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Industrial applications demand ever-increasing precision in nonlinear system
modelling, analysis and control. A prerequisite of high precision in these fields is
the thorough analysis of given data from a specific physical system. When no informa-
tion about the underlying physics is provided but just a time series, one is faced with
black box modelling. When additionally the mean dynamics of a physical system are
provided one deals with grey box modelling where the states of the mean dynamics are
subtracted from the given data. Physical modelling differs from all these approaches
since it is not data-driven but based on abstract physical concepts which are left to
the experimenter to verify or falsify within physical experiments. Explicit errors and
uncertainties are usually included within physical models by employing stochastic
models which assume certain statistical properties of these errors and uncertainties.
Classical physical models do not incorporate general errors and uncertainties which
are unspecified prior to physical experiments.

However, the currently proposed techniques known as neural networks, neuro-
fuzzy systems, wavelets etc. can be either utilized as statistical tools for regression
analysis and pattern analysis or as purely heuristic approaches towards data analysis
which are, outside a specific statistical setup, neither well understood nor generally
explicable. Purely statistical approaches may be able to classify whether a time series
stems from a linear, or non-linear system with or without noise. Some more advanced
statistical methods known as chaos theory have also been developed to quantify the
dynamic behaviour, for example the characteristic time-scale, semi-periodic dynamics,
generalized Lyapunov-exponents, generalized information measures, fractal dimen-
sion etc. None of the tools listed above allows the incorporation of any physical knowl-
edge, and this limits their capabilities in terms of data requirement and predictability.

As an attempt to overcome this unfortunate division between data and physical
modelling, this thesis is devoted to the development of a framework which allows the
derivation of a physical model that at the same time includes errors and uncertainties



about this system which are as unspecified with respect to their statistical properties
as possible. The work can be summarized as: 1. Grey box modelling: An appro-
priate semi-physical model of a ballistic missile with very limited knowledge about
the aerodynamical properties of the airframe is being developed. It is shown which
kind of dynamics the missile may exhibit and with which methods these dynamics
can be analyzed. It is demonstrated that the missile may also show chaotic behaviour,
the methods to measure this type of dynamics are presented. The lack of data points
may, however, prevent the applicability of these methods which therefore suggests the
theoretical framework of an: 2. Endo-observer for linear systems: It is proved that
real-life observers require a framework such as a stochastic one for incorporating their
uncertainties into a physical model. It is shown how minimally specified uncertainties
can enter the dynamics of a free particle. The dynamics turn out to be similar to those
given by the Schrodinger equation. 3. Endo-observer for the nonlinear state space:
The concepts of physical dynamics with uncertainties which have been developed for
the free particle are exhaustively re-developed for the case when the variance of the
uncertainties remains within an arbitrary but fixed bound defined prior to the exper-
iment. The dynamics of a nonlinear vector field with uncertainties are expressed in
a form which is very much similar to the Schrodinger equation with a ‘momentum’
consisting of the ‘mechanical momentum’ from which a ‘electromagnetical momen-
tum’ is subtracted which in this case here is the vector field of the state space. 4.
Endo-observer with bias: It is argued that an observer which has to select permanently
among all available variable and parameter values has to favour the more probable ones
rather than the less probable ones. The dynamics then lead to the well known nonlinear
Schrédinger equation.

The novel approach which is introduced in this work has several advantages over
other statistical and stochastical models. 1. The motivation of the formalism is drawn
from real-life applications which have strong limitations such as the amount of data
and the restriction of unprejudiced model selection, i.e., the model does not utilize any
information which is not explicitly available to a real-life observer. 2. The relationship
between physical system and observer is clearly defined. 3. The influence of physical
parameters on the model is very transparent and clearly separable from the classical
physical model itself.

The approach presented here opens up an entire new area of open research prob-
lems some of which are discussed at the end of this thesis.
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Chapter 1

Introduction

Forward

The purpose of this thesis is outlined and summarized within this chapter. After a
short motivation of modelling within the defined problem domain, the state-of-the-art
techniques and research issues of data driven black box modelling and purely physical
knowledge based dynamical system design are introduced. Each approach is found to
offer its own specific advantages and disadvantages. The dynamical systems consid-
ered here are implicitly defined by given measurements and physical constraints. It is
concluded that neither black-box nor physical modelling is a fully adequate means of
dynamical system identification and prediction. The issues considered in the subse-

quent chapters are summarized in Section 1.3

1.1 The Modelling Task

The objective of this thesis can be summarized as: “Identification and Prediction

of Non-Linear Dynamical Systems with Sparse Time Series and bounds in the State

Space.”

It is assumed that the dynamics of all physical system variables are explicitly
defined. A time series is provided which is a set of measured physical variables ordered
with respect to the parameter time. Bounds on the non-measurable physical variables
are implicitly given by the physical context of the system under consideration. This
very general objective is far too ambitious to be dealt within the scope of a single PhD-
thesis. Chapter 3 outlines and summarizes the physical knowledge that is in principle
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available about a ballistic missile. A toy model for demonstration purposes is intro-
duced. The developed theory in the subsequent chapters applies to all physical state
space models which are observed by a real-life experimenter. However, the observer
model has just been applied to the toy state space model derived in Chapter 3 in order
to keep it analytically trackable. More complicated state space models are in principle
possible to model but require the numerical simulation of partial differential equations.
The development of the numerical partial differential equation tools as needed here
could easily lead to a consecutive PhD-thesis.

Identification and prediction of physical systems is in many cases considered
to be a measurement and physical state space modelling problem, i.e., when an
experimenter measures a sufficient number of experimental results the physical
system can be identified and subsequently utilized for predicting the system’s physical
variables for all time. This oversimplification of system-observer relations has lead to
different kind of statistical and stochastic approaches. This thesis is concerned with
the effect physical system interpretation by the observer can have on the modelling of
physical systems and thus the prediction of the physical system’s future. Some critics
may remark that the algorithms developed here are not real identification/prediction
algorithms as the emphasis is too strongly put on the available physical knowledge.
Indeed, the main part of this work is concerned with clarifying the relationship
between observers and physical systems, ie., the identification/prediction of non-
linear dynamical systems is considered to be a purely observational problem. The
mathematical reconstruction issues of physical state spaces from observations, as
considered by Takens (1981), are not treated here. These reconstruction issues may be
effected by the results presented here and may lead to challenging questions for future

research.

This thesis’ scope has thus been focused on demonstrating the following:
(1) Real life observers cannot identify state space vectors of physical systems.

(ii) A relation between real-life observers and abstract physical systems is estab-

lished (endo-observer, exo-observer concepts).

(iii) The linear dynamics of a physical systems with respect to observed/estimated

probability density functions of real-life observations is derived.

(iv) The non-linear dynamics of a physical systems with respect to ob-
served/estimated probability density functions of real-life observations is derived

for the case when the nominal vector flow in the state space is explicitly given.
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1.2 Motivation

All electrical and mechanical appliances in a household, cars, aeroplanes, manufac-
turers and factories rely on the validity of few physical principles. Because most
of the things around us are not static but dynamical systems, physics concentrates
on the description of the dynamics of physical variables and their interrelation. The
reason for this kind of physical modelling is the simplification of apparently complex
phenomena in nature. Physical models are the backbone of engineering because they
allow a systematic approach towards the design of all modern technologies around us.
Throughout this thesis it is not possible to consider all physical dynamical systems.
As an example a ballistic missile model is chosen for demonstrating the applicability
of the algorithms which are derived in this thesis. It is important to clarify that the
algorithms developed below do apply to any kind of (non-linear) dynamical physical
system and that the adaptation to other dynamical systems than the ballistic missile is
straightforward. The emphasis here is the development of the methodologies devised
in Chapter 4, 5 and not the optimization of ballistic missile tracking algorithms. The
requirements for such a task are highlighted in Chapter 3.

Assume there is a physical system such as a ballistic missile, which is measured
through a specifically chosen arrangement of radars. Information about the physics
in form of the precise dynamics of the relevant physical variables and parameters
may not be available for two reasons. The dynamics of the physical system (ballistic
missile and measurement apparatus) under consideration may not have been explicitly
given, or, not all the physical variables required can be identified through the physical
arrangement. Deterministic physical dynamical system modelling also requires error-
free identification of real numbers which represent the physical variables. The reason
why real-life physical systems cannot provide this kind of information is noise. The
alternative of stochastic dynamical system modelling still requires the dynamics of all
relevant physical variables. It is demonstrated in Chapter 3 that this requirement is
not fulfilled, i.e., physical modelling as for example employed in classical mechanics
is not valid for real-life observers. An alternative approach may be one which does
not explicitly require the physical variables’ dynamics. When there is no knowledge
available about an underlying physical system, data driven modelling techniques have
to be utilized which seek to discover the relationship between given data points. These
techniques are known as black-box modelling. The drawback of black-box, or even
grey-box, modelling is that there are always explicit or hidden implicit assumptions
about the underlying dynamics which have to be accepted and which cannot be falsified
or verified (see Chapter 2 for further details). Additionally, these methods are based on
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statistical models which need a considerable amount of data to ensure that the results
are statistically significant. It is argued in the following that the amount of data is
not sufficient and thus neither black-box nor grey-box modelling can be utilized. The
main part of this work is therefore the development of an algorithm which seeks to
solve the dilemma of not being able to employ black-box or physical modelling. The
requirements and limitations of physical and black-box modelling are briefly discussed

in the following two sections.

1.2.1 State space modelling of ballistic missiles

The initial step in dynamical system identification is the analysis of a physical systems
with respect to the relevant physical variables and parameters, as this gives indica-
tions about the dimension of a state space model, provides possible mathematical
relationships between variables and measurements in real-life experiments outside the
laboratory, and allows qualitative and quantitative long-term predictions of a physical
system with respect to its (non)-linearity and complexity. As the initial focus of this
work is in the understanding of ballistic missile trajectories, the algorithm towards
ballistic missile state space modelling is devised in Chapter 3. The main purpose of
this example is to emphasize the advantages, difficulties and problems of state space
modelling.

The investigations in Chapter 3 show that a ballistic missile is precisely and ex-
haustively described by 16 physical variables which define the state vector x of an
arbitrary ballistic missile. The state vector consists of the spatial coordinate r, the
velocity v of the body, the wind velocity vy and depends explicitly on the time s.
Together these describe the dynamics the missile’s center-of-mass. Because during
the sustain phase the missile can be considered to be a rigid body, the attitude &
and rotational velocity ® = R, complete the list of all necessary physical variables
(Arnold, 1978; Hestenes, 1986; Scheck, 1990) and thus the components of the state
vector. Cauchy’s celebrated theorem (Scheck, 1990) then shows that the dynamics
of the ballistic missile can be computed for any time (prediction) by employing the
so-called state space vector field which implicitly defines how the combination of the
16 physical variables change as time progresses. The infinitesimal change of the state
vector dx within a infinitesimal time interval dz is defined by a vector field F. The

mathematical notation for that is

X = (0, Vi, R, 0,5)" (1.1)

dx/dt = F(x) (1.2)
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In the literature (for example in Blakelock (1965), Garnell (1980), Anonymous (1982),
Eichblatt, E.J., Jr (1989), Collinson (1996)) coordinate systems with time dependent
rotations have been incorrectly transformed as the authors related non-inertial (time de-
pendent rotations) frame of references to acceleration measurement techniques which
belong to inertial (rotationally fixed) frame of references. It has been found that most
accelerometers utilized in today’s aeroplanes, missiles, etc. (Garnell, 1980) are in-
sensitive to rotational velocities and thus require a modified formula for the solution of
centre-of-mass dynamics then the one provided in the references above.

For mechanical systems the forces that are the most relevant physical influences
are in many cases very difficult to identify (Hestenes, 1986; Scheck, 1990). For a
ballistic missile during the sustain phase, only two forces apply, the aerodynamic and
the gravitational force. The gravitational force is—due to the earths property of almost
homogeneous forces on bodies of a size such as a ballistic missile-most easily to model
whereas the aerodynamics and the corresponding aerodynamic forces on bodies are
little understood, as intensive on-going research viz wind-tunnel experiments indicates
(Anderson, 1991). The theory is either very imprecise in predicting the aerodynamic
properties or far too specialised to specific air frames as to be of little generic value-
see for example seen in Anderson (1991). The information required for reasonably
realistic ballistic missile modelling is not available. For example Anonymous (1982),
Cronvich (1991) ,or Jenn (1991) provide only details which are incomplete and require
too much expert knowledge which is inaccessible for an outsider. Thus, only an (over-
)simplified ballistic missile model can be derived which therefore cannot serve as a
typical state space model for simulation and prediction, but which may still suffice as a
toy model for demonstration purposes. However, if a complete look-up table of all re-
quired aerodynamic drag and lift coefficients with respect to all relative wind velocities
and relative attitudes of an air-frame towards the relative wind vector were accessible
and the inertia tensor were explicitly given, the physical model as outlined in Chap-
ter 3 could provide an adequate model which would correspond to a real-life ballistic
body within the precision of the identified physical parameters. Physical reasoning as
employed in Chapter 3 certainly provides limited understanding of the system under
consideration. However, it remains pure guess-work as long it is not being tested
against measurements taken by a sufficient repetition of experiments. The simplicity
or complexity of mathematical models which correspond to experiments do generally
not reflect the accuracy of the model. The identification and prediction algorithms
which have been derived in Chapters 4 & 5 could be realistically tested against the
simulated dynamics of a ballistic missile model. The toy model in Chapter 3 thus re-
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mains an example which cannot be utilized for validation purposes and may only serve
the illustration of the algorithms devised. Deterministic physical dynamical models
may be defined through a vector field. However, this does not imply that the dynamics
can realistically predicted for all time. The reason for this kind of modelling problem
emerges when neighbouring states diverge exponentially as time progresses. Because
any real-life measurement incorporates small differences between the state a system is
in and the reading on a physical measurement device, a small difference vector enters
any kind of modelled phase flow. For dynamical systems where the difference vector
decreases or remains constant the modelled error does not significantly influence the
prediction. In case that the trajectories of a dynamical system exponentially diverge,
the initial small magnitude of an error may after a fixed time interval grow beyond the
magnitude of a state vector. This characteristic behaviour is called deterministic chaos.
So-called ‘Routes’ to chaos (Schuster, 1989) are indicated within Chapter 3.

Another purpose for considering a precise ballistic missile and its modelling is-
sues is its analysis for identifiability via black-box (and grey-box) techniques which
are introduced in the following section and outlined in more detail in Chapter 2 and

Section 3.5.

1.2.2 Black box modelling issues

Black-box modelling issues are concerned with analysing a given time series (data
which is ordered according to time) with respect to the identification of an underlying
process which generates this data (Juditsky et al. 1995; Sjoberg et al. 1995). When no
information is provided about the source of a time series certain algorithms have to be
applied which give an indication (but no proof) about the possible underlying system
which may generate the kind of data under consideration. The data is being tested for

the following properties in the given order.
1. Does the time series represent pure noise or is it just corrupted with noise?
2. Is the underlying model linear, or non-linear?
3. Is the model predictable, or unpredictable?
4. When the model is predictable how does it evolve with time?

The most elementary tools for time series visualization is either done in graphs, maps
or histograms, to show possible trends in the dynamics. When these simple methods
fail to show some essential dynamical features several data pre-processing techniques
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may be employed before the elementary visualization tools are re-applied to the now
pre-processed data. The advantage is, that the pre-processing techniques allow the
separation of different time scales in this dynamics (e.g. return map, binning, next
maxima map), or they may provide for noise reduction and for the elimination of
undesired trends in the time series by filtering (e.g. linear high-,or low-pass filter).
All these methods can for example be found in Kantz et al. (1993), Weigend and
Gershenfeld (1993), Kantz and Schreiber (1997), and Schwarz (1994).

Classical time series analysis (Ebeling, Engel and Herzel, 1990; Schwarz,
1994) is based on linear and weakly stationary signals (the first two moments of
the distribution are time invariant) for linear processes, or it requires and linear and
strongly stationary signals (distribution is time invariant) for nonlinear dynamic
system analysis. These requirements have to be proved by generating spectra of
various sub-samples in the data set. Tests for linearity can be found in (Keenan,
1985; Tsay, 1986) and white noise test are for example the Kolmogorov-Smirnov-Test
(Press, Flannery, Saul and Vetterling, 1993) and the so-called BDS(Brock, Dechert,
Scheinkman)-Test (Wolff, 1994). The classical analysis tools may be completed
by utilizing the spectral analysis (which includes for example the auto-correlation
function, the power spectrum) for the detection of periodicities in the underlying
dataset, and the identification of linearly correlated time series, coloured noise
Jetschke (1989), by means of n'-order auto-regressive (AR) models (Shumway, 1988;
Kurths and Herzel, 1987).

All methods mentioned above are very well suited for providing information about
the global behaviour of the time series generating system. Many applications, however,
seek some quantitative descriptions about the temporal behaviour of those dynamical
systems and the ‘grade’ and complexity of the non-linearity. These quantitative sta-
tistical measures have just recently been developed (Beck and Schlogel, 1995; Kantz
and Schreiber, 1997) for non-linear dynamical system characterization. Some of the
most characteristic qualities emerging through non-linearity are self-similar tempo-
ral structures, singularities, intermittence, a local spectrum on various scales which
changes with time (Beck and Schltgel, 1995; Kantz and Schreiber, 1997). The wavelet
analysis has been proven, Daubechies (1992) and Holschneider (1995), to provide such
quantitative measures for all the listed qualities of non-linearity. Furthermore, the
non-linearity of dynamics can be quantified for small dyyacior-dimensional attractors
in a n-dimensional state space by the correlation-integral (Grassberger and Procaccia,
1983a; Grassberger and Procaccia, 1983b; Takens, 1993) which allows an estimate of
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the so called (fractal) dimension of the attractor and enables a test of the non-linearity
of the underlying system (Takens, 1993). The attractor dimension quantifies some of
the geometric properties of attractors. Apart from generalized dimension measures,
generalized Lyapunov exponents, generalized information measures there still exists
the f(o)-spectrum for characterizing the multi-fractal character (Beck and Schlégel,
1995) to quantify those attractors. All these measures, however, are only suitable for
low-dimensional attractors dawacior < 11. Note, that in the sections above it has been
noted that n is 16 and there do not seem to be any indications that there is a ‘nice’
attractor inside which has a dimension less than 16. It should be stressed that although
it is known that the time series stems from a non-linear dynamical system with some
unspecified included noise, the test introduced above ought to be run on some real-life
data prior to further analysis. The reason for this approach is the validation of the
presumed model and at the same time an unbiased view towards the fact, that some
crude methods may reveal some general trends inside the time series. However, after
all this methodologies for data quantification have been made available, the crucial
question has to be raised: what all that has to do with the underlying dynamical
system. Remember, all the techniques listed above are qualitative measures to decide
from what kind of system the data may originate. For example when the time series
only represents the spatial coordinate and velocity components, which are 6 out of
the whole n = 16-dimensional state vector, it is not obvious how these components
may relate to the entire dynamics. Takens (1981) proved that the entire dynamics of
physical system may be reconstructed via employing so-called time delay vectors with
an embedding dimension m > 2dyyraqer- The crux is, that the dynamics given by the
time delay vectors are diffeomorphic to the original state space and the characteristic
measures of complexity, non-linearity mentioned above may be applied to the series
of reconstructed state vectors instead of employing the original, non-available state
vectors. The quantitative measures deliver the identical values of the original systems,
as if they were applied to the series of original state vectors. The problem is that
this property only holds when the time series is error free, which means that the
application of Taken’s theorem is severely limited, since real-life systems cannot be
assumed noise free. A further development of Taken’s theorem to noisy time series data
has been provided by Stark (1999), but prior information about the noise is required.
The disadvantages of the employment of reconstructed state vectors are obvious: The
time series data is never noiseless, nor is the noise defined, and the sufficient amount
of data for the application of such an algorithm is dagractor < 210g19N (Ruelle, 1990;
Essex and Nerenberger, 1991; Eckmann and Ruelle, 1992) which means that in case of
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Aattractor = 1, the number of 6 component vectors of a time series must be of order 108 /6.
As a first approach towards circumventing these problems other algorithms may be
applied: the recurrence plots by Eckmann et al. (1987), Babloantz (1991), Koebbe and
Mayer-Kress (1992) which enable the application of measures developed for symbolic
dynamics, the information measures (Shannon-information, Trans-information), and
the algorithmic complexity measures (Beck and Schlogel, 1995; Kantz and Schreiber,
1997). Because all quantitative measures above are based on the probability measure,
an additional problem is encountered when the algorithms are sought to be applied
to a time series. Note, that a time series provides a number of points within the
(reconstructed) state space. The only relation between data points and a probability
density is given by the frequency a dynamical system visits a small volume element
inside the state space. However, the trajectory of a typical ballistic missile is stretched
through the 3 spatial coordinates of the state space, which means that there cannot exist
a frequency of neighbouring states which may provide an estimate for the probability
distribution inside the state space. All methodologies introduced so far prove unsuit-
able for the dynamics of a ballistic missile whose trajectory is close to a parabola. A
related approach to black-box modelling is grey-box modelling which may circumvent

the just mentioned difficulties.

1.2.3 Grey box modelling issues

Grey-box modelling is strongly related to black box modelling (Juditsky, Hjalmars-
son, Benveniste, Deylon, Ljung, Sjoberg and Zhang, 1995; Sjoberg, Zhang, Deylon,
Hjalmarsson, Juditsky and Ljung, 1995) but has the advantage that it allows the incor-
poration of some knowledge by pre-filtering the time series with respect to some mean
dynamics, such that only the net dynamics may be analysed. This section shortly
introduces the grey-box modelling issues concerning ballistic missile time series.

The dynamical behaviour is strongly dependent on the structure and of how the
non-linearity enters these dynamics. The wind is highly unpredictable and changes
the trajectory of any flying object in an unpredictable way. Even for a stationary
wind a complex relationship exists between all variables due to the geometry of the
airframe of a missile. The pure rotational motion of a spinning body with three
different principle moments of inertia may exhibit complex (chaotic) behaviour itself,
as has been motivated in Section 3.5.3, without any interaction with its environment.
There are several ‘routes’ to understanding complex behaviour of a missile and
some of them have been summarized in (Schilhabel, 1996). However, the lack of
knowledge about the dynamics demands another approach in order to be able to make
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any sort of quantitative statements about the missile’s dynamics. A semi-physical
model that provides a filter for net missile dynamics and therefore may allow the
predictability of ballistic missiles has been introduced in Schilhabel (1996) and here
in Section 3.5. It has to be emphasized that this algorithm only works for real-life
applications when the statistical conditions and physical requirements of a the model
are fulfilled. Because necessary information about real-life systems is not provided,
the requirements have to be hypothesized in the form of assumptions. The following
paragraph summarizes essential issues of the physical modelling which is developed
in Chapter 3. The modelling issues described below serve on the one-hand to outline
the kind of modelling which, in the subsequent chapters and sections, is referred to in
the context of physical modelling and on the other-hand to provide a flavour about the
kind of physical knowledge which Section 1.2.5 is based on.

A simplified ballistic missile body is one, which is rotationally symmetric and
for which the dynamics are completely described by a 6-dimensional state space. The
reduction is from 16 to 6 state space components. Ballistic missiles need to be self-
stabilizing in the sense that the attitude of the body seeks to be such that the air frame is
not prone to lift forces and thus only a single mean drag force applies to the body. This
does not mean that there are never any lift forces applied to the air frame of a ballistic
body, but in the mean, they average out. Because a missiles dynamics are sensitively
dependent on the relative wind, it is also assumed that this information is available.
Also, because the model only incorporates part of the physical knowledge it is called
a semi-physical ballistic missile model. In short, the semi-physical model is defined
by the 6-dimensional ‘state space’ model of a ballistic body with pure mean drag force
with mean drag coefficient Dp..(73), which consists of a constant and the air density
of free stream at the mean altitude 73. The center-of-mass dynamics of a semi-physical
ballistic missile are then completely defined by the mean spatial coordinate T and the

mean velocity v, with the corresponding state space model

dv = (0,0,—8)" —Dpe(73)[¥|V (1.3)
dr = v. (1.4)

The initial condition ¥(0),r(0) allows a trajectory ¥(¢),X(z) to be computed in the state
space. We now define a set of other 3-dimensional coordinate systems defined by their
corresponding bases {€},€5,€, }(¢) for any time ¢ with their origin at the corresponding
point F(¢). Each of these coordinate system is rotated against the original one, such
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that
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This is, the first vector €] points in flight direction of the missile, the second axis €}
is orthogonal to the plane where the parabola of the trajectory is embedded in, and
the third axis completes the two basis vectors orthogonally. It can be shown that the
map described by the equations (1.3), (1.4) is a diffeomorphism, i.e., transformations
under a diffeomorphism leave characteristic measures as for example the Lyapunov
exponents invariant (a fact that is being utilized in Taken’s theorem, otherwise the
reconstruction algorithm would not make sense). Each measured r(z) will generally be
different from the ideal one ¥(¢) and the vector r(¢) can be expressed by its correspond-
ing coordinate system at time ¢ leading to the vector ’(z). The back-transformation of
all coordinate systems into one common coordinate system through the diffeomor-
phism then leads to a very dense distribution of data points, a transformed time series,
which then allows the desired computation of all measures required, given that enough

time series data points are explicitly available.

1.2.4 White-box modelling

White box modelling refers to a modelling technique assuming that everything about a
dynamical system is explicitly known and well defined. This includes the vector field
F of the state space model, the state x at any time ¢, the noise and its properties of
observed object and observer (Juditsky et al. 1995; Sjoberg et al. 1995). It is apparent
that this kind of assumption about real-life dynamical systems is un-realistic and does
not reflect the experience of physical observations. It would be desirable to access this
kind of information since it allows the only kind of physical modelling which does not
require any assumptions, i.e., everything about a dynamical system is explicitly given.
Because real-life modelling does not allow any verification or falsification of white-
box models its concept itself is an assumption leading to the causal principle introduced
before. Physical modelling throughout this thesis is defined as the systematic approach
towards white-box modelling. The implication is, only models with clearly defined
minimal assumptions about non-accessible physical variables and parameters in the
state space may be accepted. Black-box or grey-box models which employ parameters
with unknown implications regarding the state and the trajectories inside the state space

have to be utilized with great care.
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1.2.5 Incorporation of physical knowledge into a common frame-
work

The sections above introduced physical modelling which has been shown to be in-
adequate for the identification and prediction of real-life systems as it requires the
measurement of states which cannot be practically performed. Black box modelling
has been found very suitable for time series for which the origin is not known or where
enough data is available to extract the desired information. It has been indicated that
missile tracking algorithms may be difficult to develop when neither the state, nor the
state space model, nor enough data is available. Grey-box modelling is black-box
modelling with pre-filtered data (Juditsky, Hjalmarsson, Benveniste, Deylon, Ljung,
Sjoberg and Zhang, 1995; Sjoberg, Zhang, Deylon, Hjalmarsson, Juditsky and Ljung,
1995), which may help to employ statistical techniques but it does not circumvent
the requirement that enough data needs to be made accessible. The problem is that the
modelling techniques defined above have nice mathematical properties but the majority
are inapplicable due to the strong conditions imposed in the example of a real-life
ballistic missile of which the observations are incomplete. Chapters 4—6 are dedicated
to the development of a framework which allows the identification and prediction of

linear and non-linear dynamical systems under the requirement that

1. Only available physical knowledge is employed: In the linear case the mean ve-
locities at a spatial coordinate and the corresponding probability density function
of finding a body’s center-of-mass at the coordinate as well as the variance of the
total velocity distribution are known. In the non-linear case a mean state space
vector field is explicitly given, the probability density distribution inside the state
space consists of partially measurable and partially guessed distributions and the
stochasticity of the unknown noise is bound through an imposed variance.

2. Only few measurements are available.

3. Uncertainties about the systems dynamics can be modelled through probability

distributions.

Before any modelling of uncertainties in linear and non-linear systems can be per-
formed, the nature of the uncertainties needs to be clarified. Following the hypothesis
of the causal principle and classical physics, it is assumed throughout this thesis,
that there exists an adequate physical model which can in principle be observed and
measured. The noise and errors enter the model through the real-life observer. Note
the difference. It is not assumed that physical modelling in itself is faulty, only the
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real-life observer is incapable of recognizing the underlying physical model. Accord-
ing to Rossler (1992) and Primas (1994) the ideal world of a physical model which
exists without erroneous description is defined as the exo-physical state space model
with a corresponding exo-physical observer. In contrast real-life observers are called
endo-physical observers with their corresponding real-life (endo-physical) state space
models. It is the relationship between endo-physics and exo-physics which thus has to
be modelled in the following chapters. Chapter 4 first analyses the quality of physical
variable measurements a real-life observer is capable of and it is proved that there
are some profound qualitative properties of endo-observers which prevent them estab-
lishing state spaces as they are modelled in exo-physical (ideal) models. This quality
which prevents a real-life observer from relating its measurements to an exo-physical
model is then referred to as its uncertainty. The consequences of this type of uncer-
tainty lead to a reformulation of linear dynamics in Chapter 4 and to a corresponding
reformulation of non-linear dynamics in Chapter 5. The details of this procedure are
extensive and will not be outlined in this section. It is worth mentioning in this context
that the properties of endo-observers become the uncertainty’s sole model criterion.
The form of the uncertainty leads to a novel formulation of state space models. A
diffusive term inside the endo-observer’s state space model is required which drives the
system in the linear and non-linear case away from the nominal vector field and thus
shows some similarity to the dynamics defined through the Fokker-Planck equation
(Risken, 1996; Gardiner, 1998). However, the meaning of endo-observer models and
the Fokker-Planck equation dynamics are fundamentally different because the Fokker-
Planck equation models the propagation of probability density functions in the exo-
observer state space models when the uncertainty is given by a specific stochasticity.
Endo-observer models do not include the knowledge of any kind of stochasticity.

In the linear case the endo-observer dynamics are described in form of the stan-
dard Schrédinger equation for a free particle and in the non-linear case the dynamics
take the form of generalized Schrodinger equation, a multi-component equation with
a ‘momentum’ term which looks the same as the one in the Schrodinger equation for
Quantum Mechanics which is subject to a negative vector potential (Ballentine, 1998).
A tracking model for endo-observers has been devised in Section 5.6 which is based on
the fact that observers who seek a decision about the most likely future state in general
tend to put more confidence in the states with higher probability.

The disadvantage of the endo-observer models is that in the linear as well as the
non-linear case an initial probability distribution is required as in exo-physical state
space models. Although, in either cases algorithms are being devised which allow the
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extraction of the required probability density function from the data, it would be more
desirable to do system identification and prediction without probability density distri-
bution extraction as an intermediate step, because the probability density distribution
already requires the assumption that either enough data is available in order to justify
a probability density approximation of an initial state or to estimate the probability
density function through bounds on physical variables, the limit theorem and the max-
imum likelihood principle. Unfortunately the author has not been able to devise such
an algorithm. Further, the dynamics of an endo-observer come at a high computational
cost. Partial differential equations are analytically almost intractable and numerically
very difficult to solve. The examples provided in Chapter 6 do not prove or disprove
the framework provided here, they merely stand as analytically solvable illustrations of
a ballistic toy model which is being derived in Chapter 3. In order to prove the theory
developed here beyond the arguments provided in the following chapters, all solutions
of the partial differential equations introduced below and their properties would be
required to be analytically checked. This is to date an open research issue and the
author has not been able to contribute to the theory of partial differential equations.
Required sophisticated numerical modelling for an exhaustive comparison between
the dynamics of endo- and exo-observers is a research area in itself and lies outside
the possible scope of this thesis. There are still a lot of open questions concerning
the endo-observer models presented here, such as the uniqueness, form, and problem
specific modelling of the diffusive term introduced for modelling the uncertainty in
endo-observer models. A more detailed outline of possible future research issues can

be found in Chapter 7.

1.3 The contributions of this thesis

This thesis is not intended to be a complete nor exhaustive exposition of endo-physical
modelling techniques. The short reviews on black-box modelling techniques and bal-
listic missile modelling present genuine examples to illuminate the problems concern-
ing real-life data driven and physical state space motivated modelling. It is not the aim
of the thesis to develop a technique for ballistic missile model identification which
is competing against well established tracking models for real-life missile defence
systems. The theory developed below is a starting point for future developments in
endo- and exo-observer physics relations. The ballistic model is far too immature for
real applications since it lacks far too much insight into ballistic models which can
only be gained through experience with modelling of real ballistic missiles and the
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analysis of their trajectories, However, the physical modelling of a proper ballistic
missile follows the same physical principles, i.e., the model devised in Chapter 3 is
good enough as a toy model to understand the principles of the theory developed here.
The thesis’ aim is thus to elaborate on certain specific concepts such as exo- and endo-
physical state space models, and to outline the possibilities of their extension to fully
applicable real-life models. This thesis includes the following new results:

1. The formalism of a ballistic missiles dynamics are reviewed, certain terminology
in the literature as well as a flaw in a rigid body dynamics (Anonymous, 1982;
Blakelock, 1965; Collinson, 1996; Eichblatt, E.J., Jr, 1989; Garnell, 1980) are
corrected. A complete dynamical ballistic missile model for simulation purposes
is introduced (see also Schilhabel (1996)).

2. The exo- and endo-physics concepts are shortly reviewed in Section 4.2 and
adapted to the real-life measurement problem of physical system states. The real-
life measurement issue is analysed and certain properties of real-life observers
imply a concept of physical modelling which does not match with the standard
physical models of observed systems. As a consequence the novel endo-physical
dynamics of linear physical systems (free particle) are derived. Some of the
implications of the endo-exo-observer concept have also been utilised in Schil-
habel and Harris (1998d), Schilhabel and Harris (1998b), Schilhabel and Harris

(1998c).

3. Based on the endo-observer concepts from Chapter 4 a novel endo-physical
state space model is derived in Chapter 5. Uncertainties of real-life observers
are modeled and taken into account by the model. The issue here is, that little
information is available about the kind of stochasticity which enters the dynam-
ics. (See also Schilhabel and Harris (1998d), Schilhabel and Harris (1998a),
Schilhabel (1999))

4. Analytically soluble endo-observer models of the simplified ballistic model from
Chapter 3 are derived for illustrations purposes in Chapter 6. (See also Schilha-
bel and Harris (1998a), Schilhabel (2000))

1.4 Outline of the thesis

There are seven chapters in this thesis, whereby the contents from Chapter 4 to
Chapter 6 are all original and novel contributions. The concept of grey-box modelling



CHAPTER 1. INTRODUCTION 16

in Section 3.5.2 has been devised here as well since no further information concerning
ballistic missile is in the public domain. Beside this introductory chapter, the

remaining chapters are concerned with:
Chapter 2 Physical models and Black-Box Models

After reviewing the basic motivation of physical modelling the nomenclature of state
space modelling is introduced and the reason for errors and noises sources in physical
systems are listed. The basic ideas of black box modelling techniques are proposed
and few typical regression techniques such as neural networks, the Kalman filter,
Neuro-fuzzy systems, and wavelets are briefly introduced. The reasons why these
regression techniques are unsuitable for the modelling constraints encountered here

are highlighted.
Chapter 3 The ballistic missile

A thorough introduction to ballistic state space modelling is presented and the pitfalls
and difficulties of aerodynamic models outlined. A toy model is derived as example
for future reference. The possible approaches towards black-box and grey box
modelling are established and their applicability to ballistic missiles discussed.

Chapter 4 The Endo-Observer of a Linear System

This chapter is a diversion from the main subject of ballistic missile identification
and prediction. However, the concepts developed in this chapter are a pre-requisite
for the subsequent chapters. The relation between exo-observers (abstract physical
concepts) and endo-observers (real life observers) are discussed. Certain qualities
of endo-observers are developed to a theory of endo-observer state space models of
a free particle, i.e., dynamics of ballistic missile which center-of-mass is moving
uniformly. The endo-observer model is applied to an harmonic oscillator, an initial
radial Gaussian probability density distribution and an N-point observation of a linear

dynamical system.
Chapter 5 Uncertainty in Non-Linear Dynamics

The endo-observer concept from Chapter 3 is utilized for non-linear dynamics.
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The generation of vector-field errors in an endo-observer model is demonstrated.
A dynamical model of a difference vector-field between endo-observer (real life)
vector field and nominal exo-observer (abstract, physical) vector field is developed.
Similar mathematical arguments as in the case of the linear endo-observer model are
employed to derive the endo-observer model of non-linear dynamical systems. A

tracking endo-observer model is also devised.
Chapter 6 The endo-observer’s frame of reference for a ballistic model

The toy model from Chapter 3 is revisited for the endo-observer’s frame of reference
to demonstrate the applicability of the endo-observer model to a real physical system.

Chapter 7 Conclusions

This chapter presents the conclusions of the thesis, together with some suggestions for
future research issues. An Endo-observer model for linear and non-linear dynamical
systems has been successfully developed. In the linear case the model was tested
against the outcome of some typical examples. In the non-linear case the model could
not be validated for the general case of observations as the simulation of the model for
even the simplest non-linear functions requires the development of techniques which
are outside the scope of this thesis. Future research should therefore focus on validating
the non-linear endo-observer model for arbitrary non-linear vector flows inside the
state space. Besides these major research issues the advantages and disadvantages
of statistical state space modelling are listed against those concerning black/grey-box
modelling. Issues concerning the ballistic missile model are summarized.



Chapter 2

Physical Models and Black Box
Models

Forward

The fundamentals of physical modelling which lead to the concepts of states and vector
flow inside the state spaces are summarized. The following motivation presents reasons
for noise entering any real-life physical systems which then leads to the requirement of
statistical or stochastic state space modelling. It is then argued that neither determinis-
tic nor stochastic state space models can be employed because there is no information
provided about the stochasticity, the precise vector flow, and an initial state of the non-
linear dynamical systems under consideration. As alternative techniques black-box or
grey-box modelling is being considered. Because the number of statistical methods is
overwhelming only artificial neural networks, the Kalman filter, Neuro-fuzzy systems,

and Wavelets have been depicted as representative examples of regression techniques.

Because black-(grey-)box modelling requires large data sets and well known statistical
properties which are not defined, it is argued that black-box modelling is unsuitable
for our purposes. Because neither stochastic state space modelling nor black-box
modelling seem to be an appropriate means of understanding the time series provided,

it is argued that new algorithms have to be devised.

2.1 Introduction

The last chapter gave an overview about the work presented. Here, the underlying
material 1s summarized and the corresponding conclusions drawn which motivate the

18
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material presented in following chapters. This chapter is structured of as follows.
Initially a short overview about the reason of physical system modelling is given.
Physical state space models are reviewed in Section 2.2, and Section 2.3 is dedicated
for black-box models. In the latter section the advantages and dis-advantages of
black-box modelling techniques are reviewed with respect to the task of non-linear
system identification and prediction by employing a time series. It is found that
neither black-box nor state space modelling are suitable for the just specified task of
non-linear system identification with small number of data points. The aim of this
chapter is threefold: (i) To motivate grey-box modelling as it has been devised in
Chapter 3, under the assumption that enough data points are available. (ii) To highlight
the difficulties concerning black-box modelling when insufficient data (e.g. a short
time series) is given. (iii) To summarize the properties and principles of deterministic,

i.e. physical, state space modelling.

It is argued below that neither deterministic state space modelling nor black(grey)-
box modelling can be applied to non-linear system identification by utilizing time
series with a small number of potentially erroneous sample points. The reason for the
failure of both modelling techniques is given by the prerequisites of statistical and
deterministic modelling. An alternative stochastic model within the concept of endo-
and exo-observer’s is thus introduced in Chapters 4 and 5. The physical causality
principle in its form as a mathematical state space model serves as a starting point
for stochastic systems modelling. The next paragraph gives a short overview of the

causality principle and its applicability to physical systems.

The purpose of scientific investigation is the understanding of natural phenomena
in order to predict their future behaviour. The underlying principle which underpins
scientific discoveries is the law of causality which describes relation between caus-
es and their effects. Since this principle is so important in science, Ebeling, Engel
and Herzel (1990) distinguish between simple causality, strong causality, and weak
causality. Simple causality means that the same cause leads to the same effect and is
thus applicable to phenomena as encountered in classical mechanics. Strong causality
implies that ‘similar’ causes lead to ‘similar’ effects and therefore applies to statistical
and stochastic physical systems. Weak causality is defined for the case that ‘similar’
causes lead to very different effects, as typically happens in chaotic scenarios. The
success of physical system modelling depends on the underlying system’s complexity.
The disadvantage of classical physical models is, that they are generically independent
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of the observation due to the level of abstraction. The observer as an analysing and
interpreting element in real-life experiments is usually sought to be either eliminated
through methodologies such as gedanken experiments or to be incorporated through
noise and errors in the physical model to allow a more realistic relation between the
models and factual measurements. This noise has to be included via the introduction
of random terms into the state space model which then require analytical and numer-
ical modelling techniques of potentially complex (partial) differential equations with
problem-specific boundary conditions. Further information about physical (stochas-
tical) modelling may be found in Scheck (1990), Hestenes (1986), Jetschke (1989),
Gardiner (1998) and, Risken (1996).

Alternatively, there have been many empirical or data driven algorithms for estab-
lishing relationships between observed or measured data points. These algorithms are
usually referred to as black box modelling since there is no prior knowledge about the
underlying laws between presumed inputs and outputs of the process. The advantage
of this approach is, that there exists a systematic approach towards data analysis with
the aim of achieving predictions with a certain accuracy. The disadvantage of this
approach is that causality can never be inferred from data alone, there are always at
least assumptions or arguments about the nature of data from outside statistical analysis
(Cherkassky and Mulier, 1998) which is usually based on domain knowledge. In many
cases statistical modelling techniques, such as ARMA, ARIMA, RBF (Tong, 1995),
even require assumptions about the architecture of the underlying model. (Statistical
measures such as the correlation analysis do not allow the identification of determinis-
tic causalities either as statistics may provide indications but no proof of relationships
between physical parameters.) All the prerequisites mentioned above are necessary to

allow any explanation or interpretation of the underlying data.

2.2 Physical state space models

[Physical state space models are exhaustively described in (Arnold 1978; Hestenes
1986; Scheck 1990).] Physical objects are closed systems of principally measurable
variables, i.e., measurable up to a certain error bound. These variables are postulated
to be representable by mathematical objects which are scalars, i.e., elements of the real
numbers. The state of a physical object is given by the complete set of all properties
of the object which relate the input-time function at any time to a unique output for all
time from the instant the input-time function is given. Because all input-variables of a
physical system with a finite number of physical elements can be represented in form of
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a n-dimensional vector, the state is equivalently given by a state vector x(t) (state vari-
able). Throughout this text these three definitions of a state will not be distinguished
from each other. The state vector is an element of the state space x(t) € £ C R” which
is the complete set of all possible states. The dynamics of these states is either given in
the form of a discrete map F*(x(¢)) which is a function describing the mapping from
one state to the following one, or a vector field F (x(t)) which defines a continuous path,
(phase) flow or, orbit the state follows when the continuous parameter time is altered.
The dynamical system (model) (Z,F(e)) is defined by the vector field and the state
space. Physical models are assumed to be continuous dynamical systems which may
in some cases be represented as discretized maps, e.g. stroboscopic data samples of
the state. In fact all real-life measurements are in the ideal case states with equidistant
time-lag between each successive data sample. For engineering purposes it may be
desirable to distinguish within the dynamical system between the plant, the observer,
and the controller. When an observer influences the controller such that the controller
output will depend only on the output of the plant and plant’s input to the observer,
the dynamical system can still be represented by a common state vector consisting of
state variables describing the plant, the controller, and the observer. In some cases
the controller is just defined as a set of certain time constant control parameters of
a dynamical system. Generally, the relation between plant, controller, and observer
are non-trivial: The relation between plant and observer will be carefully analysed in
Chapter 4.

In principle physical dynamical systems can be subdivided into the following

properties of processes.

e Reversible: The state of a physical system for a future time can, in principle, be

reached again.

o [rreversible: The state of a physical system at an arbitrary instant can never be

reached again.
e Periodic The state follows a periodic flow.
e Non-periodic The flow is non-periodic.
o Deterministic The physical system is defined by a dynamical system.

o Non-deterministic (stochastic): The physical system cannot be identified by a

unique state of a dynamical system.
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o (Deterministic) Chaotic: The future state of a dynamical system is sensitively

dependent on the initial state.

e Non-chaotic: The future state of a dynamical system is not sensitively dependent

on the initial state.

When a dynamical system (i.e., the state transition function F*(e)) with an initial
state has been given, a following prediction is trivial. The main concern of modelling
is the identification (estimation) of state vectors and the underlying dynamical process
itself. Let us assume for the moment that a set of stroboscopically spaced state vectors
exists. All that has to be done is to find a bijective function F2(e) which maps each
state to a successive state. The map has to be bijective otherwise some trajectories
within the state space would exhibit branches, intersections, or it overlaps with itself
which contradicts the causality principle. This also implies that the dynamics inside
the state space are reversible. The dynamics in the discrete case are written as

X1 =F¥(x,). 2.1)

When a set of state space vectors is such that Az is small enough, a continuous model
can be generated by ‘smoothing’ over the discrete state vectors. When the time-discrete
model (2.1) can be expanded in a Taylor series x(¢ +At) = x(¢) + F(x(¢) ) A+ O((At)?)
and O((At)?) — 0 as At approaches zero, then a time-discrete model can be represented
as a continuous flow in the state space implicitly given by a vector field F(e) such that

dix =F(x(1)). (2.2)

Although Eq. (2.1) is a far more general mathematical model than the one given by the
flow in Eq. (2.1), the ordinary differential equation of autonomous systems d;x = F(X)
is considered to be the standard form of deterministic models, which is motivated by
the fact that a great number of systems can be modelled by this equation, that higher-
order differential equations and non-autonomous differential equations can be restated
as a system of first-order autonomous ordinary differential equations, and because
partial differential equations can be transformed into difference equations for finite
approximations by the Garlekin method.

When the assumption of error-free state vector estimation does not hold, which is
the case for any real-life physical experiment a subsequent problem of system identi-
fication has to be addressed which deals with this limitation of real-life experiments.
Only a few components of a state vector may be accessible and even these may be
corrupted with random noise. Essentially, there are three different types of noise

(Eberl, 1995):
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e Measurement Noise: The apparatus for the measurements has some intrinsic

statistical errors which can in principle be minimised, but can never be eliminat-
ed.

e System Noise: The simplification of complex physical system by modelling
generically neglects small effects of dynamical influences. These quantities can
evolve their own dynamical behaviour which appears like random noise.

o External Noise or Disturbance: Physical Systems are in reality never closed.
External effects are sought be eliminated such that a quasi closed experiment is
obtained which has to cope with the remaining part of small influences.

The measurement noise as well as disturbance are generic and cannot be avoided.
System noise might be reduced by taking more system parameters into account, but
the model becomes more and more complex and may even become non-tractable. The
only way to cope with these undesired effects is to separate the deterministic part of
model from the stochastic one and utilise completely new analytical techniques for
mathematical computations (Jetschke, 1989; Risken, 1996). This approach thus leads
to stochastic differential equations, or probability distributions of state vectors within

the state space.

2.2.1 Assumptions and Requirements

It has just been shown that classical physical modelling is concerned with identifying
the state space of an underlying dynamical system. The first hypothesis therefore is
that any classical physical system can be represented as a state space model. It is then
assumed that the state is, up to a negligible error, accessible. If the error of a state
cannot be neglected stochastic state space modelling becomes necessary. If either the
state of a physical system is not completely measurable, or the flow inside the state
space is not explicitly known, physical state space modelling can no longer be applied.

Since the task within this thesis is the identification of non-linear dynamical sys-
tems with observed sparse time series, which generally implies that neither all state
components nor the vector field of a state space are accessible, this kind of modelling
technique is not applicable, i.e., purely data driven modelling techniques might provide
sufficient means for dynamical system identification and prediction and are therefore

introduced in the following section.
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2.3 Black-Box modelling techniques

[Black box modelling techniques are for example introduced in (Papoulis, 1991; Tong,
1995; Cherkassky and Mulier, 1998; Beck and Schlogel, 1995; Kantz and Schreiber,
1997)]

It is worth remembering that the objective of this work is: The identification and
prediction of non-linear dynamical systems with sparse time series. This means that
the identification of a physical model depends mainly on a time series which is given
in form of a set of measurements which, for example, have been taken from a ballistic
missile. The arrangement of measurement equipment (radars) do not allow one to
measure all components of the state vector nor are these measurements error free. An
algorithm has to be developed which allows the prediction of the entire trajectory of a
ballistic missile based on only few measurements. Thus there are two major application
for statistical estimation, i.e. predictive learning (Cherkassky and Mulier, 1998). (i)
Regression, i.e. estimation of an unknown continuous function from noisy data, or (ii)
classification, i.e. the recognition or estimation of class decision boundaries between
sets of control parameters of the ballistic missile model. Because regression assumes
that there is no information available about the vector flow inside the state space, it
seems to be unlikely that this methodology can provide a promising modelling tool for
state space models. However, the following sections list the advantages and disadvan-
tages of black-box modelling techniques which will be reviewed with respect to either
capability.

Scientific rigour requires that the procedure leading from the measured time series
of physical variables to the model interpretation is defined prior to further probabilistic
analysis, as physical system modelling is generally deterministic state space modelling
and the relation between statistics and classical physics is not uniquely defined within
the literature (e.g. Papoulis (1991), Jetschke (1989)). The following scheme has been
inspired by (Dowdy and Wearden, 1991; Cherkassky and Mulier, 1998).

1. Problem statement: The clear problem statement is, that control parameters and
most state vector components of the dynamical system are not given or known.
The dynamical system of for example a ballistic trajectory has to be reconstruct-

ed from a time series available.

2. Hypothesis formulation: Classification: The relationship between successive
data points and control parameters has to be formulated. Regression: Criteria
for the general shape of a trajectory in the sub-space of the state space has to be

found.
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3. Experimental set-up/Data gathering: This is a clear observational setting of the
experiment, the probability distribution of a single estimated data point has to be

determined.

4. Data pre-processing: This task deals with the selection and transformation of

data before it is processed further.

5. Model estimation: For generating models with predictive accuracy (so called

generalization capability).

6. Model interpretation/Conclusion: Interpretation of models in terms of trajecto-

ries.

The following modelling approaches consider only Item 5-6 of the above list, whilst
Item 4 will be dealt with in Chapter 3 where a very carefully assessed pre-processing
procedure will be introduced.

The most general approach of black-box modelling allows the extraction of statis-
tical information from any set of data points. That is why the methodologies developed
within the framework of black-box modelling have been so successful when applied
to a wide range of real-life systems. There are many different approaches (Cherkassky
and Mulier, 1998) which are all based on a few similar principles. Black-box modelling
has been exhaustively treated in the literature (see e.g. (Papoulis, 1991; Cherkassky
and Mulier, 1998)), and the next section provides short but sufficient overview about
the methodology of black box modelling techniques available today. However, as all
models are based on few common features it will suffice to introduce four prototypical

models to evaluate their advantages and disadvantages.

2.3.1 Regression techniques

This section summarizes the principles of some of the most common techniques for
the estimation of continuous-valued functions from samples—the regression technique.
The regression technique approximates a given a time series by a set of functions,
whereby this approximation is parameterised in form of a weighted superposition
of these basis functions. Let us assume there is a phase flow f(xp) = ftg dr'F(x(t"))

approximated by

m
£ (%0, W,v) = Y wigi(X0, V) +wp (2.3)
=1
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with w adjustable coefficients (weights) and v adjustable function parameters depend-
ing on the given time series, and g;(xp, V) as a basis functions. When the statistical
model allows the value of v to be changed depending on the data it is called adaptive,
otherwise predetermined or fixed. The number of terms m can be determined following
the method suggested by (Moody, 1991; Murata, Yoshizawa and Amari, 1991). A
slightly different approach is used by so-called kernel methods, where a set of kernel
functions K;(xo,Xo,) is applied to represent the trajectory of a model as the weighted
combination of the models response values y;, such that

/

m
f(x0) = 211(',-()(0,)(0,.))7,-. 2.4
i=
X, is the position of the centre of the kernel function inside the state space. As with
basis functions (2.3), there are adaptive and fixed kernel functions. A very good review
on black box modelling techniques for reconstructed state space models can also be
found in ?).
In the following sections various methods will be classified with respect to the

above two regression methods.

I.) Neural Networks

[For an overview of Neural networks see (Arbib, 1995)] In recent years there has been
an enormous increase of Neural network applications. The general claim states, that
they possess adaptability properties similar to those found in a mammalian brain.
Despite all efforts the capabilities of neural networks in technical applications fall well
short of expectations. The following section summarizes why neural networks still
cannot provide the answers required for the identification and prediction of non-linear

dynamical systems in the state space.

Principles. Neural networks have been inspired by the biological metaphor of
the interconnecting neurons inside the brain. The necessary simplifications lead to
mathematical models which very much have the same appearance as Eq. (2.3). There
is a huge variety of different neural networks (NN). However, in this context where
the data is of statistical nature, only statistical learning in artificial neural networks can
be employed. For example radial function networks (Lowe, 1995), linear networks
with arbitrary basis functions such as splines as basis functions (Brown and Harris,
1994), Boltzmann machines (Aarts and Korst, 1995), wavelet networks (synonymous
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for wavelet representation see further below). All these methods map an input vector
X to an output vector f(x). In many cases the input and output of a NN are defined
by weighted interconnections between input knots (vector) and output knots (vector)
(Brown and Harris, 1994; Bishop, 1995). In contrast the Multi-Perceptron weighs
the input space first and then creates the output, as does the radial basis function
network. More complicated NN are also possible where multi-layers of NN knots
are interconnected. In analogy with biological NN the interconnections represent
the axons and the knots the neurons found in the brain. The crucial fact though
is, that despite all the efforts of modelling increasingly advanced artificial NN the
training relies on statistical methods, e.g. (Brown and Harris, 1994; Bishop, 1995),
or even statistics borrowed from macro-canonical thermodynamics (Bishop, 1995).
Since real NN are still not very well understood (Haykin, 1999), mathematical
methods of classical statistics have to be employed to put artificial NN for statistical
data on a scientific footing. But because statistical mathematics for analysing and
training of NN has to be utilized the question arises what contribution NN could
provide to enlighten the relationship between data points inside a time series. As
an example consider Bayesian neural networks and Singular Value (SV) neural
networks. Bayesian neural networks (Pearl, 1995) are a graphical representation
of causal relationships in which Baye’s rule of inference is employed. Singular
Value Neural networks (Bourlard and Kamp, 1988) are for example multiperceptrons
which have been shown to evolve weights that in the optimal case are identical to
the singular value decomposition. Other NN are trained utilizing Baye’s rule and
statistics which originates from the maximum entropy principle (Jaynes, 1957) as it
has been applied within the framework of statistical physics and can be easily seen in
any student textbook such as Schlogel (1989). As it is evident from the argumentation
in (Thodberg, 1996; Haykin, 1999) the theoretical formalism is outside any neural
network concepts, i.e., any regression technique which utilises the partition function
incorporates the properties of a Bayesian algorithm. There exists a huge variety of
regression techniques, among them the pure probabilistic framework and the not
so well understood neural networks concept which is so far only justifiable and
theoretically tractable through Bayesian statistics and information theory concepts.
The question arises which of either concepts should be chosen for explaining and
solving dynamical system identification. Since the Bayesian statistics framework
in conjunction with the information theoretical concept is chosen to explain neural
network capabilities and neural networks seem to offer little more than these statistics,
it appears advisable to utilize these statistics given above for the modelling purposes
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in the first place.

Advantages. The advantages of artificial neural networks are that they are motivated
by real-life complex systems (brains) which exhibit enormous capabilities of pattern

recognition, data classification etc.

Disadvantages. The clear disadvantages of artificial neural networks are that they
are far from the original aim of incorporating real-life NN’s (brain’s) capabilities.
The relatively simple models being analysed and understood so far, do not differ
significantly from any standard statistical models as found for example in (Jaynes,
1957) because the information measure of Shannon, the modified information measure
by Akaike, or the trans-information have to be utilized in a statistical framework. The
factual overlap is unfortunately not easy to detect due to the difference of language
within the NN and statistician communities (Cherkassky and Mulier, 1998).

Conclusion. The employment of classical statistical methods which may also be
found in thermodynamics (Schlogel, 1989; Beck and Schlogel, 1995) and which were
developed in the late 50s has little changed over the last decades. Cherkassky and
Mulier (1998) argue that the framework of neural networks has only little to offer to a
modeller which seeks modelling advantages over classical statistical methods.

I1.) The Kalman Filter

The Kalman filter (Kalman, 1960; Kalman and Bucy, 1960; Kalman, 1963; Chui
and Chen, 1999) considers deterministic state space models with some additive noise
as a dynamical system. The Kalman filter was originally developed for linear state
space dynamics with additive Gaussian white noise. The extended Kalman filter
allows the application of the filter to non-linear systems by utilizing the linear Taylor
approximation to non-linear vector flows. This filter, however, is sub-optimal in its
performance. The augmented Kalman filter includes additive coloured noise in its
dynamics by superposing white noise, such that any kind of coloured noise can be
generated. The most general filter within this filter class is the augmented extended

Kalman filter.

Principles. The time continuous or discrete state space formulation of the augmented
extended Kalman filter can be written as a set of differential or difference equations
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including an equation which determines the observation at an instant and the difference
equation which generates the coloured noise for the state and the observer. A filter
algorithm as for example given in the (Chui and Chen, 1999) then allows the extraction
of a best estimate for a future state (prediction) or the estimation of the system’s
parameters (system identification). It has been demonstrated that the Kalman filter is
nothing but a maximal information, i.e., minimal entropy, preserving filter and derives
from the first statistical principles mentioned above in the context of Neural networks.

Advantages. The Kalman filter is a very successful algorithm for real-time
applications where the state space models and noises are explicitly given. The
underlying theory is sound and the model is well established when prior knowledge

about the state dynamics and noise characteristics is provided.

Disadvantages. The algorithm considers only the dynamics of a ‘best’ estimate
whether the vector field inside the state space is linear, non-linear, or the noise is
Gaussian white, coloured. The drawback therefore is, that the Kalman filter—apart from
few linear cases—can generally not provide information about the probability density
function inside the state space which quantifies the propensity of finding a system
in a particular state. This kind of information can be crucial because even Gaussian
distributions do not necessarily stay Gaussian as general non-linear dynamics evolve.
Indeed, the probability density function can easily evolve into a distribution with
many local minima and a time-dependent variance. This kind of information may
become very significant and important, especially when the expectation value of a
probability density function is not identical or close to the global maximum of the
probability density function. The other disadvantage of Kalman filters is that the
algorithm does not allow an estimation of a non-linear dynamical system itself, i.e.,
the Kalman filter does not support the reconstruction of an entire state space model

due to the observation of a subset of state variables.

II1.) Neuro-fuzzy systems

Initially this thesis was dealing with the “Intelligent Estimation of the State Space by
Neurofuzzy Systems” when modelling problems emerged (Schilhabel and Wu, 1997).
In order to develop a scientific argument towards the applicability of such a method

the concept of neurofuzzy systems has to be reviewed first.
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Principles. Neurofuzzy systems seek to combine the benefits of two concepts, the
data driven good generalization of artificial neural-networks and the interpretability
of fuzzy rules in terms of human thinking (Brown and Harris, 1994). In short, it is
hoped, that on the one-hand a system modeller uses his prior “knowledge” about the
underlying dynamical system to initialise a set of fuzzy-rules and that on the other-hand
a neural network takes over the job afterwards and optimises these fuzzy-rules with
respect to a cost function borrowed from statistics. It turns out that neurofuzzy systems
often use piecewise linear functions as fuzzy sets, B-splines of order two, although
splines of higher order or completely different functions (e.g. Berzin-Bernstein or
Gaussian polynomials) can also be used. The idea of the algorithm is as follows. Either
an expert decides about the fuzzy rules, i.e., selects the number fuzzy rules, the number
and position of fuzzy sets for each rule, or, if this approach is too complex, a so-
called construction rule method is applied which chooses the fuzzy set by employing
a measure of information content such as the one derived by Shannon or Akaike. In
either case statistical learning methods known from information theory (Jaynes, 1957)
are applied to the fuzzy sets to find or optimise the fuzzy rules from some training data.
These fuzzy rules then define the weight or confidence a modeller has in a particular
system represented by these fuzzy rules. Adaptive basis function networks may even
change the basis functions in order to learn the fuzzy-rules (Brown and Harris, 1994).
As these authors remark there is a direct correspondence between neurofuzzy system
and for example radial-basis-function networks.

Closer investigation reveals immediately that in fact neurofuzzy systems are i-
dentical to the superposition given in Eq. (2.3) with the only difference that g; are
considered to have a interpretative meaning for an expert.

This argumentation has several flaws (e.g. (Cherkassky and Mulier, 1998)). It is
not clear where these fuzzy-sets really come from. Why should a modeller decide to
choose for example piecewise linear membership functions as they have been applied
by Doyle (1997), Bossley (1997), Brown and Harris (1994)? What does the support
of a membership function represent? How does the shape of a membership function
effect the model? How does a modeller decide how many membership functions to
employ and what shape? How can physical knowledge, as presented in Chapter 3, be
translated into membership functions? It is not clear at all when the expert knowledge
is so valuable, why it should be optimised? Indeed closer investigation revealed that
the definition of fuzzy sets is everything but trivial as the performance of the modelled
systems depends sensitively on their choice. Consider the following two examples.
The fuzzy representation of a submarine model as utilised in Bossley (1997) is good
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enough for a simple short one-time-step-ahead prediction. A controller which has
been attempted for the same submarine model could never be stabilized (Mills, 1995;
Mills and Harris, 1995). When the fuzzy construction rule/method as for example
devised by Brown and Harris (1994), and Wu and Harris (1997) was applied to the
Lorenz attractor, the single- and multi- time-step-ahead prediction performed much
worse than the Lyapunov exponent allowed (Wu and Schilhabel, 1997; Schilhabel and
Wu, 1997). Similar stability problems occurred when neurofuzzy systems were utilised
in conjunction with the Institute for Sound & Vibration Research group to brake squeal
modelling (Feraday, 1998).

The examples mentioned above are only few of the modelling attempts which
have been difficult. The principal concept of neurofuzzy systems is an interesting
one: Modelling of physical systems by inclusion of modellers experiences. However,
objective knowledge as for example defined by Sir Popper (1972) requires a certain
rigour in the argumentation and a particular algorithm which ensures that theories
can be put on an objective footing. Neurofuzzy system have been successfully
applied in a few cases when the framework of statistics and information theory were
employed (Doyle, 1997; Bossley, 1997). For a great majority of non-linear system
modelling there does not seem to exist a rigorous framework which formulates a
construction rule outside pure statistical modelling that can objectively be tested as
experiments revealed (e.g. (Feraday, 1998; Wu and Harris, 1997; Schilhabel and
Wu, 1997; Wu and Schilhabel, 1997)). Cherkassky and Mulier (1998) conclude that
neurofuzzy system are nothing but heuristics. There is a list of questions concerning
the rigour of continuous membership functions, the construction of fuzzy sets, etc.
As long these questions are not answered prior to any applications it is unclear
what neurofuzzy systems have to offer apart from standard statistical modelling
techniques and an intriguing intention to perform system modelling beyond classical
statistics (Cherkassky and Mulier, 1998). In consideration of the fact that there
are too many difficulties arising in combination with neurofuzzy systems (Feraday,
1998; Wu and Harris, 1997; Schilhabel and Wu, 1997; Wu and Schilhabel, 1997)
and the clear indication in the statistical literature about the non-applicability of
neuro-fuzzy systems Cherkassky and Mulier (1998) to complex system it was decided
to discard this framework. The following three paragraphs succinctly summarize the
above findings and add few more indications about the usability of neurofuzzy systems.

Advantages. A modeller may be more confident to make some guesses about a
particular form of a non-linear function. For simplistic models there may be a
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one-to-one correspondence between fuzzy sets and statistical flow in the state space.

Disadvantages. The major disadvantage is that an expert may be lead to believe
that the algorithm is working fine because the verification on one particular data set
lead to ‘good’ results. However, there is, due to the lack rigour, no criterion beyond
statistic models such as validation theory which may help to decide whether the
model may work or fail in general*. When neurofuzzy systems are being employed as
purely statistical models, generating the B-spline functions can be extremely costly’,
such that a real-time application may become non-viable. Although few cases may
exist where B-splines are comparatively superior to other methodologies it should be
clear that an approximating analytic function which is identical with the underlying
system is the most efficient model representation available. It should be mentioned
additionally that B-splines of order two are linked to so-called Haar-wavelets. When
a vector field is represented by a superposition of Haar-functions then their integral is
identical to B-splines of order two. As is well known in combination with wavelets
(see also further below) Haar-wavelets are not often used due to their bad convergence

properties (Daubechies, 1992).

Conclusion. From a scientific point of view neurofuzzy networks only offer the same
qualitative analysis tools as classical statistical methods (Cherkassky and Mulier,
1998). Because the framework does not seem to be able to offer any answers for
non-linear system modelling but it poses urgent questions to which the author could
not find any answers this method was rejected for the following analysis of non-linear

state space models.

IV.) Wavelets

Wavelets are scaled single functions in the form of a short wave. The wavelet
transform can be viewed as a projection of functions, data or operators onto a wavelet.
Because each wavelet has a specific time-frequency resolution, the component of a
wavelet transform quantifies the contribution of functions, data or operators to certain

*It is important to realize that statistical modelling is independent of the appearance of neurofuzzy
systems. It is the statistics of input data which decides about neurofuzzy system and not the distribution

of fuzzy sets.
"The mathematical properties of B-spline functions are easy to understand, as they provide means of

linear superposition of (generally) non-linear functions. However, the problem lies with the understand-
ing of specific shapes of B-spline functions with respect to the rule base interpretation.
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frequency contents at a certain time (Chui, 1992; Daubechies, 1992; Mallat, 1998).
There are many different kind of (continuous/discrete) wavelets available. The state
space considered here is a subset of R” which requires a continuous wavelet transform.

Principles. First, a basis wavelet is selected, which is a function with certain
mathematical properties. This basis wavelet can be dilated and translated. As with
the Fourier transform, the continuous wavelet transform is an integral transform with
dilation and translation parameter as new variables. The inverse wavelet transform,
which is a weighted superposition of all wavelets, leads then to the original function,
data or operator. In contrast to neurofuzzy systems it is not claimed that the wavelet
or its weight has a specific meaning or interpretation. As with other basis function
techniques the centre, dilation and translation parameters are well defined and the
properties of certain basis wavelets are with respect to their approximation capabilities
well analysed (Daubechies, 1992; Chui, 1992; Holschneider, 1995).

Advantages. The wavelet is an oscillatory function of which many physical systems
consist of. There are many statistical motivations for use the of wavelets in signal
processing (Mallat, 1998). Because there is no computationally expensive algorithm
for finding the wavelet function itself algorithms such as in Donoho et al. (2001), Majid
(2001) are capable of computing the wavelet representation of several thousand data
points within few seconds. In comparison, the implementation of an algorithm as
provided by (Brown and Harris, 1994) may take hours if not days to complete as the
shape of the basis functions needs to be computed. Wavelets have been successfully
applied to many practical tasks and real life experiments as for example in signal
processing/compression (Holschneider, 1995; Chui, 1992), or in physical wavelet
models (Kaiser, 1999), etc.

Disadvantages. Wavelets are, however, generally not applicable to state space
models and the reconstruction of vector fields. General physical knowledge cannot
be incorporated directly and the transform can be computationally costly for high-

dimensional state spaces.

Conclusion. Wavelets provide very powerful statistical models for extracting
frequency and space coordinate information as well as oscillatory properties out of a
time series. However, it is not at all clear how these wavelets may provide physical

insight beyond this property,
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V.) Non-linear statistics

For completeness reason another analytical tool for statistical data analysis has to
be mentioned here. The field of non-linear statistics which emerged in combination
with chaos theory (Beck and Schlogel, 1995). The ideas and principles of non-
linear statistics are not going to be introduced here since these models will be
more closely examined with respect to a ballistic missile trajectory in Section 3.5.
For reference the advantages and disadvantages of non-linear statistics are given below.

Advantages. Non-linear statistical methods can provide qualitative information about
a non-linear dynamical systems behaviour even when the state is not explicitly given.
A state space reconstruction algorithm exists which relies on the implementation of

these non-linear statistics.

Disadvantages. Non-linear statistics are of only limited use for noisy time series.

Large data sets are required to gain statistically significant information.

Conclusion. Methodologies are very well founded for data-rich time series with no
or only very little noise. The theory does not provide sufficient measures in order to
allow a clear decision if the time series is sufficient for the algorithms which allow the

computations of the characteristic dynamical system quantities.

2.3.2 Applicability of Black-box models

The last section introduced artificial neural-networks, the Kalman filter, Neurofuzzy
systems, and wavelets as black-box models and mentioned non-linear statistics as an
alternative black-box technique which will be closely examined in Section 3.5.2. It
is essential to decide whether these modelling techniques are applicable to the main
task (stated on page 1) or not. All four black-box models given above have one
feature in common, they must make assumptions about the non-linear systems’ noise
in order to apply the regression technique introduced before. Additionally, there are
always statistical hyper-parameters involved which determine the smoothness of the
approximating function f,(xg). The non-linear statistics mentioned last, provides

some means of characterising the underlying dynamics which may correspond to the
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given time series. Neither of the methods defined above allows an estimate about
the evolution of probability densities inside the state space. Note, it is not sufficient
to gain a best estimate to an arbitrarily imposed statistical criterion for a statistical
algorithm for physical model selection. Scientific rigour requires that additional in-
formation is provided about implications on physical system selection when a purely
statistical selection criterion is imposed. For example a model which provided a good
estimate/prediction in one problem domain (Wu and Harris, 1997) does not necessarily
provide a good estimation/prediction in another problem domain (Wu and Schilhabel,
1997). This implies that prior to statistical modelling techniques, which employ the
mean and the variance between estimate and system output, information needs to be
gained about the system which provides measures for the validity of a certain sta-
tistical model/algorithm. Besides these rather genuine modelling issues of statistical
models, the main drawback is, that besides these very restricting assumptions about the
qualitative stochastic behaviour of dynamical systems, the number of data points must
grow exponentially with every added dimension to the state space in order to enable
statistically significant answers.

The most suitable approach among the ones listed above towards identification
and prediction of a physical system seems still to be the Kalman filter, since it allows
incorporation of physical knowledge about the underlying deterministic state space
models. Due to the statistical drawbacks, a stochastic differential equation which mod-
els entire probability density functions inside the state space is still significantly more
powerful than a Kalman filter. Even when stochastic models such as the Fokker-Planck
equation cannot analytically be solved, numerical algorithms with proven accuracy still
provide predictions of probability densities in the state space with proven error bounds

(Langtangen, 1999).

2.4 Conclusion

Deterministic and stochastic physical modelling has been introduced and its properties
summarized with respect to its applicability to non-linear dynamical systems identifi-
cation and prediction. These models were found to be unsuitable for sparse time series
modelling, because there is no unique algorithm to identify this time series data with
a physical state and the state space models may not explicitly be available. Black-
box models are data driven techniques which have to rely on assumptions which are
impossible to relate to the physical implications on an underlying state space model
and the required number of data points may outstrip the ones given through the sparse
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time series. The two models which may be closest to the desired properties are on the
one-hand the Kalman filter and on the other-hand stochastic differential equations. If
the objectives within the task are not relaxed, no method mentioned so far is applicable.
The dilemma seems to be approachable only through thorough reinvestigation of what
kind of physical knowledge is really available. The next Chapter explores the problems
concerning ballistic missile modelling and the feasibilities of incorporating physical

knowledge into statistical techniques.



Chapter 3

Ballistic Missiles

Forward

The general aim of this thesis is to develop the basis of algorithms which enable the
prediction of a ballistic missile’s trajectory in a three-dimensional spatial co-ordinate
system when only a sparse time series is available. As it has been argued in chapter 2
non-linear system approximation can be accomplished either by black-box regression
techniques or via the analysis of the state space model of the underlying physical
system. Black-box and grey-box modelling (Juditsky et al. 1995; Sjéberg et al. 1995)
techniques require a sufficiently large amount of rich data. One regression technique
estimates an approximating function which connects data points in a reconstructed
state space, whereas an alternative regression technique parameterises a class of state
space trajectories which are estimated by employing the given time series. Whichever
black-box regression analysis is selected, it is evident that a basic physical under-
standing of a ballistic body is necessary. Grey-box and white-box modelling require
an even deeper insight into the physics of the ballistic missile. Later chapters in this
thesis employ models which are based on the precise form of the vector flow inside the
state space. It now becomes clear why this chapter first introduces the basic concepts
of a ballistic missile before the rigid body dynamics with the most general forces on
an arbitrary airframe can be presented. Due to the limitation of access to real-life
data of ballistic missiles, this chapter can only present a toy model for demonstration
purposes. However, the framework given here could easily be extended to realistic
ballistic state space models. Typical properties of the discussed flow inside the state
space then would also apply to a real-life framework as is it will be established for

grey-box modelling.

37
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3.1 Principles of ballistic missile modelling

Before a ballistic missile can be analysed in any detail a few principles should be
explained. The flight of a ballistic missile can be subdivided into three different
phases. A missile which covers a distance of about 600km is accelerated, during
the boost phase, to its maximal velocity of about Mach 6. Additionally a body spin
about the symmetry axis is applied to compensate for a-symmetric propulsion forces.
The boost phase for this type of missile lasts about 60-90 seconds, during which the
missile covers a distance of just 40-60km. After the boost phase is completed the
missile enters the sustain phase. Missiles with more sophisticated control algorithms
enter the terminal phase after the sustain phase during which a missile re-ignites its
engines and adjusts its final course for the pre-programmed target. The boost phase
is the most critical phase for the overall behaviour of a ballistic missile because once
the initial physical variables for the sustain phase are defined, the body is left to pure
aerodynamic and gravitational influences for the entire sustain phase. During the boost
phase the ideal missile maintains a stationary flow of fuel that leaves the boundaries of
the air frame with constant velocity and has a constant burning rate. Disturbances as
well as aerodynamic forces are compensated for by thrust vector control. The purpose
of the boost phase is the acceleration of the missile to a certain velocity, spin and
spatial coordinate. The boost takes only few seconds and is accomplished when the
velocity reaches its nominal boost velocity and the spin gains its designated magnitude.
However, because the boost phase is very short, it is of no significance for flight path
interferences. The algorithms for thrust vector control are therefore of limited interest
here and will be omitted in the following sections. The precise physical variables of
the missile during the boost phase have little significance for its future behaviour and
will not considered here. The initial velocity and spatial coordinate of the missile at
the beginning of the sustain phase are the most significant physical variables since they
precisely determine the entire missile trajectory for most of the remaining time of flight
when the aerodynamic forces are defined. The body of the ballistic missile changes
very little under aerodynamic forces and is assumed to be invariant throughout this
thesis. The dynamical system consisting of a ballistic missile model is an open system
due to the loss of mass, the (non-invariant) gravitational forces, and the aerodynamic
influences. The precise forms of physical influences on a real-life ballistic missile
cannot be modelled due to lack of insight. Sensible approximations have to separate
negligible effects from significant effects. The aim of this chapter is to be able to
separate specific dynamics with long-term influences on a ballistic body from those
which may have only short term effects on the missile’s behaviour. This approach may
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provide restrictions and simplifications for following prediction techniques in form
of the dimensionality of the state space and some bounds on the values of the set of
physical parameters. The extraction of the most significant dynamics from the total
dynamics is referred to as filtering and is a pre-requisite for grey-box modelling. Grey-
box modelling is black-box modelling of pre-processed data. The reason for filtering
the dynamics in a state space is because frequently grey-box modelling of dynamical
systems turns out to be more successful than black-box modelling. When the measure-
ments of the dynamics of a ballistic missile are filtered the net dynamics may prove to
show certain trends or a stochasticity which can be mathematically described far more
easily than by modelling the data as it is measured.

The following sections motivate and outline the modelling of real-life ballistic
missiles. Section 3.2 introduces the ideal ballistic missile as a point mass, and in Sec-
tion 3.3 the physics of a three-dimensional extended ballistic body are discussed. The
physical modelling is completed in Section 3.4 with the aerodynamic influences on an
air frame. Section 3.5 introduces an approach to grey-box modelling. The applicability
of grey-box modelling to the sparse time series is discussed.

3.2 The ballistic missile as a point mass

The ideal model of a ballistic body is a point mass with an initial velocity and which
is accelerated by a constant gravitational force. Aerodynamic interactions between
an air-frame and the atmosphere are ignored in the ideal case. The trajectory of such
a point mass is a parabola with a well known parameterisation and precise impact
coordinates (Hestenes, 1986).

These ideal properties do not apply in practice; the gravitation changes under
coordinate transformations of a point mass with respect to the earth, real live
missiles are self-propelling bodies which burn fuel and therefore change their mass,
non-rotation invariance of missile bodies lead to the change of their aerodynamic
properties with respect to rotations of the air-frame about the relative wind vector.
The air-frame’s aerodynamics generally change with respect to the magnitude of the
relative wind velocity. The earth is not an inertial system, and the air density changes
with height. In summary, the modelling of rockets with realistic flight properties is
very complex due to the vast amount of physical influences. The following section
summarizes necessary definitions of arbitrary particle dynamics, because some
literature on aircraft dynamics (Anonymous 1982; Eichblatt, E.J., Jr 1989) seem to
mix up certain physical concepts which may lead to misleading interpretations of
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the corresponding variables etc. A more detailed treatment may be found in Landau
and Lifshitz (1960), Amold (1978), Hestenes (1986), Scheck (1990), Thornton and

Marion (1995)

A rigid displacement is an a priori hypothesized physical transformation between
pair-wise different reference bodies, which enables any observer to compare arbitrary
length measures with each other and must not be mistaken for a displacement of a
rigid body. Relations between physical particles at a time ¢ are described by a position
vector r with respect to a pre-specified reference body or frame of reference. The set
of all r, {r}, represents an Euclidean space, i.e., the distance between every pair of
points in the space is invariant. It has been proved (Arnold, 1978; Hestenes, 1986)
that all isometric (|| o ||3) displacements are so called rigid displacements, which are
generated by the continuous Euclidean group consisting of just a translation and a
rotation. A rigid body is defined to be a set of point masses, whereby any norm
of vector differences between these coordinates are constant for all time. The rigid
displacement for a coordinate r at time # in the un-primed frame of reference leads to
a change of the coordinate vector which is related the primed frame of reference such

that
r=R'r+rg (3.1)

The velocity and acceleration of any point in either coordinate systems is thus trans-

&

Figure 3.1: The primed frame of reference is supposed to be fixed with respect to a rigid body.
The figure shows the case where the primed coordinate system is rotated about the e;-axis of

the un-primed frame of reference.
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formed according to

i = R +R 0 +¥ (3.2)
= R/ (o' xr' +¥) +¥o
i = R +2R ¥+ R i+ (3.3)

= R/ (¥ 420 xi' +0' x (0 x¥) + 0" x 1) + ¥,

whereby R/, := o’ x r' is the velocity of a particle at position r’ due to the rotation
about the origin of the primed frame, and o' is the rotarional velocity and not the
angular velocity. The distinction between either definitions is very significant since the
term angular velocity may suggest an angular momentum conservation which would
imply that the vector @’ were always constant over time. This is not true as it is known
that @’ itself may precess about the angular momentum. An inertial frame preserves

the form of Newton’s law:
mit = f{, (3B.4)

or equivalently, the acceleration of a free particle is ¥ = 0. Note, that each any mechani-
cal formalism requires an inertial frame of reference which fulfils the above conditions.
To prove this substitute the RHS of Equ. 3.4 into Equ. 3.4 and rearrange the result such

that
mi! = R/, [o] = £,,.

Which concludes the proof. All forces in [e] are called fictitious forces to distinguish
them from the real (field) force f' = R’ It However, due to their physical significance
most terms in Eq. (3.4) have specific names. The inertial force of centre of mass is
given by mfi, the inertial force of rotation is defined as m@' x r/, the coriolis force is
given by —2me’ x ¥, and depending on whether the sign is positive or negative, the
expression =mw’ x (@' x r') is called the centripetal or centrifugal force respectively.
The principle of centre-of-mass motion proves that arbitrary external forces applied to
an (in)finite number of particles act as if the sum of all external forces applies to the
sum of all masses concentrated at the centre of mass (CM) of all those particles. This
principle applies in all cases, which means that there does not hold any constraints such
as constant distances between particles. The reference frames are therefore selected
such that the origin is found in the centre of mass rather the centre of gravity. The
difference vector may be in most cases negligible, but it becomes crucial in the case of
celestial mechanics or the mechanics of satellites, where a difference vector between

the centre of gravity and the centre of mass leads to a non-negligible torque about the
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centre of mass inside the body which effects the rotational motion. The descriptive
variables of a centre of mass bodies, are for translational motions the mass Y ;m; of
the whole body, the position vector of the centre of mass rem = ¥ jm;r;/(Xim;), its
velocity fcy, the momentum p = mitcyy, the kinetic translational energy Ey, = p2/(2m)
and the relation between change of momentum and all applied forces Y); f; for constant
mass is given by Newton’s law p = mi‘cm = Y; fi. For all coordinate systems that have
their origin for all time in the centre of mass (which is only equal to the centre of

gravity for homogeneous gravitational field) it follows immediately that
f=mR, il (3.5)

This equation leads to two essential implications: (i) The transformation of forces
between inertial frame of reference and rotating frame of reference is described by
rotation operators. (ii) Eq. (3.5) is incompatible with the dynamics given in the litera-
ture as for example in Blakelock (1965),Garnell (1980), Anonymous (1982), Eichblatt,
E.J., Jr (1989), Collinson (1996). Each force applied to the centre of mass in the rotated
coordinate system is equal to the back transformed force in coordinates of the inertial
system, i.e. the centre of mass of our rigid body can be treated like a inertial system as
long as the relation between both vector coordinates &, Lis given. Because the centre
of mass is a singular vector, the measurement instrument at point r; outside a body’s
centre of mass mounted on a rigid frame will measure a force, which depends on a
shift about ¥y of the CM due to burning of fuel, that equals to

f:=m; (i"CM+2w’ X By + 0 X (0 x 1)+ 0 x r§+ﬂ(’fli‘o) : (3.6)

This equation is the most general description of a force measurement device mounted
on a ballistic body. In most cases all terms but ', 1'1‘0 are neglected. Equation (3.5) is
essential here because other literature include centrifugal like forces which don’t occur
in this force equation as it has been shown above. Standard literature on flight control
e.g. (Blakelock, 1965; Garnell, 1980; Anonymous, 1982; Eichblatt, E.J., Jr, 1989;
Collinson, 1996) employs the identity

dV=V+uo' xV (3.7)

which is mathematically correct if there is a distinction between the changing length
of the velocity vector and the rotation of its unit vector fixed with missile’s co-
ordinate system. Accelerometers mounted on an air-frame of a rocket are today either
spring masses, piezo-electrics, or force-balance accelerometers which measure f' of
Equ. (3.6). Note that the centrifugal force there has nothing to do with @’ x V in
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Equ. (3.7). For centre of mass dynamics no centrifugal forces exist. Equation (3.7)
presumably stems from the case when accelerations were measured by estimation of
rotation and change of air velocity displayed by a mercury column of a Pitot tube.
Modern accelerometers are not equipped to indicate differences between fictitious and
field forces.

It has just been demonstrated that the velocity equation (3.7) for a ballistic missile
is wrong in the context of modern acceleration measurements. The inconsistency stems
from the simple fact that velocities are concepts which are preserved under transforma-
tions between inertial frames of references. Velocity measurements on an air-frame are
carried out through the Pitot tube which measures the air-flow in a non-inertial frame
of reference. As it is evident from the discussion above acceleration measurements
through change of velocity are not equal to acceleration measurements by force estima-
tions. This important distinction has not been appreciated in the literature (Blakelock,
1965; Garnell, 1980; Anonymous, 1982; Eichblatt, E.J., Jr, 1989; Collinson, 1996).

The important result here is, that if all forces on a centre-of-mass body are known,
the goal of modelling the trajectory of a ballistic missile has been accomplished. The
problem, however, is that these forces consist of a non-homogeneous gravitational
force which may apply a torque to the body, and, mainly, aerodynamical forces which
depend on the position of an air-frame towards the relative wind direction. This means,
that it is crucial to study the complete dynamics of a ballistic body before all the forces
can be computed. There are generally four different kind of forces which may influence
the trajectory of a missile. (i) The gravitational force, (ii) the propulsion force by
expelling exhaust along its path, (iii) aerodynamical forces, (iv) and forces due to an
impact on an object. After the proper formulation of centre-of-mass dynamics has been
established, some reasonable assumptions about the forces on the ballistic body have
to be implied, in order to keep the class of possible models as simple as possible and
at the same time as realistic as possible.

The airframe of the rocket without the actual fuel load can be treated as a rigid
body, i.e. forces that may bend, twist, etc. the body are neglected. The centre of
gravity is assumed to coincide with the centre of mass which is not the case for the
non-uniform gravitational fields like that of the earth. The dimensions of a rocket are
so small in comparison to the inhomogeneity of the field that the gravitational force
at the centre of gravity, which would normally lead to a torque about the centre of
mass, can be neglected. The force then at the centre of mass leads to a force f(rcyr) =
—Gmrey /|repm|?. This means for all rey € R? there exists an a € R3 such that for
each r € [rcy — a,rcy + a] the force f(r) = f(rcy) + Orpy, f(xem) (r —repr) + - has
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negligible terms higher than order zero, which is certainly true fora < rey. Allr €
[rcym — a,rey + a] then fulfil ¥ ~ const. and the torque becomes

= 2 r; — X) X (m;const.) (Zm,(r,——x)) x const. =0 (3.8)

whereby ¥;m;(r; — x) = 0 due to the centre of mass condition. Few additional as-
sumptions have been applied in this equation. The gravitational acceleration g is
independent of the height which thus leads to the simplification, that the gravitational
acceleration is assumed to be a homogeneous one, i.e., the acceleration vectors g are
parallel with the same length everywhere. The frame of reference, or the observer, is
assumed to be in an inertial frame, i.e., any rotations of the earth about itself or the sun
are omitted.

After the dynamics of point masses have been considered in detail, it becomes
clear why it is essential to distinguish between centre-of-mass and centre-of-gravity
dynamics. The physical concept of velocity does not trivially transform inside a
ballistic missile’s frame of reference. It is also clear following the last section that
the centre-of-mass dynamics are not sufficient for understanding a missiles trajectory
due to the complicated aerodynamic influences. In addition rotational motions have
not been considered yet. The dynamics of many-particle-body dynamics have to be
derived in the following section. The significance of the fact that a ballistic missile is
made up of many particles becomes clear during the forthcoming sections.

3.3 The many particle body of a ballistic missile

The descriptive variables of a many particle bodies for rotational motions about their
centre of mass are, the inertia tensor J, the attitude R, the rotational velocity ®, the
angular momentum L = Jw, the kinetic rotational energy E.o, = (1/2)w- L, and the
torque I' = d;LL. The inertia tensor of the whole body is defined by

Jij= /d3rpm(r) {rzﬁij—rirj} (3.9)

with i, j = 1,2, 3 and p,,(r)d>r mass of particle at position r relatively to the centre of
mass rem and has the following properties to be linear with respect to Py, (e), i.e. the
inertia tensor of arbitrary rigid bodies may be component-wise built up by taking the
sum of the components’ inertia tensors with respect to one common coordinate system,
and a system of principle axes exist for all tensors. This follows immediately from the
symmetry of these matrices. The orthogonal transformation is of the type R € SO(3)
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(special orthogonal group). The eigenvalues of the tensor are the principle moments
of inertia. The relation between changes of the angular momentum and all applied

torques I is described by Euler’s law as

L=J0+oxJo=Yrxf (3.10)

The centre-of-mass motion principle in combination with the properties of an
inertial frame of reference as well as the rotational motions about the centre of mass
leads to the conclusions, that any centre of mass trajectory of any body can completely
be described by any suitable inertial frame of reference micy = f, whereby rcy are
coordinates of the cenire of mass related to an inertial reference body. Any forces
applied to any points of the body lead to dynamics of its centre of mass as if the
resultant force would have been applied directly to the centre of mass. This is in fact
particularly important for the calculations of gravitation, propulsion, and aerodynamic
forces which generally do not act at the centre of mass. The interrelations between
particles of a well defined set of particles may lead to rotations about the centre of
mass which is defined through Euler’s equation. Newton’s law mX = f and Euler’s
equation L = I together are the most general dynamics of any system of point masses
and do not incorporate any simplifications. Since Newton’s law can be applied directly
to a ballistic missile as long as the accelerations are given, Euler’s equation has to
be established to provide a complete mathematical formulation of a ballistic missile.
In order to keep the problem as simple as possible, the rotational dynamics of the
missile’s body part which remains unchanged over the whole period of flight (rigid
body) is treated first and the influence of burning fuel is incorporated afterwards. For
this purpose consider the following schematic Figure 3.2.

The principal aim is to compute the entire inertia tensor of the entire body. The
symmetry of the rigid body already indicates that the inertia tensor has three eigenval-
ues, the principle moments of inertia, of which two are identical in the ideal case but in
reality of very similar magnitude. The inertia tensor could be calculated by taking the
volume integral over the whole body as in Eq. (3.9) which is generally complicated.
However, as it is evident from Figure 3.2 the ballistic missile given here is highly
symmetric and can be broken up into simple geometric objects, consisting of a cone,
a cropped cone, a hollow cylinder, triangles and squares for the fins. Unfortunately
this simplistic model of a ballistic missile is incomplete, since the engine, fuel tanks,
and pay load are missing. Because no reliable information about these components is
publically available, it is hoped that the simple model leads to a inertia tensor which is

not too far from the tensor components of a real missile. The inertia tensor components
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1. Top cone: Volume= (1/3)nr*h = 0.0272meter’, CM= (1/4)h =
0.1175 meter, %, = %, = (1/20)pymrth + (1/30)pymr?h’® =
0.7042, Je, = (1/10)ppmr*h = 0.3841kg meter?

2. Cropped cone: Volume= (1/3)nth(r; — r1)? — mth(ry — r1)ry +nhi? =
0.9475 meter’, CM= h(2r1/3 + r2/3)/(r1 + 12), Joy = Jo, =
(1/30)pumh (677 + 3riry + 13) + (1/20)pumh(r} + riry + rir2 +
rir3 + 1) = 662.6097kg-meter’ %, = (1/10)pymh(rf 4 riry + rirk +
r173 +75) = 75.8523kg-meter?

3. Hollow tube: Volume= 7h(r3 — (r; — 85)?) = 0.3079 meter®, CM=
(1/2)h =, Jey = Je, = (1/4)pumh(r5 — (r2 — 85)*) + (1/12)paemh® (15 —
(r2— 85)?) = 1.8741-10°kg meter? %, = (1/2)ppmh(r§ — (2 — 85)*) =
75.1837kg meter?

4. Fins: Volume= 241,85+ 4hpl,05 = 0.0289, Jo; = Je, = (1/3)pflp8fh?,+
(1/6)pslpShp + 1/6p 158 chp + 20 f1p8hp((1p/2 + 12)* + (hp/2)?) +
1/120 64830y + 1/6p308shy + 1/30487h + p7h8shyr5) = 3.8703 -
10°kg meter” Je; = (1/3)ps387hp + 1/3p51p8%hy + 40 plp8 57y (1p/2 +
r2)? +1/3p5138 phy+1/60 1,83 +20 41,8 ¢hy73) = 15.9111kg meter”

5. Engine: Volume= 7(r; — 85)*h = 0.5352meter’, CM= (1/2)h =
0.44meter, Je, = Je, = 1/4pymh(ra — 8s)* + 1/12ppymh?(ry — 85)% =
89.2666kg meter?, %, = (1/2)pumh(rz — 85)* = 93.0369kg meter>

Table 3.1: All physical quantities employ the SI unit system. h is the height of a body, r = ry

and ry are radii of the cone and the smaller and larger radii of the cropped cone, respectively.
The centre of mass of the empty missile is at 5.4704 meter from the base of the body of Fig. 3.2.

given in Table 3.1 have been computed by hand, but most can be found elsewhere (e.g.
(Hestenes, 1986)). The calculus for the inertia tensors is rather straightforward by
choosing an affine coordinate system. Steiner’s theorem (Scheck, 1990) then leads to
the inertia tensor for any body with shifted origin. The only non-symmetric bodies
with respect to the missile’s symmetry axis are the four fins. However, the following
Theorem 3.3.1 (Hestenes, 1986; Scheck, 1990) demonstrates by employing Steiner’s
theorem how the non-trivial inertia tensor contributions enter the common inertia ten-

sor of all four fins together.

THEOREM 3.3.1 A body may be composed out of four identical bodies which have
the inertia tensor J with respect to the origin of one arbitrary coordinate system with
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Figure 3.2: The diagram shows a homogeneous mass distribution with py = 853kg/meter’.
The mass of the body (unfueled) is m = 1.781-103kg, the mass of the fuel is m = 5.699 - 10%kg,
i.e., the mass of the ballistic missile at time of launch is given by m = 7.480 - 103kg. The
hollow part which is reserved for fuel is highlighted. The measures shown are utilized for
calculating the entire mass, centre of mass, and centre of pressure of the ballistic missile. The
small solid circles show the origin in which the moments of inertia of the missile’s sub-bodies
are calculated. The shown centre of mass is only valid for the empty missile, whereas the centre
of pressure shown here is the mean centre of pressure which is proved in Example 3.4.3 to vary
only by about 0.32 meters. The dimensions of the missile have been inspired by (Systems, 1985;
Forden, 1997).
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a fixed axis through the origin, and which are shifted by a radius vector r orthogonal
to the axis, and afterwards rotated about of the angles 0,%, T, 32’3 respectively. The

compound body then is characterized by the eigenvalues of the inertia tensor
h=5=2L+1Ly); 5=4L, (3.11)

Proof: The procedure described above is equal to shift all four bodies about the com-

mon vector in the xz-plane

[ rs
a=| 0 |. (3.12)

!

and together with Steiner’s theorem the inertia tensor becomes

Ly = I +MZ (3.13)
Ly = I, +M(r;+z) (3.14)
L, = I,+Mr (3.15)
Ly = I (3.16)
L, = IL,—Mrgz (3.17)
L, = I, (3.18)

whereby 9’ indicates the inertia tensor of the body components calculated above, and
J is the new tensor with respect to the transformed coordinates.
When a axial-symmetric rigid body is given with rigid sub-bodies for y = 0,5, m, 32-72

the Inertia tensors become

Le Ly I
=0 : | Ly Ly I, (3.19)
Ly Ly I
m Iyy ‘Ixy I)’Z
V=3 ~Ly Ly I (3.20)
Iyz “Ixz Izz

v=n : | Ly, L, -I, (3.21)

(3.22)
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The inertia tensor for the whole body can simply be obtained by the sum of the inertia
tensors of its sub-bodies, when the inertia tensors are all given in one common coordi-
nate system. This follows due to the fact of linearity of inertia tensors with respect to

mass distributions. Hence

2L + L)
Togmz = 2L+ 1) (3.23)
Al
Lozmy
- Lo s e (3.24)
Lr0.g.m 3
with
Lo, m3 = 2L+ 2L+ 2M(rF +223)
and
L0538 = 4oy +4Mr;
|

This theorem demonstrates that the ballistic missile’s inertia tensor reflects the ge-
ometric symmetry about the e}-axis, when the fins are identical and symmetrically
mounted on the air frame such that the conditions of the theorem are fulfilled. This
symmetry property is in particular significant for the spin stabilized control of the
missile. Breaking the symmetry due to some faulty missile construction will lead to
unpredictable behaviour. (This problem is treated in more detail later in this chapter.)
However, since there is no information available about the asymmetry of a real missile,
perfect symmetry is assumed in the later sections when the dynamics of a missile are
employed for prediction purposes. The total inertia tensor of a missile, as it is shown
in Figure 3.2 and as the components are given in Table 3.1, is now defined as the sum
of the inertia tensors of all components. The inertia tensor of the missile thus becomes

in the primed (body fixed) coordinate system

Je = 3.5830-10*kgmeter’, (3.25)
Je, = 3.5830 - 10*kgmeter?, (3.26)
e = 260.3681kgmeter?. (3.27)

These principle moments of inertia are employed throughout the thesis. The main
limitation is that the ballistic missile also carries fuel which strongly effects the inertia
tensor of the missile. As has been mentioned before, most of the fuel is burnt during
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the initial boost phase. The minor residue of the fuel is neglected here. As it has
been argued before the boost phase is of no particular significance for the prediction
of the ballistic missile’s trajectory since the duration of the boost phase is only about
1/6 — 1/4th of the entire time of flight.

During the boost phase the missile is accelerated to a certain initial velocity.
The boost takes only few seconds and is accomplished when velocity and spin, reach
their initial and stationary magnitude. The ideal rocket has during this time period
a stationary flow of fuel that leaves the boundaries of the air frame with constant

velocity and has a constant burning rate.

Disturbances as well as aerodynamic forces have to be compensated for. The
measured acceleration relative to the rocket has a certain pre-programmed value, i.e.,
the drag can be compensated for by applying an additional thrust such that the overall
acceleration reaches the nominal value. The translation of a body within the time of
ignition and maximum acceleration can be neglected. The force on a self-propelling
body is given by the following theorem

THEOREM 3.3.2 (Scheck (1990)) The temporal overall change of a rigid body’s
momentum (m with its own velocity v) that has an impact with an infinitesimal small

body of velocity u is equal to the external force f plus the force mu.

d
% (mv) =f+rm (3.28)

The proof is rather straightforward (see e.g. (Hestenes, 1986)). The conservation
of momentum, which follows immediately from Newtons law for closed systems

C—‘f;(mv) = 0, guarantees that

COROLLARY 3.3.3 A rigid body with velocity tcy and rotational velocity ® that
decays into rigid sub-bodies, that do not interact during the decay, with the difference
vector a; between the centre of gravity of the new body i and of the former common
one, releases these sub-bodies with the rotational velocity ® each and the translational

V€lOCity I..CMi =Tcy+ X a;.

Proof: The general tangential velocity of each point P in rigid body has a transla-
tional ¥cy as well as a rotational component ® X ¢y, and the velocity of point P at
a particular time t is ¥ = Y'¢y + O X ey, Which is equivalent with any other choice of
[frame of reference, i.e., ¥ = ¥cy + o' x r'. Both coordinate systems are interrelated by
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r =r'+a, hence

it = ten+ox(a+r) (3:29)
= Feyt+oxatoxr (3.30)
= rCM+I.‘CM,' + W X a; (331)

The definition of a rigid body ||a|| = const. means that tcy, = ® x a; and Equation-
5 (3.30) & (3.31) lead therefore to the identity ' = ®. Each body fixed frame of

reference fulfils the set of relations:

oy = l.'CMi-f—(DXH (332)
0 = o (3.33)

In the moment of disconnecting n sub-elements of rigid bodies contained in the former
common rigid body the length of the vector a; can be altered freely due to the lack
of the former constraint of constant distance. When a(i) are the centres of gravity of
these particular rigid bodies then their angular velocities must be zero. The former
tangential velocities of the new centres of gravity remain preserved as linear velocities
of a magnitude equal to ||® X a;]|. u
Note that the last proof does not claim that ®; = const. will be the same for all sub-
bodies at z > time of decay. The initial state of decay defines new angular momenta L;
which then stay constant. The general case for an open system with internal as well as

external forces without torques leads to the theorem

THEOREM 3.3.4 Any closed set of n rigid sub-bodies with mass m; (i=1,...,n)
whose centre of mass has momentum p, and rotates about the CM with rotational
velocity w and decays into its parts at time to whereby arbitrary homogeneous forces f;
may apply as well leave then the rigid sub-bodies with the velocity v; = [ difi(t) /m+

fs + 0 X a; and angular momentum L; = J;0

Proof: The homogeneous force was proved to lead to no torque and the rest follows
from the conservation of the angular momentum theorem and corollary 3.3.3. E
The purpose of the last Theorem was to show that Theorem 3.3.2 is strictly only appli-
cable to centre of mass motions. When the missile incorporates rotational motions as
well, Corollary 3.3.3 shows that, depending on the rotation of the missile, an extra ac-
celeration may be gained when mass separates from the missile which is not considered
to be part of the air-frames centre of mass. It is obvious from Figure 3.2 and Figure 3.3
that the exit of the exhaust is far outside the air-frames centre of mass which means that
Eq. (3.28) does not apply to the ballistic missile considered here. However, there does
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not seem to be any attempt in the literature (Eichblatt, E.J., Jr, 1989) to adapt Eq. (3.28)
to the real-life problem given above. The general unmotivated assumption probably is
that the contribution of rotational motion given by the term m X a; is comparatively
small in comparison to the main thrust ud;m. The next corollary shows that a self-
propelling rotating ballistic missile which is suddenly decomposed into arbitrary sub-

bodies does not change its rotational velocity .

COROLLARY 3.3.5 A rotating axis-symmetric body with ||es, whereby € is the
symmetry axis, which decays at time ty into arbitrary rigid sub-bodies, maintains the
rotational velocity for all it sub-bodies at all t > ty. Arbitrary homogeneous forces may

be applied as well.

Proof: This follows from the conservation of angular momentum theorem and corol-
lary 3.3.3. |
Corollary 3.3.5 proves that in the case that fuel is taken evenly from the container
of a slender axis symmetric body (as here) and the thrust vector is parallel to the
line between nozzle and centre of mass, then the rotational velocity does not change.
However, mass is not just removed from the fuel tank. After some fuel has been
taken from the tank the vibrational energy of the body and pressure inside the fuel
is generally driving the fuel back into an equilibrium of density distribution where the
fuel inside the tank seeks an energetic minimum. It is assumed here that there is a
constant density of fuel in the containers of the rocket, and Euler’s Equ. 3.10 describes
the relation between changes of the angular momentum L with time under the influence
of external torques and the loss of mass as it is the case for all self-propelling machines.
The linearity of the inertia tensor with respect to pge proves that the principal axes of
the inertia tensor in body coordinates are invariant, i.e., the principle axes of the inertia
tensor do not rotate inside the body and the inertia tensor of the fuel is proportional to

the total propellant density. Hence
4L =d, (2 p,-j,-m,-) =T (3.34)
i

whereby i runs over all inertia tensors of the components of a compound (semi)-rigid
body. It is important to note that the coordinate vectors must be the same for all
inertia tensors employed here. In some cases the inertia tensor may not be fixed with
the air-frames coordinate system and it may then become necessary to transform the
computed inertia tensor back into the body’s system by employing a required rotation
about certain angles and perform a shift by employing Steiner’s theorem. Because of
the symmetry assumption of the fuel distribution inside the tanks with respect to the
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entire body’s symmetry axis these difficulties do not arise in the model employed here.

Euler’s law becomes
L = Z(Qdiﬂ)+piji®+pidzji(0)
i
= Z(pijinrJi(berx]im) (3.35)
T

The identity pd;jo = @ x Jm has been derived elsewhere, e.g. in (Hestenes, 1986;
Scheck, 1990).

The wording above may seem to be rather verbose, but was necessary for the
following modelling of rotating semi-rigid bodies. Disturbances in the axis-symmetry
of a body may easily lead to changes in the velocity and rotational velocity of a ‘rest
body’ when a certain amount of fuel has been burnt. Although the precise form of L
is not explicitly required for the calculations of the sustain phase considered later but
serves as a completion of the insufficient theory provided in the standard literature on
ballistic missiles (Blakelock 1965; Garnell 1980; Anonymous 1982; Eichblatt, E.J., Jr
1989; Collinson 1996).

It has been shown that rotational and translational motions can only be treated
as a rigid body in case of an open system (semi-rigid body) when certain constraints
are fulfilled. It is assumed that Corollary 3.3.5 represents the rotations of the body
sufficiently such that Euler’s law becomes, in its principle axis components,

@ = sz—.73w w3 + f’hr (1) o fae ep(t) + pjjl (3.36)
|
@y = ’73;/1(0 ] +fhrz(f)+J; (t)+p]]2 (3.37)
) h—% PJ3 L'ge
_ pjs . Tae 3.38
®2 B T, 0

where 7 = };p;iji and j; is the inertia tensor of the fuel content divided by the fuel
density p. The force f;; is the net thrust of the rocket—including the control force—and
the corresponding scalar r;(¢) is the distance between the centre of mass CM(t) of the
remaining body at time ¢ and the nozzle where the thrust is generated. f, is the sum
of all aerodynamical forces applied at the centre-of-pressure (CP) which has distance
rep(t) from the centre of mass. The term 217';12—0)10)2 vanishes in Equ. 3.38 due to the
axis-symmetry of the body (J; = %). It has been shown above that a axis-symmetric
body with four identical fins are mounted on the body, such that their centre of mass

is on the vertex of a square, remains axis symmetric.
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The translational dynamics of the air-frame plus remaining fuel, not the centre of

mass, are defined by
v =—m(t)e/m(t) +fo/m(t) +foc/m(z) (3.39)

which is just the consequence of Theorem 3.3.2. The control force is hidden in
m(t)e/m(t) where the mass rate m1 as well as the direction of e (but not ||e||) may be

varied.

After the general dynamics of a self-propelling ballistic missile have been derived,
the control during boost phase by simplified inertial control is introduced. The ballis-
tic missile is generally equipped with accelerometers which measure the longitudinal
and rotational accelerations of its airframe in its body coordinate system in order to
calculate the actual (angular) velocities and (angular) coordinates by twofold temporal
integration. Feedback control is always based on the following general algorithm.

1. Define a desired output of a plant.

2. Measure the actual output of the plant and compute the difference between actual
and the desired output, i.e. the residual (error).

3. Employ adjustable physical parameters to drive the plant towards the desired

output by minimizing the error.

The missile considered here can only be steered by thrust vector control, i.e., the
direction and magnitude of the thrust.

When the accelerometer measurements are error free, small deviations from the desired
trajectory can easily be compensated for. Obviously, real-life systems are never error-
free, but it is generally assumed that the deviations are small enough (Eichblatt, E.J.,
Jr, 1989) such that the control forces can be linearized about their operation point.
When the inertial guidance system has a malfunction the body cannot be controlled.
General forces and torques in an equilibrium consist of the thrust, gravitation, and
aerodynamics. The relative wind velocity to the rocket consists of a velocity compo-
nent parallel to the symmetry axis of the rocket which leads to a drag on the air frame
and an orthogonal velocity component leading to a side drift, or lift, as well as a torque
about the €/, €}-axes, as long as the centre of pressure does not coincide with the centre
of mass, which is assumed here. The thrust is applied with a certain distance vector
from the centre of mass, i.e., each deflection of thrust applies a continuous torque on
the missile. This problem could be named as the side wind control force dilemma
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Figure 3.3: Inertial and primed, body fixed, frame of reference as well as the forces on a
ballistic missile are being shown. Small disturbances of the nominal forces are indicated by
a 8. The centre of mass (CM) and the centre of pressure (CP) are shown as well. Due to the
physical arguments above, aerodynamic, gravitational, and thrust forces always apply to the
centre of mass. The distances between CM and CP, between CM and centre of gravity, and
between CM and nozzle are only relevant for the torques which also apply to the body frame.

since it may be wished to separate torques from translational forces. The solution to
this problem may be accomplished by steering the rocket at a certain angle into the
wind whilst keeping the angular momentum zero by producing a composite control
torque that compensates for the torque of the side wind.

The force equation in combination with the desired flight path and torque com-

pensation is

!

"I 3 ) ! !
mi®+md. = Fp+F)+FD (1—r/re) + Foui, (3.40)
+6%A + Si:"sw + Si?th + 81?07

whereby the dynamics along the desired trajectory are defined by

!

mit® = B+ ¥ + F, (1 r1/rep) + FL (34D
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and the linearized net-forces outside the equilibrium are given by
mB, = 8, + 8+ 85, +8f,

with r,, the distance between the centre of mass and the centre of pressure and 7; the
distance between the centre of mass and the applied thrust vector. In order to ensure
equilibrium, there is only one freely available parameter F ;2 which can be chosen
to get the pre-determined acceleration 0. The first order approximation of errors
in Eq. (3.42) is only justified when the dynamical system stays close enough to an
equilibrium, as in this case 0 is the desired first order perturbative acceleration, i.e.,
m8; =2 5;1, = 0 for all time, and all higher order terms of the Taylor series (3.40) are
negligible. The linearized net force and torque equations may therefore be controlled

by the following:
Opa + O =0 = m(t)Sin + bd8;n +ky (Slr” - 8;%) (3.42)
Spow +8pe =0 = m(t)Ss +badi + kg ( - 6;‘1) - ’j_fsgl - %’-631 (3.43)
Sronrep +Sperey = I8, +Babo, +Ka (8, — 85, ) — baridpe (3.44)

kg (5;” - s;ew)

with by, By, kq, K; > O suitable parameter values for the control law. The axial com-
ponents are due to the (assumed) rotational symmetry of the thrust along the symme-
try axis decoupled from the normal force and their related torques. The solution of
this equation is well known and leads to the associated design criterion of the damp-
ing parameter (b2/4m*) and the characteristic angular frequency \/W for under-
damping (b3 /4m* < ka/m), critical damping (b%/4m? = k;/m), and over-damping
(blzi /4m2 > kg/m) in Eq. (3.42). The combinations of opposite signs in the second
force —%48:)1 — If—l" g . in Eq. (3.43) and the momentum equation (3.44) imply that
there will be forces that act against each other. The forces which are proportional
to the velocities in Eq. (3.43) are meant to damp the system which is sought to be
driven back into a nominal equilibrium by the other forces which is proportional to
the difference coordinate vector of actual and nominal coordinates. A problem occurs
when one set of forces in Eq. (3.42) seeks to stabilize one equilibrium and the other set
of forces in Eq. (3.43) seeks to stabilize the other. To ensure that these dynamics work

together, the following has to be presumed:

1. Corrections of the spatial coordinates are the prime concern and have to be given

preference over the error angle correction.
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2. The set of forces for error angle correction as well as for error coordinate

correction have a resonance frequency, here wg, := \/kd/m—bfi/ (4m) and

Wg, = \/ Ki/J—B3%/(47), where a particular system can take up the utmost
energy from an outside force. The aim is to decouple both dynamics, such that
both may fulfil their task of stabilizing their equilibrium without transmitting
energy from one system to another like a resonator, i.e., Wg, # O, .

3. The characteristic time scale of the force Ty and momentum dynamics 1,, are
related to each other by 17 < Ty, i.e., 8{9 X (At) > S'r L (Ar).

4. By choosing —delrol = [ ’ dthS:)1 [rep+ Kd%l rep 2 0 such that —bTCPSi.sw —
krep ( —— S;SW) = 82)01 ~ const. for At < Ty, then both dynamics are virtually
decoupled and may be stabilized separately.

However, the assumptions and approximations given above may be true for simple
ballistic missile models, the verification or falsification of these models can only be
established by obtaining real data. As there is no publically available information, the
validity of the model above remains questionable. The most important issue for the
following work is, that any kind of general model during the boost phase does not
effect the dynamical model during the sustain and terminal phase of the body, because
the control of the flight path is restricted to the boost phase and the main trajectory is
the one of an uncontrolled, rigid, ballistic body. All equations discussed above simplify

in this case to pure rigid motions of the remaining body (air-frame).

. h-% i
M = wp3 + ~Zr, 3.45
1 g @20 e (3.45)
) B="h 2
Dy = w31 + %, 3.46
2 % 3W1 % cp ( )
. jl — .72 I—‘ae
w3 = Wy + — 3.47)
3 5 2ot (
V= fg,/m+fae/m (3.48)

The terminal phase is defined as the final seconds of flight before the impact, where a
dedicated algorithm may correct the rocket’s position by fusing camera data with the
calculated position. The body here is purely an inertial guidance controlled system,
which is running out of fuel during the boost phase, i.e., there is no difference between

sustain and terminal phase of the considered ballistic missiles.
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3.3.1 Desired Flight path during boost phase

The desired flight path during the boost phase is, when the aerodynamical drag is

neglected and the gravitational force is approximately homogeneous, i.e.,
v=—m(t)e/m(t)+g (3.49)

The exhaust velocity e is assumed to be constant, the velocity of the missile’s body,
after burn time ¢ and initial velocity v(¢ = 0) = 0 is then

v(t) = —elog (m(t)/m(0)) + gr. (3.50)
The spatial coordinate vector of the missile after burn time ¢ is
r(t) —r(0) = —(u/m) (m(t) logm(t) /m(0) — m(t) +m(0)) + (1/2)gt>.  (3.51)

whereby the identity of [dxlogx = xlogx —x with x = #ur/m(0) and therefore
dx/dt = m/m(0) = const. has been utilized to compute [}log(sit/m(0))dt =
m(0)/m flm(t)/ m(0) dxlogx. Correcting forces on the boost trajectory of a missile
require extra fuel which obviously leads to a loss of mass in addition to the amount
which would be needed when no correcting steering movements are applied. The
schedule for this problem may be as follows: determine the time of boost #0505 With
a constant nominal burning rate with the initial angle of m/4 and determine the
accelerations, velocities along its trajectory. Compare then the actual acceleration
with the nominal one and change the thrust accordingly. The nominal acceleration
itself 1s dependent on the space coordinate, as the nominal trajectory of the missile
during the sustain phase changes with time. The control algorithm requires changing
control laws as time progresses in order to successfully drive the missile into its target.

If we choose UDMH as fuel and Nitrogen tetroxide as oxidiser for which
the typical exhaust velocity, is u = 2686meters/second, for the boost dura-
tion Of 60sec and for a required final speed of V(tpposr) = 6.5Mach = 6.5 -
340.9meters/second = 2215.9meters/second, and taking the gravitational accelera-
tion g = 9.81meters/second?, then Eq. 3.50 justifies that the final ratio of the masses
has to be m(tpees ) /m(0) = 0.6 when the boost angle is /4. To get an estimate of the
initial velocity vp/+/2, the maximal altitude and the time of flight, the ideal case of
an boost angle of /4 with uniform gravitational force and no aerodynamic force, i.e.
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equation X = g and its integrals, lead to the ballistic parameters

2
Range(n/4,6.5M) = %ggzsoo.Skm, (3.52)
2
Height(n/4,6.5M) = :—§z125.13km, (3.53)
thign ()4, 6.5M) = \/E?zsmin,w.ztssecond. (3.54)

The atmosphere has an altitude of ~ 122km, i.e., the body can never really leave the
atmosphere due to the longest range of this body which is about 500km. When the body
would leave the atmosphere for a certain time interval, certain physical parameters,
Ji,m could be adjusted, because apart from the assumed homogeneous gravity there
does not exist any other disturbance and the ballistic missile behaves as a free spinning
top moving along a parabola segment.

In this section some typical physical parameters have been roughly estimated to
support some examples which will be used during following chapters. The derivation
of the ballistic missile’s centre-of-mass dynamics and rotational dynamics (Euler’s
law) have been presented. The following section completes the derivation of a ballistic

missiles dynamics by specifying the aerodynamic forces on an air-frame.

3.4 The aerodynamic flow around a slender body

The aerodynamic airflow around a slender body is generally far too complicated for an
explicit description. The net aerodynamic forces and moments on any body are due to
shear stress distributions and pressure distributions over the whole body, whereby for
dynamical applications of a rigid body purely net forces and net moments applied
to the centre of mass are of interest. A complete parameterization of any airflow
around a rigid body then leads to the set of all possible net forces and net moments
at this particular body. The fundamental relation between static pressure, dynamic
pressure, and the pressure due to the air molecule’s weight in an ideal fluid, i.e., steady
non-turbulent flow of a fluid which is incompressible and non-viscous, is given by

Bernoulli’s equation
Pi+ (1/2)pairvi + Pairgrs; = const. (3.55)
for the flow along the streamline, whereby py; is the air density which is defined by

pair(r3) = pair(o)e_gkr3- (3.56)



CHAPTER 3. BALLISTIC MISSILES 60

The requirements of an incompressible fluid for air are generally not fulfilled. Howev-
er, the incompressibility approximation of air flow over many air frames, in particular
streamlined bodies, is often sufficient. For a constant altitude r3, Bernoulli’s equation

becomes
P+ (1/2)pair(r3s)v* = const. (3.57)

Far ahead and behind the body there is no dynamic pressure and the relation above
states therefore that p(0) = pe(v) + (1/2)pe(r3)v2 whereby the subscript oo indicates
the free-stream of air-flow far ahead of the moving body. The crucial parameters are

thus
1. The magnitude of the free stream velocity, or Mach number
2. The attitude of the body towards the free stream

3. The rotational velocity of the body, because each coordinate r of a three dimen-
sional body has a velocity ® x r which changes its relative velocity towards the

free stream, i.e. the Magnus force.
4. The air-density of the free stream.

Furthermore it will be assumed that the air-flow is not explicitly dependent on other
parameters like thermodynamic variables (e.g. temperature) and not dependent on its
accelerations relatively to any point on the body surface, since there is no aerodynamic
force or torque described in the literature which is explicitly dependent on homoge-
neous fluid accelerations. When inhomogeneities in an air flow propagate along the
body, forces and moments may change as well. This difficulty is avoided when the
change of a body’s relative velocity Av, with a characteristic length /; during the time
interval At = I; /vy is very small in comparison to unity, i.e., 1 >> ljvi /vie). The force
and momentum equations of the aerodynamics incorporate ‘static coefficients’, which
are in reality complex functions with respect to the angle of attack, control-surface
deflection (not included in the considered ballistic missile), aerodynamic roll angle,
and magnitude of velocity (Mach number), as well as ‘dynamic coefficients’ which
are functions depending on the angle of attack rate, control-surface deflection rate (not
modelled), aerodynamic roll angle, body rate, and Mach number. The aerodynamic
momentum and force equations of a fixed shaped body can be completely described by
the undisturbed airflow of magnitude v.., the actual bodies attitude R , and its derivative
Q'( towards the air flow, the air density p, and the bodies invariant surface (Anderson,
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1991; Eichblatt, E.J., Jr, 1989).
fae = Cl (\jfrely érel:\lfrelaerelaVrel)ASpoo (3-58)

This equation describes the most general aerodynamic force on a ballistic rigid body
with reference area As and a non-rotation-invariant surface of a body, i.e., when the
vector field C1(Wyet, Oret, Wrer, Orel, Vrer) is completely determined, the desired transla-
tional dynamical variables x, X may immediately be computed. The validity of C; may
in many cases even be simplified to C; = C;(Wyer, Orer, Vrer)- The torques on a missiles
body are defined (Anderson, 1991; Eichblatt, E.J., Jr, 1989) by

e = C2 (Wrela 6rel 3 Vrel)pooldAS + C3 (Wrela 9relv \i]rela érel ’ Vrel)poolzziAS- (3-59)

with [, the reference length of the body. Because the aerodynamics are still in a state
where hardly any closed solutions for an air frame exist, the missile modeller has to
rely on a sufficient set of data points which have to be interpolated. The assumption in
most cases is that the data points are dense enough inside the parameter space in order
to justify a first order approximation, such that all higher order terms of the Taylor
series are negligible.

Again, the method introduced above can only be utilized if enough data is avail-
able. Throughout this project no data has been accessible which leads to the only
alternative, the modelling of aerodynamic forces on a body with a fixed surface and
its dependence on the aerodynamic parameters Cy, Cy, Poo, T, ', O, W, 0, 0, r, 6. The flow
around a body does not explicitly depend on the position of the body in the atmosphere.
The implicit dependency comes into play by the changing air densities and variable
wind velocities with respect to the earths surface which then leads to different relative
wind velocities of the air flow around the body. The crucial drag and lift coefficient
C4,C; depend on the Mach number of the relative air flow and even the attitude of
the body towards the flow. Assuming that the body is approximately ideally con-
trolled during the boost phase, the complex influences when the system runs through
four different aerodynamic phases—the subsonic flow v., < 1Mach, the transsonic flow
Veo & 1Mach, the supersonic flow v.. > 1Mach, and the hypersonic flow v.. > 5Mach-
can then be omitted, and the only relevant flow during the sustain phase is the high
supersonic and hypersonic flow. Supersonic and hypersonic flow are reasonably well
described in terms of Newtonian impact theory (Anderson, 1991) as

Foeny = Asin® 0p.v2, (3.60)
with Fg. v the normal force applying on the surface of impact, A being the total area

and 0 being the angle between the relative wind velocity and the tangent of the surface.
This theory is not exact but produces results very close to actual measurements.
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Air flow around a body may be represented by arbitrary Eulerian coordinate sys-
tems. Aerodynamic theory usually uses a coordinate system moving with the flow
fields, where the crucial forces on a body are defined above to be the drag and lift. The
airframe cones and the long cylinder appear to be circles of different size for a flow
field orthogonal to the symmetry axis. The fins may be considered as a combination of
flat triangles and rectangles with sharp edges mounted on a circular body. The ballistic
missile considered here is due to the four identical fins axis-symmetric whereby the
fin-deflection is neglected as an influence for the side wind forces. The following
figure shows the stereographic projection which follows from the idealized Newto-
nian impact theory. The aerodynamic influences on the body are further simplified

Figure 3.4: The body’s symmetries are shown as a stereographic projection. The rectangle
denotes the Cy-symmetry due to rotations of ©/2 about the es-axis. The body has no symmetry
to any plane vertically oriented to e3, i.e. , the dashed circle. The solid lines are planes of
reflection parallel to €5 under which the body is invariant if and only if the fin deflection may
be neglected. The body is in this case Dy-symmetric.

by approximating the three dimensional extensions of the body towards the free air
flow by an effective area towards side winds as well as the axial flow. The area of
the body’s front is time invariant and consists of a circle and four identical rectangles.
The effective area from the side is not time invariant and depends on the actual roll
angle between a fin and the side wind. The cones and fins do not lie inside a plane
which is orthogonal to the side wind. However, it is assumed that the simplification
of the air frame as a convex surface with the characteristic drag/lift coefficient of each
component approximate the aerodynamic properties of a real missile sufficiently well.
The figure serves as an illustration of how the effective area of a ballistic body changes
under rotation of the missile about the axis of roll symmetry. The effective area inside
Figure 3.5 is the projection of the 3-dimensional body onto a 2-dimensional plane. The
next theorem establishes the relationship between the angle y and the effective area as

well as the centre of pressure.

THEOREM 3.4.1 Four identical fins are mounted on a cylindrical tube with outer
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side wind

Figure 3.5: This figure shows a cross-section of the ballistic body perpendicular to the axis of
symmetry. It may illustrate how the formation of the four fins contributes to the effective area
of the whole body. Note that only the fin with the smaller angle 0 < \y < 1t/4 contributes to the
effective area, the other fin is just inside the air shadow or in front of it.

radius R. Each fin is made of a triangle of base length b and height | and a rectangle of
length L and height 1. All fins are radial symmetric with respect to the tubes symmetry
axis, and have the angular difference of T/2 between neighboured fins. The effective

area of the combined body towards the side wind is

Agp=Ag+cd+2dL (3.61)
and the centre of pressure
rop = A [AL2 4+ ((1/3)c+ L) cd+ z4Aq — 1A , (3.62)
with
Xep = Yep = 0, (3.63)

whereby Ay is the area of the slender body and 75 the centre of pressure of the slender
body and

¢ = b+bR/I—bR/(Icosv) (3.64)
d = lIcosy—R(l—cosy) (3.65)

with y € [-1t/4,1/4).

Proof: Consider r = R(1 — cos V) the effective area of each triangle is Ay = %cd. Note
that ¢ follows immediately from calculating tano. for the bases b and c—d is given by
the relation between d, r, and lcos\y. The common effective are is then Az = 2(Ami+
Arec) +Ag = cd + 2Ld + Ay. The centre of pressure is therefore Ay re, = 2ZppcArec +
2(zwi + L)Api + 20Ag With 2, = L/2 and z,,; = (1/3)c. x,, and y., are automatically
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given by the axis’ symmetry. ]
After the geometric properties of the rotating body have been found the normal (side
wind) force and the axial force for all ballistic missile components can be computed.

THEOREM 3.4.2 1. A circular cone has the axial force f; = po(v2,;)omrs sin® oL
2. A cropped circular cone has the axial force f = pe(V2))qmi(r3 — 13) sin® oL,

3. Four fins with triangles of angle o lead to the axial force f, =

4. The normal force on a cone is f, = (2/3)Pw(V2,)nTR.
5. The normal force on a cropped cone is f,, = (2/3)Pes(VZ,)uTt(r2 — r1)h.

6. The normal force on a cylinder is f,, = (4/3)pes(V2,)nTtR.
with o. being the angle between axis and generator of the cone, r1,r; the radii of
cone and cropped cone, h the height of the cones and cylinder, a the length of the fins
triangle hypotenuse, and 8 the thickness of the fins.

Proof: For axial forces the Cy-symmetry ensures that forces orthogonal to the
symmetry axis cancel each other out. The pressure in the axial direction is therefore
P = Poo (v:fe,)asin3 o. The surface integrals over the cone, cropped cone, and triangle
lead immediately to [if dr2mrp/sino = nR?pe(v2,;),sin? o The total side force on a
rotational symmetric body consists of the pressure on the half-shell, i.e., the normal
forces on the cone are therefore f, = 2Rpo(V:))n fy / 2al(])cos3q) foh dz(h — z/h) =
pw(vfel)nRhlsinq%- 1/3 sin3¢}g/ 2 = 2/3p(V2,)uRh.  The surface integral over

cylinder and cropped cone follow immediately by changing the limits of integration

over r and z accordingly. [

After the general axial and normal forces on the air frame have been derived the
development of the computation is at the stage to return to the particular example
of the ballistic missile with the measures as indicated in Figure 3.3. The aerody-
namic forces may be calculated by inserting the measures into the formulae of Theo-
rem 3.4.1 and 3.4.2 which then leads to the example below.

EXAMPLE 3.4.3 The fins have a thickness of 0.1m and the rest may be determined
by utilizing Fig. 3.3. The common axial force is therefore

fa = 0.1654p..(v2))a- (3.66)
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The fins which are mounted on the cylinder are far more complicated with respect
to normal forces, because they are not convex and the flow leads to vortices. The
simplification is employed that the Newtonian impact theory may produce a normal
force on the fin+cylinder section which is identical to a normal force on an effective
area identical to the calculated above, ie., f = pw(vfel)nAeﬁc. The rest of the tube,
including the fins which are in front or behind the tube’s air shadow, is assumed to

obey the normal force from above.

fo = (20.9622+3.3419¢+ cd+ 2dL)pe (vZ,)n (3.67)
= 23.855-3.3465cos W+ 1.51303/ cosy

the normal (side wind) force on the body can thus vary between
| ful € [24.446500(V2,)) 0, 22.839600 (V2 ) ] (3.68)

which is about 6.80% variation of the mean force. Since, this small change is of no

significance for the model, the normal force will be chosen to be
fr = 23.6431p.(v2))n (3.69)

For a cropped cone the centre of pressure (for side wind) is at the coordinate
h((2/3)r1+ (1/3)r2)/(r1 + r2) when the base of the cone is given by the radius r;
with ry > r1 which coincides with the origin of the coordinate system and the height
of the cone is h. (Note that the special case of a cone with r1 = 0 and a cylinder with
r1 = ry is also included in the formula.) The centre of pressure for the slender body
consists of the cylinder’s centre of pressure at coordinate (0,0,4.58 — ), the centre
of pressure of the cropped cone (0,0,9.16 + 0.8297 — z’CM)T and the cone’s centre of
pressure at (0,0,9.16 + 1.91 + 0.1567 — z,,) ' meters. The centre of pressure of the

slender body thus becomes,

= (n/Au)((2/3)r10.47(9.16 +1.91+0.1567 — z) (3.70)
+(2/3)(r2 — r1)1.91(9.16 4 0.8297 — 21y,
+(4/3)r29.16(4.58 — z[-,,) ymeters

= (1/A4)(1.3386+5.5506 — 17.8270) = —1.6732meters

ZCP st

with Zpy, = 5.4404meters and Ay = 6.5371meters®>. The centre of pressure follows
immediately from Egq. (3.62)

2.56132cos? v + 0.052488(18. - - -
B 32cos?y 4 0.052488(18.3555 cosy — 1)(25.374 + cos W)meters

N 5.5867cosy +3.3465cos2y —0.2916
—5.4404meters (3.71)

Zcp
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The substitution of the value for y = 0,1/4 gives the centre of pressure ry, =
—2.36378 meters,—2.04127 meters, respectively, which means that the centre of pres-
sure only varies by about 32.251 cm which is just about 15% of the total moment arm.
Since a model is sought which is as simple as possible, it may be more convenient to
include the variation of the centre of pressure into the noise of the model rather than
employing the cumbersome formula (3.70). In order to allow a reasonable missile
model it is further assumed that the persistent torque I's about the symmetry axis is
applied due to fin deflection which seeks to accelerate the rotational velocity com-
ponent 3. Simultaneously the rotational motion of the missile is decelerated by the
resistance of the body whilst rotating about the symmetry axis. It is assumed that the
net effect is approximately zero, i.e., the axial symmetric rotation is in an equilibrium,
i.e., Euler’s equations are generally given for ® = (0,0,w3). An objection may be that
the normal aerodynamic forces will still lead to torques that imply rotational motions
with 01 and 0 non-zero. However, the perturbation of the equilibrium can be consid-
ered small in comparison with the torques which therefore dominate the change of the
rotational velocity. Although the principle moments of inertia in €}, €,-direction are
comparatively large, J1 2 ~ 3500kg - meters? (see also Eqs. (3.25)—(3.27)), the normal
forces are even larger due to the square of the velocities. The velocities are inside the
range of [2216/\/2meter/sec,2216meter/sec, i.e., the fraction fure,/ 5 for 6,4 = 10°
is equal to [6578,13156]pe. O, is the angle between the negative relative wind ve-
locity and the €-axis of the ballistic missile. The un-damped un-coupled equation
for the oscillation of the ballistic missile about the equilibrium 0,,; = 0 is well known
to be 96, = In7 01 With its characteristic frequency \/fn—rcp/—ﬂ. This means that
for a driven damped oscillator of this form the resonance frequency is identical with
\/m (Scheck, 1990; Hestenes, 1986). Because the resonance frequency is that
high the lift-forces cancel each other out over a short period of time. The disadvantage
is that the damping is a quadratic term with respect to 8,,; because the torque repre-
senting the drag through rotational velocity of the body depends on the square of the
velocity. For low frequency oscillations the linear approximation of the drag-torque is
sufficient and the perturbative dynamics of the ballistic missile could be numerically
determined, because of the quadratic dependency only numerical solutions exist. The
simplified dynamics of rigid bodies which are employed for the following computations
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thus hold

P o= g+23.6431m"1p°o|v,e,[(v,e,-e'l)e’l+23.6431pmlv,e,|(v,el-e’z)e’z

40.1654m ™ 1 pec [Vt | (Vyer - €5) €5 (3.72)

Wy, = —2B'0'%, +23.64319 el Vil (V- €]) 0L, (3.73)
W, = —2B'0'%, +23.64317575 Pl V,ull (Vs €3) 0L (3.74)
o= v (3.75)
), = o (3.76)

rel

whereby p.. depends on the altitude of the missile and ' should be measured from
some data, and 0’ is the angle between negative relative wind velocity and symmetry
axis €. When no data for B/ is available an estimate for ' may be employed. Since
the centre of pressure is ro, = —2.20352 meter and the side wind force is f,, and the air

frame rotates with frequency éie, the corresponding wind velocity due to the rotation is

approximately vy, = 1,0, thus the torque on the air frame becomes approximately

rel’

12

0
! = 114.70p,, —zkmax 3.77
B P~ 24, GB.77)

rel

Note, that 114.70/(241) = 0.0165 is a very small number which implies that the
system is only weakly damped. The solutions of the dynamical system is still not
explicitly computable but a upper bound for ©,.,,f may be found by introducing the
maximum velocity into the damping coefficient. Instead of utilizing o iz: or [v,e,[v,el,
the quadratic function is substituted with ®',.5; ® 101, OF [Viet|maxVia- The approximate
dynamics can then be solved analytically (Scheck, 1990) when the wind velocity inside
the inertial frame of reference is given. The purpose of this chapter is devising an
algorithm for dynamical system identification, i.e., the explicit computation of the
linearized simplified dynamics of the ballistic missile are not presented here. It is
thus sufficient to shortly summarize the required computations. By realizing that
the factor 23.64317,Pe0|Vyet| (Ve - €)) is independent of ©' it becomes evident that
Egs. (3.73), (3.74) hold the form of a standard damped oscillator (Hestenes, 1986;
Scheck, 1990). When the relative wind velocity is decomposed in the components
perpendicular and anti-parallel to the missiles’ velocity vector, the rotational motion

may be rewritten in terms of a first order approximation for > which gives

d)rell = —ZB(Drell + 23-6431r6pp°°lvrell (Vrel : V) /jl erell + Fl (Z)/jl (378)
(i)relz - —Zerelz + 23-6431rcpp°°lvrell (Vrel : V) /j26relz + FZ (t)/]Z (379)
Ti(r) = 23.64317p0m|Vret] (Vier - €) (3.80)
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where T'; represents the torque in direction of a vector i perpendicular to v and e,
ey are pair-wise orthogonal to each other as well. This model can immediately be

integrated (Marion and Thornton, 1995) to

t
By = / de'Ti (1) Grit,¢')di’ (3.81)
L B0 ina (¢ — ¢ /
e SInw, (r—1), >t
Gri(t,/) = { Tom mlt =), ezt (3.82)
0, r<t

where Gr(e) indicates the Greens function with

O, = \/ 23.64317 0| (Vict| Vi - V) /9 — B2. (3.83)

Eq. (3.81) defines the angle between relative wind velocities and body axis and thus
implies the dynamics of €|, and €,. Due to the linearisation a closed form of the

ballistic missile model has been found which now reads as

2
my = mg—23.64310w/v,u*> Y, 0] (3.84)
i=1

2
—0.1654p 00| Vel (1 -y Gil,) ¢
i=1

!
Oy, = / dt'T1(tYGry(t,t)dt’ (3.85)
!
Orety, = / dt'To(t)Gry(t,t")at’ (3.86)
Vietbk = V_Vwind(xyt) (387)

whereby V., is an arbitrary environment specific function with respect to the spatial
coordinate X and time t. It is apparent that in real life experiments the wind velocities
are the system’s variables without an experimenter’s influence. For demonstration
purposes an arbitrary wind velocity function will be assumed which is a sequence of
finite impulse functions with finite width At, i.e., a superposition of a finite set of step
functions with arbitrary finite magnitude, such that the time mean of the relative angles
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0,.;; is zero and time mean of the wind velocity holds VgL v.

2
mv = mg—23.6431p.|v]* Y 0,.€] (3.88)
i=1

—0.1654p..|v|? (1 - E G,ez,)

i=1

Dol eyt & 2
Ort, = 23.643171:@— _2 Vasind; [* (Vawina,€}) (3.89)
J=—0e
x exp (—B(t —¢;)) sinw,( — ;)
Pooty, At y 2
O, = 23.6431——3,;0’)’7 _2 Vwind; |* (Viwina;€}) (3.90)
J=—0

X eXp (——B(l‘ —l‘j)) sinm, (t — tj)

In Chapter 6 it will become necessary to estimate the mean lift- and drag coefficients
which requires the squared angle Grel in order to compute the total drag/lift force over
a certain time interval o< At. It is easy to realize that the integral over the RHS of
Egs. (3.89) & (3.90) is proportional to the integral

[At
/ dt’ sinopt’exp (—pt') = (3.91)
0

w,  exp(—PlAr)
Brop B+

and the squared angles in Eqs. (3.89) & (3.90) lead to expressions like

(W cos(m,IAt) + Bsin(w,lAt))

A

dt sinw, (1 — ;) sinw, (t — 1) exp (—B(2¢ — (tj+17))) (3.92)
JJ’ 1
= 211- i/zm (tj+tj,)dt’exp( Bt') [coswn(tjs — ;) — cost’]
= li cosn(f tj)[ —exp (—B2iAr = B(tj+17))]
411 =1 B
+exp(—BZlAt—B(tj-l-tjr))
B2 + o
x [Beos(wn(21At — (tj+17))) — @y sin(w, (21A1 — (tj+17)))]
b
T

witht' =2t — (tj+1 1) Both, Equations (3.91), (3.92) can significantly be simplified if
At =21 /Wy, because the sinus- and co-sinus functions become either 0 or =1 and the



CHAPTER 3. BALLISTIC MISSILES 70

expressions become

o, 1 —exp(—Bi2n/w,)
di' sinw,t’ Bt = o " 3.93
—_> wn

ZIAt—(tj-H‘jI) , , ,
/ dt'exp (—Pt') [coswy, (tj —t;) —cost’]  (3.94)

1 N
P2

—

_ % [1 —exp (—B21Ar — Bt +1;))]
+[324B—m2 {exp (—PB2A — Bt +1y)) — 1}
e

7 BE+oR)

It has just become evident that for the choice of At = 21/w, the angles ©; as well as
the squared angles 91-2 are mainly functions of (1),% and b* which exponentially increase
their effect on the dynamics as time passes by. The maximum is a finite value which
can only be reached as the time converges to infinity. For demonstration purposes it
is sufficient to consider the mean lift- and drag-coefficients as approximations given
by the limits in Eq. (3.93) and Eq. (3.94) which then lead to the mean translational

dynamics of a ballistic body

2
Vo= g—23.6431m poo[F* Y 0,6} (3.95)
i=1

~0.1654m ™ peo|¥|2 (1 -3 ere,l)

i=1

I~ oorc 2

O, = 23.6431 —-F 2 Voind; | (Viwina,€}) (3.96)
! ]( BZ j““oo 1 J

_ pwrf Y, N 2

erzel,- = 559.00 2 ) Z vaind i l 2 (VW"ld ; z) vamd'j !2 (Vwind'je:')

12B(B* +w7) ; i< ..
(3.97)

with | the multiplicity of the time interval At over which the mean angles and mean
squared angles are taken. As can easily be seen from the formulae given in E-
gs. (3.96) & (3.97), for large | Eq. (3.95) converges to the trivial drag-force equation

mv = mg — 0.1654p..|V|v. (3.98)
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It also follows from Eq. (3.95)(3.97) that the time dependence of ©,,, with respect
to t approximately leads to a perturbative lift- and drag-force which respectively is
proportional to exp (—B(t — 1;)) sinw, (1 —t;), exp (—2p)) sin w,(t — ;) sinw, (t — t5)
and thus leading to a perturbative spatial translation which is of similar form,

2 N
poorc‘ At —_ 2
67.,1,2 = 55900m] £ ’vjlz z lvwindjlz (Vwindjell’z) (399)

) n j=—oe

2 2 /
n B—wp o, Boaexp(—pt')
* [CXP(‘B’)W“““’”’ GEE
3 ;,.2 2 N
I = Py CP_A_I v:l? 2: 2 2 2 AY,
57’3 - 92457 m,71,20),21 IVJI j,jl:__ lvwindj! (Vwindjei) vaindj/i (Vwindj/ ei)

t'=t

cos mnt’}
l":to

B2 _ 0)2
X [3—2 exp(—Pr’) cosw,(tj — 1) — (_B_Z?u_)zﬁ)? exp(—Ppt’) cos '

B, exp(—Bt’)
(B2 +w2)?

t'=t

(3.100)

+2 sinwy,t’ ]

=1y

Although Egs. (3.99), (3.100) are only approximations of the real non-linear dynamics
of a ballistic missile they nicely illustrate the qualitative behaviour of such as missile.
The drag and lift forces applied to a ballistic missile vary as the angles periodically
vary with time. Egs. (3.99), (3.100) serve also as an example in Chapter 6 to illustrate
the effect of uncertainties in non-linear dynamics for prediction purposes. As an illus-

trative example the following parameter values have been chosen in their according SI

units
B = 1Hz (3.101)
w, = 6.804Hz (3.102)
J12 = 3.583-10%g- meters® (3.103)
m = 1781.2kg (3.104)
At = lsec (3.105)
P = 0.3506kg- meters > (3.106)
fep = 2.203meters (3.107)
[vjl = 7-340.9meters/sec (3.108)
\Vwing;] = 0.05-340.9meters/sec (3.109)

N =1 (3.110)
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such that

/
57‘1

/
87’3

84.734Tmeters

x [—4.6583 -10~*exp(—t') sinw,t’ +1.007 - 105 exp(—1") cosmnt’]

1.8955 - 10 3 meters

x [exp(—t') +4.6388 - 10~*4 ™ Lexp(—2¢") cos w,z’

+4.0151- 10 3 exp(—2¢') sinu)nt'] '

t'=t

72

(3.111)

t'=t

=ty

(3.112)

t'=ty

which can be easily visualised in the following graphs
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Figure 3.6: This figure shows the effect of lift and drag forces on a ballistic body given by
Eq. (3.98) and Egs. (3.111)~(3.112). Sub-figure a) shows the result (solid line) of Eq. (3.98)
as well as the parabola (dashed line) v = 2~ 'gt> + vyt + 1 for comparison. In both cases
the initial conditions are g = (0,—9.81)T meters/sec?, vo = 1687.37(1,1)T meters/sec, ry =
(0,20000)7 meters. Sub-figure b) shows 8¢, as a function of t. Sub-figure c) shows 8r} as a
function of t and sub-figure d) shows a &r) — 8r}-plot.
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After a simplified state space model has been devised the question arises, how well do
the dynamics given by Eq. (3.72)—(3.76) approximate a real-life model including all
errors in the measurement etc. Strictly speaking this question cannot be answered, even
when some real measurements were available. The reason for that is, that radars can
only estimate the velocity and position of a ballistic missile. As the simplified model
demonstrates the rotational velocity and attitude of the missile’s frame of reference
with respect to the inertial frame of reference have to be given as well. It is not clear
how the errors due to the necessary approximations in the dynamics and the measure-
ment errors enter the dynamics. As mentioned in Chapter 2 the available statistical
models can for example perform regression analysis, i.e., the answer provided by the
statistical models is to the question which function fits best when assumptions about
the underlying noise are being made. Regression analysis cannot be applied in this
case since the non-linear function inside the the state’s (r,v) sub-space is dependent
on remaining state variables w/;, @/, which are not measurable, i.e., there is no explicit
known function which may be fitted to the data points. Stochastic models such as the
Kalman filter are only applicable when the state space dynamics and the stochasticity
are explicitly known. The expected answer from employing the Kalman filter to the
state space model Eq. (3.72)—(3.76) under the assumption of Gaussian noise with the
conjecture of some variance is the estimate of a best parameter set (e.g. the mass,
P, the principle moments of inertia, etc.) given some past measurements. The prob-
lem with this approach is, that the probability density inside the (r,v) space does not
necessarily have to be initially Gaussian, nor even stay Gaussian as time progresses.
The ‘best’ estimate does not even have to be the best physical estimate. Because there
is neither an algorithm available which allows us to establish the state space model
itself when only a time series of a few corrupted state vector components are given nor
do there exist any statistical models which allow the incorporation of partial physical
knowledge to limit the number of possible (r,v) sub-state space trajectories. The only
technique which remains after the modelling constraints, that neither the stochasticity
of the physical model is known nor that the class of functions inside the (r,v) sub-state
space is given, are imposed is non-linear statistical black-box modelling which seeks
to extract qualitative information about the probabilistic distribution inside the (r,v)
space. This very general approach towards data modelling is presented in the following

section.
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3.5 Non-linear statistical modelling of time series

Non-linear systems have been shown to exhibit some new qualitative behaviour which
is summarized under the name deterministic chaotic systems. In order to classify and
quantify these dynamics a novel set of statistical tools have been developed over the
last two decades (Takens, 1981; Ruelle and Takens, 1971; Ruelle, 1990; Ott, 1993,
Abarbanel, Carroll, Pecora, Sidorowich and Tsimring, 1994; Beck and Schlogel, 1995;
Tong, 1995; Kantz and Schreiber, 1997). As these methods are statistical a sufficient
number of data points are required and the data points have to lie sufficiently densely
packed inside the state space. As physical experiments do not allow an arbitrary set
of data points this requirement can never be met. However, when the statistical model
is confined to a certain subset of the state space, then it has to be proved that for
physically viable state vectors the trajectory never leaves the part of the state space
under consideration and that this subset of the state space is evenly densely packed
with data points. Before these statistical methods are introduced, let us reconsider the
general form of a ballistic missile’s state space. As it has been argued in this chapter
previously, the dynamics of a rigid body (e.g. a missile after the boost phase) are
described completely by Newton’s and Euler’s equations.

v o= —(1/m)(fy+1£,) (3.113)
P=v (3.114)
Jb = —0xJo+T (3.115)
o = % (3.116)
Ve = F(vy,s) (3.117)
Poo = PoolL,s) (3.118)
ds

= =1 (3.119)

This physical insight in the aerodynamic influences on the body gained by the above
analysis suggests the use of a phase space, or state space, of the rigid body together
with the wind velocity v,, and the general non-linear C!-function F defined by

x(1) = (R,o,r,F,V,,s) () (3.120)
x(r) = F(x(@)). (3.121)

The dependence of aerodynamic forces on the air density p.. is implicitly given by
Equ. 3.56 and is therefore incorporated in the map above. The wind velocity is
defined in the inertial frame of reference of the observer but transforms immediate-

ly 10 Wrel, Wrels Orels Ore] bY employing the attitude &, of the body. The non-linear
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mapping (3.120) contains 16 components where all are elements of the real line but
the three attitude components which are defined on a compact continuous set of real
numbers. It is due to the celebrated Cauchy theorem (Scheck, 1990; Arnold, 1978)
that a system given in form of Eq. (3.120) is a deterministic one, i.e., for each arbitrary
state inside the state space there exists one and only one other state which the system
is in after a time interval dz. This means that trajectories inside the state space cannot
intersect.

As it turns out some non-linear models of the state space, such as the Duffing
oscillator, the Lorenz attractor, Mackey-Glass dynamics, etc., can exhibit some be-
haviour which leads to a strange attractor inside the state space. It is often assumed
that the underlying non-linear dynamics follow an attractor with considerably lower
dimension than the dimension n of the entire state space (Kantz and Schreiber, 1997;
Ott, 1993). However, in many cases this assumption is not true and dynamics do not
have any attractors which are of lower dimension or more easily understandable than
the state space model itself. However, there are some stochastic systems, where the
methodology of non-linear statistics can be applied (e.g. Kantz and Schreiber (1998,
Schreiber and Kantz (1998). The question therefore arises as to whether the method-
ology is suitable to be employed in the case of ballistic missile dynamics, when only a
time series is being presented. As it is clear from the prerequisite of chaotic statistics
which require densely spaced data inside the state space, then initially it would appear
these methodologies cannot be applied since the state space model leads to a time
series which does not represent the entire state vectors of the dynamics, and also the
data is not evenly dense inside the state space. The viable option is to use non-linear
statistics to (i) pre-process the data to gain a ‘state space’ model which leads to a state
distribution with a small variance in the state vectors probability distribution, and to
(ii) employ a method that reconstructs the state space.

3.5.1 Time Series pre-processing for Grey-box modelling

Sjoberg et al. (1995) and Juditsky et al. (1995) suggested an algorithm for pre-
processing data when physical knowledge is available. Here, an algorithm for non-
linear semi-physical modelling of a ballistic missile is suggested which is based on the
physics introduced in the previous sections. Essentially, the following prior physical

knowledge will be assumed.

1. The aerodynamic force is independent of r and only depends p(r3), the origin of
inertial frame of reference is therefore arbitrary.
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2. The unpredictability comes into play only by variations in the aerodynamic

forces on the body.

3. The body is self-stabilizing, i.e., the main flight direction of the body is with the

tip in the relative wind direction.

4. According to the three above pointers the principle trajectory of an unperturbed
ballistic body is given by the differential equation

r=(0,0,—g)" —Dp(r3)[F|F (3.122)

which immediately can be integrated to give a unique solution when an estimate
for the initial velocity F and spatial coordinate r and the temporal mean of a drag

coefficient D are given.

The mean drag coefficient may be employed to compute a mean trajectory which then
serves as an origin for a coordinate system that moves along this nominal trajectory
with time. The orientation of the coordinate system should follow the actual nominal
(un perturbed) direction of the ballistic missile’s flight path at each point of the mean
trajectory. The trajectory obviously points into the direction as ¥, which therefore
suggests the use of the vector of unity e; = ¥/|T| to build up an appropriate basis of

such a coordinate system

e X €3 €: X €3
. £ . 3.123
{ ue-fxesxmlefxeﬂl“’f} G.123)

(see also Eq. (1.5)). This new coordinate system is utilized to compute a vector r
with respect to this new coordinates. This algorithm leads to a three-dimensional
trajectory about the mobile origin which may then be employed to perform the regular
non-linear statistical analysis. Note, this transformation applied to the time series
removes the general trend in the time series. The obvious advantage is twofold.
Firstly, the net-dynamics of r contain only the perturbation of the ballistic missile
during its flight. Secondly, the desired aim was a state space model with more densely
packed state vectors. Because the net-dynamics remove the trend the reconstruction
algorithm described in the next section is trend-free as well, which implies that the
reconstructed state space is more densely packed with state vectors. It is important to
realize that if, apart from the spatial coordinates, other state vector components may
be given as well, these components have to be changed according to the net-dynamics
which have to be computed according to the dynamics given by Eq. (3.122) and the
Basis (3.123).
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The time series pre-processing algorithm thus works as follows:

1. Approximate the nominal trajectory of a body by utilizing, apart from the gravi-

tational force, a pure mean drag force.

2. Employ the new coordinate system to calculate the difference vectors (like atti-
tude, velocities, etc.) between reference frame and the new one.

3. Due to Cauchy’s theorem the dimension of the deterministic dynamics is 16
which does not change by adding a C!-function to the vector field and Taken-
Whitney’s theorem (Whitney, 1936; Takens, 1981) may now be utilized to re-

construct the state space.

3.5.2 State space reconstruction and Non-linear statistical analysis

As shown in the previous section in Egs. (3.120), (3.121) the dimension of the deter-
ministic ballistic missile model is 16. When no complete state vector from the phase
space is available, e.g. only the coordinate vector r may be measurable as it is the case
in the section above, the state space has to be reconstructed by either employing time
derivatives of r, or better, by utilizing delay coordinates to generate time-delay vectors

8i = [FisTimty oo s i (- 1)) (3.124)

which may be utilized for reconstructing the map between two successive time-delay
vectors. The number of employed time-delay components n’ depends on the chosen
embedding dimension which is #’ multiplied with the number of components of r;, and
T a sufficient time delay. Taken’s theorem ((Takens, 1981)) guarantees that there exists
a diffeomorphism between the original state space and the reconstructed state space, if
and only if the time series is noise free and a sufficient embedding dimension is chosen

to be

dembedding 2 2dattractor +1 (3125)

The critical issue here is the generic intersections of a trajectory with itself inside
the reconstructed state space when the chosen dimension is made too small. The
condition (3.125) gives an estimate when this intersection cannot occur, which means
that information about the dimensionality of the attractor of the underlying non-linear
dynamics is required. As stated above in most cases the attractor, which can have non-
integer dimensionality, is not smaller than the dimension of the dynamics, which means
that in our case dempedding = 2- 16+ 1 = 33 and n' may be chosen to be 11. Still, all
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these considerations are only valid for the noise free case. As soon there is a stochastic
driving force inside the dynamics, as it has to be assumed there is in our case, Taken’s
theorem no longer applies. However, an extension of Taken’s theorem exists for the
case that the fluctuating driving terms are explicitly known (Casdagli, 1992; Stark,
Broomhead, Davies and Huke, 1997; Stark, 1999).Despite these difficulties with noise,
it is assumed in the following that Taken’s theorem can be utilized. The next section
concentrates on the issues to optimise the reconstruction technique.

For a finite amount of data the choice of the time delay T is critical: When 7 is
chosen to be too small, the reconstructed attractor is squashed along the phase space
diagonal, whereas a T which is too large leads to the effect that the noise dominates
the reconstructed dynamics, i.e., information about the dynamics has been lost (Ger-
shenfeld, 1988). One approach of choosing 7 is based on different autocorrelation
methods, in which T has to be a fraction of autocorrelation time which is chosen by

either algorithm.

e The first zero (or the minimum) of the autocorrelation function (Holzfuss and
Mayer-Kress, 1986).

e The e—folding time of the autocorrelation function (Frank, Lookman and Neren-
berg, 1990)).

e The time, at which the autocorrelation function is equal to 0.5 (Schuster, 1989).

e (1/10)" of the time of the first minimum of the autocorrelation function (Abar-
banel, Brown and Kadtke, 1990).

However, the problem is that a number of data sets of an identical underlying physical
system show increasing autocorrelation times as the data set length increases (Prichard,
1993). In that case there are mutual information based methods available.

e Choosing the time delay based on the mutual information between the compo-
nents of the vector. T is then be chosen to be equal to the first minimum of the

mutual information (Fraser and Swinney, 1986).

e One method uses the relation between the mutual information and the gener-
alised correlation integral (Liebert and Schuster, 1988; Theiler, 1986).

e Or using higher order correlation coefficients (Albano, Passamante and Farrel,
1992).
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e There are also suggestions to measure distances, which are spanned by the
vectors with indices of a ‘window width’ (d’ — 1) - T, which is assumed to be
more physically related quantity than the pure embedding dimension (Albano,
Muench, Schwartz, Mees and Rapp, 1988; Broomhead, Jones and King, 1987;
Gibson, Farmer, Casdagli and Eubank, 1992; Grassberger, 1986).

e Also a good estimate is 1 — 2 times the dominant period of the system (Ruelle
and Takens, 1971).

The last methods which are supposed to provide tools for estimating the usefulness of
a specific choice of time delays are all based on some statistics, i.e., there is a certain
density of data points in the reconstructed state space which is necessary to make

some sensible statistics possible.

Returning to our Example 3.4.3, where it is shown that the resonance frequency
is within the interval p..[6578,13156]/sec. Following the above arguments T may be
chosen according to the autocorrelation function. Because the periodicity of the time
series will be approximately identical to the inverse of the resonance frequency, it can
be expected that T will be with in the magnitude of p5![7.601,15.202] - 10~ sec.

In principle the state space reconstruction technique may be used for the direct
measured time series as well but the sparse density of data points may jeopardise any
kind of statistics. To get a more qualitative description of the dynamics the dimension
of the attractor may be calculated, which is most easily done by utilizing the box

counting dimension

. InC(¢)
= lim ——= 3.126
b@) al—% Ing ’ ( )
with  the  correlation  integral C(g) = 2/((N — W)(N — W —

1)) y:W Z?:lj@ (e —|si —sj||) where ©(e) is the Heaviside function, € the box size
and W > O the decorrelation parameter to exclude statistical dependent data points s;
and s;. The dimension is 0,1,n,R{\IN for a fixed point, limit cycle, n-torus, and a
strange attractor, respectively, and contains therefore valuable qualitative information
about the dynamics. A strange attractor is a indicator for chaotic dynamics and the
global Lyapunov exponents may be computed to gain a measure for the predictability

of such dynamics.

Ai= Jim (1/N)In;(N) (3.127)
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with A;(N) the local Lyapunov exponent of the matrix which is the direct matrix prod-
uct of Jacobian matrices after N iterations of the n’-dimensional dynamical system.
When one of the global Lyapunov exponents is positive, the dynamics are chaotic and
initially neighboured points in the state space diverge exponentially. The predictabil-
ity of the underlying dynamical systems relates immediately to the largest global
Lyapunov exponent, which becomes as difficult and unreliable as larger the global
Lyapunov exponent becomes. (Note, that the limit of the temporal mean of the local
Lyapunov exponents is only defined to be the global Lyapunov exponent, if and only if
the dynamical system is ergodic.) When just time series are given, mathematical values
like the Jacobi-matrix and its eigenvalues cannot be computed. The only available
numerical method utilizes the data samples to calculate these Lyapunov exponents.
This leads to the algorithm developed by (Wolf, Swift, Swinney and Vastano, 1985),
which makes two major restriction on the correct selection of neighboured points.

1. The difference d;(T) = ||s(t;+T) —s(t;+ T)|| between two points should be
small enough to fulfil the restrictions of the linear stability analysis.

2. The vector of unity (s(ti+T) —s(t;+T)) /|Is(ti+ T) — s(¢j+ T)|| should point
into the direction of fastest growth.

The algorithm operates as follows
1. Define a hyper spherical shaped shell K5 ¢(s(i)) = {s € R"|c < [s—s(i)| <&} in
the reconstructed state space. Each state vector, which is covered by this shell,

is a potential neighbour for the following computations. ¢ cancels out samples
which just contain underlying noise and € preserves the neighborhood of the

linearization.

2. Choose two neighbours s(z;) and s(¢;) out of this shell and follow the trajectories

for a time interval 7 and compute d(T').

3. Normalization. Choose another neighbour to s(#; + T) out of Ks¢(s(t; + T))
which points approximately into the direction of s(¢;+ 7"). (This step ensures,
that the most instable direction will be approximated.)

4. Repeat this procedure stepping into this algorithm at point 2.

5. After M repetitions, the mean
M

1
=S — _
! ,Zl MT " 4 0) = T "4 (0)

leads then to the global Lyapunov exponent (ergodicity required).

d(T) 1l ai(T)

(3.128)
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(Eckmann and Ruelle, 1985) as well as Sano and (Sano and Sawada, 1985) employed
an alternative numerical algorithm for global Lyapunov exponent estimations for hy-
drodynamic and chemical data which is based on the local estimation of the Jacobi
matrix by observing the trajectories of an entire set of neighboured trajectories. Details
of this algorithm are given in (Eckmann, Oliffson Kamphorst, Ruelle and Ciliberto,
1986). To determine the local Lyapunov exponents, one may use the locally linearised
map of the perturbations 8¢, o) = s(ox) — s(t), where s(o) is a closed neighbour
of s(t) and k = 1,... ,m. This perturbations can then be employed to calculate the
maps ds(¢ + 1) = J(¢) - 8s(¢). The global Lyapunov exponents are then given by the

eigenvalues of the matrix

[0 -3C) -3 00)-32) 3] 6.129

The latter matrix is of particular help if the dynamics are explicitly (including all
dynamical parameters) given. The global Lyapunov exponent may be estimated by
solving the ballistic missile dynamics and its linearized version at the same time. The
mean divergence between both solutions leads for long simulations to an estimate of
the global Lyapunov exponents. However this option is not available here, because the
dynamical system is not explicitly known, only the time series is given.

Another critical issue of statistical descriptive variables, like the dimension (point-
wise dimension, information dimension, Hausdorff dimension, etc.) or the Lyapunov
exponents from the time series, is the required amount of data. There are quite different
suggestions by (Essex and Nerenberger, 1991; Nerenberg and Essex, 1990; Ruelle,
1990; Smith, 1988; Wolf, Swift, Swinney and Vastano, 1985) but unfortunately, they
are at odds over the required amount of data. (Ruelle, 1990; Essex and Nerenberger,
1991; Eckmann and Ruelle, 1992) provide estimates for a set of N data points in the

time series, with the dimension estimate dyiacior With
attractor < 210819 N. (3.130)

When, as in the worst case for a ballistic missile, the dimension of the reconstructed
state space has to be 16 as can easily be seen from Eq. (3.120), (3.121), then identi-
ty (3.130) implies that the number of data points should be as much as 108 which is
equivalent with approximately 108 /3 spatial coordinate measurements. It is obvious
that this huge amount of data is not available. Still, (Eckmann and Ruelle, 1992)
argues, that the number of ‘cycles’ (the correlation time) is a more significant quantity
rather than the total number of points. That is, why (Price, Prichard and Hugenson,
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1992) prefer a modified version of Ruelle’s formula incorporating the delay time T
Aatiractor < 210g(N/7), (3.131)

in which case the number of required data points could reduce to a magnitude of
about p5![7.601,15.202] - 10> which may be achievable. However, the applicability
of this estimate of the number of data points or the more conservative estimate given
above, cannot be decided here, since the verification of either estimate depends very
much on the given data set. Despite all the arguments above, there does not seem
to be any rigorous derivation of any of the measures and estimates above. Indeed,
in many cases spurious results are very difficult to detect and the experimenter has
to rely on non-verifiable/falsifyable arguments to justify the data analysis. A fairly
recent review on Chaotic time series estimation and state space reconstruction may
be found in Kugiumtzis et al. (1994) and Lillekjendlie et al. (1994). The summary
principally indicates that the approximation of non-linear functions is possible for
prediction purposes, although every approach has its advantages and disadvantages in
term of statistical capabilities there is no indication how these statistical criteria may

be extended to physical criteria.

3.5.3 Possible Routes to chaos in ballistic missiles

The last section introduced state reconstruction related techniques which not only
allow a dynamical system description which is in the ideal case diffeomorphic to the
original state space model, but which also enables to check to see if a dynamical system
permits long term predictability even when the vector flow is explicitly given. As it is
argued above, the global Lyapunov exponents have to be all negative to ensure that the
error inside the state estimate decreases. If one global Lyapunov exponent is positive
the error expands exponentially, i.e., the long term predictability becomes impossible.
This section introduces some dynamical behaviour of the ballistic missile which may
lead to unpredictive, chaotic dynamics.

In the simplified rotating ballistic missile model (Eq. (3.45)—(3.47)) the principle
moments of inertia have been assumed to be such that 9; = %. This ideal case can in
reality never be achieved. Although this idealisation is never true, the approximate
behaviour comes very close to the ideal case. When the difference J; — % is no
longer negligible the qualitative behaviour may change significantly. Without loss of
generality assume that the moments of inertia are such that J; > % > % > 0. The
Euler equations describe an equilibrium wp = (0, ®,0) which leads in a neighbourhood
of - (0,,0) to a linearized set of Euler’s equations which have the eigenvalues
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0,++/(h—35)(J1 — %) /(51 J3), of which one is positive. This implies that the fixed
point cannot be stable. Fixed points of rotations about the e; 3 axes are stable, but

are not Lyapunov stable. The attractor of a freely spinning top which follows about
the unstable equilibrium g is thus a strange one, i.e., the dynamics of the ballistic
missile with three different moments of inertia may be chaotic. As the theory above
indicates an unstable fixed point exists in any case since no manufacturer is capable
of producing precisely symmetric bodies. The significance and magnitude of chaotic
attractors can only be measured in real-life experiments. If and only if a sufficient
amount of data points are available to enable a reasonably good approximation of the
Lyapunov exponents can the chaoticity be measured. Alternatively, measurements of
the inertia tensor provided by the manufacturer are more precise and could provide
a very reliable state space model for prediction purposes. Since ballistic missiles are
built such that the angle of attack converges to zero, the dynamics are expected to be
strongly dissipative and the attractor is very likely to be confined in a small subset of
the state space (Schuster, 1989; Ebeling, Engel and Herzel, 1990). However, there
are many cases where chaotic behaviour has been mistaken for noise (Schuster, 1989;
Schwarz, 1994). In short, there is strong evidence that the chaotic behaviour will be
exhibited by any real-life ballistic missile, but its relative magnitude to other non-linear
effects has to be estimated by employing real-life systems.

It has been shown above that the ballistic body is a dissipative damped system in
the air. This paragraph is concerned with the stability of the three body axes in space,
i.e., the attitude of the body with respect to the reference coordinate system. The crucial
parameters for the stability of the body axis are the centre of mass and the centre of
pressure. Generally, as long as the centre of pressure lies behind the centre of mass in
desired flight path direction, an aerodynamic force applied to the body leads to a torque
which seeks to rotate the body back in opposite direction of the perturbation. This is
physically equivalent to a compound pendulum with an arbitrary but fixed axis, where
the centre of rotation is the centre of mass and the torque is applied to the time-variable
centre of pressure. The variability of the centre of pressure may lead to a parametric
resonance: The critical variable for that is the resonance frequency of the compound
pendulum. Assume that the body is anti-parallel to the air-flow (global minimum of
drag force), then a small disturbance about this equilibrium leads to a torque which
seeks to rotate the body back into its minimum. Let the flow be constant for the time
of analysis dv../dt < ddg/dt, i.e., f,e ~ kdg The only changing parameter is now the
periodic varying centre of pressure. Due to the D4-symmetry of the body and spin the
centre of pressure will then oscillate with four times the bodies frequency along the
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symmetry axis of the body. The linearized Euler equation for small angles about a

fixed axis leads therefore to
D189 = —rep (1)K (3.132)

whereby 7 is the specific moment of inertia about the axis of rotation. (It is here
assumed again that 7 = %.) Euler’s equation can now easily be rewritten in term of
Arnold’s equation (Arnold, 1978)

8o = —3 (1 +a(z)) 8 (3.133)

with r.p(¢) = Fep +€a(t) and 0f = (k¥c,)/ % to explicitly parameterize the periodic
function r.p(z), whereby the amplitude is € < 1. When the frequency of a() is given
by o then it is shown that for the case that wo/w =~ i/2, (i = 1,2,...) Eq. (3.133)
becomes unstable for any arbitrary €, i.e., there is the case of parametric resonance.
The corresponding €, mwg/m-diagram is also known as the Arnold-tongues diagram. It
is obvious from Arnold’s equation that this kind of instability may become dominant
in our case when the ratio between wp and the rotational velocity component in €}
or €, is half an integer, whereby the destabilisation may be the strongest for the case
that wo/m = 1/2. Also this specific kind of instability is known as chaos. Again
this scenario very much depends on the particular combination of spin velocity of a
ballistic missile and ®3 = (k7.,)/J1 which is a purely body intrinsic property. The
manufacturer can provide the data required or a sufficient number of measurements
may allow an estimate of the chaotic behaviour.

The cases of chaotic missile dynamics just presented may appear to idealized
without any experimental justification. However, these idealized examples are typical
mathematically reasonably analyzed models where a characteristic behaviour can eas-
ily be proved to exist. A real-life ballistic missile may inherit any of those dynamical
properties or even a superposition of chaotic attractors which makes the characteri-
zation of the missiles behaviour even more difficult. The conclusion of this section
therefore is, that the dynamics of a real-life ballistic missile are not easily understood
by writing down the vector flow, and the qualitative description of such a missile is an
open research issue. All which can be accomplished without any data from real-life
ballistic missiles is the theoretical analysis of possible dynamical properties. This
section provides the experimental tools and theoretical indications which could be
applied with little modifications by a modeller who has access to real-life ballistic
missile data. This section also showed which kind of surprising dynamical properties
may emerge from non-linear dynamics; any attempt to simplify the modelling task by
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introducing ad hoc assumptions about the ballistic missile dynamics should be strictly
avoided. Because the required information about ballistic missiles is not accessible
further work has to be referred to future research when the real data and support may
be available. This section provides a profound starting point for this case.

3.6 Conclusion

A ballistic missile has been shown to be modelled by utilizing the basic mechanics
of rotating many particle bodies, which are explicitly given by Euler’s equations and
Newton’s force equations. The effect of the gravitational force is well understood and
can easily be expressed within the state space’s vector flow. In contrast, the aerodynam-
ic forces and torques are found to be very difficult to model when no real-life data is
available. The physical assumptions and simplifications may even appear reasonable,
but their validity cannot be proven without any physical experiments with sufficiently
accurate measurements. Thus the toy models derived here cannot be employed as
representative examples to illustrate whether the aerodynamic modelling is satisfactory
for a specific ballistic body’s dynamics prediction or not. Sections 3.1 to 3.5 outlined
the pitfalls of ballistic missile modelling and motivate an (over-) simplified ballistic
missile model which allows one to filter the time series data in Section 3.5.1 and which
provides an easy-to-integrate model for Chapter 6. Any further interpretation of the
results presented within this chapter are not eligible due to their lack of validation with
real-life ballistic missile models.

In summary of Section 3.5, the methods developed in conjunction with state space
reconstruction techniques can only be justified for the ideal cases when the time series
is either noise free or the stochastic forcing is explicitly known, and if the density of
(reconstructed) state vectors suggests an approximation of the state vector densities as
probabilities. The decision about the applicability of these non-linear statistical black
box modelling techniques is shown to be very controversial as some naive approaches
to black-box modelling demonstrated (Schilhabel and Wu, 1997; Wu and Schilhabel,
1997). The author does not believe that an it-seems-to-work criterion is sufficient to
verify an algorithm of procedures based on heuristics. When a black-box modelling
approach was developed for an easy-to-model time series of a hair-dryer given as an
example in matlab the results seemed to be very promising (Wu and Harris, 1997).
However when applied to the time series taken from the Lorenz attractor the algorithm
failed, the one-time-step-ahead predictions lead to divergence greater than the largest
Lyapunov exponent (Schilhabel and Wu, 1997). The modeller could not even provide
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any verifiable rigorous approach about the form or kind of information which could
be included in the reconstructed state vectors when the dynamics are explicitly given
(Wu and Schilhabel, 1997). It is difficult to justify black-box modelling for larger state
space models such as the ballistic missile when fundamental questions prior to their
implementation cannot be answered. When a time series of real-life measurements is
available it can only be shown whether the non-linear statistical methods given above
are applicable to this time series or not. Because too many open questions remain
in particular with respect to pre-processed time series, a conclusive answer about the
applicability and reliability of black-box modelling techniques for general physical
system cannot be found.

For any given time series the stochastic forcing is usually not known, the number
of data points may not suffice, a specific selection amongst the methods introduced
above may be problematic. It is thus desirable to develop methodologies which neither
introduce insufficiently understood heuristics (Cherkassky and Mulier, 1998), nor rely
on algorithms which may not reveal any insight about physical parameters. The quite
considerable amount of physical information available seems to suggest a modelling
ansatz” which seeks to incorporate as much physical knowledge as possible and to in-
clude as few prior assumptions into the system’s dynamics as possible. The advantage
of this kind of approach is twofold. The influence of physical parameter variations
is truly transparent and may be proved in a physical experiment or verified through
well proven simulations. Because assumptions of a model always introduce vagueness
which has to be checked for its reasonableness by utilizing analogies, gedankenex-
periments, etc. and which always limit the generality of a model, modelling should
incorporate as few assumptions as possible. The aim is finding mathematical models
with the most general applicability to concrete problems. The work presented in the
following chapters therefore focuses on developing modelling techniques which seek
to minimize the influence of assumptions and at the same time attempting to incorpo-

rate as much prior physical knowledge as possible.

*Ansatz is a scientific term for approach. The ansatz usually refers to utilising a specific form of a

function in order to get to the solution.



Chapter 4

The Endo-Observer of a Linear

System

Forward

It is shown in this chapter that real-life observers are incapable of relating themselves
to the abstract state space models introduced in Chapter 2. A state space model as
defined in Chapter 2 is referred to here as the exo-observer state space model. The
complementary concept introduced in this chapter is termed endo-observer state space
model and allows the modelling of dynamics which are purely based on the knowledge
available to a real-life observer. All that is required for an endo-observer state space
model is the probability distribution of a free particle’s spatial coordinate vector, the
mean velocity at each spatial coordinate, and the total variance of the velocity dis-
tribution. It is then proved that a Hamilton-Jacobi-like equation and the continuity
equation of an endo-observer can be derived and combined in a single partial dif-
ferential equation which looks identical to the well known Schridinger equation in
Quantum mechanics. The consistency of the derived endo-observer (real-life) state
space model with the exo-observer state space model is demonstrated via the compari-
son of the mean velocity in either model. Two analytically soluble endo-observer state
space models are derived and shown to coincide with the exo-observer state space
model. Since the motivation of this work is the identification of dynamical systems by
utilizing time series data, an algorithm is suggested which allows the reconstruction of
the initial conditions for the partial differential equation derived below. These initial
conditions at the initial time ty are: (i) the mean velocities at all spatial coordinates
of a particle, (ii) the variance of the velocity distribution, (iii) and the probability

distribution of a particles spatial coordinates. A few illustrative examples are given
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below.

4.1 Introduction

In the last chapter it was argued that black-box modelling of time series data is very
problematic and that the incorporation of physical knowledge via grey-box modelling
is very difficult and debatable since the assumptions should be tested against the black
box model which is under consideration. The incorporation of physical knowledge
into statistical models is thus an open research issue. The only alternative approach
to the purely data driven black-box modelling technique is an altered physical state
space model which is adapted to the general case that only components of a physical
state vector, in the sense of Section 2.2, and bounds on system parameters are given.
As it has already been argued in Chapter 2 the uncertainties of physical systems are
usually introduced in the form of an additional stochastic term with very specific
statistical properties. Since there does not seem to exist any approach which allows
the incorporation of unspecified uncertainties into state space models, the following
two chapters are dedicated towards developing a theoretical framework which enables
the formulation of non-linear dynamical systems based on imprecise measurements,
uncertain vector flow identification, and error-based but, up to a bound on the vari-
ance, explicitly unspecified stochasticity. Because the problem is too complex to be
solved in a single complete theory, the derivation is subdivided into two sub-problems.
This chapter is concerned initially with the linear case, where the uniform motion
(Landau and Lifshitz, 1960; Arnold, 1978; Hestenes, 1986; Scheck, 1990; Marion and
Thornton, 1995) of a particle is considered. The following chapter then shows how the
derived framework may be adapted to the non-linear state vector dynamics.

This chapter is organized as follows: In Section 4.2 the information content and
availability of a state space is critically reviewed and it is shown that the abstract
physical (exo-)observer concept relates measurements to state vectors and vector flow
which is in real-life experiments principally not available. The prefix ‘exo’ reflects
the abstraction from real life measurements where these nice assumptions do not
apply. As it will be shown below, real-life measurements have a profound influence
on the accessibility of physical variables which change qualitative real-life physical
modelling. It is also outlined how to distinguish classical physical modelling from the
kind of physical modelling which takes the real-life observer’s properties into account.
These properties of a real-life observer are introduced as endo-observer physics. The
prefix ‘endo’ indicates the quality that an observer is somehow incorporated in the
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experiment and that it lacks the level of abstraction it desires in order to establish
a classical physical model. The purpose of Section 4.3 is to demonstrate how the
very well known classical (exo-physical) description of a free, uniformly moving
particle,e.g., the centre of mass of an arbitrary body, can be re-formulated in a new
framework of an endo-physical observer. The evolution of Gaussian probability
density distributions of a free particle and the probability distribution of an oscillating
system in endo- and exo-observer variables is utilized in Section 4.4 to demonstrate
the models capabilities. In Section 4.5 an algorithm is developed which allows a

(sparse) time series within the endo-observer concept to be employed.

Classical statistical methods concerned with the measurement of objects do not
usually distinguish between the statistics required for systems which exhibit noise
by themselves and statistics which are needed because the observer generates noise
entering its measurements. In most cases, however, both situations occur. This chapter
derives a new model which takes into account that the object and observer introduce
noise into the outcome of the measurement and at the same time that information,
which is specified below, is not available to the observer. The modelling of dynamics
of this kind of observer (endo-observer) require a new technique which is demonstrated
on the dynamics of a uniformly moving particle. Apart from ensuring the conservation
of the total energy of an ensemble of particles with a certain mean velocity, also the
variance of the probability distribution within the state space has to be preserved.
Shannon’s theorem (Schlogel, 1989) then leads to an estimated kinetic energy dis-
tribution by utilizing the variance of the action of the state space ensemble which
then delivers the Schrodinger equation. Analytical examples are applied to the derived
endo-observer model for an ensemble of free particles with a Gaussian distribution,

and to an ensemble of harmonic oscillators to illustrate this approach.

4.2 Endo- Exo- observers and their relation to each
other

Physical measurements are a complex mix of abstract concepts and a set of algorithms
of how to relate certain quantities to each other. Consider for example the arrangement
of two radars depicted in Figure 4.2 which are in principle able to measure the velocity
and the position of a particle at the same time. It could be argued that the identification
of a centre-of-mass’ state vector inside the state space which moves with uniform
velocity is trivial because the triangulation for position measurement and the velocity
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measurement through the Doppler effect will lead immediately to the desired state
vector (T, v)!. In Chapter 2 this approach was discussed and shown to be wrong for
two reasons. A state vector consists of real numbers and real-life measurements cannot
determine real numbers. Measurements are always erroneous due to the reasons given
in Section 2.2 and it does not seem to be reasonable to take the instrument readings as
true physical variables of the system’s state. In order to clarify the relationship between
the physical system itself and the experiment a more systematic approach towards the
definition of a experimental arrangement may be employed as it has been suggested
e.g. by Primas (1994). The general concepts of endo- and exo-physics were originally
introduced by Rossler (1992).

The universe of discourse splits this world up into an observing system —which
in our case is the radars together with the experimenter who interprets the outcome—
and the to be observed systems objects, which is here the moving particle. The system
which has no access to an external observer outside the interrelations of object and
observer given by experiments is an endo system. This means, that all our models are
purely based on measurements are all of an endo-character. The exo-system is given by
a sufficient set of rules of how to communicate measured entities of the endo-system
with variables of models created by someone living in the exo-system. A cut is defined
as the meta-theoretical distinction which generates an exo-system and an object from
an endo-system. It has been hypothesized (Hestenes, 1986; Scheck, 1990) that in
general for a mechanical system consisting of a uniformly mobile particle, that there
exist two dynamical variables, coordinate and velocity of a point mass, which can be
represented by an exo-observer by two mathematical objects which are real values.
In principle, each of these two observables can be measured by the radar, when the
mathematics of triangulation and the Doppler effect are employed. Unfortunately,
each physical experiment which consists of the preparation, including the running
of the experiment and the successive measurement, incorporates errors due to the
limitation of precision in measurable variables, the lack of isolation of the experiment
from the environment, and intrinsic noise due to oversimplification of the underlying
physical model or non-removable sources of noise. A rigorous approach to overcome
this problem is to employ statistical experiments where the N-times repetition of the
same experiment leads to the frequency distribution of each observable and in the
case where N — o becomes a probability distribution. Alternatively, a conceptual
set of replicated experiments, an ensemble, may be considered to be the statistical
experiment, and the probability distribution for each of the observables within the
experiment as the state of the experiment. The fictitious exo-observer knows for each
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universe of discourse
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Figure 4.1: The universe of discourse which separates object from the observing systems. An
exo-observer is a theoretical construct, because it requires error free knowledge of an arbitrary
physical system. The example objects to be observed here in a statistical experiment are a
uniform moving particle and a harmonic oscillator.

outcome of the experiment the exact velocity and coordinate of the point mass as well
as the measurement of both by the experimenter utilizing the radars. Assume now, that
the exo-observer can prepare the experiment such that the point mass at any repetition
of the experiment is described by the exact coordinate rp and vo. The mutually indepen-
dent probability distributions for the measured coordinate » and velocity v are defined
by p(r), p(v).respectively. Although the combined measurement of 7,v suggests a
statistical dependence, the fact that the triangulation for the coordinate measurement
is independent of the velocity measurement, i.e. the noise of r is uncorrelated with
the noise of v, leads to the conclusion that the endo-observer is confined to p(r),p(v).
When a similar statistical experiment is performed where the exo-observer prepares
the point mass, i.e. releases the point mass at an initial state vector and measures
repetitively the position and momentum, at every repetition with the probability density
p(ro,vo), then again the measurement is not capable of distinguishing between any spe-
cific preparation rg,vp and is confined to the statistics of p(r) = [ p(r|ro,vo)p(ro,v0)
and p(v) = [p(v|ro,vo)p(ro,vo) which, however, is generally different from the prob-
ability densities in the first preparation. The problem which now arises is, how to
perform a prediction of the probability density p(r,v) when only the estimates of p(r)
and p(v) are given? The answer seems to be quite straightforward by assuming p(v)
to be constant with time and shifting p(r) about the mean coordinate (r) = (v)7 to
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preparation

measurement

Figure 4.2: After the preparation of the experiment, here the release of an particle with certain
but unknown velocity and spatial coordinate, both radars utilize the Doppler effect for velocity
measurements and triangulation for position measurements.

compute p(r — (v)¢). This holds only true in case that p(ro,vo) = 8(ry — ro, vy — Vo),
but generally it has to be taken into account that the probability distribution p(r) is
spreading out with time according to p(v), whereas p(v) is time independent, because
the properties of the measurements are time invariant and p(r — vot,vp) = p(ro,vp).
The last section also points towards the problem of different statistics depending on
whether the source of the noise comes from the preparation of the experiment, or if
the noise stems from the endo-observer measurement itself. When the preparations are
all identical, i.e. p(ro,vo) = &(r— rp)d(v — wy), the variance of both, the probability
distribution of the coordinates and of the velocity are time invariant. This is in contrast
to the opposite case where the endo-observer measures the experiment noise free and
all the errors come from the preparations. In this case the variance of the spatial
coordinate’s probability distribution is time dependent. This means that the statistical
characteristics of object and observer should be treated independently in a correspond-
ing model. Obviously, there is the problem that an endo-observer cannot distinguish
between either statistics. The following model in the next section treats the statistics
which are dependent on the object and observer as if the stochasticity of the measured

variables purely originates from the object. As long as care is taken with respect to
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the stochastic properties of variables which incorporate both, object and observer, the
underlying statistics of an endo-observer state space model will not change. However,
the formalism of an endo-observer’s state space model can be simplified.

4.2.1 Observability of a free particle

Let us consider an endo-observer which has the capability to observe the probability
p(rt). The question which now arises is, if it is in principle possible to reconstruct
p(r,v,t) from a number of observations. A comparison between this problem and the
so-called Radon transform (Helgason, 1980; Herman, 1980; Herman and Natterer,
1981) reveals, that p(r,2) = [dvp(r,v,¢) is similar to the line integral given by the
Radon transform Rp(r,v,t) for which there exists an inverse transform allowing the
reconstruction of p(r,v,#). The Radon transform requires all line integrals which are
parametrized by the variables @,z which define the coordinates of the ray Y, inside
the state space by ze'® + iue’® (Kirsch, 1996). The Radon transform thus becomes

(Rp)(9,2) = /_ :: dup(ze"® + iue'), 7€ R, € [0,m) @.1)

It becomes obvious from Fig. 4.3, that alternatively ¥, ; may be parameterised in terms
of the vector flow and the angle @ is implicitly given by tan@ = ¢, which therefore
implies that in order to cover the interval [0, ), time has to pass from —eo to eo to enable
the Radon transform. Hence, the probability density p(r,v,z) cannot be reconstructed
from observations of a continuous or discrete compact time interval. This proves the
non-observability of p(r,v,t) for any real-life physical observation process. Therefore,
the next section has to deal with estimation techniques when p(r,v,¢) is not explicitly

available.

4.3 An endo-observer’s dynamics of a free particle

It has been demonstrated above that the probability density of the exo-observer p(r, v, 1)
is not accessible. On the one hand classical physical models are exo-observer models
which assume that any physical variable can precisely be measured, one the other
hand endo-observers are only given the information that there is a linear dynamical
system, of which the flow in the state space is conservative, and the probability density
functions p(r,t),p(v). Because p(r,v,¢) cannot be reconstructed within a finite time
interval from the information which is provided to an endo-observer, an estimation
technique has to be derived based on properties of the linear dynamics of a uniformly
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Figure 4.3: This figure demonstrates the Radon transform on a probability density distribution
in the state space of a free particle moving along the real line, i.e., there is an initial prob-
ability density function at an instant ty = 0 such that p(r,v,t) = p(r —vt,v,0) for all t € R.
This figure shows two instants ty,t and thus the transformation that the probability density
function undergoes as time progresses. The solid lines parallel to the velocity axis illustrate
the line integral [~ dvp(r,v,t) = p(r,t) which is related to the Radon-transform, i.e., the line
integral Y, o = (Rp(r,v,10)) (9, z) performed on the initial probability density function p(r,v,1p).
The figure demonstrates that the Radon transform for all angles @ € [0,Q) can alternatively
performed by employing the line integrals [~ dvp(r,wt) for all t € R, i.e., p(r,t) must be
explicitly given for {t|t € R} in order to reconstruct p(r,v,tp).

moving particles in an exo-observer system. It is well known that the Liouville or
continuity equation holds for any continuous differentiable probability density func-
tion p € C! and any vector flow which is a diffeomorphism (GroBmann, 1988) due to
Cauchy’s theorem (see also page 75). The continuity equation describes the dynamics
of preserved quantities, here the probability density which always integrates to unity.
The conservative dynamics of p(r, v,¢|rp, o) in an exo-observer’s state space model are

thus given by the corresponding Liouville equation (Fick, 1988)
0:0(r,v0,t|r0,v0) = —0; (p(r;vo, |70, v0)m™19,S(r, o)) 4.2)

with S(r,vg) being Hamilton’s principal function, given by 0,;S(r,vo) = —H,
0,S(r,vo) = mvy. The vector field inside the bracket of Eq. (4.2) is implicitly given
by the Hamilton-Jacobi equation (Fick, 1988) which is only valid for conservative
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vector fields in an exo-observer’s frame of reference and is defined by
3 S(r,v,1) = —(2m) ™" (0:S(r,v,1))*. 43)

It can easily be demonstrated that p(r — voz, vp) is a solution of Equ. (4.2) by applying
the chain rule to 9;p(r — vot, vo). It may now become obvious why these dynamics can
easily be modelled by an exo-observer, as p(r — vot,vp) is accessible to it throughout
the entire experiment. For an endo-observer this model is no longer valid because only
p(rt),p(v) are given. If the desired model is restricted to the observation and predic-
tion of the probability densities p(r,¢), the Liouville Equation (4.2) can be modified

to
0p(r,2) = =9, (p(rt)m™'9,8(r, (v}, (,1),2)) (4.4)

with (v), (r,t) = [ dvp(v,t|r)v, which has to be determined prior to the dynamics given
in Eq. (4.4). By employing

onrt) = s |

the mean vector field (momentum) can be computed and afterwards utilized for the
Liouville equation (4.4). Note, that the velocity (v),(r,¢) can only be computed for the
1D-linear case, higher-dimensional endo-observer frames of references cannot even
reconstruct {v),(r,1). This can be demonstrated most easily by employing the Liouville
equation for higher spatial coordinate vectors. A relation similar to the one given in
Eq. (4.5) can not generally be derived for the multi-dimensional continuity equation.

The only velocity which may be available is

4.5)

(vl> (rh

rnt)

H/ dr/ driop(r 1) ie{l,.. ,k—1}, (4.6)
J#t

i.e., the vector field (velocity) of a mean taken with respect to all coordinates apart
from the dimension i under consideration.

The modelling problem of the particle’s dynamics with respect to the confined
observation of an endo-observer has now been solved. It has been shown that an
endo-observer’s dynamics are identical to those of an exo-observer when the mean
vector-field (v),(r,¢) can be measured. Further, it has already been demonstrated that
in the case of having a number of coordinates greater than one, the mean vector-field
with respect to the endo-observer’s coordinates cannot be measured. Additionally, the
dynamics of the mean vector field which apply to the endo-observer state cannot be
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computed, because exo-observer physics do not allow the formulation of any dynamics
of the mean vector field. To find a model for the dynamics of (v),(r,¢) a more general
approach is required. The following section introduces an estimate for the dynamics of
(v)v(r,t) based on the general properties of conservative linear state space models of
exo-observers and the accessible probability distributions of endo-observer variables.
The state space concept in classical mechanics utilizes a well defined set of physical
variables which form the state vector which is an element of R”. All these phys-
ical variables are, at least in principle, measurable quantities. A dynamical system
is thus exhaustively represented by a vector field and the state x € R” in the state
space. As introduced in Section 2.2 all these concepts are related to exo-observers.
The endo-observers are now assumed to be able to only share a subset of variables
xp = (x1,... ,xk_l)T € R*! with the exo-observer, ie., the state space concept as
introduced in Section 2.2 no longer applies to endo-observers because there are the
variables xp := (x, ... ,xn)T € R" %1 which are now assumed to be only accessible

to the exo-observer.

accessible to an endo-observer

G smm N
X = (361,... Xk 1> Xks -+ Xn) 4.7)

'

accessible to an exo-observer

As shown previously, the Liouville or continuity equation still applies to this sub-space
of the state space and as such can be formulated with respect to the endo-observer’s

variables as
Jp(x1,8) = =0, (P(x1,8)m™ "9y, S(x1, (%2)y, (X1,1),1)) (4.8)
with the definition of
(PO, = [ FRP G, o) (4.9)

where X; denotes the omission of x;. As already observed, dx, S(X,) is not measurable,
however, it might be possible to measure indirectly the mean components of the vector
field which is (dx,S(X,?))x,,... %,..,x,- For simplicity the endo-observer vector field
(momentum) for a particular instant # = #p when a measurement is taken is defined

by
Fen(X1,%0) = (0%, S(X,20))x,,... %011 00 - (4.10)

This equation states that the vector field Fe,(X1,%9) is a gradient vector field which
may only change according to a gradient as the endo-observer’s vector field has to
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stay measurable according to Eq. (4.6). This property will become essential for the
following arguments.

In order to derive how F,(x1,#) may change with time once it has been mea-
sured, two different frames of reference F, F’ have to be introduced. F’ is supposed to
transform relatively to the fixed frame of reference F following the vector flow defined
by Fen(x1,7). Let us consider the instant r = 7y when both frames of references are
identical with each other. Within a small time interval Az the vector field Fe,(X1,%)

will change by

atFen(Xht) {to - atFen,}q (Xht) lto (41 1)
- AltiLnO[Fen(Xl + AZ‘Fen,xl (Xl ) l())/m, t) - Fen(xl ) IO)]/(At)a

whereby the change of the vector field F.,(x;,#) depends on two separate contri-
butions. The temporal derivative o;Fe, x, (X1,2)|s, represents the change of the vec-
tor field because of the specific probability distribution p(xj,xp,¢) about the mean
J d"x2p(X1,X2,2)X2. The second expression on the RHS of this equation describes the
change of the vector field Fe,(x1,2) due to the transform of the probability density
function p(x1,#) under the influence of the vector field. If for example the variance of
p(x1,X2,t) were zero with respect to the coordinate x; the first expression on the RHS
would vanish and the second expression would describe a deterministic-like flow inside
the state space. The change of Fe, x, (X1,#) may thus be interpreted as the net dynamics
of the vector field Fe, (x1,7) of an endo-observer due to the variance of p(xs,?|x1)’s at
the coordinate x1.

The limit in Eq. (4.11) leads to the definition of the so-called vector gradient
which thus gives the identity

atFen(Xlat)lto = atFen,Xl (Xlat)lto - m_l (Fen(XI;IO)axl )Fen(xlyt0)- (412)

So far nothing has been proposed for the specific function F, x, (x1,?). Before dealing
with this issue let us consider a corresponding potential of Fe, (x1,7) which exists for
two reasons. As derived above only the mean vector field at any coordinate x; with
0 < i< k-1 can be measured, and the function Fe, x, (x1,7) only depends on the
variance taken over all x, components for each x; independently. The potential function

G is defined implicitly by the condition that
Fen(xl,t) = ale(xl,t), (4.13)
which allows Eq. (4.12) to be restated in terms of the potential function as,

9:0x, G(X1,1)]s, = 0s0x, Gy, (X1,2) |1, — (2m) ™10y, (05, G)?, (4.14)
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which implies that
0 G(x1,1) |1, = 0:Gx, (X1,1) |5, — (2m) 7 (9%, G)?. (4.15)

The original dynamics of Fe,(x,7) have just been reformulated by utilizing a new
quantity G but Gy, (X1,?) is as little known as Fe, x, (X1,2). In order to identify what
the potential means physically, it is returned to the Hamilton-Jacobi equation (4.3) for
n dimensions which is integrated with respect to the volume integral over Xy, i.e., it is
wished to find a function G(x1,#) which fulfils Eq. (4.15) and the requirement that

QG510 = @011 )y, = ~(2m) ! (@nSE)F)  (416)

= —(2m) 162, (x1,1) — (2m) "~ (3 (S(X))y, )
= —(2m)™'o}, (x1,10) — (2m) " (3, G, (x1,10))?

with squared variance

2 2
o2, ) = { (30,509~ GuS(0,) ) @17)
X2
and the total squared variance
% = { (3560~ @u5),) ) @18)

The last bracket on the right-hand-side of Equ. (4.16) requires some explanation. As
stated in Eq. (4.6) only one independent component of the endo-observer vector field
can be measured which requires that p(xz|x1) = [T7; p(x:|x1) for all Fe,(xq,2) and
thus for all S. Bearing this in mind it can be proved that

(0%, 5(%)), = 9x; (S(X))y, (4.19)
by observing that
oS 0
/dxz ag)p(lexl) = a—Xl/dsz,-(x)p(xz]xl) (4.20)
d = oS op(x4
— [S(x)—a—X—I—P(lexl)} —!—/dxz ag) /dx’z—ﬁ((%(z—ll—-’—(—l—)

with P(eo[x1) = 1, P(—e|X;) = 0, and the integral [ dx5dy, p(x5|x1) =0.
Eq. (4.16) is the Hamilton-Jacobi equation of an ensemble of freely moving par-
ticles within the exo-observer’s state space which has been projected into R*1 the

exo-observer’s state space components are accessible to the endo-observer. Eq. (4.16)
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implies the following. Because the action function G derives from the dynamics of
the endo-observer’s vector field and the Hamilton-Jacobi equation has to hold simul-
taneously, the squared variance term in Eq. (4.16) has to be equivalent to Gx, (X1,1)
in Eq. (4.15). Eq. (4.16) effectively means that if oy, (x;) were known the Hamilton-
Jacobi equation for the endo-observer could be computed exactly. Unfortunately, this
requires the knowledge of an exo-observer. Since there is no solution to this problem,
estimates of the relative change of Ox,(x1) may still provide a model which produces
predictions based on the limited information accessible. The following section derives
an estimate for the variation of the squared variance 0%, (x1,) with respect to X1.

It is evident from Eq. (4.16) that the total change of ox, (X1) is of no relevance here.
This can easily be seen if an energy F(¢) representing the total mean energy taken over
x7 is added to the left-hand-side of Eq. (4.16). A new Hamilton principal function given
by G'(x1,7) = G(x1,t)+ [dtE(t) then leads to the same partial differential equation
as Eq. (4.16). The crucial contribution to G(x1,#) stems from the changes of energy
between neighboured x;. The principle idea is as follows. As the variance Oy, is not
available its estimation is needed. This may be accomplished by employing Shannon’s
principle of unbiased guess of the probability distribution of the residual energy via a
constant action x/2 defined in Eq. (4.21). After the action distribution has been chosen
such that the volume integral with respect to the x; coordinates is identical to K/2
(action conservation), the divergence of a vector field corresponding to the distribution
of the action may be computed which is a measure of kinetic energy increase at coor-
dinate x; within a infinitesimal volume dx; in comparison to its neighboured volume
elements. Because the action is a measure of the entire state space, the flux, as will be
shown below, can be computed in two different ways, whereby Shannon’s approach
of unbiased guess then suggests to utilize as the flux the equally weighed sum of both
fluxes.

Assume that 0y, Ox, is bound by a constant ,

Ox,Ox, < K/2 4.21)

The action given by Equ. (4.21) is time-invariant because the following integral can be

reduced to
/ ax (x1 — (x1) (%2,1))2 (%2 — (%2))2 (%, ) 4.22)
_ /dxldxz (31 = (x1) (32,0) - ";215)2 (%2~ (x2))2p (x1 = (x1) (32,0) - %‘",xz,o)

B /d" (x1 = (x1) (x2,0))* (32 = (x2))* P (x,0).
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The only information available about x/2 is the value of the integral in Eq. (4.22). The
exact distribution of K with respect to X1 is by definition of the experiment inaccessible.
Assume that the mean of a variable k is known, as well as the probability density p(X1).
The question arises what the probability density p(k’,x1) = p(x’|x1)p(x1) is. The lack
of knowledge about p(x’|x1), requires an estimate which does not include any biased
guess (Schlogel, 1989), i.e., it is assumed that Relation (4.22) holds with respect to
any p(x;). This is only the case if and only if p(x’|x;) = p(x’). Thus, the estimated
probability density to have the squared action k?/4 at coordinate x; is p(x1) — which
is equivalent to a fictitious ensemble of particles with probability p(x;)dx; within the
interval dx; at coordinate x; where particles inside the interval share the squared action

k% /4p(x1)dx; — with a corresponding vector field
F(x1,1) = —(k%/4)0x, p(X1,1). (4.23)

This vector field may be interpreted as the change of squared action, which is propor-
tional to the energy, when its probability density at coordinate x; is being compared
with the one at coordinate X1 + dx;. The negative sign takes care of the fact that the
squared action increases if the gradient is negative and vice versa. As mentioned above
there are two distinct cases for computing the flux of a vector field.

(i) Let us consider the case where each subset of the system’s ensemble at any
coordinate x; has the same generalized kinetic energy proportional to |k|? /4, in which
case the total generalized kinetic energy at x; is |k|?/4p(x1,2). The relative change of
the total generalized kinetic energy at any state x; is then zero, but the total change
of the total generalized kinetic energy at x; is [k|?/40x,P(x1,2). The negative relative
divergence of the vector field (4.23) is thus —k?(4p(x1,7)) 192 p(x1,) and therefore
defines the generalized energy increase of an event at X1 due to the fact that the energy
distribution within all ensembles is a d-function around a specific value and that the
probability about a neighbourhood of x; changes. This can be more easily visualized
by comparing the system with a distribution of particles as given by p(xy,t), of which
each of these particles has an energy proportional to k?/4. When at an instant ¢ within
the interval d"x; p(x1,¢)d"x; particles flow through the interval with a fixed general-
ized kinetic energy o k2 /4, the net change o the total generalized kinetic energy inside
the interval d"x; at the state x; changes about — (k2 / 4)8,2(1p(xl ,1).

(i) Let us consider now the case that the relative generalized energy of an event
changes with respect to x;. Although the total generalized kinetic energy is still
(|x[?/4)p(x1,1)d™x, in the mean the vector field for every single event changes ac-
cording to the relative vector field (p(x1,¢))~'f(x1,2). Because there are p(x1,?)d"x;
events within the interval d”x;, the total change of the energy is still equivalent to
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Eq. (4.23) and thus the total generalized energy is preserved. The negative diver-
gence of the relative vector field is then identical to —dx, [[K|?(4p(x1,¢)) " 10x, P (x1,2)]
and represents the increased energy density at coordinate X; because of the relative
generalized energy which is increased with respect to the neighbouring coordinates.
This case can be more easily explained by an ensemble of particles within d"x; at
x; in which each particle changes its generalized energy from x; to Xxj + dX; about
x|2/(4p(x1,1))0x,P(X1,2). The net change of the total generalized energy in the
interval d"x; at x; due to the change of energy of each particle is then identical to
—p(x1,2)0x, [K?(4p(x1,2)) 105, p(x1,2)]. The negative sign of the divergences in both
cases takes care of the fact that a source is proportional to the negative divergence of a
vector field. In the above argument the magnitude of the constant K has been employed,
now it will be clarified what k really is in terms of a physical constant. It is well known
that the units of x; are meters and the second derivative of G becomes

(2m) 7102 G2, = m ™! pZ, + Gres02, Gres) (4.24)

which demonstrates that it is proportional to the kinetic energy of the ensemble of free
particles subject to an endo-observer, the units of x must be therefore in kg - meter? -
sec”!. Two estimates of o, Gy, (X1,1)]s, are possible.The question arises which is the
optimal one. As there is no additional information with which to make a choice, Jaynes
principle of unbiased guess requires that both estimates have to be included with equal

weight into a common estimate.

Ees(x1,00) = K*(8mp(x1,t0)) 02 p(x1,t0)
+K%(8m) 195, [p ™ (x1,70) %, P (X1, 70)], (4.25)

which is valid for all p(xq,#p) > 0. The form of E.(x1,%0) is very crucial for the
following analysis of G(x1,#) in Eq. (4.16), because the origin of G derives from the
meaning of 9, Gy, (X1,)],, Which is generally dependent on the coordinate system, i.e.,
the mean vector flow is dependent on the Jacobian matrix which defines the transform
between the two frames of reference F and F'. It is only because of the specific form
of Es(X1,19), which is expressed in coordinates of F rather than F’, that the endo-
observer dynamics can be formulated for any instant z # #9. Since Eq. (4.16) is a
partial differential equation which is only dependent on xi,¢, the action G(X1,?) can
be integrated for all ¢ # £y and is thus not limited to an infinitesimal time interval
at a specific fp. It also becomes clear why the action function is chosen to be k/2
instead of just K. The addition of the two fluxes in Eq. (4.25) leads to 2Ey;, where the
factors in the numerator and denominator cancel each other out. Equation (4.25) is very
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unwieldy and can be simplified by defining A(x1) = v/p(X1), so that the left-hand-side
of Eq. (4.25) can then be rewritten in terms of p(x1,?) as

2 1 9% K2 9 1 9p
SmoGer) o ) Gmans (s ) (420

B K2 1 1 Pp, 1 1 Ip(x1)\?
 2my/p(x1) (ZVD(Xl)aX%(Xl) 4 03(X1)( 0x ))
_ K __8_( 1 B_p(x)
T 2my/p(xn) %1 \ 2/p(xy) 0%

l(i 1 azA(Xl)
2mA(x;) 0x3

After this long digression the purpose of deriving the specific form for the estimate
Ox,(X1)/2 in Eq. (4.16), it will become evident when it is considered how the Liouville
and Hamilton-Jacobi equations (4.2) & (4.3) can easily be rewritten in terms of A(xX;)

as
(240,A) (x1,1) = —0y, (A*(x1,t)m™ 105, G(x1,1)) (4.27)
= —2A(x1,1)0x,A(x1,8)m™ 0y, G(x1,1) — A% (x1,)m '0% G(xy,1)
and accordingly,
0:G(x1,1) = K*(2mA(x1)) 193 A(x1) — (2m) ™! (9, G(x1,1))? (4.28)

Multiplication of Eq. (4.27) by ik(2A(x1,¢))~!exp(iG(x1,t) /x) and the addition of the
result with the product of —A(x1,7) exp(iG(x1,t) /) and Eq. (4.28) leads to

ixd; [A(x1,7) exp(iG(x1,1) /K)] (4.29)
= --2% [2ik 105, A(x1,1)0x, G(X1,7) + iA(X1,£) K02, G(x1,1)
+ 02, A(x1) — A(x1)Kk 2 (3 G(x1,1))? ] exp(iG(x1,1)/x)
= —Kk*(2m) 192 A(x1,7) exp(iG(x1,1) /X)

By introducing the notation y(x1,7) = A(X1,#) exp(iG(x1,7)/x) this equation can be
restated as

iK0p W (xy,1) = —x*(2m) 102 y(xy,1). (4.30)

which is the well known Schridinger equation (Ballentine, 1998) in Quantum me-
chanics (QM). It is important to realize that although this partial differential equation
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is intriguingly equivalent to that form in QM, the motivation is somewhat different.
Firstly x represents in QM 7 which is Planck’s constant up to a factor 27. In the case
considered here, K is a parameter which characterizes the preparation procedure within
the experiment. Secondly, QM postulates that the velocity and momentum operator are
non-commutative. This has not been postulated in the above derivation. Pure statistics
of observables of an endo-observer with respect to the variables of an exo-observer
are developed here. It is remarkable that this equation even holds when A(xy,¢) =0,
i.e. when the probability density function is zero at any X;. During the derivation of
Eq. (4.30) a term for E.s(X1,%p) was derived in Eq. (4.25) which does only hold for
p(x1,t) # 0. The reason for this apparent contradiction is, that Eq. (4.25) refers to a
quantity which is relative with respect to p(x1,¢) whereas Eq. (4.30) refers to a function
which is absolutely dependent on p(x;,#).

When the final form of the estimated dynamics of the probability density function
for an ensemble of free particles has been found, it has to be demonstrated that these
dynamics are consistent with the mean behaviour of this ensemble, more specifically,
the invariance of the mean momentum for any exo-observer has to be demonstrated
together with the Galilean invariance of the dynamics with respect to an arbitrary mean
velocity.

Initially consider the mean value of any variable which is measured by the endo-

observer defined by

(x2) = / d"xx2p(x, 1) 4.31)

for any ¢ € R; the exo-observer measures obviously the same mean coordinate. The
mean momentum of the endo-observer is given by the integral over the flux of Eq. (4.8),

Le.,
p) = /dk_lxlp(xlat)ale(xlyt) (4.32)
= i [ @0 (30,100 W (x1,0) = W(1,1)) 0 W (R1,0),

By definition (p) has to be proportional to the change of the mean coordinate of the
probability distribution of p(xi,7)

dy (x1) (1) = — / dk’lxlp(xl,t)—gi—l—G(xl,t)xl = (4.33)
- [le(xlat)ale(xht)r_ow+/dk_lxlp(xlat)ale(Xht)

The bracket in Eq. (4.33) is equal to zero due to the decay of p(x1,#) which is assumed
to be faster than the increase of [x|. (This is a reasonable assumption since it indirectly
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defines bounds for the variance of p(x1,#).) To ensure that d, (x;) (¢) = const. for all
time, the higher order time derivatives have to vanish. In order to show this, it is easier
to consider the inverse transform of the Fourier transform of y(xj,7) in Eq. (4.30).
When (K, ?) denotes the Fourier transform of y(x1,7),

V(k,1) = (2m)~ (k=172 /w d*xy(x1,1) exp(—ikr) (4.34)
the Schrédinger equation becomes
i (k1) = —xk?(2m) " 1(k,1) (4.35)
with the trivial solution
U (k,?) = exp (—itxk*(2m) 1) ¥ (k,0) (4.36)
The mean momentum (4.32) can thus be expressed in terms of ys(k,#) which is
—iK/dxluf*(xl,t) %ul(xl,t) o< (4.37)
/ dx / d* (kK) / d* (kK )7 (, 0)F (K, 0K’ x

exp (ix1 (K —k) — ;-”%(k'z — kz)) = / d*(xk)p (K, 0)K’

whereby p(k’,0) = y*(k,0)y(k’,0) which proves that d% (x1) (¢) = 0 for all a > 1.

Now that it has been shown that the Schrédinger equation serves as an appropriate
model for the ensemble of free particles requiring the initial probability distribution
p(x1,0), the measured mean velocities (v) (x;,0) and the variance of the velocity dis-
tribution for prediction purposes, the question arises how the mean momentum enters
the model Eq. (4.30). By definition Eq. (4.30) has to hold for all mean velocities. In the
following consider the frames of reference of two endo-observers one x; is attached
to a coordinate system which is immobile with respect to an exo-observer and the
other one x; moves uniformly with the mean velocity (p) /m of the ensemble. The
preparation of the experiment is obviously the same for both endo-observers, thus the
probability distributions have to be the same, i.e.,

A%(xq,1) = ¢ (x1,)W(x),t) = A’Z(x’l,z") =y (x},/')y'(x],7'). Hence the on-
ly available difference between W' and W is a phase shift, ie, Y (x},t) =
W (x1,1) explid((p) ,x1,2)] (Ballentine, 1990; Ballentine, 1998). The coordinate trans-
formation between the two endo-observers is X; = x| + (p)¢’/m,t = t', where the
gradients in both coordinate systems must be identical due to the linear shift, and
the partial time differential is d/0¢’ = 9/dr + (p) /md/dx;. The second summand
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represents the change of a function at a point x; due to the velocity of mobile frame
of reference. Applying the derivatives in coordinates of the uniformly moving frame
of reference to Eq. (4.30) to an equation which contains terms as in Eq. (4.30) for
the fixed endo-observer plus some additional terms which vanish as the endo-observer
model is independent of the mean velocity. For these additional terms to become zero

the phase shift must be equal to
0((p) ,x1,1) = (p)x1 /% — (p)*t/(2mx). (4.38)

This identity therefore defines how the initial state of an endo-observer changes, when

the mean velocity is added to the initial state.

4.3.1 Bounds for the variance of the probability distribution of s-

patial coordinates

Although the Schrodinger equation for a free particle is reasonably easy to solve,
sometimes an approximation to the variance is sufficient. In that case the variance of
the action enables the estimation of Oy, (#) by calculating the strongest growth possible.
Without loss of generality assume that the mean velocity of the ensemble is zero. When
at a time ¢’ the variance Oy, (¢') and x/2 are given, then due to the bound (4.21) the

increase of the variance is limited by k/(20x, (¢')), i.e.,

Ox, (1) = oy, (1) +x1 /(20%,(t')). (4.39)

4.3.2 Conclusion

This Section 4.3 introduced first the Hamilton-Jacobi and continuity equation for an
ensemble of free particles for classical conservative physical systems; this concept has
been defined (Hestenes, 1986; Scheck, 1990) to be an exo-observer concept. Following
the arguments in Section 4.2 it was demonstrated that exo-observer physics are not
available to real-life observers, as the formalism of the Hamilton-Jacobi and Liouville
equation has been adapted to the endo-observer. The endo-observer is nothing but an
ideal real-life observer in the sense that it has only access to a subset of the physical
state space. The problem that a real-life observer cannot measure real numbers as
physical variables, since any kind of measurement involves floating point numbers, is
not considered here. Modelling of endo-observers remains an open research issue. Few
examples within the next section will illustrate the endo-observer model capabilities as

they can easily be compared with analytical exo-observer models.
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4.4 Analytical Examples

EXAMPLE 4.4.1 (Gaussian distribution for spatial coordinate and velocity) In
the motivation above, a uniformly moving particle whose coordinate and velocity are

measured by two radars, may be prepared such that the initial probability density is

Gaussian,
1 (r—ro—-vt)2 (v~vo)2
V1) = -~ - 4.40
p(r1) 216102 °xP ( 207 203 (4.40)
1 3 e \?
_ -2 _ — = 4.41
210102 P (CI * 4cs ©3 (v 2 3) ( )

As the endo-observer model implies, the experiment does not allow the measurement
of p(r,v), since only p(r) and p(v) are explicitly known, i.e., the prediction has to be
confined to employing the Hamilton-Jacobi (4.3) and Liouville equations (4.2). The
measurable probability p(r,t) is then given by

((r~70)—V0f)2>
p(r1) ( , (4.42)
\/271‘. 2t2+6 2(o§t2+c%)
hence,
2 2
o5(r—ro)t+67vo
0 0= 52 = 2 @43
1 o202
2 102
)= — = 12 4.44
(02, = 02) () = T (4.44)
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this follows immediately from the fact that p(r,v,t) = exp(c1 + c2v — c3v?) = exp(c1 +
c5/2¢c3 — c3(v — c2/2¢3)?), with

(r—r0)* v
o = — - 4.45
LT T2 202 (4.49)
2 2
o (r—ro I+ 05vg
o = -2 0225 — (4.46)
192
2,2 2
o3t’ + o3
102
@ _ o3 (r.— ro)t + 62vp (4.48)
2¢3 0312+ o7 '
3 _ (@r—r)i+oiw)? 449)
4¢3 20%03(c32 +63)
C1+££‘ _ (r—r())2 (r — ro)vot B tzv% (4.50)
4c3 2(c32+03)  (05t2+03) 2(o3t2+0?)
_((r=ro) —vot)? @51)
2(0312 4 02) '

Note the derivation of Eq. (4.42) is based purely on the possible observation an endo-
observer can perform. Eq. (4.30) for the 1-dimensional case reads
a2

%\y(r,t) = 5%;72‘”(”’)' (4.52)
What an exo-observer measures at a time t = 0 is the Gaussian distribution in E-
g. (4.42), where (v) (r,0) = 0 as long as the mean velocity of the ensemble is equal to
zero, i.e., the action function G(r,0) is in that case is zero as well. The square-root of
Eq. (4.42) and Eq. (4.38) leads to the initial state function.

(r=rp)?

W(r,0) = e 4T (4.53)

with (v) = Kko the mean momentum and G, = h/20 the variance of the initial velocity
probability distribution. The solution of Equation (4.53) is computed best by utilizing
the Fourier transform of Eq. (4.36). Its solution is well known (Fick, 1988; Ballentine,
1998), and is identical to Eq. (4.42). Note, the appearance of the mass inside the
above parameters follow from the fact that Eq. (4.53) deals with momenta rather than

velocities as in Eq. (4.42).

EXAMPLE 4.4.2 (The Harmonic Oscillator) Consider again the arrangement of

the above experiment, where the objects are harmonic oscillators. The radars are now
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employed to measure the momentum p (velocity v) probability distribution p(p,t) and
the spatial coordinate probability distribution p(r,t) for the elongation of the oscillator.
Now the time parameters play a crucial role. A typical radar can take say N measure-
ments per second, i.e., it has a resolution for frequencies of up to pmax = 1/(2N) which
means that changes of a probability distribution grater than Vi.x cannot be detected.

The experiment consists of the following steps.

e Prepare the oscillator with frequency ®. The errors of each individual prepara-
tion require the utilization of a model of ensembles with the probability density

p(’”OaPO)-

e The statistical experiment, i.e. many times repetition of the momentum (velocity)

and, separately, coordinate measurement lead to p(r,t),p(p,t)

A harmonic oscillator is described best within the phase space, which is the r,mv-
diagram where each individual oscillator with initial momentum mvg and initial spatial

coordinate ry is represented by a uniform rotation about the origin, i.e.,

r(t) = +\/rd+ p§sin(wr+0) (4.54)
v(t) = /r+ picos(wt+9), (4.55)

with tan® = po/ro. This means that the dynamics of an ensemble of oscillators are
defined as the rotation of the probability density in the phase space. As in Exam-
ple 4.4.1 assume that the initial probability distribution is Gaussian which leads for

the exo-observer to the phase diagram of the ensemble of oscillators,

’ 1 C% cs 2
p(rv,t) 2m0105 P ( <C4 cé) C6 (P p r) : (4.56)

whereby
1 o3-of_
= —5 — sin“ (ot 4.57
4 202 20303 (wr) 457
2 2
= = sin(2m¢ 4.58
“ 46203 (200) (48)
2 2
6 = —— 27012 4.59)

2 2.2
202 20102

The measurable probability p(r,t) is then given by

1 2
p(r,t) == mexp [—rz <C4 e g)J (460)

1 2 Cg
—_— Ce — — 4.61
p(paf) = 5 ,__._4 : ZeXP[ 14 (6 ):la ( )
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with the simplifying assumption that the measurable probability densities of the endo-
and exo- observer are identical. If the model of the harmonic oscillator is known
and the probability densities are given as the limit of the frequencies gained by the
statistical experiment, the total energy can be easily computed. This is exo-observer
modelling as it requires unlimited access to all physical variables. However, as an
endo-observer this includes too many assumptions which are not based on the avail-
able measurements. Therefore, an endo-observer is confined to a model which deals
with the differences between all measured p(r,t + it),p(r,t + it), where, i € N and T
defines the time difference between two successive measurements. Because an exo-

observer determines the kinetic energy by

1
Thrp =5~ / dpdrp*p(r,p,1), (4.62)

which means that the maximal kinetic energy difference of a corresponding endo-

observer estimate is equal to

1 1
Epee = 5 (Trnan = Tiin)p = 7 / dvdrp*(0(r1,0) — p(r,v,1/200)),  (463)

when o,(p(r,0)) = max(c,), and E,; denotes the total energy of a fictitious, non-
statistical oscillator with frequency ®. As in our example the energy difference be-

comes
11,2 2
(Tmax — Tmin) ., = 5;(’;1‘”(51 =)l (4.64)
Consider next the probability density
1 r? V2
o, 70 ____________rZ 2 S ) 4.65
P(ro.p00) = a3 OPOexP ( 2 zog) (4.63)

and the corresponding energy difference which is
(Tmax — Tmin>r,p = 5;(’;1‘“(01 —og)ll (4.66)

The problem above is a purely stationary one, i.e., the probability density is up to a
rotational coordinate transformation time invariant. Returning to the approach given
in Example 4.4.1 now requires the computation of endo-observer-model (4.30). First,
the stationarity of the dynamics has to be taken into account. Stationarity here means,
that the function \y(r,t) consists of two parts, one which is purely time dependent
0(t) and the other which is a function of space coordinates only. To accomplish this
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the product-ansatz® is utilized (Fick, 1988), i.e., W(rt) = W, (r)0(¢). Schridinger’s

. . 2 3
equation becomes due to the mean potential energy %9_;2 at coordinate r

2 g2
K* d me
SR ~0 |

omarr ¥ 2 n| ¥alr) =0, (4.67)
with E, o X, because the substitution of y,(r)0(t) into Eq. (4.30) leads to ——% =
——Z%-diff + %Qrz = const. with const. = X® due to the physical requirement that
the dynamics are W-periodic. It can be shown (Fick, 1988) that the solution-

s of Eq. (4.67) require the discrete set of functions which are defined as W,(r) =

%%6’2/2%6“’2/2, and E, = (n+1/2)xw. The square of the first two func-
tions for n = 0,1 is in both cases identical with the probability densities in E-
gs. (4.61), (4.65), if and only if x® = %nI](U% —0%)||. The equivalence is physically

evident because it represents the variance of the total energy.

4.5 From time series to endo-observer models

The above examples have illustrated the differences between endo- and exo-observers.
It is now necessary to devise an algorithm which defines the framework of an endo-
observer state space model for time series in order to compute (predict) the future
likelihood of finding a particle (or an arbitrary bodies center-of-mass) at a spatial

coordinate when only a time series is given.

4.5.1 Probability densities from time series

After the dynamics of an endo-observer have been established, its probabilistic for-
malism has to be related to real-life measurements from experiments (see Section 4.2)
which utilize a radar for the spatial coordinates and the velocities. Initially it is assumed
that nothing is known about the radar or the experiment’s statistical properties.

When the experiment is repeated N times and each time, after # seconds have
passed, the velocity and the centre of mass coordinate of a body are measured, a
frequency distribution of discrete sets of possible velocities v and spatial coordinates
r can be extracted. Under the assumption that N is very large, probability distribution
functions for v and r can be fitted to the discrete distribution. However, in most cases
an experiment is established only once and the experiment’s outcome is only defined

by a unique times series consisting of two components, r and v. In this case a modified

*Ansatz is a scientific term for approach.
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approach to probabilistic system modelling has to be devised. Assume the modeller
is given N data pairs (r,v); with i = 1,...,N. The mean velocity is thus equal to
v =Y,vi/N. A probability distribution of coordinate vectors may be approximated by
utilizing a set of transformed data points (» — ivt,v); which then lead under the assump-
tion that ensemble mean is equivalent with temporal mean to the identical probability
distribution as in the first case. Once the probability density distributions p(r),p(v) are
available, an initial probability distribution p(r,#y) = p(r.+ Nvt) can be calculated. The
mean velocity distribution can either be approximated by (v),(r,79) = ¥, or (v}),(r,%)
may be estimated by utilizing the difference of two initially derived probability distri-
bution functions at two separate instances #p,#1. The latter mean velocity estimation at
a coordinate is based on Eq. (4.5). The problem here is that the estimated probability
density function p(r, fp) is a very rough approximation of the exo-observer’s probability
density function p(r,#). In many case much more information is available about the
radar’s stochastic properties.

Assume that a radar is an ideal one in the sense that the noise which enters the
time series is purely random and the central limit theorem (Schlogel, 1989) applies.
In this case the probability density function takes the form of a Gaussian distribution
function. When the variance for each v component is ¢y and for each r component
is Oy, the maximum likelihood method (Papoulis, 1991) of this probability density
function then requires that the Gaussian distribution is centered about each measured
state (r,v);. The probability density function for N data points may be extracted by the
following basic relationship between statistical events E4, Ep, Ec: The probability of
event E4 and Ep happening under the constraint of event E¢ is given by

P(EAANDER|Ec) = P(EA]EBANDEc)P(EBIEc), (4.68)

whereas the probability of event E4 or Ep happening under the constraint of event E¢

is given by
P(EAORER|Ec) = P(Es|Ec) + P(Eg|Ec) — P(EAANDEB|E() (4.69)

If the probability density function is required for the special case that N data points
are given and at the same time (r,v); and (r,v); are valid measurements for all
1 <1i,j <N with i # j then Eq. (4.68) needs to be employed. However, when one
seeks the probability density estimation for N data points for the case that (r,v);
or (r,v); are valid measurements for all 1 <i,j < N with i # j then Eq. (4.69)
describes the statistical relationship between all measurements correctly. Here it is
assumed that the measurements of all data pairs (r,v); are statistically independent
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P((r,v);AND(r,v);) = 0 for all i # j, as well as for any arbitrary statistical combi-
nation of the form P((r,v)yAND... AND(r,v);) = 0. This assumption is justified as
each measurement is performed independently from any of the other ones. A statistical
model which defines a common event of N data point measurements each of which
leads to the appropriate statistical endo-observer state estimate has thus to employ
Eq. (4.69) which then becomes

N
Piewlicni (T, V,00) = N7'Y (2m\/5:6y) > (4.70)
i=1
x exp (—(r — (r; — 1)) *(207) — (v—v3)*/(203)) .

It has to be mentioned that another approach may consider the probability of a model
approach has not been utilised as this would assume a statistical exo-observer. Endo-
observers require statistics due to the performed measurements which in the ideal case
are statistically independent of each other. (A more detailed motivation and derivation
of this probability distribution function may seen in Sections 4.4 and 5.5.) The prob-
ability density function p(r,fp) employed for an endo-observer model is thus given

by

N
p(r,t0) = N71 Y (2n0r0y) /2 exp (—(r — (1; — i(v)v(r,70)10))?/(202)) . (4.71)

i=1

and the three mean velocity components at an arbitrary spatial coordinate r become
(vjv(r,1) = /_ VAXD((1.v), i<} (I, V, T0) vy (4.72)

with the total velocity variance of
2 RS =
Slviicny =N 7' D (2noy) 32 / v (v—v)2exp (—(v—v)?/(262)).  (4.73)
i=1 —ee

The formulae (4.70)—(4.73) just derived may in some cases be interpreted as the proba-
bility distribution functions utilized for calculating p(, v,#) at any instant ¢ in the future
(Papoulis, 1991), thus providing predictions. However, as argued in Section 4.2, the
probability density function p(r,v,#) of an exo-observer cannot be extracted from the
kind of measurement performed by the radar arrangement. The argumentation so far is
thus based on the same principle as in the beginning of this section. Instead of utilizing
the data points themselves and superimposing them, which could be interpreted as
the superposition of N d-probability distributions, a Gaussian probability distribution
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with fixed variance about each data point has been employed for the estimation of the
relevant endo-observer’s initial variables. However, the prediction model of an endo-
observer’s time series is very much different from the kind of prediction algorithm
utilized in black-box modelling. As in Example 4.4.1 the total variance of an initial
probability density function p(r,v,#p) will be employed in the following example for
estimating the dynamics of p(r,v,#) with # > #y. Since a complete endo-observer model
with respect to a time series has been established, an example is presented where an a
set of two data pairs (7, v) ; are chosen for computing the future distribution (prediction)
of p(r,?) in endo- and exo-physical variables in order to compare the models with
each other. As the endo-observer model for three spatial coordinates does not add
anything new to the principles under discussion, the without loss of generality the
following examples focus on a particle moving uniformly along a line. The follow-
ing calculations may be simplified by realizing that the dynamics of a superimposed
Gaussian probability distribution is identical to the superposition of the dynamics of
each individual Gaussian probability distribution. This is a property of the linearity
of all operators in case of the exo-observer’s continuity equation as well as the endo-
observer’s Schrodinger equation. The limitation to only two measured data pairs (r,v);,
with i = 1,2 is due to the analytical difficulties which arise if when the endo-observer

model is applied to larger sets of data pairs.

EXAMPLE 4.5.1 An endo-observer’s states with erroneous mean velocity mea-
surements The purpose of this example is to demonstrate how the probability density
function p(r,t) of an endo-observer compares to the one of an exo-observer. Because
numerical simulations are far beyond the scope of this thesis only a simple analytically
tractable example may be chosen. It is therefore assumed that the variances o,,0, are
known and that an endo-observer is just given two observations. Additionally, the
estimates of an endo-observer’s mean velocities (v),(r,t) are assumed to be faulty in
the sense that an endo-observer identifies a linear function of (v),(r,t) rather than the
correct one. This example is structured as follows: (i) The probability density function
of the exo-observer is calculated. (ii) The product of variances of the initial spatial
coordinate and velocity probability distributions are determined. (iii) An estimate for
the mean velocity distribution for each spatial coordinate is introduced. (iv) The initial
endo-observer state is composed. (v) The Fourier transform is employed for computing
the endo-observer state for all time t. (vi) The probability density function of an endo-
observer is compared with the one of an exo-observer.

The difficulty of finding examples is not because the theory which has been devel-
oped in this chapter is only applicable to few cases, instead it is because it becomes
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difficult finding examples which can be treated analytically as the complexity increas-
es. Since numerical simulations are not within the scope of this thesis the example
given below may be realistic in its computation but it lacks the complexity of real-
life time series which are sets of at least several hundred of data points. In order to
keep the calculations simple few additional modelling issues are taken into account.
Because the multi-dimensional case does not give any new insights about the model,
only the one-dimensional case is considered here. It has been proven above that the
Schrodinger equation is invariant under inertial transformations, it can always be
found a coordinate system such that two spatial coordinate estimates are r| = —r
and two velocity measurements hold vi = —v;.

The state space’s probability density function of a particle which moves along the
line is assumed to be defined by

1 (0} +03) 2 2
— —_ T2Z —F1 — — 4.74
p(r,v,t) 41010, [exp( 4620% ((r r Vt) +(V Vl) ) 4.74)

(0% — 02)(r—r1—vt)(v v1)>

2
40203

(r+n —Vt)2+(v+v1)2)

g)(r—!-rl—vt)(v—l»m))J,

2
46203

+
2
O]

+
+exp(
L

4
G2 —
1~

which therefore exhibits the dynamics of p(r,t) according to

- . 1 exp [ — (r—-r1+tvl)2
Plrt) = 2\/’}5—\/050—1)24-0%(1—}—1)2{ p( G%(t‘l)zﬂf%(ﬂ“l)z)

B (r+ry+1v)? N
+e"p( G2t —1)2+o2(t+1)2 (475)

with the mean state (7,v)T = (0,0)T. These dynamics hold for all time t € R. In

order to compute the endo-observer dynamics, the total variance of p(r,v,t) needs to
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be determined.

K%/4 = / drdvp(r,v,O)rzvzzczc‘%: (4.76)
(01 +03) 2 2
drd _O1+%9) ¢ _
/ rv4n6102[ p( 40703 (=" (r=wi))
+(51‘5%)(r—r1)("—"1))
46303
(01 +03) 2 2
_+_ VRN VU L
eXp( e ((r+7)%+ (v+)?)
LR EEAERS)
46303

307+ 305 +4(1+ )i +203(1+ 73 —drivy +v3)

- /2
84/0% + 03
+2(51(1+ — 6% +4rv1 +12)
2
84/0%+ 03

which may be compared with a single Gaussian probability density function
1 (03 +03) 5 5
{ = e—— R S S LA — — —
p(rw,t) 216167 [exp ( 46303 ((r=ri=v) (v =v)’)

(0‘% — G%)(r— ri—vt)(v— vi)>
prer 4.77)

+

with the variance
K5/4 = / drdvp(r,v,0)(r — r;)*(v —v;)? = 6202 (4.78)
3(6}+03) — 20%02 +2(03 + 63)

164/0%+ o3

All that is now needed for the endo-observer model is the mean velocity at an instant

to = 0 and at the spatial coordinate r which is defined by
Ol = [ avp(op)y (4.79)

4rry _

o7 — 63 exP(02+c§) 1( o} - o3 >
1% .

2 2

61+03 exp( 4:‘ )—H

This equation is superimposed by two functions of which the first term is linear in r

and the second term which is nothing but the hyperbolic tangents tanh|2rr1 /(63 +03)]



CHAPTER 4. THE ENDO-OBSERVER OF A LINEAR SYSTEM 116

multiplied with a constant r1 (62 — 63) /(63 +03) — v1. It is now assumed that the endo-
observer is incapable of estimating the precise mean velocity as given in Eq. (4.79).
Because of the imprecision the endo-observer estimates a pure linear relationship in
form of (v),(r,t) o< r. The initial state is defined as before through the identity y(r,t9) =

\/p(nto) exp(im [y dr' (v}, (¥ 1)) and therefore holds

y(r0) =

2R \/m oo (&)

(1/2) 2
+exp(—£1t19~>} exp(""cy 02#) (4.80)

o3 +of 2 62+03

where it has to be borne in mind that the endo-observer state function y(e) incorpo-
rates the momentum and not the velocity, which is the reason for the mass m appearing
in the exponent of the function.

The Schrodinger equation now can easily be set up by employing Eq. (4.80) and
the estimate of K in Eq. (4.78). In order to compute the dynamics it is not very advisable
to perform the corresponding calculation in the spatial coordinate representation of
the Schrodinger equation. However, the Fourier transform may be applied to Eq. (4.80)
which according to Eq. (4.35) leads for any t to \y(k,t) in Eq. (4.36). The inverse Fouri-
er transform then provides \y(r,t) for all t € R. In order to simplify the computation
even further another approximation is utilized. In case that ro > G| the square root
of the sum of exponential functions in Eq. (4.80) may be approximated with the sum of
the square roots taken from the exponential functions individually.

1 (r—r1)?
P\ 2621 202
\/ 2¢/M\/ 03 + 02 2 1
(r+r1)? im 62 — 03 2
+exp| ———= || ex 4.81
p( 203 + 207 P 202+02 (+81)
The Fourier transform is now easily performed via Eq. (4.34) which thus leads with
Eq. (4.36) to the Fourier transform

y(r0) =

_ 2 \/ o1 +03 1KK? 180
)= 21 2\/-(1“""(0%‘02))6 p<—l—2—"7> (452
(—lkz(Gl +52) - 2kr0(5j1 — 51'2)(()'2-}-6%) +mrg(—6% + G%))

2(0% + 03) (i + mo? — mo3) '
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The endo-observer state space function may now be determined through the inverse

Fourier transform applied to \y(k,t) which immediately gives

2 my /o3 + o3 w8

1) = .
w(n1) gl 2y/m(ixt +mo3(1 — k) +mo(1+kt)

xe (imrz<0%+6%)(i+m(c% —03)) = 2m(81 - 8j2)r70(5%+‘5%))
2(02 + 63) (it +mo3 (1 — xt) + mo3(1 +xt))
« exp (_ mr%(c%(l——}(t)-f—o%(l—f—}(t)) ) .
2(0% + 03) (ixt + mo3 (1 — kt) + mo3 (1 + xt))

The corresponding probability density p(r,t) = y(r,t )\W*(r,¢) is then given by the prod-
uct between each summand in Eq. (4.83) and its conjugate complex form, because the

approximation above considers the Fourier transform of each component, i.e.,

2 my/ 63 + 63 s

Pt = J; 2ﬁ\/K2t2+m2(0%(1 —Kt)+of(1+xr))?

ox —m? [ro} + ro3 +ro(8i — 8i2)[03 (1 — kt) +o3(1 + Kl‘)ﬂ2
P (07 +02) (212 + m2[03(1 — 1) + 02 (1 +x0) )

in order to utilize the inverse transform to calculate the probability density function
p(r,t) in an endo-observer’s spatial coordinates. Function (4.84) describes the esti-
mation of p(r,t) when only the initial probability density function p(r,0) and the action
K are given. This result may be compared with Eq. (4.75) and the endo-observer model
which utilizes the estimated probability density function of each measurement. The

endo-observer model for Example 4.4.1 leads here to

\/ 0% + 62
p(rnt)= (4.85)
Zﬁ\ﬁ‘f + 20303 + 03 + k412

22: ex (_, (0% + G%) (r+ (8i1— 5,"2) (r; — Vil)2>
i=1 ’ (63 +03)2 + k%2

As can be seen in Figure 4.4 the large value of X leads to a very rapid dispersion of the
probability density function p(r,t) The reason the estimated probability density func-
tion spreads much more quickly than in the case of Eq. (4.75) is given by the variance of
p(v,0). When no further insight about the specific probability density function p(r,v,0)
is available, as it has been demonstrated in case of an endo-observer, the given esti-
mate in Eq. (4.84) is the only one which does not include any further assumptions about
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the two measurements. In some cases not only a time series {(ry,v1,11), (r2,v2,12) } but
also few properties of an endo-observer are explicitly known. When through repeated
experiments the additional properties such as the mean and variance of an estimated
probability density function p;(r,v,1;) for the two instants t1,t are known, the estimate
of p(r,t) based on pi(r,v,t;) can be improved significantly. The constant X is in this

particular case based on the integral
Ky = / drdpr’p*pi(r, p,1;) (4.86)

which is generally much smaller than the value given in Eq. (4.76). The reason for
that is that X in Eq. (4.76) does not only include the variance of pi(r,p,t;) at each
observation but also the variance of the probability distribution among all p;(r, p,t;).
To give a flavour about the effect different estimates of X have on the endo-observer
model, the following Figure 4.4 shows three different computations of p(r,t). (i) As
a reference the probability density function of the exo-observer (4.74) is presented in
Fig. 4.4.a. (ii) X1 is chosen according to Eq. (4.76) and the corresponding probability
function p(r,t) is plotted in Fig. 4.4.b. (iii) The information about K3 which is available
to an endo-observer is given by Eq. (4.78) and the probability density function is shown
in Fig. 4.4.c.

4.6 Conclusion

The notion of endo- and exo-observer have been introduced and the difficulties arising
by applying probability theory to this concept established. The method of unbiased
guess by Shannon was applied for estimating the residual variance of kinetic energy
which enters the Hamilton-Jacobi equation of an endo-observer. The Liouville and
Hamilton-Jacobi equations for endo-observer dynamics were then reformulated in a
common partial differential equation, the Schrédinger equation. After important prop-
erties characterizing an ensemble of free particles, such as the time invariance of the
mean velocity and preservation of the variance of action of the state space, have been
proved, analytical examples then demonstrate the applicability of the model.
Although this experimental arrangement of coordinate and velocity measurements
of a particle or a body’s center-of-mass is very realistic and refers immediately to the
measurements as they are provided in case of a ballistic missile trajectory estimation,
the dynamics of ballistic missile are certainly neither uniform nor linear as the analysis
in Chapter 3 suggests. The problems which have to be solved in the forthcoming
chapter are as follows. (i). The endo-observer’s state space concept has to be extended
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Figure 4.4: This figure illustrates the difference between exo-observer models and endo-
observer model by choosing a non-Gaussian distribution function. In order to keep the problem
analytically tractable the superposition of two Gaussian functions defined in Eq. (4.74) in the
state space are chosen. The first sub-figure a) therefore shows the kind of prediction which
could be possible if endo-observer had access to p(r,v,t) [see Eq. (4.75)], whereas the second
sub-figure b) is based on an estimate of 1 given in Eq. (4.76) and the corresponding dynamics
defined in Eq. (4.84). The last sub-figure corresponds to Eq. (4.85) which employs additional
information of an endo-observer about the statistics of individual observations p;(r, p,t;) which
then leads to a more precise prediction since the dynamics of an endo-observer are applied to
individual data points taken from a time series rather than applied to an estimate of p(r,t)
which has been extracted from the total set of data points taken from a time series. The

parameters are as follows: 61 =0.5,0, =0.1,r; =1,v; =0.25
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to the case that the vector field is non-linear and that the state vector’s coordinate
components depend on more than just one variable. (ii). A real-life physical model
also incorporates system parameters which have to be included as well. (iii), the new
formalism must provide a means of system identification and tracking with respect to

given data points.



Chapter 5

Uncertainty in non-linear dynamics

Forward

An algorithm is proposed which seeks to extend the endo-observer concept from linear
to non-linear dynamics. It is argued that the identification of non-linear vector flows
leads to uncertainties which differ from the kind of uncertainties introduced for linear
systems. Uncertainties of the vector fields inside the classical (exo-observer) state
space are shown to be time dependent and to propagate through the state space. The
dynamics of the endo-observer’s trajectories thus consist of the exo-observer dynamics
which are superimposed with dynamics originating from the observer’s uncertainty.
Additionally, an algorithm towards estimating initial probability density functions of
the endo-observer’s states under the constraint of a sparse time series data is de-
rived. A tracking model for endo-observers completes the analysis of non-linear endo-

observer models.

5.1 DMotivation

In the last chapter the endo-observer dynamics of a linear dynamical system, i.e., a
uniformly moving center-of-mass, were derived. It was found that no real-life observer
(endo-observer) can access the system state vectors which are required for physical
models. The framework derived above allows the incorporation of unprejudiced un-
certainty of a real-life observer in a physical model which thus bridges two concepts.
The abstract purely theoretical (exo-observer) concept is related through a probabilistic
model to the real-life endo-observer description based on real experimental processes.
This chapter is devoted to arbitrary non-linear dynamical system modelling and gen-

121
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eral non-linear system identification and prediction under strong modelling constraints
such as unprejudiced assumptions about the stochasticity of an endo-observer. These
constraints are as follows.

(i) The non-linear dynamics are known up to their parameters and state of the
system. (ii) Because physical experiments always include noise the resulting errors
have to be taken into account by the dynamics. It is shown that endo-observer (real-
life observer) measurements lead to dynamics which are different from exo-observer
(ideal observer) dynamics. (iii) Because state vector components and parameters
are not directly accessible, estimates have to be employed which enter the dynamics
derived below. (iv) The uncertainty of a system requires a probabilistic model with
initial probability density functions for the initial state and parameter space. (v) The
probability density function of an initial state is not accessible all which is known are
the bounds on system parameters, bounds on non-observable state vector components
and the measurements in form of rational numbers, i.e., the algorithm has to provide
a consistent model for giving an estimate of any initial probability density function
of the state and parameter space. The algorithm must allow that any measurement at
any time enters the dynamics consistently with respect to prior measurements. After a
framework for system identification has been developed, future predictions have to be
based on this identified system and most recent observations.

There are many algorithms (e.g. the Kalman filter (Chui and Chen, 1999), stochas-
tic differential equations (Jetschke, 1989)) which claim to be able to do the kind of
estimation and identification of non-linear systems mentioned above, however, in most
cases the assumptions utilised prior to these algorithms include specific kind of noises
for a stochastic differential equation, particular distributions of the probability density,
accessibility of the entire state or parameter space to an observer, certain density of
data points within the state space about an attractor, time invariance of stochasticity,
etc.

No such prior assumptions or claims have been presumed during the derivation
of this model below. The algorithm introduced here thus uses a very general approach
with a minimum of assumptions required. This versatility comes at a price. It is ex-
pected that algorithms which have been developed for stochastic systems with specific
properties will perform better when these specific confines are met by a dynamical
system.

It has to be stressed that it is not the subject of this work to analyse under what
circumstances a particular stochastic model performs best, this is an open research
issue left for future research. This work is solely focused on developing an algorithm
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which incorporates the above restrictions and no other hidden constraints.

This chapter is organized as follows. The introduction 5.2 specifies the endo-
observer concept which is employed in this chapter to non-linear dynamical systems.
Section 5.3 is dedicated to deriving a model for non-linear dynamics when vector fields
with uncertainties enter the state space. This section is followed by Section 5.4 which
explores the non-linear dynamics of a state space when a stochastic distribution of
erroneous vector fields drive the system. The incorporation of bounds for unavailable
state vector components and physical parameters into the endo-observer’s dynamics
is made in Section 5.5. How a sparse time series (set of all past observational data
points) can be included into the derived models of the sections above is demonstrated
in Section 5.5.4. The prediction of dynamics may also require model tracking which
is introduced in Section 5.6. The conclusion in Section 5.7 shortly summarises the

properties of non-linear observers in this chapter.

5.2 Introduction

This chapter introduces a new concept of non-linear systems modelling in the co-
ordinates of an endo-observer. The aim is to find a model based on the premise that the
state of a system is only accessible by statistical means and that the dynamics are given
for a deterministic system. Although there exists a huge variety of models (Papoulis,
1991; Jetschke, 1989; Gardiner, 1998), their motivations and assumptions are insuffi-
cient for our purpose. Most models either make assumptions about the stochasticity
of the noise and how it enters the state space model, which is not explicitly given
here, or they consider the evolution of an initial probability density function which
is unknown in this analysis. It has been shown in the last chapter how profound the
nature of an endo-observer’s observations are in their effect on the model of a linear
system. This model was based on a Hamiltonian which can be derived analytically
in case of an ensemble of free particles. In the general non-linear case there does not
exist an exact analytical solution only numerically evaluated integrals may exist. An
approach as employed in Chapter 4 may be utilised to derive a similar model for the
non-linear case, however, this approach has not been attempted here, as the derivation
of a numerical model is computational costly and cumbersome and it is unclear if the
approach can be proved for a general non-linear system. Even if the Hamiltonian in
form of Eq. (4.16) could be derived, a Schrodinger equation is not suitable for the

identification of the flow in the state space. The reasons for this are:

(i) The non-linear dynamics of a physical system are derived for an exo-observer.
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(ii) The flow within the exo-observer’s state space depends on the initial state. An
endo-observer model cannot access all components of an exo-observer’s state
which prevents utilising the model derived in Chapter 4.

(iii) Because the initial state cannot be measured by an endo-observer the state space
flow itself is subject to errors which has to be incorporated in the model.

(iv) Since the non-linear dynamics of a physical system are derived for an exo-
observer, an endo-observer state space model has to be derived which employs
the knowledge of the state space of an exo-observer and includes an error of the

endo-observer at the same time.

When there is an observation given by an endo-observer which identifies that the
system is at a particular state, then there exists an endo-observer specific probability
distribution which describes the probability the system can be found at a specific state
for a given observation. Because the endo-observer knows the dynamics of the state, a
flow is expected which is different from that identified by the exo-observer. The vector
field which arises due to the difference between the observation by the endo-observer
and the nominal one given by the exo-observer is called the difference vector field. It
is shown below how a difference vector field enters the dynamics of an exo-observer
and also how the difference vector field evolves with time. As the initial state of a
difference vector field is inaccessible to an endo-observer, this lack of knowledge has
to be included in the model. A similar approach is that presented in Chapter 4 which
then leads to the state space dynamics of an endo-observer. The model presented
here cannot be applied to any arbitrary subset of the state space. To circumvent this
problem the model will be extended to the case where, apart from lower dimensional
observations through the endo-observer, bounds for variables and parameters are given
which cannot be accessed by the endo-observer. This will complete the estimation (i-
dentification) task of this modelling approach. Prediction may easily be accomplished
by evolving the dynamics over time. Obviously, the quality of the predictions depends
on the precision with which an endo-observer fits its state space model to the one of
the exo-observer. For longer prediction times the dynamics will become increasingly
inaccurate. It is therefore shown how to represent the system more accurately when the
probability distribution of the parameter space is defined through the previous endo-
observer’s measurements and when recent measurements are subsequently given. As
it will become evident in this chapter, the main drawback of this model is that it only
applies to continuous dynamics for which the vector field, apart from few unknown
parameters, is explicitly defined. The quality of the identification and prediction very
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much depends on the accuracy of bounds for the state vector components which have

to be included in the model.

5.3 Propagation of a difference vector field in the state
space

The dynamics of a deterministic system are specified by a differentiable vector field

F.x(Xex) in the state space with a state vector X, € R", such that
thex = Fex(xex)- (51)

The fact that a deterministic system requires error-free measurements of the vector
field and state vector is emphasised by the index ‘ex’ which refers to the concept of
an exo-observer in Section 4.2. The hypothetical observer of a deterministic, i.e. error
free, experiment is an exo-observer. An observer that is not error free which seeks
to relate its observation through an endo-observer model to a deterministic model is
an endo-observer. The measurement of an endo-observer can therefore be interpreted
as the alignment of an endo-observer model to an exo-observer model. Since any
measurement is corrupted with noise, physical measurements relate, by definition,
to endo-observer models whereas classical mechanics are exo-observer models. We
distinguish here two different kind of errors which enter an endo-observer model. The
misalignment of the endo-observer model with respect to the deterministic model,
i.e., the endo-observer identifies co-ordinate X, + AxX., instead of co-ordinate X,
and the misidentification of a measured variable, i.e., the endo-observer measures
Fex (Xex,?) + AF instead of Fex(Xex,?). An estimate for an endo-observer model can

be found by taking the mean over many (N) repetitive measurements, i.e.,
1 N
<Fex>(xenat) - N ZFEX(Xenotai)- (52)
i=1

The endo-observer model seeks to identify a specific trajectory of an exo-observer’s
state space for a given experiment. If within a finite interval Iax,,(Xen) = [Xen —
AXen, Xen + AXey | there is an overall error

€(Ipxey (Xen)) = ffg;‘én d"%en(Fen — (Fen))?(Xen; )P (Xen, 2), this information can be em-

ployed to estimate the deviation of the vector field from the mean vector field of

the endo-observer by introducing q(Xen,?) = limax,, —0&(Iax,, (Xen))/AXen. The vector
field of an endo-observer’s has to take this estimate into account

dtxen - Fen(xenat)a (53)
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with Fen(xenat) = q(xenat) + <Fex> (Xemt)'

The following Section 5.3.1 shows that the difference vector field is not constant,
even when the exo-observer model is time invariant, because the additional shift which
is imposed on a trajectory subsequently changes the vector field to which the trajectory

is subject of for the future states.

5.3.1 Dynamics of a difference vector field

It has been argued above that the dynamics of an endo-observer vector field Fe, are
defined by a superposition of the nominal exo-observer vector field (Fex)(Xen,?) and
a difference vector field q(x.,,#) which represents the noise in a vector field effecting
the dynamics an endo-observer system incorporates. Because there is no information
available to the endo-observer of how q(X.,,?) may change with time ¢ and state X.;, as-
sumptions about these dependencies have to be included into the endo-observer model.
The choice of an initial distribution q(x.,,%) for a particular time #y will be treated in
the next section. This section is concerned with the derivation of the estimation of the
difference—vector—field’s dynamics.

Let Vg(Xen) C R” be a subset of the endo-observer state space with its corre-
sponding piecewise smooth orientable surface Sg(Xen)—i.¢., S5 has a parametric rep-
resentation Xe, s(¢) such that X, s.(¢) has a continuous derivative diXen s,(¢) wWhich
is nowhere a zero vector—with X, at its center. Then Cs(X.,) is defined to be the
boundary of Ss(x.,) which is a piecewise smooth simple closed curve with X, at its
centre. For simplicity let us choose the shape of the volume to be a n-dimensional
sphere. As argued above, there is a genuine error of an endo-observer which en-
ters the model because of misalignment between exo- and endo-observers. Assume
that the endo-observer vector field is given by Fen(Xen,?) = Fen(¥en;,?)€; such that
the vector field points towards the jth component of the state space and only varies
with respect to its ith component. Now it is further assumed that the diameter of
the sphere represents the distance between two states which cannot be resolved by
an endo-observer. This implies that the endo-observer may apply at an instant 7 a
vector field Fep(Xen,?) to the state Xe, + AXe,, with |AXe,| = € equal to the diameter
of the sphere, due to the misalignment between observers. The vector field within
the sphere changes according to (Fep(Xen, + €,¢) — Fen(Xen; — 1,7))/(2€) which can be
interpreted as an error vector field within the sphere (see also Fig. 5.1). An endo-
observer thus incorporates a trajectory within the time interval At which is identical
t0 AFen, = [Fen(Xen, + €,1) — Fen(Xen, — €,2)]At. This trajectory is subject to the vector
flow itself. Because the mean endo-observer vector field is still Fe,(Xey,?) a differ-
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Figure 5.1: A 2-sphere inside an exo-observer’s state space is shown. The area inside the
sphere covers all these vector fields of an endo-observer which may be mistaken for the vector
field at the centre of the sphere due to misalignment between endo- and exo-observer.

ence vector As flows in the ensemble mean with the vector flow Fe,(Xen,?). In the
limit as the volume and time interval go to zero the flow of the difference vector
As approaches Fen; (Xen;st)Ox,, Fen;(¥en;;?) Which is identical to (1/2)0x,, F;%j (Xen;1)-
Generally Fe,(Xe,?) has all components j and changes with respect to all com-
ponents i which means that the flow of the difference vector is superimposed by
%ij(1/2)0x,, F;% (%en;» ). The net flow of difference vectors out of the sphere is given
by the divergence of the flow of the difference vector divY; ;(1/2)0x,, Faa, (¥en;»?) When
the diameter of the sphere approaches zero. When the net flow of the difference vector
is positive the error inside the sphere decreases by the same amount. An error potential
is therefore defined as E(X,,#) which represents the net flow of As out of the sphere
when the time interval Ar approaches zero. The change of E(Xen,?) With time ¢ is

therefore

HE(Kenst) = = N(1/2)div [y F2 (tenss1)] (5.4)
i
= —(1/2)92 FZ (Xen,?). (5.5)

E(Xn,?) is a new quantity which has to be related to the already defined error vector
field above. This is easily done by realising that E(X,,?) is the net flow of an error out
of a fixed volume inside the state space. This net flow is also defined by the divergence
of q(Xen,?), i.€., E(Xen,?) = div q(Xen,?). The latter identity allows the substitution
of E(Xen,?) in Eq. (5.4). Because ang is equivalent with div(gradF2), Eq. (5.4)
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implies that
0r(Xen, 1) = —(1/2)9x, Fon (Xen, ). (5.6)

Because this identity is the gradient of the difference vector field q(xey,?) and the
initial difference vector field g(Xeq,fo) is derived from a potential, q(xe,,?) remains the

gradient of a potential for all time, i.e.,
018 (Xens ) = =(1/2) (O S (¥em£) + (Fex))* (¥, ), (5.7)

as 0;0x,, S (Xen, 1) = Ox,, 0rS(Xen, ?). This means that any potential S(X,,#) with the gradi-
ent q(Xe,,#) may be utilised for representing the difference vector field. This potential

is required for the dynamics derived in the following section.

5.4 Uncertainty of an error-vector field’s probability

density function in the state space

The last section treated the case of a state X, where there exists one single differ-
ence vector field q(Xe,,#) which influences the endo-observer vector field Fe,(Xen, ).
Because the preparation of an experiment (see Section 4.2) will lead to a set of non-
repetitive initial variables and measurements the vector field Fe,(Xeq,?) will vary de-
pending on a specific experiment as well, i.e., a probability density function can be
assigned to the distribution of the measured vector field F, (Xen, #). This section derives
the dynamics of an endo-observer when the variance of the probability density function
which describes the distribution of Fe,(Xen,?) is bounded. This bound is assumed to
hold despite the fact that Fe, (X, ) is not necessarily a conservative vector field.

So far, only the case of a single trajectory of an endo-observer has been consid-
ered, i.e., the error of the endo-observer consisted of the erroneous identification of a
co-ordinate. As mentioned above an endo-observer may also assign a wrong vector
field to the system irrespective to the misalignment treated earlier. In order to take care
of this influence consider an additional stochastic variable §(Xy,?) which is assumed

to enter the endo-observer dynamics as follows
0:Q(Xen, 1) = —(1/2) Vg, (& + Fon)*(Xex, 2). (5.8)

These dynamics are not explicitly available to an endo-observer because (X, ?) is not
accessible, i.e., an endo-observer model may be derived which employs the probability

density function p(Xen, &,1). However, p(Xen, £,¢) is not accessible to an endo-observer
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as it comprises the variable &(X,y,#) which cannot be measured as x,, is not measurable.
As the required information is not accessible, alternative statistics have to be employed
where the information given is utilised. As demonstrated below instead of employing
the dynamics of the difference vector field &(X,x,#) the dynamics of a mean vector field
are utilised which is defined by an “energy” potential OF,, (Xen,#) introduced in the next
paragraph.

For the time being it is assumed that the endo-observer identifies the vector field
Fen with a probability p(Fen(Xen;?) + (Fen)F., (Xen>?))d"Fen = p(E(Xen,?))d"Xen. This
means that the endo-observer considers a state space model in which a probability
density function is attached to each individual trajectory in the state space. This prob-
ability density function p(&, X, ) then describes the propensity that an endo-observer
at any instant r measures a vector field Fep(Xen, ) = (Fcn>§(xen,t) + € with the mean
vector field identical to (Fen)g(Xen,2). This implies for an experiment that either the
actual vector field (Fep)e (Xen,?) +& is explicitly given to extract the error &, or, that the
error is known in order to extract the vector field. Neither is possible, according to the
arrangement of an endo-observer experiment. Since there is no approach which may
avoid this problem the only alternative is the application of an estimate for the endo-
observer dynamics by the mean of an ensemble which has a distribution equivalent
t0 Pest(Xen,&,2). It is assumed in the following that the probability density function
P(&|Xen,t) is not explicitly accessible, what may be given instead is a bound on its

variance
o2, = / A" XA"ED(%,E,1) (Fen — (Fen)x B )2 < K2 /4 (5.9)
Further it is assumed that the mean of & is zero at all times, i.e.,

®0 = [ @epErxEz=0. (510

In the statistical case the ensemble mean of all & is utilized and the Liouville equation

of the probability density function p(Xy,&,?) thus becomes
0tP(Xenst) = —0%en (0 (q+ (Fex))) (Xen, 1), (5.11)

as § is just an additive constant to the flow which in the mean cancels out due to the
Identity (5.10). Eq. (5.11) therefore does not include any estimation or approximation
as long as the net-flow on the right-hand-side of the Liouville equation are error-free.
Precise knowledge of p(§|Xen,?) is required for the Hamilton-Jacobi equation derived

below.
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The dynamics of q(X,n,?) have to take the distribution p(&|x,,,#) into account as it
is the case for the identity (5.11). However, the dynamics of q(x,,,7) do not just cancel
out in the mean, because the right-hand-side in Eq. (5.8) is a quadratic function of &.
The crucial property of & is that the mean is considered to be zero and the variance
is bounded. For the moment assume that p(§|X,,,?) is known such that the dynamics
of q(Xen,t) can be computed by taking the mean with to respect of & over q(&, Xen, ?).
Some dynamics of a vector field may now be defined which employ the mean potential
([€+ Fen(Xex, t)]2>§. The gradient of the mean of [§ + Fy (Xey,2)]? at time ¢ is

A (& Xen, 1) = —(1/2)Bxen {(E+ Fen(Xex, 1)), (5.12)

where the subscript in g¢ indicates that the mean potential with respect to the stochastic
variable £ has been utilised. The right-hand-side of Eq. (5.12) can be rewritten as

<(§+Fen(xex7t))2>§ = <(§+<(t;>§)2>§+<(<§>§+Fen(xex,t))2>§ (5.13)
= (E)e(Xer,t) + F2 (Xexs 1), (5.14)

because the mean (£); vanishes. This fact then implies that (?;2)& is nothing but the

squared variance of £.
As it is has been argued above q can be derived from a potential, which implies
that qg stems from a potential as well, i.e., the Hamilton-Jacobi-like equation for the

statistical case becomes

0:Se (Xens?) = —(1/2)0%, (Xen,1) (5.15)
—(1/2) (Ox0sS (Xems ) + (Fex) (Xens 1)),

with the squared variance
OFn (¥en, 1) = () (Xex,?) (5.16)

The Hamilton-Jacobi-like equation states that the mean vector field can be computed
for any time ¢ as long as the squared variance G%en (Xen, ) is given. What is required are
either the explicit dynamics of p(&|X,,,?) or a look-up table for any G%en (Xen,?) As it
has been argued above neither is accessible during the experiment of an endo-observer,
which therefore demands an estimate for G%m (Xen,?). This estimate should take into ac-
count that G}z(en’Fen is bounded by k2 /4 but no further assumptions about the distribution
G%en (Xen, ) have to be included. Note that G%‘en denotes the generalized kinetic energy
density at the state X,,,. Because there is no information available about the dependency
of O-%en (Xen,t) With respect to the state X, a homogeneous generalized kinetic energy
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density distribution has to be assumed due to Jayne’s law of unbiased guess (Jaynes,
1957). The generalized kinetic energy is therefore defined by (k2/4)p(Xens?)d™Xen,
which may be interpreted as an energy potential with a corresponding vector field

fon (Xen, 1) = (|K[?/4)Oxon P (Xens 1), (5.17)

which represents the change of energy within the estimated infinitesimal interval d"Xe;.

The divergence of a vector field as given in Eq. (5.17) can be interpreted as an energy
source (92, G2 = 242 (Xen) + Gres02,, Gres) Which is proportional to the residual energy
Ers. The residual energy is sought as an estimate for oF,, (Xen,?), up to a constant
energy E(z). These arguments explain why the vector field (5.17) estimates the change
of the generalized squared action at point X, rather than estimating the change of action
at this coordinate. However, care has to be taken with respect to Jayne’s principle
(Jaynes, 1957) of unbiased guessing which extends to two distinct cases.

First, let us consider the case where each subset of the system’s ensemble at any
coordinate X,, has the same generalized kinetic energy proportional to x?/4, in which
case the total generalized kinetic energy at X, is [k|?/4p(Xen,?). The relative change
of the total generalized kinetic energy at any state X, is then zero, but the total change
of the total generalized kinetic energy at X, is |k|?/40x,,0(Xen, ). The negative relative
divergence of the vector field (5.17) is thus —k2(4p (Xep,?)) ™! 02,0 (Xen, ) and therefore
defines the generalized energy increase of an event at X, due to the fact that the energy
distribution within all ensembles is a d-function around a specific value and that the
probability about a neighbourhood of x., changes. This can be more easily visual-
ized by comparing the just mentioned system with a distribution of particles given by
p(Xen, 1), of which each of these particles has an energy proportional to k?/4. When
at an instant # within the interval d"X., p(Xen,?)d"Xe, particles leave the interval with a
fixed generalized kinetic energy o k2 /4, the net change of the total generalized kinetic
energy inside the interval d"Xe, at the state X, changes about — (k2/4)02_p(Xen, 7).

Secondly, let us consider now the case that the relative generalized energy of
an event changes with respect to X.,. Although the total generalized kinetic en-
ergy is still ([x]|?/4)p(Xen,2)d"%en, in the mean the vector field for every single
event changes according to the relative vector field (0(Xen,?)) 'f(Xen,2). Because
there are P(Xen,?)d"Xe, events within the interval d"x.,, the total change of the en-
ergy is still equivalent to (5.17) and thus the total generalized energy remains p-
reserved. The negative divergence of the relative vector field is then identical to
—Oxen [|K|2(40(Xens?)) ~'0x., 0(Xen, )] and represents the increased energy density at
coordinate X., because of the relative generalized energy which is increased with re-
spect to the neighbouring coordinates. This case can be more easily explained by an
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ensemble of particles within d"x., at X, of which each particle changes it generalized
energy from Xen tO Xen -+ dXen about [K|2/(4p(Xen, ) )Ox,,0(Xen, 7). The net change of the
total generalized energy in the interval d"x., at X¢, due to the change of energy of each
particle is then identical to —p(Xen,?)Oxey [K2 (40 (Xens ?)) ™1 0xcy P(Xens 2)]- The negative
sign of the divergence in both cases takes care of the fact that a source is proportional

to the negative divergence of a vector field.
The residual energy E. is the evenly weighted sum of both contributions, the
relative divergence of the vector field as well as the divergence of the relative vector

field
Ees = ~K'(8P(Xens)) ™ OxenP (Xens 1) (5.18)
_Kz(gp(xemt))_laxen [p_l (Xens ?) Oxen O (Xen, 1)),
according to Jayne’s principle. Because p(Xey,?) > 0 it is now possible to introduce the

function A(Xen,?) = 1/P(Xen,?) Which allows us to rewrite the residual energy in terms

of the generalized quantum potential
Eres = —K*(2A(Xen,1)) 702, A(Xen, ?) (5.19)

and subsequently leads to a set of two coupled partial differential equations, which

derive from the Liouville equation

OA(Xen,t) = —dy, A(Xem?) (O, G(Xeny?) + (Fex) Xen, 1)) (5.20)

Xen

—A(Xen,t) (03, G(Xen, ) + Ox,, (Fex) (Xen,2)) /2 (5.21)

and from the Hamilton-Jacobi-like equation

0:G(Xen,t) = K*(2A(Xen,?)) 105, A(Xen,?) (5.22)
~(1/2) (9%,,G(Xen, ) + (Fex) (Xen, 1)) (5.23)

which can be combined into a common partial differential equation. This may
most conveniently be proved by multiplying the negative function of W(Xen,?) =
A(Xen,1) exp(iG(Xepn, 1) /x) with Eq. (5.22) and taking the sum of the result with the
product of Eq. (5.20) with ikexp(iG(Xen,?)/x) which immediately gives the general-

ized Schrodinger equation
KON (Xen, ) = (1/2)(—ikOy, + (Fex) (Xen, 7)) W (Xens ). (5.24)

This equation has the same appearance like the Schrodinger equation for a parti-
cle moving in an electromagnetic field with a vector potential which is identical to
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—(Fex) (Xen, ). Although the appearance is the same the motivation of Eq. (5.24) is
completely different of that of the Schrédinger equation. In summary, the equation
above describes the estimated dynamics of an endo-observer which has to include
the dynamics of an error vector field which originates from the mis-alignment and
mis-identification of an exo-observer’s vector field. The statistical properties of the
stochastic variable &, which represents the mis-identification of the vector field at a
time ¢, lead to a generalized estimated energy distribution which is equivalent to an ex-
pression known from the quantum potential. Hamilton-Jacobi equation and Liouville
equation can be combined in a single differential equation which is given by Eq. (5.24).

5.5 Computation of dynamics when the probability
density function inside the state space is only par-

tially known

It has been shown above, that an initial probability density function of the state space
has to be explicitly given for the computations of the future state. The purpose of
this thesis has been to develop an algorithm which allows predictions of non-linear
dynamics with included errors despite limitations that the state cannot be measured.
All that is available are the measurements of corrupted state vector components and
some gross bounds on the possible variables and parameters of a dynamical system.
This section aims to introduce an algorithm which combines the dynamics of a system
as given in Section 5.4 with the bounds for the variable and parameter space which is

not accessible to an endo-observer.

5.5.1 Introduction

In Section 4.2.1 it was argued that the Radon transform may be employed for the
computation of the conditional probability density function at a time # when the obser-
vations of the entire time-axis is utilized. This is an un-practical procedure because if
the observations at all time for re-constructing the joint probability density function are
required a prediction becomes redundant. Since there is far less information available
than that required for deterministic dynamics with a stochastic initial distribution, an
alternative model of a dynamical system has to be developed which tackles several

issues simultaneously.
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1. The Schrodinger equation: Physical observations are of an endo-observer type
which means that uncertainties in a system’s dynamics due to erroneous mea-
surements have to be taken into account by utilizing the model derived above
and defined in Eq. (5.24).

2. The measurement issue: The dynamics developed so far require the probability
distribution of an initial state and the precise dynamics of a system. For most
physical experiments the exact parameters are not explicitly given. Instead of
the probability density function of an initial state only few components of a state

vector are measurable in form of a noisy rational number.

3. Estimating probability density function of measurable state vector compo-
nents: As the initial state vector is unavailable it can only be estimated. An
initial state vector estimate has to take into account the measurement in form of
a rational number. It is shown below how the given stochasticity of measure-
ments can be employed for estimating the probability density function of the
state vector components which are accessible to an endo-observer.

4. Estimating probability density function of non-measurable state vector
components and guessing the system parameter distribution: The state vec-
tor and the dynamical system parameters which are non-measurable will be
shown to require a bound. This bound then motivates a particular probabili-
ty density function which can be combined in a common probability density
function incorporating all components of a state vector and components which

represent the parameter space.

5. System identification: After generating an estimate for the state vector and
parameter space, the dynamics given by Eq. (5.24) produce an estimate of the
future states. Usually there is more than one possible estimate, i.e., a single
estimate of a future state has to allow the incorporation of measurements taken
at different instances into a consistent model. It has to be shown why an estimate
of the future state is given by the dynamics (5.24) applied to the product of
all probability density functions at a particular instance after they have been
estimated and evolved with time to that particular instance. The initial estimate
of the parameter probability distribution is shown to be improved by utilizing the
integral of the product of the evolved state vectors’ probability density functions

subject to a specific parameter set as a correlation measure.
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6. Prediction following System identification: The system identification proce-
dure leads to a dynamical system which allows the prediction of a system’s
future states. The identification procedure involves probability density functions
dependent upon measurements taken at a previous time of a state, the prediction
should rely more on the most recent measurements without discarding the older
ones. An algorithm is proposed which seeks to do that. The difference to other
algorithms such as statistical, learning algorithms is that these algorithms are
based on finding a fixed point (limit cycle). It is argued below that this algorithm
must not employ dynamics which converge to a fixed point.

7. System tracking: When Jayne’s approach of unbiased guessing for system i-
dentification leads to a too conservative probability estimate for the propensity
of finding a system in a particular state, biased statistics—in the information
theoretical sense-may be employed which incorporate some kind of decision-
making process allowing the selection of states for which the observer feels
more confident about finding a dynamical system. It is important to realize that
this kind of approach does not involve any kind of further information about
the system which is provided additionally to the information. Tracking always
involves some algorithm which changes the information measure based on non-

Bayesian statistics.

8. Prediction following System tracking: The prediction process is identical to
that given in Point 6 up to the fact that it is being applied to the state function of
the tracking model introduced in Point 7.

The issues addressed above are derived in the sections below. Section 5.5.2 derives a
probability density function estimate of an initial state when some state vector com-
ponents are not attainable. Section 5.5.4 and Section 5.6 expand the concept of endo-
observer dynamics to system identification and tracking, respectively.

5.5.2 Dynamics of an endo-observer’s with estimated initial prob-

ability density functions

In Section 5.4 a model has been derived which requires an initial probability density
function for computing the likelihood that the system at some future time will be found
in a particular state. A probability density function per se cannot be measured. Only
in the limit when the number of experimental repetitions approaches infinity does the

relative frequencies of particular outcomes represent the probabilities of these events.
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Because time series are unique events, the experiment cannot be repeated. When,
however, the statistics of an endo-observer are explicitly given, then the maximum
likelihood method allows an estimation of the probability density function. A mea-
surement of the state leads for an endo-observer to a distribution of measurement
events. Ultilizing the event’s relative frequencies a probability density function can
be approximated, which represents the likelihood that an observer estimates a state
under the condition that a particular fixed state is presented to the observer. It is
now assumed that the statistics of an endo-observer are independent of the non-linear
system’s state, further it is assumed that the observer’s events are pure random such
that the central limit theorem guarantees a Gaussian (standard, normal) distribution
with a given variance. (This last assumption can, if required, be relaxed; it becomes
relevant further below when a concrete probability density function has to be included
in the model.) Because there is possibly only one single observation at a time, the ques-
tion arises what is the best estimate of a probability density function p(x1|x19), after
an observation X1 and the probability density function and therefore the likelihood
I(x11) = exp((x1 —X11)?/(26?)) is given. The maximum likelihood method seeks to
find the likelihood /(x;¢) for which the probability density function becomes maximal

when X9 has been observed. This is only the case if

_ 2
p(x1[x10) = exp (—9—12—;}@> : (5.25)

After the probability density function has been estimated for observable states, an
estimate of the probability density function has to be derived for the case when this

variable/parameter cannot be observed.

5.5.3 Dynamics of an endo-observer’s state with bounds

In Section 5.4 it has been shown how uncertainty must be included if further knowledge
is not available. The central idea is that no prejudice about the probability distri-
bution enters an estimate. The same idea is exploited in this section. Consider in
the following an arbitrary variable for which the probability distribution has to be
estimated. If there is no additional information available a uniform distribution has
to be chosen. For any variable as an element of the real line the uniform distribu-
tion does not exist and even if it existed it would not convey a lot of information
for a future state. Fortunately any physical system is subject to constraints which
leads to bounds in the variable and parameter space. Under the assumption that at a
particular time a bound of the unknown state vector components is known, an initial



CHAPTER 5. UNCERTAINTY IN NON-LINEAR DYNAMICS 137

probability distribution can be computed. Because the probability density function
inside an interval which is given by the bound is homogeneous and since outside the
interval the probability density function is zero, the probability density function for the
unobservable variable and parameter space has a shape of a hypercube. The choice of
such a probabilistic function represents p(x), i.e., an estimate of the probability density
function that a event occurs within a finite interval. However this is not the probability
density function which can be employed for the endo-observer model for two reasons.
Firstly, a function which represents such a shape contains discontinuities which are for
a system’s dynamics impossible to incorporate. Secondly, this distribution assumes
that the events are real values with a conditional probability p(x2|x2¢) = (X2 — X20)
which is an unreasonable assumption. Although the probability density function is not
motivated by observations, the properties of an endo-observer have to be taken into
account because the bounds are motivated by observations of past experiments as well.
Therefore, instead of considering the probability density function p(x;) = 1/Ax; for
[x2 —X20| < Ax/2, an estimate is being sought which represents the probability density
function p(x2, {X20 € Iax,(X20) }|X20). For the case that p(x2,|X29) is the Gaussian
distribution, p(x2) = p(x2, {X20 € Iax,(X20) }|X20)P(X20) becomes the error function

& _ 2
p(x2) = nixz /:u d(X2),exp (—Q‘—%‘éﬁ) . (5.26)

The above probability density function of the state space could be used to evolve the
system over time, and thus employ the result for prediction purposes. However, this

estimate is very crude since the bounds have to be carefully chosen.

5.5.4 Model identification via the incorporation of partially known

measurements into non-linear dynamics

Eqg. (5.26) allows the estimation of the probability density function for variables and
parameters which are not explicitly measurable but which may be bound by a compact
subset of the real line in an exo-observer system. Eq. (5.25) allows the estimation of
a probability density function for measurable variables. A joint probability density
function may be generated by taking the product of both probability density functions

p(X,ll,[):p(Xl,t)p(Xz,f)p(UZ,f) (527)

with u the system’s parameters at time . When there is given a set of probability den-
sity functions for different instances the information can be combined by multiplying



CHAPTER 5. UNCERTAINTY IN NON-LINEAR DYNAMICS 138

the evolved probability density functions at a particular time 7.

Hﬁvzlp(Xltivt)p(thi:t)p(uti7t) (5 28)
f andnuunf'V:] p(Xllp I)p(XZt,' ’ t)p(utiﬂ t)
The multiplication derives from the fact that the measurements at different instances

are assumed to be statistically independent. This assumption is reasonable since exper-
iments are set up in such a manner that the outcome of a measurement does not depend

p({x}ﬁl,{u}fi],t) =

on the past measurements.

This Section has introduced a new concept of initial probability density function
estimation which is a prerequisite of the end endo-observer dynamics, Eq. (5.24). All
estimates have been derived using Jayne’s principle, the maximum likelihood method,
presumed bounds on non-measurable variables/parameters, measured parameters and
a random endo-observer which is stochastically independent of the system’s state. The
estimate of the probability density function is already sufficient for the predictions of
future states. However, this model does not allow the tracking of dynamical systems

which is investigated in Section 5.6.

5.6 Model tracking by representation of new measure-
ments

As demonstrated in Section (5.4) the identification of an endo-observer system is pos-
sible within certain bounds of the required variable and parameter space. However, in
many cases a probability density function in a high dimensional state space is unhelpful
for decision making, e.g., for answering the question at which spatial coordinates the
system is most likely to be within the next time step. An argument may be put forward
which states that the maximum of a probability density function can easily be found
by analysis of the probability density function’s spatial partial derivatives becoming
zero. This may be convenient when the probability density function has only one
maximum, this approach does become more complicated when the probability density
function contains many local maxima. This section intends to introduce an approach
towards estimating the probability that a particular parameter and a non-measurable
endo-observer variable may be measured with respect to past measurements. This
approach is different from system identification because it is no longer purely based
on the information available to an endo-observer, the system tracking process includes
assumptions about the relationship of the dynamical system probability density func-
tion and the measurement which are based on assumptions which cannot be justified
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by a purely information theoretical approach. It is going to be shown that this approach
includes ‘subjectivity’ for this tracking model.

Tracking is a widespread issue within the control community and deals with the
question in which state a dynamical system may be. In Bar-Shalom and Fortmann
(1988), for example, tracking is defined as the processing of measurements obtained
from a target for maintaining its current state estimate. Although there is no men-
tion about the prediction and selection of state space estimations, the emphasis is
placed on maintaining a state estimate. In order to be able to maintain a system’s
state, several things have to be guaranteed. The underlying dynamical system must
either be given or extracted, and a state estimation procedure is available. Part of the
tracking algorithm is the association of data with a specific trajectory (track) inside
the state space to minimize the influences of errors on the trajectory identification
procedure. The crux of tracking algorithms is the employment of a decision-making
process which decides on selecting either a single trajectory in a deterministic model
or the prior probabilities in a Bayesian framework. It is important to realize that these
decisions in either case are not based on the data alone but rather on some statistical
assumptions about the distribution of the data about a nominal track (trajectory): Some
illustrative examples of recent tracking algorithms can be found in Mahapatra and
Mehrotra (2000), Kirubarajan et al. (2000). The Kalman filter is a deterministic model
(Kalman, 1960; Kalman and Bucy, 1960), which utilizes as a decision-making process
the minimisation of estimation variance (Chui and Chen, 1999). A probabilistic model
based on Bayesian inference requires as a decision-making process the initial prior. A
stochastic process, as it has been derived in the previous sections, requires a decision-
making process about the stochasticity of the dynamical system at each instant. The
problem which emerges within the framework of non-linear system identification, as
developed in Section 5.5.4, is the probability density function inside the state space
which does not necessarily convey more relevant information about the likelihood that
a particular state (track) may be chosen by a dynamical system than any other arbitrary
guess. As in the case of a Kalman filter, neighbouring states may stem from a common
but undefined probability distribution. The postulate of the tracking model derived
below will thus be that

POSTULATE 5.6.1 The confidence of a tracking endo-observer in its observations of
a state is proportional to the probability of this state.

This postulate has profound consequences on the model. As it has been argued above,
the unbiased guess approach of Jayne’s which entered the stochastic models before is
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now violated. This fact may also be termed as ‘subjectiveness’ towards the observers

own measurements.
The following section states more precisely which properties the tracking endo-
observer has, and then the dynamics based on these pre-defined tracking model prop-

erties are derived.

5.6.1 Dynamics of tracking model

In Section 5.4 the dynamics of an endo-observer are derived which include the dynam-
ics of errors entering the system. In this section, the focus is placed on the tracking of

trajectories within the endo-observer’s dynamics.

After a fitness landscape has been defined, an endo-observer model has to be de-
rived which provides a probability density function representing the specific selection
of state and parameter variables within the limitations of a fitness landscape. The
tracking of a state is defined here as the selection of the state with the most salient
probability density function. This most likely kind of probability density function can-
not be selected by just utilising the gradient of the state’s probability density function
and then replacing the nominal probability density function of the state with a delta
function 0(Xy — Xy0). Such a choice would neglect all the information provided by the
state’s probability density function. What is needed is a tracking algorithm which takes

the following issues into account
(i) The dynamics are of the type given in Eq. (5.24) when no tracking is pursued.
(i1) Tracking of a state is performed inside the endo-observers state space.
(111) New estimates provide the most recent information about a systems state.

(iv) Former estimates are as relevant as the last estimates. However, system param-
eters may change with time, a time dependent weighting of the state estimates

may be justified.

(v) The dynamics given by Eq. (5.24) represent the likelihood that a state may be at

a state Xy.

(vi) All states are equally probable before any initial probability density functions
have been presented to the model.

(vii) The dynamics of the tracking models probability density function have to drive
the system towards a locally single state, the locally most probable one.
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(viii) All local maxima of the state space’s probability density function have to be

considered.

(ix) Closely neighboured states attract each other more strongly than states which are
further apart

The modelling of an endo-observer which is capable of recognizing a non-linear sys-
tem requires dynamics which according to Point (i) are identical to Eq. (5.24) when
no tracking is pursued. The local competition between neighbouring states x,, depends
on the likelihood that a state is selected by the exo-physical system. Because the
likelihood is estimated by p(xy,?), the dynamics of the difference vector field q(X,?)
have to evolve such that q(Xy,?) approaches the state with the locally higher probability
density function p(Xy,1).

The tracking of trajectories involves the selection of the most suitable models
(e.g. trajectories, vector flows, non-linear functions, etc.) with respect to a performance
criterion of past measurements. Here, in this case the suitability of a model is expressed
by the local maxima of a probability density, i.e., the propensity or likelihood, that a
state occurs. For the purpose of deriving auto-selective dynamics within a framework
of state space models, let us reconsider the dynamics of the error potential E(Xg,?) in
Eq. (5.4). The increase of E(xy,?) is defined as the negative divergence of a vector
field, which is given as the gradient of F2(x,,). Because it is demanded that the auto-
selective dynamics choose the state representing the maximum of the probability den-
sity function p(Xy,?), the vector field has to be proportional to the gradient of p(Xy,?).
When ¥ is defined to be the parameter of competitiveness, the increase of the error
potential due to the probability density function is given by the negative divergence of

the just defined vector field, i.e.,
0, E (X, ?) = —Y020(Xyr, ), (5.29)

which represents just the contribution to the change of the error potential due to p (X, ?)
and a proportionality constant y. The total change of E(xy,#) with time ¢ is therefore
the sum of 0, E (X, ?) in Eq. (5.4) and that in Eq. (5.29)

0 E(Xer,2) = —(1/2)02F2 (xg,1) — Y020 (Xyr, ). (5.30)

The following argument is the same as in Section 5.3.1 which therefore leads to an

identity similar to Eq. (5.12) which thus becomes

at(k(&n Xtra[) = “(l/z)axtr«&"l“Ftr(xexat))2>§ - 'Yax,,p(xtrat)a (5.31)
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and defines the change of the error vector field under the constraint of tracking tra-
jectories represented by a gradient —ydyp(Xyr,?). The difference vector field between
exo-observer and endo observer thus changes according to the identity given above.
The potential defined in Eq. (5.15) differs only by an additional potential —yp(Xy,?)
that has to be employed here. The Liouville equation thus remains the same as defined

in Eq. (5.20), i.e.,

OA(Xir,t) = —OxyeA(Xirr?) (Oxe G(Xir,7) + (Fex) (Xen,?)) (5.32)
—A(Xq,1) (a,zitrG(xmt) + Oxy (Fex) (X, 1)) /2

and the Hamilton-Jacobi-like equation incorporates the potential defined above and

yields

G(X 1) = K*(2A(Xe,?)) 7103 A t) — YP(Xirr?) (5.33)
—(1/2) (0x: G(Xurs 1) + (Fex) (X, 1))

which again can be combined into a single partial differential equation. This may
most conveniently be proved by multiplying the negative function of W(Xy,?) =
A(Xq, 1) exp(iG(Xy,2) /x) with Eq. (5.33) and taking the sum of the gained result
with the product of Eq. (5.20) with ikexp(iG(Xy,?)/x) which immediately gives the

generalized nonlinear Schrodinger equation
KO (X, 1) = (1/2)(—1K0x,, + (Fex) (X, 1)) 2y (Xer, 1) =YW (Xg,1) lzw(xmt). (5.34)

which differs from the formulation of quantum mechanics via the nonlinear
Schrodinger equation by an included vector potential —(Fex) (Xr,2). This equation
is therefore up to the non-linear term y|y(Xy, ¢) >y (X, ) identical to the Schrodinger
equation which describes the dynamics of a particle which interacts with an electro-
magnetic field. The term |[y(xXy,#)|2 may be interpreted as a time-dependent potential
which coincides with the probability density function of finding a particle at the track-
ing endo-observer state x;;. Unfortunately, as also in the model (5.24), the solutions of
this equation are not well understood and in the general case only exist as a numerical
approximation.

The derivation of a tracking endo-observer model has almost been accomplished.
After the dynamics have been derived the explicit choice of the function y(Xy;,?) in the

state space is motivated in Section 5.6.2.
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5.6.2 Computation of likeliness of parameters and non-observable

endo-observer state components

As in Section 5.5.4 a probability density function estimation of non-explicit measur-
able variables and parameters through Eq. (5.26) has to be performed prior to the
utilization of the tracking endo-observer model (5.34). As Eq. (5.25) allows the es-
timation of a probability density function for measurable variables, a joint probability
density function may now be approximated by taking the product of the probability
density functions of the state space’s subsets, i.e.,

p(Xtrautrat) :p(xtrpt)p(xtl‘pt)p(utﬁt)y (535)

with, as before, u the system’s parameters at time ¢. The set of probability density
functions given for different instances can then be combined by the normalized product
of the evolved probability densities functions at time ¢. In contrast to Section 5.5.4 in
which Eq. (5.24) is being utilized, the probability density of the tracking endo-observer
model has to be computed by employing the squared magnitude of model (5.34), i.e.,

Hg'\_lzl p(Xtrmat)p(xtmiat)p(utrt,-at)

— , (5.36)
J d"xpd™uy H?lzl p(thi ) t)p(xtrztia 1)p (U, 1)

p(x[r,t)

with the index #; indicating that the there are N state functions y(Xy,#) at the initial
time #;. As before, the multiplication derives from the fact that the measurements at
different instances are assumed to be statistically independent. This assumption is
reasonable since experiments are set up such that the outcome of a measurement does
not depend on the past measurements. Finally, the initial state functions for each #
are given by Y(Xg, %) = /P (Xy, ti,t,-) because the initial phase of y(xy,#) is zero as
follows from Eq. (5.10) and Identity (5.15). It is important to realize that there is no
physical meaning attached to the state functions W (Xy,?;) for tracking purposes. The
justification of these state functions is only done by the prediction model given in

Eq. (5.36).

After the derivation of the tracking model has been completed, the following ex-
ample illustrates the application to a realistic but analytically simple model. Extension
to more complex problems is limited by the need for the numerical approximation of

Eq. (5.34).
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5.6.3 Examples of prediction models

After the dynamics of a prediction model have been derived an example should demon-
strate the use and applicability of the dynamics given by Eq. (5.36).

The example given below is a rather simple dynamical case, not because the
model (5.34) only applies to this simple model, but in the general case there does

not exist an analytical solution but only numerical approximations.

An analytical example of the tracking endo-observer model

As for an example which can be easily calculated assume that there is a zero vector field
applied to the state’s probability density function. The endo-observer model (5.34)

becomes the general non-linear Schroédinger equation
K0 (X, 1) = (1/2)(— k0, )W (Xiry 2) — YW (Xer ) [Py (X, 1), (5.37)

which can be solved analytically (Zakharov and Mikhailov, 1978; Satsuma and Yajima,
1947) by means of the inverse scattering technique when an arbitrary y(x;, %) has been
given. Here, it has to be shown that this endo-observer model is capable of identifying
a zero vector field, i.e., there exists a stationary solution of the partial differential equa-
tion (5.34). This has been demonstrated for example in (Mills, 1998). The stationary
solution ansatz Y (Xy,t) = Wy(Xy) exp(iet) leads to the probability density function

(—1/2) K05, W5 (%) + EWs(Xir) =103 (Xer) = O

whereby it has to be borne in mind, that y;(x,) and dx, Ws(X) have to vanish as X, —
+o0. These conditions now lead immediately to a solution,

n \/Z—E
Wi =11 cosh?(v/2Exy,)

j=1

exp(imt) (5.38)

The tracking algorithm for VN identical observations

In the following let us assume that an endo-observer estimates at initial time #; the

probability density
n o _ME
J=% cosh™(v2Ex )
p(xtrtwth) = \/ZLE (539)

S d" e HJ:l coshz(\/ﬁxtrj)
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As argued above the initial phase is zero, thus the initial state function becomes

n V2E
J=1 COShZ(\/fExuj)

T g 1T V2E
f—ood Xtrnjzl COShZ(\/Z_E_xtr])

exp(io(t — 1)), (5.40)

W(Xtrth )t )

and the tracking model becomes,

N n V2E
=1 =1 cosh’(v2Exy,)
(5.41)

p(th) =
- " N n __ZL

Depending on the total number of sample points the probability density function is
more or less peaked about the origin of the state space model.

The tracking algorithm for N non-identical observations

Now, let us assume that an endo-observer estimates at an initial time #, the probability

density
n 1 3 V2E
J=% cosh”(V2E(xr;)—x0, )
p(xmh,th) - J\/z_Elh : (5.42)
f_wdnxtr H’;-_-;l 2
cosh (\/Z‘E—(xtrj—xojh))
in which case the tracking model derives to
N 1 V2E
Hth szl Cosh2(\/§E(xuj)"xojh))
P (Xe,t) = V2E .

oo 1N N n
f_m d™Xy thl I_I]:1 COShz(\/QE(xtfj *x"jh))

Depending on the distribution of the origin X, of all data points 4, the density function
p(Xy,?) can take any shape which is possible as a superposition of basis functions given
by Eq. (5.42).

The reason for Eq. (5.42) being a solution of the dynamical system (5.37) is the

invariance of this equation towards shifts in the origin.

Prediction with the tracking model

The prediction of an arbitrary non-linear system becomes straightforward, as long as
the dynamics (5.37) and the initial probabilities (5.42) are given explicitly. As demon-
strated in this example, any future state can be computed by utilizing Eq. (5.37) and
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the future probability density distribution is then defined by

N n V2E
thl HJ:1 cOShz(\/ﬁ(xtfj‘xojh))

f_w Xir Hh—l l—IJ*'1 COShZ(ﬁ(x“j "xojh))

p(xlﬂtfuture) = p(xtr:t) = (544)

It has to be admitted that this case is rather trivial because a stationary state has been
assumed in the first place, but the principle is also valid for the most general case.

5.7 Conclusion

The goal of this chapter has been the development of an algorithm which incorporates
few specified uncertainties about a non-linear dynamical system of a state space model.
The concept of endo-observers in Chapter 4 has been extended to the case that the
abstract error-free state space model is given and about the stochastic property of noise
in the vector field is only known in that the variance is bounded by an arbitrary but
fixed value. State space models with this kind of stochastic forcing are here defined
as endo-observer concepts. (Note, that the endo-observer concept which is utilized in
Chapter 4 is a slightly different one, since the stochasticity is of a different origin.)
After a short introduction about the problem domain, the source or erroneous
vector fields in a real-life physical system has been motivated, and the necessary
minimal qualitative assumptions about the nature of the noise have been introduced.
The implications for the dynamics of a difference vector field between the estimated
and nominal vector field then lead to a differential equation which follows the
dynamics of a negative potential’s gradient. This potential is the squared magnitude
of the vector field at any point of the state space. It was then shown how very similar
arguments to these utilized in Chapter 4 lead to a set of differential equations similar
to the Schrodinger equation with a negative vector potential. Obviously the motivation
in our case is very much different from the one in Quantum Mechanics. The
meaning of the derived Schrodinger equation lies in the identification of the squared
magnitude of the state function \ as the probability distribution density in the real-life
observer’s state space (endo-observer) and the gradient of the phase of this complex
function as the mean error-vector field at a state. It is then argued that the initial
mean difference vector field is zero. Any initial state function of an endo-observer
can thus easily be generated by taking the square root of the estimated probability
density function in the endo-observer’s state space. The identification of a state space
is defined here as the composition of a probability density function consisting of
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the measured state vector components, estimated state vector components, and the
control parameters of the dynamical system. Information and physical insight about
the underlying dynamical system, and the explicit availability of the variables’ and
parameters’ bounds are a prerequisite for the applicability for the methods devised
in this chapter. System identification for many data points is then defined through
the superposition of all pre-defined probability distributions in the state space. In
order to include tracking in this model an approach towards decision-making has
been established which places more confidence on higher probabilities in the state
space. Because this confidence is no-longer based on physical knowledge but rather
biased preference, these corresponding dynamics could be interpreted as a ‘subjective’
choice. The dynamics modelling this tracking behaviour are given by the generalized
non-linear Schrédinger equation which is very similar to the differential equation for
the non-linear system identification procedure. The crucial term is a cubic term with
respect to the magnitude of y which drives the tracking system towards focusing the
probability density function at a specific state. Section 5.5 first motivated the various
algorithms which have to be devised for non-linear system identification, tracking
and prediction. The non-linear Schrodinger equation has been been put in the context
of these three issues. A simple model serves in Section 5.6.3 as an illustrative example.

Having devised an algorithm in Chapter 4 for purely linear dynamical systems and
having derived a similar procedure in Chapter 5, the applicability of endo-observer
models to general non-linear dynamical systems has to be proven. It is desirable
to prove analytically which dynamics the non-linear and the generalized non-linear
Schrodinger equations can exhibit. Unfortunately, only a comparatively small number
of all known partial differential equations are analytically soluble and for the majority
of partial differential equations solubility is an open research issue as mathematical
tools for investigating their behaviour are currently immature. Even the numerical
integration of partial differential equations is the object of an intensive research effort.
Because of the limited time and effort which can be spent on this work the author
had to drop the ambitious aim towards developing a closed theory of endo-observers
for estimation and tracking non-linear dynamical systems. The following chapter thus
presents only a few soluble endo-observer models which are unfortunately stripped of
some of the interesting features that the Schrodinger equations may exhibit. It is hoped
that the simple models given in the next chapter serve sufficiently as an exemplar of

the applied algorithms developed here.



Chapter 6

The endo-observer’s frame of
reference for a ballistic missile

Forward

This chapter is purely dedicated to demonstrate the capabilities of the endo-observer
models as developed in Chapters 4 & 5. The most general cases of endo-observer
models require the numerical integration of a multidimensional elliptic partial differ-
ential equation. Only examples have been depicted which are analytically tractable.
The numerical implementation problems of the endo-observer identification algorithm

have been left for future research.

6.1 Introduction

The dynamics of a ballistic missile have been derived in Chapter 4. A ballistic’s body
dynamics require the functional dependency of lift and drag coefficients with respect
to relative wind velocity, attitude, and rotational velocity of a ballistic missile. It has
been argued that modelling without this kind of information requires some reasonable
assumptions about those coefficients, which are based on physical arguments. Be-
cause, the speed of a typical ballistic missile is at its peak velocity about Mach 7,
Newton’s theory of drag/lift has to be applied. These assumptions are being upheld
in this chapter. The most general dynamics as given in Eq. (5.24) are not analytically
soluble, i.e., numerical integration has to be applied. The purpose of this chapter is not
to present the solution of a nonlinear probability density function, but the application
of the derived dynamics to an example which is easy to comprehend and which can

148
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be compared with ones expectations about the result of a model. It is therefore being
argued that the perturbation theory of an unperturbed parabolic trajectory of a missile
is adequate to demonstrate the feasibility and reasonableness of the model derived in
Chapter 3. This chapter motivates and solves the dynamics of the simplified ballistic
missile model, utilizes the identification algorithm devised in Chapter 5 for exhibiting
the usefulness of that approach and exerts the tracking algorithm of Section 5.6 on the
identified system in Section 6.2. The conclusion summarizes the findings.

6.2 The Schrodinger equation for a Ballistic Missile

The vector field of a ballistic missile under certain physical assumptions to estimate
the drag and lift coefficients has been given in Example 3.4.3. Since any vector field
(Fey)(Xen,t) € C! is suitable for the dynamics of the endo-observer model given in
Eq. (5.24), also the vector field defined in Example 3.4.3 can be introduced in the
endo-observer model. Straightforward numerical computation then leads to the endo-
observer dynamics of the ballistic model given. Because there does not seem to exist
any analytical solution, this model is not suitable for demonstrating the capabilities
of the endo-observer model, since much of the result were down to the simulation
itself which is a different modelling issue all-together. For demonstration purposes it
is sufficient to utilize a model which is close enough to the real trajectory but which
may be analytical tractable. The model being proposed here is based on first order
perturbation theory. Instead of considering the physically correct trajectory, the unper-
turbed (without drag) trajectory is being employed which is corrected by adding a first
order perturbation term to the nominal unperturbed trajectory. The vector vg defines
the velocity for a ballistic missile without aerodynamic forces, vy is the velocity of
the body due to first order perturbation which stems from aerodynamics forces on the
body which are orthogonal to the unperturbed velocity vector, and v, is the velocity
of the ballistic missile due to the first order perturbation which originates from the
aerodynamic forces on the missile which are parallel to the unperturbed velocity vector

vp. The vector field thus becomes

I = &+ Vo+ Vang + Vi 6.1)
Vang = —Darag ()82 + Vo + vy (& + Vo + V) (6.2)
Vik. = Din(t)|Vor|(Vwi), (6.3)

with v, being the component of the wind velocity which is parallel to gt 4 vo, and
v, being the component of the wind velocity which is orthogonal to gr + vg. It has
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to be emphasised that vo/|vo| does not necessarily coincide with the symmetry axis of
the ballistic missile. This model also has the advantage that there are no rotations of
the body frame of reference about certain angles involved which requires even more
care when choosing the basis functions of y since the periodic boundary conditions
have to be included within the model. The lift coefficient Dy, (2) is chosen according
to Egs. (3.99) & (3.100)

Dgng(t) = 84.7347exp(—1)sin46.3¢ 6.4)
Dyg(t) = 1.8955-103exp(—2z)sin®46.3 (6.5)

The drawback of this model is that the deviations Vgpg, Viie are only well approximated
by the terms given above as long as a time interval 7 — fy leads to the relations |gf +
V0 + Vol > | Varg| and |gt + Vo + vy | > |Vir|. As the model given in Eq. (3.98)-and

repeated here for convenience
mv = mg — 0.1654p..|v|v, (6.6)

cannot be analytically solved, the endo-observer model can only be represented in
form of a numerical integration shown in the top-left sub-figure of Figure 3.6. As the
perturbation of the mean-drag-coefficient dynamics Eq. (6.6) was derived to be

87y = 84.7347meter 6.7

t'=t

X [—4.6583 -10™*exp(—1") sinw,z’ + 1.007 - 10~ exp(—br') cos mnz’}

t'=ty
8% = 1.8955-10 > meter (6.8)
x [exp(—1") +4.6388 - 1074 exp(—2¢') cos w,t’

t'=t

?
t'=ty

+4.0151 - 105 exp(—2¢') sinconz']

it follows that the endo-observer dynamics as presented in Section 6.2.3 can be
interpreted as a superposition of the dynamics given by Egs. (6.6)—(6.8) which defines
the dynamics of the mean value of the probability density function |y|?(r,?) and the
dynamics governed by the Schrodinger equation.

Eq. (6.1)—(6.3) implies several essential properties of the state function y. Be-
cause Vg 1S independent of vy and both accelerations are independent of r the state
function W can be decomposed into a product of three components of which each

relates to a sub-set of state variables ¥, Varag, Vst

Y (Xen, 2) = W, )W (Varag, 1) W (Viite, 7) 6.9)
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The substitution of the vector field Eq. (6.1)—(6.3) into the nonlinear Schrédinger e-
quation (5.24) leads to

iKatW(Xm,t) = — (K2/2) <812. + a%dmg + a%lm) W(r7vdraga Vﬁft,t) (610)

—1K(gt + V0 + Varag + Viire) OrW (T, Varag, Viist» )
“+1KDarag (1) |81 -+ V0 4 ¥y | (& + V0 + Vs ) Oy, WX, Vitrag, Viitis )
—~ KDy (1) | Vo 1| (Vw1 ) Ovysg (T, Varag, Vi, )
+(1/2) [(& + Vo + Varag + Viire) % + Dﬁmg(t) (gt + vo+ VW”)4
+ D (1) <VW.L)4] WY (T, Varag, Vit 1)
because the divergence of (Fe,) (X, ) vanishes for all time ¢. This differential equation

cannot be solved in the x,, coordinates. However, by substitution of

1 o - )
W(T, Vrag, Vi, £) = W/ d9k\]f(k,t) exp(ik - (T, Verag, Viirt)) (6.11)
into Eq. (6.10) leads immediately to

10, (k,1) = (2/2)k* (K, 1) (6.12)

+K(gF + Vo + Varag + Vire) K1 W (K, 7)

~KDyrag (1) |82 + Vo + vy || (8 + Vo + vy K2 W (K, 7)
+KDyig (1) [V | (Vi1 ) K3 W (K, 7)

+(1/2) [(gt + V0 + Varag + Viir) > -+ Dl (1) (87 + vo + VWH)4
+ Dii (1) (Ve )*] W (K, 1)

with k = (ky, kp,k3). The rather lengthy expression in Eq. (6.12) can be simplified to

k0 (k, 1) = co(k, 1) (K, ?) 6.13)
with the solution
Tk, ) = (K, fo) exp (—(i/K) /to t dt’@(k,t’)) . 6.14)
with
6.15)

co(k, 1) = (K2/2)k* +x(gt +vo+ Varag + Vi) K1
—KDrag (t) |82 + Vo + Vi) | (82 4 Vo + Vi) K2 + KD (2) [V 1 | (Vi1 )K3
+(1/2) [(gt + Vo + Virag + Viire) % + Dﬁmg (¢)(gt+vo+ VWH)4 + Dﬁﬂ(t) (le)ﬂ
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The determination of any W (I, Varag, Viist, ) is therefore reduced to determining the flow
of the vector field which is given by the time integral over cg(k,¢) and a subsequent

inverse Fourier transform of (K, )
. _ 1 < 33 3, o~
W(T, Varag, Viitt,1) = (2m)9/2 Brd>V g d> Vi (K, 1) (6.16)
t
X exp (ik'(ravdragavlift) - (l/K)/ dt'@(k,t’)).
Iy

The probability density function p(r, Vg, Vin,2), Which represents the likelihood to
find the ballistic missile at coordinate r and having a drag force and lift force which
add the velocities var,g and vy respectively to the nominal one, is, as before, given by

— el g x < v 12
P(X, Varag, Viift, 1) = |W(I, Varag, Viire £) [ (6.17)

The dynamics of an endo-observer can be determined by utilizing a predefined initial
state P(r, Varag, Vi, /0) Which determines the future state via Eq. (6.14) and therefore
the probability density function for any time in the future by Eq. (6.17). The following
concrete examples given below may illustrate the dynamics of an endo-observer.

6.2.1 Lift- and Drag-coefficients are negligible

This section shows the simplest endo-observer model, when the Lift- and Drag- coef-
ficients can be set to zero. The exo-observer model in this case is given by

IF=gt+vp (6.18)
or, equivalently,
r = (1/2)gt* + vot +ro. (6.19)
The endo-observer model is being formally given by the following conditions.

1. Drag and Lift coefficients are zero Dyg(t) = Darg(t) = O.

2. The endo-observer is assumed to be unbiased, i.e., the mean difference vector

field vanishes for the initial state dx_ (G(Xex,%0)) = 0.
3. The initial probability density function is assumed to be Gaussian |y(r,z)|? =
1/ (\/77;30'3) exp (—r?/c?) with a corresponding state function which is a Gaus-

sian as well y(r,10) = 1/1/ /T 03 exp (—r?/(20%))
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The choice of the initial state function is not very restrictive in terms of the system’s
dynamics, it has been selected for convenience sake. The Fourier transform of the state

function is

o’k?

Y(ky,t0) = Vo3 /w4 exp (—-T) (6.20)
The state function can now straightforwardly be computed by utilizing Eq. (5.24)
1 ® 3~ :
Vo) = o | ki) exp (ki) (6.21)
7
X exp (—(i/K)/ dr’ [(KZ/Z)k% +x(gt +vo)ki + (1/2) (gt-i-vo)z])
Iy
1 °° ~ : :
= W [m A’k (ky,7) exp (—zk%Kt/Z —i((1/2)gt* + vot +rp — r)ki])
x exp (—i/(2x) [(1/3)g°t® + vogt* + V3t +11]) (6.22)

Because the initial state is supposed to be a Gaussian function, The endo-observer state

at time ¢ becomes

53/2 -
y(r,t) = ____—_(2)3/271'9/4 /_wd kjexp (__

x exp (—i/(2x) [(1/3)g%> + vogt® + V3t +11]) (6.23)
3/2
- (2)(35/%9/4 exp (—i/(2) [(1/3)g°t> + vogt? + V3t +11])

x exp (—((1/2)gr® +vor +10 —1)?/ (2iKt +207)) (6.24)
x /w dkyexp (_ig.’_"_’ (k1 L i((1/2)g + vor + 1 -—r))2>

o2+ ikt

k? —i((1/2)gt® + vot +rg — r)kl)

ixt + o2

— \/: ” exp (—i/(2x) [(1/3)g°° +vogr* + Vgt +11])  (6.25)

o2 +ixt)3n3/2
x exp (—((1/2)gt* + vot +ro —1)?/(2ixt +20%)) .

The probability density follows by the product of the state with the complex conjugate

state,

o’ (_62((1/2)gt2+vot+ro——r)2>

p(r,t) = o4 11212

= ex
/13 (0% + K212)3
which is the Gaussian distribution centered at the coordinate (1,/2)gt?+ vot + 1o of the
deterministic ballistic trajectory, and the squared variance (c* + x?#?)/(26?) which
increases quadratically according to k%t2/(20?) as time progresses. As has just been
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demonstrated, the endo-observer model developed here allows the computation of a
ballistic trajectory including the errors which an endo-observer inevitable may include

during measurements.

5
a) b)
TR TR e W me s 50 180 150 200 250 300

1, [km] t [sec]

Figure 6.1: a) The trajectory of a ballistic missile with initial velocity vy =
(0,1566.84,1566.84)T meters/sec. The abscissa represents the second component of the co-
ordinate vector r and the ordinate is the height and third component of r. b) The abscissa is
the time axis in seconds. (The time of flight is 319.44sec.) The ordinate is the length in meters.
The non-linear function represents the variance as it evolves with time, when K = 1,6 = 6. The
linear function is given by xt/(v/2G) and is defined as a lower bound for G which converges
towards the function Kt /(v/26) as t — oo.

6.2.2 Drag-coefficient is constant and without Lift-coefficient

This section is concerned with an endo-observer model, when the Lift- coefficient can
be set to zero but the drag coefficient applies. The exo-observer model in this case is

given by (Hestenes, 1986)

=g+ (6.26)
—Darag (1) V0 {gl(1/2)t2+ (1/3)gvy '] +volt + (1/2)gv51t2{}

or, equivalently,

r=cry = (1/2)gr*+ vot +ro (6.27)
—Drag (1) 0 {gl(1/6)t3 +(1/12)gvg 't + vo|(1/2)1% + (1/6)gv51z31} ‘

The endo-observer model is being formally given by the following conditions.

1. The Lift coefficient is zero Dyg (1) = 0.
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2. The endo-observer is assumed to be unbiased, i.e., the mean difference vector
field vanishes for the initial state dyx_ (G(Xex,%0)) = 0.

3. The initial probability density function is assumed to be Gaussian

(T, Vang, T0) > = 1/(\/ﬁ606)exp(—(r2+vdrag)/02) with a coresse-
ponding state function which is a Gaussian as well Y(r,Vamg, o) =

1/4/ VoS exp (—(r* + Vi) / (267))

The choice of the initial state function is not very restrictive in terms of the system’s
dynamics, it has been selected for convenience sake. The Fourier transform of the state

function is

21,2 2
U (ky,k2,70) = Voo /n*exp (—9-51-215—1‘—2> (6.28)

The state function can now straightforwardly be computed by utilizing Eq. (6.14).
Since most of the computations to follow had to be repeated during the following

sections, all computations are being as much generalized as possible.

1
(X, Varag, Viied) = CORE / Pk’ kod ks (K1,20)§ (K2, f0) (s, to)  (6.29)

X exp (ikT 4 1Ky Varag + 1K1 Varag )

!
X eXp (—(i/K) /t dt' [(k%/2)K; + kiK1 + KVagka + Kl"nftk3]>
0

xexp (~(i/9) [t [(/2)(6 Vaoms10e)?]

1 - 7 o ~—
- (2n)9/2/ Pk kod ks (K1, 10) ¥ (a2, 20) W (ks 10)  (6.30)

xexp( (1/2)(1( +k2+k2)KI~—l (c11—r kl)

X exp (_Z(CIZ _ Vdrag)kZ (C13 - Vllft)k] — l/(ZK)CM-)

with

t

c1y = dr'r (6.31)
fo
t

Clp = dt/\"dmg (6.32)
fo
1

C13 = dt'\"nﬂ (633)

Ip

1
cu = / At (F, Vasags i) (6.34)
14}
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Because the initial state is supposed to be a Gaussian function, The endo-observer state
at time ¢ becomes
B c2/2
Y (T, Varag, Vi, 1) = W
x exp (— (it + 0%)/2(k? + k3 +K3) —i(c11 — r)k;)

X exp (—i(c12 — Varag) K2 — i(c13 — Vi )K1 — i/ (2K)c14)
69/2 ‘ .
= WCXP (—l/(ZK)CM. — (Cll - r)z/(let -+ 202)) (636)

X exp (—(c12 = Varag)?/ (2Kt +26%) — (c13 — Viir) >/ (2ikt + 26%))

3 oo 2 s . 2
o“ 4 ixt i(c1i—c21)

X &’k; - ki + =

[T/ oo (- (s S0))

9
- \/(02 + :(1)97'69/2 exp (—i/(2k)c1s — (c11 —1)?/ (2ixt +206%))  (6.37)

X eXp (— (c12 — Vdrag)z/(ZiKt 4 2(52) —(c13— V]ift)z/(ziKt -+ 2(52)) .

/ Pk kyd ks (6.35)

with €21 =T, €22 = Varg, and ¢23 = V. The probability density follows by the
product of the state with the complex conjugate state,

c°

e
\/759(G4+K212)9
x exp (— (€12 = Varag)?/ (2t +26%) — (c13 — Vugr) 2/ (20t + 202))

xp (= (e —r)?/(2ixt +206%))  (6.38)

P(T, Varag, Viite, 1) =

which shows that the solution of the probability density function is a purely based on
integration of I, Vaqrg. The distribution is, as before, Gaussian centered at the coordi-
nate (ci11,¢12,c13) of the deterministic ballistic trajectory in Eq. (6.1)-Eq. (6.3), and
the squared variance (c* 4+ x2¢2)/(20%) which increases quadratically according to
«%t%/(20?) as time progresses. This demonstrates again that the endo-observer model
developed here allows the computation of a ballistic trajectory including the errors
which an endo-observer inevitable may include during measurements. The drag- and
lift-coefficients do not change anything about the predictability of the system. The
dominant influence is the variance of the difference vector field given by k which
determines the overall stochasticity of the dynamical system. As an example consider
the dynamical system as plotted in Figure 6.1. However the predictability of the
missile trajectory is limited by condition on the first order approximations given by
the expressions in the curly brackets as defined in Eq. (6.26) and Eq. (6.27). As long as
|Daragvo{®}| in Eq. (6.26) is very small in comparison to |g¢ + v/, the approximation
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is valid. The special case of having a lift-coefficient equal to zero thus leads to

o

c
/10(c% + 12126
x exp (—(c12 — Vang)/ (20Kt +267))

xp (—(c11 —1)%/Qixt +20?))  (6.39)

p(r, Vdrag7t) =

with c11 and ¢ given in Eq. (6.26) and Eq. (6.27) respectively.

6.2.3 Drag- and Lift-coefficients are time dependent, a short per-
turbation through a side wind

003 -0.5
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Figure 6.2: This figure shows the effect of lift and drag forces on a ballistic body given by
Eq. (6.6) and Egs. (6.7)~(6.8). Figure a) shows the result of Eq. (6.6). Figures b), c) show the
perturbation of drag- and lift-forces due to angular oscillations of the body about its equilibri-
um in the bodies 81 and 8r coordinates, respectively. The superposition defined by Eq. (6.40)
gives the desired dynamics of c11. As the variations of 8r,8r% are too small in comparison with
¥(t) a graphical superposition has been omitted. An example of the dynamics of the variance
of the probability density function (6.41) may be looked up in the RHS of Figure 6.1

This case does not introduce anything principally new, as the dynamics of the
spatial coordinate are explicitly given in Egs. (6.6)—(6.8). The mean spatial coordinate

vector ¢y is given by the following superposition:
cil =F()+ LR(Sr'l , 61”2, 5?’%) (6.40)

with Lg a linear operator which translates the body fixed coordinate transformations
given by 8r/,6r3,8r5 into the corresponding transformations of an immobile frame of
reference. The probability density function is then explicitly defined as

o3

exp (—(c11 —r)?/(2ixt +26%)) (6.41)
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6.3 Tracking of a Ballistic Missile’s Dynamics per-

formed by endo-observers

As there has been demonstrated in Section 5.6 the state of an endo-observer V(X ?)
is a complex function and is thus defined up to an arbitrary phase ¢(x,?). A state
v/ (x[.,#') which only differs from a state y(x,,#) by a complex phase shift is physically
equivalent to a system described by y'(x/.,#') in the sense that the probability densities
of finding either system at a state vector X, are identical. The following derivation
below shows the transformation of the generalized nonlinear Schroédinger equation
when a system given by w(xy,?) is replaced by v'(x/,#'). To interpret the physical

meaning of that phase shift, let us consider two endo-observer’s frames of references

F with a state vector x, and F’ which follows at time # = ¢’ the vector field (Fe)(¢)

such that the coordinates between both frames of references transform as X, = X[, +
1
ft(’,) dt(Fe)?(t). The differential operators transform according to

Oxy = BX& (6.42)
0 = Oy — (Fex)(t)0x,- (6.43)
Because W' and v differ only by a phase it can be defined that
Y (xe, 1) = W' (%, 1) exp (i¢/ (x4, 1)) (6.44)
In the frame of reference F the generalized nonlinear Schridinger Equation (5.24)

takes the form
o) = (1/2) (~ixdg, + (Fud(0) W)
~Y)W (%, 1) P (X, )
= —(x%/2)0%, W (Xur,?) — iK(Fex) (1) Oxg W (Xir, ?) (6.45)
+(1/2) (Fex) ()W (X, 2) = Y1V (Xir, ) P9 (X, )

By introducing the Identities (6.42), (6.43), (6.44) into Eq. (6.45) the generalized
nonlinear Schrédinger equation for the immobile frame of reference leads straight-

forwardly to the standard nonlinear Schrédinger equation
Koy (x), ") —xy’ (x,1')0,0'(¢') = —(K2/2)a,2(€r\u’(x;, t) (6.46)
+(1/2) (Fa) ()0 (i 1") =YW (x5, 2') P07 (%, 1')
by choosing the phase to be equal to ¢/ (') = —1/(2k) ft” (Fex)?(2)dt which then allows

to cast the Schrédinger equation into its original form

Y (K, ') = — (k2 2)02 W (Ko ") =410 ()P (). (6.47)
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This means that the solution of the generalized nonlinear Schrédinger equation, in case
that the function (Fe) () is purely time dependent, can be computed by solving the
nonlinear Schrodinger equation in the mobile frame of reference of an endo-observer.
The derivation above can be summarized as follows. Because the difference between
Eq. (6.45) and Eq. (6.47) is just a phase shift of the state, the probability density
functions are identical which proves that both solutions are physically identical to
each other. The phase shift represents a transformation between two endo-observer
systems of which F” is the one that follows the defined by (Fex)(¢) and F is the frame
of reference which is supposed to be immobile with respect to the flow induced by
this vector field. It has just been demonstrated that the results from Section 5.6 can be

utilized. The probability density is thus

n N
p(xir,2,2j) o< [ [ [T sech® (i — ri(2),2)) (6.48)
i=1j=1
where the indices i and j represent the dimensions of the state space and the observa-

tions, respectively.

6.4 Conclusions

This section applied the framework of an endo-observer model successfully to the
ballistic missile with pre-selected parameter values as the outcome of the computa-
tions reflect the expectations. The requirement of analytic computability unfortunate-
ly limits the model to an initial Gaussian probability density function with a quasi-
homogeneous vector-field in the state space. The tracking model in form of the non-
linear Schrodinger equation was proved to be form invariant with respect to the mean
value dynamics which demonstrates that the proposed tracking model generates a soli-
ton with its mean spatial coordinate vector at the mean of the non-linear dynamics at

any time 7.



Chapter 7

Conclusions & Future Research

This thesis deals with the real-life data and abstract state space model correspondence
problem. The problem domain of this work focuses on the identification of non-linear
dynamical systems for short and noisy time series, where only components of the
state vector are explicitly given and neither further knowledge about the errors exist
nor assumptions about the noise may be utilized. It is demonstrated in Chapter 2
that stochastic and statistical systems require very specific properties with respect to
the underlying deterministic physical system as well as the data to allow meaningful
statistical modelling. The dimensions of the state space imply lower bounds on the
required number of data points and the stochastic properties of the noise determine
the stochastic model to be utilized. Neither information is usually available prior
to the modelling task. Usually it is presupposed (e.g. (Brown and Harris, 1994,
Bossley, 1997)) that certain model requirements are fulfilled rather than carefully
checking whether certain conditions hold (Wu and Schilhabel, 1997). Information
measure driven algorithms may easily underestimate the (reconstructed) flow in the
state space due to lack of data points. Hence, there is no rigorous criterion which
allows a decision about the validity of such a statistical model. In combination with
statistical modelling it should be mentioned that revived methodologies such as the
Vapnik-Chervonenkis’ (VC) learning theory do not solve the difficulties encountered
above (Vapnik, 1999; Cherkassky, 1999; Cherkassky and Mulier, 1998), as all s-
tatistical modelling techniques are inherently ill-posed (Cherkassky, 1999). It has
been demonstrated in Section 3.5.2 that the constraints imposed by the experimental
arrangement refute meaningful statistical modelling. As mentioned earlier, in some
cases a black-box model performs well (Wu and Harris, 1997) in another case it fails
(Wu and Schilhabel, 1997). The global Lyapunov exponent measurement algorithm
does not provide a rigorous criterion either as it depends on the data, on a pre-selected

160
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time-delay etc. (Weigend and Gershenfeld, 1993; Prichard, 1993). In short, there
does not seem to exist a rigorous statistical framework which generally allows the
incorporation of physical knowledge such as a parameterised non-linear vector field in
a state space when just components of the vector field, which are corrupted with noise,
are explicitly given (Cherkassky and Mulier, 1998; Cherkassky, 1999). In Section 3.5
it is argued that physical driven modelling state space modelling cannot be utilized due
to the lack of physical insight and the fact that real-life systems always include noise.
These difficulties have been found to be insurmountable. Chapter 4 and Chapter 5
are thus dedicated to deriving a framework of stochastic modelling which is based
on as few stochastic assumptions as possible. It is shown in Chapter 4 how a real-
life observer effects the interpretation of physical measurements when the linear or
non-linear state space model is a priori known. The advantage of this model is that
the assumptions, requirements and information to a real-life observer are transparent.
The requirements of these models are found to be twofold. (i) The abstract physical
state space model with its dynamical system parameters must be explicitly given. (ii)
Bounds on non-measurable state space components and parameters have to be either
estimated or guessed. Although several new results and novel theoretical techniques
have been derived many interesting and important problems concerning the proposed
approach remain very much an open research issue, e.g. how can past measurements
provide information which allows a mathematically rigorous constraint for possible
state space models etc. The chosen modelling issues on ballistic missiles in Chapter 3
exemplify the problems faced when concerned with incorporating physical knowledge
in a data and physical system driven hybrid model. This concluding chapter reviews
the methodologies presented in this thesis in such an appraisal is presented with respect
to black-box modelling, as is for example defined in Eckmann and Ruelle (1985) or
Casdagli (1989), and physical driven modelling, as for example summarized in Chui
and Chen (1999), Jetschke (1989). Some open research problems and suggestions for

future research are also presented.

7.1 Utilization of general Non-linear Statistical Mod-
elling techniques

Non-linear statistical modelling techniques provide the few means of testing some giv-
en time series with respect to data generated by some generically underlying dynamics.
It is important to note that there does not exist any rigorous proof which provides
a test for a finite set of data whether the data was generated by a particular non-
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linear dynamical system or not. The difficulty of system identification via statistical
data is known by statisticians as an ill-posed problem, see also e.g (Cherkassky and
Mulier, 1998; Cherkassky, 1999), as there does not exist a unique stochastic non-linear
dynamical system which may generate the data. Section 2.3 reviewed the method-
ologies which try and identify whether the time series stems from a deterministic or
stochastic system, or if the underlying dynamics are linear or non-linear, chaotic or
non-chaotic, and what information content is provided by a information measures etc.
Despite these being reasonably well developed theories based on probability theory, it
has been found in Section 3.5.2 that most practical implementations of algorithms are
very problematic since the state space reconstruction problem is ill-posed (Cherkassky,
1999). The lack of information about a physical system cannot be compensated by any
statistical framework, i.e., there does not exist any statistical significance measures for
state space identification algorithms outside the pure data driven framework for a real-
life implementations (Cherkassky, 1999) and most statistical algorithms are based on
assumptions, such as Takens theorem which assumes noise-free data, which are not
fulfilled by the time series provided. The most significant drawback, however, is the
vast amount of data required for non-linear dynamical systems modelling as in the
case of a ballistic missile, since there is not much evidence of a simple attractor inside
the state space which would enable the identification of a dynamical system with small
data sets. The grey-box modelling ansatz as derived in Chapter 3 lead back to the same
algorithms as employed for black-box modelling, i.e., grey-box modelling encounters
the same difficulties as statistical black-box modelling. It thus becomes apparent that
purely data driven statistical models lack the property of incorporating physical know]-
edge in their analysis. In summary the black-box and grey-box modelling techniques as
reviewed by Eckmann and Ruelle (1985, Casdagli (1989, Sjoberg et al. (1995, Juditsky
et al. (1995) cannot be employed for the following reasons:

(i) Insufficient data: For example the number of data points is of the order 108/6
for a time series consisting of space-coordinate and velocity measurements of a

ballistic missile which may have a 16-dimensional attractor.

(ii) Non-available statistical error criterion: The inverse problem of state space
reconstruction is ill-posed, i.e., there does not exist among all the (non-linear)
statistical methodologies a criterion which measures the performance of the state
space reconstruction techniques according to their accuracy and robustness to-
wards variations in the state space models. The extracted probability estimation
via the frequency of events relates to the output space, probability densities in

the state space cannot be extracted.
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(iii) Physical Knowledge does not simplify the analysis: All that physical insight
may provide is a pre-filtering of the time series which enables grey-box mod-
elling. There does not seem to exist an approach that allows the ill-posedness
of problems of the data-driven modelling techniques to be overcome or which

reduces the dimension of the attractor inside the state space model.

The counter argument by researchers within the black-box modelling community may
be that their derived heuristics have been performing well in practice as it is the case
in Kantz and Schreiber (1998), or Schreiber and Kantz (1998). However, these kind of
arguments are flawed since the precise mechanisms behind these statistical algorithms
are not very well understood (Ott, 1993; Weigend and Gershenfeld, 1993; Tong, 1995).
Because black-box and grey-box models seem to be inappropriate for the kind hypo-
thetical ballistic missile time series modelling under the constraint of a relatively small
set of data points with respect to the dimensions of the dynamical system alternative
approaches had to be taken into account. An alternative to pure statistical system
modelling of time series is physical system modelling of a ballistic missile which has
been reviewed with respect to the applicability to real-life system identification and

prediction.

7.2 Modelling issues of Ballistic Missiles

The aim of the move towards non-linear system identification and prediction is the
incorporation of as much physical knowledge into the model as possible. Chapter 3
has two purposes. The dynamics of a ballistic missile were reviewed and the problems
concerning aerodynamic modelling were highlighted, followed by the determination of
a very much a simplified toy model which served for illustration purposes in Chapter 6.
The difficulties of physical knowledge inclusion in non-state space models became
clear in Section 3.5, after the available physics had been summarized. The encountered
problems with relating state space models to real-life data are varied.

(i) State space models are a physical abstraction and cannot per se be identified, as

noise corrupts measurements (see e.g. (Gardiner, 1998)).

(ii) A state vector component is a real number. Experiments do not allow the mea-
surements of real numbers, as finite precision only allows the measurement of

rational numbers.

(iii) A state does not account for errors in the measurements.
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(iv) Not all state vector components are accessible or observable (see e.g. (Ott,
1993)).

However, state space models are very appealing since they allow the prediction of
a dynamical system for all time once a state of the underlying dynamics has been
identified. The inclusion of physical knowledge is efficient and very clearly defined.
Deterministic models are therefore often related to erroneous measurements through
the incorporation of stochastic terms (e.g. Kalman (1960), Kalman and Bucy (1960)).
However, the stochasticity has to be very well defined prior to the identification and
prediction as has been shown in Fig. 4.3 where it is demonstrated that the reconstruc-
tion of stochasticity is ill-posed . For example, even when the dynamical system is
explicitly known the Kalman filter can only estimate stationary noise, i.e., the statistic
properties of noise are time invariant. Due to the limitations statistical modelling under
consideration imposes on the system being modelled, this approach has been found
unacceptable since these assumptions are unjustified and serve purely as an argument
for the motivation of black/grey-box modelling.

The dilemma which had to be faced in this work can thus be described as follows:
Black-box modelling techniques do not work on a hypothetical time series of a ballistic
missile because there is not enough data available, and at the same time the state space
model cannot be employed since neither the precise state space dynamics nor the ballis-
tic missile’s state are explicitly given. The non-linear dynamical system identification
problems have been found in the previous section as to be ill-posed (Cherkassky, 1999)
which implies that no approach could be found which is capable of overcoming this
dilemma. Because the incorporation of physical knowledge in the to be derived model
has priority over black box modelling due to the lack of time series data, the models
which have been derived in the Chapters 4 and 5 are motivated by state space models
which then have been sought to incorporate the uncertainty of real-life observers.

7.3 Endo-observer Models for Linear Dynamical Sys-
tems

Linear system identification may appear to be a very exhaustively researched subject.
This may be true for certain stochastic systems such as the linear Kalman filter, how-
ever, for only partially observed linear dynamical systems the identification procedure
is very much dependent on the underlying assumptions about the system’s stochastic-
ity. As the argument about the observability of a free particle showed (see Fig. 4.3),
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any real-life observation contains insufficient information in order to reconstruct the
probability density inside a free particle’s state space. Mathematicians may refer to
the state space reconstruction approach as an inverse problem which is ill-posed as
the question of which dynamical model may correspond to the provided time series
is not sufficiently defined (Kirsch, 1996). Because there does not seem to exist a
conclusive mathematical argument which allows a generic decision of how this kind of
uncertainty may be taken into account, the statistical technique of minimal prejudice
has been utilized in Chapter 4, after the concepts of exo-(ideal, abstract, physical
model) observer and endo-(real-life) observer had been introduced in Section 4.2 .
The dynamics as defined for an exo-observer have been derived in Section 4.3 in an
endo-observer’s frame of reference. It was demonstrated in the same section that an
endo-observer can only measure the probability density function of the spatial coordi-
nate vector components of the (exo-observer) state space irrespective of the velocity.
Apart from the probability density function the mean vector field at a particular spa-
tial coordinate may be estimated and the mean variance of the velocity probability
distribution at each spatial coordinate can be determined. It became evident, that
if an endo-observer (real-life observer) just relies on the measured vector field, the
predictions could lead to spurious results. The novel approach which has been devised
in Section 4.3 allows the computation of a net vector field which has to be added
to the observed vector field in order to apply a correcting term to the vector flow.
The correcting term minimises the divergence of the predicted vector flow from the
underlying vector flow of an exo-observer. It has to be emphasised that no assumption
about the probability density distribution inside an exo-observer state space model has
been made. All that is required, for the additional vector field computation, is the upper
bound of the total variance of the velocity’s probability distribution and the probability
distribution of the free particle’s observable spatial coordinates. It is then proved that
the ansatz employed leads to the corrected dynamics of a real life observer’s mean state
which has been proved to coincide with the dynamics of the exo-observer’s mean state.
An algorithm towards extracting the probability distribution of spatial coordinate was
also presented in Chapter 4. After the system had been identified (the state function
has been computed), the prediction was shown to just consist of calculating the state
function for any desired instant. The squared magnitude of the state function is always
the probability density, which estimates the probability inside an infinitesimal interval

of finding a systems state at a specific spatial coordinate.
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7.3.1 Advantages over black-box and stochastic approaches

The theory developed in this thesis is rigorously derived from an information theory
conceptual framework, and does not include any assumptions about probability den-
sity functions inside the state space. The results found appear to be satisfactory, in
particular when only a little information about the exo-physical state space and the
endo-observer is given. As argued above the endo-physical approach is an attempt
towards combining the information extraction capabilities of black-box models with
the means of the physical framework of classical (exo-observer) state space models.

7.3.2 Open problems and Issues for Future Research

The derivation of the endo-observer model is not very elegant. The estimate of the
exo-physical influence on an endo-observer is imposed by two energy components
entering the energy balance of an endo-observer. Although the fact that both energy
contributions have to be included with equal probability due to Jayne’s principle is
well founded, the validity of this approach is shown through the computation of the
solutions of the endo-observer state model and not by employing the framework which
motivated the dynamics in the first place. It is desirable to develop a mathematical
framework in which all requirements of the model can be incorporated at once and the
endo-observer dynamics follow as a necessary consequence of these specific require-
ments. It has not been shown why higher order variations of the probability density
function should not effect the endo-observer’s estimate. It is not clear how much the
probability density functions of the spatial coordinates in the endo-observer’s state
model may differ from those of the exo-observer in the best and worst case as time
progresses. Does there exist an approach which generalizes the linear endo-observer
model to an arbitrary non-linear system with many exo-physical non-accessible com-
ponents where the vector flow is not explicitly known?

Future research should focus on the theoretical consolidation of this model and
some generalization of this approach towards variable stochastic properties of the
endo-observer. The applicability of this model ought to be proved by developing some
performance bounds to enable an experimenter to judge the reliability of his probability
density estimate. The implications of this algorithm for control applications may be of

interest.
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7.4 Endo-observer Models for Non-Linear Dynamical
Systems

Non-linear system identification is despite the vast amount of literature still an imma-
ture field (Cherkassky and Mulier, 1998). The problem an experimenter is faced with is
the lack of understanding of non-linear dynamical systems, as the theory of non-linear
systems has not developed much yet (Jetschke, 1989). The efforts towards a general-
ization of endo-observer models, as it is proposed in Chapter 4, for non-linear systems
has been unsuccessful. The author could not develop an approach which would allow a
probabilistic model selection of non-linear systems when no precise information about
the exo-physical vector flow is incorporated in the endo-physics dynamics. The only
workable model developed here extends the components of the endo-physics observer
to all exo-physics components of the state space plus the components which com-
pletely incorporate the system parameters. Instead of just considering the probability
density distribution of the spatial coordinate, the probability density distribution of all
exo-physics state vector components and system parameters are employed. Because,
generally, most of the exo-physical (ideal, physically abstract) state vector components
and the system parameters are not accessible, the probability distributions inside the
endo-physical state space need to be estimated via an imposed probability distribution
which follows from lower and upper bounds of physical variables and parameters. The
inaccessibility of non-linear system components to an endo-observer is thus modelled
differently to the linear case. It is first shown in Section 5.3 how a difference vector
field between the one measured by an endo-observer and a nominal vector field enters
the endo-observer dynamics. It is then demonstrated in Section 5.3 that this difference
vector field is subject to changes as time progresses. It emerges that the squared
magnitude of the endo-observer vector field (nominal vector field plus the difference
vector field) serves as a potential which can be incorporated in a Hamiltonian required
for the formalism. The dynamics of the difference vector field follow the negative
gradient of this potential landscape, i.e., the error in the vector field persistently in-
creases along the steepest ascent of the total vector field towards the system’s local
vector field maximum. Under the assumption that the initial variance of the magnitude
distribution of the difference vector field is within an arbitrary but fixed bound, the
dynamics of the difference vector field can be cast in a form which is very much similar
to that found for the total vector field in the linear case. Although the motivation and
interpretations of the resultant dynamics of an endo-observer in the non-linear case
are very different to that found in the linear case, the mathematical derivation of the
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non-linear endo-observer dynamics can be easily adopted. The result is the generalized
Schrodinger equation with a term which is similar to the vector potential in quantum
mechanics. An exhaustively developed algorithm for system identification has been
derived in Section 5.5. It is suggested how an endo-observer with a given time series
and certain variable and parameter bounds composes a probability density distribution
for the endo-observer state space to firstly identify and secondly predict the non-linear
dynamical exo-observer system. Prediction here means, as in the linear case, evolving
the probability distribution in the endo-observer state space with time and then utilizing
the computed probability of a state as a propensity to expect the exo-observer to be at
this state.

For many applications the precise information about a probability distribution
is not required. It may be only desirable to focus on the local maximums of the
distribution. This kind of aim is then being implemented in form of a specific tracking
algorithm. The crux here is that the endo-observer is assumed to have more confidence
in the endo-observer states with a higher value of the probability density function.
Based on that assumption the generalized non-linear Schrodinger equation is derived,
which then leads to the tracking algorithm outlined in Section 5.6.1.

Because general numerical simulations of the endo-observer model for non-linear
dynamical systems are far too difficult to implement and go far beyond the scope of
this work, some toy models have been assembled separately in Chapter 6 to illustrate
and outline the theory in the form of analytical solutions.

7.4.1 Advantages over black-box and stochastic approaches

Because the emphasis is placed on the dynamics of an endo-observer, little attention
has been paid towards developing a model for the probability density estimation in
the endo-observer state space from the given time-series data. The emerging problem
which has not been addressed in this thesis is the suitability of a particular parame-
terised state space model for predictions. Throughout this thesis is was assumed that
the dynamical system is well defined up to a parameterisation. An algorithm for the
identification of an a priori undefined vector flow could not be devised. Although this
weakness may effect the algorithm as a whole, this criticism is unjustified as for a phys-
ical system the endo-observer model is in most particular cases well parameterised.
Another weakness in Chapter 5 emerged within the framework of probability density
estimation through data. Although the estimation procedure is well established as can
for example be seen in (Papoulis, 1991), the statistical significance decreases with the
number of given data points. Neither an estimate for the statistical significance of the
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probability density estimation algorithm nor the effect of an estimate which deviates
from the nominal probability density distribution has been derived. This complex
problem has been left for future research. The probability estimation as for example
provided in Chapter 5 is just a mean of providing an example of how the endo-observer
concept could be applied in a framework of non-linear dynamical system identification.
However, the endo-observer state space model no longer requires a comparatively large
number of data points in order to estimate some of the qualitative measures introduced
in Chapter 2 and Section 3.5.2. A regression technique which assumes stochastic
properties of the exo-observer model is no longer required. The derived algorithm
simplifies the estimation technique of probability density functions as they may be
alternatively implemented if form of regression techniques for the phase flow such
as artificial neural networks, radial basis functions, neuro-fuzzy system etc. (Bishop,
1995; Lillekjendlie, Kugiumtzis and Christophersens, 1994; Kugiumtzis, Lillekjendlie
and Christophersen, 1994; Brown and Harris, 1994). The only assumption about the
uncertainty of an endo-observer model is an initial probability distribution of an error
vector field with mean zero and fixed variance. The rest follows from Jayne’s principle
of unbiased guessing. This ansarz therefore ensures that only the information available
is taken into account and no other hidden assumptions enter the model.

7.4.2 Open problems and Issues for Future Research

The major drawback of the endo-observer model presented here is the fact that exo-
physical state space models must be explicitly given, or must at least be known up
to some parameterisation when the corresponding parameters have a certain a priori
given probability distribution. Also, the probability distributions of the state space
components and parameters which are not measurable have to be guessed up to the
second order of their cumulants (Schlogel, 1989). Thus, the model presented here is
not as close to a complete approach as desired where, without the knowledge of all exo-
physical vector flow components and without a given probability distribution for non-
measurable state vector components, the endo-physics dynamics can be modelled by
justemploying the given or observed time series. This aim has proved to be too difficult
to overcome within this thesis. In many cases the statistical community employs the
variance of a predicted system output with the given data points of a time series in
order to validate and quantify a statistical model. This kind of measure cannot be
applied here, since entire probability density distributions are under consideration. A
comparison between the endo-physics model and the flow in an exo-physical state
space is hard to justify since the exo-physical model does not propagate any errors
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in its dynamics whereas the endo-physics model inherits the errors performed by a
real-life observer. Objective comparison between the model proposed here and other
models on the level of time series data comparison is very difficult as there does not
exist a universally valid algorithm which is capable of generating a probability density
function in a reconstructed state space which could be compared with the probability
density function of an endo-observer model.

Further research could aim at even further relaxing the information required of an
endo-observer model. The variance of the system uncertainty cannot be chosen depen-
dent on the endo-physical state space component, which may become a necessity for
some dynamical systems. The noise applied to the endo-physical vector field has been
assumed as homogeneous. Further developments on this model may seek to provide
means of real-life measurement equipment which may exhibit state dependent error
sources which cannot yet be incorporated in the endo-physics dynamics. So far there
does not exist a truly objective performance measure which allows the comparison
of existing statistical methodologies. It could be very challenging to provide such a

performance measure.
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