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The objective of this thesis are to (i) investigate and further validate the Viscous Cell 

Boundary Element Method for more complex Euid mechanics problems and moving 

bodies and (ii) to use fundamental ideas of image processing and spectral methods 

to investigate the ability to inverse model the physical phenomena of data generated 

by the Huid code or any experimental data and to reduce successfully the system to 

a much smaller subsitute that encapsulates the main physics of the original system. 

Lastly we aim to design a controller to use in open-loop How control coupled with the 

Euid solver. The controller is designed by reduction of the equations describing the 

system. 
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Chapter 1 

I N T R O D U C T I O N 

Fluid-body interaction is one of the fundamental research areas of marine vehicles and 

aerospace industry. Although the body and the Auid are usually dehned independent of 

each other, there is continuous interaction between them involving many complicated 

phenomena such as turbulence, resonance etc. There is immense eEort to predict 

fully their behaviour because of technological opportunities. The Suid in many cases, 

especially in the marine environment can be assumed to be isothermal, incompressible, 

homogenous and Newtonian. 

Bodies in the marine environment are usually of low in aspect ratio as a result 8uid 

Bow phenomena of separation, vortex shedding and turbulence can be observed. This 

makes the engineer vulnerable to many complex design considerations which cannot 

be fully solved by using theoretical techniques such as potential Sow, inviscid Sow or 

boundary layer Sow because of the underlying assumptions. In most cases, engineers 

beneSt &om their daily experience or by well established empirical methods to solve 

complex problems. However with the new challenges posed by advanced engineering 

projects and the need to build better and faster vehicles creates the need for research 

to develop computationally reliable and practable methods for the industry. 

The fundamental equations of fluid mechanics have been well known for many years 

but they are solvable for only a limited number of Sows. The known solutions are 

extremely useful in limited applications and for idealised geometries but they are not 

useful in general engineering applications. Most of the time equations are simpliSed 

and solved but are rarely used in a full engineering analysis and design. The engineer 

is traditionally forced to use other approaches. 

For many Sows, nondimensionalization of the Navier-Stokes equations leaves the 
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Reynolds number as the only independent parameter. If the body shape is known, 

equivalent results can be derived from an experiment using a scale of model with the 

same geometric shape. Such approaches are very valuable in developing every day, 

practical engineering designs. 

However many Bows require several dimensionless parameters for their specifications 

and it may be impossible to set up an experiment which correctly scales the actual Sow. 

In this computer age, it does not take much imagination to see that computers might 

take the study of fluid flow much further. 

1.1 COMPUTATIONAL FLUID DYNAMICS 

Flows Eind related phenomena can be described by partial differential (or integro-

diSFerential) equations, which cannot be solved analytically except in special cases. 

In order to obtain an approximate solution numerically, we have to use a discretiza-

tion method which approximates the differential equations by a system of algebraic 

equations, which can then be solved on a computer (see Peric ef o/ (1996)). The 

approximations are applied to small domains in space and/or time so the numerical 

solution provides results at discrete locations in space and time. The accuracy of 

numerical solutions is dependent on the quality of the discretization used. 

1.1.1 Discret izat ion approaches 

Instead of trying to give a complete review of numerical methods used for fluid prob-

lems, a brief review on weU established and relevant methods to our work in this thesis 

is presented. 

Finite difference (FD) method 

This is the oldest method for numerical solution of PDE (see Hirsch (1988)). It is also 

the easiest method to use for simple geometries. 

The starting point is the conservation equation in diSerential form. The solution 

domain is covered by a grid. At each grid point, the differential equation is approxi-

mated by replacing the partial derivatives by approximations in terms of nodal values 

of the functions. On structured grids, the FD method is very simple and effective. The 

disadvantage of FD methods is the restriction to simple geometries in complex flows. 
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Finite volume (FV) me thod 

A development from the Hnite diEerence method is the Suite volume method. The FV 

method uses the integral form of the conservation equations as its starting point. The 

solution domain is subdivided into a hnite number of continuous control volumes. The 

FV can accommodate any type of grid so is suitable for complex geometries. The grid 

deBnes control volume boundaries and need not be related to a coordinate system. 

In the finite volume method, integration of the governing equations is carried out 

over Bnite control volumes. The 6nite control volumes are constructed to occupy the 

global problem domain completely without overlap. This step helps to guarantee, from 

the outset, conservation of important quantities (such as maas). Two forms of the Enite 

volume method have evolved (see Hirsch (1988)). The first form, based on a structured 

mesh has great similarity with the finite difi^erence method. Unstructured forms of the 

finite volume method have been developed later (see Hirsch (1988)). Such formulations 

have the advantage that mesh generation is more fiexible. Many of the discretisation 

procedures found in the finite element method, discussed below, are apphcable to 

unstructured finite volume methods. 

Finite element (FE) me thod 

The FE method is similar to FV method. The domain is broken into a set of discrete 

volumes or finite elements generally unstructured. The distinguishing feature of FE 

methods is that the equations are multiplied by a weight function before they are inte-

grated through the whole domain. The solution is approximated by a shape function 

within each element selected in a way that guarantees the continuity of the solution 

across element boundaries. Such a function can be constructed from its values at the 

corner of its elements. An approximation is then substituted into the weighted integral 

of the conservation law and the equations to be solved are derived by requiring the 

derivative of the integral with respective to each nodal value to be zero; this corre-

sponds to selecting the best solution within the set of allowed functions. The result is 

a set of non-linear algebraic equations. The principle advantage of the finite element 

method arises due to the ability to construct meshes, to describe and solve the global 

problem, by 'plugging together' elements of arbitrary shape. The method is generally 

found to cope better with low mesh quality, for example distorted elements or rapid 



changes in element sizes. 

Boundary element (BEM) method 

All of the methods discussed above can be classiSed as domain methods in that the 

whole of the Huid domain is discretised. All of them may be used for the solution 

of linear differential equations which might arise in problems such as incompressible 

potential Sow or Stokes Sow (see Brebbia (1978)). However, in these situations a 

solution achieved in this way can be much less eScient than one obtained through the 

boundary element method (BBM). 

Boundary element is a relatively recent method in computational mathematics for 

the solution of boundary value problems. There are two types of boundary integral 

equation methods. One of them, i.e the 'indirect' method, relies on the physical char-

acteristics of the problem. The other type is known as the direct method which is 

based on Fundamental and Green function solutions of partial differential equations 

(see Brebbia (1978)). The governing differential equations are reduced to integral 

equations. 

The boundary element method starts from the formation of a weighted residual 

integral equation which incorporates the linear differential equation to be solved (see 

Brebbia (1978)). The integral equation is then integrated by parts as many times as is 

necessary to eliminate the derivatives of the unknown quantity in the original equation. 

This, of course, results in the weighting function being subject to diEerentiation of 

the same order as was present in the original equation. By selecting the weighting 

function to be the impulse response of the system, known as the fundamental solution, 

the integral equation can be simplihed to an expression involving boundary integrals 

only. This is possible because the domain integral can be evaluated analytically. The 

remaining equations can then be discretised to form a set of simultaneous algebraic 

equations where the coefBcients are determined through boundary integration. Solution 

by this method results in the following benefits: 

The dimensionality of the problem is reduced by one which results in a considerable 

reduction in the problem computation. Mesh generation is simplified as there is no 

requirement for a mesh throughout the domain. The values of unknown quantities can 

be calculated at any point in the domain. Problems involving an in&nite domain can 

be dealt with easily. 



Although the boundary element method is an elegant and eScient technique for 

solving linear diSerential equations, its extension to non-linear problems might not be 

straight forward because the method is reliant upon the availability of the fundamental 

solution. In nonlinear problems, the fundamental solution is not generally available and 

it is necessary to introduce some form of linearisation Tosaka and K. Kakuda (1988). 

Weakly nonlinear problems can be solved by treating the nonlinear terms in the govern-

ing equation as a pseudo body force and then moving them to the right hand side of the 

equation. An iterative or time stepping procedure can then be applied. When this ap-

proach is taken it becomes necessary to evaluate a domain integral in addition to those 

on the boundaries. Furthermore, as the degree of nonlinearity increases the method 

may suffer from numerical instability. In incompressible How, the Reynolds number 

can be viewed as inSuencing the level of nonlinearity present in the system. However, 

the nonlinearity is included as a modiAcation to the standard linear form of the BEM. 

Because of this, its effect on the solution can be clearly identified, as illustrated by 

the computations of Price and Tan (1992) and Tan (1994). For strongly nonlinear 

problems a modiSed version of the boundary element method has been proposed by 

Tosaka and K. Kakuda (1988). In this case, the boundary element method is applied 

to a small subdomain, in which, the nonlinear governing differential equation has been 

linearised. To do this, the subdomain is described using a single element or cell. To 

describe the global domain, these subdomains, or cells, are assembled using continuity 

conditions at their interfaces. The linearisation is based on a local approximation. 

1.2 REDUCTION METHODS AND FLOW CON-

TROL 

Optimal control of complex time-dependent physical processes governed by partial 

differential equations is a computationally expensive problem, particularly when the 

governing equations are modelled with high-Sdelity. As a result, the construction of 

reduced-order models to design controllers for distributed parameter systems which, in 

this context, are Buid Bows, is of considerable interest. 

A Sow problem is usually hard to solve because of the high order system that 

describes the state. The proper orthogonal decomposition (POD) is a reduced order 



modelling approach that has been succesfully applied for the simulation of complex 

systems (see Sirovich (1987)). POD based reduced order models are used to avoid 

diSculty of dealing with large systemis by using global basis functions instead of the 

local basis functions for the Galerkin projection of the considered PDE. A limited 

number of these global basis functions might be good enough to obtain a satisfactory 

level of accuracy. This method has become popular as a means of extracting dominant 

energy-containing structures from Bow Beld data. Further, using these structures aa 

basis functions, a reduced-order model of the governing equations can be constructed. 

The POD method has been applied to Suid problems by Sirovich (1987) and many 

other researchers Berkooz 0/ (1993) and Dean oZ (1991) to understand the im-

portant dynamical features or coherent structures seen in fluid Bows. A reduced basis 

solution of the How can be obtained aa a linear combination of an optimal set of empir-

ical basis functions using an integral equation method such as the Galerkin projection 

scheme. The limited number of degrees of freedom in the reduced POD model is its 

main weakness. The POD model is based on the solution of the partial diSerential 

equation for a particular control but it might be a poor model when the controller 

takes it from its original state towards the optimal state. The reduced order process 

will not necessarily converge to the optimal control of the original system. 

In the structural optimization literature (see Alexandrov oZ(1997)), this di@culty 

is tackled by combining approximate analysis models and the high-6delity solver in the 

optimization procedure. An important issue in developing such a scheme is to ensure 

that asymptotic convergence to the high-Melity optima can be achieved. Alexandrov 

oZ (1997) proposed a trust-region framework for interleaving the exact and approxi-

mate objective function models in numerical optimization. The trust-region framework 

can be interpreted as an adaptive method to monitor the amount of optimization done 

with the approximation model, before the high-Gdelity model is run to check the va-

lidity of the current iterate. By comparing the approximation model prediction to the 

exact prediction periodically, useful information about the accuracy of the reduced-

order model can be obtained. This information can then be employed to decide the 

move limits to be enforced in the next optimization iteration, as well to update the 

approximation model as discussed by Arian <2/ (2000). 



1.3 OUTLINE OF THE THESIS 

Computational Guid dynamics is becoming a well established discipline in many differ-

ent research areas. There is a demand for accurate and reliable solvers which can be 

used in industrial problems such aa vortex induced vibration, aeroelasticity etc. Flow 

control is also another discipline which has emerged during the last years as a result 

of the new progress in the technology. In this thesis we investigate boundary element 

discretization for Buid mechanics problems at low-Reynolds number. In the later part 

of the thesis we propose a methodology for control of Suid Sows. 

This thesis has the following objectives which follow one another in logical pro-

gression. The hrst objective is to investigate and further validate the Viscous Cell 

Boundary Element Method which has been developed by the School of Engineering 

Sciences of Southampton University for more complex fluid mechanics problems and 

moving bodies. The second aim is to use fundamental ideas of image processing and 

spectral methods to investigate the ability to inverse model the physical phenomena of 

the data generated by the fluid code or experimental data and to reduce successfully 

the system to a much smaller subsitute that will encapsulate the main physics of the 

original system. Lastly we aim to design an optimal flow controller. The controller 

might be designed by reduction of equations of the system or directly from the data. 

In the second chapter a short review of the equations of Suid flow is presented. 

The Sow solver that has been investigated in the third chapter of this thesis is a 

hybrid method of boundary element and 6nite element. This hybrid approach in-

corporates both boundary element and 6nite element methods since, in the proposed 

scheme of study, cell equations based on Navier-Stokes equations are generated using 

the principles of the boundary element method with global equations applicable over 

the whole fluid domain derived following the procedures of the 6nite element method. 

A primitive-variable formulation with an unstructured fluid domain mesh requirement 

forms the basis of the hybrid approach. This can be applied to both two-and three-

dimensional problems associated with a single cylinder or arbitrary arrangements of 

circular cylinders or other shaped bodies as discussed by Farrant, Tan & Price (2000) . 

Flow fields from transversely oscillating circular cylinders in water at rest are studied 

by numerical solutions of the two-dimensional unsteady incompressible Navier-Stokes 

equations adopting a primitive-variable formulation. These Sndings are successfully 



compared with experimental observations. In this chapter we concentrate on the oscil-

lations of the cylinder in Euid at rest. 

In the fourth chapter reduced modelling techniques, based on a Proper Orthogonal 

Decomposition (POD) method, are applied to an investigation of the incompressible 

Navier-Stokes equations with inputs. The basic idea underlying the reduction methods 

is the compression of a large system (of algebraic and/or di@erential equations) to a 

similar (in some sense) much smaller subsitute. Many of the reduction methods can be 

thought of as two-step hybrid analysis techniques combining a discretization method 

with a direct variational technique. In the Erst step a number of global approximation 

vectors (modes or basis vectors), for approximating the response of the system, are 

generated using a discretization method in conjunction with another approach and in 

the second step the amplitudes of the global approximation vectors are determined 

via a variational technique. The mentioned hybrid analysis techniques combine the 

modelling variety of contemporary discretization methods (eg. Snite elements, bound-

ary elements, Snite differences and their combinations) with the reduction in the total 

number of degrees-of-freedom provided by the variational technique. A circular cylin-

der in uniform Sow with and without inputs is studied. Reduced dynamical models 

are created by POD and by extended POD (EPOD) approaches for the forced Bow 

which is statistically non-stationary. A direct control action is applied to the Sow at 

particular points and this investigation provides insights into the applications of this 

approach coupled with a full solver. 

A full model of the dynamics of such a system is normally represented by a set 

of high dimensional nonlinear di%rential equations which can be solved by numerical 

methods. In this study a cell viscous boundary element method developed by Tan e( oZ 

(1999) is used to generate the required data for the reduced model. The POD method 

describes the system behaviour as an attractor which is a point of evolution for the 

state space in a subspace of higher dimensions. A reduced solution can be obtained 

ELS a linear combination of an optimal set of empirical basis functions using an integral 

equation method such as the Galerkin projection method. 

These bases are created by applying a POD method for statistically stationary data. 

When a fluid Sow is subject to a time-dependent control, the statistical properties of 

the Bow are usually non-stationary. In this case, an extended POD method (EPOD) 

developed by Glezer of (1989) can be adopted. Herein applications of the POD 



and EPOD methods are investigated in order to derive a reasonable approximation to 

time-dependent Bows associated with vortex shedding. 

In the Sfth chapter, methods of control to achieve transition delay, separation post-

ponement, lift enhancement, drag reduction, turbulence augmentation, or noise sup-

pression are reviewed. This chapter mainly concentrates on external Sows. Internal 

Sows are also mentioned. The physical aspects of the Sow control along with the basics 

of the Sow regime and Sow stability classiScation are reviewed rather than aspects re-

lated to mathematical modelling methods of controller design. A brief review of these 

methods is presented in the following chapter. 



Chapter 2 

EQUATIONS OF FLUID FLOW 

All substances are ultimately made up of atoms and molecules. Fluids like air or water 

are made up of atoms and molecules. We can perceive the river water as a continous 

substance Sowing smoothly as a iresult of the macroscopic forces acting on it. Engineers 

almost always deal with Suid Sows which can be studied by modelling the Auid as a 

continuum governed by a set of macroscopic equations. Most of the elementary Euid 

mechanics textbooks deal with these equations without bothering with the molecular 

constitution of Buids (see Batchelor (1967)). 

Fluids are a collection of particles. In order to develop theories for the time evo-

lution of a system of N particles, that is their dynamics, different levels of dynamical 

theory can be investigated. Four different levels of theory are adopted. The following 

classiAcation can be found in most of the graduate physics books. 

At a very fundamental level, all particles obey quantum mechanics. The dynamics 

of the system at this level are described by N-particle wave functions which evolve 

in time according to Schrodinger's equation. This equation will not be discussed or 

included herein but mentioned for the completeness of the discussion. At the next level, 

the system can be modelled as a collection of N classical particles obeying Newtonian 

dynamics. If the number of particles are large however then it is not realistic to solve 

the equations of motion for all the position and velocity coordinates. In the next higher 

level one can introduce distribution functions describing the particle number density 

in the six-dimensional space time at a particular time. A dynamical theory at this 

level requires an equation which tells us how the distribution function changes in time. 

The time derivative of this distribution function for a Suid is given by the Boltzmann 

equation. At a higher level we model the system as a continuum. This study described 
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is on this level. 

It might appear that in a dynamical theory, knowing the present state of the system, 

one can always predict the future. Fluids however can often display turbulence, a state 

of random and chaotic motions which appear unpredictable. Developing a proper 

theory of turbulence hag remained one of the grand unsolved problems of physics. The 

question of how turbulence arises in systems governed by predictability of the equations 

remains unanswered. Even in deterministic systems, unpredictability can be observed. 

2.1 MICROSCOPIC LEVEL 

This area mainly covers different solution methods of the Boltzmann equation. If 

the equations for the molecular dynamics of dilute gas is simplified for a continuum, 

the macroscopic equations of hydrodynamics can be derived. The derivation of these 

equations is beyond the scope of this research. 

2.2 MACROSCOPIC LEVEL 

2.2.1 Derivatives of t ime 

Two different kind of time derivatives i.e Eulerian and Lagrangian have evolved to 

describe fluid variables aa discussed by Batchelor (1967) . The Eulerian derivative 

denoted by ^ implies diSerentation with respect to time at a fixed point. On the 

other hand, the time derivative of a moving Euid element is denoted by ^ which is 

called the Lagrangian derivative. A prime (') denotes the variable is a dimensional 

quantity. If and are the positions of fluid element at times f and , then 

the Lagrangian time derivative of some quantity is deSned ag 

Keeping the 6rst-order terms in the Taylor expansion, we have 

+ + + (2.2) 
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Putting this in (2.2), the relation between the Lagrangian and Eulerian derivatives is 

derived: 

^ ^ + p.3) 

If we want to formulate an interaction of a structure which is vibrating (Aow induced 

vibration) with a Suid or a moving body in a Suid, we have to reformulate the above 

derivative and boundary conditions for a mixed coordinate system which is known in 

the literature as Arbitrary Lagrangian Eulerian (ALE) formulation and a less general 

formulation for moving solid bodies can be traced back to Batchelor (1967). 

2.2.2 Equat ions of continuity 

As a next step, we derive another general result -the continuity equation- which applies 

to any system that conserves mass. If p' is the density of the system in some space, 

then the mass ^ pWH' within a volume can change only due to the mass Aux across the 

surface bounding that volume, i.e. 

y y /(Zn' = - y (2.4) 

Here is the outward mass Hux through the bounding surface, the negative 

sign implying that an outward maas Aux reduces the mass within the bounded volume. 

Transforming the surface integral to volume integral by Gauss's theorem, we obtain 

+ V.(pV)] (fO' = 0 (2.5) 

Since this must be true for any arbitrary volume, we must have 

^ + V . ( p ' v ' ) = 0 ( 2 . 6 ) 

which is the continuity equation. If we want to derive the same relationship in terms 

of the Eulerian derivative of p', then using the following relation: 

V.(/-u') = r W p ' + p'V.r ' (2.7) 
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we can write down the equation of continuity using the Lagrangian derivative for com-

pressible fluid 

^ + p'V.t,' = 0. (2.8) 

2.2.3 Equat ions of mot ion 

To find the equation for the velocity, we consider a fluid element of volume Sfl'. The 

mass of this Suid element is and its acceleration is given by the Lagrangian 

derivative It follows from Newton's second law of motion that 

~ surface ( 2 . 9 ) 

where the force acting on the 8uid element is divided into two parts: the body force 

and the surface force 5R%ur/ace' A body force is something that acts at all 

points within the body of a fluid. Gravity and electromagnetic forces are examples. 

The body force is usually denoted aa body force per unit mass as f so that 

' (2.10) 

The surface force on a fluid element is the force acting on it across the surface bounding 

the fluid element. Let dE' be an element of area on the bounding surface. The surface 

force acting across this area is assumed proportional to this area. dS ' and 

are both vectors. They are related to each other by the following relation. 

(cgA^ur/ace); = (211) 

The total surface force acting on a volume of a fluid is then given by the surface integral 

= (2.12) 

This surface integral can be transformed into a volume integral by the following rela-

tionship 

13 



r QP> 

(-R'sur/oce)j = - y (2.13) 

Hence the surface force acting on a small Suid element of volume is 

((^A%^r/.ce); = (2-14) 

Substituting (2.10) and (2.14) into (2.9), we obtain the following relationship. 

2.2.4 Ideal fluids 

For a Auid in static equilibrium, it is an experimentally proved fact that the force acting 

across an element of area inside the Buid or on its boundary is always perpendicular 

to that element of area. In fact, this is often taken as the deEnition of a &uid. A Suid 

is defined as a substance in which motions are induced whenever there is a part of the 

surface not perpendicular to the surface (i.e. a shear force). This is in contrast to 

elastic solids within which shear forces can be in static equilibrium. Mathematically, 

for a static fluid, we write 

PL=p'S,i (2.16) 

which subsituted in (2.11) gives 

dR' surface — —p'dJj'. (2.17) 

Pressure is introduced here as p which is dehned as the force acting per unit area. The 

negative sign (2.17) implies that the pressure force acting across the bounding surface 

of a Suid volume is always inward directed, whereas the vector area cfS' is taken by 

convention as outward directed. 

Although (2.16) holds for a Suid at rest, it is generally no longer valid when there 

are no motions inside the Suid. If the surface force of two layers of a Euid having 
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diEerent velocities on the two sides of a surface was given by (2.17), then the force 

across the surface of separation can only be in the vertical direction. In reality, it is 

expected that a horizontal tangential shear force will act across the surface of separation 

and will transport momentum from faster-moving layer to the slower layer such that 

the faster layer slows down and the slower layer speeds up. These tangential stresses 

are handled by introducing the coefBcient of viscosity which will be discussed in the 

next subsection. Fluids for which the condition (2.16) holds are known as ideal fluids. 

Subsituting (2.16) into (2.15) and using (2.3) we have the following equation for an 

incompressible Suid which is named after Euler. 

dv'-

= 0. (2.19) 

Ideal Suids are defined by Euler equation which is the simpliRed version of Navier-

Stokes equation where the coefhcient of viscosity is set to zero. An ideal incompressible 

irrotational 8uid is often called potential How which is a simpli&ed version of ideal Suid. 

2.2.5 Viscous flows 

From everyday experience it is known that the internal friction (which we call viscosity) 

in a Buid opposes relative motions amongst different layers of a Suid. Fluids obeying the 

proportonality relation between shear stress and velocity gradient are known as New-

tonian Euids. It is found experimentally by many researchers (see Batchelor (1967) ) 

that a great many Huids display Newtonian chareicteristics. The formulation of this 

kind of Sow is given by the Navier-Stokes equation which is the equation investigated 

in this thesis. 

The surface forces inside a Euid waa handled by the term appearing in (2.11). 

Herein we introduce which is assumed to be zero in ideal fluids so that the surface 

forces on an element of a fluid is always normal. It is pointed out that the ideal fluid 

equations do not reproduce some of the properties of real fluids. That is, the shear 

force is expected to be larger for a larger velocity gradient and an improved description 

of surface forces is given by 

= p'Sjt + irjt (2.20) 
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For a Newtonian Suid, the shear stress depends linearly on the velocity gradient. 

For an incompressible isothermal viscous flow Wji. is defined as 

A?/ 

which together with (2.10), (2.14) and (2.20) provides the basis of the Navier-Stokes 

equation written in the following form for incompressible flow 

dv'-

= 0 (2.22) 

= 0. (2.23) 

16 



Chapter 3 

B O U N D A R Y E L E M E N T 

DISCRETISATION OF 

EQUATIONS 

In this chapter Bow helds from transversely oscillating circular cylinders in water at 

rest are studied by numerical solutions of the two-dimensional unsteady incompressible 

Navier-Stokes equations adopting a primitive-variable formulation. These findings are 

successfully compared with experimental observations. A control action of oscillation 

of the cylinder is further investigated in the following chapters for a cylinder in uniform 

How. Herein we only concentrate on the oscillations of the cylinder in Buid at rest. 

The cell viscous boundary element scheme developed is Srst validated to examine 

convergence of solution and the inSuence of discretisation within the numerical scheme 

of study before comparisons are undertaken. A hybrid approach utilising boundary 

element and Snite element methods is adopted in the cell viscous boundary element 

method. That is, cell equations are generated using the principles of a boundary 

element method with global equations derived following the procedures of Snite element 

methods. 

The influence of key parameters, i.e. Reynolds number ^e, Keulegan-Carpenter 

number and Stokes number /), on overall Bow characteristics and vortex shedding 

mechanisms are investigated through comparisons with experimental Endings and the-

oretical predictions. The latter extends the study into assessment of the values of the 

drag coeScient, added mass or inertia coefBcient with key parameters and the variation 

of lift and in-line force results with time derived from the Morison's equation. 
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The cell viscous boundary element method as described herein is shown to produce 

solutions which agree very favourably with experimental observations, measurements 

and other theoretical Bndings. 

3.1 INTRODUCTION 

Bodies oscillating in a stationary or unsteady Auid Aow and stationary bodies in 

an oscillating unsteady flow are fluid-structure interaction problems of immense prac-

tical and theoretical interest in the 6elds of naval architecture, aerospace, civil and 

oEshore engineering. For example a ship or aircraft manoeuvring, a submersible os-

cillating under prescribed experimental conditions to measure Suid actions, cylindrical 

tubular structures (i.e. oSshore platforms, risers, etc.) subject to current and wave 

loads, bodies (i.e. bridges, chimneys, etc.) experiencing steady or wind gust loads, etc. 

are practical illustrations of Suid-structure interactions, facets of which are discussed 

by Duncan (1959) , Burcher (1972), Etkin (1972), Sarpkaya &: Isaacson (1981) and 

Faltinsen (1990). 

' In oEshore engineering, in particular, bluE bodies in the form of cylinders are ex-

tensively used in construction and, in many ways, they form the cornerstone of de-

velopments in oil extraction from beneath the sea. For such reasons, the interaction 

between viscous Suid flows and circular cylinders is of signihcant importance stimu-

lating extensive experimental and theoretical investigations. These aim to understand 

the underlying complex physical interaction mechanisms, to simulate the behaviour 

and characteristics of the 8uid Sow within the interaction process and to model math-

ematically the Suid actions experienced by circular cylinders. Sarpkaya &: Isaacson 

(1981), Faltinsen (1990) and Baltrop &: Adams (1991) provide extensive overviews of 

such studies. 

The Sow past a circular cylinder 6xed in a steady stream, the flow experienced by 

a circular cylinder in an oscillating Bow or the How generated by an oscillating cylinder 

in a stationary or unsteady Sow are Euid-structure interaction problems investigated 

both experimentally and theoretically. They provide information through observation, 

measurement and predictions of the strengths, trajectories and frequencies of generated 

vortices, the magnitudes of the Suid actions through lift forces, drag forces, moments 

and their associated added mass, added inertia and drag coefhcients, etc. Such related 
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information is presented experimentally by Hassan (1962), Bishop &: Hassan (1964) , 

Manll & Milliner (1978) , Bearman (1985) , Williamson (1985,1991), Obasaju, Bear-

man &: Graham (1988) and Tatsnno & Bearman (1990) . As an example, the latter 

investigators examined the viscous Suid Bow characteristics around a circular cylin-

der of diameter D oscillating transversely with amplitude frequency w and with a 

translational motion 

i( t) = — Asin(27ryt) = — Asiii(w<), 

a;(() = —^wcos(wt) = —L^co8(w(). (3.1) 

Their experimental Sndings clearly illustrate the complexity of the vortex patterns 

generated which were classified on the basis of the parameters: 

Keulegan-Carpenter number A'C = _ 2 ^ ^ 

Stokes parameter , (3.2) 

Reynolds number Ae = A'C/) = ^^62 _ ^ 

where represents the coefBcient of viscosity and /) denotes the Auid density. Figure 3.1 

illustrates the dependence of the various Bow regimes on Keulegan-Carpenter number 

and Reynolds number or Stokes parameter aa observed by Tatsuno & Bearman (1990) 

To complement such experimental investigations, several numerical studies of the 

unsteady How around a circular cylinder at low values have been presented by, 

for example, Borthwick (1986) , Smith &: Stansby (1991) , Justesen (1991) , Wang &: 

Dalton (1991) , Lin, Bearman & Graham (1996) , Zhang &: Zhang (1997) and Diitsch 

a/ (1998). To model mathematically the unsteady oscillatory force acting on a 

cylinder, Morison aZ (1950) developed a semi-empirical formulation which has since 

been extensively used in o&hore engineering. This approach is discussed by Sarpkaya 

&: Isaacson who for an oscillating cylinder in a stationary Euid expressed the force per 

unit length in the form. 

Fi(() = (3.3) 
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0 100 200 300 400 500 

Figure 3.1: Flow regimes defined by Tatsuno & Bearman (1990) and also Diitsch 
(1998). The principal features of the regions are: A*-No Bow separation, secondary 

streaming, two-dimensional; A-Two vortices shed symmetrically per half cycle, two-
dimensional; B-Three-dimensional instability, longitudinal vortices; C-Rearrangement 
of large vortices, three dimensional; D-Flow convected obliquely to one side of the 
axis of oscillation, three-dimensional; E-Irregular switching of flow convection direc-
tion. three dimensional; F-Flow convected diagonally, three-dimensional; G-Transverse 
vortex street, three dimensional. 
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whereas, for a stationary cylinder in an oscillating fiuid the equation is given by 

(3.4) 

where = C/ + 1. Here C/, C f̂ and Cf, denote the added maas, added inertia 

and drag coeScients respectively and the di%rence between and C; arises because 

of the change in the defining coordinate system used to describe the fluid-structure 

dynamics. These coefficients are determined from experiments or from numerical so-

lutions of the Navier-Stokes equations. Estimates of their values can be determined 

using a variety of analysis techniques and methods (i.e. Fourier, least-squares, etc.) as 

discussed by Sarpkaya (1976) and Sarpkaya & Isaacson (1981) . 

Stokes (1851) first determined analytical expressions for the Cg and coeScients 

provided that the cylinder flow remains attached, laminar and two-dimensional. It was 

shown that the forces acting on a sinusoidally oscillating cylinder depend on both 

jiTC, Ae or and in an extension of Stokes' theoretical approach, Wang (1968) derived 

the following expressions: 

CM = 2 4- 4(7r^)-^/" + (TT/))- /̂" , (3.6) 

for 1 and 1. The first two terms in these formulae replicate Stokes' 

findings. 

The values of these theoretical coefficients agree favourably with experimental find-

ings for two-dimensional fiows as discussed by Lin e( aZ (1996) . However, as illustrated 

in figure 3.1, such fiow regimes are limited and as the jFTC value increases complex three-

dimensional vortex patterns are generated. Honji (1981) observed experimentally, and 

confirmed theoretically by Hall (1984) , a three dimensional instability on the attached 

boundary of the cylinder generating counter rotating vortex structures along the cylin-

der's span. This efiFect causes an increase in the predicted coefficient values of Wang as 

confirmed by Sarpkaya (1986) in a comparative analysis of theoretical findings (based 

on the Stokes and Wang models) and experimental investigations into the infiuence of 
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value on the occurrence of the Honji instability. Hall (1984) deduced that this 

occurs at the critical Keulegan-Carpenter number deSned by 

= 5.778/)-; (1 + 0.205^-% + (3.7) 

In this present study, the Sow characteristics and and coefScient values 

associated with a stationary circular cylinder in an oscillating viscous flow and an 

oscillating cylinder in a stationary fluid are investigated using the cell boundary el-

ement method developed by Tan, Farrant & Price (1999) . This hybrid approach 

incorporates both boundary element and finite element methods since, in the proposed 

scheme of study, cell equations based on Navier-Stokes equations are generated using 

the principles of the boundary element method with global equations applicable over 

the whole fluid domain derived following the procedures of the finite element method. 

A primitive-variable formulation with an unstructured fluid domain mesh requirement 

forms the basis of the hybrid approach. This can be applied to both two-and three-

dimensiona] problems associated with a single cylinder or arbitrary arrangements of 

circular cylinders or other shaped bodies as discussed by Farrant, Tan &: Price (2000), 

Uzunoglu (2000) . The application of the proposed method focuses on two-dimensional 

fluid-structure interactions incorporating a validation with experimental vortex shed-

ding flows observed and measured by Tatsuno &: Bearman (1990) , Kiihtz (1996) and 

a comparison of predictions derived by Diitsch ef oZ (1998) by a flnite volume method. 

3.2 MATHEMATICAL THEORY 

3.2.1 Governing equat ions 

Figure 3.2 illustrates a cell idealisation of the viscous fluid domain. In each typical 

cell or element il, bounded by surface E, the fluid is assumed incompressible and of 

constant viscosity. The Navier-Stokes equations describing the flow velocity f ) 

and the mean pressure y(a ; ' , f ) of the viscous fluid are given by 

dv'-
^ = 0 (3-8) 

= 0 (3.9) 
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Here p' and represent the fluid density and viscosity. A prime (') indicates the 

variable is a dimensional quantity. 

In order to simplify the mathematical expressions in these equations, a tensor index 

notation with summation convention is adopted. In the convective term, for example, 

k=l ^ 

where the upper limit of the summation takes the value 2 or 3 for two-dimensional or 

three-dimensional problems respectively. 

For viscous Suid-structure interaction problems categorised by a characteristic length 

L' (e.g. diameter of cylinder, say) and a characteristic velocity U' (e.g. mean fluid ve-

locity), the non-dimensional variables of space a;, time velocity u and pressure p are 

defined by 

such that (3.8) and (3.9) can be expressed in the dimensionless forms, 

+ (^jt't),* + P j — [^e(^j,t+^tj)],A: = 0 , (3.10) 

Vjj = 0 . (3.11) 

Here 1/^=1/Re where Re denotes the Reynolds number (= ^ ). 

These equations represent the Bow velocity in an inertial or space Sxed frame of 

reference and are appropriate to the analysis of the Suid-structure interaction between 

a 6xed body and an oscillating flow. For a body manoeuvring in an incompressible 

Suid, Price &: Tan (1992) showed that the Navier-Stokes equations formulated in a 

moving frame of reference attached to the body are given by, 

+ P j — = 0 , (3.12) 

ty j = 0 . (3.13) 

Here denotes the relative velocity between the body and the Guid motion 

i.e. [/k = f t — where represents the velocity of the body and/or the Buid mesh 

attached to the body. This set of equations is suitable to describe the fluid-structure 

interaction between a cylinder oscillating horizontally and a fluid at rest at infinity or 
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pulsating and translating in a stationary Suid. As can be seen, these two sets of equa-

tions ajre very similar with (3.10) derived by setting % = 0 in (3.12). Therefore, for 

generality, (3.12) and (3.13) are used in the following development of the mathematical 

model and numerical scheme. 

3.2.2 Integral equa t ion 

To improve the efBciency and effectiveness of the numerical scheme of study for time 

dependent unsteady flow problems, the nonlinear convective term in the momentum 

equation is first resolved by a time marching process before the Navier-Stokes equations 

are transformed into an integral equation (see Tan ei oZ (1999) ). The procedure is 

described as follows: 

In this scheme, the nonlinear convective term can be resolved by a time stepping 

process. To maintain an accuracy of the order of in the solution, the equation 

at the (n + 1)(A time step takes the form 

f j {'^jUk),k + P,j ~ [^e('^j,A: + ~ 0; 

where ^ denotes the relative velocity at the 

time step and the {it represents the corresponding body velocity. Little additional 

computational time is needed to transform the velocity vector held into a space 

hxed coordinate system by adding the system velocities. 

* 5'econ(f-or(fer gcAeme 

To achieve a second-order level of numerical accuracy with respect to the 

equation for the (n 4- l)tA time step is similar to the first order scheme except in 

this caae, 

^ ^^]and % — — — 

The mathematical theory for the derivation of above formulations can be found in 

Stiefel (1963) . The accuracy of the second order scheme is expected to perform better 

though no systematic analysis was undertaken except for Re = 100 and = 5 

regime which no signihcaat deviation was observed. Stability was not investigated for 
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two diSerent schemes. Stability might decrease with increasing time order. 

Thus, with the appropriate deGnitions of and C/t, these previous schemes can be 

represented by the modiGed Navier-Stokes equation, 

f j P,j — [^e{'^j,k '^k,j)],k ~ 0 . (3.14) 

By means of Gauss's theorem, an integral equality involving functions p and two 

additional functions r* and p* can be established on a typical cell bounded by its 

surface E with outward normal n (see Tan (1994) ). This is written as 

Jn 

Jn 

(3.15) 
Jn 

where the term + ^e(%t + represents the j t h component of the 

dimensionless traction on the surface S and the variable R̂* is deBned as 

This integral equality holds for any functions r , p, and provided that all 

the terms involved are integrable. If functions r and p are reserved to represent the 

6ow velocity and the mean pressure in the fluid on the cell respectively and they 

satisfy (3.11) and (3.14) then the forms of functions t;* and can be selected by 

imposing appropriate conditions to simplify (3.15). In fact an examination of the 

integral equality shows that there would be significant mathematical simpli6cation by 

letting u* and satisfy the following equations: 

= -6ajA(a: — ^), (3.16) 

= 0. (3-17) 

where and A() are Kronecker and Dirac delta functions respectively. 

With the functions and p* deBned by these equations, (3.15) reduces to, 

C{i)v,{Ct)+ [ v,(U-nv:^+R:^)di: = [ R,v:/S ^ (3.18) 
Vi: j s ./n 

where 

1 if ^ e n , 

^ if ^ e 2 , 2 

0 otherwise. 
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In this equation the velocity of the Bow in the ceU is expressed as a surface integral 

of velocity and traction on the boundary, and an additional volume integral involving 

the contribution from which can be calculated from the values of and on the 

cell boundary. 

When the boundary values of the velocity are specified, (3.18) can be used to 

determine the traction R on the boundary and then the velocity field v everywhere 

in the cell. Thus (3.18) defines a relation between the velocity and force on the cell 

boundary. Since u* also depends on the value of [X in the cell as seen from (3.16), 

modifications to the values of are needed during the t ime stepping procedures as 

is continuously updated in the computation. 

3,2.3 Fundamen ta l solution 

In the context of this study, the solution of (3.16) and (3.17) is referred to as the 

fundamental solution of the problem aa it describes the response of the system to a 

point excitation. To simplify the process of solution of these two equations for and 

p*, a further approximation is introduced to replace the convective velocity (with 

component i/t) in (3.16) by its mean value u (with component %*) on the cell. Findings 

from numerical experiments reveal that this approximation is superior to the first-order 

approximation, in which the value of % any arbitrary point in the cell is used for 

the convective velocity in (3.16). 

With this assumption, the equations defining and p* take the following form: 

+ P l j + = -(^sjA(a; - (), (3.19) 

= 0. (3.20) 

The solutions of these equations for both two- and three-dimensional cases can be 

obtained by means of Fourier transformations as discussed by Price & Tan (1990,1992), 

or Tan (1994). 
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Figure 3.2: Discretisation of the Auid domain by an unstructured mesh. 

3.3 NUMERICAL MODELLING 

3.3.1 Idealisation 

To provide solutions to unsteady fluid-structure interaction problems, the computa-

tional Suid domain is discretised into a large number of cells or elements (see Bgure 3.2) 

and the integral (3.18) adopted to represent the velocity field on the cell in terms of 

the values of velocity and traction on the cell boundary. 

For simplicity the following discussion is restricted to the two-dimensional time de-

pendent case involving only quadrilateral cells with the control points for the unknown 

functions taken at the centre of each cell edge. Similar conclusions, however, apply to 

more general cases, i.e. three-dimensional problems, control points taken at the comers 

of each quadrilateral, control points at centres and corner points, etc. 

3.3.2 Cell equat ions 

On the typical cell shown in Ggure 3.3, if the first-order time stepping scheme is assumed 

and the unknown functions u and R on each edge are treated as constants taking their 

27 



V (3)_ jg(3) 

4 # u (e) 

0 

Figure 3.3: A typical cell with ordered notation. 

values at the centre of each edge, the cell integral equation can be rewritten as 

/=! -/(O 
4 

E 4 ' • (3,21) 

When the coordinates of the control point on each edge are assigned successively 

to the index a allowed to take values 1 and 2 for the two-dimensional case under 

examination and the integrations of and JZ* completed, the integral equation is 

replaced by a discretisation involving a set of 8 simultaneous equations for each cell. 

Thus if the superscript e denotes the etA cell then the relevant algebraic equations can 

be expressed in the form 

(=) (3.22) 

Here and are single column arrays constructed from the velocity and 

traction values at the centre of each edge (Z = 1, 2,3, 4) on the cell boundary, i.e. 

yW 

,̂(1) 

17 (4) 
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where and are 8 x 8 matrices and a vector with 8 elements. These terms 

are the results of the integration of and on the cell and can be expressed formally 

as 

+ ^ (3.23) 
V(/) Vn 

-4M = I / . b'" = {%- / (3.24) 

v(z) Vn 

where is the averaged velocity of the time step on the cell and only the 

contribution from the mean acceleration on the cell is included in the equations. 

Prom (3.22), an expression for can be obtained in the form 

^ (3,25) 

where and aje solutions of the equations 

In this formulation, the matrix is nearly singular because the Sow is incompressible. 

This term is the integration over the surface of the fundamental solution which is 

derived with this condition. When integration of fundamental solution over the surface 

is made, the integration which generates this matrix coefficients will be nearly singular. 

The details of this integration can be found in Tan et al (1999) where the accuracy of 

the integration is also addressed. 

The singular value decomposition method (see §2.9, Press o/ (1986) ) can be 

adopted to solve these equations to 6nd and 

3.3.3 Global equat ions 

The action-reaction relation of the traction A and the continuity of the velocity field V 

across the control point on the cell boundary require JR and V to satisfy the expressions 

= 0 _ yW = y C ) _ (3.26) 

Here and are the values of the traction and velocity on the same 

control point belonging to different cells. 
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To construct the global equations for the whole duid domain from the cell equations, 

the assembly process used in a Snite element method to obtain the stiffness matrix is 

adopted (§1.3-§1.7, Zienkiewicz (1977) ). The control points are organised into a 

consecutive global order after each point is given an unique control point identifying 

number. When conditions (3.26) are applied to each control point and the contributions 

from all cell equations to each and every control point collected, a set of algebraic 

equations in terms of velocity can be obtained for the whole computational domain, 

i.e. 

Z ) y = (3.27) 

where y is the array of velocity values on all the control points in the global order, f 

contains the contributions of from all cells and D is formed by assembling the cell 

matrix according to the global order of each control point. 

Before this set of equations can be solved, global boundary conditions need to be 

implemented. The two most commonly encountered conditions are prescribed traction 

and prescribed velocity on the boundary. 

3.4 NUMERICAL RESULTS 

3.4.1 Discret isat ion p a r a m e t e r s and convergence 

In this study, a selection of viscous Sow characteristics, predicted by the cell boundary 

mathematical model, is compared with observations, measurements and other relevant 

theoretical Sndings. Such an exercise provides a measure of verification and validation 

of the proposed approach and the developed numerical scheme of study as well as 

providing a degree of conSdence to extend the theoretical model to tackle more complex 

unsteady Auid-structure interaction problems as considered by Parrant of (2000) . 

Figure 3.4 illustrates the Sow domain surrounding a circular cylinder of non-dimensional 

unit diameter. The overall size of the discretised fluid domain adopted in the calcula-

tions is deSned by the magnitude of the quantity denoted by A (i.e. /i=3, 6, 9, etc.). 

Figure 3.5 shows a typical unstructured mesh of the Suid domain with each rectangular 

cell of grid size (Aa:, A^), where Aa;, A?/ denote horizontal and vertical dimensions 

respectively. In a study to assess the inSuence of the domain size, grid dimension and 
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idealisation two difFerent sets of boundary conditions were assumed, each associated 

with a particular fluid problem. Namely, in Ggure 3.4, the boundary conditions (1,2) 

refer to a transversely oscillating cylinder with the far field Buid at rest. At the top 

and the bottom of the domain the same velocity boundary conditions are assumed. 

By slight modi6cation of these conditions a numerical towing tank experiment can be 

devised in which the cylinder translates with a forward speed u = V'(() and transversely 

oscillates with prescribed motion % = (y(^) aa given in (3.1). 

For the fluid Sow at Ae = 100, A'C = 5, designated two-dimensional by Tatsuno 

& Bearman (1990) in hgure 3.1, tables 3.3-3.5 show the variations of the values of the 

drag coefBcient Cf, and added mass coefhcient C/ with time step At, domain size h, 

grid size (Aa;, A?/) and boundary conditions. Overall the computed Cg, Cf results 

show small variations between themselves even for signi6cant changes to the stated 

parameter values. To examine the sensitivity of inlet-outlet boundary condition at 

a; = d:A, table 3.4 includes predictions for velocity boundary conditions i.e. = 0 = f 

and a mixed boundary condition involving velocity and traction components i.e. = 

0 = .Rz- From the evidence presented in table 3.4 it is observed that provided /z is 

suSciently large the boundary conditions imposed at z = inGuence and C/ 

values insignificantly. In all these findings a larger variation of value is exhibited in 

the drag coefficient rather than the added mass coefficient which remains relatively 

constant. 

In a wide ranging computational investigation, additional results were further sub-

stantiated. Namely, boundary conditions (1,2) produce similar predictions for each set 

of chosen parameter values and, secondly, the observed fiow characteristics associated 

with a cylinder oscillating in a stationary fluid and those for a stationary cylinder 

subject to an oscillating Sow showed very close agreement confirming the study of 

Garrison (1990) . Such studies provide assurance that the numerical schemes of study 

produce convergent results and this is further confirmed by the finite volume investiga-

tion of Diitsch aZ (1998) who determined drag and added mass coeScient values of 

Cf) = 2.09 and Cf = 1.45, for = 100 and A'C = 5, respectively. These latter values 

were obtained using the finest mesh in their analysis and they lie within the range of 

data shown in tables 3.3-3.5. It is interesting to note that although favourable compar-

isons of predicted results are demonstrated between the cell boundary element approach 

and the finite volume method, the computational domain used herein is smaller and 
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incorporates a coarser mesh than used by Diitsch e( (1998) . 

Thus, from the presented evidence on accuracy of computation and convergence 

of solution, in subsequent calculations for transversely oscillating cylinders, it was de-

cided to take grid dimensions Aa; = 0.15 = A?/; to discretize the Suid domain A=9 

for symmetric Eow regimes (i.e. see hgures 3.7, 3.8) and /i=15 for asymmetrical Sows 

(i.e. C, E, F in 6gure 3.1) to capture details of the more complex &ow behaviours (see 

Egure 3.9); to utilize a uniform unstructured mesh (see Agure 3.5); to adopt approx-

imately 80 time steps per cycle and velocity boundary condition (1). That is, the 

mathematical modelling of the experiments performed by Tatsuno & Bearman (1990) 

, Knornschild (1994) and Diitsch oZ (1998) . The results for the convergence tests of 

the present method in the oscillating cylinder flow problems are consistent with similar 

tests carried out for other How problems including driven cavity flow, backfacing step 

channel Row and vortex shedding Sows etc. The details of these investigations and 

more comparison with other methods can be found in Tan e( aZ (1999) and Farrant 

aJ (2000a,2000b) . 

3.4.2 Observat ions and numerical s imulat ions 

As illustrated in hgure 3.1, Tatsuno &: Bearman (1990) through an experimental visu-

alization study provide an extensive categorization of the flow regimes around an oscil-

lating circular cylinder over a range of and A'C numbers. Three such examples are 

shown in Sgures 3.7(a)-3.9(a) consisting of streakline patterns at Ae=81.4, ^"(7=11.0 

in regime A, J?e=165.79, KC= 3.14 in regime A* and -Re=210.0 and KC=6.0 in regime 

E. They confirmed the 6rst two Sow Selds as two-dimensional and these cases are on 

either side of the /3 = 35 line shown in figure 3.1. Knornschild (1994) independently 

substantiated these Endings. Case E is on the ^ = 35 line and is deemed a physical 

three-dimensional Sow (see hgure 3.1). 

Figures 3.7(b)-3.9(b) illustrate the equivalent computed streakline patterns to fig-

ures 3.7(a)-3.9(a). These streaklines were simulated by releasing 40 massless particles 

at each time step into the computational domain. The overall impression gained by 

comparison of the respective hgures indicates close similarities. The particles used to 

compute the streakline patterns are passive markers. This method is equivalent to the 

experimental electrolytic precipitation method used by Tatsuno &: Bearman (1990) . 
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h 

Figure 3.4: Computational domain definition and boundary conditions for an oscillating 
cylinder. All the variables and quantities are nondimensional. (The indicated positions 
0!i,CK2,&3,a4 relate to the transverse measurements of Diitsch oZ (1998) illustrated 
in (Egure 3.11.)) 

\\\ / / / / 

/ZZTT̂  

A?/ 
Aa; 

Figure 3.5: Typical mesh idealising the Buid ajround the cylinder. 
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Figures 3.7(c)-3.9(c) and 3.10(a-c) illustrate the vortex shedding mechanisms in 

the numerical simulations during various stages of the cycle for cases A, A* and E. 

Figures 3.7(b,c) and 3.10(a) show symmetric and periodic vortex shedding. In 

this regime two contra-rotating vortices are formed symmetrically behind the cylinder 

during each half cycle. These vortices stay behind the cylinder at the end of each cycle 

and as the cylinder reverses direction, the vortices are convected towards the cyhnder. 

The vortices do not survive into the next half cycle agreeing with the observations of 

Tatsuno &: Bearman (1990) . 

Figure 3.8(b,c) illustrates computed streaJdine patterns during a cycle for case A* 

i.e. j^e=165.79, ^"0=3.14. The computed velocity held for this regime at a specihc 

instant in the cycle is illustrated in hgure 3.10(b). No vortex shedding occurs in 

this symmetric regime confirming the experimental findings. Large regions of contra-

rotating crescent like 8ow are observed on both sides of the cylinder. 

According to the classihcation of Tatsuno &: Bearman (1990) , hgure 3.9(a) be-

longs to regime E and is three-dimensional in form. The two-dimensional Bow calcu-

lation at i?e=210.0, KC=6.0 is illustrated in figure 3.9(b,c) suggesting that the three-

dimensional How feature is not too strong although a slightly sharper V Suid shedding 

formation appears in the simulation. This is a regime where the flow sheds with tem-

poreirily stable V-type vortex streets as illustrated in hgures 3.9(b,c) and 3.10(c). In 

this regime intermittent changes of direction of convection and switching of the Sow 

6eld triggered by small disturbances were observed by Tatsuno & Bearman (1990). 

However, no artihcial disturbances (e.g. see the discussion of Zhang & Zhang (1997) 

) were added in the present computations to simulate this mechanism and vorticity 

convection occurred only on one side of the cylinder with no switching of the Eow Aeld. 

To further validate the proposed theoretical and numerical approach, computa-

tions were compared with measurements taken by Diitsch et al (1998) at i?e=100 and 

j^C=5.0 for the velocity components (w, f ) at prescribed phase angles and at different 

cross-sections in the Aow measured from the centre of the cylinder. Figure 3.4 indicates 

the four transverse positions of measurement ai , ag, 0:3, a;4. Figure 3.12 illustrates such 

a comparison at these cross-sections behind and ahead of the cylinder. The excel-

lent comparison between these findings and the experimental and numerical results of 

Diitsch e( oZ (1998) further confirms with confidence the applicability of the mathe-

matical model to fiuid-structure interaction problems defined by low-Reynolds-number 
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and Keulegan-Carpenter number. 

3.4.3 Pred ic ted forces and coefficients 

To illustrate the influence of Reynolds number and Keulegan-Carpenter number on 

force and coefhcient values a series of computations were undertaken along the ^ = 35 

line shown in figure 3.1 for 0 < KC < 8. This range covers two- and three-dimensional 

Sow regimes and therefore, for jiTC values greater than approximately 5 along ,8 = 

35 the predicted values can only be approximations to the physical How reality. As 

indicated in the introduction, the .fTC parameter, in eifect, compares the distance the 

cylinder moves relative to the cylinder's diameter. ^ parameter can be seen as the 

ratio of the time that the vorticity takes to disuse a distance equal to the cylinder 

diameter to the flow oscillation period. As ,8 increases, boundary layer gets thinner 

Kiihtz (1996) . 

For illustration purposes, figures 3.12 and 3.13 show the variation of the drag (Fi) 

and lift (fg) force components over a cycle at J?e=100, ^^(7=5 and jRe=210, re-

spectively. The information is computed directly by the cell boundary element method 

and through analysis using the Morison equation (3.3) after determining Cf, and C; 

values by Fourier analysis. As to be expected, a reasonable agreement exists between 

the drag force component from the two analyses. The individually calculated time force 

histories of the components illustrated in figure 3.13 are shown in figure 3.14(a,b). The 

initially zero valued lift force component indicates a syrrimetric fiow field before the 

presence of the lift force is experienced which significantly lags the drag force. For the 

two dimensional fiow regime at ^e=100, A'C=5 the lift force component f-z remains 

zero or very near to zero over the cycle confirming a symmetric fiow field and the drag 

force is the only significant component. In both cases a reasonable correlation exists 

between the Morison type approach and results derived from the cell boundary element 

approach. 

Table 3.6 presents information on the drag and added mass C; coeScients 

from the series of computations over jiTC number. These coefficients for JCC > 5 

were obteiined by Fourier analysis of the cycles after periodic states are established. 

This table also includes a comparison with the findings of Diitsch et al (1998) for 

0 < KC < 8, /? = 35 using a finite volume method. In fiow region F(A"C=8.0) a time 
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averaging process is applied to the cyclical data after the occurrence of Sow instability. 

All these data are included in 6gure 3.15(a,b) together with the experimental results 

of Kiihtz (1996) , who presented the data in this inertia-drag coefHcient format, and 

analytical solutions of Wang (1968) derived from (3.5) and (3.6). Prom this hmited 

evidence, the agreement between experimental drag data and cell boundary element 

method or hnite volume method predictions are favourable although for the added 

inertia coefficient the predicted values lie below the experimental data. Furthermore 

the information illustrates the restricted accuracy of the series expansion as performed 

by Wang and conGrms the limited applicability of such an approach aa discussed by 

Chester (1990) . 

3.4.4 P red ic t ed force coefficients at low Keulegan—Carpenter 

number . 

In a previous study to validate the cell viscous boundary element method, Uzunoglu 

et oZ (2000) compared numerical predictions of viscous Sow Eeld characteristics at low-

Reynolds-number with selected experimental data presented by Tatsuno &: Bearmaji 

(1990), measurements of force coefBcients by Kiihtz (1996) and Gnite volume calcula-

tions performed by Diitsch oZ (1998). This exercise proved very successful. In the 

limited extension herein, we focus on the eEects of Stokes number on force coe@-

cients associated with symmetric Sow regimes at low Keulegan-Carpenter number A'C 

through comparisons with experimental data (i.e. Kiihtz (1998)) and other theoretical 

6ndings (i.e. Wang (1968) and Lin o/ (1968)). In a series of extensive numeri-

cal experiments undertaken it was shown that for the case = 100, A'C = 5 and 

,9 = 20, convergent solutions for drag Cf, and added mass C; coeGicients were derived 

independent of time step At, outer domain size, grid size and boundary conditions 

imposed at the outer domain boundary. In this present study, the previous numerical 

scheme of study reflects into a square mesh of 6592 cells within a domain defined by 

an outer boundary at 12 times the radius of the circular cylinder, zero velocity compo-

nents imposed on the outer boundary of the fluid domain, oscillating velocity boundary 

conditions on the surface of the cylinder and 80 time steps taken per cycle. 

Table 3.1 for ,9 = 76 and Table 3.2 for ^ = 53 show comparisons of the added mass 
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Cf and drag coeiEcients determined by the cell viscous boundary element method 

described herein, the theoretical Endings of Wang (1968) who extended the analytical 

results of Stokes and the numerical results of Lin et aZ (1996) derived by a hybrid 

Lagrangian/Eulerian discrete vortex method. 

0.1 0.2 0.4 o.s i .o 1.5 2.0 2.5 3.0 

Viscous cell boundary element method 

Cc 32.973 16.473 8.265 4.235 3.447 2.452 2.005 1.784 1.720 

C/ 1.251 1.250 1.249 1.242 1.239 1.227 1.212 1.193 1.148 

Hybrid Lagrangian/Eulerian Discrete Vortex Method Lin oZ (1996) 

Cc 31.729 15.980 8.128 4.169 3.407 2.427 1.980 

C; 1.263 1.261 1.257 1.254 1.152 1.242 1.229 

Wang (1968) 

Cz) 32.016 16.018 8.004 4.002 3.202 2.134 1.601 1.281 1.067 

Cf 1.259 1.259 1.259 1.259 1.259 1.259 1.259 1.259 1.259 

Table 3.1: Drag Cf, and added mass C; coefBcients for = 76 

These results, with shght modihcations i.e. CM = C/ + 1, are also shown in fig-

ure 3(a, b) with the experimental measurements of Kiihtz (1996). These data bases 

illustrate the small theoretical dependence of C/ or on value with changing jiTC 

value though this is not clearly evident in the limited range of experimental hndings; 

the theoretical dependence of Cg on value with changing value which is con-

hrmed by the experimental data; the limited applicability of the analytical result of 

Wang (1968), and the increasing effects of Bow separation on Cg and CM values with 

increasing value of ATC number. 

3.4.5 Two oscillating cylinders 

The cell boundary element method has also been used in multi-body problems and 

the application is straightforward since this method works with unstructured meshes. 
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j r c 0.5 1.0 1.5 2.0 2.5 3.0 

Viscous cell boundary element method 

CD 8.003 4.127 2.911 2.334 2.055 1.913 

Cf 1.300 1.292 1.280 1.266 1.247 1.222 

Wang (1968) 

CD 7.757 3.878 2.586 1.939 1.551 1.292 

Q 1.310 1.310 1.310 1.310 1.310 1.310 

Table 3.2: Drag Cg and added mass C/ coefBcients for = 53 

Examples presented here involve two identical cylinders oscillating in synchronization 

with parameters Ae = 100 and = 5 based on the diameter D of the cylinders. 

Two arrangements with the cylinders in tandem and side-by-side are considered and 

in both cases the gap between the two cylinders is the same as the diameter of the 

cylinders. That is, the distance from centre to centre of the cylinders is 2D. The 

simulated streakline patterns predicted using the cell boundary element method are 

presented in figure 3.16 with (a) for the tandem arrangement and (b) for the side-by-

side arrangement. As can be seen in figure 3.16, the streakline pattern of the tandem 

arrangement appears to be similar to the single cylinder case in the same regime whereas 

the side-by-side arrangement produces a very different streakline pattern. 

The drag Cf, and added mass C; coefhcients and time averaged values of in-line force 

and lift are shown in table 3.7 for each cylinder in different arrangements. The 

C; values in both the two cylinder cases are lower for each arrangement when compared 

with the Cj value of a single cylinder, whereas the Co values show a different trend. 

The values of and ^ in table 3.7 suggest that the two cylinders are subject to a net 

repulsive force in the tandem arrangement and a net attractive force in the side-by-side 

arrangement. The results also show that the interactions between the two cylinders 

are signiScant in both arrangements under the given conditions. 

This approach is used for the bodies in 6xed relative positions. If the bodies are 

moving relative to each other, a suitable approach will be to formulate the problem in 
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Table 3.3: Drag Cg and added mass C/ coe&cients at TZe = 100 and TTC = 5 for 
different time steps. 

Boundary Condition Domain Size /z Grid Size (Aa;, A^/) Cp Cf 

(Sgure. 3.4) 

0.25000 1 6.0 (0.15,0.15) 1.98 1.48 

0.12500 1 6.0 (0.15,0.15) 2.09 1.44 

0.06250 1 6.0 (0.15,0.15) 2.10 1.43 

0.03125 1 6.0 (0.15,0.15) 2.10 1.43 

Arbitrary Lagrangian Bulerian formulation. 

3.5 CONCLUSION 

The cell boundary element method developed by Tan e( aZ (1999) and modiGed 

herein to study oscillating cylinders or manoeuvring bodies has proven successful, re-

producing the detailed characteristics of experimental observations, correlations with 

theoretical predictions presented by others and experimental measurements of drag and 

lift coefficients over a range of jiTC numbers for hxed Stokes parameter ^ = 35. 

This has been achieved by adopting an unstructured mesh to idealise the Euid domain 

and a primitive-variable formulation to construct a hybrid approach involving bound-

ary element and finite element methods. Through developments of suitable numericEil 

schemes of study associated with the cell boundary element method integrated with the 

relevant boundary conditions for transversely oscillating cylinders or a cylinder Gxed 

in oscillating flows, the presented computed unsteady flows provide a measure of ver-

iflcation, validation and confidence in the proposed overall approach when compared 

with other experimental ajid theoretical flndings. 
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Table 3.4: Drag and added maas Cj coeScients at 72e = 100 and TiTC 
different boundary conditions and domain size. 

= 5 for 

At Boundary Condition 

(figure 3.4) 

Domain Size h Grid Size (Ar, Ay) Ci 

0.06250 1 3.0 (0.15,0.15) 2.27 1.47 

0.06250 2 3.0 (0.15,0.15) 2.24 1.49 

0.06250 1 6.0 (0.15,0.15) 2.10 1.43 

0.06250 2 6.0 (0.15,0.15) 2.13 1.44 

0.06250 1 9.0 (0.15,0.15) 2.10 1.43 

0.06250 2 9.0 (0.15,0.15) 2.10 1.43 

Table 3.5: Drag Cd and added 
meshes of different refinement. 

mass Cf coe@cients at Ae = 100 and TiTC : = 5 for 

At Boundary Condition 

(figure 3.4) 

Domain Size h Grid Size (Az, A^) Cd Ci 

0.06250 1 6.0 (0.20,0.20) 2.12 1.41 

0.06250 1 6.0 (0.15,0.15) 2.10 1.43 

0.06250 1 6.0 (0.10,0.10) 2.10 1.45 

Finite volume method, Diitsch et oZ (1998) ^ 2.09 1.45 

^ Numerical results derived using the finest mesh in their analysis. 
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Table 3.6: Drag and added mass (7/ coefBcients for ,8 = 35 at diH'erent regimes. 

jiTC 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 8.0 

regime A* A* A* A* A* A* A C E F ^ 

Viscous cell boundary element method 

10.0 5.13 3.56 2.83 2.43 2.18 1.94 1.84 1.75 1.74 

C; 1.37 1.36 1.35 1.33 1.32 1.30 1.29 1.23 1.14 1.05 

Finite volume method, Diitsch oZ (1998) 

Cc 10.4 5.39 3.72 2.98 - 2.28 1.97 1.82 1.73 1.72 - 1.73 

1.37 1.36 1.35 1.34 - 1.31 1.30 1.30 1.17 1.14-1.15 

^ Cycle averaged after flow instability. 

Table 3.7: Key parameters for two oscillating cylinders at Ae = 100 and = 5. 

Single Two cylinders in tandem Two cylinders side-by-side 

Parameters Bottom Top 

Cz) 2.10 1.77 1.77 2.63 2.63 

C; 1.43 1.25 1.25 1.30 1.30 

0.0 -0.10 0.10 0 .0 0.0 

A 0.0 0.0 0.0 0.30 -0.30 
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Figure 3.6: Variation of inertia figure (a) drag coefficient figure (b) with Keulegan-Carpenter 
number for ^ — 35,53,75 and 76. 
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Figure 3.7: (a) Flow visualization of the streakline pattern generated by a transversely 
oscillating circular cylinder at Re = 81.4, KC = 11.0 in two-dimensional flow regime 
A as observed by Tatsuno & Bearman (1990) ; (b) overall numerical simulation com-
parable with the visualization in (a); (c) numerical simulation at different stages over 
a half cycle illustrating the vortex shedding mechanism. 
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Figure 3.8: (a) Flow visualization of the streakline pattern generated by a transversely 
oscillating circular cylinder at Re = 165.79, KC = 3.14 in two-dimensional flow regime 
A* as observed by Tatsuno & Bearman (1990); (b) overall numerical simulation com-
parable with the visualization in (a); (c) numerical simulation at different stages over 
a half cycle illustrating the contra-rotating crescent like flow observed. 
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Figure 3.9: (a) Flow visualization of the streakline pattern generated by a transversely 
oscillating circular cylinder at Re=210.0, KC=6.0 in three-dimensional flow regime 
E as observed by Tatsuno & Bearman (1990); (b) overall two-dimensional numerical 
simulation comparable with the visualization of three-dimensional flow in (a); (c) nu-
merical simulation at different stages over a half cycle of a stable V-type vortex street 
which is sharper than observed in (a) due to the confinement of the two-dimensional 
flow. 

45 



(a) 7Ze=81.4, 7^(7=11.0, Ut/D = 250.21 (b) ^e=165.79, jirC=3.14, Ut/D = 59.64 

(c) Ae=210.0, jirC=6.0, Ut/D = 465.00 

Figure 3.10: An enlargement of the velocity Held at a presented instant in the vicinity 
of the transversely oscillating cylinder for the Sow regimes illustrated in Ggures 3.7(c)-
3.9(c). 
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Figure 3.11: Comparison of the velocity components at four cross-sections at constant 
a; values of 0!i,0!2,a!3,a4 as illustrated in figure 3.4. These results relate to a phase 
position 180° computed by discretisation utilizing (a) a coarse mesh (see table 3.5, row 
1); (b) a medium mesh (see table 3.5, row 2). 
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Figure 3.12: In-line force computed over a cycle at Ee=100 and A'C=5. (Note that 
the computed results associated with and — coincide,). 
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Figure 3.13: In-line and lift forces computed over a cycle at Re = 210 and KC = 6. 
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Figure 3.14: Time history of (a) in-line force and (b) lift force computed at Ee = 210 
and Arc = 6. 
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Figure 3.15: Variation of (a) inertia coeSient CM and (b) drag coe&cient Cg with 
Keulegan-Carpenter number J^C for = 35. 
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Figure 3.16: The simulated streakline patterns generated by two oscillating circular 
cylinders at Re = 100, KC = 5 in (a) tandem arrangement and (b) side-by-side 
arrangement. The gap clearance between the two cylinders is D in both cases where 
D is the diameter of the cylinders. 
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Chapter 4 

R E D U C E D ORDER MODELLING 

OF FLOW 

The basic idea of reduction methods is the compression of a large system (of alge-

braic ajid/or diEerential equations) to a similar (in some sense) much smaller subsi-

tute. Many of the reduction methods reported in the literature can be thought of 

as two-step hybrid analysis techniques combining a discretization method with a di-

rect variational technique. In the Erst step, a number of global approximation vectors 

(modes or basis vectors), to approximate/estimate the response of the system, are 

generated using a discretization method and in the second step the amplitudes of the 

global approximation vectors are determined via a direct variational technique. The 

mentioned hybrid analysis techniques combine the modelling variety of contemporary 

discretization methods (eg. finite elements, boundary elements, Snite differences and 

their combinations) with the reduction in total number of degrees-of-freedom provided 

by the direct variational technique. 

In this chapter reduced modelling techniques, based on a Proper Orthogonal Decom-

position (POD) method, are applied to an investigation of the incompressible Navier-

Stokes equations with inputs. A circular cylinder in uniform Sow with and without 

inputs is studied. Reduced dynamical models are created by POD and by extended 

POD (EPOD) approaches for the forced How which is statistically non-stationary. A 

direct control action is applied to the Row at particular points and this investigation 

provides insights to the applications of this approach coupled with a full solver. 
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4.1 INTRODUCTION 

A problem of considerable interest is presented by the construction of explicit low-

order models to design controllers for distributed parameter systems which, in this 

context, are fluid flows. Once a control design has been constructed using such a low 

order model, it can be tested by comparing its performance against a full high-order 

simulation. 

The difference between modelling for control, and modelling for analysis of dynam-

icEil behaviour is that in the latter case the system behaviour is statistically stationary 

with no external inputs driving the system. However for controlled systems, we are con-

cerned with preserving the relationship between the system behaviour and the system 

inputs and outputs, or actuators and sensors. 

One model reduction method which has been successfully used for dynamical sys-

tems analysis is a Proper Orthogonal Decomposition (POD) method developed and 

discussed by Sirovich (1987) . This method has become popular as a means of ex-

tracting dominant energy-containing structures from 6ow 6eld data and by using these 

structures as basis functions, generating low order dynamical models for the associated 

systems. The method has been applied to Guid problems by Sirovich (1987) and many 

other researchers, e.g Berkooz e( oZ (1993) and Deane oZ (1994) and to understand 

the important dynamical features or coherent structures seen in 6uid Aows. 

A full model of the dynamics of such a system is normally represented by a set of 

high dimensional nonlinear differential equations which can be only solved by numerical 

methods. In this study a cell viscous boundary element method developed by Tan ef aZ 

(1999) is used to generate the required data for the reduced model. The POD method 

describes the system behaviour as an attractor which is a point of evolution for the 

state space in a subspace of higher dimensions. A reduced solution can be obtained 

as a linear combination of an optimal set of empirical basis functions using an integral 

equation method such as the Galerkin projection method. 

These bases are created by applying a POD method for statistically stationary data. 

When a Suid Sow is subject to a time-dependent control, the statistical properties of 

the Sow are usually non-stationary. In this case, an extended POD method (EPOD) 

developed by Glezer ef aZ (1999) can be adopted. Herein applications of the POD 

and EPOD methods are investigated in order to derive a reasonable approximation to 
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time-dependent Sows associated with vortex shedding. 

Several model reduction methods have been proposed and apphed for statistically 

non-stationary systems with control inputs. A control function method has been ap-

plied by Ravindran et aZ (1998) to channel Sows. Graham oZ (1996) applied a control 

function method and penalty method for rotating cylinders in uniform Sow. Balanced 

truncation Lall aZ(1999), and Ott-Grebogi-Yorke (OGY) (1990) methods have been 

proposed to incorporate the control input into the model. Neural networks and reduced 

basis methods can also be adopted to construct reduced Sow models with control in-

puts. The advantages and disadvantages of the applications of some of these approaches 

in real-time applications in Sow control are discussed by GiUie8(1998) . 

This chapter describes an investigation of POD and EPOD methods to the flow 

generated by a circular cylinder in uniform Bow and reduced dynamical models are 

established for the non-stationary forced Bow. 

4.2 FULL MODEL 

4.2.1 Ma thema t i ca l model 

A cell viscous boundary element method Tan ef oZ(1999) , developed to solve Navier-

Stokes equations, is employed to generate the required data for POD and EPOD analy-

ses by conducting numerical flow simulations for vortex shedding flows behind a circular 

cylinder. This numerical scheme of study is a hybrid approach combining boundary 

element and flnite element methods. The boundary element method is applied to fluid 

cells idealising the fluid domain and global equations are obtained by means of flnite 

element procedures. A brief description of the method is included herein whereas, a 

detailed account, is described in the third chapter. 

The governing equations of the flow deflned in a body flxed coordinate system 

translating with a given velocity ^j(^), in terms of a non-dimensional velocity fleld -Uj 

and pressure relative to a space flxed coordinate system, can be written as 

4- = 0 (4.1) 

V 3,3 
= 0 (4.2) 

where z/g = 1/Re, = % — 'Dj(() and Re is the Reynolds number. 
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An integral equation can be formulated from equations (3.10) and (3.11) following 

the methodology of the boundary element method. That is. 

— / RjVgjdT, / fjVgjdQ (4.3) 
Jt. Jn 

where C(() is a constant the value of which depends on the location of the field point 

( . fgj and denote the fundamental solution and related function Price oZ (1992) 

respectively. Rj is the traction force on the cell boundary and f j is the resultant term 

derived from the acceleration Uj after a hnite diSerence scheme is introduced. 

An extensive validation of this numerical method has been carried out using a 

number of well documented Sow solutions. Good agreement waa achieved against data 

produced from other sources, including theoretical solutions, other numerical predic-

tions, and experimental observations as discussed by Uzunoglu (2001) . 

4.2.2 Vortex shedding prob lem 

Numerical calculations were performed to quantify and describe the vortex shedding 

behaviour behind a circular cylinder in a uniform current with or without control ac-

tions. Forcing of the wake at particular points in the Bow is taken as an example of 

the control actions to be considered. The boundary conditions and geometry descrip-

tion of this cylinder-fluid interaction problem are defined in fig.4.1. Mixed boundary 

conditions associated with both traction and velocity are used. 

4.3 MODEL REDUCTION FOR STATIONARY 

FLOWS 

Model reduction methods are applied to the non-linear stationary Bow system which 

can be expressed formally as, 

'i)(2;, ̂ ) = A^5'(i;(a;, ()) (4.4) 

where # 6 ' denotes the nonlinear operator of steady Navier-Stokes equations. 
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(i: = (7W,J%2 = 0) 

{u = U{t),v = 0 ) 

{u = 0,v = 0) 

{u = {7(t), R2 — 0) 

D = 1 

( t /-[ /(() , ^2 = 0) 

Figure 4.1: Computational domain deEnition and boundary conditions for a cylinder 
in a uniform flow. All the variables and quantities are nondimensional. 

The approach adopted is essentially data based and the type of data we wish to 

analyze are generated by a nonlinear How system. 

4.3.1 P r o p e r or thogonal decomposi t ion m e t h o d for s ta t ionary 

flows 

It is assumed that a velocity held described by a set of spatio-temporal data 

0(a;, obtained at discrete time values and at hxed points in space, is expressible 

in the form 

(4.6) 

where is the temporal mean of the velocity held. 

The components of correspond to scalar values taken at given points in 

space. Such spatio-temporal data can be usually obtained from either experimental 

measurements or numerical simulations of the physical process under study. 

There are a number of ways to determine quantitatively the underlying spatial 

structure of a spatio-temporal data set. For example, a simple approach to analyze 
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such data is to perform a Fourier decomposition Lumley (1993) . This is successful 

if only a few dominant peaks appear in the power spectrum of the spatieil modes, 

suggesting relatively simple spatial structures. However, this would not be the best 

approach if there exists a coherent spatial structure composed of many Fourier modes. 

A proper orthogonal decomposition method computes these coherent spatial struc-

tures directly. The structures computed are optimal for a given data set Sirovich (1987) 

and once the major spatial structures are known, their temporal behaviour can be an-

alyzed using dynamical system theory as discussed by . Sirovich (1987) , Berkooz et 

oZ (1993) and Deane oZ (1991) . The proper orthogonal decomposition method is 

a well known analysis technique with the originai concept traced to Pearson (1901) . 

Several diS'erent names including principal component analysis, Karhunen-Loeve de-

composition and total-least-squares estimation have been given to the procedure. 

To review brieAy the approach, let us consider a data set i)(a;,t) dehned over a 

hnite spatial domain H and a 5nite interval 0 < t < T. To investigate the structures of 

Suctuations in the data, the temporal mean is removed from the velocity held. Thus, 

the time average of ^(a;,^), written as (%;(a;,t)), is then zero as can be seen from 

equation (4.5). 

A function can be chosen such that the projection of the data set onto 

all possible functions of ^ maximal with respect to normalized ^ t (^ ) 

(̂ ;|.) = y ^t(a:) ' ^t(z)d2; = 1). In some average sense, we are therefore trying to 

maximize 

1 ^ |(r(z,(^),,^)|2 _ ( ( A ) _ _ 

where m stands for the number of solutions at di&rent time steps. 

In this way, a set of functions t)e found which are the eigenfunctions of 

the Fredholm type integral equation, 

/ ^"(2;, z') - <^(a;') da;' = A< (̂a;) (4.7) 
Vn 

where the kernel K(x, x') is the time averaged correlation function 

j<'(z;,a;') = (r(a;,f)r(a; ' , t)). (4.8) 

These functions (< ;̂t:(^), /: = ! , " ) called the empiricaJ eigenfunctjong or the 
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coherent structures. It was shown by Sirovich (1987) that any projection of the data 

onto a Hnite set of given by 

(4.9) 
k=l 

A particular eigenvalue At is used to denote the variance of the data in the direction 

of the kth eigenfunction. The error is given by e„ = Wv — v^W^ and it is a minimum over 

all possible sets of orthonormal functions for any given fi. Any sample vector using the 

eigenfunctions can be reconstructed such that 

i;(2;,t) = 'u(a;) + ^a t ( t ) ( ^ t ( a : ) (4.10) 

where coeScients o(t) are to be determined from the reduced dynamical equations. 

Since the building blocks of low dimensional attractors need to be identified from 

spatio-temporally complex data, a high resolution in space is usually required and, to do 

so, the size of the spatial data D 3> m. In this case, the practical approach to calculate 

the correlation function is not to determine the D x D correlation matrix but to use the 

dual approach on the m snapshots as discussed by Sirovich (1987). This method is also 

known as sample space setting, see for example Preisendofer (1988). Here we consider 

the snapshot vectors %;(a;, t,), % = 1, . . . , m, and determine the empirical eigenfunctions 

î ;̂ (a;) as a linear combination of the snapshots given by 

= (4.11) 
i=l 

such that equation (4.7) holds. The corresponding eigenvalue problem is to find the 

eigenvalues and eigenfunctions of a symmetric m x m matrix de&ned by, 

= (4.12) 

where 

= — / r(2;,t:)-'u(a;,tj)da; (4.13) 
^ Jn 

and is a single column array with introduced in equation (4.11) as elements. 

Since the trace of the matrix A represents the averaged energy retained in the 

snapshots, the energy corresponding to the velocity data is the sum of the eigenvalues 

of the correlation function, in the sense that 

(4.14) 

i=l 
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An energy percentage can be assigned to each eigenfunction based on the eigenvalue 

agsociatW with the eigenfunction, such that 

= § (4.15) 

Under the assumption that the eigenvalues are arranged in descending order from 

the largest to the smallest, then we have an ordering of the eigenfunctions from most 

energetic to least energetic. 

When the eigenvector of equation (4.12) is scaled such that = (mAt) \ 

the eigenfunctions A; = 1, - - - , m form a set of orthonormal functions. Namely 

^ t (z ) - ^((z:) d r = (4.16) 
in 

The coefBcients G(it) at given discrete times can be computed from a projection 

of the sample vector onto an eigenfunction given by 

ak(tt)= / ^(r,^^) - ^t(a:)da; 
Vn 

(4.17) 

This expression can be used to determine the initial conditions and projection data 

required in the time integration of &(;(). 

The sampling of snapshots can be based on a signal which is related to some physical 

aspect of the system. In the vortex shedding problem, lift coefRcient might be a suitable 

signal. The chosen signal must be bandlimited that is the frequency spectrum must 

be limited to contain frequencies up to some maximum frequency and no frequencies 

beyond that. The sampling must be chosen at least twice the maximum frequency. 

The minimum sampling rate allowed is called Nyquist rate which is the maximum 

frequency. 

4.3.2 Reduced modelling based on P O D method 

The Galerkin projection will be used to construct lower order mathematical models. 

The objective of this approach is to replace the given dynamics by the dynamics of the 

subspace in the form 

6(t) = /((z(^)) (4.18) 
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where a(^) is the time-dependent amphtude of the basis functions. 

For reduced modelling of the How 6eld, it is assumed t h a t 

= + (4-19) 
k=l 

with ot(t) determined from the Navier-Stokes equations given in equation (3.10). 

If the operator () dehned in a Hilbert space, is applied to the Navier-

Stokes equation, the following reduced model can be obtained, i.e. 

^ AT 
+ bi + Cij ttj + % a/c = 0 (4.20) 

j=i j=i k=i 

bi — I ^e^ji,k j ) d x 
Jfl 

+ / (4.21) 

Cij — / fpli 4^kj d3J 
Vn 

4" I 4^li '^k 4^lj,k 

~l~ I {'Plj.k ~t" 4'kj,l) diC, (4.22) n 

dijk — / (f̂ li 4̂ mk4̂ lj,m. d<® (4.23) 
Ja 

where a tensor index notation with summation convention is adopted in equations (4.21-

4.23) to simplify the expressions. Here the hrst subscript of refers to the component 

of as a vector whereas the second subscript denotes the order of ^ as an eigen-

function. In the problems under examination the boundary integral term in equation 

(4.21) is usually zero since - A = 0 on the boundary E for most cases. Note also 

that equation (3.11) is satisfied automatically since the basis functions created by the 

POD method are divergence free because of their definition see, for example, Sirovich 

(1987) . 
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4.4 MODEL REDUCTION FOR 

NON-STATIONARY FLOWS 

For problems associated with non-stationary Aows with forcing, the system under 

examination is of the form 

z(f)=/i(r(a;,^)) (424) 

where c denotes the control input and z represents an output signal. 

4.4.1 P r o p e r or thogonal decomposi t ion m e t h o d for 

non-s ta t ionary flows 

If the Euid Bow is time-periodically forced, phaae relationships may not be captured by 

statistically stationary two-point correlations and therefore simultaneous measurements 

are required as discussed by Glezer (1989) . The classical POD method is based on 

two-point correlations of time series and is therefore not the best approach to non-

stationary flows. For Sows subject to time-dependent excitations, phase-independent 

correlations may not exist. As a result of the lack of stationarity, correlations therefore 

depend on the initial and hnal points in the time series. 

Because of the statistical non-stationarity of the data, the computed eigensets de-

rived from snapshots of the velocity 6eld depend on the initial and final times of the 

portions of the time series under examination. For this purpose the POD method re-

quires extension as described by Glezer (1989) in developing the EPOD method. 

This is an ensemble average of two-point correlations of velocity. For statistically sta-

tionary data, the EPOD is equivalent to the classical POD. 

However, in an EPOD suboptimal control approach, the basis of the reduced model 

can be reset using the velocity held generated from the full Sow solver from previous 

iterations. 

For a flow simulation subject to an external forcing term F{x, t), the reduced model 

to determine the time-dependent amplitude of the basis functions Ok(̂ ) has a form 

similar to the one given in equation (4.20) with the right-hand-side 0 term replaced by 
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the generalized forcing term of /.(f) given by 

(4.25) 
Jn 

If the continuous forcing is speciBed as combinations of point forces acting at given 

locations in the fluid such that F{x,t) = then fi{t) can be 

expressed as 

^ (4.26) 
I 

This type of forcing may be typified by a model of a distributed forcing in a flow 

held. This control strategy is physically very hard to implement however consistent 

with the control strategy argument in this thesis. A different control such as oscillating 

wires can be adopted for the same system with most probably similar behaviour. 

4.5 NUMERICAL RESULTS 

4.5.1 Pe r fo rmance of P O D and E P O D bas is 

The POD, EPOD and ensemble-averaged POD methods are applied to data which 

are generated for different frequencies in 0.76<F<0.86 associated with an oscillating 

circular cylinder for Ae = 500. F is nondimensional frequency obtained by the divid-

ing the frequency by vortex shedding frequency for = 500. The velocity prohles 

and eigenvectors from all the methods are comparable for the Sow held examined in 

hgures .4.4 to .4.11. Since the data sets are collected from the transient part of wake 

Sow behind the oscillating cylinder, the EPOD method shows a better convergence 

behaviour than the POD and ensemble-averaged POD methods. 

The data set from a hxed frequency F=0.76 is used in the POD method whereas 

data sets from different frequencies in 0.76<F<0.86 are used in EPOD and ensemble-

averaged POD methods. The size of the correlation matrix is the same for POD and 

ensemble-averaged POD methods but diEerent for EPOD method depending on the 

number of realizations. 
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Figure 4.2; Typical uniform structured mesh idealising the fluid around the transversely 
oscillating cylinder. Within the domain shown the recorded velocity field where data 
are collected at each instant. 

Reconatrucled picture 

Figure 4.3: Simulated flow field and POD vector field using 20 modes superimposed. 
No visual diff'erence can be observed from the flow. 
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1.2 
Velocity profile at time step 100 using the first 3 modes 
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Figure 4.4: Velocity proSles for step 100 using different POD and 3 modes. 

1.2 
Velocity profile at time step 100 using the first 5 modes 
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Figure 4.5: Velocity profiles for step 100 using different POD and 5 modes. 

64 



1.2 

0.8 

> 0.6 

0.4 

0.2 

- 0 . 2 

Velocity profile at time step 100 using the chirp signal's first 10 modes 
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Figure 4.6: Velocity profiles for step 100 using diS'erent POD and 7 modes. 
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Figure 4.7: Velocity profiles for step 100 using different POD and 10 modes. 
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Figure 4.8: Eigenvectors 1 for POD, EPOD and ensemble POD. 
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Figure 4.9: Eigenvectors 2 for POD, EPOD and ensemble POD. 
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Figure 4.10: Eigenvectors 3 for POD, EPOD and ensemble POD. 
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Figure 4.11: Eigenvectors 4 for POD, EPOD and ensemble POD. 

67 



0 5 10 15 20 25 30 

Figure 4.12: Magnitudes of the eigenvalues associated with different modes character-
ising the wake Sow behind a cylinder in uniform How at Re=200. 

4.5.2 Reduced modell ing for s t a t ionary flows 

Using a cell viscous boundary element method, numerical data were derived describing 

the characteristics of vortex shedding in the wake of a circular cylinder in uniform Eow 

at Re=200. Forty snapshots per cycle were collected. Fig.4.12 shows the magnitudes 

of the eigenvalues produced from this set of data. It confirms the rapid decrease of the 

magnitudes of the eigenvalues of higher modes and since they indicate the energy level 

in each mode, the results show that the first few modes contain most of the energy 

associated with this steady vortex shedding flow. Thus it is possible to capture the 

main features of the Aow with a much reduced model as long as the dominant modes 

capturing this energy are included in the model. 

Fig.4.13(a) shows the vector plots of a How Held represented by the time averaged 

How in one cycle and fig.4.13(b,c) show the Hrst two most energy dominant dynamic 

modes. The main features of the vortex shedding process can be constructed from 

these modes involving a phase shift in time. 

When these eigenfunctions are used as basis functions in the POD method, their 
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Figure 4.13: The vector plots of velocity of (a) mean flow, (b) mode 1, (c) mode 2. 
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No. of Energy retained (%) 

modes Re=100 Re=150 Re=200 

2 97.195 97.754 97.996 

4 99.161 98.955 99.058 

6 99.970 99.955 99.952 

8 99.997 99.992 99.989 

Table 4.1: Percentage of energy retained in the reduced models vs. number of modes 
included. 

amplitudes can be found by integrating equation (4.20). Here a 4th order Runge-Kutta 

method is used for the time integration and the results are plotted in fig.4.14 for the 

6rst 6 functions. The good agreement between the predicted and projected amplitudes 

of these basis functions conErms the validity and beneEt of the POD method to model 

the type of Sows under examination using low order models. 

Table 4.1 illustrates the energy retained in the reduced model against the number 

of modes admitted in the analysis as a percentage of the total energy of all the dynamic 

modes. For the three cases examined, i.e. Reynolds number Re=100, 150 and 200, more 

than 99.9% of energy is retained if only the Srst 6 modes are adopted in the reduced 

models. It should be mentioned that before reaching Re=200, 3-D vortex shedding is 

onset (see Williamson (1988)). 

Although Reynolds number (i.e. z/g = 1/Re) is one of the parameters in the reduced 

model described by equations (4.20-4.23), equation (4.20) cannot be used to model 

flows at different Reynolds number without modifying the modes involved as well. In 

some cases, however, the snapshots of Bows at diSierent Reynolds numbers may be 

combined to approximate the snapshots at another Reynolds number which then can 

be used to produce basis functions in the POD method. As aa exeimple, 40 snapshots 

were collected from each Eow simulation at Re=100 and Re=200. New snapshots at 

other Reynolds numbers (i.e. 100 <Re< 200) were generated by linear interpolation 

of these snapshots and this information incorporated in the reduced models to predict 

shedding frequencies. The results of the calculated Strouhal number are presented in 
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Figure 4.14: Comparisons of predicted and projected amplitudes of (a): Brst two modes; 
(b): modes 3-6. 
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Reynolds Strouhal number Relative 

number Predicted Williamson (1988) error (%) 

100 0.1650 0.1643 0.4 

110 0.1680 0.1690 0.6 

120 0.1720 0.1731 0.6 

130 0.1760 0.1768 0.5 

140 0.1805 0.1802 0.2 

150 0.1845 0.1834 0.6 

160 0.1875 0.1864 0.6 

170 0.1905 0.1892 0.7 

180 0.1935 0.1919 0.8 

190 0.1955 0.1945 0.5 

200 0.1980 0.1970 0.5 

Table 4.2: Predicted shedding frequencies vs. Reynolds number. 

table 4.2 for a series of Reynolds numbers. Also included are data generated by the 

'universal' empirical relationship given by Williamaon (1988) . The experimentally 

determined Strouhal values of Williamson have an accuracy claimed 'to the 1% level' 

and the 'universal' empirical relationship was obtained through interpolation of the 

observed data. As can be seen from table 4.2, the agreement between the predicted 

Strouhal numbers and Williamson's data is very good. 

4.5.3 Reduced modelling with control actions 

Oscillatory body forces applied to the Auid are treated as an example of control actions. 

In the case considered, four oscillatory point forces are applied at the four points 

(0.34, ±0.43) and (1.05, ±0.68) behind the cylinder and their frequency of oscillation 
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is close to that observed in the vortex shedding process. 

Three flow simulations were carried out using the reduced model with (a) no forcing 

included and (b) forcing applied in the x-direction only and (c) forcing applied in the 

y-direction only. The streakline patterns of these simulations are shown in fig.4.15 

which illustrates clearly the effect of forcing on the vortex shedding process. 

^ % 

.'JSKS 

% ^ 

Figure 4.15: The streakline patterns of flows with (a): no forcing; (b): forcing in x 
direction; (c): forcing in y direction. 

In order to investigate further the effect of the control actions in the reduced model, 

calculations were performed using forcing functions with different frequencies and am-

plitudes. The power spectrum of the velocity field generated by the reduced model was 

studied under different forcing conditions and data were obtained for the entrainment 

region defined by Gillies (1998) . The data are illustrated in fig.4.16 and the best fit 

curve shows a familiar V shape similar to Gillies' results. 
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Figure 4.16: Forcing entrainment region . 

4.6 CONCLUSION 

A Proper Orthogonal Decomposition method is used to investigate reduced flow 

modelling of the vortex shedding wake exhibited behind a circular cylinder. The 

method is found very effective in creating reduced models to describe vortex shed-

ding processes. The method can also be applied for different Reynolds number cases 

with modified snapshots or data sets. 

A reduced model has also been constructed where forcing terms are treated as con-

trol actions in the fluid domain and flow simulations with different forcing descriptions 

have been conducted. 

The method discussed herein can also be adopted to the situation when the control 

action is the forced oscillation of the cylinder. In this case the oscillation of the cyhnder 

is treated as an inertial force term in the Navier-Stokes equations, if the problem is 

formulated in a body fixed reference system. 
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Chapter 5 

FLOW CONTROL 

The ability to manipulate actively or passively a Sow Eeld to effect a desired change has 

technological importance. Methods of control to achieve transition delay, separation 

postponement, lift enhancement, drag reduction, turbulence augmentation, or noise 

suppression are reviewed in this chapter. This chapter mainly concentrates on external 

Sows. Internal flows are also mentioned. The physical aspects of the Sow control along 

with the basics of the Sow regime and Sow stability classification are reviewed rather 

than aspects which are related to mathematical modelling methods of controller design. 

A limited review of some of these methods are found in the next chapter. 

5.1 INTRODUCTION 

Flow control involves passive or active devices to effect a beneScial change in wall-

bounded or free-shear Sows. The task might be to delay/advance transition, to sup-

press/enhance turbulence or to prevent/provoke separation. Drag reduction, lift en-

hancement and Sow-induced noise suppression are some of the possible outputs. Com-

plex reaxztive control devices have been used to control the Sow as discussed by Hcik 

(1989) . Theoretical advances such as chaos theory, neural networks, etc also help the 

development in this Seld parallel to technological developments. 

The Srst developments in Sow control were empirical and can be traced back to pre-

historic times when streamlined spears, sickle-shaped boomerangs, and Sn-stabilized 

arrows were used (see Hak (1989)) . Manipulating an external boundary-layer Sow 
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such as that developing on the exterior surface of an aircraft or a submarine, to achieve 

transition delay, separation postponement, lift enhancement, drag reduction, turbu-

lence augmentation, or noise suppression is a particular field of Sow control which is 

of interest to naval and aeronautical engineer. 

5.2 WALL-BOUNDED AND FRBE-SHEAR FLOWS 

The control strategy is chosen based on the kind of Sow and the control goal on what the 

designer plans to achieve. Presence or lack of walls, Reynolds number, Mach number, 

and the character of Bow instabilities are all important considerations for the type of 

Sow to be controlled. Herein, these concepts are reviewed. 

5.2.1 Inviscid and viscous instabili t ies 

Free-shear Hows which are jets, wakes or mixing-layers, have inSectionai velocity pro-

Ales. In an inflectional velocity proAle, the second derivative of the velocity proEle is 

equal to zero at certain inSectional points. These Rows are eaaily inSuenced by inviscid 

instabilities (see Hak(1989)) . Viscosity is only a damping influence in this case, and 

the prime instability mechanism is vortical induction (see Hak(1989)). Control aims 

for these kind of flows consist of transition delay/advancement, mixing enhancement 

and noise suppression. External and internal wall-bounded flows, such as boundary 

layers and channel Sows, can have inSectional velocity proSles, but in the absence 

of opposing pressure-gradient and similar effects. These are characterized by non-

inSectional prohles, and viscous instabilities must then to be considered. Free-shear 

Sows and separated boundary layers are as of nature unstable and they can be much 

easily manipulated. 

Free-shear are the Sows that originate from some kind of surface upstream be it 

a nozzle, a moving body or a splitter plate, and Sow control devices can therefore 

be placed on the corresponding walls far from the fully developed Sows (see Williams 

(1989) . 
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5.2.2 Reynolds and Mach n u m b e r s 

The Reynolds number determines if the regime is turbulent or laminar. For low-to-

moderate Reynolds number such as (0i.Rei200) for the cylinder in an uniform Eow, the 

flow is laminar. As a result of existing instabilities free-shear flows undergo transi-

tion at extremely low Reynolds number as compared to wall-bounded flows. A set of 

technologies are available to delay laminar to turbulence for both kind of flows (see 

Hak (1996)), but it is not aimed to do similarly to indefinitely high Reynolds number 

flows. For Reynolds numbers beyond a reasonable limit, one should not attempt to 

prevent transition but rather deal with the ensuing turbulence for instance to achieve 

separation delay, enhanced mixing or augmented heat transfer. Advancing transition 

is observed to be simpler than trying to delay it as discussed by Hak (1989) . 

Mach number determines whether the flow is incompressible (Ma < 0.3) or com-

pressible (Ma > 0.3). The latter regime is further divided into subsonic (Mo < 1), 

transonic (0.8 < Mo < 1.2), supersonic (Mo > 1), and hypersonic (Mo > 5). For 

each of these flow regimes, different methods of flow control schemes are employed. For 

example during laminar-to-turbulence transition initial disturbances and disturbances 

are subsequently amplifled by various linear and non-linear mechanisms. Under the as-

sumption of avoiding by-pass mechanisms (surface roughness, high levels of freestream 

turbulence) as discussed by Hak (1989) delaying transition can be reduced to con-

trolling a variety of possible linear modes: e.g. Tollmien-Schlichting modes, crossflow 

instabilities and Gortler instabilities. Tollmien-Schlichting instabilities dominate the 

transition process for two-dimensional boundary layers deflned by Mo < 4, and are 

damped by increasing the Mach number, by wall cooling(in gases), and by the presence 

of favourable pressure-gradient. Mach instabilities are also damped by increasing the 

Max:h number and by presence of favourable pressure gradient, but are destabilized 

by wall cooling. Crossflow and Gortler instabilities are caused by, respectively, the 

development of inflectional crossflow velocity proflle. 

5.2.3 Convective and absolute instabi l i t ies 

In addition to grouping difl^erent kinds of hydrodynamic instabilities as inviscid or 

viscous, one could classify them as convective or absolute based on the linear response 

of the system to an initial localized impulse as discussed by Huerre (1990) . A flow 
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is convectively unstable if all the growing disturbances convect downstream from their 

source. Suppression of convective instabilities is particularly effective when applied 

near the point where the perturbations originate. The flow is absolutely unstable if 

the local system response to an initial impulse grows in time. In this case, some of the 

growing disturbances can travel back upstream and continually disrupt the 6ow even 

after the initial disturbance is neutralized. Absolute instabilities are generally more 

dangerous and more difficult to control; nothing short of complete suppression will 

work. In some Bows, for example two-dimensional blunt-body wakes, certain regions 

are absolutely unstable while others are convectively unstable. 

5.2.4 Classical control tools used to s u p r e s s these regimes and 

instabil i tes 

Natural laminar Bow (NLF) is related to control of Bow by changing the shape of the 

body to achieve lower-skin friction drag and favourable pressure-gradient. Laminar Bow 

control (LFC), in contrast, uses suction, wall heating/cooling, and other active ways 

of control to supress the proper instability modes. LFC is developing with removal of 

technological problems related to cost, maintenance and reliability (see Hak (1996). 

LFC is an active boundary-layer Bow control usually employing a suction technique 

employed to maintain the laminar state at Reynolds number beyond that which is 

normally characterized as being transitional or turbulent in the absence of control. 

LFC does not imply the relaminarization of a turbulent How state but the suppression 

of the state. The energy requirements for relaminarization are observed typically to be 

an order of magnitude greater than that required for LFC. Finally, LFC is a capability 

that is designed to beneBt an aircraft or a ship during cruise by reducing the drag. A 

significant advancement made in the development of LFC technology is the concept 

of Hybrid Laminar Flow Control (HLFC). HLFC integrates the concepts of NLF with 

LFC to reduce suction requirements and reduce system complexity. LFC is complex, 

involving suction and ducts, Butes, and pump source over the whole-wing chord. 

The reason laminar flow is usually more desirable than turbulent Bow for external 

aerodynamic and hydrodynamic vehicles lies with the reduction of the viscous drag. 

We have some understanding of the fundamental flow physics for the problem to de-
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sign an optimal, reliable cost-effective system to control the Bow. The Erst theoretical 

contributions to the study of boundary-layer transition were made by Kelvin (1880), 

Reynolds (1883), Rayleigh(1879,1880,1887) . These early investigations neglected the 

effects of viscosity, the second derivative of the mean velocity proved to be of key im-

portance in explaining boundary-layer instabilities. These fundamental studies proved 

to be the basis for future breakthroughs in theoretical development, including inviscid 

jet-8ow instabilities and shear-layer instabilities. Adding viscous e&cts, Orr (1907) 

and Sommerfeld (1908) developed an ordinary differential equation (Orr-Sommerfeld 

equation) that governs the linear instability of two-dimensional disturbances in in-

compressible boundary-layer flow on flat plates. Later, Squire (1933) accounted for 

three-dimensional waves by introducing a transformation from three to two dimensions. 

This analysis showed that two-dimensional waves were dominant in Hat plate bound-

ary layers. Tollmien (1929) and Schlichting (1932) discovered convective travelling-

wave instabilities now termed Tollmien-Schlichting (TS) instabilities, and Liepmann 

(1943) and Schubauer and Skramstad (1947) experimentally confirmed the existence 

and amplification of these TS instabilities in the boundary layer. This disturbance can 

be imagined by the picture of water waves created by dropping a pebble into a still 

lake or puddle. The waves which are generated decay as they travel from the source. 

It is the same case for boundary-layer 8ow, except that the waves grow in strength 

when certain critical flow parameters, such as Reynolds number, are reached and lead 

to turbulent Sow. Taylor-Gortler vortex disturbances arise when the surface geometry 

becomes concave and they are created by counter-rotating vortices. The design engi-

neer would have to be sensitive to this disturbance only if there is concave curvature 

such as on the lower surface of a wing; otherwise, this disturbance is not too significant 

for LFC applications. See Smith (1955) , Wortmann (1969) and Hall (1983) for more 

detailed discussions of Taylor-Gortler vortices. In addition to transition dominated by 

TS distur bance, a dynamic instability, termed the crossGow (CF) disturbance, is an 

important factor in the extent of laminar How realized. 

Compliant coatings offer a simple method to deal with laminar-to-turbulence tran-

sition. It is a passive technique relatively easy to apply to an existing vehicle or device. 

To reduce skin-friction drag in turbulent wall-bounded flows include riblets, polymers. 

Polymers, for example, have been used in the Trans-Alaskan pipeline (see Hak (1989)). 
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5.3 DIFFERENT CLASSIFICATION SCHEMES 

FOR FLOW CONTROL METHODS 

Different cleLSsiGcation schemes for Bow control methods exist. This section gives a 

summary of the major flow classification methods that are found in literature. 

5.3.1 Classification by dis tance to a wall 

One can consider whether the technique is applied at the wall or away from it. The 

surface parameters inBuencing the flow include roughness, shape, curvature, rigid-wall 

motion, compliance, temperature, and porosity. Heating and cooling of the surface 

inSuence the Sow via the resulting viscosity and density gradients. Mass transfer takes 

place through a porous wall or a wall with slots. Suction and injection of primary Suid 

have signiEcant effects on the Sow Held, influencing particularly the shape of the ve-

locity proAle near the wall and thus the boundary layer susceptibility to transition and 

separation. Different additives, such as polymers, surfactants, micro-bubbles, droplets, 

particles, dust or fibers, can also be injected through the surface in water or air wall-

bounded fiows. Control devices located away from the surface can also be beneficial. 

Large-eddy breakup devices, acoustic waves bombarding the shear layer from outside, 

additives introduced in the middle of a shear layer, manipulation of freestream turbu-

lence levels and spectra, gust, and magneto- and electro- hyrodynamic body forces are 

examples of fiow control strategies applied away from the wall. 

5.3.2 Classification by energy e x p e n d i t u r e and t h e control 

loop involved 

Energy expenditure and the control loop involved is one criterion used for classifica-

tion. A control device can be a passive device, requiring no auxiliary power, or active, 

requiring energy expenditure (see Hak (1996)). Active control is further divided into 

predetermined and active control. Predetermined control includes the application of 

steady or unsteady energy input without regard to the particular state of the fiow. The 

control loop in this case is open. Reactive control is a special case of fiow control where 
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the control input is continuously adjusted based on measurements of some kind. The 

control loop in this case can either be an open, feedforward one or a closed, feedback 

loop (see Hak (1996)). Classical control theory deals, for the most part, with reactive 

control. In feedforward control, the measured variable and the controlled variable dif-

fer. For example, the pressure or the velocity can be sensed at an upstream location, 

the resulting signal is used together with an appropriate control law to trigger an actu-

ator which in turn influences the velocity at a downstream position. Feedback control, 

on the other hand, necessitates that the controlled variable be measured, fed back and 

compared with a reference point. Reactive feedback control includes adaptive, physical 

model-based, dynamical systems-based, and optimal control. 

Another way of classification is considering if the control technique directly 

modifies the shape of the instantaneous/mean velocity profile or selectively infiuence 

the small dissipative eddies. 

5.4 IMPLEMENTATION ISSUES 

Any feedback control system consists of three components: actuators, sensors, and the 

control law. The most development in the past few years in the area of implementing 

turbulence control ideas has been the emergence of Micro Electro Mechanical Systems 

(MEMS) technology, which benefit from the methods developed for the fabrication of 

silicon chips to construct very small mechanical devices as discussed by Wise (1991) and 

Moin (1994). Miniaturization of this scale for both sensors and actuators is necessary 

for feedback control of turbulence due to the very small scales of the coherent structures 

in high Reynolds number fiows of engineering interest. Researchers are attempting to 

miniaturize several of the devices reviewed herein using MEMS technology. 

5.4.1 Methods of sensing 

Two desirable attributes of flow sensors are that they be robust and they create mini-

mum disturbance in the flow. For these reasons, most practical sensors for active flow 

control are mounted on a WEil l . At a wall, we may measure both skin friction and wall 

pressure. For situations in which the wall pressure is important ,for instance, in control 

schemes designed to reduce fiow-induced noise, there are a set of devices, essentially 
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smail microphones, which have been developed for measuring pressure 6uctuations. 

One example by Cho (1989) is a capacitive pressure sensor built with a small Eexible 

membrane. Note, however, that it has been found by Choi (1994) that pressure is 

not a good indicator for detecting and controlling the sweep and ejection events which 

accompany near-wall coherent structures in wall-bounded Gows. Using a Taylor series 

extrapolation, the near wall Sow may be estimated directly from shear stress mea-

surements on the wall, though these estimates are only valid fairly near the wall aa 

discussed Choi (1994) . In order to measure shear stress at a wall, several types of 

sensors have been investigated recently (see Bewley (1994)). We will review the most 

popular ones: Boating element sensors, piezo-electric foils, hot films, and surface acous-

tic wave (SAW) sensors. A Hoating element sensor consists of a small rectangular patch 

of silicon supported by thin beams. The Row over the device exerts shear forces on the 

patch and the resulting stresses in the supporting beams may be measured by various 

methods, including the diEerential measure of capacitance and an active electrostatic 

re-balancing technique with a comb actuator as discussed by Jaecklin (1992) . This 

device is attractive because it directly measures shear stress in a way that does not 

interfere with the Sow. Further improvements of design and manufacturing techniques 

may make this device quite promising. Nitsche oZ (1989) describe piei^oelectric foils 

consisting of thin films of polyvinylidene fluoride (PVDF) coated with a very thin layer 

of aluminum. Portions of the PVDF films are crystallized, and the resulting artificial 

polarization exhibits a piezoelectric effect when subjected to normal and shear stresses. 

Detectors placed below the Glms then sense the field created by the piezo eSect of the 

sheared crystal. The production of these devices is simple and robust, but their sen-

sitivity to both normal and shear stresses create diSculties. To measure shear stress, 

Nische (1989) proposed placing two detectors side by side in opposite configurations 

so that, by combining the signals from the two sensors, the effects of the normal stress 

cancel and the resulting signal is proportional to the shear stress. However, it has 

been observed that the small magnitude of the measured signals result in the familiar 

problem of losing the signal in the noise created by imperfect cancellation of the contri-

butions due to the normal stress fiuctuations. As an indirect measure of skin friction, 

a hot film sensor may be used by calibrating the heat transfer of the film as a function 

of the applied shear; although care must be taken in this calibration, as the static and 

dynamic responses difî er and the response is nonlinear. This kind of a sensor is easy 
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to manufacture but difficult to use as it is unable to measure skin friction directly; if 

used underwater, a hot Sim sensor must be thermally coupled but electrically isolated 

from the Eow, and the thermal cross talk from other sensors and/or actuators must 

be minimized. Instruments can also be built to measure the propagation speed of sur-

face acoustic waves. The surface wave propagation speed is a function of the stresses 

caused by the How. By building devices which measure the wave speed in alternate 

directions, it is possible to estimate the instantaneous shear stress. These devices are 

quite sensitive and respond linearly to shear stress. However, they are also sensitive 

to the normal stress, temperature Euctuations, electric noise, and drift of the resonant 

frequency of the oscillator circuit and any system using SAW devices must be able 

to account for these dependencies in a way that encapsulates the signal in the noise 

created by imperfect cancellation in the differencing process (see Moin oZ (1994) for 

SAW sensors and hot him sensors). 

5.4.2 M e t h o d s of ac tua t ion 

A series of ideas for the active manipulation of small scale turbulent structures near 

a wall are investigated (see Moin 0/ (1994)). A beam situated over a cavity which 

is allowed to passively fill with fluid from all sides is one manipulation method. By 

vibrating the beam at its resonant frequency, it can be made to force the 8uid out of 

the cavity. The vibration can be created by a piezoelectric effect or by periodic optical 

heating of one side of the beam. The output through the narrow gap is concentrated 

and directed primarily in the vertical direction. By taking advantage of the different 

Eow patterns caused by upward and downward motions of the beam, a strong Sow 

pattern may be established. It has been observed that the Aow held created by such a 

device is a set of counter-rotating vortices centred over the narrow gap with common 

flow up. By modulating the vibration amplitude, the magnitude of this disturbance 

may be controlled. An advantage of this method is the strong Sow held it can create; 

disadvantages are that this how held is necessarily quite complicated and the beam 

itself is difficult to manufacture and rather fragile. 

Electrostatic forces or conventional speakers may be used to pump the huid inside 

a cavity, the cavity has to a small hole through which the excess volume of fluid 

must travel. This results in very precise blowing and suction applied through the 
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actuation hole. Di&culties include the fragility of the membrane and the tendency of 

the membrane to short out by touching the lower wall of the cavity. A bump on a surface 

which may be regulated by a piezoelectric material underneath a membrane is another 

manipulation method as proposed by Lumley (1989). In Lumley's configuration, the 

bump is approximately Gaussian in shape. The Sow 6eld caused by the bump may 

be visualized aa a horseshoe vortex with a common Gow towards the wall immediately 

downstream of the device. One problem with this device is that getting sufBcient 

displacement with piezo material is difficult. Another different mechanism which brings 

out this problem but has a signiScant activation time is a solenoid-activated valve 

leading to a high pressure source below the membrane. A modiBcation of this idea is 

to create the pressure below the membrane by a controlled phase transition boiling. 

Bumps may also be activated by attaching magnets to the membrane and situating 

electromagnets below or electrostatically forcing the membrane itself. Variable bump 

devices have the potential of being more robust than cantilevered beams and pumped 

cavities; however, the perturbation to the Sow held caused by the bump haa been 

observed to be complex (see Moin oZ (1994)). Differential wail heating is another 

possible method of control. Using wall heating to create the velocity Buctuations has 

several simultaneous effects, including the alteration of the specific volume of the heated 

Guid, associated buoyancy effects, and changes in viscosity, all of which should be 

accounted for by the control scheme. The idea has been attractive from the robustness 

standpoint because it has no moving parts. However, for control of turbulence in 

practical applications, very high power heaters and very low thermal capacitance of 

the wall is required to achieve the necessary frequency response. This might be possible 

using a laser with optical hbre access to small metal patches on the surface (see Bewley 

et oZ (2000)). Finally, if the Buid is electrolytic or can easily be made that way by 

addition of salts, hydrodynamic Lorenz forcing is another control option as discussed 

by Nosenchuck oZ (1993). The upper loop work of Nosenchuck, though open loop, is 

an example of the eSFectiveness of this forcing technique. In their conhguration, electric 

and magnetic fields are applied in the streamwise and spanwise directions with the use 

of well-positioned magnets and electrodes. By varying the electric Geld with an active 

control circuit, this conhguration could be used in a feedback conSguration. However, 

manufacturing such units on a scale small enough to interact actively with turbulent 

coherent structures might prove to be difficult. 



5.5 CONCLUSION 

Current investigations of several di&rent methods of possible feedback control schemes 

provide the theoretical groundwork for future applications. Current investigations of 

the feedback control of turbulence are enhancing our fundamental understanding of the 

mechanisms responsible for the maintenance and regeneration of turbulence itself. The 

advent of Micro Electro Mechanical Systems technology for both sensors and actuators 

allows us to begin to consider practical implementations. The areas which are cur-

rently most promising for the implementation of feedback control schemes have critical 

areas where the How is quite sensitive to modiScation, such as areas of separation or 

transition. 
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Chapter 6 

CONTROLLER DESIGN 

As traditional scientific disciplines grow towards maturity, many new opportunities 

for signiBcant advances lie at their interaction. For example, significant developments 

in control theory in the last few decades have expanded the selection of available 

tools which may be applied to regulate physical and electrical systems (see Bewley 

aZ (2001)). These techniques hold great promise for several applications in 8uid 

mechanics, including the delay of transition and the regulation of turbulence. Such 

applications of control theory require a view, in which one considers the relevant flow 

physics when designing the control algorithms and conversely takes into account the 

requirements and limitations of control algorithms when designing both reduced-order 

Sow models and the fluid-mechanical systems to be controlled themselves. 

6.1 INTRODUCTION 

The development of the technology necessary to produce micro-scale mechanical de-

vices, referred to as Micro-Electro-Mechanical Systems (MEMS), has initiated re-

searchers to investigate the possibility of using micro-scale actuation for the control 

of unstable phenomena in order to achieve macro-scale eHects that such control e@brt 

is possible in chaotic systems,such as turbulence, is due to the extreme sensitivity of 

such systems to small levels of control forcing. Fundamental interest in such problems, 

of course, is the determination of when and where control should be applied to max-

imize the desired effect. The original idea for the development of MEMS was given 
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by Richard Feynman (1959) in his classic lecture at the American Physical Society 

entitled "There's Plenty of Room at the Bottom" which Feynman foresaw many of the 

techniques and challenges investigated by the MEMS community today. The technol-

ogy developed for the fabrication of silicon chips has been a development in research 

focussing on MEMS. For reviews of recent developments of MEMS technology which 

relate to micro-scale measurement and control in Buid mechanics, the reader is referred 

to Ho and Tai (1996), McMichael (1996), Gad El Hak (1996) and Moin and Bew-

ley (1994) . These reviews discuss a variety of sensors and actuators currently under 

development suitable for application in feedback control. The problems in MEMS de-

velopment today are how to design such devices to be durable in hostile environments 

and how to produce such devices at high yield and low cost. In the future it might 

be possible to use MEMS technology to measure small-scale turbulent fluctuations of 

a Sow and to apply coordinated small-scale forcing to the 6ow in order to achieve a 

desired large scale effect. Examples of problems of particular interest include reduc-

ing drag, reducing heat transfer, delaying transition, delaying separation, increasing 

mixing, and reducing levels of wall-pressure fluctuations and/or radiated sound. 

We now summarize a few of the recent approaches used to determine implementable 

feedback control algorithms for Sows, categorizing these approaches to the feedback 

control problem by examining their mathematical dependence on the equation gov-

erning the system. This brief survey of this active Geld of research puts the present 

approach in context with a sampling of the other techniques currently under inves-

tigation. For a more thorough discussion in this area, see Moin and Bewley (1994) 

6.1.1 Adap t ive networks 

The first class of schemes which are proposed to achieve small scale How control actually 

makes no explicit reference to the dynamics known to take place in the flow or the 

Navier-Stokes equation which governs these dynamics. Instead, a reasonable network 

is generated which takes as input those measurable Sow quantities assumed to be most 

relevant to the control problem and produces as output the requisited control velocity. 

The coeGcients of this network are then trained by applying the control network to the 

Sow and gradually adjusting the coefficients in a heuristic manner based on the resulting 
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evolution of the Aow. Note that there are many different approaches to adaptive 

control. Hertz aZ (1991) and loannou aJ (1996) discuss several possible techniques. 

The main advantage of the adaptive approach is that the feedback coefBcients can be 

adjusted to compensate for changing characteristics of the system being controlled, such 

as modihcation of the mean Bow speed and direction, the sensitivity of the sensors, 

and the responsiveness of the actuators. As an example of one adaptive approach, 

an adaptive inverse technique has been applied by Lee et oZ (1996). This approach 

first develops an approximate inverse model between measurable quantities as input 

and the control forcing as output with an adaptive technique. This is done by forcing 

the system with small, sufEciently rich control signals vyhich force the system, with 

a variety of different directions while monitoring the response of the measurements. 

Prom these data, a network is constructed, which attempts to reproduce and model 

the control used, based on the measurements taken. In an inherently nonlinear system 

such as turbulence, this is a challenging proposition, as any simple linear expression 

of this relationship would probably be highly nonstationary. Each iteration of the 

adaptation for this inverse model consists of three steps: (i) computing the error of the 

model output with respect to the desired model output the actual control forcing used, 

(ii) determining the inEuence of the various weights in the model on this error and 

(iii) updating all the weights in the model a small amount to reduce the error. When 

applied to the nonlinear adaptive networks commonly used for this purpose, known 

as neural networks, this is referred to as back-propagation of the error. Once the 

approximate inverse model between the flow measurements and the control converges 

for the open-loop system, the inverse model is used to determine a control which drives 

the flow measurements towards some desired state. This control is applied to the flow, 

and the inverse model is further trained to adapt it to the new characteristics of the 

closed-loop system. 

6.1.2 Schemes based on understanding of dominant physics 

In situations in which the dominant physics is well understood, judgment can guide 

an engineer to design effective control schemes. Success is limited, however, by the 

engineer's understanding of the physical processes involved; in the case of turbulence, 

our understanding is still limited despite several decades of intense research. 



6.1.3 Ex t rapo la t ion of l inear control t h e o r y 

The application of linear control theory to the linearized Navier-Stokes equation can be 

found in literature see, e.g., Joshi 0/ (1997) and Baramov aZ (2000) and Bewley e( 

a/ (1998) for the application of modern control theory. There are some critical points 

that there are concerning the practicality of the algorithms. 

One issue is the most appropriate method for linear model reduction. Cortelezzi 

0/ (1999) obtains a linear model reduction by truncating those linear eigenmodes 

with low observability or controllability from a model of a 2D unsteady channel Bow. 

Researchers are beginning to consider the extrapolation of the linear control feedback 

determined by linear control theory directly to the fully nonlinear problem of a tur-

bulent Bow. The first reason to try such an approach is simply because the tools for 

determining and implementing linear control feedback are alreaxiy available and we 

can therefore attempt to exploit everything we can from our ability to compute linear 

controls. Though the signihcance of this result has been debated by Farrell aZ (1993) 

whatever information the linearized equation actually contains about the real mecha-

nisms for formation of streamwise vortices and streamwise streaks, the linear controllers 

can exploit. Important possible pitfalls of applying linear control feedback to stabilize 

large Sow perturbations, such as those on a chaotic attractor where the effects of the 

nonlinear terms are essential to describe the system's behaviour are illustrated for a 

simple model problem by Bewley (1999). It is shown by Bewley (1999) that such an 

approach can lead to closed-loop systems which can either converge to the wrong state 

or even blow up unless the appropriate nonlinear phenomena are introduced. 

6.1.4 Reduced order nonlinear models 

When considering the control of the multi-scale phenomena of turbulence, it is clear 

that an accurate reduced-order nonlinear model as an alternative to direct numerical 

simulation would simplify the control problem greatly. An eScent reduced-order rep-

resentation is a necessity if we are ever to attempt to implement an estimator-based 

control algorithm, even if the dynamics of such a reduced-order model does not follow 

closely the dynamics of the full Navier-Stokes system without substantial measurement 

feedback. Such reduced-order models for turbulent flows have been sought for years, 

though the suitability of current approaches to provide such models for a controlled 
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turbulent Sow for which the dynamics is substantially altered from that of the uncon-

trolled turbulent Bow is still an open question. The techniques of dynamical systems 

theory have encountered some success to analyze and interpret turbulence dynamics 

aa discussed by Aubry aZ (1988); Holmes oZ (1996). An example of one approach 

to determine reduced-order models is the ongoing work of anatomizing the coherent 

structures of turbulence using the proper orthogonal decomposition (POD) by Berkooz 

(1993). This decomposition provides a numerically determined set of modes which 

is particularly eScient, at leaat when no control is applied to the Bow. However, the 

equation expressing the evolution of and interaction between these modes might be 

complex. It remains to be determined the best way to extract POD modes for a con-

trolled turbulent Bow. Some sort of iterative technique, in which the control algorithm 

and the POD modes are sought simultaneously, might be required in order to extract 

a set of modes which efhciently captures the energetic structures actually present in 

the controlled Bow. As the controlled Bow is not statistically stationary one might 

ultimately need a sequence of di&rent POD models/control algorithms to completely 

relaminarize an initially turbulent flow, with the controller scheduling required based 

on an evolving bulk Bow statistic such as total drag or total kinetic energy. As a 

preliminary example of control using such a reduced-order model, Coller ef of (1994) 

considers the control of a simple model problem developed by Aubry oZ (1988) gov-

erned by a two-component equation with dynamics similar to that of a POD model of 

near-wall longitudinal vortices. This model equation is subjected to random excitation 

to account roughly for unmodelled system dynamics and disturbances. A strategy is 

developed and demonstrated which delays heteroclinic transitions in this simple model 

as long as possible by sensing when the state is near an unstable fixed point and main-

taining it there with feedback control for as long as possible. Once the state diverges 

from this Bxed point, presumably due to the signiBcant unmodelled dynamics of the 

Bow e.g., the passage of the head of a coherent structure, control is turned on until the 

state approaches the neighbourhood of another unstable fixed point. 
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6.2 CONTROL OF THE CIRCULAR CYLINDER 

WAKE 

Above a critical Reynolds number, the wake of a circular cylinder exhibits vortex 

shedding oscillations that persists purely a result of How instability and which are 

not caused by the external forcing, noise, or internal pressure feedback. The How ex-

hibits self-excited oscillations Eind this has important consequences for Sow control.The 

response of the cylinder wake to open loop forcing can be characterized by two qualita-

tively diSerent regimes "lock-in" and "beat" as discussed in chapter 4 for the reduced 

model for different oscillation frequencies. Several different forcing techniques affect 

the behaviour of the cylinder Sow. The wake response to forcing is similar for each 

whether acoustic excitation of the wake, longitudinal or lateral vibration of the cylin-

der, rotation of the cylinder, alternative blowing and suction at the seperation points 

or vibrating wires are used. A review of these concepts is given by Gillies (1998) . 

6.2.1 L o w - d i m e n s i o n a l c o n t r o l of s e l f - e x c i t e d c y l i n d e r wakes 

Convectively unstable Sows can be controlled by single point forcing. However control 

of global Sow oscillations are usually the result of an absolute instability as observed in 

the cylinder wake and are therefore possibly more difScult to characterize by a single 

sensor Gillies (1998). The existence of multiple global modes in the absolutely unstable 

cylinder wake necessitates the use of multiple control sensors at various streamwise 

locations for the supression of all possible modes. The spatio-temporal response of the 

wake is nonlinear. A control strategy must be based on the nonlinear model of the Sow 

dynamics. 

The absolutely unstable region can be properly represented by multiple control 

sensors. Many Sow variables at many points are needed to be used within the control 

algorithm. The control algorithm will be complicated as a result. If however we can 

create a low-dimensional model of the Sow with an external forcing, we can have 

signiScant reduction in computations. 
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6.2.2 E x t e r n a l f o r c i n g 

The governing equations of the Bow dehned in a body fixed coordinate system trans-

lating with a given velocity in terms of a non-dimensional velocity 6eld and 

pressure p relative to a space &xed coordinate system, was written in chapter 3 in the 

dimensionless forms, 

+ P,j ~ [^e{vjjk ~'r Vk,j)],k — 0 , ( 6 . 1 ) 

~ 0 • (6-2) 

Here i/e=l/7Ze where Ae denotes the Reynolds number ( = 

These equations represent the Sow velocity in an inertial or space fixed frame of 

reference and are appropriate to the ajialysis of the Euid-structure interaction between 

a 6xed body and an oscillating Eow. For a body manoeuvring in an incompressible 

Euid, Batchelor (1967) showed that the Navier-Stokes equations formulated in a moving 

frame of reference attached to the body are given by, 

+ (f;[/t),t + P j — + = 0 , (6.3) 

Vjj = 0 . (6.4) 

Here (Tt denotes the relative velocity between the body and the Suid motion 

i.e. % = where {i* represents the velocity of the body and/or the Suid mesh 

attached to the body. This set of equations is suitable to describe the Huid-structure 

interaction between a cylinder oscillating horizontally and a fluid at rest at inanity or 

pulsating and translating in a stationary fluid. This equation is formulated relative 

to fixed coordinate system. If the same equation is formulated relative to a moving 

coordinate system the Gctitous body force — w i l l be added to our equation. 

+ ((^'^k),t + P j — , (6.5) 

= 0 . (6.6) 

The later equation will be used as an approximation to oscillation of the cylinder in 

reduced model. The oscillation of the cylinder can be treated as an inertial force term 

in the Navier-Stokes equations, if the problem is formulated in a body fixed reference 
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system. This is perceived as distributed control for the reduced model. Herein the body 

forcing is the external input for the reduced model. The optimized control history is 

fed to the full model. 

6.2.3 N o n l i n e a r r e d u c e d o p t i m i z a t i o n 

This part of the thesis presents a study on the application of trust-region augmented 

variable-fidelity modelling approaches to optimal flow control. In the proposed ap-

proach, the full-order state equations and a reduced-order model based on proper or-

thogonal decomposition are interleaved in the optimization procedure. The objective 

is to achieve significant savings in the computational cost by reducing the number of 

high-fidelity flow solutions during the optimization iterations. Some preliminary re-

sults are presented for optimal control of Sow around a circular cylinder at Reynolds 

number, jZe = 100 (see Uzunoglu o/ (2001)). 

Optimal control of complex time-dependent physical processes governed by partial 

differential equations is a computationally expensive problem, particularly when the 

governing equations are modelled with high-fidelity. As a result, the construction of 

reduced-order models to design controllers for distributed parameter systems which, in 

this context, are fluid flows, is of considerable interest. One model reduction method 

which has been successfully used for dynamical systems analysis is the Proper Or-

thogonal Decomposition (POD) method of Sirovich (1987) . This method provides a 

means of extracting dominant energy-containing structures from flow fleld data. Fur-

ther, using these structures as basis functions, a reduced-order model of the governing 

equations can be constructed. 

The POD method has been applied to fluid problems by Sirovich (1987) and many 

other researchers, e.g. Berkooz aZ (1993) and Deane oZ (1991) to understand 

the important dynamical features or coherent structures seen in fluid flows. A reduced 

basis solution of the flow is obtained as a linear combination of an optimal set of empir-

ical basis functions using an integral equation method such as the Galerkin projection 

scheme. Nonstationarity of the flow fleld as a result of the control action can also be 

considered in a global reduced model as investigated in Glezer et al (1989) and Tan et 

oZ (2000) . Note that the POD model is constructed using the solution of the full-order 

governing equations for a particular control input. Hence, the accuracy of the POD 

93 



model may deteriorate when the control input is changed during the course of an opti-

mization scheme. As a consequence, there is no theoretical guarantee that an optimal 

control strategy developed using a reduced order model converges to the optimal con-

trol computed using the full-order state equations. In particular, an optimal control 

strategy based on a reduced-order model alone may lead to controller spillover effects, 

which can potentially make the higher modes unstable. A number of earlier studies 

have applied full-order modelling and adjoint sensitivity analysis techniques to opti-

mal Sow control; see, for example, Ghattas aZ(1997). If the numerical optimization 

algorithm is run until convergence, this approach guarantees that an optimal solution 

(local optimum) for the control input is obtained. However, from a practical viewpoint, 

this approach is computationally expensive, particularly v^hen the governing equations 

are modelled with high-fidelity using a large number of s ta te equations. 

In the structural optimization literature, the computational cost issue is typically 

tackled by combining approximate analysis models and the high-fidelity solver in the 

optimization procedure aa discussed by Chang aZ (1993) . An important issue in 

developing such a scheme is to ensure that asymptotic convergence to the high-Sdelity 

optimum can be a<;hieved. Alexandrov (1997) et 0/ proposed a trust-region framework 

for interleaving the exact and approximate objective function models in numerical op-

timization. The trust-region framework can be interpreted as an adaptive method to 

monitor the amount of optimization done with the approximation model, before the 

high-Edelity model is run to check the validity of the current iterate. By comparing 

the approximation model prediction to the exact prediction periodically, useful infor-

mation about the accuracy of the reduced-order model is obtained. This information 

is then employed to decide the move limits to be enforced in the next optimization 

iteration, as well as to update the approximation model. More recently, Arian aZ 

(2000) presented an extension of this approach to optimal flow control. It was shown 

that, under some mild assumptions on the accuracy of the reduced-order model, con-

vergence to the high-Adelity optimal solution can be guaranteed. An attractive feature 

of this approach is that, by checking the effects of control input on the flow field using 

high-Edelity simulation (at various stages of the optimization iterations), the effects of 

control spillover are minimized. 

This chapter presents a study on the application of trust-region augmented variable-

fidelity modelling approaches to optimal flow control. The objective is to interleave the 
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full-order state equations with a reduced-order model to achieve significant reductions 

in the computational cost of numerical optimization. In contrast to Arian aZ (2000) , 

we impose a zero-order consistency condition on the reduced-order model. It is argued 

that this leads to an improvement in the accuracy of the reduced-order model, which 

in turn may lead to a reduction in the number of optimization iterations required for 

convergence. Some preliminary results are presented for optimal control of Bow around 

a circular cylinder for Re = 100. 

Oscillating distributed body force has been as an example of the control actions to 

be considered for the reduced model. Mixed boundary conditions associated with both 

traction and velocity are used. The boundary conditions for an oscillating cylinder 

in body fitted coordinate system relative to space fixed coordinate system are defined 

with the velocity of the cylinder in time for a cylinder in a uniform flow. This control 

action as an oscillation of the cylinder is considered for the full model. 

6.2.4 O p t i m a l c o n t r o l s t r a t e g y 

In the present study, we use a nonlinear programming approach to optimal control. 

The controller design problem involves determining the time history of the control 

force which minimizes the objective function 

/ / |u(c;a;,^) — ( 6 . 7 ) 
•J tl Jflobs 

where ^(cia;,^) is the solution of the two-dimensional Navier-Stokes (NS) equations 

for prescribed control input c(a;,(). 'u'^(a;,t) is a desired state, which can be chosen as 

Stokes How in the vortex shedding problem, and fZoba denotes the domain over which 

the state of the system is observed, [ti, (2] is the time-interval over which the objective 

function is computed. 

If the full-order NS equations are used to compute i;(a;, ^), minimization of /(c) will 

be a computationally intensive problem. An alternative approach is to use a reduced-

order model as a surrogate for the full-order state equations. The approximate objective 

functions are deSned as 

?7i(c)= / / |%f°'^(c;a;,() — ( 6 . 8 ) 
Jtl Jflobs 

95 



where is the solution of the POD reduced-order model for control input 

0(2;, t). 

Note that the reduced-order model is constructed using the Aow snapshots obtained 

by solving the NS equations for given c{x, t). In general, the accuracy of m(c) will tend 

to deteriorate when the control input is changed significantly from the baseline c { x , t ) . 

Hence, for two arbitrary control inputs Ci and Cg, m(c2) < m(ci) does not imply that 

y(c2) < /(ci) . This suggests that a naive strategy based on minimization of m(c) alone 

leads to minimization of the full-order objective function / ( c ) . In order to ensure that 

we are minimizing the actual objective /(c), the optimization strategy must interleave 

both the full-order and reduced-order objective function prediction models. 

For example, let co(t) denote an initial guess for the optimal control input, at which 

the full-order NS equations are solved to obtain a set of Gow snapshots. We may then 

use these snapshots to construct a reduced-order model of the How. The next step 

involves determining the control input Ci{t) which minimizes the surrogate objective 

function defined in equation (6.8). In order to improve the reduced-order model, we 

may now solve the full-order NS equations using Ci (<) as the control input to compute a 

new set of Bow snapshots, which is then used to create an updated reduced model. This 

iterative process continues till no further reduction in / ( c ) is achieved. If reasonably 

tight move limits are placed on the control input amplitudes, this procedure mo?/ 

converge close to the optima of the full-order objective function /(c). 

This sequential approximation model updating strategy has been used by Chang 

(1993) to reduce the computational cost of numerical optimization. From a theoretical 

viewpoint, there is no guarantee that the sequential iterative procedure described earlier 

converges to the minima of /(c). Recently, Alexandrov aZ (1997). proposed a 

trust-region framework for integrating variable-Gdelity analysis models in nonlinear 

programming formulations. This framework is theoretically guaranteed to converge to 

the minima of /(c) under rather weak assumptions. Since analysis models with varying 

Sdelity are used here to improve computational e@ciency, this approach is referred to 

as modeZmp Alexandrov oZ (2000). Arian oZ (2000) present an 

extension of the trust-region framework to optimal flow control. The optimal control 

strategy used in the present discussion is baaed on this extended framework. For a 

detailed exposition of trust-region frameworks, the reader is referred to Alexandrov 

(1997)). and Arian et oJ (2000). In the present discussion, we present a brief overview 
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of the approach, emphasizing those aspects which di&r from earlier work. The trust-

region procedure guarantees the convergence of the variable-6delity modelling approach 

by reformulating the optimization problem as 

Min imize : mk{ck-\-s) (6.9) 

s.t. : (6.10) 

where the minimization is carried out with respect to g, and ct denotes the control input 

at which the snapshots are computed to construct the reduced-order model, denotes 

the trust-region radius at iteration number A:. mt(ct + g) is the objective function based 

on the reduced-order model, which is constructed using flow snapshots computed for 

control input c*,. The subscript A; is used to indicate that the reduced-order model is 

updated at each iteration. 

The basic idea of the trust-region approach is to adaptively increase or decrease 

the radius or move limits at each iteration, depending on how well m(ck) correlates 

with /(ct) . In general, at the beginning of each iteration A, m;k(c&) 9̂  / (ct) &nd 

Vmt(ck) 7̂  V/(ck). Arian oZ (2000) showed convergence to the minima of /(c) 

can still be guaranteed under some assumptions. This is because information about 

the accuracy of does not enter into the convergence theorems based on traditional 

trust-region theory directly. However, should approximate V / suGciently well 

Arian et al (2000) for the convergence theory to hold true. 

In the present research, we impose the zero-order consistency conditions of Alexan-

drov aZ (1997) . This involves computing a constant such that at each iteration A, 

^tmt(ct) = /(ct)- The motivation for this is to improve the accuracy of the objective 

function predicted using the reduced-order model. It is expected that this may lead 

to accelerated convergence as compared to the approach used in Arian oZ (2000) . 

It is important to note that, if an axijoint Navier-Stokes solver is available, then it is 

possible to choose scaling parameters such that the condition Vmt(ct) = V/(ct) is 

also satisGed. 

The steps involved in the trust-region augmented variable-fidelity optimization al-

gorithm are summarized in 6g.6.1. Note that in Step 5, we reject the step gt, if it 

actually leads to an increase in the high-fidelity objective function. The trust-region 

radius update strategy in Step 5 is based on the following procedure: 
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Let Co, 0 < 7?! < % < 1, 

0 < 7i < 72 < 1 < 73 be given. 

Set k = 0. 

5'̂ ep j: Solve the full-order state equations for 

Bow snapshots corresponding to control input 

Ck(t) and compute / (c t) . 

5'̂ ep Compute POD Basis, build the 

reduced-order model and compute mt(ct ) . 

Set f3}̂  = /(Cfc)/^A:(c/c) • 

5'̂ ep Compute 5̂  by minimizing the objective 

function + &), subject to the trust-region 

constraint ||g|| < 

5'̂ ep Compute / (c t + by solving the 

full-order state equations. Set pt = 

where = /(ct) - /(c^ + 5t) and 

5'̂ ep J: If convergence criteria is satisSed stop. 

Else update the trust-region radius to 

Set k = k ^ 1 . 

* If pt > % set ct+i = ct + St and go to Step 2. 

* If Pk ^ f?! set Ck+i = Ck and go to Step 3. 

Figure 6.1; Trust-Region Augmented Variable-Fidelity Optimization Algorithm 



# If Pt < 7?! : 6k+i = 

# E 771 < < % : (̂ k+i = 72 

# If Pk > % : (̂ k+i = 73^. 

Typical values for 7/1 and % are 0.25 and 0.75, respectively. Arian e( oZ (2000) sug-

gested that ^1, 'Yz, &nd 'Ys should be set at 0.5, 0.5, and 2, respectively. 

In practice, an approximate solution of the optimization problem in Step 3 is su@-

cient to achieve convergence to the high-Sdelity optima. In the present research, we use 

a few steps of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to compute 

the optimal value of at each iteration. Further, the trust-region constraint used in 

the present study is based on the ZIoo norm. This makes it easier to implement the 

trust-region framework using existing optimization routines capable of handling bound 

constraints. 

6.2.5 P r e l i m i n a r y r e s u l t s fo r o p e n - l o o p flow C o n t r o l 

We have made initial investigations using body forcing as the control input for the 

reduced model suppressing the Sow unsteadiness at Reynolds number, Re = 100. The 

optimized control input was generated from the reduced model. The control input is 

parameterized as c(^) = with ^i(() = 1, = cos(2A;7rt/T), — 

sin(2A:7r</T'), A; = 1,2, . . .30, i.e., N = 30. The control objective is to achieve steady 

flow throughout the flow domain, with vi = 1.0 and V2 = 0. The time window of 

[0,5] is used for computing the objective function. The initial conditions correspond 

to fully developed flow. As an initial guess, all the coe&cients of the control input 

are set to be equal to 0. A POD based reduced-order model with 10 modes is used 

for approximating the full-order objective function. During this preliminary validation 

study, the optimization algorithm was terminated after three iterations. Around 70% 

reduction in the flow unsteadiness for the reduced model was observed. For the full 

model, it was observed that the reduction was around 20% for the objective function. 

The time history of the optimum control input is shown in fig.6.2. More detailed 

convergence studies of the optimization scheme will be presented in the future. 

In order to study the effects of control input on the flow fleld, we also examined the 

flow unsteadiness as a function of time, both before and after control. These trends 
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Figure 6.2: Optimum control input. 

are shown in 6gure.6.3. The time-dependent amplitudes of the hrst four POD modes 

before and after control are shown in figure.6.5 The uncontrolled velocity held, and the 

velocity Aeld 5 seconds after applying the control are shown in hg.6.6(a) and hg.6.6(b), 

respectively. 

The change in the kinetic energy of this system dehned by Navier-Stokes equation 

will be dependent on the dissipative or viscous forces as well as the body force. The 

energy input to the system by the controller is less than the total kinetic energy of the 

whole system as expected. The energy in the initial Huctuations of the velocity held 

from the mean energy 8ux in the fully developed vortex shedding can be observed to 

be approximately the same magnitude as the input energy from the controller if the 

assumption is made that the dissipative forces are not existent and the body forcing is 

used as the control action. As a result the energy input can be expected to be less than 

that of the huctuations if the dissipative forces are considered and the control area is 

conSned to the wake street instead of the complete computational domain which will 

limit the energy consumption. An area conhning the vortex street can be su&cient to 

control the global instability observed in this regime. 

If the speculation is made that absolutely unstable region in the cylinder wake Sow 

caji be controlled to a certain point by local forcing upstream which inSuences the rest 

of the How Geld then the strategy can be adopted to a much smaller region than the 

energy inputs will be lower. This might be possible to a certain degree for low reynolds 
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Figure 6.3: Time history of flow unsteadiness with and without control. 

numbers and maybe high reynolds numbers. Otherwise high energy inputs might be 

needed to control absolutely unstable region of full waJce Sow. This might need a lot 

of energy but however it might turn out to be a necessity if one decides to control the 

full vortex regime. The actuating and sensing mechanisms used here are initial ones. 

Lastly the number of modes in this regime was relatively limited however, turbulent 

flows are known to have relatively high dimensions in this framework even at fairly low-

Reynolds number,due to their large range of spatial and temporal scales, which makes 

analysis of these systems diScult as discussed by Keefe aZ (1992). The higher modes 

might also be modes with high energy content. Further tests are also reguired to show 

that approximate system is suKcient to demonstrate the stability of the full system. 

6.3 CONCLUSION 

In this chapter, we outlined a brief related review of the controller design and trust-

region augmented variable-fidelity modeling approach to optimal Sow control. A proper 

orthogonal decomposition technique is used to construct a reduced-order model of 

the governing equations. The present approach interleaves the full-order governing 

equations and the reduced-order model in the numerical optimization procedure. Since 

the move hmits in the optimization process are controlled by a trust-region framework, 

convergence to a local optima can be theoretically guaranteed. 

Some preliminary studies were presented for optimal control of flow around a cir-
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Figure 6.5: Time history of modal amplitudes with and without control. 
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(a) 

(b) 

Figure 6.6; (a) Uncontrolled velocity and (b) Controlled velocity field for a circular 
cylinder in uniform flow at Re=100. 
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cular cylinder using body forcing as the control input. It was shown that around 20% 

reduction for the cost function can be achieved when the control input was applied to 

the full model. The application of the body forcing to the full model (Boundary element 

method) proved to be difBcult when moderately large inputs were used which must be 

developed in the future. The oscillation of the cylinder which is an approximation of 

the body force showed to be a succesful control action even though the approximations 

involved. The body force can be seen as control input from eletromagnetic Lorentz 

force (see Nosenchuck (1994)). 

The results are encouraging, and suggest the applicability of the present approach 

to more complex problems. 
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Chapter 7 

CONCLUSION 

The cell boundary element method developed by Tan aZ (1999) and modified herein 

to study oscillating cylinders or manoeuvring bodies has proved successful, reproducing 

the detailed characteristics of experimental observations, correlations with theoretical 

predictions presented by others and experimental measurements of drag and lift coef-

ficients over a range of jZe, ATC numbers for Sxed Stokes parameter 8̂ = 35. This has 

been achieved by adopting an unstructured mesh to idealise the Euid domain and a 

primitive-variable formulation to construct a hybrid approach involving boundary ele-

ment and finite element methods. Through developments of suitable numerical schemes 

of study associated with the cell boundary element method integrated with the relevant 

boundary conditions for transversely oscillating cylinders or a cylinder fixed in oscil-

lating Sows, the presented computed unsteady Sows provide a measure of verihcation, 

validation and conEdence in the proposed overall approach when compared with other 

experimental and theoretical findings. 

A Proper Orthogonal Decomposition method is used to investigate reduced Sow 

modelling of the vortex shedding wake exhibited behind a circular cylinder. The 

method is found very effective in creating reduced models to describe vortex shed-

ding processes. The method can also be applied for different Reynolds number cases 

with modiSed snapshots or data sets. 

A reduced model was also constructed where forcing terms are treated as control 

actions in the Suid domain and flow simulations with different forcing descriptions have 

been conducted. 
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The method discussed herein can also be adopted to t he situation when the control 

action is the forced oscillation of the cylinder. In this case the oscillation of the cylinder 

is treated as an inertial force term in the Navier-Stokes equations, if the problem is for-

mulated in a body 6xed reference system. Although Reynolds number (i.e. Ve = 1/Re) 

is one of the parameters in the reduced model described by equations (4.20-4.23), 

equation (4.20) cannot be used to model Hows at diSerent Reynolds number without 

modifying the modes involved as well. In some cases, however, the snapshots of Sows 

at different Reynolds numbers may be combined to approximate the snapshots at an-

other Reynolds number which then can be used to produce basis functions in the POD 

method. As an example, 40 snapshots were collected from each Aow simulation at 

Re=100 and Re=200. New snapshots at other Reynolds numbers (i.e. 100 <Re< 200) 

were generated by interpolation of these snapshots and this information incorporated 

in the reduced models to predict shedding frequencies. The results of the calculated 

Strouhal number are presented in table 4.2 for a series of Reynolds numbers. Also in-

cluded are data generated by the 'universal' empirical relationship given by Williamson 

(1988) . The experimentally determined Strouhal values of Williamson have an accu-

racy claimed 'to the 1% level' and the 'universal' empirical relationship was obtained 

through interpolation of the observed data. 

We outline a trust-region augmented variable-6delity modeling approach to opti-

mal How control. A proper orthogonal decomposition technique is used to construct a 

reduced-order model of the governing equations. The present approach interleaves the 

full-order governing equations and the reduced-order model in the numerical optimiza-

tion procedure. Since the move limits in the optimization process are controlled by a 

trust-region framework, convergence to a local optima can be theoretically guaranteed. 

Some preliminary studies were presented for optimal control of flow around a cir-

cular cylinder using oscillation of the cylinder as the control input. It waa shown that 

around 70% reduction in the flow unsteadiness can be achieved for this problem for 

the reduced model. Around 20% reduction was observed for the cost function. The 

results are encouraging, and suggest the applicability of the present approach to more 

complex problems. 

A brief outline of ongoing research is presented. 

# Viscous cell boundary element is investigated systematically for Low-Reynolds 

number and KC values and the results are further compared with the experimen-
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tal data which is available. 

Detailed studies to investigate the benefits of enforcing zero-order and 6rst-order 

consistency conditions on the reduced-order model for Trust-Region framework. 

These strategies will be compared with the approach presented in in terms of 

computational cost and convergence rate. 

A comparison of the effectiveness of using control strategies based on body forc-

ing, cylinder rotation, and cylinder oscillation is invstigated. A comparison analy-

sis will be made. The reduced-order modeling and sensitivity analysis formulation 

for these cases will be analysed in more detail. 

The body forcing will be further investigated for the full model (Boundary Ele-

ment). 

107 



Bibliography 

[1] Abergel, F. and Temam, R. (1990). On some control problems in Suid mechanics. 

ond Vol. 1, 303-325. 

[2] Alexandrov, N., Dennis, J.E. and Lewis, R.M. (1997) A trust region framework 

for managing the use of approximation models in optimization. A&4.5L4./CjR-̂ ^^7-

^0^7^J, October. 

[3] Arian, E., Fahl, M. and Sachs, E.W. (2000) Trust region proper orthogonal de-

composition for Sow control. May. 

[4] Baltrop NDP, Adams AJ. (1991) Dynamics of 6xed marine structures. 

[5] Aubry, N., Holmes, P., Lumley, J.L. and Stone, E. (1988) The dynamics of co-

herent structures in the wall region of turbulent boundary layer. JoitmoZ o/ FZuW 

Mechanics, Vol. 192, pp. 115-173. 

[6] Bamieh, B., (1997) The structure of optimal controllers of spatially-invariant dis-

tributed parameter systems, froceedmgg o/(Ae Con/ereMce OM Decision 

oMd CoM r̂oZ, Dec 8-12, San Diego. 

[7] Baramov L., Tutty O.R. and Rogers E. (2000) Low dimensional robust control of 

channel 6ow f o/ 

[8] Batchelor, G.K., (1967) Fluid dynamics frega, Camtndge 

[9] Bearman PW, Downie MJ, Graham JMR, Obasaju ED. (1985) Forces on cylinders 

in viscous oscillatory Hows at low Keulegan-Carpenter numbers. J. F/wW MecA 

154:337-352. 

108 



[10] Berkooz, G., Holmes, P. and Lumley, J.L. (1993) The Proper Orthogonal Decom-

position in the analysis of turbulent Sows. TZeM'ew 0/ FJmcf MecAomca, 

Vol. 25, pp. 539-575. 

[11] Bewley, T.R. and Liu, S. (1998) Optimal and robust control and estimation of 

linear paths to transition. JoumoZ 0/ FZi/W Vol. 365, pp. 305-349. 

[12] Bewley, T.R. (1999) Linear control and estimation of nonlinear chaotic convection: 

harnessing the butterfly effect Physics of Fluids, Vol. 11, pp. 1169-1186. 

[13] Bewley, T.R. (2001) Flow control: New challenges for a new renaissance, 

m aeroapoce 5czeMce, To be published 

[14] Bishop RED, Hassan AY. (1964) The lift and drag forces on a circular cylinder in 

a flowing fluid. Proc. Roy. Sac. Land. A 277:51-75. 

[15] Borthwick A. (1986) Gomparison between two finite-difference schemes for com-

puting the flow around a cylinder. Int. J. F. Num.Methods in Fluids 6:275-290. 

[16] Brebbia C.A. (1978) The boundary element method for engineers. fresa, 

[17] Burcher RK. (1972) Developments in ship manoeuvrability. TV-ong 114:1-32. 

[18] Chester W. (1990) A general theory for the motion of a body through a Suid at 

low Reynolds number. Proc. Roy. Soc. Lond. A 430:89-104. 

[19] Cho, S.T., Najah, K., Lowman, GL, and Wise, KD (1989) An ultrasensitive silicon 

pressure-based Bowmeter. ZEDM TecAmcaZ Dec. 

[20] Choi, H., Moin, P., Kim, J. (1994) Active turbulence control for reduction in 

wall-bounded Sows. JoumoJ o/ f JuW MecAon^ca, Vol. 262, 503-509. 

[21] Cortelezzi, L., Lee, K.H., Kim, J. and Speyer, J.L., (1999) Skin-friction drag 

reduction via robust reduced-order linear feedback control. 

0/ FWd Vol 11, No 1-2, 79-92,1998. 

[22] Deane, A.E., Kevrekidis, LG., Karniadakis, G.E. and Orszag, S.A. (1991) Low-

dimensional models for complex geometry Bows: application to grooved channels 

and circular cylinders. Physics of Fluids A, Vol. 3, No. 10, Oct., pp. 2337-2354. 

109 



Duncan WJ. (1959) The principles of the control and stability of aircraft. Com-

[24] Diitsch H, Durst F, Becker S, Lienhart H. (1998) Low-Reynolds-number Bow 

around an oscillating circular cylinder at low Keulegan-Carpenter numbers. J. 

f M d MecA. 360:249-271. 

[25] Etkin B. (1972) Dynamics of atmospheric Bight. Jo/in 

[26] Faltinsen MO. (1990) Sea loads on ships and offshore structures. (7m-

[27] Farrant, T., Tan, M. and Price, W.G. (2000) A cell boundary element method ap-

plied to laminar vortex shedding from arrays of cylinders in various ajrrajigements. 

J. and 5'(r«c^., Vol. 14(3) pp. 375-402. 

[28] Farrant, T., Tan, M. and Price, W.G. (2001) A cell boundary element method 

applied to laminar vortex shedding from circular cylinders. 

(To be published). 

[29] Feynman, R. (1959) There is plenty of room at the bottom. ylnnzfoZ o/ 

ZTie .AmencGM f AyazcoZ 6'oc%e% Dec. 

[30] Garrison C.J. (1990) Drag and inertia forces on a cylinder in harmonic How. J. o/ 

foTi, CoosW aW OceoM 103(WW2):169-190. 

[31] Ghattas, O., and Bark, J.H. (1997) Optimal control of two- and three-dimensional 

navier-Stokes flows. Journal of Computational Physics. Vol. 136, pp. 231-244. 

[32] Gillies, E.A. (1998) Low-dimensional control of circular cylinder wake. JourMa/ o/ 

MecAamcg Vol. 371, pp. 157-178. 

[33] Glezer, A., Kadioglu, Z. and Pearlstein, A.J. (1989) Development of an extended 

proper orthogonal decomposition and its application to a time periodically forced 

plane mixing layer. PAg/gics o/FWck A, Vol. 1, No. 8, Aug., pp. 1363-1373. 

[34] Graham, W.R., Peraire, J. and Tang, K.Y. (1999) Optimal control of vortex shed-

ding using low-order models. Part I- Open-loop model development. 

Jo«rMG//or m Engmeenng, Vol. 44, No. 7, pp. 945-972. 

110 



[35] Graham, W.R., Peraire, J. and Tang, K.Y. (1999) Optimal control of vortex shed-

ding using low-order models. Part II- Model based control. International Journal 

/or m Vol. 44, No. 7, pp. 973-990. 

[36] Hak, G.E. (1996) Modern developments in Aow control. Mec/ionicg 

Vol. 49, No. 7. pp. 365-379. 

[37] Hak, G.E. (1989) Flow control. Mec/iomca Vol. 42, No. 10. 

[38] Hall, P. (1983) The linear development of Gortler Vortices in growing boundary 

layers. o/ fZmd Mec/iamca, Vol. 130, pp. 41-58. 

[39] Hall P. (1984) On the stability of the unsteady boundary layer on a cylinder 

oscillating transversely in a viscous Auid. J. FWd MecA. 146:347-367. 

[40] Hassan AY. (1962) The effects of vibration on the lift and drag forces on a circular 

cylinder in a Euid How. f / iD CoZZepe Z/OMcZon, o/ 

ZoMdoM 

[41] Hertz, J., Krogh, A. and Palmer, R.G. (1991) Introduction to the theory of neural 

computation. M/egZey 

[42] Hirsch (1988) Numerical computation of internal and external flows. John Wiley 

[43] Ho, C.M. and Tai, Y.C. (1996) MEMS and its apphcations for Sow control. v4.5'ME' 

JoumoZ o/fZuWa Vol. 118, pp. 437-447. 

[44] Honji H. (1981) Streaked Sow around an oscillating cylinder. J. fZmcf Mec/i. 

107:509-520. 

[45] Huerre, P. and Monkewitz, P.A. (1990) Local and global instabilities in spatially 

developing Sows. AnMuoJ o/ FWd MecAomca, Vol. 22, 473-537. 

[46] lonnau, P.A. and Sun, J. (1996) Robust adaptive control. freMtice .fTa/Z 

[47] Ito, K. and Ravindran, S.S. (1998) A reduced-order method for simulation and 

control of Buid Sows. o/ Vol. 143, pp. 403-425. 

Jaecklin, V.P., Linder, C., de Rooji, N.F., Moret, J.M., Bischof, R, and Rudolf, 

H. (1992) Novel polysilicon comb actuators for xy-stages. 

111 



[49] Keefe, L.R., Moin, P. and Kim, J. (1992) The dimensions of attractors underlying 

turbulent Poiseuille Sow. JotfrMoZ 0/ F/uzcf Mec/iamcs, Vol. 242, pp. 1-29 

[50] Kelvin, L. (1880) On disturbance in Lord Rayleigh's solution for waves in a plane 

vortex stratum. f opera, Vol. 4, 186-187. 

[51] Joshi, S.S., Speyer, J.L. and Kim, J., (1998) A systems theory approach to the 

feedback stabilization of inifinitemestal and finite-amplitude disturbances in plane 

Poiseuille Eow. JoitmoZ MecAomca, Vol. 332, pp. 157-184. 

[52] Justesen P. (1991) A numerical study of oscillating Eow around a circular cylinder. 

J. Fluid Mech. 222:157-196. 

[53] Knornschild U. (1994) Experimentelle Unterschungen der Stromungsverhaltnisse 

um einen oszillierenden Kreiszylinder. 0/ EHoMpeM-

[54] Kiihtz S. (1996) Experimental investigation of oscillatory Aow around circular 

cylinders at low beta numbers. PAD 0/ 

[55] Lall, S., Marsden, J.E. and Glavaski, S. (1999) Empirical model reduction of 

controlled nonlinear systems, o/ ZR4C CoMpreag Vol. F, 

July, pp. 473-478. 

[56] Lee, C., Kim, J. Babcock, D. and Goodman, R. (1997) Application of neural 

network to turbulence control for drag reduction. Physics of Fluids, Vol. 9, 1740-7 

[57] Liepmann, H.W., 1943. Investigation on laminar boundary-layer stability and 

transition on curved boundaries. WL4(%4 MKR 

[58] Lin XW, Bearman PW, Graham JMR. (1996) A numerical study of oscillatory 

How about a circuleir cylinder for low values of beta parameters. o/FZuzcfg 

5'(?''?ic^ureg, No. 10, pp. 501-526 

[59] Lumley, J.L. (1971) Stochastic tools in turbulence fresg, YbrA;. 

[60] Lumley, J.L. (1989) Low dimensional models of the wall region of turbulent bound-

ary layer , and the possibility of control. Proceedings of the Tenth Australasian 

MecAomtca Con/ereace oncf f 0/ Control 

112 



[61] McMicheiel, J.M. (1996) Prospects and progress for active Sow control using 

MEMS. Nr. 96-0306 

[62] Moin, P. and Bewley, T.R. (1994) Feedback control of turbulence Afec/ioM-

ic3 Vol. 47, (6), part 2, p. S3. 

[63] Morison JR, O'Brien MP, Johnson JM, Schaaf SA. (1950) The force exerted by 

surface waves on piles. Zyona. .A7ME 1950; 189:149-154. 

[64] Maull DJ, Milliner MG. (1978) Sinusoidal flow past a circular cylinder. Coastal 

2:149-168. 

[65] Nitsche, W., Mirow, P., Szodruch, J. (1989) Piezo-electric foils as means of sensing 

unsteady surface forces. m /Zuzda, Vol. 7, 111-118. 

[66] Nosenchuck, D.M. and Brown, G.L. (1993) Control of turbulent wall shear stress 

using arrays of TFM tiles. o/ AmencoM f 5'ocie% Vol. 38, 12, 

21197. 

[67] Obaaaju ED, Bearman PW, Graham JMR. (1988) A study of forces, circulation 

and vortex around a circular cylinder in oscillating flow. J. MecA. 196:467-

494. 

[68] Orr, W.M.F. (1907) The stability or instability of the steady motions of a liquid. 

Part II: A Viscous Liquid. Proceedings of Royal Irish Academy, Vol. XXVII, section 

A, No. 3, 69-138. 

[69] Ott, E.A, Grebogi, C. and Yorke, J.A. (1990) Controlling chaos, f j R e m e w 

Vol. 64, No. 11, pp. 1196. 

[70] Pearson, K. (1901) On lines and planes of closest fit to systems of points in space, 

f AzZoaopAico/ Vol. 2, pp. 559-572. 

[71] Peric, M., and Ferziger, J.H. (1996) Computational methods for Euid dynamics. 

[72] Preisendorfer, R., (1988) Principal component analysis in meteorology and 

oceanography. Maetizer, 

113 



[73] Press W.H, Flannery B.P, Teukolsky S.A, Vetterling W.T. (1986) Numerical 

recipes. Cambndpe f rggg 

[74] Price, W.G. and Tan, M. (1992) Fundamental viscous solutions or 'transient os-

eenlets' associated with a body manoeuvring in a viscous Huid. froc. 5'oc. 

A438, pp. 447-466. 

[75] Price WG, Tan M. (1992) The evaluation of steady Suid forces on single and 

multiple bodies in low speed flows using viscous boundary elements. In Proc. 

Con/, on o/ Monne l/eMcZea ancf m 

(ed. WG. Price, P. Temarel & A J. Keane), 

[76] Ravindran, S.S. (1999) The proper orthogonal decomposition in optimal control 

of Suids. March. 

[77] Rayleigh, L. (1879) On the instability of jets. f opera. Vol. 1, Cambridge 

University Press 361-371. 

[78] Rayleigh, L. (1880) On the stability or instability of certain fluid motions. Pro-

ceecZmgg o/^on(fon Moi/iemo^ico/ 5'oc%ê ?/, Vol. 11, 57-70. 
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