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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Dynamic Memory Allocation within a

Behavioural Synthesis System

by Daniel James David Milton

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a
behavioural synthesis system tool that converts behavioural descriptions of users’ digital
designs into synchronous structural representations. This thesis describes an enhancement
to the original MOODS system that allows direct conversion of dynamic memory
constructs within the source language into a fully structural design with run-time memory
representation.

VHDL is used as the source language for design descriptions, and is capable of directly
describing dynamic memory structures in the form of explicitly created structures as well
as the more implicit dynamic memory requirements of procedural recursion. The VHDL
compiler required extensive modification to handle the increased subset of the language at
the behavioural level.

The conversion of explicit structure allocation requires a run-time system that is capable
of storing the data represented by the dynamically allocated structures. This system is
realised by a behavioural description of a heap management algorithm that is both space
and speed efficient and interfaces with the users’ designs directly via an automatically
generated interface.

Procedural recursion is now synthesisable by MOODS from the inclusion of a
dynamically modified call stack created again, automatically within the users’ designs,
which contains the storage for local variables and passed parameters declared within the
subprograms.

Finally, two demonstration systems have been designed and synthesised with the
enhanced system, with both designs displaying the use of dynamic memory allocation and
the second design showing the use of procedural recursion within a synthesised hardware
system.
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Chapter 1

Introduction

Dynamic memory allocation is the term given to the allocation of storage space for objects
created and destroyed at run-time. The term, ‘object’ is used here to encompass anything
that is dynamically allocated, not as a reference to any object orientated features of a
language. As the number of objects is unknown at compile-time, a run-time system is
required that will provide the storage space for any required objects. This system (the
memory controller) will generally have a fixed memory space from which to allocate. The
method for determining the position of allocated objects within the available memory
space is determined by the allocation algorithm. The memory space is known as a heap.
The physical realisation of the allocation algorithm is the heap management system, which
is responsible for mapping all allocated objects into the available heap memory space in an
efficient and fast manner. The compiled translation of the user’s design communicates

directly with the heap manager via a direct interface generated by compilation.

Another form of dynamic memory allocation is implied by procedural recursion, where a
procedure can call itself from within its own body. This is useful for recursive subdivision
of problems and for parsing data structures with recursive links. Procedural recursion
requires that local variables and the procedural interface have instance-local storage
because the procedures are dynamically re-entrant. A memory stack is generally used to
store this information due to its close mapping with the type of information being stored,
where only the memory space at the head of the stack is used at any one time: this

represents the current instance of the executing procedure.

Behavioural synthesis of a digital design takes behavioural description of the design and
translates this into an optimised structural description of the same design. The design is

described behaviourally, which determines what a design does, not how it is implemented.
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The behavioural synthesis tool is concerned with producing the implementation details for

the behaviourally described design.

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) [1,2,3] is
such a behavioural synthesis tool. The tool takes as input behavioural descriptions of
users’ digital designs using the standard language, VHDL (Very High Speed Integrated
Circuit Hardware Description Language) [4,5]. The optimisation process of the structural
representation is performed in an iterative manner from an initial naive direct translation.
The structural design is created as a data path network that is controlled by a single
synchronously clocked state machine. The optimisation process is concerned with the
mapping of operations into control states of the state machine (where delay can be

reduced) and with the sharing of data path units (where the design area can be reduced).

This thesis describes an enhancement to the original MOODS system that allows direct
conversion of dynamic memory constructs [6] defined in the VHDL language, which
raises the level of language abstraction that is described as behavioural to include these
constructs. In particular, the modifications made to the VHDL compiler are described,
along with the creation of the run-time systems of the heap manager and the recursion

stack within the structural output of the tool.

The addition of support for explicit dynamic memory allocation and procedural recursion
increases the number of operations available from behavioural synthesis and raises the
abstraction level further into a software-like design description. This pushing of the
borders between the abstraction levels for a hardware description and a software program
(that could use the underlying generated hardware) gives some overlapping of available
operations in both paradigms. For instance, in a co-design system, with automated
partitioning between hardware and software, the partitioning tool would have more trade-

offs available for dynamic memory use, due to the overlapping abstraction levels.

This thesis is divided into seven chapters. Chapter 2 provides a general overview of
dynamic memory allocation as used within software environments, along with an
introduction into behavioural synthesis methods and tools. A description of other
implementation methods used for dynamic memory control in two third party synthesis

systems is also given.
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Chapter 3 describes the MOODS synthesis system in the state before any modifications

for dynamic memory allocation were made, and finishes with an overview of the changes

required for dynamic memory.

The creation of the heap management system and the modifications to the VHDL compiler

are described in Chapter 4. This allows the explicit allocation of objects by a user’s design.

The creation of the subprogram stack, which enables procedural recursion is described in

Chapter 5. These modifications allow the implicit allocation of objects made by each

subprogram call.

Chapter 6 describes the development of a general purpose FPGA prototyping board with
bias towards the underlying storage requirements of the heap. Two demonstration designs
are also introduced, which show the use and power of the new techniques. Some measured

comparison results are also gained from an implementation of a small language parser

design.

Finally, Chapter 7 concludes the thesis with a number of suggested enhancements and

modifications, giving scope for further work.

A number of appendices are also provided, where Appendix A describes a number of
collateral projects used within the modified system. Appendix B contains a paper given at
the Forum on Design Languages Conference, 2000. Appendix C contains detailed
descriptions of the demonstration designs produced within the scope of the project.

Finally, Appendix D details the modified file format descriptions used internally by the
MOQODS synthesis process.
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Chapter 2

Behavioural synthesis and dynamic
memory

This chapter describes the background material used in the research project. Section 2.1
gives a general overview of behavioural synthesis. Section 2.2 then discusses the use of
different languages that can be used as input for behavioural synthesis. Then an overview
of dynamic memory allocation is given in Section 2.3, with most information gained from
the software domain. Finally, Section 2.4 describes the current state of dynamic memory
integration within synthesis, with two examples that have some mechanism for dynamic

memory allocation built into the synthesis stream.

2.1 Behavioural synthesis

A digital design can be described with any number of levels of detail, sometimes called
abstraction levels [7]. The process of synthesis is concerned with the conversion of a high-
level abstract description into a lower-level description. Table 2.1 describes the various
abstraction levels used in the design and evolution of a digital design, with the emphasis

on the structural representation domain.

Behavioural synthesis [8,9] is the process of converting a design given in the behavioural,
algorithmic representation into an RTL and/or structural representation of the same design,
where the generated output feeds further lower-level synthesis systems in order to generate
a physical hardware system. The benefit of behavioural description is that the high
abstraction level enables the user to describe a system in terms of ‘what it does’, rather
than ‘how it does it’. Behavioural synthesis is the process of generating an optimised
architecture that describes how a system works, where the synthesis tool rather than the
system designer makes a large number of architectural trade-offs given a number of input

constraints, such as maximum area, delay and power [10] values. The use of behavioural
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synthesis is discussed in [11], along with a discussion of the benefits and drawbacks of
using a higher-level abstraction level, including the possible use of memory allocation in

system-level descriptions.

Abstraction Level | Description

System A system is described as a number of high-level components, such as

processors, memory, buses and other subsystems, partitioned and linked

together to form the global design.

Behavioural A behavioural level description is used to describe the functionality of a
subsystem without giving any implementation details. The subsystem is
described in terms of algorithms and operation sequences, contained within
any number of concurrent blocks. A full system could be described by a

single behavioural subsystem or by a number of subsystems.

RTL A register transfer level description is used to describe the same subsystem
in terms of abstract registers and combinational transfer logic in the form of
Boolean equations and mathematical operators. An RTL design description
faces more language constraints than a behavioural description, particularly

with restrictions placed upon process timing.

Structural A structural representation of the same subsystem describes the system in
the form of a linked structure of concurrent units, where each unit describes
a low-level cell device, such as a register, functional operator unit (adder,
multiplier, comparator etc.) or combinational interconnection unit
(multiplexor). This is a lower level subset of an RTL description, effectively

forming a netlist.

Device Each cell used by a structural description can be mapped onto a physical
device, described by the linkage of transistors, capacitors and resistors. This
is the lowest abstraction level, with some final implementations seen by the

user only requiring a description of the black-box behaviour of the device.

Table 2.1 Abstraction level in the structural domain

2.1.1 Design flow

A typical behavioural synthesis system consists of a number of phases within the design
flow [12], each performing a different construction task. This design flow can be seen in
Figure 2.1. Though the flow is shown as a number of separate phases, different synthesis

systems may perform a number of these phases concurrently.
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Figure 2.1 Design flow of a generic behavioural synthesis system

The first phase is concerned with compiling the behavioural description from the source
language format into an internal instruction-based representation, and a number of
compile-time optimisations (loop unrolling, procedural inlining) may be performed during
this process. The result of compilation is a design specified in terms of a number of simple
instructions, similar to a software assembly language representation, often contained in
some form of instruction flow graph, with both the operations on design data and the flow
of the sequential instructions being represented within the graph. This graph still contains

only behavioural information, and no structural.

The next three phases are concerned with translating the behaviour into structure, and
form the core of a behavioural synthesis system. The synthesis optimisation process is
either performed during the construction of the data structures or during an iterative
refinement process after the initial data structures are created, or perhaps both methods are
utilised. A number of different data structure styles can be used, including the Extended
Timed Petri-Net (ETPN) representation [13], which separates the control flow from the
data flow into two data structures with cross-links, or the Control Data Flow Graph
(CDFG) representation [14,15], which contains the structure in a composite graph,
representing blocks of data dependent instructions within a subgraph; the Data Flow

Graph (DFG) [14], contained by conditional control bounds such as loops and conditional

expressions within the parent graph.

The scheduling phase determines the time-step at which every compiled instruction is
executed by the final sequencing controller, usually implemented by a single-clocked
Finite State Machine (FSM). There is scope for multiple instructions being scheduled in
the same time-step (control state of the FSM). One general goal is to reduce the number of

different control states to a minimum, which speeds execution. The allocation phase
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assigns the available data path resources used for the execution of instructions that act
upon the data flow. For instance, more than one add-instruction may be executed by a
single adder resource, which shows a second general goal to reduce the number of data
path units, which reduces the area of the synthesised design. The scheduling and allocation
phases determine the balance between reducing the number of clock cycles (or control
states) that a design requires for execution versus the resource sharing that can occur if
operations are performed by different control states. If scheduling is performed before
allocation, the scope for operator sharing can be considerably impaired. The trade-off
made between the two goals of area and delay minimisation can produce a number of

implementations that form the achievable design space, as seen in Figure 2.2.

Optimal
design
curve

Achievable
region

Area

Unachievable
region

A 4
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Figure 2.2 Two dimensional design space

Scheduling determines how many states are allocated within the state machine. Scheduling
is affected by both resource constraints, specified by a given area or maximum number of
types of functional units, or time constraints, where operations must be scheduled within a
certain number of clock cycles. Various constructive scheduling techniques exist,
including an As Soon As Possible (ASAP) [7], As Late As Possible (ALAP) [7], force
directed [16] or list scheduling [7]. These constructive techniques do not allow

backtracking.
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Allocation determines the assignment of data variables and instructions into a number of
storage units that are used to store the data over multiple clock cycles (registers, counters,
RAMs) and functional units that perform the operations required by the instructions
(adders, multipliers). If the instructions executed by a shared functional unit perform
different operations, then multi-function units can be allocated in these cases. Various
algorithms for data path allocation exist, including cligue partitioning [14] and the left-

edge algorithm [17].

Binding is the process of selecting a particular instance of a type of data path unit from a
list of alternatives, dependent on the physical attributes of the unit to be bound and the
given user constraints. It is in the final binding phase that the controlling FSM is built
from a number of physical components also, or described in a more abstract manner for
use by a further RTL synthesis stage. The top-down approach of behavioural synthesis
may now join the bottom-up approach of module generation, which can be used to create

the actual data path units from a set of parameterisable descriptions.

2.2 Languages

The reason that language is an issue is due to the variable ability of different langnages to
represent dynamic data structures and program flow, with some languages more suited to
this than others. Each language is designed with a particular abstraction level or range of
levels in mind, where some languages are not capable of handling the higher description
levels. Another reason for discussion is the new trend for trying to create a unified
language that can be used for both hardware description and software description. Such

languages can be described as system description languages (SDLs).

There is a need for a single unified language that is easy to parse and understand, copes
with both concurrency and components with a good library control mechanism. However,
the porting of existing designs can be seen as a drawback to the introduction of a new
language. In these cases, the language will be seen as an additional unwanted burden. This
means that only languages that can cope with the multiple abstraction levels of hardware
and system description with a non-verbose syntax that is easy to understand and port from

existing HDLs will gain acceptance.
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The traditional hardware description language of VHDL is discussed first, giving both its
merits and drawbacks for system description using dynamic memory. Then, the C/C++

language 1s briefly discussed in terms of its hardware description abilities.

2.2.1 VHDL

VHDL [4,5] is the traditional Hardware Description Language used within system design
for simulation and synthesis [18]. It allows for highly structured design with the language
containing library management constructs as part of the syntax and semantics. The
language is designed firstly for the simulation environment, with synthesis use being
introduced later, with the introduction of RTL synthesis [19] tools first, then with

migration into behavioural synthesis tools.

The language is designed to describe a system at all abstraction levels from the device
level up to the system level. The reason for its segregation in the hardware description
environment is due to the language requiring simulation in order to execute in a computing
environment. This requires a simulation tool [20], which usually has a relatively large
financial cost when compared to software development environments. VHDL is not
designed for the description of software in an efficient manner. The language is also

unnecessarily verbose, being based upon the equally verbose ADA language [21].

However, VHDL is still the best single language for the description of hardware in the
synthesis environment, even with its limitations, and is why VHDL is still used by the
MOODS synthesis system described in the body of this thesis. VHDL is capable of
describing concurrent blocks of sequential code, where the sequential element describes
the behaviour of the concurrent block at any abstraction level. Each design can be
encapsulated by a library definition of its interface, which highlights the ability of VHDL
to describe a system in terms of a set of modular concurrent components. Sequential
blocks such as procedures and functions can also be placed into a VHDL library, enabling

library storage of algorithmic descriptions also.

The sequential code also allows dynamic memory operations of explicit object creation,
along with the more implicit procedural recursion, which also requires dynamic memory
storage. This dynamic memory element is built into the language. The type restrictions of

the language however, do not facilitate the easy creation of generic dynamic data
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structures, which are frequently used within an algorithmic software environment. The
reason for this is the lack of templates, type casting or void pointers in VHDL, any of
which would allow generic data structures to be built. Instead, localised data structures

require definition at the point of use, which reflects on the verbosity of the language.

2.2.2 Extended C or C++

The C/C++ language has up to this point been used in the generation of software. It has
also been used for the limited testing of hardware design algorithms, where designs are
first described and then refined in the C/C++ language. This enables a fast turnaround for
the evaluation of potential algorithms due to the well-established software debugging and
verification tools found in most compilation software environments. This use of the
language is pure, without modification or extension for HDL descriptions, as once a
design is verified, it is ported into a traditional HDL such as VHDL for further synthesis

and timing evaluation.

The use of the language in the initial stages of design has prompted a number of methods
for direct synthesis from the language. However, to describe hardware fully, a number of
modifications to the standard language are required, namely in order to describe

. concurrency, more varied extendable hardware types, process communication, timing
constructs and interface definitions [22]. These constructs are all part of the language

specification of a traditional HDL, but are found lacking in most software languages.

One method that can be applied is the use of a directly modified C standard to include new
keywords within the syntax and changes to the semantics for these new structures. This is
the approach taken in [23], which describes a behavioural synthesis system that uses a
directly modified C language called BDL (Behavioural Description Language). The
language is optimised for behavioural or RTL descriptions. The drawback of a modified
standard language is that the standard language compilers do not compile the new
standard, which negates a lot of the benefits of description in this manner. It also ties the
user into a particular synthesis/compilation environment, with yet another language to
understand. The synthesis tool in this case does not support any pointer use, dynamic

memory management or recursion.
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An alternative approach is to use the extensibility of the C++ language in the generation of
a number of class objects that can describe the extra components required by a concurrent,
timing critical system description, such as concurrent processes and signal definitions.
This allows all standard language compilers and verification environments to compile the
HDL directly, which enables fast system simulation (without the need for a simulator),
integrated debugging and statistical verification. This is the approach taken in [24], which
describes a set of C++ classes, globally called Scenic. This specification has migrated into
the public domain, now being known as SystemC [25,26]. The class libraries are capable
of describing an RTL system level up to a full system specification, including behavioural
descriptions. The classes form a wrapper around the standard language constructs,

providing a runtime environment with concurrency and data communication.

Another benefit of using the C++ language is the ability to describe polymorphic data
types, where the types used can be interchanged without modification to the underlying
code that uses the type. Better specification of generic abstract data types is also possible
in C/C++, which enables better modularisation. However, current implementations of
synthesis systems that use this form of the C/C++ language do not support pointers,
dynamic memory management or recursion within the synthesisable subset of the
language. This limitation is due to the synthesis tool, not the software verification

environment.

Two synthesis environments that use C/C++ descriptions with limited dynamic memory

support are described in Sections 2.4.1 and 2.4.2.

2.3 Memory allocation overview

Memory allocation describes how a system assigns storage to the translation of source
language input, both in terms of implicit system structure and of user data. User data
memory allocation comes in many forms, both implied by the language and explicitly
referenced by the design. Storage requirements will either be statically created during
compilation or dynamically grow and shrink with the execution of the design. The storage

requirements are also dependent on the methods used to translate the given language.

For instance, in a software environment, every aspect of the translated design will

eventually be stored by some form of memory, from the storage of the translated program
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instructions requiring a fixed amount of static space, through the static allocation of global
program variables, then with a dynamic stack block used for storage of local variables and
parameters used by subprograms and finally with an explicit dynamic heap block used for
storage of explicitly created dynamic objects. This is due to software languages generally

being translated for use in conventional von Neumann architectures.

In the behavioural synthesis environment, the ‘program’ itself does not require memory
storage, as the design is translated into a static structure of low-level hardware components
(this is not strictly true now, due to the introduction of FPGA programmable devices that
require the hardware configuration to be stored in a large ROM, and once configured, the
‘hardware’ is actually built from a number of configurable SRAM-based logic blocks -
however, this structure can still conceptually be considered as static hardware). The data
within this structure does however require some form of storage. This kind of system
separates the storage requirements of the design from the storage requirements of the data

within the design, unlike the von Neumann processor targeted software.

Typical static creation of memory in a hardware design relates to the allocation of static
registers to store variables or signals [17]. An extension of register allocation is with the
generation of counter variables, where the storage element itself is used to perform
operations on the data contained within it. Static multi-dimensional arrays also have a
direct translation into fast indexed SRAM memories. Behavioural synthesis could also
assign groups of single static variables into memory blocks for storage efficiency reasons
[27]. The creation of pipelined functional units also requires implied register storage at the
end of each pipeline stage [28]. Each of these memory requirements is statically created by

the compilation or synthesis stages of a behavioural synthesis tool.

The dynamic memory constructs in a source language require a completely different
method of storage. Dynamic memory is used extensively in software development due to
the data abstraction that is possible with its use. The underlying storage mechanism is still
based upon the same types of index-addressed memory, but the interface into that memory
requires runtime systems in order to manage the allocation of dynamic objects within the
available data space. Dynamic memory has had little use in the synthesis environment due
to the inherently static nature of hardware description, but with the raising of the
abstraction level of design description away from a ‘direct’ translation of the source

description comes the increased desire for the use of abstract dynamically allocated
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runtime data types. For this reason, most literature focuses on the software applications of

dynamic memory, although most have equal applicability in the hardware domain.

Two mechanisms are generally used for the allocation of dynamic memory in a software
environment. A stack is used by the procedure call mechanism and a heap is used for

explicitly created objects. Both are formed from controlled data structures.

2.3.1 Stack allocation

Software subprograms in the form of procedures or functions are implemented by a
separate instruction list within an area of program memory. Most languages support re-
entrant subprograms, where the local data controlled by the subprogram is replicated on
every instance of the subprogram being called, so that any one instance does not overwrite
the data contained by any other instance. The need for re-entrant subprograms is two-fold:
The first is that a concurrent runtime environment could be in use, which allows the same
procedure to be called from different threads at the same time (interweaved by context
switches), and the second reason derives from procedural recursion, where one instance of
a procedure can call another instance of the same procedure either directly or indirectly via
other recursive procedures. Each instance of the procedure requires a new set of local

variables - this is where the stack is used.

A stack is formed from a very simple data structure of a large contiguous block of memory
accessed from a current index position, indicating the current data set being accessed by a
subprogram. The stack is of fixed length and can occupy a shared underlying memory
system. The stack can only be accessed from its head, with procedure calls allocating
enough local memory space from the stack by incrementing the stack pointer by a number
of words. A return from a procedure decrements the stack pointer by the same number of
memory words as the original increment, leaving the memory above the head of the stack

containing free data. The stack control is formed as part of the compiled code.

The stack mechanism is so widely used in software descriptions that most implementing
microprocessors have special instructions for stack supporting operations, for example the
‘push’, ‘pop’, ‘call’ and ‘ret’ instructions (shown in assembly code mnemonics), which

are used for insertion and removal of stack data and by the procedure calling mechanism.
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Advanced circular register windows are also used by certain microprocessors to speed the

memory access time of the stack [29].

The data stored in a typical stack mechanism relates to three data sections of a
subprogram. The local variables are the first, with passed I/O parameters being the second
(really a subset of the first). The procedure calling mechanism also requires stack storage
for the return address of the position to jump back into once the subprogram completes.
The stack is the natural place to store this information, due to the instance-local
requirements. The storage of the return address on the stack provides the final mechanism

required for procedural recursion.

2.3.2 Heap allocation

As well as dynamic data that follows the program procedure calling mechanism, dynamic
data can be allocated explicitly from any position within the program, used after that point
and deallocated at any position after allocation. In many languages, the method used to
reference the allocated data is by a single base address that references a contiguous block
of memory space that the object can use. The number of words that the allocation space

for an object requires may be determined during compilation, or even may be determined

at runtime.

Allocation of dynamic objects is performed by an allocator, which is directly accessible
by the source language, and potentially hidden from the user. A deallocator performs
deallocation of dynamic objects similarly. The data that represents the created object is
accessed in a way that is dependent on the type of object created. The values in an array
object are accessed by an offset index value; whereas a record element is accessed by a

constant element offset value defined by the compiler.

The allocator requires a given memory object size, provided as a count of bytes or words
and returns a reference to the memory allocated for the object. The deallocator requires
only the reference to the object to be given, with the underlying mechanism able to
determine the object size from the contaming heap data structure and the objects position
in memory. The reason for this is that a compile-time object size may not be able to be

calculated by the deallocation call due to the ability to define the size of an allocated
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object at runtime, at the point of allocation. For this reason, the size of the returned objects

must be stored by the heap mechanism.

Due to the very abstract nature of supplying storage for an object from an available data
space, a number of heap allocation mechanisms exist, with various trade-offs made with
respect to allocation strategy and policy [30]. Each mechanism effectively uses a different
underlying data structure and method for selecting blocks of memory to return via the

allocator. The goal is to reduce wasted memory space and the time for each allocation.

The overall strategy should be able to exploit the regularities in the memory allocation
request stream, with the policy determining the implementable decision procedure for
placing blocks in memory. The mechanism forms the set of algorithms and data structures
that implement the policy. The memory allocation ‘algorithm’ usually refers to the
underlying mechanism for memory allocation, partly because the only point at which

memory management occurs is during the allocator and deallocator interface execution.

2.3.2.1 Methods

The data structures used by a memory management scheme are usually built from a
number of header fields (Figure 2.3a), stored in the same memory space as the allocated
data. The information stored within the headers relate to the sizes of objects being created
and links to other header structures, which form the containing data structures. Tree-type
data structures can be formed with the use of header and footer structures, which support
memory block splitting and coalescing [31]. Another useful structure used by various
allocation mechanisms is the free list (Figure 2.3b). These utilise the same data space as all
allocated data, where the list does not effectively consume any memory space, due to the

free list structure being formed within the free memory blocks themselves.
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Figure 2.3 Heap management data structures

The heap management algorithm could effectively be asked for any size of object, and
expected to return a block of contiguous memory large enough for the contained object.
However, the probability of the different object sizes being used is dependent on the
application that uses the heap management system. If an allocator can optimise itself
dependent upon the memory requirements of a particular application [32,33,34], then this
could speed the allocation requests and minimise memory wastage. A more general case
than this suggests that the treatment of smaller objects should be different to the treatment
of larger block objects, as the bulk of all allocation requests are for small objects. A
mechanism that exploits this fact may perform almost, or just as well as an optimised

allocator.

There are five main types of documented allocation mechanisms: sequential fits,
segregated free lists, buddy systems, indexed fits and bitmapped fits. Each describes a
basic mechanism, with various real-life allocators using parts of each mechanism type,
with conglomerate allocators using a mix of mechanisms (example measurements in [35]).

A brief mention of all basic mechanisms is given below.

1.  The ‘sequential fits’ mechanisms are based upon a single linear list of free blocks.
The first-fit mechanism [36] allocates an object by searching the free list from the
start point, returning the first block large enough to store the required data. If the
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block is larger than the returned object, then it is split into the returned object block
and the rest of the free space, which is re-inserted into the list of free blocks. The
next-fit mechanism is a derivation on this concept, except that the starting point for
the search is the last checked free block. A best-fit mechanism searches the entire
free list to find the smallest free block large enough to satisfy the request, so this

does not scale well in larger memory systems.

2. The ‘segregated free lists’ mechanisms are based upon an array of free lists that
contain objects of particular sizes. Objects are returned from the first free list that is
capable of holding the required sized object. If an exact match is not available, then
a larger object contained by alternative free lists is returned, with some wasted
space. A derivation of this mechanism is used within this thesis, based upon [37,38],
where each free list is defined within a separate memory page, allocated at runtime

to store objects of particular sizes.

3.  The ‘buddy systems’ mechanisms use splitting and coalescing of memory blocks
into pairs, where these pairs can be of equal size: binary buddies, or of different
ratios: fibonacci buddies, weighted buddies. Blocks are split until the correct
memory size can be returned via the allocator. This system uses a binary tree storage
data structure. Another variant of the buddy system is the double buddy system,
where two binary buddies are used, with different sized base objects. This enables

closer matching of the required object size to the returned memory block.

4.  The ‘indexed fits’ mechanisms use structured indexes to implement a desired fit
policy. This is really a container for multiple fit strategies, which use a number of

different data structures to speed allocation searches.

5. The ‘bitmapped fits’ mechanism is a derivation on the ‘indexed fits’ mechanism.
This uses a bitmap block into the entire memory space, indicating which blocks in
memory are allocated and free. Fast bitmap searches are formed from the densely

packed information, allowing fast allocation.
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2.3.2.2 Fragmentation

There are two types of fragmentation that can occur in the allocated data space of the heap.
The first is external fragmentation, where an allocation fails even when free memory is
available. This can occur if the requested block size 1s too big for any contiguous block of
free memory, or if the object size is too small to split a large free memory block in naive
mechanisms. The second type is internal fragmentation, which occurs when a returned
block is larger than the required object size, resulting in wasted space within the returned
allocated block. This is deemed as internal fragmentation as the waste is part of an
allocated block. This situation can occur in some mechanisms due to the need to round up

object sizes to the nearest power of two or closest match available.

The splitting and coalescing of free memory blocks generally combats fragmentation.
These operations operate upon the free memory area only, with any space allocated for
objects being immovable while allocated. Allocation can fail if there are no free blocks
next to each other that can be coalesced. As the mechanism affects where the objects are
created, this can affect the ability to coalesce free blocks. This could mean that some
analysis of the behaviour of real programs could help with the selection of an allocation

mechanism.

General analysis of various designs has highlighted three types of allocation behaviour.

These behaviours are classified as follows:

1.  Ramps: Data structures are accumulated over time, with the program solution found

quickly once complete, allowing the quick destruction of the data structures.

2. Peaks: Bursts of allocation and then deallocation. This behaviour is seen within

phased programs.

3. Plateaus: Data structures are built quickly and kept for a long duration until the

solution 1s found. The data structures are then removed quickly.

Also, extra information discovered while profiling real-life memory accesses has indicated
that objects that are allocated at about the same time are likely to be deallocated at about
the same time. Another general observation indicates that objects of a different type

(hence size) are likely to be deallocated at different times in the program flow. The
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conclusion of these observations is that an allocation policy should sequentially allocate
objects in adjacent positions, with segregation dependent on type (size). This exploitation
of the non-random behaviour of most programs should reduce the effects of external

fragmentation, with the increased chance of block coalescing.

Size segregation with enough different sizes for efficient block fitting also reduces internal

fragmentation for most (small) objects.

2.3.2.3 Garbage collection

Garbage collection is an alternative method over explicit deallocation of objects in the
heap. It forms an alternative to a structured design methodology that removes the need to
explicitly free any dynamically created object. The memory is taken care of by the garbage

collector when the user cannot reference the object any more.

The removal of reference can be due an explicit overwriting of the reference value or from
the reference simply going out of scope [39]. The scope of an object is determined from
local variables in the stack or from other dynamic objects that could contain references to
the object. Static references of global variables or processor registers can also contain base

pointers of data structures, which determine the scope of objects.

The ‘mark and sweep’ algorithm performs typical garbage collection [40]. This algorithm
requires an entire heap object search from the set of base pointers, which could be derived
from the stack variables, static data or processor registers. The algorithm receives no
cooperation from the compiler [41], hence pointer ambiguity requires resolving, when
determining the path of all reachable objects. The algorithm firstly clears the ‘mark-array’,
and then works through the heap objects from the set of base pointers, marking each object
that is reachable within the mark-array. After this phase, a sweep of the entire heap is

performed, which removes any unmarked object from the heap data structures.

While garbage collection is active, no memory operations can be serviced, which halts all
processes that use the heap. This is unacceptable in a real-time environment. Incremental
collection [42] can reduce the effects of process halting, but still results in unknown
memory timing behaviour. Structured programming techniques are more acceptable in a

real-time environment than garbage collection.
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2.4 Synthesis systems and dynamic memory

The field of behavioural synthesis has been around for many years, along with the field of
dynamic memory allocation in software. It is only recently that the integration of the two

fields is being attempted.

A number of behavioural synthesis systems exist, both academic and commercial. Some
academic systems are: CADDY [43], Cathedral-2 [44], CAMAD [45,13], Chippe [15] and
Balsa [46,47]. The major commercial systems are: Synopsys Behavioural compiler [48],

Cadence Visual architect [49] and Mentor Graphics Monet [50].

None of the mentioned systems has support for procedural recursion within the
synthesised designs created by the synthesis tools and no system has support for direct
synthesis of explicit dynamically allocated objects. However, two systems have been
created that form a layer on top of behavioural synthesis, allowing design exploration
before behavioural synthesis is applied. Both these systems use Synopsys Behavioural
Compiler as the behavioural synthesis tool at the back-end. The front-end system
exploration and pre-optimisation of both systems support the concept of explicit dynamic

memory allocation. These two systems are briefly described in the next two sections.

Other issues that have become more important in recent times have mainly been due to the
mobile electronics market, where power consumption is a large factor that determines
battery life. Links have been made to the use of memory [51], where power minimisation
can be achieved by using a number of smaller single-port memory blocks over one large
block. Memory accesses cost power, so the removal of transfer redundancy can also help.
Embedded memories [52] can also help with power use, with the removal of power-
hungry external ports and the widening of internal busses, reducing the number of data
transfers. Memory bandwidth is also a factor of system design, where compiler

optimisations and automated system synthesis may help [53].

2.4.1 SpC

SpC [54] is a tool from Stanford University that supports synthesis of standard C
behavioural models, including support for pointers and data structures. The phases of the

tool include memory binding into location sets, pointer analysis, dynamic memory
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allocation resolution, pointer resolution, memory partitioning and conversion into a

traditional HDL to complete the behavioural synthesis flow.

The first stage in the tool flow is memory partitioning. This stage is required to separate
the various variables that are notionally stored by a single address space (C being a
software language) into a set of independent mutually exclusive locations that can be
accessed in parallel. These location sets can contain single variables, arrays, structures,
arrays containing structures, structures containing arrays and dynamic memory data
structures. Each location set holds a single item, where a practical implementation for
hardware synthesis is sought, each location set will eventually be mapped onto a separate
memory unit. In the case of arrays of structures, this could be separated into a number of
arrays of each element type within the structure, allowing for better memory utilisation,
where each array is contained by a different location set. Location sets with single
variables can get mapped onto registers, or may not even require storage, being mapped

onto wires. Location sets containing arrays can be mapped onto register banks or RAMs.

After the location sets are defined, the accessing of the data in the sets can be via any
number of pointers. This is the reason for the static pointer analysis stage [55], where each
pointer is resolved at compile time. The analysis determines the set of locations that a
pointer could reference. The results of pointer analysis must be both safe and accurate,
where a safe analysis finds all alternative pointer locations and an accurate analysis
minimises the amount of logic that is generated to access the memory locations. Pointer
analysis 1s used by the pointer resolution stage to build the accessing logic for the

referenced location sets of each pointer.

Even though the SpC designers are trying to make the entire ANSI-C language
synthesisable, there are limitations that are introduced during pointer analysis. The first
limitation deals with a set of parallel processes, where no shared variables are allowed
between processes, as static pointer analysis cannot cope with concurrent access to the
same variables, unless some kind of interface is synthesised for communication between
the processes. The second limitation is due to the lack of full support for subprograms in
the underlying behavioural synthesis tool and the differences between the C-based
subprogram and an HDL-based subprogram. The limitations imposed are that procedural
recursion is not supported due to the lack of dynamic stack data. Subprograms are also

usually inlined by a behavioural synthesis tool.
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All dynamically allocated data is represented by a specific location set, with a heuristic
used to separate different data structures within the heap allocated data into different sets.
Any general pointer index is separated into two fields. A tag field is used to determine
which location set is referenced by the pointer and the index field stores the index as a
number of strides within a location set. A stride determines how many memory locations
are required per index. Offsets from the index are used when referencing sub-structures.
Limitations on the number of bits used for location set tags and indexes place upper limits

on the sizes of data structures.

The support of runtime memory allocation requires an allocator [56]. This is provided in
hardware-controlled form, due to the synthesis nature of the tool. Memory is managed by
a number of user defined memory segments, where a segment is an array of finite size
with data allocated within it by a unique hardware allocator. The memory segment may be
later mapped onto one or more physical memories during synthesis. The user of the system
determines how many memory segments are created and which allocations occur in which
segment. The user also sets the physical size of the memory segment. Allocations are
made with the use of the standard C-runtime ‘malloc’ and ‘free’ functions, which are
translated into calls to the allocator defined for the relevant segment. The tool generates
every allocator used in the different segments and communication is formed using

handshakes with the main user’s design.

A number of optimisations can be made with selection of the allocator used by the
memory segments. There are currently three supported allocators, which allow a certain
degree of tailoring. The first allocator is a general-purpose allocator that can allocate
objects of any size. This uses a first-fit mechanism with direct coalescing on deallocation.
The second allocator is an optimised form of the first, which performs better deallocation
performance through better data structure linkage. The final allocator has a specific
purpose. It is capable of allocating objects of only one size, similar to the segregated free
lists mechanism. This allocator can only be used when all objects allocated within the
segment are of the same size. It aiso borrows from the bitmapped fits mechanism to

determine which objects are available in the data space.

A further optimisation may also be applied, which reduces the number of allocations and
deallocations in very limited circumstances. This optimisation is introduced to cope with

legacy code that may be used. The optimisation is essentially to convert a sequence of
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‘malloc’ then ‘free’ into a static location set. This can only be applied in a purely
sequential block, such as within loop bodies or conditional bodies, with no branching
between allocations. The allocated object must also be of known size during compilation,

at the point of allocation.

The translations made by SpC output the design using Verilog HDL. A standard
behavioural synthesis tool, Synopsys Behavioural Compiler, then performs the final

synthesis stage of SpC.

The approach taken by SpC of synthesising a design directly from the standard C language
overly restricts the use of the base language, originally designed for software descriptions.
In this respect, too much effort is placed upon translating the software-like description

methodology of C over a direct translation possible from an HDL description, such as

VHDL.

2.4.2 Matisse

Matisse [57,58,59] is a system design environment that has the capability of describing
systems with intensive data storage, transfer and real-time requirements. Designs are
specified in a modified C++ language, which is capable of describing both software and
hardware. Dynamic memory management is supported with the use of a number of
abstract data types, which are mapped onto an optimised memory architecture. Traditional
behavioural synthesis is performed after the Matisse system exploration. The target of
system exploration is an embedded single chip solution with both hardware and software

implementation sections.

The dynamic memory management phases of the design flow determine both the
containing data structures for user data, the methods used to allocate the data and the
custom physical mapping of the data structures to a number of distributed memories. The
Abstract Data Types (ADTs) are used to contain all dynamically allocated objects. All
dynamic memory management behaviour is synthesised in hardware due to the power

savings made over a software implementation.

The language used as input to the system is a syntactically and semantically modified

C++, which contains extra structures for the definition of concurrent tasks and



D.J.D. Milton, 2002  Chapter 2: Behavioural synthesis and dynamic memory 44

synchronisation between these tasks. The model used for system design is based upon
these new constructs, where a system is defined as a set of processes that communicate
with control of communication handled by synchronisation. The processes are statically
created, each with its own virtual memory space. Communication is realised by global
pointers. Synchronisation occurs with the use of a set of atomic functions, where these

synchronisation functions may only be executed by one process at any one time.

The system design flow consists of six phases, of which Abstract Machine (AM)
generation 1is the first. Abstract Machine generation is used to build an executable
specification that can be used in simulation and profiling from the modified C++ language.
This phase converts the modified C++ into standard C++ with runtime additions added for
process concurrency and communication. The Dynamic Memory Management (DMM)
additions are inserted after this, where the DMM phase consists of refinement of the ADTs
and with the selection of the Virtual Memory Management (VMM) scheme. Process
concurrency management follows; where this phase is used for concurrency extraction,
thread scheduling, processor allocation and Inter-Process Communication insertion. The
underlying memory subsystem is created in the Physical Memory Management (PMM)
phase, where an area and power efficient distributed memory architecture is generated.
The final stage is synthesis, where system software is created along with the interface to
the hardware, which 1s synthesised from the generated behavioural description using

Synopsys Behavioural Compiler.

The phases pertaining to memory management are the ADT refinement stage, Virtual
Memory Management and Physical Memory Management. Each stage has some effect
upon the power and area of the final design, each optimised to sustain a certain data

throughput bandwidth.

All dynamic data is contained within the Abstract Data Types. The underlying data
structures that implement the ADTs are built from four primitive dynamic data structures,
the linked list, tree, dynamic array and dynamic pointer array. Each of these types are
combined to form the more complex structures, using access keys at each layer.
Refinement of which underlying data structures to use 1s performed by a heuristic, that sets
an ordering of the refinement decisions, which generates the best combination of

underlying data types. The heuristic is defined to give a power optimal structure [60].
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Hashing is an underlying data structure that can be used as an extra layer when a non-

uniform key distribution is expected as input to any of the basic structure types.

Virtual Memory Management is applied after the data structures are refined. This phase
reserves storage space for each data type obtained by ADT refinement within memory
segments, where each segment has a custom memory manager designed. Similar
underlying data structures can be set to share the same memory segment at this stage, but
only if the allocated data of both data structures are allocated in different phases of design

execution.

Each segments’ custom memory manager can be built using a number of low-level
mechanisms. The mechanism type is selected from a search space of available
mechanisms. There are currently three supported mechanisms [61], the state-variable
mechanism, a free-list mechanism and a FIFO mechanism. All controllers are built to
allocate fixed block sizes [62], which simplifies the mechanism. The state-variable
mechanism keeps a state bit per object, which provides a fast bitmap lookup of allocated
objects. The free-list mechanism simply pushes and pops from the head of the free lists
when required. The FIFO mechanism has head and tail pointers into the segment. This is

only used in FIFO communication schemes.

Physical Memory Management is used to share the virtual memory segments between a
number of physical memories. A single memory is not automatically mapped, as the
available cycle budget may not allow for sequential memory accesses, which frequently
occurs in data intensive applications. The generated distributed memory architecture
exploits parallelism in the data accesses in order to reduce the number of cycles to perform
particular memory operations. The method for determining the number of used memories
and sharing configurations is automated given the area and power constraints. More
memories allow for a reduction in power, where power is dependent more on data transfer

than on the core system power.

The automated method for memory sharing begins with the introduction of basic groups,
where a segment is split into a number of separate groups. These groups are later assigned
to physical memory. Scheduling of memory operations on these basic groups is then set,
which determines which groups are made simultaneously accessible. Then, the physical

memory assignment phase assigns the basic groups in clusters [63] to physical memories,
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taking conflicting accesses into account with the assignment of multiport memories or

separate memories.

Various examples of the use of Matisse are given in the literature [62,63,64,65], with all
examples being partial systems used by an ATM communications network. Examples of a
Segment Protocol Processor (SPP) are given in [62,64] and an Operation And
Maintenance component (OAM) in [65]. Comparisons between different implementations

of different designs are given in [63].

Matisse is a system design environment that performs trade-offs between a limited set of
abstract data structures before behavioural synthesis. In this respect, the tool is not as
general purpose as a synthesis tool supporting dynamic objects directly. The use of a

software-derived non-standard input language also affects the general use of the tool.
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Chapter 3

The MOODS synthesis system

The behavioural synthesis system used and modified for the dynamic memory synthesis
research is called MOODS [1,2,3,66,67,68] (Multiple Objective Optimisation of Data and
control path Synthesis). The system has been developed to compile a behavioural
description of a digital design using behavioural level VHDL into a structural description
of the same design using structural level VHDL as output [19]. The structural description

then feeds a variety of third party tools for the physical design implementation.

This chapter describes the synthesis system before any additions were made for dynamic
memory. Section 3.1 describes the VHDL compiler used as the front end to the system,
while Section 3.2 describes the operation of the core synthesis process. Finally, Section
3.3 gives an overview of the modifications made to MOODS for the implementation of
dynamic memory, giving the modified system data flow, with descriptions of the additions
and modifications made to the system. Sections 3.1 and 3.2 are essentially a précis of

previous development of MOODS. The material is included as necessary background.

The term MOODS refers to the entire behavioural synthesis system. However, the system
is built from a two main tasks, where the second core synthesis task is also referred to as
MOODS. The initial system data flow before the dynamic memory additions were made is
shown in Figure 3.1. The tasks communicate via a number of intermediate files. The

actions performed by these tasks are listed below.

1.  The behavioural VHDL description can be provided by a number of source files.
Each file is passed into the VHDL compiler, “VHDL2IC’. The compiler builds an
internal representation of the VHDL parse tree and translates this into a simpler
intermediate description using simple two-input instructions. This description is
created as ICODE (Intermediate CODE), which is a proprietary language-neutral
design description file.
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The single ICODE description file is then fed into the main behavioural synthesis
task, along with a set of user objectives and technology libraries. An internal data
structure is built that links the ICODE description into the control and data path
graphs. The initial data structure contains one ICODE instruction in each control
state, with the functionality of each instruction being bound to a separate data path
node. The synthesis process is formed from iteratively modifying the data structures
until the user objectives are met. The structural description of the design is created
from a direct translation of the internal data structures. This translation is performed

in the final stages of the MOODS core synthesis task.

The final stages of a system implementation utilise a number of third party tools,
such as Synopsys Design Compiler [69], Cadence Synergy [70], Leonardo Spectrum
[71] or Xilinx Foundation [72]. These take the structural VHDL description
generated by MOODS as input. Each tool performs low-level logic synthesis and
technology mapping, which translates the design into a physical circuit to be

implemented in an ASIC or FPGA [73].
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Figure 3.1 Original MOODS system data flow

The ICODE description file is used as input to the core synthesis process, as this provides

a language neutral input method. This allows other languages to be incorporated into the

MOODS synthesis system by creating only the compiler for them. Each language compiler

would translate the source description into the proprietary ICODE format.

The VHDL function libraries are formed from a number of VHDL packages that are

linked into every input description. These packages contain a number of conversion

functions, type declarations and operators upon these types. The compiler uses these

packages internally, forming translation optimisations when the items within the packages

are used.
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The expanded module templates [3,74,75] that are input to the core MOODS synthesis
task are used for inline expansion of multiple instruction tasks by the synthesis process.
Expanded modules are used to form alternative descriptions for complex operations that
can be broken down into more area efficient multiple-iteration versions of the operation.
Expanded modules are formed from a number of ICODE operations initially generated
from the compiler. The ICODE operationvs form a submodule template [76]. Expanded
modules form an extension to the standard module paradigm used by MOODS, where a

module is formed from direct translation of a subprogram.

The technology dependent module cell libraries hold all information about the structural
unit components that are bound to all control and data path nodes. The control path is
created from a set of bound control node components that implement the controlling state
machine from a one-hot token-passing architecture. The variables operated upon by the
ICODE instructions can be bound to various types of memory components in the data
path, including registers, counters and RAMs. The data path also contains functional units,
which perform the operations described by the ICODE instructions. These are bound to
combinational cells such as adders, multipliers and comparison operators. Finally, the data
path contains interconnect-units, which provide the controlled data routing through a
binding to multiplexor cells. The cell libraries contain physical values that describe such
items as the speed and size of the library unit and the synthesis process for binding and
sharing decisions uses these values. The libraries also contain RTL VHDL descriptions for
every cell that is used by the third party tools. The data structures used by the MOODS

core synthesis task are shown in Figure 3.2, which shows the linkage between the

structures.

The design data format file is another output of the synthesis system. This file contains a
readable description of the data structures used by MOODS. The file can be parsed in

order to regenerate the same data structures within the synthesis core.
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Figure 3.2 Data structures used by the MOODS synthesis task

3.1 VHDL Compiler

The VHDL compiler that forms the front-end to MOODS is designed with a number of
phases, which translates the original VHDL description into another description at a lower
language level. The conversion process translates a number of inputted VHDL files into a
single ICODE file that is representative of the original VHDL, albeit in a form that is
similar to an assembly representation of a software language [77]. Compilation, assembly
and ICODE generation are all performed by a single program, which means that every
source file that is input to a synthesised design requires re-compilation each time any of
the input files are edited. The program flow is seen in Figure 3.3, which shows the

consecutive phases that form the compilation flow.
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Figure 3.3 VHDL Compiler program flow

3.1.1 Synthesisable VHDL subset

Behavioural VHDL tends to use more from the sequential part of the language contained
by the process construct, rather than from a number of concurrent constructs. RTL
descriptions are formed more from a linkage of concurrent components, with process
descriptions being limited to only one clock cycle being described by the entire process
loop, with one wait statement per process iteration or the process being controlled by a
sensitivity list. A behavioural description for MOODS, on the other hand, allows multiple
consecutive clock cycles in a single process. The synthesis process directly controls the
number of cycles used, with the sequential VHDL operations being converted into ICODE
instructions that are scheduled within these cycles, under control of the generated finite
state machine. Timing constraints may be placed in the VHDL source with the use of
multiple wait statements. This guarantees a level of output timing adherence when

communicating with external components.

The general behavioural VHDL constraints [78] placed upon the language by the synthesis
tool, MOQODS [79] are listed below. The limitations are placed upon a single synthesis
run, with the generated VHDL output of the synthesis process able to be referenced by a
structural VHDL container description for use with the third party low-level logic
synthesis and technology mapping tools. The limitations are formed from both the relaxed
timing model utilised for behavioural synthesis and from the difficulty in implementation

certain features of the VHDL language.
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A design is described by a single Entity / Architecture pair, where the Entity
describes the I/O port signals passed into the design and the Architecture describes
the actions performed by the design. Any number of VHDL packages may be
referenced and used by the design.

Packages are limited to containing only constants, type declarations and subprogram
declarations and definitions, with concurrent component declarations disallowed.
This effectively removes the ability to build up a number of concurrent library
components, while allowing sequential subprograms to be reused. The component

limitation is due to the limited concurrency features allowed in the architecture

body.

The architecture body may contain any number of concurrent processes, with
component instantiation, generate statements and concurrent signal assignment
operations disallowed. The contents of the process may reference any constants,

types and subprograms defined within the used packages or architecture declaration.

Built-in support for the ‘bi#’ type and ‘bit_vector’ array derivative, along with a set
of operations on these types and a number of conversion functions are provided by a
package that is linked into every design passed through the MOODS compiler.
These types must be used if efficient (compile-time) conversion to and from integer
types is required. Integer types are used as for-loop iterators and array index values.
These base types may have sub-type derivatives declared and used in the same

manner.

Composite type declarations are limited to the use of fixed-length array types that
form 2-dimensional variables. An array of ‘bit_vector’s (itself an array of ‘bii’s) can
be stored by a bank of multi-bit registers or by a RAM cell. The composite record

type is not supported, as it 1s virtually useless without dynamic memory support.

No explicit dynamic memory support is provided, with the lack of composite record
types, access types (dynamic object reference mechanism) and unconstrained array
types. Incomplete types, used for cyclic data structure creation are not supported.
Explicit object allocation and deallocation is disallowed. These restrictions are

removed with the implementation described in Chapter 4.
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10.

11.

12.

Subprograms can call other subprograms. However, support for recursive

subprogram calls is disallowed. This restriction is removed with the implementation

of procedural recursion described in Chapter 5.

The I/O passed as parameters through subprogram calls is limited to values that can

be held by a single multi-bit register (1-dimensional types).

There is support within VHDL for abstract file types, which are generally used to
drive long sequences of test vector values in test-benches. No support for files or the

underlying file system is provided during synthesis.

Floating-point number support was in the process of being integrated with MOODS
during the initial stages of dynamic memory support. The compiler did not support

floating-point numbers at the beginning of this research.

The synthesis process ignores assert statements. These statements are used by
simulation to provide feedback on abnormal situations or to provide messages about

the state of the simulation. There is no meaningful translation for synthesis.

The sequential operations contained by a process are simulated within zero
simulation time (delta-time), with wait-statements defining timing breaks. The
synthesised design can take a number of clock cycles to perform the same
operations. Reliance on relative timing for communication between processes is
therefore not guaranteed to work. Hence, it is recommended that all communication

be controlled by explicit communication protocols.

3.1.2 Lexical analysis

The lexical analyser takes the source VHDL file as input. This phase feeds the parser

directly with a tokenised representation of the VHDL language. The tokens that it

generates are representative of every type of item in the VHDL language. Keywords,

operators, delimiters and values form the various classes of token returned, along with a

translation of meaning for value class items such as integer constants and identifier strings.

Any white space is ignored by the lexical analyser, so is not fed into the parser as a token.

An example lexical analysis stream is shown in Figure 3.4.
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(

) is
begin
inline;

signal vga_serial_sem

procedure vga_serial_initialize

out bit

vga_serial sem <= '0';
wait for 0 ns;
end vga_serial_ initialize;

o

TOKEN CLASS VALUE |
o
%
procedure tok keyword ]
identifier_ tok value vga_serial initialise |
lbracket_tok delimiter |
signal tok keyword ' ?
identifier_tok value vga_serial sem .
colon_tok delimiter “é
out_tok keyword ‘f
identifier tok value bit ;%
rbracket_tok delimiter -
is_tok keyword o
begin tok keyword ;‘%
identifier_tok value inline L
semicolon_tok delimiter é
identifier_tok value vga_serial_ sem -
signal_assign_tok operator ji
character_tok value 0 ‘W
semicolon_tok delimiter |
wait_ tok keyword  j
for_tok keyword -
integer_tok value 0 -
identifier tok value ns .
semicolon_tok delimiter -
end_tok keyword o
identifier_tok value vga_serial initialise .
semicolon_tok delimiter

Figure 3.4 VHDL lexical analysis

3.1.3 Parser

55

The parser stage is used to build up an internal representation of the VHDL source code by

accepting a limited sequence of lexical analysis tokens and value translations. A keyword

token is usually used to begin a sequence of the language syntax. For instance, the initial
token in Figure 3.4 is a ‘procedure’ keyword. The only acceptable token to follow this

keyword is the procedure name identifier. After this token is the possibility for a choice
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between a left bracket delimiter, which defines that a port list exists for the procedure; a
semi-colon delimiter token, which would finish the procedure as its declaration; or the is’
keyword, which would start the definition of the contents of the procedure. In the example
case, a port list does exist and is terminated by the right bracket delimiter after the list of
port items is parsed. The same choice then exists between the ‘is’ keyword and the semi-
colon delimiter tokens. It is in this way that the entire VHDL language is parsed. The
compiler builds up an internal representation of the parse tree with cross-references made

to the relevant data structures whenever identifier tokens are parsed.

3.1.4 Translation

The next stage in the compilation process is the generation of a simpler internal data
structure that is a direct representation of the ICODE file to be generated. This is the
translation step. Some constructs in the VHDL parse structure have a simple one to one
mapping. For instance, VHDL procedures and functions map directly onto an ICODE
module and the entity/architecture definitions map onto the single ICODE program

module that forms the root of the systems control flow.

VHDL variables and signals [80] are translated into ICODE ‘register’s, ‘ram’s, ‘rom’s,
‘counter’s, ‘inport’s or ‘outport’s depending on their use. An ICODE ‘ram’ and ‘rom’ are
specified directly by the user, while a ‘counter’ is inferred from variables defined by a
loop construct. An ICODE ‘inport’ or ‘outport’ is defined for every input or output item in
the /O list of the module, with VHDL inout ports translated into separate ICODE

‘inport’s and ‘outport’s.

The processes in an architecture definition are merged into the root ICODE program
module during translation, with the concurrent operation being defined by an initial
multiple instruction activation list whose control flow never re-converges. The process is
the only concurrent construct that is converted into ICODE. All other concurrent

constructs are disallowed.

The process, function and procedure bodies all contain a sequence of VHDL operations.
These operations may be formed from complex expressions. These expressions are
translated into a list of ICODE instructions by recursively following the complex

expression VHDL parse tree and building up a sequence of simple ICODE operations that
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are based upon the VHDL operators involved in the complex expression. These operations
act upon the registers, RAMs and counters that are translated from the original VHDL
variables and signals. To break the complex expressions into simpler ICODE instructions,
various temporary variables are created for the transmission of data from one simple
instruction to the next. The number of bits required for the temporary variable storage is
inferred from the operations taking place, where for example, an addition operation
between two 8-bit variables is translated into an ICODE ‘plus’ instruction with the result
placed into a temporary variable of 9 bits. The width of the resultant temporary is enough

to contain all possible resultant values of the operation.

Loop constructs in the parse tree are translated into actions on the loop variable that is
directly translated into an ICODE variable. Assigning the starting value to the loop
variable initialises the loop. This is performed by a simple ICODE ‘move’ instruction. Any
expressions contained by the loop follow the initial assignment. The loop iteration test is
inserted after the translated contents of the loop. A conditional activation choice is made
between the first generated ICODE instruction in the loop and the first translated ICODE
instruction following the loop construct. This test determines whether to exit the loop or to
continue for another iteration. The conditional activation is implemented using an ICODE
‘if’ instruction, passing the result of a comparison of the loop variable with the loop end-

condition as the single parameter. The loop iterator is incremented or decremented at this

point.

A VHDL ‘if* expression is directly translated into an ICODE ‘if’ instruction that is fed
with the Boolean result of the translated VHDL expression. The conditional activations
that follow activate the first translated ICODE instruction in either branch of the condition.
The two branches of the condition are translated into two sequences of ICODE
instructions that follow each other in the ICODE file. To stop the first branch activating
the second branch after it is complete, the first branch performs an activation of the first

ICODE instruction that follows the translated VHDL ‘if° statement in the ICODE file.

A VHDL ‘case’ statement is translated in a similar way, with a direct translation into an
ICODE ‘switchon’ instruction. The multiple alternatives to the case test are made via
multiple conditional activations of a number of ICODE sequences. Each sub-sequence in
the ICODE file activates the first ICODE instruction that follows the case statement by

translation.
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A procedure or function call has a direct translation into the ICODE ‘moduleap’
instruction. The call is made to a translated procedure or function, which in ICODE is
translated into a ‘module’. The ‘moduleap’ instruction references the module by name.
The mechanism for parameter passing in both ICODE semantics and the structures
generated by MOODS is pass-by-reference for both input and output parameters. This
means that the parameters passed into the module are acted upon directly by the operations
contained by the module. These semantics of translation allow VHDL signals to be passed
through subprogram I/O lists directly, as the VHDL semantics for signal parameter
passing is also pass-by-reference. VHDL variables however, use pass-by-value semantics,
where the passed parameters are copied. A direct translation for variable parameter
passing into ICODE pass-by-reference semantics is possible at this stage without any side
effects due to the non re-entrant module structures generated by synthesis. Note that the
modifications made for procedural recursion (described by Chapter 5) effectively change
the parameter passing semantics into pass-by-value so that the VHDL behaviour for

variable parameter passing is not broken for recursive subprograms.

3.1.5 Optimisation

The optimisation phase of the compiler is extremely naive, and not to be confused with the
optimisation capability of the MOODS core. It is simply used to reduce the number of
ICODE operations that represent the design. The translation process uses dummy
instructions as placeholders around block operations. This simplifies the translation
process, but the dummy operations require removal. This is the first job of the optimiser.
The second job is to remove redundant ‘move’ instructions. These can occur between
translated operation blocks and results in a sequence of ‘move’ instructions that pass a

single value through the sequence. These are optimised into single ‘move’ instructions.

3.1.6 ICODE file

The ICODE file is generated directly from the internal representation of the ICODE data
structures. There is a one to one mapping between the internal translated data structure and

the generated file. This forms the last phase of the compiler program flow.

A fuller description of the ICODE format is contained in Appendix D.1. This description

includes the modifications made for procedural recursion, explained in Chapter 5. The
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most salient points about the format are listed below, followed by an example, Figure 3.5,
which shows a fragment of a generated ICODE description, along with the VHDL source

used to generate it.

° An ICODE file can contain a number of ‘module’s, which are translations of serial
subprograms. The main ‘program’ module forms the translation of the architecture
body, which can contain the translation of any number of concurrent processes.
Forming multiple unconstrained activations of the first translated ICODE instruction

of each process supports process concurrency.

° An ICODE instruction forms a single sequential operation. It has the general form:

label: OPERATION <inputs>, <outputs> <activation list>

o Each ICODE instruction can be activated by any number of other ICODE
instructions. The instruction is then notionally executed. The instructions contained
in the executed instruction’s activation list are then activated. The activations can be
conditional on the result of the operation performed by the executed instruction,
allowing the values of resultant data variables to influence the direction of the
control flow. Within the ICODE file, 1f no activations are listed for an instruction,
then the single instruction following the executed instruction executes next. For
example, in Figure 3.5, instruction ‘i9’ activates ‘i/0’, which then activates ‘i/1’,
followed by ‘i/2°. In contrast, the instruction labelled ‘i3’ only activates instruction
‘i5” given by the single actual activation and not the following instruction ‘i4’. Note

the conditional activations are formed by the ICODE ‘if’ instructions.

o Temporary variables are represented as integer constants in ICODE, and translations

of actual VHDL integer constants are prefixed with ‘#’.
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VHDL » ICODE
sz x1l > x2 then il: gr x1,x2,1
dx = xl1 - x2; i2: if 1 ACTT 13 ACTF i4
else i3: minus x1,x2,dx ACT i5
dx := x2 - x1; id: minus x2,x1,dx
end if;
if yl1 > y2 then i5: gr yl,vy2,2
dy := vl - v2; i6: if 2 ACTT 17 ACTF i8
else i7: minus yl,y2,dy ACT i9
dy := y2 - yl; ig: minus v2,yl,dy
end if;
hyp := sgrt(dx*dx + dy*dy);: i9: mult dx,dx,3
i10: mult dy,dy, 4
ill: plus 3,4,5
il2: moduleap sqrt 5,hyp
i13:
function sqgrt module sqgrt input,output
(input : integer)
return integer is
begin
end; 120: endmodule sgrt

Figure 3.5 Unsigned hypotenuse calculation ICODE fragment

° The translation of complex expressions is split into a number of simpler ICODE

instructions, with temporary variables being used to pass data through each

operation.

e The activity of a subprogram ‘module’ is initiated via the calling ICODE instruction

‘moduleap’, which halts execution of the calling flow until the called module

completes execution. A module completes when the ‘endmodule’ instruction is

activated. The instruction activated by the ‘moduleap’ instruction (instruction ‘i/3’

activated by ‘772’ in Figure 3.5) is the first instruction executed after the call to the

module completes.

3.2 MOODS synthesis core

The internal MOODS core data structures hold both the behavioural representation of the

ICODE along with a fully bound structural implementation of the behavioural data path

and control path. It is possible to output a suructural representation of the system at any
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point during the synthesis process after the ICODE file has been loaded into the internal
data structures. The MOODS synthesis process is effectively the act of optimisation of
these data structures by using multiple simple control and data path transformations,

controlled by a transformation selection algorithm.

There are two main core data structures, the control path and data path graphs (see Figure
3.2). The control path holds a graph representation of every state in the controlling state
machine, where each state executes one or more ICODE instructions. The data path holds
a number of data path nodes that implement the operations performed by the ICODE
instructions. The behavioural ICODE representation is not directly used by the structural

output, which instead relies upon just the control graph and data path graph structures.

The structural representation is built in the initial stages of the MOODS core from the
input ICODE. The initial generated structure is formed from a naive implementation of the
behaviour, where the structural construction algorithm places each ICODE instruction in a
separate control state node and creates a separate data path node for each functional
ICODE operation and ICODE variable. This means that the initial structure is both

maximally serial, with no shared operations and variable storage elements in the data path.

The controlling state machine controls the data path from the state enable signals, where
each state has a single enable signal that is high during an active state. These active state
signals indirectly drive the data path nodes via a number of conditional signals. Particular
data path units have controlling inputs that are driven from the control path. For instance,
register-type data path nodes have the load-enable signals driven and multiplexor-type
data path nodes have the selection inputs controlled. Feedback from the data path to the
controlling state machine is formed via the same conditional signals, which can be used to
determine the next state from conditional branches of the state machine. The outputs of

comparison-type data path node operators are used for these conditional choices.

3.2.1 Control path

The control path data structure is formed internally from a graph structure, where each
graph node represents a single control state in the controlling state machine. Each state is
used to execute one or more ICODE instructions. Control arcs between the graph nodes

form the links to the next and previous control states in the state machine.
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The internal control graph data structure is sufficiently abstract that any number of
physical implementations of the state machine could be used, each describing the same
number of control states and transitions between states. At present, only one
implementation method is used; a one-hot encoded token-passing structure, where each
control state node is built from a control cell that contains a single register bit that is
activated for one clock cycle by one or more token inputs to the cell. The activating token
signals are representative of the arcs between the control states of the abstract control
graph and the registered state bit forms the state enable signal, used to control the data
path. This style of implementation suits the register-rich Field Programmable Gate Array
(FPGA) architecture that is used for the demonstrators. Alternative state machine
implementations could be formed from a binary or grey-coded state representation in

limited register environments or even by a micro-coded controller.

Figure 3.6 shows the initial control graph and a data flow representation of the data path
graph of the partial design described in Figure 3.5. The figure shows that each instruction
1s contained in a separate control state (S; to S;3), with the data flow between control states
being stored in temporary registers (labelled 1 to 5) and translated intermediate registers

(‘dx’ and ‘dy’). The data path operators that implement the ICODE instructions are shown

on the right hand side.
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Figure 3.6 Initial control and data flow graphs for the unsigned hypotenuse
calculation

Each control state data structure holds a list of ICODE instructions that are executed in
that state. The instructions within a state are also partitioned into a number of groups,

where each group contains an acyclic subgraph of instructions, where the graph
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determines the data dependency between instructions in the same control state given by
the flow of data between them. Each group can execute concurrently with any other group
in the control state, due to the data independence of the instructions held by different
groups. The data dependency information is only useful in a single control state, as it
allows state-local concurrency to be utilised. Any instructions contained in any other

control state execute at a different time, with no concurrent execution issues.

A single group of two data dependent operations in a single control state is shown in
Figure 3.7a. The operations are data dependent as the result of the first addition operation
forms one input operand of the second addition operation. The consequence of chaining
the two additions in a single control state is that two separate adder data path units are
required and the propagation delay for both operations must be summed together in order
to calculate the register-to-register delay. This value is used to determine the minimum
possible clock period for a design. Figure 3.7b shows the available time for each

instruction, along with the present clock period idle time.
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a) Delay optimised control and data flow b) Chained Instruction timing

Figure 3.7 Execution of chained instructions in a single control state

The synthesis optimisation process requires knowledge of the execution time for each
ICODE instruction in order to fully optimise the control path with respect to the required
clock period. Characterisation data is fed from links to the implementing data path nodes
of the relevant ICODE instructions. All data path nodes are fully bound to a physical
technology-specific library cell during synthesis, from which the characterisation data is

gained.
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Six different types of control nodes are used in the control graph data structure. These are
listed in Table 3.1 below. This is only a naming convention used to highlight the actions of
different sections of the controlling state machine. When the state machine is optimised
using scheduling transformations, the distinctions between the different types of control
nodes become less apparent. The exceptions to this are the collect and call nodes, which
cannot be merged with any other type of node. The collect node can be completely

removed by the parallel merge transformation however.

Control node type | Description

General This has a single input and a single output arc and can contain any ICODE

instructions other than ‘collect, ‘moduleap’ or conditional instructions.

Fork This node can contain the same ICODE instructions as the general node
and has a single input arc and two or more unconditional output arcs. This

node is used to initiate a set of parallel execution threads.

Collect This node contains a single ICODE ‘collect instruction only and is used to
synchronise a set of parallel execution threads into a single thread. The
node has two or more input arcs and a single output arc. The node does not
activate the next state node until a fixed number of input activations are
received. This node complements the concurrent branching fork node. Note
that the threads formed from the translation of VHDL process concurrency
are not actually collected in this manner. Also, the VHDL compiler, rendering
the collect node obsolete, no longer supports a concurrent translation of
sequential threads. The mechanism is still supported by the MOODS core

however, and is listed here for completeness.

Conditional This node can contain any ICODE instruction supported by the general node
as well as requiring a conditional ICODE instruction such as ‘if or ‘switchorr’
to form the conditional branching choice. The node has a single input arc
and two or more conditional output arcs. This node is used to initiate only

one branch of a set of mutually exclusive execution threads.

Dot This node is the complement to the conditional node. It has two or more
input arcs and a single output arc. Any of the input arcs can activate the
node. It forms the convergence of any number of mutually exclusive
execution threads. It supports the same set of ICODE instructions as the

general node.

Call This node only contains a single ‘moduleap’ ICODE call instruction. It has a
single input and output arc. The control node forms the basis of the sub-
module calling mechanism within the controf graph. The call node stays
active throughout the duration of the sub-module call, only activating the

next state when the sub-module completes execution.

Table 3.1 Descriptions of the different control node types
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Once the control graph is optimised, the only distinct types of node are the call, collect and
general node types. These are physically realised by the ‘call control cell’ described in
Section 5.3.4.2 and the ‘collect control cell’ (obsolete), with all other nodes realised by a

‘general control cell’ described in Section 5.3.4.1.

3.2.2 Data path

The internal representation of the data path is formed from a disjoint graph of data path
node units, connected indirectly via data path nets, which themselves have a level of
indirection used to determine the bit-range connectivity of the multi-bit nets. The core
graph node, the data path unit, describes the data path operations, storage and selective
connectivity that implements the data processing side of the source ICODE file. There are

three main types of data path node unit.

1. A functional unit implements ICODE operations such as additions, multiplications
and comparisons. These operations are purely combinational, executing without the
need for a controlling clock. These types of nodes are not controlled directly; they
instead rely on the linked system to drive the inputs of the functional unit and to read
the results of the unit at controlled time points. The job of the combinational
functional unit is to produce the result of the operation in a specified amount of
physical time beginning from the time that the inputs to the unit are modified. An
exception to this rule is formed from the use of ALU type functional units, which
can perform more than one type of operation. The type of operation is selected via a
set of controlling input signals, driven from the controlling state machine. An
example of an ALU unit is an add/subtract unit, where the unit is used in place of a
single add and a single subtract unit under area considerations. Note that only one

type of operation may be used in any single control state.

2. A storage unit implements the translation of ICODE variables (both user defined
and temporary). A variable requires physical storage when its value is written to and
read from, from within different clocked time periods. Each state of the controlling
state machine executes in a different clock period, which means that any variable
that is operated upon within two or more states with data flow between these states
requires physical data storage. A number of different types of storage unit exist,

optimised for different purposes. The general register type storage unit is used for
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the storage of temporary variables and general data variables. A variable that is only
ever reset and incremented (or decremented) is translated into a counter type storage
unit. A third type of storage unit 1s formed from a multi-level array variable, where a
‘ram’ type storage unit 1s created for this purpose. The controlling state machine
directly controls storage units, where each unit has a set of input control signals. The
type of control is dependent on the type of storage unit, with the most common
operation being a register load operation. A register can be read at any time from a
simple link to the register output. Note that the register is updated at the very end of
the execution period of the control state in which a write operation is performed,
leaving the rest of the execution period to calculate the value written into the
register. This situation is seen in Figure 3.7b, where both addition ICODE
instructions i1 and i2 are performed in the same control state, S, as the register load

operation of variable ‘7 .

3. The final type of data path node unit is the interconnect unit. These units are used to
select the inputs of any shared data path unit that has multiple input nets. The
interconnect units are only physically generated as a post-processing step after the
core optimisation process has completed. The library cell that implements the
interconnect node type is a multiplexor. As these multiplexor cells are not physically
created until the post-processing step and the cells have both area and delay factors,
the optimisation process must take into account these factors from the implied
position of the multiplexor cells. Multiplexors are not physically created during
synthesis for both time and code size efficiency of data path modification reasons. A
multiplexor is implied when a data path unit has more than one input net connection,
where selection between the different inputs is required at different times in the
control flow, controlled by the state machine. The multiplexor has a number of
selection inputs that are driven from the state machine enable signals via the

conditional equations, in a similar manner to the ALU select signals.

Every data path node is treated in the same manner and with the same priority as every
other data path node. The data path node graph element is stored in a generic data structure
block. Links into the cell library give the bound functionality of each node, along with the
area and delay information used in the optimisation process. The generic nature of the data

path nodes gives technology independence to the synthesis core, while allowing



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 68

technology specific cell information in the form of the area and delay estimates stored

within the selected cell library to feed the synthesis process.

The signals that link the data path nodes to the control path nodes are represented by
Boolean logic equations. This abstraction of the control signal generation allows for
further logic optimisation of these linking signals. One reason that direct-linkage between
the control and data paths cannot be used is due to the scheduling optimisations merging
control states together, including conditional branches. If, for example, a variable is
updated by one conditional branch of a control flow and not in the other, and both
branches are optimised into a single control state, the register load enable signal requires a
conditional drive dependent on the branch selection comparison result now calculated in
that control state. Another, perhaps simpler reason for the need of linkage equations is that
a register may need updating from a number of control states. The register load enable
signal in this case is formed from the logical-OR of all of the state enable signals in which

the variable being stored by the register is updated.
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Figure 3.8 Data flow and data path views of a shared adder functional unit

The data flow diagrams shown in Figure 3.6 and Figure 3.7a show the activity of
operations unrolled into the time-steps in which they operate. This is not fully
representative of the data path graph described by this section. Figure 3.8 illustrates the
differences between the data flow representation and the actual generated data path for a
shared adder functional unit, used unconditionally in two consecutive control states. The

temporary result of the first add-operation requires register storage as it is written in state
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S; and read in state S,. Note the inclusion of the interconnection multiplexors, which are
generated by the post-processing step. This type of structure is generated if a design is
optimised for area, or if the add-operations cannot be chained together when delay

optimising due to a specified clock period being less than the combined delays of two

adder functional units.

3.2.3 Transformations

The optimisation is an iterative process, where the task is split into many small local
optimisation transformations on selected parts of the design. This allows the traditional
synthesis sub-tasks of scheduling, allocation and binding to be performed simultaneously
within the optimisation loop [81,82]. The transformation selection and design section to

transform are selected by the optimisation algorithm.

Each local transformation 1s semantic preserving, resulting in a complete design after
every execution of a transformation on the design. The synthesis data structures hold a
complete and fully bound design throughout the entire synthesis process. There are
fourteen different transformations, each performing slight changes in the design to adjust
the scheduling of the controlling state machine and the allocation and binding of the data
path. The fourteen transformations include six inverse transformations that allow

backwards steps to be taken within the simulated annealing optimisation algorithm.

There are four steps that relate to the application of a single design transformation. This

forms a single iteration of the optimisation process. The steps are listed below.

1.  Selection. The initial stage of a transformation is to select the transformation to
apply from the fourteen available, and the portion of the design to which the

transform is to be applied. The optimisation algorithm controls this stage.

2.  Testing. The second stage is used to test the validity of the given transformation on
the portion of the design that has been selected. It is possible for some
transformations to alter the design behaviour if applied incorrectly. This stage is

used to filter out these misapplications by aborting the transformation.
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The third stage calculates an estimate of the effects that the

transformation would have upon the design performance. This stage does not affect

the core data structures, leaving the design intact. The optimisation algorithm uses

the result of the estimation to determine whether it is beneficial to apply the

transformation. The transformation can be aborted at this stage.

4.  Execution. The final stage performs the physical design transformation.

3.2.3.1 Scheduling

Scheduling transformations are used to modify the control graph with a change in the

assignment of ICODE instructions to control nodes and a change in the number of control

nodes used to perform a number of ICODE instructions. There are four state merging

transformations, two inverse state-splitting transformations and a clock period adjustment

transformation supported. These transformations and their effects are listed in Table 3.2

below.

Transformation | Effect

Sequential The most basic control node merging transform takes two consecutive control

merge nodes and moves all the instructions contained in the second into the first. The
second node is then removed from the state machine, as it implements no
ICODE instructions. Any data dependencies between ICODE operations in the
merged control node result in these operations being chained together within
an acyclic instruction group graph, with all intermediate data values having their
registers bypassed.

Parallel merge | This merging transform is applied to a concurrent branching fork node, where

the first nodes in each branch are merged into a single successor node. This
replaces the unconditional arcs to the multiple concurrently executed nodes
with a single unconditional arc to a single control node that performs all of the

operations previously each controlled by a separate control node.

Merge fork and

successor

This transformation combines elements of the first two, taking a branching node
(fork or conditional) and merging the successor instructions contained in one
branch into the branching node. This also results in operator chaining and
register bypassing. Another feature of this transformation occurs when two
conditional branches are merged into the branching node, forming an

unconditional activation of the successor to both branches.
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Transformation | Effect

Group This transformation is geared to removing temporary variable register storage
instructions on | by trying to remove registers with one input net and one output net. These
register variables are accessed by one reading instruction and one writing instruction.
The transformation attempts to merge the group containing the writing
instruction into the control state containing the reading instruction. This results

in the register being bypassed (removed) if successful.

Ungroup into This inverse transformation moves groups of instructions in a control node into
groups two separate control nodes with the first node containing a single selected
group and the second node containing all other instruction groups originally
contained in the single control node. As groups of instructions are data
independent, the execution order of the separated groups cannot break the

behaviour.

Ungroup into The second inverse scheduling transformation splits all the instructions in a
time slices control node into a sequence of control nodes such that the time taken by any
instruction group in any generated node does not exceed a specified time
value. This transformation can reinstate previously bypassed registers used io
store temporary values between control states. Any instructions that exceed the

specified time period on their own require multi-cycling.

Clock set/ This transformation is really a global optimisation step that specifies the clock
multi-cycling period to optimise to. The ungroup into time slices transformation is applied
after the clock period is adjusted, so that no control node violates the supplied

clock period.

Table 3.2 Scheduling transformations

3.2.3.2 Allocation and binding

As with the scheduling transformations operating upon the control path, the allocation and
binding transformations act upon the data path, where the transformations are concerned
with the sharing and unsharing of data path units. The four unsharing transformations are
provided as inverse transformations to the two sharing transformations. A further binding
transformation is also provided that can select different functional units to perform the
same operation. This does not require an inverse transformation, as it can reverse the
actions of previous binding transformations itself. These seven data path transformations

are detailed in Table 3.3 below.
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Transformation | Effect

Combine This transformation tries to merge two functional units into a single functional
functional unit. This is only allowed when none of the linked instructions performed by
units each source unit are performed at the same time. This has the effect of further

time-sharing a unit between multiple operations, where a functional unit can
perform only one operation at a time. A merged functional unit results in a
number of different inputs to the unit, which are selected by the multiplexor
interconnect nodes, which are themselves controlled by the state enable
signals. Note that the availability of multi-function ALU units in the cell libraries
enhances the actions of this transformation by allowing different types of

operation to be merged.

Share registers

This transformation attempts to share storage units, in particular register units.
This can only be performed if the variables stored in the two registers being
shared have non-overlapping lifetimes. Lifetime analysis for each variable takes
into account mutually exclusive conditional branches and variable persistence

through loop constructs.

Uncombine
instruction

from unit

This transformation forms the inverse of the combine functional units
transformation. It takes a functional unit that implements two or more ICODE
instructions and removes one of these instructions from the unit, creating a
separate functional unit specifically for the single removed instruction. This
relies on the cell library to determine the type of unit to use for the
implementation of the extracted instruction. The unit from which the instruction
is extracted may also have the unit type re-evaluated, as an ALU could now be
replaced by a single-function unit, dependent on the types of operation left

being performed by the original unit.

Uncombine

unit fully

This transformation utilises the uncombine instruction from unit transformation
described above to completely uncombine all ICODE instructions from a
functional unit into a number of functional units, each performing only one

instruction from the original shared unit.

Unshare

variable from

In a similar manner to the first uncombine transformation, the unshare variable

from register transformation takes a single shared register type storage node

register and splits one of the implemented variables into a separate storage node.
Unshare This transformation utilises the unshare variable from register transformation
register fully described above to completely unshare all ICODE variables being implemented

by a single register storage unit. This resuits in a number of separate registers,

each being used to store only one ICODE variable.




D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 73

Transformation | Effect

Alternative This is the only binding transformation. For this transformation to have any
implementation | effect, two or more different implementations of a type of unit must exist in the
cell library. The transformation attempts to replace a unit of any type with an
alternative implementation that has different area and delay characteristics,
changing the cost of the unit. The cost function used by the optimisation

algorithm is used to determine whether to accept the new unit binding.

Table 3.3 Allocation and binding transformations

3.2.4 Cost function

The cost function is used during the estimation phase of transformation application. It
provides a measure of the change in design characteristics over the application of a single
transformation. The function is determined by the target objectives specified by the user,
where the multiple, possibly conflicting objectives are used by the cost function in a
weighted-sum calculation to generate a single value representation of the change of

“energy” of the system with the application of a transformation.

The user objectives can be the design area, delay, power consumption or any other
measurable factor that is stored by the cell library. The user assigns priorities to each
measurable item, which is used to weight the level of influence of each objective used by

the cost calculation. The objectives and the state of the system are used to generate an

actual cost value.
The change in energy of the system is given by:

Cestimate - Cprevious

AE =
Cinitial

Where Cestimate 18 the estimated cost of the system after the transformation is applied,
Corevious 18 the cost of the system before the transformation and Cipya is the cost of the
design after its initial construction. A negative result indicates an improvement in the

design structure with respect to the user objectives.
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3.2.5 Optimisation algorithms

There are two optimisation algorithms that MOODS currently has implemented. Both use
the transformation selection, testing, estimation and execution method of applying the
single transformations in the main synthesis loop. The algorithms are in charge of the
transformation and design portion selections as well as the number of transformation

iterations to execute.

3.2.5.1 Simulated annealing

The first algorithm is based on physical annealing [83,84,85,86], which is performed by
slowly cooling a material from a high-energy liquid state into a minimal low energy solid
state. If the cooling is controlled properly, the final energy state will stabilise at a globally

minimum level for the whole material, reaching thermodynamic equilibrium as the

material freezes.

It is surmised that a structural design could have many local minima on the configuration
path to achieving a global minimum cost value. It is specifically for this reason that the
simulated annealing algorithm is used. Figure 3.9 illustrates this, where a physical cost

value of a number of closely related one-dimensional design configurations are shown.

Initial
configuration

Cost

Local minimum

Global minimum

A 4

Configuration

Figure 3.9 Design cost plotied against a single dimensioned configuration space
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The annealing algorithm works by selecting a random transformation and design section to
operate upon and performing the estimation of the cost value after the transformation.
From this, the cost function is used to determine the change in energy of the system,

whether it results in degradation or an improvement in the design structure.

Any cost improvement 1s automatically accepted, and a cost degradation is accepted

dependent on the probability:

Pzexp(-?E) . AE>0

Where P is the resulting probability given between 0 and 1 of acceptance of degradation,
AE is the estimated positive change in energy given by the transformation and T is the
temperature set by the annealing algorithm. This shows that as the temperature decreases,
the probability of acceptance of degradation also decreases, as well as a large degradation
having less chance of acceptance than a smaller degradation at a given temperature. The
actual choice of whether to accept is made from the comparison of a normalised random

number with the acceptance probability.

The annealing algorithm is implemented by a nested pair of loops, with the outer loop
generating slowly decreasing temperature values and the inner loop counting for a fixed
number of transformation iterations performed at each temperature value. The initial
temperature, final temperature, rate of change of temperature and the number of iterations
performed at each temperature level determine the optimisation speed, the ability to find
the global minima and the point at which optimisation ceases. These values require
manual selection by the user, with trial and error used to determine the best annealing
schedule for each design. Generally, optimisation speed is traded off against the quality of

the resultant design structure.

3.2.5.2 Tailored heuristic

As degradation of design cost is allowed in the simulated annealing algorithm, with a slow
reduction in probability of degradation acceptance over the course of the algorithm,
simulated annealing is found to take a large amount of time. This led to the creation of a

faster heuristic algorithm that utilises a fixed optimisation schedule, guided by an analysis
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of the design, which produces a predictable final structure for every optimisation run of
any fixed design. The heuristic is designed to perform trade-offs between area and delay
only, with knowledge of the trade-offs involved gained through analysis of a number of

test designs.

The heuristic [87] uses the same set of transformations that are used by the simulated
annealing algorithm apart from the inverse transformations. This means that the algorithm
applies only improvement steps without any backtracking. Two base routines are provided

that optimise for area and delay. These are:

1. Compact control path. This routine utilises the scheduling (control graph merging)
transformations to reduce the number of control states used to execute sequences of
ICODE instructions. This reduces the delay by performing more within a single

control state and slightly reduces the area with the removal of control state nodes

and with temporary register bypasses.

2. Compact data path. This routine utilises the allocation and binding (data path node
merging) transformations to optimise the data path for area. Trade-offs are made

here for the area saved by merging operations with the area created with the creation

of input driving multiplexors.

Both routines make use of a number of design metrics, such as the control path’s critical
path, which determines the control nodes, which affect the circuit delay the most. Each
data path unit is given a shareability factor, which determines the best units to share for
the best area savings to be made. Each control node is also given a share factor, which
gives an indication of the effect that control node merging has on the ability for future data
path unit sharing. An equivalent of the share factor for the data path is the critical path
factor that is assigned to each data path node. This gives an indication of how close the

functional unit is to executing ICODE instructions on the critical path.

Throughout the optimisation process, trade-offs are made between the results of merging
control states into one, creating operator chaining, against the results of merging the
functional units, forcing separate control states for operations performed by a shared data
path unit. The two routines are designed to optimise to a particular design objective, while

reducing the effect on the secondary objective.
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The two objectives are area and delay minimisation, which can be assigned different or
equal priorities by the user. If the delay objective is given priority, the compact control
path routine is called with an increasing share factor threshold until the delay target is met
or no more compaction can be performed. The compact data path routine is then called by
a similar loop with an increasing critical path factor threshold until the area target is met or
no more sharing is possible. If the area objective is given priority, then the compaction
routines are called in the reverse order. If both the area and delay objectives are given the
same priority, then the compaction routines are called by a single loop, with both an
increasing share factor threshold and critical path factor threshold. After all of these
optimisation runs, register-sharing transformations are applied to any registers capable of

being shared and alternative cell selections are made.

3.2.6 Subprogram conversion

Subprograms get converted into ICODE modules during compilation. These modules have
a contained control flow, with a single entry point and single exit point in the form of the
‘module’ and ‘endmodule’ instructions. During optimisation, the single exit point may be
split into a number exit-points dependent on any conditional control flow branches and
control node merging (see Figure 3.10c). The ‘endmodule’ instruction is removed from the
instruction flow, as it has no physical meaning, being replaced by an end-signal driven

from all control nodes that contain an exit point.

Module activity is initiated by a ‘moduleap’ (module-leap) call instruction contained in a
separate module. The special ‘call control node’ state machine cell implements the call
instruction. The extra ‘activate’ signal generated by the call node is used to drive one of
the token inputs of the start-node in the called module, which initiates the called module at

the same time as the call node itself (see Figure 3.10d for an example timing diagram).

The end-signal generated by the called module is used to feed the extra ‘end’ input of the
call control node. The call control node activates its successor node (containing the
instructions that follow the subprogram call) only when the call control node is active and
the ‘end’ signal is driven. The call control node then enters an inactive state. The call
control node 1s left in an active state for the duration of the call. All this is shown by the

example given in Figure 3.10(a to d).
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a) Source VHDL b) Translated ICODE
function absolute (input : integer) MODULE absolute input, absolute
return integer is inport input{0:311]
begin outport absolute [ 0:31]
if input < 0 then
return -input; i1: Is input, #0, 1
else i2: if 1 ACTT i3 ACTF i4
return input; i3: neg input, absolute ACTi5
end if; i4: move input, absolute
end absolute; i5: ENDMODULE absolute
i41:
result ;= absolute ( value ), i42: MODULEAP absolute value, result
i43:

¢) Partially-optimised state machine

Module: root program v Module: absolute

d) Simulation waveforms of the Call - Return sequence

Sy | | _r_ ]
Syz ___.__{——q ,{_—__,L___

activate S 42 ] \]< | J—L—]\;
end S,, . / i
Sis, ‘{——_L

s, '

Figure 3.10 Module call-mechanism example
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Any I/O vaniables are passed by reference in the generated output structure; the registers
used to hold the passed output values are driven directly by the submodule controller and
the inputs are read directly from the passed values, which can be constant or variable. The
controlling signals for the register load-enable inputs and multiplexor select inputs are
generated from the multiple levels of ‘moduleap’ ICODE instructions for nested calls, or

more specifically, from the call control node activity signals, combined with the local data

path unit driving signals.

All of the control signals used by the calling mechanism are generated during the post-

processing stage of MOODS from a translation of the ICODE instructions that implement
the call.

3.2.7 Post-processing

The post-processing stage is used to complete the structural description of a design. It has
been said that MOODS contains a full structural description during the entire synthesis
optimisation process. This is not untrue, as optimisation may be stopped at any point. The
post-processing stage is only used to complete the structures that are implied, during
optimisation, by the allocation of ICODE instructions to control nodes and from the
multiple input nets into data path units. The post processing stage can also be used to

insert a number of run-time data path tests [88,89].

The first step of the post-processing stage is to generate any multiplexors that are required,
as these interconnect data path nodes are completely implied during optimisation for
efficiency reasons. A multiplexor is required when a data path node (other than a
multiplexor) has multiple input nets that are driven when specified ICODE instructions are
active. The multiplexor is created and linked into the data path structure and also given a
copy of the link to the ICODE instructions that are used to drive each input. These

instructions are used by the second post-processing step.
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a) Source VHDL b) Translated ICODE
function absolute (input : integer) MODULE absoclute input, absolute
return integer is inport input[0:31]
begin outport absolute {0:31]
if input < 0 then
return -input; i1: Is input, #0, 1
else i2: if 1 ACTTiBACTF i4
return input; i3: neg input, absolute ACTi5
end if; i4: move input, absolute
end absolute; i5: ENDMODULE absolute
result ;= absolute (a ); i42: MODULEAP absolute a, result
.résult = absolute (b ); |54 MODULEAP absolute b, result

¢) Fully-optimised state machine

Module: root program Module: absolute

' ﬁactivatef """""""""""""

4 Ny

CALL o by

i42 S o i1 )
42 ac@yate i2
i3
M 4 i4

7 e @)

d) Data path with generated controlling signals

input multiplexor for the output muitiplexor drives the
subprogram is only dependent output port directly, with
on the call-instructions used to selection only dependent on the
e activate the module module activity and the

condition generated from the
less-than comparator

output register load is
dependent on both the
load-state and the call-
instructions used to
, activate the module

} result

Figure 3.11 Control signal generation example
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The second step is to generate a number of control signals within the conditional signal
list. These are formed from Boolean equations and are used to drive the control inputs of
every data path node. These control inputs are typically created for multiplexor and ALU
selection signals, register load-enable signals, counter signals and memory read/write
signals. This action effectively fills in the controlling links between the control graph and
the data path graph. These signals are generated from a translation of the ICODE
instructions that are implemented by the data path units. The control nodes in which the
linked ICODE 1nstructions are contained form the sources of the generated signal. Any
relevant conditional branching equations active within the control node in combination
with any call stack control nodes are included in the generation of the control signals. This
is shown by Figure 3.11d, which uses the same VHDL ‘absolute’ function used by Figure
3.10. In the second case however, the control graph is fully optimised (Figure 3.11c¢), with
instructions i/’ to ‘i3’ merged into a single state. The function is called twice, with

different parameters passed (Figure 3.11a and Figure 3.11b).

The final post-processing step is used to tidy up the data path graph, removing any unused
registers, which have been bypassed during the optimisation process. After this final stage,
the output files are generated, including the DDF data structure dump, explained in

Appendix D.2 and the structural VHDL file generation, explained in Appendix A.5 as part

of a new process addition to MOODS introduced in the next section.

3.3 New features

The addition of support for dynamic memory raises the abstraction level in terms of data
structure creation and supported language features above the present level. The version of
MOODS described in this chapter creates structural designs with all data and the
controlling state machine created with a static memory paradigm. The point of
implementing a system that uses abstract data types is that the simple hardware one-to-one
description is migrating towards a similar abstraction level to software. The increased
support for composite data structures and procedural recursion leads to the increased use
of subprogram procedures to handle common actions upon these data structures. The
additions for procedural recursion and dynamic object creation, each increasing the
benefits of the other, require modifications to the system shown in Figure 3.1. The

modified system is shown in Figure 3.12.
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------——--—-——---———-------7/BehaviouraIVHDL/ --------------------------------------------
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Expanded module
templates

/ Report files / / Design Data Format / - -I
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Figure 3.12 Modified MOODS system data flow

The diagram above shows the system data flow structure after the inclusion of the
modifications that implement dynamic memory allocation. The darker shaded regions
indicate a larger amount of modification than the lighter shaded regions. The darkest

blocks indicate a new part of the structure. The diagram shows modifications made to the
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VHDL compiler, the inclusion of a heap manager interface library, the ICODE file format,
the MOODS core and to the DDF file format. It also shows the inclusion of a new back-
end linker program used to generate a slightly modified structural VHDL file format.

Not contained in Figure 3.12 is the creation of a Graphical User Interface, GUI program
that controls the synthesis process from internally generated scripts, displays sections of
the internal data structures, namely the control graph (see Appendix A.5.5) and allows a
project structure to contain the various input files used by a user’s design. This program
was initially designed only to display sections of the MOODS data structures and is now

being continuously developed as a full controlling GUL

Explanations of the modified and created structures in Figure 3.12 are listed below,

highlighting the changes made for dynamic memory:

1.  Compiler and libraries. The compiler is modified by increasing the synthesisable
subset of the language by enhancing the parse tree and the translation of the parse
tree into ICODE format. Explicit dynamic memory actions interface to a heap
manager with the use of an interface library. Procedural recursion is supported via
the generation of dynamic return address and stack manipulation instructions.

Procedural inlining is also implemented for efficiency reasons.

2.  ICODE file format. The ICODE file format is modified to support procedural
recursion. No modifications are required for heap memory support. Refer to

Appendix D.1 for the full ICODE description.

3. MOODS core and cell libraries. Both the MOODS core and cell libraries are
modified to support procedural recursion. The cell library has a different type of call
control node inserted, which is created for the recursive calling mechanism. The
MOODS core heuristic optimisation algorithm uses a modified critical path
calculation. The post-processing stage of MOODS 1is also enhanced with the
inclusion of compiler-generated return addresses used in the control flow decision-
making process via automatically generated decoders and conditional linking

signals.
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4.  DDF file format. The DDF file format 1s modified to support procedural recursion.
Changes to fully support the post-processed structural design data structures are also

made. Refer to Appendix D.2 for the full DDF description.

5. DDFLink linker and modified structural VHDL. This program is completely new. It
was anticipated that it would act as a linker for various structural designs including
an automatic link to the heap manager system for any design using dynamic
memory. For a full description of ‘DDFLink’, refer to Appendix A.5. The program
is now used for the generation of the structural VHDL file output, previously

outputted by MOODS directly.

6.  Heap manager library. This library is used to link with any design that uses dynamic
memory. The library contains the heap manager controller and underlying memory
controller, explained in Chapter 4.3. Using MOODS to synthesise the behavioural
description of the controller creates the library. The heap manager forms a
concurrent system that interfaces with any users’ designs that require dynamic
memory storage. The library is linked during logic synthesis with the use of the top-
level VHDL file.
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Chapter 4

Dynamic allocation

This chapter describes the integration of dynamic memory allocation into the MOODS
synthesis tool. The language used for input of behavioural designs is VHDL, an IEEE
standard. VHDL is capable of describing dynamic data structures as part of the standard
language [6], so the language constructs are used to describe any dynamic memory

behaviour directly.

The chapter begins with a description in Section 4.1 of the use of dynamic memory in the
VHDL context and introduces the modified system structure and enhancements to the
supported VHDL subset. Section 4.2 describes the modifications made to the VHDL
compiler in order to fully support dynamic structures. The dynamic data that is created for
the user requires support at runtime in the form of memory management. A memory
management scheme optimised for a particular design style is described in Section 4.3.
The effects of incorporating dynamic memory in the described manner with respect to
behavioural optimisation are noted in Section 4.4 and the effects and handling of potential
errors are shown in Section 4.5. Finally, any limitations and alternative implementations

and methods are explored in Section 4.6.

4.1 General overview

Dynamic memory is defined as storage space that is created, used and destroyed at
runtime. The concept of ‘runtime’ in a synthesis environment is with respect to the
synthesised design, where the time in which the design is active either during simulation

or as a powered physical design defines runtime.

Many languages have support for the use of dynamic memory in its various forms. The

most commonly used form of dynamic memory comes from the implicit use of a stack to
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hold the local contents of the memory within a procedure. This kind of dynamic memory

is described in Chapter 5 as part of the implementation of procedural recursion.

The explicit creation and deletion of storage space for object types is the other form of
dynamic memory that goes hand in hand with the method for referencing the dynamically
created memory. This memory is not directly linked to the call tree structure of a user’s
design, as is the stack frame; it 1s created at any point within the flow of the design and
deleted at any arbitrary point further into the execution flow from a memory space known

as the heap.

Most languages provide access to dynamically created objects via a direct memory address
pointer, which uniquely identifies the object within an address space and allows direct
access to the address value. VHDL uses the concept of access types that contain the
reference to a particular object type without allowing access to the actual value stored by
the access type. This means that a translation of VHDL can use a direct memory address
to store an object reference, but no access of the actual underlying address may be gained
from the language. A VHDL variable is used to store the value held by an access type just
as a variable would store an integer or bit vector, but the supported operations on the

variable are limited to dereferencing operations, with no direct modification allowed.

For every object type that 1s stored dynamically, VHDL requires that a type must be
defined that points to objects of the particular type requiring allocation. This is because the
strong typing of VHDL disallows a generic pointer type. This also means that only access
type references to a particular object type can be used to reference that object, with no

casting between access types or with any other types allowed.

The main use for dynamic memory is found with the creation of complex data structures
that can be manipulated in a structure by simple reference re-assignment. This reference
modification is built into the language along with methods for creation and deletion of
dynamic objects using these references and methods for gaining the value referenced by
the access type variable (dereferencing). This makes source code neater and smaller than
would be found if the user were required to explicitly create and manage a structure to

hold and manipulate the required dynamic data structures.
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The use of complex data structures has been well proven in software programs to help
with the solving of complex problems. As the level of programming style of behavioural
synthesis is becoming more abstract and approaching the level of abstraction found in
many software languages, the addition of dynamic structures to designs created by a
synthesis system will bring the behavioural synthesis abstraction level even higher, which
enables problems previously only easily solvable within a software environment to

migrate into the hardware domain of behavioural synthesis, with its associated benefits.

The rest of this chapter describes how the concept of dynamic memory access is
incorporated into the MOODS behavioural synthesis system. It details the many
modifications to the VHDL compiler that enable the language defined methods to be used
and describes a memory management environment from which the dynamic memory is

allocated via an interface that is automatically incorporated by the VHDL compiler into

the user’s design.

The integration of the dynamic memory access is accomplished with no changes to the
core synthesis optimiser. The major changes are made to the VHDL compiler, which
generates designs that interface to the heap management system - the completely new

runtime system.

4.1.1 Generated system structure

The additions made to the MOODS synthesis system result in a structural output design
that interfaces to a heap management system. The output structure is not created by the

user, but by the MOODS synthesis tool itself. The generated structure is shown in Figure

4.1 below.
Behavioural
VHDL Ee/%> St\r/t:-(’:[‘g.ll_ral /!ngéﬁce manHaZ?r)nent
Sg(‘;;‘;e design N system

Figure 4.1 Generated system structure
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The user provides source code that uses the dynamic memory constructs of the VHDL
language. These constructs are then translated into a form that directly accesses a heap
management system by a number of interface procedures. The interface ports that link to
the structural implementation of the heap management system are added automatically to
the entity port list declaration of the generated structural VHDL design. This design then
links to the heap management system using the generated port signals, which have direct

opposite equivalents in the heap manager.

MOODS generates the structure shown in Figure 4.1 after the modifications described in
this chapter were added. The changes required for this included expanding the language
capabilities of the original VHDL compiler, and generating ICODE that utilises a new

interface into a heap management system that is created as a concurrent runtime system.

The initial concept was to perform most of the system enhancement through modification
of the VHDL compiler front-end and provide a back-end linker to automatically link the
user’s generated structural output with the heap management system component.
However, the use of third party RTL synthesis tools allows the linker system to be
bypassed, where the netlisting capabilities of the RTL synthesis tool and a top level
VHDL linker file are used instead. This means that the synthesis of dynamic memory
objects is performed solely by modification of the VHDL compiler and the provision of an
interface system and the heap management system into which to interface. No
modification to the MOODS synthesis core is necessary. The top level RTL VHDL file
contains the structural output of MOODS for any user designs linked as components, with
clocking systems and ancillary buffers added as required. The implementation of the linker

is left as further work. Details of the initial implementation of the linker are given in

Appendix A.5.

4.1.2 Synthesisable VHDL subset enhancement

The VHDL compiler consists of three main phases. The first is to generate an internal
representation of the parse tree from the source VHDL. The second phase is to convert this
internal representation into a simpler representation in the form of ICODE. The ICODE

file is then output by the third stage as a direct representation of the converted internal

structures.
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The changes to the compiler consist of an increase in the language capabilities with the
addition of a more complete parse tree, as the original compiler would not parse the entire
VHDL language, only the synthesisable subset required by MOODS. The modifications

only increase this subset, not complete it.

The first stage of modification to the compiler is to increase the scope of the parse tree so
that the VHDL type constructs of access types and record types can be generated. Along
with these capabilities is the ability to define incomplete types, so that recursive data
structures can be built. The array type definition also requires enhancing so that
unconstrained array types can be defined for the creation of arrays with runtime-defined
array index lengths. The size of the array is defined at the point of allocation in these

cases, not at the point of base type declaration.

The ability to parse access types requires that the object creation and deletion constructs
be parsed also. The ability to gain access to the type referenced by an access type is also
added by enhancing the name lookup abilities to include the access type dereferencing

method.

The ability to parse record types requires that the extra name lookup for sub-object
elements contained by the record types be added. A partial lookup is implemented which
allows each element to be accessed individually. The record element accessing and access

type dereferencing are performed in a similar way.

4.1.3 Dynamic memory interface

The language parser enhancements are only useful with the capability for translation into
the relevant ICODE constructs. All modifications to the translation process enable the
ICODE structure and file format to stay the same. This is accomplished by the use of
interface procedures (which were already capable of being parsed and translated) that

communicate with the heap manager via a number of automatically generated external

port signals.

These heap interface procedures are contained in a VHDL package that is automatically
parsed from a specified file as input when a design requiring dynamic memory is supplied.

Another package is parsed in the same way that defines the size constants to be used



D.1.D. Milton, 2002 Chapter 4: Dynamic allocation 90

internally within the compiler. These constants define the address path range and data path
width of the underlying heap manager. The constants are discussed further in Section
4.2.1.2, with the interface procedures in Section 4.2.1.3 and the automatically generated

port signals in Section 4.2.1.4.

4.1.4 Translation into ICODE

The translation of an access type static variable is simply an ICODE register defined with
the same width as the address path constant defined in the inputted heap constants
package. The allocation of an object occurs via a generated call to the allocation procedure
defined by the interface package. The number of dynamic data words that an object
requires when allocating is calculated from the type of object being created. The size is

just one parameter passed into the heap allocation interface procedure.

An access type dereference action is either translated into a call to the heap read or write
interface procedures, depending on whether the dereferenced object is the source (read
from) or destination (written to) of an expression. The leaf left hand side of an assignment
operation is the destination, with the items on the right hand side of the assignment
forming the source. The basic translation for an assignment operation and a procedure call
are shown in Figure 4.2, where ‘a’ and ‘b’ are both variables that store an access type
reference of an integer. Note that the translation uses the access type variables as
addresses, all memory accesses are via interface procedure calls and all address offsets are
a constant zero (an integer requires only one memory word for storage). Note also that the

‘test’ procedure parameters are of mode in and out respectively.

VHDL - Pseudo - ICODE

address
variable

address
offset

_— ( ) interface temporary
source \_ procedures ) ( variables J

Figure 4.2 Translation of access type dereferencing
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The actual interface procedures take the I/O generated by the compiler (shown in Figure
4.2) and also a link to the relevant interface port signals (not shown in Figure 4.2) that are
automatically created within the design’s external port list when dynamic memory is used.
A number of port signals are created, each with a direct equivalent in the heap manager

component itself. The ‘moduleap’ calling mechanism is described in Section 3.1.6.

Using procedures to interface to the external port signals creates inefficiencies: it is not
possible to merge ICODE instructions into the control states used by the generated ICODE
module (procedure) with the calling module. This wastes clock cycles. Allowing particular
procedures to be inlined solves this problem. By inlining the interface modules into the
calling modules, more control states tend to be created with repetition wherever the called
modules are inlined, but the savings made in terms of critical path delay reduction and
register sharing more than compensate for the increased number of control states
generated. In fact, inlining proves to be an optimisation step that has benefits when applied

to other procedures outside the heap interface. Inlining is discussed further in Section

42.2.

It is possible, even likely, that more than one concurrent process will be created within any
one design. If dynamic memory is accessed from two or more concurrent processes, then
access to the heap management system needs multiplexing between the multiple processes
that use the heap. If no dynamic data is shared between the processes then an alternative to
multiplexing the accesses to a single heap is to create a separate heap manager for each
concurrent process. The first method was chosen to allow support of shared access type

variables that can be used to pass dynamic data structures between processes.

4.1.5 Heap management

The heap manager forms the runtime memory control system used by the structural
designs created by MOODS. Linking the relevant I/O port list signals from the user’s
design with the heap manager component forms the interface with the manager. The
manager consists of the underlying DRAM controller and the heap management algorithm

that utilises the underlying memory.

Having a completely separated heap management system allows for changes in the

management algorithm with no change to the original user’s source code. This means that
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different bolt-on controllers can be used dependent on the underlying hardware available

and the speed, size and memory requirements.

The interface is formed at the structural level using only standard bit and bit vector types,
with no reference to the original source access types. The interface has a 32-bit wide data
path and a user adjustable address path width. The address range used in the demonstration
designs utilises IMWord of DRAM, which equates to a 20-bit address path. This is the
size of all registers that are formed from the static translation of the original access types

within the user’s design.

The management component is formed from a pre-compiled and synthesised behavioural
description. The component is synthesised using the MOODS tool itself. The particular
management algorithm chosen for the initial implementation used by a design with

dynamic memory is described in detail in Section 4.3.

4.1.6 Summary

The rest of this chapter details the methods used to implement explicit dynamic memory
allocation as part of any behavioural design. The major points to remember during this

description are that:

The heap manager component is created as a concurrent run-time system that

integrates with the user’s design.

. The heap manager is linked to the user’s designs via an automatically generated

external interface port through which the memory traffic is communicated.

. The VHDL language constructs for explicit memory allocation are used directly,
with enhancements to the compiler parse tree and VHDL file parsing for generation
of the VHDL types and name dereferencing methods used for dynamic memory. The

explicit parse structures for object creation and deletion are also created.

® The translation of the parse tree into ICODE generates calls to the heap manager

interface procedures, which are inlined by the final stages of the compiler.
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° All translatable types are limited to a maximum of two aggregation dimensions at

the ICODE level.

° Concurrent access to the heap is provided for any process within a single design via
the automatic generation of a controlled multiplexor into the single external access
port, with each process that requires concurrent access having equal priority set by a

round-robin sequential interrogation approach.

° One implementation of the bolt-on heap manager is provided that is optimised for

limited object sizes, using a IMWord address space in DRAM.

4.2 Compiler modifications

The modified compiler program flow is seen in Figure 4.3, which shows the consecutive
phases that form the compilation flow. The phases are shaded with relation to the degree
of modification that was required for the addition of dynamic memory, with the darker

phases being modified the most.

VHDL Compiler

( Lexical Analysis )
v

Parser

 Translation ‘

C Optimisation )
v

( ICODE file generation)

Figure 4.3 VHDL Compiler program flow with inlining

The next sections detail the modifications to the VHDL parser and translator that are
required to support dynamic memory. This includes the integration of the heap manager
interface procedures where required, concurrent access issues and the inlining of the

interface procedures to increase global design efficiency.
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4.2.1 Heap manager interface

The heap manager interface is formed from the generation of a number of calls to the
various low-level interface procedures defined within the heap manager interface package
that is loaded when required. A number of external ports are added to the user’s design
that have direct equivalent linking signals within the heap manager component that is
linked after synthesis. These are discussed in detail in Section 4.2.1.4. These extra port
signals are driven by the interface procedures by passing the signals into the interface
procedures for modification. The interface procedures also take a number of inputs and

drive a number of outputs dependent on the procedure being called.

Another package that is loaded along with the heap interface defines the various sizes of
signals to be used by the user’s design and the sizes of the external signals that interface
with the heap manager component. This allows all generated designs to be translated with
compile-time configurable data path widths, relating to the size of the underlying heap
management data space. The constants are used during the generation of the heap manager

also, allowing configurability in the algorithm.

The heap access procedures and constants are read into the compiler from a source VHDL
package that is parsed by the compiler into a number of internal data structures. The

compiler automatically loads this package even with no reference in the user’s code when
dynamic structures are in use. The dynamic interface section of the compiler then uses the

given packages to create links to the constants and procedures defined by hard-coded

names.

The port signals that are automatically added into the port list of the user’s design are
manually linked to the heap manager after synthesis. This is performed with a VHDL file

that specifies the linkage between the various synthesised components of the top-level

system.

4.2.1.1 Communication

The communication protocol used between the user’s design and the heap manager is
defined both by the heap manager itself and the interface procedures called from the user’s
design. The interface procedures are the masters of all communication to the heap

manager and form an internal abstraction layer within the compiler.
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semaphore
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acknowledge

returned data
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returned data ><

acknowledge / swap

Figure 4.4 Communication between concurrent systems

The underlying communication is based upon the use of a single ‘semaphore’ and the
return ‘acknowledge’ signal, which determine the direction of communication. Both
signals are initialised to zero. The user’s design initiates all communication with the heap
manager by inverting the ‘semaphore’ signal. The heap manager responds by inverting the
‘acknowledge’ signal. Data flows between the two designs under control of these two
signals. The user’s design is the master of all communication and the heap manager the
slave. All communication is blocking, but designed not to block until a secondary

communication is initiated.

Data is transmitted to the heap manager by first checking that all previous communication
is finished. A previous communication is complete when the ‘semaphore’ and
‘acknowledge’ signals are equal in value. The data to be transmitted is set next, followed
by the inversion of the semaphore, which initiates the communication. The heap manager,
acting as the slave, reacts to the communication once it has finished any previous clean up

operations from a previous communication.
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The heap manager takes a copy of the incoming data and acts upon it. The data transmitted
by the user’s design includes the type of action required of the communication (binary
encoded), any data being written into the heap and possibly the address and offset of the
memory location to operate upon. If no return data is specified for the type of
communication, then the ‘acknowledge’ signal is inverted straight away, which allows the
user’s design to initiate a further communication. If, however, a result is required, for
instance from a memory read or object allocation, the heap manager performs the actions
specified and writes the result into the returned data output. The ‘ackrowledge’ signal is

only then inverted after the returned data is written.

The returned data from the heap manager is copied by the interface procedure into a
variable local to the user’s design only after waiting again for the two communication
signals to be equal. The user’s design, dependent on the information returned then uses

this local variable in further operations.

4.2.1.2 Heap constants

There are five constant values that are taken from the parsed heap constants package.
These define the widths of internal address and data paths and also define the
communication port sizes. The heap manager uses the same constants. The example values

used here relate to the demonstrators discussed in Chapter 6.

Constant Example Value Description

heap_dpwidth 32 Data bus width

heap_adwidth 20 (1M) Address bus width
object_size_bits 12 (4K) Maximum allocatable object size
heap_proc_bits 2 Communication control data width
heap_stat_bits 3 Status register width

Table 4.1 Heap size constant widths

4.2.1.3 Interface procedures

The interface procedure communication abstraction layer has four main communication
procedures and a single setup procedure that is used to initialise the communication
semaphores. Each procedure takes a list of the interface port signals to modify and read in

order to form the communication. The other /O parameters passed into these procedures
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form the links into the user’s dynamic data and address references. The procedures are

listed in Table 4.2.
Procedure Action
heap_setup Reset the communication semaphore at startup.

heap_allocate

This procedure is used to allocate an object. An allocation requires that an
object size be provided. The size given is a count of the number of memdry
words required to hold the object being aliocated. The allocation returns the
base pointer address within the memory space that has been allocated for the
object. An allocation is a direct translation of the original VHDL ‘new’ allocator.

heap_deallocate

This procedure is used to deallocate an object from the data space within the
heap manager. The procedure only requires the base pointer address of the
object being deallocated. The heap manager knows of the number of words
that the object uses, so will deallocate just that single object. The procedure
returns nothing. A deallocation is a direct translation of the original VHDL

‘DeAllocate’ procedure.

heap_read

The data held by an object is read using this procedure. Dynamic data is read
when an access type is dereferenced as the source of an expression. The
procedure takes the base pointer address that has been previously supplied
by an object allocation and an offset into the object, which is calculated from
an array index or record element number. The offset is calculated by the
compiler and may be provided as a constant or as a dynamic index. The

procedure returns the full data path data found at the given address.

heap_write

Object data is written using this procedure. Dynamic data is written when an
access type is dereferenced as the target of an expression. The procedure
takes the base pointer address and offset in the same manner as the read

procedure. The data to be written into the heap data space is also provided

upon the data bus. The procedure returns nothing.

Table 4.2 Interface procedures

The user’s design will call each procedure as required and initiates every communication

as the master system. The first procedure is called only once before any other operations

occur within the user’s design.

The ‘heap deallocate’ and ‘heap_write’ procedures return no data, so the communication

interface is designed to return straight away, leaving the heap manager performing the

specified operation. In these situations, control will flow back to the user’s design, leaving

both systems active at the same time. This is an implementation of a level of pipelining in

the communication path and enables better memory utilisation speeds rate limited by the




D.J.D. Milton, 2002 Chapter 4: Dynamic allocation o8

underlying memory implementation, not communication latency. Any further memory

operations will be blocked until the heap manager completes the previous operation.

4.2.1.4 Additional ports and variables

There are eleven distinct signals that are automatically added into the port list of the
synthesised user’s design. These can interface directly into the heap manager port signal
list. All communication 1s controlled by the ‘semaphore’ and ‘acknowledge’ signals along
with the ‘control’ signal that tells the heap manager what type of access is being made;
allocation, deallocation, read or write. The control data values are binary encoded as ‘00,

‘01°, ‘10’ and ‘11’ (zero to three) respectively for each type of access operation.

semaphore

\ 4

control

acknowledge

J \

User's , N Heap
R size / offset A
Design Manager
i user address
e o[ Lser adoress
Master heap address |~ °E heap address Slave
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heap data
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Figure 4.5 Communication port linkages

A status register output is formed within the heap manager and can tell the user’s design
extra information about the status of the heap, whether it is full or whether an invalid
access was attempted. This status output is not currently used by any designs, but is

accessible.

A dedicated object size or offset port is created for use with allocation, where it provides
the size of object to be created; or for use with read and write accesses, where it provides

the offset from the base address into the object being dereferenced.
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The address and data paths consist of two separate port signals each. This enables bi-
directional data flow, and can be connected directly. However, the restrictions on the
number of pins used between separate systems that run on different FPGAs require that
both the address and data paths have time-direction multiplexing. This is achieved with the
use of two extra controlling signals that specify the direction of data travel along the
address and data busses. Each access procedure requires a single direction of data flow for
each bus, so no extra communication semaphores are required to control the swapping of
direction. The directions for both busses are listed in Table 4.3, along with the use of the

size/offset bus. The direction signals are modified at the start of each communication.

Interface procedure Address direction Data direction Size / Offset
heap_setup n/a n/a n/a
heap_allocate Into user’s design n/a Size
heap_deallocate into heap n/a n/a
heap_read into heap Into user’s design Offset
heap_write Into heap Into heap Offset

Table 4.3 Bus use for each interface procedure

To make the underlying use of the interface procedures more efficient, three registers are
created within the user’s design. These registers are passed into the interface procedures

and act as the holding point for the sent and returned data values and address values. The
registers are then used by the user’s design for further actions upon the data or addresses

contained within them.

4.2.1.5 Generating calls

The interface procedures originate from the source VHDL packages that are loaded when
dynamic memory is used. This means that the compiler treats them in the same manner as
any other procedure defined explicitly within any other source code. The parse structure of
the procedure is converted into the ICODE equivalent ‘module’ during the translation
stage only if marked as used. Procedures are marked as used within the translation process
itself, which begins by translating the root VHDL architecture. Procedures are only used if
a translated call to them exists. The compiler automatically generates calls to the heap
interface procedures whenever dynamic memory is accessed by the source VHDL. Calls to
the translated interface ‘module’s are implemented by the ICODE ‘moduleap’ instruction
just as any normal calls to a procedure are implemented. However, the compiler

automatically inserts the values passed into the call. These form links into the additional
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signal port lists of the heap interface, internal register variables created to hold a copy of

the dynamic data and controlling offset constants and variables.

The mappings of which VHDL parse structures generate calls to the heap manager

interface procedures are described in Section 4.2.3.

4.2.2 Inlining

The act of procedural inlining is to replicate the code for a procedure in place of every call
to that procedure. Inlining can be implemented at various stages within a compilation and
synthesis environment. The implementation of inlining produced for MOODS performs
the operation in the compiler, after the translation stage and before the generation of
ICODE. The algorithm acts upon and modifies the generated ICODE modules and module
call structures. Previously, inlining was tested with MOODS, along with other various
source-level optimisations [92,93,94], but the source-level optimisation method is

incompatible with the increased VHDL subset used for dynamic memory by the compiler.

The reason for performing the inline operation within a synthesised design is that it allows
better sharing of the data path nodes created specifically to perform the instructions within
one module. Nodes created for instructions in one module cannot be shared with nodes

created for instructions in any other module. Inlining effectively moves the instructions of

a called module into the parent calling module, causing one less module to be built.

The drawback of module inlining is that a number of extra control states get created in
place of every call to the inlined module. If a module requires a large number of control
states, these states are replicated wherever the module is inlined. This can produce large
control graphs. However, the benefits of inlining modules that optimise to a small number
of control states and perform a relatively large number of operations can be significant.
This can include situations where an inlined module is merged into the control nodes

preceding and following the call, resulting in a zero time overhead for the call.

Figure 4.6 shows an example of one module ‘B’ being inlined into another module ‘4’ in

two places as replacement for two calls.
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Figure 4.6 Module inlining example

The inlining operation has another benefit of removing the module call instruction, which
means that the dedicated control state used for the call is not required. This means that the
first instructions in the inlined module may be able to run concurrently with or chained
from the last instructions before the call, and the last instructions in the inlined module
may be able to run concurrently with or chained with the instructions following the
module call. This benefit forms the initial reasoning behind the implementation of
inlining, as the procedure calls that perform the interfacing with the heap manager operate
more efficiently when they are inlined, as the control state latency between interface

operations is reduced.

Any user-defined procedure or function may be inlined. This allows the use of the inlining
facility beyond the initial use of inlining the heap interface procedures. The best places to
perform inlining are with small procedures that are called frequently and conversely with

larger procedures that are called very infrequently.
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4.2.2.1 Determining which modules to inline

A procedure is either not inlined or inlined on every call. The method used does not allow
selective procedural inlining - a consequence of the selection method used to identify the
procedures to be inlined. A call to the ‘inline’ dummy VHDL procedure from anywhere
within the body of a VHDL procedure or function is detected during parsing phase of the
compiler and flags the subprogram for future inlining. The dummy ‘inline’ procedure is
defined by the MOODS macro operations package that is parsed along with all users’
designs. The simulation equivalent of the ‘inline’ procedure performs no operations and

the call to the ‘inl/ine’ procedure produces no ICODE equivalent.

4.2.2.2 Method

A module is inlined after the ICODE generation for the module has occurred. There are

four steps to the operation.

The first step is to physically copy the ICODE instructions that form the body of the
subprogram. Activations between the instructions are also copied. The module has one
starting activation instruction, the ‘module’ definition instruction and one finishing
activation from the ‘endmodule’ instruction. The local variables used by the module are
also copied for each parent module having the inlined module inserted. These copied local

variables are name-mangled and inserted into the variable list of the parent module.

The second step is to work through the copied ICODE instructions and replace references
to all local variables with links to the newly copied local variables. At the same time, all
references to any I/O signals defined by the port list of the module being inlined are
replaced with links to the variables and constants passed through the parameter list of the

call to the module being inlined.

The third step is to physically insert the copied ICODE instructions with all the internal
activations after the module call that is being replaced with the inlined version of the
module instructions. Breaking the activation from the call instruction so that it now
activates the first instruction of the inlined module does half of this. The instruction that

the call instruction previously activated is then set as activated by the last instruction in the

inlined module. This completes the third step.
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The final step for inlining a module at a particular call position is to change the call
instruction, the inlined module definition instruction and the inlined module end
instruction into dummy instructions that will be optimised away, with all activations

linked correctly after the final optimisation stage of the compiler.

If a hierarchy of inlined procedures exists in the source code, it does not matter in which
order the procedures are inlined, as any ordering produces the same ICODE structure. The
actual order in which the generated modules are inlined is defined by an outer-loop that
iterates through every module in the module list, testing for the inlining flag. If found, an
inner-loop then iterates through the same module list, checking all call instructions in the
body of the inner module. If a call is found to the outer module being inlined then the
inlining method described above is used. If a module attempts to inline into itself due to a
single-level recursion then this is flagged as an error. Note that recursive procedures can
also be inlined, which can serve to reduce the number of procedure levels in recursive

loops. The implementation of procedural recursion is described in Chapter 5.

4.2.3 Parsing and translation enhancement

As dynamic memory allocation is a new addition to MOODS, the VHDL language
constructs that are used specifically for dynamic memory, and those constructs that are of
little use without dynamic memory were not originally supported. These constructs
include the access type, which is used to reference dynamic memory objects and the
record type, which is used to aggregate together several unrelated types together into a
single parent holding type. Recursive data structures can be built by using these two
VHDL type constructs. Recursive data structures are built using circular definitions, which
requires that incomplete type definitions have support also. The array type definition has
been extended so that run-time array lengths may be used with the inclusion of

unconstrained array types.

VHDL types do not define the data values themselves, but define the style of the contents
of the data values held by variables, signals or dynamic references. The VHDL types have
no direct ICODE equivalent until they are used by the variables, signals or dynamic
references, where they affect the style of the ICODE generated. Enhancements to the parse

tree structure for types are given in the following Sections 4.2.3.1 to 4.2.3.4.
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Dynamic VHDL objects are created and destroyed explicitly. The parser and translation
enhancements for this are given in Sections 4.2.3.5 and 4.2.3.6, along with example

translations using the heap manager interface.

The name lookup for record types and access types is also implemented. The name
lookup is termed as dereferencing. Both the name lookup and unconstrained array types
require slight additions to the lexical analyser token list as well as modification to the
parser. Section 4.2.3.7 discusses both the parsing and ICODE translation of dereferencing,

with an example of both dynamic and static name dereferencing.

ICODE is generated from a depth-first traversal of the parse structure creating sequences
of ICODE equivalent instructions from the structure and from resolved links to other parts
of the parse tree. Any translation of the use of dynamic objects will result in the need for

the heap manager interface described in Section 4.2.1 to be inserted into the design.

4.2.3.1 Access types

The access type is the method that VHDL uses to reference objects created dynamically. It
does not have any particular representation standard, as the value of any variable that
stores an access type cannot be read explicitly. This means that any representation method
can be used by a system that uses VHDL as the source language. In this sense, any
variable declared as an access type can be translated into a pointer to a memory location

that contains the object data, as this method allows complete referencing of the object.

{typel{THING REF]is {access}{THING}

type is an
access type

start of type
declaration

referenced
subtype link )

type name

identifier

Figure 4.7 VHDL structure for an access type declaration

Every access type declaration can only point to one type of subtype object. For every type

of object created dynamically, an access type declaration is required. As VHDL is a very



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 105

strongly typed language, no casting is allowed between types, which means that even

similar access type variables cannot be cast to point at similar objects.

All access types must be stored by variables, signals are not allowed. This means that
references to dynamic object types cannot be passed through port declarations of entity-
architecture pairs, but may be concurrently shared within a design with the use of shared

variables. This means that a design is completely self-contained in terms of dynamic

memory.

The internal parse-tree in the compiler is extended to store the subtype information used
by the access type. Any variable defined as a particular access type is dereferenced both

by the VHDL ‘all’ keyword and in a way defined by the referenced subtype.

VHDL Source » Generated ICODE
type THING REF is access THING; register ref [0 : 19]
variable ref : THING REF := null; il: move #(0, ref

Figure 4.8 ICODE generated for a statically declared access type variable

The example translation in Figure 4.8 shows the static creation of an ICODE register to
represent the contents of a VHDL access type variable. Note the bit-range of the generated
register has 20-bits. This value is derived from the address path width constant,

‘heap adwidth’ described in Section 4.2.1.2. Note also the translation of the VHDL ‘null’

keyword into the constant zero.

A dynamic representation of the contents of an access type requires the same 20-bits,
except that the storage for this data is held in the lower 20-bits of a single 32-bit memory
word that is accessed through communication with the heap manager. Access types
generally require dynamic storage when contained as record elements, forming recursive
data structures. The dereferencing of objects stored dynamically is explained in Section

4.2.3.7.
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4.2.3.2 Record types

The record type 1s the method used by VHDL to group together a number of sub-elements
of unrelated type into a single aggregate type. The compiler did not previously parse the
record type, even though it does not require dynamic memory to exist. Before dynamic
memory was introduced, the record type would only have been capable of making the
source VHDL neater by grouping related items into objects. This was not enough reason
for an implementation of the record type parse structure. An example of the VHDL code

used to describe the declaration of a record type is shown in Figure 4.9.

( type name ) [ typeisa )
identifier record type

start of type
declaration

...............................

{ ELEMENT2 : INTEGER;

JELEMENT3) : {THING; |
element { ELEMENT4 : THING; ~i_ [record elementw
name {end record;} \_ subtype link

end of type
declaration

Figure 4.9 VHDL structure for a record type declaration

A record type can contain any number of elements of any number of different sub-types.
One constraint of the record type generation is that the referenced element subtypes are
completely defined before the record. It is possible to incompletely define a type,
described in the next section, in order that recursive data structures may be built. Each

elements subtype is resolved during parsing and an error thrown if the type does not exist.

The internal parse-tree in the compiler is extended to store the element list information
used by the record type. Each record element has the element name and the subtype link
information stored. Any variable defined as a particular record type has each element

dereferenced by name. This method is shown in Figure 4.10.
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VHDL Source » Generated ICODE

type RECORD_TYPE is record

el : INTEGER;

e2 : THING_REF;
end record; register rec el [ 0 : 31 ]
variable rec : RECORD TYPE; register rec e2 [ 0 : 19 ]
rec.el := 57; il: move #57, rec el
rec.e2 := null; i2: move #0, rec e2

Figure 4.10 ICODE generated for a statically declared record type variable

The example translation in Figure 4.10 shows the static creation of two separated ICODE
registers to represent the contents of both elements within an example VHDL record type
variable. Note the bit-range of the generated registers 1s dependent on the elements

subtype requirements.

A dynamic representation of the contents of a record type requires the same number of
32-bit memory words, as there are elements to the record. Each element is accessed one
memory word at a time through communication with the heap manager. Each element
within the record is assigned a constant offset by the compiler. This offset is with respect

to the base pointer reference returned from allocation by the heap manager.

4.2.3.3 Incomplete types

The power of the record type is only apparent once a record element contains an access
type that references another record of the same type. Once this occurs, recursive dynamic
data structures can be described and generated, which includes complex data structures

such as linked lists, trees and graphs.

.........................

{ type}{ THING}

7
-

type name
identifier

start of type
declaration

Figure 4.11 VHDL structure for an incomplete type declaration
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An incomplete type is simply created from the definition of the name of the type, as shown
by Figure 4.11. Access types can then be set to reference the incomplete type, even though
the type is not fully defined. The type declaration can be completed at a later stage, usually
being formed as a record type. This situation is shown in Figure 4.12, with the creation of
a linked list structure. The recursive nature of the definition is that the ‘LIST REF’ access

type references the ‘LIST” and the ‘LIST” record type contains elements of the

‘LIST REF” type, forming references to other ‘LIST” objects.

type LIST; -- incomplete list type declaration
type LIST_REF is access LIST; -~ 1list pointer type declaration
type LIST is record -- list type declaration completed

nxt : LIST_REF; -- next list item pointer

prv : LIST REF; -- previous list item pointer

data : THING; -- data contained by list

end record;

variable list base : LIST REF; -~ static base of list pointer

Figure 4.12 Incomplete type declaration used for linked list creation

The compiler implements incomplete type declarations by using a flag on the parse tree
node that describes a type declaration. The initial incomplete declaration simply creates
the type structure and flags it as incomplete. Whenever a new type is parsed, a check is
made for a repetition of the type name identifier. If a type declaration already exists with
the given name, then it must be flagged as incomplete as a redefinition is invalid VHDL
and an error is thrown. If the type declaration is flagged as incomplete, then the secondary

definition fills in the type information.

4.2.3.4 Unconstrained array types

A slight modification to the array type definition is required in order to dynamically
create different sized arrays from a single type definition. This situation is allowed in
VHDL with the definition of the unconstrained array type declaration and the ability to

pass a sub-range into the allocator when creating a new array object.

The compiler limits the use of unconstrained arrays to dynamic allocation and static
creation of the array with a constraining range definition at that point. The type can also be
used by subtype declarations. The unconstrained base type cannot be used to directly pass

information between port declarations or to define internal signals or variables.
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Figure 4.13 VHDL structure for an unconstrained array type definition

The VHDL method for defining an unconstrained array is shown in Figure 4.13. The

example shows the definition of the standard bit vector type that is an array of the bit

enumeration type with an unconstrained array length. The bit vector type is never used

directly, but is used by subtype declarations that define the array length.

A flag is set in the parse tree node whenever the ‘box token’ is given as the defining range

of the array. This tells the translator that the type is unconstrained and may not be used

directly.

4.2.3.5 Allocation

The VHDL explicit dynamic object allocator uses the keyword ‘new’ for the dynamic

allocation of all objects. The construct returns an access type reference to the type of

object passed into the allocator. This is shown in Figure 4.14.

......... ———,

I

......

access type
variable
assignment

~~~~~

SUPIIURL G R 4 NEN———

allocator

keyword
type of new
object

Figure 4.14 VHDL structure for object allocation
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The allocator acts at the same precedence level in the parse tree as name lookup (for
variable and signal referencing), constant literal definition and sub-expression creation.
This means that the allocator is at the leaf of the parse tree in the definition of complex
expressions. As such, the allocator returns a result that directly feeds an assignment
operation, as seen in Figure 4.14. When allocating unconstrained arrays, the aliocator must
have a range defined at the point of allocation. This is shown by the second allocation in

Figure 4.15, where the range is translated into the number of memory words to allocate.

Figure 4.15 shows an example of the translation of three object allocations. The first is
simply the allocation of a single integer, the second is the allocation of an array of
integers with the array size defined at the point of allocation and the third is the allocation

of a record type object containing two elements.

VHDL Source

type INT_REF is access integer;
type ARR TYPE is array (natural range <>} of integer;
type ARR_REF is access ARR_TYPE;
type RECORD_TYPE is record
el : INTEGER;
@2 : THING_REF;
end recoxd;
type REC_REF is access RECORD_TYPE;

variable iref : INT_REF;
variable aref : ARR_REF; Dynamically created arrays
variable rref : REC REF; must be indexed from address
zero. This is a limitation of
translation, not of VHDL

iref := new integer;
aref := new ARR_TYPE (0 to max);
rref := new RECORD_TYPE;
Generated ICODE (without interface inlining)

. . Alias is required due
register iref [ 0 : 19 ] to 'heap_tmpdata'
register aref [ 0 : 19 ] holding the address
register rref [ 0 : 19 ] result of all allocations
register heap_tmpdata [ 0 : 31 ]

alias alias47 [ 0 : 19 ] from heap tmpdata [ 0 : 19 ]

il: MODULEAP heap_setup heap_sem

v iz2: MODULEAP heap_allocate heap_ack, heap_addr out, #I, heap sem, heap_cont,

heap_addr_in_valid, heap_size_offset, alias47

i3: move alias47, iref

i4: plus max, #1, 48

i5: MODULEAP heap_allocate heap_ack, heap_addr_out, 48, heap_ sem, heap cont,
heap_addr_in_valid, heap_size_cffset, allas4?

i6: move alias47, aref

i7: MODULEAP heap_allocate heap ack, heap_addr out, #2, heap_sem, heap_cont,
heap_addr_in_valid, heap_size_offset, alias47

i8: move aliasd7, rref

Figure 4.15 ICODE generated for the dynamic allocation of three different types
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The three allocations each return references to the allocated objects, which are translated
as physical memory addresses by the compiler. These addresses are written into the
statically declared ICODE registers in the example, but can also be written into the
contents of other dynamically created objects through assignment to a dereferenced access
type object. Note the generation of the ‘heap_tmpdata’ register and the alias into the lower
20-bits of the register. This statically declared register is used to temporarily store the
returned address from every allocation. Each ICODE ‘move’ instruction translation of the
VHDL assignment operations move the data referenced by the alias into the actual target
of the assignments, ‘iref’, ‘aref’ and ‘rref’. Also note that the heap interface module calls
have not been inlined in the shown example. This is only due to brevity and readability, as

each allocation actually performs nine ICODE instructions to every inlined module call.

A translation of the ‘“new’ operator results in a generated ‘moduleap’ call instruction to the
heap interface procedure ‘heap_allocate’. The type of object that the allocation operation
creates defines the size parameters passed into the interface procedure. The size is given as
a number of data words capable of storing the entire object. Various limitations on the
types of objects that are creatable are given in Section 4.2.4. Generally, one word is used
to store non-aggregate types (enumerations, integers and access types), arrays are stored
with the same number of words as there are valid indexes to the array and records are

stored with the same number of words as there are elements contained by the record.

VHDL defines that the initial values for objects created dynamically can be set up during
allocation with an aggregate assignment. However, this is not implemented, along with
general aggregate assignment. It is possible to manually set up the contents of the dynamic
data after it has been allocated, one element at a time. VHDL also defines that if no initial
values are given to a newly created object, the contents are set to zero or null depending
on the types involved. This feature is not implemented due to the increased number of
unnecessary instructions that are generated. This means that manual initial values must be

assigned after dynamic variables are generated, for the VHDL semantics to be preserved

through synthesis.

4.2.3.6 Deallocation

The explicit deallocation of dynamic objects in VHDL is performed by the ‘Dedllocate’

procedure that is implicitly defined for every access type declaration. The procedure
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accepts a single input object reference to be deleted from the memory contents. This is

shown in Figure 4.16.

{DeAllocate;) ({ref});

access type
input

Dealiocator
procedure

Figure 4.16 VHDL structure for object deallocation

As the parser already handles procedure calls, no modification to the generated parse tree
structure 1s required. However, as VHDL defines that the ‘DeAllocate’ procedure is
implicit, this procedure requires physical insertion into the procedure list used in the
compiler. This is achieved by placing a general ‘Dedllocate’ procedure in the heap
manager interface. Any calls to ‘DeAdllocate’ within the user’s source code then link into
this procedure. The translation stage of the compiler uses the knowledge that the implicit
nature of this procedure is used to perform direct mapping into the heap manager interface.

An example of the ICODE translation of an object deallocation is shown in Figure 4.17.

VHDL Source

type INT REF is accesss integer;
variable ref : INT_REF;

DeAllocate (ref);

Generated ICODE (without interface inlining)

register ref { 0 : 19 ]

142: MODULEAP heap_deallocate heap_ack, ref, heap_sem, heap_ cont,
heap_addr_in _valid, heap_addr_in

Figure 4.17 ICODE generated for an object deallocation

The example in Figure 4.17 shows the VHDL ‘DeAllocate’ procedure being translated into
an ICODE ‘moduleap’ call to the ‘heap_deallocate’ procedure defined in the heap
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interface package. Only the base address stored by ‘ref’ of the object being deallocated is
supplied. This link to this variable is gained from the parse structure that holds the original
VHDL procedure call information. The input variable itself could be gained from a
statically defined register, or from a temporary result of a previous dynamic memory read

access of an object that contains a reference of the object to be deallocated.

register ref [ 0 : 19 ]

J/ FExxxsssdd jnline module heap deallocate **w##ixsx+

i42: eq heap_sem, heap_ack, 487

143: if 487 ACTT 144 ACTF i42
i44: move  #I, heap cont

i145: move ref, heap addr_in

i46: move  #%1, heap_addr_ in_valid

i47: not heap_sem, heap_sem

/[ FrAExsddd ipline end module heap deallocate ***r#idid#

Figure 4.18 Inlined ICODE generated for an object deallocation

The single deallocation shown in Figure 4.17 is translated into a single call to the
‘heap_deallocate’ procedure defined in the heap interface package. The actual translation
of this interface is inlined into the user’s source code. Figure 4.18 shows the actual ICODE
generated in replacement of the ‘moduleap’ call instruction. The deallocation operation
requires six ICODE instructions to form the interface. All calls to the heap interface
procedures are inlined in a similar way. Note the communication being formed from the
checking and assignment of the ‘heap_sem’ and ‘heap_ack’ signals and the assignment of

the ‘ref’ input onto the address bus.

4.2.3.7 Dereferencing

The act of dereferencing is to perform a selected name element lookup from within a
record type item or to access the value at a particular array index position or to access the
item referenced by an access type. Multiple levels of dereferencing may also be parsed,
where it is possible to dereference an array element from a dynamic reference to an array,
or dereference a particular record element from a dynamic reference to a record item. A
fully recursive dereferencing mechanism is supported for all supported types. Examples of
the types of dereferencing mentioned are shown in Figure 4.19. The translation of an
object dereference forms a read or write operation dependent on the position of the

dereference within an expression.
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Figure 4.19 VHDL structure for object dereferencing

A name lookup forms a recursive structure within the compiler, with each type of access

of a base name formed from either the base name itself or via indexing, slicing or selection

of sub-elements within the composite base type. Hence, name lookup is only ever formed

from composite types with more than one element (arrays and records) and from access

types. Enumeration and integer types do not have sub-elements from which to access.

However, these types can form the leaf types of the recursive name lookup.

An access type variable is dereferenced using ‘<name>.all’, which follows the base

access type variable name. An element is selected from a record type in a similar manner,

except that the ‘all’ keyword is replaced by the element name within the base record type:

‘<name>.<element>’. If a reference to a record type is given, then an element within the

dynamically created record variable is accessed by first dereferencing the access type that

points to the record object, then selecting the record element by use of its identifier:

‘<name>.all.<element>’. If the element itself is another access type, then this can be

dereferenced again by simply appending .all’ in a fully recursive manner. An example of
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this is shown in Figure 4.20, by the destination of the example assignment (translated

blocks 4 and 5).

Chapter 4: Dynamic allocation

VHDL Source

variable
variable
variable
variable
variable

rref.all.e2

s Sy
%

iref :
aref :
rref :

type INT_REF is accesss integer;
type ARR_TYPE is array (natural range <>} of integer;
type ARR_REF is access ARR _TYPE;
type RECORD_TYPE is record
el : integer;
e2 : INT_REF;
end record;
type REC_REF is access RECORD_TYPE;

INT_REF;
ARR_REF;
REC_REF;

r : RECORD_TYPE;

a : ARR_TYPE (0 to 9);

.all o=

enerated ICODE (without interface inlining)

register
register
register
register
register
register
register
ram
alias

le:

i6;
N

i7:

ig:

i9:

iref [
aref [
rref |
r el |
re2 |

0 :

0

0 :

19 1
19 ]
19 ]
311
19 ]

heap_tmpaddr [ 0 : 19 ]
heap_tmpdata [ 0 : 31 ]

a o
alias4?

31 ] address [ 0 : 9 ]

0 : 19 ] £rom heap_tmpdata [ O : 19 ]

memread al[#5], 474

plus

MODULEAP

move
plus

MODULEAP

move
plus

MODULEAP

move
move
move

MODULEAP

r_el, 474, 475

heap_read heap_ack, heap data_out, iref, #0, heap_ sem,
heap_cont, heap_addr_in_valid, heap_addr_in,

heap_ size offset, heap_data_in_valid, heap_tmpdata
heap_tmpdata, 476

475, 476, 477

heap read heap_ack, heap_data_out, aref, #4, heap_sem,
heap_cont, nheap_addr_in_valid, heap_addr_in,

heap_size offset, heap_data_in_valid, heap_tmpdata
heap_tmpdata, 478

477, 478, 473

heap_read heap_ack, heap_data_out, rref, #1, heap_sem,
heap_cont, heap_addr_in_valid, heap_addr_in,

heap_size offset, heap_data_in_valid, heap_tmpdata
alias47, 471

473, heap_tmpdata

471, heap_tmpaddr

heap write heap_ack, heap_tmpaddr, #0, heap_tmpdata,
heap_sem, heap_cont, heap_addr_in_valid, heap_addr_in,
heap_size offset, heap_data_in_valid, heap_data_in
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Figure 4.20 ICODE generated for dynamic and static dereferencing

The direction of data flow (whether the data is read or written) is dependent on whether

the dereferenced object is the source or target of an operation. Only the leaf left hand side
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dereferenced object of an assignment is the target of this operation, which translates into a
memory write at the address held by the dynamic variable being dereferenced (translated
block 5 in Figure 4.20). Another target of a dynamic memory dereference is as the output
port of a procedure call, where a temporary variable is used to store the result of the
procedure call, and a memory write performed after the procedure call has finished, which

writes the temporary result of the procedure into the dynamic memory space.

The right hand side sources of an assignment expression (translated blocks 1, 2 and 3) or
any non-leaf left hand side dereference (translated block 4) or any input ports to a
procedure call are translated into dynamic memory read operations of the same form as the
write operation for any dynamic object name lookup (translated block 2, 3 and 4). Again,

the dereferenced reference-variable holds the base address of the referenced object.

Note that a multiple dereference results in more than one memory operation, where the
first operation returns a result to be used as the address within the second memory
operation. This situation is shown by translated blocks 4 and 5 in Figure 4.20, where the
address held by record element ‘e2’ is read before this address is used as the base address
of the write operation used to store the result of the assignment expression. Note the use of

another generated temporary variable ‘heap_tmpaddr’ in this chaining of operations.

As aggregate types are formed from multiple words in the dynamic data space, whenever
an item in the aggregate is dereferenced, the offset into the data space that contains the
object is calculated from the position of the sub-element in the aggregate. This means that
the constant element number in a record type is used as the offset, starting from an offset
of zero for the first element, incrementing by one for each further element (translated
block 4). It also means that an item in an array type variable is accessed from the base
pointer of the array variable and the offset defined by the given index into the array

(translated block 3).

Note the translation of the static variables in Figure 4.20, translated block 1. The 2D static
array, ‘a’ is implemented as a RAM cell and the static record type variable, ‘#’ has each
element translated into separate registers. The ICODE ‘ram’ variable is accessed using the
dedicated ‘memread’ and ‘memwrite’ instructions. These instructions take the possibly

dynamic index address as an extra input.
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4.2.4 Variable dimensions

The use of fully recursive composite type declarations allows variables to be created with
any number of dimensions. A dimension equates to one level of aggregate type definition,
so any type that contains a subtype in an inclusive way adds another dimension into the
definition. The reason that variable dimensions are mentioned is that there are limitations
placed upon the number of allowable dimensions within an object for synthesis, which
limits the type of objects that can be created. This limitation is not a language constraint.
The reason for the limitation is the increased complexity of indexing into multi-
dimensional variables. The maximum allowable variable has two dimensions, and by
definition, the minimum is without aggregate dimension. The types allowed within the

dimensional limits are shown in Table 4.4.

0D types 1D types 2D types
Enumeration with 2 states Enumeration with 3 or more Record containing 1D or 0D
states element types
Array of 0D types Array of 1D types
integer type
Access type

Table 4.4 Allowable variable type dimensions

An example of an enumeration with two states is the simple ‘bit’, which can represent ‘0’
or ‘]’. If there are more than two states that need encoding, the representation requires
more than one underlying memory element to store the value. The dimension relates to the

translation of the ICODE representation of a variable with given type. This is why the

enumeration with three or more states is a one-dimensional type.

The integer and access types are both implemented using more than one underlying data
bit to store the entire value. In fact the integer uses up to 32-bits and the access type uses
the minimum number of bits that can represent the entire dynamic data space, which is 20-
bits in the demonstrators described in Chapter 6, allowing a IMWord of data space. An

array of zero-dimensional types (bit) is also a one-dimensional type.
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a) 0D b) 1D c) 2D
i 0to15 b < 0to 15 >
071 071 071 071 0/1 1 0/1 0/1 0/1 071
a) bit ~ a Oto 15 B>
(1 blt) E——b 0/1 071 0/1 0/1
b) integer range 0 to 15 £
(4 bits)
<t 0to 15 >
c) array range O to 2 of
integer range 0 to 15 IR A R B
(3x4 bits)

Figure 4.21 Example underlying data structures for allowable dimensions

Two-dimensional types are formed from an array of one-dimensional types, for instance,
an array of integers, access types or bit vectors. The record type container is always
created as a two-dimensional type, which means that any other type cannot directly
contain the record type. The element types allowable within a record type are based upon

zero or one-dimensional types only.

The limitations shown are the same for both static and dynamic generation of the variables
associated with the types. Whether an object is created statically or dynamically affects

only how the object is accessed and manipulated.

4.2.4.1 Dynamic variable storage

All zero and one-dimensional variables will be stored by a single memory word. This
places a further limitation upon these types in that they must be able to fit within the data
path width specified for the underlying heap management implementation. The
implementation of the demonstration management scheme uses a 32-bit data path, which
enables full range integers, all access types, bit vectors of up to 32-bits and enumerations
with up to 2% states to be held. Any space in the available 32-bits that the type does not

require will be wasted.

Two-dimensional variables are stored dynamically using more than one memory word.

The space required for the dynamic variable is allocated by a single allocation operation.
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A two-dimensional array uses the same number of memory words as there are elements in
the array. The underlying one-dimensional subtype of the 2D array follows the same
restrictions in size specified for the 0D or 1D variables shown above. All accesses of the
array elements by their index will feed the dynamic memory offset port with the index
value directly. It could actually be fed from a subtracted version of the index, dependent

on the original VHDL definition of the minimum range value of the array.

A dynamic implementation of a record type variable will use one memory word per
record element. The underlying zero or one-dimensional subtype in the 2D record follows
the same restrictions in size specified for the single variables shown above. Each element
is accessed directly by the compiler providing a constant offset from the base pointer that
references the dynamic record type variable. The offset value is defined by the position of

the element within the definition order of the record.

4.2.5 Limitations

Futher limitations other than the general dimensional limit exist for the use of all variables.

These limitations are for the use of the 2D type variables.

The maximum number of elements that can be stored by a 2D array or record item is
limited by the maximum object size that can be allocated from the heap in one allocation.
This is defined by the ‘object_size bits’ constant in the heap constants package described

in Section 4.2.1.2, and is set as 4K Words for the demonstrations.

Only 1D type variables may be passed into procedures, ports and assignment operations.
This means that any accesses to a 2D type variable must be performed one element at a
time, which reduces the dimensional order of the resultant lookup into a 1D type variable.
This means that a static record or static 2D array may not be passed through procedure
ports. However, an access type variable that references a dynamic record or dynamic 2D

array may be passed through a procedure’s parameter list, as the access type is defined as

a 1D type.

The VHDL language supports the use of aggregate assignment, which enables multiple
items within an array or record to be assigned by one assignment operation. The

compiler does not support this, with manual assignment of each element used instead.
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4.2.6 Multi-process access

The VHDL language allows only variables, not signals, to contain access type objects.
This means that all dynamic data local to a design is contained by the architecture, as the
entity port can only contain signals. The dynamic data stored in a design cannot be passed

directly through its interface.

Even in the architecture, all dynamic data is limited to creation and use by the various
concurrent processes, which form the sequential program flow. Each process is capable of
using dynamic memory. As using signals supports communication between processes and
the access type objects cannot be passed in this manner, it would suggest that even

communication of dynamic data between processes is impossible.

However, an amendment to the language that is included in the VHDL’93 standard [5] is
the ability to declare shared variables. A shared variable allows variable containers for
objects to be defined within concurrent regions of a design. This allows variables that
contain access types to be declared at the same position as the signals that are used for
communication between processes. This allows more than one process access to the same

dynamic data structure at the same time through a shared address space [90].

One feature of shared variables is that the simulation behaviour is not completely defined,
which could produce different results between different simulators [20]. This is an
anomaly in a language designed for exact simulation, designed to give reproducible
results. The reason for the possible differences in results between simulators gained from a
design using shared variables is the fact that a variable is updated straight away when it is
assigned to. If a shared variable is assigned to within more than one process at the same
time, the value held in the variable after the two assignments is the last value assigned, as
there are no deferred assignments as used for signals. As different simulators may handle
the various concurrent processes in different orders, and the process handling order has an
effect on the results, the two simulations can produce differing results. This situation is to
be partially dealt with in the next VHDL standard [91], by providing a standard wrapper

mechanism for shared variables.
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Figure 4.22 Example MOODS design structure with concurrent heap access

A method to cope with the undefined behaviour problem is to control the assignments to
the shared variable with the use of other communication signals between the concurrent
processes that use the shared variable. This can be accomplished with the use of a

semaphore-acknowledge system.

With the ability to share dynamic data structures across process boundaries comes the
need for each process to be able to access the same data space that contains the dynamic
data. An alternative would be to have a separate heap manager for each concurrent
process, which would speed up the accesses of the underlying data but remove the ability

for data communication between processes using shared access type variables.

The example of the structure created by the MOODS synthesis system is shown in Figure
4.22, which shows three processes (A, B, C) that use dynamic data internally. A fourth
process (D) does not use dynamic data at all. Two processes (B, C) communicate with
each other using shared access type variables. The three processes each access the same
heap manager system via a generated heap multiplexer process that controls the
sequencing of every concurrent access by making each access follow each other

sequentially. Each process has equal priority to access the heap and does this by
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communicating with the multiplexer process via a set of internal signals that form a
notional port interface. The compiler using standard ICODE instructions just as the

original singular interface is generated generates this extra structure.

4.2.6.1 Determining concurrent access

There are three different situations found in a design when checking for the use of
dynamic data structures. The first 1s that no dynamic structures are used, so a heap
interface 1s not required. The second is that one process in the design uses dynamic
structures, so a heap interface is required. The heap is accessed directly using the
generated external port in this situation. The third situation is that more than one process

uses dynamic data structures, which means that a design structure similar to that shown in

Figure 4.22 is required.

Determining which situation is found in a design starts in the parsing process of the
compiler. Whenever any dynamic data is accessed from a procedure, function or process,

the parse tree structure is marked as requiring some form of heap access.

After the initial parsing, the call tree is pre-translated, in that the parse tree is followed for
every call made from each concurrent process. Any access found in the tree starting from
one process requires a single port into the heap manager. If more than one process is found
that contains any reference to dynamic data in the entire call tree that can be called from
the process, then concurrent access of the heap is required and a number of internal heap

access ports are generated for this purpose.

4.2.6.2 Heap access ports

A heap access port is created for each concurrent process requiring access to the heap. If
only one process requires access, no internal heap access ports are generated and the

external heap port is used directly by the single process.
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Figure 4.23 Concurrent heap access port

Access ports contain a set of internal communication signals including a copy of the data,
address, size/offset and control signals. These have no direct connection to the design’s
single external heap access port that interfaces directly with the heap manager. Instead, the
heap multiplexer process services them. Concurrent copies of the communication signals
are implemented so that internal cycle-based speed benefits occur with the ability for each

process to start a communication even when the heap is already busy.

The access procedures used by the generated structures of the user’s processes are slightly
different from the external interface access procedures. When multiple processes using
dynamic data are found, the interface procedures for each process are replaced with the
procedures that interface with the heap multiplexer process. The interface procedures have
the relevant internal heap access port signals passed as parameters. The procedures are
loaded from the same heap interface package and are listed in Table 4.5, with the external

heap interface equivalent procedures.

Action External Interface Procedure Internal Interface Procedure
Initialise heap_setup heap_setup

Allocate heap_allocate heap_mux_alloc

Deallocate heap_deallocate heap_mux_dealloc

Read heap_read heap_mux_read

Write heap_write heap_mux_write

Service n/a heap_mux_service

Table 4.5 Concurrent equivalent heap access port procedures
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Note that the ‘heap_setup’ procedure is used in both the initialisation of the external
interface and the initialisation of all internal interfaces. Concurrent calls to this procedure
are possible without replication of the procedure due to the procedure being inlined.

Inlining 1s explained in Section 4.2.2.

Also note the addition of the ‘heap_mux_service’ service procedure within the internal
port procedure list. This procedure is used by the generated heap multiplexer process and

has no direct external port equivalent.

4.2.6.3 Servicing the heap access ports

The heap multiplexer process is completely auto-generated by the translation stage of
compilation. The process contains an infinite loop that consists of multiple calls to the
heap service procedure. The heap service procedure is called the same number of times as
there are concurrent processes accessing the heap. Each call to the procedure has a
different set of internal port signals passed into it. As each concurrent heap access port is

serviced in turn, this gives all concurrent processes equal priority at access to the heap.

The service procedure effectively connects the internal port signals onto the external port
for a limited amount of time. Only one access of the heap occurs in this time. The service

procedures are inlined into the process that calls them for efficiency reasons.

4.3 Heap management

The heap manager subsystem that is linked into the designs produced by MOODS has a
defined interface as the slave to all communication from the user’s design. This system
exists to control the underlying memory space and to return address positions within this
memory that contain the allocated dynamic objects that the user requires. The heap

management algorithm performs the control of the position of the allocated objects.

The implementation of the heap manager has a fixed address space from which to work.
As a consequence, there is an upper limit on the number of objects that can be allocated by
any allocation algorithm. The initial implementation of the allocation algorithm described
in Section 4.3.1 stores the controlling data structures used by the management algorithm in

the same data space as the user’s data.
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In general it is observed [30] that a behavioural design will allocate many small objects of
the same size, so a management algorithm suited to this allocation style is implemented.
The generated system is written using behavioural VHDL and synthesised using MOODS.
The algorithm described is more specialised than the standard allocation methods used in
software design, and is shown to improve performance in both the VHDL compiler and
the MOODS core software systems when a software version of the algorithm is used as a

layer on top of the standard allocation methods.

4.3.1 Algorithm

The algorithm used is both space and speed efficient [37,38]. It is optimised to allocate
multiple objects of the same size, which use the same number of data words. The data
space is split into a number of pages that all start out as initially free. Each page can be
used to store objects of one size only, where the size is determined from the first allocation
of an object from within the page. The size of object that a page holds is determined at

run-time and is dependent on what objects the user’s design allocates.

If an object allocation finds that no pages that contain the required object size exist, then a
page is taken from the list of free pages and set up to store objects of the required size. The
object is then allocated from the data space contained by the newly set up page.
Alternatively, if any page is found to contain objects of the required size and the page is

not full, then the object is simply allocated from the existing page.

The objects within the page are controlled in a similar manner to which the pages are
controlled. If any object is deallocated from a page, the space for the deallocated object is
stored in an internal free list. If the page is used again to allocate an object of the same
size, the first object in the free list is reused and returned as the allocated object. In this

manner, the allocation method is very fast.

There is also very little memory space overhead for the algorithm, as all free lists are
implemented within the data space for objects that are free. There is also relatively little
header information required for objects, with only a single header structure required for
each page, which contains many objects packed tightly together. A single page is also used
by the algorithm to store base pointers of all lists of pages with particular object sizes. The

first page in the memory space is used for this.
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4.3.1.1 Data structures

The data structure style shown in Figure 4.24 shows an example of the entire data

structure with a user system actively allocating objects.

126

Page in use

User data
and free list

Object size
page pointers

Page Header

©
J

Entire Data Space
Free Page
«— Page Data Spac

© § Inall ated
4 |
© I SPpace

object

Free Page

Head of
free page
list

Figure 4.24 Heap management data structures

The diagram shows the formation of the list of free pages starting from a static list head

pointer held by the heap manager. All further pointers that define the next free page in the

list are contained as the first word of each free page. The last free pages next-pointer is set

to null (zero), which signals the end of the list.

Also shown is the first page that is used to store pointers to a list of pages in use with

particular object sizes contained. The index of the word in the first page is used as a

reference of object size and initially all pointers within the first page are set to null. The

list of pages that contain objects of the same size is formed from the active page header,

with a pointer to the next and previous pages within the list. The list is actually circularly
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Jinked for ease of page insertion and removal. The example shows a single active page that

contains objects of three words size.

The data space in an active page contains a mixture of allocated objects, all of the same
size (three words 1n the example); a free object list, that is created from deleted objects in
the page and an unallocated space, from which new objects are allocated. The page header
contains information about the size of objects to allocate from the page and the current
number of objects allocated within the page. A pointer to the base of the unallocated space
and another to the first free object in the data space are also contained in the header. The
free object list is formed from the base pointer within the header, with the first word in
each free object used as the next pointer of the free list. There are three free objects shown
in the example. A null pointer again terminates the free object list. There are six allocated

objects shown in the example.

4.3.1.2 Initial setup

The allocation algorithm requires that portions of the control and data space are set up to
hold initial values that describe a data space that has a number of free pages, with no pages
holding any particular object size existing. This setup procedure is performed once at the

beginning of operation of the heap manager.

Setting every word within the first page to null initialises part of the data space. This tells
the allocator that no active pages exist for any objects of all allocatable sizes. The free
page list also requires initialisation, with each page inserted onto the free list by a loop that
works through each page, from page » down to page 1. The first word within each page
space is set as the next free page pointer and the free list base pointer is set to point to page

1. The n" pages next page pointer is set to null, which terminates the list.

4.3.1.3 Allocation

Object allocation, as required by the user’s design, starts with communication with the
user’s design. The information provided by the master system 1s the size of object that is
required. The expected result from the slave heap manager is a pointer to the base address

of a contiguous block of memory that contains the space for the data object.
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The first job of the allocator is to find whether any pages that contain objects of the same
size are currently in use. This is done by checking the word within the initial page that
points to a list of pages of the particular given object size. The object size page pointer at
an offset of the required object size from address zero provides this access to any page that
is currently used to store objects of the given size. If a non-null pointer exists at the given
size location, then a page has been found. However, if the pointer is null, then no pages
that contain objects of the required size exist or any that do are completely full. In this

situation, a new page is required.

A new page is taken from the head of the free list of pages. The head pointer of the free
list is reassigned to the next free page after the head page by using the next free page
pointer from the returned new page. The new page is then set up, with the header
information set so the page contains objects of the required size. The page is also inserted
onto the active page list by setting the page size pointer within the initial page and setting
the next and previous page pointers within the page header to point to itself, forming a
circular list. The object count value stored in the page header is set to zero and the
deallocated object free list pointer is set to null. The page data space is totally unallocated,
with the object base pointer set to the word following the active page header. The page is

now completely set up, ready to allocate objects from the data space.

The next stage is to allocate an object from the given page, which could be newly set up or
taken directly from the active page list, in which case, objects of the same size are taking
up a portion of the data space of the page. An object is allocated from the page by first
checking the free list of objects from the page header. If any free objects exist, determined
by a non-null pointer to the head object within the free list, then this is the object returned
to the user. The object is unlinked from the free list by assigning the free list head pointer
with the next free object. This is pointed to by the first word in the object being returned.
If the free list contains no objects, then there must still be unallocated space defined at the
end of the page data space. In this situation, the returned object is taken from the base
pointer of the unallocated space. The base pointer is incremented by the number of words
used to store the object. If the increment takes the pointer out of range of the page data

space, then the pointer is set to null, meaning that there is no more space for objects in the

page.
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The allocation of a single object from a page causes the object count value to be
incremented. If, after allocation, both the free object list and the unallocated space base
pointer are null, then the page is completely full and cannot contain any more objects. In
this case, the page is unlinked from the circular list that defines active pages of a particular

size, as the list points only to pages that still have space for object allocation.

The base address used to reference the newly allocated object is returned directly to the
user’s design. Further operations allowed from the address returned are numerous read and

write operations or the deallocation operation.

4.3.1.4 Deallocation

The deallocation of an object starts with the provision of the address from which to
deallocate from. The operation does not produce a visible result, in that no value is
returned. The first operation is to find the page from which the object is allocated. This is
achieved by simple address masking, as all pages are created the same size with power-of-

2 boundaries.

An object is removed from a page by inserting the given object address onto the free list of
objects within the page. This is done by assigning the present free list base pointer value
into the first word of the object, and then reassigning the free list base pointer to the
address of the object being freed. The deletion process does not touch the unallocated data

space pointer. The object count held by the page header is decremented.

With an object removed from the page, the page is now able to hold more objects. The
page is empty when the object count-value reaches zero. In this situation, the page is
returned to the list of free pages, ready to be used again to store objects of a potentially
different size. Before this, however, the page is removed from the active page list for the
particular object size. This is done by relinking the pages pointed to from the previous and
next page pointers within the active page header of the page being removed, so that the
two pages pointed to will now point at each other. If the next and previous pages point to
the page being removed, then this operation is not required, as the page being removed is
the only one contained in the circular list. If the base pointer of the circular list points at
the page being removed, then it is reassigned to another page in the circular list. If no other

pages exist in the list, then the base pointer of the list is set to null.
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The insertion onto the free page list of a page being removed is achieved by assigning the
free page head pointer value into the first word of the page being removed. The free page

list head pointer is then reassigned to point to the page being removed.

If there are still objects contained by the page after the object removal operation and the
page was previously full of objects, then the page is reinserted onto the active page
circular list for the particular object size. A check is made of the base pointer of the list,
which could be null. If the base pointer is null, then it is set to point to the page with
deleted object. If not, then the page is inserted onto the list by relinking the previous and
next pointers of the inserted page with the base page and next page pointed to from the
base page. The base page and the next page from the base page then are linked onto the

page being inserted by adjustment of their next and previous pointers respectively.

4.3.1.5 Reading and Writing

The addresses that the allocator returns reference the base pointer of the data space
allocated for a user defined object. The data in the allocated space is manipulated by direct
memory accesses from the user’s design. The two memory operations provided are a read
and write of a single data word. Both operations are the formed from the translation of a
VHDL source code dereference of an access type variable. A target dereference performs

a memory write and a source dereference performs a memory read.

Objects that are contained in more than one memory word are referenced from the base
pointer that is returned from the allocator and a memory offset value that the compiler
provides. The offset value, in the case of the described implementation, is simply a direct
address offset, so the actual address read from or written to is calculated from the sum of

the base address and the provided offset.

A memory read returns a value, so this blocks the communication with the user’s design
until the result is read from the underlying memory, whereas a memory write does not

return a value, so it resets the communication semaphore before the underlying memory
write occurs but after the address and offset have been registered. This allows the user’s

design to continue processing any other operations that follow the write.
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4.3.1.6 Limitations

There are two major limitations with the implemented algorithm, due mainly to the
allocation method itself. The first limitation is that only a limited set of distinct object
sizes can be allocated at any one time. This is due to the limited number of pages from
which to allocate objects. As each page may only contain objects of one particular size, the
maximum number of object sizes that can be allocated is the same as the number of
underlying pages. If more than one page is used to store objects of the same size, then the
number of available sizes is reduced further. This limitation is only a problem if

completely dynamic objects such as arrays with run-time length definitions are used.

The converse of the limited object size numbers is the limited maximum size of the
allocatable objects. As all objects are allocated from within a page, the page size forms the
upper limit on the maximum object size that can be allocated. Again, this only really
affects dynamic arrays, with the object size determined by the number of elements within
the array. A dynamic record cannot realistically reach this upper limit, as most records are

formed from a composition of relatively few elements compared to array objects.

A trade-off is made between these two limitations at compile time. As all objects are
allocated from a fixed address space, the trade-off is made between the number of pages
within the address space and the size of each page, where a doubling of page size reduces
the number of pages by half. The underlying address space can also be varied in the same
manner, but is more dependent on the underlying storage mechanism, which in some cases

is fixed before the user’s design is built.

4.3.1.7 Advantages

A major benefit of using the described heap management system is that the controlling
structures allow for implicit reallocation of objects. This means that if space is available

within a page for an object with particular size, the object will be allocated from that page.

The traditional problem with dynamic memory control is that the memory becomes
fragmented, with objects being deleted from random locations producing a memory map
with spaces difficult to reuse. This problem does not generally occur with the described

system due to the limited object sizes in a memory region giving close proximity between
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similar objects. The memory space will become fragmented, but the problems normally

associated with fragmentation are reduced due to the object space reuse.

The algorithm is both speed and space efficient: the allocation of objects takes a maximum
of twenty-four memory accesses (twelve reads and twelve writes). This forms all of the
setting up and list manipulation for each allocated object. Deallocation takes a maximum
of sixteen memory accesses (nine reads and seven writes), but returns control to the user
before the first memory access. The objects are densely packed into the memory space
because of the limited number of header structures required for the algorithm and the
embedded free lists effectively take no memory space, as the free objects themselves hold

the structure required of the free list.

4.3.2 Implementation

The system for the addition of dynamic memory support for designs produced by
behavioural synthesis described in this chapter is supported by a physical implementation
of various demonstration designs. These designs are described in Chapter 6 with further
details contained in Appendix C. The heap management algorithm described in Section
4.3.1 has a physical implementation also. This is described in Chapter 6 and Appendix C.
All of these designs are written using behavioural VHDL and synthesised with MOODS.

The underlying memory space that is controlled by the heap management algorithm is
realised by a fast-page-mode DRAM. This type of memory [95] requires constant
refreshing and is accessed via a multiplexed address path. The sequencing of the
controlling signals that drive the DRAM is performed by one process in the heap

management system.

The signals defined in the port list of the behavioural description of the heap management
system that are passed between the systems are described as simple vectors of bits. As all
ports, signals and variables are converted into the standard ‘std logic_vector’
representation [96] within the final structural design produced by MOODS, no conflicts of
type are found from using access type variables in the user’s source and the ‘bit_vector’

representation used by the implementation of the heap manager.
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Behavioural simulation does not require the behavioural description of the heap manager
in order to simulate, as the user’s description uses language constructs that can be
simulated directly. A structural simulation of the design produced by MOODS however,

will require the structural representation of the heap management system in order to

simulate fully.

4.4 Impact on optimisation

As there is no modification to the optimisation core of MOODS with the implementation
of dynamic memory allocation, no fundamental changes to the optimisation methods are
carried out. However, the different code style that is generated by the modified compiler

when dynamic memory is in use affects the optimisation process indirectly.

4.4.1 Inlined interface procedures

The heap management system and the user’s design communicate via interface procedures
that are inlined into the translation of the user’s processes and subprograms. Each
communication uses at least one clock cycle as a looping control state that checks and
waits for the communication semaphore signals to become equal. Another looping state is
required by communications that have a value returned (allocation and the memory-read
accesses). This forces a control state between the operations performed before the loop
and the operations that follow the loop. As the called interface procedures are inlined, the
sequential nature of the control flow will actually allow some operator chaining and
control state sharing for independent instructions. This produces tighter control flow with
greater utilisation of control states. As the interface is relatively simple, with only read and
write operations of the external interface ports and wait constructs forming the interface
procedures, the time taken for the synthesis of the interface is relatively small, but is

dependent on the number of dynamic operations found within a design.

4.4.2 Heap manager component

The heap manager is formed from a separate external component with its own separate
optimisation run. This means that the optimisation process for the user’s design is not

slowed down by the synthesis of the heap management system for every synthesis run
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performed on it. The only extra synthesis time for the user’s design is taken with the

synthesis of the interface to the heap management component.

4.5 Error handling

There are various stages at which errors in a design can be caught. The errors may stem
from synthesis limitations, source design errors or from a new set of errors that manifest

themselves from the runtime environment of the heap manager.

The constraint of the heap management algorithm that limits the maximum size of object
that can be allocated is generally canght during compilation. The only variables capable of
doing this are formed from multidimensional composite types. In fact, the only type really
capable of exceeding the size limitation is a 2D array, where the number of elements in
the array could exceed the given limit. In the case of the composite record type, the
number of memory words used is directly related to the number of elements in the record.
When the size of object is known during compilation, the check is made there.
Compilation will fail in this case, giving a relevant error message. If the size of the object
being allocated is defined by some runtime variable, then a check of the range of the
variable that is used to determine the range of the dynamic variable being created is made.

A warning is given during compilation in this case.

Another source of possible erroneous execution is with the pathological user design errors,
where incorrect user code is the cause of an error that leads to a memory over-write of the
heap management data or user data stored by the management system. Possible sources of
errors are generally found from accessing objects that have been deleted, which is possible
by having multiple references to a single object. The object free-list may be corrupted by
this action. Another source of error is when an object with a null reference is accessed.
This could over-write the base page object size table, leaving invalid page pointers in the
map. The error leads to undefined behaviour and will be caught by post-synthesis
simulation [20], which should always be undertaken before the physical system is

implemented.

The memory system that is controlled by the heap management algorithm is of limited
size. This means that a user’s design could attempt to allocate a number of objects that

cannot fit within the memory space available. This is a runtime error and is handled by
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simply returning a null reference from the allocator, which is the correct VHDL response
to an allocation that fails. No explicit handling of the error occurs. It is left to the user to
handle the return of a null reference. Any failure of the allocation will return a null
reference. Even if there 1s space available in the heap, it is possible to return a null
reference due to the limited set of pages from which to work from, and the defined size of

objects in each page.

4.6 Alternative implementations

After initial implementation, it became apparent that some modifications to the interface
methodology could produce designs that are optimised by MOODS in a faster manner,

producing faster and smaller implementations.

When the interface with the heap manager is created using dedicated ICODE instructions
for each heap access, there i1s more scope for ICODE optimisation. The actual physical
interface is then generated as a post-processing stage of the MOODS core instead, from a
direct compiler translation. The implementation of the physical communication contained
within the interface procedures is then created using the expanded module methodology

[3], and all extra communication ports and concurrent process multiplexing is added after

the main synthesis process.

With the heap interface now formed from a set of dedicated ICODE instructions, rather
than from the indirect ‘moduleap’ calling mechanism, ICODE optimisation for common
sub-expression removal can lead to a reduction in the number of memory accesses
generated by a direct translation of the user’s source code. This leads to faster runtime
execution with removal of some memory accesses in a trade off that generates extra

registers to hold temporary results from the heap.

Due to the fixed data path used by the heap management system, it is more than likely that
some data objects are stored by only parts of the data word. This inefficiency leads to a lot
of wasted memory space. A reduction of the wasted space can be achieved by careful
design of the objects stored by the heap, where physical data is manually shared within a
single 32-bit word, which is the current size of the dynamic data word. A more automated
method is to have some form of automatic data packing for increased utilisation of the

underlying storage. This optimisation provides a trade-off between the multiple memory
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accesses required for a write becoming a read-modify-write (to keep the other data bits in
the memory word valid) and the amount of wasted space in the memory. A read-modify-
write access is then required in the heap interface; with the underlying DRAM storage

capable of performing this action faster than a separate read then write.

The heap manager itself can have various modifications made, which optimise the system
with respect to the data allocated by the user’s design. Different underlying memory sizes
and types can be chosen and different data path widths form the various parameters that
can be optimised for the purposes of a user’s design. SRAM based caching [97,98,99] or
more dedicated use of SRAM [100] by the algorithm can generate trade-offs between the

extra memory overhead and the allocation and deallocation speed.
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Chapter 5

Recursion

Once explicit dynamic memory allocation is integrated into MOODS, the ability to create
recursive data structures is gained. To complement this, procedural recursion is integrated,
as this addition allows a greater level of behavioural abstraction for the manipulation of

the dynamic recursive data structures.

The rest of this chapter deals with the specifics of how procedural recursion is integrated
mto MOODS. Section 5.1 gives an overview of procedural recursion and on the general
methodology for integration. Section 5.2 details the specific VHDL compiler
modifications and changes to the ICODE file format to pass recursion-specific information
into the MOODS core. Section 5.3 shows the modifications to the MOODS core and to the
synthesised structures generated by the system. Section 5.4 shows detailed timing for
recursive procedure calls, while Section 5.5 details the impact on the optimisation process
of the MOODS core. Finally, problems associated with the method of integration are

shown in Section 5.6, with possible solutions given.

5.1 General overview

Procedural recursion occurs when a procedure is reachable from itself by following all
possible calls and indirect sub-calls from that procedure. The result of recursion in a
sequential language/system is a loop in execution flow for the design through the call
graph, where every iteration of the loop has a new set of iteration-local variables (the local
variables of the procedure). This is where the power of recursion as a high level technique
is gained, as no explicit dynamic stack of information is described by the source code;
instead, the language infers it from the call structure. This can result in much smaller and

easier to understand source code than the explicit iterative technique.
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Figure 5.1 shows six procedures being called from a single process. The arrows denote a
procedure call, with the called procedure pointed to. Where any call-loop between
procedures is found, the procedure being called must be capable of recursion. These
recursive procedures are shaded. Note that procedure A calls itself directly, forming the
tightest recursion loop, whereas procedures E and F call each other, creating one level of
indirection. Also note that although procedure B is called from the recursive procedure A,

it is not recursive, as it can never be entered again from its position in the call stack.

Procedure Procedure
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Procedure Procedure
E F
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Procedure
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Process
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Figure 5.1 Recursive procedure loops

Unfortunately, recursion does not lend itself to behavioural synthesis in a straightforward
manner, as all procedures are effectively statically created using a fixed control and data
path [101], with local variables mapped onto static registers, which makes each procedure

non-re-entrant.

The task of integrating recursion is essentially the conversion of each procedure capable of
recursion at run-time into a re-entrant procedure, by providing automatically created call-

stack dependent local data and all necessary controlling structures for this data.

5.1.1 Language implied storage requirements

Any language that allows recursion automatically implies a dynamic storage method for
all the local variables within its procedures. In the case of software languages, the method
chosen to implement this data storage is the stack [77], which is formed from a single

contiguous block of memory for each concurrent call tree. This method is chosen as it
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suits the calling mechanism of sequential languages, that of the call-return pair, where
local storage is created on the top of the stack for each procedure call and then thrown
away when returning from the procedure. In software, the stack 1s typically also used as a
method for passing input and receiving output parameters from the procedure calls and for
returning control to the correct calling procedure (a procedure could be called from

multiple places, only one of which is valid at run-time).

The stack 1s a very quick dynamic data structure to use, as it only requires a stack pointer

to give the present frame into the stack for the currently active procedure.

Process Procedure Procedure Procedure
A B C
STACK
FREE
SPACE |
Variable
c sized
STACK POINTER N T stack
; 1 frame
Proc. B
Proc. C
Proc. B
Proc. A
Proc. A

Figure 5.2 Procedure stack

Figure 5.2 shows a procedure call structure and an example stack image working from the
bottom of the stack upwards. The stack is a contiguous block of memory with a single
pointer acting as the stack frame reference. Note that each procedure can have different
sized stack frames dependent on the number of variables in the procedure that require

dynamic storage. Each variable is stored at a different offset from the base stack frame

pointer.



D.1.D. Milton, 2002 Chapter 5: Recursion 140

5.1.2 Original procedure call methods

An explanation of the methods used for procedure calling before the additions made for
recursion is necessary, as parts of the underlying system are used by the recursive
procedure call methodology and the old method is still used fully when no recursion is
detected in the user’s source code. The old calling method is still used where possible, as
the structures generated for this are simpler and smaller, with recursion requiring extra

resources (both execution time and design area) for the dynamic memory storage.

5.1.2.1 ICODE modules and calling method

The user’s design is converted into ICODE by the VHDL compiler. A procedure is
represented in ICODE by the instruction ‘module’. Any converted procedures or functions
in VHDL are translated into ICODE modules (unless they are explicitly inlined). The
module contains information about its I/O ports in its header. Local variables are also

specified locally in the module, along with all temporary variables used by the module.

After the I/O and variable declarations come the ICODE instructions themselves that form
a completely contained flow of control for the module. The only exception to this is the
‘moduleap’ instruction, which is the ICODE method of calling other procedures. This
instruction contains a list of /O parameters that are mapped onto the called procedure’s
/O ports. This map could be different for different calls to the same procedure, so some
method is required at run-time to determine which parameters to use. An example of

generated ICODE is shown 1n Figure 5.3.

VHDL > ICODE

MODULEAP triple b, a

triple(b); MODULEAP triple d, ¢

triple(d);

L}

. . . . MODULE tri i
function triple(integer wval) return integer is iple val, triple

; inport val 0:31
variable t: integer; P . { J
X outport triple [0:31]
begin :
register t [0:31]
t = val + wal;
plus val, wval, t
return t + wval; .
end triple; plus t, val, triple
pLes ENDMODULE triple

Figure 5.3 VHDL function translated into ICODE module
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5.1.2.2 Passing parameters by reference

MOODS takes the meaning of the parameter map of the ‘moduleap’ instruction to be pass-
by-reference for the various /O parameters. VHDL signals are also passed by reference,
with variables and constant inputs passed by any method the implementation chooses. A
design is erroneous if any side effects of the implementation differences produce differing
results. This means that a pass-by-value implementation can also be used with equal
validity for variable and constant parameters. Since a difference in the implementation
only affects the concurrent access behaviour of the passed parameters, it is possible for all
parameters to be passed by reference or value without any breakage of the sequential
behaviour (constant inputs are driven from expressions that create temporary results, that
effectively copy the value). The addition of recursion to the system requires a pass-by-
value implementation. Signal passing through recursive procedures is therefore

disallowed.

The meaning of pass-by-reference as used by a synthesised design is explained more in the

next section, which deals with the final structure generated as output from MOODS.

5.1.2.3 Structural output

The main features of an implementation of a procedure call is the ability to handle the /O
parameter passing to and from the procedure with its parent and the knowledge of which
parent call to return to, as the procedure could be called from many places. Both these
fundamentals are handled in part by the ‘call control node’, which forms one state in the

generated finite state machine for every call made by the user’s design.

The method for returning to the correct point in the control flow is handled by the call
node itself, as it leaves itself active throughout the duration of the call to the procedure
(see Section 3.2.6 and Figure 3.10). It only activates the following node when the called
procedure reaches an end node with a valid exit condition. A call node only contains the
‘moduleap’ ICODE instruction. All other instructions before and after the ‘moduleap’

instruction are scheduled in the preceding and subsequent control nodes respectively.

This method of control node activation is not suitable for recursion due to the necessity of

keeping the call node active as a placeholder for returning to the correct point in the
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control flow. In a recursive implementation, a different method is used for returning from

a call correctly.

The method for passing the input and output parameters (actual arguments) of a procedure
call are different in the MOODS structural output. In the case of inputs, a port signal is
defined for each input, which maps onto the actual arguments passed into every invocation
of the given procedure for that input. If the procedure is invoked more than once with
different actual arguments, then a multiplexor is created with each different argument as a
selected input. The selection of which input parameter to use is gained from the active call
node, which is active throughout the entire duration of the call. Figure 5.4 shows an

example structure generated to pass input and output parameters directly, as references.

Source VHDL ICODE
procedure test il : MODULE test i, o
( inport i[{0:31)
i : in integer; outport 0[0:31]
o : out integer i2 : move i, o
) is i3 : ENDMODULE test
begin
o := 1i;
end test;
register a [0:31]
register b [0:31]
register s [0:31]
variable a,b,s,t : integer:; register t [0:31]
test ( a, s ); i7 : MODULEAP test a, s
test (a, t ); i8 : MODULEAP test a, t
test ( b, s }); i% : MODULEAP test b, s
test (b, € ) i10: MODULEAP test b, t
State Machine Data Path Structure
— La] [b]
- .
i ’/»,—-N::‘_\\_ inputt l l input2 b=
\////—\\\ s, oS y g
8 />(\ ,/ i1 Sgors, %, MUX
AKX i2 \® /
; NN i3 )
i8 /r\\ \\\\\ \\\‘“//f input port — g
J \y_jgﬁ v E
110 — S, and (S; or Syo) r‘——j B
e S,and (S, or S,) Y g
~REEENE s |BE L | S 3

Figure 5.4 Input and output parameter passing
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In the case of output parameters, all outputs are mapped onto registers. When an output is
written by the called procedure, a load signal is generated from the control node of the
called procedure’s local finite state machine. This is linked to the load-enable input of the
register containing the referenced variable. If more than one map for the output parameter
is found from the multiple calls to the procedure, then the load-enable signal drives all the
registers that have been mapped. However, only the relevant output must be updated, with
all others left alone. This is achieved in a similar way to the input multiplexor select
signals, where instead of using the load-enable signal directly for each register, it is first
logically-ANDed with the logical-OR of all the call control node active signals, whose call
instruction passes the controlled register variable as output. This means that the referenced
register 1s written directly when an instruction inside the called procedure performs a write
to its output port. This demonstrates the meaning of pass-by-reference, as the mapped

register variable is written from the output port reference.

5.1.3 Additions required for recursion

An outline of the additions made to MOODS for the support of procedural recursion is

given here. The general concepts shown here are then expanded in the rest of the chapter.

5.1.3.1 Control nodes and return addresses

As explained in Section 5.1.2.3, the ‘call control node’ acts as the return control method
from a procedure call. This method is not suitable for a recursive call, as the act of calling
a procedure leaves the call node active (for returning correctly and referencing the correct
parameters of the procedure’s I/O). A recursive call requires a different type of state

machine control node that is not active throughout the call duration.

Due to the loss of information from the calling mechanism of the state machine, it is
necessary that a ‘return address’ variable is created for each procedure capable of
recursion. Each recursive call instruction then has a unique return address value associated
with it. The return address is then used to determine the correct calling control node to
reactivate after the procedure has completed execution. The return address is also used to

select the correct I/O parameters to reference.
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The split into separate state machine calling mechanism and return address allows the
dynamic modification of the return address value dependent on the recursion depth,
allowing return control to be determined by the generated stack, introduced by the next

section.

5.1.3.2 A dynamic stack and stack pointer

On their own, the return addresses do not enable recursion. However, the compact form of
a return address enables easy insertion into a stack memory. This enables recursive calls to
the same procedure to be stacked one on top of another by ‘pushing’ the return address
onto the top of the stack when performing a call and ‘popping’ the return address when

returning from a call.

The necessity of a stack is determined at compile time, as it is at this stage that any
possible recursion is detected in the user’s source code. The stack is formed from a RAM
cell with the current stack position held by a stack pointer register, which contains an

address into the stack RAM cell.

All recursive procedure calls are assigned a unique constant return address value that is
held by the called procedure’s return address variable when the recursive call is made.
Stack manipulation of the return address is performed by explicit auto-generated ICODE
instructions. The compiler in this way generates all associated control of the stack and

return addresses in the sequential control flow.

5.1.3.3 ICODE modifications

The ICODE operations generated by the compiler for control of the stack and return
addresses for each procedure use standard ICODE instructions. However, the extra
information generated by the compiler of the return address value associations for
recursive calls and return address register associations for recursive modules are also
required by MOODS. This information is passed into the synthesis core by slight
modifications to the ICODE file format.

These modifications allow MOODS to generate all the associated control logic around the

return address variable instead of the ‘call control node’, which was its previous method

for flow control and parameter passing.
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5.1.3.4 Pass by value parameter /O

The method used to implement recursion involves a change in the parameter passing
mechanism from pass-by-reference to pass-by-value. This removes the ability to pass
signals through recursive procedures, as all parameter values are copied, not referenced.
An alternative implementation could have kept the pass-by-reference semantics, but would
have required extensive modification to the structural mechanism used to reference the
passed parameters, with the multiple levels of procedure call no longer being used directly
to reference the passed parameters. The method would instead rely on compile-time
parameter analysis and run-time reference selection logic to determine the correct

parameter to reference for each module call.

The method chosen was to keep the underlying pass by reference method for one level of
procedure call, but to perform variable copying within the calling procedure, so that the
resulting reference only references variables local to the calling procedure. The control of
this variable copying is performed by auto-generated ICODE from the compiler. As all I/O

parameters are stack-frame local, the place to store these copies is on the stack.

The same applies to local variables in recursive procedures, as these variables are created
statically using ICODE register variables. These are also stored on the stack before each
recursive call in case they are re-used when the recursive procedure is re-entered. Their
values are restored from the stack when the called recursive procedure exits. These

modifications effectively add a dynamic storage element to the underlying static hardware

storage.

5.1.4 Summary

The rest of this chapter details the methods used to implement procedural recursion as part

of any behavioural design. The major points to remember during this description are that:

® The static translation of the VHDL procedures and functions into ICODE ‘modules’
is further enhanced in order to provide dynamic storage for the local data and passed
parameters, so that multiple versions of the same data set can exist at different

recursion depths.
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° The dynamic storage mechanism for this dynamic data is held by a stack, which is
added by the compiler when possible recursion is detected. An internal stand-alone

SRAM-based contiguous memory block data path unit implements the stack.

. The stack pointer is used to reference a single element on the top of the stack, with
all stack operations working from this memory address, one element at a time. The
compiler generates the stack pointer register variable and all stack operations by

using standard ICODE instructions.

e The controlling state machine has a new type of control node that is used for

recursive calls. The call node deactivates completely once it activates the starting

node of the called procedure.

° A single return address variable is created for every module capable of recursion.
The address value represents any of the calling instructions that can activate the
recursive module. Each recursive call has an associated unique return address value.
The return address holds a single reference to one recursion depth (all other
recursive return address values are held in the stack). Structural /O parameter

selection is made dependent on the return address value.

° All stack modification is performed in the calling module, on either side of all
recursive call instructions. The return address, local variables and I/O parameters of

the calling module are stored before the call and retrieved after the call.

e The pass-by-reference paradigm is used at a single recursion depth only, allowing
variables that cannot be concurrently accessed to be passed through recursive calls
without a breakage of the pass-by-reference rules. However, the pass-by-value
paradigm is used for further recursion depths, which disallows the passing of signals

(which can be concurrently accessed) through the procedural interface.

o Both the non-recursive call mechanism and the recursive call mechanism can be
used in any one design, with full integration of both mechanisms, allowing any non-
recursive modules and module calls to retain their original speed and area overheads,
which are less than a recursive implementation (with the inclusion of the stack and

stack modification operations).
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5.1.5 Example

An example of a recursive design is presented here. Both the source VHDL is given in
Figure 5.5, along with the translation in the form of the intermediate ICODE file in Figure
5.6. The example is referenced throughout the chapter for illustrative purposes. The
translation is presented before a full explanation of the modifications made, as an
understanding of the modified synthesis system appears to be recursive in itself, where an
understanding of one section of the implementation relies upon the understanding of
another section, which is reliant on understanding the first. The example is a recursive

implementation of the Fibonacci series calculation.

1 entity test_fibonacci is

2 port (

3 result : out integer

4 )i

5 end;

[

7 architecture behave of test_fibonacci is
8 begin

9 main_process : process

10

11 function fibonacci {x : integer)
12 return integer is

13 begin

14 if x = 1 or x = 2 then

15 retuzrn 1;

16 else

17 return fibonacci(x-1)+£fibonacci (x-2);
18 end if;

19 end fibonacci;

207

217 variable val : integer := 1;
22 begin

23 loop

24 result <= fibonacci(val);

- exit when val = 50;

26 val := val + 1;
27 wait for 100 ns;

28" end loop;

29 val := 1;

30 wait for 100 ns;

31 end process main_process;

32 end behave;

Figure 5.5 Fibonacci test design source code

Note that the shaded lines of Figure 5.6 highlight the extra ICODE variables and

instructions added for the stack and its explicit management.
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0~ W

PROGRAM
outport
register
register
register
register
register
ram

.main_process_PR1
.label5

.1f8_false 9

.if8_true 11

RECMODULE
inport
outport

.if18_true_ 19
.1f18 false 20

test_fibonacci result
result [0:31]
val (0:31}
fibonacci_ra [0:1}
fibonacci_x_in [0:31]
fibonacci_fibonacci_out [0:31}
- stack_pointer_ 1 [0:71
stack_1 [0:31] address [0:255]
move #0, stack pointer_1 &
move #%00, fibonacci_ra:
move #1, val
MODULEAP fibonacci val, 100
move 100, result
eq val, #50, 101
if 101 ACTT if8_true 11 ACTF if8_false 9
plus val, #1, val
protect ACT label5
move #1, val
protect ACT label5
ENDMODULE test_fibonacci
fibonacci fibonacci_ra x, fibonacci
x {0:313
fibonacci [0:31]
eg x, #1, 108
eq x, #2, 109
or 108, 109, 110
if 110 ACTT if18 _true 19 ACTF ifl18 false 20
move #1, fibonacci ACT label50
minus ) x, #1, 103 o
memwrite - fibonacei x in, stack_ iistack'pointer 1]
o plus’ stack_pointer. 1, #1, stack_pc;nter 1
‘move 103, fibonacci x:in
memwrlte' fibonacci ra, stack. listack_p01nter l]
plus : stack_p01nter 1, #1, stack_po;nter 1
move #%01, fibonacciira
RECURSE fibonacci #%01 flbonaccl x_in, flbonaccl flbonaCCl ~.out
minus stack_pointer 1, #1,”"stack_pointer 1
‘memread stack_l[stack.pointer. 1}; fibonacci_ra
protect: SR '
minus: stack.pointer 1, #1, stack.pointer_.l
memread stack_1[stack.pointer 1}, fibonacciix_in
protect‘ 5 g : ' :
move fibonaccifibopacciout, 104
minus x, #2, fibonacci_x_in
memwrite 104, stack_l[stack_p01nter 1]
plus { stack_pointer:l, #1, stack_po;nter 1 ;
memwrite fibonacci:ra, stack:1l{stack pointer_1] Ey
plus ‘stack_ pointer: 1, #1, stack pointer 1 o 4
move - #810, fibonacci_ra SRR : i
RECURSE fibonacci #%10 flbonacc1 x_in, fibonacci_fibonacci_out
minus stack_pointer_1, #1, Stack_pointer 1
memread stack 1[stack_p01nter 13 fzbonaccm ra
protect
minus stack_pointer_l, #1, stack_péinter_l
memread ‘stack llstack.pointer: 1], 104
protect .
move £ibonacei: £ibonacciiout, 106
plus 104, 106, fibonacci
ENDMODULE fibonacci

.label50

Figure 5.6 Fibonacci test design ICODE translation

5.2 Compiler modifications

The VHDL compiler that is the front-end to MOODS required some modification in its

parsing abilities and ICODE generation functionality to fully handle procedural recursion.

This section details those modifications.
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5.2.1 Forward declarations

As VHDL requires that all procedures be declared before their use, an indirect recursive
call structure forces the use of forward declarations of procedures. There are four
declarative regions in VHDL in which this is possible. The first is the package header; the
second is the package body; the third is the architecture declarative region and the fourth is

the process declarative region.

It is possible to defer the definition of the body of the procedure out of the local scope of
the declaration, but in the general case, most procedures are defined in full in the same
scope as the procedure declaration. It was necessary to add the ability for declaration of
procedures without their body in the architecture and process declarative regions for the
purpose of forward declaration. This ability already existed in the package header and
body due to the package body being able to hold the definitions of procedures declared by
the package header. This was previously the only place in which one could define

recursive procedures, which was rather limiting.

Declarative Regions Forward Declaration Example
package pck is -- within a declarative region

-- package header declarative region
end pck; -- declaration of A

function A(inA: integer) return integer;

package body pck is

-~ package body definition region -- declaration and definition of B
end pck; function B(inB: integer) return integer is
begin
architecture behaviour of design is return A(inB);
-- architecture declarative region end B;
begin
pro: process -- definition of deferred function A
-- process declarative region function A(inA: integer) return integer is
begin begin
null; if inA = 1 then return 1;
end process pro; return B(ina-1);
end behaviour; end A;

Figure 5.7 Example VHDL: Declarative regions and forward declarations

The support for recursive forward declarations is added by allowing two definitions of the
same procedure in the compilers internal data structures. One holds just the forward
declaration information and the other contains the same information as the forward
declaration and in addition, contains the body of the procedure as well. Any call to a
procedure whose body is not defined links to the declaration version of the internal

procedure data structure. When the ICODE is generated in the translation stage of the
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compiler, any link to a declaration-only procedure is resolved onto the full-body procedure
data structure. This is achieved by searching in each region in turn, starting from the
process’ declarative regions, then the architecture’s declarative region, then any referenced

package bodies followed by the package headers.

5.2.2 Detecting recursion

The necessity of detecting when recursion is possible is so that designs with no need for
recursive features are created without the extra overhead that is involved with recursion. It
is not even enough to detect that recursion is possible in a design, as locating exactly
where in the design recursion can occur allows the extra overhead to affect only the

procedures that can be recursed.

There are two pieces of information that need to be extracted from the user’s design in
order for recursion to be detected. These are determining which procedures are contained
by recursive loops and which calls to these recursive procedures are recursive calls by
checking that the call forms an arc in one of these recursive loops. Both of these sets of
information are required for an efficient implementation of recursion, as the information is
used to determine which ICODE modules require a return address and which call
instructions need to modify the stack contents. If one or more module is found to be

recursive, then the compiler generates the stack and all the associated control for that

stack.

The reason for needing to know which procedure calls are contained by a recursive loop is
that the call can be implemented by the original call method if it is not contained by such a
loop. Both the old static calling method and the new dynamic calling method of the state

machine are supported in the same design.
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A
Cc el
f2

Figure 5.8 Determining recursive procedures and procedure calls

Figure 5.8 gives an example of a call graph. It shows a number of procedures (A-K)
represented by the nodes of the graph and a number of calls between these procedures (a-
k) represented by the arcs of the graph. Recursion exists in the design if there are any
loops in the graph. A procedure can be recursed if it is contained by any graph loop.

Similarly, a procedure call is a recursive call when its representative arc is part of a graph

loop.

Note that all initial calls (a, f1, h1) from the root process are non-recursive, as it is

impossible to invoke the process from a procedure in VHDL.

The algorithm that calculates which procedures and procedure calls are recursive is
implemented simply as a depth-first traversal of the entire graph starting from the root
process. For each iteration a marker is left in the ICODE module (procedure) being tested
when a call to that module is followed. When all the calls from a module have been tested,
the marker is removed and the algorithm jumps back to the calling module. In this way, if
any module jumped into already has a marker set then the module is marked permanently
as recursive. Two loops around any recursive loop in the call graph are required to fully
determine every recursive module. The recursive calls are marked in the same way by the

same algorithm. Thus the shaded modules in Figure 5.8 are identified as recursive.
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5.2.3 Auto-generated ICODE

The compiler generates all the necessary control of the stack and stack pointer when
recursion is found in a design. These additions occur after the VHDL parse tree has been
translated into an internal representation of ICODE and after procedural inlining. Figure

5.9 shows the multiple phases used in the compiler.

VHDL Compiler

Lexical Analysis

v

Parser

v

Translation

v

Inline

NN W

C
C
C
C

( Optimisation )
v
( ICODE file generation )

Figure 5.9 VHDL Compiler program flow with recursion modifications

Note that the additions required to implement recursion are made after module inlining.
An effect of inlining selective modules in a recursive loop is that the loop becomes tighter.

It is impossible however, to inline a module that calls itself directly. This is flagged as an

error if attempted.

All the additions made for recursion are made to the internal representation of ICODE in
the compiler. This data structure is far simpler than the VHDL parse tree from which the
ICODE is based (by translation). The ICODE file, which forms the output of the compiler,

is a direct representation of the internal ICODE data structures in the compiler.

5.2.4 Return address generation

The return addresses serve two purposes in the final structural design. They tell the

currently active procedure which call-instruction activated the procedure in the first place.
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This means that when the called procedure exits, the relevant return address indicates
which control node of the calling procedure or process to reactivate. The second purpose
of the return addresses is for determining the correct references for any I/O passed as

parameters to the procedure.

As each return address contains information relevant to one procedure only, each recursive
procedure is assigned its own return address ICODE register type variable. The values
held by the return address can reference every call instruction to the procedure. Every
recursive call to the recursive procedure will be assigned a unique constant reference
number (starting from 1) that can be stored by the return address variable at run-time. Any
non-recursive calls to the procedure (those not part of recursive loops) are assigned the
constant zero for its address by default. There is no need to make any distinction between
non-recursive calls to the procedure, as the old procedure call method is used in these
cases. The ‘call control node’ that is left active (explained in Section 5.1.2.3) holds the
return information. The return address is stored in a register with a number of bits capable
of storing the highest constant reference address generated for each recursive call to the

relevant procedure. This information is in plain binary format.

The return address ICODE variables are generated in the main ICODE program (Figure
5.6, line 4). This is because of the scoping rules of the ICODE, where a variable declared
in a module can only be accessed from inside that module. As the return address requires
external modification in the same location as a recursive call to the relevant module (lines

36 and 50), it is placed in the ICODE program, which has global scope.

5.2.5 ICODE instruction modification

After recursion has been detected, each module found to be recursive has its module
header instruction changed from the ‘module’ instruction into a new instruction defined
for recursion, ‘recmodule’ (Figure 5.6, line 22). This change allows MOODS to determine
which modules are recursive. The ‘recmodule’ instruction is then followed by the name of
the module and then the return address variable associated with the module, before the
normal definition of the I/O list. The structural output in the MOODS core requires the

return address variable association.
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Similarly, every call that 1s found to be recursive has the ICODE instruction ‘moduleap’
changed into a new type of call instruction also defined specifically for recursion,
‘recurse’ (Figure 5.6, lines 37 and 51). This change allows MOODS to distinguish
between the two types of calling methods. A ‘recurse’ instruction is followed by the name
of the module being called and then the associated return address constant value, before
the normal definition of the I/O map for the particular call, as the structural output in the

MOODS core also requires the associated return address constant.

For a full definition of the modified ICODE file format, see Appendix D.

5.2.6 Parameter passing

The underlying structure of the final generated hardware still uses pass-by-reference for
the procedure’s /O parameters. It is necessary to change this into a form where the
reference only references a variable local to the calling procedure, effectively reducing the
method to a pass-by-value with one level of reference indirection. The reason this is
necessary is due to the new method for selecting which /O arguments to reference,
namely the return address, which holds only a single reference to the parent calling

procedure at run-time, not the entire stack of return addresses (which are required in order

to deduce the referenced root variable).

A register variable is created for every input and output port of every recursive procedure
(Figure 5.6, lines 5 and 6). These registers are used to mirror the arguments passed as /O
parameters from each recursive calling-module into every recursive called-module. The
registers are added to the top level ICODE program, not the module from which the mirror

registers derive, as they must also have global scope in the same way as the return address.

For every recursive call to a recursive procedure, the ‘recurse’ instruction is modified to
use these new mirror registers as the values passed into its /O map. In addition to this, for
the case of input parameters, the values that originally would have been passed into the
‘recurse’ instructions I/O map are copied to the mirror registers before the call (Figure 5.6,
lines 33 and 45). In the case of outpuf parameters, the values are copied back from the
mirror registers into the originally passed output parameters after the recursive call returns

(lines 44 and 58). This requires the addition of an ICODE ‘move’ instruction per
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parameter, added before (in the case of inputs) or after (in the case of outputs) the

‘recurse’ instruction.

5.2.7 Stack manipulation

There are two main implementations for the stack that were considered. The simplest
implementation, a single contiguous block of memory used for all stack frame data is
used. This permits flexibility in the final hardware implementation, where any number of
memory types may be used for the actual data storage. The initial implementation uses an
internal RAM cell, with user-defined address space. This can easily migrate onto an
external memory description, with a change in the interfacing methods, allowing larger

stack depths to be used.

The second alternative implementation considered is to have multiple stacks that keep
track of one design variable each. This enables a more memory efficient allocation
strategy for every register, with the stack data width tuned to the width of the variable that
it references. This strategy enables concurrent stack modification for every variable, which
allows an increase in the speed of the final design by reducing the number of clock cycles
required. The drawback of this method is due to the variable sized stack frame requirement
of each variable, which is dependent on the position of the recursive call within the calling
module as to whether the variable requires stack storage or not (see Section 5.2.7.5).
Therefore, it is possible for some variables to require more stack frames than others. The
act of balancing the number of stack elements for each variable, so that one stack block
does not fill up before another is not trivial. In fact, it is not calculable at compile-time as
the analysis problem is not static. The amount of space required is determined at run-time,
as there is the possibility and likelihood of performing recursive calls conditionally,

dependent on run-time decision data.

5.2.7.1 Stack and stack pointer creation

The present system creates a single stack of 32-bits data path and a user-defined address
space. Concurrent processes invoking recursive procedure calls have been disallowed (see
Section 5.2.8). The 32-bit data path specifies the largest variable width that is capable of
being stored on the stack. This particular width is chosen to mirror the space required to

store a VHDL integer and to handle the full dynamic object data path width specified in
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Chapter 4. The stack itself is created in the top-level ICODE program as a RAM variable
(Figure 5.6, line 8). This means that one 32-bit word of memory is accessible within one
clock period for read or write-access. All stack addressing occurs via the stack pointer
variable, also defined in the top-level ICODE program (line 7), which is a register capable
of holding the full address to any object held on the stack. The stack pointer width is

dependent on the address range of the stack, which 1s user defined.

5.2.7.2 Push and pop operations

All the dynamic operations added to the recursive call instructions access the stack. The
two main operations performed on the stack are push and pop. A push operation writes a
given value into the stack and increments the stack pointer ready for the next push, while a
pop operation performs the reverse of a push by decrementing the stack pointer and
reading back the value at the decremented position. The equivalent ICODE instructions for

the push and pop operations are shown in Figure 5.10.

ICODE variable definitions and setup

register stack_pointer 1 [0:7]
ram stack_1 [0:31] address [0:255]

move #0, stack_pointer_1

PUSH (val)

memwrite val, stack l[stack pointer 1]
plus stack_pointer_1, #1, stack pointer 1

POP (val )

minus stack_pointer_1, #1, stack pointer_1
memread stack l[stack_pointer_ 11, val
protect

Figure 5.10 ICODE equivalent instructions for stack modifiers

In the example, the stack is created with 256 addresses, so the stack pointer requires 8-bits
to store the full address. The ‘move’ of zero into the stack pointer occurs only once at

initialisation. All other modifications are performed by the ‘plus’ and ‘minus’ ICODE
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instructions that form part of the push and pop operations. Note that the pop operation has
a ‘protect’ instruction after the stack modification. The ‘protect’ instruction forces a clock
cycle break between the instructions above and below the ‘profect’. This is required in the
case of popping the return address, as there is no dependency checking for I/O references
across module borders in MOODS. This is explained in greater detail in the next
subsection. The extra ‘protect’ has no adverse effects, even if included for every pop
operation, as every pop includes one memory read instruction of the stack, each of which

already requires a separate control state.

5.2.7.3 Return address manipulation

All stack modification is performed in the calling module, rather than the called module,
with the controlling ICODE instructions added before and after every ‘recurse’

instruction.

When a recursive call is made, the return address of the called module is set to the address
associated with the recursive call. This operation tells the called procedure which I/O to
reference and where to return control after the called procedure exits. However, the return
address could be holding a valid address already, from a previous call to the procedure.
This then, is the point at which this previous address is pushed onto the stack (Figure 5.6,
lines 34-35 and 48-49), before the modification to the new address (lines 36 and 50). The
call then executes with the knowledge that the return address is valid, and that the previous

return address for the called procedure is stored on the stack for future reinstating.

The complement of the push of the return address for a called procedure is to pop the
return address straight after the procedure has returned from the recursive call (Figure 5.6,
lines 38-40 and 52-54). Note that the return address must be reinstated before any other
pop operations from the stack, as the return address (which may change at this point)
determines the correct I/O parameters to map onto, which may be referenced by the
following pop operations. It is for this reason that the ‘protect’ instruction is made part of
the pop operation, so that the return address register updates before the following
instructions are executed. Normally, the data dependency information held by MOODS is
used to determine whether the registered version or non-registered version of a variable is

used during a control state. However, the dependency of the following pop operations with
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the return address is not directly specified, it is only implied by the internal structural use

of the return address.

Another effect of the single-cycle update time for the return address is found with the rare
case of no further operations taking place after the pop of the return address. The pop
operation is scheduled in one of the end-states of the module in this case. However, as the
registered return address is used to reactivate the calling control node, the return address is
not valid until the end-state completes. This is too late to reactivate the correct calling
control node (with activation made incorrectly using the current return address). Detecting
this rare case in the ICODE and adding an extra ‘protect’ after the pop operation for the
return address solves this problem. This has the effect of creating an extra control state
after the pop operation for the return address, in which the registered version of the return
address is valid. This extra state becomes an end-state of the control graph (replacing the
pop operation state as an end-state) and is used to reactivate the correct calling control

node. Section 5.4.3 gives an example of timing for the return address setup cycle.

5.2.7.4 Output parameters

The output parameters of any call do not require updating, as any writes to them during the
procedure reference the passed parameters directly. The parameters do not require stack
storage, as by definition, they form the result of the procedure. However, the mirror
registers, which are passed into the procedure as the referenced variables contain the
results of the procedure. Section 5.2.5 explains the purpose of mirror registers. The mirror
registers are used to update the original passed parameters defined in the calling

procedure. The output variables are updated after all of the stack operations.

5.2.7.5 Input parameters and local variables

The input parameters of a recursive call, on the other hand, do require insertion onto the
stack. It is at this point that the mirror registers for these values are modified to the values
being passed into the called procedure. However, these mirror registers could be holding a
valid value from a previous call to the procedure being called, so before the mirror register
values are modified to the values being passed, the old values are pushed onto the stack for
future reinstating (Figure 5.6, lines 31-32). Note that the pusk operations occur before the

push of the return address, so that all references to I/O of the current procedure are still

valid.
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Local variables (including temporaries) are treated in exactly the same way as input
parameters, in that they are pushed onto the stack after the inputs (lines 46-47). The only
difference is that the values held by the variables are not modified to any particular new
value; they are modified by the next iteration of the procedure currently being jumped out
of. These values are pushed in the knowledge that further calls to the present procedure are

possible by recursion.

Both input parameters and local variables that were pushed before a recursive call are
popped after the call in the opposite order, which brings these values back into their

original state as found before the call (lines 41-43 and 55-57).

An extra optimisation in the number of push/pop operations performed around a recursive
call is possible. The optimisation involves calculating which input parameters and which
local variables are written before a recursive call and read after the call. If the values are
never written before and read after a call, then these values do not require insertion onto
the stack, because the data they hold before the call is never accessed after the call. The
check is further reduced to just checking for a value being read after a call, as if a variable
was not written before, then the value will be invalid anyway, which is caught by
behavioural simulation. Figure 5.6 shows that the input mirror register is only stored
around the first recursive call, as the input is not referenced after the second call. Also, of
all the local variables in the Fibonacci module, temporaries 103, 104, 106, 108, 109 and
110, only temporary 104 is stored around the second call, as this holds the result of the

first recursion, used after the second recursion.

Following all control-flow paths from the ‘recurse’ instruction (including loops and all
paths from conditionals), finding whether each local variable and input variable of the
‘recurse’ instruction is ever read after the call, makes this check. If the variable being
checked is found to be written to, then the check need not carry on any further along that

path, as the write overwrites any previous value, which also means that the variable does

not require stack storage.

5.2.8 Limitations

There are a few limitations when using recursive procedures, but most restrictions are not

too great or can be worked around.
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The first limitation is that signals [80] cannot be passed into a recursive procedure. The
reason for this is explained in Section 5.1.3.4, with the introduction of pass-by-value
parameter passing. The reason that signals cannot be passed is that they require a full pass-
by-reference method, so that the root signals are updated directly at the wait statements in
a procedure. The pass-by-value method will not work correctly because the output is
updated only on the return of a call. A workaround for this limitation is to use global
signals or entity ports directly in the procedure if the recursive procedure is defined in the

architecture or processes declarative regions of a design.

Another limitation is that only one process in a design is allowed to call recursive
procedures. This is not too great a restriction: multiple processes that are required to call
recursive procedures can be split into separate design units. This restriction could be
removed in the future if multiple stacks are created for each concurrent process in a
design. This requires the replication of recursive procedures if they are called from more

than one process, as each procedure implementation statically accesses one stack.

The 32-bit data path of the current stack configuration is a limitation if data greater than
32-bits requires dynamic storage. This limitation is caught during compilation. A method
to cope with this problem is to create a stack with a compile-time configurable data path
width that is optimised to the greatest data path width that is stored on the stack. This
problem would also disappear if the alternative stack structure, described in Section 5.2.7
were used. The generated structure is of a separate stack memory for each dynamic
variable, where the data path width of each stack is the same as the data path width of each

variable requiring storage.

The final limitation for recursive procedures is that these procedures are not allowed to
contain RAM arrays as local variables, as making dynamic copies of the entire array for
every stack frame takes a time proportional to the address size of the array, and fills the
stack memory extremely quickly. If access to a RAM array is required, then the array
could be placed in the same declarative region as the procedure definition, which moves
the array from the procedure’s scope (requiring stack-frame local data) into the parent

scope of the procedure.
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5.3 Hardware generation

The modifications made to MOODS and the structural VHDL generator, described by this
section, complement the front-end modifications necessary for recursion made to the
compiler, described in Section 5.2. These changes are mainly with the introduction ofthe
‘recurse control node’, the alternative to the ‘call control node’ and the utilisation of the

return addresses by the controlling state machine and module /O selection.

5.3.1 Modules in MOODS

The MOODS data structures are built from the inputted ICODE file generated from the
compiler. The ICODE ‘module’ has a direct equivalent structure in MOODS, with the
addition of more information about its present optimisation state. This includes the control
graph that represents the controlling state machine. The ICODE instructions are contained
in this control graph and the act of optimisation moves the ICODE instructions across

control states, allowing the number of states to be changed.

The addition of procedural recursion affects the MOODS structure containing the ICODE
‘module’, as the module is derived from the original VHDL source procedure or function
that could be recursive. The extra information required by MOODS is generated by the
compiler and contained in the ‘recmodule’ and ‘recurse’ ICODE instructions. This gives
MOODS the information that a module can be recursively entered, the return address
associated with the module and the return address constant allocated to every recursive

call. The ICODE file contains this information.

5.3.2 Post-optimisation step

While MOODS performs the core optimisations to a design, the internal data structures
hold the complete design that represents the structural output at any time. However, these
data structures do not contain explicit one to one mappings with the actual hardware
generated. Instead of the conditional signals that form the link between the controlling
state machine and the data path being created explicitly on the fly as part of the
optimisation process, they are simply implied by the ICODE instructions that perform the

various operations. This is far more efficient in terms of optimisation speed.
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Equally, when MOODS shares data path nodes, they then have multiple inputs that are
active at different times in the control flow. Instead of explicitly creating a multiplexor for
these data path nodes during optimisation, the multiplexor is implied by the existence of
multiple drivers for the shared data path node. The effects of the multiplexors are also
implied during optimisation, which means that the delay and area costs of the multiplexor

are taken into account without the existence of a physical multiplexor.

These implied components are instantiated during a post-optimisation step of MOODS. At
this point all multiplexors are physically created where required and the controlling
conditional signals are generated to drive the multiplexor select signals, register load-
enable signals and all other control inputs for every data path node in the design where
required. These signals also form the path back from comparison data path nodes, such as

an equality comparator, into the generated state machine, so that data-dependent control

flow can occur.

It is during this post-optimisation step that the many structural additions required for

recursion are realised.

5.3.3 Return address decoder and control signals

The dynamic control of the final structural design occurs via the conditional control
signals that are derived from the controlling state machine. This system is now augmented
with the return address registers that are used in conjunction with the modified state
machine. The values stored by the return addresses form a binary representation of a
particular control node to reactivate. This binary representation is converted into a one-hot
output, where only one signal is active for each possible return address value. This is
accomplished using a decoder data path node for every return address register. The
decoders are fed directly from the return address registers and generate a number of
control signals, each of which is singularly active dependent on the return address values.
These signals are used to feed the various conditions in the condition list, which in turn are
used to control the flow of the state machine and the /O selection for each module. The
condition list stores every conditional equation, which forms the glue-logic between the

control and data paths, as shown by Figure 3.2.
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return address register ra(2:0) | cs(7:0)
000 | 00000001
3 address bits —— G| & & 001 00000010
v v v 010 | 00000100
3-8 011 | 00001000
100 | 00010000
decoder 101 | 00100000
110 | 01000000
8 control signals ——» @l @l “8’1 @l @l %l ‘gal @l 111 | 10000000

Figure 5.11 Example return address decoder

The example return address decoder shown by Figure 5.11 converts the 3-bits of the

example return address into the eight control signals that drive the conditional equations.

5.3.4 State machine

The state machine, used to control the sequence of operations performed by the design, is
derived from a direct conversion of the control graph in the MOODS data structures. Each
control state has a corresponding control cell that implements the state. There are three
basic control cell types now in use. The first is the ‘general control cell’ used for all
control nodes except call nodes, the second is the ‘call control cell’ used for non-recursive
module calls and the third is the new ‘recurse control cell’ used in conjunction with the
return address for recursive module calls. In most designs, the control graph is formed
mostly from the ‘general control cell’. The other cells are used exclusively for the two

calling mechanisms now supported.

Each module has its own separate control graph, which is activated by one of the two
methods of module calling. Each module has a single start-node and can have multiple
end-nodes. When generating control signals in the post-optimisation step, a single end
condition is created from the logical-OR of all end node tokens in the module. The tokens
themselves may be the product of a logical-AND with any data-dependent conditions
active in the end-node. This end-signal defines when a module finishes its execution flow.

The use of this signal is explained in more detail in the following sections.
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5.3.4.1 General nodes

The general node forms the basic control cell that implements the token-passing, one-hot-
encoded state machine. The control cell is designed using structural VHDL, with the
number of input tokens defined by a generic parameter of the cell. The input tokens form
the activating signals that are used internally to activate the control cell for one clock
period. Figure 5.12 shows a representation of the general control node. This example
shows a node with three activating tokens, which means that the node can be activated

from the tokens of three other control nodes (which can also include itself).

If a token input is linked directly to the token output of another control cell, then the

control cell will always be activated one clock cycle after the directly linked control cell
was active. Conditional branches are implemented by forming Boolean expressions with
the control node token inputs, using the original source comparison operator result as an

input to the Boolean expression.

n Input Tokens
n Input
Tokens
General Output
Control \ L SET Token
D Q
Node Clock
>
CLR _(5
Reset

Figure 5.12 The general control node

Each general node is realised by a single register and an n-input OR-gate, which gives a

very dense and efficient representation in the register-rich environment of the FPGA.

The link back to the data path of the design is formed via the token signals themselves (see
Section 3.2.2). These tokens are used for the various control inputs of the data path nodes,
such as register load-enable signals and multiplexor-select signals. Just as with conditional

branch execution flow, these signals can either be used directly, or via extra Boolean
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expressions that conditionally determine whether a data path node 1s used in a single

control state.

5.3.4.2 Call nodes

The call node is the implementation of the ICODE ‘moduleap’ instruction. No other
instructions are scheduled in the same state as the call. The call node has similarity with
the general node in that it takes a number of input tokens that activate the node, and
produces a single token that is used to activate the node that implements the state
containing the instructions that follow the call instruction. Details of the calling

mechanism are given in Section 3.2.6, with Figure 3.10 providing an example of timing

waveforms.

Figure 5.13 shows the implementation of the call control node. Notice that there are three
extra signals defined for this node. The first, ‘Activate’, serves as the activation signal for
the sub-control graph that forms the controller of the module being called. This signal

drives one of the input token lines of the start-node of the called module.

n Input
Tokens Activate
n Input
Tokens
—3 \
Activate |
Cca” | Enabl LD SET Q Enable
ontro nable L:fp >
NOde - Clock >
End —C‘?'
Output __, Reset T
Token
Output
L] N Token:
-

End

Figure 5.13 The call control node
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The second signal, ‘Enable’, is the output of the register that stays active throughout the
entire duration of the call. This is the signal that is used to reference the called modules

I/O that 1s mapped during the call to the module, for this particular call.

The third signal, ‘End’, forms the link back from the module being called. Each module
has an end signal associated with it that is generated from the output tokens of any of the
end-nodes of the module. This end-signal is fed back to every call control cell that

activates the module.

Note that the “Activate’ signal is driven directly from the logical-OR of every token input,
which means that the start node of the module being called is activated at the same time as

the call control node register is activated.

The register in the call node is set when the call node is activated by any of the input
tokens. It stays in this state by way of feedback from itself unless the ‘End’ signal
becomes active; in which case, the registered value is reset on the next rising edge of the
clock. The complement of this action is to set the output token from the call node when the
‘End’ signal is active along with the call node being active. The token output activates the
node that follows the call. As no other instructions can be contained by a call state, no
conditional activations can be formed from the call control node. This means that a single

node is activated after the call node.

5.3.4.3 Recurse nodes

The recurse control node is part of the mechanism used for the implementation of a
recursive call instruction. The ‘recurse’ ICODE instruction is the only instruction
scheduled in a recurse node. The recurse node only forms half of the controlling actions of

a recursive call, with the other half implemented by the return address associated with the

module being called.

The ‘recurse control node’, shown by Figure 5.14, is formed from a reduced version of the
‘call control node’. As no register can be left active for the call duration, this node does
not contain a register. Instead, it just forms the link that activates the start-node of the
called module and the link back from the end-nodes of the called module that activates the

node following the recursive call.
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Figure 5.14 The recurse control node

The ‘Activate’ signal does exactly the same job as the equivalent signal of the call control
node, in that it is linked to one input token of the start control node of the called module.
The ‘End’ signal simply drives the output token that activates the following control node
and is driven from a Boolean equation derived from the return address, described in the
next subsection. This serves as the calling mechanism for the state machine (see Section

5.4 for an example in recurse node timing).

5.3.4.4 Linking the return address

The returning mechanism for the ‘recurse control node’ is achieved with the use of the
return address value that is decoded into a number of separate signals, as explained in
Section 5.3.3. If the ‘End’ signal of the ‘recurse control node’ were driven directly from
the end-signal of the recursive module, then this would mean that all nodes following any
recursive call to the called module would be activated after the call finishes, producing

incorrect behaviour.

The decoded return address signal whose value represents every ‘recurse’ instruction by a
unique constant identifier is used along with the called modules end-signal by a logical-
AND of these two signals, to correctly determine which node to reactivate. Every ‘recurse
control node’ uses the relevant decoded return address signal specified for the particular

recursive call. It is assumed that the registered return address is valid at the time of the last
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state of the recursive module. This is a valid assumption, as it is checked and fixed during

compilation, as explained in Section 5.2.7.3.

Module A Recursive Module B
push return
address and
setto #1
when right
hand branch
° taken
g
<
Enable
‘B’ Return Address
register | popreturn
g ] address
Y
decoder push return
address and
setto #2
o -
3 8
AND
e
Section
5.3.4.5 I
¢ address
state
required
after return
End Signal address pop

Figure 5.15 State machines use of the return address

The example in Figure 5.15 shows a single recursive module ‘B’, which can recursively
call itself twice. Hence, the return address for module ‘B’ requires three values (including
zero for all non-recursive calls). Note that the start-node of module ‘B’ is activated
unconditionally from every call to the module. The call and recurse nodes are reactivated
dependent on the condition of the decoded return address register. This register is
controlled explicitly by the ICODE instructions generated by the compiler, scheduled in

the preceding and successor control nodes of the recursive call nodes.
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5.3.4.5 Mixing call mechanisms

There are rules for which calling mechanism is used depending on the recursive status of
the module being called, the module being called from and whether the call is part of a
recursive loop. There are five valid combinations of these three criteria shown in Figure
5.16. Note that the type of call mechanism is really only dependent on whether the call is
part of a recursive loop. However, all combinations are listed, as each requires a different

level of integration with the return address mechanism used by recursive modules.

1. Q———-»Q original non-recursive call
> initial call

) jump into recursive loop
3. @——»@ jump out of recursive loop

4 no recursive loop between
' recursive modules
R .
5. recursive loop call

example using
all 5 call styles:

Figure 5.16 Module call styles

The ability to form a recursive call between two recursive modules (style 5) is described

by the body of this chapter.

If a call is made from and to a non-recursive module (style 1), then this call uses the
existing call method of the ‘call control node’. No extra signalling is required for this.

Similarly, if a call to a non-recursive module from a recursive module occurs (style 3),



D.J.D. Milton, 2002 Chapter 5: Recursion 170

then no extra signalling is required for this situation, as it is safe to leave the ‘call control
node’ active within the recursive calling module, as there is no possibility of recursively

reaching that call point again.

In the case of calling a recursive module using a non-recursive call (styles 2 and 4), some
extra signalling is required that was not present before. This situation occurs when calling
from both recursive and non-recursive modules and actually forms all initial calls into
recursive module loops. The non-recursive calling mechanism is used in these cases,
which leaves the ‘call control node’ active throughout the duration of the call. However,
the end signal that is fed into the call control node cannot be derived directly from the
called modules end signal. This is because the end signal could be activating a previous

invocation of the recursive module and not the initial call.

The method used to distinguish between reactivating any recursive call node and
reactivating the initial call node is to use the return address again. The non-recursive initial
call is reactivated only when the return address holds the value zero. The return address
decoder, along with all the other recursive return addresses, generates the signal that
describes this situation. A logical-AND using the decoded signal that describes address
zero and the modules end signal is used to feed the “End’ signal of all non-recursive calls
to the module. No distinction is required between any multiple non-recursive calls to the
module due to only one ‘call control node’ being enabled at a time, which means that

control returns to the correct position.

As each recursive modules return address is used for non-recursive calls to recursive
modules, all return addresses must be reset to zero before each call. This is best achieved
at the beginning of the execution flow for the whole design, as it then becomes
unnecessary to reset the return address before each call, as they are reset to back to zero by

the last stack frame of a recursive procedure.

5.3.5 1/0 referencing

All module I/O is passed as references. This means that the storage space used to hold the
parameters passed into a module are written to and read from directly by the module when
it accesses them from its interface. As different parameters can be passed into the same

module, a mechanism to select which values to reference is required for any operations
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that use the module I/O parameters. The structural mechanism for both inputs and outputs

is explained in Section 5.1.2.3.

This mechanism, used before the additions required for recursion were added is expanded
upon to fully support the correct referencing of I/O across recursive call boundaries. The
method for referencing I/O has not changed; only the way in which the selection of which
mapped I/O variable is achieved. The new method does this by incorporating the use of

the decoded return address signals in the source selection hardware.

5.3.5.1 Input multiplexors

All inputs to a procedure are referenced in the final structural VHDL by a signal defined
for the input. This signal is used wherever the input is referenced. If only one input source
is passed into the module, then the generated input signal is driven directly from the
passed input parameter. Passing different parameters into the module requires a
multiplexor to drive the input signal. This multiplexor is driven from the various sources
of input, which could include constants or registered variables. The selection of which
input to use is determined by the multiplexor select signals, which are generated from the
controlling state machine. In the case of non-recursive calls to the module, the input
selection signals are driven by the call control nodes ‘Enable’ signals, which are active

throughout the duration of the call, so selects the correct input throughout the entire call.

Recursion does not change this situation; only the input selection signal was changed, as
the ‘Enable’ signal of a call control node does not have a direct equivalent in the ‘recurse
control node’. Instead, the return address associated with the particular recursive call of
the module is used to determine the source of the input. Note that due to the addition of the
mirror registers, the only values recursively passed are the mirror registers themselves,
which are selected by the logical-OR of all recursive return addresses of the module. Also
note that the non-recursive call parameters selection signal is driven from the logical-AND

of the original selection signal and the zero return address decoded signal.
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Figure 5.17 Example generated structure for module inputs

Figure 5.17 shows a portion of the generated data path structure for the example given in
Section 5.1.5. It highlights the generation of the mirror register ‘fibonacci_x_in’ and the
use of the input reference signal to feed the mirror register with a subtraction of one or two
from itself. Notice that the mirror register is also fed from the stack, as the input is read
after the first recursive call to the function. This means that the input is pushed and popped
around that call, so that it will hold the correct value originally passed into the procedure.
The multiplexor-select signals and register load-enable signals are all generated from the

control cell tokens and the return address associated with the ‘fibonacci’ function.

5.3.5.2 Output registers and multiplexors

The situation is similar, but not entirely the same for the output parameters of a call into a
recursive procedure. Because registers hold all output parameters, the separate reference
signal as used for the module inputs is not required. The source VHDL guarantees that
outputs are variable, as constants cannot be passed into output parameters. The limitations
of behavioural synthesis also stipulate that RAM variables cannot be passed as parameters

into procedures.



D.J.D. Milton, 2002

Chapter 5: Recursion

173

return address = #0

non-recursive call

write 1

write 2

non-recursive call

write 1

return address = #0 |___|

write 2

Select

Write

Read

Select

Load
Enable

AND

Data In

Address|

STACK

ram |

N\ MUX

temp 104

first output

temp 100

AND

AND

AND

mirror register

fibonacci_fibonacci_out |

L

i

write 2

return address = #1

write 1

return address = #2

Figure 5.18 Example generated structure for module outputs

The addition of mirror registers limits the number of parameters passed recursively, but

the initial non-recursive calls to the module allows referencing of other variables other

than the mirror registers. The first stack frame of the module references the initial

parameters passed into the module.

As all outputs are guaranteed to be held in a register type data path node, output write-

referencing is implemented by using multiplexors to feed the register from the relevant

value being written and by driving the register load-enable control inputs at the same time

as selecting the correct input to assign to the output register.

The selection of which output to write to is made using the decoded return address signals

again. Any recursive call passes the mirror registers as the references, so the mirror
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registers are written whenever a second iteration of the recursive module is entered. This

situation occurs when the return address is not zero. When the return address is zero, the

parameters passed in the initial call are used. A separate multiplexor is used per output as
the register may be written outside of the procedure. Figure 5.18 shows a limited section

of the data path for the same Fibonacci example introduced in Section 5.1.5. The portion

of the data path shown by Figure 5.18 shows the connections of the output-referenced

registers with respect to the operations performed on them in the ‘fibonacci’ function.

5.3.6 DDF file format change

The MOODS internal data structures can be dumped at any stage during optimisation and
after the post-optimisation hardware generation step has occurred. The file format (see
Appendix D.2) is entirely proprietary and mirrors the essentials of the entire data structure.
The reason that it is mentioned here is that a back-end translator exists (see Appendix A.5
DDFLink), which generates the final structural VHDL directly from the internal data
structures stored by the DDF file. Due to the changes made for recursion in the MOODS
data structures, specifically to the module and ICODE instruction structures, this

information is incorporated into the DDF file format and the relevant changes made to the

back-end translator.

5.4 Recursion timing

The overhead of recursion is in two parts. The first is the area overhead, which can be
attributed to the space required by the stack, stack pointer, return addresses and their
decoders, mirror registers and all the extra controlling signals used to integrate the control
path with the data path. The second overhead is the timing required to implement a
recursive call. These cycle-based timing requirements form the extra cycles required for
stack modification, mirror register usage and the recursive call itself. As the underlying
control flow is generated using ICODE instructions, the final implementation timing is
dependent on the optimisation of these instructions. However, the scope for sharing clock
cycles for the auto-generated ICODE is limited by the stack storage mechanism of the
single RAM used to hold the dynamic data frames. As a result, MOODS always produces

the minimum timing flow without impacting on the total area of the design.
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5.4.1 Recurse control node

The recursive call control node is designed to mirror the timing characteristics of a normal
call node. The only ICODE instructions implemented by a call node of any type are call
instructions. This means that no other instructions are scheduled while the call node is
active. This is because a call node executes at the same time as the control nodes that
implement the state machine of the called module, where the overlapping time slots do not
allow any other instructions to be implemented in the call node, as the call node
effectively has no time in which to schedule instructions. Both call nodes are designed

with these timing characteristics to minimise the time taken for a call.

If ICODE instructions were allowed to execute in a call control node, then the time taken
to execute these instructions would impinge upon the time remaining in the start node of
the module being called. Data dependency checks would need to be made across the

module call boundary for every call made to the module. This is an impossible situation to

optimise.

5.4.2 Stack modification

All stack modification is implemented by the pus# and pop operations described by Figure
5.10. This figure shows that a push is made from a write into a RAM variable and then an
increment of the address used for the write. A pop is made from a decrement of the

address, followed by a memory read at the new address location followed by a ‘protect’

instruction.

Due to the ordering of the two instructions of the push operation, no data dependency
exists between them, so they can both be executed in the same control cycle. Note that
several successive pushes onto the stack create data dependencies between the increment
of the stack pointer and the stack pointer being used as the address for the next push
operation. This, and the fact that a RAM can only be accessed one address at a time forces

every push operation to execute consecutively.

The pop operation is different in that the memory read is dependent on the result of the
increment of the stack pointer used as the address. The extra ‘protect’ instruction that

follows preserves the validity of the return address across module call boundaries. This
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extra instruction also has a side affect of forcing the stack pointer decrement operation and
the memory read operation to be chained in the same control state. This means that a pop

operation executes in one clock cycle also.

The sequential nature of these operations that use the same storage variable forces every
push and pop operation into its own separate state. This is where most of the timing
overhead of recursion occurs. Note that the input mirror register assignments occur in the

sequence of push operations. The output mirror register assignments occur after the final

pop operation.

5.4.3 Return address setup cycle

Return address manipulation is discussed in Section 5.2.7.3. Part of the discussion
mentioned that the return address is required to be valid for every end-state of the
controlling state machine. This is achieved with the insertion of an extra ICODE ‘prorect’
instruction where required. This has the effect of inserting an extra control state after the
return address modification pop cycle. The cycle after the pop of the return address is then

used as an end-state of the controlling state machine.

This situation is shown in Figure 5.19 below. The left side of the figure shows an example
state machine. There are two separate state diagrams shown, where the left diagram
represents the main controller module ‘A’ and the right diagram represents a recursive
module ‘B’. The call control node labelled as ‘c3” makes the link between the two control
flows. A single recursive call to module ‘B’ is made by the ‘recurse control node’ labelled

‘c8’. States ‘c6’ and ‘c10’ form the two end states of module ‘B’.

The timing diagram to the right of the state diagram shows an example state machine flow
for every token output of the control nodes shown. The extra signals that the call and
recurse control nodes generate are also shown. The flow shows the initial call to the
recursive module, followed by the recursive call back into itself. The alternative
conditional route being taken in the second iteration of the recursive module breaks the
recursive loop. Control is then seen to return to the node after the recursive call node by
reaching the end node ‘c6’ before finally returning to the node after the initial call node

from the second end-state ‘c10’.
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Figure 5.19 Example state machine timing flow

The need for the extra state after a pop of the return address is seen from the ‘c3 end’
signal. This signal is generated from the return address and is only set when the return
address equals zero and when one of the end states is active. It can be seen that the return
address is assigned to the correct value at the end of the state before the ‘c3 end’ signal is
generated. If ‘c10” were merged into ‘c9’, then the ‘c3 end’ signal would evaluate to false

in this merged state, which would break the control flow.

The timing diagram also shows that the return address and stack pointer values are

assigned their initial values in the first state ‘c1’, which means that their values update at

the end of this state.
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5.5 Impact on optimisation

The additional operations added to a design that control the data flow through recursive
calls to the same procedures affects the final optimisations that MOODS carries out. The
main limitation is that the additional ICODE operations added into the control flow force
the design to include a number of sequential states in which the stack, mirror registers and
return-addresses are modified. This affects the speed and size of the design produced using

recursive procedure call methods.

5.5.1 Module ordering

When MOODS optimises a design using the simulated annealing algorithm, the order in
which the modules are optimised is irrelevant, as each module is treated entirely
independently. In contrast, the quasi-exhaustive heuristic algorithm requires knowledge of

the call hierarchy, as it operates on modules in order, from leaf to root.

The reason for this is that to calculate the critical path length of each module, knowledge
is required of the critical paths of all the modules it invokes. When a module is optimised,
its internal timing may change and this change must be reflected back up the calling tree.
The addition of recursive capabilities means that the algorithm to calculate the linear order
of modules from the call graph is modified. The ability to introduce recursive loops in the

module call graph prevents forming a linear leaf to root ordering of the modules; instead, a

best approximation is sought.

5.5.2 Critical path calculations

Another impact of allowing recursive module calls is that the critical path calculation
requires some modification. The modifications do not have any direct effect upon the final
structural design produced by MOODS. The critical path is a requirement for optimisation,
but begins to lose meaning when recursion is taken into account. This is because the path

taken through a design no longer has a resolvable maximum length.

However, some value is required as the result of the critical path calculation. A critical
path can be calculated for any module. If recursion were not allowed, then the critical path

would be a count of the greatest amount of control states that it takes to reach any end
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node from the start node of the module. Any calls to other modules add the critical path of
the called module, not just the state required for the call control node. As recursion is now
allowed, this calculation requires modification. It was decided to place a limit on the
recursive depth of critical path calculations so that if a call is found to a module that has

been calculated before, then the cost for the call is taken as one cycle.

This solution produces module-local critical path calculations dependent upon the initial
module to have the critical path calculated. As the critical path is used to determine the
shareability factors of the data path units and control states, and the modified critical path
calculation is conservative in its estimation, the only noticeable side effect is a slight

slowing of the optimisation process [102].

5.6 Problems and Improvements

The main problem with the present implementation of procedural recursion is the
possibility of stack overflow. As the additions effectively make static variables into
dynamic variables, the dynamic values need infinite storage space in theory. Obviously,

storage space of this capacity is impossible.

5.6.1 Stack overfilow

The consequence of stack overflow is to over-write dynamic data stored in another stack
frame back down the call hierarchy. The effects are only seen when control returns back
down the call stack, to find corrupted data. As the return address is included in the stored
data on the stack, it is possible for the corruption of data to break the returning control
flow, which could effectively halt the design in an incorrect infinite loop. The alternative
to this is simply to produce the wrong result, but the effects cannot be predicted due to the

dependence on dynamic data produced at runtime.

There are four solutions to this: The first is to try to cope with stack overflow when it
occurs by some exception handling system built into the final structural design. This does
not generate the correct result, but tells the user that an error has occurred before the

effects due to the error are seen.
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The second solution is to try to allocate enough space so that it never does. The second
solution 1s not really a solution, in that it just moves the problem further away, but the first

solution always results in the breaking of behaviour, which is not very desirable.

The problem can be alleviated by careful design of the use of recursion in the first place
and by selecting a stack size that is capable of holding the full stack depth for the biggest

problem being solved by the design.

A third solution that does not break behaviour is to have some secondary storage solution
that is used in exceptional circumstances to page in and page out large chunks of the stack
frame. An example would be to use the heap system described by Chapter 4 as the space
for secondary storage. This system does not break behaviour, but it impacts on speed, as

large blocks of data are transferred.

A fourth solution that is slightly neater than the third is to use stack frame windowing, as
used by the SPARC RISC processor [29]. This enables better time utility of secondary
storage, as it is only used when stack overflow or stack underflow occurs. If the heap
management system is used for secondary storage, then small amounts of stack frame data

can be allocated when required.

5.6.2 Multiple stacks

Section 5.2.7 describes an alternative to a single stack memory block. Its solution is to
have multiple stack blocks that contain one dynamic stack copy of a single variable. The
use of this method enables faster stack modification due to the inherent concurrency of
multiple blocks of data. It also allows more efficient data path widths to be used. A trade-
off in this solution may be to share these dynamic blocks of data on individual terms, say
between variables stored for different recursive modules. However, this method negates

having a single external SRAM based stack.
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Chapter 6

Practical synthesis

This chapter describes demonstrators built using the capabilities described in the previous
two chapters. Section 6.1 introduces the physical system structure that is used for the
demonstrators. The first demonstrator described in Section 6.2 shows the use of dynamic
memory. The second demonstrator described in Section 6.3 shows recursion in use, along
with further use of the heap-allocated data. Finally, Section 6.4 contains a comparison
between different implementations of a small language parser, built upon different
platforms with differing implementation language restrictions. Timing results are obtained

from simulation time measurement and computer runtime results.

6.1 Demonstrator system

The system created to demonstrate the capabilities of MOODS is realised with the use of
multiple printed circuit boards (PCBs) that are designed for this specific purpose and have
been built by a third party PCB manufacturing company.

The boards are designed to be completely self-contained with expansion ports provided to
allow multiple boards to be linked together to form a larger overall system, or to accept

other types of daughter board.

Two types of board were built, each with a different set of ancillary components that can
be used. Each board has, at its heart, an FPGA that will contain any designs produced by
MOODS.

6.1.1 First PCB

The board designed to demonstrate the capabilities of the dynamic memory system [103]

has a set of onboard devices and a set of external interfaces. The core of the system is a
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XILINX FPGA [104]. The package used for the FPGA is a pin-grid array with 475 pins.
This allows only a single type of FPGA to be connected to, the XILINX XC4062XL chip.
At the time of designing the PCB, the FPGA was of medium sized capacity. The size
information is given in Table 6.1 below. A CLB or Configurable Logic Block is the basic
building block from which all gates are created within the FPGA, and are usually held in a
square grid pattern, with signal routing between the CLBs.

Device CLB count CLB matrix Flip-flop count | Typical gate range
XC4062XL 2,304 48 x 48 5,376 40,000 - 130,000

Table 6.1 Available XILINX devices using the PG475 package

The set of external interfaces includes a VGA adapter, which is driven from an onboard
video DAC and sync signal buffers. The DAC and buffers are directly connected to the
system FPGA, which is used to generate all of the signals that drive a standard VGA

monitor.

The VGA adapter is included on this board with the design of the VGA controller system,
explained in Appendix A.1. This system requires a bitmap ROM for 256 characters, each
contained by a square of 8 by 8 pixels. A single bit, being either set or reset, stores the
state of each pixel in the bitmap. A whole row of a single character is accessed at the same
time, requiring that the ROM have an 8-bit data path. Hence, the number of addresses used
to store the entire bitmap is 2K. This 2K ROM has space designed into the PCB for it.

A standard buffered serial port external interface is provided in order to communicate with
any other system via this standard method. This can be used to transfer data between
systems (at a relatively slow rate). An onboard chip that converts between the 5V system
voltage levels and the 9V levels expected by the serial port interface and vise versa
provides the buffering. The serial port controller is part of the system created inside the

FPGA. Appendix A.3 explains this.

Buffering is also provided for two PS2 external ports, which can be used to interface with
many standard devices, including keyboards and mice. Both of these standard devices
have controllers designed for them, where the controller is again part of the FPGA system.

The keyboard controller is explained in Appendix A.2 and the mouse controller in [105].
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Two 96-way connectors provide two general-purpose expansion ports. The pins of these
connectors are directly connected to a number of the /O pins of the FPGA. One connector
also provides power and ground supplies, so that the interfaced boards may be powered
directly by the PCB system. The other expansion port includes every FPGA programming
pin, so that the FPGA may be programmed externally.

RS-232 Keyboard Mouse
buffers buffers buffers
2 FPGA
4M x 16 programming
DRAM system
2 simms
Clock 1
4M x 16 F P GA
DRAM M " Clock 2
2 simms
pg475
2K x 8
¢ q ROM
(Font)
256K x 32
DRAM
8 DlLs 1
(video
buffer)
96-way expansion port 96-way expansion port .
(with power) {(with programming pins) VGA interface

Figure 6.1 First PCB System connection

The alternative to external programming of the FPGA is to perform this action using the
onboard system, created specifically for this purpose. The FPGA is capable of being
configured in various ways. The two methods supported by the PCB are slave serial mode
(default) and master parallel-up mode. The configuration mode is set with a number of
DIP-switches. Slave serial mode is used when downloading the configuration directly
from an external PC during the development process and master parallel mode is used
when a design has been settled upon and the system is allowed to program itself from an

onboard EPROM, which has space designed into the PCB for it.
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Figure 6.2 First PCB System layout picture

Figure 6.1 shows the connection between the various devices and external interfaces on

the first board, while Figure 6.2 shows a picture of the physical board, with the various

devices and interfaces highlighted.
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All designs produced by MOODS are synchronous systems driven from a fixed clock
signal. Two clock module inputs are provided for this purpose. Two clocks are provided

so that multiple internal systems may be run asynchronously within the same FPGA.

The VGA system is designed to use a DRAM bank as a frame buffer from which the
monitor signals are rasterised. All displayed pictures are then formed from writing to the
frame buffer memory directly. This frame buffer memory is stored within a number of

DRAM chips, which are accessed in parallel to form a 32-bit data path.

Two other banks of DRAM i1n the form of 4 32-pin SIMMs are included as onboard
devices. Each SIMM is capable of storing up to 4MBytes, with 1MByte usually used. This
memory is the foundation storage for the dynamic memory system described in Chapter 4,
but may be used for any other purpose. Each SIMM has a completely separate 8-bit data
path, while the address and control paths are shared between a pair of SIMMs. This
enables the memory space to be used in three configurations: As two separate spaces of
16-bit data paths, each with a maximum of 4MWords, where 1 word is 16 bits; as a
combined address space of 8MWords, still with a 16 bit word or as a combined data space

of 4AMWords, where one word is now 32 bits.

The final configuration is used by the heap management system, where the two SIMMs
are combined to form a 32-bit data path, with a maximum of 4MWords of address space.

The actual address space used by the demonstrators is IMWord.

6.1.2 Second PCB

The board designed to demonstrate the floating-point capabilities of MOODS [106,107] is
designed for this purpose over all others. It is not designed for the demonstrators described
in this chapter. For this reason, a different set of ancillary components interfaces to a
different, larger core FPGA. The general structure of the system follows the same style as
the first PCB, in that a core FPGA is the central system unit, with a number of satellite
components and external interfaces, both buffered and directly connected. A fuller

description of this board is found in [106].

The core FPGA uses the same pin grid array style, but this time within a 559-pin package.
This enables a choice between FPGAs to be made, with the XILINX XC40250XV being
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the chip used by the final demonstrations. This chip is capable of holding a configuration
that has about four times the number of CLBs of the XILINX XC4062XL FPGA used on
the first board, which is the best indication of relative capacity. A number of devices may

be used in place of each other, with their relative sizes shown in Table 6.2.

Device CLB count CLB matrix Flip-flop count | Typical gate range
XC4085XL 3,136 56 x 56 7,168 55,000 - 180,000
XC40125XV 4,624 68 x 68 10,336 80,000 - 265,000
XC40150XV 5,184 72x72 11,520 100,000 - 300,000
XC40200XV 7,056 84 x 84 15,456 130,000 - 400,000
XC40250xV 8,464 92 x 92 18,400 160,000 - 500,000

Table 6.2 Available XILINX devices using the PG559 package

A large proportion of the external interfaces are mirrored from the first board, with the
inclusion of an RS232 serial port interface, two PS2 interfaces (keyboard and mouse) and

the twin 96-way expansion ports, with the same pin connections where required for

compatibility.

However, the VGA interface is not provided on this board, which means that the frame
buffer DRAM memory and the text bitmap ROM are also not required. The one

concession to DRAM random access memory storage is with the provision of a single 32-

pin SIMM socket.

Two clocks are provided in exactly the same manner as in the first board, which allows

multiple internal asynchronous clocks to be used.
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Figure 6.3 Second PCB system connection

The FPGA configuration program is downloaded into the FPGA in exactly the same
manner as with the first PCB. The same two modes of configuration are supported, with

the provision of an onboard EPROM, which is capable of storing a single program.

As the floating-point systems generated by MOODS require a number of lookup ROMs
and a fast scratchpad memory, an onboard ROM and SRAM bank [100] are provided on
the PCB. These share the same address and data path busses, with separate control busses

for distinction between the sources of data between the two.

Figure 6.3 shows the connection between the various devices and external interfaces on
the second board, while Figure 6.4 shows a picture of the physical board, with the various

devices and interfaces highlighted.



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 188

YSp5I601
6266d4v6559d
W AXOS20VIX

XNIIXCS

Figure 6.4 Second PCB system layout picture

6.1.3 System structure and partitioning

During the development process of the demonstrations, it was realised that two graphical
displays were required, one to display the output user interface of the demonstration itself

and the other to display a real time representation of activity in the heap management

system.
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For this reason, at least two boards with the VGA interface buffering were required, along
with a method for connection between the two. It was decided to implement the core
design on the board that controls the user interface VGA signals and to implement the
heap management system and heap monitor VGA output on the other board. However,
with the growing size of the demonstrations, a single board containing the XC4062XL
chip was found to have insufficient capacity for both the VGA driver design and the core

system design.

Efficient partitioning between both the core board and the heap management board was
considered, as the heap management system does not require the full capacity of the other
XC4062XL chip, even with the real-time heap monitor extensions to the heap
management system. However, it was decided to opt for the more expandable option of
using a third board to contain the full core system, where the main system board uses the
second PCB described in Section 6.1.2. This configuration was chosen with the additional
knowledge that an audio buffering system was required by one of the demonstrators, and

no audio interfaces existed on the designed PCBs, leaving a further subsystem to be built.

6.1.3.1 Motherboard

A detailed diagram of the four system boards is shown in Figure 6.5. This shows an

interface partition between each board, with the core system being at the centre of all the

interfaces.
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The physical system is implemented with the use of a back-plane board, which each
subsystem board plugs into via their 96-way expansion connectors as daughter-boards.
The back-plane board was built manually and contains direct linkage between the four
subsystems and an expansion of the configuration programming system for the core
system, which allows more than one core design to be configured. The board structure is

shown in Figure 6.6 below.

e LLLULCUERLERELLL LD LRV LNE D
‘) :

Figure 6.6 Handmade backplane board

The three main daughter boards plug into the double expansion ports at right angles to the
motherboard, while the audio interface board plugs sideways onto the motherboard. The
reason for a separate audio interface board is that this board had already been produced for
another project that used the single FPGA system described in Section 6.1.1. The audio

board is further described in Section 6.1.3.6.

6.1.3.2 Communication

All of the physical connections between the four subsystem boards are created from
manually soldered direct wire connections. While the demonstrators progressed in time, it
was realised that synchronous communication, with each system using the same base

clock was not feasible due to the skew and amount of interference produced by having a
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single central clock module driving every subsystem. With the amount of noise produced
by the clock modules and the lack of a ground plane within the motherboard, it was found

that each subsystem was prone to resetting also, with a centralised resetting mechanism.

The resetting problem due to the centralised clock system, reset system and all other
communication is solved by two methods, with the clock skew problem being solved also.
The main solution is to have each board provide its own clock signal using the onboard

space provided for them on each PCB and to have each system communicate

asynchronously.
asynchronous synchronised igut
data input D Q o a .
e | e e
clk
system /\
clock

Figure 6.7 Asynchronous double buffering

One drawback of asynchronous communication is that extra buffering is required between
the asynchronous systems for all inputs to a design. This double buffering shown in Figure
6.7 is used to remove meta-stability [108] that can occur when the input signal changes on
the clocking edge of the system clock. The double buffer serves to greatly decrease the
probability of an erroneous transmission of data. One drawback is the added
communication delay that the double buffer introduces. The clock skew problem is

completely removed with the removal of synchronous clocked systems.

The replacement of the centralised resetting mechanism with a distributed resetting
mechanism with a start-up synchronisation system solved the resetting problems. The
problem was found to be noise on the single shared reset signal. By allowing each board to
reset itself, the reset signal has no opportunity to gain enough noise to falsely reset each
system. Each system then synchronises itself to the others at start-up by data transmission

between the systems, which has no impact upon the now distributed resetting mechanism.
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6.1.3.3 Main System board

The main system board, shown in Figure 6.5 contains a larger FPGA than the boards
designed for the VGA interface. It is for this reason that the core demonstrator designs are
implemented using this board. It can be noted that both demonstrators could have been
implemented fully within a single FPGA found on the second board if only the boards
were designed for this purpose, with two VGA outputs, banks of DRAM and the audio

interface required.

Both demonstrator designs share the keyboard interface, but the serial port interface is
only used in one. Both designs use the heap management system board, which
communicates via 73 expansion port pins and the user interface VGA system board that

communicates via 15 expansion port pins.

The heap manager has a reduced pin count through the use of bi-directional address and

data busses described in Section 4.2.2.4. Additional internal double buffering is provided

for asynchronous communication.

The external VGA interface has a reduced pin count from the internal VGA interface with
the addition of a time multiplexed serial communication method, whose controller is found
within the programmed VGA output board. A limited set of equivalent VGA interface

procedures are provided for the core designs.

A different clock frequency is used by each core design. Demonstrator I uses a 12MHz
clock, mainly due to the audio system interface requiring synchronous communication at
this speed, where the audio ADC and DAC derive the sampling speed from the clock rate.
Demonstrator II does not require any particular speed for subsystem communication, so
this allows the design to be optimised for area, having a reduced clock rate of 10MHz

provided by a separate clock.

6.1.3.4 Heap manager board

The heap management algorithm described in Section 4.3 is implemented on the heap
manager board. The initial implementation of the heap manager was modified to produce a
real-time memory map monitor also. The provision of a VGA system on which to view the

memory map requires the use of a 25SMHz clock speed as input to the subsystem. This
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clock is used directly by the VGA controller system, while the heap management system
uses an internally divided clock of 12.5MHz. This frequency allows greater scope for

operation chaining in the core DRAM controller and the heap management algorithm

itself.

The implementation of the heap manager used by both demonstrators has the IMWord
address space divided into 256 pages. Each page has 4KWords from which to allocate
objects. Each word is 32 bits. This implementation allows for 255 differently sized objects
to be allocated at any one time, with an object size of up to 4KWords minus the page

header size of 6 words.

An example of the displayed memory map is shown in Figure 6.8. The information is
displayed in real time, which reduces the level of information that is capable of being

displayed to general information about each page.

|
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Figure 6.8 Example real time memory map picture

The information displayed is a 16 by 16 square representation of the 256 pages of the
memory space. Each page has two types of information displayed about it. The colour of
the internal square represents the allocation status of the page, where blue indicates a page

free of objects, green indicates that a page has objects allocated within it and has space for
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more and red indicates that a page is totally full of objects. The shading around the central
colour determines whether the page 1s being accessed, with a lighter shade showing an
access has occurred within one raster period (1/60™ of a second). A dark border to the
central page colour indicates that the information in the page has not been accessed within

the same period.

The grid of pages is ordered from page 0 in the top left hand comer, counting upwards
across the grid first, meaning that page 15 is in the top right hand corner. Page 16 is on the
left hand side of the next row down, with each row containing increments of 16 pages,
leaving page 255 displayed at the bottom right hand corner. Note that page zero is left
blank, as it does not contain user data. This page is used as the active page lookup table for

the different object sizes being created.

Design Summary:
Number of errors: 0
Number of warnings: 35
Number of CLBs: 1103 out of 2304 47%
CLB Flip Flops: 837
CLB Latches: 0
4 input LUTs: 1907 (4 used as route-throughs)
3 input LUTs: 374 (99 used as route-throughs)
32X1 RAMs: 32
16X1 RAMs: 44
Number of bonded ICBs: 217 out of 384 56%
IOB Flops: 210
IOB Latches: 0
Number of clock IOB pads: 1 out of 12 8%
Number of TBUFs: 32 out of 4800 1%
Number of BUFGLSs: 2 out of 8 25%
Total equivalent gate count for design: 26841
Additional JTAG gate count for IOBs: 10416

Figure 6.9 Heap manager size statistics

The heap management system is further explained in Appendix C.5. The design summary
log for the final implementation of the heap manager, including the VGA system and the
drawing process within the heap manager is shown in Figure 6.9. The total design takes

47% of the capacity of the smaller FPGA, with 1103 CLBs used.

6.1.3.5 Graphical display board

The interface connecting the graphical display board to the main system design is via a
reduced pin count serial interface. The serial data controller forms the front-end that drives
the VGA controller in the graphical display design. The serial controller is detailed in

Appendix C.4. The controller converts a number of serial words into a form that directly
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drives the VGA interface. The core designs that use the graphical display board via the
serial interface perform the graphics commands via a limited set of interface procedures,

which have near direct equivalent VGA interface procedures.

Both the serial VGA instruction controller and the VGA controller take a small percentage
of the area contained by the graphical display board’s FPGA. The placement and routing
log shown in Figure 6.10 shows that only 23% of the FPGA capacity is used. The clock
used to drive all systems in the FPGA is another 25MHz clock, which forms the dot-clock

rate for the graphical output.

Design Summary:
Number of errors: 0
Number of warnings: 17
Number of CLBs: 539 out of 2304 23%
CLB Flip Flops: 504
CLB Latches: 0
4 input LUTs: 944 (5 used as route-throughs)
3 input LUTs: 155 (51 used as route-throughs)
16X1 RAMs: 44
Number of bonded ICBs: 111 out of 384 28%
I0OB Flops: 91
IOB Latches: 0
Number of clock IOB pads: 1 out of 12 8%
Number of BUFGLSs: 1 out of 8 12%
Total equivalent gate count for design: 12943
Additional JTAG gate count for IOBs: 5328

Figure 6.10 VGA display driver size statistics

6.1.3.6 Audio interface board

The audio interface board is designed to plug straight into either PCBs interface port that
contains the power pins. It is built as a general purpose audio I/O system, initially used by
an audio filter design [109]. It is utilised as the audio I/O system in demonstrator I and is
driven from the motherboard connection. The board, shown in Figure 6.11 is powered
directly from the connecting system and contains a single ADC/DAC chip with audio

connections via a low pass filter system.
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Figure 6.11 Audio board

6.2 Demonstrator |: The tracker

The definition of a ‘“Tracker’ is an audio system that combines multiple audio sampling
and playback with an audio sequencer, which allows music to be produced, that uses the
stored samples as instruments. Many commercial tools exist to perform these actions both

separately and combined and both in hardware and software.

The reason that a tracker is chosen as the demonstration system is due to the design being
relatively complex, so when built in a small amount of time (1 month for the core), would
prove the validity of the synthesis tool and of increasing the synthesisable subset of the
source language to include dynamically created data structures. As the tracker is a real
time audio system, it also shows the validity of using the dynamic data structures within a

strict timing environment, with little concessions made for this.

The tracker demonstrator uses 35% of the main FPGA’s capacity, which is shown in

Figure 6.12, the design summary produced by the placement and routing stage.
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Design Summary:
Number of errors:
Number of warnings:
Number of CLBs:
CLB Flip Flops:
CLB Latches:
4 input LUTs:
3 input LUTs:

¢!
18
2969 out of 8464 35%
2376
0
5125 (34 used as route-throughs)
1436 (408 used as route-~throughs)

198

16X1 RAMs: 180
Number of bonded IOBs: 102 out of 448 22%
IOB Flops: 139
IOB Latches: o]
Number of clock IOB pads: 1 out of 12 8%
Number of BUFGLSs: 1l out of 8 12%
Total equivalent gate count for design: 62965
Additional JTAG gate count for IOBs: 4896

Figure 6.12 Tracker design size statistics

A more complete explanation of the implementation details of the core tracker design is

contained in Appendix C.6.

6.2.1 General overview

The user input interface is a standard computer keyboard, which could easily be modified
to use a musical type keyboard in the future. Visual feedback is provided by a VGA
graphics system that drives a standard monitor. The information shown on screen relates
to all the internal dynamic data structures. A musical tune is built up from direct user input

and interaction with the displayed information and outputted audio.

The system is capable of storing an arbitrary number of 16-bit stereo samples of arbitrary
length. Each sample is recorded at the standard 44.1kHz CD sampling rate. There are 8
stereo mixing channels that are combined to form the single stereo output, along with the
real time audio input. This means that up to 8 instruments can be played at once. Any
sample can be played on any channel at any playback rate, which determines the pitch of
the played note. A sequence of notes to be played at particular time points on particular
channels can be built up dynamically and played back at any point. A musical tune is
made from an arbitrary number of sequences, which themselves can be sequenced using a
playlist of these sequences, where the playlist stores a list of sequences in an arbitrary,

possibly repetitive order.
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6.2.1.1 Data structures

As most of the data structures stored by the tracker system are best based upon a list

structure, it was decided to create a general doubly linked list data structure for every
different type of data that required list storage. This means that list operations such as
creation and deletion of the lists, insertion and deletion of elements within the list and

element iteration can all use the same basic procedures.

One disadvantage of VHDL within the context of dynamic memory structures is the very
strict type adherence. Access types cannot be cast into referencing other types of elements.
Because of this, a completely general linked list structure cannot be built. Instead, each list
element must contain all relevant data types to be stored by the list. This is shown in
Figure 6.13 below. An equivalent structure in the C language could store the various data

pointers in a union structure, as each item is mutually exclusive and dependent on the type

that the list contains.

linked list linked list linked list
header item item
/} item* (HERE B item* {TEeXT \————@L}
listtype type e item* LPTev) item* TPEEV)
. P AL )
itemt  Cheay——f— qmul | < o -
item* '»’T:?i'l“»\———\l\\_\ item* playlist item* playlist \\
. sequence*  seg sequence*  seq N
sequencept* seqpt sequencept* seqgpt
\ sample* smp sample* smp i
§ sampleblk* smpblk sampleblk* smpblk /
‘\
\\\ //
— I

Figure 6.13 Linked list container with two elements

The general linked list structure has a header record that contains the type of elements to
be stored by the list and a reference to the head and tail elements of the list. Each element
has a next and previous element reference, where the head’s previous element is null and
the tail’s next element is null. Only one type of element data is valid, dependent on the list

type enumeration value stored in the header structure.

Five types of data are stored in the list structure. The playlist data is a reference to another
linked list element. It should point to an element held within the sequence list. Each
sequence in the sequence list has a list of points that determine when the notes are played.

The sequence points have time and channel information along with a reference to a sample
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that is held within the list of samples. Each sample in the sample list has unknown length

when recording, so the sample is stored as a number of sample blocks, which each contain

a fixed number of stereo sample values. This general structure is shown in Figure 6.14.

static base storage process
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\
\\\ sample block list
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Figure 6.14 General tracker data structure linkage example

Of the five types of linked list structure, the play list, sequence list and sample list have a

static base. The sequence point list is dynamically created whenever a new sequence

element is added into the sequence list and the sample block list is created whenever a new

sample is added into the sample list.

6.2.1.2 Processes

As the tracker design processes real-time audio streams, the design is split into two main

processes. The main process handles the user input, creates and deletes the dynamic data

structures and processes the real time audio data. As the latency involved with using the

dynamic allocation methods has a known maximum value, it is possible to allocate new

objects from the audio processing process so long as the audio streams are buffered using
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a number of FIFO buffers. These buffers effectively remove the dependence on the
allocation latency and place a dependence on the general memory access bandwidth for all

memory operations in the core audio process. The FIFO buffers are created as concurrent

processes.

The other core process drives the output user interface, the VGA controller system,
through the interface provided by the serial version of the VGA interface. This process
accesses the same core data structures as the main audio process with the use of shared
variables that store the three static access types of the three base linked lists. The drawing
is performed concurrently with the audio process, as the drawing time is unpredictable.
The core audio process initiates all drawing whenever the user input changes or playback

of the sequences and samples occurs.

6.2.2 User guide

There are four modes of operation of the tracker design, with playback of the sequences
and samples possible in all but one of the modes. These modes relate to the part of the data
structures that are being modified, with three modes dedicated to the modification of the
three main linked list structures of the samples, sequences and playlist. The fourth mode
allows the serial port download of a number of samples and sequences. The currently
selected mode is determined by the selection colour of the viewed representation of the

data structures shown by the VGA output picture (see Figure 6.15).

6.2.2.1 Sample mode

The sample mode is selected by pressing the ‘F9’° key. This mode allows for the
modification of the sample list with new samples being created by recording them directly
from the input audio stream. A sample is recorded by pressing the ‘R’ key for the record
duration. This action creates and inserts a new sample after the currently selected sample

within the sample list and then fills the sample block list with the audio stream data.

When not recording a sample, it is possible to move through the list of samples using the
up and down arrow keys. This selects the current sample, which is used when inserting

new notes into the sequence and for manual playback of the sample.
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A portion of the currently selected sample is displayed on the output screen, and using the

left and right arrow keys can scroll through the displayed sample values.

A sample can be set to play back as either looped or not looped. Pressing the ‘L.’ key while

in the sample mode toggles the looped status of the currently selected sample.

6.2.2.2 Sequence mode

In this mode, selected by the ‘F11° key, new sequences can be inserted into the sequence
list by pressing the ‘Insert’ key. Movement through the sequence list occurs by pressing
the ‘“+* and ‘-’ keys on the keypad. Movement through the list redraws the representation

of the currently selected sequence.

The currently selected sequence is drawn with the number of audio channels represented
by 8 columns and the time positions as a number of rows. The arrow keys are used to

select a time point and audio channel.

Insertion of notes at the current position occurs by pressing the ‘Space-bar’ key, which
toggles the sequence point insertion mode. The recording mode is represented by a red

position cursor, while the normal playback mode is represented by a green cursor.

The sequence point can have a note placed at the cursor position by pressing a number of
keys, which are further explained in Section 6.2.2.5. The currently selected sample is used
as the note instrument. A note can be stopped at the current position by inserting a stop bar
by pressing the ‘Tab’ key. Highlighting the sequence point and pressing the ‘Delete’ key
can remove a sequence point. All insertion and deletion operations increment the time

position by one, facilitating faster sequence editing.

6.2.2.3 Playlist mode

This mode, selected by pressing the ‘F10° key, allows complete control over the playlist.
Movement through the playlist occurs by using the up and down arrow keys. Insertion and
deletion of playlist elements occurs by pressing the ‘Insert” and ‘Delete’ keys respectively.
The currently selected sequence is the one inserted into the playlist after the currently
selected playlist position. The sequence reference can be changed at the current playlist

position by using the ‘+’ and ‘-’ keypad keys to iterate through the sequence list.
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6.2.2.4 Download mode

The serial port download mode is selected by pressing the ‘F12° key. All download
operations after that point are controlled by the system that downloads the information into
the tracker design. A computer software program has been developed to download a
number of samples from standard ‘wav’ files and to download a number of sequences
from proprietary format files. The global sequence playback speed can also be set by the
serial download. The download program releases the tracker design back into its previous
mode once the download is complete, where the tracker cannot play anything until the

download completes.

6.2.2.5 Playback

General playback of the currently selected sequence is initiated by pressing the ‘P’ key.
Pressing the ‘O’ key starts playback of the entire playlist. Pressing the ‘Escape’ key stops

any sequence playback.

Playback of the currently selected sample at the various pitches that make up the standard
musical scale is shown in Table 6.3. This forms one octave of the entire scale. The
samples can be played in one of five octaves, selected from keys ‘F1° to ‘F5°. The ‘F3’
key selects the middle octave, with middle-C being played by key-press ‘C’. As samples
are recorded in middle-C, the playback of a middle-C note streams the audio data at the

same rate as the sample is recorded.

Note | A A B C c D D’ E F F G

Key Z S X Cc F \Y G B N J M K

Table 6.3 Played note to key pressed

The manual playback of notes allows polyphony by using the § audio channels. The first
free channel not playing a sample is used to start the playback of the note. Releasing the
relevant key stops the note playback. The same keys are used when inserting sequence

point notes. Both the selected octave and the note key are stored as part of the sequence

point.
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6.2.2.6 User interface

The user interface is shown in Figure 6.15 (this figure is generated by direct simulation of

the synthesised tracker design, utilising the simulator’s PLI-interface within the simulation

of the VGA display system).
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Figure 6.15 Simulated tracker screenshot

In this simulated example, two samples are held by the sample list, with sample ‘001’
selected. The sample list is shown in the top left hand corner. The selected sample
waveform is shown along the top of the screen. The tracker is in the sample mode, shown

by the red background colour of the sample list and sample. All other windows have the

blue background colour.

The playlist is displayed to the middle left of the screen, with 7 links into the sequence list.
The third playlist element is selected, which is sequence ‘00’. The same sequence is
selected in the sequence list, which is shown below the playlist. The selected sequence
takes the most part of the displayed screen, with the 8 audio channels across the screen and
the time points being shown down from the currently selected position, which is at time
point ‘00’ with channel ‘1’ selected. The cursor is green, which means that the sequence is
not in recording mode. In this example, most inserted notes are in channel ‘1°, with C-

sharp (C*) in the middle octave (3) using sample ‘001” being highlighted by the cursor.
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The three lines shown in channels 2 to 4 denote a note-stop item, which halts all playback

of the sample in those audio channels when the stop item is reached.

The bottom windows display a real-time representation of the audio streams being played
on each channel. The left hand side larger window shows the mixed output audio stream.

A simulated input sine wave 1s being mixed into the output stream.

6.3 Demonstrator ll: The expression evaluator

This design is written to demonstrate recursion in behavioural synthesis, which is
explained in Chapter 5. The demonstrator serves little other purpose than this. The point of
this demonstrator is to recursively evaluate a binary tree expression. Most mathematical
equations can be built from a number of operations stored within a binary tree, as most
mathematical operations have one or two operands and return a single result. The
operations supported are integer operations, where all integers are represented by 32-bit

storage.

The design also uses the dynamic memory capabilities in order to build the recursive data
structure of the binary tree. The demonstrator is designed to give a visualisation into the

binary tree structure and to perform operations on the tree in a recursive manner.

The expression evaluator demonstrator core system uses 37% of the main FPGA’s

capacity, shown in Figure 6.16, the design summary of placement and routing.

Design Summary:
Number of errors: 0
Number of warnings: 80
Number of CLBs: 3187 out of 8464 37%
CLB Flip Flops: 1466
CLB Latches: 0
4 input LUTs: 5390 (50 used as route-throughs)
3 input LUTs: 843 (145 used as route-throughs)
32X1 RAMs: 256
16X1 RAMs: 4
Number of bonded IOBs: 95 out of 448 21%
IOB Flops: 135
IOB Latches: 0
Number of clock IOB pads: 1 out of 12 8%
Number of TBUFs: 256 out of 17296 1%
Number of BUFGLSs: 1 out of 8 12%
Total eqguivalent gate count for design: 86433
Additional JTAG gate count for IOBs: 4560

Figure 6.16 Expression evaluator design size statistics



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 206

Note the use of 256 “32x1” internal RAM cells. This forms the implementation of the

space required by the recursion stack.

A more complete explanation of the implementation details of the core expression

evaluator design is contained in Appendix C.7.

6.3.1 General overview

The binary expression is built up directly from user input via the keyboard and viewed
using the VGA output screen. There are two views into the operations performed on the
dynamic data structures, the first being a view of the binary tree from a particular node in

the tree and the second being a log of all results produced by the evaluation of the

expression held by the tree.

The design is realised by a single process, as there are no timing critical sections to the
system. This simplifies all accesses to the dynamic expression, as no memory conflicts are

possible, which can occur with a multiple process implementation.

6.3.1.1 Data structures

The expression to be evaluated is stored by a binary tree structure, with an example of this
shown in Figure 6.17. The tree is built from a single record type with left and right child
references to the same type of record. Each tree node can either hold a fixed value, which

is used for the leaf nodes of the tree, or an operation upon the left and right child operands.
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Figure 6.17 Binary tree container with 8 elements

Both unary and binary operations are supported, with the unary operations acting upon the

right hand child only. The example shown evaluates the expression:
(1+2)*(8-4)=12

The log of all results produced from the evaluator is created dynamically. The log is
formed from a doubly linked list that contains a full line of text for each element of the
list. The information stored for each character is a combination of the ASCII character
code and colour. The linked list structure is similar to the data structures formed as part of

the tracker demonstrator, except that only the one type of element is stored.

6.3.1.2 Recursive operations

As the point of the demonstrator is to highlight the use of recursion within a system, a

number of procedures are written in a recursive manner. The first procedure produced is a
recursive implementation of the factorial operation [110]. This operation is best computed
iteratively, but it served to test the implementation of recursion throughout the design and

integration process, so is included in this demonstrator.

The two core tree creation and deletion operations are performed by recursive procedures.
The creation of the tree is handled by the evaluation function, and the operations in the

evaluation function are directly controlled by the user input from the keyboard. The tree
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node deletion is formed from a simple recursive procedure that calls itself, passing the left

and right node references before deleting the node data itself.

The tree drawing algorithm is also implemented recursively, with each level of the binary
tree being drawn by a recursive jump into the child nodes. This means that the tree is

drawn in a depth first manner.

6.3.2 User guide

There are two modes of operation within the expression evaluator, relating to the
implementation of the direct test of recursion from the factorial procedure against the

evaluation of the expression.

6.3.2.1 Factorial mode

This mode is included to show a direct test of a recursive procedure in action. The factorial
procedure is a unary operation that produces valid results from input integers in the range
1 to 15. Any input larger than 15 will produce a result that cannot be held by the 32-bit

representation of the integer.

This direct test can only be made when not evaluating an expression. Pressing the ‘F’ key
evaluates the factorial expression with a repeated loop of 1 to 15 as the input values to the
procedure. The results of the factorial procedure can then be seen in the event log, with the

log being indented as a representation of recursion depth (see Figure 6.18).

6.3.2.2 Expression evaluation mode

Once the evaluation procedure has been called, the design will halt inside this procedure
awaiting user input. A tree node is available in the evaluation procedure, which is

modified by the user to generate the expression.

Pressing the ‘E’ key makes the initial entry into the expression evaluation mode. If no root
tree node exists, then one is created within the evaluation procedure. The generation of the
binary tree is simply a case of evaluating the left and right nodes by pressing the ‘L’ and
‘R’ keys respectively. This recursively calls the same evaluation procedure, so that if the

left or right nodes do not exist, they will be created in the same manner as the root node.
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Pressing the ‘Q’ key makes a recursive return from the present level of the evaluation
procedure. If a return is made from the root tree node, then control returns to the base

process, allowing the factorial procedure to be evaluated directly again.

While in the user interface loop within the recursive evaluation procedure, the binary tree
node at the present evaluation position in the tree can be manipulated. The list of valid

node operations is shown in Table 6.4, along with the keyboard key to press for them.

. Leaf Shift | Shift
Operation Not | Factorial | Add | Sub | Mult | Xor | And | Or
value left | right
Valid
- R R LR]LR|LR|LR|]LRI|/LR| LR LR
Operands
left right
Key \% N F + - * X A 0
arrow | arrow

Table 6.4 Expression operations

Other tree manipulation operations that are provided include the ability to swap left and
right tree branch operands by using the ‘S’ key; the manual creation of left and right
operand nodes by pressing ‘C’ followed by the ‘L’ or ‘R’ keys; and the recursive deletion

of the left or right operands by pressing ‘D’ followed by the ‘L’ or ‘R’ keys.

Tree nodes are initially created using the leaf value operation, whose value may be
incremented and decremented using the up and down arrow keys respectively. A:leaf
value does not have any valid operands by definition of not being an operation. If any left
or right operands exist for operations that do not require them, the entire sub-branch is

highlighted as invalid by the displayed tree view.

6.3.2.3 User interface

An example of the expression evaluator screen view can be seen in Figure 6.18, which is

generated from direct simulation of the synthesised expression evaluator.
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Figure 6.18 Simulated expression evaluator screenshot

The top window shows a snapshot of the entire tree view, with the viewed root node being

the presently edited node. The expression shown in the example is:

(5 << (6 -2)) + Factorial(5) = 160

Notice that the factorials left operand is shaded in a red colour. This is because the
factorial is a unary operation, with only the right hand operand being used as input. The
values in the top left corner of the representation of the tree nodes are evaluations of the

value at the particular node. The type of operation is shown in the centre of the node.

The bottom window shows the bottom section of the full log that has been generated
during all the tree manipulation and evaluation operations. Notice the indenting, which is a
graphical representation of the recursion depth reached. The log may be scrolled up and
down by using the up and down arrow keys and the page up and down keys when not

evaluating an expression. Pressing the ‘Escape’ key removes the log contents.
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6.4 Simulation experiment

The simulation experiment is written to perform relative timing comparisons between
different implementations of the same design. The experiment tests both recursion and

dynamic memory in both software and hardware domains.

6.4.1 Small language parser

The design that is used to test the system is an implementation of a small language parser.
In fact, the language can be fully described using the BNF notation shown in Figure 6.19

and can be stored by a single binary tree data structure.

expression ::= ‘(" expression operator expression ‘)’ | number
number ::= 60! I i1, l 521 l 535 l {4) l ‘5! I ‘6! ] I7l l t8! l ‘9’

operator ="+ |~ | ¥

Figure 6.19 Language description in BNF

The language is parsed into a data structure that is identical in form to the expression

evaluator’s expression tree data structure.

6.4.2 Comparable implementations

There are various items that are comparable between the different implementations. The
experiment 1s set up primarily to measure the time taken, both of the internal phases of the

design and of the total duration.

There are six different implementations that are measured, which are formed from a
combination of hardware vs. software (on two platforms) and of recursive vs. non-
recursive implementations of the same design. There are three phases to each design that
are measured. The first is the data structure creation by language parsing, the second is a
depth first traversal that calculates the result of the expression parsed and the third is the

removal of the entire data structure tree.

It is possible to write any notionally recursive system in an iterative manner. However, the
source code is invariably larger and more difficult to understand for any reasonable

problem. The method used for the non-recursive implementation of the language parser is
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to store the current tree position and returned data as part of the tree data structure itself.
Both software versions are written in the C language, with direct equivalent hardware

versions written using behavioural VHDL.
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H recursive 82 111
| iterative 168 191

Figure 6.20 Source code line count for each implementation

The size results shown by Figure 6.20 show that for both the hardware and software
implementations, the recursive version is almost half the size of the equivalent iterative
version. Notice that the software version written in C is slightly less verbose than the
equivalent behavioural VHDL description. The source code for each implementation is

available in machine-readable form, which shows the more readable style of the recursive

versions.

The hardware designs are simulated with a 25MHz clock, with the same 4Mbyte heap
manager as used by the demonstrators. The memory space is simulated as standard fast

page mode DRAM and the procedural recursion stack held in onboard simulated SRAM.

The software designs are directly measured on two platforms in order to gain a better
understanding of the interaction between the many differences between them and the
hardware being tested. The first platform is an Intel Pentium 75MHz PC, with 16 Mbytes
of DRAM clocked at 33 MHz and 256Kbytes of SRAM processor cache. This machine
uses the Windows95 operating system. The second platform is a laptop computer, running

an Intel Pentium IIT 850MHz SpeedStep processor with 256Mbyte SDRAM clocked at



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 213

100 MHz and with a 256Kbyte level-2 integrated SRAM cache running at the processor

frequency. This machine uses the Windows2000 operating system.

6.4.3 Comparison

A set of different sized data files is created, where each file is parsed to generate the tree
data structure of the test design. The files are created to generate balanced tree depths of 5,

10, 15 and 20 when parsed.

The generated expression consists of a balanced tree of addition operators with the number
3 at every leaf of the tree. Each tree node is used to store either the leaf number or an

operator and two references to child nodes.

Tree depth 5 10 15 20
Character count 125 4,093 131,069 4,194,301
Object count 63 2,047 65,535 2,097,151
Iterative memory (words) 441 14,329 458,745 | 14,680,057
Recursive memory (words) 252 8,188 262,140 8,388,604
...(3+3)... result 96 3,072 98,304 3,145,728

Table 6.5 Data set statistics

The measurement of time in the hardware version is made by direct simulation. This
produces exact results each time. Reading a fine-grained timer before and after each
design phase performs the software time measurement. Repeating the experiment many

times and calculating the average time increases the accuracy for the software

implementations.
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Figure 6.21 Time taken by simulations

The results shown in Figure 6.21 are the measured times for each design compared against
each other for the three different phases (Figure 6.21a to Figure 6.21c) with the total
duration shown in Figure 6.21d. The time is shown on a logarithmic scale due to the
logarithmic complexity of the problem for the different tree depths created. Each extra
level added to the tree doubles the problem size, memory requirements and the time taken
for tree traversal. The hardware implementations are only simulated up to a tree depth

level of 15 due to memory size restrictions, while the software is also measured for a tree

depth level of 20.

The results show a straight-line trend in every implementation except for the software
parsing of smaller designs and of the calculation phase of the largest tree depth level on
the P75 platform. The deviation for the small software designs can be attributed to the
increased proportional overhead of the file handling routines that are included as part of
the simulation times. The P75 platforms performance suffers with the largest design, as the
memory requirements of the problem exceed the available memory space available from
the system DRAM, with the system resorting to memory page swapping with the hard

disk. The changes in proportions between the different phases of the design are shown
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graphically in Figure 6.22, which shows the normalised phase time for the different tree

depth levels for each implementation of the system (Figure 6.22a to Figure 6.22f).

a) P75 recursive software b) P75 iterative software

s S
88 88
‘g s 89
g a DOdelete § 5 Ddelete
§_ g B calculation i E M calculation

E Hparse E Hparse

tree depth level tree depth level
c) Laptop recursive software d) Laptop iterative software
e S $. 5
sg2 gg2
§ £8 DOdelete § €8 DOdelete
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tree depth level tree depth level
e) Recursive hardware f) Iterative hardware
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Figure 6.22 Simulation phase time proportions

Figure 6.22 shows that the hardware implementation is unaffected by the depth level of the
tree. This means that the allocation and deallocation methods take a proportional amount
of time for the three phases for each input file size. As the number of memory operations
in each phase procedure is fixed, this shows that the hardware allocator takes a linear
amount of time to allocate an object. The proportional results shown for the software
implementations both show that smaller designs spend more time parsing the input file.
This is due to the file handling routines being measured as part of the parser timing
statistics, whereas the hardware design receives its data through a communications port,

which has a linear simulated communication time.
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The measured times are also affected by the simulated clock speed of the hardware and the
CPU and memory clock speeds of the software platforms. However, the major bottleneck
in all systems is still the available memory bandwidth, as the test is extremely memory
intensive. In this respect, the choice of memory type and access structure (caching system)

is extremely critical for all platforms.

Tree depth level 5 10 15 20
Parse 3,994 29,291 647,104 41,138,408
P75 recursive Calculate 48 1,241 40,468 40,172,254
software Delete 253 7,203 240,763 33,367,057
Total 4,295 37,735 928,335 114,677,719
Parse 4,144 27,360 635,735 85,288,260
P75 iterative Calculate 64 1,950 82,193 134,946,119
software Delete 362 9,007 287,874 64,087,000
Total 4,570 38,317 1,005,802 284,321,379
Parse 981 1,913 52,767 1,434,524
Laptop recursive Calculate 5 80 6,699 213,303
software Delete 20 530 24,688 800,837
Total 1,006 2,523 84,154 2,448,664
Parse 981 2,591 103,131 1,827,548
Laptop iterative Calculate 6 177 12,961 429,444
software Delete 21 610 30,124 969,628
Total 1,008 3,378 146,216 3,226,620
Parse 205 6,622 211,963
Recursive Calculate 81 2,621 83,972
hardware Delete 181 5,858 187,484
Total 467 15,101 483,419
Parse 338 10,968 351,180
Iterative Calculate 240 7,857 251,649
hardware Delete 296 9,605 307,737
Total 874 28,430 910,566

Table 6.6 Complete measured time results in us

Table 6.6 shows the measured times for every simulation in tabular form. Looking at a tree
depth level of 15 and the two recursively implemented designs, the total measured time
taken for the software version on the laptop is 84,154us while the simulated hardware
version takes 483,419us. This means that the laptop software runs 5.74 times faster than
the hardware. This is to be expected though, as the two systems are not realistically
comparable due to the completely different system specification. A better comparison is

made with the P75 software platform, which takes 928,335us. This result shows the
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software to be 1.92 times slower than the hardware. Closer inspection of the P75 platform
however, shows that most time is spent in the parsing phase, where a combination of
memory allocation and file handling is measured. The actual calculation phase times of
40,468us for software (P75) and 83,972us for hardware show the software running 2.08
times faster than the hardware, which can be partially attributed to the differences in
memory systems between the two platforms, with the SRAM cache system on the
software platform and the slow random accesses made to DRAM on the hardware
platform. Conversely, notice that the deallocation phase in the same test takes 240,763 s

for the P75 and 187,484us for the hardware, making the hardware 1.28 times faster.

The 25MHz simulated hardware clock speed is set due to the assumed implementation of
an FPGA. The equivalent design, optimised for implementation in an ASIC would reach
clock frequencies that match and exceed the memory frequency used in the laptop
platform. Also, the underlying hardware memory implementation can be tailored to the
application, with the use of different underlying memory types, speeds, allocation methods
and caching systems. Embedded DRAM [52] could be used for better power performance
and wider data interface or an SRAM version of the same heap controller could be
designed. This is estimated to increase the available memory bandwidth by a factor of six.
All of these memory structure optimisation choices are only possible in the hardware

synthesis environment.

The argument for the use of recursion by a system derives from the increased complexity
of the behavioural source code and the increased measured time taken for an iterative
implementation of both the hardware and software designs. However, the reason for the
increased time taken for the iterative versions shown here is that they require more heap
memory accesses (random access) due to their implementation method. The hardware
version shows this especially, with differences in the types of memory used for the heap
and stack dynamic memory, with a recursive version more dependent upon the SRAM
based stack memory capable of outperforming a design more dependent upon the slower
DRAM based heap memory. If an SRAM based heap manager were implemented, then the
1.9 times speedup gained by using recursion would be reduced to almost the same level.
The same argument holds for the software-based implementations, where the procedure

stack is partially implemented using an SRAM based circular buffer within the processor.
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Chapter 7

Conclusions and further work

The work described in this thesis extended the scope of the MOODS synthesis system to
include dynamic memory support, both explicit allocation of user objects with the use of
the heap and implicit allocation of local subprogram variables with the use of the stack,

allowing procedural recursion.

The source language used for all designs synthesised by MOODS at present is VHDL.
This language i1s compiled into a language neutral ICODE format that is directly processed
by MOODS. Most modifications made to the system consisted of additions made to the
VHDL compiler, with only procedural recursion requiring changes to the synthesis core.
VHDL is a language designed for the description of hardware, but allows for many
abstraction levels of design description, including the software-like behavioural level,
which now, due to the work carried out, includes the ability to directly describe dynamic

objects within the synthesis environment.

The methods used in the modified behavioural synthesis, allowing dynamic memory,
borrow heavily from the software domain, with the implementation of both a heap
management system and a stack controlling mechanism. The algorithm used in the heap
manager is both space and speed efficient, giving a fixed maximum time for allocation and
deallocation of objects. It is very simple to interface to a different memory management
scheme that is optimised for different area constraints (both physical design area and
memory efficiency) and memory allocation performance, as the allocation scheme is not

built into the synthesis process.

The enhancements made to MOODS allow the generation of two demonstration systems
that both demonstrate the usefulness of dynamic object creation, especially when the
source language supports the allocation constructs. The tracker demonstrator shows that it

is possible to use the dynamically created objects in a real-time environment, with the use
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of concurrent processes and shared data structures. The expression evaluator demonstrator
shows the ability and use of procedural recursion, especially when used to control the

recursive data structures created dynamically on the heap.

The research carried out within this project enables the MOODS synthesis system to
synthesise designs with dynamic memory constructs. There is scope for improvement in
the currently implemented system, both with the synthesis process in general and with the
methods used in the dynamic memory subsystems. A number of suggested enhancements

are described in the rest of this chapter, which could form the basis for future research

topics.

7.1 ICODE optimisation

The use of source-level optimisation has been shown to produce better synthesis results
[94], with modifications made directly to the source VHDL. However, this technique
could not be used at the same time as the modified VHDL compiler, as the source level

optimiser does not support the memory constructs used in the VHDL language.

A solution to this problem would be to move the stage at which the source optimisation
occurs into the ICODE domain. The benefits of this are twofold. The first benefit would be
the ability for source code optimisation to be used in conjunction with dynamic memory
constructs, even allowing optimisation of the number of memory accesses required [111]
due to common sub-expression sharing. The second benefit would be complete language
independence for the optimisation process, with optimisation occurring on the language

neutral ICODE.

The benefits of just one optimisation at the ICODE level have been shown in this thesis,
that of procedural inlining. A full set of optimisations [112] could drastically reduce the

area and delay of some designs that are written for clarity, not efficiency.

7.2 Heap modifications

The modifications discussed here relate to the explicit object creation part of the dynamic

memory allocation structure to which each user design is linked.
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The first modification relates to the efficiency of behavioural synthesis when dynamic
memory is used. At the present time, each translation of a dynamic memory access is a
number of ICODE instructions that interface with the underlying heap manager. This leads
to a lot of replication of sequences of ICODE instructions, each performing exactly the
same operation. Every instance of the access functions is optimised separately during

synthesis, and this slows the optimisation.

Expanded modules [3] are designed with optimisation efficiency in mind, where a
sequence of instructions is represented by a single instruction. The use of expanded
modules to describe the memory access procedures would allow a speedup in optimisation
time, with the pre-optimised interface sequence being expanded from the single instruction

reference in the last stages of optimisation.

The creation of a number of expanded module interface operations would also allow the
migration of the concurrent heap interface multiplexor process into the MOODS core,

which frees all future compilers from needing to generate this structure.

The current implementation of the heap manager subsystem uses a single allocation
method, with direct access to the underlying DRAM, using completely random access
(negating Fast-Page-Mode use). The second modification could be to implement a number
of allocation algorithms within a set of heap management subsystems, where the choice of
which allocation method to use could be explicitly selected by the user, or left to an
automated choice, dependent on user constraints and/or source analysis. The automatic

linkage of this subsystem would also be preferable.

The underlying storage mechanism used by the heap manager could be implemented
within a number of technologies, including SRAM, faster DRAM of various types (FPM,
EDO, SDRAM), or a mix of technologies with the faster memories being used for speed
sensitive areas of allocation. This allows even more choice in the number of heap

management systems that can be used.

If the hardware destination of a design 1s to be an FPGA, then the use of more specialised
FPGA architectures that contain a number of SRAM memory blocks could be utilised.

These would allow the stack and heap to be implemented internally either partially or
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fully, dependent on memory requirements. The XILINX “Virtex’ series of FPGA,

containing ‘SelectRAM’ is an example of such a specialised architecture.

The completely random access of the storage space of the underlying dynamic objects
negates the use of advanced memory data streaming, such as fast-page-mode access or
burst-mode access of particular types of DRAM. This slows the available memory access

speed to the random access speed. There are two possible solutions to this problem.

The implementation of a cache controller between the heap management algorithm and the
underlying memory controller forms another memory interface level. Such a system could
be designed to use the faster memory accesses of the available large-scale memory, while
providing single-cycle access to data that is referenced by the cache, from the use of
SRAM based storage. The use of a caching system could be another parameter used in the

selection of a heap management system.

The second solution could be to provide an enhanced interface to include memory-type
specific accesses in the generated ICODE. This could require knowledge of which heap
management subsystem is to be used before compilation, as the enhanced interface may
not be available in all management systems. Such accesses could be formed from analysis
of the source code, where a streamed memory access contained by a loop could map onto
a fast-page-mode DRAM access or burst-mode access [113]. This requires investigation to

determine the workability of the solution over the cache solution.

7.3 Stack modifications

The modifications discussed here relate to the implicit object creation part of the dynamic

memory allocation structure that is created for each design utilising procedural recursion.

At present, a design using procedural recursion is limited to a single process that uses
recursive procedures. A design may contain more than one process, with only one able to
use recursion. This is due to the current implementation of the call stack, as a single

contiguous memory block per design.

The lack of analysis for a list of all possible concurrent calls to all the statically generated

procedures also has effects upon the generation cf recursive procedures. If any procedure
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is called from more than one process, then this procedure either has to be replicated (if the
procedure does not communicate directly with any internal signals or design ports), or
blocked for concurrent access (with the automatic generation of mutex wrapper function
blocks around the procedure). At present, all concurrent access to a generated subprogram
is reliant upon explicit user-defined access control within the design source code, not upon
the synthesis system. The generated structures for concurrent access of general procedures
require specification before the additional structures required for concurrent access of

recursive procedures can be specified.

Dependent on whether a recursive procedure is replicated or access-controlled during
generation allows for different methods for the allocation of procedure-local frame data.
Replication can enable access to completely concurrent stacks using different access ports,
whereas a single access-controlled procedure can use only a single port into a stack
system. In this case, the underlying stack mechanism of the contiguous block of memory
with a single stack head pointer cannot be used. A more complex system possibly based
upon the heap allocation methods and with an automatic generation of a linked list

structure between stack frames could be used.

There is only one implementation of stack-frame handling in the current system, where the
data is stored in a single memory array with a single access port. This forces every access
of the stack to happen in separate control states, inducing a sequential delay to designs. An
alternative implementation could be used for designs optimised for delay, where each
variable requiring stack storage could have an associated local stack. This would allow
concurrent access of each stack variable. Sharing of stack arrays for local variables
between mutually exclusive recursive procedures could also be allowed. Some static
analysis of the likely storage space requirements would be required, in order to balance the

amount of data stored in each stack array.

For larger stack requirements, it may be useful to create an external stack interface, like
the heap manager interface. This would allow interfacing to a number of memory

technologies, including SRAM and DRAM again.

An alternative to the separate external stack memory and heap memory could be to
combine the two in some manner, where a limited built-in stack is provided in the same

manner as before, with the heap memory accessed whenever the stack overflows or
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underflows. The heap could be used to allocate enough space for the stack frame used in a
recursive procedure when the stack overflows. In this way, the stack is used as a circular
window into a potentially larger memory base, with the slower heap only being accessed

during excessive recursion. This also removes the stack overflow exception.

7.4 Exception handling

There are currently two hardware exceptions that are not directly accessible from the
VHDL language, which can break a design under certain circumstances. These exceptions
are effectively memory allocation problems due to the limited underlying memory space
available to the user’s design. The exceptions occur when the heap manager is incapable
of allocating the required user object or when the stack overflows due to excessive
procedural recursion. The stack overflow problem could be reduced to the heap allocation

problem, with the last given stack modification of the combined windowing stack.

The main disadvantage encountered is the lack of accessibility of the exception as part of
the VHDL language. The only way that the exception can currently be handled is if an
allocation returns a null reference. This means that the user’s design must test every
allocation to see if it failed, and act accordingly in some controlled manner. This can lead
to large, ugly and unreadable source code. A better mechanism, which removes the need
for user testing, may be to build the exception handling into the synthesised design, where
some form of registered status output could give an indication of system health. This

indicator could allow for the switching of backup systems in place of the currently active

system.
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Appendix A

Collateral projects

During this research, a number of smaller projects were undertaken to gain familiarity
with the MOODS synthesis system. These projects are designed to enhance the system in
general and supplement the demonstrators described in Appendix C. Other users of

MOODS for further development and demonstrations have subsequently used some of

these projects.

The first VHDL based project was to implement a VGA controller library. This subsystem
has been the most widely used bolt-on component and has been implemented in three
major versions using two different technology bases. The system is used as a viewable
output method for designs requiring a visual user interface, where a standard VGA
monitor screen is used to display the signals directly generated from the VGA controller.
The interface to the concurrent controller is procedure based with direct calls made from

the user’s design used to draw objects such as rectangles, text and straight lines from

arbitrary points.

The second VHDL based project was to implement an interface to a standard PS2-based
101-key ASCII keyboard. This subsystem will form the input to various designs requiring
a number of keyboard switches. This system is the second most widely used with most

demonstrators comprising of a monitor, keyboard and the created driving hardware.

The final VHDL based project was to implement an interface to a standard serial port.
This project was designed specifically for the tracker demonstrator described in Chapter 6
and Appendix C. However, the general-purpose nature of the subsystem lent itself to being
created as a completely self-contained project. Only the input half of the serial port
interface is implemented, with the output half being an easy addition if ever required. This
interface is implemented, as the first two, with a concurrent controller driven by calls to a

set of sequential interface procedures.
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The next project, the wave viewer is software based. It was designed to gain some more
familiarity with the MFC class libraries used to generate windows programs. A wave
viewer generally forms one of the visualisation methods of a digital simulator. A
proprietary input file format was designed for use with this program and the viewer has
been used with a neuron simulator and is currently forming the output visualisation

method for a digital simulator based on the internal MOODS data structures.

Older versions of MOODS generate the final RTL VHDL output directly from the core.
With the introduction of multiple concurrent components, in the form of the various
library components and more importantly, the heap management component, a method to
link these automatically into the final structural output becomes necessary. The program;
‘DDFLink’; is used as a final stage data structure translation tool, and is currently being
expanded in order to generate EDIF output directly from the data structures represented by

the ‘DDEF’ file format described in appendix D.

The first six months of the PhD were used to try to find a niche within the 3D graphics
research area that could be the base for the entire research project. However, this time
proved the beginning of the period of major commercial growth in this area, which
effectively halted the research efforts in the direction that was beginning to be taken.
Within this period, a small 3D graphics engine was written in software that was loosely
based upon the PHIGS hierarchical data structures used to generate 3-dimentional objects.
This software used a 3D accelerator card created by the company ‘3DFX’. This program is

described in the final section of this appendix.

A.1 VGA controller library

The VGA controller is designed as a component to which the user’s design interfaces via
the VGA Interface package that contains various set-up and drawing procedures. This
section explains the various aspects of all the versions of the VGA controllers and their
respective interfaces. The VGA controller library forms the cornerstone of many of the
demonstrators built by the research group. Various versions of this library exist, with

optimisations made with respect to the target hardware and to the type of design that

utilised the library.
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A.1.1 Overview

The VGA system is a graphical interface that can be used by calling VHDL procedures. It
outputs all the signals necessary to drive a VGA monitor at the standard 640x480
resolution [114]. The dot-clock for this resolution is 25.125MHz, which determines the

clock frequency supplied to every version of the VGA controller.

It is targetted at the PCB described in Appendix C. This board uses a XILINX XC4062XL
FPGA, has 1M of DRAM frame buffer memory and has a triple 8-bit DAC for driving a
monitor. It has since been updated to use a third party board provided by XESS, which
uses a XILINX Virtex-800 FPGA, with a different frame buffer stored within SRAM and
a RAMDAC instead of a DAC. The use of SRAM allows single cycle read-access, which
enables an 8-bit per pixel (256 colour) version to be produced (even with a reduced SRAM
data path width), with a direct port to the frame buffer being provided for this instead of
the object rendering capabilities found in the 4-bit per pixel (16 colour) version initially

designed.

A.1.1.1 Controller

This component forms the concurrently active low-level driving system that generates the
SYNC signals and colour output that drives the VGA monitor screen directly. It makes use
of a frame buffer memory into which stored images are rendered. These images are
serialised into a raster-scan, passed through a palette-lookup system and drive the monitor
with the generated signals. The memory effectively introduces a large time buffer in which

to work asynchronously with the output signal generation.

The images are produced by various memory modification routines that, in the case of the
16-colour version, are capable of drawing bitmapped text characters, rectangles and
straight lines anywhere within the memory space. The 256-colour version of the controller
has two direct memory access ports to the underlying memory and no direct rendering
capabilities itself. This design is optimised for producing more colour intensive outputs

such as realistic picture visualisation.



D.J.D. Milton, 2002 Appendix A: Collateral projects 227

A.1.1.2 Interface

This package is used by the user design and handles the communication between the user
design and the VGA controller system. It is wise to use only the procedures defined within
the package and not to drive the signals directly. Some of these interface procedures are

inlined and others are not, depending on tests for what gives the best results.

A.1.1.3 Simulation

A Modelsim simulation library exists for the 4-bit (16 colour) version of the VGA
controller. The simulation uses Modelsim’s C-interface into the simulation structures that
enable various hooks to be utilised. The point of the simulation library is that the user can
link to the virtual VGA controller given by the library and it will create a window on the
simulation computer that displays exactly what will be displayed after the synthesis and

place and route process.

File name Description

vga_sim_pck.vhd | VHDL component interface - virtual VGA controller interface

vga_sim_bdy.vhd | VHDL component body - empty body required by Modelsim

text2col2.bmp The text ROM stored as a bitmap

mti_vgal.dll The executabie that generates the window

Table A.7 Files required for VGA controller simulation

Simulation can be either at the behavioural level (source code before synthesis — use
‘vga_controller_source’) or at the structural level (VHDL code after synthesis — use
‘vga_controller’). The VGA Controller component used during RTL synthesis is replaced
by the simulation component given in ‘vga_sim_pck.vhd’. Note that a simulation of the
text ROM is included within the DLL, so the address of the text ROM is supplied to the
controller, not the resulting data. The simulation name, position of the text ROM bitmap
and the default palette are set-up using VHDL generics passed into the simulation
component. The position of the DLL executable is set up within the architecture itself and

should remain fixed.

At present, no simulation library exists for the 256-colour version of the controller. The
only indirect method for visualising what will be produced is to use the actual controller
source itself. Accepting the semaphore accesses may be enough for visual inspection of

whether the user design is working or not.
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A.1.1.4 Source VHDL structure

The three versions of controller are each contained in a single file each. The controllers
interface to one of two constants packages and one of two palette setup packages. The
interface package used by the user also has two versions. The two versions are necessary,

as each provides a completely different interface to the underlying controller.

The VGA Controller design is created from the VHDL files shown in Table A.8. Note that

only the 4-bit version of the controller is available for the university board.

4-bit (16 colours) 8-bit (256 colours)
University Board vga_const.vhd
vga_palette.vhd N/A
vga_controller.vhd
XESS Board vga_const.vhd vga_const_8bit.vhd
vga_palette.vhd vga_palette_8bit.vhd
vga_controller_xess.vhd vga_controlier_xess_8bit.vhd

Table A.8 Files required for the VGA controller

The user must interface to the VGA controller using the files shown in Table A.9. Note
that the interface is not dependent on which PCB is used, only the number of bits used to

store a single pixel.

4-bit (16 colours) 8-bit (256 colours)

University Board | vga_const.vhd N/A
vga_interface.vhd
XESS Board vga_const.vhd vga_const_8bit.vhd

vga_interface.vhd vga_palette_8bit.vhd

Table A.9 Files required for the user to interface to the VGA controller

A.1.1.5 Design structure and style

The VGA controller system is designed as a completely independent component that is
linked with any user design after MOODS optimisation. At present, the linking is
performed manually (by the user) with an RTL VHDL wrapper file. To use the VGA
system, the user must include interface signals in the design port list and call the interface
procedures as defined within the interface package, passing the relevant ports into the
procedures. All one-way communication is controlled by a number of semaphore-

acknowledge signal pairs, which are toggled when data is transferred. The master of
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communication drives the semaphore (indicating that data is available for transfer or that
data is required from the slave). The slave to the communication reacts to the toggled
master semaphore by toggling the acknowledge signal, either reading the data from the
master or returning data to the master (or both). The semaphores are controlled by the

interface procedures.

Port I/O

Top Level

Controller
or
Simulation Library

User Design

User Interface

Figure A.1 VHDL Wrapper file structure

The wrapper file is required to link together any user designs with any pre-compiled
library components such as the VGA controller system. The user must supply it. Each
version of the VGA controller has a different interface and needs different buffering and

tri-stating actions performed to some of its ports.

The clock supplied to the VGA controller system must be 25MHz. Any other component
can be run at their designated speed, including the component that interfaces to the VGA
controller. If two different clocks are used, then extra buffers will be required between the
subsystems. If asynchronous clocks are supplied, then all signals will require double
buffering in both directions. If divided clocks are generated from the 25MHz base clock,
then single buffers are required for all outputs from the fast system into the inputs of the

slow system.

Pin constraints are used to define which pins of the FPGA to use for the I/O signals. They
are contained in a UCF file. Two versions are available, one for each board. The
constraints file maps onto the names given in the main entity port list, so all VGA specific

ports keep the same name.
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The VGA system on the XESS board conflicts with some of the Ethernet interface chip
connections. Directly drive the Ethemet output enable line with 1” to disable the Ethernet

chip.

A.1.2 Original 16-colour interface

The low-level interface that is provided by the controller gives the ability to draw very fast
horizontal lines in the current drawing colour. The only alternative to this is to draw the
same horizontal line masked with a pattern derived from a ROM. This second alternative

allows bitmapped text characters to be produced.

This simple interface is not directly accessible to the user. Instead, the user performs
drawing actions that utilise multiple communications with the underlying low-level
interface to draw more complex objects. These high-level drawing algorithms are

contained in the interface procedures provided.

Most interfacing procedures are simple value setting procedures that check whether it is
safe to set the value by the use of the drawing semaphore and acknowledge that are part of
the interface required in the user’s design. The procedures will block until the VGA
controller allows them to continue. All interfacing uses the ‘render_sem / render_ack’
semaphore-acknowledge pair to handle the transfer of data, except any palette
modification that uses a dedicated port using a similar pair of signals ‘palette_modify_sem
/ palette_modify_ack’. This means that any palette modification can occur in parallel to

any drawing procedures.

All drawing procedures should be called from only one user process. Multiple process use
requires the user to serialize the calls to the interface procedures using some form of user-
generated semaphores. Single process use of the interface is recommended for the various

interface calls for simplicity and safety.

The system is set up as a registered state machine and the set-up parameters are passed
separately from the drawing procedures. For example, to draw a rectangle in XOR mode
using colour 15, first call the vga_setmode procedure, then set the drawing colour by

calling vga_setforecolour and finally draw the rectangle by calling the vga_drawrect
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procedure. The set-up information is persistent, so to draw another rectangle in the same

colour in the same mode only requires another call to vga_drawrect.

Most interface procedures are inlined into the user code using the method of placing a call
to the ‘inline’ procedure in the body of the procedure being inlined. This means that most
calls to the VGA interface will be hidden in the final implementation. An exception to this
is the arbitrary line drawing algorithm, due to its complexity. If it were inlined, the
compilation time for multiple calls to the inlined line drawing procedure would be
prohibitive and generate more hardware than necessary. Definitions of the interface
procedures are provided in the following sections, along with descriptions of their actions.

These procedures are defined in the interface package.

A.1.2.1 Interface types

A number of VHDL types are defined for interfacing with the VGA controller. These

types are defined within the constants package and are shown below:

subtype vga_colour type is bit_vector (COLOUR_BITS-1 downto 0);
subtype vga red type is bit_vectoxr (RED_BITS-1 downto 0);

subtype vga_green_type is bit vector (GREEN_BITS-1 downto 0);
subtype vga_blue_type is bit_vector(BLUE BITS-1 downto 0);

subtype vga_rgb_type is bit_vector (RGB_BITS-1 downto 0);

subtype vga_mode_type is bit_vector (MODE_BITS-1 downto Q);

subtype vga_page_type is bit_vector (PAGE_BITS-1 downto 0);

subtype vga xpos_type is bit vector (XBITS-1 downto 0);

subtype vga_ ypos_type is bit_vector (YBITS-1 downto 0);

subtype ascii_type is bit_vector (ASCII_BITS-1 downto 0);

subtype vga textsize_type is bit vector (TEXTSIZE_BITS-1 downto 0);
subtype vga_text xpos_type is bit_vector (TEXTPOS_XBITS-1 downto 0);
subtype vga_ text ypos_type is bit_vector (TEXTPOS_YBITS-1 downto 0):;
subtype vga_text inc type is bit vector (TEXTPOS INCBITS-1 downto 0);

A.1.2.2 System setup

The user’s design is the master of communication with the slave VGA design. The
communication semaphores used within the interface procedures require initialisation at
startup. An initialisation procedure is provided, which is used to set up both interface

semaphores ‘render_sem’ and ‘palette_modify_sem’ (called once per semaphore signal):

procedure vga initialise(signal semaphore : out bit);
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A.1.2.3 Drawing attributes

The VGA controller system has registered settings for the currently rastered page, the page
to render into, drawing mode, colour and background colour. The interface procedure

declarations for modification of these settings are listed below:

procedure vga setdefaults (
-—- ports
signal render_sem : in bit;
signal render _ack : in bit;
signal render page : out vga_page_type;
signal raster page : out vga_page type;
signal render mode : out vga_mode type;
signal render colour : out vga_colour type;

signal render backcolour : out vga colour_ type

) :

Description: Set pages to PAGEO, mode to MODE_DD_BOTH and colours to COL_0.

procedure vga_ setrasterpage (
-— ports
signal render_sem : in bit;
signal render ack : in bit;

signal raster_page : out vga_page_type;

-— user input
page : in vga_page type
)i

Description: Set the viewed page to the ‘page’ input. Page values can be PAGEO,
PAGEL, PAGE2 or PAGES3.

procedure vga setrenderpage (
-—- ports
signal render sem : in bit;
signal render ack : in bit;

signal render page : out vga page type;

-- user input
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page : in vga_page_ type

)

Description: Set the page to draw to from the ‘page’ input. Page values can be PAGEQ,
PAGE1, PAGE2 or PAGE3.

procedure vga_ setmode (
-- ports
signal render sem : in bit;
signal render ack : in bit;

signal render mode : out vga mode type;

-- user input
mode : in vga mode type

)i

Description: Set the drawing mode (XOR/direct, foreground only/both foreground and
background). Mode values can be MODE_DD_FORE, MODE_DD BOTH,
MODE_XOR_FORE or MODE_XOR BOTH.

procedure vga_setforecolour (
-- ports
signal render_sem : in bit;
signal render ack : in bit;

signal render_colour : out vga colour_ type;

-- user inputs

cclour : in vga colour type -- which colour to adjust to

)

Description: Set the foreground colour (0 to 15). The colour is a 4-bit value and 16

constants have been defined for each value, ranging from COL_0 to COL_15.

procedure vga setbackcolour (
-- ports
signal render sem : in bit;
signal render_ack : in bit;

signal render_backcolour : out vga colour type;
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-- user inputs

colour : in vga_colour_ type —-- which colour to adjust to

) ;

Description: Set the background colour (0 to 15). This colour is only used within the
character drawing procedure. The colour is a 4-bit value and 16 constants have been

defined for each value, ranging from COL_0 to COL_15.

A.1.2.4 Palette modification

Dynamic palette modification capabilities are provided, which can enhance the static

palette values used within the VGA controller. Two interface procedures are provided:

procedure vga setpalette rgb (
-—- ports
signal palette modify sem : inout bit;
signal palette modify ack : in bit;
signal palette modify addr : out vga_colour type;
signal palette modify val : out vga_ rgb type;

-- user input
colour : in vga colour_type; -- which colour to adjust
rgb : in vga_rgb_type -- the new rgb value

)

Description: Set the palette colour (0 to 15) with RGB (0 to 4096). The ‘colour’ input says
which colour index to adjust the palette of. The ‘rgd’ input gives the 12-bit concatenated

RED & GREEN & BLUE value.

procedure vga setpalette (
-— ports
signal palette modify sem : inout bit;
signal palette modify ack : in bit;
signal palette modify addr : out vga colour type;
signal palette modify_val : out vga_rgb type;

-- user input
colour : in vga_colour_ type; -- which colour to adjust
red : in vga red type; -- the red component of the palette

green : in vga_green type; -—- the green component of the palette



D.J.D. Milton, 2002 Appendix A: Collateral projects 235

pblue : in vga_blue type -- the blue component of the palette

);

Description: Set the palette colour (0 to 15) with separate Red, Green and Blue values. The
‘colour’ mput says which colour index to adjust the palette of. The ‘red’, ‘green’ and

‘blue’ values give the palette shade in the 4-bit triple.

A.1.2.5 Drawing horizontal lines

The VGA controller has the horizontal line as the primitive from which all other drawing
procedures generate their screen objects. The character drawing procedure uses a slightly
different version of the same low-level horizontal line drawing routine in the controller, by
allowing masking of each horizontal line via the text ROM. The low-level horizontal line
algorithm is the most efficient and simplest method of drawing; hence the direct interface
to it as a procedure call within the interface. The low level renderer does not care which
way round the two X-values for the left and right position of the horizontal line are given.
It will draw between and including the two X positions at the given Y position. An

interface procedure is provided:

procedure vga_drawhorzline (
-—- ports
signal render sem : inout bit;
signal render_ack : in bit;
signal render_ type : out bit;
signal render xone : out vga_xpos_type;
signal render xtwo : out vga_xpos_type;

signal render ypos : out vga_ypos_type;

-- user input

x1 : in vga xpos_type;

x2 : in vga_xpos_type;

Yy : in vga_ypos_type
)i

Description: Draw a horizontal line (fast) between inputs ‘x/’ and ‘x2” at y-position ‘y’.



D.J.D. Milton, 2002 Appendix A: Collateral projects 236

A.1.2.6 Drawing filled rectangles

The rectangle-drawing algorithm is simply a loop between the two Y positions given. A
test is made before the loop to determine which Y position is larger, and swapped if
necessary. For each Y position, a horizontal line is drawn between the two given X

positions. This functionality is provided within the interface procedure:

procedure vga drawrect (
-- ports
signal render sem : inout bit;
signal render ack : in bit;
signal render type : out bit;
signal render xone : out vga_xpos type;
signal render_ xtwo : out vga xpos type;

signal render ypos : out vga_ypos type;

-- user input

x1 : in vga_xpos_type;

yl : in vga_ypos type;

X2 : in vga_xpos_type;

y2 : in vga_ypos_type
)

Description: Draw a rectangle between (and including) two corner points given by the

inputs (‘xI°, ‘yI”) and (‘x2, ‘2°).

A.1.2.7 Drawing arbitrary lines

Due to speed and size constraints, an integer incremental line drawing algorithm is used to
draw a single-pixel thick line from two specified end points. Any two points can be given

with no restrictions on the orientation of the line or relative positions of the end points.

Bresenham first demonstrated the underlying algorithm [116], which is limited to lines
from O to 45 degrees above the x-axis. Modifications were required to allow the algorithm
to work with arbitrary end points and orientation. These modifications include

optimisations to use the low-level draw horizontal line algorithm efficiently.
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Bresenham's algorithm works by keeping a cumulative integer error value by adding and
subtracting one of two terms dependent on whether the present value of the cumulative

value is larger than zero. The algorithm and example line is shown in Figure A.2.

x=x0
y=y0
dx=x1-x0
dy=y1-y0
d=2dy-dx
loop
DRAW PIXEL(x,y)
exit loop when x = x1
X = x+1
if d>0 then
y=y+1
d = d+2dy-2dx
else
d = d+2dy
end if
end loop

x0=0,x1=6,y0=0,y1=4

dy = y1-y0 = 4, dx = x1-x0

d = 2 (initial)

4 d=2+8-12=-2

S d=-2+8=6
d=6+8-12=2

0 > d=2+8-12 = -2

d=-248=6

4 d=6+8-12=2

wuunununngo

XX X X X X X
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<< |
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Figure A.2 Bresenhams line drawing algorithm

The algorithm shows that the x-position is incremented on every iteration of the loop and
the y-position is only incremented when the decision value d is larger than zero. The
algorithm also shows that when the decision variable d is smaller than or equal to zero, the
next value of d is an increment of 2*dy, which is always positive or zero with slope
restrictions. The alternative increment of 2*dy - 2*dx is always negative or zero as dy is

always smaller than or equal to dx for slopes limited from O to 45 degrees.

To allow lines of any orientation to be drawn requires two modifications. The first
modification takes the two end-points and calculates the positive versions of dy and dx,
and makes a note of which (if any) were negative. The starting point is set as the point
with the smaller x-value and the ending point is set as the point with the larger x-value.
The algorithm then increments the x-value as normal until it reaches the ending x-value.
The decision-making is exactly the same. When an increment of the y-value is required,

the polarity of both dx and dy are tested to see whether they are the same. If both are
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positive or both are negative, then the y-value is incremented as usual, but if only one is
negative, then the y-value is decremented. This allows the shaded range shown in Figure

A.3 to be rendered correctly.

line-drawing
angle range

Figure A.3 Rendering angles for partial line drawing implementations

This is half of the total line-drawing angle range that is possible. The ranges from 45 to
135 degrees and -45 to -135 degrees also need supporting. This is done with the second
modification. Once the positive values of dx and dy have been calculated, a simple test of
which is larger will determine whether the range is from the shaded range (dx > dy) or the
non-shaded range (dx < dy). If dx > dy then the present algorithm will work. However, the
alternative range requires the second modification. The modification is to have a second
copy of the line drawing algorithm that works in the alternative range. This is simply a
case of rotating the algorithm by 90 degrees by exchanging x-values for y-values, so that
the y-value is always incremented and the x-value is incremented (or decremented)

dependent on the decision variable.

The final modification only applies to the original algorithm that increments the x-value.
This is for time-efficiency reasons and involves replacing the draw-pixel call with a draw-

horizontal-line call that is only called when the y-value changes.

All of the functionality described above is provided in the interface procedure. The

procedure is not inlined into the user’s code due to the size of the replicated structures:
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procedure vga drawline (
~—- ports
signal render sem : inout bit;
signal render_ack : in Dbit;
signal render type : out bit;
signal render xone : out vga xpos_type;
signal render xtwo : out vga xpos type;

signal render_ypos : out vga ypos type;

-—- user input

x1 : in vga_xpos_type;

yl : in vga_ypos_ type;

X2 : in vga_ xpos_type;

y2 : in vga_ypos_type
)i

Description: Draw a line between (and including) two arbitrary points given by the inputs

(‘xI’, “yI’) and (‘x2°, *y2°).

A.1.2.8 Drawing characters

As the text character x-position is forced to be in alignment with the 8-pixel word
boundaries, due to the limited pixel masking available for the text mask, the y-position is
also forced into 8-pixel alignment from the top of the screen. This means that the character
will snap to the §-pixel aligned top-left position. In fact, a different co-ordinate system is
used that holds positions 80 x 60 text positions instead of 640 x 480 pixel positions. Only

one position is supplied to the character drawing algorithm.

The character x-position and x-size are given to the low-level text-line algorithm (within
the VGA controller) first, as these do not change for the rest of the character algorithm.
Then the code enters a loop that counts up to eight, for each line of the 8 by 8 character.
The first action is to output the address of the present line of the particular character being
drawn to the text ROM. Then the code enters another loop that is nested within the first,
which loops depending on the given y-size. The y-size can be 1 of 4 values that allow a
character to be drawn with a height of 8, 16, 24 or 32 pixels. For each iteration of the inner
loop, one horizontal text-line is drawn at the present y-position and the y-position iterator
is incremented. The character is drawn once the final rendered line of the eighth character

line 1s reached.
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Each character line uses the modified horizontal line drawing algorithm within the VGA
controller. The value given from the text ROM is used to mask the horizontal line in one
of four text X-sizes, with widths possible in the same range as heights (8, 16, 24 or 32
pixels).

The text mask is generated from a bitmap shown in Figure A.4. A small program has been
produced that will convert such a bitmap used in the Modelsim simulation into the
required format for an internal VHDL lookup table, or as an EPROM bitmap for use in an

external 2K ROM.

<4—— 16 characters per row ——p

CharOto 15
Char 16 to 31
Char 32 to 47 [ Itk | X 3¢

Char 48 to 63 5§ I Rraea 1 &
Char 64 to 79 D
=

Char80to 95]2

Char 96 to 111 *a'hr_:de{‘g}l A |
Char 11210 127 e e iR P LoD
Char 128 to 143 "l e
Char 144 to 159 il -y iy
Char 160 to 175 E _-E 141z=
Char 176 to 1917¥4
Char 192 to 207
Char 208 to 223
Char 224 to 239 7.5 z=* i'ﬂ'-!l-ﬂ-l-[l f?.l
Char 240 to 255 T e ¥ Ty 4 et it ik |

16 rows of 16 characters —p

Figure A.4 ASCII character map image in a 2K ROM

The declaration of the interface procedure to draw characters is shown below:

procedure vga_drawchar (
-- ports
signal render sem : inout bit;
signal render_ack : im bit;
signal render type : out bit;
signal render_xone : out vga_Xpos_type;
signal render_ xtwo : out vga_xpos_type;
signal render ypos : out vga_ypos_type;
signal render_text_size : out vga_ textsize_ type;

signal render_textrom_ addr : out vga_textrom address_type;
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-- user input
x : in vga_text xpos_type;

y : in vga_text ypos type;

xsize : in vga textsize_type; -- X size
ysize : in vga textsize type; -- y size
ascii : in ascii type -—- ASCII code for the character

)

Description: Draw an ASCII text character at an 8-pixel aligned position given by the
inputs ‘x” and ‘y’. The character is drawn with X and Y sizes given by inputs ‘xsize’ and
‘ysize’. Four constants are provided to describe the size as TEXTSIZES, TEXTSIZE16,
TEXTSIZE24 or TEXTSIZE32. The four enumerated values can be stored in two bits.
The ‘ascii’ input requires eight bits in order to reference the 256 available characters, with
various constants defined using the ASCII standard character map. The text ROM holds

the character masks used within this procedure.

A.1.2.9 Vertical blanking

The VGA controller generates a signal that defines when the raster-scan is within the
vertical blanking period. It forms a 60Hz signal with 45/480 mark/space ratio (45 blanked
lines to 480 drawn lines). This signal is passed into the two vertical blanking procedures to

determine when to synchronise the drawing of items to the screen:
procedure vga wait for vertical blanking (
signal vert_blank : in bit );
Description: Wait for the vertical blanking period to begin.
function vga_vertical blanking (
signal vert blank : in bit) return boolean;
Description: Return whether the raster-scan is currently in the vertical blanking period

(true) or rastering the memory contents (false).

A.1.2.10 Using the interface
Any user design can drive a VGA screen. The requirements for doing this are as follows:

e include references to the constants and interface packages.
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e Add a list of port signals to the user design as given in comments at the top of the
interface package.

o (Call the initialise procedure (as defined in the interface package) passing both the
rendering semaphore ‘render_sem’ and the palette modification semaphore
‘palette_modify_sem’ as parameters.

e (Call any other drawing procedure as required, passing references to the relevant
ports defined at the top of the user code and any other parameters that the drawing

procedures require.

This is illustrated in the following example:

use work.icode ops.all; -- lcode operations
use work.vga_const.all; -— VGA constants
use work.vga_interface.all; -- VGA interface
entity vga_ test is

port (

-— VGA controller interface ports - must be included by user
render sem : inout bit;
render_ack : in bit;
render_ type : out bit;
render xone : out vga_xpos_type;
render xtwo : out vga_xpos_type;
render_ ypos : out vga_ypos_type:;
render_page : out vga_page_type;
raster_page : out vga_page_type;
render _mode : out vga_mode_type;
render_colour : out vga_colour type;
render_backcolour : out vga colour_ type;
render_text_size : out vga_textsize_type;
render_textrom addr : out vga_textrom address_type;
palette modify sem : inout bit;
palette modify ack : in bit;
palette modify addr : out vga_colour_ type;
palette modify val : out vga_rgb_type;
vert_blank : in bit
)i
end;

architecture behave of vga_test is
begin
control process : process
begin
-- initialize the interface to the vga system
vga_initialize(render_sem);
vga_initialize(palette modify sem);

vga_setrasterpage (render_ sem, render_ack, raster_page, PAGEQ);
vga_setrenderpage (render_sem, render_ack, render page, PAGED);
vga_setmode (render_sem, render_ack, render_ mode, MODE_DD BOTH);
vga_setforecolour (render sem, render_ack, render coclour, COL 15);
vga_setbackcolour (render sem, render_ack, render backcolour, COL 0);

-- draw the background using the set colour value

vga_drawrect (render_sem, render_ack, render_type, render xone, render xtwo,
render_ypos, convert_int2bv(0,10), convert int2bv(0,9),
convert_int2bv(639,10), convert int2bv(479,9));

-- draw all characters
for ch in 0 to 255 loop
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49 vga_drawchar (render_ sem, render ack, render_type, render_ xone,
50 render xtwo, render ypos, render text size,
51 render_textrom addr, convert_int2bv(10,7),
52 convert_int2bv(6,6), TEXTSIZE8, TEXTSIZES,
53 convert_int2bv(ch, ASCII_BITS));

54 end loop;

55

56 -— runtime palette modification

57 for pal in 0 to 15 loop

58 vga_setpalette (palette modify sem, palette modify ack,
59 palette modify addr, palette modify val,
60 pal, pal, pal, pal):;

61 end loop;

62

63 -- wait forever

64 loop

65 wait for 100 ns;

66 end loop;

67 end process control process;

68 end behave;

The example shows how to set up the drawing area by drawing a rectangle covering the
entire visible screen area (line 43). This is required as the underlying memory that contains
the raster image powers up with random values contained in each pixel. The example also
shows how to draw all the characters, with each character drawn in the same position (line
49). As the drawing mode is set to directly draw both the foreground and background
colours (line 38), each character will overwrite any previous character image completely.
Finally, the colour palette is modified into a grey-scale (line 58) by looping through all
sixteen colours, changing the values for red, green and blue into the same value as the

colour index.

A.1.2.11 General tips for use

The initialise procedures must be called for each semaphore port. The set defaults

procedure is not required, but can prove useful for setting global start-up parameters.

There are four viewable pages within the frame buffer, the raster page is the one that is
being viewed (raster-scanned onto the VGA screen) and the render page is the page to
which all drawing procedures write. The pages can be the same if only one page is
required. Drawing actions can be hidden if drawn to a non-viewed page, and then viewed

by swapping the raster page onto the previously hidden page.

There are sixteen viewable colours. The foreground colour is the one used in every
drawing procedure. The background colour is only used within the text drawing

procedure, and forms the text character mask zero bits. The zero bits of the text character
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mask are drawn in the background colour only when the mode is set to draw foreground

and background colours.

There are four modes made from a combination of two switches, Direct-draw the
foreground and background colours (MODE_DD_ BOTH), Direct-draw the foreground
colour only (MODE_DD_FORE), XOR the foreground and background colours with the
presently held colours within the frame buffer MODE_XOR_ BOTH) and XOR the
foreground colour only with the frame buffer (MODE XOR FORE). XOR mode is useful

for drawing mouse cursors.

The 16-colour palette holds 12-bit RGB representations (4-bits red, 4-bits green, 4-bits
blue), so there are a possible 4096 shades of colour that can be drawn, with only 16
viewable at any one time. The default palette is set up within the VGA controller by
including packages with differing constant values. The set-palette procedures can be used

at run-time to dynamically update the palette values.

The vertical blanking position is a 60Hz waveform that is true when the raster-scan is not
one of the viewed 480 lines of the actual 525 raster-scan lines. The blanking period is used
for the monitor to make the raster-scan fly back to the top of the screen ready for the next
scan. By waiting for the blanking period to begin, it is possible to perform all the drawing
procedures after this event (within the blanking period) so that the drawing is hidden.
Conversely, the time could be used to swap raster pages, which would mean that tearing (a

feature of changing the raster page midway through rastering) does not occur.

The four drawing procedures provided perform all the write access to the frame buffer. All
except the character drawing take X-positions using the VHDL type ‘vga_xpos_type’, and
Y-positions using the VHDL type ‘vga_ypos_type’ defined in the constants package.
These are defined as constrained bit_vectors of lengths 10 and 9 respectively. They form
the co-ordinate system of 640 by 480 resolution (can actually hold 1024 by 512). The
origin 1s in the top left comer of the screen, with X increasing to the right, and Y

increasing downwards.

The horizontal line drawing procedure is the most efficient and should be used if any
horizontal lines are to be drawn. The rectangle-drawing algorithm should be used for any

vertical lines or upright boxes, giving any two corners to draw the rectangle between. The
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line drawing algorithm should only be used to draw lines of unknown orientation.
Characters can be drawn on 8-pixel boundaries, and consequently their co-ordinates are
stored as 7 and 6 bit wide bit_vectors using the VHDL types ‘vga_text_xpos_type’ and
‘vga_text_ypos_type’. The characters can be drawn with different sizes in both X and Y
co-ordinates. Each character is an 8 by 8 pixel mask that can be stretched to be drawn in 8
(TEXTSIZES), 16 (TEXTSIZE16), 24 (TEXTSIZE24) or 32 (TEXTSIZE32) pixels.
The size information is passed as ‘vga_textsize_type’. The character drawn is given as an

ASCII number (8 bits) defined as ‘ascii_type’.

A.1.3 Original 16-colour controller

This was the first controller produced and has been revised since that time. This section
explains the overall layout of the source code, explaining what each concurrent process
does. It will not go into great detail of the source code. The controller is written to control
the underlying DRAM memory [95]. The data path width is 32-bits, which allows 8 pixels

to be accessed within one memory read/write.
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Figure A.5 DRAM-based VGA controller process communication

The user interface links to the ports provided by the user and driven by the interface
package procedures. It controls the low level rendering system. This is the process that
draws horizontal lines and text masked horizontal lines. The process itself is written in
such a way to re-use the fundamental algorithm, but with slight changes for the two
different drawing styles. Read-modify-write access is given, as the XOR mode, text
drawing and line ends require that the present memory value is masked or used in some

way in the new value to place into the same memory location.
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The rendering process interfaces directly to the memory controller, which provides a port
into the external single-port DRAM. The port provided is a read-modify-write port, with
page mode access provided. The memory controller also provides another port for the
raster FIFO buffer. This port has fast page mode read access. The process itself generates
all the timing signals necessary to drive the external DRAM. Alternatives to the single-
port DRAM, optimised for video applications exist [115], but are not used here.

As DRAM requires constant refreshing, a refresh timer is provided within a separate
process that tells the memory controller to perform a refresh action. The refresh actions are
buffered so a constant refreshing rate is guaranteed. Refreshing has the highest priority of

any action on the memory but will not stop any other type of access once started.

The raster FIFO buffer is provided to increase the maximum data throughput bandwidth,
as the memory controller has an associated latency. It also allows the use of fast page
mode accesses within the memory controller. It stores 16 data words, each of which holds
8 pixels, so the FIFO holds 128 pixels at a time. The buffer is told to fill up with
information when it goes below a certain threshold and is told to stop filling, when it
becomes full. In this way, raster access takes only 1/3 of the available memory access time

in large memory access bursts.

The sync and raster process 1s written in such a way that it can be optimised down to one
control cycle. This is achieved with no read-after-write accesses of any local variables
(those that are not optimised out), instead generating a pipelined data flow stream with the
use of write-after-read accesses. It generates the VSYNC, HSYNC, blanking, vertical
blanking and RGB output signals to feed the monitor and DAC. The clock frequency
defines the dot-clock (25 MHz = 1 pixel output every 40 ns). This means that eight pixels

(4 bits each) in one internal data-word (32 bits) are read every eight clock-cycles.

A.1.4 XESS 16-colour controller

The second controller took the first controller as a template and was re-designed to use a
RAMDAC for the output stage (no internal palette lookup), and give an SRAM interface
to the same amount of data space, but with a reduced data path width of 16-bits. The

controller layout is shown in Figure A.6.
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The low level rendering system and raster FIFO buffer are exactly the same as the DRAM
version. The refresh timer process has been removed due to SRAM not requiring
refreshes. An extra palette modification and RAMDAC setup process has been added to
drive the data bus of the RAMDAC used on the XESS board.
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Low level Memory Interface
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User Interface

Palette
control
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RAMDAC
Interface
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Figure A.6 SRAM-based VGA controller process communication

The sync and rastering process has changed in terms of not requiring internal palette
lookup due to the external palette as part of the RAMDAC, but remains largely the same,

outputting the palette index instead of the resolved RGB colour value.

The major change is to the memory controller, due to the use of SRAM instead of DRAM,
but also due to the reduced data path width and increased address count. Internally,
everything in the VGA controller still uses a 32-bit data path width, so the memory
controller now has to perform 2 reads / writes for every data word. This is the source of

inefficiency in the memory access method.

A.1.5 XESS 256-colour interface

This section describes how to use the 256-colour VGA controller, or more importantly,
how to interface to the controller. This version has no rendering capabilities. Instead, two
frame buffer direct memory interfaces are provided. There are two interface ports for the

initial use of the 256-colour version.

The version of the controller that this interface uses can only use the SRAM frame buffer

due to speed considerations.
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There is also an extra output from the controller in this design, indicating when the palette
modification is active. This is due to the shared RAMDAC data bus with the Ethernet 10
signals with the FPGA. When palette modification is required, this extra signal goes high,
which forces the Ethernet drivers to tri-state and enables the data lines to the RAMDAC.

All rendering procedures have been removed for the 8-bit version, leaving only selected

procedures that have any meaning, such as ‘vga_setrasterpage’ or ‘vga_setpalette’.

Only the raster page 1s defined. As no rendering occurs, there is no render page. There are

now only two available pages, due to the increased memory cost of 8-bits per pixel instead

of 4-bits per pixel.

Palette modifications occur in the usual way, by checking the palette modification
semaphore and acknowledge signals, and only performing a modification when allowed.

The procedures are blocking.
Vertical blanking exists for this version and is used in exactly the same way.

Two new procedures are added, which define the only method of reading and writing to
the SRAM frame buffer. They are ‘vga_mem_read’ and ‘vga_mem_write’. The port
passed into these two procedures is one of the two defined for the VGA controller. Each
port has its own semaphore and acknowledge. These two procedures form a direct

memory access port into the framebuffer memory.

A.1.5.1 Using the interface
The requirements for interfacing to the 256-colour VGA screen are as follows:

e Include references to the constants and interface packages.

e Add alist of port signals to the user design as given in comments at the top of the
interface package. Only include as many memory ports as are required. Port 1 has
access priority over port 2.

e (Call the initialise procedure (as defined in the interface package) passing the

memory access semaphore ‘mpl_sem’ and/or ‘mp2_sem’ as parameters.



D.J.D. Milton, 2002 Appendix A: Collateral projects 249

e (Call any other memory access procedure as required, passing references to the
relevant ports defined at the top of the user code and any other parameters that the

procedures require.

The system is set up as a frame buffer that gets rastered to the VGA screen. Call
vga_setrasterpage to setup which page is rastered. The user interface is now a direct
memory interface, so knowledge of the addressing scheme is required for correct access.
The memory data path is 16 bits wide, which contains 2 pixels, horizontally next to each
other. The left-most pixel is contained in bits (15 downto 8) and the right-most pixel is

contained in bits (7 downto 0) of the data path used in the direct memory interface.

The addressing scheme of the 2-pixel word is given in Figure A.7.

9 bits - Y Position (0 to 479) 1 bit [€— 9 bits - X Position (0 to 319)
¢ Page¢ Y
Value 0 = top of screen g Addresses pixel pairs, so actually
Value 479 = bottom of screen (0 to 639) without the LSB
T T+ £ 1 T
bit 18 bit 10 bit9 bit8 bit O

Figure A.7 Pixel addressing scheme for the 256-colour controller

A.1.5.2 Interface types

A number of VHDL types are defined for interfacing with the 256-colour VGA controller.

These types are defined within the constants package and are shown below:

subtype vga_colour_type is bit_vector (COLOUR_BITS-1 downto 0);

subtype vga_red type is bit_vector (RED_BITS-1 downto 0);

subtype vga_green type is bit_vector (GREEN BITS-1 downto 0);

subtype vga_blue type is bit_vector (BLUE_BITS-1 downto 0);

subtype vga_rgb_type is bit_vector (RGB_BITS-1 downto 0);

subtype vga_page_type is bit;

subtype vga_xpos_type is bit vector (XBITS-1 downto 0);

subtype vga ypos_type is bit_vector (YBITS-1 downto 0);

subtype vga_ framebuffer_ address_type is bit_ vector (FRAMEBUFF_ADBITS~1 downto 0);
subtype vga_framebuffer data type is bit_vector (FRAMEBUFF DPBITS-1 downto 0);

A.1.5.3 Interface procedures

This section describes each interface procedure, the port list and use. The procedures are

defined in the interface package.



D.J.D. Milton, 2002 Appendix A: Collateral projects 250

procedure vga initialise ( signal semaphore : out bit );

Description: Called once at startup within the process that is driving the VGA system to

setup the interface semaphores ‘mp/_sem’ and ‘mp2_sem’. Call once per semaphore.

procedure vga_setrasterpage (
-— ports
signal render sem : in bit;
signal render ack : in bit;

signal raster_page : out vga_page_type;

-- user input
page : in vga _page type
)5

Description: Set the viewed page to the ‘page’ input. Page values can be PAGEOQ or
PAGEI.

procedure vga setpalette rgb (
-- ports
signal palette modify sem : inout bit;
signal palette modify ack : in bit;
signal palette modify addr : out vga_colour_type;
signal palette modify val : out vga rgb type;

-— user input

colour : in vga_colour type; -- which colour to adjust
rgb : in vga rgb type -— the new rgb value
)i

Description: Set the palette colour (0 to 255) with RGB (0 to 16777215). The ‘colour’
input says which colour index to adjust the palette of. The ‘rgb’ input gives the 24-bit
concatenated RED & GREEN & BLUE value.

procedure vga_setpalette (
-— ports
signal palette_modify sem : inout bit;

signal palette_modify ack : in bit;
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signal palette modify addr : out vga colour type;
signal palette modify val : out vga_rgb type;

-- user input

colour : in vga colour type; —- which colour to adjust

red : in vga_red type; -- the red component of the palette
green : in vga green type; -- the green component of the palette
blue : in vga blue_ type —-— the blue component of the palette

)7

Description: Set the palette colour (0 to 255) with separate Red, Green and Blue values.
The ‘colour’ input says which colour index to adjust the palette of. The ‘red’, ‘green’ and

‘blue’ values give the palette shade in the 8-bit triple.

procedure vga wait_ for vertical blanking (

signal vert blank : in bit );

Description: Wait for the vertical blanking period to begin.

function vga vertical blanking (

signal vert blank : in bit ) return boolean;

Description: Return whether the raster-scan is currently in the vertical blanking period

(true) or rastering the memory contents (false).

procedure vga mem read (
—-— ports
signal mp sem : inout bit;
signal mp_ack : in bit;
signal mp_rd : out bit;
signal mp_addr : out vga_ framebuffer address_type;

signal mp_data out : in vga_framebuffer data type;

-— user input
address : in vga framebuffer address_type;

data : out vga_framebuffer data type
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Description: The memory read access procedure. Use this with either of the ports into the
frame buffer. The ‘address’ input is the 19-bit address and the ‘data’ output is the 16-bit

result from the read (this contains two 8-bit pixels).

procedure vga mem write (
-~ ports
signal mp sem : inout bit;
signal mp ack : in bit;
signal mp_rd : out bit;
signal mp_addr : out vga_framebuffer address_type;
signal mp data : out vga_ framebuffer data type;

-- user input
address : in vga framebuffer address type:

data : in vga framebuffer data type

)

Description: The memory write access procedure. Use this with either of the ports into the
frame buffer. The ‘address’ input is the 19-bit address and the ‘data’ input 1s the 16-bit

value to be written into the frame buffer (this contains two 8-bit pixels).

A.1.6 XESS 256-colour controller

The VGA controller with 8-bits per pixel is again derived from the original controller. The

final design is able to raster to the screen using only half of the memory access time for

the rastering process.

This level of data bandwidth was achieved with a different method for buffering the raster

data-stream.

Figure A.8 shows the system layout.
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Figure A.8 SRAM-based 8-bit per pixel VGA controller process communication
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The raster buffer is no longer interfaced to via a process. It is now written to by the SRAM
memory controller directly and read from the rastering process directly. It is set-up not as
a dual-port RAM, but as two RAM-arrays - a front/back buffer arrangement. While the
system is rastering from the front buffer, the SRAM controller is filling the back buffer.
This means that no addressing conflicts exist between the two buffers. When the rasterer
reads the last address of the front buffer, the two buffers are swapped over and rastering
now continues from what used to be the back buffer. At this point, the SRAM controller is
triggered to fill up what used to be the front buffer with the next set of raster data.

The SRAM controller is able to read in one word per clock-cycle, which means that it can
read two pixels per clock-cycle. The rasterer outputs one pixel per clock-cycle, so
consequently this allows half of the memory access time to be used for the external user
ports, which perform single accesses on the memory (two pixels at a time). Two user ports

are provided at the request of the initial users of this particular controller.

This version of the palette no longer contains constant values for each colour, due to the
shear number of constants required (256). Instead, a procedure is called to setup the
default palette from within the RAMDAC setup process within the controller. All other
RAMDAC access procedures are now stored within the palette package. The default
palette is grey-scale, as this produces the simplest setup algorithm that gives a unique

colour for each palette index value.
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A.2 Keyboard controller library

The purpose of the keyboard controller is to form an interface with a standard PC

keyboard from any design using MOODS. This forms a powerful direct user input method

for many designs.

The library forms a concurrent component that is inherently timing critical due to the
serial nature of the transmitted data from the keyboard. However, this criticality is
removed if the design is written with the assumption that the keyboard controlier is run at
a greater speed than the serial data that forms its input. This means that behavioural
synthesis becomes more suited to the problem. This is found to be the case in all

demonstrators so far, as the serial data clock is in the order of kHz, and most designs use

at least IMHz as the system clock.

A.2.1 VHDL files

The interfacing method is the same as used in the VGA controller system, with a
concurrent component accessed by interface procedures that drive an external port

attached to the user’s design. The three required VHDL files listed below.

Filename Description

Keyboard_const.vhd Constants package

Keyboard_controller.vhd Concurrent controller component

Keyboard_interface.vhd Interface package to the controller

Table A.10 Files required for the keyboard controlier

The constants package is referenced within the controller component for the scan-code
data type definition and the serial data width constant. The constants package also requires
referencing within the user’s design for the same data types and a number of constant
scancode conversions that make the source VHDL easier to read. The user’s design also
requires a link to the interface package, which contains a number of interface procedures

that can be called to determine whether any key has been pressed.

The controller file contains an entity/architecture pair that completely defines the actions

of the controller. The port list of the controller takes the serial data lines as input and
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drives the interface ports that the interface procedures link into. Note that a standard
keyboard uses a common-collector drive, which enables bi-directional serial data flow
used for keyboard setup, but the controller only implements the receiving of data from the

keyboard. This means that the clock and data lines are taken as inputs only.

As the keyboard inputs are completely asynchronous to any design that uses it, with no
access to the internal clock used by the keyboard itself, the serial data and clock require
extra double buffering to stop the possibility of metastability occurring on the inputs from

feeding into the controller.

The same theory is used between the user’s design and controller design if different

asynchronous clocks are utilised within each subsystem.

A.2.2 Controller

The controller component performs two actions upon the serial data to fully provide

information about the keypresses occurring to the keyboard.

The first action is to translate the incoming serial data into a parallel representation, and
the second is to perform partial translation upon this data to gain information about the
keypresses such as whether the key pressed is an extended character and whether the key

has been pressed or released. The basic control flow can be seen in Figure A.9.

Initialise interface

V)

Serial to parallel conversion
of the serial input data

Translation of the data word
and drive the interface

N

Figure A.9 Keyboard controller design flow
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A.2.2.1 Serial to parallel

The two inputs generated by the keyboard are single signals. The first is a clock signal that
1s used to synchronise the other signal, the serial data line. The keyboard itself also

requires a power supply.

The serial data is assigned on the rising edge of the clock, which means that the data can
be read on the falling edge of the clock. An initial start bit is added to the serial data
stream, which then has a single byte transmitted from the least significant bit to the most
significant bit of the byte. A final stop bit finishes the stream for a single byte. The stream

can be seen in Figure A.10.

data /< LSB X bit 1 X bit 2 ><7bit3 X bit4x bit 5 >< bit 6 XMSB>\ /—

Figure A.10 Keyboard serial data stream

The method used to read this data into internal parallel storage is to shift the data into the
most significant bit of an 8-bit shift register. After the initial start bit, the data is shifted for
8 cycles and then the final stop bit is acknowledged without shifting in the stop data. A

counter is used to count the fixed number of input clock cycles.

A.2.2.2 Translation of meaning

Once the data is stored in an internal byte, the meaning of the data is partially translated.
The keyboard sends a single byte for a key-press or auto-repeated key-press. This single
byte is the scan-code for the particular key being pressed. If a valid scan-code is received,
then the controller drives the interface semaphores to say that a valid key-press has

occurred.

If the data byte is a special character hex ‘F0’, this determines that the next byte to be sent
will be a scan-code value. The meaning of this is that the scan-code sent in the next byte

will indicate that the key has been released, not pressed.
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Another possible special character is hex ‘E0°, which determines that the following scan-
code value will form an extended character. The use of these characters is for double-
purpose keys such as the two sets of arrow keys, so that the same scan-codes can be used
for each key, with finer-grained distinction being available through whether the scan-code
given is from an extended key. If an extended key is released, then both ‘E0’ and ‘F0’ will

be sent before the scan-code value itself.

The final special character is hex ‘EI’, which means that the break key has been pressed.
It is followed directly with seven other bytes that effectively presses and releases a single

extended key. This situation is coped with by counting the bytes after the initial special

character.

A scan-code is only released to the interface once all the precursor bytes have been read

and translated into single bits that are transmitted through the interface so that the interface

procedures can make use of them.

The returned translation of the keyboard data byte stream is illustrated in Table A.11. The
‘SC” item within the table represents a valid scan-code that is not any of the special
characters: ‘FQ’, ‘EQ’ or ‘EI’. The “xx’ item is a don’t-care byte. Each stream becomes a
single communication with the user’s design, returning the scan-code and whether

extended and/or released.

Input stream Scancode | Extended | Released
SC SC False False
FO-SC SC False True
EO-SC SC True False
E0-FO-SC SC True True
E1-XX-XX-XX=XX-XX~XX~XX E1 False False

Table A.11 Keyboard data stream translation

A.2.3 Interface

The interface is defined in terms of interface procedures that the user passes the port
parameters that link directly into the keyboard controller. As well as the relevant port
parameters, the other parameters of the interface procedures will take other controlling

parameters and return the scan-code with any other extra information.
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The interface procedures act upon the interface semaphores and transmitted data to control
the flow of information between designs. The acknowledge to the communication
semaphore requires setting up at the beginning of the user’s design using the dedicated
setup procedure, passing the semaphore signal as a signal to modify. Note that the

keyboard controller is the master of communication and the user’s design is a slave.

The rest of the interface procedures will return the scan-code and whether the key is
extended. Four versions of the procedure call exist that allow the user to call blocking or

non-blocking versions and to either check or specify whether the key has been pressed or

released.

A.2.3.1 Interface types

A single VHDL subtype is created for use when interfacing to the keyboard controller. It

defines the storage required for the scancode and is defined within the constants package.

subtype scancode_type is bit_vector (KEY SCAN BITS-1 downto 0);

A.2.3.2 Interface procedures

This section describes each interface procedure, the port list and use. The procedures are

defined in the interface package.

procedure keybocard setup |

signal kint ack : out bit );

Description: Called once at startup within the process that is accepting keyboard input.

The procedure sets up the interface acknowledge signal ‘kint_ack’.

procedure keybcard getkey wait (
-~ interface
signal kint sem : in bit;
signal kint ack : inout bit;
signal kint released : in bit;
signal kint extended : in bit;

signal kint scancode : in scancode type;
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-- user data

released : out bit;

extended : out bit;

scancode : out scancode_type

):

Description: The procedure will return only when the keyboard data stream is fully

259

decoded. Information about the key pressed is passed by the outputs ‘released’, ‘extended’

and ‘scancode’.

procedure keyboard_getkey nowait (

-—- interface

signal kint_sem : in bit;

signal kint ack : inout bit;

signal kint released : in bit;

signal kint extended : in bit;

signal kint_scancode : in scancode_type;

-- user data

valid

out bit;

released : out bit;

extended : out bit;

scancode : out scancode type

)i

Description: The procedure will return straight away, even if no key-press data is

available. The ‘valid’ output tells the user whether a key has been pressed.

procedure keyboard getkey updown wait (

-- interface

signal kint sem : in bit;

signal kint ack : inout bit;

signal kint released : in bit;

signal kint extended : in bit;

signal kint scancode : in scancode type;

-— user data

released : in bit;

extended : out bit;

scancode : out scancode type
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)y

Description: The procedure will return only when a key action has been decoded that is the

same as the given key-press direction of the ‘released’ input.

procedure keyboard getkey updown nowait |
-- interface
signal kint_sem : in bit;
signal kint ack : inout bit;
signal kint released : in bit;
signal kint extended : in bit;

signal kint_scancode : in scancode type;

~-- user data
released : in bit;
valid : out bit;
extended : out bit;

scancode : out scancode_ type

)y

Description: The procedure will return straight away, even if no key press data is available
(‘valid’ returned as false). The procedure also filters out keyboard actions that do not

comply with the direction of the ‘released’ input by returning the ‘valid’ output as false.



D.J.D. Milton, 2002 Appendix A: Collateral projects 261

A.3 Serial port library

The standard serial port is similar in concept to the data transmitted through the keyboard
controller. The main difference is that a timing clock is not provided. Instead of this, the

serial data stream is generated with a known data rate: the baud rate.

A serial port interface is bi-directional, with two separate data channels for each
directional flow. In fact there are four channels, with the two other channels used for flow
control. The typical configuration though is in null-modem form that just utilises the two

data channels. This is the form of controller that is implemented.

There are now a wide diversity of baud rates that form the standard settings for a serial
interface transmission, ranging from 120 data bits per second up to 256k data bits per
second. These differences are due to the standard serial port protocol surviving through a
large number of technology speed-ups. Any baud rate is supportable within the

implemented controller with simple external constant changes.

The standard data is sent as packets of up to eight bits. One start bit is always required for
data synchronisation; with the possibility for a parity bit for error checking and the stop bit
length can be adjusted. The implemented controller accepts only one protocol, that of one
start bit, eight data bits, no parity bits and one stop bit, which allows full bytes to be

transmitted at any time.

The system is split into two separate halves, one for the transmission of serial data and the
other for receiving of serial data. Only the data receiver is implemented at the present time
with scope built in to the interface to transmit a data stream. This is because the only
system requiring this capability to date is the tracker demonstrator (see Appendix C). The

data transmitter is relatively simple in comparison to the receiver.

A.3.1 VHDL files

The interfacing method is the same as the VGA controller and keyboard controller
systems, with a concurrent component accessed by interface procedures that drive an

external port created within the user’s design. There are four VHDL files listed in Table
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A.12 that implement the whole library. Note that the transmitter controller component is

not currently implemented.

Filename Description
Serialport_const.vhd Constants package
Serialport_interface.vhd Interface package to concurrent controliers

Serialport_receive_controller.vhd | Receiver controller concurrent component

Serialport_transmit_controller.vhd | Transmitter controlier concurrent component

Table A.12 Files required for the serial port interface

The constants package is referenced by the controller components for the data type
definition and the serial data width constant. The constants package also requires
referencing by the user’s design for the same data types and a number of constant values
that define the baud rate for various controller clock speeds. The user’s design also
requires a link to the interface package, which contains a number of interface procedures

that can be called to either transmit or receive serial data.

A.3.2 Receiver controller

The receiver controller is implemented using two concurrent processes that communicate
with each other using internal signals. The first process controls the flow of each bit into
the system, while the other process with which the first communicates acts as a serial bit-

rate timer for synchronisation timing with the incoming data stream.

The timer process takes a constant value that defines the rate of data flow (baud rate) after
the controller clock is taken into account. Exact timing can be produced with careful
VHDL code that is passed through MOODS. This is achieved by the implementation of

the timing process, which has one control state that activates itself continuously.

The timer process can act in one of two modes, either count for a full serial data period, or
count for half that data period. The reason for this is due to the position of reading the
incoming data flow. Synchronisation is achieved by sensing the start bit of the data flow.
Straight after this, the timer is set going to count for half a data period. The timer
communicates with the controlling process to say when this period is over. This means
that control is given back to the controlling process half way into the start data bit. It is at

this point that the data is most likely to be stable.
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The rest of the data bits are then read in one after the other with the intermediate times
counted by the data rate timer that is now set to count for whole data periods. This means
that every bit after the start bit is read in the middle of the data bit. This will only work

when you receive data that has been transmitted at the same baud rate.

Initialise interface, count
and internal counter interface

concurrent

m <« branch

sense start data bit }D \‘
\ Start count or half count

‘ ‘/ when told to via a semaphore
( from the other process
count for half a data period
|nto the centre of the start bit s
T
£ Continue counting until the
2 constant limit is reached
count for 8 full data periods, g
shifting in the serial data after e
each count
N Acknowledge the count has
by finished
count for 1 full data period, ¥
finishing half way through the o

stop bit

Figure A.11 Serial port receiver controller design flow

The conceptual control flow is shown in Figure A.11 above. The right hand flow
represents the data rate timer that is started by the main controlling process represented by
the left hand flow. The controlling process uses the timer in the last three conceptual
states. The first state takes the control flow into the middle of the start bit, which is always
‘1’. The next state loops eight times for each data bit, reading in the data stream into a
shift register. The last state reads for another whole data period, which leaves the
controller reading the middle of the stop bit, which is always ‘0’. As the stop bit is always
‘0’, it is safe to leave the controller reading the middle of that bit. This enables re-
synchronisation with the next data stream that is sensed on the next rising edge of the

incoming data. The serial to parallel data stream reading is shown in Figure A.12.
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Figure A.12 Serial link data stream
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Data is read at the mid-point of each data bit so that the data stream is at its most stable.
Note that the actual data is inverted, so the serial data is fed through an inverter before
being shifted into the shift register that will contain the data byte at the end of the serial

data stream. A single sample is taken with no oversampling.

The timing constant is calculated from a formula that takes the required baud rate (bits per
second) and the system clock rate (Hz) as parameters. The constant value generated is the

value that the counter process needs to count that will represent the period of one data bit.

An exact representation is not necessary due to the re-synchronisation characteristics of

the data stream before every transmitted byte. The formula is shown below.

system _clock \ 1
baudrate

count = min(

A.3.3 Interface

The interface is formed from procedures that access a port into the two controllers. Only
the receiver controller is implemented, but the interface to the transmitter controller exists
within the interface library. The interface is set up using the initialisation procedure
provided. After that, it is simply a case of calling the set of four procedures to transmit and
receive data. Two versions of transmit and receive procedures exist. The first pair are
blocking procedures in that they will only return once the data has been transmitted or
received. The second pair are non-blocking and will return straight away even if no data
has been transferred. A returned bit tells the user whether any data was transmitted or

recelved.

All communication with the controllers is formed using semaphore-acknowledge signal

pairs, with data /O sequenced using the semaphores.
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All communication is un-buffered, which means that a transmission will block over a
number of bytes sent and the receiver has to accept data at the byte-rate or above for the
data not to be corrupted by missing received bytes. The act of buffering the serial port is

left to the user if required. This is indeed what happens within the tracker demonstrator.

A.3.3.1 Interface types

Two VHDL types are defined for interfacing with the serial port controllers. These types
are defined within the constants package and are shown below:

subtype serialport_data_type is bit_vector (SERIALPORT DATA BITS-1 downto 0);
subtype serialport_baudrate_type is bit_vector (SERIALPORT_BAUDRATE_BITS-1 downto 0);

A.3.3.2 Interface procedures

This section describes each interface procedure, the port list and use. The procedures are

defined in the interface package.

procedure serialport initialize (

signal serialport_sem ack : out bit );

Description: Called once at startup within each process that receives or transmits serial
data. The procedure sets up the transmission semaphore ‘serialport trans _sem’ or the

receiver acknowledge signal ‘serialport recv_ack’.

procedure serialport transmit data (
-- interface
signal serialport_trans_sem : inout bit;
signal serialport trans_ack : in bit;

signal serialport trans_data : out serialport data type;

-- user data

dataword : in serialpcrt_data type

)

Description: Transmits a single data word ‘dataword’ through the serial port, blocking the

user’s design until transmission is possible.
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procedure serialport transmit data nonblocking (
~-— interface
signal serialport_trans_sem : inout bit;
signal serialport trans_ack : in bit;

signal serialport_trans_data : out serialport_data_ type;

-—- user data
transmitted : out boolean;

dataword : in serialport data type

) ;

Description: Transmits a single data word ‘dataword’ through the serial port, without

blocking the user’s design. The output ‘transmitted’ tells the user whether the data was

sent.

procedure serialport receive data |
-~ interface
signal serialport recv_sem : in bit;
signal serialport recv_ack : inout bit;

signal serialport recv_data : in serialport_data type;

-- user data

dataword : out serialport data type

) ;

Description: Receive a single data word ‘dataword’ through the serial port, blocking the

user’s design until data is received.

procedure serialport receive_data nonblocking (
-- interface
signal serialport_recv_sem : in bit;
signal serialport recv_ack : inout bit;

signal serialport_recv_data : in serialport_data type;

~— user data
received : out boolean;

dataword : out serialport data type
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Description: Receive a single data word ‘dataword’ through the serial port, without
blocking the user’s design. The output ‘received’ tells the user whether any data is

received.

A.3.4 Serial port pin specification

The serial port standard also includes a number of pin specifications that are shown here.
There are two standard pin specifications for the two different connectors that are used.
These connectors are a 9-pin D-type and a 25-pin D-type connector. The pin-out

specification is shown in Table A.13.

9-Pin 25-Pin Acronym Full-Name Dir | Meaning

3 2 TxD Transmit Data = | Transmit data from port

2 3 RxD Receive Data < | Receives data into port

7 4 RTS Request to send = | RTS/CTS flow control

8 5 CTS Clear to send ¢ | RTS/CTS flow control

6 6 DSR Data set ready < | Incoming data ready

4 20 DTR Data terminal ready => | Outgoing data ready

1 8 DCD (CD) Data carrier detect < | Modem connected to another
9 22 RI Ring indicator & | Telephone line ringing

5 7 GND Signal Ground - Earth

Table A.13 Serial port pin specification
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A.4 Wave viewer

This software project was written with the need to display a set of digital and analogue
waves. Simulation is an essential part of any design flow. Whilst commercial simulators
all obviously have their own display subsystems, the synthesis flow in MOODS goes
through two intermediate forms, ICODE and DDF. Simulation of these is addressed by
other projects, but a common viewer is an extremely useful tool. The wave history file
used in the viewer is a simple text file explained in the next section. The program is

written for a windows-based environment using MFC.

A.4.1 Wave file

The file used to display the events on a number of signals from a digital simulator is
defined here. It contains signal drawing set-up information and the actual history of each
signal. Comments can be added on each line by the delimiter #. Signal types can be
defined by the keyword TYPE and can be based on an enumeration, integer or analogue

value by the keywords ENUM, INT and ANALOGUE respectively.

The definition of an enumeration is used for discrete signals such as the VHDL 'bit' that
can have values ‘0’ and ‘1’. The set-up of an enumeration includes the method of display
for each enumeration value and the initial value. The definition of an integer allows a
wave to have any discrete values within the specified range and also specifies the initial
value. This wave is displayed by value. The definition of an analogue signal allows a wave
to have any floating-point value within the specified range and also requires an initial
value. This signal is displayed as an actual analogue waveform. No interpolation between

values is performed at present.

The starting time is given using the keyword TIME, which also defines the time scale in

terms of a unit s, ms, us, ns, ps or fs.

Signals are defined using the keyword SIGNAL after which the name of the signal is
supplied along with the type of signal that must be one of the previously defined types.
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Vectors of signals can also be defined using the keyword VECTOR after which the name,
type and vector length is supplied. It is planned in future to allow vectors of vectors of any

recursive depth, but this is currently not implemented.

The rest of the file is made from wave history values for each signal. These lines start with
a time value. The next item is the name of the wave that is changing at the specified time
point. Listed after the name is the new value (or values for vector waves). An example

wave file is shown below:

this is the first wave view file
created by Dan on 6/12/98

4 o

TYPE is a data type that you use
for instance bits or std_logic are an Enumerated Type
or a byte is a restricted integer
or a voltage is an analogue signal
implemented types at the moment
TYPE ENUM name numVals Initialval

list of ENUM values with drawing style
TYPE INT name min max Initialval
TYPE ANALOGUE name min max Initialval

B e

# defining type ‘bit’ with 2 enumeration types
# with ‘0’ being the default starting value
TYPE ENUM bit 2 0O

0 LOW BLACK

1 HIGH BLACK

# defining type ‘std logic’ with 9 enumeration types
# with ‘U’ being the default starting value
TYPE ENUM std_logic 9 U

LOW BLACK

HIGH BLACK

BOTH GREEN

BOTH RED

MID BLACK

BOTH BLUE

LOW BLUE

HIGH BLUE

BOTH PURPLE

I mEHsSNNXOe O

# defining type ‘byte’ as an integer range 0 to 255
# with 0 being the starting value
TYPE INT byte 0 255 0

# defining type ‘voltage’ as an analogue floating point
# value with range -1.8 to 7.54 with 0 being the starting value
TYPE ANALOGUE voltage -1.8 7.54 0.0

# Time definition - define start time (float)
# and time scale (s,ms,us,ns,ps,£s)
TIME 0.0 ns

# signal definitions (using types)

# two types of signal : (1) Single, (2) Vector
SIGNAL testl bit

SIGNAL test2 std_logic

SIGNAL test3 byte

SIGNAL testd voltage

VECTOR testb bit 8
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52 VECTOR testé std logic 4

53 VECTOR test7 byte 2
54 VECTOR test8 voltage 2
55

56 # wave history lists
57 1.0 testl 1

58 5.0 testl O

59 6.0 testl 1

60 7.0 testl O

61

62 0.5 test2 U

63 1.5 test2 0

64 2.5 test2 1

65 3.5 test2 X

66 4.5 test2 Z

67 5.5 test2 W

68 6.5 test2 L

69 7.5 test2 H

70 8.5 test2 -

71

72 3.2 test3 128
73 3.8 test3 255
74 4.5 test3 1

75

76 2.1 test4d 0.01
77 2.2 test4 0.5
78 2.3 test4 1.5
79 2.4 testd 2.5
80 2.5 test4 3.5
81 2.6 testd 4.0
82 2.7 testd 4.3
83 2.8 testd 4.6
84 2.9 test4d 4.8
85 3.0 testd 4.9
86 3.1 testd 4.95
87 3.2 testd 5.0
88

89 10 test5 00001111
S0 12.5 test5 01011110
91

92 10 Testb XXXX

93 11 testo ZZ0O0

94 12 testo 1172

95 13 test6 LLHH

96

97 1.0 test7 0 255

98 2.8 test?7 128 254

99 5.6 test7 129 253
100 12.3 test7 129 252
101
102 3.6 test8 0.36 0.0
103 17.3 test8 5.0 0.0
104 34.0 test8 4.3 0.5
105 45.1 test8 5.0 2.5
106 73.0 test8 4.9 4.8
107 80 test8 1.0 5.0
108 ¥ end of file

A.4.2 User interface

The user interface is very simple to use. Open the file created from the simulator and the
initial view will be of the whole wave history. Four buttons at the bottom left of the

window allow the user to zoom in and out in time. The LAST button will zoom to the last
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position shown before a button press. The RANGE button will zoom out to the full history
range and the IN and OUT buttons will zoom in and out. The horizontal scroll bar allows
the user to display a selected time period when zoomed in and the vertical scroll bar
determines which waves are displayed if not enough room exists to display them all. A

screenshot of the program displaying a portion of the file shown above is shown in Figure

A.13 below.
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byte : testd TG TG ]
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Figure A.13 Wave viewer screen shot
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A.5 DDFLink

The DDFLink system was originally written to be a linker for various sub-designs
produced by MOODS. The plan was to build an object capable of holding the entire data
structure that MOODS contains. This object would then be made into a persistent object
with the addition of reading and writing file /O functionality using the DDF file format
that was previously used within the expanded modules section of MOODS and is

generated as one of the last processes in MOODS.

The reason a linker was necessary was due to the methodology of having a separate heap
memory controller that formed the underlying heap management structure for the dynamic
memory allocation. There was also scope for making the linker more general purpose in
that many designs are built from a multitude of concurrent components that require joining

together at the structural level to form a complete design.

This can be seen from the first three sections of this Appendix, where each VHDL project

produces a concurrent component that requires linking into the user’s main design.

The required functionality of the linker is to load in the multiple designs (in internal
MOODS data structure form), perform the linking actions upon the data structures, which
creates a single DDF object from the multiple input DDF objects. Then, the structural
output VHDL is generated directly from the linked DDF object.

However, the full project had to be significantly reduced in scope due to increasing time
pressures. It was felt that a full automatic linker, though desirable, was not an essential

part of the dynamic memory system that is discussed in Chapter 4.

The reduced project now forms the basis for a data structure converter for the MOODS
internal data structures. The complete MOODS data structures can be held within the DDF
object as planned, the object 1s fully persistent and structural VHDL can be generated
directly from this persistent object. DDFLink forms a separate console process that is

executed after each synthesis run of a design.
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The DDFLink project was not written from scratch. It utilised a large section of code that
was written specifically for expanded modules within MOODS. The expanded module
code creates a number of objects that represents a large proportion of the entire MOODS
data structures. It is from this code that the DDF object is based. This code had the
definitions of the internal data structure objects and a nearly complete parser for inputting
those objects from a DDF file. From this basis, a completed object was produced with a
full input parser. The object was then made persistent by writing the output routines from
the object that recreates the DDF file used for input. In this way, if any modifications to
the DDF object occur, the results can be stored back into another (or the same) DDF file.

The object persistence routines that formed the output DDF file were generated from a
rough translation of the actual MOODS internal data structures that are implemented in a

different style of C.

The VHDL output file that forms the translation from the internal DDF object into a
VHDL form that can be parsed by a third party RTL synthesis tool was generated in much
the same way as the object persistence routines, in that a rough translation from the old
output stage of MOODS was made to use the newer DDF object being created for
DDFLink. The VHDL output was then modified to produce a more readable and traceable
version of the output file. This was accomplished by adding more comments and more

importantly, removing a lot of indirection between data path nodes and control nodes.

A.5.1 DDF object

Sections A.5.1.1 to A.5.1.16 contain brief notes on the internal data structures used in
DDFLink. They are intended to be used in conjunction with a source browser and the
MOODS internals documentation [66] and do not stand alone. The data structures mirror

the core structures used within MOODS.

The DDF object is created as a single class with no base class. Within the class, a number
of structures and classes are defined. These define the subcomponents of the DDF object.
These substructures are used internally to hold the entire data structure. A single list
template class is utilised that allows generic doubly linked lists to be created as wrappers

around the various data structures.
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The DDF object is the root container for a full MOODS design. It contains the root lists of
modules, control nodes, control arcs, ICODE instructions, data path nodes, data path nets,

ICODE variables and conditions. It also points to the module that forms the main program.

The sub-objects that are directly and indirectly contained within the DDF object are

explained in the next subsections.

The main links to sub-objects that the DDF object contains are the list of modules and the

program module pointer, the list of data path nodes and the list of conditional signals.

A.5.1.1 Module

A module represents a complete flow of control. This could be a conversion of a single
procedure, or the conversion of the root design, with the various concurrent branches
representing the concurrent processes. The module is identified by a unique ID and by a

string name that represents the original name of the translated procedure or entity name.

Each module contains a list of control nodes that implement the entire control flow for the
module. This is achieved with a single pointer to the starting control node and a list of end
nodes. A single ICODE instruction is used within the module to represent the I/O

parameter list. This is the header instruction used within the ICODE file. A link to a single

conditional signal defines the end signal for the module.

The actual /O parameters of the global design are held in a number of ‘ModPin’

structures.

A.5.1.2 ControlNode

Each control node has a unique ID in the form of an integer. There are also various node
types, which are represented by an enumeration. The probability of the node be active is

also given, which allows power calculations to be made.

The control node structure contains a link back into the module that contains the control
node. There is another link to a module that is only used within a call control node. This

link defines the module to activate on the call.
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The control graph is implemented using the control node and control arc structures. These,
when linked together, form a completely contained graph of control flow. The control
node has a list of input arcs that activate the node, and a list of output arcs that activate the
next node. These links only form the structure of the graph, with control of the flow

performed by other structures.

Each control node has a conditional signal defined that is linked into the implementing
cell. This determines when the node is active. Another conditional signal is defined here

for call nodes. This signal defines the end signal linked into the call control cell.

Each control node will implement a number of ICODE instructions. These are linked to

via a list of ‘Instruction’ structures.

A link to the underlying cell that implements the control node is made via an integer ID

representation of a cell number within the technology dependent library.

A.5.1.3 ControlArc

The control arc structure forms the arc between the control node structures. A single link

to the previous control node and another single link to the next control node are contained

within this structure.

The conditional signal used to determine whether this branch of control flow is taken or
not is contained in the control arc. Each arc also has a unique ID and a probability factor.

The arc also knows whether it is a feedback arc.

A.5.1.4 Instruction

The Instruction structure represents an ICODE instruction. As such, it has a unique
instruction ID and a reference to a group of instructions that define a data dependent flow
of control. The instruction type is contained as a member of the structure, along with the
input and output parameters of the instruction, held in two lists pointing to the ‘InstIO’
structure. Extra parameters dependent on the instruction type are contained in a member
union of data types. A link to a list of data path nodes is contained. The data path nodes
listed performs the actions of the ICODE instruction.
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A link back to the module that contains the instruction is given. This is replicated by the

link within the control node that contains the instruction.

As the instruction has a close resemblance to the original source code, a link back to this
code is given with two links into the ‘file_info’ structure, that reference the source VHDL

file position and the generated ICODE files instruction position.

Once the final stage of MOODS has been performed, a number of extra conditions exist.
Two of these conditions are held in the instruction structure. The first is for general
instructions and determines the exact point at which the instruction is executed. The
second was an addition made for recursion. This instruction is used within recurse call

nodes, and determines the end condition for a particular recurse control cell.

A.5.1.5 InstiO

The ‘InstlO’ structure contains the I/O parameters for every ICODE instruction
represented by the ‘Instruction’ structure. This structure points to either an ICODE
variable (could be a temporary variable) or a constant. If a constant is represented, then the
structure must feed only an input of an ICODE instruction. A variable link is formed from
a direct link to the “Variable’ structure, and a constant is represented by an integer with a

defined base.

A.5.1.6 DataPathNode

The data path node structure is a representation of the linkage to the actual cell that is the
implementation. A link to the underlying cell that implements the data path node is made

via an integer ID representation of a cell number within the technology dependent library.

The instructions that the data path node implements are held within a member list of the

structure. An adder, for instance, could be shared among various add ICODE instructions.

The node has a unique number and type. The width (number of bits) of the data that flows

through the node is also given here.

The data path is formed from the linking of various data path nodes together via an

intermediate data structure, the “DPNet’ structure. These nets form the inputs into the data
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path node and the outputs from it. Multiple nets could be formed each way, so a list of nets
1s used to represent the I/O. Data path nodes represent cells such as registers, adders and
multiplexors. These cells require some form of control. This is formed from a link into the

‘DPControl’ structure with another list of controls per bit of the data path node.

A.5.1.7 DPNet

The ‘DPNet’ structure, or the data path net to give it its full representative name creates
every link between the data path nodes. It does this indirectly through the ‘DPNetPin’
structure. It has a link to the source data path node and the destination data path node
through two links to the ‘DPNetPin’ structure. It also contains a link to a conditional
signal that is used to control multiplexor select control signals. This select signal is
indirectly created from the list of instructions that that are also linked to within the

‘DPNet’ structure.

A.5.1.8 DPNetPin

The reason that the “DPNet’ structure does not link directly to its source and destination
data path nodes is that in certain cases, the link is not to a data path node at all. This is the
reason for the ‘DPNetPin’ structure. It is possible for this structure to link to a data path
node, a conditional signal or a constant. Obviously, the constant can only be the source

part of the ‘DPNet’, as a constant cannot be the destination of a calculation.

The ‘DPNetPin’ structure has a member determining the type of linkage. It also has a
union member that contains the links to the relevant data type. The structure also contains
the active bit-range of the connection, a link to an ICODE variable if the link is found to
drive a data path node with a variable representation and an activation instruction and

condition that tells when the net will be active.

A.5.1.9 DPControl

This structure forms the controlling input to data path nodes. It links to a particular pin of
the data path node and a specified range of the bits controlled within the node. It has a
reference to the ALU pin to access 1n the case of the data path node cell representing a
multi-function node type. It also has a reference to the activating ICODE instruction and

controlling conditional signal. The conditional signal may be null, which means that the
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control input is fed with a constant zero. This situation occurs when particular data path
node control inputs are unused, such as for the ‘Clear’ and ‘Sez’ inputs of most generated

register nodes.

A.5.1.10 Variable

The “Varable’ structure references an ICODE variable that has been maintained through
the optimisation process. The reason for this structure is so that the generated VHDL files

that are created from the data structures have some form of correlation with the inputted

design.

Each variable has a unique ID and is of known type. The variable has a name that is
representative of the original variable name that flows through from the compiler. The
variable also has known width and knows from which module it is created. A link back to

original source code and the representative ICODE file positions are gained from two links

to the ‘file_info’ structure.

A data path node in the generated structures represents a variable, so a direct link to the
relevant node is contained within the structure. A number of extra parameters are also
stored, dependent on the variable type. If the variable is an alias then a link to the parent
variable is given, along with the bit-range of the parent variable that it aliases. If the
variable is representative of a ROM, then an extra link is made into the ROM constant data
that is used directly within the outputted VHDL file. This link is to the ‘const_node’
structure. The variable could be representative of an I/O port, in which case a reference of

the relevant ‘ModPin’ structure is formed.

A.5.1.11 Condition

A conditional signal represents a single bit equation. The ‘Condition’ structure is used
throughout the DDF object to represent the linking signals between the control and data
paths and visa versa. The signal has a unique integer identifier and a reference to a
containing net. The actual Boolean equation is formed from the ‘BoolEqn’ class object,

which 1s linked to within the ‘Condition’ structure.
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A.5.1.12 BoolEqgn

The Boolean equation structure is created from an internal binary tree representation. Each
binary node of the tree can represent an equation operator. The operators allowed are
‘AND’, ‘OR’, “XOR’ and ‘NOT". The structure of the binary tree represents the hierarchy
within the equation. The source of the signals that the equation operates upon can be from
many sources. The sources allowed are an ICODE variable, a control node active signal,

another conditional equation or a constant.

A.5.1.13 Const_node

This small structure 1s used to contain a single ROM value. Generating a number of these

structures, and filling the contents with the ICODE ROM values create the full ROM.

A.5.1.14 ModPin

This small structure contains information about the module I/O lists. Both the width of the
port and the link to the representative variable is contained, along with a pin number of the

data path node that represents the modules I/O parameters.

A.5.1.15 CaseSelect

The ‘CaseSelect’ structure is used within the ICODE instruction when the multiple
alternative control flow is created with the use of the ‘SWITCHON’ or ‘DECODE’
instructions. The ICODE instruction contains a list of these structures with the number of

items in the list dependent on the number of alternatives to the ICODE instruction.

The structure contains a constant number that represents each alternative. A constant ‘-1’
represents the default alternative. The structure also contains a link to the conditional
signal that gets activated on the given switch alternative. This effectively means that the

created signal will be formed from a particular output of a decode data path node.

A.5.1.16 File_info

This structure was retrofitted into the variable and instruction structures. It contains a

single reference to a source file position; both line number and column position. The file
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reference is made via an integer index into a map of these indexes with the string

representations of the full path of the filename.

A.5.2 DDF parser

Reading an ASCII representation of the object from a file creates the DDF object. The
structure of the file means that it requires parsing. As with any language, the parser uses a

lexical analyser to read the input data in the form of lexical tokens.

The parser to feed the data structures with the relevant information then uses these tokens.
Two passes of the file are required due to the forward declaration of various objects within
the file. The first pass builds up most of the data structures, but missing most of the links

between the structures. The second pass is used to fill in these links.

The reason a parser is required in the first place is that the ASCII representation is human

readable. It is not wise to manually edit the DDF file unless the user knows exactly how it

represents the underlying object.

The definition of this internal proprietary language is found in Appendix D.

A.5.3 DDF output

The generation of the DDF file is simpler than the reading of the same file. The DDF file
1s generated from the internal data structures in exactly the same form as it was read into

the objects. This means that the objects have file-based persistence.

The definition of the internal proprietary language ‘DDF’ or ‘Design Data Format’ is
found within Appendix D. The file is a direct representation of the data structures. The

output dump was written from scratch using the MOODS DDF dump as a template for the

style of file to be produced.

A.5.4 VHDL output

The DDF class is used to generate the final structural VHDL. It performs this operation in

a near one to one relationship with the underlying data structures. This is because the
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underlying data structures are designed to represent a structural representation of the

behavioural design inputted by the user.

The VHDL output consists of various areas of the file that correspond to the various data
structures within the DDF object. These main areas are the conditional signal equations,
the control graph representation and the data path representation. Between these three
sections, links are made directly between the items created with the declared signals that
are produced within each section. These signals are declared within the single architectural
representation of the entire design. The body of the architecture contains the instantiation
of the control path, data path and conditional equations. The file also contains an entity
declaration that defines the interface to the outside world. This interface is similar to the
initial entity port declarations of the source code, except that clock and reset signals are

added.

The direct translation of the original methods for outputting of the structural VHDL was
only the first stage of creating the new output style of VHDL. The underlying methods for
output stayed the same, yet the code produced is more readable and traceable with the
removal of all indirection between data path nodes in the form of the data path nets.
Whenever a reference to a data path net is found, the link, in the form of the data path net
and data path net pins is traced back to the connecting item, and the signal that forms the

output of that item is used instead.

A number of information comments are now also passed through the system, which tells
the reader of the VHDL file where all the inputs to the data path nodes are derived from,
what the connectivity of the control path signals are and what instructions are executed by
each data path node. Variable names are used where applicable, with shared variable

definitions being defined also.

The underlying conditional equation store was found to be inefficient, so a simple
indirection removal produces links into the condition store that can be derived directly
from the inputs to the condition store. This allows direct linkages through the conditional
equations to be bypassed completely, resulting in more traceable linkage between the

control and data paths.
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The data path nodes are implemented by a component instantiation of a pre-defined
generic component. The width is passed into the component, which defines the size of the
item to be produced. The library that contains these underlying components is optimised
for RTL synthesis. Control nodes are implemented within the same library and in the same
manner. Control nodes correspond to control states in a one to one representation. The
linkage between control nodes are formed from the signals defined for each node and the

conditional signals used to direct the flow of control dependent on the actions of the data

path.

A.5.5 VDF output

While developing the DDF system, a graphical user interface (GUI) was also being
produced. This GUI enables multiple views into the synthesis process to be created. One
of these views is a direct window onto the DDF data structures, displayed in graphical
form. At the time of writing, one main view existed into the internal data structures of
MOODS; that of the module list with contained control graph (nodes and arcs) with

instruction linkages.

The method for input into the GUI is via two methods, the first is by direct transmission
between the concurrent programs via a pipe and the second is via loading a representation
of the DDF object from a file. The VDF file was produced as an alternative to the DDF
representation due to the loading speed of a full parse of the whole DDF file.

The VDF representation contains only the information required about the control graph
and instructions contained within the graph. The file is stored in exactly the same method
as the pipe transmission data, which means that only one pass is required to build up the
full representation within the GUI. The file 1s ASCII based, though a binary version would

be more efficient.

The VDF file is created within the final internal object conversion stage at the same time
as the resultant structural VHDL file is generated. The GUI displays it by loading the DDF
file (which links to the VDF file internally). An example of the displayed graph produced
by the GUI is shown in Figure A.14.
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Figure A.14 Control graph and highlighted control node instructions

The figure shows two modules within the design, the left hand module ‘m1’ being the
main program and the right hand module ‘m12’ a recursive procedure. Nodes ‘c4’ and ‘c6’
are calls to the recursive module ‘m12’ and node ‘c23’ is the only recursive call to the

same module. Node ‘c24’ is highlighted with ‘c27’ being shown as the only node activated

by ‘c24’.

The right hand view pane displays information about the highlighted node ‘c24’. It lists
the next and previous nodes activated through the control arcs and lists the instructions
that are active within the control node. These are ‘124’ and ‘125’ within group 25 and 126’

within group 26. Note the link back into the original source file and the ICODE file for

every instruction.
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A.5.6 Linking DDF objects

The original purpose of the DDFLink program was to link together multiple
representations of designs produced by MOODS stored in DDF format into a single
representation and outputted in a structural VHDL form. The base for this procedure has
been formed with all the file handling and VHDL generation sections completed. The only

task now is to link multiple input files in some way and output the new results.

A number of items are required in order to fully link multiple designs together. These
items are noted from the experiences of linking MOODS designs together manually using
a structural VHDL top-level file representation that contains links to the underlying

MOODS designs as components within the top-level file.

Simply creating a netlist representation of the pin linkages between MOODS designs is
not quite enough; although this would form the input method of describing what
subsystems are linked to other subsystems. Because each subsystem can be driven from a
different clock, buffers are required between each system that synchronise the
transmission signals into the input clock rate of each design. This means that
asynchronous subsystems require double-buffered inputs and systems using clocks derived

from each other can use a single input buffer to remove the unknown timing element on

inputs.

The user makes the decision about clock speeds for the subsystems, but as the initial
source has no explicit reference to the clock inputs of a design, another method of input is
required. This may be performed by synthesis directives or by external clock selection.

The linker may then generate clock dividers between systems automatically.

Another useful extra component used for interfacing to the outside world is the tri-state
buffer. This is heavily used within memory controllers and any design that requires access

to a shared bus. The control of the tri-state direction is made via another output from the

user’s design.



D.J.D. Milton, 2002 Appendix A: Collateral projects 285

A.6 3D graphics

The beginning of the PhD was spent researching into the general area of three-dimensional
graphics [116]. The general research topic was within the area of 3D graphics primitive
rendering. More specifically, the rendering of 3D primitives is best achieved using some
form of hardware acceleration. In particular, research into the possibility of parallelisation
techniques using existing 3D rendering accelerators, such as the Voodoo Graphics chipset
produced by 3DFX (a company based in California) was undertaken. This was partly due
to the vastly decreased cost of commercial rendering chipsets, which had occurred because

of the gaming industry [117], and the availability of high performance PCs.

Historically, the initial use of 3D graphics was mainly with flight simulation. The 3D
graphics subject area was and still is booming with interest, due to the attraction of
submersive 3D games. This means that many people worldwide are researching into the

whole subject area.

A.6.1 Hierarchical rendering engine

While researching into the 3D graphics area, a demonstration rendering-engine was
produced. This software program uses a few ideas from the 3D graphics area to create a
rendering system that takes a hierarchical description of three-dimensional objects within a
world and displays them from any position and direction. The program utilises an

underlying hardware accelerated triangle renderer from 3DFX.

The following will outline some of the software techniques used. The test program renders
a virtual world, which is defined in a hierarchical manner, using an acyclic graph of object
nodes and node transformations. The language used to store the full hierarchy is also

discussed.

A.6.1.1 Composition

The basic rendering unit used within the hardware accelerator is the triangle with texture

mapping and linear colouration changes. Objects can be composed from the base triangle
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primitive. The reason for the use of triangles as the basic drawing primitive is that it

allows a fast rendering algorithm with the benefit that the triangle primitive is planar.

For instance, a rectangle can be composed of two triangles, and a cube can be built from
six squares, and hence twelve triangles. These are very simple objects, but serve as

demonstration.

Figure A.15 Basic primitive composition

For some objects, such as curved surfaces, the composition using triangles will result in an

approximation to the real object.

Figure A.16 Curved primitive composition from approximation

The level of detail used to approximate the real object is in a trade-off between rendering
speed, as it takes longer to render a greater number of triangles due to the extra

calculations involved with dimensional transformation [118].

A.6.1.2 Frustrum

The viewing frustrum defines the volume of a virtual world that is visible within the 2D
representation of the world. In the case of a perspective view on the world, it is composed

of six intersecting planes, where any object contained within the conical box shaped
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volume is displayed. The diagram below shows the frustrum within world space and can

have an arbitrary orientation.

Back

Clipping
Plane

/
/’rﬁe
7 Plahe
BA—(C
] Front
Clipping
View Plane
Paosition

Figure A.17 Frustrum for perspective views

The six planes intersect at the eight points, A to H within Figure A.17. These planes are

called the clipping planes as any object which intersects them has both a part within the

viewing volume and a part outside of the viewing volume, and hence the object requires

clipping before it is drawn. The six planes are defined within Table A.14.

Plane | Defining points Plane Defining points
Front | ABCD Right DCGH
Back | EFGH Top BFGC
Left EFBA Bottom | AEHD

Table A.14 Frustrum view plane definitions

The viewplane as shown in Figure A.17 is a representation of the 2D screen used to view

the 3D volume. It defines the plane relative to the viewing position where any object at the

same distance as the viewing plane from the viewing position will be rendered with no

change in scale due to the perspective transformation, which is introduced in Section

A.6.1.6.
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A.6.1.3 Hierarchical objects

In the representation of a virtual world, the world is made from a graph of object nodes,

with the transition from each node to another representing a relative node transformation.

An object node holds a list of primitive objects (triangles) to render, a list of
transformations of other nodes and a bounding sphere. The bounding sphere is explained
more in the next section, but it is simply a minimal sphere that encompasses the 3D space

taken up by the list of triangle primitives and the list of transformed child nodes.

A node transformation consists of a change in relative position, scaling and orientation of

child nodes from a parent node. A 4 by 4 multiplication matrix can represent this

transformation.

The node-transform structure of the graph allows recursive loops to be formed between the
nodes. If any loops exist, then the rendering pipeline would recurse forever. The program
has set a limit to the depth of the graph arbitrarily to be 100 nodes deep. Any child nodes
after this depth will not be drawn. This means that a loop within the graph could exist, but
it is recommended that the designer of the world does not use loops, as the highly

recursive nature of the program could result in exponential decrease in rendering

performance.

The graph structure allows multiple instances of a node object to exist. This allows great
possibilities for object re-use. For example, in Figure A.18 the top node of a 'Car' may
have four pointers of transformations to a "Wheel' node. The transformations of the four
pointers each give a relative position, scale and orientation of the 'Wheel' node object from
the parent car object node. Another transformation pointer within the 'Car' node may give

information about the rest of the car body.
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Figure A.18 Hierarchical graph world construction

Note that a node does not have to contain any triangle primitives or any child node
transformations. It is usual for the initial parent nodes of the graph to hold nothing but
node transformations. The 'leaves' of the graph hold no transformations, but may contain

triangle primitives to render relative to the transformation path starting from the root node.
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A.6.1.4 Bounding spheres

The application of bounding spheres is in speeding up the rendering of a scene by
performing global culls of large sections of the world graph. Any volume can be used for
this selective cull, but a sphere is an object that requires only one transformation per level

of hierarchy within the object node graph.

Bounding Sphere

Primitives Child Node transformed
Bounding Spheres

Figure A.19 Bounding sphere definition

The sphere is linked to a single node of the object graph. Its volume contains the entire list

of objects and sub-objects of those objects and the drawing primitives themselves.

A calculation is made when the graph is first implemented that determines the minimum

volume of the sphere that holds the entire sub-branch of all child objects and primitives.

The sphere is used when recursively following the world object graph when rendering a
scene. A check is made upon the sphere against the viewing frustrum. If the spheres
volume is found to be completely outside of the viewing frustrum, then none of the objects
within the sphere need be drawn, so the entire branch of the object graph can be omitted

from the rendering system.
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Figure A.20 Bounding sphere check against frustrum

Another alternative occurs when the sphere is completely contained within the viewing
frustrum. In this case, no further clipping calculations of child objects need be applied, as
they are guaranteed to be completely contained within the frustrum, as the sphere that

contains them is completely contained.

If the sphere is intersected by one of the planes of the viewing frustrum then all child
objects require further tests for frustrum intersection individually. The reason these tests

are required is due to the necessity of clipping 3D objects.

A.6.1.5 Clipping

When an object node contains drawing primitives (triangles) that could intersect with the
viewing frustrum, then tests need to be made upon each primitive in order for individual

clipping to occur.

Clipping 1s required so that primitives are not drawn out of the visible screen area that the
world is being viewed from. There are four types of intersections of a triangle with a view

frustrum illustrated in Figure A.21.
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Inside the
Frustrum
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Figure A.21 Primitive intersections with frustrum resulting in clipping

The first case occurs when all three vertices are outside of the frustrum. This means that
the primitive triangle does not require drawing. The second case occurs when one vertex is
contained within the frustrum, but the other two are not. This means that the two
intersection points need calculating and a single triangle drawn using the two new points
and the single point contained within the frustrum. The third case occurs when two
vertices are contained within the frustrum and the third is not. Similarly to the second case,
the two new intersection points are calculated. The resulting object has four vertices
however, so requires splitting into two triangle fragments for the underlying hardware
renderer. The fourth case is when all three vertices are completely contained within the

frustrum. No clipping is required in this case and the triangle is drawn directly.

Note that the test for intersection with every plane of the frustrum is required, which could

result in a number of fragments in extreme cases of triangles intersecting more than one

plane.

A.6.1.6 Depth transformation

After the objects have been rotated, translated, scaled and clipped into the view frustrum
volume, the next stage is to perform a transformation that gives some depth queuing
information into the resultant image. This transformation is the act of transforming the

view frustrum conical volume into a volume with parallel planes.
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This transformation effectively scales the x and y position of a point using the inverse z
position of the same point. This means that the closer an object is to the view position, the
further the transformation will move the x and y positions of the point. This gives a

perspective feel to the resultant image.

3D space — Side view 2D space — Side view
.‘  View plane
A E B
- Transform T

i Te————
’ P Division by Z 1 [2 ‘_‘_1_3 _____
Lo with scaling
= EEN

depth 714 depth

Figure A.22 Depth transformation

After the transformation, the z position is no longer used as part of the positional
information of the point, so the transformation performs a 3D to 2D screen transformation
with respect to the frustrum. This can be seen in Figure A.22. The three lines in the
diagram show their transformed sizes in the 2D space. Note that infinite scaling occurs at
the viewing position. That is why the front clipping plane is needed, so not to produce any

division by zero calculations within this transformation.

A.6.1.7 Rendering pipeline

All of the features discussed so far form part of the rendering pipeline. This is the path that
is taken to draw the entire scene derived from the graph of hierarchical objects. The

- pipeline starts from the root node of the world graph and works through the entire graph
making decisions dependent on the current viewing position, direction and angle (forming

the frustrum). The program flow is seen in Figure A.23.
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Figure A.23 Rendering pipeline

A.6.1.8 Hierarchical language

294

The language used to describe the hierarchical world is written in plain ASCII text. It uses

integer IDs to distinguish between graph node objects. A graph node also contains a name

for information only. The root node is made distinct by having a ‘ROOT” item within the

node definition. Each node can also contain any number of triangles and transformations

of child nodes, referenced by their IDs.
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The user walks around the world using a vehicle, which can have an associated object

graph of its own, so that multiple users could recognise each other within the generated

environment.

Limited animations are allowed within the transformation that are referenced by animation

IDs of the ‘ANIMATE’ object. Animations in scale and rotation are given.

A number of lighting objects can also be created that have global effect upon the world.

These have their own descriptors. All of these features can be seen within the example

description below.

NODE

ID 5

NAME road bend
TRIANGLE

V0=[-5.000 0.000 5.000]

V1=[5.000 0.000 5.000]

V2=[5.000 0.000 -5.000]
CO0=[255.0 255.0 255.0 255.0]
Cl=[255.0 255.0 255.0 255.0]
C2=[255.0 255.0 255.0 255.0]
TEXTURE road3.3df

TO0=[0.0 256.0]
T1=[0.0 0.0]
T2=[256.0 0.0]
TRIANGLE

V0=[-5.000 0.000 5.000]
V1=[5.000 0.000 ~5.000]

V2=[-5.000 0.000 -5.000]
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C0=[255.0 255.0 255.0 255.0]
Cl=[255.0 255.0 255.0 255.0]
C2=[255.0 255.0 255.0 255.0)
TEXTURE road3.3df

T0=[0.0 256.0]
T1=[256.0 0.0]
T2=[256.0 256.0]
TRANSFORM

NODE 17

ANIMATE NONE

POSITION={3.200 0.000 -3.200)

]

RX
RY
RZ
SCALE

i

]

1.000

]

NODE
ROQT
ID 0
NAME RootNode
TRANSFORM

NODE 5
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RX
RY
RZ
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[0.000
[1.000
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fl

[
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MOVE

POSITION=[0.000 1.000 0.000]
N =[0.000 0.000 1.0001]
vUP =[0.000 1.000 0.000]}
SPEED 0.000

PITCH 0.000

ROLL 0.000

YAW 0.000

NODE 4
ANIMATE

ID O

NAME Scale

ACTIVE TRUE
PITCH 0.000

ROLL 0.000
YAW 0.000
SCALEPEAK= [(0.400 0.400 0.400]
SCALEANGLE= [0.452 2.713 2.973]

SCALEANGLERATE=[0.017 0.020 0.052]

LIGHT
ID O

NAME main

DIST 50.0

ORIGIN =[0.000 0.000 0.000]

RX =[1.000 0.000 0.000]

RY =[0.000 1.000 0.000]

RZ =[0.000 0.000 1.000]
ANIMATE=[{0.320 0.000 0.2001
COLOUR =[255.0 255.0 220.0 220.0]

A.6.1.9 Summary

These pages have given a basic introduction to the fundamental viewing frustrum which is
used within most 3D applications, along with the depth transform which gives the one
point perspective appearance. Various aspects of the rendering pipeline within the

software have been introduced, which gives a relatively efficient method of world

database parsing.

Some hardware acceleration considerations have been taken into account in the designing
of the rendering pipeline, such as with the primitive definition of the triangle and the

clipping of these primitives with a method known as "Triangularization'.

A.6.2 Results

The software rendering-pipeline has been implemented within the test program. It is
written using C++. Some screenshots generated from this program can be seen in Figure
A.24 to Figure A.28, which visually show the hierarchical structure of the virtual worlds

created, with repetition of child objects forming more complex parent structures.
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Figure A.25 A second potential group logo
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Figure A.26 A street scene

Figure A.28 A wide angled view of the street scene with fog, light and lens flare
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This appendix contains the paper given at the Forum on Design Languages (FDL)

conference 2000.



D.J.D. Milton, 2002 Appendix B: Paper 300

Dynamic memory allocation in a VHDL behavioural
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Abstract

VHDL is capable of describing the dynamic allocation of memory resources at ‘run-time’.
This paper describes how this concept may be supported in a hardware synthesis
environment. This requires a heap management system to be synthesised and implicitly
accessed from within any user code, supporting the use of the VHDL access type. A
method for controlling the storage of dynamic information (the heap manager) is
reviewed. Issues such as timing and fragmentation are also discussed. An example of a
design synthesised using the methods shown is reviewed last, which demonstrates the

power of the technique.

1. Introduction

Memory allocation has typically been limited to use within the software domain, with no
direct equivalence in the field of hardware synthesis. Hardware synthesis is migrating onto
higher-level behavioural synthesis, with behavioural descriptions of digital designs in
VHDL capable of describing the allocation of memory (variable) resources dynamically at
‘run-time’. This paper describes how this capability is supported in the context of a

behavioural synthesis suite, MOODS, developed at Southampton University [1].

A truly dynamic allocation of storage elements requires that a run-time system exists, with
access to a memory resource (the heap) of a size capable of storing the maximum amount
of information that the user requires. This subsystem is responsible for managing the

memory resource under dynamic access from the user’s behavioural design.

The low-level interface to this run-time system defines the four main accesses, namely

‘allocate a block of memory’, ‘de-allocate a block of memory’, ‘read from a memory
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location’ and ‘write to a memory location’. The VHDL compiler used during synthesis
can then be modified to convert the given abstract behavioural VHDL into low-level calls

to the relevant access procedures of the run-time heap management system [3].

User Source Code System Source Files
SOURCE1 | SOURCE 2 ICODE OPS HEAP
VHDL VHDL MACROQO OPS INTERFACE
\ _
\ /
M?ODS Synthesis System
Library Manager ~al VHDLZIC ol System Control
(modified compiler) iy
Ul
FPGA LIB ¢ ICODE G
P MOODS < > SUBPROCESS
ASIC LIB (Synthesis Core) CONTROL
v _DDE__ |
DDF2VHDL
RTL VHDL Wrapper
v
HEAP MANAGER | | USERS STRUCTURAL
STRUCTURAL VHDL |~ ~ VHDL

Figure 1 MOODS synthesis system overview

Figure 1 shows a system overview incorporating the subsystem necessary to support

dynamic access.
2. Benefits of dynamic allocation

High-level hardware description languages allow the user a rich vocabulary of constructs
to describe a system. Almost inevitably, only a subset of this HDL is synthesizable. The
goal of this research (alongside all other synthesis research at Southampton) is to increase
the size of the synthesizable subset, giving rise to a corresponding increase in the power of

the language subset available to the user.

Using access structures allows the user to form relatively complex data structures such as
linked lists, tree structures and any other structures more normally associated with

software design. This is achieved with the use of an access type (memory pointer)
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referencing a record type (collection of elements), with access types (optionally) contained

as record elements, which may circularly reference the same record type.
3. Dynamic allocation within VHDL

The use of VHDL as the source language for synthesis puts in place various language-
defined constraints when designing with dynamic storage [2,6]. The concept of the access-
type (a memory ‘pointer’) allows a great deal of type checking to be performed, which
reduces the probability of errors within the user code. VHDL does not allow type
conversions involving access types, or having generic access types such as allowed within
C with the use of void™ [5]. Access types must all be defined as variables, which disallows
the transmission of the information stored within these types from one concurrent process
to another. These limitations are all defined for valid reasons, but in practical use, tend to

over-constrain the user’s design.

#1 Shared heap variables not allowed #2 Shared heap variables allowed
User Design RTL RTL VHDL User Design RTL
VHDL HEAP VHDL
MANAGER
Process l #1 Process Single
A A Interface
¥~ Double «~
— Interface :}4—
Process RTL VHDL Process .
B HEAP B RTL VHDL
MANAGER HEAP
# MANAGER

Figure 2 Concurrency support methods

One major aspect of VHDL is its in-built support for concurrency in the form of multiple
processes, within which all sequential code is contained. It is perfectly possible to require
access to the heap from within more than one process, so that the user can utilize the
benefits of concurrency. One method for dynamic memory access in multi-process designs
is to create a heap manager for each process that requires it. This would potentially allow
different heap management systems to exist for each process. However, this would require
extra space (silicon area) for the heap management system and the associated separate

memory block. Another method for concurrent dynamic access is to share the heap
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manager between the processes that access dynamic information, with access of the heap
effectively serialized with the use of mutexes and semaphores and an arbitration process.
This second method also allows pointers to be passed between processes (using shared
variables in VHDL’93, or by designing in a different language such as System-C). Care
must be taken when designing with shared variables, as their use can give differing results
within different simulators. Both methods of concurrent access methods are shown in
figure 2. The second method of the multiplexed heap is the one adopted in the present

system.

4. Heap management

The heap management system is complex, and can form a substantial section of the final
synthesized design (1039 CLBs within a Xilinx XC4062XL FPGA, 45% of the chip).
However, as the compiler knows only how to interface to this system, with no
dependencies on the method of allocation, this allows entirely different heap management
systems to be ‘plugged-in’, with control over this process given to the user via various
compile-time constraints. The user need not know of the complexities involved in the sub-

component. Moreover, the heap manager is a fixed size overhead.

This section describes the heap management algorithm [4], used to support the method of
abstract description taken by the user of the system. The algorithm is relatively simple: it
is highly memory space-efficient and extremely fast. However, it has some drawbacks

because of this simplicity.
4.1 The algorithm

The algorithm requires a large memory space that can be split up into a number of smaller
memory spaces (pages). The size of the page determines the maximum object size that can
be allocated. When the heap is active, each page is used to store objects of one size only,
with the size of the objects and various list pointers stored at the head of the page. A list of
all pages in use is kept within the first page in memory, which is not used for any other
purpose. The active-page table and each page header form a small memory overhead. A

view of the memory map created by this heap manager is shown in figure 3.
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The heap starts out as being initially empty, with a list of free pages being formed by the
first word within each page, and the address of the head of the list being kept within the
manager. The allocation method first looks at the active-page table, which is stored within
the first page of memory and determines whether any page with the required object size is
currently in use with space ready for allocation. If a page exists, then the object is returned
as the next free object in the active page. If the page is full after the allocation, it is
removed from the active page table. If a page with the current object size is not active,
then the free-page list is used to get a new page to begin allocation onto. The page header
is set up with the required object size and inserted onto the active page list, and the object
returned from the first available space within the page. All free-lists are generated within
the main memory space, and therefore each list has zero space-overhead. The only wasted
space is formed when a page 1s full of objects, but there exists unused space due to the
page object size being too large to fit in the unused space. The active-page table uses one

page, and each page has its header, which forms the rest of the space-overhead.

The heap manager is designed with a 32-bit data path. This means that all allocated objects
will need to fit within 32 bits, or be split up into smaller chunks so that they do. The
present compiler does not support single objects with storage requirements of greater than
32 bits. It does support arrays of objects and records of objects, where each sub-object is
still limited to 32 bits. Storage inefficiencies can result from the use of objects that take
less than 32 bits. A method to reduce these inefficiencies is data packing, where the data-
space can be used to a greater degree by packing multiple objects into the 32-bit data
space whenever possible. Various tradeoffs are involved here, involving memory size
usage, the speed of access and the extra cost of synthesized hardware to perform data-path

multiplexing. The present compiler does not support data packing.

4.2 Implementation

For designs specified in VHDL, both signals and variables are mapped onto physical,
hardware registers. (MOODS may optimise some of these out of existence.) For both
FPGA and ASIC targets, these registers will be geometrically scattered throughout the
design. The dynamic memory system cannot map objects onto these static constructs, so a
RAM bank has to be made available to the system. The size of this RAM will directly
affect the internal synthesized address path widths of the user design and the heap
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management system. The heap manager returning a null address, as dictated by the VHDL
standard, communicates run time heap exhaustion. It is left to the designer to handle this

event.
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Figure 3 Heap manager memory space

5. Timing

The VHDL timing model for allocation, de-allocation and de-referencing access types
(reading from or writing to the value stored on the heap) specifies that each access take
zero time. However, it is impossible to meet these timing constraints within physical
hardware due to the current lack of zero-latency, infinite-bandwidth memory. The
behavioural synthesis paradigm embodied within MOODS allows the relaxation of timing
constraints in non-timing critical code sections. This means that the usefulness of dynamic
allocation of memory resources is constrained to these non-timing critical sections, at least
in terms of access latency. This constraint is not as restrictive as it first may seem, and
actually forces the user to use dynamic allocation only within completely behavioural
(high-level, non-timing critical) code. This is not to say that the heap access bandwidth

cannot be changed with the use of a different heap management sub-component.

The underlying use of DRAM forms a major timing issue, where better bandwidth-
performance may be gained from utilizing the fast page mode access and by using faster

DRAM or different styles of DRAM such as EDO or SDRAM. Adding a cache between
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the DRAM controller and the heap manager may give increased latency-driven
performance. A redesign of the heap manager to use multiple blocks of memory for
different management sections, such as by using fast SRAM for the dedicated page-lookup
tables would increase the performance of allocation and de-allocation. This would be very
useful for designs that allocate and de-allocate for a large proportion of their running time.
A method for determining the proportion of time spent using the various accesses can be
found from a form of profiling, which enables the most frequently used access to be

optimized the most over lesser-used accesses.

6. Memory fragmentation

Any system, hardware or software, that supports dynamic allocation and deallocation may
experience fragmentation, which can dramatically reduce its efficiency and effective
capacity. Careful coding can always be employed to reduce or even eliminate the problem,
but the whole point of behavioural synthesis is that the designer can express him/herself in
a manner sympathetic to the nature of the design, without having to worry about the

implementation details.

Inevitably, some form of defragmentation support must be made available, and equally

inevitably, there are tradeoffs:

»  Rearranging the memory contents transparently to the parent process at run time
implies some kind of memory mapping (v_table) with an associated time and space

cost. (The indirection effectively halves the dataflow bandwidth of the heap.)

>  The parent process itself may be delayed (locked out) while the defragmentation
process 1s accessing the physical RAM. (The act of copying memory can also take a
large proportion of time, where the latency for allocation access when de-
fragmentation is required could stop the use of the heap in any code requiring a level

of guaranteed timing.)

»  The defragmentation controller requires silicon area.
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For a given design, a strategic (i.e. human) decision needs to be taken about whether the
defragmentation process 1s invoked manually (i.e. by the high level design) or

automatically (i.e. by the heap manager when it decides it is necessary).
7. Procedural recursion

The capability to create recursive data structures is usually accompanied with the

capability of using procedural recursion to generate and parse these data structures.

Behavioural synthesis disallows recursion as it creates static instances of the procedures’
control mechanism (possibly inlined) and the associated local variables (data path) will

generally be held in statically created registers or RAM-banks.

Procedural recursion requires a dynamic structure in the form of a stack, which holds the

local variables within the procedure, and the return ‘address’ of the control flow.

It is planned for MOODS to support recursion, which will complement the dynamic data

structure support.
8. Exemplar for the memory allocation techniques

An outline description of a physical FPGA-based exemplar for the memory allocation
method described within the paper is given. The example makes use of the dynamic
memory capabilities at the behavioural level and demonstrates some of the benefits of

increasing the scope of the ‘synthesizable subset’ of VHDL.

The design consists of five processes, two of which access the same data set within the

heap by the use of some shared variables for base pointers.

The object of the design is to act as an audio sequencer with a built-in audio sampler. This
setup 1s commonly known as a ‘Tracker’. The overall design uses other synthesised
components such as the keyboard controller, which performs basic serial to parallel
conversion and the VGA rendering system, which drives a standard 640x480 VGA screen

resolution and includes a rudimentary set of hardware implemented rendering functions.
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The tracker design includes two FIFO buffers to keep a constant audio stream flowing
through the system. The main process receives and sends audio data from and to these
buffers. It tries to keep the output buffer as full as possible and the input buffer as empty
as possible, so as not to cause any under/overflow. The main control process is designed to
keep the global audio bandwidth at a rate of 48Ksamples/second. The FIFO buffers take

care of any latency caused by allocation / deallocation from the heap.

The audio /O controller communicates with an external stereo; 16-bit per channel

ADC/DAC chip using this chips serial interface protocol.

Tracker Example VHDL Structure
Audio o KEYBOARD
Out Control CONTROL
Process

(bandwidth
critical)

mam—

Auto
Generated

Shared
variables

Audio I/0
Controller

HEAP
MANAGER

ADC/DAC

VGA

—

Drive VG A
Audio Process RENDERING
In SYSTEM

Figure 4 Physical example of an FPGA-based design using the heap manager

The design uses a completely dynamic data structure that is formed from many different
types of fixed size structures. A general linked list structure is also defined, along with list
object insertion, deletion and iteration procedures. The base pointers of each list which is
viewed by the user in some form is created as a shared variable, so that the main process

and the VGA drive (drawing) process can access the same data structures concurrently.

The system is completely under the control of the user via the keyboard controller, which

directly influences the main control process.

The user is able to record a sample, via the analogue audio input. A sample is created as a

sample record that is inserted into the global list of samples. The sample record contains a
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pointer to a list of sample data blocks that the audio data is written into. The audio data
fills up the sample block at the audio data rate. Once the block is full, a new block of data
is allocated and added to the end of the sample block list, and data written into this new
block. This continues until the user stops recording the sample. A single contiguous block
of data cannot be allocated for the whole sample due to the unknown size of the data array

at the time of allocation.

The sequencer section contains two global lists. The first list holds sequence blocks, which
have a variable-time length, and themselves contain a list of sequence items, which can be
placed at any time point, on any output track. These sequence items determine when
particular samples are played and at what frequency they are played back (to form
different notes). The user has a choice of eight output tracks on which to play a sample,
which means that the system can play up to eight samples simultaneously, digitally mixed

together.

The second global list is the playlist of sequence blocks, which forms a list (in playback

order) of pointers to the sequence block items within the sequence block list.

The VGA process (or drawing process) has access to the base pointers of the three global
lists and draws the selected items under control of the main process. Care is taken not to

allow list modification while iteration of the list is occurring within the drawing process.
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Figure 5 Tracker User Interface

This design took one month to create, simulate and physically build, which demonstrates
the power of behavioural synthesis, along with the ease of use of the dynamic data types

and abstract structures.
Figure 5 shows a screenshot of the user interface to the tracker in action.

Figure 6 shows a screenshot of the heap manager monitor, that shows which pages are free
/ partially full / full, and which pages are currently being accessed. The example heap
manager uses 4 Mbytes of DRAM and splits this into 255 usable pages that each hold up
to 16Kbytes (4 Kwords).
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Figure 6 Heap manager monitor
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Appendix C

Demonstrators in detail

This appendix gives implementation details of a number of demonstrators that were
produced to illustrate the capabilities of the MOODS synthesis system. Section C.1
describes an audio processor system that uses DRAM memory for sample storage. Section
C.2 gives specific information about the general purpose PCB with the VGA output port
described within Chapter 6, Section 6.1.1. The connectivity of the motherboard described
within Chapter 6, Section 6.1.3.1 is given in Section C.3. The serial interface design that
drives the VGA controller system within the two core demonstrators is explained within
Section C.4 and the implementation of the heap management system used within the same
system is described within Section C.5. The tracker demonstrator core is described within

Section C.6, followed by an explanation of the expression evaluator core in Section C.7.

C.1 Echo demo

This design was developed concurrently with the VGA controller system to test the
memory controller timing and PCB manufacturing software. The initial version of this
design used a general-purpose wire-wrapped FPGA test-board, but migrated to a full PCB
stand-alone system as it turned out to be a reasonable demonstrator of the capabilities of

MOODS. It is usually referred to as 'the talking widget'.

The original design was written with the aim of producing only one effect, the effect being
an echo chamber. It had only 64K of 4-bit DRAM (32Kbyte) that allowed an audio echo
with a maximum period of one second. The memory was upgraded to 1Mbyte when the
PCB was designed. This memory size is readily available from one 30-pin SIMM and

allows a maximum echo period of 26 seconds.
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The purpose of the design changed once the relatively simple echo chamber had been
proven to work on the test board, as it was found that a larger design could fit within the
FPGA that was currently being used. As well as the echo chamber, two further effects
were added to the design. The first is a pitch-shift effect and the second is a phasing effect.

The system is very simple to use, with only three push-switches and two variable-gain
potentiometers. The first variable resistor controls the analogue audio input level into the
ADC. The second controls the analogue audio feedback that is fed from the DAC output
and mixed with the audio input that is fed into the ADC.

The first push-button controls the mode of operation. There are four modes of operation,
which are indicated by the two LEDs next to the mode button. Mode 0 (both LEDs off)
indicates that the audio signal is passed directly through the digital system with minimal
delay. Mode 1 (bottom LED on) indicates that the processor is acting as an echo chamber.
The level of analogue feedback and the delay period determines the rate at which the echo
decays. Mode 2 (top LED on) indicates that the processor is shifting the pitch of the audio
input and Mode 3 (both LEDs on) indicates that the processor is producing a continuously

variable delay function (phasing using analogue feedback).

The two other buttons are used for the adjustment of the effect attributes, one button for up
and the other for down. Each effect has one variable attribute that allows different sounds
to be produced for each effect. The variable attribute for the echo effect is the delay. The

pitch shift variable is the output rate and the phasing variable is the rate of change of

delay.

The design is implemented using a 6MHz clock, from which a 1MHz clock is derived.
This is for use by the ADC. The sample rate of 46.9 kHz is also derived from the system
clock by a binary division of 128. The ADC (ZN427E-8) and DAC (DACO0800) used are
both 8-bit devices. The FPGA that forms the system designed with MOODS is the
XILINX Spartan XCS10 in the PC84 package. The memory can be any 30-pin 1Mbyte
SIMM.

This section details the implementation of the system, including the analogue and digital
data paths, the methods that produce the three effects, the internal FPGA design methods

including the memory controller and the design of the PCB for local construction.
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C.1.1 Analogue data path

The design is a digital signal processing system. It has an analogue input and an analogue
output with some analogue amplification, buffering and feedback. A block-diagram of the

overall system is shown within Figure C.1.

Control Display
Buttons LEDS
Adjustable
Input | £ Amp || Mixer | | ADC | | FPGA | | paC | Buffer | Output
4 T v

Control Adjustable

Clock Gain
Analogue Feedback [

Figure C.1 Effects system dataflow diagram

The system is composed from the core digital system within the FPGA to the ancillary
analogue conversion components that convert the audio signal into and from a sampled
digital form. The main audio feedback path that is useful for producing the phasing effect

is via the analogue path shown on the diagram.

C.1.2 Effect methods

This section describes the methods used to generate each of the effects found within the

digital signal processing design.

C.1.2.1 Echo effect

Delaying the audio signal with an amount of time that can be varied produces the echo
effect. The echo period can be varied from a few milliseconds to up to 26 seconds. Using
the DRAM as a FIFO buffer, where the audio data is inserted at the same rate that it is
removed from the memory, produces the delay. Varying the size of the FIFO buffer
enables the delay to be changed.
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The FIFO-buffer only needs to store one memory address that contains both the start and
end points of the FIFO. For every data sample, the memory is read at the present address
with this data being pushed onto the DAC, and then written to with the data just received
from the ADC. The memory data has effectively been replaced by a newer sample. The
address is then incremented ready for the next access. The point at which the address

wraps around to zero gives the delay period.

< Full Address Range >
< FIFO Address Range ~——-—p

N t Sampl Oldest Sampl
ewest Samples est Samples NULL Addresses

A A A

Start Address Current Address FIFO limit End Address

Figure C.2 Echo effect memory mapping

C.1.2.2 Pitch shift effect

The second effect is the pitch shift effect. This effect is generated in a similar manner to
the echo effect in that the data is fed into a rotating buffer. However, the difference is that
the buffer is of fixed length (1k) and the output is generated from a different address from
the input. This effect works by sampling the input data at a fixed rate (46.9kHz) into the
rotational buffer and outputting this data at a different rate. This rate is determined by a

variable attribute.

The buffer always holds 1/46™ of a second worth of samples, giving a minimum frequency
of 46Hz. By outputting the samples at a different rate, the pitch of the audio is changed.
This method produces two unwanted but practically unnoticeable effects. When the output
sample rate is faster than the input sample rate, the first anomaly occurs when the output
sample position catches up with the input sample. When this happens, the next output
sample will effectively be taken from 1/46™ of a second before the present output sample.
This may produce a noticeable jump, or 'click’ on the audio output if the start and end
samples were noticeably different. The same will occur when the output rate is slower than

the input rate, but this time with the jump occurring forward in time by 1/46™ of a second.
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The second anomaly is due to the same procedure for the pitch shift. If the output rate is
much faster than the input rate, then the sampled audio signal will be repeated on the
output as the output catches up with the input and wraps around backwards in time. On the
other hand, when the output rate is much slower than the input rate, some data samples
will be lost. This is due to the input data position catching up with the output data position

and overwriting the data that was written 1/46™ of a second ago that has not yet been

outputted by the system.
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< 1K Used Address Range ~———-—p
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Variable Rata 13-186 kHz Fixed ' e 47kHz NULL Addresses
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Figure C.3 Pitch shift effect memory mapping

This effect turned out to work well with a proportion of analogue feedback. It produces a
phasing-like effect as well as the actual pitch shift. This effect can make speech sound like

‘Pinky and Perky’ down to ‘Darth Vader’.

C.1.2.3 Phasing effect

This effect is generated by continuously shortening then lengthening the FIFO buffer that
contains samples with a short delay period. The rate at which the buffer is expanded and
contracted is adjustable to create various effects. This effect relies on the analogue
feedback to create the interference patterns in the frequency domain that causes the

phasing effect.

The method that produces this effect suffers from excessive 'clicking' when the buffer size
is being contracted. This is due to the input and output sample rates being the same, with
large jumps in time to shorten and expand the delay time. A better method would be to

derive the sample rate from a similar method used in the pitch shift effect.
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C.1.3 Digital design - multiple processes

As this design is very timing-critical, much use is made of multiple communicating
processes. This allows a lot of parallelism and simplifies what would be complex
procedures 1f written with a single thread of code. There are nine processes, each with

their own purpose. These are explained in the further sections.

C.1.3.1 Rate process

This process simply generates two pulses every 128 clock cycles (the audio rate). One
pulses 64 cycles offset from the other pulse. This is used for the read from memory sample
rate generation (output timing) and the write to memory sample rate generation (input

timing).

C.1.3.2 Phase shift process

The phase shift process continuously increments and decrements a value that is used for
the phasing effect. This value determines the present delay of the effect. The rate at which

the value is changed is determined by another value that can be edited by user input.

C.1.3.3 Button process

The button process controls the present state of the system. It forms the interface to the
user. It uses the three button inputs to change various system attributes. The first button
controls the present effect in operation by cycling through each mode on every button
press. The button needs to be pushed and released for every change in mode. The second
and third buttons have similar, but opposite effects. Depending on the present mode
(which effect is in operation), these two buttons increment or decrement a single value that
1s used within each effect. For the direct audio pass through mode, these two buttons have
no effect. For the echo mode, the two buttons increase and decrease the delay of the echo.
For the pitch shift mode, these buttons adjust the relative pitch and for the phasing mode,

the rate of change of phase delay is adjusted.

C.1.3.4 Debounce process

The button process to introduce a time delay that is necessary to remove signal bouncing

from the button input uses the debounce process. It is also used to cet an auto-repeat rate
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for the continuous button pressing of the attribute change buttons within the button

process.

C.1.3.5 Second rate process

This process is used in a similar way to the first rate process in that it generates a
semaphore with a particular time period. However, the frequency for the second
semaphore to be set is adjustable from 23 kHz to 186 kHz. This semaphore is used for the
pitch bend effect as the rate at which the samples are outputted to the DAC. The value that

controls the period 1s set within the button process.

C.1.3.6 ADC clock process

As the ADC used required a maximum clock period of 1 MHz, a division by six of the
system clock was necessary to generate this frequency. This is the sole purpose of this
process. Having six control states for which the ADC clock is set for three and reset for

the other three performs the clock division.

C.1.3.7 ADC control process

A separate process to control the external ADC was required due to the conversion time of
this device approaching the input sample rate. A pipelined approach to the data received
from this input was taken, in that the present value received from the ADC is used as the
input data, and when a memory write is performed with this data, a new ADC conversion

is initiated ready for the next memory write.

C.1.3.8 Control process

The control process performs all the sequencing of the memory accesses, ADC reads and
DAC writes dependent on the present mode of operation. It also generates the correct
memory address for each access and drives the refreshing of the DRAM. It forms the basic
algorithm for each of the effects that are generated.

C.1.3.9 Memory process

The memory process is the main reason for this project to be designed and built. This is

the process that was initially used to test the various access modes and timing attributes of
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the fast page mode DRAM. However, this incarnation only performs CAS before RAS
refreshing and single-byte non-page-mode read and writes. This was all that was required
from this system as memory bandwidth and latency was not such a constraint as for the

VGA controller.

One major flaw that was found with the interpretation of the given timing from the
memory data books was that the address setup time has a minimum of Ons. However, this
does not mean that the address can be set up at the same time as the two address strobes,
/RAS and /CAS. The actual timing requires a small period between the two. This is
achieved by inserting a clock cycle. This turns out not to impose much timing penalty due
to the many other timing constraints that also need to be met. Along with the changes to
the memory timing, the MOODS control graph was utilised as the controller state
machine. With the initial version of the controller using a style of VHDL that forced
MOODS to optimise an entire state machine process into one control state, the produced

design was larger than necessary.

C.1.4 PCB design and production

As this design was relatively simple, a simple two-layer PCB could be used for producing
the demonstration. This allowed the use of the in-house PCB manufacturing facilities that
can produce boards with a minimum track width of 12mil. The same software was used to
produce both this design and the VGA controller general-purpose board. Once the board
was built, it was populated and tested manually. A composite picture showing the tracks

and components from the layout tool is shown within Figure C.4.

One method that was used with this board was to force the routing algorithm to route on
the bottom layer whenever it could and to use the top layer only when it was necessary.
This meant that there were fewer vias to solder, greater testability of the final board, and
only single sided soldering was necessary for every component, which meant that hand

soldering was possible. A picture of the final implementation of the effects processor is

shown in Figure C.5.
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C.2 PCB design

The Printed Circuit Board information shown here relates to the first PCB described
within Chapter 6, Section 6.1.1. The second PCB described within Section 6.1.2 was

designed separately and is described in more detail within [106].

C.2.1 Programming the FPGA

The FPGA device used can be programmed in one of eight modes. An external interface to
the entire programming system is contained within expansion port A, which enables any
of these modes to be utilised. However, the board is designed with one of two modes in

mind. The FPGA requires programming every time that it is powered up.

The first is the slave serial mode, used to program the device from a computer download
cable. This mode is used during development of the digital system and is interfaced by a
limited set of programming pins that can be connected via the external programming
connector, shown within Figure C.6. The meanings of these pins are further explained

within [104].

%DI TCK /PROG DIN DONE CCLK GND VCC (5V)
& & & 6 0 6 6|0
DO ™S bouTt DONE HDC LDC /ANIT
@ ® ® O

Figure C.6 External programming connector

The second supported mode is the master parallel (up) mode that 1s used when a design

has been settled upon. An onboard ROM that is capable of storing a single configuration

supports this mode.

The mode selection is made via a set of DIP-switches that pull the FPGA’s mode selection
pins low. The mode selection pins are also accessible from expansion port A. The DIP-
switch positions for both supported modes are shown within Figure C.7. Note that only

three of the four switched are connected.
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switch knob

/N

1=off » <
O0=on l
NC MO M1 M2 NC MO M1 M2
a) slave serial b) master parallel (up)

top of
board

Figure C.7 Programming mode DIP switch settings

C.2.2 FPGA pin-out

The pin constraints listed within Section C.2.3 reference FPGA pad names of the PG475

package whose bottom-view layout is shown within Figure C.8.
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PG475 BOTTOM VIEW

Figure C.8 FPGA package used by the PCB
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All ancillary components designed into the PCB are connected to the core FPGA. The

connections between the FPGA pins and component pins are listed in the tables below. A

few connections are shared between the onboard components and the external connectors.

These do not restrict the use of any component on the board unless connected externally.

Clock pin FPGA pin Comment
Clock 1 F38 GCK2, 25 MHz, Shared with expansion port A, B11
Clock 2 J37 GCK3, Shared with expansion port A, B12

Table C.1 Clock pin constraints
Keyboard pin FPGA pin Comment
Clock AN1 Common collector /O (mainly input)
Data AN3 Common collector /O (mainly input)

Table C.2 Keyboard pin constraints

Mouse pin FPGA pin Comment
Clock AM4 Common collector 1/O (pull-down only)
Data ANS Common collector I/O (pull-down only)

Table C.3 Mouse pin constraints
Serial port pin FPGA pin Comment
R1 AP2 Serial Data Receive (RxD)
T1 AW3 Serial Data Transmit (TxD)

shared with PA1 program address
R2 AR1 Clear to send (CTS)
T2 AT8 Request to send (RTS)
Table C.4 Serial port pin constraints

Text ROM pin FPGA pin Comment
Address 0 F24 Least significant address bit
Address 1 B24
Address 2 D26
Address 3 G27
Address 4 B28
Address 5 B32
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Text ROM pin FPGA pin Comment

Address 6 B34

Address 7 C37

Address 8 C33

Address 9 C31

Address 10 C29 Most significant address (11 bits = 2K)
Data 0 F22 Least significant data bit
Data 1 Cc21

Data 2 D20

Data 3 E19

Data 4 F20

Data 5 D22

Data 6 G23

Data 7 G25 Most significant data (8 bits)

Table C.5 Text ROM pin constraints

VGA & DAC pin | FPGA pin Comment

Blanking G9 Composite of Vertical and Horizontal blanking
VSync C15 Vertical Sync signal

HSync A15 Horizontal Sync signal

Blue 7 D14 Most significant bit for Blue colour (8 bits)
Blue 6 B14

Blue 5 A13

Blue 4 A11

Blue 3 B12

Blue 2 C11

Blue 1 D10

Blue 0 B10 Least significant bit for Blue colour
Green7 C9 Most significant bit for Green colour (8 bits)
Green 6 G11

Green § E9

Green 4 F12

Green 3 E11

Green 2 E13

Green 1 D12

Green 0 F14 Least significant bit for Green colour
Red 7 C5 Most significant bit for Red colour (8 bits)
Red 6 A5

Red 5 B6
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VGA & DAC pin | FPGA pin Comment

Red 4 A7

Red 3 E7

Red 2 B8

Red 1 D8

Red 0 A9 Least significant bit for Red colour

Table C.6 Video signal pin constraints

VGA DRAM pin FPGA pin Comment

/RAS BA11 inverted Row Address Strobe
/CAS AY10 inverted Column Address Strobe
/WE AW11 inverted Write Enable signal
Address 0 AV12 Least significant address bit
Address 1 AY12

Address 2 BA13

Address 3 AV1i4

Address 4 AY14

Address 5 AT14

Address 6 AW13

Address 7 AU13

Address 8 AT12 Most significant address, multiplexed 9 bits = 256Kword
Data 0 AT16 Least significant data bit
Data 1 AT18

Data 2 AT24

Data 3 AU23

Data 4 AT2

Data 5 AU3

Data 6 AU9

Data 7 AT4

Data 8 AU17

Data 9 AV18

Data 10 AV20

Data 11 AU19

Data 12 AV2

Data 13 AV4

Data 14 AV10

Data 15 AU11

Data 16 AV16

Data 17 AW17
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VGA DRAM pin FPGA pin Comment

Data 18 AW19

Data 19 AY18

Data 20 AW1

Data 21 AW5

Data 22 AW9

Data 23 AY8

Data 24 BA15

Data 25 BA19

Data 26 BA23

Data 27 AY20

Data 28 AY4

Data 29 BA5

Data 30 BA9

Data 31 BA7 Most significant data (32 bits)
Table C.7 Frame buffer DRAM pin constraints

DRAM 0 pin FPGA pin Comment

/RAS AL3 Inverted Row Address Strobe

/CAS B4 Inverted Column Address Strobe

/WE AG3 Inverted Write Enable signal

Address 0 H6 Least significant address bit

Address 1 J5

Address 2 L7

Address 3 M6

Address 4 P4

Address 5 R7

Address 6 V6

Address 7 T4

Address 8 AB6

Address 9 AF6

Address 10 AC3 Most significant address, multiplexed 11 bits = 4Mword

Data 0 G5 Least significant data bit

Data 1 K6

Data 2 N3

Data 3 T6

Data 4 AK6

Data 5 AG5

Data 6 AK4
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DRAM 0 pin FPGA pin Comment

Data 7 AL5

Data 8 F4

Data 9 K4

Data 10 N1

Data 11 R5

Data 12 Y6

Data 13 AF4

Data 14 AJS

Data 15 AJ3 Most significant data (16 bits)

Table C.8 General purpose DRAM bank 0 pin constraints

DRAM 1 pin FPGA pin Comment

/RAS AM2 Inverted Row Address Strobe
/CAS C3 inverted Column Address Strobe
/WE AG1 inverted Write Enable signal
Address 0 H4 Least significant address bit
Address 1 J3

Address 2 L5

Address 3 L3

Address 4 N5

Address § P2

Address 6 u7

Address 7 U3

Address 8 AB2

Address 9 ACS

Address 10 AC1 Most significant address, multiplexed 11 bits = 4Mword
Data 0 F2 Least significant data bit
Data 1 K2

Data 2 M4

Data 3 R3

Data 4 W5

Data 5 AE5

Data 6 AH4

Data7 AK2

Data 8 E1

Data 9 J1

Data 10 M2

Data 11 R1
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DRAM 1 pin FPGA pin Comment

Data 12 W3

Data 13 AE3

Data 14 AH2

Data 15 AJ1 Most significant data (16 bits)

Table C.9 General purpose DRAM bank 1 pin constraints

Expansion A pin | FPGA pin Comment
A1 AR7 PAQ, /WS
A2 AW3 PA1, GCK?7, shared with Serial port RS232 T1
A3 AU PA2, CS1
A4 AMS PA3

A5 ADG6 PA4

A6 AD4 PA5

A7 AB4 PAS

A8 AA3 PA7

A9 Y2 PA8

A10 Y4 PA9

A11 V2 PA10

A12 V4 PA11

A13 H2 PA12

A14 G1 PA13

A15 E3 PA14

A16 ES5 PA15, GCK8
A17 G7 PA16, GCK1
A18 D4 PA17

A19 us PA18

A20 W1 PA19

A21 ACT7 PA20
A22 AD2 PA21

A23 AUS PDO, DIN
A24 AV8 PD1

A25 AW15 PD2

A26 AW21 PD3

A27 AY22 PD4

A28 BA29 PD5

A29 AV34 PD6

A30 AU35 PD7

A31 AN35 /PROG
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Expansion A pin | FPGA pin Comment

A32 AR35 DONE

B1 E35 MO

B2 A39 M1

B3 G33 M2

B4 AV6 DOUT, GCK6

B5 Y38 /INIT

B6 C41 LDC

B7 G35 HDC

B8 AR5 CCLK

B9 AY6 RDY, /BUSY, /RCLK
B10 AY28 /CS0

B11 F38 GCK2, shared with Clock 1 (25 MHz)
B12 J37 GCK3, shared with Clock 2
B13 AU39 GCK4

B14 AV38 GCK5

B15 AN7 TDO

B16 D6 TDI

B17 F8 TCK

B18 C13 TMS

B19 BA21 /RS

B20 A29 General purpose 1/O
B21 D30 General purpose /O
B22 E31 General purpose /0
B23 E33 General purpose 1/O
B24 D34 General purpose 1/O
B25 B36 General purpose I/O
B26 B38 General purpose l/O
B27 C39 General purpose /O
B28 E41 General purpose /O
B29 G41 General purpose 1/O
B30 H40 General purpose l/O
B31 Ja1 General purpose /O
B32 K40 General purpose 1/O
c1 D16 General purpose I/O
C2 N/C

C3 c17 General purpose 1/O
Cc4 D18 General purpose 1/O
C5 B18 General purpose 1/O
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Expansion A pin | FPGA pin Comment

Ccé C19 General purpose I/O
c7 A19 General purpose 1/0
cs8 B20 General purpose 1/0
c9 A21 General purpose I/0O
Cc10 B22 General purpose I/O
c11 E23 General purpose 1/O
c12 C23 General purpose 1/O
Cc13 A23 General purpose /0O
C14 D24 General purpose /O
c15 N/C

Cc16 C25 General purpose 1/0
c17 c27 General purpose 1/O
c18 A27 General purpose /O
c19 D28 General purpose |/O
Cc20 E29 General purpose 1/O
c21 B30 General purpose 1/O
c22 N/C

c23 A33 General purpose /O
C24 A35 General purpose 1/O
C25 D36 General purpose 1/O
C26 N/C

ca27 D40 General purpose |/O
c28 F40 General purpose /O
c29 N/C

C30 H38 General purpose 1/O
Cc31 J39 General purpose 1/O
c32 K38 General purpose /O

Table C.10 Expansion port A pin constraints

Expansion B pin | FPGA pin Comment

A1 L39 General purpose I/0
A2 M40 General purpose I/0
A3 N41 General purpose 1/O
A4 P40 General purpose I/O
A5 R41 General purpose 1/0
A6 U39 General purpose 1/O
A7 V40 General purpose /O
A8 W41 General purpose 1/0
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Expansion B pin | FPGA pin Comment

A9 Y40 General purpose l/O
A10 AB40 General purpose l/O
A11 AC41 General purpose /O
A12 AD40 General purpose /O
A13 AF38 General purpose 1/O
A14 AG41 General purpose /O
A15 AH40 General purpose /O
A16 AJ41 General purpose /O
A17 AK40 General purpose /O
A18 AL39 General purpose 1/O
A19 AM40 General purpose /O
A20 AN41 General purpose /O
A21 AP40 General purpose /O
A22 AT40 General purpose /O
A23 AU41 General purpose /O
A24 BA39 General purpose /O
A25 AY38 General purpose /O
A26 BA37 General purpose /O
A27 AY36 General purpose /O
A28 BA35 General purpose /O
A29 BA33 General purpose /O
A30 AY32 General purpose |/O
A31 BA31 General purpose /O
A32 BA27 General purpose /O
B1 L37 General purpose /O
B2 M38 General purpose /O
B3 N39 General purpose /O
B4 P38 General purpose /O
B5 R39 General purpose /O
B6 T38 General purpose /0
B7 V38 General purpose /O
B8 W39 General purpose /O
B9 AA39 General purpose /O
B10 AB38 General purpose /O
B11 AC39 General purpose /O
B12 AD38 General purpose /O
B13 AF36 General purpose /O
B14 AG39 General purpose /O
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Expansion B pin | FPGA pin Comment

B15 AH38 General purpose l/O
B16 AJ39 General purpose 1/O
B17 AK38 General purpose I/O
B18 AL37 General purpose /O
B19 AN39 General purpose I/0
B20 AP38 General purpose /O
B21 AR41 General purpose /O
B22 AT38 General purpose I/O
B23 AW39 General purpose 1/0O
B24 AY34 General purpose I/0
B25 AW33 General purpose /O
B26 AW31 General purpose 1/O
B27 AY30 General purpose /O
B28 AW29 General purpose I/0
B29 AW27 General purpose 1/0
B30 AW25 General purpose 1/O
B31 AY24 General purpose {/0
B32 AW23 General purpose /O
c1 GND

c2 Unregulated power supply
C3 M36 General purpose /O
C4 N37 General purpose I/O
C5 R37 General purpose [/O
Cé6 us7 General purpose 1/0
c7 V36 General purpose 1/O
c8 w37 General purpose I/O
c9 AB36 General purpose /0
c10 AC37 General purpose /O
c11 AD36 General purpose /O
C12 AE37 General purpose 1/O
Cc13 AE39 General purpose /O
c14 AG37 General purpose /O
C15 AJ37 General purpose /O
C16 AK36 General purpose /O
c17 AM36 General purpose I/O
ci8 AM38 Genera! purpose 1/O
c19 AN37 General purpose /O
C20 AP36 General purpose /O
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Expansion B pin | FPGA pin Comment

c21 AR37 General purpose I/0
Cc22 AV40 General purpose 1/O
C23 AU37 General purpose 1/O
C24 AV36 General purpose i/O
C25 AU33 General purpose 1/O
C26 AV32 General purpose |/O
c27 AU31 General purpose /O
Cc28 AV30 General purpose [/O
Cc29 AV28 General purpose |/O
C30 AV26 General purpose 1/0
c31 AV24 General purpose /O
C32 AV22 General purpose /O

Table C.11 Expansion port B pin constraints

C.2.4 Track layout

An automated routing program was used to connect the pins of each component within the

PCB. The results of this formed the layer masks used to produce the PCB. The PCB is of a

four-layer construction with a ground-plane layer, the power-plane layer (split into the

various regulated power supply ranges) and top and bottom signal routing layers. Figure

C.9 shows a composite reproduction of the masks used for the PCB production.
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Figure C.9 General purpose PCB track layout
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C.3 Demonstrator motherboard

The motherboard used within the demonstration designs was built manually using
soldered wire-wrap wire on a grid-type pad board. It has seven 96-way female connectors
which plug directly into the three FPGA boards (2 connectors each) and the audio board
(single connector). The motherboard is described within Chapter 6, Section 6.1.3.1. The
connecting wires that form the linkage between each system are shown within the
following tables, which each show the pin linkage for each expansion port of each

connecting board.

Table C.12 below contains the wire names for the main system board expansion port B. It

links to the heap manager board, VGA-drive board and audio board.

Pin row

Pin A B C

dir wire name dir wire name dir wire name
1 Bl heap_addr (19) | RESET (GND) GND
2 Bl heap_addr (18) | vga_vert_blank SUPPLY
3 Bl heap_addr (17) O | vga_serial data (11)
4 Bl heap_addr (16) O | vga_serial_data (10)
5 Bl heap_addr (15) O | vga_serial_data (9)
6 Bl heap_addr (14) O | vga_serial_data (8)
7 Bi heap addr (13) O | vga serial_data (7)
8 Bi heap_addr (12) O | vga_serial _data (6)
9 Bl heap_addr (11) O | vga_serial_data (5)
10 | Bl heap_addr (10) O | vga_serial data (4)
11 | Bl heap_addr (9) O | vga serial_data (3)
12 | Bl heap_addr (8) O | vga_serial data (2)
13 | Bl heap_addr (7) O | vga_serial data (1)
14 | Bi heap_addr (6) O | vga_serial_data (0)
15 | BI heap _addr (5)
16 | Bi heap _addr (4) 0 vga serial_sem
17 | Bl heap_addr (3) | vga_serial_ack
18 | BI heap_addr (2)
19 | Bl heap_addr (1)
20 | BI heap _addr (0) 0 heap_sem
21 1 O | heap_size offset(11) | O heap_cont (1)
22 | O | heap size offset(10) | O heap_cont (0)
231 O heap_ size offset (9) | heap_ack
24 { O heap size offset (8) | O | heap addr_in_vaiid | O audio_clk
251 O heap size offset(7) | O | heap data_in valid | O audio_leds (3)
26| O heap size offset (6) @) audio_leds (2)
271 O heap size offset (5) o] audio_leds (1)
281 O heap_size offset (4) 0 audio_leds (0)
29| O heap_size offset (3) | audio_sclk
301 O heap_size offset (2) 0 audio_sdin
31 0 heap size offset (1) l audio_sdout
32| O heap size offset (0) | audio_ssync

Table C.12 Main board expansion port B (top)
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Table C.13 below contains the wire names for the main system board expansion port B. It
links to the heap manager board (data path), contains the synchronisation signals and links
to an external configuration ROM system that enables more than one configuration to be
loaded into the main system. Two EPROMs contain the core designs for both the tracker
and expression evaluator systems. These are held on the motherboard itself, along with the

address decoding logic that selects which ROM to use.

Pin row
Pin A B Cc
dir wire name dir wire name dir wire name

1 0 PAO Bl heap data (31)
2 0 PA1 Bl heap data (30)
3 0] PA2 Bi heap data (29)
4 0 PA3 Bl heap_data (28)
5 O PA4 Bl heap data (27)
6 O PAS Bl heap_data (26)
7 0 PAB Bl heap_data (25)
8 0 PA7 BI heap _data (24)
9 @) PAS8 Bl heap data (23)
10| O PA9 Bl heap data (22)
11 ] O PA10 BI heap data (21)
121 O PA11 Bl heap_data (20)
13| O PA12 I ZERO _BOARD2 Bl heap_data (19)
14 ] O PA13 I ZERO_BOARD3 Bi heap_data (18)
15| O PA14 Bl heap_data (17)
16 { O PA15 Bi heap data (16)
1771 O PA16 BI heap_data (15)
18] O PA17 BI heap data (14)
191 0 PA18 Bl heap data (13)
20| O PA19 0 START Bl heap_data (12)
21| O PA20 Bl heap_data (11)
221 O PA21 Bl heap_data (10)
23 | PDO BI heap data (9)
24 I PD1 Bl heap_data (8)
25 ! PD2 "Bl heap_data (7)
26 I PD3 Bl heap data (6)
27 1 PD4 Bl heap_data (5)
28 ! PD5 Bl heap data (4)
29 | PD6 Bl heap_data (3)
30 ! PD7 Bl heap_data (2)
31 Bl heap_data (1)
32| O DONE Bl heap data (0)

Table C.13 Main board expansion port A (bottom)
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Table C.14 below contains the wire names for the heap manager board expansion port A.
It links the heap control, offset and address signals to the main system board, along with

the system synchronisation signals.

Pin row

Pin A B C

dir wire name dir wire name dir wire name
1 Bl heap_addr (19)
2
3 Bl heap addr (18)
4 Bl heap addr (17)
5 Bl heap addr (16)
6 Bl heap_addr (15)
7 Bl heap_addr (14)
8 BI heap_addr (13)
9 Bl heap_addr (12)
10 Bl heap_addr (11)
11 Bl heap_addr (10)
12 Bl heap _addr (9)
13 0 ZERO Bl heap_addr (8)
14 I START Bl heap addr (7)
15
16 Bl heap_addr (6)
17 Bl heap_addr (5)
18 Bi heap_addr (4)
19 Bl heap_addr (3)
20 | heap _sem Bl heap addr (2)
21 ! heap cont (1) Bl heap addr (1)
22 ! heap_cont (0)
23 0 heap_ack Bl heap_addr (0)
24 | heap_addr_in_valid
25 I heap data_in_valid
26 I heap_size offset (11)
27 ! heap size offset (10) ] heap_size offset (4)
28 I heap_size offset (9) I heap size offset (3)
29 I heap_size offset (8)
30 I heap_size offset (7) I heap_size offset (2)
31 I heap size offset (6) I heap_size offset (1)
32 I heap size offset (5) ! heap_size offset (0)

Table C.14 Heap manager board expansion port A (top)
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Table C.15 below contains the wire names for the heap manager board expansion port B.
It links the heap data signals to the main system board. It also drives two LEDs dependent

on the activity of the heap transmission data and VGA driver activity for debugging

purposes.
Pin row
Pin A B C
dir wire name dir wire name dir wire name
1 Bl heap_data (31) RESET (GND) GND
2 Bl heap_data (30) SUPPLY
3 Bl heap_data (29)
4 Bl heap _data (28)
5 Bl heap data (27)
6 Bl heap data (26)
7 Bi heap data (25)
8 Bi heap_data (24)
9 Bl heap_data (23)
10 | Bl heap data (22)
11 | Bl heap data (21)
12 | Bl heap_data (20)
13 | Bl heap data (19)
14 | Bl heap_data (18)
15 | Bl heap data (17)
16 | Bl heap_data (16)
17 | Bl heap_data (15)
18 | Bl heap data (14)
19 | Bi heap_data (13)
20 | Bl heap_data (12)
21 | BI heap_data (11)
22 ]| Bl heap_data (10)
23 | BI heap data (9)
24 | Bl heap_data (8)
25 | Bl heap_data (7)
26 | BI heap _data (6)
27 | Bl heap_data (5)
28 | Bl heap_data (4)
29 | Bl heap_data (3)
30 | BI heap data (2)
317 | Bl heap data (1) 9] vga_active
32 ] Bl heap data (0) O heap active

Table C.15 Heap manager board expansion port B (bottom)
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Table C.16 below contains the wire names for the VGA drive board expansion port A. It
links all the serially interfaced VGA communication signals and the system

synchronisation signals.

Pin row

Pin A B C

dir wire hame dir wire name dir wire name
1 0] vga_ vert blank
2
3 | vga_serial_data (11)
4 | vga_serial_data (10)
5 i vga_serial_data (9)
6 ! vga_serial data (8)
7 | vga_serial_data (7)
8 ! vga_serial_data (6)
9 I vga_serial_data (5)
10 | vga_serial_data (4
11 ! vga_serial_data (3)
12 ! vga serial data (2)
13 0 ZERO | vga_serial data (1)
14 i START i vga_serial_data (0)
15
16 | vga serial sem
17 9] vga_serial_ack
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Table C.16 VGA drive board expansion port A (top)
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Table C.17 below contains the wire names for the VGA drive board expansion port B. It
exists as a placeholder for the power supply and reset signal (connected to ground). It also

drives two LEDs dependent on the activity of the serial transmission data and VGA driver

activity for debugging purposes.

Pin row
A B C
dir wire name dir wire name dir wire name

RESET (GND) GND
SUPPLY

3
3

OO INO|(GA[WIN|=

31 0 vga active
32 O serial active

Table C.17 VGA drive board expansion port B (bottom)
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Table C.18 below contains the wire names for the audio board connector. The audio board
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was originally designed to connect to expansion port B of the first PCB directly. The

motherboard uses the provided 3.3V regulated power supply to drive all the ‘1’ constants
back into the audio board. The audio serial communication signals link directly to the

main system board. The audio board also contains four LEDs that are directly driven from

the main system board. These are used for debugging purposes.

Pin row

Pin A B C

dir wire name dir wire name dir wire name
1 l audio SMODE (3) “0” GND
2 | audio SMODE (2) “1” SUPPLY
3 ! audio SMODE (1) “0” I audio _clkout
4
5
6
7
8
9
10
11
12
13
14
15 ] O +3.3 Volts (“17)
16
17 ! audio MF8 SFS2 “0”
18 l audic MF7 SFS1*0”
19 | O | <<audio MF6_DI2 >>
20 l audio MF5 DO2 “0”
21 l audio MF4 MA“1”
22 ] audio MF3 F3“0”
23 ! audio MF2 F2“0”
24 l audio MF1 _F1*0”
251 O << audio_Dl1 >>
26 | audio_DO1 “0”
27 | audio_nPDN “1” I audio_leds (3)
28 | audio nRESET “1” I audio_leds (2)
29 | O audio_SDOUT l audio leds (1)
30 I audio SDIN | audio_leds (0)
311 O audio_SSYNC
32} O audio SCLK

The motherboard also contains a provision for two configuration ROMs that drive the

main system board (the other two FPGA boards program themselves directly). The two

Table C.18 Audio Board

ROMs contain the tracker design and the expression evaluator design. The particular

design is selected via a DIP-switch on the motherboard. The address decoding logic for

ROM selection, along with the EPROM connectivity is shown within Figure C.10.
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Address

switch D@J—_ N

EPROM 1 EPROM 2 {

/OE
DONE © /OE j

—] ICS addr addr /ICS
data data
switch = 0 selects EPROM 1
switch = 1 selects EPROM 2 v
Data

Figure C.10 Address decoder logic

The ‘DONE’ signal input is driven from the FPGA, and is low when programming. The
switch input is from the selector DIP-switch. Two signals are generated that drive the
chip-select and output-enable inputs of both EPROMS. This enables the data paths to be
joined directly into a single data path, as only one EPROM will drive its outputs at any
one time. The FPGA reads all 8 data bits in parallel from the programming data lines when
programming. The FPGA also drives the address bus from the programming address lines.
It is only in parallel modes that the addresses are driven and all 8 data input bits are used.
The address counts from zero, up through the full address range required for a full

configuration, controlled by the FPGA, which is master.

C.4 VGA serial interface controller

The serial interface to the VGA controller system was designed to reduce the pin count
required between the user’s design that draws objects and the VGA controller design that
performs the actual drawing actions and displays them on a monitor. It does this by
creating communication instructions that contain differing data dependent on the
preceding instructions. Different actions require different numbers of instructions
dependent on the amount of data that is required. The entire interface requires only 15 bits

for all communications, 12 of which are instruction data bits.
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C.4.1 Interface

Four types of communication are supported, each relating to a different VGA interface

procedure. The procedures supported are a change in foreground drawing colour, a palette

change, the drawing of a rectangle and the drawing of a character. Four interface

procedures are provided for the user to use within a limited version of the VGA interface

procedures. These procedures take the given drawing data from the user’s design and split

the information into a number of instructions. The first instruction contains information

about the type of interface procedure also.

Interface Set foreground
procedure colour Set palette Draw rectangle | Draw character
10 bits 4 4+12 10+9+10+9 7+6+2+2+8
Instruction bits 2 2 2 2
Total bits 6 18 40 27
Instruction 0 type + colour type + colour type + x0 type + x0
Instruction 1 RGB y0 y0 + Xs +ys
Instruction 2 x1 char
Instruction 3 y1

Table C.19 Information contained within serial interface instructions

The number of instructions required for a transmission is dependent upon the number of

bits requiring transmission and the data path width of the semi-serial transmission data.

The instruction data is transmitted within 12 bits, of which 2 bits are used within the initial
instruction to determine the type of transmission. Note that the foreground colour setting is

achieved within a single instruction, as it only requires 6 bits of data.

The limited set of interface procedures requires that the VGA controller system be held in
constant drawing mode within the same pages. The mode chosen for the tracker and the
expression evaluator is a direct-draw of the foreground only (for text), with both

foreground and background pages held as page zero.

C.4.2 Controller

The controller is used to directly connect to the VGA controller system. It is contained
within the same FPGA, where pin limitations are not an issue. It performs the inverse of

the VGA serial interface procedures, by decocing the incoming instruction data.
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The control flow within the decoder is shown within Figure C.11. It effectively reads in an

initial instruction and works out the type of information held within the instruction and

any following instructions.

Initialise interface
Draw "RESET"

v

( get initial instruction 7

and decode type

o

/“

/ set h / et next et next et next
foreground 9 : 9 : 9 .
colour instruction instruction instruction
R/ - v - v - v
R
set palette get next get next
value instruction instruction
- v g v
{ get next draw
instruction character

draw
rectangle

Figure C.11 VGA serial controller control flow

Then a choice of flow is made dependent on the type, which allows a further set of

instructions to be read in. After the correct number of instructions is read, the drawing

action is performed via the VGA interface procedures to the underlying VGA controller

and control returns to the initial point of reading in the next instruction. The controller

design is a slave to the user’s design, which initiates all transmission.
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C.5 Heap manager

The heap management system described within Chapter 4 has been implemented within an
FPGA. It is described using behavioural VHDL and synthesised using MOODS itself. The

memory space controlled by the system is 1Mword, where each word is 32 bits.

During development, various versions of the manager were created, each based upon the
last. The final version used to demonstrate the capabilities of synthesised systems that use
dynamically allocated memory has a real-time VGA display driven by the heap system.
The information displayed is explained within Chapter 6. The information is displayed in

real time with no effect on the speed of allocation or any other communication with the

user’s design.

C.5.1 Code implementation

The system is designed with the use of various concurrent processes. The main heap
management algorithm is implemented within one of these processes. Other processes are
used to control the underlying DRAM, for which a refresh counter takes another process.
The real time VGA drive monitor resides within another process, using a buffered
communication process to form the zero-time-overhead link with the heap management
algorithm process. The heap management algorithm is implemented using a number of

procedures, some of which are used for communication with the other processes within the

design.
USER port
§- Real-time g
= DRAM monitor VGA 2‘
< controlier drive o)
& Core Q
Management
—— process —
Refresh
counter

Figure C.12 Heap manager communicating processes
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C.5.2 DRAM control process

This process is used to sequence the address and data lines to the DRAM memory bank
used to store all heap management and user data. DRAM has a multiplexed address bus
that is controlled by row and column strobe signals (/RAS and /CAS). The direction of
data flow is controlled by a third “write-enable’ signal (/WE). This type of memory also

requires constant refreshing pulses, due to the charged-capacitor method of data storage.

This process controls three interface sequences. The refreshing sequence consists of
driving the /CAS then /RAS signals, then resetting both. This operation is required every
128 cycles using a 12.5MHz clock on average. Each refreshing operation refreshes a
single row of the memory grid. An internal counter within the DRAM controls the selected
row. The two other operations are a single read and write access to any address within the
memory. Both accesses begin by setting the row address on the address bus, driving the
/RAS signal, then setting the column address on the address bus and then driving the /CAS
signal. A memory read is performed by not driving the /WE signal, where the data appears
on the data bus after a small delay from driving the /CAS signal. A memory write is
performed by setting the data on the data bus and driving the /WE signal before the /CAS
signal is driven. All operations return once the /RAS, /CAS and /WE signals are reset.

C.5.3 Refresh timer process

This process simply generates a signal that inverts every 128 clock-cycles. The DRAM
memory controller to initiate a refreshing sequence uses this signal and acknowledges it
via an internal acknowledge variable. It is impossible to miss a refresh inversion due to the
limited time taken by all memory accesses, and the refreshing takes priority over all other

accesses.

C.5.4 Core process

This process performs all the controlling actions for the heap algorithm. It forms the
interface with the user’s design via the heap manager port and interfaces with the DRAM
memory controller for all memory reads and writes of the fixed data space that the
manager is controlling. It also communicates with the display buffer, telling the display

process what to display.
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C.5.4.1 Memory access interface procedures

All memory accesses are made via the two interface procedures defined within the core
process. These communicate with the DRAM controller via a set of internal signals that
hold the address and data busses and the communication semaphores. The internal address
bus holds a full width address. The two operations are a completely dynamic access read
and write of a single data word (32 bits). The controller does not exploit the fast page

mode action of the DRAM.

C.5.4.2 Setup

The initial stages of the algorithm call for the setup of the underlying memory. This

consists of the creation of the free-list of all pages and the null page pointer setup.

The free page list is created by looping through all available pages, from page 255 to page
1. The first word within each page is written with the base address of the previous page
within the loop and the free list base pointer will hold the base pointer of page 1. Each

loop operation requires a single memory write access, totalling 255 writes.

The page pointers held within page zero are all required to point to a null page initially.
This is simply achieved by looping for all words within page zero, writing a null address
into each data word. This also requires only one memory write access per loop iteration,

totalling 4090 writes (the number of valid page sizes).

C.5.4.3 User interface loop

All communication with the user’s design is 1nitiated by that design, with the heap
management system acting as a slave to the master user’s design. Once the heap
management algorithm setup has occurred, the heap manager enters the user interface
loop, in which any of the four actions upon the heap can be entered. The four actions
supported are an allocation of a number of words, the deallocation of a given word block
and the read and write of a single word from within the allocated objects. These are all

explained within Chapter 4.
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C.5.4.4 Heap management procedures

The management algorithm is created from a number of procedures that each perform
specific actions upon the heap data space. They are called from the user design
communications of each type of access. The call graph for each section within the heap

management process is shown with Figure C.13.
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/—> DRAM setup g ; §
set semaphore
1 aliocate oigle 1 get next olgie
/_’ page § § TS page § § ‘_3
free page list L& memory read 1
1 T(ele
/> setup page g HE
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1 allocate Tlg|e
™ object 2158
inc count, check 1211
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free list 111
Management |5 |2 {2 /1> checkpage |z|2|2
process |58 fult 21518
o | & F free, unallocated | 2
setup % o
heap read 1 i ! . TiE|2 )
pys——— ; unlink page L
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heap deallocate [ 2 unlink direct 1 258
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/-y page £1z|8
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Figure C.13 Heap management algorithm call graph
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The DRAM setup procedure simply initiates the communication semaphore used

internally by the DRAM read and write procedures.

Note that each procedure contains a count of the number of memory read and write actions
performed on the heap data space. This gives an idea of the number of read and write
operations required for each action, with the simple heap read and write actions mapping
directly onto a single DRAM read and write operation and the more complicated
allocation and deallocation operations taking multiple memory read and write operations.

All procedures are also inlined into the calling process for speed and area considerations.

The ‘write next page’ procedure simply writes a given next page pointer into the base

address of a given page. This is used for the insertion of free pages onto the free page list.

The “get next page’ procedure performs the opposite operation to the ‘write next page’
procedure, in that it reads the address of the next page pointer from a given page. This is

used for the removal of a page from the free page list.

The ‘allocate page’ procedure is used to remove a page from the free page list. It

decrements an internal free page counter also.

The ‘deallocate page’ procedure 1s used to re-insert a page onto the free page list. It

increments the internal free page counter also.

Once a new page has been taken from the free list of pages, the ‘setup page’ procedure is
called to fill the header with the valid values for the object size, object unallocated pointer
and free object list base pointer. It also inserts the page onto the page size page pointer

within page zero and sets up the next and previous pointers of the page to point to itself.

The ‘allocate object’ procedure is used to return an object pointer from within a given
page. It first checks the free object list from within the page and returns the head of the list
if any objects exist within the list. If no objects are in the free list, then the procedure will
return the unallocated pointer and increment the same pointer (checking for no more

space). The number of allocated objects within the page is also incremented.
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The ‘deallocate object’ procedure performs the opposite operation to the ‘allocate object’
procedure in that it takes an object pointer and inserts the object onto the free list of

objects within the given page. It also decrements the object count within the page.

The ‘check page full’ procedure is used to determine whether the page is completely full
of objects after an object is allocated from the page. It first checks the unallocated pointer
then the free list if there is no space left from the unallocated space. If both the free list

head pointer and the unallocated space are null, then the page is full of objects.

The ‘check page empty’ procedure is used to determine whether the page is completely
empty of objects after an object is deallocated from the page. It checks the object count

value to determine whether any objects are contained.

The ‘unlink page’ procedure is used to remove a page from the doubly linked list of pages
currently in use for a particular object size. If the page is the only page within the list, then
the page size pointer is set to null. If there are other pages within the list, then the links of
the doubly linked list of the next and previous pages are linked together, removing the
given page from the list. The page size pointer is reset to the next page within the list if it

points to the page being removed.

The ‘link page’ procedure performs the opposite operation to the ‘unlink page’ procedure.
It is used to insert a given page into the doubly linked list. The page size pointer is
checked first for the availability of the doubly linked list. If one doesn’t exist, then the
given page is set up as the only page within the list and the page size pointer is set to point
to it. If a list already exists, then the page is inserted before the current head of the list by
the adjustment of the four next and previous pointers of the given page and the pages

already within the list.

C.5.4.5 Memory status interface procedures

These procedures are called to fill the memory status buffer with the page status
information. They communicate with the buffer process via some internal signals and
communication semaphores. They are blocking procedures that are called in positions that
do not add an increased number of control states required for the communication. They are

also inlined into the calling process.
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The procedures are called from the heap management process (are not shown within the
call graph of Figure C.13). They all take a page as a parameter and write different
information 1nto the buffer about the given page. They all set the page as being accessed

and used (the page becomes highlighted).

If the user makes a heap read or heap write operation, the ‘sef page status used’ procedure

is called for the page that contains the object that is being accessed. This just sets the page

as being accessed and used.

The ‘set page status free’ procedure is called from the heap setup phase for each page
inserted onto the free list. It is also called from a deallocation, when a page is re-inserted

onto the free page list. The buffer is set as the page being empty.

The ‘set page status partfull’ procedure is called from both the allocation and deallocation
operations. The page is set as being partially full and in use. It is called within allocation
when a page is taken from the free page list and becomes active. It is called within
deallocation when a page has an object removed, which results in the page being

reinserted onto the active page doubly linked list.

The ‘set page status full’ procedure is only called from an allocation, where a page
becomes totally full from an object allocation. The page is removed from the active page

list in this case.

C.5.5 Memory map buffer process

The buffer process is used to control an internal RAM array that stores a representation of
the state of each page within the heap management algorithm. Four bits are required per
page, with 256 pages (addresses into the RAM) requiring storage. The buffer has an 8-bit
address and 4-bit data path.

Two bits are used to describe the allocation state of the page. One bit determines that the
page 1s empty (free) while the other specifies that the page is full. If both are false, then
the page is partially full of objects. It is invalid for both to be true, as a page cannot be
both empty and full of objects at the same time.
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The other two bits determine whether the page has been accessed within the VGA frame
raster scan period (1/60™ of a second). Two bits are required for persistence of the
information through at least one raster scan period. The heap management process for any
access of the page sets both bits. The bits are reset one after the other by the VGA drive
process, which provides the time-out of the raster scan period. The VGA drive process has
an interface to the buffer that is second in priority to the heap manager interface to the
buffer. The heap manager interface is write-only, while the VGA drive process has

read/write access to the buffer.

C.5.6 VGA drive process

This process is used to draw a graphical representation of the contents of the buffer
controlled by the buffer process. The process draws a representation of every page within

the heap management algorithm in a 16 by 16 grid in the centre of the screen.

The drawing process begins with the setting up of the interface to the VGA controller,
initialisation of the colour palette and the erasure of the background screen. The process
then enters an infinite loop. The drawing process is then forced to wait for the vertical
blanking period to begin. Once the vertical blanking period is entered, an inner loop
counts for each page, with the screen coordinates being calculated to produce a square grid

of pages, starting at the top left corner for page zero.

It is at this point within the inner loop that the page buffer is read for the relevant page. An
interface procedure is created within the VGA drive process for this purpose. The
information for the page is returned and the activity bits contained within the buffer are
reset one at a time. The page information is then rendered to the VGA controller via two
coloured rectangles that overlap to form a central rectangle with a border at the current
page coordinates. The larger rectangle forms the border and is coloured light grey to show
page activity and dark grey to show no activity within the page. The inner rectangle is
coloured in one of three colours dependent on the allocation status of the page, where blue
represents a page on the free page list, green represents a page that has objects contained

within it but not full and red represents a page that is completely full of objects.
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C.6 Tracker demo

The tracker design is given a basic data structure and user guide overview within Chapter
6, Section 6.2. This appendix section gives a more detailed description of the methodology

used within the behavioural VHDL source code to produce a working tracker design.

C.6.1 Code implementation

The two core features to the design methodology used are with the use of the dynamic data
structures (what is being demonstrated) and with the use of concurrent processes to handle
relatively strict data throughput timing constraints. The audio throughput data requires
44,100 sample values per second, which equates to an allowable time period of 22,675 ns

per sample. With a system clock running at 12 MHz, the audio streams have 272 clock

cycles of processing time.

This number of clock cycles is enough for the relatively simple operations performed on
the audio data. However, the dynamic memory element to the design requires sample

block allocation, where each single physical memory allocation takes about 80 cycles to
complete due to the underlying sequential DRAM memory operations. General memory

accesses take around 10 cycles to complete when asynchronous communication buffering

is taken into account.

As all dynamic memory accesses require sequential operation, the number of clock cycles
taken within a single audio value period can exceed the 272-cycle limit. However, on
average, the number of cycles required for each audio value will be less than the clock
cycle limitation, which means that if the audio data streams were buffered with a number
of FIFO buffers capable of storing a number of values to average out the differences in
time to process each audio data value, the memory latency issue would disappear, leaving

only the memory bandwidth as the system limitation.

The system is designed using two core processes to handle the real time audio processing
and the output user interface drawing. Each audio stream is buffered using a 16-element
FIFO. The audio streams are taken from the ADC/DAC controller process, which

communicates with the external interface chip.
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Figure C.14 Tracker processes and data flow

C.6.2 Data structures

The stored samples and sequences are all stored dynamically using VHDL data structure
constructs. These are formed from aggregate record types and array types with access type

references to the dynamic creation of these data structures.

C.6.2.1 General linked lists

The general linked list structure is explained within Chapter 6.2.1.1. It is formed from a
base list record type that stores a list of element type record items, which each point to the
actual data structure being listed. This structure allows for common code to implement the
list insertion, deletion and traversal operations that are used within each list, leading to

smaller source code size. The alternative would be to have each listed data structure form

a list within itself.

C.6.2.2 Strings

Strings are used for text descriptions of samples and sequences. They are formed from a
limited array (16 elements) of ASCII character types. They are created dynamically with

the use of access type variables that reference the array type. In the current
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implementation, only the serial download mode is capable of filling the strings with

arbitrary description data.

C.6.2.3 Samples

A sample is formed from a record type variable that contains the various items that make
up the full description of:an audio sample. The record elements include an integer ID for
the sample, a string description (referenced by an access type to a string array) and the
sample block list, which contains all sample data stream values. The list is formed from a

reference to a linked list base data structure.

The sample block list holds a number of fixed length arrays of data stream elements,

which when put together, form the dynamic length sample stream. A sample stream is
stored in this way due to the unknown length of the sample, even when recording. The
sample record type also contains an element that holds the last valid index into the tail

sample data block, as the tail may only contain a partial array of valid data stream items.

A pair of sample block iterators are also stored within the sample record, along with index
positions within the referenced sample block. These store the sample block looping
positions, that are used when a sample is played past its ending position. The sample may
be played as looped or single-shot, which is determined by the final sample record
element. These sample array references are set to the first and last valid elements within

the entire sample by default.

C.6.2.4 Sequences

A sequence is formed from a single record type. This record contains elements that give
each sequence a unique integer ID and a text description in the same manner as the sample
description. The sequence is capable of holding a reference to a number of note items at
any time point using any of the 8 channels. The length of time that a sequence stores is
held within an element within the sequence record (the default is 128 time positions, with
256 being the maximum). This stores the last time point to be used within the sequence.
The notes stored within the sequence are contained within another linked list structure,
with a reference to the base pointer of this linked list being the last element within the

sequence record.
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The linked list of sequence elements contains a sorted list of items. The sorting occurs by
insertion at the correct element position. Sorting occurs in two dimensions, with the time

position being the first, followed by the channel number.

Each sequence note item is itself contained within a record, with elements describing the
item position, both time and channel, and the description of the note to be played at that
time position, using a reference to a sample and a playback speed determined by an octave
number (bass-1 to treble-5) and a note number (A to G*). A null sample reference will stop

playback on the relevant channel.

The sequernce elements are stored in this manner due to the sparse nature of the notes. An
array of sequence point items would quickly fill the available memory space. This list is

capable of full insertion and deletion capabilities via the input user interface.

C.6.2.5 Playlist

The playlist is formed from a list of references to the iteration list items held within the
sequence list. It only references the sequences, forming a secondary link into the sequence
list data structure. Full list insertion and deletion capabilities are supported. A link to the
iteration element within the sequence list is formed due to the capability of alteration of
the referenced sequence via iteration through the sequence list. A reference to the

sequence item itself would not allow this, as the sequence has no link to the containing list

data structure.

C.6.2.6 Real-time buffer arrays

As the output user interface is drawn within a separate process from the audio processing
process and the user interface draws a representation of the various data streams for each
channel and the mixed output stream, the information to draw requires transferral from
one process to the other. This would usually be achieved with the use of a number of
statically created buffers. However, as the amount of data to be stored within these arrays
is relatively large, the storage space is allocated from the heap dynamically as the heap is
capable of storing a large amount of data. This 1s only performed once on system
initialisation. Shared variables hold the base references to the dynamic arrays and

communication is performed by semaphore and acknowledge signals.
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C.6.3 Concurrent process communication

The flow of data between processes is controlled by a number of semaphore and
acknowledge signal pairs, each controlling the flow of data being transferred by data

signals and shared variables.

C.6.3.1 Semaphore signals and shared variables

Shared variables are used for the transferral of access type held information between
concurrent processes, while signals are used for the transferral of all other data types. A
pair of semaphore and acknowledge signal bits control the data flow with one process as
the master. The master process initiates the communication with the inversion of the
semaphore signal and the slave process acknowledges the communication with the
inversion of the acknowledge signal. Data flow can be in either direction. The core audio

processing process is the master of all data communications both to and from it.

C.6.3.2 User interface redraw control

The ability to read the dynamic data structures within one process while concurrently
modifying the same data structures within another process has potential pitfalls. For this
reason, the user interface process (which draws a representation of the data structures) is
controlled by the audio processing process, which is capable of the modification of all

sections of the data structures.

All redraws made by the user interface are initiated by the audio processing process from
within the internal audio processing loop. At times it is impossible to update sections of
the output user interface due to the relevant sections of the data structures being modified.
The user interface may also take a long time to draw sections of its display. It is critical
that the drawing process does not delay the audio process, so the redrawing of display
sections is initiated via internal flags within the audio process that only get serviced when

all other drawing has finished.

C.6.4 Core process

The core system process handles all data structure creation and modification via the input

user interface. It also drives the output user interface, telling it what to draw. The process



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 358

loop is also used to form the mixed audio output signal that drives the output FIFO buffer

and records the buffered audio input stream when required.

C.6.4.1 Keyboard interface

A standard QWERTY keyboard is used as the input device for the tracker system. The
core process interfaces with it via the non-blocking communication procedure of the
keyboard interface. The keys pressed directly influence data structure modification, audio

mixing control and sequence recording and playback.

C.6.4.2 Serial port interface

The serial port is interfaced with via an input FIFO buffer. The buffer uses the interface
procedures provided by the serial port interface package, while the core process uses
internal communications with the FIFO buffer. The serial port is only read within the

serial download mode, which stops all audio processing and user interface control.

The serial download loop is used to create all data structures held within the tracker. This
facilitates the storage of sequences and samples within a computer hard disk, A
communications protocol exists that makes the computer the master system, only releasing
the tracker system into the main audio processing loop once all data has been downloaded.

All drawing is flagged to redraw after a serial port download.

C.6.4.3 Operation modes

There are three operating modes that select the functionality of various shared keyboard
operations. Each mode is contained within the main audio processing loop unlike the serial
port download loop. The sample mode allows for the creation, modification and viewing
of a number of samples. The sequence mode allows for the creation, modification and
viewing of a number of sequences. The playlist mode allows for the modification of the
playlist of sequences. All modes, except the recording of sequences or samples, support
manual mixed audio playback and the playback of the currently selected sequence or the

entire playlist of sequences.
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C.6.4.4 Sample recording (sampler)

A new sample is recorded from the input audio stream l;y being in the sample mode and
pressing the ‘R’ key. This action dynamically creates a new sample and inserts it onto the
sample list. The sample record is then initialised and the sample block list is generated.
The input audio stream is then taken from the input FIFO buffer and fills the sample block
with the data. Whenever the sample block becomes full, a new block is allocated and
inserted onto the end of the block list. The incoming audio data then fills the new block.
Recording finishes by releasing the ‘R’ key, which enables the polyphonic playback on
each channel again. The sample and sample list are flagged to redraw after a new sample

is created.

C.6.4.5 Sequence editing

A new sequence can be created, inserted and initialised within the sequence mode. The
cursor position within the sequence denotes the time and channel position where a new
note item would be inserted when in sequence recording mode. Instead of the note
keypresses driving the polyphonic mixed output audio playback, the note is inserted into
the sequence point list in the correct sorted position. A reference to the note point before
the highlighted position is always kept as the position to insert after. If a note item already
exists at the insertion position, then the note item is deleted before reinsertion of the new
note item. The sequence is flagged as requiring a redraw after every modification and the

sequence list is flagged to redraw after a new sequence is created.

C.6.4.6 Playlist editing

The playlist can be edited within the playlist mode. The list can be iterated through, which
selects a different sequence. Each change of list position flags a redraw of the playlist,
sequence list and referenced sequence. A list insertion will insert at the currently selected
list position, using the currently selected sequence as the inserted value. Only the playlist
is flagged to redraw in this situation. The list modification is performed by the generic list

modification procedures.

C.6.4.7 Sample playback

Sample playback is initiated by a manual user keypress or via the sequencer. The same

code is used for both. The only difference being that a playback channel is selected for the
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manual note playback, while the channel is known for the sequenced playback. Once a
channel is set as playing a particular sample using a given note and octave, the data within
the sample is incremented through using an over-sampled index. Only the most significant
bits of the index are used for the sample index position. This index gives the current
playback sample value position within a sample block. Whenever the index wraps around,

the next sample block is iterated to.

The rate of audio output playback is fixed at 44.1 kHz. The different frequencies required
for the different notes and octaves are created by incrementing the sample index position
by a different amount depending on the note being played. This is where the over-
sampling of the index position is used, with bass notes being incremented by a number
effectively lower than 1 (if the over-sampled index position is taken to be a fixed point
fractional number, with the only bits used as the index value being the integer part, with
the over-sample bits being the fractional part), and treble notes being incremented by a
number effectively greater than 1 index position. Middle-C is the recording rate, which is

played back with an increment of exactly 1 index position per stored data value.

The 8 dual-16-bit stereo audio channels and the dual-16-bit audio input stream from the
ADC are mixed into the single stereo audio output stream by simply adding the sample
values for each channel together, along with the audio input stream values from the ADC.
The stereo audio values are treated as two signed numbers, where addition beyond the bit-
range limits of the dual-16-bit output will result in the audio signals being clipped to the

minimum or maximum limits of twos-complement 16-bit numbers.

C.6.4.8 Sequencer playback

The sequencer can be played from the playlist of sequences or from the selected sequence
only. The only difference is that the playlist item is iterated (and looped back) when
played from the playlist, which selects a different sequence to play from each time the

sequence increments past the last time position.

A sequence is played by incrementing the time position to be played back. Each time this
happens, each sequence point item for the current playback time position is read and acted
upon. The movement through time of the sequence is performed at a slower rate

determined by an internal counter and variable counter limit. This means that the speed of
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playback of the sequence can be altered, with the use of the global sequence speed

counter. The default rate for playback gives 8 sequence time positions per second.

Whenever the time position changes, the sequence point items for the time row are read
and, 1f they exist, are placed in the playback channel in which they reference. The
playback channel holds the current sample being played on that channel, the rate of
playback and the current iteration position through the sample. The iteration position is
reset to the first sample index within the sample whenever a new item on that channel is
found. Storing a null reference to a sample within a sequence time point can halt playback

of a note on a given channel.

C.6.5 Drawing process

The drawing process interfaces with the VGA display system via the serial interface to
that controller. The serial interface is explained within Appendix C.4. The process draws a
representation of the contents of the data structures used within the tracker. The core
control process initiates all drawing once the initial setup phase is complete. The drawing
mode is fixed as direct draw of the foreground only within page 0, rastering from page 0
also. This means that everything drawn overwrites what was previously at the drawing

position, except the text background colour, which is not drawn at all. Only a single frame

buffer page is used.

C.6.5.1 Initial setup

The drawing process sets up the interface to the VGA serial controller by calling the
initialise procedure defined within the interface package. After this, the palette is set up for
the colour scheme used within the tracker. Then the background screen is drawn, with the
various window borders and constant description strings. After this setup phase, the main
drawing loop is entered, which awaits the core process to tell the drawing process what

sections of the data structures to draw.

C.6.5.2 Drawing strings

Two types of string can be drawn, constant and variable type strings. Constant strings hold
the various banners used to describe the sections. These are drawn from a constant internal

ROM, with base and end indexes into the ROM defined as constants. A procedure that
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loops from two indexes into the ROM given a drawing position and size is created to draw

constant strings horizontally.

The variable type string is drawn in the same manner, except that it takes an access type
variable input that references a string created on the heap. All strings are arrays of 16
characters. The drawing procedure also takes a drawing position and an end index. If a

null character is found within the string, then drawing stops at that point.

C.6.5.3 Drawing generic lists

The same generic drawing procedure is used to draw the three base lists of the sample list,
playlist and sequence list on the left hand side of the screen. The procedure takes the
drawing positions for the upper, middle and lower y-positions and the left and right x-
positions. It also takes the current list iteration position and the type of list being drawn.
The procedure draws over the background first, removing the previous list contents. This
is followed by the iteration through the list, following the previous references drawing the
contents up the screen and the next references drawn down the screen. The information
drawn is with respect to the given type of list, with samples and sequences having their

integer IDs and text descriptions listed. The playlist type draws the referenced sequence

information.

C.6.5.4 Drawing real-time audio

The real-time audio signal representation is drawn only once every frame. The blanking
period of the VGA controller is used to reset the acknowledge signal that tells the audio
process to refill the audio drawing data buffers. Once filled, the audio process sends a

semaphore signal to initiate the drawing.

The background box containing the drawn wave is drawn first. Then, simply looping
through, reading the array values stored by the shared variable reference of the
dynamically created arrays and drawing the wave section at that position draws the waves.
The wave is drawn from left to right with the left sample overwriting the right sample. A
vertical line is drawn between the old sample value and the new sample value at the

current index and x-position.
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C.6.5.5 Drawing samples

The currently selected sample is drawn at the top of the screen next to the sample list.
Only a small section of the sample is drawn, starting from a sample block iterator not
necessarily the first block within the list. The sample drawing uses the same code to draw
the wave sections, with iteration through the sample block list and indexes within each

block used to provide the stereo drawing data.

C.6.5.6 Drawing sequences

The sequence drawing takes up the proportion of the displayed screen. The drawing
algorithm used to draw the selected sequence is formed from a loop, starting from the time
position at the top of the screen, finishing at the time position at the bottom of the screen.
An inner loop counts through each audio channel. This looping method means that the

sorted list of sequence points will be in iteration order.

Firstly, for every iteration of the outer loop, the time value is drawn down the left hand
side by drawing over the previous time value and drawing the new time value represented
in hexadecimal. Every fourth value is drawn in a lighter shade. Each channel is then drawn
across the screen within the inner loop by drawing over the previous item and then
redrawing the sequence point at that position if one exists at that point. Every time a

sequence point is found, the drawing process iterates onto the next item.

The current cursor position is found in the centre of the screen, where the background is
drawn in a different colour. If the looped drawing position is out of range of the sequence

time range, then just the background is drawn in a lighter shade, with no time value drawn

down the left hand side and no sequence point items drawn.

A valid sequence point is drawn with a representation of the sample ID, note and octave

used. A null sample will be drawn as a horizontal line, which represents a note stop

position.
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C.6.6 Buffer processes

These processes serve to link the core audio processing system to the outside world. They
provide the transferral of data between systems eliminating the dependence on the

underlying memory latency.

C.6.6.1 ADC / DAC controller

The external audio interface is formed from a combination 16-bit stereo ADC/DAC chip.
Communications with the device is via two serial interfaces, both under control from the
chip itself. Communication is synchronous due to the shared system clock of 12 MHz. The
audio data 1s read in and sent out to the external chip using two 64-bit shift registers. The
64 bits contain the stereo sample and 32 bits of control data. The shift register process that

interfaces with the external chip links with the audio input FIFO buffer and the audio
output FIFO buffer.

C.6.6.2 Input audio FIFO

There are 16 memory locations available for stereo samples within this process. The ADC
shift register controller process feeds the buffer. The core audio process reads data from
the buffer. The audio process only uses the input buffer when recording input samples.

When it does this, it attempts to keep the buffer as empty as possible.

C.6.6.3 Output audio FIFO

The buffer size is the same as the input FIFO buffer. Samples are read from the buffer by
the DAC shift register controller process. The core audio process writes data samples into
the buffer. The audio process always outputs data to the buffer unless in the serial port

download mode. The core audio process attempts to keep the buffer as full as possible.

C.6.6.4 Serial port input FIFO

This buffer is only used when downloading data from the serial port. It is capable of
storing 16 serial data words (8-bits each). The buffer is filled when new data appears from
the serial port receiver controller. The core process only reads data from the buffer when
serially downloading data and tries to keep the buffer as empty as possible when

downloading.
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C.6.6.5 Multi-chip Synchronisation

As the system has been partitioned into three separate boards, each with a separate FPGA
containing the local configurations. The timing of the start-up of each system is not
guaranteed at any time. Each system has its own resetting mechanism due to various
communication problems encountered. Instead of synchronising the resetting mechanisms,
a system to guarantee the synchronisation to a particular time point within each design has
been created. This allows the communications between the systems to be set up in the
correct order. A process exists within the tracker to control this synchronisation, which

makes use of the FPGA programming signals.

C.7 Expression evaluator demo

The expression evaluator design is given a basic data structure and user guide overview
within Chapter 6, Section 6.3. This appendix section gives a more detailed description of
the methodology used within the behavioural VHDL source code to produce the

expression evaluator.

C.7.1 Code Implementation

This design was produced as a single process system, so all actions occur in sequence with
no concurrent process communication. The partitioning of the underlying system required
the same synchronisation as found within the tracker design. This was added with a simple
controller process that only allows the main process to continue once the correct

synchronisation conditions are satisfied.

The point of the demonstrator is to show the use of recursion within a hardware design.
With this in mind, four of the expression modification procedures are created with a

recursive implementation.

C.7.2 Data structures

The two main data structures within the system are designed to hold the dynamic coloured
text log and to hold a representation of the expression itself. These are dynamic structures

allocated using the same heap manager system as used within the tracker design.
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C.7.2.1 Dynamic log structure

The dynamic coloured text log is created from a linked list structure that is contained
within a record type structure. The record contains next and previous linked list record
references that form the links in the list and a reference to a full line of text. A line of text
is defined as an array of characters of fixed length (78 characters), where each character is
held within a 12-bit representation; the most significant 4 bits containing the character
colour and the least significant 8 bits containing a standard ASCII character

representation.

The text log will be used to output a continuous stream of text that represents the actions
performed on the expression at the various recursion depths. The entire log will be
available, even when it cannot be viewed fully on the screen. This is the reason for the text
storage of the log. The user will be able to scroll up and down the log, viewing the full

event history.

C.7.2.2 Expression binary tree structure

The expression is held within a single record type structure as described within Chapter
6.3.1.1. The record contains left and right child operand references which enable a binary
tree to be built and the operation to be performed upon the operands. The tree node also
holds an integer value that is used for holding the leaf values and the transitory expression
results for each level of the tree. The transitory results are used within the recursive

expression drawing and evaluation procedures.

C.7.3 Text log procedures

The log is built from the data structure explained within C.7.2.1, but is requires
functionality to create, modify, draw, scroll and delete it. The log is filled from various
calls to the log manipulation procedures made from the various tree modification
procedures and other user input. The log is created by first creating a line to draw into,
then drawing all the relevant text information on that line in character order then finishing
the line with an end-of-line (EOL) character. New lines are only created when required,
with the log starting as initially empty. Text drawing and insertion occurs on a character-

by-character basis with the use of higher level drawing procedures.
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C.7.3.1 Full log redraw

The only time that the full log text requires a redraw is during a scroll through the log and

when a new line 1s created that pushes the top line out of viewable range.

The log is drawn within two nested loops, the outer loop working upwards through the log
lines, iterating from the current bottom scroll line position and the inner loop used to draw
the character on each line. A by-product of redrawing the log is to reset the top scroll line
position as the last viewable line. This reference is used within the scrolling procedure.
Overwriting the background for every line with the background colour draws each line,
followed by the printing of each stored character within the line, starting from the left
character and working to the right until the EOL character or the line limit is found. Each
character is drawn 1n its stored colour by resetting the drawing colour before each

character is printed.

C.7.3.2 Line creation

A new line must be created before any new text is drawn. The line creation procedure
firstly physically allocates the memory required for the linked list iterator record and the
lines character array. The reference to the line array is stored within the linked list iterator.
The linked list iterator is then inserted at the head of the linked list by reassigning the head
reference of the list and linking the new iterators previous reference to the old head. If the
list is empty, then the list base reference is also assigned to the new iterator. The bottom

scroll position is also set to reference the newly created line iterator.

If the number of lines within the log exceeds the number of viewable lines, then a call to
the full log redraw procedure 1s made. The log is redrawn from the bottom scroll
reference, which has been set to point at the new line. The redraw resets the top scroll

reference.

Finally, the current cursor position is set as the first character within the new line, ready
for the text insertion procedures to use the cursor. The first character also has the EOL
character written to it in case the line has no text inserted before the next new line

creation.
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C.7.3.3 Text insertion

When the log is edited on a single character basis, the drawing always occurs at the bottom
of the log at the current cursor position, which is always visible when the log is in the
process of being modified. This means that each character is drawn separately without the

need for drawing the entire log.

The single character insertion modifies the character at the current cursor position. The
cursor position is incremented after the modification. The character is drawn using the
current drawing colour, which is set dependent on the information being drawn. The

character is both drawn to the screen and inserted into the log line array.

C.7.3.4 Drawing strings

The only strings to be entered into the log are derived from a constant source. These are
stored within an internal ROM. The colours used for each string are also stored within a
ROM. The string drawing procedure uses the contents of the two ROMs to insert the
constant characters of the ROM into the dynamic log at the current cursor position, one
character at a time. The log insertion colour is reset to the correct colour before any
characters are inserted and the string within the ROM is selected by a starting index into
the ROM. Character insertion is performed within a loop that terminates when a null
character is found within the ROM contents. The character insertion procedure is used for

each character.

C.7.3.5 Drawing integers

The drawing of integers is performed in two stages. The first stage converts the internal
32-bit binary representation into a 40-bit BCD representation. This conversion provides a
maximum of 10 characters to draw. The number drawn will be in base-10 format. The
second stage is to insert the converted text representation of the decimal numbers

contained within the result of the conversion into the log.

The conversion of an integer representation into a BCD representation is formed from a
hardware implementation of the algorithm found in [119]. The algorithm is implemented
with the BCD representation being stored within a RAM array, which allows a very

compact storage space, hence size for the conversion procedure.
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The converted number is inserted into the log by looping from the most significant BCD
number down to the least significant. Drawing only begins once a number other than zero
1s found for each BCD value. The conversion of the zero offset number into an ASCII

representation is made with the addition of an offset of 48, which is the ASCII number

character ‘0.

C.7.3.6 Scrolling up and down the log

The contents of the log may only be scrolled once all log modification has ceased and the
contents of the log spans more than the viewable number of lines on the screen. The

scrolling procedure is passed a number of lines to scroll by and the direction to scroll.

The first stage is to adjust the top and bottom scroll pointers through the linked list of log
lines by the number of lines to scroll by. If the limits of the log are found in the direction

of scrolling, then the scroll pointers are not modified.

The second stage is to redraw the log contents at the current scrolling position. This is

performed by a simple call to the full log redraw procedure.

C.7.3.7 Dynamic log erasure

The user may erase the log contents. The procedure to perform this operation simply
iterates through the linked list, deleting each line array and linked list iterator element.
After every line has been deleted, the linked list base and head pointers are reset and the

full log background is drawn over, which removes all traces of the log from the screen.

C.7.4 Tree modification and recursion

The four recursive procedures within the expression evaluator design are explained within
the following sections. The first procedure is a recursive implementation of the factorial
calculation. This calculation was used within testing. All of the procedures have had a log
output included, which shows the recursive calculations being made with the use of
indented lines within the log. Each level of indent represents a single level of recursion
depth. The indent value is adjusted as a global variable within each procedure so that it
does not require stack storage. The three other procedures relate to the modification,

drawing and deletion of the binary iree that holds the expression.
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C.7.4.1 Factorial evaluation

The factorial of a number is a unary operation. It takes a single operand and returns a
single result. It is just as easy to calculate the factorial iteratively as it is recursively. In this
respect, the iterative version is a preferable implementation method. However, the
recursive implementation was used during recursion testing and has been included within

the expression evaluator because of this.

The basic algorithm has had a number of calls to the log output procedures added. These
give a textual representation of the input of the factorial procedure while recursing up the

stack and give the result at each level while recursing back down through the call stack.

The algorithm first tests the inputted value for being above 1. If the inputted value is 1 or
less, then a result of 1 is returned. If the inputted value is greater than 1, the factorial
procedure is called recursively, passing the inputted value subtracted by 1. The value
returned by the recursive call is then multiplied by the inputted value and returned from
the current factorial call. This results in the factorial result that is formed from the

multiplication of a number by the set of numbers less than it, down to the number 1.

C.7.4.2 Recursive expression evaluation

The main expression evaluator procedure passes the single expression tree node reference
as an ‘inout’ parameter, meaning that the given node is both taken as an input, capable of
modification and returned as an output. If the passed parameter is null, then the reference
does not contain a tree node. In this case, a new node is allocated for it before the main
expression evaluation loop is entered. The default settings for a new node are that both
child references are set to null and the operation is set as a simple leaf value container,

whose value is set to zero.

The core expression evaluation 1s made within the user interface loop. Firstly, the
expression is evaluated with the calculation of the result of the operation held by the given
node. This simply uses the results held within the child operands (if they exist) and the
operation type within the given node. If any child does not exist, then the operand is taken
to equal zero. Secondly, the binary tree is drawn from the current node position by the

recursive drawing procedure and the result of the expression printed in the log.
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Then, user input via the keyboard is required. The blocking interface procedure is called,
which waits for a downward-keystroke. A number of actions to modify the tree node
dependent on the key pressed are then undertaken, including the creation, insertion,
swapping and deletion of child operands, the recursive evaluation of the child operands
(which 1s formed from a recursive call to this expression evaluation procedure, passing a
reference to the relevant child node), the recursive return to the parent expression
evaluation procedure (or the root calling process) and the modification of the type of

operation at the currently referenced tree node.

Each keyboard action will result in a loop back to the beginning of the user interface loop,

with the expression being re-evaluated, drawn and logged.

C.7.4.3 Recursive expression tree drawing

The drawing of the expression tree from the current tree node being evaluated is
performed once per user interface loop iteration. The recursion process only recurses to a
depth of four node levels due to the limited screen space available. The tree is drawn in a
depth first manner, with the local node being drawn before recursing into the child
operand nodes. The tree is drawn with the currently edited node being drawn at the root of
the tree. Child nodes are drawn below the given node, with left operands drawn to the left.

The recursion depth determines the horizontal distance between the nodes.

The contents of the node are drawn first, with the box representing the node having the
operation and value drawn within it. Then the link joining the given node to its parent
node is drawn using a number of characters. Finally, both the left and right operands are
recursively drawn only when drawing space is available. If no space is available and child

operands exist, then linking stubs are drawn, indicating further tree nodes exist.

C.7.4.4 Recursive expression deletion

The recursive tree deletion procedure simply checks for a null tree item first, returning
straight away when found. The deletion operation is logged and then the deletion
procedure is recursively called for both the left and right operands. Finally, the local node

is deleted and the deletion procedure recursively returns. This deletes an entire branch of

the tree in a depth first traversal.
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Appendix D

File formats

This appendix explains the format of the two main data files that contain a representation
of the user’s design within the MOODS synthesis environment. The first, extended
ICODE (Intermediate CODE) 1s generated from the VHDL compiler and now includes
structures that enable recursion. The second, DDF (Design Data Format), is a
representation of the entire MOODS internal data structures. This file fully contains all

information represented within the initial ICODE file taken as input to MOODS.

D.1 BNF descriptions

The Backus-Naur Format (BNF) 1s used to describe the full syntax of a parsed language. It
does not describe what the language means. The descriptions of the ICODE and DDF file
format both use BNF notation (Sections D.2.2 and D.3.2).

The notation is built from a number of base descriptor names starting from the root file
descriptor. The names are listed in alphabetical order. Each descriptor has a left and right
part, with the left part containing the descriptor name (a single string without space that
can contain underscores) and the right part containing an expression that can hold

references to other descriptors and physical text:
Descriptor_name ::= expression ( descriptor_links, text )

Any text links are given in beld font, with single text characters bounded by single quotes.
Links to other descriptors are given in normal font with the possibility of extra prepended

italicised use information, separated by underscore characters:

descriptor_link = use_info_descriptor name
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The right hand expression is generated from a number of basic constructs that operate on
both text and descriptor link items. An expression can contain a sequence of items and

formatting constructs:

° ltem1 Item2 ltem3 = sequence of items

° ftem1 | lem2 = only one item is used (could have more than one | operator)
° {ITEM } = zero or more items, following each other in sequence

® [ITEM ] = the item is optional

D.2 ICODE

The ICODE file is a textual representation of the user’s design that has passed through the
original source compiler. The file is a language independent representation of the original
source code, which allows different languages to be used as input to the MOODS

synthesis system. At present, the only compiler is the original VHDL compiler.

The style of the ICODE file is of a sequential set of instructions, each with an activation
list defining the flow of control through the instructions. If no activations exist for an
instruction, then the following instruction is implied as the only activated instruction.
Multiple activations can exist from a single instruction, which defines either a concurrent

branch or a conditional branch in the control flow.

The instructions are held within a container ‘module’, with the root module defining the
‘program’. Each module has a header that is described in terms of a single header ICODE
instruction. The header includes all the I/O associated with the module. The list of
translated register variables, memory variables, ports, aliases and temporary variables
follow the header instruction. The port definitions map directly onto the /O list of the

header instruction and define the direction of the port.

A general variable is contained within an ICODE ‘register’. This defines a single storage
space for user data. Arrays of data can be held within ‘ram’ definitions, which require an
address index into the array whenever used. Constant arrays are held within ‘rom’
definitions and have the contents of the ROM follow the ROM variable definition. A
ROM can be read from only, never written. The index address is provided in the same way

as the RAM address.
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The names used for variables and module names can be made from any unreserved
combination of alphanumeric characters (including single underscores (*_”) but not
including ICODE delimiters), reserved names being the ICODE instruction keywords. The

names are case insensitive.

Each module defines a completely contained subprogram that can be called from any other
module. The addition of procedural recursion allows these modules to call each other
within recursive loops. A recursive definition requires extra information in the form of a

stack declaration and modification instructions. These are added as auto-generated items

from the compiler.

All ICODE 1nstructions act upon the variables, ports and aliases defined within the
module. All submodules can access the variables within the root module and the variables

contained within the module itself. The root module can only access the variables defined

within itself.

Each ICODE instruction line has the general form:

<label> INSTR <input list>, <output list> <activations> <info>

The label is optional and 1s used to provide a reference for any activations contained after
other instructions. The instruction can either be a built-in instruction or be separately
defined within a configuration file. The input list and output list contain references to the
variables being acted upon. These lists are comma separated with the number of inputs and
outputs being defined by the instruction. The activations reference the initial labels defined
before other ICODE instruction. The info field after the instruction defines any related
information such as original source line number references and activation probabilities for
conditional instructions. Each instruction is contained within one line unless separated into

multiple lines using the ‘\* delimiter.

The control flow of a design is handled by a small set of special ICODE instructions.

These inbuilt ICODE instructions are listed in Table D.1.
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Special Control Instruction

Description

IF and IFNOT

These instructions take a single input variabie of a single bit
and conditionally take the true branch defined by the ACTT
activation if the input bit is *1’ for IF or ‘0’ for IFNOT. The false
branch defined by the ACTF activation is taken as the

alternative.

SWITCHON and DECODE

Both of these instructions test a single input variabie of known
width for a set of alternative values. The DECODE instruction
is used in cases where all alternatives are tested, and the
SWITCHON instruction is used for a limited set test. Each
case alternative is held on a separate line of the file in
increasing sequential order. The SWITCHON instruction will
include a default case that forms every alternative to the
values tested. A separate activation list defined by ACT is

given for each alternative.

COUNT and COUNTDN

These instructions operate on special counter variables that
will be mapped onto physical counters. The COUNT
instruction increments the counter, while the COUNTDN
instruction decrements the counter. The counter value is
tested for the loop limit before the counter modification and a

true or false conditional branch taken at this point.

COLLECT

COLLECT instructions operate on the return of control flow
from multiple concurrent threads. The use of this instruction
has been disallowed in the present compiler incarnation due to
all branches being conditional apart from the process
concurrent branches, which never re-converge. The
COLLECT instruction will wait for a fixed number (defined as
an input to the instruction) of activations to activate it before it

will pass control onto the following instruction.
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Special Control Instruction Description

MODULEAP and RECURSE These two instructions form the calling method between
modules and the root program. The MODULEAP instruction
forms the non-recursive call and the RECURSE instruction
performs a call within a recursive loop. Both instructions take
the module name of the module being cailed, along with the
map of I/O parameters to pass into the parameter list of the
defined module. The call instructions activate the first
instruction within the called module, only returning control to
the instruction after the call instruction when the
ENDMODULE instruction of the called module is reached. The
RECURSE instruction also passes a constant return address
reference value implicitly used within the controlling state

machine.

Table D.1 Special control instructions

The ICODE file begins with a list of original source files using a comment declaration.
This defines a map of unique integer identifiers to the full path specification of the original
file. The identifier is used within the source file information cross-references for each
ICODE instruction. A general comment is defined using the C++ delimiter ‘//°, and a file

information comment is defined using *//F’.

D.2.1 Example ICODE file with recursion

An example of an ICODE file is given in Listing D.1. The file contains two modules, one
of which is recursive. The additions made for recursion can be seen in the variable lists of
the root module, the initial setup of the stack pointer and return addresses within the root
module and the extra ICODE instructions that modify the stack, return address and /O

ports around each recursive call within the recursive module.

Listing D.1 Example ICODE file

// ***%x Tyrended ICODE Design File (ACW format 25/4/96)

// ***** Generated by Vhdl2IC (v 1.9.5) on Tue Apr 10 13:01:43 2001
// ***** from recursion_testl.vhd dated Tue Mar 27 17:27:58 2001

// ****x pAdding VHDL line number comments (DJDM 17/02/00)

//F 1 "c:\djdm\larch e\moods\library\standard.pck”
//F 2 "ec:\djdm\larch e\moods\library\packages.vhd"
//F 3 "C:\DJIDM\LARCH E\vhdl\recursion_test\recursion_ testl.vhd"

// ***** Main program "recursion_testl” declaration *¥xx**
PROGRAM recursion_testl input, output {In:4, pos:1, file:3}

// ***** 1/0 port declarations
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inport input
outport output

[0:31] {1n:6, pos:5}
[0:31] {In:7}

// *%*x** Variable/register declarations

register ret [0:31] {1n:71, pos:14}
register factorial_ra [0:0] {file:0}
register factorial_inval_in [0:31] {ln:58, pos:7, file:3}
register factorial outval _out [0:31] {In:59}
register stack_pointer [0:71] {file: 0}
ram stack [0:31] address [0:255]

move #0, stack pointer

move #%0, factorial ra

// ko ke ok ok ok ok e ok ok process PRl Kok dkok ok kokkoxKk

.PR1 MODULEAP
move
MODULEAP
move
move
protect
move

factorial #5, ret {ln:82, pos:5, file:3}
ret, output {In:83, pos:12}
factorial input, ret {1ln:84, pos:5}

ret, output {In:85, pos:12}
#12:32, ret {1n:86, pos:9}

{iIn:87, pos:5}
ret, output ACT PR1 {1ln:88, pos:12}

// *kodke Rk ok ok ok ok ok ok end process PRl Kk ke k koK ok ok ok k

ENDMODULE

recursion_testl {1n:9%2, pos:1}

// ***** End of main program "recursion testl” declaration ****%

// *xx%* Recursive Module "factorial”

RECMODULE factorial

// *x**%* 1/0 port declarations

declaration ****x%
factorial_ra inval, outval {ln:56, pos:5}

inport inval [0:31] {ln:58, pos:7}
outport outval [0:31] {ln:59}
// ***x%x Variable/register declarations
register local [0:31] {ln:61, pos:16}
// temp 121 [0:32]
// temp 123 [0:0]
eq inval, #1:32, 123 {In:63}
if 123 ACTT ifl4_true_15 ACTF ifl4 false 16
{pt:0.500000, pf:0.500000, pos:7}
.ifld _true 15 move #1:32, outval ACT label32 {1ln:64, pos:16}
.if14 false_ 16 minus inval, #1:32, 121 {1ln:66, pos:25}
memwrite factorial inval in, stack[stack pointer] {pos:9}
plus stack pointer, #1, stack pointer
move 121, factorial _inval in
memwrite factorial ra, stack[stack_pointer]
plus stack pointer, #1, stack pointer
move #%1, factorial ra
RECURSE factorial #%1 factorial inval in, factorial outval_ out
minus ’ stack pointer, #1, stack pointer
memread stack[stack pointer], factorial ra
protect
minus stack pointer, #1, stack pointer
memread stack[stack pointer], factorial inval in
protect
move factorial outval out, local
mult local, inval, outval {ln:67, pos:25}
.label32 ENDMODULE factorial {In:68, pos:5}

// ****%* End of recursive module

"factorial” declaration *****
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D.2.2 ICODE grammar in BNF form

Extended ICODE description ::=
{ filemap comment }
program_declaration
{ submodule_declaration }

act_list ::==
label name { °,” label name}

actf list =
ACTF act_list

actt_list ::=
ACT act_list
| ACTT act_list

alias_declaration ::=
ALIAS alias_var name alias_range FROM parent_var _name var_sub_range

binary integer ::=
‘%’ binary_integer_val { binary integer val }

binary integer val ::=
CO’ [ < 1 2

call inst ::=
moduleap_inst
| recurse_inst

collect_inst ::=
COLLECT collect count integer [ info ]

conditional inst ::=
conditional_inst name cond_var actt_list actf list [ info ]

conditional inst name ::=
IF |[IFNOT



D.J.D. Milton, 2002 Appendix D: File formats 379

constant ::=
‘# integer [ ‘2’ width_decimal integer ]

count_inst ::=
count_inst_name counter_var ‘,’ increment_constant ‘," end_term actt_list actf list

count_inst name ::=
COUNT | COUNTDN

counter_declaration ::=
counter type counter_name counter range

counter_type ==
COUNTER | COUNTDN

decimal integer ::=
decimal integer val { decimal integer val }

decimal integer val ::=
CO) [ Cl’ l 523 l 537 ‘ 547 [ 557 } 567 ( 677 | ‘87 I 597

declaration ::=
io_port_declaration
| variable_declaration

declaration_part ::=
{ declaration [info] }

decode inst ;==
DECODE decode var [ info ]
{ CASE constant actt_list [ info ] }

filemap comment ::=
/IF file_id_decimal integer ‘““’ file_full path_string “”’

float ::=
decimal_integer ‘. decimal_integer [ ‘e’ decimal integer ]

general_inst' ::==
general_inst name 10_list [ actt_list ] [ info ]

' General instructions are defined in the ICODE instruction database and may be enhanced as required.
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general inst name ::=
EQ|LS|LE |NE |GE |GR
| NOT | AND |OR | XOR
| NEG | PLUS | MINUS | MULT | DIV
| LSHIFT | RSHIFT | ROL | ROR
| MOVE | SETTRUE | HIGHZ

hex_integer ::=
‘$’ hex_integer val { hex_ integer val }

hex_integer val ::=
(0’ I Cl’ I 627 ! (37 l ‘47 I 65’ I (67 I ‘77 | (87 [ (97 ' ‘A? ' CBD l (C? x ED’ I (E’ ( tF’

info ;=
[ ‘{’ mfo_item { ‘,” info_item } ‘}’ ]

info_item ::=
info_specifier 2’ info_value

info_specifier ;==
In | pos | file | pt | pf | its

info_value ::=
decimal_integer | float

Instruction ::=
general_inst
| memory_inst
| count_inst
| conditional inst
| switch_inst
| decode_inst
| collect_inst
| call inst

integer ::=
binary_integer | octal_integer | decimal integer | hex_integer

10_list =
term { ‘,’ term }
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10_port_declaration ::=
io_port_type io_port_name io_port_range

10_port_type ::=
INPORT | OUTPORT

memory _inst ::=
memory read_inst | memory write inst

memory_read_inst ::=

¢

381

MEMREAD memory_var_name ‘[’ address_term ‘]’ *,” read _var_name [ info ]

memory_write_inst ::=

€2 ¢

MEMWRITE write_term °,” memory_var_name °,” ‘[* address_term ‘]’

moduleap inst ::==
MODULEAP module name i0_list [ info ]

name ;=
string

octal_integer ::==
‘&’ octal_integer val { octal integer val }

octal integer val ::=
607 [ ‘17 l ¢27 l ‘3’ 1 ‘43 l ‘5’ ‘ ‘67 [ (79

process ::=
[ ©.” label name ] instruction

process_part ;=
{ process }

program_declaration ::=
PROGRAM program_name io_list [ actt_list ] [ info ]
declaration_part
process_part
ENDMODULE [ program_name ] [ info ]

ram_declaration ::=
RAM ram_var_name data_range ADDRESS address_range
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range ::=
‘I’ low_bit_index_integer ‘2> high_bit index_integer ‘|’

recurse_inst ;==
RECURSE recmodule_name return_address_constant io_list [ info ]

register_declaration ::=
REGISTER var_name var_range

rom_declaration ::=
ROM rom_var_name data_range ADDRESS address range

string ::=
string char { string_char }

string_char ==
WD @ LW T T KT w0 g ||
SIE W VW XY 7 A B C DB PG| B[ T
T KL MN[0 P [Q RS [T UV [ WXV
LTIV

submodule_declaration ::=
submodule normal | submodule recursive

submodule normal ::=
MODULE module_name io_list [ actt_list ] [ info ]
declaration_part
process_part
ENDMODULE [ module name ] [ info ]

submodule_recursive ::==
RECMODULE module_name return_address_name io_list [ actt_list ] [ info ]
declaration_part
process_part
ENDMODULE [ module name ] [ info ]

switch_inst ::=
SWITCHON switch_var [ info ]
{ CASE constant actt_list [ info ] }
DEFAULT actt _list [ info ]
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term 1=
constant | var

var ;==
var_name | temporary_variable_decimal integer

variable declaration ::=
register_declaration
| alias_declaration
| ram_declaration
| rom_declaration
| counter _declaration

D.3 DDF

The Design Data Format (DDF) file is a direct representation of the full internal data
structures used within MOODS. These data structures are explained within Appendix A.5,
which describes the program ‘DDFLink’. The DDF file can be generated at any time
within the synthesis process. Two types of represented data can be contained, with the
second type containing all the additional logic generated within the post-processing step. It
is the second type that is used within DDFLink. The first type is just a subset of the second
type, without the additions made after synthesis.

D.3.1 Example DDF file with recursion

The main sections within the DDF file are the file list, module declarations, data path

definition, conditional signal definitions and the module library link.

The file list is used to determine a cross-reference back to the originating source files and

ICODE file. A file ID that is used elsewhere within the DDF file references the names.

The list of modules contains the full ICODE description as found within the ICODE file.
In addition to this, the ICODE instructions are placed into control states, which operate
within one time-step. These control states are held in a subsection of the module. The
header ICODE instruction forms the header subsection of each module. The list of

variables is held in a separate subsection.
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The data path for the full design is held within a single data path section. This section
contains all references to the underlying implementing cells and the linkages between

these cells in the form of nets.

The condition list is also held within a single section after the data path. This section
contains the list of all Boolean equations that form the link between the data path and the

various control paths defined within the list of modules.

The final section within the DDF file is the module library section. This section is used for
linking technology specific information derived from a particular module library into the
DDF file description. A separate module library parser that does not need to know about

the DDF files data format reads the data held within this section.

Examples of these sections are shown 1n Listing D.2 below. The version number at the
head of the file determines the present version of the DDF file. This is present so that the
DDF parser can load only up to date files. The listing has been cut down for brevity

reasons and hence does not contain a complete design.

Listing D.2 Example Design Data Format file

ddf_version : 100;

file_list
{
file f£1 : "c:\djdm\larch e\moods\library\standard.pck";
file £2 : "c:\djdm\larch e\moods\library\packages.vhd";
file £3 : "C:\DJDM\LARCH E\vhdl\recursion_test\recursion_test2.vhd";
file £4 : "C:\DJDM\LARCH_E\vhdl\recursion test\recursion_test2.xic";

}

module mé
{
header {
instruction 16 {
icode : recmodule func;

input : iv;
output : ov;
prob : 0O;

sourcepos : £3,16,5;
icodepos : f£4,36,10;
}
end : s63;
}
variables
{
port v8 : iv[0:3] is u8 sourcepos £3,18,7 icodepos f4,39,7;
register v9 : ov[0:3] sourcepos £3,19,7 icodepos £f4,40,8;
register v10 : local[0:3] sourcepos £3,21,16 icodepos f£4,43,9;
temp v20 : var_sl105[0:01;
}
control path <¢7 : c¢7, cl8
{

conditional c7 {
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cell 6;
signal s19;
prob O¢
group gl3 {
instruction 17 : eq iv, #1:4, var_sl05
sourcepos £3,23,13 icodepos f4,46,23;
instruction 18 : if var_sl05
sourcepos £3,23,7 icodepos £4,47,23;
instruction 113 : move #1:1, func_ra when s22 prob 0.5
sourcepos £3,26,9 icodepos £4,52,25;
instruction il2 : plus stack pointer_ 1, #1:0, stack_pointer_ 1 when s22
prob 0.5 sourcepos £3,26,9 icodepos f£4,51,25;
instruction ill : memwrite func_ra, stack l[stack pointer 1] when s22
prob 0.5 sourcepos £3,26,9 icodepos £4,50,29;
instruction i9 : move #1:4, ov when s20 prob 0.5
sourcepos £3,24,12 icodepos f4,48,25;
instruction 110 : minus iv, #1:4, func_iv_in when s22 prob 0.5
sourcepos £3,26,17 icodepos £4,49,26;
}
activate al3 : cl4 when s22 prob 0.5;
}
recurse cld {
cell : 13;
signal 528;
module : m6;
prob 0;
instruction i14 {
icode : recurse func;
input : func_iv_in;
output : func_ov_out;
prob 0.5;
end s64;
sourcepos : £3,26,9;

icod
}
activa
}
general
cell
signal
prob
group
inst

inst

}
instru
activa
1
general
cell
signal
prob
group
inst

inst

1

module ml
{
header {
instruct
icode

epos : f4,53,28;
te ald : clb5;

cl5 {
14;
s30;
0;
gle {

ruction il5 : minus stack_pointer 1, #1:0, stack pointer 1 prob 0.5

sourcepos £3,26,9 icodepos £4,54,26;

ruction il6 : memread stack l[stack pointer 1], func_ra prob 0.5

sourcepos £3,26,9 icodepos £4,55,28;

ction il17 : protect prob 0.5 sourcepos £3,26,9 icodepos f4,56,28;

te al7 : cl8;

cl8 {

17;

s33;

0;
glo {
ruction 118 : move func_ov_out, local prob 0.5
sourcepos £3,26,9% icodepos f4,57,25;
ruction 119 : plus local, #1:4, ov prob 0.5
sourcepos £3,27,21 icodepos f4,58,25;

ion il {
program recursion_test2;
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input : di;

output : do;

prob : 0;

sourcepos : £3,4,1;
icodepos : £f4,11,8;

variables

{

}

port vl : di[0:3] is ul sourcepos £3,6,5 icodepos £f4,14,7;

register v2 : do{0:3] is u2 sourcepos £3,7,5 icodepos £4,15,8;

register v3 : func_ra[0:0] is u3 icodepos £4,18,9;

register v4 : func_iv_in[0:3] is u4 sourcepcs £3,18,7 icodepos £4,19,9;
register v5 : func_ov_out[0:3] is ub sourcepos £3,19,7 icodepos £f4,20,9;
register v6 : stack pointer 1[0:3] is u6 icodepos £f4,21,9;

ram v7 : stack 1[0:31] address [0:15] is u7 icodepos £4,22,4;

register v36 : func_ra decode(0:1] is u2l;

control path c¢2 : c4

{

general c2 {

}

cell : 3;
signal : sl12;
procb : 0O;

instruction i2 : move #0:0, stack pointer 1 icodepcs f4,24,25;
instruction i3 : move #0:1, func_ra icodepos £4,25,25;
activate a3 : c4;

call c4 {

cell : 5;

signal : sl4;

module : mé;

prob : 0;

instruction i4 {
icode : moduleap func;
input : di;
output : do;
sourcepos : £3,33,5;
icodepos : £4,29,29;

}

feedback a4 : c4;

data_path

{

port ul {

width : [0:3];
cell : 20;

net n40 {

}

}

source : pin outputl0:3] is vl;

links : 1i4;

condition : s56;

destination : pin inputl[0:3] @ ul8 is v8 on i4;

storage u2 {
width : [0:3];
cell : 21;

}

control : pin load en[3:
control : pin load_en[2:

when s46;
when s46;

3]
2]

control : pin load_en[l:1] when s46;
0]

control : pin load enl[0:

when s46;

storage ul {

width : [0:0];

cell : 22;

instruction : il3, i3;

386
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172 control : pin load en[0:0] when s50;

173 net n4l {

174 source : pin outputl[0:0];

175 destination : pin inputl[0:0] @ u2l;

176 }

177 net n4l {

178 source : pin outputl[0:0] is v3;

179 links : 1i11;

180 destination : pin inputl[0:0] @ u7 is v7;
181 }

182 }

183 memory u7 {

184 width : [0:317;

185 cell : 26;

186 instruction : il6, i11;

187 control : pin write[0:0] when s48;

188 control : pin read(0:0] when s49;

189 net n45 {

190 source : pin outputl[0:0] is v7;

191 links : 116;

192 condition : s49;

193 destination : pin inputl{0:0] @ ul0 is v3 on il6;
194 }

195 }

196 port u8 {

197 width : [0:371;

198 cell @ 27;

199 net nd6 {

200 source : pin outputl(0:3] is v8§;

201 links : 110;

202 condition : s48;

203 destination : pin inputl[0:3] €@ ul9 is v8 on 110;
204 }

205 net n4é {

206 source : pin outputl[0:3] is v8;

207 links : 1i7;

208 destination : pin inputl[0:3] @ ul2 is v8;
209 }

210 }

211 interconnect u9 {

212 width : [0:3];

213 cell : 51;

214 net nd7 {

215 source : pin outputl{0:3];

216 destination : pin inputl{0:3] @ u2;

217 }

218 }

219 functional ul3 {

220 width : [0:3];

221 cell : 39;

222 instruction : 110, 115, 119;

223 control : pin select[0:0] select 14 on 119 when s40;
224 control : pin select[0:0] select 15 on il0 when s55;
225 net n50 {

226 source : pin outputl{0:3] is v9;

227 links : 14, 1i19;

228 condition : s57;

229 destination : pin inputl[0:3] € u% is v2 on 119;
230 }

231 net n50 {

232 source : pin outputl(0:3] is v9;

233 links : 114, 119;

234 condition : s52;

235 destination : pin inputl[0:3] @ ul5 is v5 on 119;
236 }

237 net n50 ({

238 source : pin outputl{0:3] is v6;

239 links : 115;

240 condition : s49;
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241 destination : pin inputl(0:3] @ ulé is v6 on 1il1l5;
242 }

243 net n50 {

244 source : pin outputl[0:3] is vé;
245 links : ile, il15;

246 condition : s49;

247 destination : pin inputl{0:3] € ul7 is v7 on 115;
248 }

249 net n50 {

250 source : pin outputl[0:3] is v4;
251 links : 110;

252 destination : pin inputl{0:3] @ ud is v4;
253 }

254 }

255 net n0 {

256 source : #1 on 19;

257 links : i4, 19;

258 condition : s58;

259 destination : pin inputl[0:3] @ u% is v2 on 19;
260 }

261 net n0 {

262 source : #0 on 1i3;

263 links : 13;

264 condition : s47;

265 destination : pin inputl([0:0] @ ul0 is v3 on 1i3;
266 }

267 }

268

269 condition list

270 {

271 signal s20 : v20 on n389;

272 signal s22 : /s20 on n38;

273 signal s37 : s37 on n37;

274 signal s38 : s38 on n36;

275 signal s39 : sl4 on n35;

276 signal s40 : s33 on n34;

277 signal s41 : (s40.s37) on n33;

278 signal s42 : (s41.s39) on n32;

279 signal s43 : (s19.s20) on n31;

280 signal s44 : (s43.s37) on n30;

281 signal s45 : (s44.s39) on n29;

282 signal s46 : (s42 + s45) on n28;

283 signal s47 : sl2 on n27;

284 signal s48 : (s19.s22) on n26;

285 signal s48 : s30 on n25;

286 signal s50 : (s49 + s47 + s48) on n24;
287 signal s52 : (s40.s38) on n22;

288 signal s53 : (s43.s38) on n2l;

289 signal s54 : (s52 + s53) on n20;

290 signal s55 : (s48 + s49) on nl9;

291 signal s56 : (s37.s39) on nl8;

292 signal s57 : (s56.s40) on nl7;

293 signal s58 : (s56.s43) on nl6;

294 signal s59 : (s40 + s48) on nl5;

295 signal s60 : s19 on nl4;

296 signal s6l : (s60.s20) on nl3;

297 signal s62 : (s40 + s6l) on nl2;

298 signal s63 : (s37.s62) on nli;

299 signal s64 : (s38.s62) on nl0;

300 }
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D.3.2 DDF file format grammar in BNF form

Design Data Description ::=
version
[ file list ]
module list
data_path
condition_list
[ module library ]

activation_definition ::=
activate | feedback arc_number ‘:” control number
[ when condition_signal number ] [ prob float ] ‘3’

alias_declaration ::==
alias variable number °:’ alias_variable_name alias_range from variable name

variable_sub_range

arc_number 1=
[ ‘a’ ] decimal integer

binary_integer ::=
‘%’ binary integer val { binary integer val }

binary integer val ::=
CO’ I 417

bool and ::=
bool term { °.” bool term }

boolean_expression ::=
bool term | ‘(" bool_and | bool or ‘)’

bool or ::=
bool_term { “+’ bool_term }

bool term ::=
‘/” bool_term | signal number | variable_number
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condition_list ::=
condition_list ‘{’
{ signal definition }
C}’

constant ;1=
‘#> integer [ ‘:” width_decimal_integer ]

constant_list ::==
constant { °,” constant }

control block ::=
control_path starz_control number ‘:” end_control number list “{

2

{ control node_definition }

o

control definition ::=
control | erased_control ‘:’ control end ‘3’

control end ::=
pin variable name slice_range
[ is variable number ]
[ when signal number ]
[ on instruction_number ]
[ select alu_item_decimal integer ]

control node_definition ::=
control_type control number control_specification

control_number ::=
[ ‘¢’ ] decimal integer

control_number list ::=
control_number { °,” control number }

control parameter ::=
loop_its ‘:” decimal integer ‘3’
| prob :’ float ‘5’
| signal ‘:” signal number ;’
| cell “2* cell reference_decimal integer 3’
| module ‘:’ called module number ‘3’
| end ‘2’ call end signal number ‘3’
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control specification ::=

p
{ control parameter }
{ group_definition }
{ instruction_definition }
{ activation_definition }
C} >

control type ::=
general | fork | collect | conditional | call | recurse | dot

counter declaration ::=
counter | countdn variable_number ‘:* counter variable name variable range

data_path ::=
data_path ‘{°
{ unit_definition }
{ net_definition }

3

decimal_integer ::=
decimal_integer val { decimal integer val }

decimal integer val ::=
CO’ ] 617 [ 62’ l ‘33 I 64’ [ ‘5’ l 66’ ‘ 67’ ] ‘8’ I ‘9’

file list ;=
file_list ‘{°
{ file_list_item }

a4

file list item ::==
file file_number ‘2’ ““’ file string “*”’

file number ::==
[ ‘T ] decimal integer

file_position ::=
file_ number “,’ line_decimal_integer °,” column_decimal integer
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float ::=
decimal integer ‘.” decimal integer [ ‘e’ decimal_integer ]

group_definition ::=
group group number ‘{’
{ instruction_definition }

3

group_number ::=
[ ‘g’ ] decimal integer

header_definition ::=
header ‘{°
header_instruction_definition
[ end ‘:” module_end_signal number °;’

o

hex_integer ::=
‘$’ hex_integer val { hex_integer val }

hex_integer val ::=
LO? ’ 613 ’ €2? l 633 I 647 | 657 ] C6? ’ C7’ ‘ CS) l C99 ’ CA’ l CB? I ‘C) ’ CD’ l CE’ l CFD

icode__instruction_name2 =
eq|Is|le|ne|ge|gr |not|and]or|xor
| neg | plus | minus | mult | div | Ishift | rshift | rol | ror
| move | settrue | highz | memread | memwrite | count | countdn
| if | ifnot | collect | decode | switchon | moduleap | recurse

| program | module | recmodule

instruction_definition ::=
instruction instruction_number instruction_specification

instruction_number ::=
[ ‘i ] decimal integer

instruction_number_list ;==
instruction_number { °,” instruction_number }

? The built-in instructions may be enhanced by extra instructions defined in the ICODE instruction database.
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instruction_parameter ::=
icode ‘:’ icode_instruction_name ‘3’
| input ‘:” inpur 10 _list 3’
| output :’ output io list ‘3’
| condition ‘:” signal_number ‘;’
| activate °:” signal number ‘3’
| prob 2’ float ‘5’
| mutual_list “:” instruction_number_list 5’
| sourcepos ‘:’ source_file position ‘3’
| icodepos °:’ icode_file position ‘3’
| end 2’ recurse_end_signal number 3’

instruction_specification ::=
instruction_specification_block mode | instruction_specification_single line

instruction_specification_block _mode ::=
‘{’ { instruction_parameter } ‘}’

instruction_specification_single line ::=
icode instruction name
10_list
[ when signal number ]
[ prob float ]
[ sourcepos source_file position ]
[ icodepos icode_file position ]

[
b4

integer 1=
binary integer | octal_integer | decimal_integer | hex_integer

io_list i=
10 list item { °,” io_list_item }

io_list_item ::=
variable_name | temporary_variable_decimal mteger |
input_constant | memory_reference

memory_reference ::=
memory_variable_name ‘|’ address_variable_name | address_constant ]’
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memory_declaration ::=
ram | rom variable_number ‘:> memory_variable_name width_range
address address_range data ‘[’ constant _list ]’

module definition ::=
module module number “{’
header definition
variable_block
control_block

o

module library ::==
module_library ‘{’
librau'y__conten‘cs3

o

module_list ;==
‘ { module_definition }

module number ::=
[ ‘m’ ] decimal integer

name ::=
string

net_definition ::=
net | erased_net net number net_specification

net_end ;1=
pin variable name slice_range ‘@’ unit_number | constant | signal_number
[ is variable number ] [ on instruction_number ]
net number 1=
[ ‘n’ ] decimal integer

net_parameter ;==
source ‘:’ source_net _end ‘3’
| destination °:’ destination net_end ‘3’
| links ‘:” instruction_number list 3’
| condition °:’ signal number ‘3’

3 The cell library references are not read with the DDF parser, so are not subjected to this BNF grammar.
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net_specification ::=
‘{’ { net_parameter } ‘}’

octal integer ::=
‘&’ octal_integer val { octal integer val }

octal integer val ::=
LO’ I 617 | C29 ’ 639 | 647 | CS’ l ‘67 ! 677

port_declaration ::=
port variable_number *:’ port_variable name variable range

range ::=
‘[’ low_bit_integer ‘2’ high_bit_integer ‘|’

register_declaration ::=
register variable number °:’ register _variable name variable range

signal defmition ::==
signal signal number :’ signal_specification ‘3’

signal number ::==
[ ‘s’ ] decimal integer

signal specification ::=
boolean_expression on net_number

string ::=
string char { string_char }

string_char ::==
D@ €T g TR T w0’ g | T
CLCW VWY DA B C D E TG | T
TR LM N[O [P [Q R[S T[T VWX Y|
ARV RN,

temp_declaration ::=
temp variable number ‘:’ temp_variable name variable range

unit_definition ::=
unit_type unit_number unit_specification
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unit number ;=
[ ‘w’ ] decimal _integer

unit_parameter ::=
width :” range ;’
| cell “:* decimal integer 3’
| instruction ‘:’ instruction number _list ‘3’
| net_definition
| control_definition

unit_specification ::=
‘{’ { unit_parameter } ‘}’

unit_type ::=
storage | functional | boolean | interconnect | port | memory

variable block ::=
variables ‘{’
{ variable declaration }

>

variable declaration ::=
variable type declaration
[ is unit_number ]
[ sourcepos source_file position ]
[ icodepos icode_file position ] 3’

variable type declaration ::=
port_declaration
| register _declaration
| temp_declaration
| alias_declaration
| counter_declaration
| memory_declaration

variable_number ::=
[ ‘v’ ] decimal integer

version ;1=
ddf version ‘:’ decimal_integer ‘3’

396
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