

H* is trivial, i.e. we assume that: 

H* x = 0 = > x = 0. (1.122) 

As long as the number of the taps is finite, the channel matrix H* is an ( # i + # 2 + l ) x (A'"i+A^2+-^i+-^2) 

dimensional matrix, which has less rows than columns. A system characterised by H* • x = 0 in 

conjunction with such a matrix H* always has an infinite number of non-trivial solutions. If the 

equaliser has an infinite number of feedforward and feedback taps though, then the situation changes. 

We can see that the channel matrix H of Equation (1.49) now has an infinite number of rows and 

columns, thus being a square matrix having linearly independent rows, which implies that the system 

characterised by Equation (1.122) has only the trivial solution. This was shown differently by Ding et 

al. in [113]. For the moment, we will assume that the matrix has a trivial nullspace. In this case we 

can find the stationary equilibrium points of the algorithm by finding the solution of the following set 

of equations: 

T t ^ O . (1.123) 

The solution of these equations can be found to be any vector t , which has some zero entries and some 

non-zero values, all exhibiting the same magnitude. Since the vector t is constituted by the convolution 

of the CIR with the equaliser's impulse response, ideally t would be a Dirac delta function. The vectors 

t having more than one non-zero components represent saddle points, yielding unstable equilibria, 

which do not affect the equaliser's convergence performance. This can be shown by examining the 

second derivative of the tap update formulae in Equation (1.76) with respect to the equaliser tap vector 

c. The second derivatives can be found in the same way as the first derivatives, with the exception 

that now the derivative is with respect to the conjugate of the equaliser tap vector c, yielding: 

= H* . T' . (1.124) 
ococ^ 

where 

T = — 1) 4-
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2/i2 • (tt-^ + t^ t*I -

- 2 . 1̂ , - " , (1.125) 

or 

_ f m - (2|t ,r - 1 ) + 2//^ 141' 2 = ; 

The positive definiteness of a matrix A can be verified by considering the term - A - x*. In our 

case, this term becomes: 

x^ H* T ' X* 

( h ^ . x ) ^ . t ' . ( h ^ . x ) * . (1.127) 

Prom this relationship we observe that if the matrix T' is positive (negative) definite, then the matrix 

H* • T ' • is also positive (negative) definite. Therefore, it is sufficient to estimate the positive 

definiteness of T . By examining the sub-determinants of T' , we can easily see that if only one entry 

of the vector t is non-zero, then all of the sub-determinants have the form /il and are positive, which 

implies that the matrix is positive definite and the associated error surface point is a local minimum. 

Finally, all the other solutions, for which more than one component of the vector t is non-zero, have 

positive and negative subdeterminants for the matrix t ' , thus constituting saddle points. 

The stationary points of the Modified CMA [102] of Section 1.3.5.3 have a similar form to the stationary 

points of the CMA [4] of Section 1.3.5.2, as explored by Wesolowsky in [102], since the cost-functions 

of these two algorithms are similar. 

Above we have found the stationary and saddle points of the CMA under the assumption that the 

rows of the channel matrix are linearly dependent. In general, this assumption is not true, unless 

the number of feedforward and feedback taps of the equaliser is infinite. In practice, however, for a 

number of taps, that is substantially higher than the channel order, this is approximately true. In 

practical cases the number of taps is sufficiently high, when it is more than three times the channel 

order. Ding et al showed in [22,113] that if the number of equaliser taps is not infinite, depending 

on the form of the CIR, undesirable equilibria may be present. The authors considered a specific 

channel, namely the autoregressive channel and found the undesirable equilibria associated with this 

channel. These are length-dependent equilibria, which are likely to exist in a similar form for every 

other Bussgang equaliser. This can be seen, if we recall Equation (1.118). The multiplicative matrix 

H* in Equation (1.118), which is responsible for the undesirable equilibria explored by Ding et al. [22], 

stems from the y* factor multiplying the error term in Equation (1.54). This equation is common 
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to all Bussgang equalisers, which implies that the term H* will exist for any other algorithm of this 

type and therefore all these algorithms will exhibit these unstable equilibria. Interestingly, the same 

term is encountered in the context of the LMS equaliser of Section 1.2.0.2, which indicates that there 

should be a correspondence between the local minima of the Bussgang algorithms exhibiting only 

length-dependent local minima and the LMS equaliser. In fact, it has been shown by Zeng in [120] as 

well as by Li and Tong in [119] that there is a one-to-one correspondence between the local minima 

of the CMA and those of the LMS algorithms under certain assumptions, including amongst others, 

that the modulation scheme used is BPSK and that the noise variance is low. Therefore, despite the 

lack of a proof for the general correspondence of the CMA's minima with the LMS minima, at least 

under certain specific circumstances this has been shown to be true. In Appendix E the above result 

is confirmed using a similar procedure. 

1.3.7.3 Convergence in the Presence of Channel Noise 

Let us now focus on the situation, where channel noise is inflicted and we repeat the same analysis 

under this assumption. In this case in Equation (1.117) we make the following substitutions: 

y(n) = H - a ( n ) + e ( n ) (1.128) 

z{n) = • a(n) + • e(n), (1.129) 

where all the signals and vectors have been defined in Equations (1.44)-(1.49). We consider the mean 

values of these signals over the following two random variables: 

• the QAM symbols a{n), which are assumed to be independent identically distributed (i.i.d.) and 

• the noise samples e(n), which are assumed to be uncorrrelated, having a zero mean value and a 

variance of but no specific distribution is assumed for them. 

Under these assumptions Equation (1.117) becomes (Appendix G): 

H* . T . t + (7̂  . (2//2H*||c||^t + 2/^2||t||^c - A2c) + + = 0, 

(1.130) 

where [Ai]i symbolises a column of matrix A, the i - th element of which is Ai and a \ is the 4-th order 

moment of the noise samples' distribution. Comparing Equations (1.121) and (1.130) we observe the 

existence of three extra additive terms, all of which exist only because of the additive noise. Due 

to its complexity, to date no general solution of Equation (1.130) has been found. The stationary 
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points of the error surface in Sato's algorithm were explored in [115], while the stationary points of 

the modified CMA of Section 1.3.5.3, which were explored in [102], are similar to those of the c m a. 

A different type of analysis, suggested by Shynk and Chan in [127], assumed that the convolutional 

noise is normally distributed and provides similar results. Fractionally-spaced equalisers of this type 

have also been studied. It has been shown by Ding et al. [59, 126] that a sufficient condition for 

the existence of only one desirable global minimum is that the equaliser's length is at least equal 

to the channel's delay spread and, at the same time, there are no common zeros for the subchannels 

created by considering the ^-transform of the oversampled channel. This condition implies that for the 

channel to be correctly equalised, the subchannels should be uncorrelated, so that invoking sampling 

more than once per symbol interval provides us with independent information. More explicitly, the 

subchannels are defined as the CIRs, which are delayed, with respect to the symbol-spaced CIR, by 

a fraction of the symbol interval. In mathematical terms, this means that the subchannel i would be 

deEned as: 

= [A(-i ; i . r + 2. r , ) , . . . , r + % - ( i . i s i ) 

where T is the symbol duration and Tg = T/A, while A is the oversampling factor. In other words this 

means that the associated subchannels are reasonably diverse. Endres et al. [81] have also explored 

the scenario, where the first of these conditions was not met. In closing, we note that the extension 

of Bussgang equalisers to fast RLS estimation based schemes has been proposed by Douglas et al. 

in [128] as well as by Papadias and Slock in [110]. 

1.3.7.4 Avoiding the Undesirable Equilibria of Bussgang Equalisers 

1.3.7.4.1 Detect ing 111—Convergence In this section we will propose a way of overcoming the 

problem of undesirable equilibria of the Bussgang blind equalisers of Section 1.3.7.2. The idea goes 

back to 1994, when Dogancay and Kennedy [129] studied the feasibility of testing for the convergence 

of a decision-directed equaliser provided that only the probability distribution of the input sequence, 

which is BPSK, is known. In this study we follow a different procedure. In order to decide whether 

the equaliser has converged or not, we will statistically test the following hypothesis: 

• HI: The equaliser has converged. In this case \ti\ = 1 for some i and tj = 0 for j ^ i. 

• H2: The equaliser has not converged. In this case there are more than one j indices for which 

^ 0. 
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Figure 1.22: The PDF of the real or imaginary component of the equalised signal under HI for QPSK 
for various channel SNRs 

If HI is valid, then the equalised signal will be of the following form: 

z{n) = a{n — J) + ^ Cj • e(n — i), (1.132) 
i 

where S is the equaliser decision's delay (which can be zero) and e(n) represents the noise samples, 

which we assume to be uncorrected white Gaussian noise. An obvious way of testing the hypothesis 

HI is to test, whether the distribution of the equalised symbols matches the type of distribution 

that we would expect under HI. In Figure 1.22 we have plotted the Probability Density Function 

(PDF) of the real or imaginary part of the equalised noise-contaminated symbols for QPSK under the 

hypothesis HI for various channel SNRs. The same plot is given in Figures 1.23 and 1.24 for 16-QAM 

and 6 4 - q a m respectively. We observe that the PDF approaches the Gaussian distribution when the 

SNR is low and the discrete uniform distribution of the QAM symbols when the SNR is high. Based 

on the measured pdf of the equalised symbols we can run a statistical inference test - such as for 

example the Kolmogorov-Smirnov or the Chi-square test [130] - to decide whether the HI hypothesis 

is valid. If in reality the hypothesis H2 is valid instead of HI, then the distribution of the equalised 

symbols is that of numerous weighted uniformly distributed variables, stemming from the ISI, plus 

numerous weighted Gaussian distributed variables having a zero mean value, which stem from the 

noise filtered by the equaliser. Hence, the latter component becomes a non-white Gaussian variable. 
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Figure 1.23: The PDF of the real or imaginary part of the equalised signal under HI for 1 6 - q a m for 
various channel SNRs 
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Figure 1.24: The PDF of the real or imaginary part of the equalised signal under HI for 64-QAM for 
various channel SNRs 
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The former component is no longer the uniform distribution, which it was under HI. Ill-convergence 

can be detected, if the hypothesis H2 is detectable on the basis of recognising the above-mentioned 

bi-modal PDFs. 

1.3.7.4.2 Avoiding 111—Convergence Situations Once an ill-convergence situation has been 

detected, the task of avoiding this situation arises. This can be achieved by re-initialising the equaliser 

far from the current point of convergence. The question in this case is how the equaliser taps should 

be re-initialised. Various initialisation strategies have been suggested for blind equalisers [131,132], 

but the generic solution to this problem is difficult to find. A conceptually simple way of achieving 

this would be to retain all the unstable equaliser tap sets in memory and to re-initialise the equaliser 

far from these tap sets. The equaliser vector's trajectory could also be used for providing information 

about the region of the unstable equilibrium so that the reinitialisation point can be adjusted to be 

sufficiently far from this region. If the equaliser converges again to another undesirable equilibrium, 

then the unstable tap sets stored in memory are updated. This procedure assumes, however, that the 

channel is time-invariant. The equaliser is never "allowed" to return to the tap setttings that have 

already been classified as unstable. 

1.3.8 Contro l l ing t h e Equal iser P a r a m e t e r s 

When designing a linear blind equaliser, an important issue to be considered is how to set the equaliser 

parameters. The basic parameters to be set are the equaliser order and the step-size. Naturally, in 

specific equalisers there may be a range of other extra parameters to be set. For example, a Benveniste-

Goursat equaliser of Section 1.3.5.4 also requires the adjustment of the ki and k2 parameters. In a 

study concerning this issue, which was conducted by Wesolowsky in [133], a procedure of smoothly 

switching between two different sets of step-sizes and filter orders is proposed for the Stop-and-Go 

algorithm. 

Selecting the equaliser order appropriately is crucial, which has to be based on an estimation of the 

channel's impulse response. Both the length and the shape of this CIR is of importance. If the CIR 

duration is underestimated, then the equaliser order may not be sufficiently high and the resultant 

residual ISI will corrupt the signal. On the other hand, increasing the equaliser order indiscriminately 

is detrimental, since: 

• The equaliser complexity will be increased. It has to be noted, however, that the complexity 

of linear equalisers increases only linearly with the number of equaliser taps, as will be seen in 

Section 1.3.12 and therefore the complexity increase is not significant. 
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» The speed of convergence will be decreased as a result of the parallel adaptation of an increased 

number of equaliser taps. 

« The convolutional noise will be increased. Usually, when the equaliser has converged to a de-

sirable point, the equaliser taps around the main tap have a large value, while the taps which 

are substantially delayed with respect to the main tap have relatively small values. When the 

number of equaliser taps is increased, the small-valued blind equaliser taps, which are far from 

the main tap, are often not updated correctly, since their optimum values are too small. 

A way of overcoming the problems of excessive equaliser order is to retain a high number of equaliser 

taps and to estimate which of the equaliser taps are similar in terms of their magnitude to the value of 

the step-size. These taps are close to zero and their contribution to the equalisation process is random 

and therefore unnecessary. By forcing them to zero we can eliminate some taps, once the system has 

decided that they are insignificant. This reduces both the associated complexity and the convolutional 

noise. In order to determine, which taps can be eliminated during the equalisation process, we should 

identify the specific taps having relatively low values with respect to the main taps, which also exhibit 

a large variance with respect to their mean value, implying that these values are changing randomly, 

rather than converging. The equaliser's step-size, on the other hand, is responsible for the speed of 

convergence and also for the accuracy of convergence of the blind equalisers concerned. When the 

CIR is time-variant, the equaliser has to able to adapt to the CIR changes. The Bussgang equalisers 

do not exhibit fast convergence characteristics that would allow them to adapt to the typically rapid 

CIR variations occuring in mobile environments, except when the mobile speed is low and hence the 

CIR is slowly varying. 

If the CIR does not change significantly during a transmission frame, invoking the blind equaliser 

in a forward-inverse manner, as seen in Figure 1.25 following Letaief et al. [134], can equalise the 

channel, provided that a sufficiently high number of QAM symbols can be processed. More explicitly, 

in Figure 1.25 this involves feeding the equaliser with the received input frame a(n), • • • ,a(n — N), 

then continuing by feeding the time-reversed frame a(n — AT), • • • a(n) to the equaliser and so forth, 

until the equalisation becomes perfect. Again, this procedure is illustrated in Figure 1.25. One might 

wonder, why we actually need to reverse the signal input to the equaliser during the odd-indexed 

iterative steps. The answer lies in an assumption that all these equalisers have to satisfy in order to 

work, namely that the input signal is i.i.d.. Independence is the assumption, which is violated when we 

feed the same input frame several times to the equaliser. By occasionally reversing the input frame, 

we create pseudo-randomness, as in turbo-equalisation for example [135], and hence the equaliser 

converges more rapidly. When randomness does not exist in the transmitted data, then the Bussgang 

equelisers fail to converge to the ideal point of equilibrium. Instead, they converge to points, which 
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Figure 1.25: Forward-inverse equalisation scheme [134] 

are shifted with respect to the ideal point in the vector space and this shift is a function of the exact 

correlation between the transmitted data symbols. However, we use the word "randomness" in the 

sense that the correlations between the data, from the first to the last, are all zero. In practical cases 

some correlation exists amongst the data symbols. This correlation implies a low-pass filtered power 

spectral density and the bandwidth of the corresponding hypothetical low-pass filter has a substantial 

influence on the Bussgang equaliser's convergence. If this bandwidth is sufficiently high with respect 

to the reciprocal of the equaliser's adaptation time, then 'sufficient randomness' is present for the 

equaliser's convergence point to be associated with a low BER performance degradation. 

As has been mentioned already, a small step-size guarantees good convergence accuracy, while a 

large step-size results in poor acccuracy and it also might drive the equaliser to instability. Each 

equaliser has its own convenient range of step-size values to be used, which also depends on the 

modulation scheme used. In one of the original contributions on Bussgang blind equalisers, Godard [4] 

suggested using a variable step-size for his constant-modulus equalisers. Commencing with a large 

step-size ensures fast adaptation towards the point of convergence and then reducing the step-size 

upon approaching convergence offers the required accuracy. 

Another point that we will emphasize here is the inter-dependence of the step-size and the equaliser 

order. Specifically, concerning the interactions between the step-size parameter and the equaliser 
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order, it should be noted that increasing the number of equaliser taps generally requires a smaller 

step-size value for avoiding instability, while maintaining the same accuracy. This becomes plausible, 

if we recall a point we made concerning the equaliser order, namely that the higher the equaliser 

order, the higher the convolutional noise, provided the equaliser order is already sufficiently high for 

removing the ISI. By decreasing the step-size, the equaliser converges with better accuracy and this 

reduces the convolutional noise, which was engendered by the increase in the number of taps. The 

above statements are true not only for linear equalisers. They are more general and all the blind 

equalisers of iterative nature obey these properties. For example, the sequence estimation techniques, 

which will be presented in Section 1.3.9 also use LMS (or RLS) type channel estimation that have the 

same characteristics as the iterative Bussgang techniques. Various studies of the equaliser parameter-

control issues have been conducted [136-139]. Below we give a more indepth analysis of the equaliser 

parameters' influence on the achievable performance. 

1.3.8.1 Convergence Accuracy 

In order to find the optimum equaliser order for a given channel, it is beneficial to observe the Mean 

Squared Error (MSB) of the equalised signal measured with respect to the input signal, which is 

defined as: 

= ^[|z(n) - G(n)|^]. (1.133) 

The right equaliser order is the one which gives the minimum MSE. Therefore, the MSE has to be 

evaluated as a function of the equaliser order, which is typically an arduous task. This is a very 

complicated function to estimate. However, we will invoke some useful approximations, which will 

simplify this function. We commence by noting that if e(n), t, c and a{n) are as defined in Equations 

(1.44)-(1.48), then with the aid of Equation (1.53) we can express the MSE term of Equation (1.133) 

as: 

MSE = E t^a(n) + cFe{n) — a{n) 

= E j^(t^a(n) + c^e(n) — a(n))(a^(n)t* + e^(n)c* — a*{n)) 

= /U2 (^||t|p — 2i?e{t5} + i j + (T^||c||^, (1.134) 

where | |x |p is the L2~norm of vector x, o"̂  is the noise variance, /i2 is the mean value of the square of 

the transmitted QAM symbols a{n) and 5 is the delay associated with the equaliser's convergence to 

a delayed solution. Furthermore, we have assumed that the noise is uncorrelated with the input signal 

a(n), implying that no co-channel interference exists. It can be seen from Equation (1.134) that the 

non-zero MSE is the result of two corrupting factors, namely that of: 
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® the additive noise (term • ||c|p) 

• the intersymbol interference (term ^2 (||t||^ — 2Re{ts} + 1)). 

Let us now study these two factors separately in the next paragraphs. 

Firstly, the effect of additive channel noise incorporates the filtering of the noise term by the equaliser. 

As we can see in Equation (1.134), this filtering results in the noise power being multiplied by the L2 

norm | |c |p of the equaliser vector c. Therefore, we expect a degradation of the MSE due to noise, 

which is not exactly equal to the genuine channel noise power, but rather to the sum of the noise 

power and the L2 norm of the equaliser vector, when expressed in the logarithmic domain, in terms of 

dB. This will be used to investigate the excess ISI which is produced by the noise's influence on the 

equaliser's tap estimation, as we will see in the next section. Secondly, the ISI exists for three basic 

reasons: 

• the number of taps of the equaliser is insufficient 

• despite the sufficiently high equaliser order there exists a non-zero steady-state MSE for the 

equaliser associated with the specific modulation scheme and the equalisation algorithm used 

• the additive noise power is sufficiently high for limiting the blind equaliser's capability of esti-

mating the right tap values. 

• imperfect transmitter and receiver filtering, which results in ISI. 

1.3.8.1.1 Channel Order Mismatch The first of these reasons simply implies that the number of 

equaliser taps is lower than that necessary for near-perfect equalisation, i.e. for attaining a sufficiently 

low ISI in the absence of additive noise. The behaviour of the Bussgang equalisers, when their number 

of taps is low and the channel noise power is also low, is similar to that of the LMS equaliser. This 

is because in this case the generally superior LMS equaliser exhibits an MSE performance, which is 

dictated by the limited number of equaliser taps. In this case, by designing the LMS equaliser required 

for the channel encountered we can estimate its transfer function and the corresponding ISI for each 

equaliser order. This procedure is shown by means of a simulation example in Figure 1.26. 

1.3.8.1.2 Steady-State MSE The second one of the above-mentioned reasons is true generally 

for the family of blind equalisers, since they usually exhibit a steady-state error. For example the 

classic CMA has a zero steady-state error, when used in conjunction with QPSK but a non-zero MSE 

when used for 16- or 64-QAM. This can be readily interpreted by observing the tap-update procedure 
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Figure 1.26: MSE as a function of the equaliser order for QPSK and 1 6 - q a m using the CMA. The 
channel model used is the one-symbol delay CIR as given in Figure 1.27. The LMS MSE is again given 
as a benchmark performance curve. We can observe that while the MSE curve of QPSK coincides 
with that of the LMS because of the zero mean squared value of the update term of Equation (1.76), 
the 1 6 - q a m exhibits a non-zero steady-state MSE. 

of this algorithm from Equation (1.76), which is repeated here for convenience: 

g(n+i) _ Bp). (1.76) 

Explicitly, the update term Ay*(n)^r(n)(|2;(n)p — Rp) will give zero variance for all PSK symbols, since 

in this case it is identically zero for all the phasors of the modulation constellation, but it will give 

a non-zero variance for 16- or 64-QAM, since in this case there exist points in the constellation for 

which the term is non-zero. In fact this is the case for all the constellation points. In Figure 1.26 

this is demonstrated for the CMA algorithm in the context of both QPSK and 16-QAM. Because 

of the non-zero mean squared value of the update term of Equation (1.76), a modulation-dependent 

ISI term will set a lower limit for the MSE which cannot be removed. It can be seen in Equation 

(1.76) that this MSE limit depends quadratically on the step-size parameter A. Explicitly, this is 

because of the linear dependence of the blind estimation error of Equation (1.76) on A, which results 

in a quadratic dependence on A in terms of the MSE. Indeed, plotting the converged-state MSE for 

the CMA based equaliser in the context of 16-QAM as a function of the equaliser order for different 

A values corroborates this observation, as it is seen in Figure 1.28. The channel model used in this 

example is given in Figure 1.27. 

We will now give a mathematical justification of these observations based on the Bussgang blind 
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Figure 1.27: The two-path CIR model used in the simulations in this section 
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Figure 1.28: MSE for the CMA step-size values of A = 0.005 and 0.0005 as a function of the equaliser 
order for 16-QAM using the CMA. The channel model used is the one-symbol delay CIR given in 
Figure 1.27. The LMS MSB is given as a lower limit, since this is a trained equaliser, which gives a 
benchmark performance. The curves corresponding to the two A values are separated by lOdB, which 
corresponds to the square of the difference between the two A values in terms of dB. 
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equalisers of Section 1.3.5. In general, a Bussgang blind equaliser updates the equaliser taps according 

to the update formula of Equation (1.54), which is repeated here for convenience: 

- A • y*(n) • e(n), (1.135) 

where e(n) is the algorithm-specific estimation error. For example, by observing the CMA's tap 

update formula of equation (1.76), we can easily see that the error becomes: 

ecMA(n) = -^(M) - (|z(M)|^ - #p). (1.136) 

Using Equation (1.135), we can arrive at the MSE term for a Bussgang equaliser pursuing the following 

approach. The equalised symbol at the input of the decision device in Figure 1.2 at time n is given 

by: 

- y W 

= ' (Ha(M)) = t ^ ) a ( n ) 

(1.^5) ^ _ 1)^ . (Ha(n)) 

= c ^ _ i ) H a ( n ) - Ay^(n - l )Ha(n) 

t ^ _ i ) a ( n ) - Aa^(n - l )H-"Ha(n)e(n - 1). H-I (1.137) 

Note that the index in the subscript indicates the n - th iteration. The MSE can be expressed with 

the aid of this equation as; 

which can be simplified to: 

( n - i ) ^ W " — l)H-®^Ha(n)e(n — 1) - a{n) (1.138) 

MSE — /i2 (||t||^ + 1 — 2Re{ts}\ + A/i + A^/g, (1.139) 

where 

fi — 2Re{E l^t^a*(n)a^(n — l)H-^Ha(n)e(n — 1) — a*{n)a.^{n — l ) H ^ H a ( n ) e ( n — l)j 

/2 = E [a^(n - l ) H ^ H a ( n ) a ^ ( n - l)H^H*a*(n)|E(n - 1)|^] . 

(1.140) 

(1.141) 
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Equation (1.139) consists of three terms. The first term represents the error produced by the residual 

ISI, which becomes zero, when the combined channel plus equaliser impulse response vector t takes 

the ideal form of (1,0, . . . ,0), i.e. when the equaliser manages to supress all the ISI. The second 

term of Equation (1.139) is a A-dependent term, which has a mean value determined by higher order 

moments according to Equation (1.140). Finally, the third term is a A^-dependent term which also 

exhibits a mean value related to higher order moments as seen in Equation (1.141). The reason we have 

not simplified Equation (1.139) is that it actually depends on the algorithm-specific error estimate 

e{n — 1). This error is generally not entirely uncorrelated with the transmitted symbol vector a(n), 

which renders the calculation of Equation (1.139) more complicated. Moreover, the channel impulse 

response must also be known for evaluating the terms of Equation (1.139). What is important here is 

that we observe the A^-related dependence of the MSB in Equation (1.139) that we also observed in 

the simulation example of Figure 1.28. Experimental evidence suggests that the term / i is insignificant 

compared to the term /g, which is responsible for the A^-dependence of the MSE in Equation (1.139) 

in the case studied. 

By contrast, the dependence of the MSE on the equaliser order is implicit in all three terms of Equation 

(1.139). The step-size dependence of the first term is indirect, because the more taps the equaliser 

has, the more taps will contribute to the iy2-norm of the vector t. In excess of a certain number of 

taps, increasing the equaliser order will not improve the MSE, but it will create more non-zero terms 

in the L2-norm of t. The dependence of / i and /2 on the number of equaliser taps is not explicit 

because of the complexity of Equations (1.139), but the equaliser order determines the dimension of 

the arrays and matrices in these equations, which in turn determine the effects of channel noise on 

the equaliser taps. 

1.3.8.1.3 The Effect of Noise on the Equaliser Tap Adaptation Having studied the infiuence 

of the equalisation algorithm, the equaliser order and the step-size on the residual ISI, we will now 

focus our attention on the influence of channel noise on the equaliser tap estimation. It is expected 

that due to channel noise the equaliser will have a degraded performance, which will exceed the excess 

MSE directly introduced into the receiver by the additive channel noise. In other words, if we have 

a channel SNR of +lbdB, then we expect an MSE value in the range of [—10, • • • , —15]di?, since 

the noise will affect the equaliser's tap estimation process, resulting in imperfect equalisation, even if 

the equaliser order is sufficiently high. The gravity of this performance degradation depends on the 

specific type of equaliser, the equaliser order, the CIR and the modulation scheme used. In Figure 

1.29 the MSB performance of a CMA-assisted 16-QAM modem is shown for different SNR values. 

As in all previous sections, we will now provide a mathematical characterisation of the effects of 
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Figure 1.29: m s b as a function of the equaliser order and the SNR for a CMA-assisted 16-QAM 
modem. The channel model used is the one-symbol delay CIR given in Figure 1.27. In these curves, 
the m s b due to the channel's AWGN has been subtracted, in order to quantify the direct influence of 
the channel noise on the equaliser tap estimation process, which enhances the ISI. We observe that for 
a sufficiently large number of taps the equaliser's performance is only slightly affected by this effect, 
except when the SNR is low. For SNRs as low as lOdB the noise's influence is approximately 2dB 
while for all other SNR values it is less than IdB. Note that these m s b curves exhibit a positive slope 
for high SNRs, because the MSE in Equation (1.139) is bound to depend linearly on the number of 
taps. 

channel noise. We commence by referring to Equation (1.137), which is rewritten as: 

^ - y ' ( n - l)e(n - 1) (1.142) 

In this form, noting that 

y (n — 1) = Ha (n — 1) + e (n - 1), (1.143) 

we can rewrite Equation (1.142) as: 

t(n) — (̂n—1) ~ AH • (H*a*(fi — 1) + e (n — l))e(n — 1). (1.144) 

The mean value of the update term of this equation, which is constituted by the second term, can be 

formulated as: 

- l)e(m - 1) + h^e(m - l))e(n - 1))] . (1.145) 

Since the error term e(n — 1) of Equation (1.145) may contain terms such as the equalised symbols 

z{n), which are corrupted by the channel noise, the mean value of A t in Equation (1.145) depends 
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on the algorithm-specific error term. For example, for the CM A, this error term can be found after 

lengthy calculations, yielding: 

E[At] = I H* . T . t + . (2/i2H*||c||^t + 2/ /2 | | t f c - jilgc) + . + 2(7 
k^i 

(1.146) 

where cr| and T were defined in Section 1.3.7. Equation (1.146) indicates that the mean value of the 

update term is generally non-zero. This explains the observed fact that the noise actually affects the 

equaliser's ability to converge to the optimum point of equilibrium. From Equation (1.146) we can 

also observe that At depends both on the power and on the 4-th order moment of the channel noise, 

as well as on the step-size parameter A. For a low noise power, the 4-th order moment diminishes 

in the sum, but for a high noise power both terms of Equation (1.146) become important. Finally, 

according to Equation (1.145) the step-size A and At are linearly related to each other, hence the 

MSE corresponding to this type of ISI is proportional to A .̂ Note however that this ISI term is not 

the predominant ISI contribution in Equation (1.146), except when the noise power is sufficiently 

high in order to render At of Equation (1.146) sufficiently high for driving the vector t to a state 

of convergence, which is associated with a higher ISI than the ISI produced by the other factors, 

discussed in the previous paragraphs. 

1.3.8.2 Convergence Speed 

1.3.8.2.1 Noiseless Environment In this section we study the convergence behaviour of the 

blind equalisers, as before, focusing on the CMA equaliser, and provide simulation examples for 

justifying our conclusions. We commence with the zero-noise assumption, which will assist us in 

understanding the equaliser's behaviour without corrupting efi'ects or impairments. We will firstly 

make a remark which stems directly from the CMA tap-update formula of Equation (1.76). Since 

the coefficient update is "limited" by the step-size A at each symbol interval, this parameter controls 

the speed of convergence. In conjunction with a large step-size the equaliser is expected to converge 

faster, provided that the step-size is not so high as to affect the equaliser's convergence capability. 

This limitation will be discussed later in this section. In fact, when the step-size is sufficiently small, 

it is the only factor which limits the speed of convergence. This is evidenced by Figure 1.30, where 

the MSE learning curves are portrayed for 16-QAM using the CMA and for different equaliser orders. 

It is clear that all learning curves have the same slope at their initial stage of convergence. When 

A is small, then it determines the slope of the curve during the learning stage. In other words, this 

slope is determined by A. We can also observe in this figure that the variation in the convergence 

speed for different number of equaliser taps is simply due to the fact that each MSB curve reaches its 

66 



Chapter 1 Trained and Blind Equalisation 1.3 Overview of Blind Equalisers 

00 - 1 5 

4 t a p s 
8 t a p s 

1 2 t a p s 

5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 

S y m b o l I n d e x 

Figure 1.30: MSB learning curves for different equaliser orders in the context of 16-QAM using the 
CMA. The channel model used is the one-symbol delay CIR given in Figure 1.27. We can observe that 
in all cases the slope of the curve at the initial stage is the same. However, their difference manifests 
itself in the steady-state MSB, which depends on the order of the equaliser. Suitable averaging of the 
MSB has been performed by using intervals of 1000 symbols and taking the average in these intervals 
so that the random fluctuations are smoothened 

steady-state after a different convergence time. For example, the 4-tap curve reaches its steady-state 

earlier, since this steady-state MSE is the highest, while the 12-taps curve reaches its steady-state 

later, since its steady-state MSE is the lowest and hence it requires more "learning" time. In Figure 

1.30 suitable averaging of the MSB has been performed by using intervals of 1000 symbols and taking 

the average in these intervals so that the random fluctuations are smoothened. In Figure 1.31 learning 

curves are provided for different step-size values, exhibiting a different slope for each curve. We can 

also observe the difference in terms of their steady-state MSE, which was studied in the previous 

section. We can see that there is an MSE floor level, which depends on the step-size, since a lower 

step-size value is associated with a more stable steady-state performance. Based on the discussions 

of the previous paragraph on the achievable convergence accuracy we can also give a more explicit 

reason for the A-dependence of the convergence slope by recalling Equation (1.137), which describes 

the MSB of a Bussgang equaliser. We can rewrite this equation as: 

t(n) = t(n-l) - ' y*(M - l)6(n - 1). (1.147) 

Since the update of the complex combined channel plus equaliser impulse response vector t is pro-

portional to A, the slope of the learning curve is also expected to be proportional to A, provided that 

the multiplier of A is constant. In fact, it is not, because the estimation error e(n) is approaching 
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Figure 1.31: MSE learning curves for different step-size values A in the context of 16-QAM using the 
CMA. The channel model used is the one-symbol delay CIR given in Figure 1.27. We can observe 
that the slope of the curve at the initial convergence stage is proportional to A. In fact, the 0.0005 
step-size gives a — 2.5xlO"'^dB/symbol slope, the 0.001 step-size gives a —SxlO^^dB/symbol slope, 
while the 0.005 step-size gives a —2.5xl0~^(ii?/symbol slope. These values correspond to the step-size 
differences in dB. Suitable averaging has been performed in the MSE as in Figure 1.30. 

zero, as the equaliser approaches convergence. Nonetheless, the convergence speed of a blind equaliser 

of this type is low, which renders the multiplier of A slowly varying, especially at the initial stage 

of convergence. We can observe this in Figure 1.31, where the learning curves have an initial slope 

depending on A, which is gradually reduced and becomes zero, when convergence is reached. 

1.3.8.2.2 Effect of Noise on the Convergence Speed In this paragraph we study the effect 

of channel noise on the convergence speed of blind equalisers. As we have already mentioned in the 

previous paragraph dedicated to the issues of convergence accuracy, when the noise power is low, the 

only effect of the channel noise is a steady-state MSE floor, which cannot be removed. According to 

Equation (1.134) this error floor corresponds to the sum of the noise power and the L2 norm of the 

equaliser vector, expressed in terms of dB, as it was argued before, in Section 1.3.8.1. Nevertheless, 

when the noise power is high, the equaliser's convergence rate becomes poor. This phenomenon 

also contributes to the MSE floor, which becomes higher than what would be expected by the mere 

superposition of channel noise on the received signal. As a result, the convergence speed is increased 

under noisy conditions. This is because the noisy MSE floor level is higher, than the noiseless MSE 

floor, and hence it is reached within a reduced time in comparison to the lower noiseless MSE floor. 

The above statements are justified with an example in Figure 1.32. In this figure we have plotted the 
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Figure 1.32: MSE learning curves for various SNR values for 16-QAM using the CMA. The channel 
model used is the one-symbol delay CIR given in Figure 1.27 

MSE learning curves for different channel SNR values for 16-QAM using the CMA over the channel 

of Figure 1.27. We can readily observe that the noise is creating an SNR-dependent MSE floor level, 

increasing the convergence speed for lower SNRs. 

Having highlighted the characteristics of the most salient Bussgang algorithms, let us now consider 

joint CIR and data estimation techniques. 

1.3.9 Jo int Channe l and D a t a E s t i m a t i o n Techniques 

Joint channel and data detection techniques constitute the blind equivalent of sequence estimation 

algorithms. These techniques have originally been used for data estimation, when the CIR was known. 

In this case the Viterbi algorithm is invoked to estimate the data sequence, assuming that the state 

machine is now produced by the channel instead of by the channel encoder. Here, instead of equalising 

the received signal, we estimate the CIR together with the ML data sequence, assuming that the CIR 

estimate is sufiiciently accurate. Originally, Seshadri [6] observed that it may be risky to invoke the 

Viterbi algorithm [34] retaining only the strongest surviving path at each instant for the blind scenario, 

since by assuming perfect CIR knowledge, we would discard all the surviving paths but one. This 

would be a bad tactic at the initial stages of the algorithm, when the CIR estimation is poor. In 

fact, the less paths that are eliminated in favour of other paths the better the performance of this 

algorithm in the blind detection scenario. However, keeping all possible states would correspond to a 

computationally intensive algorithm, since the number of states grows exponentially with the channel 
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Figure 1.33; Per-survivor processing using the M-algorithm 

length. Instead, Seshadri suggested that the so-called M-algorithm [140] should be used, retaining 

M number of surviving paths at each trellis state, as a compromise between retaining the full number 

of states or just one of them. He also suggested that the CIR estimation should be initialised and 

updated at any symbol interval using an LMS estimator. Each survivor path of the trellis should 

keep its own data plus CIR estimate, as illustrated in Figure 1.33. Here only the stylised trellis states 

and the associated M number of trellis transitions are indicated. For a deeper exposure to the M~ 

algorithm the interested reader is referred to [140]. The LMS estimation was extended to RLS-based 

estimation by Xie et al. [141] for the case of multiuser communications, where the interference was 

due to K users, each having p distinct propagation paths of the dispersive channel. Raheli et al. [23] 

suggested that the robustness of this algorithm to noise would be boosted by protecting the data by 

channel coding and by performing joint channel decoding and sequence estimation. They introduced 

the term Per-Survivor Processing (PSP) and showed the applicability of this technique using RLS to 

fast fading channels, owing to its fast convergence. 

In this section, we give a brief overview of joint CIR and data estimation using this technique. The 

definitions of the variables are the same as in Figure 1.8 and Section 1.3.5. Additionally, we define 

h = [h-Ln • • •) ^1-2]^ as the estimated CIR. Any transition from state to state s„+i in the trellis 

of Figure 1.33, describing the evolution of the state-machine modelling the channel, is due to the 
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estimated transmitted symbol vector a(s„ -4- Sn+i) = a(n). The estimated received symbol y{n) 

for this transition at time n is then given by the convolution of the tentatively assumed transmitted 

symbol vector a(n) and the CIR h(") assumed, which is formulated as a^{n) • h W . Each surviving 

path in the trellis of Figure 1.33 will have its own CIR and data estimate. The LMS CIR estimation 

algorithm for each surviving path will then be [6]: 

( \ 

1 = 0 

\ 9^) / 

(1.148) 

which is similar in its philosophy to the tap-update formula of Equation (1.135), updating using 

the step-size A depending on the error term in the round brackets (). The LMS CIR and data estimator 

can be replaced by an RLS estimator according to the following equations [15,23]; 

1 = 0 

P(a»+i) = l ( P ( a » ) - k ( 5 ^ + i ) a ^ ( n ) P ( a ^ ) ) 

7% 
e(gn 5n+l) = - a^(M)hW(2)|^ 

2 = 0 

h(3n+i) = h(an) + k(gn+i)e(gn 5?i+l). (1.149) 

This CIR and data estimator provides fast adaptation and renders the estimator applicable to fast 

fading channels, since in this scenario reliable re-converging after a fading-induced error burst is of 

prime importance. 

The blind data and CIR estimator presented in this section has some significant differences wrt the 

Bussgang blind equalisers of the previous section. Namely: 

• In contrast to stand-alone equalisation, there is no filter simulating the inverse of the CIR 

• The convergence is significantly faster and more accurate 

• This technique can be combined with channel decoding 

As for the other blind equalisation techniques discussed, numerous studies have provided insight into 

this method. The associated practical considerations and a range of modifications were studied by 

Chugg and Polydoros in [36], while in [37] the associated performance was studied both theoretically 

and by simulations. In [38] and [39], Hidden Markov Model (HMM) theory was applied to the problem 

71 



1.3 Overview of Blind Equalisers 1.3 Overview of Blind Equalisers 

of joint data detection as well as CIR estimation and performance results were given for the so-called 

Gaussian Minimum Shift Keying (GMSK) modulation invoked in a Time Division Multiple Access 

(TDMA) scenario. In [40] the employment of fuzzy logic was proposed for the calculation of the 

associated decision metrics. In [41] and [42] the acquisition performance of a PSP detector was 

evaluated and "smart" initialisation strategies were explored. In [43] the algorithm was adapted to 

make use of soft statistics and to include error prediction. Finally, in [30] a genetic algorithm was 

applied for estimating the CIR, and the Viterbi algorithm was then invoked. For more research on 

blind sequence estimation techniques the reader is also refered to [142-146]. 

1.3.9.1 Complexity Reduction 

As we have already mentioned, when the channel's delay spread is high, most joint data detection 

and channel estimation techniques become prohibitive in terms of complexity. The same happens in 

the context of PSP. The complexity of PSP is substantial even for transmissions over low-dispersion 

channels, especially for high-order QAM schemes, as we will se in Section 1.3.12. In some scenarios, 

however, a high-delay-spread channel may consist of two or more multipath components that are far 

from each other. In this case, assuming a higher number of CIR taps is unnecessary. Only the effects 

of the taps having highest magnitude should be equalised, assuming that all others are zero. In this 

approach, the complexity is significantly reduced and channels exhibiting a higher dispersion can be 

equalised using the PSP technique. We refer to this technique as Reduced-Channel PSP. The task 

in this case is that of deciding which of the taps can be eliminated. An adaptive algorithm should 

be employed, which will decide when the value of a tap is very close to zero and can therefore be 

eliminated and when the channel estimation is inadequate and more channel estimation taps need to 

be allocated. Performance results will be presented for the two WATM channels of Figures 2.3(a) and 

(b) in Chapter 2 using this technique. 

Let us now consider the family of second-order statistics based techniques. 

1.3.10 B l i n d equal i sa t ion U s i n g S e c o n d - O r d e r C y c l o s t a t i o n a r y Stat i s t i cs 

Using second-order statistics [147], in general, is significantly more efficient, than invoking higher-

order statistics. This is because less samples are needed, in order to generate the required statistics, 

implying higher convergence speed and better stability. Nevertheless, second-order statistics are not 

applicable in all cases of interest. Specifically, in the case of blind equalisation, the CIR is not 

identifiable from second-order statistics, when we sample at the Baud-rate, i.e. at one sample per 

symbol period [7]. In 1991 Tong et al. [28] exploited the fact that by employing oversampling, the 
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received signal becomes so-called implying that the associated statistical properties 

become periodic in time [147]. Exploiting this cyclostationarity, Tong et al. proposed a method of 

CIR estimation, using second-order statistics. More recently, in 1995 Moulines et al. [29] observed 

that the same happens, when we are taking the input of multiple sensors - such as multiple antennas 

for example - at Baud-rate, i.e. without resorting to oversampling. Finally, in 1997, Tsatsanis and 

Giannakis [54], [48] proposed another substitute for oversampling at the receiver, namely inducing 

cyclostationarity at the transmitter, instead of oversampling at the receiver. All these ideas lead to a 

range of similar methods applicable to CIR estimation, which are based on second-order statistics. 

Let us invoke oversampling and denote the symbol interval by T, while the sampling interval by Ts, 

so that T = T5 • A, where A is the oversampling factor. We also assume as in the rest of this chapter 

that the channel's memory extends from —LiT to L2T. The channel memory limits do not have to be 

multiples of the symbol interval T, it is simply notationally convenient. We observe the system over 

the time interval [nT, (n + 1) • T], using the linear model of: 

y(n) = H(n) • a(n) + e(n), (1.150) 

where 

y(M) = [ i / M , + T g ) , . . . , + (A - l)Tg)] T (1.151) 

represents the received signal vector at time instant n. 

H(n) 
()^) /if/gT+Tis (n) 

/i'-z,ir+(A-i)T'sW /^z,2r+(A-i)rs()^)_ 

(1.152) 

is constituted by the channel's impulse response taps {hi{n)} for i = —LiT, • • •, Z/gT +(A — l)Ts at 

time nT, 

a(n) = [a((n + i ; i ) T ) , . . . , o((n - ^^2)^)]^ (1.153) 

is the transmitted data vector and 

e(n) = [e(nr), e ( n r + T g ) , . . . , e(nT + (A - 1)%)] T (1.154) 

is the channel noise vector. 

We now point out the equivalence of oversampling the received signal with rendering the transmitted 

signal cyclostationary and also its equivalence to involving the outputs of A number of 'sensors' 
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or antennae. The former [48] involves transmitting the same output A times sequentially, instead 

of just once. This way the transmitted signal becomes cyclostationary and the same happens to 

the corresponding received signal sampled at the Baud-rate, when the channel is stationary for the 

duration of processing. If we consider the transmitter 's Baud-rate to be A-t imes lower than the 

receiver's Baud-rate, then the received signal would be the same as in the previous scenario. 

Upon using the outputs of multiple sensors or antennae [29], we can observe that the output of each 

sensor - say for example that of the i - t h sensor - is equivalent to the output of oversampling at time 

instants of iTs,i = 0, • • •, A — 1 in the [0, (A — l)Ts] space. 

Having shown the above equivalences, we will now proceed to discussing the formation of second-

order statistics based algorithms. Let us consider the autocorrelation matrix of the received signal 

y{nT + iTs) over the time interval iT at time instant nT: 

Ryy ( ^ ; - y ^ ( n - i)] 

. a W + e W ) . 

(a^(n - i) • H.^{n — i) + e^{n - «))] 

= i?[H(n) ^a (n )a^ (n — H-^(n — i) + 

+ H ( n ) a ( n ) e ^ ( n — i) + 

+e{n)a^ {n — — i) + 

+e{n)e^{n - i)], (1.155) 

where y (n) was defined in Equation (1.151). The two terms in the middle of this expression have a zero 

mean value, since they are the product of independent variables. Thus, Equation (1.155) becomes: 

Ryy(i; n) = H(n) • Raa(^;M) • — %) + Ree(«; «)• (1.156) 

The CIR estimation process consists of estimating the CIR matrix H using measurements of the 

autocorrelation matrix Ryy(n) according to Equations (1.155) and (1.156), assuming that the auto-

correlation of the transmitted signal Raa(%; A) is known. Tong et al. [7] invoked the assumption that 

the input data source produces completely uncorrelated symbols a(n), while Hua et al. [58] adapted 

the method to work with correlated input signals. Furthermore, while in Tong's algorithm [7] the 

noise was assumed to have some known properties, in [49] a variation was proposed, which assumed 

no knowledge concerning the channel noise. In order to estimate the CIR matrix H in Equation 

(1.152), we must also have knowledge of the noise's correlation. The noise samples cannot be assumed 

to be uncorrelated (white), since they are generated at a higher rate, than the Baud-rate and since 
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the receiver's lowpass filtering imposed autocorrelation upon it. This autocorrelation function has the 

same shape as the impulse response of the receiver filter, since the noise was white before this filtering 

and hence its autocorrelation function was a J() function. 

There are various ways of performing CIR estimation at this stage. Some algorithms, such as that 

proposed by Tong et al., [7,28], estimate the CIR by assuming that the noise is white - not a valid 

assumption in general - and the transmitted sequence is also white. In our forthcoming deliberations 

the channel is assumed to be static. This is an assumption stipulated, in order to simphfy our 

study. The CIR matrix H of Equation (1.152) is then estimated by performing the so-called "singular 

value decomposition (SVD)" [148] of Ryy(O) and Ryy(l) and then by performing a range of further 

algebraic calculations. In other algorithms [48] iterative procedures have been proposed, exhibiting 

lower complexity, but having an asymptotically similar performance. After estimating the CIR matrix 

H of Equation (1.152) and ignoring the effect of noise in Equation (1.150), we can invert H in order 

to extract the original information symbols a(n) from the received sequence y(n), using the following 

LMS estimator: 

= (1.157) 

where satisfies; 

II*. I I ==1 (1.158) 

and it is the "pseudo-inverse" [120] of the CIR matrix. The input signals have been assumed to be 

i.i.d. variables with a normalised power of unity, while the noise has been neglected. 

An important advantage of the second-order statistics based algorithms - compared to the fam-

ily of the linear equalisers - is that they are asympotically accurate. Simulations presented in [7] 

demonstrate this accuracy in performance terms and also show that the second-order statistics based 

algorithms exhibit fast convergence, typically within a few symbols. This concludes our discussions 

on the second-order statistics based algorithms. For more detailed discussions on this issue the reader 

is referred to [7,28] and also to [49-51]. In [52] a different method of estimating the CIR matrix H 

of Equation (1.152) is proposed for the "multiple channel" scenario, using so-called "outer-product 

matrix decomposition". In [53,54], the transmitter-induced cyclostationarity algorithms are explored, 

while in [55] the cyclostationarity-based method is applied to an Orthogonal Frequency Division Mul-

tiplexing (OFDM) receiver. In [56], a modification of Tong's original method [7] is proposed, while 

in [57] a general study of the cyclostationary method is given. The effects of non-i.i.d. signal distri-

butions are studied in [58] and in [59]. In [60] the second-order statistics based methods are adapted 

to the so-called source separation problem, where for example the wanted and interfering signals are 

separated. In [61] the subspace method is applied to the suppression of both intersymbol interference 
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and multiple-access interference. In [62] the case of unknown noise distributions is considered. Finally, 

in [63], the so-called Column-Anchored Zeroforcing Equalisation (CAZE)" is proposed and studied. 

Having presented an introduction to the family of second-order statistics based techniques, let us now 

consider a range of so-called "polycepstra-oriented" algorithms in the next section. 

1.3.11 B l i n d C h a n n e l E s t i m a t i o n and Equal i sat ion U s i n g Tricepstra 

The last class of blind equalisation algorithms discussed here involves fourth-order - rather than 

second-order - statistics of the received signal, in order to estimate the inverse of the CIR and to 

equalise its effects. A number of algorithms belonging to this class were proposed by Hatzinakos and 

Nikias in [5] and also by Mendel in [149]. This algorithm, referred to as the Tricepstrum Equalisation 

Algorithm (TEA), employs the complex cepstrum of the so-called fourth-order cumulants (the tri-

cepstrum is defined in Appendix F) of the received signal sequence sampled at the Baud-rate. These 

algorithms are capable of identifying both so-called "minimum and maximum-phase" channels, which 

we will characterise more explicitly during our further discourse. Below we briefly introduce the TEA 

using the fourth-order cumulants and tricepstra as defined in Appendix F. 

In this context we aim to equalise a channel having a ^-domain channel transfer function of H{z). We 

consider H{z) as the product of a minimum-phase [15] section - where the ^-domain transfer function 

of the channel has all its zeros inside the unit circle - and a maximum-phase section - where the z -

domain transfer function of the channel has all its zeros outside the unit circle. This is formulated 

as [5]: 

(1.159) 

where A is a constant and 7(z"^) and 0{z) are polynomials of the form nj^^( l — aiZ~^) and njL]^(l -

ttjz) respectively, with \ai\ < 1, M is the number of channel zeros inside the unit circle and K is 

the number of channel zeros outside the unit circle. A simple manifestation of a minimum-phase 

channel exhibits a CIR, where the main tap associated with the time instant 0 is the largest one. The 

polynomial is a minimum-phase polynomial, while 0{z) is a maximum-phase polynomial. In 

order to equalise this channel under the so-called Zero-Forcing (ZF) constraint - implying that the 

combined CIR and equaliser impulse response is forced to zero at sampling instants n ^ 0 - we use 

an equaliser, having a transfer function of C(z), which is the inverse of that of the channel [5]: 

^ ^ A .7 (z - i ) . 0 ( z ) ' 

Then the cascaded channel and equaliser transfer function constitutes an ideal channel. If instead of 

the ZF equaliser we use a decision-feedback equaliser (DFE) having a feedforward transfer function 
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G(z) 

V(z) 

Figure 1.34: The DPE filter structure. 

of V{z) and a feedback transfer function of G{z), then the equaliser's transfer function will have the 

form [5]: 

C(z) 
y (z ) 

(1.161) 
1 + G(z) ' 

where V{z) and G{z) are the feedforward and feedback section's transfer function, respectively, as 

shown in Figure 1.34. The feedback filter must be realisable. A possible choice for V(z) and G{z) 

is [5]: 

y(z) 

1 + G(z) = 

(1.162) 

(1.163) 

Then the system C{z) • H{z) is perfectly equalised and the feedforward section V{z) of the DFE is an 

all-pass filter having zeros inside and poles outside the unit circle, while the feedback filter G{z) is a 

minimum-phase filter. In order to construct the DFE we have to find an estimate of the coefficients of 

the feedforward and feedback filters. Equivalently, we have to find an estimate of the poles and zeros 

of the two equaliser filters. This can be achieved using the fourth-order cumulants of the received 

signal. 

We form the received signal y{n) as the convolution of the transmitted signal a(n) with the CIR {hn}, 

plus a zero-mean additive Gaussian stochastic process e(n), as follows: 

2/(M) — a(n) * /in + e(n). (1.164) 

We recall from Appendix F that the tricepstrum Cy{m,n,l) of the received signal y{n) is related to 

the tricepstrum Ch{m,n,l) of the CIR by [5]: 

Cy(m,n,Z) = %(97i,n,Z), (m,n,Z) (0,0,0). (1.165) 

This implies that in the tricepstrum domain the received signal is equal to the CIR. Therefore, esti-
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mating the received signal's tricepstrum directly gives us the CIR's tricepstrum. The problem then 

becomes that of estimating the CIR in terms of its tricepstrum representation. It was shown in [5] that 

it is sufficient to consider tricepstra in the form of Cy{K,0,0) {K integer). We recall from Appendix 

F the following relationship: 

p 
^ ^ [Ly^TTi — / , fi, /) — Ijy{rn + / , + / , / + J)] + 
7=1 
g 

+ ^ ^ \Ly(rn — J,n — J., I — J) — Lyijn + J, n, /)] = 
J = i 

= —mLy{m, n, I) 

where 

This relationship is in fact a system of linear equations, which can be solved by iterative methods, as 

shown in Appendix F. However, the estimation of the CIR and the equaliser filters is quite an elaborate 

task and hence the associated derivation was relegated to Appendix F, following the approach of [5]. 

An estimate of these algorithms' complexity compared to the Bussgang algorithms' complexity was also 

given by Hatzinakos and Nikias in [5], where the complexity of the former appears to be significantly 

higher, a fact which was mentioned before. As a trade-off, the simulations presented in [5] indicate 

the superiority of the TEAs in terms of convergence speed, as well as in terms of their ability to 

equalise non-minimum phase channels, which are often encountered in fading mobile channels. For 

more detailed investigations of these techniques the reader is referred to [5,97,150-153]. 

Having presented an overview of a range of basic blind equaliser structures, we will now provide a 

summary of their complexity. 

1.3 .12 C o m p l e x i t y Eva lua t ion 

In this section the complexity of the various blind equalisers presented is evaluated. We commence 

our discussions by considering the complexity of the Bussgang algorithms. The complexity of all the 

Bussgang techniques is similar and it is relatively low. For simplicity, in this section we will assume that 

the number of equaliser taps is 2N+1, i.e. ]Vi = #2 = N, according to the notation we have used so far. 

The equaliser's complexity depends only on the number of equaliser taps, 2jV +1, and it is on the order 

of N, which is indicated as 0{N). An estimate of the number of real additions and multiplications 

required for each algorithm per equalised symbol interval is presented in Table 1.1. Here, we have 

assumed that the complex variables are represented in the memory of the associated arithmetic unit 
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Algorithm Additions Multiplications Memory 

CMA [4] 162} + 10 + 1 3 4 1 + 4 
Sato [3] 162̂  + 8 i6i; + 1 0 4 1 + 4 
B-G [32] + 1 7 162 + 1 9 4 1 + 4 
Modified-CMA [102] 16L + 8 161 + 1 4 4 1 + 4 
Stop-and-Go [21] i6i; + 8 201 + 1 0 4 1 + 4 
NCMA [110] 82:+ 17 81 + 23 21 + 5 
Soft-Constraint [112] 8L + 18 81 + 20 21 + 5 
Super-Exponential (p = 2, g = 1) [31] 0(1") 0 ( 1 ) 

Table 1.1: Complexity estimate of the Bussgang techniques of Section 1.3.5, assuming 2N+1 % 2L + 1, 
where L is the channel's memory 

Additions Mult/ions Memory 

Viterbi Q:^^(161 + 9Q + 2) <3^^(161+ 8Q + 4 ) Q^^(7 + 41) 
M-algorithm M(161 + 9Q + 2) M(161 + 8Q + 4) M(7 + 41) 

Table 1.2: Complexity estimate of the sequence estimation algorithms of Section 1.3.9 

in terms of their real and imaginary parts. We have also assumed that the number of equaliser taps, 

namely 2N + 1, is approximately equal to the channel's memory of 21/ + 1, i.e. 2N + 1 w 2L + 1 and 

that the square root evaluation required for the computation of \e^^{n)\ in the Benveniste-Goursat 

algorithm of Section 1.3.5.4 is performed with the aid of 4 real additions and 2 real multiplications. 

The square root in this case is calculated by the approximate formula of • s / l + x « 1 + | — ^ + 

which is the first four terms of the Taylor expansion of y/1 + x % ' a;", for x close to 

zero. One could take into account more terms in the series in order to render the error estimation 

more accurate. Finally, in Table 1.1 we have also included an estimate of the memory requirements of 

each algorithm. In addition to the Bussgang algorithms the table incorporates the super-exponential 

algorithm, which does not belong to the family of Bussgang algorithms, but exhibits similarities with 

the CMA. A complexity estimate of the PSP-based algorithms of Section 1.3.9 is obtained similarly 

to the previously introduced Bussgang algorithms of Section 1.3.5 by calculating the total number 

of additions and multiplications as well as the associated memory requirements. Considering that 

the convolution of the CIR with the estimated sequence in Equation (1.148) is only calculated once 

for each survivor transition and stored in memory (thus saving unnecessary further calculations), the 

associated complexity results are summarised in Table 1.2. These complexity figures refer to one 

symbol interval. The complexity arising from convolutional decoding, if channel coding is used, is 

ignored in these calculations. In Table 1.2 M is the number of survivors in Figure 1,33 that we retain 

at each step of the M-algorithm of Section 1.3.9 and Q is the number of possible signal constellation 

points, i.e. Q = 2^ for a J^-bit per symbol modulation scheme. 

By comparing Tables 1.1 and 1.2 we observe that the complexity of the sequence estimation techniques 
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(aided by LMS-based CIR estimation) is exponentially increasing with the dispersion or the memory 

of the channel L, i.e. it is of 0{Q^), when the Viterbi algorithm is used, implying that channels having 

long CIRs cannot be equalised by this sequence estimation technique. By contrast, the complexity 

of the Bussgang techniques is only 0{L) and it is only linearly increasing. However, the situation 

changes when the M-algorithm is used instead of the full search algorithm in the context of the 

sequence estimation based techniques and we see from Table 1.2 that the complexity also becomes 

0{L), except that in this case we also have a multiplicative factor of M. Note furthermore that the 

complexity also depends on the number of phasors in the modulation constellation according to the 

exponential relationship of where Q is the number of phasors in the QAM constellation. Again, 

from these tables we conclude that the Bussgang algorithms are attractive for long CIRs, since in this 

case the sequence estimation techniques exhibit an excessively high computational complexity. By 

contrast, for short CIRs the sequence estimation techniques offer significant performance advantages 

at an affordable complexity, as it will become explicit in the next chapter. However, as will be seen in 

Chapter 2, channels exhibiting very long CIRs cannot be equalised using Bussgang equalisers either 

due to the excessive enhancement of convolutional noise associated with the large number of equaliser 

taps required for equalisation. 

Finally, the normalised linear algorithms of Sections 1.3.6 exhibit a similar complexity and properties 

to the Bussgang equalisers, apart from the super-exponential algorithm, which is far more complex as 

a result of its 0{L^) dependence on L caused by the calculation of the cumulants in Equation (1.102). 

Having presented a rudimentary overview of various blind equalisation methods, we note the emergence 

of a recent approach, based on Neural Networks (NN). For more details concerning NN-based blind 

methods the reader is referred to [24, 154-158]. Another approach which is not considered in this 

thesis is the EigenVector Algorithm by Jelonnek, Boss and Kammeyer [159]. 

1.4 S u m m a r y 

The family of basic blind equaliser techniques which were presented in this section appear promising in 

terms of mitigating the channel-induced dispersion. The type of best-suited blind equaliser depends 

on the specific application concerned. A PSP channel estimator would be ideal for a CIR having only 

a few low-delay taps in conjunction with low-order modulation schemes. However, when the number 

of CIR taps increases, this technique becomes prohibitive in terms of its computational complexity. In 

this case the M-algorithm based approximation is capable of reducing the complexity of the algorithm 

at the cost of a degraded performance. The severity of performance degradation will depend on factors, 

such as the shape of the CIR, the specific QAM scheme used, the noise and the number of retained 
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states M. Since the available processing power offered by the state-of-the art processors increases, 

the affordable complexity of the channel equaliser also increases. Nonetheless, long CIRs require an 

exponentially increased equaliser complexity and the M-algorithm based approximation will always 

suffer from the reduced number of states. 

On the other hand, the Bussgang techniques are adequate for channels exhibiting moderate or high 

dispersion, since their complexity is only linearly increased upon increasing the number of equaliser 

taps. Their performance, however, is not as high as that obtained by the PSP based equalisers in 

terms of their achievable speed of convergence and in terms of their convergence robustness in the 

presence of channel noise and ISI. The undesirable local minima, which have been found to exist in such 

equalisers, appear to be only of theoretical importance, when the equaliser has an adequate number of 

taps. Moreover, convergence detection techniques have been proposed and reinitialisation strategies 

have been suggested, in order to ensure that this issue will not affect the equaliser's performance. 

High-ISI scenarios are of particular importance in mobile communications applications. However, as 

complexity is also an issue in conjunction with light-weight portable terminals, these algorithms are 

amenable to such applications. 

Finally, the algorithms, which explicitly use statistical estimations are quite complex and, even though 

they seem to be asymptotically convergent, they were only briefly touched upon in this treatise. On 

the other hand, blind neural network algorithms were investigated by the authors, but they were found 

to exhibit convergence to undesired local solutions, when the initialisation was not in the vicinity of 

the desired point of equilibrium and therefore they were not researched further. 

Having characterised a range of blind equaliser techniques, in the next chapter we will provide perfor-

mance results for some of these equalisers. 
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Chapter 2 

Per formance Resul ts 

In this section we present the associated comparative performance results for the algorithms described 

in Sections 1.3.5 and 1.3.9. Two different types of results are presented, commencing with Bit Error 

Rate (BER) learning curves, which offer a measure of the algorithms' convergence speed. The second 

set of results is concerned with the average BER curves of the algorithms over a dispersive Gaussian 

channel. The modulation schemes involved are 16-QAM and 64-QAM [9]. The associated signal 

constellations are shown in Figures 2.1 and 2.2. 

2.1 Channel Models 

Three different channels were used in our comparative study. The first one is a typical worst-case 

Wireless Asynchronous Transfer Mode (WATM) channel, while the second one is a Shortened WATM 

(SWATM) CIR, both of which are presented in Figure 2.3. These indoor CIRs were generated with the 

aid of finding the line-of-sight path and the four longest-delay paths in a lOOxlOOxSm^ hall at a WATM 

transmission rate of 155 Mbit/s [9]. The third channel used in our comparative study is a simple one-

symbol-delay channel, which is shown in Figure 2.4. This channel may characterise a satellite link, 

where due to the directional parabolic antenna used, only one or two multipath components may arrive 

at the receiver. The difference between the WATM, SWATM and the one-symbol-delay channel is 

that while the former two channels exhibit multipath components at several symbols' delay, the latter 

exhibits only one additional multipath component at a delay of one symbol. These different CIRs will 

be used for demonstrating the fact that different equalisers may be appropriate for different channels. 

All CIRs are assumed to be real, having no imaginary part. 

83 



2.1 Channel Models 2.1 Channel Models 

X 1 0 0 0 X 1 1 0 0 

X 1001 X 1101 

X 0100 X 0000 

X moi x o w l 

X 1011 X 1111 

X 1010 X 1110 

X 0111 X M%1 

X 0110 X 0010 

Figure 2.1: 1 6 - q a m constellation 

100000X 101000X 1 1 1 0 0 0 X 110000X X 0 1 0 0 0 0 x O l l C W O X 0 0 1 0 0 0 X 0 0 0 0 0 0 

100001X 101001 X 111001X 110001X X 010001 X 0 1 1 0 0 1 X 0 0 1 0 0 1 X 0 0 0 0 0 1 

100011 X lOlOllx 111011 X 110011X x O l C W l l X 0 1 1 0 1 1 X 0 0 1 0 1 1 X 0 0 0 0 1 1 

100010X 101010X l l l O l O x llOOlOx X 0 1 0 0 1 0 X 0 1 1 0 1 0 X 0 0 1 0 1 0 X 0 0 0 0 1 0 

100110X 101110X lllllOx IlOllOx X 0 1 0 1 1 0 X 0 1 1 1 1 0 x O O l l l O X 0 0 0 1 1 0 

100111X 101111X 111111X 110111 X X 0 1 0 1 1 1 X 011111 X 0 0 1 1 1 1 X 000111 

100101X 101101 X 1 1 1 1 0 1 X 110101X X 0 1 0 1 0 1 X 0 1 1 1 0 1 X 0 0 1 1 0 1 X 000101 

100100X 101100 X llllOOx 110100X x O l O 100 X 0 1 1 1 0 0 X 0 0 1 1 0 0 X 0 0 0 1 0 0 

Figure 2.2: 64-QAM constellation 
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Figure 2.3: (a) The WATM and (b) Shortened WATM channels 

Path amplitude 

0.8 

0 

0.6 

1 delay (xT) 

Figure 2.4: The one-symbol-delay channel used in the simulations 
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2.2 Learning Curves 

In this section, the associated BER learning curves of the blind equalisers of Sections 1.3.5 and 1.3.9 

are presented for the CIRs of Figures 2.3 and 2.4. The step-size parameter A is common for all the 

Bussgang algorithms, which was chosen to be 5 - 10"^, while the Benveniste-Goursat parameters of 

Equation (1.88) are ki = 1, k2 = 5. For the PSP-based sequence estimation algorithm, the step-size 

in Equation (1.148) is 10"^ and only M=Q survivors were retained, where Q is the number of symbols 

in the QAM constellation. The WATM channel simulations associated with the CIR of Figure 2.3(a) 

are presented in Figure 2.5 for 16-QAM and in Figure 2.8 for 64-QAM. An equaliser length of 68 

taps was employed and the Signal-to-Noise ratio (SNR) was 30dB. The corresponding SWATM and 

one-symbol-delay CIR based results are presented in Figures 2.6 and 2.7 as well as in 2.9 and 2.10 

for 16-QAM as well as 64-QAM, respectively. As we see, the CIR spread was gradually shortened 

from 68 to 10 and then to 2. Observe that for the M-algorithm of Figure 1.33 we only presented BER 

results in Figures 2.7 and 2.10 over the shortest one-symbol-delay CIR. In order to quantify the BER 

associated with the learning curves, we have averaged the values of BER recorded for numerous 1000-

symbol intervals, which was necessary due to the data-dependent performance of the blind equalisers 

of this type, which typically resulted in a different performance for different 1000-symbol runs. This 

was a consequence of the fact that not all of the incoming data symbols drive the equaliser to the 

point of convergence. 

From these curves we can infer a range of observations concerning the convergence speed of each of 

the tested algorithms. 

• The M-Algorithm converges at a higher speed, than any of the Bussgang algorithms considered. 

A reason for this is the employment of a larger step-size value, which could not have been used 

for the Bussgang algorithms, since this would result in poor tracking performance. 

• Sato's algorithm converges at a medium to slow speed. 

• Godard's algorithm converges with about the same speed as Sato's and its convergence is faster 

for higher-order QAM. 

® The MCMA algorithm converges at a medium speed, but its convergence is faster for higher-

order QAM, as we can see from Figures 2.8 and 2.9 for 64-QAM. 

• The Benveniste-Goursat algorithm converges rapidly only for low-order QAM, and we can see 

from Figures 2.5 and 2.6 that for 16-QAM it converges faster, than any of the other Bussgang 

algorithms. For higher-order constellations, such as 64-QAM, it converges significantly slower. 
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Figure 2.5: BER learning curves over the WATM channel of Figure 2.3(a) for 16-QAM at SNR=30dB 
using a 68-tap equaliser obeying the schematic of Figure 1.12 
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Figure 2.6: BER learning curves over the Shortened WATM channel of Figure 2.3(b) for 16-QAM at 
SNR=20dB using a 30-tap equaliser obeying the schematic of Figure 1.12 
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Figure 2.7: BER learning curves over the one-symbol-delay channel of Figure 2.4 for 16-QAM at 
SNR=20(ii? using a 10-tap equaliser obeying the schematic of Figure 1.12 
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Figure 2.8; BER learning curves over the WATM channel of Figure 2.3(a) for 64-QAM at SNR=30dB 
using a 68-tap equaliser obeying the schematic of Figure 1.12 
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Figure 2.9: BER learning curves over the Shortened WATM channel of Figure 2.3(b) for 64-QAM at 
SNR=20di? using a 30-tap equaliser obeying the schematic of Figure 1.12 
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Figure 2.10: BER learning curves over the one-symbol-delay channel of Figure 2.4 for 64-QAM at 
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WATM S-WATM TC 
M-Algorithm 550 550 3700 
Sato 30000 25000 80000 
CMA 35000 40000 55000 
MCMA 35000 20000 60000 
Benveniste-Goursat 20000 15000 -

Stop-and-Go 75000 25000 " 

Table 2.1; The number of symbols required for each algorithm to converge in the context of 16-QAM 
transmissions over the WATM and Shortened WATM channels of Figures 2.3(a) and (b) as well as 
over the simple one-symbol-delay channel of Figure 2.4, which is labelled as TC (Test Channel). The 
convergence is detected by estimating the slope of the BER. When this slope becomes zero or positive, 
then convergence is assumed to have been reached. The SNR is 30dB. 

WATM S-WATM TC 
M-Algorithm 4150 3000 6000 
Sato 50000 50000 120000 
CMA 55000 35000 110000 
MCMA 45000 45000 115000 
Benveniste-Goursat 75000 55000 150000 
Stop-and-Go 320000 200000 600000 

Table 2.2: The number of symbols required for each algorithm to converge in the context of 64-QAM 
for transmissions over the WATM and Shortened WATM channels of Figures 2.3(a) and (b) as well 
as over the simple one-symbol-delay channel of Figure 2.4, which is labelled as Test Channel (TC). 
The convergence is detected by estimating the slope of the BER. When this slope becomes zero or 
positive, then convergence is assumed to have been reached. The SNR is 30dB. 

• The Stop-and-Go algorithm is definitely the slowest algorithm in all cases, since it is not always 

able to iterate. 

In Tables 2.1 and 2.2 an estimate of the number of symbols needed for the convergence of each 

algorithm is given. The converged state was defined as the state, where the BER has 'just' reached 

its steady state value and does not change significantly thereafter. The channel SNR is kept at 30dB. 

Having presented a comparative simulation study of the convergence speed of the blind equalisers of 

Sections 1.3.5 and 1.3.9, we will now give an illustration of the blind equalisers' convergence by means 

of the associated phasor diagrams [9]. 

2.3 Phasor Diagrams 

In this section some phasor diagrams are presented for the various algorithms considered. We are 

observing the phasor diagram at the equaliser's output at different stages of convergence, each giving 

an idea of how the equaliser is converging. In Figures 2.11 and 2.12, the phasor constellation is 
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Figure 2.11: The 16-QAM phasor constellation over the one-symbol-delay channel of Figure 2.4 after 
40000 symbols at an SNR=30<ii? using a CMA 10-tap equaliser obeying the schematic of Figure 1.12 

plotted in the complex plane for a CMA-based equaliser having 10 taps, equalising the one-symbol-

delay channel of Figure 2.4, when 16-QAM is used. Two snapshots are shown. In the first the equaliser 

is reaching convergence, but still exhibits residual ISI. In the second snapshot, the equaliser has almost 

converged. These snapshots demonstrate how the equaliser is adapting and slowly approaching the 

state of convergence. When it has converged, the residual impairments are the convolutional noise, 

which is rather small, and the additive channel noise, which has also been chosen to be low, so that 

the convergence can be better observed. At this state, the equalised signal is confined to small regions 

around the legitimate QAM constellation points and the diameter of these regions depends basically 

on the SNR and on the residual ISI, which produces convolutional noise. Finally, in Figures 2.13 and 

2.14 the phasor diagram is shown for the case of 64-QAM. Having presented our comparative results 

for the convergence speed of the blind equalisers, we will now investigate the accuracy of convergence. 

2.4 Pe r fo rmance over Gaussian Channels 

In this section the steady-state average BER curves are presented as a function of the bit-SNR over 

the WATM and Shortened WATM channels of Figure 2.3, as well as over the one-symbol delay channel 

of Figure 2.4 using 16-QAM and 64-QAM. The bit-SNR is defined as the SNR per bit, i.e. the signal 
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Figure 2.12; The 16-QAM phasor constellation over the one-symbol-delay channel of Figure 2.4 after 
60000 symbols at an SNR=30di3 using a CMA 10-tap equaliser obeying the schematic of Figure 1.12 

# 

Figure 2.13; The 64-QAM phasor constellation over the one-symbol-delay channel of Figure 2.4 after 
70000 symbols at SNR=35dB using a CMA 10-tap equaliser obeying the schematic of Figure 1.12 
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Figure 2.14: The 64-QAM phasor constellation over the one-symbol-delay channel of Figure 2.4 after 
180000 symbols at an SNR=35(fB using a CMA 10-tap equaliser obeying the schematic of Figure 1.12 

power per bit over the noise power per bit. In mathematical terms we have: 

Bit-SNR = 
Number of bits per symbol 

(2.1) 

The equaliser characteristics are the same as in Section 2.2. For the M-algorithm, the channel 

estimator takes into consideration only the CIR taps that indeed exist using the 5-tap CIR of Figure 

2.3(a), thus reducing the number of calculations. The associated curves are presented in Figures 2.15 

to 2.20. 

Note here that following the classical initialisation strategy - that is initialising the equaliser tap vec-

tor to c° = (1.2, 0, • • • , 0)^ as suggested by Godard [4] - is inadequate for the Stop-and-Go equaliser 

to converge to the desired equilibrium. Instead, the equaliser converges to an undesirable equilibrium 

associated with the combined CIR plus equaliser tap vector of = (0.74,0.48,0, • • • , 0)^. For the 

equaliser to converge to the correct equilibrium, the initialisation has to be closer to the desired equilib-

rium. For example, initialising the equaliser with the tap vector (1.2, —0.9,0.6, 0, • • • , 0)^ is adequate. 

This phenomenon is directly related to the nature of this algorithm and the undesirable equilibrium is 

clearly an algorithm-dependent equilibrium. This is why this phenomenon is not observed in the other 

equalisers. From these curves we can infer some observations concerning the accuracy of convergence 

for each of the tested algorithms, which exhibits itself in terms of the residual BER at a given SNR 
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Figure 2.15: Gaussian BER versus SNR curves for the WATM channel of Figure 2.3(a) for 16-QAM 
using a 68-tap equaliser obeying the schematic of Figure 1.12 and for the M-Algorithm obeying the 
trellis of Figure 1.33, using the 5-path CIR of Figure 2.3(a). 
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Figure 2.16: Gaussian BER versus SNR curves for the Shortened WATM channel of Figure 2.3(b) 
for 16-QAM using a 30-tap equaliser obeying the schematic of Figure 1.12 and for the M-Algorithm 
obeying the trellis of Figure 1.33 using the 3-path CIR of Figure 2.3(b). 
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Figure 2.17: Gaussian BER versus SNR curves for the one-symbol-delay channel of Figure 2.4 for 
16-QAM using a 10-tap equaliser, obeying the schematic of Figure 1.12 and for the M-Algorithm 
obeying the trellis of Figure 1.33 using the 2-path CIR of Figure 2.4. 
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Figure 2.18: Gaussian BER versus SNR curves for the WATM channel of Figure 2.3(a) for 64-QAM 
using a 68-tap equaliser obeying the schematic of Figure 1.12 and for the M-Algorithm obeying the 
trellis of Figure 1.33 using the 5-path CIR of Figure 2.3(a). 
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Figure 2.19: Gaussian BER versus SNR curves for the Shortened WATM channel of Figure 2.3(b) 
for 64-QAM using a 30-tap equaliser obeying the schematic of Figure 1.12 and for the M-Algorithm 
obeying the trellis of Figure 1.33 using the 3-path CIR of Figure 2.3(b). 
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Figure 2.20: Gaussian BER versus SNR curves for the one-symbol-delay channel of Figure 2.4 for 
64-QAM using a 10-tap equaliser, obeying the schematic of Figure 1.12 and and for the M-Algorithm 
obeying the trellis of Figure 1.33 using the 2-path CIR of Figure 2.4. 
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after reaching the steady-state. We note furthermore that at the SNR concerned, namely at 30dB, 

the converged-state-accuracy of the various techniques becomes explicit also from Figures 2.5 to 2.9. 

« The M-algorithm provides the best performance. 

» Sato's algorithm converges with a medium accuracy. 

• Godard's algorithm converges with a medium convergence accuracy, which is improved for low-

order QAM. 

» The Modified-CMA algorithm offers a good accuracy, which is even better for higher-order 

QAM. 

• The Benveniste-Goursat algorithm exhibits excellent accuracy, especially in conjunction with 

higher-order QAM. 

• The Stop-and-Go algorithm has a good convergence accuracy, especially in the context of BPSK. 

• While for 16-QAM the BER curves do not tend to exhibit residual errors, tending toward 

BER= 0 for high SNRs, the same does not hold for 64-QAM over the WATM channel. This is, 

because these channels contain multipath components spread to several symbols' delays. This, 

in turn, means that the equaliser should also have a high number of taps. However, a blind 

equaliser having a high number of taps is usually not feasible due to their limited accuracy. We 

can extend the order of these equalisers and improve the associated BER, but only up to the 

point, where the equaliser starts to enhance the ISI and the associated convolutional noise. 

• The WATM channel is a channel containing multipath components scattered over a delay of 

67 symbols. The equalisation of this channel would involve a very long equaliser of about 80 

taps. In the blind scenario, this is impractical, since the equaliser's resolution is not sufficiently 

high. Hence beyond a certain length, the taps of these equalisers which are located far from the 

center tap do not effectively contribute to the equalisation process. Furthermore, they enhance 

the convolutional noise by increasing the ISI. Besides that, the speed of convergence is linearly 

dependent on the equaliser order and it becomes low for such high-order equalisers. This can 

be viewed in the Figure 2.21, where the MSE is plotted against the equaliser order for a specific 

example. In this case, the algorithms used were the CMA and the LMS or Wiener filter, which is 

a trained benchmarker used for comparison. The modulation was 16-QAM and the environment 

was noiseless. 
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Figure 2.21: MSB as a function of the equaliser order for 16-QAM using the CMA-based equaliser 
and a noiseless scenario. The channel model used is the one-symbol delay channel as given in Figure 
2.4. The LMS-based MSB is given as a lower limit, as this is a non-blind equaliser which gives a 
benchmark performance. Clearly, for small number of taps the blind equaliser curve coincides with 
the LMS benchmark curve, while for larger number of taps the CMA produces large MSE, attaining 
a minimum at about 14 taps, which is the ideal setting for this scenario. 

2.5 Simulations wi th Decis ion-Directed Switching 

In this section, we briefly explore the possibility of switching to decision-directed equalisation after 

the convergence of the blind equaliser. It is expected that for low SNR values this would drive the 

equaliser away from convergence - since the blind decision-directed equaliser is generally unstable 

- and therefore, at low SNRs switching to DD mode would be disastrous. Nevertheless, when the 

SNR is sufiiciently high, switching to DD mode is expected to assist the equaliser in converging with 

a better accuracy. This is indeed what we observed in our investigations. Explicitly, this technique 

improved the performance of blind equalisation and the improvement was higher, when the order of 

the QAM constellation was higher. This can be explained by the fact that when the SNR is high, 

the DD technique is powerful. This property can be exploited more readily in the context of higher-

order QAM constellations, than in lower-order schemes, since the SNR is typically higher for the 

higher-order QAM schemes, where the distances between constellation points are smaller. In Figures 

2.22 and 2.23 the associated improvement is shown for the case of the CMA and for 16-QAM as well 

as for 64-QAM, respectively. It can be observed that the improvement is modest for 16-QAM, but 

it is around IdB for 64-QAM at a BER of 10"^. Having studied the range of blind equalisation 

solutions in the previous subsections, a prominent application of the algorithms in the context of the 
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Figure 2.22: Gaussian BER versus SNR curves for the one-symbol-delay channel of Figure 2.4 for 
16-QAM using a 10-tap equaliser obeying the schematic of Figure 1.12 for the CMA using switching 
to decision-directed equalisation after convergence 
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Figure 2.23: Gaussian BER versus SNR curves for the one-symbol-delay channel of Figure 2.4 for 
64-QAM using a 10-tap equaliser obeying the schematic of Figure 1.12 for the CMA using switching 
to decision-directed equalisation after convergence 
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Pan-European Satellite-based Digital Video Broadcast (DVB-S) [18] system [10] will be presented in 

the next section. 

2.6 Appl icat ion to Digital Video Broadcasting^ 

2.6.1 I n t r o d u c t i o n 

In recent years three harmonised Digital Video Broadcasting (DVB) standards have emerged in Eu-

rope for terrestrial [19], cable-based [20] and satellite-oriented [18] delivery of DVB signals. The 

dispersive wireless propagation environment of the terrestrial system requires concatenated Reed-

Solomon [130, 160] (RS) and rate compatible punctured convolutional coding [130, 160] (RCPCC) 

combined with Orthogonal Frequency Division Multiplexing (OFDM) based modulation [161]. The 

satellite-based system employs the same concatenated channel coding arrangement, as the terres-

trial scheme, while the cable-based system refrains from using concatenated channel coding, opt-

ing for RS coding only. Both of the latter schemes employ, furthermore, blind-equalised multi-level 

modems [161]. Lastly, the video codec used in all three systems is the Motion Pictures Expert Group's 

MPEG-2 codec. These standardisation activities were followed by a variety of system performance 

studies in the open literature [162-165]. Against this background, in this section we employ turbo-

coding based improvements to the satellite-based DVB system [18] and present performance studies of 

the proposed system under dispersive channel conditions in conjunction with a variety of blind chan-

nel equalisation algorithms. The transmitted power requirements of the standard system employing 

convolutional codecs can be reduced upon invoking more complex, but more powerful turbo codecs. 

Alternatively, the standard quaternary or 2-bit/symbol system's bit error rate (BER) versus signal-

to-noise ratio (SNR) performance can almost be matched by a turbo-coded 4-bit/symbol 16-level 

quadrature amplitude modulation (16-QAM) based scheme, while doubling the achievable bit rate 

within the same bandwidth and hence improving the associated video quality. This is achieved at the 

cost of an increased system complexity. This system offers a testbed for a real-life application of blind 

equalisation techniques under mild channel dispersions. 

The remainder of the section is organised as follows. A succinct overview of the turbo-coded and 

standard DVB satellite scheme is presented in Section 2.6.2, while our channel model is described in 

Section 2.6.3. A brief summary of the blind equaliser algorithms employed is presented in Section 2.6.4. 

Finally, the performance of the improved DVB satellite system is examined for transmission over a 

dispersive two-path channel in Section 2.6.5. 

^This section is based on joint work w i th my colleague Chee-Siong Lee [10], whose contributions in the field of both 
video compression and channel coding are gratefully acknowledged 
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Figure 2.24: Schematic of the DVB satellite system. 

2.6.2 D V B Sate l l i te Scheme 

The block diagram of the DVB satellite (DVB-S) system [18] is shown in Figure 2.24, which is 

composed of a MPEG-2 video encoder (not shown in the diagram), channel coding modules and 

a quadrature phase shift keying (QPSK) modem [161]. The bitstream generated by the MPEG-2 

encoder is packetised into frames of 188-byte long, which are then randomised by the scrambler, the 

details of which can be obtained from the DVB-S standard [18]. 

Due to the poor error resilience of the MPEG-2 video codec, powerful concatenated channel coding 

is employed. The concatenated channel codec comprises a shortened Reed-Solomon (RS) outer code 

and an inner convolutional encoder. The 188-byte MPEG-2 video packet is extended by the Reed-

Solomon encoder [130, 160] with parity information to facilitate error recovery to form a 204-byte 

packet. The Reed-Solomon decoder can then correct up to eight erroneous bytes for each 204-byte 

packet. Following this, the RS-coded packet is interleaved by a convolutional interleave! and further 

protected by a half-rate inner convolutional encoder with a constraint length of 7 [130,160]. 

Furthermore, the overall code rate of the concatenated coding scheme can be adapted by variable 

puncturing, not shown in the figure, which supports code rates of 1/2 (no puncturing) as well as 2/3, 

3/4, 5/6 and 7/8. The parameters of the convolutional encoder are summarised in Table 2.3. 

Confer f aromefers 
Code Rate 1/2 
Constraint Length 7 
n 2 
k 1 
Generator Polynomials (octal format) 171, 133 

Table 2.3; Parameters of the CC(n,k,K) convolutional inner encoder of the DVB-S modem. 
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Figure 2.25: Block diagram of turbo encoder. 

In addition to implementing the standard DVB-S system as a benchmark, we have improved the 

system's performance with the aid of a turbo codec [135, 166]. The block diagram of the turbo 

encoder is shown in Figure 2.25. The turbo encoder is constructed of two component encoders. Each 

component encoder is a half-rate convolutional encoder, whose parameters are listed in Table 2.4. 

The two component encoders are used to encode the same input bits, although the input bits of the 

second component encoder are interleaved before encoding. The output bits of the two component 

codes are punctured and multiplexed, in order to form a single output bitstream. The component 

encoder used here is known as a half-rate recursive systematic convolutional encoder (RSC) [167]. It 

generates one parity bit and one systematic output bit for every input bit. In order to provide an 

overall coding rate of one half, half the output bits from the two encoders must be punctured. The 

puncturing arrangement used in our work is to transmit all the systematic bits from the first encoder 

and every other parity bit from both encoders. 

Readers interested in further details of the DVB-S system are referred to the DVB-S standard [18]. 

The performance of the standard DVB-S system and that of the turbo coded system is characterised 

in Section 2.6.5. Let us now briefly consider the multipath channel model used in our investigations. 

2.6.3 Channe l M o d e l 

The DVB-S system was designed to operate in the 12 GHz frequency band (K-band). Within this 

frequency band, tropospheric effects such as the transformation of electromagnetic energy into thermal 

energy due to induction of currents in rain and ice crystals lead to signal attenuations [169,170]. In the 

past 20 years, various researchers have concentrated their efforts on attempting to model the satellite 

channel, typically within a land mobile satellite channel scenario. However, the majority of the work 
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Turbo Coder Parameters 
Turbo Code Rate 
Input block length 
Interleaver Type 
Number of turbo decoder iterations 

1/2 
17952 bits 
Random 

8 

Turho Encoder Component Code Parameters 
Component Code Encoder Type 

Component Code Decoder Type 
Constraint Length 
n 
k 
Generator Polynomials (octal format) 

Convolutional 
Encoder (RSC) 
Log-MAP [168] 

3 
2 
1 

7, 5 

Table 2.4: Parameters of the inner turbo encoder used to replace the DVB-S system's convolutional 
coder (RSC: recursive systematic code). 

conducted for example by Vogel and his colleagues [171-174] concentrated on modelling the statistical 

properties of a narrowband satellite channel in lower frequency bands, such as the 870MHz UHF band 

and the 1.5GHz L-band. 

However, our high bitrate DVB satellite system requires a high bandwidth, hence the video bitstream 

is exposed to dispersive wideband propagation conditions. Recently, Saunders et. al. [175,176] have 

proposed the employment of multipath channel models to study the satellite channel, although their 

study was concentrated on the L-band and S-band only. 

Due to the dearth of reported work on wideband satellite channel modelling in the K-band, we have 

adopted a simpler approach. The channel model employed in this study was the two-path (nT)-

symbol spaced impulse response, where T is the symbol-duration. In our studies we used n = 1 and 

n = 2. This corresponds to a stationary dispersive transmission channel. Our channel model assumed 

that the receiver had a direct line-of-sight with the satellite as well as a second path caused by a 

single reflector probably from a nearby building or due to ground reflection. The ground reflection 

may be strong, if the satellite receiver dish is only tilted at a low angle. 

Based on these channel models, we studied the ability of a range of blind equaliser algorithms to 

converge under various path delay conditions. In the next section we provide a brief overview of 

the various blind equalisers employed in our experiments, noting that the readers who are mainly 

interested in the system's performance may proceed directly to our performance analysis section, 

namely to Section 2.6.5. 

103 



2.6 Application to Digital Video Broadcasting 2.6 Application to Digital Video Broadcasting 

QJ 

-H 
I—I ft 

0 . 8 -

0 . 6 " 

0.4 

0 . 2 

PATH DELAY 
ONE-SYMBOL OR 

T W O - S Y M B O L D E L A Y 

T I M E DELAY 

Figure 2.26: Two-path satellite channel model with either a one-symbol or two-symbol delay. 

2.6.4 The B l i n d Equal isers 

In this section the blind equalisers used in the system are presented. The following blind equalisers 

have been studied: 

• The Modified Constant Modulus Algorithm (MCMA) of Section 1.3.5.3 [102] 

• The Benveniste-Goursat Algorithm (B-G) of Section 1.3.5.4 [32] 

• The Stop-and-Go Algorithm (S-a-G)of Section 1.3.5.5 [21] 

• The Per-Survivor Processing (PSP) Algorithm of Section 1.3.9 [23], using the M-algorithm with 

M equal to the number of symbols in the constellation. 

A summary of the various equalisers' parameters is given in Table 2.5. 

Having described the components of our enhanced DVB-S system, let us now consider the overall 

system's performance. 

2.6.5 Per formance of the D V B - S Scheme 

In this section, the performance of the DVB-S system was evaluated by means of simulations. Two 

modulation types were used, namely the standard QPSK and the enhanced 16-QAM schemes [161]. 
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Step-size No. of Initial 
A Equal. Tap-

Taps Vector 
Benveniste-Goursat 5x10"^ 10 (1 .2 ,0 , . . . , 0) 
Modified-CMA 5x10-4 10 (1 .2 ,0 , . . . , 0) 
Stop-and-Go 5x10-4 10 (1 .2 ,0 , . . . , 0) 
PSP (1 sym delay) 10-% 2 (1.2,0) 
PSP (2 sym delay) 10-% 3 (12,0,0) 

Table 2.5: Summary of the equaliser parameters used in the simulations. The tap-vector (1.2,0, • • • , 0) 
indicates that the first equaliser coefficient is initialised to the value 1.2, while the others to 0 

The channel model of Figure 2.26 was employed. The first channel model had a one-symbol second-

path delay, while in the second one the path-delay corresponded to the period of two symbols. The 

average BER versus SNR per bit performance was evaluated after the equalisation and demodulation 

process, as well as after Viterbi [130] or turbo decoding [166]. The SNR per bit or Eh/Ng is defined 

as follows: 

(2.2) SNR per bit = lOZogio ^ + 6 

where S is the average received signal power, N is the average received noise power and 6, which is 

dependent on the type of modulation scheme used and channel code rate (R), is defined as follows: 

5 = lOlogio 
1 

R X Bits per modulation symbol 
(2.3) 

Our results are further divided into two subsections for ease of discussion. First, we will present the 

system performance over the one-symbol delay two-path channel in Section 2.6.5.1. Next, the system 

performance over the two-symbol delay two-path channel is presented in Section 2.6.5.2. Lastly, a 

summary of the system performance is provided in Section 2.6.5.3. 

2.6.5.1 Transmission Over the Symbol-spaced Tvyo-path Channel 

The linear equalisers' performance was quantified and compared using QPSK modulation over the 

one-symbol delay two-path channel model of Figure 2.27. Since all the equalisers' BER performance 

was similar, only the Modified CMA results are shown in the figure. 

The equalised performance over the one symbol-spaced channel was inferior to that over the non-

dispersive AWGN channel. However, as expected, it was better than without any equalisation. An-

other observation for Figure 2.27 was that the different punctured channel coding rates appeared to 

give slightly different bit error rates after equalisation. This was because the linear blind equalisers re-

quired uncorrelated input bits in order to converge. However, the input bits were not entirely random. 
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Figure 2.28; Average BER versus SNR per bit performance after equalisation and demodulation 
employing QPSK modulation and the one-symbol delay t w o - p a t h channel of Figure 2.26, for 
the Benveniste-Goursat algorithm, where the input bits are random (No CONV) or correlated (CONV 
7/8) as a result of convolutional coding having a coding rate of 7/8. 

when convolutional coding was used. The consequences of violating the zero-correlation constraint 

are not generally known. Nevertheless, two potential problems were apparent. Firstly, the equaliser 

may diverge from the desired equaliser equilibrium [22]. Secondly, the performance of the equaliser is 

expected to degrade, owing to the violation of the randomness requirement, which is imposed on the 

input bits in order to ensure that the blind equalisers will converge. 

Since the channel used in our investigations was static, the first problem was not encountered. Instead, 

the second problem was what we actually observed. Figure 2.28 quantifies the equalisers' performance 

degradation due to convolutional coding. We can observe a O.ldB SNR degradation, when the convo-

lutional codec creates correlation among the bits for this specific case. 

The average BER curves after Viterbi or turbo decoding are shown in Figure 2.29(a). In this figure, 

the average BER over the non-dispersive AWGN channel after turbo decoding constitutes the best 

case performance, while the average BER of the one-symbol delay two-path MCMA-equalised rate 

7/8 convolutionally coded scenario exhibits the worst case performance. Again, in this figure only 

the Modified-CMA was featured for simplicity. The performance of the remaining equalisers was 

characterised in Figure 2.29(b). Clearly, the performance of all the linear equalisers investigated was 

similar. 

It is observed in Figure 2.29(a) that the combination of the Modified CMA blind equaliser with turbo 

decoding exhibited the best SNR performance over the one-symbol delay two-path channel. The only 
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Figure 2.29: Average BER versus SNR per bit performance after convolutional or turbo decoding 
for QPSK modulation and one-symbol delay channel (NE: Non-Equalised; B - G : Benveniste-
Goursat; S -a -G: Stop-and-Go; M C M A : Modified Constant Modulus Algorithm; PSP: Per-
Survivor-Processing). 
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comparable alternative was the PSP algorithm. Although the performance of the PSP algorithm was 

better at low SNRs, the associated curves cross over and the PSP algorithm's performance became 

inferior below the average BER of 10"^. This happens due to the iterative nature of turbo decoding, 

which is in contrast to the combined equalisation and non-iterative channel decoding of PSP. It is 

well recognised that iterative channel decoders typically exhibit a better performance for high SNRs, 

than their non-iterative counterparts. In this case, despite the fact that the Modified CMA exhibites 

considerably worse performance than PSP, if it is used in conjunction with non-iterative channel 

decoding, when turbo coding is employed, its performance is dramatically improved, especially for 

high SNRs. Although not shown in Figure 2.29, the Reed-Solomon decoder, which was concatenated 

to either the convolutional or the turbo decoder, became effective, when the average BER of its input 

was below approximately 10"^. In this case, the PSP algorithm performed by at least IdB worse in 

the area of interest, which is at an average BER of 10"^. 

A final observation in the context of Figure 2.29(a) is that when convolutional decoding was used, the 

associated Eb/Ng performance of the rate 1/2 convolutional coded scheme appeared slightly inferior 

to that of the rate 3/4 and the rate 7/8 scenarios beyond certain Eh/Ng values. This was deemed to 

be a consequence of the fact that the 1/2-rate encoder introduced more correlation into the bitstream 

than its higher rate counterparts and this degraded the performance of the blind channel equalisers, 

which performed best, when fed with random bits. 

Having considered the QPSK case, we shall now concentrate on the enhanced system, which employed 

16-QAM under the same channel and equaliser conditions. In Figure 2.30 and Figure 2.31, the 

performance of the DVB system employing 16-QAM is presented. Again, for simplicity, only the 

Modified CMA results are given. In this case the ranking order of the different coding rates followed 

our expectations more closely in the sense that the lowest coding rate of 1/2 was the best performer, 

followed by rate 3/4 codec, in turn followed by the least powerful rate 7/8 codec. 

The Stop-and-Go algorithm has been excluded from these results, since it does not converge for high 

SNR values. This happens, because the equalisation procedure is only activated, when there is a high 

probability of correct decision-directed equaliser update. In our case, the equaliser is initialised far 

from its convergence point and hence the decision-directed updates are unlikely to be correct. In the 

absence of noise this leads to the update algorithm being permanently de-activated. If noise is present 

though, then some random perturbations from the point of the equaliser's initialisation can activate 

the Stop-and-Go algorithm and can lead to convergence. We made this observation at medium SNR 

values in our simulation study. For high SNR values though, the algorithm did not converge. 

It is also interesting to compare the performance of the system for the QPSK and 16-QAM schemes. 

When the one-symbol delay two-path channel model of Figure 2.26 was considered, the system was 
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(b) Same as (a) but enlarged in order to show performance difference of the bl ind 
equaliser, when different convolutional code rates are used. 

Figure 2.30: Average BER versus SNR per bit after equalisation and demodulation for 1 6 - Q A M over 
the one-symbol delay two -pa th channel of Figure 2.26 ( M C M A : Modified Constant Modulus 
Algorithm). 
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Figure 2.31: Average BER versus SNR per bit after Viterbi or turbo decoding for 1 6 - Q A M over 
the one-symbol delay two-pa th channel of Figure 2.26 (B-G: Benveniste-Goursat; S-a-G: 
Stop-and-Go; M C M A : Modified Constant Modulus Algorithm; PSP: Per-Survivor-Processing). 

capable of supporting the use of 16-QAM with the provision of an additional SNR per bit of ap-

proximately 4 — 5dB. This observation was made by comparing the performance of the DVB system 

when employing the Modified CMA and the half-rate convolutional or turbo code in Figure 2.29 and 

Figure 2.31 at a BER of 10"'^. Although the original DVB-Satellite system only employs QPSK 

modulation, our simulations had shown that 16-QAM can be employed equally well for the range 

of blind equalisers that we have used in our work. This allowed us to double the video bitrate and 

hence to substantially improve the video quality. The comparison of Figures 2.29 and 2.31 also reveals 

that the extra SNR requirement of approximately 4 — 5dB of 16-QAM over QPSK can be eliminated 

by employing turbo coding at the cost of a higher implementational complexity. This allowed us to 

accommodate a doubled bitrate within a given bandwidth, which improved the video quality. 

2.6.5.2 Transmission Over the Two-symbol Delay T w o - p a t h Channel 

In Figures 2.32 (only for the Benveniste-Goursat algorithm for simplicity) and 2.33 the corresponding 

BER results for the two-symbol delay two-path channel of Figure 2.26 are given for QPSK. The 

associated trends are similar to those in Figures 2.27 and 2.29, although some differences can be 

observed, as listed below: 
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® The "cross-over point", beyond which the performance of the PSP algorithm was inferior to 

that of the Modified CMA in conjunction with turbo decoding is now at 10"*, which is in the 

range, where the RS decoder guarantees an extremely low probability of error. 

« The rate 1/2 convolutional decoding was now the best performer, when convolutional decoding 

is concerned, while the rate 3/4 scheme exhibited the worst performance. 

Finally, in Figure 2.34, the associated 16-QAM results are presented. Notice that the Stop-and-Go 

algorithm was again excluded from the results. Furthermore, we observe a high performance difference 

between the Benveniste-Goursat algorithm and the Modified CMA. In the previous cases we did not 

observe such a significant difference. The difference in this case is that the channel exhibits an 

increased delay spread. This illustrated the capability of the equalisers to cope with more widespread 

multipaths, while keeping the equaliser order constant at 10. The Benveniste-Goursat equaliser was 

more efficient, than the Modified CMA in this case. 

It is interesting to note that in this case, the performance of the different coding rates was again in the 

expected order, the rate 1/2 being the best, followed by the rate 3/4 and then the rate 7/8 scheme. 

If we compare the performance of the system employing QPSK and 16-QAM over the two-symbol 

delay two-path channel of Figure 2.26, we again observe that 1 6 - Q A M can be incorporated into 

the D V B system, i f an extra 5dB of SNR per bi t is affordable in power budget terms. 

However, only the B—G algor i thm is worthwhi le considering here out of the three linear 

equalisers of Table 2.5. This observation was made by comparing the performance of the DVB 

system when employing the Benveniste-Goursat equaliser and the half-rate convolutional coder in 

Figure 2.33 and Figure 2.34. 

2.6.5.3 Performance Summary of the D V B - S System 

Table 2.6 provides an approximation of the convergence speed of each blind equalisation algorithm of 

Table 2.5. It is clear that PSP exhibited the fastest convergence, followed by the Benveniste-Goursat 

algorithm. In our simulations the convergence was quantified by observing the slope of the BER curve, 

and finding when this curve was reaching the associated residual BER, implying that the BER has 

reached its steady-state value. Figure 2.35 gives an illustrative example of the equaliser's convergence 

for 16-QAM. The Stop-and-Go algorithm converges significantly slower than the other algorithms, 

which can also be seen from Table 2.6. This happens because, during the startup, the algorithm is 

de-activated most of the time, an effect which becomes more severe with an increasing QAM order. 

We now define the average peak signal-to-noise ratio (PSNR) for the one-symbol delay and two-
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Figure 2.32; Average BER versus SNR per bit performance after equalisation and demodulation 
for QPSK modulation over the two-symbol delay two-pa th channel of Figure 2.26 (B-G: 
Benveniste-Goursat). 
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Figure 2.33: Average BER versus SNR per bit performance after convolutional or turbo decoding 
for QPSK modulation over the two-symbol delay two-pa th channel of Figure 2.26 (B-G: 
Benveniste-Goursat; S-a-G: Stop-and-Go; M C M A : Modified Constant Modulus Algorithm; PSP: 
Per-Survivor-Processing). 

114 



Chapter 2 Performance Results 2.6 Application to Digital Video Broadcasting 

10 

£ 1 0 - ' 
CO 5 

10 

1 0 
0 

> 

0 B-G 
* 

• MCMA * 

* AWGN 
— R1/2 

R3/4 \ ^ 
--- R7/8 0 

5 10 15 
SNR per bit (dB) 

20 

(a) After equalisation and demodulation 

0 B-G CONV 
• MCMA CONV 
* AWGN TURBO 
V B-G TURBO 
X S-a-G TURBO 
§ MCMA TURBO 

— R1/2 
R3/4 

--- R7/8 

4 6 8 10 12 14 16 18 20 22 
SNR per bit (dB) 

(b) After v i terbi or turbo decoding 

Figure 2.34: Average BER versus SNR per bit performance (a) after equalisation and demodulation 
and (b) after Viterbi or turbo decoding for 1 6 - Q A M over the two-symbol delay two-path chan-
nel of Figure 2.26 (B-G: Benveniste-Goursat; S-a-G: Stop-and-Go; M C M A : Modified Constant 
Modulus Algorithm; PSP; Per-Survivor-Processing). 
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B-G MCMA S-a-G PSP 
QPSK 1 sym 73 161 143 0.139 
QPSK 2 sym 73 143 77 0J^9 
16-QAM 1 sym 411 645 1393 
16-QAM 2 sym 359 411 1320 

Table 2.6: Equaliser convergence speed (in miliseconds) measured in the simulations, given as an 
estimate of time required for convergence when 1/2 rate puncturing is used (x sym: x-symbol delay 
two-path channel and x can take either the value 1 or 2). 

Bit Index (x1000) 
250 500 750 1000 1250 1500 

MCMA 
S-a-G 

0 250 500 :r50 1000 1250 
Time (msec) 

Figure 2.35: Learning curves for 16-QAM, one-symbol delay two-path channel at SNR=18dB. 
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symbol delay two-path channel model of Figure 2.26 as; 

•^M ot:t:2 

2w/n=0 2.v?7%=0 
(2.4) 

where A is the difference between the uncoded pixel value and the reconstructed pixel value. The 

variables M and N refer to the dimension of the image. The maximum possible 8-bit represented pixel 

luminance value of 255 was used in Equation 2.4 in order to mitigate the PSNR's dependence on the 

video material used. The average PSNR is then the mean of the PSNR values computed for all the 

images constituting the video sequence. 

Tables 2.7 and 2.8 provide a summary of the DVB-Satellite system's performance tolerating a PSNR 

degradation of 2dB, which was deemed to be nearly imperceptible in terms of subjective video degra-

dations. The average BER values quoted in the tables refer to the average BER achieved after Viterbi 

or turbo decoding. The channel SNR is quoted in association with the 2dB average video PSNR 

degradation, since the viewer will begin to perceive video degradations due to erroneous decoding of 

the received video around this threshold. 

Mod. Equaliser Code CSNR 
(dB) 

QPSK PSP(Rate 1/2) 5.3 5.3 
QPSK MCMA Turbo (1/2) 5.2 5.2 
16QAM MCMA Turbo (1/2) 1&6 1&6 
QPSK MCMA Conv (1/2) 9.1 9.1 
16QAM MCMA Conv (1/2) 17^ 1A2 
QPSK MCMA Conv (3/4) 1L5 9.7 
16QAM MCMA Conv (3/4) 20^ 1&4 
QPSK B-C Conv (7/8) 13.2 10.8 
16QAM B-G Conv (7/8) 216 1&2 

Table 2.7: Summary of performance results over the dispersive one-symbol delay two-path AWGN 
channel of Figure 2.26 tolerating a PSNR degradation of 2dB. 

Tables 2.9 and 2.10 provide a summary of the SNR per bit required for the various system config-

urations. The BER threshold of 10"^ was selected here, since at this average BER after Viterbi or 

turbo decoding, the RS decoder becomes effective, guaranteeing near error-free performance. This 

also translates into near unimpaired reconstructed video quality. 

Finally, in Table 2.11 the QAM symbol rate or Baud rate is given for different puncturing rates and for 

different modulation schemes, based on the requirement of supporting a video bit rate of 2.5 Mbit/sec. 

We observe that the Baud rate is between 0.779 and 2.73 MBd, depending on the coding rate and the 

number of bits per modulation symbol. 
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Mod. Equaliser Code CSNR 
(dg) 

Eb/No 

QPSK PSP(Rate 1/2) 4.7 4.7 
QPSK B-G Turbo (1/2) 5.9 5.9 
16QAM B-G Turbo (1/2) 1&7 1^7 
QPSK B-G Conv (1/2) 8.0 8.0 
16QAM B-G Conv (1/2) 17^ 14^ 
QPSK B-G Conv (3/4) 12J 1&3 
16QAM B-G Conv (3/4) 21.1 1&3 
QPSK B-G Conv (7/8) 1&4 11.0 
16QAM MGMA Conv (7/8) 29^ 23^ 

Table 2.8; Summary of performance results over the dispersive two-symbol delay two-path AWGN 
channel of Figure 2.26 tolerating a PSNR degradation of 2dB. 

Mod. Equaliser Code Eb/ATo 

QPSK PSP(Rate 1/2) 6.1 
QPSK MCMA Turbo (1/2) 5.2 
16QAM MCMA Turbo (1/2) lOJ 
QPSK MCMA Conv (1/2) 11.6 
16QAM MCMA Conv (1/2) 1&3 
QPSK MCMA Conv (3/4) 1&5 
16QAM MCMA Conv (3/4) 1&4 
QPSK B-G Conv (7/8) 1L8 
16QAM B-G Conv (7/8) 17.2 

Table 2.9: Summary of system performance results over the dispersive one-symbol delay two-path 
AWGN channel of Figure 2.26 tolerating an average BER of 10"*, which was evaluated after Viterbi 
or turbo decoding but before RS decoding. 

Mod. Equaliser Code 

QPSK PSP(Rate 1/2) 5.6 
QPSK B-G Turbo (1/2) 5.7 
16QAM B-G Turbo (1/2) lOJ 
QPSK B-G Conv (1/2) 9.2 
16QAM B-G Conv (1/2) l&O 
QPSK B-G Conv (3/4) l&O 
16QAM B-G Conv (3/4) 1&8 
QPSK B-G Conv (7/8) 11.7 
16QAM MCMA Conv (7/8) 2&0 

Table 2.10: Summary of system performance results over the dispersive two-symbol delay two-path 
AWGN channel of Figure 2.26 tolerating an average BER of 10"*, which was evaluated after Viterbi 
or turbo decoding but before RS decoding. 
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Punctured Rate 4-QAM 16-QAM 
Baud Rate Baud Rate 

(MBd) (MBd) 
1/2 2J3 L37 
3/4 182 0.909 
7/8 1.56 0.779 

Table 2.11; The channel bit rate for the three different punctured coding rates and for the two 
modulation schemes used. 

2.7 S u m m a r y 

This chapter has characterised the performance of selected blind equalisers. The Busssgang equalisers 

exhibit a low complexity, but require a considerable number of symbols to converge. Moreover, their 

convergence accuracy is mediocre. By contrast, the M-algorithm appears to be the best choice in 

performance terms, giving the best convergence speed and tracking performance at the cost of a higher 

complexity, depending on the channel's delay spread and the number of survivors M. 

An application example of using blind equalisation techniques was also presented in the context of a 

satellite-based DVB system. It was found that the employment of turbo channel coding resulted in 

about bdB gain in comparison to the standard convolutional coding based scheme. The associated 

power budget savings can be invested for example into employing 16-QAM instead of 4-QAM, which 

exhibites a factor two higher throughput. This doubled throughput can then be used either for 

doubling the number of DVB channels supported in a given bandwidth, or for increasing the video 

quality of each fixed-bandwidth channel. Further research has to confirm these findings also in different 

wireless propagation scenarios. A range of further wireless video communications issues are addressed 

in [10,177]. 
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Chapter 3 

Soft Decision—Feedback Equalisat ion 

Using t h e Cons tant Modulus 

Algor i thm 

3.1 In t roduc t ion 

Having introduced a range of bhnd equalisers and having studied their performance, in this chapter we 

propose a novel blind equalisation technique, based on the well-known CMA, which was characterised 

in Section 1.3.5.2. We extend the CMA-based equaliser [4] by making use of soft feedback information 

input to a DFE similar to the equalisers dicsussed in Section 1.2.0.5. This equaliser is constituted 

by an infinite impulse response filter and as such it is potentially unstable. Similar work has been 

reported in [178], where a lattice-form CMA based Decision-Feedback Equaliser (DFE) using the 

Shtrom-Fan cost function was explored and in [179], where a predictive DFE-CMA was proposed. 

Furthermore, in [180] two different blind DFE systems were explored using combinations of the CMA 

and the Shtrom-Fan cost functions for the forward and the feedback parts of the equaliser, respectively. 

Finally, in [181], a modified version of the CMA, namely the MCMA was extended to a DFE. 

The chapter is organised as follows. The proposed equaliser is described in Section 3.2. In Section 

3.3 the associated convergence issues of this equaliser are discussed and in Section 3.4 the equaliser's 

performance is evaluated with the aid of computer simulations. 

3.2 Sys tem Descript ion 

The communications system under consideration is shown in Figure 3.1. In the proposed scheme the 
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auu 
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z(n) a(n) 

-1 
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Equaliser -1 
D 

D:differential encoder D :differential decoder 

Figure 3.1: Equalised communications system 

information bits are differentially encoded in order to be able to demodulate the information, when the 

blind equaliser converges to a sign-reversed solution. The differentially coded bits are then mapped 

to the Quadrature Amplitude Modulation (QAM) symbols a(n). These symbols are convolved with 

the CIR hi and are contaminated by the channel noise e(n), yielding the received symbols y[n) as: 

L2 
! / ( " )= ^ Ai-o(n-%)-t-e(n). 

i=—Li 
(3.1) 

The restoration of the original information bits is performed by the DFE-CMA equaliser. We will 

describe the operation of this equaliser below. The DFE-CMA equaliser performs channel equalisa-

tion and delivers the equalised signal z{n) as the output of a feedforward and a feedback filter. In 

mathematical terms the equalised signal is given by: 

z{n) = • y(n) + w ' • z{n — 1) (3.2) 

where c = [cq, C i , • • • , cat ]^ and w = [ w o , w i , • • • , x m ] ' ^ are the feedforward and feedback equaliser 

coeScients respectively, y(n) = [3/(?i), !/(n — 1), - -, 3/(n — # ) ] ^ is the received signal vector and z(n — 

1) = [z(n —l),z(n —2), - - - , 2;(n — iV —1)]^ is the equalised signal vector. If we consider the z-transform 

of this relationship, we arrive at: 

= i W l T ) ' = TWW) ' 
(3.3) 

where Z{z), Y{z) and A{z) are the ^-transforms of the equalised, received and transmitted signals 

respectively, while H{z), C{z) and W{z) are the CIR and the equaliser's feedforward and feedback 

vectors in the z-domain, respectively. If the channel was described by a linear model having a finite 

number of taps, then all that this system would have to do to equalise Y{z) would be to find W{z), 

so that 1 4- W{z) = H{z). By contrast, if the channel's transfer function also contains poles, then the 

feedforward section would also have to be active, so that (1 + W{z))IC{z) = H{z). By considering 
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the CMA cost function [4], we can similarly formulate the cost function for this algorithm as; 

- ^2) , (3.4) 

where R2 is the constant used in the CMA. By utilising the classic gradient descent algorithm, we can 

now find the equaliser coefficient update procedure by differentiating the cost function of Equation (3.4) 

with respect to (wrt) both the feedforward and feedback coefficients, yielding the update algorithm 

of; 

c(..) . c ' ° - " - A • (3,5) 

„(») . „ (« - ! ) - A. (3,6) 

where A is the step-size parameter, controling the learning rate of the equaliser. Before proceeding 

further, we need to find the expressions for the derivatives of Equation (3.4) wrt c and w: 

^ ' /(^) _ 2 - e(n) - [z*(m) - ^ — — - w + z(n)-(y*(M) + ^^ ^ — ^ ' W * ) ] (3.7) 
dc dc dc 

and 

= 2 . e(n) . [z*(n) - ^ - w + z(n) - (z*(M " ^ 

As we observe from Equations (3.7) and (3.8), the calculation of the gradients requires an estimate 

of the derivative of the equalised vectors with respect to the equaliser feedforward and feedback tap-

vectors. These derivatives are constituted by matrices and their elements will be close to zero, when 

the equaliser is close to convergence, however these low-valued elements are needed in order to bring 

the equaliser to this point. In order to estimate these derivatives we develop a recursive loop. Firstly, 

we define the following variable matrices and vectors: 

c = CR-|-;ci (3.9) 

w = WR-l- jwi (3.10) 

^ CR,R,(n) CRi(n) 

CiR(n) Cii(n) 

dcu dcj 
dzf(n) dzf(n) 

\ dcR dcj 

(3.11) 

C(n) = — ^ = CR.R(n) - Cn (n) + i(CRi(n) + CiR(n)) 
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C(n) = 
5c 

CRR(n) + Cii(n) + j(CRi(n) - CiR(n)) (3.12) 

WRR(n) WRi(n) 

WiR(n) Wii(n) 

/ dz^(n) dz'^(n) ^ 
dwji dwj 

dzj(n) dzj{n) 
\ dwR dwi J 

(3.13) 

W ( M ) - ^ : ^ = W R R ( m ) - W n ( n ) + ; ( W m ( 7 ^ ) + W m ( " ) ) . 

W(M) = 

9w 
dz^{n) 

dw 
WRR(n) + Wii(n) + i(WRi(n) - WiR(n)) . 

With these definitions, Equations (3.7) and (3.8) become; 

dJ{n 

dc 
= 4 • e(n) • [ 0 . 5 • z{n) • y*(n) + ZR{n) • ( ( C r r • wr - Q r • W I ) + 

Zi{n) • (Crr • WI + CIR • Wr) + j{zR(n) • ((Cri • Wr - CN • WI) + 

ZI{N) • (Cri • WI + Cn • WR))))] 

/ 
4 - e(n,) - [0.5 - z(n,) - y*(n) + 

W R -wi 
\ 

V JWI JWR 

C r r -Cri 

CiR Cii 

^J(n) 
9w 

4 • e(n) • [ 0 . 5 • z{n) • z*(n - 1 ) + ZR{n) • ( ( W r r • wr - W i r • W I ) + 

zi{n) • (Wrr • Wi + Wir • wr) + j{zR(n) • ((Wri • wr — W n • wi) + 

zi{n) • (Wri • WI + WII • wr))))] 

I 
= 4 • e(n) • [0.5 • z{n) • z*(n — 1) + 

v 

(3.14) 

(3.15) 

WR -wi 

jwi JWR 

W r r -W r i 

Wir Wii z;(n) 

(3.16) 

From these definitions and from Equation (3.2) we can derive the recursion for the gradients as: 

CRR(n) •f = 0.5 - yR(M) + (CRR(n - 1) • WR - CiR(n - 1) • wi) 

CRi(n) •f = —0.5 • yi(n ) + (CRi(n — 1) • Wr — Cii(n — 1) wi) 

CiR(n) • f = 0.5 - yi(n) + (CiR(n - 1) - WR + CRR(M - 1) -Wl) 

Cii(n) • f = 0.5 - yR(n) + (Cii(n — 1) • Wr + CRi(n — 1) • wi) 

WRR(n) •f = 0.5 • ZR(n -- 1) + (WRR(n — 1) • WR — WiR(n - 1 ) • Wl) 

WRi (n) •f = —0.5 • zi(n - 1) + (WRi(n — 1) • Wr - Wii(n - 1 ) W L ) 

Wm.(/%) •f = 0.5 • zi(n — 1) + (WiR(n — 1) • WR + W R R ( n - 1 ) . W L ) 

(3.17) 
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Step 1 Calculate the equalised signal according to (3.2) 
Step 2 Calculate the update of the derivatives according to (3.19) and (3.20) 
Step 3 Shift matrices C and W one column deleting the least recent column and 

replace with the column from the recursion of the previous step 
Step 4: Update the equaliser coefficients according to (3.5), (3.6) and (3.15), (3.16) 

Table 3.1; The steps of the algorithm. 

Wii(n) • f = 0.5 • ZR,(n — 1) + (Wii(n — 1) • wr + WR,i(n — 1) • wi) (3.18) 

where f = [1, 0, 0, • • • , 0]^ is a column vector used to extract the first column of the matrix, which it 

multiplies. The matrices C(n) and W(n) actually contain the N most recent columns of the derivative 

of the received and equalised signals respectively, with respect to the relevant equaliser tap-vector. 

Therefore, at every update, these columns are shifted so that the most obsolete one is replaced by 

the recently updated column from Equations (3.17) and (3.18). We can further streamline Equations 

(3.17) and (3.18) as: 

( 

CRR Cri 

CiR ClI 

W r r W r i 

(n) • f = 0.5 • 

(n). f = 0.5 

( \ YR -yi 

\ yi YR 
(n) + 

( \ ( 
W R — WI 

/ \ Wi WR 

C r r Cri 

CjR C L I 

\ 

/ 
( n - l ) (3.19) 

(n — 1) + 
^ WR - w i ^ 

^ WiR Wll 

The equaliser tap-update algorithm is therefore given by; 

Wl WR 

WRR W a i 

WiR Wll 
(n — 1). 

.W 1) — A • e(n) • {z*{n) • C{n — 1) - w 4- z{n) (y*(n) -|- C ( n - 1) • w*)) (3.21) 

— A - e(n) • {z*{n) • W ( n — 1) - w -t- z{n) (z*(n — 1) + W ( n — 1) • w*)) , (3.22) 

The proposed equaliser coefficients-update algorithm is given in the form of a set of steps, which are 

summarised in Table 3.1. 

3.3 Convergence Issues 

In this section we discuss the convergence properties of the DFE-CMA algorithm. The stationary 

points of the algorithm are identified and the similarities with the CMA are highlighted. We commence 

the analysis by considering the total transfer function of the channel plus equaliser system denoted 

by t = [to,ti, • • • • Naturally, K may tend to infinity, but we will consider it to be finite for 

the moment. With this notation, the stationary points of the algorithm can be found by setting the 
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derivatives of the cost function with respect to the equaliser coefficients, which are given by Equations 

(3.7) aiui (3.8), to zero: 

= 2 • e(n) • [z'(n) • ' (y ' (" ) + ^ — U . w ' ) ] = 0 (3.23) 

^ . 2 . . („) . [.<(„) . " • w + .(„) . (z-(n - 1) + " . w-)] = 0. (3.24) 

We will assume that we can ignore the contributions of the terms ^ and 

since they are relatively small compared to the received and the equalised signals, respectively. 

This is a valid assumption when the equaliser is close to convergence, i.e. in the vicinity of a desirable 

equilibrium, since in this case the equalised symbols are rather insensitive to the equaliser's coefficients. 

In the implementation of this algorithm these terms are not taken into account at all, which implies 

that the assumption of ignoring them is justified. However, we have no evidence as to whether 

these terms may actually create undesirable local minima for the equaliser. Under this assumption. 

Equations (3.23) and (3.24) become: 

e(n)'z(m) y*(n) = 0 (3.25) 

e{n) • z{n) • z*{n — 1) = 0. (3.26) 

The first of these equations is the same as the relevant equations for the CMA, namely Equation 

(1.117), which was originally studied in [22,27] and [102] in the context of a modified CMA version. 

The stationary points defined by Equation (3.25) are as follows: 

• Local minima are: 

— the points of the form: t = [0, • • • , 0, e^'^, 0, • • • , 0]^ and 

- the channel-dependent local minima exhibited by equalisers having a finite length. 

• Saddle points are: 

- the point t = 0 and 

— the points of the form t = [0, • • •, 0, , • • • , 0,--- , 0]^. 

Note furthermore that for a point to be a local minimum of the DFE-CMA algorithm in terms of 

the cost function of Equation (3.4) it has to be a local minimum of both Equations (3.25) and (3.26). 

We will now consider Equation (3.26) to investigate the associated stationary points. After some 

averaging calculations over all possible transmitted symbols a(n), assuming that they are independent 
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identically distributed (i.i.d), this Equation (3.26) reduces to the following system: 

fo % 

0 

0 0 

to n ^G-2 

i* 
CG-3 

/(4l) ^ 

y(t2) 

/ (%) 

/ o \ 

0 

0 (3.27) 

\ 0 0 0 0 ts y / ( f c ) y 0 y 

where f{ti) is defined as f{ti) = (/i4(|tip — 1) + 2/̂ 2 l^(l^) " U, where again we have defined 

/ij = E[\a{n)\'^], with a{n) representing the complex input QAM symbols. By examining Equation 

(3.27) we readily see that it accepts the trivial solution t = 0, as well as solutions, which obey ti = 0 

for i < 5 and ti ^ 0, f{ti) = 0 for i > S. This solution gives the following system of equations for 

A^4(|iiP ^ 1) + 2/i2 ^ = 0, i = 6, - • • ,G. (3.28) 
l^i 

Equation (3.28) can be rewritten as; 

2^2 AM 2^^ 14+11^ 

/ /i4 \ 

/i4 
(3.29) 

\ 2^% 2^ l̂ -- / \ / 

The solution of Equation (3.29) is given by: 

\ti /i4 
/i4 + 2/̂ 2 (Ĝ  — ^) 

, i = S, - • • ,G, (3.30) 

which corresponds exactly to the CMA's stationary points, as it was shown in [27]. We have found 

that the stationary points can assume one of the following forms: 

• [0, • • •, 0, , • • • , , 0, • • - where G — 5 + 1 defines the number of non-zero vector entries, 

• [0, • • • ,0]^, 

which are similar to the CMA's stationary points, having the sole difference that in this case the CIR 

does not play a multiplicative role. Therefore the requirement of an infinite number of equaliser taps is 

not necessary in this case. At this stage we have to ascertain which of the stationary points are minima, 

saddle points and maxima. Explicitly, we only want the points of the form [0, • • • , 0, 0, • • •, 0]^ to 

be local minima and all the other points to be unstable equilibria. It is easy to see that this is true, 

since the cost function of this algorithm is the same as the cost function of the CMA. Foschini [27] has 
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Figure 3.2; Two and three-path channel models used in the performance comparison. 

studied the stationary points of this cost function, which are the same for the proposed DFE-CMA as 

well. Foschini also proved that only the tap vector having a single non-zero element - i.e. the vectors 

of the form [0, • • •, 0, 0, • • • , 0]^- constitute a minimum and all the others - i.e. the vectors of the 

form [0, - " , 0]^ as well as [0, - - -, 0, ^ _ are saddle points. This also proves 

that the DFE-CMA cost function, which is the same, also assumes only the above non-zero tap vector 

as a minimum. 

What we can observe from the study of this equaliser's convergence is that under the assumption that 

the terms of Equations (3.19) and (3.20) are not used in the equaliser update process, the equaliser 

does not converge to any length-dependent local minima, unlike the CMA. This is due to the fact that 

the feedback introduced to its input is constituted by the convolution of the total system's impulse 

response with the input symbols, but it does not incorporate the filtering effect of the channel, as 

evidenced by Equation (3.26), where the vectorial term multiplying the error e(n) is now z*(n — 1), 

instead of the term y*(n) of Equation (3.25). As we have already observed in Section 1.3.7, it is exactly 

this term which gives rise to the length-dependent undesirable equilibria, inherent in the CMA. 

Having discussed the convergence of the DFE-CMA, we will now characterise its performance. 

3.4 Pe r fo rmance Resul ts 

In this section the proposed algorithm is benchmarked against the classic CMA [4], demonstrating 

the improved performance of the DFE-CMA, when the channel is difiicult to equalise, since the CIR 

contains two or three equal paths. In Figure 3.2 the channel models used are shown. In Figure 3.3 

the equaliser's Mean Squared Error (MSE) learning curves are plotted for Quadrature Phase Shift 

Keying (QFSK) using the two-path channel model of Figure 3.2 for a Signal-to-Noise-Ratio (SNR) of 

SOdB. Observe the substantially improved performance of the DFE-CMA, explained by the fact that 

a reduced number of taps is needed, thus inflicting less convolutional noise. The step-size parameter 

128 



Chapter 3 Soft Decision-Feedback Equalisation Using the CMA 3.4 Performance Results 

CD 
-o 

LU 
03 

0 10 taps 
• 15 taps 

— CMA 
A DFE-CMA 3 taps 

- e — < > 

-B-

50 100 150 200 250 300 
Symbol Index (xlOOO) 

Figure 3.3: The MSE learning curves for QFSK, using the two-path model of Figure 3.2. The DFE-
CMA has two feedback taps and one feedforward tap. 

A is 5x10^^. In Figure 3.4 the same performance curves are given for 16-QAM and for the three-path 

channel model of Figure 3.2. Again, we observe better performance for the DFE-CMA, combined in 

this case with slower convergence. It is expected that the convergence of the DFE-CMA will be faster 

than that of the CMA, as a consequence of its reduced number of taps. On the other hand, since a DFE 

is typically less stable than its open-loop counterpart in the sense that it can diverge more easily from 

the desirable point of equilibrium, it may require more time to move towards the point of equilibrium. 

We can also observe in Figure 3.4 that the MSE of the DFE-CMA is not monotonically decreasing after 

convergence. This is due to the statistical variation of the algorithm's operation due to the statistically 

different nature of the data processed. The MSE curve will fluctuate around the mean value after 

the algorithm has converged. Following the above arguments, what we actually see in Figure 3.4 and 

also in Figure 3.3 is that after an initial period of slow or no convergence the DFE "switches" to fast 

convergence mode and then converges in a "waterfall" fashion. On the other hand, the conventional 

CMA would require more taps to give a similar performance, and hence the convolutional noise would 

increase the MSE. In Table 3.2 we give a complexity estimate for the update of the DFE-CMA and 

the classic CMA, based on the number of real additions and multiplications required at each symbol 

interval. In this table M is the number of feedback taps, while N is the number of feedforward taps. 

It is clear from Table 3.2 that in general the DFE-CMA is more complex, because its complexity 

depends on M^, even when we use only one feedforward tap. However, in the situations of interest 
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Figure 3.4: The MSE learning curves for 16-QAM, using the three-path CIR model of Figure 3.2. 
The DFE-CMA has two feedback taps and one feedforward tap. 

Algorithm Additions Multiplications 
DFB-CMA 16M(M + AT) + 31M + ISAT - 16 8M(M + #)- ! - 29M + ISAT 
DFE-CMA (AT = 1) 16M^ + 47M + 15 8M^ + 37M + 21 
CMA 4Ar + 2 4 ^ + 4 

Table 3.2: Complexity estimation of the DFE-CMA and the CMA. 
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Figure 3.5: The minimum MSE as a function of the number of equaliser taps for 16-QAM using 
the two- and three-path channel models of Figure 3.2 at an SNR of 30dB. The DFE-CMA has two 
feedback taps and one feedforward tap. 

the number of feedback taps required is determined by the channels's delay spread in terms of the 

number of symbol intervals and it is rather small, while for these channels a high-order CMA based 

equaliser would be required. As an example, in Figure 3.5 we plot the minimum MSE as a function 

of the number of equaliser taps at an SNR of 30dB. We observe that the DFE-CMA MSE function 

has a minimum, depending on the channel model and also on the SNR. In this graph we observe the 

expected minimum introduced as a result of two factors; 

• The additive channel noise, implying that the MSE cannot be less than a certain threshold and 

• The convolutional noise, which exists because of: 

— the finite equaliser length and 

— due to the fact that this is a blind equaliser and it does not converge with infinite precision, 

especially in the presence of additive channel noise. 

Similar minima exist in the CMA MSE function at a larger number of taps. It is clear that in the 

two-path channel scenario the DFE-CMA requires only one feedback tap, while the CMA requires at 

least 20 taps. In Table 3.2 we also observe that the corresponding complexities are 78 real additions 

and 64 real multiplications for the DFE-CMA and 82 real additions and 84 real multiplications for 
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the CM A. Therefore, in this case the CMA is more complex while its performance is inferior to that 

of the proposed algorithm. 

3.5 S u m m a r y 

In this chapter a novel blind equaliser was presented and studied, extending the conventional CMA 

to the DFE-CMA scheme. This equaliser provides a solution to the problem of reversing the effects 

of a nonminimum phase channel, such as the channels described by a Z-transform of having zeros on 

the unit circle. The impulse response of the equaliser required to by such channels is long and thus 

the equaliser requires a high number of taps. In the case of CMA-based blind adaptation, due to the 

fact that during the equaliser's initialisation such channels inflict severe ISI, often slow and inaccurate 

convergence is encountered. The benefit of this equaliser in comparison to the conventional CMA is 

that its feedback section provides implicit training information in the absence of transmission errors. 

In this case there is no need for a high number of taps. Instead, the number of equaliser taps required is 

equal to the number of CIR taps. For transmissions over other types of channels similar performance 

ia attained to that of the CMA, but at a potentially higher complexity. This complexity increase 

is typically on the order of L, L being the number of CIR taps. Finally, when the approximation 

of neglecting the terms of Equations (3.19) and (3.20) from the calculation of the update terms in 

Equation (3.22) is used, then this equaliser, unlike the CMA, is incapable of converging to any channel-

(otherwise referred to as "length-") dependent undesirable local minima, due to its feedback section. 

We have to note here, however, that this equaliser, as a DFE, is more prone to instabilities, than the 

conventional CMA, in particular when the initialisation is far from the desired point of equilibrium 

and the value of the step-size is not sufficiently low. 

Finally, the application of this equaliser in various channel environments requires optimisation with 

respect to the number of feedforward and feedback taps. Further research related to this technique 

has to consider this optimisation together with the possibility of blindly detecting the type of the CIR, 

in order to automatically "decide" on the required tap-vector lengths. 

Having presented the DFE-CMA equaliser in this chapter, we will now focus our attention on present-

ing a novel class of blind equalisers, combining PSP based channel estimation and channel decoding 

in an iterative fashion. 
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Chapter 4 

Combined Blind Equalisat ion and 

Channel Decoding: Turbo—PSP 

4.1 In t roduc t ion 

Blind equalisation has attracted significant research interests during recent years. The blind equaliser 

proposed in this treatise belongs to the class of sequence estimation techniques. It incorporates a 

Per-Survivor Processing (PSP) based equaliser [6], modified appropriately, in order to produce soft 

outputs as in [135,182, 183] and it involves channel coding not only for protecting the transmitted 

data from the additive noise induced by the channel, but also for assisting the PSP equaliser during 

convergence by utilising a feedback loop. 

As we will see in Section 4.5, this novel blind equalisation technique exhibits good performance in 

terms of its output Bit Error Rate (BER). Explicitly, a BER comparable to that of a trained turbo 

equaliser is attained at the cost of a modest complexity increase. 

This chapter is organised as follows. The communications system is characterised in Section 4.2, 

while in Section 4.3 the proposed turbo-PSP equaliser is described. Specifically, in Sections 4.3.1 -

4.3.2 its separate modules are discussed, while in Section 4.4 the associated phase ambiguity problem 

is addressed. Finally, in Section 4.5 performance results are provided for both static and fading 

dispersive channels. 

4.2 System Descr ipt ion 

The communications system under consideration is shown in Figure 4.1. The information bits are 

encoded by a convolutional encoder and then punctured in order to produce the necessary coding 
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Figure 4.1: Equalised communications system 

rate. The coded bits are then interleaved in order to disperse the channel's bursty errors as well as to 

enhance the turbo-equaliser's performance and then mapped to the QAM constellation symbols a(n). 

These symbols are convolved with the Channel's Impulse Response (CIR) hi and then the channel 

noise e{n) is added, yielding the received symbols y{n) as: 

L2 
y(") = XI -%) + e(n) (4.1) 

The restoration of the original information bits is performed by the turbo-PSP equaliser. This 

equaliser performs two basic functions: blind channel equalisation and channel decoding, in an it-

erative fashion. We will describe the operation of the turbo-PSP equaliser in the next section. 

4 .3 T u r b o - P S P E q u a l i s e r D e s c r i p t i o n 

The turbo-PSP equaliser performs joint channel equalisation and channel decoding using the schematic 

shown in Figure 4.2. In this figure the symbol 11 denotes the interleaver. The system consists of a 

PSP [6] equaliser, forwarding the so-called LogLikelihood Ratio values LLReq to the subsequent de-

interleaver, which are defined as: 

LLR{Bit) = In 
Frob{Bit = 1) 

_Prob{Bit = 0) 
(4.2) 

The operational principle of the system is as follows. Firstly, the PSP equaliser attempts to remove 

the Intersymbol Interference (ISI) from the received signal and at the same time performs demod-

ulation, providing the bit LLR values, which are input to the channel decoder. Subsequently, the 

channel decoder provides better soft estimates of the PSP equaliser's output, which is then used as 
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Figure 4.2: The turbo-PSP equaliser 

"a-priori" information for the next iteration of the PSP equaliser. Following a number of iterations, 

the impairments of the channel are gradually removed from the signal. 

Let us now discuss the turbo-PSP equaliser in more detail. The equaliser's a-priori LLR values, 

LLRg'P^^"" are used as a-priori knowledge, assisting the module in providing improved confidence 

values at its output. These values stem from the channel decoded information, which are then sub-

stracted from the equaliser's output LLRgg in order to provide the input LLR^^ of the subsequent 

de-interleaver. This subtraction takes place so that in the next iteration the consequent channel de-

coder takes into account only the equaliser's contribution, but not the equaliser's a-priori values, which 

had been provided by the channel decoder itself. This concept is similar to that used in trained turbo 

equalisation [182], although the lack of training information requires the replacement of the MAP 

equaliser by a PSP equaliser. Following the PSP-based equalisation, the de-interleaver rearranges 

the LLRlg values according to the interleaving algorithm used. Following the de-interleaver, the Soft 

Output Viterbi Algorithm (SOVA) performs channel decoding based on the Maximum A-Posteriori 

(MAP) criterion and provides the LLRfgy^ as well as LLR'^l^ values for its coded and decoded out-

puts, respectively. The coded LLR values are again interleaved, so as to align them with the channel 

output symbols. The resultant LLR values LLR'^~p"°" are then fed back to the PSP equaliser as 

a-priori values. 

Having described the functions of the component modules of the turbo-PSP equaliser in Figure 4.2, 

we will now proceed to highlighting the operation of these components. We commence with the most 

important module, namely the PSP equaliser. 
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Figure 4.3: State transitions from time k ~ 1 to k. 

4.3 .1 T h e P S P equal iser 

Per-survivor processing was initially proposed by Seshadri in [6] in 1991. Seshadri modified the 

Viterbi algorithm [34], in order to render it applicable to the scenario where no channel information 

is available. This was achieved by considering that each surviving sequence in the trellis carries its 

own channel estimation, which is updated at every symbol instant. Additionally, Seshadri proposed 

the use of the M-algorithm [140] in order to invoke several surviving estimates and to counteract the 

possibility of a CIR initialisation drastically different from the actual CIR. More explicitly, when this 

algorithm is utilised, M surviving sequences are kept at every stage of the trellis search for each state. 

This approach makes the estimation process less vulnerable to the initial CIR estimate. Clearly, when 

M is equal to the number of states this is the special case which corresponds to the classic Viterbi 

Algorithm (VA). This algorithm was termed Per-Survivor Processing (PSP) by Polydoros et al. [23]. 

A novel variant of this algorithm is invoked in the context of the turbo-PSP equaliser, in order to 

provide soft outputs. This is achieved [183] by considering the following equation: 

LLRgqi^X]^^ — 
Prob{xk = + l | y , d ) 
Proh{xk = - l | y , d 

(4.3) 

where y represents the received symbol vector and d represents the a-priori values of the equaliser, 

generated by the channel decoder's SOVA. In order to estimate the above probabilities, following the 

approach of [183], we consider the state transitions from time k — 1 to k and then to A + 1, as seen in 

Figure 4.3. As we can see from Figure 4.3, the probability Proh{xk — + l | y , d) can be viewed as that 
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of an event which can take place only if three separate events coincide. Thus, this probability can be 

expressed as the product of three probabilities. The first one is the probability ak- i ( s ' ) of being in 

state s' at time A; — 1, given the received symbol vector yj<k for time i < k, while the second one is 

the probability %(g', s) of moving to state s at time k, given that at time k — 1 we were at state s' 

and that the received symbol vector y. Finally, the third associated probability is that of being in 

state s at time k, namely /3/t(s), given the received symbol vector yj>k for time i > k. With these 

considerations, the LLR of Equation (4.3) becomes: 

LLR[xk) = In (4.4) 

The calculation of the values of a and /3 can be performed recursively, using the values of 7, according 

to the relationships [183]: 

7A: (a , a) - % - ! (a') (4.5) 
S 

A- i (5 ' ) = ^ 7 k ( a ' , 8 ) A(a) . (4.6) 

a 

Initial values have to be assumed for the recursive calculation of a and [3 in Equations (4.5) and (4.6). 

To set these values we can set the encoder to the all-zero state at both the beginning and end of each 

transmission frame. In our case, the serially concatanated encoder is considered to be the channel, and 

this initialisation implies transmitting "tailing" symbols, which correspond to all-zero bits at both 

the beginning and at the end of the frame. The number of these tailing symbols has to match the 

total delay spread of the CIR. This can be viewed as training, as it suggests transmitting information, 

which is known a-priori to the receiver. Nonetheless, tailing bits are required in order to provide 

initialisation and they are typically part of trained systems as well. In this case, the initialisation 

takes place as: 

ao(s) = 1 (4.7) 

0:^(5) = 0, A; ^ 0 (4.8) 

(4.9) 

/)A'(a) = 1 (4.10) 

A(a) = 0, Afj iT, (4.11) 

where K is the last symbol interval of the frame. It can easily be observed that at the beginning 

and end of the frame the initialisation allows any state to exist. This is because the PSP equaliser 

can converge to any phase-shifted solution and in this case the initial and final states are difi'erent 

from the zero state. Phase-shifted solutions are not encouraged, but they can always exist and this 
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initialisation protects the equaliser in any case. Finally, the values of 7 can be obtained during the 

per-survivor processing, according to the following equation; 

7^(5,5) = f2(A,5',s) (4.12) 
/ 1 M \ 

(4.13) 

^(A;,a',a) = i;(2;i)j, (4.14) 

where cr̂  is the noise variance, the transmitted signal energy is assumed to be normalised to unity, 

L{xi) denotes the equaliser's a-priori values seen in Figure 4.2, Xi is the estimated input 

bit value associated with the transition from state s to state s (it can be either —1 or +1), Q is the 

number of bits per symbol in the QAM constellation, i/(A:) is the received symbol at time A:, a) 

is the estimated received symbol at time k if the previous state was s', the survivor index was i and 

the current state is s. Finally, M is the number of survivors per state. This equation is an extension 

of the associated equation for the trained turbo equaliser, for which the channel estimate is global [183]. 

Finally, the CIR estimate update, which takes place at every symbol instant, can be performed by 

using the Least Mean Squares (LMS) [6] or the Recursive Least Squares (RLS) [23,141] algorithm, 

where the latter provides fast convergence in exchange for a higher complexity. We opted for the LMS 

algorithm, according to which the CIR vector at time n is updated as: 

h H = + A • a*(n) • (y{n) — • a(n)j , (4.15) 

where A is the step-size controlling the speed and the accuracy of convergence, a(n) is the estimated 

transmitted symbol vector at the state concerned, y{n) is the received symbol at symbol instant n 

and * denotes the complex conjugate. 

The complexity of this algorithm depends directly on the number of states to be processed. This 

number is a function of where N is the number of symbols in the QAM constellation and 

Li + L2 + 1 is the number of channel paths. The exponential makes the algorithm computationally 

demanding for channels with long impulse responses. However, the M-algorithm approximation can 

deliver similar performance for such channels, by retaining a small number of states. 
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4 .3 .2 T h e Sof t O u t p u t V i t e r b i A l g o r i t h m 

The SOVA of the channel decoder operates similarly to the corresponding module of the trained turbo 

equaliser [135,182,183]. Bearing in mind the above point, it is readily seen that the a and /? values 

can be calculated according to the trellis state transitions, described by the same recursive formulae, 

namely Equations (4.5) and (4.6) as for the PSP equaliser. The difference is in the calculation of the 

7 values, which are now given by: 

7A:(a',a) = , (4.16) 

where n is the number of coded bits output by the convolutional encoder for each A-bit input word, 

Xi{k) is the estimated input bit at instant k during the transition from state s' to state s, which can 

be either +1 or —1, and L{xi{k)) is its LLR value, which is the input of the SOVA. Finally, as for the 

case of the PSP equaliser, the LLR of the decoded output bit Uk at instant k is given by: 

LLR{uk) = In 
-7t(a ' ,a) ';8t(a) 

- 7t(a' , a) ' A (a) 
(4.17) 

The LLR values of the coded bits also have to be fed back to the PSP equaliser, improved by the 

decoder, which are given by: 

LLR[xk) = In 
« t - i ( / ) - 7^(5, a) - A ( a ) 

% - i ( / ) - %(a', 5) - A (a) 
(4.18) 

Another module used in our system is the puncturer, which is capable of providing different code 

rates, while keeping the convolutional coding rate fixed. The puncturer selects a number of bits from 

the output block of the convolutional encoder, which is less than the block length. By doing so, some 

bits are actually discarded and this results in a decreased code rate. The inverse procedure is carried 

out by the depuncturer, which inserts zero LLRs (i.e. bits that are '1' with a probability of 0.5) 

in the locations, where bits have been discarded by the puncturer, implying that for these locations 

no information is available for the relevant bits. However, in this contribution no puncturing was used. 

4.3.2.1 The Turbo-Coded T u r b o - P S P 

An extension of the turbo-PSP equaliser employing turbo coding [135] instead of convolutional has 

also been considered. In a turbo encoder the convolutional encoder is replaced by two half-rate 

convolutional encoders, as shown in Figure 4.4. Half of the input bits, namely the systematic bits, 
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Figure 4.4: The turbo encoder 

input 

Input 
Bits Depuncturer 

Decl n Decl L J n 

"I 

Dec2 +r n' Dec2 u n' 
input 

Decoded 
Output 

Figure 4.5: The turbo decoder 

a-priori 

were directly fed to the output by the puncturer and the other half of the bits are encoded by both 

Encoder 1 and also by Encoder 2, in the latter case after interleaving. The output of the two encoders 

is multiplexed so that half of the bits of each encoder are passed to the turbo encoder's output. 

The turbo decoder is illustrated in Figure 4.5. The operation of this module is similar to that of 

the turbo equaliser, taking into account that in this case the equaliser module has been replaced by 

another convolutional decoder. Details of various turbo decoding algorithms can be found for example 

in [184^ 

Having described the most important components of the proposed turbo-PSP equaliser, we will now 

address the closely related issue of differential coding. 
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4.4 Differential Coding 

Blind equalisers may converge to a tap setting, which is rotated in the complex plane, as compared to 

the ideal setting. Specifically, when QAM is employed, the symmetry of the modulation constellation 

implies that the blind equaliser may converge to four different settings, each corresponding to one of 

the four quadrants of the complex plane. A common solution to this problem inherent in any blind 

equaliser is the employment of differential encoding. Seshadri [6] observed this phenomenon for the 

case of a PSP equaliser. For the turbo-PSP equaliser, however, this solution cannot be used, since 

differential encoding and decoding of soft values would have to be performed. However, the differential 

encoding of soft values results in converging to zero soft values. This is due to the fact that, unlike 

differential decoding, during defferential encoding an erroneous decision propagates further than the 

next bit. The problem can be avoided by performing differential encoding in a block basis rather than 

in a bit basis. In other words, differential encoding can be performed by taking into account a whole 

block of bits in deciding on the value of a specific bit, rather than taking into account only the value of 

the next bit. This technique requires exponentially increased complexity and is therefore impractical. 

Thus, other techniques of overcoming this problem have to be used. We will describe an appropriate 

method below. 

It can be observed that the equaliser typically converges to that specific setting, which it has been 

initialised closest to. If the initialisation is close to the correct setting, then the equaliser will converge 

and in the next iteration the equaliser will be fed with a-priori values, which will improve its new CIR 

estimate and its soft output values. By contrast, if the equaliser's initialisation is closer to a setting 

which is not the correct one, then it will start converging to this particular setting. However, the SOVA 

will be fed with phase-rotated values and in the next iteration the equaliser's a-priori values will drive 

the equaliser to instability. A way of overcoming this problem is to shift the estimated CIR in phase, 

so that it matches the actual CIR as closely as possible. The problem that arises is that of estimating 

the phase shift. This can be achieved by initially invoking the PSP equaliser without iterations and 

transmitting a series of pilot symbols. As we will see in the next section, a few training pilot symbols 

can be transmitted, resulting in a minor decrease of the bandwidth. After the selection of the right 

coordinate quadrant, equalisation continues as before. The number of iterations is adjusted according 

to an estimate of the grade of convergence provided by the equaliser. 

4.5 Pe r fo rmance Resul t s 

In this section we present performance results for the turbo PSP-equaliser described in Section 4.3. 

The results are based on computer simulations. The channels assumed are static or fading, having the 
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Figure 4.6: The CIRs used in our simulations 

Frame length (bits) 174 
Interleaver type Bit 
Interleaver block length 5x174 
Carrier frequency 1900MHz 
Symbol rate 2.6MBaud 
Doppler speed 48Km/h 
Code rate 1/2 
Convolutional generator polynomial 1 17ocr 
Convolutional generator polynomial 2 
Turbo convolutional generator polynomial 1 17ocT 
Turbo convolutional generator polynomial 2 17ocT 
Equaliser step-size 5x10-3 

Table 4.1: The turbo-PSP equaliser parameters used in the simulations. 

CIRs given in Figure 4.6. Iteration or convergence control has been considered in two different ways. 

In Detector 1 (Dl) the variance of the input LLR values of the de-interleaver was measured and then 

its slope was estimated by taking four samples into account. The LLR variance provides an estimate of 

our confidence in the LLR values, since the higher the absolute values of these LLRs, the more confident 

the decisions. The associated LLR variance is expected to increase iteration after iteration and reach 

its peak value, when the iterations can no longer improve the BER. This condition is detected by 

estimating the slope of the variance by utilising the least squares method and taking into account the 

last four values of the LLR variance in the calculation of the slope. According to Dl the iterations are 

curtailed when the slope becomes less than a threshold value, which was selected to be zero. According 

to our second detector (D2) the variance of the difference between the previous and current equaliser 

output LLRs is measured and compared against a fixed threshold. The iterations are curtailed, when 

the variance becomes less than the threshold. In our simulations Dl and D2 are evaluated both in 

terms of their performance and complexity reduction. The general turbo-PSP equaliser's parameters 

are given in Table 4.1. In Figure 4.7 the BER versus Bit SNR curves are given for both QPSK and 
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Figure 4.7: BER versus Bit SNR curves over static channels, exhibiting the impulse responses shown 
in Figure 4.6 and using the tu rbo-PSP equaliser parameters given in Table 4.1. The iteration control 
obeyed Dl . 

16-QAM and also for turbo-coded QPSK using 4 iterations, over the static channels of Figure 4.6. It 

is clear that using turbo coding instead of convolutional coding improves the performance, although 

it increases the complexity of the system. In this specific system, the complexity is eight times the 

complexity of the convolutional coded system but the number of iterations of the turbo equaliser also 

has to be taken into account. In this case the associated complexity was approximately the same for 

both convolutional and turbo coding. 

The Bit SNR is defined as; 

I3it SlVIl == , (4.19) 

where Ea is the average QAM signal power, Eg is the average noise power and IBPS is the number of 

information bits per symbol, i.e. the number of convolutional coded bits per symbol. This definition 

assists in the realistic assessment of the benefits of using strong convolutional coding for protecting 

the data. 

In Figure 4.8 a comparison is given between Dl and D2 for QPSK over the static channels of Fig-

ure 4.6(a). Finally, in Figure 4.9 we portrayed the associated average number of iterations for both 

detectors D l and D2. Firstly, we demonstrated in Figure 4.8 that the BER is not affected by the 

choice of D l or D2. This implies that both detection methods assign a sufficiently high number of 

iterations for correct decoding. The number of iterations required by Dl is lower than that of D2 at 

low SNRs and higher than that of D2 at high SNRs. This can be readily interpreted, if we consider 
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Figure 4.8; Comparison between D1 and D2 in terms of their BER versus Bit SNR performance. The 
channel is assumed to be static, obeying the impulse response of Figure 4.6(a) and the turbo-PSP 
equaliser parameters are given in Table 4.1. The variable t denotes the "threshold". 
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Figure 4.9: Comparison between D1 and D2 in terms of the average number of iterations versus 
Bit SNR curves. The channel is assumed to be static, having the impulse response shown in Figure 
4.6(a) and the tu rbo-PSP equaliser parameters are given in Table 4.1. The variable t denotes the 
"threshold". 
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that in D1 the noise does not affect the slope as much as in D2, since we take into account three pre-

vious samples of the LLR variance in addition to the current one, which implies that we are emplying 

averaging. Moreover, there is a minimum required number of iterations for this detection scheme, 

since it contains memory and this implies a delay. This minimum required number of iterations does 

not depend on the SNR. In D1 the convergence detection is dominated by this minimum number of 

iterations. By contrast, D2 takes into account only the current value of a variance and therefore it 

detects convergence immediately, when this value becomes less than a threshold, independently of any 

previous values. At high SNRs the number of iterations required directly depends on the threshold 

value and convergence is typically achieved within a few iterations. At low SNRs, however, conver-

gence is not readily obtained due to the excessive noise and hence typically a large number of iterations 

is necessary. In Figure 4.9 we observe that a lower threshold used for D2 requires more iterations, 

which was expected. We also observe in Figure 4.8 that the BER performance is good, approaching 

the performance of a turbo equaliser using perfect channel estimation for a sufficiently large number 

of iterations. This is because the PSP equaliser requires a considerable number of input symbols to 

converge, especially for higher-order QAM. The feedback loop of the PSP equaliser using the channel 

decoder's output information expedites convergence. The larger the number of iterations, the better 

the convergence of the PSP equaliser. Finally, in Figure 4.10 we have plotted the BER versus bit 

SNR curves for different but fixed numbers of iterations. The modulation schemes used is QPSK, the 

turbo-PSP equaliser parameters are given in Table 4.1 and the channel is the static channel of Figure 

4.6(a). We can observe from Figure 4.10 that no significant performance improvement is achieved 

after three iterations, implying that employing three iterations would be sufficient in this particular 

case. 

In Figure 4.11 we provide BER performance results for the 2- and 5-path fading channels of Figure 

4.6 using the parameters given in Table 4.1. The performance is again high compared to the bench-

marker using perfect CIR estimation. It is anticipated that the performance will become better when 

transmitting over the 3-path channel, than that over the 2-path channel, since it is less probable for 

three paths to fade at the same time than for two paths. A comparison similar to that over the pre-

viously studied static channels is given for D1 and D2 in Figure 4.12. Finally, in Figure 4.13 we have 

portrayed the associated average number of iterations for comparison. We observe again in Figure 

4.12 that the associated BER performance is similar for D1 and D2, whilst the number of iterations 

is now clearly lower for D2, even at low SNRs. This is because in the previous static channel's case 

the channel's z-domain transfer function contained a zero on the unit circle, rendering convergence 

slower and less accurate. This resulted in a larger number of iterations required for the variance to 

be below the threshold value. In the fading channel's case, such channel transfer functions do not 

occur very frequently, hence the associated convergence is typically faster. Similarly, D1 also requires 
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Figure 4.10: BER versus bit SNR curves for different but fixed numbers of iterations. The channel is 
assumed to be static, having the impulse response shown in Figure 4.6(a) and the tu rbo-PSP equaliser 
parameters are given in Table 4.1. 
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Figure 4.11: BER versus Bit SNR curves over fading channels having the impulse responses shown in 
Figure 4.6 and using the tu rbo-PSP equaliser parameters given in Table 4.1. 
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Figure 4.12: Comparison between D1 and D2 in terms of their BER versus Bit SNR curves. The 
channel is assumed to be Rayleigh fading, obeying the impulse response of Figure 4.6(a) and the 
tu rbo-PSP equaliser parameters are given in Table 4.1. 
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Figure 4.13; Comparison between D1 and D2 in terms of the required average number of iterations 
versus Bit SNR. The channel is assumed to be Rayleigh fading, using the impulse response of Figure 
4.6(a) and the tu rbo -PSP equaliser parameters are given in Table 4.1. The variable t denotes the 
"threshold". 
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Figure 4.14: BER comparison between perfect phase estimation (PPE) and pilots based phase estima-
tion. The channel is assumed to be static or fading, the impulse response of which is shown in Figure 
4.6(a) and the tu rbo -PSP equaliser parameters are given in Table 4.1. 

less iterations in this case for the same reason. However, the number of iterations has to exceed a 

minimum in order to overcome the memory effect associated with this detector. In the performance 

results presented so far the phase rotation problem has been neglected and the phase estimation has 

been assumed to be perfect. In a more realistic scenario, a few pilot symbols can be used to estimate 

the phase, without creating a significant overhead. For example, if we use three pilots out of 174 

symbols of a transmission frame, then the overhead is around 1.7%. This corresponds to a shift of 

about 0.07dB, if we take it into account in the BER versus Bit SNR curves, which is almost negligible. 

In Figure 4.14 we have plotted the BER curves for both the static and fading channels of Figure 4.6 

using both perfect phase estimation (PPE) with three pilot symbols. The performance is clearly very 

similar for both the static and fading channels and even for low SNR values and for twin-pilot assisted 

estimation. This justifies the employment of the phase estimation approach. 

In the simulation results presented so far the parameter M of the M-algor i thm was equal to the total 

number of trellis states. However, transmitting over higher-delay channels is a task, which imposes a 

higher complexity due to the fact that the number of states encountered is exponentially related to the 

number of channel paths. We will now show the effect of reducing the number of states considered on 

the performance and complexity of the algorithm. In Figure 4.15 we have plotted the BER against the 

Bit SNR for the three-path static channel of Figure 4.6 for different number of trellis states considered. 

As we can see from this figure, the reduction of the number of retained trellis states results in a shift of 
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Figure 4.15: BER comparison for different number of states M, employing QPSK. The channel is 
assumed to be a three-tap equal-weight static channel, the impulse response of which is shown in 
Figure 4.6(b) and the turbo-PSP equaliser parameters are given in Table 4.1. 

the BER curve towards higher SNRs, i.e. in a reduction of the performance of the system. However, 

this performance reduction is less than IdB, when we employ only half of the maximum number of 

states. In Figure 4.16 the same plot is given for a four-tap equal-weight channel. We can see that, in 

this case retaining only half of the total number of states gives a similar performance to that, when 

retaining a higher number of states. On the same note, when retaining 15 states, accounting for about 

one fourth of the total number of states, imposes only about IdB SNR performance degradation at 

BER = 10""^. Thus, retaining a lower number of states is adequate for this equaliser and the required 

proportion of states in relation to the total number of states is lower for higher-dispersion CIRs, when 

aiming for a given target performance. 

Finally, having discussed the effect of reducing the number of states in the turbo-PSP algorithm, in 

Figure 4.17 we have plotted the achievable coding gain at a BER of 10"* as a function of the decoding 

complexity for both the convolutional and turbo-coded schemes, in the latter case in conjunction with 

four turbo iteration loops. The coding gain is defined as the SNR gain of using channel coding as 

opposed to not using channel coding at a certain BER and it is measured in dB, In our estimate the 

complexity was deemed to depend on that of the channel decoder. Under this assumption, the turbo-

coded system has a complexity which is 0 ( 2 ^ • N • L) with N being the number of iterations of the 

turbo channel decoder and L being the number of turbo equaliser iterations, assuming that the figure 
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Figure 4.16: BER comparison for different number of states M, employing QPSK. The channel is 
assumed to be a four-tap equal-weight static channel and the turbo-PSP equaliser parameters are 
given in Table 4.1. 
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Figure 4.17: The coding gain as a function of complexity for convolutional and turbo-coded turbo-
PSP schemes. The channel is assumed to be static, the impulse response of which is shown in Figure 
4.6(a) and the turbo-PSP equaliser parameters are given in Table 4.1. 

2^~^, which is the complexity of each of the two MAP channel decoders, is multiplied by two, since 

there are two such constituent decoders, and also by the number of iterations, N. The specific codes 

used optimum generator polynomials both for the convolutional and for the turbo codes. As seen 

in Figure 4.17, it was found that the coding gain was higher for the convolutional coded turbo-PSP 

scheme at a low complexity, while this performance trend was reversed for a higher complexity. 

4.6 S u m m a r y 

A novel blind equaliser was proposed, jointly performing channel equalisation and channel decoding 

by combining turbo equalisation with PSP. We achieved this by feeding channel decoding information 

back to the PSP equaliser as a-priori information and repeating this process in an iterative fashion. 

This enhanced-reliability feedback information output by the channel decoder enhances the equaliser's 

performance in terms of its robustness against channel noise and also in terms of its convergence 

capability, provided that the soft feedback information does not contain an excessive number of errors. 

Clearly, this technique enhances the performance of the PSP based channel equaliser iteration by 

iteration. However, when the soft LLR feedback information applied by the channel decoder to the 

equaliser is unreliable, then the PSP equaliser may be driven to instability. As in the case of a 

conventional PSP based equaliser, the associated exponentially increasing complexity can be reduced 
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by employing the M-algorithm, that is by retaining a limited number of trellis states, when the highly 

dispersive CIR requires a long channel equaliser trellis, which would result in an excessive complexity. 

In this case, the PSP equaliser will perform worse than in the conventional open loop scenario, since 

its a-priori feedback will generally be more error-prone. Nevertheless, we found that this performance 

degradation is not significant for CIR durations of up to four symbol intervals. We also found that 

this performance degradation decreases when the CIR duration increases and the proportion of the 

total number of states retained is kept the same. Thus, taking into account that the simulated CIRs 

represent worst case scenario, we anticipate that this equaliser can cope with higher channel order and 

limited complexity. 

The number of iterations used was controlled by using a convergence detection algorithm. This 

algorithm is not optimum and if improved, it can reduce the number of iterations and the associated 

complexity required. 

The sign ambiguity issue, inherent in blind equalisation, could not be solved by simply employing 

differential coding. This is because the turbo equaliser would require a differential encoder processing 

soft inputs, which would require an excessive complexity. Nonetheless, this issue has been resolved 

by using a low number of pilot symbols. In fact, using pilot symbols for estimating the phase has 

proven to be a very good trade-off between the performance degradation imposed by using differential 

encoding and the bandwidth reduction incured by sending pilot symbols, rather than transmitting 

information. 

Having introduced and discussed the convolut ionally-co ded turbo-PSP algorithm, in the next chapter 

we will introduce a modification of this algorithm employing coded modulation schemes. 
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Chapte r 5 

Combined Trellis—Coded Modula t ion 

and Turbo Equalisation^ 

5.1 In t roduc t ion 

After having introduced the turbo-PSP concept in the previous chapter, we will now introduce a 

modification of this algorithm, which employs combined modulation and channel coding techniques 

and benefits from invoking symbol- instead of bi t - based decoding. This method exploits the en-

hanced data protection offered by Trellis-Coded Modulation (TCM) [185] or Bit-Interleaved Coded 

Modulation (BICM) [186] and exhibits good performance in terms of its output Bit Error Rate (BER). 

Explicitly, a BER comparable to that of a trained turbo equaliser is attained at the cost of a modest 

complexity increase. 

The chapter is organised as follows. The communications system is described in Section 5.2, while in 

Section 5.3 the proposed coded modulation turbo-PSP equaliser is described. Specifically, in Section 

5.4 the encoder and decoder used in the coded modulation schemes are detailed. Finally, in Section 

5.5 performance results are provided for fading dispersive channels. 

5.2 Sys tem Descript ion 

The communications system under consideration is shown in Figure 5.1. The information bits are 

mapped to QAM symbols by a channel encoder, which can be a trellis coded modulation encoder [185], 

a turbo trellis coded modulation encoder [187] or a convolutional encoder in the case of BICM [186]. 

^This chapter is based on joint work w i th my colleague Michael Soon Ng, whose contribution is gratefully acknowledged 
[13] 
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Figure 5.1: Equalised communications system 

The QAM symbols are then interleaved, in order to disperse the channel's bursty errors as well as 

to enhance the turbo-equaliser's performance, generating the transmitted QAM symbols a{n). These 

symbols are convolved with the Channel's Impulse Response (CIR) hi and then the channel noise e(n) 

is added, yielding the received symbols y{n) as: 

L2 
! / W - ^ hi o(n-%) + e(n). (&1) 

i=—Li 

The restoration of the original information bits is performed by the turbo-PSP equaliser. In the next 

section we provide further details concerning the operation of the turbo-PSP equaliser using TCM, 

TTCM and BICM. 

5.3 T u r b o - P S P Equaliser Descript ion 

The turbo-PSP equaliser performs joint channel equalisation and coded modulation decoding using 

the schematic shown in Figure 5.2. The operation of this system is the same as that of the turbo-

PSP equaliser using convolutional coding, as highlighted in Section 4.2. The sole difference is the 

replacement of the convolutional decoder by a TCM decoder. Hence, a bit-to-symbol converter is 

placed before the TCM decoder on order to convert the LLR values to symbol probabilities, which 

are necessary for facilitating TCM decoding. Similarly, a symbol-to-bit converter is employed at the 

output of the decoder. The calculation of the symbol probabilities from the probabilities of the input 
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Figure 5.2: The turbo-PSP equaliser 

bits is based on the following formula; 

Proh{Symbol = Ai) = IljProb{Bitj{Symbol) = Bitj{Ai)) ? = 0 , • • • J — ^ (5.2) 

where Q is the number of symbols in the modulation constellation used, K is the number of bits per 

symbol, Ai represent the constellation symbols and the function Bitj{Ai) returns the value of the 

j - th bit of symbol Ai. The assumption implicitly stipulated here is that the bits are independent of 

each other. This, however, is not a valid assumption, since channel coding has deliberately imposed 

a certain amount of correlation or interdependence on the bits, in order to exploit this redunduncy 

for correcting transmission errors. Similarly to the bit-to-symbol conversion of Equation (5.2), the 

symbol-to-bit conversion is based on the following formula: 

Prob{Bitj = Bit) = Prob{Symboli\ Bitj{Symholi) = Bit), (5.3) 

This formula is accurate, in the sense that it does not require any assumptions concerning the corre-

lation of the input symbols. However, any correlation amongst the bits of a block would have already 

been lost at the bit-to-symbol converter of Figure 5.2 and hence the input of the bit-to-symbol 

converter is uncorrelated. 

Having described the basic functions of the component modules of the turbo-PSP equaliser in Figure 

5.2, we will now proceed to highlighting the operation of these components. The PSP equaliser is the 

same module as the one used in Section 4.3.1 of the previous chapter. Therefore, we will not elaborate 

on it further in this chapter. In the next section we describe the operation of the TCM encoder and 

decoder. 
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5.4 Coded Modula t ion Schemes 

Trellis Coded Modulation (TCM) [185] was proposed originally for Gaussian channels and it was 

later further developed for applications in mobile communications [188, 189]. Turbo Trellis Coded 

Modulation (TTCM) [187] is a more recent joint coding and modulation scheme that has a structure 

similar to that of the family of power efficient binary turbo codes [135], but employs TCM schemes as 

component codes. Both TCM and TTCM use symbol based interleavers and Set-Partitioning (SP) 

based signal labeling. Another coded modulation scheme distinguishing itself by utilising bit-based 

interleaving in conjunction with Gray signal constellation labeling is referred to as Bit-Interleaved 

Coded Modulation (BICM) [186]. The number of parallel bit-interleavers equals the number of coded 

bits in a symbol for the BICM scheme proposed in [186]. Recently iterative joint decoding and 

demodulation assisted BICM (BICM-ID) was also proposed in [190,191], in an effort to further improve 

the system's performance, which uses SP based signal labeling. 

5.4.1 T C M T u r b o - P S P 

The TCM decoder operates similarly to the corresponding module of a trained turbo equaliser [135, 

182,183]. A non-binary MAP decoder is invoked for the channel decoder module. Given the LLR 

value LLR{Bit) of a binary bit, we can calculate the probability of Bit = +1 or Bit = — 1 as follows. 

Remembering that Prob{Bit = —1) = 1 — Prob{Bit = +1), and taking the exponent of both sides in 

Equation 4.2 we can write; 
__ f - +1) 

1 - f = +1) ' ^ 

Hence we have: 

jPro6(J9%y: = 1) == ^ ^ ' (5 5) 

and, 

= - 1 ) = ^ ^ - (5-6) 

Then, assuming that the bits of a symbol are independent of each other, the probability of a Symbol 

which is represented by the bits Bit^,..., Bit"', can be calculated as: 

Prob{Symbol) = Prob{Bif), (5.7) 
i=l 

where we have Symbol E (0, . . . , 2" — 1) for the 2"-array modulation scheme used. The probability 

of the transition from states s' to state s, commonly defined as 7(5 , s), used in the non-binary MAP 
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decoder [135], can be calculated as: 

7(8 , a) = ' n ), (5.8) 
i=l 

where Sym,bol is the trellis transition branch label from state s to state s and r̂ symbol is the "a priori" 

information of the Sym,bol. Then the a and P values can be obtained using Equations 4.5 and 4.6, as 

for the PSP equaliser. 

The number of transitions emerging from a specific trellis state is equal to 2^, where k is the number 

of information bits per n-bit modulation symbol. The coding rate used is i? = where k = n — 1. 

Therefore the log-MAP decoder used is non-binary when k > 1. By contrast, if k = 1, then the 

number of transitions emerging from a trellis state is equal to 2̂  = 2, i.e. a binary MAP decoder is 

used. The a-posteriori probability (APP) of the information symbol Ut, wt G (0 , . . . , 2^ — 1) at time 

instant t can be computed from [135]; 

APf (u t )= ^ at-i(5')-%(a',5)'A(a)- (59) 
s'^S,Ut 

The final decoded information symbol at instant t is the hard decision based symbol generated from 

these APP values. However, we have to feed back the LLR values of all the n coded bits, rather 

than just those of the k information bits, to the PSP equaliser, after improving their reliability by 

the channel decoder. The APP of the coded symbol xt, xt G {0,... ,2"' — 1) at time instant t can be 

computed from: 

.4ff(a;()= ^ at-i(a') ̂ (̂a',̂ ) a(a), (5.10) 

s ^s,xt 

while Equation (5.9) formulated the APP of the original encoded information symbol. The probability 

of bit i to be 1 in a coded symbol x is calculated from: 

1^:2"-1 
fro6(g2f = 1) = A f f (z' = 1), (5.11) 

x=0 

where x® denotes the binary value at bit position i of the symbol x, x^ E (0,1) and in verbal terms 

the probability of B i f = 1 is given by the sum of the probabilities of all symbols from the set of 

2" — 1 number of phasors, which have a binary 1 at bit position i. Similar procedure is carried out for 

determining Prob{Bif = 0) and finally the LLR of the bits can be computed from Equation 4.2. 
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Trellis Signal 

Encoder 1 Mapper 
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Figure 5.3: Turbo trellis-coded modulation encoder. 

5.4 .2 T T C M T u r b o - P S P 

An extension of the turbo-PSP equaliser employing Turbo Trellis-Coded Modulation (TTCM) has 

also been considered. TTCM was proposed in [187], which avoids the disadvantage of an effective 

throughput loss, which would be incurred when applying a direct parallel concatenation of two TCM 

schemes. Specifically, the effective throughput loss is avoided by puncturing the parity information in 

a particular manner, so that all infomation bits are sent only once, while the parity bits are provided 

alternatively by the two constituent TCM encoders. The TTCM encoder is shown in Figure 5.3, 

which comprises two identical TCM encoders linked by the symbol interleaver 11. The TTCM decoder 

structure shown in Figure 5.4 is similar to that of binary turbo codes, except for the difference 

in the nature of the information passed from one decoder to the other. Each decoder alternately 

processesq its corresponding encoder's channel impaired output symbol, and then the other encoder's 

channel impaired output symbol. The information bits, i.e. the systematic bits, are constituted 

by the corresponding systematic TCM encoder output bits received over the channel in both cases. 

The systematic information and the parity information are transmitted together in the same symbol. 

Hence, the systematic information component cannot be separated from the extrinsic information, 

since the noise that affects the parity component of a TTCM symbol also affects the systematic 

information component. The output of each symbol-based MAP decoder of Figure 5.4 can be split 

into two components [135]; 

1. the a priori component, and 

2. the amalgamated (extrinsic systematic) [eSzs] component. 

Each decoder of Figure 5.4 has to pass only the [e&s] component to the other decoder, which is written 

in parentheses in order to emphasize the inseparability of the extrinsic and systematic components. 
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Figure 5.4: TTCM decoder. 

The reason the a-priori component is subtracted from the output of the symbol-based MAP decoder of 

Figure 5.4 is that this information component was generated by the other decoder and hence it must not 

be fed back to it. Otherwise the probability estimates of the two decoders become dependent on each 

other in enhancing the decoder's decision reliability. The output of the equaliser is forwarded 

to the "metric" calculation block of Figure 5.4, in order to generate a set of 2" symbol reliabilities. The 

selectors, in front of the Symbol by Symbol MAP decoder of Figure 5.4, select the current symbol's 

reliabilities from the "metric" calculation block, if the current received symbol corresponds to that 

component decoder, otherwise depuncturing will be applied, where the reliabilities of the symbols 

are set to a fixed value corresponding to no a-priori information, which is represented by "0" in 

the logarithmic domain). The "metric" calculation block provides the decoder with the parity and 

systematic [p&s] information, and the second input to the symbol by symbol MAP decoder of Figure 

5.4 is the a priori information acquired from the other decoder. The MAP decoder then provides 

the aposteriori information constituted by the (a priori + [e&s]) components as the output. Then 

the a priori information is subtracted from the a posteriori information, again so that information 

is not used more than once in the other decoder. The resulting [e&s] information is interleaved (or 

de-interleaved) in order to create the a priori input of the other decoder. This decoding process 

will continue iteratively, in order to generate an improved version of the set of symbol reliabilities 

for the other decoder. One iteration comprises the decoding of the received symbols by both of the 

component decoders. Finally, the aposteriori information of the lower component decoder of Figure 

5.4 will be de-interleaved, in order to extract (n — 1) decoded information bits per symbol. On the 
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other hand, the aposteriori information of the n coded bits is de-interleaved, in order to provide the 

LLR'̂ "'̂  signal of Figure 5.2 to the equaliser input. 

5.4.3 BICM Turbo-PSP 

The major difference between BICM [186] in comparison to TCM [185] is that bit based interleaving is 

used and non-systematic convolutional codes are utilised for protecting the information. The decoding 

of BICM is similar to that of TCM, as ot was highlighted in Section 5.4,1. 

These two coded modulation schemes exhibit a similar coding rate, depending on the modulation 

mode used. Specifically, i.e rate-1/2 code is used for QPSK and a rate-2/3 code is employed for 

8-PSK. In our investigations, Gray signal constellation labelling is invoked, since we found that the 

performance of the combined system was optimum for Gray signal labelling. This is because the 

equaliser works better in Gray labelling and has a greater influence in performance term compared to 

the coded modulations. 

Having described the most important components of the proposed coded modulation based turbo-

PSP equaliser, we will now provide performance results characterising the various schemes, which were 

obtained by means of computer simulations. 

5.5 Pe r fo rmance Resul ts 

In this section we present performance results for the turbo PSP-equaliser described in Section 5.3. 

The results are based on computer simulations. The channels assumed are fading, having the CIRs 

given in Figure 4.6. The convergence control is assumed to be D2, as it was defined in Section 4.5 of the 

previous chapter. The general turbo-PSP equaliser parameters are given in Table 5.1. In Figures 5.5-

5.6 the BER versus Bit SNR curves are given for QPSK and 8-PSK, over the fading channels of Figure 

4.6. The Bit SNR was defined in Equation (4.19) of Chapter 4. As it is expected, the performance 

recorded for transmission over the fading 3-tap channel is better than that over the fading 2-tap 

channel. This is because in this case the intersymbol interference is reduced, since the probability of 

two paths fading simultaneously is higher than that of three paths fading simultaneously. We also 

observe that TCM is the best performer when QPSK is employed, while it performs slightly worse than 

TTCM in conjunction with 8-PSK. BICM exhibits by far the worst performance, especially when 8-

PSK modulation is employed. The important trend we inferred from our simulations is the inferiority 

of BICM for transmissions over fading channels. Essentially BICM is a binary version of TCM, which 

is related to the turbo-PSP algorithm of Chapter 4. While TCM uses set-partitioning for maximising 
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Frame length (bits) 174 
Interleave! block length 5x174 
Carrier frequency 1900MHz 
Symbol rate 2.6MBaud 
Doppler speed 48Km/h 
Equaliser step-size 5x10-3 
TCM memory 6 
TTCM memory 3 
BICM memory 6 
TTCM number of iterations 4 

Table 5.1; The turbo-PSP equaHser parameters used in the simulations. Observe in the table that 
for the shake of a fair comparison between TCM, TTCM and BICM, the code memory was 6, 3 and 
6 respectively, since TTCM used four iterations, which resulted in a similar complexity for all three 
schemes. 

TCM 
TTCM 
BICM 
2-path 
3-path 

6 7 
Eb/No (dB) 

Figure 5.5; BER versus Bit SNR curves over fading channels, exhibiting the impulse response shown 
in Figure 4.6 and using the turbo-PSP equaliser parameters given in Table 5.1. The modulation was 
QPSK, the coding rate was R = l / 2 and the iteration control obeyed D2 of Section 4.5. 
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Figure 5.6; BER versus Bit SNR curves over fading channels, exhibiting the impulse response shown 
in Figure 4.6 and using the turbo-PSP equaliser parameters given in Table 5.1. The modulation was 
8 -PSK, the coding rate was R=2 /3 and the iteration control obeyed D2 of Section 4.5. 

the Euclidean distance of the constellation points represented by the encoded bits, BICM is concerned 

only with bits, not with symbols. However, the PSP equaliser exhibits a degraded performance, when 

using no Gray coding, since then the neighbouring symbols can have more than one different bits. 

With the aid of simulations we found that the PSP equaliser's performance degradation encountered 

due to using no Gray coding was higher, than the performance degradation incurred when using 

Gray-coded TOM, rather than classic set-partitioning based TCM. Thus in our simulations Gray-

coded modulation was used in conjunction with TCM, TTCM and BICM. In fact a TCM turbo-PSP 

equaliser would perform better, if the bit probabilities represented by the LLRs were replaced by 

symbol probabilities. However, this would dramatically increase the associated complexity, since it 

would imply that at each symbol instant the turbo-PSP scheme would have to process an increased 

number of values, which is equal to the number of symbols in the QAM constellation, rather than the 

number of bits per symbol. Therefore, if K is the number of bits per symbol, we would have a factor 

of 2 ^ I K more LLR values to process. In order to avoid this complexity problem, we have used bit 

LLR values, just as in the case of the turbo-PSP scheme of Chapter 4. As we have mentioned before, 

this is not optimum in conjunction with symbol-based coding techniques, such as TCM and TTCM, 

because we assumed that the probability of a symbol is given by the product of the probabibilities of 

its constituent bits. This assumption ignores the correlation amongst these bits, as it was highlighted 

in Section 5.2. 
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Figure 5.7: The coding gain of TCM, TTCM and BICM at a BER of 5 • versus complexity for 
transmissions over the 2-path channel of Figure 4.6, employing QPSK. 

In Figure 5.7 we have plotted the coding gain of the various techniques at a BER of 5 • 10"^ for 

QPSK for transmissions over the static 2-path channel of Figure 4.6 versus their relative complexity. 

It has been assumed that the complexity of the PSP equaliser is approximately the same for all the 

algorithms and therefore the only factor that affects the total complexity is the complexity of the 

channel decoder. We observe from Figure 5.7 that the coding gain is the highest for BICM at a lower 

decoding complexity. When the complexity is increased, then the coding gain of the TTCM becomes 

marginally better. This happens at a coding gain of approximetaly 5.7dB. The above observation is 

in accordance with our previous remarks. TTCM performs better for the low-ISI scenario, which is 

achieved when higher complexity is affordable and the difference in performance is higher, when the 

affordable complexity increases, since as the complexity increases, the advantageous characteristics of 

turbo decoding become more dominant. 

5.6 S u m m a r y 

In this chapter a novel blind equaliser was proposed, extending the turbo-PSP algorithm of the pre-

vious chapter by replacing the separate convolutional channel coding scheme with coded modulation 

techniques. The idea originated from the fact that by combining modulation and channel coding the 

turbo-PSP equaliser would become more efficient, since it is a symbol-based detection technique. 

However, three main calamities exist in the context of this technique. On the one hand, when the 
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symbol probabilities replace the bit LLR values, then the complexity and storage requirements increase 

dramatically, especially in the context of higher-order QAM schemes. Thus the turbo equaliser was 

modified for using bit-based LLR values for communicatiing amongst the detection blocks of Figure 

5.2. This gave rise to the second main problem. Specifically, the conversion of the bit LLR values 

to symbol probablities was based on the assumption that the bits of a symbol are independent even 

after channel encoding. However, this assumption imposes a performance degradation on the TCM 

and TTCM decoders, since the symbol probabilities became somewhat inaccurate, although this was 

partially compensated by the iterative TTCM scheme. Finally, the employment of Gray-coded mod-

ulation, which was preferable in terms of the overall system's performance, gave rise to a performance 

degradation of the TCM and TTCM decoders, since these schemes were optimised for set-partitioning 

based mapping of the bits to the symbols. 

Nevertheless, in Figures 5.5 and 5.6 we found that the TCM and TTCM schemes outperformed the 

BICM arrangement, which was similar to the convolutional coding, used in Chapter 4 in the context 

of QPSK and 8-PSK and fading channels. TCM performs better in conjunction with QPSK, while 

TTCM performrs better when the modulation employed is 8-PSK. 

Having presented a range of coded modulation based turbo-PSP schemes, a summary of our findings 

will conclude this treatise in the next chapter. 
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Chapter 6 

Conclusions and Fur ther Work 

In this treatise the potential of reducing or eliminating the communications overhead required for 

transmitting the equaliser training information was studied using blind equaliser. These equalisers 

exploit the various statistical characteristics of the received signal and the a-priori known statistical 

characteristics of the transmitted signal for removing the channel-induced dispersion from the received 

signal without employing explicit training. Over the past decades significant research efforts have been 

focused on this issue and different techniques have been proposed. Some of these techniques have been 

investigated in this treatise and their performance has been quantified. Specifically, it was confirmed 

that the PSP technique of Section 1.3.9 offers a substantial performance advantage compared to the 

family of Bussgang techniques, highlighted in Section 1.3.5, in terms of convergence speed, convergence 

precision and robustness to noise. On the other hand, PSP technique is significantly more complex, 

than the Bussgang techniques. The M-algorithm based approximation of Section 1.3.9 can be used for 

reducing the complexity imposed by the PSP, by reducing the number of trellis states retained, while 

sustaining an adequate level of performance. Additionally, we found that in scenarios, where the CIR 

contains paths having negligible tap value, we can decrease the complexity by assuming that these 

paths are zero and therefore do not contribute to the ISI. This is equivalent to invoking a reduced-

state PSP, because some of the states of the full-state PSP are effectively obliterated. As argued in 

Section 1.3.9.1, the task in this case is to decide, which of the CIR taps, if any, can be eliminated. 

The solution proposed is to inspect the full-state PSP and reduce unnecessary taps when their value 

is below a threshold value and reinstate them one by one again once the error detection codecs of the 

system decided that the ISI was not sufficiently reduced. However, an algorithm which would decide 

on the locations of the channel taps to be removed or added is an open research isue. 

The application of range of blind equalisers was studied in terms of a satellite based digital video 

broadcast (DVB) system. It was confirmed in Section 2.6 that for this particular application the 
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performance of PSP was vastly superior compared to the set of Bussgang equalisers studied and 

also that by adding turbo-coding, we can significantly improve the achievable performance. More 

specifically, since the employment of turbo-coding resulted in a 5dB power budget gain, it was possible 

to invoke a higher throughput, but less error-resilient modulation. 

Following these investigations we focussed our attention on designing equalisers, which are suitable 

for transmissions over channels having equal-weight CIR taps. The equalisers designed for such 

channels have a large number of non-negligible taps. This constraint gave rise to the idea that an 

equaliser having a feedback section could equalise both the pre-cursor as well as the post-cursor parts 

of the ISI. More importantly, the feedback section of this equaliser would be capable of mimicking 

the CIR, so that when the equaliser has a high number of non-negligible magnitude taps, then this 

feedback section can invert the channel effects without the aid of the feedforward section. Thus, the 

number of taps required would be reduced. This idea led us to the design of the DFE-CMA equaliser, 

which extends the conventional CMA to a soft-decision feedback assisted equaliser. This scheme 

was capable of creating a link between an equaliser designed for inverting the CIR and an equaliser 

designed for mimicking it. Our studies showed that the undesirable local minima associated with 

the conventional CMA do not exist in the context of the DFE-CMA, since the feedback section does 

not allow such points to form stationary points. Our simulation results confirmed the superiority of 

this algorithm over the conventional CMA when encountering equal-weight CIRs. An optimisation 

technique, which would identify whether a longer feedforward or feedback section is more suitable for 

a specific propagation environment in the context of the DFE-CMA, constitutes an interesting further 

research issue, which would render this system directly applicable to fading channel scenarios. 

Following our quest for a rapidly converging blind equaliser having a superior performance, such as 

that exhibited by PSP, the idea of employing feedback, used in the DFE-CMA in the form of feeding 

equalised channel symbols back to the equaliser, was extended to replacing this feedback information 

by channel decoding assisted information invoking the concept of iterative turbo equalisation. In this 

respect, blocks of soft bit probability values are passed back and forth from the PSP equaliser to the 

channel decoder and vice versa. Accordingly, a novel algorithm combining channel equalisation with 

channel decoding was proposed, namely the concept of the turbo-PSP scheme, exploiting the channel 

decoding information for providing increased-confidence soft valued feedback to a PSP equaliser in an 

iterative fashion. The idea goes back to the originators of PSP [23], who proposed its employment in 

conjunction with channel coding, such that channel decoding and equalisation are performed simul-

taneously. In this algorithm, the decision concerning the transition from one trellis state to another 

depends on a metric produced by channel decoding, rather than by channel estimation. The proposed 

algorithm has the advantage that channel decoding and channel equalisation are separated, hence they 

166 



Chapter 6 Conclusions and Further Work 

Delay 

Bandwidth 
efficiency 

Equaliser 
solution 

Adaptation speed 

Performance 

Complexity 

Convergence 
performance & 
Stability 

Figure 6.1: Contradictory design factors in the design of bhnd equalisers 

can operate iteratively. Moreover, turbo channel coding can also be used, enhancing the performance 

in mildly dispersive scenarios. The issues discussed previously in the context of PSP are also valid 

in this case. However, because of the a-priori feedback information provided for the equaliser, the 

performance is more sensitive to decision errors fed back by the equaliser to the channel decoder. 

Thus in the context of this algorithm good initialisation is essential, in order to avoid the equaliser's 

instability. In the context of the turbo-PSP equaliser, the sign ambiguity problem, which is inherent in 

blind equalisation, has been solved by transmitting a low number of known pilot symbols carrying the 

phase reference information. It was found that using only a low number of pilot symbols was sufficient 

for maintaining a performance similar to that of the scheme using perfect phase estimation. In general, 

when employing this technique is a viable option, it is preferable to using differential encoding, since 

the amount of extra overhead it requires is minimal and can be sonsidered as a modest investment, 

compared to the 3dB SNR loss, which is the approximate performance degradation, when differential 

encoding is used. In the case of employing turbo-PSP, this technique was the only available option, 

since differential encoding could not be employed in the context of the soft LLR values used. 

The blind equaliser design considerations, which were taken into account in the course of this work were 

sumarised in Figure 1.7 of Chapter 1, which is repeated here as Figure 6.1 for convenience. Considering 

the equaliser's convergence speed, convergence accuracy and robustness to noise, the PSP equaliser is 

the best performer from the set of equalisers evaluated in this treatise, as we observed from the BER 

versus SNR plots of Chapter 2. Additionally, in the context of the performance results plotted in 

Chapters 4 and 5, as we observed from Figures 4.7-4.17 and 5.5-5.7, we showed that the turbo-PSP 

scheme provides an enhanced performance in terms of convergence accuracy and robustness to noise. 
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owing to the data protection offered by channel coding. This improvement is more pronounced, when 

coded modulation schemes are employed in the context of transmissions over fading channels, while 

for transmissions over static channels convolutional coding appears to have the edge. By employing 

iterative decoding such as in turbo convolutional decoding or in iterative turbo TCM detection, the 

equaliser exhibits a better performance, than the non-iterative channel decoding turbo-PSP schemes, 

such as convolutional or TCM, for transmissions over static channels. However, for transmissions 

over fading channels iterative decoding performs worse, than its non-iterative counterpart, when the 

affordable complexity limits the number of turbo iterations and hence the turbo decoder's performance. 

The Bussgang techniques evaluated in Chapter 2 of this treatise did not exhibit the same attractive 

performance characteristics, as the PSP based techniques. However, their complexity was significantly 

lower. These characteristics render them attractive for transmissions over channels exhibiting mild 

and slowly variant distortion, as well as for transmissions using higher-order modulation schemes, 

since unlike in the case of PSP techniques, their complexity does not depend on the modulation 

constellation. 

Finally, all the blind algorithms studied in this treatise are bandwidth efficient in comparison to their 

trained counterparts in the sense of utilising all the available bandwidth for transmitting information, 

since they refrain from using an explicit training sequence. However, using differential decoding for 

removing the phase ambiguity inevitably results in a performance degradation of 3dB, which compares 

unfavourably with the 22.4% of training-related transmission overhead that we could save in the case 

of GSM transmissions, for example, by eliminating the training sequence. We found evidence that 

in the case of turbo-PSP, initialising the channel estimate using the PSP equaliser alone, i.e. non-

iteratively, was adequate for removing the sign-ambiguity, when a low number of known pilot symbols 

were employed. The same technique can be applied to any blind equalisers, since this type of phase-

ambiguity removal does not require any assumption concerning the type of the equaliser, other than 

its ability to converge to a sign-reversed equilibrium. Thus, we can eliminate the differential encoding 

and yet maintain a good performance by using a low number of known pilot symbols, which was 

found to account for about 1.7% of the total throughput in the case of turbo-PSP for the transmission 

scenarios of Section 4.5. This is equivalent to a mere 0.07 dB SNR performance degradation, which 

constitutes a good trade-off between the achievable performance and the required bandwidth. 

Again, blind equalisation offers certain benefits in comparison to trained equalisation. However, further 

research is required in a range of areas, since some of the properties of even the best-understood blind 

equalisation algorithms, such as the CMA are yet to be clarified. This is particularly so in the context 

of fading channels. 

Potential areas of further research related to this study can be summarised as follows: 
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» Investigation of the Bussgang equalisers' error surface characteristics, with the aim of providing 

better initialisation strategies, which are capable of configuring the equaliser in initial states that 

are far from points of undesirable equilibria. 

• Design of Bussgang equalisers having automatically controlled parameters. 

® Study of the DFE-CMA in conjunction with different feedback sections, which can improve the 

achievable performance. 

• Study of the convergence properties of the turbo-PSP. 

» Contrive an algorithm for detecting the optimum number of trellis states to be retained. 

• Theoretical evaluation of the optimum algorithm designed for controlling the number of iterations 

of the turbo-PSP, according to the prevalent channel condition. 

• Application of channel decoding information for assisting the operation of Bussgang equalisers 

as implicit training, in order to obtain a low-complexity iterative algorithm. 

• Evaluation of the possibility of replacing the convolutional coding by block coding in the turbo-

PSP. 

• Application of the equalisers studied in multiuser detectors. 

In this treatise various combinations of blind equalisers and separate channel codecs or coded modula-

tion schemes have been proposed, although their research is by no means a closed chapter. These blind 

techniques have also found a plethora of applications in the context of blind mmultiuser detectors and 

this area poses a range of further research challenges. 
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Appendix A 

Complexi ty Es t imates of t h e Equaliser 

Algor i thms 

In this appendix, the complexity of each of the equalisers studied in Chapters 1-5 is estimated in terms 

of the number of real multiplications and additions required at each symbol interval. Additionally, an 

estimate of the associated storage requirements is given. 

First of all we provide an overview of the number of computations required by the addition/substraction 

and multiplication/division of complex numbers ; 

• Real X Complex 

a • {c + j • d) = a • c + j • a • d 

Multiplications : 2 

Additions ; 0 

Real + Complex 

(3 + (c + J • (i) — (d + c) + J • (i 

Multiplications : 0 

Additions : 1 

Complex X Complex 

{a + j • b) • {c + j • d) = a • c — b • d + j • {a • d + b • c) 
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Multiplications ; 4 

Additions ; 2 

Complex + Complex 

(o + j 6) + (c + - d) = (o + c) + (6 + d) 

Multiplications : 0 

Additions : 2 

Real / Complex 

\ o c . o d 

Multiplications : 6 

Additions : 1 

® Complex / Complex 

. . o c + 6 - d . 6MC-0 d 
(a + ; . 6 ) / ( c + ; . 4 _ 

Multiplications : 8 

Additions : 3 

We can now count the number of additions and multiplications involved in each of the Bussgang 

algorithms of Chapter 1. In all these algorithms the extraction of z{n) from y(n) and c from the 

relationship z(n) = c^y(n) needs 4 • {2N + 1) multiplications and 2 • {2N + 1) + 2 • (27V) = 8N + 2 

additions. Additionally, they require 2 • {2N + 1) = 4iV + 2 memory cells for storing the vector c and 

another 2 • {2N + 1) = 4N + 2 memory cells for the vector y(n). The associated number of operations 

have to be added to the number of operations required for the equaliser tap vector update of each 

separate algorithm, in order to provide the final complexity estimates of Table 1.1, 
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Appendix B 

Extrac t ion of t he RLS Algor i thm 

U p d a t e Equat ions 

From Equation (1.29), which is repeated here for convenience, we have: 

^ W = - y(*) - W, 

which can be rearranged as; 

2 = 1 

$ ( n ) — w 

yielding: 

"n—1 

Li=l 
+ y W y ^ W , ( B . i ) 

# ( n ) = u; • — 1) + y(n)y"^(n). (B.2) 

In the same way, from Equation (1.31) we find that: 

g(n) = w - g(n - 1) + y(n)o*(n). (B.3) 

Here we will make use of the Matrix Inversion Lemma of [14] or [15]. This Lemma states that if A 

and B are two positive-definite MxM matrices, while D is a positive-definite NxN matrix and C is 

a positive-definite MxN matrix, related by: 

A = B-^ + CD-:^C^, (B.4) 
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then the inverse of A can be expressed as: 

A - ^ = B - B C ( D + C^BC)-^C^B. (B.5) 

Upon considering Equation (B.2) we have: 

VI == <&(,%), QB.6) 

B = (B.7) 

(] = ;y(n,), (B.8) 

13 = 1. (13.9) 

If the matrix $(n) is positive-definite, i.e. not singular, then we can invert it using the matrix inversion 

lemma of Equation (B.5) as follows: 

(•-'(" -

Setting 

Equation (B.IO) becomes 

$ ' '^(n) = — 1) — w~^'k{n)y^ {n — 1). (B.12) 

Equation (1.32) gives the equaliser coefficient update algorithm, which is repeated here for convenience: 

g(n) _ $- l(n,) . g(n). 

Substituting $"^(m) from Equation (B.12) we obtain: 

g(n) _ — 1) • g(n) — zj;~^k(n)y^(n)#~^(n — 1) • g(n). (B.13) 

Now upon substituting Equation (B.3) into Equation (B.13) we arrive at; 

g(".) _ _ k(m) ^a*{n) — y"^(n)c^"~^^j . (B.14) 

Finally, upon setting 

^(n) = o(n) - y(n) (B.15) 
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Appendix B Extraction of the RLS Algorithm Update Equations 

we obtain: 

cW = + k M r W- (B.16) 

We can now see that the recursive formula of Equations (B.16), (B.15), (B.ll) and (B.12) becomes 

identical to Equations (1.33)-(1.36). 
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Appendix C 

Vector and Complex Analysis 

In this Appendix we give the definitions of differentiation with respect to complex vectors along with 

some of the associated properties. Based on these definitions, we then explain how we can minimise 

the cost-functions encountered in our theoretical equaliser-related considerations. 

First of all we define the derivative of a complex function with respect to a complex number z = x + jy 

as [15]; 

' (C.1) 
2 

and 

From this definition we observe immediately that 

^ = + (C.2) 

£ = 1 

0 = 0 (C.5) 

= 1- (0-6) 
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We can now define the derivative of a complex function, or a vector of complex functions, with respect 

to a complex vector z = x + j y as [15] : 

a 
dz 

a 

a 

L ^ 

( c / n 

and 

A 
dz* 

dxi ^ dyi 
a 

9ii 
d 

812 

a 

+ ; 82/2 

a 

(C.8) 

where xi .. .x^ and yi • • - i/n are the real and imaginary vector elements, respectively. As before, we 

can observe that; 
dz 

dz 

gz* 

dz 

dz 

9z* 

az* 

dz* 

= I 

= o 

= o 

= 1, 

(c.9) 

(c.io) 

((3.11) 

((3.12) 

where I and O are the identity and null matrices of order N respectively. We can now portray an 

important property, which we use for the minimisation of all of our cost-functions: 

da^ b 9b 9a 
(C.13) 

where a, b can be any M-diamensional vector. This property can be verified by a simple substitution 

of the definitions in Equations (C.1)-(C.13), applying the derivative product property of the complex 

numbers: 
fin . h f)h f)h 

(C.14) 
0% 

9b , 9b 
a • -—(- 0 • — 

02 9% 
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Appendix C Vector and Complex Analysis C.l Gradient Vector Properties 

We will now formulate the definition of the gradient vector [15] as: 

V . = 

and 

Vy« = 

a a 
9!/i 

_a_ + 
((3.15) 

d 
dxi 

a 
8Z2 

^ 3 ^ 

(C.16) 

It is clear that the properties of the derivatives with respect to the vector z are stiU valid, only now z 

and z* are mutually exchanged. In mathematical terms, the relationship between the two deEnitions 

in Equations (C.l) and (C.7) is given as: 

Vy = 2 A . 
dzi* 

(C.17) 

C . l Gradient Vector P roper t i e s 

The specific properties of the gradient vector to be used in our discourse are: 

V,z = O, (C.18) 

VzZ* = I , 

Vz.z = I, 

Vz'Z* = O, 

Vz(a^ b) = Vzb a + Vza b. 

(C.19) 

(C.20) 

(C.21) 

(C.22) 
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C.l Gradient Vector Properties C.l Gradient Vector Properties 

We will also prove the validity of a few more properties, which we will need in order to derive the 

analytical expressions of the cost-functions' derivatives with respect to the equaliser coefficient vector: 

Vz(/(a))'= = dx2 J Bin 

8̂ 1 
a 

a 9 

( / (a ) ) ' 

^ - ( / W ) 1 

df[a) , • df{a) 

dxi •' dyi 

I 8/(a) 
8x2 •' dyi 

L 
dxN dyfj 
a/(a) 

Cjv 

dxi •> dyi 

1^2 ^ 9^ 

a(f(an* + j 

A: - ( / (a) ) ' : -^Vz/(a) (c.23) 

= v . y | a ^ 

(C.23) 1 

2 | a : r • t>| 

1 

2 | a : r • b | 

(C.22) 1 

2 | a : r , • b | 

1 

2 | a ^ • b | 

Vz |a^ . b|^ 

V z ( a ^ - b ) ( a ^ . b ) * 

. b)Vz(a^ - b*) + (a^ - b*)VXa^ - b 

a^ . b)Vz(a^ - b*) + (a^ - b*)Vz(a^ - b 

H . K*~1 (â ^ . b) (Vzb* . a* + Vza* - b*) + (a^ - b*) (V^a - b + V^b -
2 | a r . b | 

These properties are useful for the minimisation of the blind equaliser cost-functions. 

(c.24) 

In the next sections we will deal with the individual algorithms separately and we will outline the 

cost-function minimisation procedure for each one of them. Three useful relationships which we will 

use in the next sections accrue from the direct application of Equations (C.23) and (C.24), yielding: 

Vc|z(n)| = 

2|z(M)| 
1 

2|z(M)| 

z(m) - y*(n) 
2|z(M)| 

(c.25) 
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Appendix C Vector and Complex Analysis C.2 Differentiation Method: An Example 

2 
^ c^y(n) + c^y*(n) 

2 
(C.18) — (C.22) 1 

^ - ) r * ( n ) , ( ( 3 . 2 6 ) 

Vefle{.(n)} = 

c ^ y W - c ^ y * W 

2; 

( c . 8 ) _ _ ( c . ) i ^ , 2 , ) 

where z{n) = c'^y(n) is the equalised signal, expressed as the product of two vectors, namely that of 

the equaliser tap vector c and the received signal y{n), which effectively forms the convolution of the 

received signal with the impulse response of the equaliser. 

C.2 Different iat ion M e t h o d : An I l lustrat ive Example 

During the minimisation of the cost-functions we will only make use of the gradient vector of Equation 

(C.7) but not of the vector derivative of Equation (C.l). The reason that we use the specific formula 

of Equation (C.15) for the definition of the derivative of the cost-function with respect to a vector is 

that, in our analysis we aim for determining the derivatives of the cost-functions, so that, the steepest 

descent coefficient update algorithm of Equation (1.16) leads to the correct point of equilibrium. By 

defining the derivative of our cost-function as; 

^ J (n ) _ ^J(m) ^ ^ J (n ) 

we make use of the iterative process : 

Xn+i — Xji — (C.28) 

in which we are searching for the minimum of the cost-function J with respect to the real variable x. 

We note that the minus sign in front of A indicates that we are looking for a minimum. By contrast, 

a plus sign would generally direct the iterative process towards the function's maxima. Therefore, the 

real part of the equaliser coefficients in Equation (1.16) is updated using the derivative of J(n) , as if 

it was a function of a real variable. The same is valid for the imaginary part. If, instead of a plus 

sign, we had a minus sign in front of the imaginary part, then this would lead to incorrect coefficient 
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C.2 Differentiation Method: An Example C.2 Differentiation Metfiod: An Example 

Loca minimum Local maximum 

Figure C.l: Illustration of the steepest descent technique for a function of one variable; (a) in the 
region of a local minimum and (b) in the region of a local maximum. 

adjustment, since in this case the algorithm would be approaching the maxima of J(n) . This explains 

the motivation behind employing the gradient vector for the blind equaliser's coefficient adjustment. 

A graphical illustration of this is given in Figure C.l for the simple case of a function depending on 

single variable. In Figure C.I (a), in the region of a local minimum, the algorithm performs subtraction 

of the derivative of the function, with respect to the independent variable, from the estimated value 

of the local minimum. Accordingly, when the estimate is at the left of the minimum, the update value 

is positive, since the derivative is negative, and the new estimated value is closer to the minimum. 

The opposite is true, when the estimated value is to the right of the minimum, so that the estimated 

value, again, becomes closer to the minimum. By contrast, in Figure C.l(b), in the vicinity of a local 

maximum, the algorithm again performs subtraction of the derivative of the function, with respect to 

the independent variable, from the estimated value of the local maximum. Correspondingly, when the 

estimate is at the left of the maximum, the update value is negative, since the derivative is positive, 

and hence the new estimated value becomes closer to the maximum. Again, the opposite is true, when 

the estimated value is to the right of the maximum, so that the estimated value again becomes closer 

to the maximum. The extension of this procedure to the case of many variables is straightforward. 
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Appendix D 

Cost—Function Minimisat ions 

In this appendix we derive the update equations for the Bussgang algorithms of Chapter 1 by taking 

the gradient of their cost-function with respect to the equaliser vector. This is carried out by applying 

the properties of the complex analysis summarised in Appendix C and by performing the necessary 

calculations. 

D . l Sato 's Cos t -Func t ion Minimisat ion 

Sato's cost-function was defined in Equation (1.66) as: 

"1 

^ - 7 ' (l-Re{^W}| + - 7) 

The equation represents the statistical average value of the stochastic variables' expression. In order 

to find the local minima of the cost function we have to differentiate the expression with respect to the 

equaliser tap vector c. In doing so, the expectation may exchange its precedence with differentiation. 

In this case, we can omit the expectation for simplicity. The expectation is still there, however as far 

as the tap-update algorithm is concerned, it is not taken into account since this algorithm relies on 

instant rather than average values. If we do so, then the cost-function's gradient vector, with respect 

to c, is given by: 

VcJ^(n) ^ Vc(^ - k(n)|^ - -y - + |7m{z(n)}|)) 

\z{n)\'Vc\z{n)\ -

'y (5gM(.Re{z(M)}) - V.Re{0(m)} + - V7m{z(n)}) 

(C.25),(C.26),(C.27) z ( n ) 

2| . (n) | -
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D.l Sato's Cost-Function Minimisation D.l Sato's Cost-Function Minimisation 

f l j 

^ ^ W - ^ . (ggM(Be{z(n)}) + ; - 8gn(7m{z(n)}))y* 

^ ^ ' (^W - 7 ' ca9M(z(n)))y*(n), (D.l) 

where sgn{re^'^) = is the complex sign function and csgn[x+jy) = sgn{x)+j-sgn{y). Furthermore 

we have applied the following property of the gradient of a real function: 

Vx|/(x)| = agn(/(x)) . Vx/(x). (D.2) 

Recall that Equation (D.l) is exactly the equaliser coefficient update term of Equation (1.69). This 

relationship can be justified by considering that the csgn{) function defined in Equation (1.68), which 

was also reepeated above, separates the real and imaginary parts of the equalised signal z{n) = x+j -y 

in Equation (1.70) such that they can be equalised independently. We will now determine the constant 

parameter 7 following the approach of Godard [4], Our goal is to set the mean value of the error term 

e^"'̂ "{n) in Equation (1.69) to zero by appropriately choosing 7. This implies that we have; 

^[y*(n)z(m) - 7 - y*(n)c5gn(z(n))] = 0. (D.3) 

We recall that each of the received signal vector's elements y{n) is given by the convolution of the 

transmitted sequence with the channel's impulse response ^ {hn}, as follows: 

= (D.4) 
k 

Therefore, Equation (D.3) can be rewritten as: 

-G[z(n) a*(A;) - = 7 ' ^[(agn(Ae{z(n)}) + ; - 5gn(7m{z(n)})) ^ o*(^) ' (D.5) 
k k 

In the state where equalisation is perfect, which is the scenario we are trying to accomplish, the 

equalised signal is equal to the transmitted signal, i.e. z{n) = a{n). This is the desired state that the 

equaliser reaches after its convergence. With the equaliser at this state, taking into account that the 

transmitted sequence is i.i.d., this equation reduces to: 

^[o(n) - o*(n) ' /ig] = 7 ' .E[(ggn(Ae{G(n)}) + j - 8gn(7m{o(M)})) - o*(n) - /i*]. (D.6) 

^Transmitter and receiver fi l tering is ignored here, since we can consider their influence on the received signal to be 
included in the channel's impulse response 
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Appendix D Cost-Function Minimisations D.2 CMA Cost-Function Minimisation 

Noting that ho is a constant, after some manipulations this relationship finally reduces to: 

E[\a{n)\'^] = 7 • E[\Re{a{n)}\ + \Im{a{n)}\]. (D.7) 

For the practical scenario of symmetric constellations, i.e. when we have E[\Re{a{n)}\] = E[\Im{a{n)}\], 

according to Equation (D.7) the parameter 7 is set to: 

= ^ E[(7ni{G(n)})^] 
E[\Re{a{n)}\ + | /m{a(n)}|] E[\Re{a{n)}W E[\Im{a{n)}\] 

This equation is similar to the relevant CMA formula of Equation (1.77) for p = 1. The difference is 

that while the CMA's constant of R2 = i® & function of the transmitted signal magnitudes, 

the Sato parameter 7 in Equation (D.8) is a function of the real (or the imaginary) part of the 

transmitted signal. This difference is reflected in the cost-functions of the two algorithms, which are 

given in Equations (1.74) and (1.66) respectively, where we can observe that the CMA equalises the 

magnitude of the received signal, while Sato's algorithm equalises the real and imaginary parts of it. 

D.2 C M A Cos t -Func t ion Minimisat ion 

The CMA's cost-function was defined in Equation (1.74), which is repeated here for convenience: 

Again, if we omit the expectation, as we did in the previous sectionn, then its gradient vector, with 

respect to c is given by: 

VcD(P'9)(n) - ^ V c | | z ( n ) | P - ^ | ^ 

1 . ||z(n)|P - Ap|<'-^Vc||z(n)|P -

= ^ - ||z(n)|^ - - Ap)Vc|c^y(M)|^ 

(C.23) 
^Vc|z(n)| 

^(|z(n)|P-Ap)» |̂z(n)|P ^ .z(n) .y*(n), (D.9) 
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D.3 Signed-CMA Cost-Function Minimisation D.3 Signed-CMA Cost-Function Minimisation 

where sgn() denotes the real sign function, since its argument only takes real values. For q = 2 this 

relationship becomes; 

= ^(|z(n)|^ - Ap) - - z(n) - (D.IO) 

Finally, for p = 1 we obtain Sato's correction term of Equation (1.69), 

- Bp - agm(z(n))) -

while for p = 2 we obtain the classical CMA correction term of Equation (1.76) in the following form: 

= ^(|z(n)|^ - jZp) - z(n) - y*(n). (D-H) 

Again, these are exactly the equaliser coefficients update terms of Equations (1.69) and (1.76), respec-

tively. 

D.3 S i g n e d - C M A Cos t -Func t ion Minimisat ion 

The Signed-CMA algorithm's cost-function is defined as (1.78): 

= E[||Ae{z(n)}| + |7m{z(7i)}| - Bg|]. 

If we omit the expectation, then the corresponding gradient vector with respect to c, is expressed as: 

= Vc||Ae{z(n)}| + | 7 m { z ( n ) } | - % | 

= 3gn,(|Be{z(n)}| + — Bg) - Vc (|Ae{z(n)}| + |Im{z(n)}| - Bg) 

= 5gn(|Be{z(n)}| + |7m{z(n)}| - Bg) - (Vc|_Re{z(n)}| + Vc|7m{z(n)}|) 

= sgn(lRe{z(n)}l + \Im{z{n)}\ — Rs) • 

(5gn(Be{z(n)}) - VcAe{z(n)} + 5gn(7m{z(n)}) - Vc/m{z(M)}) 

= sgn{\Re{z{n)}\ + \Im{z{n)}\ — Rs) • 

^5gm(Ae{z(n)}) - W ^ agn(7m{z(n)}) -

= ^ggn(|Ee{z(M)}| + |Im{z(n)}| - Ag) -

^sgn(Ae{z(n)}) - Vc(c^y(M) + c^y*(M))+ 

- 8gn(7m{z(n)}) - Vc(c^y(n) +c^y*(n) )^ 

= ^5gM(|Be{z(n)}| + |7m{z(n)}| - Ag) - (5gn(Be{z(n)}) - y*(n)+ 
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Appendix D Cost-Function Minimisations DA MCMA Cost-Function Minimisation 

; - - y* (n)) 

= ^ggn(|jRe{z(n)}| + |7m{z(n)}| - - cagn(z(n)) - y*(n), (D.12) 

where sgn{) denotes the real sign function, since its argument only takes real values, while we have 

csgn{z) = sgn{Re{z}) + jsgn{Im{z}), as defined in Equation (1.68). Equation (D.12) is exactly the 

equaliser coefficient update term of Equation (1.79). 

D.4 M C M A Cost—Function Minimisat ion 

The MCMA's cost-function was defined in Equation (1.81) as: 

+ ((7m{z(n)})2 _ 

If we omit the expectation, then the corresponding gradient vector, with respect to c can be expressed 

as: 

- Vc((Ae{z(7^)})2 - + Vc((7m{z(7i)})2 -

= 2 . ((Ae{z(n)})" - 7Zp,jz)Vc((Ae{z(»)})2 - + 

2 . ((7m{z(n)})" - Ap,z)Vc((7m{z(/%)})" -

= 4 . . ae{z (n ) }vcae{z (n) } + 

4 - - 7m{z(n)}vc/m{z(n)} 

= 4 . ((j^e{z(7i)})" - + 

Zj 

- 2 . ((ji;e{z(7%)})" - Ap,,;). Ae{z(/^)}Vc(c^y(7i) + c ^ y X " ) ) -

2; - ((7m{z(n)})^ - j^p,;) - 7m{z(n)}Vc(c^y(n) - c^y*(n)) 

- 2 . - y*(n) + 

2; - - Ap,i) - 7m{z(n)} - y*(n) 

= 2 • (((i?e{z(n)})^ — Rp^r) • Re{z{n)} + 

; - ((7m{z(n)})^ - Ap,;) - 7m{z(n)}) - y*(n), (D.13) 

where denotes the real sign function, since its argument only takes real values, while C5gn(z) = 

sgn{Re{z}) + jsgn{Im{z}), as defined in Equation (1.68). Equation (D.13) corresponds to the 
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D.4 MCMA Cost-Function Minimisation D.4 MCMA Cost—Function Minimisation 

equaliser coefficient update term of Equation (1.79). 
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Appendix E 

Convergence Points Es t imat ion 

In this appendix we estimate the convergence points of the Bussgang algorithms of Chapter 1, based 

on the example of the CMA assisted blind equaliser, by taking the gradient of the corresponding 

cost-function with respect to the total system's transfer function vector t and averaging the result 

over the possible values of the transmitted signal, which is assumed to consist of a set of independent 

identically distributed points of a QAM constellation. As we will see, it is essential that this property 

holds for these equalisers. Naturally, the vector and complex analysis properties of Appendix C are 

also used. 

E . l T h e Cons tan t Modu lus Algor i thm's Convergence Points 

In this section we derive the points of equilibrium for the constant modulus algorithm. The approach 

we follow is similar to Wesolowksy's [102]. First we recall Equation (D. l l ) , which gives the gradient 

of the cost-function for the CMA with respect to the equaliser's tap vector c, yielding: 

V c J W = - % ) - z W - y* W -

The points where this function becomes zero are the possible local minima and we will attempt to 

find these points. In order to achieve this, we rewrite the gradient of the cost-function of Equation 

(1.74) with respect to the equaliser tap vector as: 

Vc J (n ) = 0 <=> 

^ ( | z (n ) | ^ -A2 ) z (n) .y* (n ) = 0=> 

z(n) z*(m) y*(n) = ^2 '%(M) y*(n):4> 

( t ^ • a(n)) • ( t ^ • a*(n)) • ( t^ • a(n)) • (H* • a*(n)) = R2 • ( t^ • a(n)) • (H* • a*(n)) => 
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E.l The CM A Convergence Points E.l The CM A Convergence Points 

H* • (a*(n) • a^(n)) • (t • • (a*(n) • a^(n)) • = R2 -H* • (a*(n) • a^(n)) • => 

H* A T A t = % H* . A . t, (E.l) 

where A = a*(n) •a^(n) and T = Taking the average of Equation (E.l) over all the possible data 

sequences a(n), under the assumption that the input sequence is independent identically distributed 

(i.i.d.), we can readily see that matrix A becomes: 

E [ A ] = ^ [ | a ( n ) | ^ ] . I (E.2) 

where I is the unity matrix. After a few manipulations we can also see that the product ATA has the 

following mean value; 

^[ATA] = - 2 . - T j T j + (E[|o(m)|̂ ])̂  - (t^t -1 + tt^), (B.3) 

where T j = (iia(7(t_jVi_L^, • • •, and the terms i?[a^(n)] as well as E[{a*{n))'^] have been 

assumed to be zero, given the symmetry of the QAM constellation concerned. We now substitute 

these mean values into Equation (E.l) in order to arrive at: 

H*.((E[ |o(n) |4]-2.(^[ |o(n) |^)^]) .TdTd + ( E [ | o ( n ) | ^ ] ) ^ . ( t ^ t = 0. (E.4) 

If we stipulate the assumption that the channnel matrix h * is left-invertible, then the system of 

Equation (E.4) reduces to; 

((E[|o(n) 1̂ ] - 2. (E[|a(M) 1̂ )̂ ]) - T j T j + (E[|a(7i) |̂ ])̂  - (t^t -1 + tt^) - |̂ ] -1) -1 = 0. (B.5) 

More specifically, the left-invertible assumption implies that the rows of the channel matrix are linearly 

independent. However, closer scrutiny of the structure of this matrix reveals that this assumption is 

not generally true. Nevertheless, for a high number of equaliser taps, the channel matrix becomes 

square shaped and invertible. In this case the above assumption is valid. Naturally, this is an ideal 

situation, but when the number of equaliser taps is sufficiently high, then the approximation is true. 

In this case, from Equation (E.5) we obtain a set of equations in the form of; 

- 1) + 2 . - E = 0- (E.6) 
/ 

From these equations we can see that there are two possibilities for Equation (E.6) to hold, namely; 

» = 0 or 
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Appendix E Convergence Points Estimation E.l The CMA Convergence Points 

. ^ [ | o W r ] . - 1) + 2 . ( ^ [ | aWp] )2 . ^ = 0. 

Naturally, some of the vector components of the combined channel and equaliser impulse response can 

be zero. These components of t which are not zero can be found from the solution of the following 

set of equations: 

/ 2^2 2^^^ 

2^2^ 2̂ 12̂  

2/i2^ 2/̂ 2^ • • • 

2 0 ^ 2 

2̂ 122 \ / 

2̂ 122 

2^^2 

2/̂ 2 2^42' 2 :̂2^ AM y 

Po 

Pi 

\ 

PM-2 

\ PM-1 y 

fj-i 

/J4 

\ //4 y 

(B.7) 

where pi are the squares of the magnitudes of those specific ti values, which are not zero. Furthermore, 

we have = E[\a{n)\'^], 112 = E[\a{n)\'^] and M is the number of non-zero components that the vector 

t has. The solution of this linear system was found to be: 

Pi = 
/i4 

Hi + 2{M — l)/i2^ 
for all Pi. (E^O 

For M — 1 all tj components of the vector t would be zero, except for one, for which we have \ti\ = 1. 

This yields the desired impulse response in the form of (0, • • •, 0, 0, • • • , 0)^. We will now show 

that only this solution corresponds to a local minimum, while all the other points associated with 

(M > 1) constitute saddle points. In order to achieve this we will consider the second derivative 

of the cost-function of Equation (1.74) with respect to the combined channel and equaliser impulse 

response, rather than to the equaliser tap vector. This is carried out under the assumption that the 

equaliser tap vector's dimension is doubly infinite, in which case the channel matrix is square-shaped 

and invertible. From the second derivative of the cost-function we determine the Hessian matrix of 

the cost-function in order to define the kind of points we have, i.e. whether they are local minima, 

local maxima, or saddle points. First we repeat the cost-function of the algorithm as: 

E[( |z(M)|2-A2) ' (E.9) 

The gradient with respect to the transfer function is given by: 

V t J (n ) 

( | z ( n ) | " - A 2 ) V t ( | z ( n ) | " - A 2 ) 

(|z(n)|^ - j%2)z(n)a*(n). (E.IO) 
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E.l The CM A Convergence Points E.l The CM A Convergence Points 

The second derivative calculation is formulated as follows: 

V t H ( V t J W ) - V t H [ ^ . ( | z W | 2 - A 2 ) z W a * W ] 

= - - a*(n) 
2 

= T (2 

Equation (E. l l ) defines the Hessian matrix of the cost-function. Its entries hij associated with the 

vector points of interest can be found by evaluating Equation (E.l l) . Following a number of further 

manipulations we obtain: 

^ ^ for M ^ 1 (E.12) 
hij — /̂ 2 

hii — ^ 

hij — 0 
for M = 1. (E.13) 

A particular way of determining the positive (negative) (in-)definiteness of the Hessian matrix of the 

cost-function in Equation (E.l l) is by means of its subdeterminants. For M = 1 we have A, = 

> 0, which implies that all the subdeterminants are positive, i.e. the Hessian matrix is positive 

definite and the associated point is a local minimum. For M ^ 1 the first sub determinant is Ai = 

i ' iiA+2ii2\M-i) ^ 0. The second subdeterminant is given by: 

A . = . A , . 
4 m + 2 ; I 2 ^ ( m - l ) y V f 4 + 2 f>22 (m - 1) 

= ( ( ^ ) ( w + 2 K 2 ( m - 1 ) ) • 

For the symmetric QAM constellations of interest the ratio ^ takes values less than 2, which results 

in A2 < 0. Since an even-order subdeterminant is negative, the Hessian matrix is indefinite, i.e. the 

associated points are saddle points. 

In this section we have shown that only the desirable combined channel and equaliser impulse response 

constitutes a stable point for the CMA in the case of doubly infinite equaliser tap vector dimensions, 

compared to the maximum channel delay spread. In the realistic case of a high, but finite number 

of equaliser taps the presence of undesirable equilibria depends on the CIR. As an example. Ding et 

al. [22] proved the existence of such equilibria for the special case of an autoregressive channel and 

found these stable points [22]. A range of further studies of this issue have been carried out recently 

and intensive research interests have been attracted by it in an effort to facilitate the blind equalisation 
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of channels exhibiting severe distortions. 
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Appendix F 

Fourth—Order Statist ics and 

Polycepst ra Definitions and Proper t ies 

Based on [5,15,31,76], in this appendix we give some fourth-order statistics definitions and properties, 

which are useful for the blind equalisation algorithms of Section 1.3.11. The definitions are based on [5], 

in which the polycepstra-based algorithms first appeared and on [31], where the super-exponential 

algorithm was proposed, using fourth-order cumulants. In general, the joint cumulant of the random 

variables , 

" 3=71̂  is given by [31]: 

CWni . . . |w=0 

where < (̂w) is the so-called joint characteristic function of the random variables Xi, defined as [147]: 

,^(w) = E = E p . (F.2) 

For zero-mean random variables and cumulants up to fourth-order, the definition is equivalent to [5]: 

= 0 (f.3) 

-z (̂a:i;a:2) = jb[a;i a;2] (p.4) 

= ^[3;i'2;2'a:3] (f.5) 

i:(a;i;a;2;a;3;z;4) = E[a;i-a;2 ^a;3^a;4]-

E[a;l - 32] - -B[a;3 ' 3:4] -

E[a;i - 33] - _B[a;2 - 3=4] -
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e[a;i - 34] - e[a;2 - 3:3] (f.6) 

When the random variables are actually samples from a zero-mean stochastic process, such as the 

received signal y{k)^ then the fourth-order cumulant is given by: 

+ m)] - E[3/(A;)^(A + Z - 71)] -

+ 71)] - + Z - m)] -

+ 0 ] ' + m - yi)]. 

(f.7) 

Following the above definition, we will now summarise some of the associated cumulant properties. 

First of all, the cumulant of the sum of two independent and zero-mean stationary signals xi{k) and 

X2{k) is equal to the sum of the cumulants of a;i(A:) and X2{k), i.e.: 

^ 1 1 + 3 : 2 0 = -^11 0 0- (F 8) 

Furthermore, the cumulant of the convolution of two zero-mean stationary signals corresponds to the 

convolution of their cumulants in the cumulant domain: 

-̂ 31*12 (F-9) 

where * stands for convolution. Two further properties related to the signal distributions: 

• If x{k) is Gaussian, then the 4- th order cumulant of x{k) is 0 

9 If a:(A:) is i.i.d., then the 4 - th order cumulant of x{k) is given by: 

m, /) — jc(z(a;)) - (^(m,n, f), ( f . io ) 

where K{x{k)) is the Kurtosis of a;(A) defined as: 

- 3 (F. l l ) 

for real-valued signals Equation (1.80) defined the Kurtosis for complex-valued signals, which is 

repeated here: 

jir(z) = - 2 . W] | " . 

196 



Appendix F Fourth-Order Statistics and Polycepstra 

Finally, below we will now give a cumulant property of stochastic signals passing through linear 

systems. We assume that the i.i.d. signal x{k) is input to a system having an impulse response h^. 

The output of the system is given by: 

y{k) ='^hi • a{k — i). (P.12) 
% 

The cumulant of the output is then given by: 

A, Z) = f), (F 13) 

where Lh{m, n, I) is the fourth-order moment of the CIR. Here, the moment has replaced the cumulant 

because h{k) is a deterministic signal. We can now form the cumulant of the received signal y{k), 

which is given by the convolution of the i.i.d. input signal a{k) with the CIR hk plus the additive 

Gaussian noise: 

y{k) = hk * x{k) + e{k) (F.14) 

Ly{m,n,l) = K{x{k)) • Lh{m,n,l), (F.15) 

where the Gaussian noise term vanishes, since its fourth-order cumulant is zero. We will now define 

the tricepstrum of a signal x{k) as: 

Cz(m, n, Z) = n, Z)})}, (F.16) 

where stands for the 3D z-transform. Complicated as this definition may seem, it simplifies the 

cumulant-based relationship of Equation (F.15) to the tricepstrum domain as: 

(0,0,0), (F17) 

which means that the tricepstrum of the received signal is the same as the tricepstrum of the CIR, 

provided that the input is i.i.d. and the noise is Gaussian distributed. By measuring the tricepstrum 

of the received signal, we can now have an estimate of the tricepstrum of the CIR. It can be shown 

that the following identity holds [5]: 

y ] [Ly{m — / , n, I) — Ly{m + / , n + / , / + /)] + 
1=1 

Q 
+ ^ \Ly(jn — <7,71 — J, I — J) — Lyirn + t/, n, /)] — 

J=i 

= —mLy{m, n, I), 
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(R18) 

where 

jRT . 0,0) = { (]?.19) 

This relationship holds for any (m,n,l). Nonetheless, a rule of thumb, suggested in [5] is to define 

w — max{p, q), z < tu/2, s < z and then select m = —w,..., —1,1,.. . ,w, n = —z,... ,0,... ,z 

and I = —s, . . . , 0 , . . . , s. It is shown in [5] that are the minimum- and maximum-phase 

differential cepstrum coefficients related to the zeros of the CIR. Thus, estimating from 

the system of Equations (F.18) means that we can invert the CIR apart from an uncertainty of the 

magnitude A. Theoretically, it is required that p, g —)• oo, but in practice we can use a sufficiently 

large discrete value for each of them. Equations (F.18) can then be rewritten in matrix form as: 

P . a = p, (F.20) 

where P is the matrix containing the L^^-elements of the left-hand side of Equation (F.18), a is the 

vector containing and and p is the vector containing the L^- elements of the right-hand 

side of Equation (F.18). We have to estimate a, in order to invert the CIR. This can be carried out 

upon invoking the LMS solution of Equation (F.20), as in [5], yielding: 

^(i+i) = ^(i) + _ pW . &(«)) (F.21) 

wkh 

0 < / / W < 2 / ( r { ( p M ) ^ . p W } , 

where tr() stands for the trace of a matrix. When is in this region, stability is ensured, as shown 

in [15]. 

The exact relationship of the coefficients A^̂ ^ and B^̂ ^ with the poles and zeros of the equaliser filters' 

polynomials is as follows. If the z-domain channel transfer function polynomial ff(z) is given by 

ff(z) = I(z~^) • 0(z), as in Equation (1.159), where 

. - 1 , __ JXz-i) = (F-22) 

with la,-1 < 1 and Icil < 1 and 

0(z) = n ^ ! i ( l --ft;;) QF ZS) 

198 



Appendix F Fourth-Order Statistics and Polycepstra 

with bi < 1, then the coefficients and are given by: 

1=1 1=1 

=== ] [ ] bf (I?. 25) 
1=1 

Having estimated and we can now use Equation (F.25) to estimate the time-domain coef-

Ecients and which aze the coeGcients of and 1/C)(z), respectively, as in [5] 

-| k-\"l 
= - t + 1), a = 1 , . . . , jvi (f.26) 

n = 2 

o . » .W = |: E [--B''"*"''!'€'.('-» +1). k = -l,...,-N2, (f.27) 

7 J = A : + 1 

where the superscript i denotes the i-th iteration of the algorithm. The equaliser's impulse response 

is finally given by the convolution i^llyik) * In the case of a DFE we also have to estimate the 

inverse z-transforms of and which is given by [5]: 

1 k-\-l 

71 = 2 

k = 1,..., N3 (F.28) 

-f /c + l 
ow(a:) = - - g [ b ( " - ^ ) ' w ] * . o w ( a : - m + l), a = l , . . . , j v4 . (f.29) 

^ n = 2 

Finally, the feedforward and feedback equaliser impulse responses are now extracted as do \k ) * d\ll^{k) 

and il^J^^{k)*doHk) — 6{k), respectively. The channel attenutation parameter A can be estimated using 

Automatic Gain Control (AGO). A synopsis of the equations involved in the TEA is given in Table 

F. 
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\Ly{m — I, n, I) — Ly(rn + / , tt, + / , / + /)]+ 
Lyirn Ti^ — 

= Z) 

aW + . (pM)^ . (pW - pW .&«)) 

[p]i = 
[P]ij = Ly{m - I, n, I) - Ly{m + I,n + 1,1 + I) 

i = l,...,p 

[P]jj — Lyijn — J,n — J, I — J) ~ 
i=p+l,...,p + q 

lu — g), z < iu/2, a < z 
m = —w,..., —1,1,. . . ,w 

Tb — 

I — 

4m, — n + 1) 
k = 1 . . . , Â i 

otljk) = iT.Lt+il-B''-"""] ' (A — n + 1) 
k = - 1 , . . . , —N2 

k = 1 . . . , iVs 

= - i . 6W(A: - n + 1) 
A: = 1 . . . , N4 

Table F. l : A synopsis of the equations related to the TEA 
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Appendix G 

Convergence in the Presence of 

Channel Noise: Ext rac t ion of t he 

Local Min ima 

In this appendix the derivation of the relationship describing the convergence points of the CMA in 

the presence of channel noise is given. The derivation is based on Equation (1.117), which is repeated 

here for convenience: 

y*(n) - z(n) - (|z(n)|^ - Ag) = 0. (1-117) 

In the presence of channel noise, the signals associated with this equation become: 

y(n) = H • a(n) + e(n) (G.l) 

z{n) = • a(n) + • y(n) (G.2) 

where the definitions of the variables were given in Chapter 1. Substituting the above relationships 

into Equation (1.117) gives: 

(H • a(n) + e(n)) • • a(n) + • e(n)^ ' ( • e(n) — = 0. (G.3) 

Since we are interested in the statistical behaviour of the equaliser coefficient update algorithm, we 

will only consider the mean values of the random variables of Equation (G.3). Prom this equation we 

observe that the terms which having a non-zero mean value are the terms that have an even number 

of a(n) and a*(n) vector multipliers and hence are associated with an even power of a{n) or a*{n). 
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The terms for which this number is odd will always give a zero mean value. This is a consequence of 

the symmetry of the QAM constellation and the i.i.d. assumption of the transmitted symbols, which, 

again, implies that only the terms of the form |a(n)|^, k even and k > 2 will give a positive non-

zero value. By contrast, it is impossible for products consisting of an odd number of a(n) and a*(n) 

terms, to produce terms which are equal to a power of |a(n)|, because \a{n)\^ = 

which implies that even for our specific case of /c = 4, only terms of the form a(n)^ and a(n)*^ may 

produce a power of \a{n)\, when multiplied. However, these products will contribute a term of the 

form a{n)^ • (a(n)*)'", where k, m are odd and hence k + m\s even. Again, the associated terms always 

have a zero mean value. Therefore, Equation (G.3) reduces to: 

H • a*(n) • a^(n) - a* - a^ + - e* - e^c — t + 

e* • - a - -1* + - a* - -1 + - e* - - c — R-2^ c = 0. (G.4) 

Upon finding the mean values of the vectors hosting stochastic variables in Equation (G.4) we arrive 

at Equation (1.130). As mentioned before, this process is based on the assumption that the QAM 

constellation concerned is symmetric and that the transmitted symbols are i.i.d.. 
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Appendix H 

Glossary 

TDMA: Time Division Multiple Acess 

CMA: Constant Modulus Algorithm 

NCMA: Normalised Constant Modulus Algorithm 

MCMA: Modified Constant Modulus Algorithm 

SCS: Soft Constraint Satisfaction 

LMS: Least Mean Squares 

RLS: Recursive Least Squares 

DFE: Decision-Feedback Equaliser 

DD: Decision-Directed 

ZF: Zero-Forcing 

PSP: Per-Survivor Processing 

ML: Maximum Likelihood 

MLSE: Maximum-Likelihood Sequence Estimation 

TEA: Tricepstrum Equalisation Algorithm 

NN: Neural Network 

PLL: Phase Locked Loop 

BCH: Bose-Chauduri-Hocquenghem 
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> RS: Reed Solomon 

I RSC; Recursive Systematic Convolutional 

I CM: Coded Modulation 

I TCM: Trellis-Coded Modulation 

1 TTCM: Turbo trellis-Coded Modulation 

I BICM: Bit-Interleaved Coded Modulation 

' RCPCC: Rate Compatible Punctured Convolutional Coding 

MAP: Maximum A-Posteriori 

APP: A-Posteriori Probability 

VA: Viterbi Algorithm 

SOVA: Soft Output Viterbi Algorithm 

LLR: LogLikelihood Ratio 

SP: Set Partitioning 

ETSI: European Telecommunications Standards Institute 

DVB: Digital Video Broadcasting 

GSM: Groupe Special Mobile 

WATM: Wireless Asynchronous Transfer Mode 

SWATM: Shortened (channel) Wireless Asynchronous Transfer Mode 

MPEG: Motion Pictures Experts Group 

CIR: Channel's Impulse Response 

AWGN: Additive White Gaussian Noise 

IID: Independent Identically Distributed 

ISI: InterSymbol Interference 

MSE: Mean Squared Error 

BER: Bit-Error Rate 
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SER: Symbol-Error Rate 

SNR: Signal-to-Noise Ratio 

PSNR: Peak Signal-to-Noise Ratio 

PDF;Probability Density Function 

QAM: Quadrature Amplitude Modulation 

PAM: Pulse-Amplitude Modulation 

PSK: Phase Shift Keying 

BPSK; Binary Phase Shift Keying 

QPSK: Quadrature Phase Shift Keying 

GMSK: Gaussian Minimum Shift Keying 

OFDM: Orthogonal Frequency Division Multiplexing 

BPS: Bits Per Symbol 

IBPS: Information Bits Per Symbol 

SVD; Singular Value Decomposition 

CAZE:Column-Anchored ZeroForcing Equalisation 
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