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1. INTRODUCTION.

Delaminations are among the most common defects in fibre
reinforced plastic (FRP) composite materials and structures.
They could arise either during fabrication of the structure
or through accidental impact during service. Delamination
involves the separation of individual layers that constitute
the laminate. The stage at which delamination occurs within
the laminate is dependent on the material properties,
geometric characteristics and specifics of the laminate
loading. The failure of a laminate as prompted by
delamination can generally be divided into three stages (1),
as illustrated in figure 1. These include: (a) initiation
of delamination; (b) growth of delamination with or without
the interaction with other associated modes such as matrix
cracking; and (c) final failure of the laminate often by in-
plane mechanisms.

The formation and propagation of delaminations in structures
have been studied by several investigators. For example, the
models of Choi et. al. (2) and Clark (3), applicable to line
and point loading respectively, provide qualitative
predictions of delamination sizes. The model of Grady and
Sun (4) provides an estimate of delamination growth but
requires a priori knowledge of the number and locations of
the delaminations. Liu’s model (5) shows the effect of
bending stiffness mismatch between adjacent plies on
delamination sizes. The models of Wu and Springer (6) and
Finn and Springer (7), provide the locations, shapes and
sizes of delaminations. Suemasu (8,9) has studied the
effects of multiple delaminations on the compression
buckling behaviour of composite panels using analytical and
experimental models. Wang et. al. (10} have presented a
mechanistic model to study the buckling stability and crack
stability (i.e. delamination growth) in short fibre
composites. These works have formed the basis for the
preliminary study carried out with regard to delamination



damage tolerance in marine FRP structures. Additional
references from a literature search can be found in Appendix
AA.

The objects of this initial study are four-fold:

(a) to achieve an analytical modelling capability to
characterise onset of delamination;

(b) to examine the relevance of fracture mechanics criteria

in modelling propagation of delamination.

(¢} to present preliminary results derived from the
theoretical modelling.

(d) to correlate the analytically formulated solutions with
experimental results from tests carried out in DRA,

Dunfermline.



2. MODELLING OF THE DELAMINATION PROCESS.

Delamination growth alters the stress distribution in the
laminate plies. As a result properties such as residual
laminate stiffness, strength and fatigue life are also
affected. Hence it is important to be able to calculate the
stiffness of a laminate which has delaminated in order to
assess its structural performance.

Stiffness reduction due to delamination.

To analyse stiffness loss due to delamination, a simple
rule-of-mixtures analysis c¢oupled with laminated plate
theory (11) can be used. 0’Brien (12) developed a method by
which the stiffness of a laminate completely or partially
delaminated can be calculated.

Equation (1) gives the stiffness of an arbitrary composite
laminate, ZE,, 1in terms of laminate thickness, t. The
complete method is discussed in Appendix Al.

1
B = —_ 1
T TaTe )
where: [a;;] is the first element of the in-plane

compliance matrix [al, described in Appendix Al.

If the laminate 1s symmetric, then the stiffness can be
written as:

1
E = = 2
LAM [Xll] t ( )
where: (X1 is the first element of the inverse

extensional stiffness matrix [A]™? described in
Appendix Al.



The stiffness of a laminate as shown in figure 2 containing
one or more complete delaminations, E°, ¢an also be
calculated from equaticon (3). The derivation is shown in

detail in Appendix AZ.

m
E, t;
1 v
> (3)
t
where: m is the number of sublaminates formed by the
delaminations.

E. is the stiffness of sublaminate 7j.

p]

t, is the thickness of sublaminate 7j.

3

The sublaminate stiffnesses can be calculated either from
equation (1) as a general case, or from eguation (2) if the
sublaminate is symmetrical or if the Dbending-extension
coupling for that sublaminate can be neglected.

In addition, the stiffness of a partially delaminated
laminate, E, as shown in figure 3 can be calculated from

equation (4). The details of the derivation are given in
Appendix A3.

B, = 2 (B -~ Bl + By (4)

where: a is the width of the delaminated strips.
b is half the laminate width.

E" is the stiffness of an equivalent laminate with
complete delaminaticns.

E,y 18 the intact laminate stiffness.



Modelling of delamination under compressive loading.

The modelling undertaken follows standard approaches
pertaining to beam panels under compression as documented,
for example, by Moshaiov (13) and Chai et. al. (14). The
case of a centrally locaded straight column as shown in
figure 4, was considered where P is the load, L is the
column length, x is the distance from one end and dx is an

incremental distance in the x-direction.

The theory described in Appendix Bl utilises the force and
moment equilibrium equations to yield an equation, shown
below, which can be appled to all three parts (i=l,2,3) of
the delaminated beam shown in figure 5.

W, + AW =0 (3)
where:
2 _ Pi . Bt
At = i D" = — (6)
D;* 12 (1-v2)
and P, is the axial force per unit length in the i

part.

D,” is the stiffness of the i™ part.

t, is the thickness of the i*® part.

E is the Young’s modulus.

v is the Poisson ratio.



The harmonic solutions to eguation (6) are:

w; = A;8inl;x; + BycosA;x; + C;x; + D; (7)

1

where: w, is the deflection of the i'® part.

A,B;,C; and D; can be found from the boundary
conditions and continuity relationships. (Shown
in Appendix B2Z).

X; 1s the distance along the beam with x=0 at the

left hand end of the beam shown in figure 5.

The ends of the beam are assumed to be clamped in this
analysis. From axial strain compatibility, axial equilibrium
conditicns and moment equilibrium at the intersection of the
parts, the following equation can be written for the

limiting case:

3 2 2
):1t1 COSllll + A‘1t2 tl cos ’"1t112 + a‘1“':3 tl cos }'113t1
6sink, I, coin izt 2¢, ssin A, 1Lt 2t,
2¢t, 2t,
t,t,t
1¥2-3 _ 0 (8)
1
where: t; is the thickness of part i (i=1,2, 3).

1, is the length of part i (i=1,2,3).

A, is given in equation (6) when i=1.

The complete analysis is shown in Appendix B2,



Equation (8) can be used to find the critical value of A,,
or A., which gives the critical wvalue of stress for
delamination buckling to occur which can be calculated from

equations (9) and (10):

P
A 2 _ cr 9
cr D,* ‘ (9)
b
0. = cr 10
€T Area (10)
where: D,” is given in equation (6).

P.. is the critical buckling force.
Area is the laminate width multiplied by the
laminate thickness.



3. RELEVANCE OF FRACTURE MECHANICS.

Fracture mechanics has been frequently utilised to
characterise the Dbehaviour of c¢racks in metals but its
involvement in composite applications is less common.
Sumpter (15) has studied the use of fracture mechanics in

the design process and materials selection procedure.
Probably, the most well-known fracture mechanics concept is

that relating elastic stress intensity, K to the

characteristic stress using the following equation:

K=Yao yna (11)

where: Y is a structural geometric factor.

o 1s the characteristic stress.

4 1s a crack dimension.

It can be assumed that the crack will advance at a fixed
value of K, K., which is a material property independent of
crack length, geometry and working stress at which K. is

attained.



An alternative approach for the analysis of cracks involves
the use of the elastic strain energy release rate, G.

4au
da

g

(12)

tol

where: U is the structural energy available to allow

crack advance.
B is the material thickness.

a is the crack length.

It is usually assumed that the new fracture surface would
require a critical energy dissipation rate, R and that
fracture would occur when G was greater than or equal to R.

The value of G when G was equal to R was noted as G,.

If a crack in a composite advances in a plane parallel to
the fibre direction in unidirectional composite or between
laminae in a laminate, G can be written in the form (15,16):

1/2
1/2
_ __L” (ﬂ] v, + (13)
(ZE;E})/ E, 2G,,
where: E, is the Young’s modulus in the x-direction.

E, is the Young’s modulus in the y-direction.
Gyy is the shear modulus.
V,, is the major Poisson’s ratio.

K is the elastic stress intensity.



For a composite where the crack grows transversly, a more

complex analysis i1s required.

During this phase of the study, it was decided to restrict
attention to a relatively simpler formulation of O’Brien
(12) since data to validate the other equations was neither
readily identified nor available.

O’Brien (12) used fracture criteria to obtain a relationship
between the critical strain value, €. for delamination onset
based on a knowledge of E,,,, the laminate stiffness, E’, the
stiffness of a completely delaminated laminate, G,, the

critical strain energy release rate:

Log2
G, = ezt [E . - E'] (14)

The derivation is given in Appendix C.

This method of calculating the critical strain value for
delamination onset has been used in the systematic study of
delaminated laminates which 1is discussed in the next

section.

10



4. COMPUTATIONAL ASPECTS.

Stiffness Reduction.

A laminate program has been written by the first named
author in order to calculate the laminate stiffnesses of
perfect, partially and completely delaminated laminates. A
flowchart of the program is shown in Appendix D. The program
was validated by using an example from O’Brien (12) as a
basis.

To verify the relationship stated in equation (3), an 11 ply

laminate with a lay-up as given below was considered:

[+30/+30/90/30] ,

Two delaminations were modelled in both -30/90 interfaces
and are assumed to occur simultaneously. Using equation (3)
E° was found to be 0.69 E,, which is equal to that
calculated by O0'Brien. The values of E, for each sublaminate
were found; equation (1) was used for the outer two
sublaminates [+#30/%30] which are not symmetrical and
equation {(2) was used for the central [90/90/90]
sublaminate which is symmetrical. From experiments, it was
discovered that the interfaces did not cleanly delaminate
in the sense that the delaminations shifted from one -30/90
interface across the 90-deg plies to the other -30/90
interface. This had the effect of reducing the bending-
extension coupling. As a result, the bending-extension
coupling in the two outer sublaminates was neglected and
since the central /90/90/90/ sublaminate is symmetrical
then each of the values of E; can be calculated using
equation (2) which yields the result, E" = 0.743 E,, which
is also equal to that calculated by O’Brien.

11



An attempt was then made to link the stiffness
characteristics with critical strain levels to cause onset
of delamination. This was done by using a transformed
version of equation (14) and the data pertaining to G,
generated by O’'Brien (12). The data was generated from
experiments which were carried out on eighteen graphite-

epoxy laminates with following configuration:

[+30/+30/90/90] ,

The critical value of strain corresponding to delamination
onset was calculated from the experimental applied stress
and the laminate stiffness calculated from laminate plate
theory. A wvalue of 0.00347 was obtained and was entered
into equation (14) to yield a wvalue for critical strain
energy release rate. A value of 137 J/m? was obtained and
used in subsequent calculations for laminates with a

similar material composition.

O'Brien (l12) then made predictions of critical strain for
delamination onset using the rearranged equation (14) for
an alternative symmetric laminate with code [+45,/-
45,/0,/90,], (n=1,2,3). Hence, three laminate types were
considered, namely those with 8 plies, 16 plies and 24
plies. Delaminations along both 0/90 interfaces and were
compared with experimental values. The value for G, used in
equation (14) was that of 137 J/m?’. For all sublaminates,
the bending-extension coupling matrix, [B], was neglected
so equation (2) was used to <calculate E for all
sublaminates. The work by O’Brien was repeated and the
results are shown in figure 6 which shows that the
theoretical results obtained are equal to those obtained by
O’'Brien (12) and also data from Rodini and Eisenmann (17).

12



It is also noticed that in the thinner laminates, the
delaminations will form at a higher nominal strain than the
thicker laminates. It 1is, therefore necessary to yield a
failure criterion which takes into account the thickness
dependence of the delaminations. Hence, the strain energy
release rate is a good parameter for predicting at which
level of strain delamination is likely to occur.

After the program had been validated, a sensitivity study

was carried out on the laminate with the following lay-up:

[£30/£30/90/30] ,

The objective of this study was to investigate the effect
on laminate stiffness and critical strain value for
delamination onset, of the number of delaminations as well
as their location. 7

The study was concerned entirely with laminates containing
complete delaminations. The critical value of strain for
delamination onset for each case was calculated from
equation (14) and the stiffness values were calculated from
equation {(2). For the laminate shown in figure 7, with one
delamination, graphs of location against laminate stiffness
and critical strain are shown in figures 8a and 8b
respectively. The axis labelled ’‘Delamination location’
represents the ply number beneath which the delamination
occurs. i.e. number 3 represents a delamination below ply
3 (between plies 3 and 4). It can be seen that the laminate
stiffness and maximum critical strain for delamination
onset occur for a delamination below ply 5 or ply 6, i.e.
between two 90° plies. A laminate with one delamination
below plies 4 or 7, i.e. in one of the -30/90 interfaces,
gives rise to the lowest values of stiffness aswell as
critical strain. The graphs shown in figures 8a and 8b also
indicate that the values of laminate stiffness and critical

strain onset for a laminate with one complete delamination

13



are symmetrical about the laminate neutral axis. This would
be expected since the laminate in this example 1is

symmetrical.

The laminate shown in figure 9 represents a laminate with -
two delaminations. Graphs of location of the second
delamination against laminate stiffness and critical strain
are shown in figures 10a and 10b respectively. In this
particular case, the first delamination is assumed to be
located between plies 1 and 2, in one of the +30/-30
interfaces. The second delamination is located first below
ply 2, then ply 3, then ply 4 etc.. It is possible to see
that the location of the second delamination does affect
the stiffness and the critical strain wvalue of the

laminate.

Further studies were carried out on laminates with two
delaminations. The study was systematically designed so as
to include all possible 1location combinations of two
delaminations in the 11 ply laminate. Figures lla to 1l4b
show the results. From the graphs it can be noted that the
laminate with the lowest wvalue of stiffness and critical
strain is one with the delaminations below plies 3 and 8,
i.e. in the two inner +30/-30 interfaces. This is shown in
figures 12a and 12b respectively. A laminate with
delaminations below plies 5 and 6, in the two 90/90
interfaces, gives rise to the highest values of laminate
stiffness and critical strain. This is shown in figures 1l4a
and 14b respectively.

14



Calculation of critical stress for laminate under

compressive loading.

A program was written by the first named author to find the
critical value of A, in equation (8) which leads to a value
of critical stress using equations (9) and (10). This was
carried out by gradually increasing, from zero, the assumed
value of A, by small increments until the function in
equation (8), which was originally positive, became
negative. This was an important initial step as it gave an
indication as to the shape of the function for different
values of lambda. A typical graph of the function given in
equation (8) versus A, is shown in figure 15. Once the value
of A, which gave a negative value of the function had been
reached, it was incremented by very small amounts to obtain
a more accurate value of Alﬁsing a Newton—-Raphson soclution
method.

For a mid-thickness delamination, a specimen length of
3.0", a specimen thickness of 0.22" and material properties
from (18), the results obtained were compared with those
reported by (13). Initially, 1large differences were
detected but it was discovered that the wvalue of the
increment to find Ac;c wWas too large and in fact the
lowest, critical wvalue of A, was not being found. This-
became evident after a graph of the function against A, was
plotted out.

A plot of critical buckling stress against delamination
length for a particular laminate with a symmetric
delaminaticn, i.e one where the delamination is at mid-
depth, is shown in figure 16. The results also compare well
with Wang et al. (18). The stiffness, E, in this case was
taken as 1.58 x 10° psi (from the data in reference (18))

An attempt has been made to try and link up the stiffness
reduction resulting from delamination with the modelling of

15



the compressive behaviour of a delaminated laminate. An
initial study was carried out on a laminate with the

following lay—up:

[+30/+30/90/90] ,

Consider equation (8) above, and the diagram in figure 6,
as well as the following parameters: thickness of part 1,
T, = 0.22", thickness of part 2, T, = 0.11", thickness of
part 3, T; = 0.11" and the total beam length, L = 3", where
all dimensions are in inches. A c¢ritical value of A, can be
‘ yielded from equation (8). Once this wvalue has been
calculated, then equation (9} yields D, and equation (10)
yields the value of critical stress, 0O,. The wvalue of E
which is required to calculate D, can be taken as three
different values, namely, that of an intact specimen, E..,
{(equation (1)} or (2)), that of a completely delaminated
specimen, E° (equation (3)) or that of a partially

delaminated laminate, E, (equation (4)). It has been assumed

P
in this case that the beam shown in figure 3 can be
idealised as the beam shown in figure 5. i.e that the strip
delamination width a (fig 3) is comparable with the crack
delamination length a (=L,/2) in figure 5. The value of b,
the laminate half-width was taken as L/2 in this case which

is 1.5".

The complete analysis was carried out three times using
three different values of E to calculate D, .

Intact laminate E =20 x 10° psi

Completely delaminated

laminate E 14.86 x 10° psi

Partially delaminated
laminate Depends on ratio a/b

in equation (4).

16



The results of the analysis are shown in figure 17.

It can be observed that the «c¢ritical stress values
calculated using E for the intact laminate are higher than
those calculated using E for the totally delaminated
laminate, as would be expected. The values calculated using
E for the partially delaminated laminate lie between the

two, which again would be expected.

Systematic Study.

A systematic study was also carried out on delaminated
specimens of total length 3.0 inches, Elastic modulus of
1.58 x 10° psi and a Poisson’s ratio of 0.22. The
delaminations in each case were considered to be
symmetrical along the specimen length. The work was carried

out to investigate the effect of:

(1) changing the through-the-thickness location
of the delamination for a plate of constant
thickness,

and
(2) changing the total plate thickness T, for a

delamination at mid—thickness.

In each of the two cases, the delamination length was
varied wup to 1.25 inches. For the <case when the
delamination length equals zero, this indicates that the
plate behaviour can be treated according to Euler theory.
The critical buckling stress in this case can be calculated

from the following equation, assuming c¢lamped edges:

4m2D

4] = =
T, L2

(15)

crit ~
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where: T, is the total specimen thickness.
1. is the specimen length.

D is the beam stiffness, similar to that given
in equation (6).

The results of study (1) are given in figure 18. From the
graph it can be seen that the curves are of similar shape
but that as the delamination approaches the plate mid-
thickness (T,/T, = OES), the curve becomes less proncunced.
All five curves, however, level off as the delamination
length increases. Also, all of the curves begin, as we
would expect at the same wvalue for a "perfect’
undelaminated plate for which the delamination length, a,

equals zero.

The results for the second study are shown in two forms.
Figure 19 shows the c¢ritical stress against delamination
length for different values of plate thickness. This figure
shows that the general shape of the curve is similar but
that the slope becomes less pronounced for decreasing plate
thickness, 1i.e that the c¢ritical stress becomes less
dependent on delamintion length. Figure 20 shows the
critical stress against plate thickness for different
values of delamination length, a. This figure indicates
that for increasing plate thickness the critical stress is
more dependent on the delamination length, hence the wider
spread of data on the right side of the graph.

18



Correlation with Experimental Data.

Experimental work has been carried out at DRA Dumfermline
on two sets of beam specimens (19). The first series of
beams were fabricated using a hand lay-up technique and the
second were fabricated wusing a vacuum assisted resin
transfer (V.R.T.) process. All the beams were tested in
compression until failure occurred. The beams had the
following dimensions and properties:

Gauge length: 240 mm

Width: 50 mm
Thickness: Hand Lay-up
20 mm
V.R.T.
12.7 mm
Longitudinal
Compression Modulus: Hand Lavy—-up
18824 MPa (2.73 x 10° psi)
V.R.T.

29597 MPa (4.29 x 10° psi)

For each of the two series of beams, a delamination was
built into the beam at five different through-thickness
locations. In addition, for each of the through-thickness
locations the length of the delamination was wvaried. The
stress at which the first buckle occurred was noted in each
case, as was the stress at which final failure was reached.

The beam dimensions, properties and loading conditions were
entered into the computer code discussed above in an
attempt to compare the theoretical results using equations
(8), (9) and (10) with the experimental data. Figures 2la-
2le and 22a-22d show the results.

15



For the hand lay-up specimens, in general the predictive
model gives a reasonably accurate estimate of the critical
buckling stress. The results are shown in figures 2la to
2le. When the depth of the in-built delamination is 0.8 mm

below the outer surface (T, 0.8 mm}, it is observed that
the model gives a curve whose data points are above the
experimental wvalues. When the depth of the delamination
increases to 1.7 mm, 2.5 mm, 3.3 mm and 4.2 mm it is seen
that the curve gradually falls below the experimental data
points. The two extreme cases are shown in figures 2la and
2le. A possible explanation in the cases when the
theoretical model lies below the experimental values 1is
that the experimental values are those of "first buckle".
It was pointed cut by the experimentor that it was ensured
that buckling was definitely occurring and that, in fact,

buckling may have begun at a lower value.

The results for the V.R.T. specimens are shown in figures
22a to 22d. The theoretical curve lies, in general, above
the experimental data points. The best fit to the data is
obtained when the delamination is 1.06 mm below the surface
(Ty = 1.06 mm}). This is shown in figure 22b.

20



5. CONCLUDING REMARKS.

The work discussed here presents a number of features
asscociated with the delamination process. The first is that
of laminate stiffness reduction which is an inherent effect
of delamination. The analysis has been discussed,
incorporated into an existing program and the results
compared with existing data. An extension of this work
yilelds an expression for «critical strain value for
delamination onset. Results obtained from this expression

have been verified using existing data.

Secondly, a characteristic equation gives an analytical
sclution of the critical buckling load of delaminated
plates. A program was written to yield results which agree
favourably with those reported in previous papers and also
compare well with a series of experimentally determined

data points.

The next phase of the work will seek to consclidate the
analytical models generated upto now and to extend the

modelling capability. The envisaged tasks are:

a) to conduct a systematic study of the influence of lay-up

on critical failure loads on beam panels,

b) to extend the modelling capability to cover plate
panels,

c) to incorporate fracture mechanics criteria to predict
the growth of delaminations using for instance, modified

Paris-relationships,

d) to investigate the use of finite element analysis for
investigating internal stress patterns in delaminated
panels
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APPENDICES.

APPENDIX AA. LITERATURE SEARCH.

The format for the search is summarised below:

NUMBER. AUTHOR
Title.
.Reference.

— Main Points.

1. H. T. HAHN
A mixed mode fracture criterion for composite materials.
Composite Technology Review, Volume 5, 1983, pp 26-29.

— energy release rates (and critical wvalues)

-~ stress intensity factors (and critical wvalues)
— modes I and II considered i.e., mixed-mode.

~ analytical solutions (simple eguations)

— experimental correlation

- graphite/epoxy

2. B. J. LONG & S. R, SWANSON
Ranking of laminates for edge delamination resistance.
Composites, volume 25, number 3, 1994, pp 183-188.

- energy release rates

- finite element techniques (using gap elements)

— systematic study: various stacking sequences for n/4 quasi-
isotropic laminates

— experimental correlation- tensile tests

- use ’‘modified virtual crack closure’ technique

~ modes I and II energy release rates

- carbon/epoxy



3. J. IVENS et. al.
2.5D fabrics for delamination resistant composite structures.
Composites, volume 25, number 2, 1994, pp 139-146.

— mode I double cantilever beam tests

—- mode II end load split tests

— plain 2D glass fabric

— 2.5D fabrics with glass piles and epoxy resin

- 0 deg, 90 deg and 45 deg : tested in 3 orientations
— vary pile length and densities

— fracture toughness

— experimentation: modes I and II tests- fracture toughness

calculations
impact testing
tensile testing

— critical strain energy release rates

4. J. WANG & B. L. KARIHALOO

Cracked composite laminates least prone to delamination.

Proceedings of the Royal Society of London A, volume 444, 1994,

pp 17-35.

— vary ply angle, relative stiffness & thickness
— minimise stress intensity factors

function)

graphite/epoxy

analytical solution (use Airy stress function and Bessel



5. A. GARG
Delamination—- a damage mode in composite structures.

Enginnering Fracture Mechanics, volume 29, number 5, 1988, pp
557-584.

(A Review)

— delaminations: caused by interlaminar stresses near the free
ade

— parametric study of wvariatiocn in delamination onset strains

with thickness (for 3 different lay-ups)

- delaminations: caused by impact

— experiments: impact tests

~ graphite/PEEK

- graphitr/epoxy

— delamination: caused by matrix cracks

-~ EFFECT OF DELAMINATION:

— residual strength

— residual stiffness

— critical strain energy release rates

- critical buckling loads

— fracture toughness— calculation of (experimentally)

6. J. G. WILLIAMS

+0On the calculation of energy release rates for cracked laminates.
International Journal of Fracture 36, 1988, pp 101-119.

— analytical solution

— derive strain energy release rates from L.E.F.M

— modes I and II

— testing methods ‘

— post initiation behaviour from system compliances

7. YIN & WANG

The energy release rate in the growth of a one-dimensional
delamination,

Trans. of ASME, Journal of Applied Mechanics, volume 51, December
1984, pp 939-941.

- algebraic expression of energy release rate using J-integral
method (in terms of post-buckling solution of delaminated
plate)



8. ADAN et. al.
Buckling of multiply delaminated beams.

Journal of Composite Materials, volume 28, number 1, 1994, pp 77-
90.

analytical model for buckling
prebuckling & buckling equations
effects of crack length & location

9. BONIFACE et. al.

Strain energy release rates and the fatigue growth of matrix
cracks in model arrays in composite laminates.

Proceedings of the Royal Society of London A, volume 432, 1991,
Pp 427-444,

- strain energy release rates: from compliance approach & energy
method

- experimentation

~ fatigue

- glass/epoxy

~ theory/experimentatio correlation

10. MAHISHI & ADAMS

Energy release rates during delamination créck growth in notched
composite laminates.

Delamination and Debonding of Materials. ASTM, STP 876, Ed.
Johnson, W. §S., American Society for Testing Materials,
Philadelphia, 1985, pp 217-237.

- elastic strain energy release rates
— finite element
- initiation and growth



11. J. G. WILLIAMS

Fracture mechanics of composite failure.
(Review)

Proceeding of the Institute of Mechanical Engineers, volume 204,
1990, pp 209-218.

— critical stress intensity factors
— strain energy release rates

~ modes I and II

— analytical

— double cantilever beam {DCB) test
— delamination cracking

— delamination under compression

— toughness

— postbuckling

12. WANG

Fracture mechanics for delamination problems in composite
materials.

Journal of Composite Materials, volume 17, May 1983, pp 210-223.

— mixed-mode stress intensity factors

— strain energy release rate

— edge delaminated graphite/epoxy composites

— axial tension

— effects of fiber orientation, ply thickness & delamination
length

— Lekhnitskii stress potentials

— Irwin’s virtual crack extension concept

13. SUEMASU

Effects of multiply delaminations on compressive buckling
behaviour of composite panels.

Journal of Composite Materials, volume 27, number 12, 1993, pp
1172-1192.

— analytical & experimental

- Rayleigh Ritz

— f.e analysis

— plain woven fabric glass/epoxy
— onset & postbuckling

- strain energy



14. SUEMASU

Postbuckling behaviors of composite panels with multiple
delaminations.

Journal of Composite Mterials, volume 27, number 11, 1993,pp
1077-1096.

— analytical: Rayleigh Ritz

- contact problem for delaminated surfaces ‘
— postbuckling behaviour

- experimental: compressive

— buckling load

- total energy release rate

15. GILLESPIE

Damage tolerance of composite structures: The role of
interlaminar fracture mechanics.

Proceedings of the ninth International conference on Offshore
mech. & arctic engineering, Houston, Texas, February 1990, pp 41-
47 .

— test methods: Modes I, II, III

— strain energy release rate

- virtual crack closure

— comparisons with experimental results

16. RYBICKI & KANNINEN

A finite element calculation of stress intensity factors by a
modified crack closure integral.

Engineering Fracture Mechanics, volume 9, 1977, pp 931-938.

— stress intensity factors— modes I and II
- strain energy release rate

- finite element

- Irwin's crack closure integral

17. KIM & SONI

Experimental and analytical studies on the onset of delamination
in laminated composites.

Journal of Composite Materials, volume 18, january 1984, pp 70-
80.

- experimental

- graphite/epoxy

- applied uniaxial tension & compression

- analytical: average stress criterion
max. stress criterion



18. RYBICKI, SCHMUESER & FOX

An energy release rate approach for stable crack growth in the
free—edge delamination.

Journal of Composite Materials, volume 11, october 1377, pp 470-
487,

- experimental and analytical

- boron/epoxy

— initiation & stable growth

— static tension loading

— finite element

- strain value for marked stiffness reduction
- energy release rates

19. IRWIN & KIES
Critical energy rate analysis of fracture strength.

Welding Journal Research supplement, april 1954, pp 193-s to 198-
S

- strain energy release rates
- fracture tests

20. WANG, SLOMIANA & BUCINELL
Delamination crack growth in composite laminates.

Delamination and Debonding of Materials, ASTM, STP 876, Ed.
Johnson W. S., American Society for Testing and Materials,
Philadelphia, 1985, pp 135-167.

- energy method derived from fracture mechanics
- static & fatigue: compression & tensile

- experimental tests

- graphite/epoxy

- growth

— energy release rate method

— primplanted delaminations

~ initiation



21. BATHIAS & LAKISMI

Delamination threshold and lcading effect in fiber glass epoxy
composite.

Delamination and Debonding of Materials, ASTM, STP 876, Ed.
Johnson W. S., American Society for Testing and Materials,
Philadelphia, 1985, pp 217-237.

- glass fiber/epoxy

— critical stress intensity factor & strain energy release rate
— fatigue growth

- effect of frequency, load ratio & overloads

~ analytical & experimental

22, HIGHSMITH & REIFSNIDER
On delamination and the damage localisation process.

Fracture of Fibrous Composites, ASME, AMD-volume 74, 1986, pp 71-
87. |

- LEFM

— growth & initiation

- experimental & analytical
- graphite/epoxy laminates
- matrix cracking

23. BREWER & LAGACE

Quadratic stress critericon for initiation of delamination.

Journal of Composite Materials, volume 22, december 1988, pp
1141-1155.

— analytical & experimental
— graphite/epoxy

- initiation

— strain energy release rate
- average stress criterion

- tensile tests

24. HIGHSMITH & REIFSNIDER
Stiffness-reduction mechanisms in composite laminates.

Damage in Composite Materials, ASTM, STP 775, Ed. Refsnider, K.
L., American Society for Testing and Materials, 1982, pp 103-117.

analytical & experimental

- finite difference and shear lag models

tension tests (static & tension-tension fatigue)
Lransverse cracking (matrix cracking)



25. WILKINS et. al.
Characterising delamination growth in graphite-—-epoxy.

Damage in Composite Materials, ASTM, STP 775, Ed. Refsnider, K.
L., American Society for Testing and Materials, 1982, pp 168-183.

~ graphite/epoxy

— strain energy release rate

— exXperimental (modes I & II)

— static fracture, const. amplitude fatigue & spectrum fatigue
- f.e analysis

- preimplanted delaminations

26. O'BRIEN

Analysis of local delaminations and their influence on composite
laminate behaviour.

Delamination and Debonding of Materials, ASTM, STP 876, Ed.
Johnson W. S., American Society for Testing and Materials,
Philadelphia, 1985, pp 282-297.

— strain energy release rate

— delaminations growing from matrix ply cracks
- previous experiments on graphite/epoxy

— delamination onset prediction

— edge delamination observed

— matrix ply cracks induced delamination

- local strain concentration analysis

— edge & local strain delamination

27. LIU, KUTLU & CHANG:

Matrix cracking and delamination in laminated composite beams
subjected to a transverse concentrated line load.

Journal of Composite Materials, volume 27, number 5, 1993, pp
436-470.

— analytical—-stress analysis

— contact analysis

- failure analysis

— experiments

— matrix cracking & delamination

- non linear f.e method tc solve equation for total potential
enerqgy

— prediction of initial failure

— crack propogation

- f.e to give strain energy release rates (modes I & II)

— comparisons w1th.graphlte/epoxy,prepreg'data (from experiments)

— flat panels, cylindrical panels



28. YEH & TAN

Buckling of elliptically delaminated composite plates.

Journal of Composite Materials, volume 28, number 1, 1994, pp 36-
52.

— experimental & analytical

— non linear finite element program

- Newton-Raphson method

— mixed & global buckling behaviour

- effect of delamination region size, orientation of fiber
direction, position of delaminated region in thickness
direction & orientation of major axis of elliptic region
with loading axis

- experiments

. — carbon fibre reinforced prepregs

— elliptical teflon pieces

— f.e: shell elements

29. JAKUBOWSKI & REICHARD
Stiffness reduction of marine laminates due to cyclic flexing.
45 Annual Conference, Composites Institute, The Society of the

Plastics Industry, Inc., 12-15 february 1990, pp 1-6, Session 8-
E.

experimental

glass/polyester & glass/vinyl ester (non woven stitched)
f.e analysis

fatigue

stiffness degradation

— f.e orthotropic theory ‘

ASTM methods use isotropic theory ( 60 % error)

30. KARDOMATEAS

End fixity effects on the buckling and post-buckling of
delaminated composites.

Composites Science & Technology, volume 34, 1989, pp 113-128.

— analytical solution for post-buckling behaviour (using
perturbation technique)

— energy release rate

— post-buckling solution and delamination characteristics

— critical buckling load



31. WHITCOMB

Finite element analysis of instability related delamination
growth.

Journal of Composite Materials, volume 15, number 5, 1981, pp
403-426.

- postbuckled through-width delaminations

- experiments: fatigue tested

— stress distributions & strain energy release rates calculated

— effects of delamination lengths, delamination depths, applied
loads & lateral deflections

- delamination growth behaviour (experimental)

- experimental- unidirectional epoxy/graphite

- teflon tape delamination

- static & fatigue

- modes I & II

— strain energy release rates

32. YIN

The effects of laminated structure on delamination buckling and
growth.

Journal of Composite Materials, volume 22, June 1988, pp 502-517.

- postbuckling solutions

— energy release rates

- delamination growth

— critical strain for buckling onset

- effect on bending rigidity of angle of geometry axis and angle
of loading axis

— thin film strip delamination

- mid-plane delamination in a symmetric laminate

33. WANG & SOCIE

Failure strength and damage mechanisms of E-glass/epoxy laminates
under in-plane biaxial compressive deformation.

Journal of Composite Materials, volume 27, number 1, 1993, pp 40-
58.

— E-glass/epoxy

- unidirectional and cross-ply specimens

- uniaxial and biaxial experiments

— critical buckling loads (theor. and expt’1)
— fractography

— strength criteria ({(Tsai-Hill & Tsai-Wu)



34. NAIRN & HU

The initiation and growth of delaminations induced by matrix
microcracks in laminated composites.

International Journal of Fracture, volume 57, 1992, pp 1-24.

— analytical technique

— initiation & propogation of microcrack induced delaminations
- 2D stress analysis

— energy release rate for through-the-width delaminations

— 3D analysis

- carbon fibre/epoxy

— critical crack density

35. JOHANNESSON & BLIKSTAD

Fractography & fracture criteria of the delamination process.

Delamination and Debonding of Materials, ASTM, STP 876, Ed.
Johnson W. 5., American Society for Testing and Materials,
Philadelphia, 1985, pp 411-423.

- graphite/epoxy laminates

- experiments (tension tests)
— stress intensity factors

- strain energy release rate
— vary lamination angle

- initiation of delamination
— ultimate failure

36. FINN & SPRINGER

Delamination in composite plates under transverse static or
impact loads— a model.

Composite Structures, volume 23, number 3, 1993, pp 177-190.

- strain energy

— stress analysis

— finite element method
- predict delamination locations, shapes & sizes



37. FINN, HE & SPRINGER

Delamination in composite plates under transverse static or
impact loads- experimenal results.

Composite Structures, volume 23, number 3, 1993, pp 191-204.

to validate previous paper

~- experiments

graphite/epoxy (graphite-toughened epoxy & graphite/PEEK)

- effects of impactor velocity and impactor mass, material,
thickness of back ply group, difference in fiber orientation
between adjacent ply groups, plate thickness & impactor nose
radius

|

38. MURTY & REDDY

Compressive failure of laminates and delamination buckling: a
review.

Shock & Vibration Digest, volume 25, number 3, march 1993, pp 3-
12,

- delamination initiation & growth

- fracture mechanics

— stress distributions

-~ strain energy release rates

- modes I & II

- preimpregnated delaminations:structure behaviour
— critical buckling loads

— circular plates with delaminations
- postbuckling behaviour

- delamination growth

— finite element

39. IRWIN

Fracture.

Handbuch der Physik, volume 6, 1958, pp 551-590.

Relevant section:

— crack-extension force
strain energy release rate
Weibull theory

Griffith’s proposal



40. SIMITSES, SALLAM & YIN

Effect of delamination of axially loaded homogenecus laminated
plates.

American Institute of Aeronautics and Astronautics Journal,
volume 23, number 9, september 1985, pp 1437-1444,

- analytical method

— predict delamination buckling loads

- effect of delamination position, size & thickness on critical
loads for simple supports and clamped boundary conditions

41. O’'BRIEN

Characterisation of delamintion onset & growth in a comp[osite
laminate.

Damage in Composite Materials, ASTM, STP 775, Ed. Refsnider, K.
L., American Society for Testing and Materials, 1982, pp 140-167.

— onset and growth of delaminations

— graphite/epoxy

- stiffness loss: analytical & experimental

- strain energy release rate

— critical strain values for delamination onset
- quasi-static 1loading

- delamination

- growth rates in fatigue

- finite element analysis

42. MOSHAIOV & MARSHALL

&

Analytical determination of the critical load of delaminated
plates.

Journal of Ship Research, volume 35, number 1, march 1991, pp 87-
90.

analytical model

predict critical load for delaminated plate buckling
Rayleigh-Ritz

- compare with previous experimental data



43. CHAI, BABCOCK & KNAUSS

One dimensional modelling of failure in laminated plates by
delamination buckling.

International Journal of Solids and structures, volume 17, number
11, 1981, pp 1069-1083.

— delamination growth

- strain energy release rate
analytical

delamination buckling

44. WANG, ZAHLAN & SUEMASU

Compressive stability of delaminated random short-fiber
composites: Part I — modelling & methods of analysis.

Journal of Composite Materials, volume 19, july 1985, pp 296-316.

- analytical methods

— buckling stability & crack stability
- Rayleigh-Ritz

- finite element buckling analysis

— local & global buckling

- fracture mechanics

— SMC random fiber composites

45. WANG, ZAHLAN & SUEMASU

Compressive stability of delaminated random short-fiber
composites: Part II - experimental & analytical results.

Journal of Composite Materials, volume 19, Jjuly 1985, pp 317-333.

— SMC random fiber composites

pre—delaminated specimens

- influence of delamination length, crack position, number of
delaminations and composite plate length on critical
compressive stress & buckling modes

crack growth

strain energy release rate



46. KARDOMATEAS

Delamination growth during the initial postbuckling phase in
composite plates,

Proceedings of the ninth International Conference on Composite
Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Properties
& Applications, volume VI, pp 479-486,.

- initial postbuckling & growth

~ perturbation procedure

- closed form solution for load & mid-point delamination
deflection vs. applied compressive displacement

- energy release rates

—modes I & IT

— stress intensity factors

— analytical solution

47. KONDQ & SAWADA
Buckling & postbuckling analysis of delaminated composite plates.
Proceedings of the ninth International Conference on Composite

Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Properties
& Applications, volume VI, pp 463-470

buckling & postbuckling behaviour of delmainted composite
. beam— plates
— compressive loading
— analytical scluticon & asymptotic solution
- potential energy release rates associated with delamination
growth
— experiments
- buckling tests on isotropic aluminium alloy laminates with
both ends clamped

48. MANIVASAGAM & CHANDRASEKARAN

Damage characterization and residual strength prediction of
impacted composites.

Proceedings of the ninth International Conference on Composite
Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Properties
& Applications, volume VI, pp 44-50.

- analytical: characterize impact damage in terms of equivalent
crack length

- strain energy release rate

- predict residual strength

- experimentation- low velocity impacts & 3-point bending

- isopthalic polyester/woven roving fibre glass

- unflawed specimens & specimens with straight cracks

— edgewise & flatwise conditions



49. LABONTE & WIGGENRAAD

Development of a structure relevant specimen for damage tolerance
studies.

Proceedings of the ninth International Conference on Composite
Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Properties
& Applications, volume VI, pp 36-43.

- experimentation

- artificial delaminations

— compression loads

— C—scan damage areas & internal damage configuration determined

- heavily loaded wing panel model developed with soft skin,
doublers & discrete

50. XTONG & POON

Prediction of residual compressive strength of impact-damaged
composite laminates.

Proceedings of the ninth International Conference on Composite
Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Properties
& Applications, volume VI, pp 28-35.

- analytical midel
- predict compression-after-impact strength
- use sublaminate buckling approach to determine degradation
of mechanical properties in damaged region
- simulate impact damage as soft inclusion & use complex
potential method to determine stress redistribution
- point stress criterion used to predict the compression-—
after-impact strength
experiments
graphite fiber
effect of orientation & aspect ratio of damage ellipse on
residual compressive strength investigated analytically

51. KIMPARA et. al.

Fatigue damage accumulation and strength of CFRP laminates with
different moduli and stacking sequences.

Proceedings of the ninth International Conference on Composite
Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Behaviour,
volume V, pp 31-38.

- carbon fibre/epoxy

— cross-ply & quasi-isotropic laminates

- experimentation:static tension & fatigue tension

- area of delamination and crack density related to stiffness
degradation

- delamination onset under tension fatigue predicted using
strain energy release rates

- effect of different moduli & stacking sequences



52. KYOUNG & KIM

Delamination buckling and growth of composite laminated plates
with transverse shear deformation.

Proceedings of the ninth International Conference -on Composite
Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Properties
& Applications, volume VI, pp 503-510.

- analytical model to determine delamination buckling load &
growth

- axially loaded laminate beam-plate with through-the width
delamination at an arbitrary location in loading direction

- effect of delamination size, depth & location on initial

buckling
strain energy release rate
postbuckling state

53. SCZEPANIK-WEINMANN et. al.

Numerical and experimental 3D delamination behaviour of an
anisotropic layered plate under compression loading.

Proceedings of the ninth International Conference on Composite
Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Properties
& Applications, volume VI, pp 736-743.

— theoretical & experimental

- carbon fibre/epoxy

— one through-width delamination

— theoretical values based on 3D finite element model

- geometrically non-linear analysis covering pre- and post-
buckling

- fracture mechanics

- energy release rates

- modes I, II and III

— virtual crack closure method

— artificial delaminations (teflon)

54. LI & ARMANIOS

Effect of delaminations on an elastically tailored laminated
composite plate,

Proceedings of the ninth International Conference on Composite
Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Properties
& Applications, volume VI, pp 728-735.

— closed form solution
- influence of free-edge delaminations on an elastically
tailored composite plate
- analysis based on a shear deformation theory & a sublaminate
approach
graphite/epoxy
analytical

f



55. VALOR et. al.

Compressive properties of woven fabric and/or glass fiber mat
reinforced polyester laminates.

Proceedings of ‘the ninth International Conference on Composite
Materials, ICCM/9, Madrid, 12~16 July 1993, Composites:Properties
& Applications, volume VI, pp 605-612.

- E—glass/unsaturated polyester

- continuous & CSM & plain woven roving fabric

- unidirectional & bidirectional models to predict the
strength & stiffness in tension & compression

- effect of manufacturing process, number of layers,
reinforcement type and percentage

— experimentation:side support in compression tests

.56. KONIG et. al.
Delamination buckling: numerical simulation of experiments.

Proceedings of the ninth International Conference on Composite
Materials, ICCM/9, Madrid, 12-16 July 1993, Composites:Properties
& Applications, volume VI, pp 535-542.

- continuous carbon fibre/epoxy .

— tension-compression fatigue tests

- measure delamination growth :

— compute postbuckled states by a 2D plate finite element model
— artificial circular delamination



APPENDIX A. Estimation

of Laminate Stiffness after

Delamination.

APPENDIX Al. General Case

[a]

[[f:]] H

[c] ¢+ [d]

[b]]

4|

Classical laminate theory (11) yields the relationship:

where: (e
[k] 1s the
[a] is the
[b] is the
[d] is the
[N] is the

{M] is the

If N

only non-zero force then

. ¢ the force per unit

as:

gl =

°] is the in-plane strains vector.

plate curvatures vector.

in-plane
coupling
flexural

in-plane

compliance matrix.
compliance matrix.
compliance matrix.

forces wvector.

edge moments vector.

length in the x-direction is the

equation

a11 Nx

(Al) can be re-written

(AZ)

N, is shown graphically in figure Al. Now, N, is related to

the direct in-plane stress in the x-direction, averaged

across the laminate thickness,

X

_— N,
t

t as below:

(A3)



Substituting equation (A3) into equation (AZ2) yields:

€0 =-a, o, t (A4)

E.9 X

Now the stiffness E,” can be written as

(AS)

4]
Q _— X
ES = =

€,

Rearranging (A4) and substituting into (AS5) gives the
following equation for the stiffness of an arbitrary
composite laminate, E;,,.

1 .
E —
LAM a, € (AB)

where: a;, is the first element of the in-plane
compliance matrix [a].

[a] = [A)-! + [A]7'[B][D’][B][A]"}
[D'] = [D] - [B]{A]'[B]

t is the laminate thickness.

also, for laminate with n plies: -

Aij = ; [Q_{J]k (Zk - zk—l)

n

to
1]
b o

[Q.{J] k (Zkz - zk_lz)
=1

ij



=]

1
Dy = 5 Y, 053]k (20 - 2e?)

i
[t

and

is the reduced stiffness matrix for each ply k.

For a symmetric matrix, the coupling matrix [B] is equal to

zero and equation (A6) can be written as:

Epay = (A7)

where: ¥X,, is the first element in the matrix [A]!.



APPENDIX A2. Laminate Stiffness after Complete

Delaminatiocn.

In the case of multiphase materials with n phases the

following relationship holds:

B

v, (A8)

where: B is the total elastic modulus of the

multiphase material.

E, is the modulus ¢f phase number 1i.

V, is the volume fraction of phase number i.
For a unidirectional material it can be assumed that volume
fraction is proportional to thickness ratio (thickness of

one phase to total laminate thickness), so equation (A8)

can be written as:

s ]

(A9)

ty
[}
alr
&y
or

b
I
el

where: t is the total laminate thickness.

t; is the thickness of phase number i.

If we assume that the laminate completely delaminates, as
shown in figure Al, then we can assume that each
sublaminate caused by the complete delaminations can be
treated as a "phase j" in the above equations. Re-writing
equation (A9) we have:



b

E; t

| {A10)
E# — J=1
t
where: E" is the stiffness of a completely delaminated
laminate.
E; is the stiffness of sublaminate number j.

t; is the thickness of sublaminate number j.

t 1is the total laminate thickness.



APPENDIX A3. Laminate Stiffness due to Partial

Delamination.

O'Brien (12} also developed an equation for the stiffness
of a partially delaminated laminate, E,. Figure A2 shows a
laminate of width 2b with equal-sized delaminated strips
width a along both edges. Using equation (A9) where each of
the three parts of the laminate can be treated as three

phases an equation for E, can be formulated.

E - E;,y(2b-2a) + E*a + E*a (A11)
P zb

Rearranging equation (All) yields O’Brien’s relationship
for a partially delaminated laminate.

E, = _z [E*-E, ] + Epy (A12)
A more general form of egquation (Al2) can be derived, if it
is assumed that the laminate stiffness loss and

delamination size are related by equation (Al3):

Ep—E’W A

= _ Al3
E* - B, A" (AL3)
where: A is the delaminated area.
A" is the total interfacial area.
Rearranging equation (Al3) gives:
E =(E"-E,)-2 +E (Al4
D ran) LAM )

of which equation (Al2) is a special case where a/b = A/A"



APPENDIX B. Solution of a Compressively Loaded Laminated

Beam with Delamination.

APPENDIX Bl. Theoretical Considerations in order to yield
an equation which describes the behaviour of

a beam with a delamination.

The sign convention for positive moments and forces is
shown in figure Bl, where N and Q are the longitudinal and
transverse components of force on the cross section,
respectively. M is the bending moment.

From the diagram shown in figure B2, which represents the
forces and moments acting on a column element in a deformed
configuration, the following analysis can be carried out.

Summation of forces in the x-direction gives:

-NcosP-Qcos (90-B) + (N+dN) cos (B+dB) + (Q+dQ) cos (90— (B+df) ) =0

(B1)

In order that the effect of rotations on the structure can
be accounted for, the equlibrium equations are applied to
the structure in a slightly deformed state. For a rotation,
B, the square of the rotation is assumed to be small
compared with unity. Therefore sinff is replaced by P and
cosPp replaced by 1.

Now, cosp=1
cos (90-B) =sinP=P
cos (Bp+dp) =1
cos (90— (B+dB) )=sin (B+dB) =P+dp (B2)

Substituting equations (B2) into (B1l) gives:



—N+ (N+dN) -QB+ (Q+dQ) (B+dB) =0 (B3)
which reduces to:

dN + Qdf + BdQ = O (B4)
dx dx dx

Summation of forces in the i—direction gives:
NsinP-Qsin (90-f) - (N+dN) sin (B+df) + (Q+dQ) sin (90— (B+df)) = O
(BS)
Substituting egquations (B2) into (B5) gives:
NB-Q— (N+dN) (B+dp) + (Q+dQ) = © (B6)

which reduces to:

-NdB - PBdN + dQ = 0 (B7)
dx dx dx

Summation of Moments gives:
M - (M+dM) + Qdx = 0
or,

Q = dM {B8)
dx

If we are considering slender beams, then transverse
shearing stresses and forces are quite small. Therefore,
we can assume that all quadratic terms representing non-
linear interaction between small transverse and shearing
forces and rotations may be neglected. The equilibrium
eguations (B4), (B7) & (B8) become:



dN = 0 (B9)

dx

dg - NdB = 0 (B10)

dx dx

Q = daM (B8)
dx

Substituting equation (B8) in (B10):

N =0 (B11)

M"™ -NB’ = 0 (B12)
Also, B = —w’ | (B13)
and M= -EIw" (B14)
where: ' is the first‘differential w.r.t. x.

" is the second differential w.r.t. X.

w is the deflection in the z-direction.

E is the Young’s Modulus.

I is the cross-section second moment of

area.
Substituting equations (B13) and (Bl4) into (B1l2) we have:

(EIw")" ~ Nw" = 0

and for constant EI,
EIw”Y — Nw" = (0 (B15)

From equation (Bll} it appears that N=constant in x, but
from boundary conditions we see that for x=0,L, N=-P.



Hence, equation (Bl5) can be written as:

WY+ AWt = 0 {B16)

where:

)_2

or in the case of a plate,

2z =2
D‘
where: b = Et? (B17)
12 (1-0%)
and V is the Poisson’s ratio.

-Equation (Bl16) applies to each of the three parts described
in the main text.

So for the three parts, (i=1,2,3), the following equation
holds:

w4 Afw " =0 (B18)
-where:
P, : Et;?
A2 = —= ; D = ——— (B19)
D;’ 12 (1-v?)
and P, is the axial force per unit length in the
i*" part.

*

D,” is the stiffness of the i®™ part.



APPENDIX B2. Complete solution to yield Characteristic

Equation for Delaminated Beam Buckling.

The harmonic solutions to equation (B18) are:

w; = A;8inA;x; + B;cosA;x; + C;x; + Dy (B20)

PART 1 (i=1)

Assuming both ends are clamped, then the following boundary
conditions and continuity relationships can be used:

w, = 0 at x, = 0 and w, = 0 at x, = 1,
(B21)

w,' =0 at x, =0 and w,” = 0 at x, = 1,
{(B22)

Differentiating equation (B20) gives:
w,/ = A,A;cosA;x; - A;B;sind x; + C; (B23)

From the equations (B21) and (B22) we obtain the following
relationships:

B, + D, = 0 (B24)
A,sinA;l, + BcosAl, + C.1;, + D, = & (B25)
AA;+ C, =0 (B26)

AAjcosAl, - AB;sinA,l, + C, = O (B27)



The constants can be found from equations (B24)-(B27):
From equations (B24) & (B26):
C, = AA, (B28)
D, = -B, (B29)

Re—arranging equations (B30) and (B27}:

6- A {sinA I, - A 1,]

B = [cosA, - 1] (B30)
and,
_ A, [AcosAl, - 4,0 -6
By = A.sind, 1, (B31)
Equations (B30) and (B3l) combine to give:
6- A, [sinA,I,-A1,] A [AcosA, I, - Al
fcosa Z, - 11 TAsimh.l.] o (B32)
So,
dA,sinA, 1, - A [A;sinA,1,] [sinA 1, - A,1,]
= A, [cosA 1, - 1] [A,cosA, 1, - A1 - O[cosA, 1, — 1]
(B33)

and



dA,sinA I, + O[cosA I, - 1]

= A, [A,cos?A 1, - 2A,cosA, 1, + A, + A;sin2A,1, - A,%21,8inA,1,]

(B34)
and re-—-arranging gives:
[8sindl, + -0 (cosA,2,-1) ]
A = - Ay (B35)
. (A,1,8inA,1, + 2cosd,1,-2)

Substituting equation (B35) back into equation (B31) gives:

dsind, 1, - J.i (cosA 1, - 1)
1

(Ay1y8ind 1, + 2cosd, 1, - 2) (A;cosA,1, - 4,) -0

A;sinA I,

B, = -

(B36)

Re—arranging we have:

& (cosA, 1, - 1)

B = - .
! (A;I,8ini,1, + 2cosA,l, - 2)

.é%(cosllll—-l)(llcosll-11) 6

B A,sinA,I (A, 1,8ink,1, + 2cosA,1, - 2) A,sinA, 1,

(B37)



Simplifying gives:

& (cosAI; - 1)
(A,1,8inA,1, + 2cosA, 1, - 2)

B, = -

0(cos2i,1, - 2cosi,; 1, + 1) 6

A,SinA,1, (A, 1,8inh, 1, + 2cosA, 1, - 2)  A,sinA,l,

{(B38)
and

8 (cosA I, - 1)
(A,1,8inA, 1, + 2cosi,l, - 2)

B, = -

0 (cos?A,1, - 1 + A,;1,8inA, 1))
A,;sinA,l1,(A,1,8inA,1, + 2cosA, I, - 2)

(B39)

resulting in:

-8 (cosA,1, - 1)

B =
Y (A,I,8inA, 1, + 2cosA,l, - 2)
) (sinA,1, - A,1,)
A, (A l;sinA 1, + 2cosA, 1, - 2) (B40)



Substituting equations (B28), (B29), (B35), (B40) into (B20)
gives:

(8sink, 1, + % (cosi, I, - 1))

"1 % T TA.Z.sinA, I, ¥ 2cosi.l, - 2)

. Sini, x,

8 (cosA,l, - 1)cosi,x; ., 0 (sinA,l; - A,1,)cosi,x,
(A, I,sind 1, + 2cosA, 1, - 2) A, (A;l,sinA,l, + 2cosA,l, - 2.

(dsinA, 1, + 7?—(0031111 - 1))
\ 1
A (A,1,sind,1, + 2cosA,1, - 2)
8 (cosi I, - 1) 6 (sinA,1, - A,1,)

(A,I,sind,I, + 2cosdA,I, - 2) A, (A,I,sinA,I, + 2cosA,l, - 2.

(B41)

and re-arranging gives:

1

M7 (A, I,sinA,1, + 2cosi 1, - 2)

X

L

T [sA,x,-ch 1 8h %, +sA 1, A X ~A 1 CA X +A X, CA 1, A %, -8, 1, +A, 1

1

1
(AyI,sind 1, + 2cosA,l, - 2)

x

d[cA,1,-1+A, x84, 1, ~ch 1, ch X, +CA X, -Sh 1, 8A, X, ] (B42)



where:
Cc = Ccos

s = s8in

Chai et al. (14) showed that ® and 0 could be related by the

following equation:

_ 9 ALy
& -Iztan 5 (B43)
also using a trigoncmetric identity:
§ = 0 rapth _ 6 (1-cosd,l, (B44)
Ay 2 A, \ sini 1,

Substituting equation (B44) into (B42) gives:

_ S |
" T A, I,5inA,1, + 2cosh,I, - 37 ©

7?—[sllxi—cllllslrxi+sllllcllx1—Alllcllxa+llxicllll—Alxi—sllll+lll
1

, 0 cAl-c?A 1, -1+ch Iy +A x8h, 1 chy 1y
A, sinA I,

0 cA lch x +c3A 1, chx, tch x,~ch 1 CA %,
AL sink, 1,

0 SA,IisAyxy + cAyl,sA, 1 5A %,
1, sinh.d, (B45)




which simplifies to

0

1l
A;sinA 1,

"' T (X Isink,I, + 2cosk, I, - 2)

(2ch,x,-A 1, sA 1, CAyx, +A, 1,80, 1,-2+42CA, 1,-2cA, 1, CA x,)
(B4¢)

or:

0 (cosA,x, - 1) (B47)

"1 7T Tasindlly)

PARTS 2 & 3 (i=2,3)

Similarly for parts 2 & 3 the following conditions and
relationships can be applied:

w, =8 at x = —75, i=2,3 (B48)
/ 1.1
WJ-_ _e at Xi = _7, 1 =2’3
and
w,’ =0 at x, = 0, i=2,3 (B49)
w,"" =0 at x;, = 0, i=2,3

the following equations are

Using the above conditions,

yielded:



(B50)
A A =0
Hence, A, = 0; C, =0 (BS1)
- Y =
A;sind;—= _
2
Also,
0 cosi; =2
D,=8 - — %2  i=2,3 (B53)
A; sina; 2

Substituting eguations

(B51), (B532) and (B53)
(BZ20)

into eguation
and re—arranging gives:

_ 0 cosa;l .
W.'L ) P COSAJXI - —lii 1 = 2'3 (B54)
li51nli7? coslri?
From axial strain considerations:
1s
-(1-v)pI, 1 o
343 , 1 f (w,/) 2dx,

Et, 2 4

(B553)
_12



where:

K=t - =2 -2 (B56)

Before buckling occurs the following equation holds:

(w;)?-0, 1=2,3 (B57)

also,

6-0 (B58)

Combining equations (B55), (B57) and (B58) gives:

t
P, = ?3?2 (B59)
2
Also,
t, P
p, = 22 {B60)
tl

Using the priciple of moment equilibrium:

M, =M, +M -F,+F, (B61)



Figure B3 shows the forces acting on parts 2 and 3 of the
delaminated beam. Now, from the diagram it can be shown that:

F, = P, [é - _(_‘:_;_13)_] = P2 (B62)

and
_ t hy _ £, (B63
F3—P3 [E—E]—Pa? )

Substituting equations (B62) and (B63) into equation (B61)

gives:
t £
M =M+ M —p2_3 + p3_2 (B64)
2 2
Also,
M; = D; will .y, (B65)

Substituting equations (B47, B54, BS55 & B65) into (B64) gives:

At AL L2 ALl
- .I + 2v2 22
681-n7elllcosz'1 ! A €S
6s1n
13t33 3‘313 t1t2t3
+ cos + =9
6sin 3.313 2 1, (B66)




From equations (B19) and (B60} it can be shown that:

32 Eﬁ, i=2,3 {B67)
Aj ty

Substituting equation (B67}) into (B66) gives:

3 2 . 2
A'.ltl COSllll + A'1!.1:2 tl cos "'\'1t112 + J"lt:! tl cos All3t1
6sina,l, 6Sinlllztl 2¢, 6Sin).llat1 2¢t,
2¢t, 2t,
£t t
—1—13_3 =0 (B68)

Equation (B68) can be simplified for the case of a symmetric
delamination ie. when the delamination is at mid-thickness. In
this case t, = 2t, = 2t; = t where t is the total laminate
thickness.



APPENDIX C. Strain Energy Release Rate and Failure

Strain.

Strain energy release rate can be defined using the following

equation:
aw_ du
a= 27 _<Y Cl
dA dA (ch
where: dw is the Rate of Work.Done.
da
du is the Rate at which elastic Strain Energy
da is stored.
A is the flaw area.

Now, assuming that a nominal strain, €, is sufficient to
extend the flaw, then the work term vanishes and equation (Cl)

can be written as:

€? dE
v c2
G (C2)

where: V is the volume of the laminate (=2blt).

Now, by differentiating equation (Al4) we obtain:

dE _ (E"-Eay) (C3)
da A
and AT = 2bl (C4)

where: 1 is the length of the laminate.



Substituting equations (C3) & (C4) into equation (C2) gives:

€t
2

G = (B, — E*] (C5)

O"Brien carried out tension tests on the 11 ply laminate
mentioned above, in order to calculate the critical strain
energy release rate, G, from equation (C5) using the critical
value of strain, g, for delamination cnset. It was suggested
that G, may be independent of the ply orientations that make
up the delaminating surfaces. In order to investigate this,
the value of G, calculated from the 11 ply tests was used to
calculate the critical strain values for delamination onset in
other laminates. Re-arranging equation (C5) gives an equation.
for critical strain:

€. = 2 Ce (C86)
t(E y - E*)
where: Eiavw 15 the laminate stiffness.
E” is the stiffness of a completely

delaminated laminate.

t is the laminate thickness.



APPENDIX D. FLOWCHART OF LAMINATE PROGRAM TO CALCULATE
LAMINATE STIFFNESSES.

ply stiffnessgs [Q] ply properties
!

ply stiffnessTs Q7] ply orientatrons
T . .

iaminate
stiffnesses
(Al [B1. D

laminate
compliances
[a]l. [bl.[d]
4

laminate stifffness

number of
sublaminatesg

stiffness
completely

) Is laminate pgrt |
—YES delaminated

stiffness of partially

delaminated IEIQI)

laminate (Ep)
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FIGURE 1. Stages of delamination failure.
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FIGURE 5. Model of three parts of a delaminated beam. . — -
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FIGURE 12a.
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FIGURE 15. Plot of the function given in equation (8) for
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FIGURE A2. Laminate containing partial (edge) delaminations.
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FIGURE Bl. Sign conventions for positive moments and forces.
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FIGURE B2. ' Forces and moments acting on a column element in /
" a deformed configuration.
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FIGURE B3. Forces acting on parts 2 and 3 of a delaminated beam.
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