
TJKE\TERSITYC#SCMJTtLAMPTCXN 

rtEOpyviiTnviiiffirtZMF E%Ljic:iTt(:)]sn;(:si.AjsnD (:()ivcpiJiriiRL:sc:iE]SK:]3 

Dynamic Memory Allocation within a 
Behavioural Synthesis System 

Daniel J. D. Milton 

January, 2002 

A thesis submitted for the title of 
Doctor of Philosophy 



UNIVERSITY OF SOUTHAMPTON 

Dynamic iWemory Allocation within a 
Behavioural Synthesis System 

by 

Daniel James David Milton 

A thesis submitted for the degree of 

Doctor of Philosophy. 

Department of Electronics and Computer Science, 

University of Southampton 

January, 2002 



lJr4I\rEiR.SITrr(:MF S()UTII/Lh/CPT:C)}J 

ABSTRACT 

:FV\ciJi;]7ir ctF irhiCiiNnGJEiiibJCj /LhiD /LPifLJOEi) SKZiniNc:]? 

r)i;Fvi]R:rA/[E]srr c)Fi;i,E(:TR()Ni(:s v\Ni) (:c)Ad])iJTri%Rs;c:iE]\K:]3 

Doctor of Philosophy 

Dynamic IVIemory Allocation within a 

Behavioural Synthesis System 

by Daniel James David Milton 

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a 
behavioural synthesis system tool that converts behavioural descriptions of users' digital 
designs into synchronous structural representations. This thesis describes an enhancement 
to the original MOODS system that allows direct conversion of dynamic memory 
constructs within the source language into a fully structural design with run-time memory 
representation. 

VHDL is used as the source language for design descriptions, and is capable of directly 
describing dynamic memory structures in the form of explicitly created structures as well 
as the more implicit dynamic memory requirements of procedural recursion. The VHDL 
compiler required extensive modification to handle the increased subset of the language at 
the behavioural level. 

The conversion of explicit structure allocation requires a run-time system that is capable 
of storing the data represented by the dynamically allocated structures. This system is 
realised by a behavioural description of a heap management algorithm that is both space 
and speed efficient and interfaces with the users' designs directly via an automatically 
generated interface. 

Procedural recursion is now synthesisable by MOODS from the inclusion of a 
dynamically modified call stack created again, automatically within the users' designs, 
which contains the storage for local variables and passed parameters declared within the 
subprograms. 

Finally, two demonstration systems have been designed and synthesised with the 
enhanced system, with both designs displaying the use of dynamic memory allocation and 
the second design showing the use of procedural recursion within a synthesised hardware 
system. 



Contents 

Chapter 1: Introduction 21 

Chapter 2: Behavioural synthesis and dynamic memory 24 

2.1 Behavioural synthesis 24 

2.1.1 Design flow 25 

2.2 Languages 28 

2.2.1 VHDL 29 

2.2.2 Extended C or C++ 30 

2.3 Memory allocation overview 31 

2.3.1 Stack allocation 33 

2.3.2 Heap allocation 34 

2.3.2.1 Methods 35 

2.3.2.2 Fragmentation 38 

2.3.2.3 Garbage collection 39 

2.4 Synthesis systems and dynamic memory 40 

2.4.1 SpC 40 

2.4.2 Matisse 43 

Chapter 3: The MOODS synthesis system 47 

3.1 VHDL Compiler 51 

3.1.1 Synthesisable VHDL subset 52 

3.1.2 Lexical analysis 54 

3.1.3 Parser 55 

3.1.4 Translation 56 

3.1.5 Optimisation 58 

3.1.6 ICODEGle 58 

3.2 MOODS synthesis core 60 

3.2.1 Control path 61 

3.2.2 Data path 66 

3.2.3 Transformations 69 



3.2.3.1 Scheduling 70 

3.2.3.2 Allocation and binding 71 

3.2.4 Cost function 73 

3.2.5 Optimisation algorithms 74 

3.2.5.1 Simulated annealing 74 

3.2.5.2 Tailored heuristic 75 

3.2.6 Subprogram conversion 77 

3.2.7 Post-processing 79 

3.3 New features 81 

Chapter 4: Dynamic allocation 85 

4.1 General overview 85 

4.1.1 Generated system structure 87 

4.1.2 Synthesisable VHDL subset enhancement 88 

4.1.3 Dynamic memory interface 89 

4.1.4 Translation into ICODE 90 

4.1.5 Heap management 91 

4.1.6 Summary 92 

4.2 Compiler modifications 93 

4.2.1 Heap manager interface 94 

4.2.1.1 Communication 94 

4.2.1.2 Heap constants 96 

4.2.1.3 Interface procedures 96 

4.2.1.4 Additional ports and variables 98 

4.2.1.5 Generating calls 99 

4.2.2 Inlining 100 

4.2.2.1 Determining which modules to inline 102 

4.2.2.2 Method 102 

4.2.3 Parsing and translation enhancement 103 

4.2.3.1 Access types 104 

4.2.3.2 Record types 106 

4.2.3.3 Incomplete types 107 

4.2.3.4 Unconstrained array types 108 

4.2.3.5 Allocation 109 

4.2.3.6 Deallocation I l l 



4.2.3.7 Dereferencing 113 

4.2.4 Variable dimensions 117 

4.2.4.1 Dynamic variable storage 118 

4.2.5 Limitations 119 

4.2.6 Multi-process access 120 

4.2.6.1 Determining concurrent access 122 

4.2.6.2 Heap access ports 122 

4.2.6.3 Servicing the heap access ports 124 

4.3 Heap management 124 

4.3.1 Algorithm 125 

4.3.1.1 Data structures 126 

4.3.1.2 Initial setup 127 

4.3.1.3 Allocation 127 

4.3.1.4 Deallocation 129 

4.3.1.5 Reading and Writing 130 

4.3.1.6 Limitations 131 

4.3.1.7 Advantages 131 

4.3.2 Implementation 132 

4.4 Impact on optimisation 133 

4.4.1 Mined interface procedures 133 

4.4.2 Heap manager component 133 

4.5 Error handling 134 

4.6 Alternative implementations 135 

Chapter 5: Recursion 137 

5.1 General overview 137 

5.1.1 Language implied storage requirements 138 

5.1.2 Original procedure call methods 140 

5.1.2.1 ICODE modules and calling method 140 

5.1.2.2 Passing parameters by reference 141 

5.1.2.3 Structural output 141 

5.1.3 Additions required for recursion 143 

5.1.3.1 Control nodes and return addresses 143 

5.1.3.2 A dynamic stack and stack pointer 144 

5.1.3.3 ICODE modifications 144 



5.1.3.4 Pass by value parameter I/O 145 

5.1.4 Summary 145 

5.1.5 Example 147 

5.2 Compiler modifications 148 

5.2.1 Forward declarations 149 

5.2.2 Detecting recursion 150 

5.2.3 Auto-generated ICODE 152 

5.2.4 Return address generation 152 

5.2.5 ICODE instruction modification 153 

5.2.6 Parameter passing 154 

5.2.7 Stack manipulation 155 

5.2.7.1 Stack and stack pointer creation 155 

5.2.7.2 Push and pop operations 156 

5.2.7.3 Return address manipulation 157 

5.2.7.4 Output parameters 158 

5.2.7.5 Input parameters and local variables 158 

5.2.8 Limitations 159 

5.3 Hardware generation 161 

5.3.1 Modules in MOODS 161 

5.3.2 Post-optimisation step 161 

5.3.3 Return address decoder and control signals 162 

5.3.4 State machine 163 

5.3.4.1 General nodes 164 

5.3.4.2 Call nodes 165 

5.3.4.3 Recurse nodes 166 

5.3.4.4 Linking the return address 167 

5.3.4.5 Mixing call mechanisms 169 

5.3.5 I/O referencing 170 

5.3.5.1 Input multiplexors 171 

5.3.5.2 Output registers and multiplexors 172 

5.3.6 DDF file format change 174 

5.4 Recursion timing 174 

5.4.1 Recurse control node 175 

5.4.2 Stack modification 175 



5.4.3 Return address setup cycle 176 

5.5 Impact on optimisation 178 

5.5.1 Module ordering 178 

5.5.2 Critical path calculations 178 

5.6 Problems and Improvements 179 

5.6.1 Stack overflow 179 

5.6.2 Multiple stacks 180 

Chapter 6: Practical synthesis 181 

6.1 Demonstrator system 181 

6.1.1 First PCB 181 

6.1.2 Second PCB 185 

6.1.3 System structure and partitioning 188 

6.1.3.1 Motherboard 189 

6.1.3.2 Communication 191 

6.1.3.3 Main System board 193 

6.1.3.4 Heap manager board 193 

6.1.3.5 Graphical display board 195 

6.1.3.6 Audio interface board 196 

6.2 Demonstrator I; The tracker 197 

6.2.1 General overview 198 

6.2.1.1 Data structures 199 

6.2.1.2 Processes 200 

6.2.2 User guide 201 

6.2.2.1 Sample mode 201 

6.2.2.2 Sequence mode 202 

6.2.2.3 Playlist mode 202 

6.2.2.4 Download mode 203 

6.2.2.5 Playback 203 

6.2.2.6 User interface 204 

6.3 Demonstrator II: The expression evaluator 205 

6.3.1 General overview 206 

6.3.1.1 Data structures 206 

6.3.1.2 Recursive operations 207 

6.3.2 User guide 208 



6.3.2.1 Factorial mode 208 

6.3.2.2 Expression evaluation mode 208 

6.3.2.3 User interface 209 

6.4 Simulation experiment 211 

6.4.1 Small language parser 211 

6.4.2 Comparable implementations 211 

6.4.3 Comparison 213 

Chapter 7: Conclusions and further work 218 

7.1 ICODE optimisation 219 

7.2 Heap modifications 219 

7.3 Stack modifications 221 

7.4 Exception handling 223 

Appendix A: Collateral projects 224 

A.l VGA controller library 225 

A. 1.1 Overview 226 

A.l.1.1 Controller 226 

A. 1.1.2 Interface 227 

A. 1.1.3 Simulation 227 

A.l.1.4 Source VHDL structure 228 

A.l.1.5 Design structure and style 228 

A. 1.2 Original 16-colour interface 230 

A. 1.2.1 Interface types 231 

A. 1.2.2 System setup 231 

A. 1.2.3 Drawing attributes 232 

A. 1.2.4 Palette modification 234 

A. 1.2.5 Drawing horizontal lines 235 

A.l.2.6 Drawing filled rectangles 236 

A. 1.2.7 Drawing arbitrary lines 236 

A. 1.2.8 Drawing characters 239 

A. 1.2.9 Vertical blanking 241 

A. 1.2.10 Using the interface 241 

A.1.2.11 General tips for use 243 

A. 1.3 Original 16-colour controller 245 



A. 1.4 XESS 16-colour controller 246 

A. 1.5 XESS 256-colour interface 247 

A. 1.5.1 Using the interface 248 

A. 1.5.2 Interface types 249 

A. 1.5.3 Interface procedures 249 

A. 1.6 XESS 256-colour controller 252 

A.2 Keyboard controller library 254 

A.2.1 VHDL Gles 254 

A.2.2 Controller 255 

A.2.2.1 Serial to parallel 256 

A.2.2.2 Translation of meaning 256 

A.2.3 Interface 257 

A.2.3.1 Interface types 258 

A.2.3.2 Interface procedures 258 

A.3 Serial port library 261 

A.3.1 VHDL files 261 

A.3.2 Receiver controller 262 

A.3.3 Interface 264 

A.3.3.1 Interface types 265 

A.3.3.2 Interface procedures 265 

A.3.4 Serial port pin specification 267 

A.4 Wave viewer 268 

A.4.1 Wave file 268 

A.4.2 User interface 270 

A.5DDFLiiik 272 

A.5.1 DDF object 273 

A.5.1.1 Module 274 

A.5.1.2 ControlNode 274 

A.5.1.3 ControlArc 275 

A.5.1.4 Instruction 275 

A.5.l.5InstI0 276 

A.5.1.6 DataPathNode 276 

A.5.1.7 DPNet 277 

A.5.1.8DPNetPin 277 



A.5.1.9DPControl 277 

A.5.1.10 Variable 278 

A.5.1.11 Condition 278 

A.5.1.12BoolEqn 279 

A.5.1.13 Const_node 279 

A.5.1.14ModPin 279 

A. 5.1.15 CaseSelect 279 

A.5.1.16File_infb 279 

A.5.2 DDF parser 280 

A.5.3 DDF output 280 

A.5.4 VHDL output 280 

A.5.5 VDF output 282 

A.5.6 Linking DDF objects 284 

A.6 3D graphics 285 

A.6.1 Hierarchical rendering engine 285 

A.6.1.1 Composition 285 

A.6.1.2 Frustrum 286 

A.6.1.3 Hierarchical objects 288 

A.6.1.4 Bounding spheres 290 

A.6.1.5 Clipping 291 

A.6.1.6 Depth transformation 292 

A.6.1.7 Rendering pipeline 293 

A.6.1.8 Hierarchical language 294 

A.6.1.9 Summary 296 

A.6.2 Results 296 

Appendix B: Paper 299 

Appendix C: Demonstrators in detail 312 

C.l Echo demo 312 

C. 1.1 Analogue data path 314 

C.l.2 Effect methods 314 

C.l.2.1 Echo effect 314 

C.l.2.2 Pitch shift effect 315 

C.l.2.3 Phasing effect 316 



c.1.3 Digital design - multiple processes 317 

C. 1.3.1 Rate process 317 

C.1.3.2 Phase shift process 317 

C.1.3.3 Button process 317 

C.1.3.4 Debounce process 317 

C.1.3.5 Second rate process 318 

C.1.3.6 ADC clock process 318 

C.1.3.7 ADC control process 318 

C.1.3.8 Control process 318 

C.1.3.9 Memory process 318 

C.1.4 PCB design and production 319 

C.2 PCB design 321 

C.2.1 Programming the FPGA 321 

C.2.2 FPGA pin-out 322 

C.2.3 Pin constraints 323 

C.2.4 Track layout 333 

C.3 Demonstrator motherboard 335 

C.4 VGA serial interface controller 342 

C.4.1 Interface 343 

C.4.2 Controller 343 

C.5 Heap manager 345 

C.5.1 Code implementation 345 

C.5.2 DRAM control process 346 

C.5.3 Refresh timer process 346 

C.5.4 Core process 346 

C.5.4.1 Memory access interface procedures 347 

C.5.4.2 Setup 347 

C.5.4.3 User interface loop 347 

C.5.4.4 Heap management procedures 348 

C.5.4.5 Memory status interface procedures 350 

C.5.5 Memory map buffer process 351 

C.5.6 VGA drive process 352 

C.6 Tracker demo 353 

C.6.1 Code implementation 353 



C.6.2 Data structures 354 

C.6.2.1 General linked lists 354 

C.6.2.2 Strings 354 

C.6.2.3 Samples 355 

C.6.2.4 Sequences 355 

C.6.2.5 Playlist 356 

C.6.2.6 Real-time buffer arrays 356 

C.6.3 Concurrent process communication 357 

C.6.3.1 Semaphore signals and shared variables 357 

C.6.3.2 User interface redraw control 357 

C.6.4 Core process 357 

C.6.4.1 Keyboard interface 358 

C.6.4.2 Serial port interface 358 

C.6.4.3 Operation modes 358 

C.6.4.4 Sample recording (sampler) 359 

C.6.4.5 Sequence editing 359 

C.6.4.6 Playhst editing 359 

C.6.4.7 Sample playback 359 

C.6.4.8 Sequencer playback 360 

C.6.5 Drawing process 361 

C.6.5.1 Initial setup 361 

C.6.5.2 Drawing strings 361 

C.6.5.3 Drawing generic lists 362 

C.6.5.4 Drawing real-time audio 362 

C.6.5.5 Drawing samples 363 

C.6.5.6 Drawing sequences 363 

C.6.6 Buffer processes 364 

C.6.6.1 ADC / DAC controller 364 

C.6.6.2 Input audio FIFO 364 

C.6.6.3 Output audio FIFO 364 

C.6.6.4 Serial port input FIFO 364 

C.6.6.5 Multi-chip Synchronisation 365 

C.7 Expression evaluator demo 365 

C.7.1 Code Implementation 365 



C.7.2 Data structures 365 

C.7.2.1 Dynamic log structure 366 

C.7.2.2 Expression binary tree structure 366 

C.7.3 Text log procedures 366 

C.7.3.1 Full log redraw 367 

C.7.3.2 Line creation 367 

C.7.3.3 Text insertion 368 

C.7.3.4 Drawing strings 368 

C.7.3.5 Drawing integers 368 

C.7.3.6 Scrolling up and down the log 369 

C.7.3.7 Dynamic log erasure 369 

C.7.4 Tree modification and recursion 369 

C.7.4.1 Factorial evaluation 370 

C.7.4.2 Recursive expression evaluation 370 

C.7.4.3 Recursive expression tree drawing 371 

C.7.4.4 Recursive expression deletion 371 

Appendix D: File formats 372 

D.l BNF descriptions 372 

D.2 ICODE 373 

D.2.1 Example ICODE file with recursion 376 

D.2.2 ICODE grammar in BNF form 378 

D.3 DDF 383 

D.3.1 Example DDF file with recursion 383 

D.3.2 DDF file format grammar in BNF form 389 

References 397 



Figure 2.1 Design flow of a generic behavioural synthesis system 26 

Figure 2.2 Two dimensional design space 27 

Figure 2.3 Heap management data structures 36 

Figure 3.1 Original MOODS system data flow 49 

Figure 3.2 Data structures used by the MOODS synthesis task 51 

Figure 3.3 VHDL Compiler program flow 52 

Figure 3.4 VHDL lexical analysis 55 

Figure 3.5 Unsigned hypotenuse calculation ICODE fragment 60 

Figure 3.6 Initial control and data flow graphs for the unsigned hypotenuse calculation.. 63 

Figure 3.7 Execution of chained instructions in a single control state 64 

Figure 3.8 Data flow and data path views of a shared adder functional unit 68 

Figure 3.9 Design cost plotted against a single dimensioned configuration space 74 

Figure 3.10 Module call-mechanism example 78 

Figure 3.11 Control signal generation example 80 

Figure 3.12 Modified MOODS system data flow 82 

Figure 4.1 Generated system structure 87 

Figure 4.2 Translation of access type dereferencing 90 

Figure 4.3 VHDL Compiler program flow with inlining 93 

Figure 4.4 Communication between concurrent systems 95 

Figure 4.5 Communication port linkages 98 

Figure 4.6 Module inlining example 101 

Figure 4.7 VHDL structure for an access type declaration 104 

Figure 4.8 ICODE generated for a statically declared access type variable 105 

Figure 4.9 VHDL structure for a record type declaration 106 

Figure 4.10 ICODE generated for a statically declared record type variable 107 

Figure 4.11 VHDL structure for an incomplete type declaration 107 

Figure 4.12 Incomplete type declaration used for linked list creation 108 

Figure 4.13 VHDL structure for an unconstrained array type definition 109 

Figure 4.14 VHDL structure for object allocation 109 



Figure 4.15 ICODE generated for the dynamic allocation of three different types 110 

Figure 4.16 VHDL structure for object deallocation 112 

Figure 4.17 ICODE generated for an object deallocation 112 

Figure 4.18 Mined ICODE generated for an object deallocation 113 

Figure 4.19 VHDL structure for object dereferencing 114 

Figure 4.20 ICODE generated for dynamic and static dereferencing 115 

Figure 4.21 Example underlying data structures for allowable dimensions 118 

Figure 4.22 Example MOODS design structure with concurrent heap access 121 

Figure 4.23 Concurrent heap access port 123 

Figure 4.24 Heap management data structures 126 

Figure 5.1 Recursive procedure loops 138 

Figure 5.2 Procedure stack 139 

Figure 5.3 VHDL function translated into ICODE module 140 

Figure 5.4 Input and output parameter passing 142 

Figure 5.5 Fibonacci test design source code 147 

Figure 5.6 Fibonacci test design ICODE translation 148 

Figure 5.7 Example VHDL: Declarative regions and forward declarations 149 

Figure 5.8 Determining recursive procedures and procedure calls 151 

Figure 5.9 VHDL Compiler program flow with recursion modifications 152 

Figure 5.10 ICODE equivalent instructions for stack modifiers 156 

Figure 5.11 Example return address decoder 163 

Figure 5.12 The general control node 164 

Figure 5.13 The call control node 165 

Figure 5.14 The recurse control node 167 

Figure 5.15 State machines use of the return address 168 

Figure 5.16 Module call styles 169 

Figure 5.17 Example generated structure for module inputs 172 

Figure 5.18 Example generated structure for module outputs 173 

Figure 5.19 Example state machine timing flow 177 

Figure 6.1 First PCB System connection 183 

Figure 6.2 First PCB System layout picture 184 

Figure 6.3 Second PCB system connection 187 

Figure 6.4 Second PCB system layout picture 188 

Figure 6.5 Demonstrator system partitioning and connectivity 190 



Figure 6.6 Handmade backplane board 191 

Figure 6.7 Asynchronous double buffering 192 

Figure 6.8 Example real time memory map picture 194 

Figure 6.9 Heap manager size statistics 195 

Figure 6.10 VGA display driver size statistics 196 

Figure 6.11 Audio board 197 

Figure 6.12 Tracker design size statistics 198 

Figure 6.13 Linked list container with two elements 199 

Figure 6.14 General tracker data structure linkage example 200 

Figure 6.15 Simulated tracker screenshot 204 

Figure 6.16 Expression evaluator design size statistics 205 

Figure 6.17 Binary tree container with 8 elements 207 

Figure 6.18 Simulated expression evaluator screenshot 210 

Figure 6.19 Language description in BNF 211 

Figure 6.20 Source code line count for each implementation 212 

Figure 6.21 Time taken by simulations 214 

Figure 6.22 Simulation phase time proportions 215 

Figure A.l VHDL Wrapper file structure 229 

Figure A.2 Bresenhams line drawing algorithm 237 

Figure A.3 Rendering angles for partial line drawing implementations 238 

Figure A.4 ASCII character map image in a 2K ROM 240 

Figure A.5 DRAM-based VGA controller process communication 245 

Figure A. 6 SRAM-based VGA controller process communication 247 

Figure A.7 Pixel addressing scheme for the 256-colour controller 249 

Figure A.8 SRAM-based 8-bit per pixel VGA controller process communication 253 

Figure A.9 Keyboard controller design flow 255 

Figure A. 10 Keyboard serial data stream 256 

Figure A. 11 Serial port receiver controller design flow 263 

Figure A. 12 Serial link data stream 264 

Figure A. 13 Wave viewer screen shot 271 

Figure A. 14 Control graph and highlighted control node instructions 283 

Figure A. 15 Basic primitive composition 286 

Figure A. 16 Curved primitive composition from approximation 286 

Figure A. 17 Frustrum for perspective views 287 



Figure A. 18 Hierarchical graph world construction 289 

Figure A. 19 Bounding sphere definition 290 

Figure A.20 Bounding sphere check against finstrum 291 

Figure A.21 Primitive intersections with frustrum resulting in clipping 292 

Figure A.22 Depth transformation 293 

Figure A.23 Rendering pipeline 294 

Figure A.24 A potential group logo 297 

Figure A.25 A second potential group logo 297 

Figure A.26 A street scene 298 

Figure A.27 Another street scene from a different angle 298 

Figure A.28 A wide angled view of the street scene with fog, light and lens flare 298 

Figure C.l Effects system dataflow diagram 314 

Figure C.l Echo effect memory mapping 315 

Figure C.3 Pitch shift effect memory mapping 316 

Figure C.4 Effects processor PCB track layout 320 

Figure C.5 Effects processor PCB picture 320 

Figure C.6 External programming connector 321 

Figure C.l Programming mode DIP switch settings 322 

Figure C.8 FPGA package used by the PCB 322 

Figure C.9 General purpose PCB track layout 334 

Figure C.IO Address decoder logic 342 

Figure C.l 1 VGA serial controller control flow 344 

Figure C.l2 Heap manager communicating processes 345 

Figure C.l3 Heap management algorithm call graph 348 

Figure C.14 Tracker processes and data flow 354 



Table 2.1 Abstraction level in the structural domain 25 

Table 3.1 Descriptions of the different control node types 65 

Table 3.2 Scheduling transformations 71 

Table 3.3 Allocation and binding transformations 73 

Table 4.1 Heap size constant widths 96 

Table 4.2 Interface procedures 97 

Table 4.3 Bus use for each interface procedure 99 

Table 4.4 Allowable variable type dimensions 117 

Table 4.5 Concurrent equivalent heap access port procedures 123 

Table 6.1 Available XILINX devices using the PG475 package 182 

Table 6.2 Available XILINX devices using the PG559 package 186 

Table 6.3 Played note to key pressed 203 

Table 6.4 Expression operations 209 

Table 6.5 Data set statistics 213 

Table 6.6 Complete measured time results in |j,s 216 

Table A.7 Files required for VGA controller simulation 227 

Table A.8 Files required for the VGA controller 228 

Table A.9 Files required for the user to interface to the VGA controller 228 

Table A. 10 Files required for the keyboard controller 254 

Table A. 11 Keyboard data stream translation 257 

Table A. 12 Files required for the serial port interface 262 

Table A. 13 Serial port pin specification 267 

Table A. 14 Frustrum view plane definitions 287 

Table C.l Clock pin constraints 323 

Table C.2 Keyboard pin constraints 323 

Table C.3 Mouse pin constraints 323 

Table C.4 Serial port pin constraints 323 

Table C.5 Text ROM pin constraints 324 

Table C.6 Video signal pin constraints 325 



Table C.7 Frame buffer DRAM pin constraints 326 

Table C.8 General purpose DRAM bank 0 pin constraints 327 

Table C.9 General purpose DRAM bank 1 pin constraints 328 

Table C. 10 Expansion port A pin constraints 330 

Table C. 11 Expansion port B pin constraints 333 

Table C.12 Main board expansion port B (top) 335 

Table C.13 Main board expansion port A (bottom) 336 

Table C.14 Heap manager board expansion port A (top) 337 

Table C.15 Heap manager board expansion port B (bottom) 338 

Table C.16 VGA drive board expansion port A (top) 339 

Table C.17 VGA drive board expansion port B (bottom) 340 

Table C. 18 Audio Board 341 

Table C.19 Information contained within serial interface instructions 343 

Table D.l Special control instructions 376 



Acknowledgements 

I would like to thank a number of people, with whose help and support this project was 

completed. 

Firstly, I would like to thank my supervisor, Professor Andrew Brown. His persistent 

encouragement was of great importance for the completion of this thesis, along with his 

guidance and advice at all stages of the process. 

I would also like to thank Dr. Alan Williams for his invaluable help in understanding the 

internals of MOODS as well as the frequent modifications made to 'modules' along the 

way. 

Thanks also go to Andy Rushton, for the numerous discussions made over many a coffee 

break on the subject of compilers and the vagaries and inabilities of VHDL. 

Finally, thanks to all others who helped, within the Electronic Systems Design Group at 

the University of Southampton and at LME Design Automation. 



D.J.D. Milton, 2002 Chapter 1; Introduction 21 

Chapter 1 

Introduction 

Dynamic memory allocation is the term given to the allocation of storage space for objects 

created and destroyed at run-time. The term, 'object' is used here to encompass anything 

that is dynamically allocated, not as a reference to any object orientated features of a 

language. As the number of objects is unknown at compile-time, a run-time system is 

required that will provide the storage space for any required objects. This system (the 

memory controller) will generally have a fixed memory space from which to allocate. The 

method for determining the position of allocated objects within the available memory 

space is determined by the allocation algorithm. The memory space is known as a heap. 

The physical realisation of the allocation algorithm is the heap management system, which 

is responsible for mapping all allocated objects into the available heap memory space in an 

efficient and fast manner. The compiled translation of the user's design communicates 

directly with the heap manager via a direct interface generated by compilation. 

Another form of dynamic memory allocation is implied by procedural recursion, where a 

procedure can call itself from within its own body. This is useful for recursive subdivision 

of problems and for parsing data structures with recursive links. Procedural recursion 

requires that local variables and the procedural interface have instance-local storage 

because the procedures are dynamically re-entrant. A memory stack is generally used to 

store this information due to its close mapping with the type of information being stored, 

where only the memory space at the head of the stack is used at any one time: this 

represents the current instance of the executing procedure. 

Behavioural synthesis of a digital design takes behavioural description of the design and 

translates this into an optimised structural description of the same design. The design is 

described behaviourally, which determines what a design does, not how it is implemented. 



D.J.D. Milton, 2002 Chapter 1: Introduction 22 

The behavioural synthesis tool is concerned with producing the implementation details for 

the behaviourally described design. 

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) [1,2,3] is 

such a behavioural synthesis tool. The tool takes as input behavioural descriptions of 

users' digital designs using the standard language, VHDL (Very High Speed Integrated 

Circuit Hardware Description Language) [4,5]. The optimisation process of the structural 

representation is performed in an iterative manner from an initial naive direct translation. 

The structural design is created as a data path network that is controlled by a single 

synchronously clocked state machine. The optimisation process is concerned with the 

mapping of operations into control states of the state machine (where delay can be 

reduced) and with the sharing of data path units (where the design area can be reduced). 

This thesis describes an enhancement to the original MOODS system that allows direct 

conversion of dynamic memory constructs [6] defined in the VHDL language, which 

raises the level of language abstraction that is described as behavioural to include these 

constructs. In particular, the modifications made to the VHDL compiler are described, 

along with the creation of the run-time systems of the heap manager and the recursion 

stack within the structural output of the tool. 

The addition of support for explicit dynamic memory allocation and procedural recursion 

increases the number of operations available from behavioural synthesis and raises the 

abstraction level further into a software-like design description. This pushing of the 

borders between the abstraction levels for a hardware description and a software program 

(that could use the underlying generated hardware) gives some overlapping of available 

operations in both paradigms. For instance, in a co-design system, with automated 

partitioning between hardware and software, the partitioning tool would have more trade-

offs available for dynamic memory use, due to the overlapping abstraction levels. 

This thesis is divided into seven chapters. Chapter 2 provides a general overview of 

dynamic memory allocation as used within software environments, along with an 

introduction into behavioural synthesis methods and tools. A description of other 

implementation methods used for dynamic memory control in two third party synthesis 

systems is also given. 



D.J.D. Milton, 2002 Chapter 1; Introduction 23 

Chapter 3 describes the MOODS synthesis system in the state before any modifications 

for dynamic memoiy allocation were made, and finishes with an overview of the changes 

required for dynamic memoiy. 

The creation of the heap management system and the modifications to the VHDL compiler 

are described in Chapter 4. This allows the explicit allocation of objects by a user's design. 

The creation of the subprogram stack, which enables procedural recursion is described in 

Chapter 5. These modifications allow the implicit allocation of objects made by each 

subprogram call. 

Chapter 6 describes the development of a general purpose FPGA prototyping board with 

bias towards the underlying storage requirements of the heap. Two demonstration designs 

are also introduced, which show the use and power of the new techniques. Some measured 

comparison results are also gained from an implementation of a small language parser 

design. 

Finally, Chapter 7 concludes the thesis with a number of suggested enhancements and 

modifications, giving scope for further work. 

A number of appendices are also provided, where Appendix A describes a number of 

collateral projects used within the modified system. Appendix B contains a paper given at 

the Forum on Design Languages Conference, 2000. Appendix C contains detailed 

descriptions of the demonstration designs produced within the scope of the project. 

Finally, Appendix D details the modified file format descriptions used internally by the 

MOODS synthesis process. 



DJ.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 24 

Chapter 2 

Behavioural synthesis and dynamic 
memory 

This chapter describes the background material used in the research project. Section 2.1 

gives a general overview of behavioural synthesis. Section 2.2 then discusses the use of 

different languages that can be used as input for behavioural synthesis. Then an overview 

of dynamic memory allocation is given in Section 2.3, with most information gained from 

the software domain. Finally, Section 2.4 describes the current state of dynamic memory 

integration within synthesis, with two examples that have some mechanism for dynamic 

memory allocation built into the synthesis stream. 

2.1 Behavioural synthesis 

A digital design can be described with any number of levels of detail, sometimes called 

abstraction levels [7]. The process of synthesis is concerned with the conversion of a high-

level abstract description into a lower-level description. Table 2.1 describes the various 

abstraction levels used in the design and evolution of a digital design, with the emphasis 

on the structural representation domain. 

Behavioural synthesis [8,9] is the process of converting a design given in the behavioural, 

algorithmic representation into an RTL and/or structural representation of the same design, 

where the generated output feeds further lower-level synthesis systems in order to generate 

a physical hardware system. The benefit of behavioural description is that the high 

abstraction level enables the user to describe a system in terms of ^what it does', rather 

than ''how it does i f . Behavioural synthesis is the process of generating an optimised 

architecture that describes how a system works, where the synthesis tool rather than the 

system designer makes a large number of architectural trade-offs given a number of input 

constraints, such as maximum area, delay and power [10] values. The use of behavioural 



D.J.D. Milton, 2002 Chapter 2; Behavioural synthesis and dynamic memory 25 

synthesis is discussed in [11], along with a discussion of the benefits and drawbacks of 

using a higher-level abstraction level, including the possible use of memory allocation in 

system-level descriptions. 

Abstraction Level Description 

System A system is described as a number of high-level components, such as 

processors, memory, buses and other subsystems, partitioned and linked 

together to form the global design. 

Behavioural A behavioural level description is used to describe the functionality of a 

subsystem without giving any implementation details. The subsystem is 

described in terms of algorithms and operation sequences, contained within 

any number of concurrent blocks. A full system could be described by a 

single behavioural subsystem or by a number of subsystems. 

RTL A register transfer level description is used to describe the same subsystem 

in terms of abstract registers and combinational transfer logic in the form of 

Boolean equations and mathematical operators. An RTL design description 

faces more language constraints than a behavioural description, particularly 

with restrictions placed upon process timing. 

Structural A structural representation of the same subsystem describes the system in 

the form of a linked structure of concurrent units, where each unit describes 

a low-level cell device, such as a register, functional operator unit (adder, 

multiplier, comparator etc.) or combinational interconnection unit 

(multiplexor). This is a lower level subset of an RTL description, effectively 

forming a netlist. 

Device Each cell used by a structural description can be mapped onto a physical 

device, described by the linkage of transistors, capacitors and resistors. This 

is the lowest abstraction level, with some final implementations seen by the 

user only requiring a description of the black-box behaviour of the device. 

Table 2.1 Abstraction level in the structural domain 

2.1.1 Design flow 

A typical behavioural synthesis system consists of a number of phases within the design 

flow [12], each performing a different construction task. This design flow can be seen in 

Figure 2.1. Though the flow is shown as a number of separate phases, different synthesis 

systems may perform a number of these phases concurrently. 



DJ.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 26 

allocation scheduling source 
compilation 

binding and 
controller 
synthesis of design is 

begin 

behavioural synthesis RTL / structural 
description 

begin 

entity design is 

Figure 2.1 Design flow of a generic behavioural synthesis system 

The first phase is concerned with compiling the behavioural description from the source 

language format into an internal instruction-based representation, and a number of 

compile-time optimisations (loop unrolling, procedural inlining) may be performed during 

this process. The result of compilation is a design specified in terms of a number of simple 

instructions, similar to a software assembly language representation, often contained in 

some form of instruction flow graph, with both the operations on design data and the flow 

of the sequential instructions being represented within the graph. This graph still contains 

only behavioural information, and no structural. 

The next three phases are concerned with translating the behaviour into structure, and 

form the core of a behavioural synthesis system. The synthesis optimisation process is 

either performed during the construction of the data structures or during an iterative 

refinement process after the initial data structures are created, or perhaps both methods are 

utilised. A number of different data structure styles can be used, including the Extended 

Timed Petri-Net (ETPN) representation [13], which separates the control flow fi-om the 

data flow into two data structures with cross-links, or the Control Data Flow Graph 

(CDFG) representation [14,15], which contains the structure in a composite graph, 

representing blocks of data dependent instructions within a subgraph; the Data Flow 

Graph (DFG) [14], contained by conditional control bounds such as loops and conditional 

expressions within the parent graph. 

The scheduling phase determines the time-step at which every compiled instruction is 

executed by the final sequencing controller, usually implemented by a single-clocked 

Finite State Machine (FSM). There is scope for multiple instructions being scheduled in 

the same time-step (control state of the FSM). One general goal is to reduce the number of 

different control states to a minimum, which speeds execution. The allocation phase 



D.J.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 27 

assigns the available data path resources used for the execution of instructions that act 

upon the data flow. For instance, more than one add-instruction may be executed by a 

single adder resource, which shows a second general goal to reduce the number of data 

path units, which reduces the area of the synthesised design. The scheduling and allocation 

phases determine the balance between reducing the number of clock cycles (or control 

states) that a design requires for execution versus the resource sharing that can occur if 

operations are performed by different control states. If scheduling is performed before 

allocation, the scope for operator sharing can be considerably impaired. The trade-off 

made between the two goals of area and delay minimisation can produce a number of 

implementations that form the achievable design space, as seen in Figure 2.2. 

CD 
0 

Optima 

Achievable 
region 

Unachievable 
region 

Delay 

Figure 2.2 Two dimensional design space 

Scheduling determines how many states are allocated within the state machine. Scheduling 

is affected by both resource constraints, specified by a given area or maximum number of 

types of fimctional units, or time constraints, where operations must be scheduled within a 

certain number of clock cycles. Various constructive scheduling techniques exist, 

including an As Soon As Possible (ASAP) [7], As Late As Possible (ALAP) [1], force 

directed [16] or list scheduling [7]. These constructive techniques do not allow 

backtracking. 



D.J.D. Milton, 2002 Chapter 2; Behavioural synthesis and dynamic memory 28 

Allocation determines the assignment of data variables and instructions into a number of 

storage units that are used to store the data over multiple clock cycles (registers, counters, 

RAMs) and functional units that perform the operations required by the instructions 

(adders, multipliers). If the instructions executed by a shared functional unit perform 

different operations, then multi-function units can be allocated in these cases. Various 

algorithms for data path allocation exist, including clique partitioning [14] and the left-

edge algorithm [17]. 

Binding is the process of selecting a particular instance of a type of data path unit from a 

list of alternatives, dependent on the physical attributes of the unit to be bound and the 

given user constraints. It is in the final binding phase that the controlling FSM is built 

from a number of physical components also, or described in a more abstract manner for 

use by a further RTL synthesis stage. The top-down approach of behavioural synthesis 

may now join the bottom-up approach of module generation, which can be used to create 

the actual data path units from a set of parameterisable descriptions. 

2.2 Languages 

The reason that language is an issue is due to the variable ability of different languages to 

represent dynamic data structures and program flow, with some languages more suited to 

this than others. Each language is designed with a particular abstraction level or range of 

levels in mind, where some languages are not capable of handling the higher description 

levels. Another reason for discussion is the new trend for trying to create a unified 

language that can be used for both hardware description and software description. Such 

languages can be described as system description languages (SDLs). 

There is a need for a single unified language that is easy to parse and understand, copes 

with both concurrency and components with a good library control mechanism. However, 

the porting of existing designs can be seen as a drawback to the introduction of a new 

language. In these cases, the language will be seen as an additional unwanted burden. This 

means that only languages that can cope with the multiple abstraction levels of hardware 

and system description with a non-verbose syntax that is easy to understand and port from 

existing HDLs will gain acceptance. 



DJ.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 2 9 

The traditional hardware description language of VHDL is discussed first, giving both its 

merits and drawbacks for system description using dynamic memory. Then, the C/C++ 

language is briefly discussed in terms of its hardware description abilities. 

VHDL [4,5] is the traditional Hardware Description Language used within system design 

for simulation and synthesis [18]. It allows for highly structured design with the language 

containing library management constructs as part of the syntax and semantics. The 

language is designed firstly for the simulation environment, with synthesis use being 

introduced later, with the introduction of RTL synthesis [19] tools first, then with 

migration into behavioural synthesis tools. 

The language is designed to describe a system at all abstraction levels from the device 

level up to the system level. The reason for its segregation in the hardware description 

environment is due to the language requiring simulation in order to execute in a computing 

environment. This requires a simulation tool [20], which usually has a relatively large 

financial cost when compared to software development environments. VHDL is not 

designed for the description of software in an efficient manner. The language is also 

unnecessarily verbose, being based upon the equally verbose ADA language [21]. 

However, VHDL is still the best single language for the description of hardware in the 

synthesis environment, even with its limitations, and is why VHDL is still used by the 

MOODS synthesis system described in the body of this thesis. VHDL is capable of 

describing concurrent blocks of sequential code, where the sequential element describes 

the behaviour of the concurrent block at any abstraction level. Each design can be 

encapsulated by a library definition of its interface, which highlights the ability of VHDL 

to describe a system in terms of a set of modular concurrent components. Sequential 

blocks such as procedures and functions can also be placed into a VHDL library, enabling 

library storage of algorithmic descriptions also. 

The sequential code also allows dynamic memory operations of explicit object creation, 

along with the more implicit procedural recursion, which also requires dynamic memory 

storage. This dynamic memory element is built into the language. The type restrictions of 

the language however, do not facilitate the easy creation of generic dynamic data 



D.J.D. Milton, 2002 Chapter 2: Behavioxiral synthesis and dynamic memory 3 0 

structures, which are frequently used within an algorithmic software environment. The 

reason for this is the lack of templates, type casting or void pointers in VHDL, any of 

which would allow generic data structures to be built. Instead, localised data structures 

require definition at the point of use, which reflects on the verbosity of the language. 

2.2.2 Extended C or C++ 

The C/C++ language has up to this point been used in the generation of software. It has 

also been used for the limited testing of hardware design algorithms, where designs are 

first described and then refined in the C/C++ language. This enables a fast turnaround for 

the evaluation of potential algorithms due to the well-established software debugging and 

verification tools found in most compilation software environments. This use of the 

language is pure, without modification or extension for HDL descriptions, as once a 

design is verified, it is ported into a traditional HDL such as VHDL for further synthesis 

and timing evaluation. 

The use of the language in the initial stages of design has prompted a number of methods 

for direct synthesis fi-om the language. However, to describe hardware ftilly, a number of 

modifications to the standard language are required, namely in order to describe 

concurrency, more varied extendable hardware types, process communication, timing 

constructs and interface definitions [22]. These constructs are all part of the language 

specification of a traditional HDL, but are found lacking in most software languages. 

One method that can be applied is the use of a directly modified C standard to include new 

keywords within the syntax and changes to the semantics for these new structures. This is 

the approach taken in [23], which describes a behavioural synthesis system that uses a 

directly modified C language called BDL (Behavioural Description Language). The 

language is optimised for behavioural or RTL descriptions. The drawback of a modified 

standard language is that the standard language compilers do not compile the new 

standard, which negates a lot of the benefits of description in this manner. It also ties the 

user into a particular synthesis/compilation environment, with yet another language to 

understand. The synthesis tool in this case does not support any pointer use, dynamic 

memory management or recursion. 



D.J.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 3 % 

An alternative approach is to use the extensibility of the C++ language in the generation of 

a number of class objects that can describe the extra components required by a concurrent, 

timing critical system description, such as concurrent processes and signal definitions. 

This allows all standard language compilers and verification environments to compile the 

HDL directly, which enables fast system simulation (without the need for a simulator), 

integrated debugging and statistical verification. This is the approach taken in [24], which 

describes a set of C++ classes, globally called Scenic. This specification has migrated into 

the public domain, now being known as SystemC [25,26], The class libraries are capable 

of describing an RTL system level up to a fiill system specification, including behavioural 

descriptions. The classes form a wrapper around the standard language constructs, 

providing a runtime environment with concurrency and data communication. 

Another benefit of using the C++ language is the ability to describe polymorphic data 

types, where the types used can be interchanged without modification to the underlying 

code that uses the type. Better specification of generic abstract data types is also possible 

in C/C++, which enables better modularisation. However, current implementations of 

synthesis systems that use this form of the C/C++ language do not support pointers, 

dynamic memory management or recursion within the synthesisable subset of the 

language. This limitation is due to the synthesis tool, not the software verification 

environment. 

Two synthesis environments that use C/C++ descriptions with limited dynamic memory 

support are described in Sections 2.4.1 and 2.4.2. 

2.3 Memory allocation overview 

Memory allocation describes how a system assigns storage to the translation of source 

language input, both in terms of implicit system structure and of user data. User data 

memory allocation comes in many forms, both implied by the language and explicitly 

referenced by the design. Storage requirements will either be statically created during 

compilation or dynamically grow and shrink with the execution of the design. The storage 

requirements are also dependent on the methods used to translate the given language. 

For instance, in a software environment, every aspect of the translated design will 

eventually be stored by some form of memory, from the storage of the translated program 



D.J.D. Milton, 2002 Chapter 2; Behavioural synthesis and dynamic memory 32 

instructions requiring a fixed amount of static space, through the static allocation of global 

program variables, then with a dynamic stack block used for storage of local variables and 

parameters used by subprograms and finally with an explicit dynamic heap block used for 

storage of explicitly created dynamic objects. This is due to software languages generally 

being translated for use in conventional von Neumann architectures. 

In the behavioural synthesis environment, the 'program' itself does not require memory 

storage, as the design is translated into a static structure of low-level hardware components 

(this is not strictly true now, due to the introduction of FPGA programmable devices that 

require the hardware configuration to be stored in a large ROM, and once configured, the 

'hardware' is actually built fi-om a number of configurable SRAM-based logic blocks -

however, this structure can still conceptually be considered as static hardware). The data 

within this structure does however require some form of storage. This kind of system 

separates the storage requirements of the design 6om the storage requirements of the data 

within the design, unlike the von Neumann processor targeted software. 

Typical static creation of memory in a hardware design relates to the allocation of static 

registers to store variables or signals [17]. An extension of register allocation is with the 

generation of counter variables, where the storage element itself is used to perform 

operations on the data contained within it. Static multi-dimensional arrays also have a 

direct translation into fast indexed SRAM memories. Behavioural synthesis could also 

assign groups of single static variables into memory blocks for storage efficiency reasons 

[27]. The creation of pipelined fiinctional units also requires implied register storage at the 

end of each pipeline stage [28]. Each of these memory requirements is statically created by 

the compilation or synthesis stages of a behavioural synthesis tool. 

The dynamic memory constructs in a source language require a completely different 

method of storage. Dynamic memory is used extensively in software development due to 

the data abstraction that is possible with its use. The underlying storage mechanism is still 

based upon the same types of index-addressed memory, but the interface into that memory 

requires runtime systems in order to manage the allocation of dynamic objects within the 

available data space. Dynamic memory has had little use in the synthesis environment due 

to the inherently static nature of hardware description, but with the raising of the 

abstraction level of design description away fi-om a 'direct' translation of the source 

description comes the increased desire for the use of abstract dynamically allocated 



DJ.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 33 

runtime data types. For this reason, most literature focuses on the software applications of 

dynamic memory, although most have equal applicability in the hardware domain. 

Two mechanisms are generally used for the allocation of dynamic memory in a software 

environment. A stack is used by the procedure call mechanism and a heap is used for 

explicitly created objects. Both are formed from controlled data structures. 

2.3.1 Stack allocation 

Software subprograms in the form of procedures or Amotions are implemented by a 

separate instruction list within an area of program memory. Most languages support re-

entrant subprograms, where the local data controlled by the subprogram is replicated on 

every instance of the subprogram being called, so that any one instance does not overwrite 

the data contained by any other instance. The need for re-entrant subprograms is two-fold: 

The first is that a concurrent runtime environment could be in use, which allows the same 

procedure to be called from different threads at the same time (interweaved by context 

switches), and the second reason derives from procedural recursion, where one instance of 

a procedure can call another instance of the same procedure either directly or indirectly via 

other recursive procedures. Each instance of the procedure requires a new set of local 

variables - this is where the stack is used. 

A stack is formed from a very simple data structure of a large contiguous block of memory 

accessed from a current index position, indicating the current data set being accessed by a 

subprogram. The stack is of fixed length and can occupy a shared underlying memory 

system. The stack can only be accessed from its head, with procedure calls allocating 

enough local memory space from the stack by incrementing the stack pointer by a number 

of words. A return from a procedure decrements the stack pointer by the same number of 

memory words as the original increment, leaving the memory above the head of the stack 

containing free data. The stack confrol is formed as part of the compiled code. 

The stack mechanism is so widely used in software descriptions that most implementing 

microprocessors have special instructions for stack supporting operations, for example the 

'push\ 'pop\ 'cair and 'ref instructions (shown in assembly code mnemonics), which 

are used for insertion and removal of stack data and by the procedure calling mechanism. 



DJ.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 3 4 

Advanced circular register windows are also used by certain microprocessors to speed the 

memory access time of the stack [29]. 

The data stored in a typical stack mechanism relates to three data sections of a 

subprogram. The local variables are the first, with passed I/O parameters being the second 

(really a subset of the first). The procedure calling mechanism also requires stack storage 

for the return address of the position to jump back into once the subprogram completes. 

The stack is the natural place to store this information, due to the instance-local 

requirements. The storage of the return address on the stack provides the final mechanism 

required for procedural recursion. 

2.3.2 Heap allocation 

As well as dynamic data that follows the program procedure calling mechanism, dynamic 

data can be allocated explicitly from any position within the program, used after that point 

and deallocated at any position after allocation. In many languages, the method used to 

reference the allocated data is by a single base address that references a contiguous block 

of memory space that the object can use. The number of words that the allocation space 

for an object requires maybe determined during compilation, or even maybe determined 

at runtime. 

Allocation of dynamic objects is performed by an allocator, which is directly accessible 

by the source language, and potentially hidden from the user. A deallocator performs 

deallocation of dynamic objects similarly. The data that represents the created object is 

accessed in a way that is dependent on the type of object created. The values in an array 

object are accessed by an offset index value; whereas a record element is accessed by a 

constant element offset value defined by the compiler. 

The allocator requires a given memory object size, provided as a count of bytes or words 

and returns a reference to the memory allocated for the object. The deallocator requires 

only the reference to the object to be given, with the underlying mechanism able to 

determine the object size from the containing heap data structure and the objects position 

in memory. The reason for this is that a compile-time object size may not be able to be 

calculated by the deallocation call due to the ability to define the size of an allocated 



D.J.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 35 

object at runtime, at the point of allocation. For this reason, the size of the returned objects 

must be stored by the heap mechanism. 

Due to the very abstract nature of supplying storage for an object from an available data 

space, a number of heap allocation mechanisms exist, with various trade-offs made with 

respect to allocation strategy and policy [30]. Each mechanism effectively uses a different 

underlying data structure and method for selecting blocks of memory to return via the 

allocator. The goal is to reduce wasted memory space and the time for each allocation. 

The overall strategy should be able to exploit the regularities in the memory allocation 

request stream, with the policy determining the implementable decision procedure for 

placing blocks in memory. The mechanism forms the set of algorithms and data structures 

that implement the policy. The memory allocation 'algorithm' usually refers to the 

underlying mechanism for memory allocation, partly because the only point at which 

memory management occurs is during the allocator and deallocator interface execution. 

2.3.2.1 Methods 

The data structures used by a memory management scheme are usually built from a 

number oi header fields (Figure 2.3a), stored in the same memory space as the allocated 

data. The information stored within the headers relate to the sizes of objects being created 

and links to other header structures, which form the containing data structures. Tree-type 

data structures can be formed with the use of header and footer structures, which support 

memory block splitting and coalescing [31]. Another useful structure used by various 

allocation mechanisms is the free list (Figure 2.3b). These utilise the same data space as all 

allocated data, where the list does not effectively consume any memory space, due to the 

free list structure being formed within the free memory blocks themselves. 



D J . D . Milton, 2002 Chapter 2; Behavioural synthesis and dynamic memory 36 

memory 
space data space (one or more objects) i i i ' l 

- header- available data space — 

a) Header fields 

- header-

memory 
space 

base pointer free object free object free object -*?«- free object -
(in header) 

b) Free list created within the data space 

free object -

Figure 2.3 Heap management data structures 

The heap management algorithm could effectively be asked for any size of object, and 

expected to return a block of contiguous memory large enough for the contained object. 

However, the probability of the different object sizes being used is dependent on the 

application that uses the heap management system. If an allocator can optimise itself 

dependent upon the memory requirements of a particular application [32,33,34], then this 

could speed the allocation requests and minimise memory wastage. A more general case 

than this suggests that the treatment of smaller objects should be different to the treatment 

of larger block objects, as the bulk of all allocation requests are for small objects. A 

mechanism that exploits this fact may perform almost, or just as well as an optimised 

allocator. 

There are five main types of documented allocation mechanisms: sequential fits, 

segregated free lists, buddy systems, indexed fits and bitmapped fits. Each describes a 

basic mechanism, with various real-life allocators using parts of each mechanism type, 

with conglomerate allocators using a mix of mechanisms (example measurements in [35]). 

A brief mention of all basic mechanisms is given below. 

1. The 'sequential fits' mechanisms are based upon a single linear list of free blocks. 

The first-fit mechanism [36] allocates an object by searching the free list from the 

start point, returning the first block large enough to store the required data. If the 



D.J.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 37 

block is larger than the returned object, then it is split into the returned object block 

and the rest of the free space, which is re-inserted into the list of free blocks. The 

next-fit mechanism is a derivation on this concept, except that the starting point for 

the search is the last checked free block. A best-fit mechanism searches the entire 

free list to find the smallest free block large enough to satisfy the request, so this 

does not scale well in larger memory systems. 

2. The 'segregated free lists' mechanisms are based upon an array of free lists that 

contain objects of particular sizes. Objects are returned from the first free list that is 

capable of holding the required sized object. If an exact match is not available, then 

a larger object contained by alternative free lists is returned, with some wasted 

space. A derivation of this mechanism is used within this thesis, based upon [37,38], 

where each free list is defined within a separate memory page, allocated at runtime 

to store objects of particular sizes. 

3. The 'buddy systems' mechanisms use splitting and coalescing of memory blocks 

into pairs, where these pairs can be of equal size: binary buddies, or of different 

ratios: fibonacci buddies, weighted buddies. Blocks are split until the correct 

memory size can be returned via the allocator. This system uses a binary tree storage 

data structure. Another variant of the buddy system is the double buddy system, 

where two binary buddies are used, with different sized base objects. This enables 

closer matching of the required object size to the returned memory block. 

4. The 'indexed fits' mechanisms use structured indexes to implement a desired fit 

policy. This is really a container for multiple fit strategies, which use a number of 

different data structures to speed allocation searches. 

5. The 'bitmapped fits' mechanism is a derivation on the 'indexed fits' mechanism. 

This uses a bitmap block into the entire memory space, indicating which blocks in 

memory are allocated and free. Fast bitmap searches are formed from the densely 

packed information, allowing fast allocation. 



DJ.D. Milton, 2002 Chapter 2; Behavioural synthesis and dynamic memory gg 

2.3.2.2 Fragmentation 

There are two types of fragmentation that can occur in the allocated data space of the heap. 

The first is external fragmentation, where an allocation fails even when free memory is 

available. This can occur if the requested block size is too big for any contiguous block of 

free memory, or if the object size is too small to split a large free memory block in naive 

mechanisms. The second type is internal fragmentation, which occurs when a returned 

block is larger than the required object size, resulting in wasted space within the returned 

allocated block. This is deemed as internal fragmentation as the waste is part of an 

allocated block. This situation can occur in some mechanisms due to the need to round up 

object sizes to the nearest power of two or closest match available. 

The splitting and coalescing of free memory blocks generally combats fragmentation. 

These operations operate upon the free memory area only, with any space allocated for 

objects being immovable while allocated. Allocation can fail if there are no free blocks 

next to each other that can be coalesced. As the mechanism affects where the objects are 

created, this can affect the ability to coalesce free blocks. This could mean that some 

analysis of the behaviour of real programs could help with the selection of an allocation 

mechanism. 

General analysis of various designs has highlighted three types of allocation behaviour. 

These behaviours are classified as follows: 

1. Ramps: Data structures are accumulated over time, with the program solution found 

quickly once complete, allowing the quick destruction of the data structures. 

2. Peaks'. Bursts of allocation and then deallocation. This behaviour is seen within 

phased programs. 

3. Plateaus: Data structures are built quickly and kept for a long duration until the 

solution is found. The data structures are then removed quickly. 

Also, extra information discovered while profiling real-life memory accesses has indicated 

that objects that are allocated at about the same time are likely to be deallocated at about 

the same time. Another general observation indicates that objects of a different type 

(hence size) are likely to be deallocated at different times in the program flow. The 



D.J.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 39 

conclusion of these observations is that an allocation policy should sequentially allocate 

objects in adjacent positions, with segregation dependent on type (size). This exploitation 

of the non-random behaviour of most programs should reduce the effects of external 

fragmentation, with the increased chance of block coalescing. 

Size segregation with enough different sizes for efficient block fitting also reduces internal 

fragmentation for most (small) objects. 

2.3.2.3 Garbage collection 

Garbage collection is an alternative method over explicit deallocation of objects in the 

heap. It forms an alternative to a structured design methodology that removes the need to 

explicitly free any dynamically created object. The memory is taken care of by the garbage 

collector when the user cannot reference the object any more. 

The removal of reference can be due an explicit overwriting of the reference value or from 

the reference simply going out of scope [39]. The scope of an object is determined from 

local variables in the stack or from other dynamic objects that could contain references to 

the object. Static references of global variables or processor registers can also contain base 

pointers of data structures, which determine the scope of objects. 

The 'mark and sweep' algorithm performs typical garbage collection [40]. This algorithm 

requires an entire heap object search from the set of base pointers, which could be derived 

from the stack variables, static data or processor registers. The algorithm receives no 

cooperation from the compiler [41], hence pointer ambiguity requires resolving, when 

determining the path of all reachable objects. The algorithm firstly clears the 'mark-array', 

and then works through the heap objects from the set of base pointers, marking each object 

that is reachable within the mark-array. After this phase, a sweep of the entire heap is 

performed, which removes any unmarked object from the heap data structures. 

While garbage collection is active, no memory operations can be serviced, which halts all 

processes that use the heap. This is unacceptable in a real-time environment. Incremental 

collection [42] can reduce the effects of process halting, but still results in unknown 

memory timing behaviour. Structured programming techniques are more acceptable in a 

real-time environment than garbage collection. 



D.J.D. Milton, 2002 Chapter 2; Behavioural synthesis and dynamic memory 4 0 

2.4 Synthesis systems and dynamic memory 

The field of behavioural synthesis has been around for many years, along with the field of 

dynamic memory allocation in software. It is only recently that the integration of the two 

fields is being attempted. 

A number of behavioural synthesis systems exist, both academic and commercial. Some 

academic systems are: CADDY [43], Cathedral-2 [44], CAMAD [45,13], Chippe [15] and 

Balsa [46,47]. The major commercial systems are: Synopsys Behavioural compiler [48], 

Cadence Visual architect [49] and Mentor Graphics Monet [50]. 

None of the mentioned systems has support for procedural recursion within the 

synthesised designs created by the synthesis tools and no system has support for direct 

synthesis of explicit dynamically allocated objects. However, two systems have been 

created that form a layer on top of behavioural synthesis, allowing design exploration 

before behavioural synthesis is applied. Both these systems use Synopsys Behavioural 

Compiler as the behavioural synthesis tool at the back-end. The front-end system 

exploration and pre-optimisation of both systems support the concept of explicit dynamic 

memory allocation. These two systems are briefly described in the next two sections. 

Other issues that have become more important in recent times have mainly been due to the 

mobile electronics market, where power consumption is a large factor that determines 

battery life. Links have been made to the use of memory [51], where power minimisation 

can be achieved by using a number of smaller single-port memory blocks over one large 

block. Memory accesses cost power, so the removal of transfer redundancy can also help. 

Embedded memories [52] can also help with power use, with the removal of power-

hungry external ports and the widening of internal busses, reducing the number of data 

transfers. Memory bandwidth is also a factor of system design, where compiler 

optimisations and automated system synthesis may help [53]. 

2.4.1 SpC 

SpC [54] is a tool from Stanford University that supports synthesis of standard C 

behavioural models, including support for pointers and data structures. The phases of the 

tool include memory binding into location sets, pointer analysis, dynamic memory 



D.J.D. Milton, 2002 Chapter 2; Behavioural synthesis and dynamic memory 4J 

allocation resolution, pointer resolution, memory partitioning and conversion into a 

traditional HDL to complete the behavioural synthesis flow. 

The first stage in the tool flow is memory partitioning. This stage is required to separate 

the various variables that are notionally stored by a single address space (C being a 

software language) into a set of independent mutually exclusive locations that can be 

accessed in parallel. These location sets can contain single variables, arrays, structures, 

arrays containing structures, structures containing arrays and dynamic memory data 

structures. Each location set holds a single item, where a practical implementation for 

hardware synthesis is sought, each location set will eventually be mapped onto a separate 

memory unit. In the case of arrays of structures, this could be separated into a number of 

arrays of each element type within the structure, allowing for better memory utilisation, 

where each array is contained by a different location set. Location sets with single 

variables can get mapped onto registers, or may not even require storage, being mapped 

onto wires. Location sets containing arrays can be mapped onto register banks or RAMs. 

After the location sets are defined, the accessing of the data in the sets can be via any 

number of pointers. This is the reason for the static pointer analysis stage [55], where each 

pointer is resolved at compile time. The analysis determines the set of locations that a 

pointer could reference. The results of pointer analysis must be both safe and accurate, 

where a safe analysis finds all alternative pointer locations and an accurate analysis 

minimises the amount of logic that is generated to access the memory locations. Pointer 

analysis is used by the pointer resolution stage to build the accessing logic for the 

referenced location sets of each pointer. 

Even though the SpC designers are trying to make the entire ANSI-C language 

synthesisable, there are limitations that are introduced during pointer analysis. The first 

limitation deals with a set of parallel processes, where no shared variables are allowed 

between processes, as static pointer analysis cannot cope with concurrent access to the 

same variables, unless some kind of interface is synthesised for communication between 

the processes. The second limitation is due to the lack of full support for subprograms in 

the underlying behavioural synthesis tool and the differences between the C-based 

subprogram and an HDL-based subprogram. The limitations imposed are that procedural 

recursion is not supported due to the lack of dynamic stack data. Subprograms are also 

usually inlined by a behavioural synthesis tool. 



DJ.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 4 2 

All dynamically allocated data is represented by a specific location set, with a heuristic 

used to separate different data structures within the heap allocated data into different sets. 

Any general pointer index is separated into two fields. A tag field is used to determine 

which location set is referenced by the pointer and the index field stores the index as a 

number of strides within a location set. A stride determines how many memory locations 

are required per index. Offsets from the index are used when referencing sub-structures. 

Limitations on the number of bits used for location set tags and indexes place upper limits 

on the sizes of data structures. 

The support of runtime memory allocation requires an allocator [56]. This is provided in 

hardware-controlled form, due to the synthesis nature of the tool. Memory is managed by 

a number of user defined memory segments, where a segment is an array of finite size 

with data allocated within it by a unique hardware allocator. The memory segment may be 

later mapped onto one or more physical memories during synthesis. The user of the system 

determines how many memory segments are created and which allocations occur in which 

segment. The user also sets the physical size of the memory segment. Allocations are 

made with the use of the standard C-runtime 'malloc' and 'free' functions, which are 

translated into calls to the allocator defined for the relevant segment. The tool generates 

every allocator used in the different segments and communication is formed using 

handshakes with the main user's design. 

A number of optimisations can be made with selection of the allocator used by the 

memory segments. There are currently three supported allocators, which allow a certain 

degree of tailoring. The first allocator is a general-purpose allocator that can allocate 

objects of any size. This uses a first-fit mechanism with direct coalescing on deallocation. 

The second allocator is an optimised form of the first, which performs better deallocation 

performance through better data structure linkage. The final allocator has a specific 

purpose. It is capable of allocating objects of only one size, similar to the segregated free 

lists mechanism. This allocator can only be used when all objects allocated within the 

segment are of the same size. It also borrows from the bitmapped fits mechanism to 

determine which objects are available in the data space. 

A further optimisation may also be applied, which reduces the number of allocations and 

deallocations in very limited circumstances. This optimisation is introduced to cope with 

legacy code that may be used. The optimisation is essentially to convert a sequence of 



D.J.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 4 3 

'malloc' then 'free' into a static location set. This can only be applied in a purely 

sequential block, such as within loop bodies or conditional bodies, with no branching 

between allocations. The allocated object must also be of known size during compilation, 

at the point of allocation. 

The translations made by SpC output the design using Verilog HDL. A standard 

behavioural synthesis tool, Synopsys Behavioural Compiler, then performs the final 

synthesis stage of SpC. 

The approach taken by SpC of synthesising a design directly from the standard C language 

overly restricts the use of the base language, originally designed for software descriptions. 

In this respect, too much effort is placed upon translating the software-like description 

methodology of C over a direct translation possible from an HDL description, such as 

VHDL. 

2.4.2 IVIatisse 

Matisse [57,58,59] is a system design environment that has the capability of describing 

systems with intensive data storage, transfer and real-time requirements. Designs are 

specified in a modified C++ language, which is capable of describing both software and 

hardware. Dynamic memory management is supported with the use of a number of 

abstract data types, which are mapped onto an optimised memory architecture. Traditional 

behavioural synthesis is performed after the Matisse system exploration. The target of 

system exploration is an embedded single chip solution with both hardware and software 

implementation sections. 

The dynamic memory management phases of the design flow determine both the 

containing data structures for user data, the methods used to allocate the data and the 

custom physical mapping of the data structures to a number of distributed memories. The 

Abstract Data Types (ADTs) are used to contain all dynamically allocated objects. All 

dynamic memory management behaviour is synthesised in hardware due to the power 

savings made over a software implementation. 

The language used as input to the system is a syntactically and semantically modified 

C++, which contains extra structures for the definition of concurrent tasks and 



DJ.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 4 4 

synchronisation between these tasks. The model used for system design is based upon 

these new constructs, where a system is defined as a set of processes that communicate 

with control of communication handled by synchronisation. The processes are statically 

created, each with its own virtual memory space. Communication is realised by global 

pointers. Synchronisation occurs with the use of a set of atomic functions, where these 

synchronisation functions may only be executed by one process at any one time. 

The system design flow consists of six phases, of which Abstract Machine (AM) 

generation is the first. Abstract Machine generation is used to build an executable 

specification that can be used in simulation and profiling from the modified C++ language. 

This phase converts the modified C++ into standard C++ with runtime additions added for 

process concurrency and communication. The Dynamic Memory Management (DMM) 

additions are inserted after this, where the DMM phase consists of refinement of the ADTs 

and with the selection of the Virtual Memory Management (VMM) scheme. Process 

concurrency management follows; where this phase is used for concurrency extraction, 

thread scheduling, processor allocation and Inter-Process Communication insertion. The 

underlying memory subsystem is created in the Physical Memory Management (PMM) 

phase, where an area and power efficient distributed memory architecture is generated. 

The final stage is synthesis, where system software is created along with the interface to 

the hardware, which is synthesised from the generated behavioural description using 

Synopsys Behavioural Compiler. 

The phases pertaining to memory management are the ADT refinement stage. Virtual 

Memory Management and Physical Memory Management. Each stage has some effect 

upon the power and area of the final design, each optimised to sustain a certain data 

throughput bandwidth. 

All dynamic data is contained within the Abstract Data Types. The underlying data 

structures that implement the ADTs are built from four primitive dynamic data structures, 

the linked list, tree, dynamic array and dynamic pointer array. Each of these types are 

combined to form the more complex structures, using access keys at each layer. 

Refinement of which underlying data structures to use is performed by a heuristic, that sets 

an ordering of the refinement decisions, which generates the best combination of 

underlying data types. The heuristic is defined to give a power optimal structure [60]. 



D.J.D. Milton, 2002 Chapter 2; Behavioural synthesis and dynamic memory 45 

Hashing is an underlying data structure that can be used as an extra layer when a non-

uniform key distribution is expected as input to any of the basic structure types. 

Virtual Memory Management is applied after the data structures are refined. This phase 

reserves storage space for each data type obtained by ADT refinement within memory 

segments, where each segment has a custom memory manager designed. Similar 

underlying data structures can be set to share the same memory segment at this stage, but 

only if the allocated data of both data structures are allocated in different phases of design 

execution. 

Each segments' custom memory manager can be built using a number of low-level 

mechanisms. The mechanism type is selected from a search space of available 

mechanisms. There are currently three supported mechanisms [61], the state-variable 

mechanism, a 6ee-list mechanism and a FIFO mechanism. All controllers are built to 

allocate fixed block sizes [62], which simplifies the mechanism. The state-variable 

mechanism keeps a state bit per object, which provides a fast bitmap lookup of allocated 

objects. The free-list mechanism simply pushes and pops from the head of the free lists 

when required. The FIFO mechanism has head and tail pointers into the segment. This is 

only used in FIFO communication schemes. 

Physical Memory Management is used to share the virtual memory segments between a 

number of physical memories. A single memory is not automatically mapped, as the 

available cycle budget may not allow for sequential memory accesses, which frequently 

occurs in data intensive applications. The generated distributed memory architecture 

exploits parallelism in the data accesses in order to reduce the number of cycles to perform 

particular memory operations. The method for determining the number of used memories 

and sharing configurations is automated given the area and power constraints. More 

memories allow for a reduction in power, where power is dependent more on data transfer 

than on the core system power. 

The automated method for memory sharing begins with the introduction of basic groups, 

where a segment is split into a number of separate groups. These groups are later assigned 

to physical memory. Scheduling of memory operations on these basic groups is then set, 

which determines which groups are made simultaneously accessible. Then, the physical 

memory assignment phase assigns the basic groups in clusters [63] to physical memories. 



D.J.D. Milton, 2002 Chapter 2: Behavioural synthesis and dynamic memory 4 5 

taking conflicting accesses into account with the assignment of multiport memories or 

separate memories. 

Various examples of the use of Matisse are given in the literature [62,63,64,65], with all 

examples being partial systems used by an ATM communications network. Examples of a 

Segment Protocol Processor (SPP) are given in [62,64] and an Operation And 

Maintenance component (0AM) in [65]. Comparisons between different implementations 

of different designs are given in [63]. 

Matisse is a system design environment that performs trade-offs between a limited set of 

abstract data structures before behavioural synthesis. In this respect, the tool is not as 

general purpose as a synthesis tool supporting dynamic objects directly. The use of a 

software-derived non-standard input language also affects the general use of the tool. 



DJ.D. Milton, 2002 Chapter 3: The MOODS synthesis system 4 7 

Chapter 3 

The MOODS synthesis system 

The behavioural synthesis system used and modified for the dynamic memory synthesis 

research is called MOODS [1,2,3,66,67,68] (Multiple Objective Optimisation of Data and 

control path Synthesis). The system has been developed to compile a behavioural 

description of a digital design using behavioural level VHDL into a structural description 

of the same design using structural level VHDL as output [19]. The structural description 

then feeds a variety of third party tools for the physical design implementation. 

This chapter describes the synthesis system before any additions were made for dynamic 

memory. Section 3.1 describes the VHDL compiler used as the fi-ont end to the system, 

while Section 3.2 describes the operation of the core synthesis process. Finally, Section 

3.3 gives an overview of the modifications made to MOODS for the implementation of 

dynamic memory, giving the modified system data flow, with descriptions of the additions 

and modifications made to the system. Sections 3.1 and 3.2 are essentially a precis of 

previous development of MOODS. The material is included as necessary background. 

The term MOODS refers to the entire behavioural synthesis system. However, the system 

is built from a two main tasks, where the second core synthesis task is also referred to as 

MOODS. The initial system data flow before the dynamic memory additions were made is 

shown in Figure 3.1. The tasks communicate via a number of intermediate files. The 

actions performed by these tasks are listed below. 

1. The behavioural VHDL description can be provided by a number of source files. 

Each file is passed into the VHDL compiler, 'VHDL2IC'. The compiler builds an 

internal representation of the VHDL parse tree and translates this into a simpler 

intermediate description using simple two-input instructions. This description is 

created as ICODE (Intermediate CODE), which is a proprietary language-neutral 

design description file. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 4g 

2. The single ICODE description file is then fed into the main behavioural synthesis 

task, along with a set of user objectives and technology libraries. An internal data 

structure is built that links the ICODE description into the control and data path 

graphs. The initial data structure contains one ICODE instruction in each control 

state, with the functionality of each instruction being bound to a separate data path 

node. The synthesis process is formed from iteratively modifying the data structures 

until the user objectives are met. The structural description of the design is created 

from a direct translation of the internal data structures. This translation is performed 

in the final stages of the MOODS core synthesis task. 

3. The final stages of a system implementation utilise a number of third party tools, 

such as Synopsys Design Compiler [69], Cadence Synergy [70], Leonardo Spectrum 

[71] or Xilinx Foundation [72]. These take the structural VHDL description 

generated by MOODS as input. Each tool performs low-level logic synthesis and 

technology mapping, which translates the design into a physical circuit to be 

implemented in an ASIC or FPGA [73]. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 49 

MOODS 

User Objectives 

Report files 

Behavioural VHDL / 

VHDL2IC compiler VHDL function libraries 

ICODE 

Expanded module 
templates 

MOODS core 

Synthesis and 
Optimisation 

Technology dependent module libraries 

structural VHDL Design Data Format 

' r 

Logic Synttiesis, Placement 
and routing / FPGA mapping 

third party tools 

Logic Synttiesis, Placement 
and routing / FPGA mapping 

third party tools 

FPGA 
u XT 

ASIC 

Figure 3.1 Original MOODS system data flow 

The ICODE description file is used as input to the core synthesis process, as this provides 

a language neutral input method. This allows other languages to be incorporated into the 

MOODS synthesis system by creating only the compiler for them. Each language compiler 

would translate the source description into the proprietary ICODE format. 

The VHDL function libraries are formed from a number of VHDL packages that are 

linked into every input description. These packages contain a number of conversion 

functions, type declarations and operators upon these types. The compiler uses these 

packages internally, forming translation optimisations when the items within the packages 

are used. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 5Q 

The expanded module templates [3,74,75] that are input to the core MOODS synthesis 

task are used for inline expansion of multiple instruction tasks by the synthesis process. 

Expanded modules are used to form alternative descriptions for complex operations that 

can be broken down into more area efficient multiple-iteration versions of the operation. 

Expanded modules are formed from a number of ICODE operations initially generated 

from the compiler. The ICODE operations form a submodule template [76]. Expanded 

modules form an extension to the standard module paradigm used by MOODS, where a 

module is formed from direct translation of a subprogram. 

The technology dependent module cell libraries hold all information about the structural 

unit components that are bound to all control and data path nodes. The control path is 

created from a set of bound control node components that implement the controlling state 

machine from a one-hot token-passing architecture. The variables operated upon by the 

ICODE instructions can be bound to various types of memory components in the data 

path, including registers, counters and RAMs. The data path also contains functional units, 

which perform the operations described by the ICODE instructions. These are bound to 

combinational cells such as adders, multipliers and comparison operators. Finally, the data 

path contains interconnect-units, which provide the controlled data routing through a 

binding to multiplexor cells. The cell libraries contain physical values that describe such 

items as the speed and size of the library unit and the synthesis process for binding and 

sharing decisions uses these values. The libraries also contain RTL VHDL descriptions for 

every cell that is used by the third party tools. The data structures used by the MOODS 

core synthesis task are shown in Figure 3.2, which shows the linkage between the 

structures. 

The design data format file is another output of the synthesis system. This file contains a 

readable description of the data structures used by MOODS. The file can be parsed in 

order to regenerate the same data structures within the synthesis core. 



D J .D . Milton, 2002 Chapter 3: The MOODS synthesis system 51 

ICODE instructions 
(instruction graph) 

i1: minus input, #1, int 
\2: move int, result 

i3: plus input, #1, int 
14: move int, result 

i5: plus input, temp, int \ , 
i6: move int, result ACTiSS 

Control graph 
(state machine) 

-fS) 

Linking 
conditional 
equations 
(glue logic) 

Data path graph 

input temp 

\_MUX / o 

+ /• 
I ALU 

result 

Technology dependent cell library 

General 
Control 
Node 

control nodes 

Register 

storage units 

Ripple 
Carry 
Adder 

Ripple 
Carry 

Subtract 

Ripple Carry 
Add / Subtract 

ALU 

functional units 

Combinational 
Multiplexor 

interconnect units 

Figure 3.2 Data structures used by the MOODS synthesis task 

3.1 VHDL Compiler 

The VHDL compiler that forms the front-end to MOODS is designed with a number of 

phases, which translates the original VHDL description into another description at a lower 

language level. The conversion process translates a number of inputted VHDL files into a 

single ICODE file that is representative of the original VHDL, albeit in a form that is 

similar to an assembly representation of a software language [77]. Compilation, assembly 

and ICODE generation are all performed by a single program, which means that every 

source file that is input to a synthesised design requires re-compilation each time any of 

the input files are edited. The program flow is seen in Figure 3.3, which shows the 

consecutive phases that form the compilation flow. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 52 

VHDL Compiler 

( Lexical Analysis ) 
xr 

( Parser ) 

( Translation ) 
* 

( Optimisation ) 

( CODE file generation ) 

Figure 3.3 VHDL Compiler program flow 

3.1.1 SynthesisableVHDL subset 

Behavioural VHDL tends to use more from the sequential part of the language contained 

by the process construct, rather than from a number of concurrent constructs. RTL 

descriptions are formed more from a linkage of concurrent components, with process 

descriptions being limited to only one clock cycle being described by the entire process 

loop, with one wait statement per process iteration or the process being controlled by a 

sensitivity list. A behavioural description for MOODS, on the other hand, allows multiple 

consecutive clock cycles in a single process. The synthesis process directly controls the 

number of cycles used, with the sequential VHDL operations being converted into ICODE 

instructions that are scheduled within these cycles, under control of the generated finite 

state machine. Timing constraints may be placed in the VHDL source with the use of 

multiple wait statements. This guarantees a level of output timing adherence when 

communicating with external components. 

The general behavioural VHDL constraints [78] placed upon the language by the synthesis 

tool, MOODS [79] are listed below. The limitations are placed upon a single synthesis 

run, with the generated VHDL output of the synthesis process able to be referenced by a 

structural VHDL container description for use with the third party low-level logic 

synthesis and technology mapping tools. The limitations are formed from both the relaxed 

timing model utilised for behavioural synthesis and from the difficulty in implementation 

certain features of the VHDL language. 



D.J.D. Milton, 2002 Chapter 3; The MOODS synthesis system 53 

1. A design is described by a single Entity / Architecture pair, where the Entity 

describes the FO port signals passed into the design and the Architecture describes 

the actions performed by the design. Any number of VHDL packages may be 

referenced and used by the design. 

2. Packages are limited to containing only constants, type declarations and subprogram 

declarations and definitions, with concurrent component declarations disallowed. 

This effectively removes the ability to build up a number of concurrent library 

components, while allowing sequential subprograms to be reused. The component 

limitation is due to the limited concurrency features allowed in the architecture 

body. 

3. The architecture body may contain any number of concurrent processes, with 

component instantiation, generate statements and concurrent signal assignment 

operations disallowed. The contents of the process may reference any constants, 

types and subprograms defined within the used packages or architecture declaration. 

4. Built-in support for the '6zY' type and ^hit^yectof array derivative, along with a set 

of operations on these types and a number of conversion functions are provided by a 

package that is linked into every design passed through the MOODS compiler. 

These types must be used if efficient (compile-time) conversion to and from integer 

types is required. Integer types are used as for-loop iterators and array index values. 

These base types may have sub-type derivatives declared and used in the same 

manner. 

5. Composite type declarations are limited to the use of fixed-length array types that 

form 2-dimensional variables. An array of 'bit_yector's (itself an array of 'bifs) can 

be stored by a bank of multi-bit registers or by a RAM cell. The composite record 

type is not supported, as it is virtually useless without dynamic memory support. 

6. No explicit dynamic memory support is provided, with the lack of composite record 

types, access types (dynamic object reference mechanism) and unconstrained array 

types. Incomplete types, used for cyclic data structure creation are not supported. 

Explicit object allocation and deallocation is disallowed. These restrictions are 

removed with the implementation described in Chapter 4. 



DJ.D. Milton, 2002 Chapter 3: The MOODS synthesis system 54 

7. Subprograms can call other subprograms. However, support for recursive 

subprogram calls is disallowed. This restriction is removed with the implementation 

of procedural recursion described in Chapter 5. 

8. The I/O passed as parameters through subprogram calls is limited to values that can 

be held by a single multi-bit register (1-dimensional types). 

9. There is support within VHDL for abstract file types, which are generally used to 

drive long sequences of test vector values in test-benches. No support for files or the 

underlying file system is provided during synthesis. 

10. Floating-point number support was in the process of being integrated with MOODS 

during the initial stages of dynamic memory support. The compiler did not support 

floating-point numbers at the beginning of this research. 

11. The synthesis process ignores assert statements. These statements are used by 

simulation to provide feedback on abnormal situations or to provide messages about 

the state of the simulation. There is no meaningful translation for synthesis. 

12. The sequential operations contained by a process are simulated within zero 

simulation time (delta-time), with wait-statements defining timing breaks. The 

synthesised design can take a number of clock cycles to perform the same 

operations. Reliance on relative timing for communication between processes is 

therefore not guaranteed to work. Hence, it is recommended that all communication 

be controlled by explicit communication protocols. 

3.1.2 Lexical analysis 

The lexical analyser takes the source VHDL file as input. This phase feeds the parser 

directly with a tokenised representation of the VHDL language. The tokens that it 

generates are representative of every type of item in the VHDL language. Keywords, 

operators, delimiters and values form the various classes of token returned, along with a 

translation of meaning for value class items such as integer constants and identifier strings. 

Any white space is ignored by the lexical analyser, so is not fed into the parser as a token. 

An example lexical analysis stream is shown in Figure 3.4. 



D.J.D. Milton, 2002 Chapter 3: The M O O D S synthesis system 55 

procedure vga_serial_initialize 

( 
signal vga_serial_sem : out bit 

) is 

begin 

inline; 

vga_serial_sem <= '0'; 

wait for 0 ns; 

end vga_serial_initialize; 

TOKEN CLASS VALUE 

procedure_tok keyword 
identifier_tok value vga_serial_initialise 
lbracket_tok delimiter 
signal_tok keyword 
identifier_tok value vga_serial_sem 
colon_tok delimiter 
oiit_tok keyword 
identifier_tok value bit 
rbracket_tok delimiter 
is_tok keyword 
begin_tok keyword 
identifier_tok value inline 
semicolon_tok delimiter 
identifier_tok value vga serial sem 
signal_assign_tok operator 
character_tok value 0 
semicolon_tok delimiter 
wait_tok keyword 
for_tok keyword 
integer_tok value 0 
identifier_tok value ns 
seinicolon_tok delimiter 
end_tok keyword 
identifier_tok value vga_serial_initialise 
semicolon_tok delimiter 

Figure 3.4 VHDL lexical analysis 

3.1.3 Parser 

The parser stage is used to build up an internal representation of the VHDL source code by 

accepting a limited sequence of lexical analysis tokens and value translations. A keyword 

token is usually used to begin a sequence of the language syntax. For instance, the initial 

token in Figure 3.4 is a 'procedure' keyword. The only acceptable token to follow this 

keyword is the procedure name identifier. After this token is the possibility for a choice 



DJ.D. Milton, 2002 Chapter 3: The MOODS synthesis system 5 5 

between a left bracket delimiter, which defines that a port list exists for the procedure; a 

semi-colon delimiter token, which would finish the procedure as its declaration; or the 'is' 

keyword, which would start the definition of the contents of the procedure. In the example 

case, a port list does exist and is terminated by the right bracket delimiter after the list of 

port items is parsed. The same choice then exists between the 'is' keyword and the semi-

colon delimiter tokens. It is in this way that the entire VHDL language is parsed. The 

compiler builds up an internal representation of the parse tree with cross-references made 

to the relevant data structures whenever identifier tokens are parsed. 

3.1.4 Translation 

The next stage in the compilation process is the generation of a simpler internal data 

structure that is a direct representation of the ICODE file to be generated. This is the 

translation step. Some constructs in the VHDL parse structure have a simple one to one 

mapping. For instance, VHDL procedures and functions map directly onto an ICODE 

module and the entity/architecture definitions map onto the single ICODE program 

module that forms the root of the systems control flow. 

VHDL variables and signals [80] are translated into ICODE 'register's, 'ram's, 'rom's, 

'counter's, Hnporfs or 'outporfs depending on their use. An ICODE 'ram' and 'rom' are 

specified directly by the user, while a 'counter' is inferred from variables defined by a 

loop construct. An ICODE 'inporf or 'outporf is defined for every input or output item in 

the I/O list of the module, with VHDL inout ports translated into separate ICODE 

'inport's and ' outporf s. 

The processes in an architecture definition are merged into the root ICODE program 

module during translation, with the concurrent operation being defined by an initial 

multiple instruction activation list whose control flow never re-converges. The process is 

the only concurrent construct that is converted into ICODE. All other concurrent 

constructs are disallowed. 

The process, function and procedure bodies all contain a sequence of VHDL operations. 

These operations may be formed 60m complex expressions. These expressions are 

translated into a list of ICODE instructions by recursively following the complex 

expression VHDL parse tree and building up a sequence of simple ICODE operations that 



D J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 57 

are based upon the VHDL operators involved in the complex expression. These operations 

act upon the registers, RAMs and counters that are translated from the original VHDL 

variables and signals. To break the complex expressions into simpler ICODE instructions, 

various temporary variables are created for the transmission of data from one simple 

instruction to the next. The number of bits required for the temporary variable storage is 

inferred from the operations taking place, where for example, an addition operation 

between two 8-bit variables is translated into an ICODE 'plus^ instruction with the result 

placed into a temporary variable of 9 bits. The width of the resultant temporary is enough 

to contain all possible resultant values of the operation. 

Loop constructs in the parse tree are translated into actions on the loop variable that is 

directly translated into an ICODE variable. Assigning the starting value to the loop 

variable initialises the loop. This is performed by a simple ICODE 'wove' instruction. Any 

expressions contained by the loop follow the initial assignment. The loop iteration test is 

inserted after the translated contents of the loop. A conditional activation choice is made 

between the first generated ICODE instruction in the loop and the first translated ICODE 

instruction following the loop construct. This test determines whether to exit the loop or to 

continue for another iteration. The conditional activation is implemented using an ICODE 

Hf instruction, passing the result of a comparison of the loop variable with the loop end-

condition as the single parameter. The loop iterator is incremented or decremented at this 

point. 

A VHDL 'if expression is directly translated into an ICODE 'if instruction that is fed 

with the Boolean result of the translated VHDL expression. The conditional activations 

that follow activate the first translated ICODE instruction in either branch of the condition. 

The two branches of the condition are translated into two sequences of ICODE 

instructions that follow each other in the ICODE file. To stop the first branch activating 

the second branch after it is complete, the first branch performs an activation of the first 

ICODE instruction that follows the translated VHDL ' if statement in the ICODE file. 

A VHDL 'case' statement is translated in a similar way, with a direct translation into an 

ICODE 'switchon' instruction. The multiple alternatives to the case test are made via 

multiple conditional activations of a number of ICODE sequences. Each sub-sequence in 

the ICODE file activates the first ICODE instruction that follows the case statement by 

translation. 



DJ.D. Milton, 2002 Chapter 3: The MOODS synthesis system 58 

A procedure or function call has a direct translation into the ICODE 'moduleap' 

instruction. The call is made to a translated procedure or function, which in ICODE is 

translated into a 'module'. The 'moduleap' instruction references the module byname. 

The mechanism for parameter passing in both ICODE semantics and the structures 

generated by MOODS is pass-by-reference for both input and output parameters. This 

means that the parameters passed into the module are acted upon directly by the operations 

contained by the module. These semantics of translation allow VHDL signals to be passed 

through subprogram I/O lists directly, as the VHDL semantics for signal parameter 

passing is also pass-by-reference. VHDL variables however, use pass-by-value semantics, 

where the passed parameters are copied. A direct translation for variable parameter 

passing into ICODE pass-by-reference semantics is possible at this stage without any side 

effects due to the non re-entrant module structures generated by synthesis. Note that the 

modifications made for procedural recursion (described by Chapter 5) effectively change 

the parameter passing semantics into pass-by-value so that the VHDL behaviour for 

variable parameter passing is not broken for recursive subprograms. 

3.1.5 Optimisation 

The optimisation phase of the compiler is extremely naive, and not to be confused with the 

optimisation capability of the MOODS core. It is simply used to reduce the number of 

ICODE operations that represent the design. The translation process uses dummy 

instructions as placeholders around block operations. This simplifies the translation 

process, but the dummy operations require removal. This is the first job of the optimiser. 

The second job is to remove redundant 'wove' instructions. These can occur between 

translated operation blocks and results in a sequence of 'move' instructions that pass a 

single value through the sequence. These are optimised into single 'move' instructions. 

3.1.6 ICODE file 

The ICODE file is generated directly from the internal representation of the ICODE data 

structures. There is a one to one mapping between the internal translated data structure and 

the generated file. This forms the last phase of the compiler program flow. 

A fuller description of the ICODE format is contained in Appendix D.l. This description 

includes the modifications made for procedural recursion, explained in Chapter 5. The 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 59 

most salient points about the format are listed below, followed by an example. Figure 3.5, 

which shows a fragment of a generated ICODE description, along with the VHDL source 

used to generate it. 

• An ICODE file can contain a number of 'module's, which are translations of serial 

subprograms. The main 'program' module forms the translation of the architecture 

body, which can contain the translation of any number of concurrent processes. 

Forming multiple unconstrained activations of the first translated ICODE instruction 

of each process supports process concurrency. 

• An ICODE instruction forms a single sequential operation. It has the general form: 

label: OPERATION <inputs>, <outputs> <activation list> 

• Each ICODE instruction can be activated by any number of other ICODE 

instructions. The instruction is then notionally executed. The instructions contained 

in the executed instruction's activation list are then activated. The activations can be 

conditional on the result of the operation performed by the executed instruction, 

allowing the values of resultant data variables to influence the direction of the 

control flow. Within the ICODE file, if no activations are listed for an instruction, 

then the single instruction following the executed instruction executes next. For 

example, in Figure 3.5, instruction 'fP' activates 'z70', which then activates 'z7i', 

followed by 'z72'. In contrast, the instruction labelled 'z5' only activates instruction 

'/5' given by the single actual activation and not the following instruction ' i4 \ Note 

the conditional activations are formed by the ICODE Hf instructions. 

• Temporary variables are represented as integer constants in ICODE, and translations 

of actual VHDL integer constants are prefixed with '#'. 



D.J.D. Milton, 2002 Chapter 3: The M O O D S synthesis system 60 

/CODE 

if xl > x2 then 
dx ;= xl - x2; 

else 

dx ;= x2 - xl; 

end if; 

if yl > y2 then 
dy := yl - y2; 

else 

dy := y2 - yl; 

end if; 

hyp := sqrt(dx*dx + dy*dy); 

15: 
16: 

17: 
18: 

19: 
110 

111 
il2 

il3: 

gr xl,x2,l 

if 1 ACrr 13 ACTF 14 
minus xl,x2,dx ACT 15 
minus x2,xl,dx 

gr yl,y2,2 

i f 2 Acrr 17 ACI-F IE 
minus yl,y2,dy ACT 19 
nuzms y2,yl,dy 

mult dx,dx,3 
mult dy,dy,4 

plus 3,4,5 
moduleap sqrt 5, hyp 

function sqrt 
(input : integer) 
return integer is 

begin 

end; 

module sqrt input,output 

120: endmodule sqrt 

Figure 3.5 Unsigned hypotenuse calculation ICODE fragment 

The translation of complex expressions is split into a number of simpler ICODE 

instructions, with temporary variables being used to pass data through each 

operation. 

The activity of a subprogram 'module' is initiated via the calling ICODE instruction 

'moduleap\ which halts execution of the calling flow until the called module 

completes execution. A module completes when the 'endmodule'' instruction is 

activated. The instruction activated by the 'moduleap' instruction (instruction 'il3' 

activated by 'z72' in Figure 3.5) is the first instruction executed after the call to the 

module completes. 

3.2 IVIOODS synthesis core 

The internal MOODS core data structures hold both the behavioural representation of the 

ICODE along with a fully bound structural implementation of the behavioural data path 

and control path. It is possible to output a structural representation of the system at any 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 61 

point during the synthesis process after the ICODE file has been loaded into the internal 

data structures. The MOODS synthesis process is effectively the act of optimisation of 

these data structures by using multiple simple control and data path transformations, 

controlled by a transformation selection algorithm. 

There are two main core data structures, the control path and data path graphs (see Figure 

3.2). The control path holds a graph representation of every state in the controlling state 

machine, where each state executes one or more ICODE instructions. The data path holds 

a number of data path nodes that implement the operations performed by the ICODE 

instructions. The behavioural ICODE representation is not directly used by the structural 

output, which instead relies upon just the control graph and data path graph structures. 

The structural representation is built in the initial stages of the MOODS core from the 

input ICODE. The initial generated structure is formed from a naive implementation of the 

behaviour, where the structural construction algorithm places each ICODE instruction in a 

separate control state node and creates a separate data path node for each functional 

ICODE operation and ICODE variable. This means that the initial structure is both 

maximally serial, with no shared operations and variable storage elements in the data path. 

The controlling state machine controls the data path firom the state enable signals, where 

each state has a single enable signal that is high during an active state. These active state 

signals indirectly drive the data path nodes via a number of conditional signals. Particular 

data path units have controlling inputs that are driven from the control path. For instance, 

register-type data path nodes have the load-enable signals driven and multiplexor-type 

data path nodes have the selection inputs controlled. Feedback from the data path to the 

controlling state machine is formed via the same conditional signals, which can be used to 

determine the next state from conditional branches of the state machine. The outputs of 

comparison-type data path node operators are used for these conditional choices. 

3.2.1 Control path 

The control path data structure is formed internally from a graph structure, where each 

graph node represents a single control state in the controlling state machine. Each state is 

used to execute one or more ICODE instructions. Control arcs between the graph nodes 

form the links to the next and previous control states in the state machine. 



DJ.D. Milton, 2002 Chapter 3: The MOODS synthesis system 52 

The internal control graph data structure is sufficiently abstract that any number of 

physical implementations of the state machine could be used, each describing the same 

number of control states and transitions between states. At present, only one 

implementation method is used; a one-hot encoded token-passing structure, where each 

control state node is built fi:om a control cell that contains a single register bit that is 

activated for one clock cycle by one or more token inputs to the cell. The activating token 

signals are representative of the arcs between the control states of the abstract control 

graph and the registered state bit forms the state enable signal, used to control the data 

path. This style of implementation suits the register-rich Field Programmable Gate Array 

(FPGA) architecture that is used for the demonstrators. Alternative state machine 

implementations could be formed from a binary or grey-coded state representation in 

limited register environments or even by a micro-coded controller. 

Figure 3.6 shows the initial control graph and a data flow representation of the data path 

graph of the partial design described in Figure 3.5. The figure shows that each instruction 

is contained in a separate control state (Si to Si3), with the data flow between control states 

being stored in temporary registers (labelled 1 to 5) and translated intermediate registers 

(Wx' and 'dy'). The data path operators that implement the ICODE instructions are shown 

on the right hand side. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 63 

sqrt sub 
module 

Figure 3.6 Initial control and data flow graphs for the unsigned hypotenuse 
calculation 

Each control state data structure holds a list of ICODE instructions that are executed in 

that state. The instructions within a state are also partitioned into a number of groups, 

where each group contains an acyclic subgraph of instructions, where the graph 



D.J.D. MHton, 2002 Chapter 3: The MOODS synthesis system 64 

determines the data dependency between instructions in the same control state given by 

the flow of data between them. Each group can execute concurrently with any other group 

in the control state, due to the data independence of the instructions held by different 

groups. The data dependency information is only useful in a single control state, as it 

allows state-local concurrency to be utilised. Any instructions contained in any other 

control state execute at a different time, with no concurrent execution issues. 

A single group of two data dependent operations in a single control state is shown in 

Figure 3.7a. The operations are data dependent as the result of the first addition operation 

forms one input operand of the second addition operation. The consequence of chaining 

the two additions in a single control state is that two separate adder data path units are 

required and the propagation delay for both operations must be summed together in order 

to calculate the register-to-register delay. This value is used to determine the minimum 

possible clock period for a design. Figure 3.7b shows the available time for each 

instruction, along with the present clock period idle time. 

i1 

! ( s i i 
12 

r 
+ 

I 

clock 

state active 
signal S, 

Instruction 
timing 

12 jtime 

register 
access time 

register 
setup time 

a) Delay optimised control and data flow b) Chained Instruction timing 

Figure 3.7 Execution of chained instructions in a single control state 

The synthesis optimisation process requires knowledge of the execution time for each 

ICODE instruction in order to fully optimise the control path with respect to the required 

clock period. Characterisation data is fed firom links to the implementing data path nodes 

of the relevant ICODE instructions. All data path nodes are fully bound to a physical 

technology-specific library cell during synthesis, from which the characterisation data is 

gained. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 65 

Six different types of control nodes are used in the control graph data structure. These are 

listed in Table 3.1 below. This is only a naming convention used to highlight the actions of 

different sections of the controlling state machine. When the state machine is optimised 

using scheduling transformations, the distinctions between the different types of control 

nodes become less apparent. The exceptions to this are the collect and call nodes, which 

cannot be merged with any other type of node. The collect node can be completely 

removed by the parallel merge transformation however. 

Control node type Description 

General This has a single input and a single output arc and can contain any iCODE 

instructions other than 'collect, 'moduleap' or conditional instructions. 

Fork This node can contain the same ICODE instructions as the general node 

and has a single input arc and two or more unconditional output arcs. This 

node is used to initiate a set of parallel execution threads. 

Collect This node contains a single ICODE 'collect instruction only and is used to 

synchronise a set of parallel execution threads into a single thread. The 

node has two or more input arcs and a single output arc. The node does not 

activate the next state node until a fixed number of input activations are 

received. This node complements the concurrent branching fork node. Note 

that the threads formed from the translation of VHDL process concurrency 

are not actually collected in this manner. Also, the VHDL compiler, rendering 

the collect node obsolete, no longer supports a concurrent translation of 

sequential threads. The mechanism is still supported by the MOODS core 

however, and is listed here for completeness. 

Conditional This node can contain any ICODE instruction supported by the general node 

as well as requiring a conditional ICODE instruction such as 'if or 'switchon' 

to form the conditional branching choice. The node has a single input arc 

and two or more conditional output arcs. This node is used to initiate only 

one branch of a set of mutually exclusive execution threads. 

Dot This node is the complement to the conditional node. It has two or more 

input arcs and a single output arc. Any of the input arcs can activate the 

node. It forms the convergence of any number of mutually exclusive 

execution threads. It supports the same set of ICODE instructions as the 

general node. 

Call This node only contains a single 'moduleap' ICODE call instruction. It has a 

single input and output arc. The control node forms the basis of the sub-

module calling mechanism within the control graph. The call node stays 

active throughout the duration of the sub-module call, only activating the 

next state when the sub-module completes execution. 

Table 3.1 Descriptions of the different control node types 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 5 5 

Once the control graph is optimised, the only distinct types of node are the call, collect and 

general node types. These are physically realised by the 'call control celV described in 

Section 5.3.4.2 and the 'collect control ceW (obsolete), with all other nodes realised by a 

'general control ceW described in Section 5.3.4.1. 

3.2.2 Data path 

The internal representation of the data path is formed from a disjoint graph of data path 

node units, connected indirectly via data path nets, which themselves have a level of 

indirection used to determine the bit-range connectivity of the multi-bit nets. The core 

graph node, the data path unit, describes the data path operations, storage and selective 

connectivity that implements the data processing side of the source ICODE file. There are 

three main types of data path node unit. 

1. A functional unit implements ICODE operations such as additions, multiplications 

and comparisons. These operations are purely combinational, executing without the 

need for a controlling clock. These types of nodes are not controlled directly; they 

instead rely on the linked system to drive the inputs of the functional unit and to read 

the results of the unit at controlled time points. The job of the combinational 

functional unit is to produce the result of the operation in a specified amount of 

physical time beginning from the time that the inputs to the unit are modified. An 

exception to this rule is formed from the use of ALU type functional units, which 

can perform more than one type of operation. The type of operation is selected via a 

set of controlling input signals, driven from the controlling state machine. An 

example of an ALU unit is an add/subtract unit, where the unit is used in place of a 

single add and a single subtract unit under area considerations. Note that only one 

type of operation may be used in any single control state. 

2. A storage unit implements the franslation of ICODE variables (both user defined 

and temporary). A variable requires physical storage when its value is written to and 

read from, from within different clocked time periods. Each state of the controlling 

state machine executes in a different clock period, which means that any variable 

that is operated upon within two or more states with data flow between these states 

requires physical data storage. A number of different types of storage unit exist, 

optimised for different purposes. The general register type storage unit is used for 



DJ.D. Milton, 2002 Chapter 3; The MOODS synthesis system 5 7 

the storage of temporary variables and general data variables. A variable that is only 

ever reset and incremented (or decremented) is translated into a counter type storage 

unit. A third type of storage unit is formed from a multi-level array variable, where a 

'ram' type storage unit is created for this purpose. The controlling state machine 

directly controls storage units, where each unit has a set of input control signals. The 

type of control is dependent on the type of storage unit, with the most common 

operation being a register load operation. A register can be read at any time from a 

simple link to the register output. Note that the register is updated at the very end of 

the execution period of the control state in which a write operation is performed, 

leaving the rest of the execution period to calculate the value written into the 

register. This situation is seen in Figure 3.7b, where both addition ICODE 

instructions il and i2 are performed in the same control state. Si, as the register load 

operation of variable V . 

3. The final type of data path node unit is the interconnect unit. These units are used to 

select the inputs of any shared data path unit that has multiple input nets. The 

interconnect units are only physically generated as a post-processing step after the 

core optimisation process has completed. The library cell that implements the 

interconnect node type is a multiplexor. As these multiplexor cells are not physically 

created until the post-processing step and the cells have both area and delay factors, 

the optimisation process must take into account these factors from the implied 

position of the multiplexor cells. Multiplexors are not physically created during 

synthesis for both time and code size efficiency of data path modification reasons. A 

multiplexor is implied when a data path unit has more than one input net connection, 

where selection between the different inputs is required at different times in the 

control flow, controlled by the state machine. The multiplexor has a number of 

selection inputs that are driven from the state machine enable signals via the 

conditional equations, in a similar manner to the ALU select signals. 

Every data path node is treated in the same maimer and with the same priority as every 

other data path node. The data path node graph element is stored in a generic data structure 

block. Links into the cell library give the bound functionality of each node, along with the 

area and delay information used in the optimisation process. The generic nature of the data 

path nodes gives technology independence to the synthesis core, while allowing 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 68 

technology specific cell information in the form of the area and delay estimates stored 

within the selected cell library to feed the synthesis process. 

The signals that link the data path nodes to the control path nodes are represented by 

Boolean logic equations. This abstraction of the control signal generation allows for 

further logic optimisation of these linking signals. One reason that direct-linkage between 

the control and data paths cannot be used is due to the scheduling optimisations merging 

control states together, including conditional branches. If, for example, a variable is 

updated by one conditional branch of a control flow and not in the other, and both 

branches are optimised into a single control state, the register load enable signal requires a 

conditional drive dependent on the branch selection comparison result now calculated in 

that control state. Another, perhaps simpler reason for the need of linkage equations is that 

a register may need updating from a number of control states. The register load enable 

signal in this case is formed from the logical-OR of all of the state enable signals in which 

the variable being stored by the register is updated. 

12 

Ir r 

+ 
(DP1) 

T 

+ 
(DP1) 

3 fl 

LD r 
T 

+ i1 
12 

LD 1 

a) Combined control and data flow view 
using one control state per instruction 

b) Data path structure view using a 
single shared functional unit 

Figure 3.8 Data flow and data path views of a shared adder functional unit 

The data flow diagrams shown in Figure 3.6 and Figure 3.7a show the activity of 

operations unrolled into the time-steps in which they operate. This is not fully 

representative of the data path graph described by this section. Figure 3.8 illustrates the 

differences between the data flow representation and the actual generated data path for a 

shared adder functional unit, used unconditionally in two consecutive control states. The 

temporary result of the first add-operation requires register storage as it is written in state 



DJ.D. Milton, 2002 Chapter 3: The MOODS synthesis system 5 9 

S] and read in state S2. Note the inclusion of the interconnection multiplexors, which are 

generated by the post-processing step. This type of structure is generated if a design is 

optimised for area, or if the add-operations cannot be chained together when delay 

optimising due to a specified clock period being less than the combined delays of two 

adder functional units. 

3.2.3 Transformations 

The optimisation is an iterative process, where the task is split into many small local 

optimisation transformations on selected parts of the design. This allows the traditional 

synthesis sub-tasks of scheduling, allocation and binding to be performed simultaneously 

within the optimisation loop [81,82]. The transformation selection and design section to 

transform are selected by the optimisation algorithm. 

Each local transformation is semantic preserving, resulting in a complete design after 

every execution of a transformation on the design. The synthesis data structures hold a 

complete and fully bound design throughout the entire synthesis process. There are 

fourteen different transformations, each performing slight changes in the design to adjust 

the scheduling of the controlling state machine and the allocation and binding of the data 

path. The fourteen transformations include six inverse transformations that allow 

backwards steps to be taken within the simulated annealing optimisation algorithm. 

There are four steps that relate to the application of a single design transformation. This 

forms a single iteration of the optimisation process. The steps are listed below. 

1. Selection. The initial stage of a transformation is to select the transformation to 

apply from the fourteen available, and the portion of the design to which the 

transform is to be applied. The optimisation algorithm controls this stage. 

2. Testing. The second stage is used to test the validity of the given transformation on 

the portion of the design that has been selected. It is possible for some 

transformations to alter the design behaviour if applied incorrectly. This stage is 

used to filter out these misapplications by aborting the transformation. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 70 

3. Estimation. The third stage calculates an estimate of the effects that the 

transformation would have upon the design performance. This stage does not affect 

the core data structures, leaving the design intact. The optimisation algorithm uses 

the result of the estimation to determine whether it is beneficial to apply the 

transformation. The transformation can be aborted at this stage. 

4. Execution. The final stage performs the physical design transformation. 

3.2.3.1 Scheduling 

Scheduling transformations are used to modify the control graph with a change in the 

assignment of ICODE instructions to control nodes and a change in the number of control 

nodes used to perform a number of ICODE instructions. There are four state merging 

transformations, two inverse state-splitting transformations and a clock period adjustment 

transformation supported. These transformations and their effects are listed in Table 3.2 

below. 

Transformation Effect 

Sequential 

merge 

The most basic control node merging transform takes two consecutive control 

nodes and moves all the instructions contained in the second into the first. The 

second node is then removed from the state machine, as it implements no 

ICODE instructions. Any data dependencies between ICODE operations in the 

merged control node result in these operations being chained together within 

an acyclic instruction group graph, with all intermediate data values having their 

registers bypassed. 

Parallel merge This merging transform is applied to a concurrent branching fork node, where 

the first nodes in each branch are merged into a single successor node. This 

replaces the unconditional arcs to the multiple concurrently executed nodes 

with a single unconditional arc to a single control node that performs all of the 

operations previously each controlled by a separate control node. 

Merge fork and 

successor 

This transformation combines elements of the first two, taking a branching node 

(fork or conditional) and merging the successor instructions contained in one 

branch into the branching node. This also results in operator chaining and 

register bypassing. Another feature of this transformation occurs when two 

conditional branches are merged into the branching node, forming an 

unconditional activation of the successor to both branches. 



D.J.D. Milton, 2002 Chapter 3; The MOODS synthesis system 71 

Transformation Effect 

Group 

instructions on 

register 

This transformation is geared to removing temporary variable register storage 

by trying to remove registers with one input net and one output net. These 

variables are accessed by one reading instruction and one writing instruction. 

The transformation attempts to merge the group containing the writing 

instruction into the control state containing the reading instruction. This results 

in the register being bypassed (removed) if successful. 

Ungroup into 

groups 

This inverse transformation moves groups of instructions in a control node into 

two separate control nodes with the first node containing a single selected 

group and the second node containing all other instruction groups originally 

contained in the single control node. As groups of instructions are data 

independent, the execution order of the separated groups cannot break the 

behaviour. 

Ungroup into 

time slices 

The second inverse scheduling transformation splits all the instructions in a 

control node into a sequence of control nodes such that the time taken by any 

instruction group in any generated node does not exceed a specified time 

value. This transformation can reinstate previously bypassed registers used to 

store temporary values between control states. Any instructions that exceed the 

specified time period on their own require multi-cycling. 

Clock set/ 

multi-cycling 

This transformation is really a global optimisation step that specifies the clock 

period to optimise to. The ungroup into time slices transformation is applied 

after the clock period is adjusted, so that no control node violates the supplied 

clock period. 

Table 3.2 Scheduling transformations 

3.2.3.2 Allocation and binding 

As with the scheduling transformations operating upon the control path, the allocation and 

binding transformations act upon the data path, where the transformations are concerned 

with the sharing and unsharing of data path units. The four unsharing transformations are 

provided as inverse transformations to the two sharing transformations. A further binding 

transformation is also provided that can select different functional units to perform the 

same operation. This does not require an inverse transformation, as it can reverse the 

actions of previous binding transformations itself These seven data path transformations 

are detailed in Table 3.3 below. 



D.J.D. Milton, 2002 Chapter 3; The MOODS synthesis system 72 

Transformation Effect 

Combine 

functional 

units 

This transformation tries to merge two functional units into a single functional 

unit. This is only allowed when none of the linked instructions performed by 

each source unit are performed at the same time. This has the effect of further 

time-sharing a unit between multiple operations, where a functional unit can 

perform only one operation at a time. A merged functional unit results in a 

number of different inputs to the unit, which are selected by the multiplexor 

interconnect nodes, which are themselves controlled by the state enable 

signals. Note that the availability of multi-function ALU units in the cell libraries 

enhances the actions of this transformation by allowing different types of 

operation to be merged. 

Share registers This transformation attempts to share storage units, in particular register units. 

This can only be performed if the variables stored in the two registers being 

shared have non-overlapping lifetimes. Lifetime analysis for each variable takes 

into account mutually exclusive conditional branches and variable persistence 

through loop constructs. 

Uncombine 

instruction 

from unit 

This transformation forms the inverse of the combine functional units 

transformation. It takes a functional unit that implements two or more ICODE 

instructions and removes one of these instructions from the unit, creating a 

separate functional unit specifically for the single removed instruction. This 

relies on the cell library to determine the type of unit to use for the 

implementation of the extracted instruction. The unit from which the instruction 

is extracted may also have the unit type re-evaluated, as an ALU could now be 

replaced by a single-function unit, dependent on the types of operation left 

being performed by the original unit. 

Uncombine 

unit fully 

This transformation utilises the uncombine instruction from unit transformation 

described above to completely uncombine all ICODE instructions from a 

functional unit into a number of functional units, each performing only one 

instruction from the original shared unit. 

Unshare 

variable from 

register 

In a similar manner to the first uncombine transformation, the unshare variable 

from register transformation takes a single shared register type storage node 

and splits one of the implemented variables into a separate storage node. 

Unshare 

register fully 

This transformation utilises the unshare variable from register transformation 

described above to completely unshare all ICODE variables being implemented 

by a single register storage unit. This results in a number of separate registers, 

each being used to store only one ICODE variable. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 73 

Transformation Effect 

Alternative 

implementation 

This is the only binding transformation. For this transformation to have any 

effect, two or more different implementations of a type of unit must exist in the 

cell library. The transformation attempts to replace a unit of any type with an 

alternative implementation that has different area and delay characteristics, 

changing the cost of the unit. The cost function used by the optimisation 

algorithm is used to determine whether to accept the new unit binding. 

Table 3.3 Allocation and binding transformations 

3.2.4 Cost function 

The cost function is used during the estimation phase of transformation application. It 

provides a measure of the change in design characteristics over the application of a single 

transformation. The function is determined by the target objectives specified by the user, 

where the multiple, possibly conflicting objectives are used by the cost function in a 

weighted-sum calculation to generate a single value representation of the change of 

"energy" of the system with the application of a transformation. 

The user objectives can be the design area, delay, power consumption or any other 

measurable factor that is stored by the cell library. The user assigns priorities to each 

measurable item, which is used to weight the level of influence of each objective used by 

the cost calculation. The objectives and the state of the system are used to generate an 

actual cost value. 

The change in energy of the system is given by: 

Cestimate — Cprevious 
AE = 

Cinitial 

Where Cestimate IS the estimated cost of the system after the transformation is applied, 

Cprevious is the cost of the system before the transformation and Cinitiai is the cost of the 

design after its initial construction. A negative result indicates an improvement in the 

design structure with respect to the user objectives. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 74 

3.2.5 Optimisation algorithms 

There are two optimisation algorithms that MOODS currently has implemented. Both use 

the transformation selection, testing, estimation and execution method of applying the 

single transformations in the main synthesis loop. The algorithms are in charge of the 

transformation and design portion selections as well as the number of transformation 

iterations to execute. 

3.2.5.1 Simulated annealing 

The first algorithm is based on physical annealing [83,84,85,86], which is performed by 

slowly cooling a material from a high-energy liquid state into a minimal low energy solid 

state. If the cooling is controlled properly, the final energy state will stabilise at a globally 

minimum level for the whole material, reaching thermodynamic equilibrium as the 

material freezes. 

It is surmised that a structural design could have many local minima on the configuration 

path to achieving a global minimum cost value. It is specifically for this reason that the 

simulated annealing algorithm is used. Figure 3.9 illustrates this, where a physical cost 

value of a number of closely related one-dimensional design configurations are shown. 

O) 
o 
O Local minimum 

Global minimum 

Configuration 

Initial 
configuration 

Figure 3.9 Design cost plotted against a single dimensioned configuration space 



DJ.D. Milton, 2002 Chapter 3: The MOODS synthesis system 75 

The annealing algorithm works by selecting a random transformation and design section to 

operate upon and performing the estimation of the cost value after the transformation. 

From this, the cost function is used to determine the change in energy of the system, 

whether it results in degradation or an improvement in the design structure. 

Any cost improvement is automatically accepted, and a cost degradation is accepted 

dependent on the probability: 

P = exp 
- A E 

T 
AE>0 

Where P is the resulting probability given between 0 and 1 of acceptance of degradation, 

NE is the estimated positive change in energy given by the transformation and 7 is the 

temperature set by the annealing algorithm. This shows that as the temperature decreases, 

the probability of acceptance of degradation also decreases, as well as a large degradation 

having less chance of acceptance than a smaller degradation at a given temperature. The 

actual choice of whether to accept is made from the comparison of a normalised random 

number with the acceptance probability. 

The annealing algorithm is implemented by a nested pair of loops, with the outer loop 

generating slowly decreasing temperature values and the inner loop counting for a fixed 

number of transformation iterations performed at each temperature value. The initial 

temperature, final temperature, rate of change of temperature and the number of iterations 

performed at each temperature level determine the optimisation speed, the ability to find 

the global minima and the point at which optimisation ceases. These values require 

manual selection by the user, with trial and error used to determine the best annealing 

schedule for each design. Generally, optimisation speed is traded off against the quality of 

the resultant design structure. 

3.2.5.2 Tailored heuristic 

As degradation of design cost is allowed in the simulated annealing algorithm, with a slow 

reduction in probability of degradation acceptance over the course of the algorithm, 

simulated annealing is found to take a large amount of time. This led to the creation of a 

faster heuristic algorithm that utilises a fixed optimisation schedule, guided by an analysis 



DJ.D. Milton, 2002 Chapter 3: The MOODS synthesis system 7 5 

of the design, which produces a predictable final structure for every optimisation run of 

any fixed design. The heuristic is designed to perform trade-offs between area and delay 

only, with knowledge of the trade-offs involved gained through analysis of a number of 

test designs. 

The heuristic [87] uses the same set of transformations that are used by the simulated 

annealing algorithm apart from the inverse transformations. This means that the algorithm 

applies only improvement steps without any backtracking. Two base routines are provided 

that optimise for area and delay. These are: 

1. Compact control path. This routine utilises the scheduling (control graph merging) 

transformations to reduce the number of control states used to execute sequences of 

ICODE instructions. This reduces the delay by performing more within a single 

control state and slightly reduces the area with the removal of control state nodes 

and with temporary register bypasses. 

2. Compact data path. This routine utilises the allocation and binding (data path node 

merging) transformations to optimise the data path for area. Trade-offs are made 

here for the area saved by merging operations with the area created with the creation 

of input driving multiplexors. 

Both routines make use of a number of design metrics, such as the control path's critical 

path, which determines the control nodes, which affect the circuit delay the most. Each 

data path unit is given a shareability factor, which determines the best units to share for 

the best area savings to be made. Each control node is also given a share factor, which 

gives an indication of the effect that control node merging has on the ability for future data 

path unit sharing. An equivalent of the share factor for the data path is the critical path 

factor that is assigned to each data path node. This gives an indication of how close the 

functional unit is to executing ICODE instructions on the critical path. 

Throughout the optimisation process, trade-offs are made between the results of merging 

control states into one, creating operator chaining, against the results of merging the 

functional units, forcing separate control states for operations performed by a shared data 

path unit. The two routines are designed to optimise to a particular design objective, while 

reducing the effect on the secondary objective. 



DJ.D. Milton, 2002 Chapter 3; The MOODS synthesis system 77 

The two objectives are area and delay minimisation, which can be assigned different or 

equal priorities by the user. If the delay objective is given priority, the compact control 

path routine is called with an increasing share factor threshold until the delay target is met 

or no more compaction can be performed. The compact data path routine is then called by 

a similar loop with an increasing critical path factor threshold until the area target is met or 

no more sharing is possible. If the area objective is given priority, then the compaction 

routines are called in the reverse order. If both the area and delay objectives are given the 

same priority, then the compaction routines are called by a single loop, with both an 

increasing share factor threshold and critical path factor threshold. After all of these 

optimisation runs, register-sharing transformations are applied to any registers capable of 

being shared and alternative cell selections are made. 

3.2.6 Subprogram conversion 

Subprograms get converted into ICODE modules during compilation. These modules have 

a contained control flow, with a single entry point and single exit point in the form of the 

^module' and ^endmodule' instructions. During optimisation, the single exit point maybe 

split into a number exit-points dependent on any conditional control flow branches and 

control node merging (see Figure 3.10c). The ^endmodule' instruction is removed from the 

instruction flow, as it has no physical meaning, being replaced by an end-signal driven 

from all control nodes that contain an exit point. 

Module activity is initiated by a 'moduleap' (module-leap) call instruction contained in a 

separate module. The special 'call control node' state machine cell implements the call 

instruction. The extra 'activate' signal generated by the call node is used to drive one of 

the token inputs of the start-node in the called module, which initiates the called module at 

the same time as the call node itself (see Figure 3.10d for an example timing diagram). 

The end-signal generated by the called module is used to feed the extra 'end' input of the 

call control node. The call control node activates its successor node (containing the 

instructions that follow the subprogram call) only when the call control node is active and 

the 'end' signal is driven. The call control node then enters an inactive state. The call 

control node is left in an active state for the duration of the call. All this is shown by the 

example given in Figure 3.10(a to d). 



D.J.D. Milton, 2002 Chapter 3; The MOODS synthesis system 78 

a) Source VHDL b) Translated I CODE 

function absolute (input: integer) 
return Integer is 

begin 
if input < 0 then 

return -input; 
else 

return Input; 
end if; 

end absolute; 

result ;= absolute {value ); 

MODULE absolute Input, absolute 
inport input [ 0 : 3 1 ] 
outport absolute [ 0 : 31 ] 

141 
142 
143 

Is input, #0, 1 
if 1 ACTTi3ACTFi4 
neg input, absolute ACTiS 
move input, absolute 
ENDMODULE absolute 

MODULEAP absolute value, result 

c) Partially-optimised state machine 

Module: root program Module: absolute 

CALL 

activate; 

13 

< 3 

d) Simulation waveforms of the Call - Return sequence 

clock 

•'41 

'42 

activate |_[ 

end S '42 

^43 

Si 

L 

Figure 3.10 Module call-mechanism example 



D.J.D. Milton, 2002 Chapter 3; The MOODS synthesis system 79 

Any I/O variables are passed by reference in the generated output structure; the registers 

used to hold the passed output values are driven directly by the submodule controller and 

the inputs are read directly from the passed values, which can be constant or variable. The 

controlling signals for the register load-enable inputs and multiplexor select inputs are 

generated from the multiple levels of ^moduleap'' ICODE instructions for nested calls, or 

more specifically, from the call control node activity signals, combined with the local data 

path unit driving signals. 

All of the control signals used by the calling mechanism are generated during the post-

processing stage of MOODS from a translation of the ICODE instructions that implement 

the call. 

3.2.7 Post-processing 

The post-processing stage is used to complete the structural description of a design. It has 

been said that MOODS contains a full structural description during the entire synthesis 

optimisation process. This is not untrue, as optimisation may be stopped at any point. The 

post-processing stage is only used to complete the structures that are implied, during 

optimisation, by the allocation of ICODE instructions to control nodes and from the 

multiple input nets into data path units. The post processing stage can also be used to 

insert a number of run-time data path tests [88,89]. 

The first step of the post-processing stage is to generate any multiplexors that are required, 

as these interconnect data path nodes are completely implied during optimisation for 

efficiency reasons. A multiplexor is required when a data path node (other than a 

multiplexor) has multiple input nets that are driven when specified ICODE instructions are 

active. The multiplexor is created and linked into the data path structure and also given a 

copy of the link to the ICODE instructions that are used to drive each input. These 

instructions are used by the second post-processing step. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 80 

a) Source VHDL b) Translated ICODE 
function absolute (input; integer) 

return integer is 
begin 

if input < 0 then 
return -Input; 

else 
return input; 

end if; 
end absolute; 

MODULE absolute input, absolute 
inport input [ 0: 31 ] 
outport absolute [ 0 : 31 ] 

11: Is input, #0,1 
12: if 1 ACm3ACTFi4 
i3: neg input, absolute ACTiS 
14: move input, absolute 
15: ENDMODULE absolute 

result := absolute (a ); i42: MODULEAP absolute a, result 

result := absolute { b ); 154: IWODULEAP absolute b, result 

c) Fully-optimised state machine 

Module: root program 

I 
Module: absolute 

i42 
CALL 

S42 

T 

i54 
CALL 

S54 

activate activate 

11 
activate 12 

i3 
14 

end. (!5) 

~"i—end-

d) Data path with generated controlling signals 

(x^put muMplemr d r i w Ihe 
output port drecSy, wMh 

selection only dependmt on the 
module acWty andOie 

cofxMion g e w a t e d from the 
less-than comparator 

input muKplaw for the 
subprogam is only dependent 
on the caM-instructions used ^ 

acQvate the module 

'42 142 
i54 MUX 

#0 
output register kwl Is 
dependent on both the 
load-sta% and the ca#-

instructons used to 
acthete the module 

MUX 

i3, MZ 
13. i 5 4 

14, 142 
i4, i54 

neg 

1 result 

Figure 3.11 Control signal generation example 



D.J.D. Milton, 2002 Chapter 3; The MOODS synthesis system § % 

The second step is to generate a number of control signals within the conditional signal 

list. These are formed from Boolean equations and are used to drive the control inputs of 

every data path node. These control inputs are typically created for multiplexor and ALU 

selection signals, register load-enable signals, counter signals and memory read/write 

signals. This action effectively fills in the controlling links between the control graph and 

the data path graph. These signals are generated from a translation of the ICODE 

instructions that are implemented by the data path units. The control nodes in which the 

linked ICODE instructions are contained form the sources of the generated signal. Any 

relevant conditional branching equations active within the control node in combination 

with any call stack control nodes are included in the generation of the control signals. This 

is shown by Figure 3.lid, which uses the same VHDL 'absolute^ function used by Figure 

3.10. In the second case however, the control graph is fully optimised (Figure 3.11c), with 

instructions 'z7' to 'z5' merged into a single state. The function is called twice, with 

different parameters passed (Figure 3.11a and Figure 3.1 lb). 

The final post-processing step is used to tidy up the data path graph, removing any unused 

registers, which have been bypassed during the optimisation process. After this final stage, 

the output files are generated, including the DDF data structure dump, explained in 

Appendix D.2 and the structural VHDL file generation, explained in Appendix A.5 as part 

of a new process addition to MOODS introduced in the next section. 

3.3 New features 

The addition of support for dynamic memory raises the abstraction level in terms of data 

structure creation and supported language features above the present level. The version of 

MOODS described in this chapter creates structural designs with all data and the 

controlling state machine created with a static memory paradigm. The point of 

implementing a system that uses abstract data types is that the simple hardware one-to-one 

description is migrating towards a similar abstraction level to software. The increased 

support for composite data structures and procedural recursion leads to the increased use 

of subprogram procedures to handle common actions upon these data structures. The 

additions for procedural recursion and dynamic object creation, each increasing the 

benefits of the other, require modifications to the system shown in Figure 3.1. The 

modified system is shown in Figure 3.12. 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system 82 

MOODS 

User Objectives 

Report files 

BelTavioural VHDL 

VHDL2IC compiler 

ICODE 

MOODS core 

Synthesis and 
Optimisation 

Design Data Format 

DDFLink linker 

Structural VHDL 

System linldng 
VHDL 

Logic Syntiiesis, Placement 
and routing / FPGA mapping 

third party tools 

u 

VHDL function libraries 

Heap manager 
Interface library 

Expanded module 
templates 

Technology dependent module libraries 

Heap manager library 

FPGA 

ilXIJNX 

ASIC 

Figure 3.12 Modified MOODS system data flow 

The diagram above shows the system data flow structure after the inclusion of the 

modifications that implement dynamic memory allocation. The darker shaded regions 

indicate a larger amount of modification than the lighter shaded regions. The darkest 

blocks indicate a new part of the structure. The diagram shows modifications made to the 



DJ.D. Milton, 2002 Chapter 3; The MOODS synthesis system 33 

VHDL compiler, the inclusion of a heap manager interface library, the ICODE file format, 

the MOODS core and to the DDF file format. It also shows the inclusion of a new back-

end linker program used to generate a slightly modified structural VHDL file format. 

Not contained in Figure 3.12 is the creation of a Graphical User Interface, GUI program 

that controls the synthesis process from internally generated scripts, displays sections of 

the internal data structures, namely the control graph (see Appendix A.5.5) and allows a 

project structure to contain the various input files used by a user's design. This program 

was initially designed only to display sections of the MOODS data structures and is now 

being continuously developed as a full controlling GUI. 

Explanations of the modified and created structures in Figure 3.12 are listed below, 

highlighting the changes made for dynamic memory: 

1. Compiler and libraries. The compiler is modified by increasing the synthesisable 

subset of the language by enhancing the parse tree and the translation of the parse 

tree into ICODE format. Explicit dynamic memory actions interface to a heap 

manager with the use of an interface library. Procedural recursion is supported via 

the generation of dynamic return address and stack manipulation instructions. 

Procedural inlining is also implemented for efficiency reasons. 

2. ICODE file format. The ICODE file format is modified to support procedural 

recursion. No modifications are required for heap memory support. Refer to 

Appendix D.l for the full ICODE description. 

3. MOODS core and cell libraries. Both the MOODS core and cell libraries are 

modified to support procedural recursion. The cell library has a different type of call 

control node inserted, which is created for the recursive calling mechanism. The 

MOODS core heuristic optimisation algorithm uses a modified critical path 

calculation. The post-processing stage of MOODS is also enhanced with the 

inclusion of compiler-generated return addresses used in the control flow decision-

making process via automatically generated decoders and conditional linking 

signals. 

\ 



D.J.D. Milton, 2002 Chapter 3: The MOODS synthesis system §4 

4. DDF file format. The DDF file format is modified to support procedural recursion. 

Changes to fully support the post-processed structural design data structures are also 

made. Refer to Appendix D.2 for the full DDF description. 

5. DDFLink linker and modified structural VHDL. This program is completely new. It 

was anticipated that it would act as a linker for various structural designs including 

an automatic link to the heap manager system for any design using dynamic 

memory. For a full description of 'DDFLink', refer to Appendix A.5. The program 

is now used for the generation of the structural VHDL file output, previously 

outputted by MOODS directly. 

6. Heap manager library. This library is used to link with any design that uses dynamic 

memory. The library contains the heap manager controller and underlying memory 

controller, explained in Chapter 4.3. Using MOODS to synthesise the behavioural 

description of the controller creates the library. The heap manager forms a 

concurrent system that interfaces with any users' designs that require dynamic 

memory storage. The library is linked during logic synthesis with the use of the top-

level VHDL file. 



D J.D. Milton, 2002 Chapter 4: Dynamic allocation g5 

Chapter 4 

Dynamic allocation 

This chapter describes the integration of dynamic memory allocation into the MOODS 

synthesis tool. The language used for input of behavioural designs is VHDL, an IEEE 

standard. VHDL is capable of describing dynamic data structures as part of the standard 

language [6], so the language constructs are used to describe any dynamic memory 

behaviour directly. 

The chapter begins with a description in Section 4.1 of the use of dynamic memory in the 

VHDL context and introduces the modified system structure and enhancements to the 

supported VHDL subset. Section 4.2 describes the modifications made to the VHDL 

compiler in order to fully support dynamic structures. The dynamic data that is created for 

the user requires support at runtime in the form of memory management. A memory 

management scheme optimised for a particular design style is described in Section 4.3. 

The effects of incorporating dynamic memory in the described manner with respect to 

behavioural optimisation are noted in Section 4.4 and the effects and handling of potential 

errors are shown in Section 4.5. Finally, any limitations and alternative implementations 

and methods are explored in Section 4.6. 

4.1 General overview 

Dynamic memory is defined as storage space that is created, used and destroyed at 

runtime. The concept of 'runtime'' in a synthesis environment is with respect to the 

synthesised design, where the time in which the design is active either during simulation 

or as a powered physical design defines runtime. 

Many languages have support for the use of dynamic memory in its various forms. The 

most commonly used form of dynamic memory comes from the implicit use of a stack to 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation gg 

hold the local contents of the memory within a procedure. This kind of dynamic memory 

is described in Chapter 5 as part of the implementation of procedural recursion. 

The explicit creation and deletion of storage space for object types is the other form of 

dynamic memory that goes hand in hand with the method for referencing the dynamically 

created memory. This memory is not directly linked to the call tree structure of a user's 

design, as is the stack frame; it is created at any point within the flow of the design and 

deleted at any arbitrary point further into the execution flow from a memory space known 

as the heap. 

Most languages provide access to dynamically created objects via a direct memory address 

pointer, which uniquely identifies the object within an address space and allows direct 

access to the address value. VHDL uses the concept of access types that contain the 

reference to a particular object type without allowing access to the actual value stored by 

the access type. This means that a translation of VHDL can use a direct memory address 

to store an object reference, but no access of the actual underlying address may be gained 

from the language. A VHDL variable is used to store the value held by an access type just 

as a variable would store an integer or bit vector, but the supported operations on the 

variable are limited to dereferencing operations, with no direct modification allowed. 

For every object type that is stored dynamically, VHDL requires that a type must be 

defined that points to objects of the particular type requiring allocation. This is because the 

strong typing of VHDL disallows a generic pointer type. This also means that only access 

type references to a particular object type can be used to reference that object, with no 

casting between access types or with any other types allowed. 

The main use for dynamic memory is found with the creation of complex data structures 

that can be manipulated in a structure by simple reference re-assignment. This reference 

modification is built into the language along with methods for creation and deletion of 

dynamic objects using these references and methods for gaining the value referenced by 

the access type variable (dereferencing). This makes source code neater and smaller than 

would be found if the user were required to explicitly create and manage a structure to 

hold and manipulate the required dynamic data structures. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 87 

The use of complex data structures has been well proven in software programs to help 

with the solving of complex problems. As the level of programming style of behavioural 

synthesis is becoming more abstract and approaching the level of abstraction found in 

many software languages, the addition of dynamic structures to designs created by a 

synthesis system will bring the behavioural synthesis abstraction level even higher, which 

enables problems previously only easily solvable within a software environment to 

migrate into the hardware domain of behavioural synthesis, with its associated benefits. 

The rest of this chapter describes how the concept of dynamic memory access is 

incorporated into the MOODS behavioural synthesis system. It details the many 

modifications to the VHDL compiler that enable the language defined methods to be used 

and describes a memory management environment from which the dynamic memory is 

allocated via an interface that is automatically incorporated by the VHDL compiler into 

the user's design. 

The integration of the dynamic memory access is accomplished with no changes to the 

core synthesis optimiser. The major changes are made to the VHDL compiler, which 

generates designs that interface to the heap management system - the completely new 

runtime system. 

4.1.1 Generated system structure 

The additions made to the MOODS synthesis system result in a structural output design 

that interfaces to a heap management system. The output structure is not created by the 

user, but by the MOODS synthesis tool itself. The generated structure is shown in Figure 

4.1 below. 

Behavioural 
VHDL 
source 
code 

) S y n t h e s i s 
structural 

VHDL 
design 

Interface 

Heap 
management 

system 

Figure 4.1 Generated system structure 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation gg 

The user provides source code that uses the dynamic memory constructs of the VHDL 

language. These constructs are then translated into a form that directly accesses a heap 

management system by a number of interface procedures. The interface ports that link to 

the structural implementation of the heap management system are added automatically to 

the entity port list declaration of the generated structural VHDL design. This design then 

links to the heap management system using the generated port signals, which have direct 

opposite equivalents in the heap manager. 

MOODS generates the structure shown in Figure 4.1 after the modifications described in 

this chapter were added. The changes required for this included expanding the language 

capabilities of the original VHDL compiler, and generating ICODE that utilises a new 

interface into a heap management system that is created as a concurrent runtime system. 

The initial concept was to perform most of the system enhancement through modification 

of the VHDL compiler front-end and provide a back-end linker to automatically link the 

user's generated structural output with the heap management system component. 

However, the use of third party RTL synthesis tools allows the linker system to be 

bypassed, where the netlisting capabilities of the RTL synthesis tool and a top level 

VHDL linker file are used instead. This means that the synthesis of dynamic memory 

objects is performed solely by modification of the VHDL compiler and the provision of an 

interface system and the heap management system into which to interface. No 

modification to the MOODS synthesis core is necessary. The top level RTL VHDL file 

contains the structural output of MOODS for any user designs linked as components, with 

clocking systems and ancillary buffers added as required. The implementation of the linker 

is left as further work. Details of the initial implementation of the linker are given in 

Appendix A.5. 

4.1.2 Synthesisable VHDL subset enhancement 

The VHDL compiler consists of three main phases. The first is to generate an internal 

representation of the parse tree from the source VHDL. The second phase is to convert this 

internal representation into a simpler representation in the form of ICODE. The ICODE 

file is then output by the third stage as a direct representation of the converted internal 

structures. 



D.J.D. Milton, 2002 Chapter 4; Dynamic allocation §9 

The changes to the compiler consist of an increase in the language capabilities with the 

addition of a more complete parse tree, as the original compiler would not parse the entire 

VHDL language, only the synthesisable subset required by MOODS. The modifications 

only increase this subset, not complete it. 

The first stage of modification to the compiler is to increase the scope of the parse tree so 

that the VHDL type constructs of access types and record types can be generated. Along 

with these capabilities is the ability to define incomplete types, so that recursive data 

structures can be built. The array type definition also requires enhancing so that 

unconstrained array types can be defined for the creation of arrays with runtime-defined 

array index lengths. The size of the array is defined at the point of allocation in these 

cases, not at the point of base type declaration. 

The ability to parse access types requires that the object creation and deletion constructs 

be parsed also. The ability to gain access to the type referenced by an access type is also 

added by enhancing the name lookup abilities to include the access type dereferencing 

method. 

The ability to parse record types requires that the extra name lookup for sub-object 

elements contained by the record types be added. A partial lookup is implemented which 

allows each element to be accessed individually. The record element accessing and access 

type dereferencing are performed in a similar way. 

4.1.3 Dynamic memory interface 

The language parser enhancements are only useful with the capability for translation into 

the relevant ICODE constructs. All modifications to the translation process enable the 

ICODE structure and file format to stay the same. This is accomplished by the use of 

interface procedures (which were already capable of being parsed and translated) that 

communicate with the heap manager via a number of automatically generated external 

port signals. 

These heap interface procedures are contained in a VHDL package that is automatically 

parsed from a specified file as input when a design requiring dynamic memory is supplied. 

Another package is parsed in the same way that defines the size constants to be used 



DJ.D. Milton, 2002 Chapter 4; Dynamic allocation 90 

internally within the compiler. These constants define the address path range and data path 

width of the underlying heap manager. The constants are discussed further in Section 

4.2.1.2, with the interface procedures in Section 4.2.1.3 and the automatically generated 

port signals in Section 4.2.1.4. 

4.1.4 Translation into ICODE 

The translation of an access type static variable is simply an ICODE register defined with 

the same width as the address path constant defined in the inputted heap constants 

package. The allocation of an object occurs via a generated call to the allocation procedure 

defined by the interface package. The number of dynamic data words that an object 

requires when allocating is calculated fi-om the type of object being created. The size is 

just one parameter passed into the heap allocation interface procedure. 

An access type dereference action is either translated into a call to the heap read or write 

interface procedures, depending on whether the dereferenced object is the source (read 

from) or destination (written to) of an expression. The leaf left hand side of an assignment 

operation is the destination, with the items on the right hand side of the assignment 

forming the source. The basic translation for an assignment operation and a procedure call 

are shown in Figure 4.2, where 'a ' and '6' are both variables that store an access type 

reference of an integer. Note that the translation uses the access type variables as 

addresses, all memory accesses are via interface procedure calls and all address offsets are 

a constant zero (an integer requires only one memory word for storage). Note also that the 

'tesf procedure parameters are of mode in and out respectively. 

VHDL 

a.alll :=! b.alll; 

Pseudo - ICODE 

( a . a l l 

destination source 

moduleap heap_read(b,_i #0, 1 

moduleap heap write a,(#6\ 1 

moduleap(heap_read) a, #0,(2 )^ 
moduleap "test 2,3 
moduleap; heap write)]b, #0, 3 "i 

interface 
procedures 

address 
Invariable 

address 
offset 

temporary 
variables 

Figure 4.2 Translation of access type dereferencing 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation g i 

The actual interface procedures take the I/O generated by the compiler (shown in Figure 

4.2) and also a link to the relevant interface port signals (not shown in Figure 4.2) that are 

automatically created within the design's external port list when dynamic memory is used. 

A number of port signals are created, each with a direct equivalent in the heap manager 

component itself The 'moduleap' calling mechanism is described in Section 3.1.6. 

Using procedures to interface to the external port signals creates inefficiencies: it is not 

possible to merge ICODE instructions into the control states used by the generated ICODE 

module (procedure) with the calling module. This wastes clock cycles. Allowing particular 

procedures to be inlined solves this problem. By inlining the interface modules into the 

calling modules, more control states tend to be created with repetition wherever the called 

modules are inlined, but the savings made in terms of critical path delay reduction and 

register sharing more than compensate for the increased number of control states 

generated. In fact, inlining proves to be an optimisation step that has benefits when applied 

to other procedures outside the heap interface. Inlining is discussed further in Section 

4.2.2. 

It is possible, even likely, that more than one concurrent process will be created within any 

one design. If dynamic memory is accessed from two or more concurrent processes, then 

access to the heap management system needs multiplexing between the multiple processes 

that use the heap. If no dynamic data is shared between the processes then an alternative to 

multiplexing the accesses to a single heap is to create a separate heap manager for each 

concurrent process. The first method was chosen to allow support of shared access type 

variables that can be used to pass dynamic data structures between processes. 

4.1.5 Heap management 

The heap manager forms the runtime memory control system used by the structural 

designs created by MOODS. Linking the relevant FO port list signals from the user's 

design with the heap manager component forms the interface with the manager. The 

manager consists of the underlying DRAM controller and the heap management algorithm 

that utilises the underlying memory. 

Having a completely separated heap management system allows for changes in the 

management algorithm with no change to the original user's source code. This means that 



DJ.D. Milton, 2002 Chapter 4; Dynamic allocation 92 

different bolt-on controllers can be used dependent on the underlying hardware available 

and the speed, size and memory requirements. 

The interface is formed at the structural level using only standard bit and bit vector types, 

with no reference to the original source access types. The interface has a 32-bit wide data 

path and a user adjustable address path width. The address range used in the demonstration 

designs utilises IMWord of DRAM, which equates to a 20-bit address path. This is the 

size of all registers that are formed from the static translation of the original access types 

within the user's design. 

The management component is formed from a pre-compiled and synthesised behavioural 

description. The component is synthesised using the MOODS tool itself The particular 

management algorithm chosen for the initial implementation used by a design with 

dynamic memory is described in detail in Section 4.3. 

4.1.6 Summary 

The rest of this chapter details the methods used to implement explicit dynamic memory 

allocation as part of any behavioural design. The major points to remember during this 

description are that; 

® The heap manager component is created as a concurrent run-time system that 

integrates with the user's design. 

• The heap manager is linked to the user's designs via an automatically generated 

external interface port through which the memory traffic is communicated. 

• The VHDL language constructs for explicit memory allocation are used directly, 

with enhancements to the compiler parse tree and VHDL file parsing for generation 

of the VHDL types and name dereferencing methods used for dynamic memory. The 

explicit parse structures for object creation and deletion are also created. 

a The translation of the parse tree into ICODE generates calls to the heap manager 

interface procedures, which are inlined by the final stages of the compiler. 



D.J.D. Milton, 2002 Chapter 4; Dynamic allocation 93 

• All translatable types are limited to a maximum of two aggregation dimensions at 

the ICODE level. 

• Concurrent access to the heap is provided for any process within a single design via 

the automatic generation of a controlled multiplexor into the single external access 

port, with each process that requires concurrent access having equal priority set by a 

round-robin sequential interrogation approach. 

• One implementation of the bolt-on heap manager is provided that is optimised for 

limited object sizes, using a IMWord address space in DRAM. 

4.2 Compiler modifications 

The modified compiler program flow is seen in Figure 4.3, which shows the consecutive 

phases that form the compilation flow. The phases are shaded with relation to the degree 

of modification that was required for the addition of dynamic memory, with the darker 

phases being modified the most. 

VHDL Compiler 

Lexical Analysis ^ 

r 
C 

Parser D 
Translation J 

Optimisation ^ 

( ICODE file generation ^ 

Figure 4.3 VHDL Compiler program flow with inlining 

The next sections detail the modifications to the VHDL parser and translator that are 

required to support dynamic memory. This includes the integration of the heap manager 

interface procedures where required, concurrent access issues and the inlining of the 

interface procedures to increase global design efficiency. 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation 94 

4.2.1 Heap manager interface 

The heap manager interface is formed from the generation of a number of calls to the 

various low-level interface procedures defined within the heap manager interface package 

that is loaded when required. A number of external ports are added to the user's design 

that have direct equivalent linking signals within the heap manager component that is 

linked after synthesis. These are discussed in detail in Section 4.2.1.4. These extra port 

signals are driven by the interface procedures by passing the signals into the interface 

procedures for modification. The interface procedures also take a number of inputs and 

drive a number of outputs dependent on the procedure being called. 

Another package that is loaded along with the heap interface defines the various sizes of 

signals to be used by the user's design and the sizes of the external signals that interface 

with the heap manager component. This allows all generated designs to be translated with 

compile-time configurable data path widths, relating to the size of the underlying heap 

management data space. The constants are used during the generation of the heap manager 

also, allowing configurability in the algorithm. 

The heap access procedures and constants are read into the compiler from a source VHDL 

package that is parsed by the compiler into a number of internal data structures. The 

compiler automatically loads this package even with no reference in the user's code when 

dynamic structures are in use. The dynamic interface section of the compiler then uses the 

given packages to create links to the constants and procedures defined by hard-coded 

names. 

The port signals that are automatically added into the port list of the user's design are 

manually linked to the heap manager after synthesis. This is performed with a VHDL file 

that specifies the linkage between the various synthesised components of the top-level 

system. 

4.2.1.1 Communication 

The communication protocol used between the user's design and the heap manager is 

defined both by the heap manager itself and the interface procedures called from the user's 

design. The interface procedures are the masters of all communication to the heap 

manager and form an internal abstraction layer within the compiler. 



DJ.D. Milton, 2002 Chapter 4; Dynamic allocation 95 

sent data 

semaphore 

returned data 

acknowledge 

semaphore 

sent data 

acknowledge 

returned data 

A sends B returns 

> < 

/ / 
swap 

) 
/ 

'^^ap '^^ap 

Figure 4.4 Communication between concurrent systems 

The underlying communication is based upon the use of a single 'semaphore' and the 

return 'acknowledge'' signal, which determine the direction of communication. Both 

signals are initialised to zero. The user's design initiates all communication with the heap 

manager by inverting the 'semaphore' signal. The heap manager responds by inverting the 

'acknowledge' signal. Data flows between the two designs under control of these two 

signals. The user's design is the master of all communication and the heap manager the 

slave. All communication is blocking, but designed not to block until a secondary 

communication is initiated. 

Data is transmitted to the heap manager by first checking that all previous communication 

is finished. A previous communication is complete when the 'semaphore' and 

'acknowledge' signals are equal in value. The data to be transmitted is set next, followed 

by the inversion of the semaphore, which initiates the communication. The heap manager, 

acting as the slave, reacts to the communication once it has finished any previous clean up 

operations from a previous communication. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 96 

The heap manager takes a copy of the incoming data and acts upon it. The data transmitted 

by the user's design includes the type of action required of the communication (binary 

encoded), any data being written into the heap and possibly the address and offset of the 

memory location to operate upon. If no return data is specified for the type of 

communication, then the 'acknowledge' signal is inverted straight away, which allows the 

user's design to initiate a further communication. If, however, a result is required, for 

instance from a memory read or object allocation, the heap manager performs the actions 

specified and writes the result into the returned data output. The 'acknowledge'' signal is 

only then inverted after the returned data is written. 

The returned data from the heap manager is copied by the interface procedure into a 

variable local to the user's design only after waiting again for the two communication 

signals to be equal. The user's design, dependent on the information returned then uses 

this local variable in further operations. 

4.2.1.2 Heap constants 

There are five constant values that are taken from the parsed heap constants package. 

These define the widths of internal address and data paths and also define the 

communication port sizes. The heap manager uses the same constants. The example values 

used here relate to the demonsfrators discussed in Chapter 6. 

Constant Example Value Description 

heapjdpwidth 32 Data bus width 

heapjadwidth 20 (1M) Address bus width 

object_size_bits 12 (4K) Maximum allocatable object size 

heap_proc_bits 2 Communication control data width 

heap_stat_bits 3 Status register width 

Table 4.1 Heap size constant widths 

4.2.1.3 Interface procedures 

The interface procedure communication abstraction layer has four main communication 

procedures and a single setup procedure that is used to initialise the communication 

semaphores. Each procedure takes a list of the interface port signals to modify and read in 

order to form the communication. The other I/O parameters passed into these procedures 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 97 

form the links into the user's dynamic data and address references. The procedures are 

listed in Table 4.2. 

Procedure Action 

heap_setup Reset the communication semaphore at startup. 

heap_allocate This procedure is used to allocate an object. An allocation requires that an 

object size be provided. The size given is a count of the number of memory 

words required to hold the object being allocated. The allocation returns the 

base pointer address within the memory space that has been allocated for the 

object. An allocation is a direct translation of the original VHDL 'new'allocator. 

heap_deallocate This procedure is used to deallocate an object from the data space within the 

heap manager. The procedure only requires the base pointer address of the 

object being deallocated. The heap manager knows of the number of words 

that the object uses, so will deallocate just that single object. The procedure 

returns nothing. A deallocation is a direct translation of the original VHDL 

'DeAllocate' procedure. 

heap_read The data held by an object is read using this procedure. Dynamic data is read 

when an access type is dereferenced as the source of an expression. The 

procedure takes the base pointer address that has been previously supplied 

by an object allocation and an offset into the object, which is calculated from 

an array index or record element number. The offset is calculated by the 

compiler and may be provided as a constant or as a dynamic index. The 

procedure returns the full data path data found at the given address. 

heap_write Object data is written using this procedure. Dynamic data is written when an 

access type is dereferenced as the target of an expression. The procedure 

takes the base pointer address and offset in the same manner as the read 

procedure. The data to be written into the heap data space is also provided 

upon the data bus. The procedure returns nothing. 

Table 4.2 Interface procedures 

The user's design will call each procedure as required and initiates every communication 

as the master system. The first procedure is called only once before any other operations 

occur within the user's design. 

The 'heap_deallocate' and 'heapjwrite' procedures return no data, so the communication 

interface is designed to return straight away, leaving the heap manager performing the 

specified operation. In these situations, control will flow back to the user's design, leaving 

both systems active at the same time. This is an implementation of a level of pipelining in 

the communication path and enables better memory utilisation speeds rate limited by the 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation 98 

underlying memory implementation, not communication latency. Any further memory 

operations will be blocked until the heap manager completes the previous operation. 

4.2.1.4 Additional ports and variables 

There are eleven distinct signals that are automatically added into the port list of the 

synthesised user's design. These can interface directly into the heap manager port signal 

list. All communication is controlled by the ^semaphore' and 'acknowledge' signals along 

with the 'controV signal that tells the heap manager what type of access is being made; 

allocation, deallocation, read or write. The control data values are binary encoded as '00\ 

' o r , ' W and ' I F (zero to three) respectively for each type of access operation. 

User's 
Design 

Master 

control 
p 

acknowledoe 

sWus 

size/oMset 
/ 

sema^Aore 

user address 

) address 
I I address bus 

adc^essdrecbon 

user address 

heap address 

user data 

hMp data 

data bus 

data direction 

use-data 

hMpdata 

Heap 
Manager 

Slave 

Figure 4.5 Communication port linkages 

A status register output is formed within the heap manager and can tell the user's design 

extra information about the status of the heap, whether it is full or whether an invalid 

access was attempted. This status output is not currently used by any designs, but is 

accessible. 

A dedicated object size or offset port is created for use with allocation, where it provides 

the size of object to be created; or for use with read and write accesses, where it provides 

the offset from the base address into the object being dereferenced. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 99 

The address and data paths consist of two separate port signals each. This enables bi-

directional data flow, and can be connected directly. However, the restrictions on the 

number of pins used between separate systems that run on different FPGAs require that 

both the address and data paths have time-direction multiplexing. This is achieved with the 

use of two extra controlling signals that specify the direction of data travel along the 

address and data busses. Each access procedure requires a single direction of data flow for 

each bus, so no extra communication semaphores are required to control the swapping of 

direction. The directions for both busses are listed in Table 4.3, along with the use of the 

size/offset bus. The direction signals are modified at the start of each communication. 

Interface procedure Address direction Data direction Size / Offset 

heapjsetup n/a n/a n/a 

heap_allocate Into user's design n/a Size 

heap_deallocate Into heap n/a n/a 

heap_read Into heap Into user's design Offset 

heap_write Into heap into heap Offset 

Ta ble 4.3 Bus use for each interface procedure 

To make the underlying use of the interface procedures more efficient, three registers are 

created within the user's design. These registers are passed into the interface procedures 

and act as the holding point for the sent and returned data values and address values. The 

registers are then used by the user's design for further actions upon the data or addresses 

contained within them. 

4.2.1.5 Generating calls 

The interface procedures originate from the source VHDL packages that are loaded when 

dynamic memory is used. This means that the compiler treats them in the same manner as 

any other procedure defined explicitly within any other source code. The parse structure of 

the procedure is converted into the ICODE equivalent ^module' during the translation 

stage only if marked as used. Procedures are marked as used within the translation process 

itself, which begins by translating the root VHDL architecture. Procedures are only used if 

a translated call to them exists. The compiler automatically generates calls to the heap 

interface procedures whenever dynamic memory is accessed by the source VHDL. Calls to 

the translated interface 'module's are implemented by the ICODE 'moduleap'' instruction 

just as any normal calls to a procedure are implemented. However, the compiler 

automatically inserts the values passed into the call. These form links into the additional 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 100 

signal port lists of the heap interface, internal register variables created to hold a copy of 

the dynamic data and controlling offset constants and variables. 

The mappings of which VHDL parse structures generate calls to the heap manager 

interface procedures are described in Section 4.2.3. 

4.2.2 Inlining 

The act of procedural inlining is to replicate the code for a procedure in place of every call 

to that procedure. Inlining can be implemented at various stages within a compilation and 

synthesis environment. The implementation of inlining produced for MOODS performs 

the operation in the compiler, after the translation stage and before the generation of 

ICODE. The algorithm acts upon and modifies the generated ICODE modules and module 

call structures. Previously, inlining was tested with MOODS, along with other various 

source-level optimisations [92,93,94], but the source-level optimisation method is 

incompatible with the increased VHDL subset used for dynamic memory by the compiler. 

The reason for performing the inline operation within a synthesised design is that it allows 

better sharing of the data path nodes created specifically to perform the instructions within 

one module. Nodes created for instructions in one module cannot be shared with nodes 

created for instructions in any other module. Inlining effectively moves the instructions of 

a called module into the parent calling module, causing one less module to be built. 

The drawback of module inlining is that a number of extra control states get created in 

place of every call to the inlined module. If a module requires a large number of control 

states, these states are replicated wherever the module is inlined. This can produce large 

control graphs. However, the benefits of inlining modules that optimise to a small number 

of control states and perform a relatively large number of operations can be significant. 

This can include situations where an inlined module is merged into the control nodes 

preceding and following the call, resulting in a zero time overhead for the call. 

Figure 4.6 shows an example of one module '5 ' being inlined into another module 'A' in 

two places as replacement for two calls. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 101 

Module A Module B 

port 

variables 

i I 

ICC 
instru 

DE 
ctions 

r 

port 

ICODE 
Instructions 

Module A 
(B inlined) 

port 

variables (A) 

variables (B copy) 

ICODE 
instructions (A) 

ICODE 
instmctions 

(B copy) 

ICODE 
instructions 

(A) 

ICODE 
instructions 

(B copy) 

ICODE 
instructions (A) 

Figure 4.6 Module inlining example 

The inlining operation has another benefit of removing the module call instruction, which 

means that the dedicated control state used for the call is not required. This means that the 

first instructions in the inlined module may be able to run concurrently with or chained 

from the last instructions before the call, and the last instructions in the inlined module 

may be able to run concurrently with or chained with the instructions following the 

module call. This benefit forms the initial reasoning behind the implementation of 

inlining, as the procedure calls that perform the interfacing with the heap manager operate 

more efficiently when they are inlined, as the control state latency between interface 

operations is reduced. 

Any user-defined procedure or Amotion may be inlined. This allows the use of the inlining 

facility beyond the initial use of inlining the heap interface procedures. The best places to 

perform inlining are with small procedures that are called frequently and conversely with 

larger procedures that are called very infrequently. 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation 102 

4.2.2.1 Determining which modules to inline 

A procedure is either not inlined or inlined on every call. The method used does not allow 

selective procedural inlining - a consequence of the selection method used to identify the 

procedures to be inlined. A call to the 'inline' dummy VHDL procedure from anywhere 

within the body of a VHDL procedure or function is detected during parsing phase of the 

compiler and flags the subprogram for future inlining. The dummy 'inline' procedure is 

defined by the MOODS macro operations package that is parsed along with all users' 

designs. The simulation equivalent of the 'inline' procedure performs no operations and 

the call to the 'inline' procedure produces no ICODE equivalent. 

4.2.2.2 Method 

A module is inlined after the ICODE generation for the module has occurred. There are 

four steps to the operation. 

The first step is to physically copy the ICODE instructions that form the body of the 

subprogram. Activations between the instructions are also copied. The module has one 

starting activation instruction, the 'module' definition instruction and one finishing 

activation from the 'endmodule' instruction. The local variables used by the module are 

also copied for each parent module having the inlined module inserted. These copied local 

variables are name-mangled and inserted into the variable list of the parent module. 

The second step is to work through the copied ICODE instructions and replace references 

to all local variables with links to the newly copied local variables. At the same time, all 

references to any I/O signals defined by the port list of the module being inlined are 

replaced with links to the variables and constants passed through the parameter list of the 

call to the module being inlined. 

The third step is to physically insert the copied ICODE instructions with all the internal 

activations after the module call that is being replaced with the inlined version of the 

module instructions. Breaking the activation from the call instruction so that it now 

activates the first instruction of the inlined module does half of this. The instruction that 

the call instruction previously activated is then set as activated by the last instruction in the 

inlined module. This completes the third step. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 

The final step for inlining a module at a particular call position is to change the call 

instruction, the inlined module definition instruction and the inlined module end 

instruction into dummy instructions that will be optimised away, with all activations 

linked correctly after the final optimisation stage of the compiler. 

If a hierarchy of inlined procedures exists in the source code, it does not matter in which 

order the procedures are inlined, as any ordering produces the same ICODE structure. The 

actual order in which the generated modules are inlined is defined by an outer-loop that 

iterates through every module in the module list, testing for the inlining flag. If found, an 

inner-loop then iterates through the same module list, checking all call instructions in the 

body of the inner module. If a call is found to the outer module being inlined then the 

inlining method described above is used. If a module attempts to inline into itself due to a 

single-level recursion then this is flagged as an error. Note that recursive procedures can 

also be inlined, which can serve to reduce the number of procedure levels in recursive 

loops. The implementation of procedural recursion is described in Chapter 5. 

4.2.3 Parsing and translation enhancement 

As dynamic memory allocation is a new addition to MOODS, the VHDL language 

constructs that are used specifically for dynamic memory, and those constructs that are of 

little use without dynamic memory were not originally supported. These constructs 

include the access type, which is used to reference dynamic memory objects and the 

record type, which is used to aggregate together several unrelated types together into a 

single parent holding type. Recursive data structures can be built by using these two 

VHDL type constructs. Recursive data structures are built using circular definitions, which 

requires that incomplete type definitions have support also. The array type definition has 

been extended so that run-time array lengths may be used with the inclusion of 

unconstrained array types. 

VHDL types do not define the data values themselves, but define the style of the contents 

of the data values held by variables, signals or dynamic references. The VHDL types have 

no direct ICODE equivalent until they are used by the variables, signals or dynamic 

references, where they affect the style of the ICODE generated. Enhancements to the parse 

tree structure for types are given in the following Sections 4.2.3.1 to 4.2.3.4. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 104 

Dynamic VHDL objects are created and destroyed explicitly. The parser and translation 

enhancements for this are given in Sections 4.2.3.5 and 4.2.3.6, along with example 

translations using the heap manager interface. 

The name lookup for record types and access types is also implemented. The name 

lookup is termed as dereferencing. Both the name lookup and unconstrained array types 

require slight additions to the lexical analyser token list as well as modification to the 

parser. Section 4.2.3.7 discusses both the parsing and ICODE translation of dereferencing, 

with an example of both dynamic and static name dereferencing. 

ICODE is generated from a depth-first traversal of the parse structure creating sequences 

of ICODE equivalent instructions fi-om the structure and from resolved links to other parts 

of the parse tree. Any translation of the use of dynamic objects will result in the need for 

the heap manager interface described in Section 4.2.1 to be inserted into the design. 

4.2.3.1 Access types 

The access type is the method that VHDL uses to reference objects created dynamically. It 

does not have any particular representation standard, as the value of any variable that 

stores an access type cannot be read explicitly. This means that any representation method 

can be used by a system that uses VHDL as the source language. In this sense, any 

variable declared as an access type can be translated into a pointer to a memory location 

that contains the object data, as this method allows complete referencing of the object. 

: typeifTHING_REF I i s [access I [THING1; 

I 
start of type 
declaration 

type is an 
access type 

type name 
identifier 

referenced 
subtype l inkJ 

Figure 4.7 VHDL structure for an access type declaration 

Every access type declaration can only point to one type of subtype object. For every type 

of object created dynamically, an access type declaration is required. As VHDL is a very 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 105 

Strongly typed language, no casting is allowed between types, which means that even 

similar access type variables cannot be cast to point at similar objects. 

All access types must be stored by variables, signals are not allowed. This means that 

references to dynamic object types cannot be passed through port declarations of entity-

architecture pairs, but may be concurrently shared within a design with the use of shared 

variables. This means that a design is completely self-contained in terms of dynamic 

memory. 

The internal parse-tree in the compiler is extended to store the subtype information used 

by the access type. Any variable defined as a particular access type is dereferenced both 

by the VHDL 'all' keyword and in a way defined by the referenced subtype. 

VHDL Source • Generated ICODE 

type THING_REF is access THING; 

variable ref : THING REF := null; 

register ref [0 : 19] 

11 : move iO, ref 

Figure 4.8 ICODE generated for a statically declared access type variable 

The example translation in Figure 4.8 shows the static creation of an ICODE register to 

represent the contents of a VHDL access type variable. Note the bit-range of the generated 

register has 20-bits. This value is derived from the address path width constant, 

'heapjudwidth'' described in Section 4.2.1.2. Note also the translation of the VHDL 'nulV 

keyword into the constant zero. 

A dynamic representation of the contents of an access type requires the same 20-bits, 

except that the storage for this data is held in the lower 20-bits of a single 32-bit memory 

word that is accessed through communication with the heap manager. Access types 

generally require dynamic storage when contained as record elements, forming recursive 

data structures. The dereferencing of objects stored dynamically is explained in Section 

4.2.3.7. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 106 

4.2.3.2 Record types 

The record type is the method used by VHDL to group together a number of sub-elements 

of unrelated type into a single aggregate type. The compiler did not previously parse the 

record type, even though it does not require dynamic memory to exist. Before dynamic 

memory was introduced, the record type would only have been capable of making the 

source VHDL neater by grouping related items into objects. This was not enough reason 

for an implementation of the record type parse structure. An example of the VHDL code 

used to describe the declaration of a record type is shown in Figure 4.9. 

start of type 
declaration 

type name 
identifier 

element 
list 

type is a 
record type 

element 
name 

t ^ e ; ! R E C O R D _ T Y P E j i s (record; 
"ELEMENTl T" INTEGER?" ' 
1 ELEMENT2 : INTEGER; 
UETEMENTS) : ('THING); 

EEEMENT4 : THING; 
end record; 

record element 
subtype link 

end of type 
declaration 

Figure 4.9 VHDL structure for a record type declaration 

A record type can contain any number of elements of any number of different sub-types. 

One constraint of the record type generation is that the referenced element subtypes are 

completely defined before the record. It is possible to incompletely define a type, 

described in the next section, in order that recursive data structures may be built. Each 

elements subtype is resolved during parsing and an error thrown if the type does not exist. 

The internal parse-tree in the compiler is extended to store the element list information 

used by the record type. Each record element has the element name and the subtype link 

information stored. Any variable defined as a particular record type has each element 

dereferenced by name. This method is shown in Figure 4.10. 



D.J.D. Milton, 2002 Chapter 4; Dynamic allocation 107 

VHDL Source Generated ICODE 
type RECORD TYPE is record 

el : INTEGER; 

e2 : THING REF; 

end record; register rec el [ 0 : 31 ] 
variable rec : RECORD_TYPE; register [ 0 : 19 ] 

rec.el := 57; il: move #57, rec el 

rec.e2 := null; 12 : move #0, rec e2 

Figure 4.10 ICODE generated for a statically declared record type variable 

The example translation in Figure 4.10 shows the static creation of two separated ICODE 

registers to represent the contents of both elements within an example VHDL record type 

variable. Note the bit-range of the generated registers is dependent on the elements 

subtype requirements. 

A dynamic representation of the contents of a record type requires the same number of 

32-bit memory words, as there are elements to the record. Each element is accessed one 

memory word at a time through communication with the heap manager. Each element 

within the record is assigned a constant offset by the compiler. This offset is with respect 

to the base pointer reference returned from allocation by the heap manager. 

4.2.3,3 Incomplete types 

The power of the record type is only apparent once a record element contains an access 

type that references another record of the same type. Once this occurs, recursive dynamic 

data structures can be described and generated, which includes complex data structures 

such as linked lists, trees and graphs. 

i typeifTHINGi; 

: z " " 
start of type 
declaration 

type name 
identifier 

Figure 4.11 VHDL structure for an incomplete type declaration 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 108 

An incomplete type is simply created jfrom the definition of the name of the type, as shown 

by Figure 4.11. Access types can then be set to reference the incomplete type, even though 

the type is not fully defined. The type declaration can be completed at a later stage, usually 

being formed as a record type. This situation is shown in Figure 4.12, with the creation of 

a linked list structure. The recursive nature of the definition is that the 'LIST_REF' access 

type references the 'LIST and the ^LIST record type contains elements of the 

'LIST_REF' type, forming references to other 'LIST objects. 

type LIST; -- incomplete list type declaration 
type LIST_REF is access LIST; -- list pointer type declaration 
type LIST is record -- list type declaration completed 

nxt : LIST_REF; -- next list item pointer 
prv : LIST_REF; -- previous list item pointer 
data : THING; -- data contained by list 

end record; 

variable list base : LIST REF; -- static base of list pointer 

Figure 4.12 Incomplete type declaration used for linked list creation 

The compiler implements incomplete type declarations by using a flag on the parse tree 

node that describes a type declaration. The initial incomplete declaration simply creates 

the type structure and flags it as incomplete. Whenever a new type is parsed, a check is 

made for a repetition of the type name identifier. If a type declaration already exists with 

the given name, then it must be flagged as incomplete as a redefinition is invalid VHDL 

and an error is thrown. If the type declaration is flagged as incomplete, then the secondary 

definition fills in the type information. 

4.2.3.4 Unconstrained array types 

A slight modification to the array type definition is required in order to dynamically 

create different sized arrays fi-om a single type definition. This situation is allowed in 

VHDL with the definition of the unconstrained array type declaration and the ability to 

pass a sub-range into the allocator when creating a new array object. 

The compiler limits the use of unconstrained arrays to dynamic allocation and static 

creation of the array with a constraining range definition at that point. The type can also be 

used by subtype declarations. The unconstrained base type cannot be used to directly pass 

information between port declarations or to define internal signals or variables. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 109 

typeliBIT VECTOR] is farrayj! ((NATURAL! range !<̂ ) lof iBlfj; 

1 
start of type 
declaration 

( type is an 
I array type 

type name 
identifier 

A 1 
— 

f range 
V ^base typeJ 

array element 
subtype link 

V 

array range 
definition 

box token 
(unconstrained) 

Figure 4.13 VHDL structure for an unconstrained array type definition 

The VHDL method for defining an unconstrained array is shown in Figure 4.13. The 

example shows the definition of the standard bit vector type that is an array of the bit 

enumeration type with an unconstrained array length. The bit vector type is never used 

directly, but is used by subtype declarations that define the array length. 

A flag is set in the parse tree node whenever the 'box token' is given as the defining range 

of the array. This tells the translator that the type is unconstrained and may not be used 

directly. 

4.2.3.5 Allocation 

The VHDL explicit dynamic object allocator uses the keyword 'new' for the dynamic 

allocation of all objects. The construct returns an access type reference to the type of 

object passed into the allocator. This is shown in Figure 4.14. 

i ref jf: = VnewlfTHING); 

access type ^ 
variable J 

allocator 
keyword 

assignment 
type of new 

object 

Figure 4.14 VHDL structure for object allocation 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation 110 

The allocator acts at the same precedence level in the parse tree as name lookup (for 

variable and signal referencing), constant literal definition and sub-expression creation. 

This means that the allocator is at the leaf of the parse tree in the definition of complex 

expressions. As such, the allocator returns a result that directly feeds an assignment 

operation, as seen in Figure 4.14. When allocating unconstrained arrays, the allocator must 

have a range defined at the point of allocation. This is shown by the second allocation in 

Figure 4.15, where the range is translated into the number of memory words to allocate. 

Figure 4.15 shows an example of the translation of three object allocations. The first is 

simply the allocation of a single integer, the second is the allocation of an array of 

integers with the array size defined at the point of allocation and the third is the allocation 

of a record type object containing two elements. 

VHDL Source 

type INT_REF is access integer; 
type ARR_TYPE is array (natural range <>) of integer; 
type ARR_REF is access ARR_TYPE; 
type RECORD_TYPE is record 

el ; INTEGER; 
e2 : THING_REF; 

end record; 
type REC_REF is access RECORD_TYPE; 

variable iref : INT_REF; 
variable aref : ARR_REF; 
variable rref : REC REF; 

Dynamically created arrays 
must be indexed from address 

zero. This is a limitation of 
translation, not of VHDL 

iref 
aref 
rref 

new integer; 
new ARR_TYPE (0 to max) 
new RECORD TYPE; 

Generated ICODE (without interface inlining) 

register iref [ 0 : 19 ] 
register aref [ 0 : 19 ] 
register rref [ 0 : 19 ] 
register heap_tmpdata [ 0 : 31 ] 

Alias is required due 
to 'heap_tmpdata' 

" holding the address 
result of all allocations 

alias alias47 [ 0 : 19 ] from heap_tmpciata [ 0 : 19 

il: MODULEAP heap_setup heap_sem 
i2: MODtHEAP heap_allocate heap_ack, heap_addr_out 

heap_addr_in_valid, heap_size_offset. 
il, heap 

alias47 
_sem. heap_cont. 

13: move alias47, iref 
14: plus max, il, 4 8 
15: MODULEAP heap_allocate heap_ack, heap_addr_out 

heap_addr_in_valid, heap_size_offset, 
48, heap 

alias47 
_sem. heap_cont, 

16: move alias47, aref 
17: MODtJLEAP heap_allocate heap_ack, heap_addr_out 

heap_addr_in_valid, heap_size_offset, 
#2, heap 

alias47 
_sem. heap_cont, 

18: move alias47, rref 

Figure 4.15 ICODE generated for the dynamic allocation of three different types 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation % % % 

The three allocations each return references to the allocated objects, which are translated 

as physical memory addresses by the compiler. These addresses are written into the 

statically declared ICODE registers in the example, but can also be written into the 

contents of other dynamically created objects through assignment to a dereferenced access 

type object. Note the generation of the 'heapjmpdatd' register and the alias into the lower 

20-bits of the register. This statically declared register is used to temporarily store the 

returned address from every allocation. Each ICODE 'wove' instruction translation of the 

VHDL assignment operations move the data referenced by the alias into the actual target 

of the assignments, 'zre/, ' a re / and 'rref. Also note that the heap interface module calls 

have not been inlined in the shown example. This is only due to brevity and readability, as 

each allocation actually performs nine ICODE instructions to every inlined module call. 

A translation of the 'new' operator results in a generated 'moduleap' call instruction to the 

heap interface procedure 'heap_allocate\ The type of object that the allocation operation 

creates defines the size parameters passed into the interface procedure. The size is given as 

a number of data words capable of storing the entire object. Various limitations on the 

types of objects that are creatable are given in Section 4.2.4. Generally, one word is used 

to store non-aggregate types (enumerations, integers and access types), arrays are stored 

with the same number of words as there are valid indexes to the array and records are 

stored with the same number of words as there are elements contained by the record. 

VHDL defines that the initial values for objects created dynamically can be set up during 

allocation with an aggregate assignment. However, this is not implemented, along with 

general aggregate assignment. It is possible to manually set up the contents of the dynamic 

data after it has been allocated, one element at a time. VHDL also defines that if no initial 

values are given to a newly created object, the contents are set to zero or null depending 

on the types involved. This feature is not implemented due to the increased number of 

unnecessary instructions that are generated. This means that manual initial values must be 

assigned after dynamic variables are generated, for the VHDL semantics to be preserved 

through synthesis. 

4.2.3.6 Deallocation 

The explicit deallocation of dynamic objects in VHDL is performed by the 'DeAllocate" 

procedure that is implicitly defined for every access type declaration. The procedure 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 112 

accepts a single input object reference to be deleted from the memory contents. This is 

shown in Figure 4.16. 

!DeAllocate!(!ref:); 

Deallocator 
procedure 

access type 
input 

Figure 4.16 VHDL structure for object deallocation 

As the parser already handles procedure calls, no modification to the generated parse tree 

structure is required. However, as VHDL defines that the 'DeAllocate' procedure is 

implicit, this procedure requires physical insertion into the procedure list used in the 

compiler. This is achieved by placing a general 'DeAllocate" procedure in the heap 

manager interface. Any calls to 'DeAllocate' within the user's source code then link into 

this procedure. The translation stage of the compiler uses the knowledge that the implicit 

nature of this procedure is used to perform direct mapping into the heap manager interface. 

An example of the ICODE translation of an object deallocation is shown in Figure 4.17. 

VHDL Source 

type INT_REF is accesss integer; 
variable ref : INT REF; 

Deallocate (ref); 

Generated ICODE (without interface in lining) 

register ref [ 0 : 19 

142: MODULEAP heap_deallocate heap_ack, ref, heap_sem, heap_cont, 
heap_addr_in_valid, heap_addr_in 

Figure 4.17 ICODE generated for an object deallocation 

The example in Figure 4.17 shows the VHDL 'DeAllocate' procedure being translated into 

an ICODE 'moduleap'' call to the 'heapjieallocate^ procedure defined in the heap 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 113 

interface package. Only the base address stored by 'ref of the object being deallocated is 

supplied. This link to this variable is gained from the parse structure that holds the original 

VHDL procedure call information. The input variable itself could be gained from a 

statically defined register, or from a temporary result of a previous dynamic memory read 

access of an object that contains a reference of the object to be deallocated. 

register ref [ 0 : 19 ] 

// ********** inline module heap_deallocste ********** 

ACTT i44 ACTF i42 
142 eq heap sem, heap ack, 487 

143 if 487 

144 move #1, heap_cont 

145 move ref, heap_addr_ in 

146 move #%1, heap_addr_ in_valid 

147 not heap_sem, heap_ _sem 

// ********** inline end module heap_deallocate ********** 

Figure 4.18 Inlined ICODE generated for an object deallocation 

The single deallocation shown in Figure 4.17 is translated into a single call to the 

'heap_deallocate' procedure defined in the heap interface package. The actual translation 

of this interface is inlined into the user's source code. Figure 4.18 shows the actual ICODE 

generated in replacement of the 'moduleap^ call instruction. The deallocation operation 

requires six ICODE instructions to form the interface. All calls to the heap interface 

procedures are inlined in a similar way. Note the communication being formed from the 

checking and assignment of the ^heap_sem' and 'heap_ack' signals and the assignment of 

the 'ref input onto the address bus. 

4.2.3.7 Dereferencing 

The act of dereferencing is to perform a selected name element lookup from within a 

record type item or to access the value at a particular array index position or to access the 

item referenced by an access type. Multiple levels of dereferencing may also be parsed, 

where it is possible to dereference an array element from a dynamic reference to an array, 

or dereference a particular record element from a dynamic reference to a record item. A 

fully recursive dereferencing mechanism is supported for all supported types. Examples of 

the types of dereferencing mentioned are shown in Figure 4.19. The translation of an 

object dereference forms a read or write operation dependent on the position of the 

dereference within an expression. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 114 

/resultant 
value 

static array indexing 

static array 
variable 

assignment 
index i n t ^ 

array J 

static record 
element selection 

val I(: =)!'arr!(lindexj) ; 

1 val : = i i teTn ; . ! e lement i ; I 

dynamic object 
dereference 

dynamic array 
indexing 

dynamic record 
element selection 

l>i val : = jiref J-ialli; I 

iaref!. a l l (iindexj) ;i 

integer / enum 
type reference 

V 

^ static record 
V variable 

record 
^ element 

dynamic 
dereference J 

:= irrefj. am .(element] 

index into 
array 

record 
element 

record type ^ f array type 
reference J I reference 

Figure 4.19 VHDL structure for object dereferencing 

A name lookup forms a recursive structure within the compiler, with each type of access 

of a base name formed from either the base name itself or via indexing, slicing or selection 

of sub-elements within the composite base type. Hence, name lookup is only ever formed 

from composite types with more than one element (arrays and records) and from access 

types. Enumeration and integer types do not have sub-elements from which to access. 

However, these types can form the leaf types of the recursive name lookup. 

An access type variable is dereferenced using ^ <name> .alV, which follows the base 

access type variable name. An element is selected from a record type in a similar manner, 

except that the 'all' keyword is replaced by the element name within the base record type: 

'<name>.<element>\ If a reference to a record type is given, then an element within the 

dynamically created record variable is accessed by first dereferencing the access type that 

points to the record object, then selecting the record element by use of its identifier; 

' <name> .all.<element>\ If the element itself is another access type, then this can be 

dereferenced again by simply appending \alV in a fully recursive manner. An example of 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 115 

this is shown in Figure 4.20, by the destination of the example assignment (translated 

blocks 4 and 5). 

VHDL Source 

type INT_REF is access* integer; 
type ARR_TYPE is array (natural range <>) of integer 
type ARR_REF is access ARR_TYPE; 
type RECORD__TYPE is record 

el : integer; 

e2 : INT_REF; 
end record; 
type REC_REF is access RECORD_TYPE; 

variable iref 
variable aref 
variable rref 
variable r 
variable a 

INT_REF; 
ARR_REF; 
REC_REF; 

RECORD_TYPE; 
ARR TYPE (0 to 9); 

rref.all.e2rall z-nf aref.all(4Xj el + a(5 ef.all 

I CODE (without interface inlining) 

register iref [ I 
register aref [ I 
register rref [ ( 
register r_el [ ( 
register r e 2 [ I 
register heap_tmpaddr 
register heap_tmpdata 
ram a [ 0 : 31 ] 
alias alias47 [ 0 

19 ] 
31 ] 

address [ 0 : 9 1 
: 19 ] from he3p_tmpdata [ 0 : 19 ] 

memread 
plus 
MODOLKAP 

plus 
MODULEAP 

plus 
MODULEAP 

move 
move 
MODUIEAP 

a[f5], 474 
r el, 474, 475 
heap_read heap_ack, heap_data_out, iref, #0, heap_sem, 
heap_cont, heap_addr_in_valid, heap_addr_in, 
heap_size_offset, heap_data_in_valid, heap_tmpdata 
heap_tmpdata, 476 
475, 476, 477 
heap_read heap_ack, heap_data_out, aref, #4, heap_sem, 
heap_cont, heap_addr_in_valid, heap_addr_in, 
heap_si2e_offset, heap_data_in_valid, heap_tmpdata 
heap_tmpdata, 478 
477, 478, 473 
heap_read heap_ack, heap_data_out, rref, #1, heap_sem, 
heap_cont, heap_addr_in_valid, heap_addr_in, 
heap_size_offset, heap_data_in_valid, heap_tmpdata 
alias47, 471 
473, heap_tmpdata 
471, heap_tmpaddr 
heap_write heap_ack, 

heap_sem, heap_cont, 
heap_tmpaddr, #0, heap_tmpdata, 
heap_addr_in_valid, heap_addr_in. 

heap_si2e_offset, heap_data_in_valid, heap_data_in 

Figure 4.20 ICODE generated for dynamic and static dereferencing 

The direction of data flow (whether the data is read or written) is dependent on whether 

the dereferenced object is the source or target of an operation. Only the leaf left hand side 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation % 

dereferenced object of an assignment is the target of this operation, which translates into a 

memory write at the address held by the dynamic variable being dereferenced (translated 

block 5 in Figure 4.20). Another target of a dynamic memory dereference is as the output 

port of a procedure call, where a temporary variable is used to store the result of the 

procedure call, and a memory write performed after the procedure call has finished, which 

writes the temporary result of the procedure into the dynamic memory space. 

The right hand side sources of an assignment expression (translated blocks 1, 2 and 3) or 

any non-leaf left hand side dereference (translated block 4) or any input ports to a 

procedure call are translated into dynamic memory read operations of the same form as the 

write operation for any dynamic object name lookup (translated block 2, 3 and 4). Again, 

the dereferenced reference-variable holds the base address of the referenced object. 

Note that a multiple dereference results in more than one memory operation, where the 

first operation returns a result to be used as the address within the second memory 

operation. This situation is shown by translated blocks 4 and 5 in Figure 4.20, where the 

address held by record element 'e2' is read before this address is used as the base address 

of the write operation used to store the result of the assignment expression. Note the use of 

another generated temporary variable ^heapjmpaddr' in this chaining of operations. 

As aggregate types are formed ft"om multiple words in the dynamic data space, whenever 

an item in the aggregate is dereferenced, the offset into the data space that contains the 

object is calculated from the position of the sub-element in the aggregate. This means that 

the constant element number in a record type is used as the offset, starting from an offset 

of zero for the first element, incrementing by one for each further element (translated 

block 4). It also means that an item in an array type variable is accessed from the base 

pointer of the array variable and the offset defined by the given index into the array 

(translated block 3). 

Note the translation of the static variables in Figure 4.20, translated block 1. The 2D static 

array, 'a ' is implemented as a RAM cell and the static record type variable, V has each 

element translated into separate registers. The ICODE 'ram' variable is accessed using the 

dedicated 'memread'' and 'memwrite' instructions. These instructions take the possibly 

dynamic index address as an extra input. 



DJ.D. Milton, 2002 Chapter 4; Dynamic allocation \ Y ] 

4.2.4 Variable dimensions 

The use of fully recursive composite type declarations allows variables to be created with 

any number of dimensions. A dimension equates to one level of aggregate type definition, 

so any type that contains a subtype in an inclusive way adds another dimension into the 

definition. The reason that variable dimensions are mentioned is that there are limitations 

placed upon the number of allowable dimensions within an object for synthesis, which 

limits the type of objects that can be created. This limitation is not a language constraint. 

The reason for the limitation is the increased complexity of indexing into multi-

dimensional variables. The maximum allowable variable has two dimensions, and by 

definition, the minimum is without aggregate dimension. The types allowed within the 

dimensional limits are shown in Table 4.4. 

OD types 1D types 2D types 

Enumeration with 2 states Enumeration with 3 or more 

states 

Record containing 1D or OD 

element types 

Array of OD types Array of 1D types 

Integer type 

Access type 

Table ^ 1.4 Allowable variable type d Imenslons 

An example of an enumeration with two states is the simple 'bif, which can represent '0' 

or '7'. If there are more than two states that need encoding, the representation requires 

more than one underlying memory element to store the value. The dimension relates to the 

translation of the ICODE representation of a variable with given type. This is why the 

enumeration with three or more states is a one-dimensional type. 

The integer and access types are both implemented using more than one underlying data 

bit to store the entire value. In fact the integer uses up to 32-bits and the access type uses 

the minimum number of bits that can represent the entire dynamic data space, which is 20-

bits in the demonstrators described in Chapter 6, allowing a IMWord of data space. An 

array of zero-dimensional types (bit) is also a one-dimensional type. 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation 118 

a)OD b) 1D c)2D 

0 / 1 

4 0 to 15 ^ 

0 / 1 0 / 1 0 / 1 0 / 1 

a) bit 

b) integer range 0 to 15 
(4 bits) 

c) array range 0 to 2 of 
integer range Oto 15 
(3x4 bits) 

s 
11 • 
3 
1 

— • 

4 Oto 15 • a) bit 

b) integer range 0 to 15 
(4 bits) 

c) array range 0 to 2 of 
integer range Oto 15 
(3x4 bits) 

s 
11 • 
3 
1 

— • 

0/1 0/1 0/1 0/1 

a) bit 

b) integer range 0 to 15 
(4 bits) 

c) array range 0 to 2 of 
integer range Oto 15 
(3x4 bits) 

s 
11 • 
3 
1 

— • 

4 0 to 15 • 

a) bit 

b) integer range 0 to 15 
(4 bits) 

c) array range 0 to 2 of 
integer range Oto 15 
(3x4 bits) 

s 
11 • 
3 
1 

— • 0/1 0/1 0/1 0/1 

a) bit 

b) integer range 0 to 15 
(4 bits) 

c) array range 0 to 2 of 
integer range Oto 15 
(3x4 bits) 

w 

-Oto IS-

O/I 0 / 1 0 / 1 0 / 1 

Figure 4.21 Example underlying data structures for allowable dimensions 

Two-dimensional types are formed from an array of one-dimensional types, for instance, 

an array of integers, access types or bit vectors. The record type container is always 

created as a two-dimensional type, which means that any other type cannot directly 

contain the record type. The element types allowable within a record type are based upon 

zero or one-dimensional types only. 

The limitations shown are the same for both static and dynamic generation of the variables 

associated with the types. Whether an object is created statically or dynamically affects 

only how the object is accessed and manipulated. 

4.2.4.1 Dynamic variable storage 

All zero and one-dimensional variables will be stored by a single memory word. This 

places a further limitation upon these types in that they must be able to fit within the data 

path width specified for the underlying heap management implementation. The 

implementation of the demonstration management scheme uses a 32-bit data path, which 

enables full range integers, all access types, bit vectors of up to 32-bits and enumerations 

with up to 2̂ ^ states to be held. Any space in the available 32-bits that the type does not 

require will be wasted. 

Two-dimensional variables are stored dynamically using more than one memory word. 

The space required for the dynamic variable is allocated by a single allocation operation. 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation n g 

A two-dimensional array uses the same number of memory words as there are elements in 

the array. The underlying one-dimensional subtype of the 2D array follows the same 

restrictions in size specified for the OD or ID variables shown above. All accesses of the 

array elements by their index will feed the dynamic memory offset port with the index 

value directly. It could actually be fed from a subtracted version of the index, dependent 

on the original VHDL definition of the minimum range value of the array. 

A dynamic implementation of a record type variable will use one memory word per 

record element. The underlying zero or one-dimensional subtype in the 2D record follows 

the same restrictions in size specified for the single variables shown above. Each element 

is accessed directly by the compiler providing a constant offset from the base pointer that 

references the dynamic record type variable. The offset value is defined by the position of 

the element within the definition order of the record. 

4.2.5 Limitations 

Futher limitations other than the general dimensional limit exist for the use of all variables. 

These limitations are for the use of the 2D type variables. 

The maximum number of elements that can be stored by a 2D array or record item is 

limited by the maximum object size that can be allocated from the heap in one allocation. 

This is defined by the ''object_size_bits^ constant in the heap constants package described 

in Section 4.2.1.2, and is set as 4KWords for the demonstrations. 

Only ID type variables may be passed into procedures, ports and assignment operations. 

This means that any accesses to a 2D type variable must be performed one element at a 

time, which reduces the dimensional order of the resultant lookup into a ID type variable. 

This means that a static record or static 2D array may not be passed through procedure 

ports. However, an access type variable that references a dynamic record or dynamic 2D 

array may be passed through a procedure's parameter list, as the access type is defined as 

a ID type. 

The VHDL language supports the use of aggregate assignment, which enables multiple 

items within an array or record to be assigned by one assignment operation. The 

compiler does not support this, with manual assignment of each element used instead. 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation 120 

4.2.6 Multi-process access 

The VHDL language allows only variables, not signals, to contain access type objects. 

This means that all dynamic data local to a design is contained by the architecture, as the 

entity port can only contain signals. The dynamic data stored in a design cannot be passed 

directly through its interface. 

Even in the architecture, all dynamic data is limited to creation and use by the various 

concurrent processes, which form the sequential program flow. Each process is capable of 

using dynamic memory. As using signals supports communication between processes and 

the access type objects cannot be passed in this manner, it would suggest that even 

communication of dynamic data between processes is impossible. 

However, an amendment to the language that is included in the VHDL'93 standard [5] is 

the ability to declare shared variables. A shared variable allows variable containers for 

objects to be defined within concurrent regions of a design. This allows variables that 

contain access types to be declared at the same position as the signals that are used for 

communication between processes. This allows more than one process access to the same 

dynamic data structure at the same time through a shared address space [90]. 

One feature of shared variables is that the simulation behaviour is not completely defined, 

which could produce different results between different simulators [20]. This is an 

anomaly in a language designed for exact simulation, designed to give reproducible 

results. The reason for the possible differences in results between simulators gained from a 

design using shared variables is the fact that a variable is updated straight away when it is 

assigned to. If a shared variable is assigned to within more than one process at the same 

time, the value held in the variable after the two assignments is the last value assigned, as 

there are no deferred assignments as used for signals. As different simulators may handle 

the various concurrent processes in different orders, and the process handling order has an 

effect on the results, the two simulations can produce differing results. This situation is to 

be partially dealt with in the next VHDL standard [91], by providing a standard wrapper 

mechanism for shared variables. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 121 

MOODS Design 
Structure 

Process 

Process Process 

Process Heap 
Multiplexer 
Process , 

Autogenerated 
\ Structures 

Internal Port 1 

External Heap Port 

Shared 
Variables 

Heap 

Process 

X>N 

Figure 4.22 Example MOODS design structure with concurrent heap access 

A method to cope with the undefined behaviour problem is to control the assignments to 

the shared variable with the use of other communication signals between the concurrent 

processes that use the shared variable. This can be accomplished with the use of a 

semaphore-acknowledge system. 

With the ability to share dynamic data structures across process boundaries comes the 

need for each process to be able to access the same data space that contains the dynamic 

data. An alternative would be to have a separate heap manager for each concurrent 

process, which would speed up the accesses of the underlying data but remove the ability 

for data communication between processes using shared access type variables. 

The example of the structure created by the MOODS synthesis system is shown in Figure 

4.22, which shows three processes (A, B, C) that use dynamic data internally. A fourth 

process (D) does not use dynamic data at all. Two processes (B, C) communicate with 

each other using shared access type variables. The three processes each access the same 

heap manager system via a generated heap multiplexer process that controls the 

sequencing of every concurrent access by making each access follow each other 

sequentially. Each process has equal priority to access the heap and does this by 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 122 

communicating with the multiplexer process via a set of internal signals that form a 

notional port interface. The compiler using standard ICODE instructions just as the 

original singular interface is generated generates this extra structure. 

4.2.6.1 Determining concurrent access 

There are three different situations found in a design when checking for the use of 

dynamic data structures. The first is that no dynamic structures are used, so a heap 

interface is not required. The second is that one process in the design uses dynamic 

structures, so a heap interface is required. The heap is accessed directly using the 

generated external port in this situation. The third situation is that more than one process 

uses dynamic data structures, which means that a design structure similar to that shown in 

Figure 4.22 is required. 

Determining which situation is found in a design starts in the parsing process of the 

compiler. Whenever any dynamic data is accessed from a procedure, function or process, 

the parse tree structure is marked as requiring some form of heap access. 

After the initial parsing, the call tree is pre-translated, in that the parse tree is followed for 

every call made from each concurrent process. Any access found in the tree starting from 

one process requires a single port into the heap manager. If more than one process is found 

that contains any reference to dynamic data in the entire call tree that can be called from 

the process, then concurrent access of the heap is required and a number of internal heap 

access ports are generated for this purpose. 

4.2.6.2 Heap access ports 

A heap access port is created for each concurrent process requiring access to the heap. If 

only one process requires access, no internal heap access ports are generated and the 

external heap port is used directly by the single process. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 123 

Users Design 

Users 
Process 

semaphore 
'sem' 

access control 
'acc' 

address 
•add' 

size/offset 
'szo' 

Heap 
Multiplexer 

Process 

data 
'daf 

Figure 4.23 Concurrent heap access port 

Access ports contain a set of internal communication signals including a copy of the data, 

address, size/offset and control signals. These have no direct connection to the design's 

single external heap access port that interfaces directly with the heap manager. Instead, the 

heap multiplexer process services them. Concurrent copies of the communication signals 

are implemented so that internal cycle-based speed benefits occur with the ability for each 

process to start a communication even when the heap is already busy. 

The access procedures used by the generated structures of the user's processes are slightly 

different from the external interface access procedures. When multiple processes using 

dynamic data are found, the interface procedures for each process are replaced with the 

procedures that interface with the heap multiplexer process. The interface procedures have 

the relevant internal heap access port signals passed as parameters. The procedures are 

loaded from the same heap interface package and are listed in Table 4.5, with the external 

heap interface equivalent procedures. 

Action External Interface Procedure Internal Interface Procedure 

Initialise heap_setup heap_setup 

Allocate heap_allocate heap_mux_alloc 

Deallocate heap_deallocate heap_mux_clealloc 

Read heap_read heap_mux_read 

Write heap_write heap_mux_write 

Service n/a heap_mux_service 

Table 4.5 Concurrent equivalent heap access port procedures 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 124 

Note that the 'heap_setup' procedure is used in both the initialisation of the external 

interface and the initialisation of all internal interfaces. Concurrent calls to this procedure 

are possible without replication of the procedure due to the procedure being inlined. 

iLnlining is explained in Section 4.2.2. 

Also note the addition of the ^heap_mux_service' service procedure within the internal 

port procedure list. This procedure is used by the generated heap multiplexer process and 

has no direct external port equivalent. 

4.2.6.3 Servicing the heap access ports 

The heap multiplexer process is completely auto-generated by the translation stage of 

compilation. The process contains an infinite loop that consists of multiple calls to the 

heap service procedure. The heap service procedure is called the same number of times as 

there are concurrent processes accessing the heap. Each call to the procedure has a 

different set of internal port signals passed into it. As each concurrent heap access port is 

serviced in turn, this gives all concurrent processes equal priority at access to the heap. 

The service procedure effectively connects the internal port signals onto the external port 

for a limited amount of time. Only one access of the heap occurs in this time. The service 

procedures are inlined into the process that calls them for efficiency reasons. 

4.3 Heap management 

The heap manager subsystem that is linked into the designs produced by MOODS has a 

defined interface as the slave to all communication from the user's design. This system 

exists to control the underlying memory space and to return address positions within this 

memory that contain the allocated dynamic objects that the user requires. The heap 

management algorithm performs the control of the position of the allocated objects. 

The implementation of the heap manager has a fixed address space from which to work. 

As a consequence, there is an upper limit on the number of objects that can be allocated by 

any allocation algorithm. The initial implementation of the allocation algorithm described 

in Section 4.3.1 stores the controlling data structures used by the management algorithm in 

the same data space as the user's data. 



DJ.D. Milton, 2002 Chapter 4; Dynamic allocation %25 

In general it is observed [30] that a behavioural design will allocate many small objects of 

the same size, so a management algorithm suited to this allocation style is implemented. 

The generated system is written using behavioural VHDL and synthesised using MOODS. 

The algorithm described is more specialised than the standard allocation methods used in 

software design, and is shown to improve performance in both the VHDL compiler and 

the MOODS core software systems when a software version of the algorithm is used as a 

layer on top of the standard allocation methods. 

4.3.1 Algorithm 

The algorithm used is both space and speed efficient [37,38]. It is optimised to allocate 

multiple objects of the same size, which use the same number of data words. The data 

space is split into a number of pages that all start out as initially fi-ee. Each page can be 

used to store objects of one size only, where the size is determined from the first allocation 

of an object from within the page. The size of object that a page holds is determined at 

run-time and is dependent on what objects the user's design allocates. 

If an object allocation finds that no pages that contain the required object size exist, then a 

page is taken from the list of free pages and set up to store objects of the required size. The 

object is then allocated from the data space contained by the newly set up page. 

Alternatively, if any page is found to contain objects of the required size and the page is 

not fiill, then the object is simply allocated from the existing page. 

The objects within the page are confrolled in a similar manner to which the pages are 

controlled. If any object is deallocated from a page, the space for the deallocated object is 

stored in an internal free list. If the page is used again to allocate an object of the same 

size, the first object in the free list is reused and returned as the allocated object. In this 

maimer, the allocation method is very fast. 

There is also very little memory space overhead for the algorithm, as all free lists are 

implemented within the data space for objects that are free. There is also relatively little 

header information required for objects, with only a single header structure required for 

each page, which contains many objects packed tightly together. A single page is also used 

by the algorithm to store base pointers of all lists of pages with particular object sizes. The 

first page in the memory space is used for this. 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation 126 

4.3.1.1 Data structures 

The data structure style shown in Figure 4.24 shows an example of the entire data 

structure with a user system actively allocating objects. 

Entire Data Space 

page 
0 

in use 
User data 

and free list 

n-3 
page 
n-2 

page 
n-1 

page 
n 

-ree Page ^ 
Undefined 

space 

=ree Page 
Undefined 

space 

Object size 
page pointers 

Page Header 

N 

1 s 
N 

Page Data Space 

<0 ffl S 9 ? ffl (0 to n Unallocated 
5 g l 5 s 5 space 

\ \ s: 

static 
Head of 

free page 
list 

object 
N 

object object object object object 

\ \ \ N v X V N N \ \ N \ \ \ \ I \ \ \ N x y X N 

Figure 4.24 Heap management data structures 

The diagram shows the formation of the list of free pages starting from a static list head 

pointer held by the heap manager. All further pointers that define the next free page in the 

list are contained as the first word of each free page. The last free pages next-pointer is set 

to null (zero), which signals the end of the list. 

Also shown is the first page that is used to store pointers to a list of pages in use with 

particular object sizes contained. The index of the word in the first page is used as a 

reference of object size and initially all pointers within the first page are set to null. The 

list of pages that contain objects of the same size is formed from the active page header, 

with a pointer to the next and previous pages within the list. The list is actually circularly 



D J.D. Milton, 2002 Chapter 4: Dynamic allocation J 2 7 

linked for ease of page insertion and removal. The example shows a single active page that 

contains objects of three words size. 

The data space in an active page contains a mixture of allocated objects, all of the same 

size (three words in the example); a free object list, that is created from deleted objects in 

the page and an unallocated space, from which new objects are allocated. The page header 

contains information about the size of objects to allocate from the page and the current 

number of objects allocated within the page. A pointer to the base of the unallocated space 

and another to the first free object in the data space are also contained in the header. The 

free object list is formed from the base pointer within the header, with the first word in 

each free object used as the next pointer of the free list. There are three free objects shown 

in the example. A null pointer again terminates the free object list. There are six allocated 

objects shown in the example. 

4.3.1.2 Initial setup 

The allocation algorithm requires that portions of the control and data space are set up to 

hold initial values that describe a data space that has a number of free pages, with no pages 

holding any particular object size existing. This setup procedure is performed once at the 

beginning of operation of the heap manager. 

Setting every word within the first page to null initialises part of the data space. This tells 

the allocator that no active pages exist for any objects of all allocatable sizes. The free 

page list also requires initialisation, with each page inserted onto the free list by a loop that 

works through each page, from page n down to page 1. The first word within each page 

space is set as the next free page pointer and the free list base pointer is set to point to page 

1. The n"' pages next page pointer is set to null, which terminates the list. 

4.3.1.3 Allocation 

Object allocation, as required by the user's design, starts with communication with the 

user's design. The information provided by the master system is the size of object that is 

required. The expected result from the slave heap manager is a pointer to the base address 

of a contiguous block of memory that contains the space for the data object. 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation 128 

The first job of the allocator is to find whether any pages that contain objects of the same 

size are currently in use. This is done by checking the word within the initial page that 

points to a list of pages of the particular given object size. The object size page pointer at 

an offset of the required object size from address zero provides this access to any page that 

is currently used to store objects of the given size. If a non-null pointer exists at the given 

size location, then a page has been found. However, if the pointer is null, then no pages 

that contain objects of the required size exist or any that do are completely full. In this 

situation, a new page is required. 

A new page is taken from the head of the free list of pages. The head pointer of the free 

list is reassigned to the next free page after the head page by using the next free page 

pointer from the returned new page. The new page is then set up, with the header 

information set so the page contains objects of the required size. The page is also inserted 

onto the active page list by setting the page size pointer within the initial page and setting 

the next and previous page pointers within the page header to point to itself, forming a 

circular list. The object count value stored in the page header is set to zero and the 

deallocated object free list pointer is set to null. The page data space is totally unallocated, 

with the object base pointer set to the word following the active page header. The page is 

now completely set up, ready to allocate objects from the data space. 

The next stage is to allocate an object from the given page, which could be newly set up or 

taken directly from the active page list, in which case, objects of the same size are taking 

up a portion of the data space of the page. An object is allocated from the page by first 

checking the free list of objects from the page header. If any free objects exist, determined 

by a non-null pointer to the head object within the free list, then this is the object returned 

to the user. The object is unlinked from the free list by assigning the free list head pointer 

with the next free object. This is pointed to by the first word in the object being returned. 

If the free list contains no objects, then there must still be unallocated space defined at the 

end of the page data space. In this situation, the returned object is taken from the base 

pointer of the unallocated space. The base pointer is incremented by the number of words 

used to store the object. If the increment takes the pointer out of range of the page data 

space, then the pointer is set to null, meaning that there is no more space for objects in the 

page. 



D.J.D. Milton, 2002 Chapter 4; Dynamic allocation 129 

The allocation of a single object from a page causes the object count value to be 

incremented. If, after allocation, both the free object list and the unallocated space base 

pointer are null, then the page is completely full and cannot contain any more objects. In 

this case, the page is unlinked from the circular list that defines active pages of a particular 

size, as the list points only to pages that still have space for object allocation. 

The base address used to reference the newly allocated object is returned directly to the 

user's design. Further operations allowed from the address returned are numerous read and 

write operations or the deallocation operation. 

4.3.1.4 Deallocation 

The deallocation of an object starts with the provision of the address from which to 

deallocate from. The operation does not produce a visible result, in that no value is 

returned. The first operation is to find the page from which the object is allocated. This is 

achieved by simple address masking, as all pages are created the same size with power-of-

2 boundaries. 

An object is removed from a page by inserting the given object address onto the free list of 

objects within the page. This is done by assigning the present free list base pointer value 

into the first word of the object, and then reassigning the free list base pointer to the 

address of the object being freed. The deletion process does not touch the unallocated data 

space pointer. The object count held by the page header is decremented. 

With an object removed from the page, the page is now able to hold more objects. The 

page is empty when the object count-value reaches zero. In this situation, the page is 

returned to the list of free pages, ready to be used again to store objects of a potentially 

different size. Before this, however, the page is removed from the active page list for the 

particular object size. This is done by relinking the pages pointed to from the previous and 

next page pointers within the active page header of the page being removed, so that the 

two pages pointed to will now point at each other. If the next and previous pages point to 

the page being removed, then this operation is not required, as the page being removed is 

the only one contained in the circular list. If the base pointer of the circular list points at 

the page being removed, then it is reassigned to another page in the circular list. If no other 

pages exist in the list, then the base pointer of the list is set to null. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 

The insertion onto the free page list of a page being removed is achieved by assigning the 

free page head pointer value into the first word of the page being removed. The free page 

list head pointer is then reassigned to point to the page being removed. 

If there are still objects contained by the page after the object removal operation and the 

page was previously full of objects, then the page is reinserted onto the active page 

circular list for the particular object size. A check is made of the base pointer of the list, 

which could be null. If the base pointer is null, then it is set to point to the page with 

deleted object. If not, then the page is inserted onto the list by relinking the previous and 

next pointers of the inserted page with the base page and next page pointed to from the 

base page. The base page and the next page from the base page then are linked onto the 

page being inserted by adjustment of their next and previous pointers respectively. 

4.3.1.5 Reading and Writing 

The addresses that the allocator returns reference the base pointer of the data space 

allocated for a user defined object. The data in the allocated space is manipulated by direct 

memory accesses from the user's design. The two memory operations provided are a read 

and write of a single data word. Both operations are the formed from the translation of a 

VHDL source code dereference of an access type variable. A target dereference performs 

a memory write and a source dereference performs a memory read. 

Objects that are contained in more than one memory word are referenced from the base 

pointer that is returned from the allocator and a memory offset value that the compiler 

provides. The offset value, in the case of the described implementation, is simply a direct 

address offset, so the actual address read from or written to is calculated from the sum of 

the base address and the provided offset. 

A memory read returns a value, so this blocks the communication with the user's design 

until the result is read from the underlying memory, whereas a memory write does not 

return a value, so it resets the communication semaphore before the underlying memory 

write occurs but after the address and offset have been registered. This allows the user's 

design to continue processing any other operations that follow the write. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 

4.3.1.6 Limitations 

There are two major limitations with the implemented algorithm, due mainly to the 

allocation method itself. The first limitation is that only a limited set of distinct object 

sizes can be allocated at any one time. This is due to the limited number of pages from 

which to allocate objects. As each page may only contain objects of one particular size, the 

maximum number of object sizes that can be allocated is the same as the number of 

underlying pages. If more than one page is used to store objects of the same size, then the 

number of available sizes is reduced further. This limitation is only a problem if 

completely dynamic objects such as arrays with run-time length definitions are used. 

The converse of the limited object size numbers is the limited maximum size of the 

allocatable objects. As all objects are allocated from within a page, the page size forms the 

upper limit on the maximum object size that can be allocated. Again, this only really 

affects dynamic arrays, with the object size determined by the number of elements within 

the array. A dynamic record cannot realistically reach this upper limit, as most records are 

formed from a composition of relatively few elements compared to array objects. 

A trade-off is made between these two limitations at compile time. As all objects are 

allocated 6om a fixed address space, the trade-off is made between the number of pages 

within the address space and the size of each page, where a doubling of page size reduces 

the number of pages by half The underlying address space can also be varied in the same 

manner, but is more dependent on the underlying storage mechanism, which in some cases 

is fixed before the user's design is built. 

4.3.1.7 Advantages 

A major benefit of using the described heap management system is that the controlling 

structures allow for implicit reallocation of objects. This means that if space is available 

within a page for an object with particular size, the object will be allocated fi-om that page. 

The traditional problem with dynamic memory control is that the memory becomes 

fragmented, with objects being deleted from random locations producing a memory map 

with spaces difficult to reuse. This problem does not generally occur with the described 

system due to the limited object sizes in a memory region giving close proximity between 



DJ.D. Milton, 2002 Chapter 4: Dynamic allocation 232 

similar objects. The memory space will become fragmented, but the problems normally 

associated with fragmentation are reduced due to the object space reuse. 

The algorithm is both speed and space efficient: the allocation of objects takes a maximum 

of twenty-four memory accesses (twelve reads and twelve writes). This forms all of the 

setting up and list manipulation for each allocated object. Deallocation takes a maximum 

of sixteen memory accesses (nine reads and seven writes), but returns control to the user 

before the first memory access. The objects are densely packed into the memory space 

because of the limited number of header structures required for the algorithm and the 

embedded free lists effectively take no memory space, as the free objects themselves hold 

the structure required of the free list. 

4.3.2 Implementation 

The system for the addition of dynamic memory support for designs produced by 

behavioural synthesis described in this chapter is supported by a physical implementation 

of various demonstration designs. These designs are described in Chapter 6 with further 

details contained in Appendix C. The heap management algorithm described in Section 

4.3.1 has a physical implementation also. This is described in Chapter 6 and Appendix C. 

All of these designs are written using behavioural VHDL and synthesised with MOODS. 

The underlying memory space that is controlled by the heap management algorithm is 

realised by a fast-page-mode DRAM. This type of memory [95] requires constant 

refreshing and is accessed via a multiplexed address path. The sequencing of the 

controlling signals that drive the DRAM is performed by one process in the heap 

management system. 

The signals defined in the port list of the behavioural description of the heap management 

system that are passed between the systems are described as simple vectors of bits. As all 

ports, signals and variables are converted into the standard ''std_logic_vector' 

representation [96] within the final structural design produced by MOODS, no conflicts of 

type are found from using access type variables in the user's source and the 'bit_vector' 

representation used by the implementation of the heap manager. 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation ^33 

Behavioural simulation does not require the behavioural description of the heap manager 

in order to simulate, as the user's description uses language constructs that can be 

simulated directly. A structural simulation of the design produced by MOODS however, 

will require the structural representation of the heap management system in order to 

simulate fully. 

4.4 Impact on optimisation 

As there is no modification to the optimisation core of MOODS with the implementation 

of dynamic memory allocation, no fundamental changes to the optimisation methods are 

carried out. However, the different code style that is generated by the modified compiler 

when dynamic memory is in use affects the optimisation process indirectly. 

4.4.1 Inlined interface procedures 

The heap management system and the user's design communicate via interface procedures 

that are inlined into the translation of the user's processes and subprograms. Each 

communication uses at least one clock cycle as a looping control state that checks and 

waits for the communication semaphore signals to become equal. Another looping state is 

required by communications that have a value returned (allocation and the memory-read 

accesses). This forces a control state between the operations performed before the loop 

and the operations that follow the loop. As the called interface procedures are inlined, the 

sequential nature of the control flow will actually allow some operator chaining and 

control state sharing for independent instructions. This produces tighter control flow with 

greater utilisation of control states. As the interface is relatively simple, with only read and 

write operations of the external interface ports and wait constructs forming the interface 

procedures, the time taken for the synthesis of the interface is relatively small, but is 

dependent on the number of dynamic operations found within a design. 

4.4.2 Heap manager component 

The heap manager is formed from a separate external component with its own separate 

optimisation run. This means that the optimisation process for the user's design is not 

slowed down by the synthesis of the heap management system for every synthesis run 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 234 

performed on it. The only extra synthesis time for the user's design is taken with the 

synthesis of the interface to the heap management component. 

4.5 Error handling 

There are various stages at which errors in a design can be caught. The errors may stem 

from synthesis limitations, source design errors or from a new set of errors that manifest 

themselves from the runtime environment of the heap manager. 

The constraint of the heap management algorithm that limits the maximum size of object 

that can be allocated is generally caught during compilation. The only variables capable of 

doing this are formed from multidimensional composite types. In fact, the only type really 

capable of exceeding the size limitation is a 2D array, where the number of elements in 

the array could exceed the given limit. In the case of the composite record type, the 

number of memory words used is directly related to the number of elements in the record. 

When the size of object is known during compilation, the check is made there. 

Compilation will fail in this case, giving a relevant error message. If the size of the object 

being allocated is defined by some runtime variable, then a check of the range of the 

variable that is used to determine the range of the dynamic variable being created is made. 

A warning is given during compilation in this case. 

Another source of possible erroneous execution is with the pathological user design errors, 

where incorrect user code is the cause of an error that leads to a memory over-write of the 

heap management data or user data stored by the management system. Possible sources of 

errors are generally found from accessing objects that have been deleted, which is possible 

by having multiple references to a single object. The object free-list may be corrupted by 

this action. Another source of error is when an object with a null reference is accessed. 

This could over-write the base page object size table, leaving invalid page pointers in the 

map. The error leads to undefined behaviour and will be caught by post-synthesis 

simulation [20], which should always be undertaken before the physical system is 

implemented. 

The memory system that is controlled by the heap management algorithm is of limited 

size. This means that a user's design could attempt to allocate a number of objects that 

cannot fit within the memory space available. This is a runtime error and is handled by 



D J.D. Milton, 2002 Chapter 4: Dynamic allocation I 3 5 

simply returning a null reference from the allocator, which is the correct VHDL response 

to an allocation that fails. No explicit handling of the error occurs. It is left to the user to 

handle the return of a null reference. Any failure of the allocation will return a null 

reference. Even if there is space available in the heap, it is possible to return a null 

reference due to the limited set of pages from which to work from, and the defined size of 

objects in each page. 

4.6 Alternative implementations 

After initial implementation, it became apparent that some modifications to the interface 

methodology could produce designs that are optimised by MOODS in a faster manner, 

producing faster and smaller implementations. 

When the interface with the heap manager is created using dedicated ICODE instructions 

for each heap access, there is more scope for ICODE optimisation. The actual physical 

interface is then generated as a post-processing stage of the MOODS core instead, from a 

direct compiler translation. The implementation of the physical communication contained 

within the interface procedures is then created using the expanded module methodology 

[3], and all extra communication ports and concurrent process multiplexing is added after 

the main synthesis process. 

With the heap interface now formed from a set of dedicated ICODE instructions, rather 

than from the indirect ^moduleap'' calling mechanism, ICODE optimisation for common 

sub-expression removal can lead to a reduction in the number of memory accesses 

generated by a direct translation of the user's source code. This leads to faster runtime 

execution with removal of some memory accesses in a trade off that generates extra 

registers to hold temporary results from the heap. 

Due to the fixed data path used by the heap management system, it is more than likely that 

some data objects are stored by only parts of the data word. This inefficiency leads to a lot 

of wasted memory space. A reduction of the wasted space can be achieved by careful 

design of the objects stored by the heap, where physical data is manually shared within a 

single 32-bit word, which is the current size of the dynamic data word. A more automated 

method is to have some form of automatic data packing for increased utilisation of the 

underlying storage. This optimisation provides a trade-off between the multiple memory 



D.J.D. Milton, 2002 Chapter 4: Dynamic allocation 135 

accesses required for a write becoming a read-modify-write (to keep the other data bits in 

the memory word valid) and the amount of wasted space in the memory. A read-modify-

write access is then required in the heap interface; with the underlying DRAM storage 

capable of performing this action faster than a separate read then write. 

The heap manager itself can have various modifications made, which optimise the system 

with respect to the data allocated by the user's design. Different underlying memory sizes 

and types can be chosen and different data path widths form the various parameters that 

can be optimised for the purposes of a user's design. SRAM based caching [97,98,99] or 

more dedicated use of SRAM [100] by the algorithm can generate trade-offs between the 

extra memory overhead and the allocation and deallocation speed. 



DJ.D. Milton, 2002 Chapter 5: Recursion ][37 

Chapter 5 

Recursion 

Once explicit dynamic memory allocation is integrated into MOODS, the ability to create 

recursive data structures is gained. To complement this, procedural recursion is integrated, 

as this addition allows a greater level of behavioural abstraction for the manipulation of 

the dynamic recursive data structures. 

The rest of this chapter deals with the specifics of how procedural recursion is integrated 

into MOODS. Section 5.1 gives an overview of procedural recursion and on the general 

methodology for integration. Section 5.2 details the specific VHDL compiler 

modifications and changes to the ICODE file format to pass recursion-specific information 

into the MOODS core. Section 5.3 shows the modifications to the MOODS core and to the 

synthesised structures generated by the system. Section 5.4 shows detailed timing for 

recursive procedure calls, while Section 5.5 details the impact on the optimisation process 

of the MOODS core. Finally, problems associated with the method of integration are 

shown in Section 5.6, with possible solutions given. 

5.1 General overview 

Procedural recursion occurs when a procedure is reachable from itself by following all 

possible calls and indirect sub-calls from that procedure. The result of recursion in a 

sequential language/system is a loop in execution flow for the design through the call 

graph, where every iteration of the loop has a new set of iteration-local variables (the local 

variables of the procedure). This is where the power of recursion as a high level technique 

is gained, as no explicit dynamic stack of information is described by the source code; 

instead, the language infers it from the call structure. This can result in much smaller and 

easier to understand source code than the explicit iterative technique. 



D.J.D. Milton, 2002 Chapter 5: Recursion 138 

Figure 5.1 shows six procedures being called from a single process. The arrows denote a 

procedure call, with the called procedure pointed to. Where any call-loop between 

procedures is found, the procedure being called must be capable of recursion. These 

recursive procedures are shaded. Note that procedure A calls itself directly, forming the 

tightest recursion loop, whereas procedures E and F call each other, creating one level of 

indirection. Also note that although procedure B is called from the recursive procedure A, 

it is not recursive, as it can never be entered again from its position in the call stack. 

Process 

Procedure Procedure 

Procedure 

Procedure 

ProceduB Procedure 
F 

Figure 5.1 Recursive procedure loops 

Unfortunately, recursion does not lend itself to behavioural synthesis in a straightforward 

manner, as all procedures are effectively statically created using a fixed control and data 

path [101], with local variables mapped onto static registers, which makes each procedure 

non-re-entrant. 

The task of integrating recursion is essentially the conversion of each procedure capable of 

recursion at run-time into a re-entrant procedure, by providing automatically created call-

stack dependent local data and all necessary controlling structures for this data. 

5.1.1 Language implied storage requirements 

Any language that allows recursion automatically implies a dynamic storage method for 

all the local variables within its procedures. In the case of software languages, the method 

chosen to implement this data storage is the stack [77], which is formed from a single 

contiguous block of memory for each concurrent call tree. This method is chosen as it 



D.J.D. Milton, 2002 Chapter 5: Recursion 139 

suits the calling mechanism of sequential languages, that of the call-return pair, where 

local storage is created on the top of the stack for each procedure call and then thrown 

away when returning from the procedure. In software, the stack is typically also used as a 

method for passing input and receiving output parameters from the procedure calls and for 

returning control to the correct calling procedure (a procedure could be called from 

multiple places, only one of which is valid at run-time). 

The stack is a very quick dynamic data structure to use, as it only requires a stack pointer 

to give the present frame into the stack for the currently active procedure. 

Process 
Procedure 

STACK 

Procedure 
B 

Procedure 
C 

STACK POINTER 

FREE 
SPACE 

Proc. C 

Proc. B 

Proc. C 

Proc. B 

Proc. A 

Proc. A 

Variable 
sized 
stack 
frame 

Figure 5.2 Procedure stack 

Figure 5.2 shows a procedure call structure and an example stack image working from the 

bottom of the stack upwards. The stack is a contiguous block of memory with a single 

pointer acting as the stack frame reference. Note that each procedure can have different 

sized stack frames dependent on the number of variables in the procedure that require 

dynamic storage. Each variable is stored at a different offset from the base stack frame 

pointer. 



D.J.D. Milton, 2002 Chapter 5; Recursion 140 

5.1.2 Original procedure call methods 

An explanation of the methods used for procedure calling before the additions made for 

recursion is necessary, as parts of the underlying system are used by the recursive 

procedure call methodology and the old method is still used fully when no recursion is 

detected in the user's source code. The old calling method is still used where possible, as 

the structures generated for this are simpler and smaller, with recursion requiring extra 

resources (both execution time and design area) for the dynamic memory storage. 

5.1.2.1 ICODE modules and calling method 

The user's design is converted into ICODE by the VHDL compiler. A procedure is 

represented in ICODE by the instruction ^module\ Any converted procedures or functions 

in VHDL are translated into ICODE modules (unless they are explicitly inlined). The 

module contains information about its I/O ports in its header. Local variables are also 

specified locally in the module, along with all temporary variables used by the module. 

After the I/O and variable declarations come the ICODE instructions themselves that form 

a completely contained flow of control for the module. The only exception to this is the 

'moduleap'' instruction, which is the ICODE method of calling other procedures. This 

instruction contains a list of I/O parameters that are mapped onto the called procedure's 

I/O ports. This map could be different for different calls to the same procedure, so some 

method is required at run-time to determine which parameters to use. An example of 

generated ICODE is shown in Figure 5.3. 

VHDL 

triple(b); 
triple(d); 

function triple(integer val) return integer is 
variable t: integer; 

begin 
t ;= val + val; 
return t + val; 

end triple; 

ICODE 

MODULEAP triple b, a 
MODUIEAP triple d, c 

MODULE triple val, triple 
inport val [0^11] 
outport triple [0:31] 
register t [0:31] 
plus val, val, t 
plus t, val, triple 
ENDMODULE triple 

Figure 5.3 VHDL function translated into ICODE module 



D.J.D. Milton, 2002 Chapter 5: Recursion 241 

5.1.2.2 Passing parameters by reference 

MOODS takes the meaning of the parameter map of the ^moduleap' instruction to be pass-

by-reference for the various I/O parameters. VHDL signals are also passed by reference, 

with variables and constant inputs passed by any method the implementation chooses. A 

design is erroneous if any side effects of the implementation differences produce differing 

results. This means that a pass-by-value implementation can also be used with equal 

validity for variable and constant parameters. Since a difference in the implementation 

only affects the concurrent access behaviour of the passed parameters, it is possible for all 

parameters to be passed by reference or value without any breakage of the sequential 

behaviour (constant inputs are driven from expressions that create temporary results, that 

effectively copy the value). The addition of recursion to the system requires a pass-by-

value implementation. Signal passing through recursive procedures is therefore 

disallowed. 

The meaning of pass-by-reference as used by a synthesised design is explained more in the 

next section, which deals with the final structure generated as output from MOODS. 

5.1.2.3 Structural output 

The main features of an implementation of a procedure call is the ability to handle the I/O 

parameter passing to and from the procedure with its parent and the knowledge of which 

parent call to return to, as the procedure could be called from many places. Both these 

fundamentals are handled in part by the 'call control node\ which forms one state in the 

generated finite state machine for every call made by the user's design. 

The method for returning to the correct point in the control flow is handled by the call 

node itself, as it leaves itself active throughout the duration of the call to the procedure 

(see Section 3.2.6 and Figure 3.10). It only activates the following node when the called 

procedure reaches an end node with a valid exit condition. A call node only contains the 

'moduleap'' ICODE instruction. All other instructions before and after the 'moduleap'' 

instruction are scheduled in the preceding and subsequent control nodes respectively. 

This method of control node activation is not suitable for recursion due to the necessity of 

keeping the call node active as a placeholder for returning to the correct point in the 



D.J.D. Milton, 2002 Chapter 5: Recursion 142 

control flow. In a recursive implementation, a different method is used for returning from 

a call correctly. 

The method for passing the input and output parameters (actual arguments) of a procedure 

call are different in the MOODS structural output. In the case of inputs, a port signal is 

defined for each input, which maps onto the actual arguments passed into every invocation 

of the given procedure for that input. If the procedure is invoked more than once with 

different actual arguments, then a multiplexor is created with each different argument as a 

selected input. The selection of which input parameter to use is gained from the active call 

node, which is active throughout the entire duration of the call. Figure 5.4 shows an 

example structure generated to pass input and output parameters directly, as references. 

Source VHDL 

State Machine 

G &)\/ 

e (s 

i10 S 

ICODE 

procedure test il MODULE test 1, 0 
( inport l^k 31] 
i : in integer; outport o[0: 31] 
o : out integer i2 move i, o 

) is i3 ENDMODIILE test 
begin 

0 ; = i ; 
end test; 

register a [0 ••31] 
register b [0 :31] 
register s [0 :31] 

variable a,b,s,t : integer; register t [0 :31] 

test (a, s ); i7 ; MODtJLEAP test a, s 
test (a, t ); 18 : MODULEAP test a, t 
test { b, s ); 19 : MODULEAP test b, s 
test ( b, t ); 110: MODUIEAP test b, t 

Data Path Structure 

S,orS. InputZ 

So or S,, MUX 

inpWpoM 

S, and (S, or S,n) 

S, and (S, or S,), 

Figure 5.4 Input and output parameter passing 



D.J.D. Milton, 2002 Chapter 5; Recursion 143 

In the case of output parameters, all outputs are mapped onto registers. When an output is 

written by the called procedure, a load signal is generated from the control node of the 

called procedure's local finite state machine. This is linked to the load-enable input of the 

register containing the referenced variable. If more than one map for the output parameter 

is found from the multiple calls to the procedure, then the load-enable signal drives all the 

registers that have been mapped. However, only the relevant output must be updated, with 

all others left alone. This is achieved in a similar way to the input multiplexor select 

signals, where instead of using the load-enable signal directly for each register, it is first 

logically-ANDed with the logical-OR of all the call control node active signals, whose call 

instruction passes the controlled register variable as output. This means that the referenced 

register is written directly when an instruction inside the called procedure performs a write 

to its output port. This demonstrates the meaning of pass-by-reference, as the mapped 

register variable is written from the output port reference. 

5.1.3 Additions required for recursion 

An outline of the additions made to MOODS for the support of procedural recursion is 

given here. The general concepts shown here are then expanded in the rest of the chapter. 

5.1.3.1 Control nodes and return addresses 

As explained in Section 5.1.2.3, the 'ca// control node'' acts as the return control method 

from a procedure call. This method is not suitable for a recursive call, as the act of calling 

a procedure leaves the call node active (for returning correctly and referencing the correct 

parameters of the procedure's I/O). A recursive call requires a different type of state 

machine control node that is not active throughout the call duration. 

Due to the loss of information from the calling mechanism of the state machine, it is 

necessary that a 'return address' variable is created for each procedure capable of 

recursion. Each recursive call instruction then has a unique return address value associated 

with it. The return address is then used to determine the correct calling control node to 

reactivate after the procedure has completed execution. The return address is also used to 

select the correct I/O parameters to reference. 



D.J.D. Milton, 2002 Chapter 5: Recursion j[44 

The split into separate state machine calling mechanism and return address allows the 

dynamic modification of the return address value dependent on the recursion depth, 

allowing return control to be determined by the generated stack, introduced by the next 

section. 

5.1.3.2 A dynamic stack and stack pointer 

On their own, the return addresses do not enable recursion. However, the compact form of 

a return address enables easy insertion into a stack memory. This enables recursive calls to 

the same procedure to be stacked one on top of another by 'pushing' the return address 

onto the top of the stack when performing a call and 'popping' the return address when 

returning from a call. 

The necessity of a stack is determined at compile time, as it is at this stage that any 

possible recursion is detected in the user's source code. The stack is formed from a RAM 

cell with the current stack position held by a stack pointer register, which contains an 

address into the stack RAM cell. 

All recursive procedure calls are assigned a unique constant return address value that is 

held by the called procedure's return address variable when the recursive call is made. 

Stack manipulation of the return address is performed by explicit auto-generated ICODE 

instructions. The compiler in this way generates all associated control of the stack and 

return addresses in the sequential control flow. 

5.1.3.3 ICODE modifications 

The ICODE operations generated by the compiler for control of the stack and return 

addresses for each procedure use standard ICODE instructions. However, the extra 

information generated by the compiler of the return address value associations for 

recursive calls and return address register associations for recursive modules are also 

required by MOODS. This information is passed into the synthesis core by slight 

modifications to the ICODE file format. 

These modifications allow MOODS to generate all the associated control logic around the 

return address variable instead of the 'ca// control node\ which was its previous method 

for flow control and parameter passing. 



DJ.D. Milton, 2002 Chapter 5: Recursion 245 

5.1.3.4 Pass by value parameter I/O 

The method used to implement recursion involves a change in the parameter passing 

mechanism from pass-by-reference to pass-by-value. This removes the ability to pass 

signals through recursive procedures, as all parameter values are copied, not referenced. 

An alternative implementation could have kept the pass-by-reference semantics, but would 

have required extensive modification to the structural mechanism used to reference the 

passed parameters, with the multiple levels of procedure call no longer being used directly 

to reference the passed parameters. The method would instead rely on compile-time 

parameter analysis and run-time reference selection logic to determine the correct 

parameter to reference for each module call. 

The method chosen was to keep the underlying pass by reference method for one level of 

procedure call, but to perform variable copying within the calling procedure, so that the 

resulting reference only references variables local to the calling procedure. The control of 

this variable copying is performed by auto-generated ICODE from the compiler. As all I/O 

parameters are stack-frame local, the place to store these copies is on the stack. 

The same applies to local variables in recursive procedures, as these variables are created 

statically using ICODE register variables. These are also stored on the stack before each 

recursive call in case they are re-used when the recursive procedure is re-entered. Their 

values are restored firom the stack when the called recursive procedure exits. These 

modifications effectively add a dynamic storage element to the underlying static hardware 

storage. 

5.1.4 Summary 

The rest of this chapter details the methods used to implement procedural recursion as part 

of any behavioural design. The major points to remember during this description are that; 

• The static translation of the VHDL procedures and functions into ICODE ^modules' 

is further enhanced in order to provide dynamic storage for the local data and passed 

parameters, so that multiple versions of the same data set can exist at different 

recursion depths. 



DJ.D. Milton, 2002 Chapter 5: Recursion 145 

® The dynamic storage mechanism for this dynamic data is held by a stack, which is 

added by the compiler when possible recursion is detected. An internal stand-alone 

SRAM-based contiguous memory block data path unit implements the stack. 

• The stack pointer is used to reference a single element on the top of the stack, with 

all stack operations working from this memory address, one element at a time. The 

compiler generates the stack pointer register variable and all stack operations by 

using standard ICODE instructions. 

• The controlling state machine has a new type of control node that is used for 

recursive calls. The call node deactivates completely once it activates the starting 

node of the called procedure. 

® A single return address variable is created for every module capable of recursion. 

The address value represents any of the calling instructions that can activate the 

recursive module. Each recursive call has an associated unique return address value. 

The return address holds a single reference to one recursion depth (all other 

recursive return address values are held in the stack). Structural I/O parameter 

selection is made dependent on the return address value. 

• All stack modification is performed in the calling module, on either side of all 

recursive call instructions. The return address, local variables and I/O parameters of 

the calling module are stored before the call and retrieved after the call. 

• The pass-by-reference paradigm is used at a single recursion depth only, allowing 

variables that carmot be concurrently accessed to be passed through recursive calls 

without a breakage of the pass-by-reference rules. However, the pass-by-value 

paradigm is used for fixrther recursion depths, which disallows the passing of signals 

(which can be concurrently accessed) through the procedural interface. 

B Both the non-recursive call mechanism and the recursive call mechanism can be 

used in any one design, with full integration of both mechanisms, allowing any non-

recursive modules and module calls to retain their original speed and area overheads, 

which are less than a recursive implementation (with the inclusion of the stack and 

stack modification operations 



D.J.D. Milton, 2002 Chapter 5; Recursion 147 

5.1.5 Example 

An example of a recursive design is presented here. Both the source VHDL is given in 

Figure 5.5, along with the translation in the form of the intermediate ICODE file in Figure 

5.6. The example is referenced throughout the chapter for illustrative purposes. The 

translation is presented before a full explanation of the modifications made, as an 

understanding of the modified synthesis system appears to be recursive in itself, where an 

understanding of one section of the implementation relies upon the understanding of 

another section, which is reliant on understanding the first. The example is a recursive 

implementation of the Fibonacci series calculation. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
2* 
25 
.26 
27 
28 
29 
30 
31 
32 

entity test_fibonacci is 
port ( 

result : out integer 
) ; 

end; 

architecture behave of test_fibonacci is 
begin 
main_process : process 

function fibonacci ix : integer) 
return integer is 

begin 
if X = 1 or X = 2 then 
return 1; 

else 
return fibonacci(x-1)+fibonacci(x-2); 

end if; 
end fibonacci; 

variable val : integer := 1; 
begin 

loop 
result <- fibonacci(val); 
exit when val = 50; 
val := val + 1; 
•wait for 100 ns; 

end loop; 
val := 1; 
wait for 100 ns; 

end process main_process; 
end behave; 

Figure 5.5 Fibonacci test design source code 

Note that the shaded lines of Figure 5.6 highlight the extra ICODE variables and 

instructions added for the stack and its explicit management. 



D.J.D. Milton, 2002 Chapter 5: Recursion 148 

1 PROGRAM test_fi£ionaccx result 

2 outport result [0:31] 

3 register val [0:31] 

4 register fibonacci. _ra [0:1] 

5 register fibonacci. _x_in [0:31] 

6 register fibonacci. _f ibonacci_out [0:31] 

7 register stack_pointer_l [0:7] 

8 ram stack_l [0:31] address [0:255] 

9 move #0, stack_pointer_l 

10 move #%00, fibonacci _ra 

11 . main_s>rocess_ PRl move #1, val 

12 . labels MOUULEAP fibonacci val. 100 

13 move 100, result 

14 eq val, #50, 101 

15 if 101 ACTT if8_true_ll ACTF if8_false_9 

16 .if8_false_9 plus val, #1, val 

17 protect ACT labels 

18 . if8_true_ll #1, val 

19 protect ACT labels 

20 EHDHOrHJtE test_fibonacci 

21 
22 RECMODtJLE fibonacci fibonacci_ra x. fibonacci 

23 inport X [0:31] 

24 outport fibonacci [0:31] 

• 25 eg X , #1, 108 

26 eq X, #2, 109 

27 or 108, 109, 110 

28 if 110 ACTT ifl8_true_19 ACTF ifl8_false_20 

29 .ifl8_true_19 move #1, fibonacci ACT labelSO 

30 . ifl8_false_20 minus X , #1, 103 

31 wfinwrite fibonacci_x_in. stac3<_l [stack_pointer_l] 

32 plus- stackj>ointer_l #1, stackj>ointer_l 

33 move 103, fibonacci_ x:_in 

34 memwrite fibonacci_ra, stack_l[stack_pointer_l] 

,35 plus stack_pointer_l , #2, stack_pointer_l 

36 move #%01, fibonacci _ra 

37 RECURSE fibonacci t%01 fibonacci_x_in, fibonacci. _fibonacci_out 

38 minus stack_pointer_l '41, ' stack_pointer_l 

39 memread stack_l[stack_pointer_l]V fibonacci_ra 

40 protect 

41 minus scack_pointer_l il, stack_pointer_l 

42 memread stack_lt stack_pointer_l3, fibonacci_x_in 

43 protect 

44 move fibonacci_fibo_nacci_out, 104 

45 minus X, #2, fibonacci_x_in 

46 msamrite 104, stack_ltstack_pointer_13 

47 plus stack_pbinter_l #1, stack_gointer_l 

, 48 memwrite f ibonacci_ra, stack_l [ stack^jjoint er_l ] 

49 plus staok_pbinter_l #1, stack_pointer_l 

50 move ##10, fibonacci. _ra 

51 RECDRSE fibonacci #%iO :ibonacci_x_in, fibonacci. _fibonacci_out 

52 minus stack_s>ointer_l 41, stack_pointer_l 

53 memread stack_i:[stack_pointer_l], fibc>na:cci_ra 

54 protect 

55 minus stack_pointer_l #2, stack_pbinter_l 

56 memread stack_l [stack_jpointer_l], 104 

57 protect 

58 move fibonacci_fibonacci_out, 106 

59 plus 104, 106, fibonacci 

SO .labelSO ENDHOCnLE fibonacci 

Figure 5.6 Fibonacci test design ICODE translation 

5.2 Compiler modifications 

The VHDL compiler that is the front-end to MOODS required some modification in its 

parsing abilities and ICODE generation functionality to fully handle procedural recursion. 

This section details those modifications. 



D.J.D. Milton, 2002 Chapter 5: Recursion 149 

5.2.1 Forward declarations 

As VHDL requires that all procedures be declared before their use, an indirect recursive 

call structure forces the use of forward declarations of procedures. There are four 

declarative regions in VHDL in which this is possible. The first is the package header; the 

second is the package body; the third is the architecture declarative region and the fourth is 

the process declarative region. 

It is possible to defer the definition of the body of the procedure out of the local scope of 

the declaration, but in the general case, most procedures are defined in full in the same 

scope as the procedure declaration. It was necessary to add the ability for declaration of 

procedures without their body in the architecture and process declarative regions for the 

purpose of forward declaration. This ability already existed in the package header and 

body due to the package body being able to hold the definitions of procedures declared by 

the package header. This was previously the only place in which one could define 

recursive procedures, which was rather limiting. 

Declarative Regions Forward Declaration Example 

package pck is -- within a declarative region 
— package header declarative region 

end pck; — declaration of A 
function A(inA: integer) return integer; 

package body pck is 
— package body definition region — declaration and definition of B 

end pck; function B(inB: integer) return integer is 
begin 

architecture behaviour of design is return A(inB); 
— architecture declarative region end B; 

begin 
pro: process -- definition of deferred function A 

-- process declarative region function A(inA: integer) return integer is 
begin begin 

null; if inA = 1 then return 1; 
end process pro; return B(inA-l); 

end behaviour; end A; 

Figure 5.7 Example VHDL: Declarative regions and forward declarations 

The support for recursive forward declarations is added by allowing two definitions of the 

same procedure in the compilers internal data structures. One holds just the forward 

declaration information and the other contains the same information as the forward 

declaration and in addition, contains the body of the procedure as well. Any call to a 

procedure whose body is not defined links to the declaration version of the internal 

procedure data structure. When the ICODE is generated in the translation stage of the 



D.J.D. Milton, 2002 Chapter 5: Recursion 

compiler, any link to a declaration-only procedure is resolved onto the full-body procedure 

data structure. This is achieved by searching in each region in turn, starting from the 

process' declarative regions, then the architecture's declarative region, then any referenced 

package bodies followed by the package headers. 

5.2.2 Detecting recursion 

The necessity of detecting when recursion is possible is so that designs with no need for 

recursive features are created without the extra overhead that is involved with recursion. It 

is not even enough to detect that recursion is possible in a design, as locating exactly 

where in the design recursion can occur allows the extra overhead to affect only the 

procedures that can be recursed. 

There are two pieces of information that need to be extracted from the user's design in 

order for recursion to be detected. These are determining which procedures are contained 

by recursive loops and which calls to these recursive procedures are recursive calls by 

checking that the call forms an arc in one of these recursive loops. Both of these sets of 

information are required for an efficient implementation of recursion, as the information is 

used to determine which ICODE modules require a return address and which call 

instructions need to modify the stack contents. If one or more module is found to be 

recursive, then the compiler generates the stack and all the associated control for that 

stack. 

The reason for needing to know which procedure calls are contained by a recursive loop is 

that the call can be implemented by the original call method if it is not contained by such a 

loop. Both the old static calling method and the new dynamic calling method of the state 

machine are supported in the same design. 



DJ.D. Milton, 2002 Chapter 5: Recursion 151 

Process 

,c' \—/ el 
-a-M A I b—•{ B ) d2 

e3 

Figure 5.8 Determining recursive procedures and procedure calls 

Figure 5.8 gives an example of a call graph. It shows a number of procedures (A-K) 

represented by the nodes of the graph and a number of calls between these procedures (a-

k) represented by the arcs of the graph. Recursion exists in the design if there are any 

loops in the graph. A procedure can be recursed if it is contained by any graph loop. 

Similarly, a procedure call is a recursive call when its representative arc is part of a graph 

loop. 

Note that all initial calls (a, f l , hi) from the root process are non-recursive, as it is 

impossible to invoke the process from a procedure in VHDL. 

The algorithm that calculates which procedures and procedure calls are recursive is 

implemented simply as a depth-first traversal of the entire graph starting from the root 

process. For each iteration a marker is left in the ICODE module (procedure) being tested 

when a call to that module is followed. When all the calls from a module have been tested, 

the marker is removed and the algorithm jumps back to the calling module. In this way, if 

any module jumped into already has a marker set then the module is marked permanently 

as recursive. Two loops around any recursive loop in the call graph are required to fully 

determine every recursive module. The recursive calls are marked in the same way by the 

same algorithm. Thus the shaded modules in Figure 5.8 are identified as recursive. 



D.J.D. Milton, 2002 Chapter 5: Recursion 152 

5.2.3 Auto-generated ICODE 

The compiler generates all the necessary control of the stack and stack pointer when 

recursion is found in a design. These additions occur after the VHDL parse tree has been 

translated into an internal representation of ICODE and after procedural inlining. Figure 

5.9 shows the multiple phases used in the compiler. 

VHDL Compiler 

Lexical Analysis ^ 

C 
c 

Parser J 

Translation 1 

n ine 

Optimisation 

r ICODE file generation ) 

Figure 5.9 VHDL Compiler program flow with recursion modifications 

Note that the additions required to implement recursion are made after module inlining. 

An effect of inlining selective modules in a recursive loop is that the loop becomes tighter. 

It is impossible however, to inline a module that calls itself directly. This is flagged as an 

error if attempted. 

All the additions made for recursion are made to the internal representation of ICODE in 

the compiler. This data structure is far simpler than the VHDL parse tree from which the 

ICODE is based (by translation). The ICODE file, which forms the output of the compiler, 

is a direct representation of the internal ICODE data structures in the compiler. 

5.2.4 Return address generation 

The return addresses serve two purposes in the final structural design. They tell the 

currently active procedure which call-instruction activated the procedure in the first place. 



DJ .D . Milton, 2002 Chapter 5: Recursion I 5 3 

This means that when the called procedure exits, the relevant return address indicates 

which control node of the calling procedure or process to reactivate. The second purpose 

of the return addresses is for determining the correct references for any I/O passed as 

parameters to the procedure. 

As each return address contains information relevant to one procedure only, each recursive 

procedure is assigned its own return address ICODE register type variable. The values 

held by the return address can reference every call instruction to the procedure. Every 

recursive call to the recursive procedure will be assigned a unique constant reference 

number (starting from 1) that can be stored by the return address variable at run-time. Any 

non-recursive calls to the procedure (those not part of recursive loops) are assigned the 

constant zero for its address by default. There is no need to make any distinction between 

non-recursive calls to the procedure, as the old procedure call method is used in these 

cases. The ^call control node' that is left active (explained in Section 5.1.2.3) holds the 

return information. The return address is stored in a register with a number of bits capable 

of storing the highest constant reference address generated for each recursive call to the 

relevant procedure. This information is in plain binary format. 

The return address ICODE variables are generated in the main ICODE program (Figure 

5.6, line 4). This is because of the scoping rules of the ICODE, where a variable declared 

in a module can only be accessed from inside that module. As the return address requires 

external modification in the same location as a recursive call to the relevant module (lines 

36 and 50), it is placed in the ICODE program, which has global scope. 

5.2.5 ICODE instruction modification 

After recursion has been detected, each module found to be recursive has its module 

header instruction changed from the ^module' instruction into a new instruction defined 

for recursion, 'recmodule' (Figure 5.6, line 22). This change allows MOODS to determine 

which modules are recursive. The ^recmodule' instruction is then followed by the name of 

the module and then the return address variable associated with the module, before the 

normal definition of the I/O list. The structural output in the MOODS core requires the 

return address variable association. 



D.J.D. Milton, 2002 Chapter 5: Recursion J 5 4 

Similarly, every call that is found to be recursive has the ICODE instruction 'moduleap' 

changed into a new type of call instruction also defined specifically for recursion, 

'recurse' (Figure 5.6, lines 37 and 51). This change allows MOODS to distinguish 

between the two types of calling methods. A 'recurse' instruction is followed by the name 

of the module being called and then the associated return address constant value, before 

the normal definition of the I/O map for the particular call, as the structural output in the 

MOODS core also requires the associated return address constant. 

For a full definition of the modified ICODE file format, see Appendix D. 

5.2.6 Parameter passing 

The underlying structure of the final generated hardware still uses pass-by-reference for 

the procedure's I/O parameters. It is necessary to change this into a form where the 

reference only references a variable local to the calling procedure, effectively reducing the 

method to a pass-by-value with one level of reference indirection. The reason this is 

necessary is due to the new method for selecting which I/O arguments to reference, 

namely the return address, which holds only a single reference to the parent calling 

procedure at run-time, not the entire stack of return addresses (which are required in order 

to deduce the referenced root variable). 

A register variable is created for every input and output port of every recursive procedure 

(Figure 5.6, lines 5 and 6). These registers are used to mirror the arguments passed as I/O 

parameters from each recursive calling-module into every recursive called-module. The 

registers are added to the top level ICODE program, not the module from which the mirror 

registers derive, as they must also have global scope in the same way as the return address. 

For every recursive call to a recursive procedure, the 'recurse' instruction is modified to 

use these new mirror registers as the values passed into its I/O map. In addition to this, for 

the case of input parameters, the values that originally would have been passed into the 

'recurse' instructions I/O map are copied to the mirror registers before the call (Figure 5.6, 

lines 33 and 45). In the case of output parameters, the values are copied back from the 

mirror registers into the originally passed output parameters after the recursive call returns 

(lines 44 and 58). This requires the addition of an ICODE 'move' instruction per 



D.J.D. Milton, 2002 Chapter 5: Recursion 255 

parameter, added before (in the case of inputs) or after (in the case of outputs) the 

^recurse' instruction. 

5.2.7 Stack manipulation 

There are two main implementations for the stack that were considered. The simplest 

implementation, a single contiguous block of memory used for all stack frame data is 

used. This permits flexibility in the final hardware implementation, where any number of 

memory types may be used for the actual data storage. The initial implementation uses an 

internal RAM cell, with user-defined address space. This can easily migrate onto an 

external memory description, with a change in the interfacing methods, allowing larger 

stack depths to be used. 

The second alternative implementation considered is to have multiple stacks that keep 

track of one design variable each. This enables a more memory efficient allocation 

strategy for every register, with the stack data width tuned to the width of the variable that 

it references. This strategy enables concurrent stack modification for every variable, which 

allows an increase in the speed of the final design by reducing the number of clock cycles 

required. The drawback of this method is due to the variable sized stack fi-ame requirement 

of each variable, which is dependent on the position of the recursive call within the calling 

module as to whether the variable requires stack storage or not (see Section 5.2.7.5). 

Therefore, it is possible for some variables to require more stack frames than others. The 

act of balancing the number of stack elements for each variable, so that one stack block 

does not fill up before another is not trivial, hi fact, it is not calculable at compile-time as 

the analysis problem is not static. The amount of space required is determined at run-time, 

as there is the possibility and likelihood of performing recursive calls conditionally, 

dependent on run-time decision data. 

5.2.7.1 Stack and stack pointer creation 

The present system creates a single stack of 32-bits data path and a user-defined address 

space. Concurrent processes invoking recursive procedure calls have been disallowed (see 

Section 5.2.8). The 32-bit data path specifies the largest variable width that is capable of 

being stored on the stack. This particular width is chosen to mirror the space required to 

store a VHDL integer and to handle the full dynamic object data path width specified in 



D.J.D. Milton, 2002 Chapter 5; Recursion 156 

Chapter 4. The stack itself is created in the top-level ICODE program as a RAM variable 

(Figure 5.6, line 8). This means that one 32-bit word of memory is accessible within one 

clock period for read or write-access. All stack addressing occurs via the stack pointer 

variable, also defined in the top-level ICODE program (line 7), which is a register capable 

of holding the full address to any object held on the stack. The stack pointer width is 

dependent on the address range of the stack, which is user defined. 

5.2.7.2 Push and pop operations 

All the dynamic operations added to the recursive call instructions access the stack. The 

two main operations performed on the stack are push and pop. A push operation writes a 

given value into the stack and increments the stack pointer ready for the next push, while a 

pop operation performs the reverse of a push by decrementing the stack pointer and 

reading back the value at the decremented position. The equivalent ICODE instructions for 

the push and pop operations are shown in Figure 5.10. 

ICODE variable definitions and setup 

register stack_pointer_l [0:7] 

ram stack_l [0:31] address [0:255] 

move #0, stack pointer_l 

PUSH ( v a l ) 

memwrite val, stack_l[stack_pointer_l] 
plus stack_pointer_l, #1, stack_pointer_l 

POP ( v a l ) 

minus stack_pointer_l, #1, stack_pointer_l 
memread stack_l[stack_pointer_l], val 
protect 

Figure 5.10 ICODE equivalent instructions for stack modifiers 

In the example, the stack is created with 256 addresses, so the stack pointer requires 8-bits 

to store the full address. The 'move' of zero into the stack pointer occurs only once at 

initialisation. All other modifications are performed by the 'plus' and 'minus' ICODE 



D.J.D. Milton, 2002 Chapter 5: Recursion | 5 7 

instructions that form part of the push and pop operations. Note that the pop operation has 

a "'protecf instruction after the stack modification. The ''protect' instruction forces a clock 

cycle break between the instructions above and below the 'protecf. This is required in the 

case of popping the return address, as there is no dependency checking for I/O references 

across module borders in MOODS. This is explained in greater detail in the next 

subsection. The extra ''protecf has no adverse effects, even if included for every pop 

operation, as every pop includes one memory read instruction of the stack, each of which 

already requires a separate control state. 

5.2.7.3 Return address manipulation 

All stack modification is performed in the calling module, rather than the called module, 

with the controlling ICODE instructions added before and after every 'recurse' 

instruction. 

When a recursive call is made, the return address of the called module is set to the address 

associated with the recursive call. This operation tells the called procedure which I/O to 

reference and where to return control after the called procedure exits. However, the return 

address could be holding a valid address already, from a previous call to the procedure. 

This then, is the point at which this previous address is pushed onto the stack (Figure 5.6, 

lines 34-35 and 48-49), before the modification to the new address (lines 36 and 50). The 

call then executes with the knowledge that the return address is valid, and that the previous 

return address for the called procedure is stored on the stack for future reinstating. 

The complement of the push of the return address for a called procedure is to pop the 

return address straight after the procedure has returned from the recursive call (Figure 5.6, 

lines 38-40 and 52-54). Note that the return address must be reinstated before any other 

pop operations from the stack, as the return address (which may change at this point) 

determines the correct I/O parameters to map onto, which may be referenced by the 

following pop operations. It is for this reason that the 'protecf instruction is made part of 

the pop operation, so that the return address register updates before the following 

instructions are executed. Normally, the data dependency information held by MOODS is 

used to determine whether the registered version or non-registered version of a variable is 

used during a control state. However, the dependency of the following pop operations with 



D.J.D. Milton, 2002 Chapter 5; Recursion %gg 

the return address is not directly specified, it is only implied by the internal structural use 

of the return address. 

Another effect of the single-cycle update time for the return address is found with the rare 

case of no further operations taking place after the pop of the return address. The pop 

operation is scheduled in one of the end-states of the module in this case. However, as the 

registered return address is used to reactivate the calling control node, the return address is 

not valid until the end-state completes. This is too late to reactivate the correct calling 

control node (with activation made incorrectly using the current return address). Detecting 

this rare case in the ICODE and adding an extra ''protecf after the pop operation for the 

return address solves this problem. This has the effect of creating an extra control state 

after the pop operation for the return address, in which the registered version of the return 

address is valid. This extra state becomes an end-state of the control graph (replacing the 

pop operation state as an end-state) and is used to reactivate the correct calling control 

node. Section 5.4.3 gives an example of timing for the return address setup cycle. 

5.2.7.4 Output parameters 

The output parameters of any call do not require updating, as any writes to them during the 

procedure reference the passed parameters directly. The parameters do not require stack 

storage, as by definition, they form the result of the procedure. However, the mirror 

registers, which are passed into the procedure as the referenced variables contain the 

results of the procedure. Section 5.2.5 explains the purpose of mirror registers. The mirror 

registers are used to update the original passed parameters defined in the calling 

procedure. The output variables are updated after all of the stack operations. 

5.2.7.5 Input parameters and local variables 

The input parameters of a recursive call, on the other hand, do require insertion onto the 

stack. It is at this point that the mirror registers for these values are modified to the values 

being passed into the called procedure. However, these mirror registers could be holding a 

valid value firom a previous call to the procedure being called, so before the mirror register 

values are modified to the values being passed, the old values are pushed onto the stack for 

future reinstating (Figure 5.6, lines 31-32). Note that the push operations occur before the 

push of the return address, so that all references to I/O of the current procedure are still 

valid. 



D.J.D. Milton, 2002 Chapter 5: Recursion I 5 9 

Local variables (including temporaries) are treated in exactly the same way as input 

parameters, in that they are pushed onto the stack after the inputs (lines 46-47). The only 

difference is that the values held by the variables are not modified to any particular new 

value; they are modified by the next iteration of the procedure currently being jumped out 

of. These values are pushed in the knowledge that further calls to the present procedure are 

possible by recursion. 

Both input parameters and local variables that were pushed before a recursive call are 

popped after the call in the opposite order, which brings these values back into their 

original state as found before the call (lines 41-43 and 55-57). 

An extra optimisation in the number ofpushlpop operations performed around a recursive 

call is possible. The optimisation involves calculating which input parameters and which 

local variables are written before a recursive call and read after the call. If the values are 

never written before and read after a call, then these values do not require insertion onto 

the stack, because the data they hold before the call is never accessed after the call. The 

check is further reduced to just checking for a value being read after a call, as if a variable 

was not written before, then the value will be invalid anyway, which is caught by 

behavioural simulation. Figure 5.6 shows that the input mirror register is only stored 

around the first recursive call, as the input is not referenced after the second call. Also, of 

all the local variables in the Fibonacci module, temporaries 103, 104, 106, 108, 109 and 

110, only temporary 104 is stored around the second call, as this holds the result of the 

first recursion, used after the second recursion. 

Following all control-flow paths 60m the 'recurse' instruction (including loops and all 

paths fi-om conditionals), finding whether each local variable and input variable of the 

'recurse' instruction is ever read after the call, makes this check. If the variable being 

checked is found to be written to, then the check need not carry on any further along that 

path, as the write overwrites any previous value, which also means that the variable does 

not require stack storage. 

5.2.8 Limitations 

There are a few limitations when using recursive procedures, but most restrictions are not 

too great or can be worked around. 



D.J.D. Milton, 2002 Chapter 5: Recursion 

The first limitation is that signals [80] cannot be passed into a recursive procedure. The 

reason for this is explained in Section 5.1.3.4, with the introduction of pass-by-value 

parameter passing. The reason that signals cannot be passed is that they require a full pass-

by-reference method, so that the root signals are updated directly at the wait statements in 

a procedure. The pass-by-value method will not work correctly because the output is 

updated only on the return of a call. A workaround for this limitation is to use global 

signals or entity ports directly in the procedure if the recursive procedure is defined in the 

architecture or processes declarative regions of a design. 

Another limitation is that only one process in a design is allowed to call recursive 

procedures. This is not too great a restriction: multiple processes that are required to call 

recursive procedures can be split into separate design units. This restriction could be 

removed in the future if multiple stacks are created for each concurrent process in a 

design. This requires the replication of recursive procedures if they are called fi-om more 

than one process, as each procedure implementation statically accesses one stack. 

The 32-bit data path of the current stack configuration is a limitation if data greater than 

32-bits requires dynamic storage. This limitation is caught during compilation. A method 

to cope with this problem is to create a stack with a compile-time configurable data path 

width that is optimised to the greatest data path width that is stored on the stack. This 

problem would also disappear if the alternative stack structure, described in Section 5.2.7 

were used. The generated structure is of a separate stack memory for each dynamic 

variable, where the data path width of each stack is the same as the data path width of each 

variable requiring storage. 

The final limitation for recursive procedures is that these procedures are not allowed to 

contain RAM arrays as local variables, as making dynamic copies of the entire array for 

every stack firame takes a time proportional to the address size of the array, and fills the 

stack memory extremely quickly. If access to a RAM array is required, then the array 

could be placed in the same declarative region as the procedure definition, which moves 

the array from the procedure's scope (requiring stack-frame local data) into the parent 

scope of the procedure. 



DJ.D. Milton, 2002 Chapter 5: Recursion ^ 6 1 

5.3 Hardware generation 

The modifications made to MOODS and the structural VHDL generator, described by this 

section, complement the fi-ont-end modifications necessary for recursion made to the 

compiler, described in Section 5.2. These changes are mainly with the introduction of the 

'recurse control node\ the alternative to the 'call control node'' and the utilisation of the 

return addresses by the controlling state machine and module I/O selection. 

5.3.1 Modules in MOODS 

The MOODS data structures are built 6om the inputted ICODE file generated fi-om the 

compiler. The ICODE 'module' has a direct equivalent structure in MOODS, with the 

addition of more information about its present optimisation state. This includes the control 

graph that represents the controlling state machine. The ICODE instructions are contained 

in this control graph and the act of optimisation moves the ICODE instructions across 

control states, allowing the number of states to be changed. 

The addition of procedural recursion affects the MOODS structure containing the ICODE 

''module\ as the module is derived from the original VHDL source procedure or function 

that could be recursive. The extra information required by MOODS is generated by the 

compiler and contained in the 'recmodule' and 'recurse' ICODE instructions. This gives 

MOODS the information that a module can be recursively entered, the return address 

associated with the module and the return address constant allocated to every recursive 

call. The ICODE file contains this information. 

5.3.2 Post-optimisation step 

While MOODS performs the core optimisations to a design, the internal data structures 

hold the complete design that represents the structural output at any time. However, these 

data structures do not contain explicit one to one mappings with the actual hardware 

generated. Instead of the conditional signals that form the link between the controlling 

state machine and the data path being created explicitly on the fly as part of the 

optimisation process, they are simply implied by the ICODE instructions that perform the 

various operations. This is far more efficient in terms of optimisation speed. 



DJ.D. Milton, 2002 Chapter 5: Recursion ]^52 

Equally, when MOODS shares data path nodes, they then have multiple inputs that are 

active at different times in the control flow. Instead of explicitly creating a multiplexor for 

these data path nodes during optimisation, the multiplexor is implied by the existence of 

multiple drivers for the shared data path node. The effects of the multiplexors are also 

implied during optimisation, which means that the delay and area costs of the multiplexor 

are taken into account without the existence of a physical multiplexor. 

These implied components are instantiated during a post-optimisation step of MOODS. At 

this point all multiplexors are physically created where required and the controlling 

conditional signals are generated to drive the multiplexor select signals, register load-

enable signals and all other control inputs for every data path node in the design where 

required. These signals also form the path back from comparison data path nodes, such as 

an equality comparator, into the generated state machine, so that data-dependent control 

flow can occur. 

It is during this post-optimisation step that the many structural additions required for 

recursion are realised. 

5.3.3 Return address decoder and control signals 

The dynamic control of the final structural design occurs via the conditional control 

signals that are derived from the controlling state machine. This system is now augmented 

with the return address registers that are used in conjunction with the modified state 

machine. The values stored by the return addresses form a binary representation of a 

particular control node to reactivate. This binary representation is converted into a one-hot 

output, where only one signal is active for each possible return address value. This is 

accomplished using a decoder data path node for every return address register. The 

decoders are fed directly from the return address registers and generate a number of 

control signals, each of which is singularly active dependent on the return address values. 

These signals are used to feed the various conditions in the condition list, which in turn are 

used to control the flow of the state machine and the I/O selection for each module. The 

condition list stores every conditional equation, which forms the glue-logic between the 

control and data paths, as shown by Figure 3.2. 



D.J.D. Milton, 2002 Chapter 5; Recursion 163 

3 address bits 

return address register 

" i!! 2 o 
2 

3-^8 
decoder 

8 control signals- N (O CO o 
(A (0 (0 (0 (A (A to (0 U u o o O O O o 

ra(2:0) csfz.o; 

000 00000001 
001 00000010 
010 00000100 
oil 00001000 
100 00010000 
101 00100000 
110 01000000 
111 10000000 

Figure 5.11 Example return address decoder 

The example return address decoder shown by Figure 5.11 converts the 3-bits of the 

example return address into the eight control signals that drive the conditional equations. 

5.3.4 State machine 

The state machine, used to control the sequence of operations performed by the design, is 

derived from a direct conversion of the control graph in the MOODS data structures. Each 

control state has a corresponding control cell that implements the state. There are three 

basic control cell types now in use. The first is the 'general control celV used for all 

control nodes except call nodes, the second is the 'call control ceW used for non-recursive 

module calls and the third is the new 'recurse control celV used in conjunction with the 

return address for recursive module calls. In most designs, the control graph is formed 

mostly from the 'general control cell'. The other cells are used exclusively for the two 

calling mechanisms now supported. 

Each module has its own separate control graph, which is activated by one of the two 

methods of module calling. Each module has a single start-node and can have multiple 

end-nodes. When generating control signals in the post-optimisation step, a single end 

condition is created from the logical-OR of all end node tokens in the module. The tokens 

themselves may be the product of a logical-AND with any data-dependent conditions 

active in the end-node. This end-signal defines when a module finishes its execution flow. 

The use of this signal is explained in more detail in the following sections. 



D.J.D. Milton, 2002 Chapter 5: Recursion 164 

5.3.4.1 General nodes 

The general node forms the basic control cell that implements the token-passing, one-hot-

encoded state machine. The control cell is designed using structural VHDL, with the 

number of input tokens defined by a generic parameter of the cell. The input tokens form 

the activating signals that are used internally to activate the control cell for one clock 

period. Figure 5.12 shows a representation of the general control node. This example 

shows a node with three activating tokens, which means that the node can be activated 

from the tokens of three other control nodes (which can also include itself). 

If a token input is linked directly to the token output of another control cell, then the 

control cell will always be activated one clock cycle after the directly linked control cell 

was active. Conditional branches are implemented by forming Boolean expressions with 

the control node token inputs, using the original source comparison operator result as an 

input to the Boolean expression. 

n Input Tokens 

Genera 
Contra 
Node 

n Input 
Tokens 

J\ 

Clock 

Output 
Token 

D 
SET 

D U 

> 
0 . 0 

Reset 

Output 
Token 

Figure 5.12 The general control node 

Each general node is realised by a single register and an n-input OR-gate, which gives a 

very dense and efficient representation in the register-rich environment of the FPGA. 

The link back to the data path of the design is formed via the token signals themselves (see 

Section 3.2.2). These tokens are used for the various control inputs of the data path nodes, 

such as register load-enable signals and multiplexor-select signals. Just as with conditional 

branch execution flow, these signals can either be used directly, or via extra Boolean 



D.J.D. Milton, 2002 Chapter 5: Recursion 165 

expressions that conditionally determine whether a data path node is used in a single 

control state. 

5.3.4.2 Call nodes 

The call node is the implementation of the ICODE 'moduleap" instruction. No other 

instructions are scheduled in the same state as the call. The call node has similarity with 

the general node in that it takes a number of input tokens that activate the node, and 

produces a single token that is used to activate the node that implements the state 

containing the instructions that follow the call instruction. Details of the calling 

mechanism are given in Section 3.2.6, with Figure 3.10 providing an example of timing 

waveforms. 

Figure 5.13 shows the implementation of the call control node. Notice that there are three 

extra signals defined for this node. The first, 'Activate', serves as the activation signal for 

the sub-control graph that forms the controller of the module being called. This signal 

drives one of the input token lines of the start-node of the called module. 

n Input 
Tokens 

Cal 
Control 
Node 

Output 
Token 

Activate 

End 

n Input 
Tokens 

> Enable i N 

Activate 

Clock 

Reset 

t> 

Q 

Enable 

End 

Output 
Token 

Figure 5.13 The call control node 



DJ.D. Milton, 2002 Chapter 5: Recursion j g g 

The second signal, 'Enable', is the output of the register that stays active throughout the 

entire duration of the call. This is the signal that is used to reference the called modules 

I/O that is mapped during the call to the module, for this particular call. 

The third signal, 'End', forms the link back from the module being called. Each module 

has an end signal associated with it that is generated from the output tokens of any of the 

end-nodes of the module. This end-signal is fed back to every call confrol cell that 

activates the module. 

Note that the 'Activate' signal is driven directly from the logical-OR of every token input, 

which means that the start node of the module being called is activated at the same time as 

the call control node register is activated. 

The register in the call node is set when the call node is activated by any of the input 

tokens. It stays in this state by way of feedback from itself unless the 'End' signal 

becomes active; in which case, the registered value is reset on the next rising edge of the 

clock. The complement of this action is to set the output token from the call node when the 

'End' signal is active along with the call node being active. The token output activates the 

node that follows the call. As no other instructions can be contained by a call state, no 

conditional activations can be formed from the call control node. This means that a single 

node is activated after the call node. 

5.3.4.3 Recurse nodes 

The recurse control node is part of the mechanism used for the implementation of a 

recursive call instruction. The 'recurse' ICODE instruction is the only instruction 

scheduled in a recurse node. The recurse node only forms half of the controlling actions of 

a recursive call, with the other half implemented by the return address associated with the 

module being called. 

The 'recurse control node\ shown by Figure 5.14, is formed from a reduced version of the 

'call control node\ As no register can be left active for the call duration, this node does 

not contain a register. Instead, it just forms the link that activates the start-node of the 

called module and the link back from the end-nodes of the called module that activates the 

node following the recursive call. 



D.J.D. Milton, 2002 Chapter 5: Recursion 167 

n Input 
Tokens 

Recurse 
Control 
Node 

n Input 
Tokens 

Activate 
Activate 

End 

Output 
Token 

End 
Output 
Token 

Figure 5.14 The recurse control node 

The 'Activate' signal does exactly the same job as the equivalent signal of the call control 

node, in that it is linked to one input token of the start control node of the called module. 

The 'End' signal simply drives the output token that activates the following control node 

and is driven from a Boolean equation derived from the return address, described in the 

next subsection. This serves as the calling mechanism for the state machine (see Section 

5.4 for an example in recurse node timing). 

5.3.4.4 Linking the return address 

The returning mechanism for the 'recurse control node' is achieved with the use of the 

return address value that is decoded into a number of separate signals, as explained in 

Section 5.3.3. If the 'End' signal of the 'recurse control node' were driven directly from 

the end-signal of the recursive module, then this would mean that all nodes following any 

recursive call to the called module would be activated after the call finishes, producing 

incorrect behaviour. 

The decoded return address signal whose value represents every 'recurse' instruction by a 

unique constant identifier is used along with the called modules end-signal by a logical-

AND of these two signals, to correctly determine which node to reactivate. Every 'recurse 

control node' uses the relevant decoded return address signal specified for the particular 

recursive call. It is assumed that the registered return address is valid at the time of the last 



DJ.D. Milton, 2002 Chapter 5: Recursion 168 

state of the recursive module. This is a valid assumption, as it is checked and fixed during 

compilation, as explained in Section 5.2.7.3. 

Module A Recursive Module B 

push return 
address and 

set to #1 
when right 

hand branch 
taken 

recurse Enable 

B Return Address 
register pop return 

addresa 

decoder push return 
address and 

set to #2 

recurse 

See 
Section 
5.3.4.5 

pop return 

state 
required 

after return 
address pop End Signal 

Figure 5.15 State machines use of the return address 

The example in Figure 5.15 shows a single recursive module 'B', which can recursively 

call itself twice. Hence, the return address for module 'B' requires three values (including 

zero for all non-recursive calls). Note that the start-node of module 'B' is activated 

unconditionally from every call to the module. The call and recurse nodes are reactivated 

dependent on the condition of the decoded return address register. This register is 

controlled explicitly by the ICODE instructions generated by the compiler, scheduled in 

the preceding and successor control nodes of the recursive call nodes. 



D.J.D. Milton, 2002 Chapter 5; Recursion 169 

5.3.4.5 Mixing call mechanisms 

There are rules for which calling mechanism is used depending on the recursive status of 

the module being called, the module being called from and whether the call is part of a 

recursive loop. There are five valid combinations of these three criteria shown in Figure 

5.16. Note that the type of call mechanism is really only dependent on whether the call is 

part of a recursive loop. However, all combinations are listed, as each requires a different 

level of integration with the return address mechanism used by recursive modules. 

1. 

2. 

3. R 

-W R 

original non-recursive cal 

initial call 
jump into recursive loop 

jump out of recursive loop 

4. R 
no recursive loop between 
recursive modules 

5. R 
R 

R ) recursive loop call 

module 

module 

example using 
all 5 call styles: 

Figure 5.16 Module call styles 

The ability to form a recursive call between two recursive modules (style 5) is described 

by the body of this chapter. 

If a call is made from and to a non-recursive module (style 1), then this call uses the 

existing call method of the ^call control node'. No extra signalling is required for this. 

Similarly, if a call to a non-recursive module from a recursive module occurs (style 3), 



DJ.D. Milton, 2002 Chapter 5: Recursion 1 7 0 

then no extra signaUing is required for this situation, as it is safe to leave the 'call control 

node' active within the recursive calling module, as there is no possibility of recursively 

reaching that call point again. 

In the case of calling a recursive module using a non-recursive call (styles 2 and 4), some 

extra signalling is required that was not present before. This situation occurs when calling 

from both recursive and non-recursive modules and actually forms all initial calls into 

recursive module loops. The non-recursive calling mechanism is used in these cases, 

which leaves the ''call control node' active throughout the duration of the call. However, 

the end signal that is fed into the call control node cannot be derived directly from the 

called modules end signal. This is because the end signal could be activating a previous 

invocation of the recursive module and not the initial call. 

The method used to distinguish between reactivating any recursive call node and 

reactivating the initial call node is to use the return address again. The non-recursive initial 

call is reactivated only when the return address holds the value zero. The return address 

decoder, along with all the other recursive return addresses, generates the signal that 

describes this situation. A logical-AND using the decoded signal that describes address 

zero and the modules end signal is used to feed the 'End' signal of all non-recursive calls 

to the module. No distinction is required between any multiple non-recursive calls to the 

module due to only one 'call control node' being enabled at a time, which means that 

control returns to the correct position. 

As each recursive modules return address is used for non-recursive calls to recursive 

modules, all return addresses must be reset to zero before each call. This is best achieved 

at the beginning of the execution flow for the whole design, as it then becomes 

unnecessary to reset the return address before each call, as they are reset to back to zero by 

the last stack frame of a recursive procedure. 

5.3.5 I/O referencing 

All module I/O is passed as references. This means that the storage space used to hold the 

parameters passed into a module are written to and read from directly by the module when 

it accesses them from its interface. As different parameters can be passed into the same 

module, a mechanism to select which values to reference is required for any operations 



DJ.D. Milton, 2002 Chapter 5: Recursion 

that use the module I/O parameters. The structural mechanism for both inputs and outputs 

is explained in Section 5.1.2.3. 

This mechanism, used before the additions required for recursion were added is expanded 

upon to fully support the correct referencing of I/O across recursive call boundaries. The 

method for referencing I/O has not changed; only the way in which the selection of which 

mapped I/O variable is achieved. The new method does this by incorporating the use of 

the decoded return address signals in the source selection hardware. 

5.3.5.1 Input multiplexors 

All inputs to a procedure are referenced in the final structural VHDL by a signal defined 

for the input. This signal is used wherever the input is referenced. If only one input source 

is passed into the module, then the generated input signal is driven directly fi-om the 

passed input parameter. Passing different parameters into the module requires a 

multiplexor to drive the input signal. This multiplexor is driven from the various sources 

of input, which could include constants or registered variables. The selection of which 

input to use is determined by the multiplexor select signals, which are generated from the 

controlling state machine. In the case of non-recursive calls to the module, the input 

selection signals are driven by the call control nodes 'Enable' signals, which are active 

throughout the duration of the call, so selects the correct input throughout the entire call. 

Recursion does not change this situation; only the input selection signal was changed, as 

the 'Enable' signal of a call control node does not have a direct equivalent in the 'recurse 

control node'. Instead, the return address associated with the particular recursive call of 

the module is used to determine the source of the input. Note that due to the addition of the 

mirror registers, the only values recursively passed are the mirror registers themselves, 

which are selected by the logical-OR of all recursive return addresses of the module. Also 

note that the non-recursive call parameters selection signal is driven from the logical-AND 

of the original selection signal and the zero return address decoded signal. 



D.J.D. Milton, 2002 Chapter 5: Recursion 172 

#1 #2 

I I r 

^ MUX j ^ MUX 

Address I 

#0 #1 #2 

^ MUX j 
irg 

Data in 

STACK 

11 flbonacci_ra flbonacci_ra address 

MUX / 

SUB 

j D E C O D E ^ 

mirror register 

fibonacci x_in 

8 8 a 

non-recursive 
call active signal call active signal 

#1 

I I 
val 

J 2| 
Select 1 I Input 

Multiplexor 
Select 2 ̂

 MUX j 

Input Reference Signal 

fibonaccLx 

Figure 5.17 Example generated structure for module Inputs 

Figure 5.17 shows a portion of the generated data path structure for the example given in 

Section 5.1.5. It highlights the generation of the mirror register ''fibonacci_x_in' and the 

use of the input reference signal to feed the mirror register with a subtraction of one or two 

from itself. Notice that the mirror register is also fed from the stack, as the input is read 

after the first recursive call to the function. This means that the input is pushed and popped 

around that call, so that it will hold the correct value originally passed into the procedure. 

The multiplexor-select signals and register load-enable signals are all generated from the 

control cell tokens and the return address associated with the 'fibonacci' function. 

5.3.5.2 Output registers and multiplexors 

The situation is similar, but not entirely the same for the output parameters of a call into a 

recursive procedure. Because registers hold all output parameters, the separate reference 

signal as used for the module inputs is not required. The source VHDL guarantees that 

outputs are variable, as constants cannot be passed into output parameters. The limitations 

of behavioural synthesis also stipulate that RAM variables cannot be passed as parameters 

into procedures. 



D J . D . Milton, 2002 Chapter 5: Recursion 173 

non-recursive call 

write 1 

^ MUX j 

Data In 

STACK 

ram I ~ 

^ MUX y 

* temp 104 

return address = #0 

AND 

_[ 
ADD 

Select 

#1 
11 

OR ) H 

first output 

temp 100 

II 
output port 

result 

non-recursive call 

write 1 

return address = #0 "[ 

AND 

Select 

#1 

jd 

Select 2 S5E7 
mirror register 

> fibonacciJibonaccLout 

write 2 

return address = #1 

write 1 

return address = #2 

Figure 5.18 Example generated structure for module outputs 

The addition of mirror registers limits the number of parameters passed recursively, but 

the initial non-recursive calls to the module allows referencing of other variables other 

than the mirror registers. The first stack frame of the module references the initial 

parameters passed into the module. 

As all outputs are guaranteed to be held in a register type data path node, output write-

referencing is implemented by using multiplexors to feed the register from the relevant 

value being written and by driving the register load-enable control inputs at the same time 

as selecting the correct input to assign to the output register. 

The selection of which output to write to is made using the decoded return address signals 

again. Any recursive call passes the mirror registers as the references, so the mirror 



DJ.D. Milton, 2002 Chapter 5: Recursion 2 74 

registers are written whenever a second iteration of the recursive module is entered. This 

situation occurs when the return address is not zero. When the return address is zero, the 

parameters passed in the initial call are used. A separate multiplexor is used per output as 

the register may be written outside of the procedure. Figure 5.18 shows a limited section 

of the data path for the same Fibonacci example introduced in Section 5.1.5. The portion 

of the data path shown by Figure 5.18 shows the connections of the output-referenced 

registers with respect to the operations performed on them in the 'fibonacci' function. 

5.3.6 DDF file format change 

The MOODS internal data structures can be dumped at any stage during optimisation and 

after the post-optimisation hardware generation step has occurred. The file format (see 

Appendix D.2) is entirely proprietary and mirrors the essentials of the entire data structure. 

The reason that it is mentioned here is that a back-end translator exists (see Appendix A. 5 

DDFLink), which generates the final structural VHDL directly from the internal data 

structures stored by the DDF file. Due to the changes made for recursion in the MOODS 

data structures, specifically to the module and ICODE instruction structures, this 

information is incorporated into the DDF file format and the relevant changes made to the 

back-end translator. 

5.4 Recursion timing 

The overhead of recursion is in two parts. The first is the area overhead, which can be 

attributed to the space required by the stack, stack pointer, return addresses and their 

decoders, mirror registers and all the extra controlling signals used to integrate the control 

path with the data path. The second overhead is the timing required to implement a 

recursive call. These cycle-based timing requirements form the extra cycles required for 

stack modification, mirror register usage and the recursive call itself As the underlying 

control flow is generated using ICODE instructions, the final implementation timing is 

dependent on the optimisation of these instructions. However, the scope for sharing clock 

cycles for the auto-generated ICODE is limited by the stack storage mechanism of the 

single RAM used to hold the dynamic data frames. As a result, MOODS always produces 

the minimum timing flow without impacting on the total area of the design. 



DJ.D. Milton, 2002 Chapter 5: Recursion 1 7 5 

5.4.1 Recurse control node 

The recursive call control node is designed to mirror the timing characteristics of a normal 

call node. The only ICODE instructions implemented by a call node of any type are call 

instructions. This means that no other instructions are scheduled while the call node is 

active. This is because a call node executes at the same time as the control nodes that 

implement the state machine of the called module, where the overlapping time slots do not 

allow any other instructions to be implemented in the call node, as the call node 

effectively has no time in which to schedule instructions. Both call nodes are designed 

with these timing characteristics to minimise the time taken for a call. 

If ICODE instructions were allowed to execute in a call control node, then the time taken 

to execute these instructions would impinge upon the time remaining in the start node of 

the module being called. Data dependency checks would need to be made across the 

module call boundary for every call made to the module. This is an impossible situation to 

optimise. 

5.4.2 Stack modification 

All stack modification is implemented by the push and pop operations described by Figure 

5.10. This figure shows that a push is made from a write into a RAM variable and then an 

increment of the address used for the write. A pop is made from a decrement of the 

address, followed by a memory read at the new address location followed by a 'protecf 

instruction. 

Due to the ordering of the two instructions of the push operation, no data dependency 

exists between them, so they can both be executed in the same confrol cycle. Note that 

several successive pushes onto the stack create data dependencies between the increment 

of the stack pointer and the stack pointer being used as the address for the next push 

operation. This, and the fact that a RAM can only be accessed one address at a time forces 

every push operation to execute consecutively. 

The pop operation is different in that the memory read is dependent on the result of the 

increment of the stack pointer used as the address. The extra 'protect' instruction that 

follows preserves the validity of the return address across module call boundaries. This 



D.J.D. Milton, 2002 Chapter 5: Recursion 2 7 5 

extra instruction also has a side affect of forcing the stack pointer decrement operation and 

the memory read operation to be chained in the same control state. This means that a pop 

operation executes in one clock cycle also. 

The sequential nature of these operations that use the same storage variable forces every 

push and pop operation into its own separate state. This is where most of the timing 

overhead of recursion occurs. Note that the input mirror register assignments occur in the 

sequence of push operations. The output mirror register assignments occur after the final 

pop operation. 

5.4.3 Return address setup cycle 

Return address manipulation is discussed in Section 5.2.7.3. Part of the discussion 

mentioned that the return address is required to be valid for every end-state of the 

controlling state machine. This is achieved with the insertion of an extra ICODE 'protect' 

instruction where required. This has the effect of inserting an extra control state after the 

return address modification pop cycle. The cycle after the pop of the return address is then 

used as an end-state of the controlling state machine. 

This situation is shown in Figure 5.19 below. The left side of the figure shows an example 

state machine. There are two separate state diagrams shown, where the left diagram 

represents the main controller module 'A' and the right diagram represents a recursive 

module 'B'. The call control node labelled as 'c3' makes the link between the two control 

flows. A single recursive call to module 'B' is made by the 'recurse control node' labelled 

'c8'. States 'c6' and 'clO' form the two end states of module 'B'. 

The timing diagram to the right of the state diagram shows an example state machine flow 

for every token output of the control nodes shown. The extra signals that the call and 

recurse control nodes generate are also shown. The flow shows the initial call to the 

recursive module, followed by the recursive call back into itself The alternative 

conditional route being taken in the second iteration of the recursive module breaks the 

recursive loop. Control is then seen to return to the node after the recursive call node by 

reaching the end node 'c6' before finally returning to the node after the initial call node 

fi-om the second end-state 'clO'. 



D.J.D. Milton, 2002 Chapter 5: Recursion 177 

C6 

end 

reset 

clock 

stack 
Ie \ pointer 

return 
address 

cTjr cl 

f push \ c2 
return J 

y. addressJ c3 
activate 

c8 1 c3 
enable 

recurse \ c3 
B j end 

c4 
c9 t 

c5 ^ pop \ 
return 1 

c6 ^addressJ c6 

CIOT c7 

c8 
extra \ activate . 
cycle j c8 

end 

c9 

c10 

1 

0 0 

X 0 0 

/ / / 

/ 1 
r 

1 

/ <-

r 
1 : 

Figure 5.19 Example state machine timing flow 

The need for the extra state after a pop of the return address is seen from the 'c3 end' 

signal. This signal is generated from the return address and is only set when the return 

address equals zero and when one of the end states is active. It can be seen that the return 

address is assigned to the correct value at the end of the state before the 'c3 end' signal is 

generated. If 'clO' were merged into 'c9', then the 'c3 end' signal would evaluate to false 

in this merged state, which would break the control flow. 

The timing diagram also shows that the return address and stack pointer values are 

assigned their initial values in the first state 'c l ' , which means that their values update at 

the end of this state. 



DJ.D. Milton, 2002 Chapter 5; Recursion 278 

5.5 Impact on optimisation 

The additional operations added to a design that control the data flow through recursive 

calls to the same procedures affects the final optimisations that MOODS carries out. The 

main limitation is that the additional ICODE operations added into the control flow force 

the design to include a number of sequential states in which the stack, mirror registers and 

return-addresses are modified. This affects the speed and size of the design produced using 

recursive procedure call methods. 

5.5.1 IVIodule ordering 

When MOODS optimises a design using the simulated annealing algorithm, the order in 

which the modules are optimised is irrelevant, as each module is treated entirely 

independently, hi contrast, the quasi-exhaustive heuristic algorithm requires knowledge of 

the call hierarchy, as it operates on modules in order, firom leaf to root. 

The reason for this is that to calculate the critical path length of each module, knowledge 

is required of the critical paths of all the modules it invokes. When a module is optimised, 

its internal timing may change and this change must be reflected back up the calling tree. 

The addition of recursive capabilities means that the algorithm to calculate the linear order 

of modules from the call graph is modified. The ability to introduce recursive loops in the 

module call graph prevents forming a linear leaf to root ordering of the modules; instead, a 

best approximation is sought. 

5.5.2 Critical path calculations 

Another impact of allowing recursive module calls is that the critical path calculation 

requires some modification. The modifications do not have any direct effect upon the final 

structural design produced by MOODS. The critical path is a requirement for optimisation, 

but begins to lose meaning when recursion is taken into account. This is because the path 

taken through a design no longer has a resolvable maximum length. 

However, some value is required as the result of the critical path calculation. A critical 

path can be calculated for any module. If recursion were not allowed, then the critical path 

would be a count of the greatest amount of control states that it takes to reach any end 



D.J.D. Milton, 2002 Chapter 5: Recursion 2 7 9 

node from the start node of the module. Any calls to other modules add the critical path of 

the called module, not just the state required for the call control node. As recursion is now 

allowed, this calculation requires modification. It was decided to place a limit on the 

recursive depth of critical path calculations so that if a call is found to a module that has 

been calculated before, then the cost for the call is taken as one cycle. 

This solution produces module-local critical path calculations dependent upon the initial 

module to have the critical path calculated. As the critical path is used to determine the 

shareability factors of the data path units and control states, and the modified critical path 

calculation is conservative in its estimation, the only noticeable side effect is a slight 

slowing of the optimisation process [102]. 

5.6 Problems and Improvements 

The main problem with the present implementation of procedural recursion is the 

possibility of stack overflow. As the additions effectively make static variables into 

dynamic variables, the dynamic values need infinite storage space in theory. Obviously, 

storage space of this capacity is impossible. 

5.6.1 Stack overflow 

The consequence of stack overflow is to over-write dynamic data stored in another stack 

frame back down the call hierarchy. The effects are only seen when control returns back 

down the call stack, to find corrupted data. As the return address is included in the stored 

data on the stack, it is possible for the corruption of data to break the returning control 

flow, which could effectively halt the design in an incorrect infinite loop. The alternative 

to this is simply to produce the wrong result, but the effects cannot be predicted due to the 

dependence on dynamic data produced at runtime. 

There are four solutions to this; The first is to try to cope with stack overflow when it 

occurs by some exception handling system built into the final structural design. This does 

not generate the correct result, but tells the user that an error has occurred before the 

effects due to the error are seen. 



D.J.D. Milton, 2002 Chapter 5: Recursion 1[gQ 

The second solution is to try to allocate enough space so that it never does. The second 

solution is not really a solution, in that it just moves the problem further away, but the first 

solution always results in the breaking of behaviour, which is not very desirable. 

The problem can be alleviated by careful design of the use of recursion in the first place 

and by selecting a stack size that is capable of holding the full stack depth for the biggest 

problem being solved by the design. 

A third solution that does not break behaviour is to have some secondary storage solution 

that is used in exceptional circumstances to page in and page out large chunks of the stack 

frame. An example would be to use the heap system described by Chapter 4 as the space 

for secondary storage. This system does not break behaviour, but it impacts on speed, as 

large blocks of data are transferred. 

A fourth solution that is slightly neater than the third is to use stack frame windowing, as 

used by the SPARC RISC processor [29]. This enables better time utility of secondary 

storage, as it is only used when stack overflow or stack underflow occurs. If the heap 

management system is used for secondary storage, then small amounts of stack frame data 

can be allocated when required. 

5.6.2 Multiple stacks 

Section 5.2.7 describes an alternative to a single stack memory block. Its solution is to 

have multiple stack blocks that contain one dynamic stack copy of a single variable. The 

use of this method enables faster stack modification due to the inherent concurrency of 

multiple blocks of data. It also allows more efficient data path widths to be used. A trade-

off in this solution may be to share these dynamic blocks of data on individual terms, say 

between variables stored for different recursive modules. However, this method negates 

having a single external SRAM based stack. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 

Chapter 6 

Practical synthesis 

This chapter describes demonstrators built using the capabilities described in the previous 

two chapters. Section 6.1 introduces the physical system structure that is used for the 

demonstrators. The first demonstrator described in Section 6.2 shows the use of dynamic 

memory. The second demonstrator described in Section 6.3 shows recursion in use, along 

with further use of the heap-allocated data. Finally, Section 6.4 contains a comparison 

between different implementations of a small language parser, built upon different 

platforms with differing implementation language restrictions. Timing results are obtained 

from simulation time measurement and computer runtime results. 

6.1 Demonstrator system 

The system created to demonstrate the capabilities of MOODS is realised with the use of 

multiple printed circuit boards (PCBs) that are designed for this specific purpose and have 

been built by a third party PCS manufacturing company. 

The boards are designed to be completely self-contained with expansion ports provided to 

allow multiple boards to be linked together to form a larger overall system, or to accept 

other types of daughter board. 

Two types of board were built, each with a different set of ancillary components that can 

be used. Each board has, at its heart, an FPGA that will contain any designs produced by 

MOODS. 

6.1.1 First PCB 

The board designed to demonstrate the capabilities of the dynamic memory system [103] 

has a set of onboard devices and a set of external interfaces. The core of the system is a 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 182 

XILINX FPGA [104]. The package used for the FPGA is a pin-grid array with 475 pins. 

This allows only a single type of FPGA to be connected to, the XILINX XC4062XL chip. 

At the time of designing the PCS, the FPGA was of medium sized capacity. The size 

information is given in Table 6.1 below. A CLB or Configurable Logic Block is the basic 

building block from which all gates are created within the FPGA, and are usually held in a 

square grid pattern, with signal routing between the CLBs. 

Device CLB count CLB matrix Flip-flop count Typical gate range 

XC4062XL 2,304 4 3 x 4 8 5,376 40,000-130,000 

Table 6.1 Available XILINX devices using the PG475 package 

The set of external interfaces includes a VGA adapter, which is driven from an onboard 

video DAG and sync signal buffers. The DAG and buffers are directly connected to the 

system FPGA, which is used to generate all of the signals that drive a standard VGA 

monitor. 

The VGA adapter is included on this board with the design of the VGA controller system, 

explained in Appendix A. 1. This system requires a bitmap ROM for 256 characters, each 

contained by a square of 8 by 8 pixels. A single bit, being either set or reset, stores the 

state of each pixel in the bitmap. A whole row of a single character is accessed at the same 

time, requiring that the ROM have an 8-bit data path. Hence, the number of addresses used 

to store the entire bitmap is 2K. This 2K ROM has space designed into the PCB for it. 

A standard buffered serial port external interface is provided in order to communicate with 

any other system via this standard method. This can be used to transfer data between 

systems (at a relatively slow rate). An onboard chip that converts between the 5V system 

voltage levels and the ±9V levels expected by the serial port interface and vise versa 

provides the buffering. The serial port controller is part of the system created inside the 

FPGA. Appendix A.3 explains this. 

Buffering is also provided for two PS2 external ports, which can be used to interface with 

many standard devices, including keyboards and mice. Both of these standard devices 

have controllers designed for them, where the controller is again part of the FPGA system. 

The keyboard controller is explained in Appendix A.2 and the mouse controller in [105]. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 183 

Two 96-way connectors provide two general-purpose expansion ports. The pins of these 

connectors are directly connected to a number of the I/O pins of the FPGA. One connector 

also provides power and ground supplies, so that the interfaced boards may be powered 

directly by the PCB system. The other expansion port includes every FPGA programming 

pin, so that the FPGA may be programmed externally. 

4Mx 16 
DRAM 

2 simms 

4Mx 16 
DRAM 

2 simms 

256K X 32 
DRAM 
8 DILs 
(video 
buffer) 

RS-232 
buffers 

Keyboard 
buffers 

Mouse 
buffers 

pg475 

n 
I 

96-way expansion port 
(with power) 

96-way expansion port 
(with programming pins) 

FPGA 
programming 

system 

Clock 1 

Clock 2 

2Kx8 
ROM 
(Font) 

1 
VGA interface 

Figure 6.1 First PCB System connection 

The alternative to external programming of the FPGA is to perform this action using the 

onboard system, created specifically for this purpose. The FPGA is capable of being 

configured in various ways. The two methods supported by the PCB are slave serial mode 

(default) and master parallel-up mode. The configuration mode is set with a number of 

DIP-switches. Slave serial mode is used when downloading the configuration directly 

from an external PC during the development process and master parallel mode is used 

when a design has been settled upon and the system is allowed to program itself from an 

onboard EPROM, which has space designed into the PCB for it. 



D.J.D. Milton, 2002 Chapter 6; Practical synthesis 184 

15-pin D-type 
VGA c o n f ^ o r 

DAC 
clock 
buffer 

Sync signal Clock Programming Serial 
buffers^ modules mode control programming 

connector 

Program 
i ^EPROM 

Video 
DAC 

Main 
system 
FPGA 

xpansion 
port A 

Video 
M. DRAM 

1 

General 
purpose 
D R A M " ^ 
bank 

RS-232 
buffers'%%^ 

PS2 
buffers 

Keyboard 
PS2 

connector 

Mouse 
PS2 

connector 

RS-232 
serial 

connector 

j \p6-p in 
Expansion 

port B 

Power 
^supply 

regulators 

Power 
^supply 

connector 

Figure 6.2 First PCB System layout picture 

Figure 6.1 shows the connection between the various devices and external interfaces on 

the first board, while Figure 6.2 shows a picture of the physical board, with the various 

devices and interfaces highlighted. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis %gg 

All designs produced by MOODS are synchronous systems driven from a fixed clock 

signal. Two clock module inputs are provided for this purpose. Two clocks are provided 

so that multiple internal systems may be run asynchronously within the same FPGA. 

The VGA system is designed to use a DRAM bank as a frame buffer from which the 

monitor signals are rasterised. All displayed pictures are then formed from writing to the 

frame buffer memory directly. This frame buffer memory is stored within a number of 

DRAM chips, which are accessed in parallel to form a 32-bit data path. 

Two other banks of DRAM in the form of 4 32-pin SIMMs are included as onboard 

devices. Each SIMM is capable of storing up to 4MBytes, with 1MByte usually used. This 

memory is the foundation storage for the dynamic memory system described in Chapter 4, 

but may be used for any other purpose. Each SIMM has a completely separate 8-bit data 

path, while the address and control paths are shared between a pair of SIMMs. This 

enables the memory space to be used in three configurations: As two separate spaces of 

16-bit data paths, each with a maximum of 4MWords, where 1 word is 16 bits; as a 

combined address space of SMWords, still with a 16 bit word or as a combined data space 

of 4MWords, where one word is now 32 bits. 

The final configuration is used by the heap management system, where the two SIMMs 

are combined to form a 32-bit data path, with a maximum of 4MWords of address space. 

The actual address space used by the demonstrators is IMWord. 

6.1.2 Second PCB 

The board designed to demonstrate the floating-point capabilities of MOODS [106,107] is 

designed for this purpose over all others. It is not designed for the demonstrators described 

in this chapter. For this reason, a different set of ancillary components interfaces to a 

different, larger core FPGA. The general structure of the system follows the same style as 

the first PCB, in that a core FPGA is the central system unit, with a number of satellite 

components and external interfaces, both buffered and directly connected. A ftiller 

description of this board is found in [106]. 

The core FPGA uses the same pin grid array style, but this time within a 559-pin package. 

This enables a choice between FPGAs to be made, with the XELINX XC40250XV being 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 186 

the chip used by the final demonstrations. This chip is capable of holding a configuration 

that has about four times the number of CLBs of the XELINX XC4062XL FPGA used on 

the first board, which is the best indication of relative capacity. A number of devices may 

be used in place of each other, with their relative sizes shown in Table 6.2. 

Device CLB count CLB matrix Flip-flop count Typical gate range 

XC4085XL 3U36 56 X 56 7M68 55,000-180,000 

XC40125XV 4,624 6 8 x 6 8 10,336 80,000 - 265,000 

XC40150XV 5M&4 7 2 x 7 2 11^20 100,000-300,000 

XC40200XV 7,056 8 4 x 8 4 15,456 130,000-400,000 

XC40250XV 8,464 9 2 x 9 2 18,400 160,000-500,000 

Table 6.2 Available XI LI NX devices using the PG559 package 

A large proportion of the external interfaces are mirrored from the first board, with the 

inclusion of an RS232 serial port interface, two PS2 interfaces (keyboard and mouse) and 

the twin 96-way expansion ports, with the same pin connections where required for 

compatibility. 

However, the VGA interface is not provided on this board, which means that the fi-ame 

buffer DRAM memory and the text bitmap ROM are also not required. The one 

concession to DRAM random access memory storage is with the provision of a single 32-

pin SIMM socket. 

Two clocks are provided in exactly the same manner as in the first board, which allows 

multiple internal asynchronous clocks to be used. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 187 

4M X 8 
DRAM 
1 simm 

8Kx32 
SRAM 
4 DILs 

8Kx32 
ROM 

4 DILs 

RS-232 
buffers 

Keyboard 
buffers 

Mouse 
buffers 

FPGA 

pg559 

FPGA 
programming 

system 

Clock 1 

Clock 2 

96-way expansion port 
(with power) 

96-way expansion port 
(with programming pins) 

Figure 6.3 Second PCB system connection 

The FPGA configuration program is downloaded into the FPGA in exactly the same 

manner as with the first PCB. The same two modes of configuration are supported, with 

the provision of an onboard EPROM, which is capable of storing a single program. 

As the floating-point systems generated by MOODS require a number of lookup ROMs 

and a fast scratchpad memory, an onboard ROM and SRAM bank [100] are provided on 

the PCB. These share the same address and data path busses, with separate control busses 

for distinction between the sources of data between the two. 

Figure 6.3 shows the connection between the various devices and external interfaces on 

the second board, while Figure 6.4 shows a picture of the physical board, with the various 

devices and interfaces highlighted. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 188 

Keyboard 
PS2 

connector 

Mouse RS-232 
PS2 serial 

connector connector 

RS-232 
buffers 

Power 
supply 

connector 

PS2 
buffers 

SRAM 
bank 

Clock 
modules 

General 
purpose 
DRAM* 
SIMM 

ROM 
bank 

• • 

VS»6IG0X3 
6ZG5dj*6BGD<l 

/X0S20WX 

Program 
f ^ P R O M 

\ ) 96 -p in 
Expansion 

port A 

^ P o w e r 
supply 

regulators 

Main 
^ s y s t e m 

FPGA 

\96 -p in 
Expansion 

port B 

Programming 
mode control 

Serial 
programming 

connector 

Figure 6.4 Second PCB system layout picture 

6.1.3 System structure and partitioning 

During the development process of the demonstrations, it was realised that two graphical 

displays were required, one to display the output user interface of the demonstration itself 

and the other to display a real time representation of activity in the heap management 

system. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis % §9 

For this reason, at least two boards with the VGA interface buffering were required, along 

with a method for connection between the two. It was decided to implement the core 

design on the board that controls the user interface VGA signals and to implement the 

heap management system and heap monitor VGA output on the other board. However, 

with the growing size of the demonstrations, a single board containing the XC4062XL 

chip was found to have insufficient capacity for both the VGA driver design and the core 

system design. 

Efficient partitioning between both the core board and the heap management board was 

considered, as the heap management system does not require the full capacity of the other 

XC4062XL chip, even with the real-time heap monitor extensions to the heap 

management system. However, it was decided to opt for the more expandable option of 

using a third board to contain the full core system, where the main system board uses the 

second PCB described in Section 6.1.2. This configuration was chosen with the additional 

knowledge that an audio buffering system was required by one of the demonstrators, and 

no audio interfaces existed on the designed PCBs, leaving a further subsystem to be built. 

6.1.3.1 Motherboard 

A detailed diagram of the four system boards is shown in Figure 6.5. This shows an 

interface partition between each board, with the core system being at the centre of all the 

interfaces. 



D.J.D. Milton, 2002 Chapter 6; Practical synthesis 190 

4M DRAM bank 

7 T 

BOARD 2 
Monitor 

DRAM Controller 
& 

Heap manager 
& 

VGA drive 

, . . - 1 

1 2 i z 

- - J 
% 

render sem 
render ack 

render data 

palette mod sem| 
gPalettemodack' 

VGA controller 

BOARD 1 

Tracker (demo I) 

or 

Expression evaluator (demo II) 

Keyboard 

keyboard sem • 

keyboard ack 

scancode~ 
extended 

Keyboard 
controller 

receive sem 

receive ack 

receive data 

Serial port 
controller 

RS-232data 

VGA serial 
controller 

Audio 
ADC & DAC 

BACKPLANE 

Audio Out 

Audio In 

Speakers 

render sem, 
render ack 

render data 

palette mod san 

palette mod ack 

palette mod data 

VGA controller 

BOARD 3 

VSyne 

HSync 

RGB 

Monitor 

Figure 6.5 Demonstrator system partitioning and connectivity 



D.J.D. Milton, 2002 Chapter 6; Practical synthesis 191 

The physical system is implemented with the use of a back-plane board, which each 

subsystem board plugs into via their 96-way expansion connectors as daughter-boards. 

The back-plane board was built manually and contains direct linkage between the four 

subsystems and an expansion of the configuration programming system for the core 

system, which allows more than one core design to be configured. The board structure is 

shown in Figure 6.6 below. 

Backplane 
power 
supply 

regulator 

Graphics 
activity 
monitor 
LEDs 

Heap 
activity, 
monitor 
LEDs 

ProgranT 
switch 

VGA board 
connectors 

Heap manager 
board connectors 

Main system 
board @cmnectors 

Address 
decode 

logic 

Expression 
Evaluator 
EPROM 

Tracker 
EPROM 

Audio board 
connector 

Figure 6.6 Handmade backplane board 

The three main daughter boards plug into the double expansion ports at right angles to the 

motherboard, while the audio interface board plugs sideways onto the motherboard. The 

reason for a separate audio interface board is that this board had already been produced for 

another project that used the single FPGA system described in Section 6.1.1. The audio 

board is further described in Section 6.1.3.6. 

6.1.3.2 Communication 

All of the physical connections between the four subsystem boards are created from 

manually soldered direct wire connections. While the demonstrators progressed in time, it 

was realised that synchronous communication, with each system using the same base 

clock was not feasible due to the skew and amount of interference produced by having a 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 192 

single central clock module driving every subsystem. With the amount of noise produced 

by the clock modules and the lack of a ground plane within the motherboard, it was found 

that each subsystem was prone to resetting also, with a centralised resetting mechanism. 

The resetting problem due to the centralised clock system, reset system and all other 

communication is solved by two methods, with the clock skew problem being solved also. 

The main solution is to have each board provide its own clock signal using the onboard 

space provided for them on each PCB and to have each system communicate 

asynchronously. 

asynchronous 
data input 

system 
dock 

synchronised input 

\ 
D Q D Q D Q D Q 

)>dk >clk 

Users 
synchronous 

system 

elk 
A 

Figure 6.7 Asynchronous double buffering 

One drawback of asynchronous communication is that extra buffering is required between 

the asynchronous systems for all inputs to a design. This double buffering shown in Figure 

6.7 is used to remove meta-stability [108] that can occur when the input signal changes on 

the clocking edge of the system clock. The double buffer serves to greatly decrease the 

probability of an erroneous transmission of data. One drawback is the added 

communication delay that the double buffer introduces. The clock skew problem is 

completely removed with the removal of synchronous clocked systems. 

The replacement of the centralised resetting mechanism with a distributed resetting 

mechanism with a start-up synchronisation system solved the resetting problems. The 

problem was found to be noise on the single shared reset signal. By allowing each board to 

reset itself, the reset signal has no opportunity to gain enough noise to falsely reset each 

system. Each system then synchronises itself to the others at start-up by data transmission 

between the systems, which has no impact upon the now distributed resetting mechanism. 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 193 

6.1.3.3 Main System board 

The main system board, shown in Figure 6.5 contains a larger FPGA than the boards 

designed for the VGA interface. It is for this reason that the core demonstrator designs are 

implemented using this board. It can be noted that both demonstrators could have been 

implemented fully within a single FPGA found on the second board if only the boards 

were designed for this purpose, with two VGA outputs, banks of DRAM and the audio 

interface required. 

Both demonstrator designs share the keyboard interface, but the serial port interface is 

only used in one. Both designs use the heap management system board, which 

communicates via 73 expansion port pins and the user interface VGA system board that 

communicates via 15 expansion port pins. 

The heap manager has a reduced pin count through the use of bi-directional address and 

data busses described in Section 4.2.2.4. Additional internal double buffering is provided 

for asynchronous communication. 

The external VGA interface has a reduced pin count from the internal VGA interface with 

the addition of a time multiplexed serial communication method, whose controller is found 

within the programmed VGA output board. A limited set of equivalent VGA interface 

procedures are provided for the core designs. 

A different clock frequency is used by each core design. Demonstrator I uses a 12MHz 

clock, mainly due to the audio system interface requiring synchronous communication at 

this speed, where the audio ADC and DAC derive the sampling speed from the clock rate. 

Demonstrator II does not require any particular speed for subsystem communication, so 

this allows the design to be optimised for area, having a reduced clock rate of lOMHz 

provided by a separate clock. 

6.1.3.4 Heap manager board 

The heap management algorithm described in Section 4.3 is implemented on the heap 

manager board. The initial implementation of the heap manager was modified to produce a 

real-time memory map monitor also. The provision of a VGA system on which to view the 

memory map requires the use of a 25MHz clock speed as input to the subsystem. This 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 194 

clock is used directly by the VGA controller system, while the heap management system 

uses an internally divided clock of 12.5MHz. This frequency allows greater scope for 

operation chaining in the core DRAM controller and the heap management algorithm 

itself. 

The implementation of the heap manager used by both demonstrators has the IMWord 

address space divided into 256 pages. Each page has 4KWords from which to allocate 

objects. Each word is 32 bits. This implementation allows for 255 differently sized objects 

to be allocated at any one time, with an object size of up to 4KWords minus the page 

header size of 6 words. 

An example of the displayed memory map is shown in Figure 6.8. The information is 

displayed in real time, which reduces the level of information that is capable of being 

displayed to general information about each page. 

Figure 6.8 Example real time memory map picture 

The information displayed is a 16 by 16 square representation of the 256 pages of the 

memory space. Each page has two types of information displayed about it. The colour of 

the internal square represents the allocation status of the page, where blue indicates a page 

free of objects, green indicates that a page has objects allocated within it and has space for 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 195 

more and red indicates that a page is totally foil of objects. The shading around the central 

colour determines whether the page is being accessed, with a lighter shade showing an 

access has occurred within one raster period (1/60^ of a second). A dark border to the 

central page colour indicates that the information in the page has not been accessed within 

the same period. 

The grid of pages is ordered from page 0 in the top left hand comer, counting upwards 

across the grid first, meaning that page 15 is in the top right hand comer. Page 16 is on the 

left hand side of the next row down, with each row containing increments of 16 pages, 

leaving page 255 displayed at the bottom right hand comer. Note that page zero is left 

blank, as it does not contain user data. This page is used as the active page lookup table for 

the different object sizes being created. 

Design Summary: 
Number of errors; 0 
Number of warnings: 35 
Number of CLBs: 1103 out of 2304 47% 

CLE Flip Flops: 837 
CLB Latches: 0 
4 input LUTs: 1907 (4 used as route-throughs) 
3 input LUTs: 374 (99 used as route -throughs) 

32X1 RAMs: 32 

16X1 RAMs: 44 
Number of bonded lOBs: 217 out of 384 56% 

JOB Flops: 210 
IOB Latches: 0 

Number of clock IOB pads: 1 out of 12 8% 
Number of TBUFs: 32 out of 4800 1% 
Number of BUFGLSs: 2 out of 8 25% 

Total equivalent gate count for design: 26841 

Additional JTAG gate count for lOBs: 10416 

Figure 6.9 Heap manager size statistics 

The heap management system is forther explained in Appendix C.5. The design summary 

log for the final implementation of the heap manager, including the VGA system and the 

drawing process within the heap manager is shown in Figure 6.9. The total design takes 

47% of the capacity of the smaller FPGA, with 1103 CLBs used. 

6.1.3.5 Graphical display board 

The interface connecting the graphical display board to the main system design is via a 

reduced pin count serial interface. The serial data controller forms the front-end that drives 

the VGA controller in the graphical display design. The serial controller is detailed in 

Appendix C.4. The controller converts a number of serial words into a form that directly 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 196 

drives the VGA interface. The core designs that use the graphical display board via the 

serial interface perform the graphics commands via a limited set of interface procedures, 

which have near direct equivalent VGA interface procedures. 

Both the serial VGA instruction controller and the VGA controller take a small percentage 

of the area contained by the graphical display board's FPGA. The placement and routing 

log shown in Figure 6.10 shows that only 23% of the FPGA capacity is used. The clock 

used to drive all systems in the FPGA is another 25MHz clock, which forms the dot-clock 

rate for the graphical output. 

Design Summary: 
Number of errors: 0 
Number of warnings: 17 
Number of CLBs: 539 out of 2304 23% 

CLB Flip Flops: 504 
CLB Latches: 0 
4 input L0Ts: 944 (5 used as route-throughs) 
3 input LUTs: 155 (51 used as route -throughs) 

16X1 RAMs: 44 
Number of bonded lOBs: 111 out of 384 28% 

IOB Flops: 91 
IOB Latches: 0 

Number of clock IOB pads; 1 out of 12 8% 
Number of BUFGLSs: 1 out of 8 12% 

Total equivalent gate count for design: 12943 

Additional JTAG gate count for lOBs: 5328 

Figure 6.10 VGA display driver size statistics 

6.1.3.6 Audio interface board 

The audio interface board is designed to plug straight into either PCBs interface port that 

contains the power pins. It is built as a general purpose audio I/O system, initially used by 

an audio filter design [109]. It is utilised as the audio I/O system in demonstrator I and is 

driven from the motherboard connection. The board, shown in Figure 6.11 is powered 

directly from the connecting system and contains a single ADC/DAC chip with audio 

connections via a low pass filter system. 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 197 

Audio board 
power regulators 

Motherboard 
connector 

Audio input 
"connectors 

Audio 
J<DC 
"^and 

DAC 

Activity Indicator 
LEDs 

^udio output 
connectors 

Figure 6.11 Audio board 

6.2 Demonstrator I: The tracker 

The definition of a 'Tracker' is an audio system that combines multiple audio sampling 

and playback with an audio sequencer, which allows music to be produced, that uses the 

stored samples as instruments. Many commercial tools exist to perform these actions both 

separately and combined and both in hardware and software. 

The reason that a tracker is chosen as the demonstration system is due to the design being 

relatively complex, so when built in a small amount of time (1 month for the core), would 

prove the validity of the synthesis tool and of increasing the synthesisable subset of the 

source language to include dynamically created data structures. As the tracker is a real 

time audio system, it also shows the validity of using the dynamic data structures within a 

strict timing environment, with little concessions made for this. 

The tracker demonstrator uses 35% of the main FPGA's capacity, which is shown in 

Figure 6.12, the design summary produced by the placement and routing stage. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 19g 

Design Summary: 
Number of errors; 0 
Number of warnings: 18 
Number of CLBs: 2969 out of 8464 35% 

CLB Flip Flops: 2376 
CLB Latches: 0 
4 input LUTs; 5125 (34 used as route-throughs) 
3 input LUTs: 1436 (408 used as route-throughs) 

16X1 RAMs: 180 
Number of bonded lOBs: 102 out of 448 22% 

lOB Flops: 139 
IOB Latches: 0 

Number of clock JOB pads: 1 out of 12 8% 
Number of BUFGLSs: 1 out of 8 12% 

Total equivalent gate count for design: 62965 
Additional JTAG gate count for lOBs: 4 8 96 

Figure 6.12 Tracker design size statistics 

A more complete explanation of the implementation details of the core tracker design is 

contained in Appendix C.6. 

6.2.1 General overview 

The user input interface is a standard computer keyboard, which could easily be modified 

to use a musical type keyboard in the future. Visual feedback is provided by a VGA 

graphics system that drives a standard monitor. The information shown on screen relates 

to all the internal dynamic data structures. A musical tune is built up from direct user input 

and interaction with the displayed information and outputted audio. 

The system is capable of storing an arbitrary number of 16-bit stereo samples of arbitrary 

length. Each sample is recorded at the standard 44.1kHz CD sampling rate. There are 8 

stereo mixing channels that are combined to form the single stereo output, along with the 

real time audio input. This means that up to 8 instruments can be played at once. Any 

sample can be played on any charmel at any playback rate, which determines the pitch of 

the played note. A sequence of notes to be played at particular time points on particular 

channels can be built up dynamically and played back at any point. A musical tune is 

made from an arbitrary number of sequences, which themselves can be sequenced using a 

playlist of these sequences, where the playlist stores a list of sequences in an arbitrary, 

possibly repetitive order. 



D.J.D. Milton, 2002 Chapter 6; Practical synthesis 199 

6.2.1.1 Data structures 

As most of the data structures stored by the tracker system are best based upon a list 

structure, it was decided to create a general doubly linked list data structure for every 

different type of data that required list storage. This means that list operations such as 

creation and deletion of the lists, insertion and deletion of elements within the list and 

element iteration can all use the same basic procedures. 

One disadvantage of VHDL within the context of dynamic memory structures is the very 

strict type adherence. Access types cannot be cast into referencing other types of elements. 

Because of this, a completely general linked list structure cannot be built, histead, each list 

element must contain all relevant data types to be stored by the list. This is shown in 

Figure 6.13 below. An equivalent structure in the C language could store the various data 

pointers in a union structure, as each item is mutually exclusive and dependent on the type 

that the list contains. 

linked list 

header 

listtype 
item* 
item* 

type 
^head ) 
r taill 

\ 

linked list 

item 

item* 
item* 

playlist 
sequence* seq 
sequencept* seqpt 
seunple* smp 
san^leblk* smpblk 

linked list 

item 

item* 
item* 1 
item* playlist 
sequence* seq 
sequencept* seqpt 
sample* amp 
san^leblk* smpblk 

Figure 6.13 Linked list container with two elements 

The general linked list structure has a header record that contains the type of elements to 

be stored by the list and a reference to the head and tail elements of the list. Each element 

has a next and previous element reference, where the head's previous element is null and 

the tail's next element is null. Only one type of element data is valid, dependent on the list 

type enumeration value stored in the header structure. 

Five types of data are stored in the list structure. The playlist data is a reference to another 

linked list element. It should point to an element held within the sequence list. Each 

sequence in the sequence list has a hst of points that determine when the notes are played. 

The sequence points have time and channel information along with a reference to a sample 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 200 

that is held within the list of samples. Each sample in the sample list has unknown length 

when recording, so the sample is stored as a number of sample blocks, which each contain 

a fixed number of stereo sample values. This general structure is shown in Figure 6.14. 

CO 
CO 

CD 
o 
o 
M a 
cu 
Cn 
m 
ki 
o +j 
CO 

CD 
m 
03 
A 

•P 
tc 
4-1 
CO 

play list 

sequence sequence sequence sequence 
iterator iterator iterator iterator 

sequence 

sequence^list 

sequence sequence 

sequence point list 

sequence sequence sequence sequence 
point point point point 

sample 

sample list 

sample sample 

• y 
sample sample 

sample block list 

sample 
block 

sample 
block 

Figure 6.14 General tracker data structure linkage example 

Of the five types of linked list structure, the play list, sequence list and sample list have a 

static base. The sequence point list is dynamically created whenever a new sequence 

element is added into the sequence list and the sample block list is created whenever a new 

sample is added into the sample list. 

6.2.1.2 Processes 

As the tracker design processes real-time audio streams, the design is split into two main 

processes. The main process handles the user input, creates and deletes the dynamic data 

structures and processes the real time audio data. As the latency involved with using the 

dynamic allocation methods has a known maximum value, it is possible to allocate new 

objects from the audio processing process so long as the audio streams are buffered using 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 201 

a number of FIFO buffers. These buffers effectively remove the dependence on the 

allocation latency and place a dependence on the general memory access bandwidth for all 

memory operations in the core audio process. The FIFO buffers are created as concurrent 

processes. 

The other core process drives the output user interface, the VGA controller system, 

through the interface provided by the serial version of the VGA interface. This process 

accesses the same core data structures as the main audio process with the use of shared 

variables that store the three static access types of the three base linked lists. The drawing 

is performed concurrently with the audio process, as the drawing time is unpredictable. 

The core audio process initiates all drawing whenever the user input changes or playback 

of the sequences and samples occurs. 

6.2.2 User guide 

There are four modes of operation of the tracker design, with playback of the sequences 

and samples possible in all but one of the modes. These modes relate to the part of the data 

structures that are being modified, with three modes dedicated to the modification of the 

three main linked list structures of the samples, sequences and playlist. The fourth mode 

allows the serial port download of a number of samples and sequences. The currently 

selected mode is determined by the selection colour of the viewed representation of the 

data structures shown by the VGA output picture (see Figure 6.15). 

6.2.2.1 Sample mode 

The sample mode is selected by pressing the 'F9' key. This mode allows for the 

modification of the sample list with new samples being created by recording them directly 

from the input audio stream. A sample is recorded by pressing the 'R' key for the record 

duration. This action creates and inserts a new sample after the currently selected sample 

within the sample list and then fills the sample block list with the audio stream data. 

When not recording a sample, it is possible to move through the list of samples using the 

up and down arrow keys. This selects the current sample, which is used when inserting 

new notes into the sequence and for manual playback of the sample. 



D J.D. Milton, 2002 Chapter 6: Practical synthesis 2 0 2 

A portion of the currently selected sample is displayed on the output screen, and using the 

left and right arrow keys can scroll through the displayed sample values. 

A sample can be set to play back as either looped or not looped. Pressing the 'L' key while 

in the sample mode toggles the looped status of the currently selected sample. 

6.2.2.2 Sequence mode 

hi this mode, selected by the 'F11' key, new sequences can be inserted into the sequence 

list by pressing the 'hisert' key. Movement through the sequence list occurs by pressing 

the '+' and keys on the keypad. Movement through the list redraws the representation 

of the currently selected sequence. 

The currently selected sequence is drawn with the number of audio channels represented 

by 8 columns and the time positions as a number of rows. The arrow keys are used to 

select a time point and audio channel. 

Lisertion of notes at the current position occurs by pressing the 'Space-bar' key, which 

toggles the sequence point insertion mode. The recording mode is represented by a red 

position cursor, while the normal playback mode is represented by a green cursor. 

The sequence point can have a note placed at the cursor position by pressing a number of 

keys, which are further explained in Section 6.2.2.5. The currently selected sample is used 

as the note instrument. A note can be stopped at the current position by inserting a stop bar 

by pressing the 'Tab' key. Highlighting the sequence point and pressing the 'Delete' key 

can remove a sequence point. All insertion and deletion operations increment the time 

position by one, facilitating faster sequence editing. 

6.2.2.3 Playlist mode 

This mode, selected by pressing the 'FIO' key, allows complete control over the playlist. 

Movement through the playlist occurs by using the up and down arrow keys. Insertion and 

deletion of playlist elements occurs by pressing the 'hisert' and 'Delete' keys respectively. 

The currently selected sequence is the one inserted into the playlist after the currently 

selected playlist position. The sequence reference can be changed at the current playlist 

position by using the '+' and keypad keys to iterate through the sequence list. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 203 

6.2.2.4 Download mode 

The serial port download mode is selected by pressing the 'F12' key. All download 

operations after that point are controlled by the system that downloads the information into 

the tracker design. A computer software program has been developed to download a 

number of samples from standard 'wav' files and to download a number of sequences 

from proprietary format files. The global sequence playback speed can also be set by the 

serial download. The download program releases the tracker design back into its previous 

mode once the download is complete, where the tracker cannot play anything until the 

download completes. 

6.2.2.5 Playback 

General playback of the currently selected sequence is initiated by pressing the 'P' key. 

Pressing the 'O' key starts playback of the entire playlist. Pressing the 'Escape' key stops 

any sequence playback. 

Playback of the currently selected sample at the various pitches that make up the standard 

musical scale is shown in Table 6.3. This forms one octave of the entire scale. The 

samples can be played in one of five octaves, selected fi-om keys 'FT to 'F5'. The 'F3' 

key selects the middle octave, with middle-C being played by key-press ' C . As samples 

are recorded in middle-C, the playback of a middle-C note streams the audio data at the 

same rate as the sample is recorded. 

Note A A' B c c D D' E F G 

Key Z S X c F V G B N J K 

Table 6.3 Played note to key pressed 

The manual playback of notes allows polyphony by using the 8 audio channels. The first 

fi-ee channel not playing a sample is used to start the playback of the note. Releasing the 

relevant key stops the note playback. The same keys are used when inserting sequence 

point notes. Both the selected octave and the note key are stored as part of the sequence 

point. 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 204 

6.2.2.6 User interface 

The user interface is shown in Figure 6.15 (this figure is generated by direct simulation of 

the synthesised tracker design, utilising the simulator's PLI-interface within the simulation 

of the VGA display system). 

SAMPLE LIST SAMPLE OOl Smp 

000 «mp 
001 Smp 

PLAY LIST 

OO 

if I" 
6oC»3 001 

§1 
SEOUEHCE LIST 04C*3 001 

of C 3 000* # 

8S IS3 
02 Seq 

MIXED AUDIO 

vA— 

Figure 6.15 Simulated tracker screenshot 

In this simulated example, two samples are held by the sample list, with sample '001' 

selected. The sample list is shown in the top left hand comer. The selected sample 

waveform is shown along the top of the screen. The tracker is in the sample mode, shown 

by the red background colour of the sample list and sample. All other windows have the 

blue background colour. 

The playlist is displayed to the middle left of the screen, with 7 links into the sequence list. 

The third playlist element is selected, which is sequence '00'. The same sequence is 

selected in the sequence list, which is shown below the playlist. The selected sequence 

takes the most part of the displayed screen, with the 8 audio channels across the screen and 

the time points being shown down from the currently selected position, which is at time 

point '00' with channel '1' selected. The cursor is green, which means that the sequence is 

not in recording mode. In this example, most inserted notes are in channel '1', with C-

sharp (C*) in the middle octave (3) using sample '001' being highlighted by the cursor. 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 2 0 5 

The three lines shown in channels 2 to 4 denote a note-stop item, which halts all playback 

of the sample in those audio channels when the stop item is reached. 

The bottom windows display a real-time representation of the audio streams being played 

on each channel. The left hand side larger window shows the mixed output audio stream. 

A simulated input sine wave is being mixed into the output stream. 

6.3 Demonstrator II: The expression evaluator 

This design is written to demonstrate recursion in behavioural synthesis, which is 

explained in Chapter 5. The demonstrator serves little other purpose than this. The point of 

this demonstrator is to recursively evaluate a binary tree expression. Most mathematical 

equations can be built from a number of operations stored within a binary tree, as most 

mathematical operations have one or two operands and return a single result. The 

operations supported are integer operations, where all integers are represented by 32-bit 

storage. 

The design also uses the dynamic memory capabilities in order to build the recursive data 

structure of the binary tree. The demonstrator is designed to give a visualisation into the 

binary tree structure and to perform operations on the tree in a recursive manner. 

The expression evaluator demonstrator core system uses 37% of the main FPGA's 

capacity, shown in Figure 6.16, the design simmiary of placement and routing. 

Design Summary: 
Number of errors; 0 
Number of warnings: 80 
Number of CLBs: 3187 out of 8464 37% 

CLE Flip Flops: 1466 
CLE Latches: 0 
4 input LUTs: 5390 (50 used as route-throughs) 
3 input LUTs: 843 (145 used as route -throughs) 

32X1 RAMs: 256 
16X1 RAMs: 4 

Number of bonded lOBs: 95 out of 448 21% 
lOB Flops: 135 

IDE Latches; 0 
Number of clock IOB pads: 1 out of 12 8% 
Number of TBUFs; 256 out of 17296 1% 
Number of BUFGLSs; 1 out of 8 12% 

Total equivalent gate count for design; 86433 
Additional JTAG gate count for lOBs: 4560 

Figure 6.16 Expression evaluator design size statistics 



DJ.D. Milton, 2002 Chapter 6; Practical synthesis 2 0 6 

Note the use of 256 '32x1' internal RAM cells. This forms the implementation of the 

space required by the recursion stack. 

A more complete explanation of the implementation details of the core expression 

evaluator design is contained in Appendix C.7. 

6.3.1 General overview 

The binary expression is built up directly from user input via the keyboard and viewed 

using the VGA output screen. There are two views into the operations performed on the 

dynamic data structures, the first being a view of the binary tree from a particular node in 

the tree and the second being a log of all results produced by the evaluation of the 

expression held by the free. 

The design is realised by a single process, as there are no timing critical sections to the 

system. This simplifies all accesses to the dynamic expression, as no memory conflicts are 

possible, which can occur with a multiple process implementation. 

6.3.1.1 Data structures 

The expression to be evaluated is stored by a binary tree structure, with an example of this 

shown in Figure 6.17. The tree is built from a single record type with left and right child 

references to the same type of record. Each tree node can either hold a fixed value, which 

is used for the leaf nodes of the free, or an operation upon the left and right child operands. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 207 

binary tree 

node 

operation op - PLOS 

-U.s.£S_) 

binary tree 

node 

operation op - MOLT 
val " 12 

node* 
nod.* / rrioHtl 

V 

binary tree binary tree 

node node 

operation 00 " VAL operation op " VAL 

val " 2 

node" / fSIqKFN node' / (right 

binary tree 

node 

operation op » SOB 
value val = 4 

binary tree 

node 

operation op - VAL 
value val » 8 

binary tree 

node 

operation 

/ Criqht}-̂  

null V nullV nuWV null V nijjV nullV 

Figure 6.17 Binary tree container with 8 elements 

Both unary and binary operations are supported, with the unary operations acting upon the 

right hand child only. The example shown evaluates the expression; 

CY + 2j * (8 - 4 ; = Y2 

The log of all results produced from the evaluator is created dynamically. The log is 

formed from a doubly linked list that contains a full line of text for each element of the 

list. The information stored for each character is a combination of the ASCII character 

code and colour. The linked list structure is similar to the data structures formed as part of 

the tracker demonstrator, except that only the one type of element is stored. 

6.3.1.2 Recursive operations 

As the point of the demonstrator is to highlight the use of recursion within a system, a 

number of procedures are written in a recursive manner. The first procedure produced is a 

recursive implementation of the factorial operation [110]. This operation is best computed 

iteratively, but it served to test the implementation of recursion throughout the design and 

integration process, so is included in this demonstrator. 

The two core tree creation and deletion operations are performed by recursive procedures. 

The creation of the tree is handled by the evaluation function, and the operations in the 

evaluation fiinction are directly controlled by the user input from the keyboard. The tree 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 2 0 8 

node deletion is formed from a simple recursive procedure that calls itself, passing the left 

and right node references before deleting the node data itself. 

The tree drawing algorithm is also implemented recursively, with each level of the binary 

tree being drawn by a recursive jump into the child nodes. This means that the tree is 

drawn in a depth first manner. 

6.3.2 User guide 

There are two modes of operation within the expression evaluator, relating to the 

implementation of the direct test of recursion from the factorial procedure against the 

evaluation of the expression. 

6.3.2.1 Factorial mode 

This mode is included to show a direct test of a recursive procedure in action. The factorial 

procedure is a unary operation that produces valid results from input integers in the range 

1 to 15. Any input larger than 15 will produce a result that cannot be held by the 32-bit 

representation of the integer. 

This direct test can only be made when not evaluating an expression. Pressing the 'F' key 

evaluates the factorial expression with a repeated loop of 1 to 15 as the input values to the 

procedure. The results of the factorial procedure can then be seen in the event log, with the 

log being indented as a representation of recursion depth (see Figure 6.18). 

6.3.2.2 Expression evaluation mode 

Once the evaluation procedure has been called, the design will halt inside this procedure 

awaiting user input. A tree node is available in the evaluation procedure, which is 

modified by the user to generate the expression. 

Pressing the 'E' key makes the initial entry into the expression evaluation mode. If no root 

tree node exists, then one is created within the evaluation procedure. The generation of the 

binary tree is simply a case of evaluating the left and right nodes by pressing the 'L' and 

'R' keys respectively. This recursively calls the same evaluation procedure, so that if the 

left or right nodes do not exist, they will be created in the same manner as the root node. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 209 

Pressing the 'Q' key makes a recursive return from the present level of the evaluation 

procedure. If a return is made from the root tree node, then control returns to the base 

process, allowing the factorial procedure to be evaluated directly again. 

While in the user interface loop within the recursive evaluation procedure, the binary tree 

node at the present evaluation position in the tree can be manipulated. The list of valid 

node operations is shown in Table 6.4, along with the keyboard key to press for them. 

Operation 
Leaf 

value 
Not Factorial Add Sub Mult Xor And Or 

Shift 

left 

Shift 

right 

Valid 

Operands 
- R R L, R L. R U R L. R L, R U R U R U R 

Key V N F + - * X A 0 
left 

arrow 

right 

arrow 

Table 6.4 Expression operations 

Other tree manipulation operations that are provided include the ability to swap left and 

right tree branch operands by using the 'S' key; the manual creation of left and right 

operand nodes by pressing ' C followed by the 'L' or 'R' keys; and the recursive deletion 

of the left or right operands by pressing 'D' followed by the 'L' or 'R' keys. 

Tree nodes are initially created using the leaf value operation, whose value may be 

incremented and decremented using the up and down arrow keys respectively. A leaf 

value does not have any valid operands by definition of not being an operation. If any left 

or right operands exist for operations that do not require them, the entire sub-branch is 

highlighted as invalid by the displayed tree view. 

6.3.2.3 User interface 

An example of the expression evaluator screen view can be seen in Figure 6.18, which is 

generated from direct simulation of the synthesised expression evaluator. 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 210 

E X P R E S S I O N EVALUATOR DEMO 

a 

$ 
OUTPDT̂ = 6̂  

oBw;cvT_-i#a 

JPfiT 
e'-o8Vf5¥^==a 
ggiGc; : m - = ISO 

OR RESULT = leo 

Figure 6.18 Simulated expression evaluator screenshot 

The top window shows a snapshot of the entire tree view, with the viewed root node being 

the presently edited node. The expression shown in the example is: 

(5 « (5 - 2)) + Factorial(5) = 160 

Notice that the factorials left operand is shaded in a red colour. This is because the 

factorial is a unary operation, with only the right hand operand being used as input. The 

values in the top left comer of the representation of the tree nodes are evaluations of the 

value at the particular node. The type of operation is shown in the centre of the node. 

The bottom window shows the bottom section of the full log that has been generated 

during all the tree manipulation and evaluation operations. Notice the indenting, which is a 

graphical representation of the recursion depth reached. The log may be scrolled up and 

down by using the up and down arrow keys and the page up and down keys when not 

evaluating an expression. Pressing the 'Escape' key removes the log contents. 



DJ.D. Milton, 2002 Chapter 6; Practical synthesis 211 

6.4 Simulation experiment 

The simulation experiment is written to perform relative timing comparisons between 

different implementations of the same design. The experiment tests both recursion and 

dynamic memory in both software and hardware domains. 

6.4.1 Small language parser 

The design that is used to test the system is an implementation of a small language parser. 

In fact, the language can be fully described using the BNF notation shown in Figure 6.19 

and can be stored by a single binary tree data structure. 

expression :;= '(' expression operator expression ')' | number 

number ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | 7' | '8' | '9' 

operator ;:= '+' | | 

Figure 6.19 Language description in BNF 

The language is parsed into a data structure that is identical in form to the expression 

evaluator's expression tree data structure. 

6.4.2 Comparable implementations 

There are various items that are comparable between the different implementations. The 

experiment is set up primarily to measure the time taken, both of the internal phases of the 

design and of the total duration. 

There are six different implementations that are measured, which are formed from a 

combination of hardware vs. software (on two platforms) and of recursive vs. non-

recursive implementations of the same design. There are three phases to each design that 

are measured. The first is the data structure creation by language parsing, the second is a 

depth first traversal that calculates the result of the expression parsed and the third is the 

removal of the entire data structure tree. 

It is possible to write any notionally recursive system in an iterative manner. However, the 

source code is invariably larger and more difficult to understand for any reasonable 

problem. The method used for the non-recursive implementation of the language parser is 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 212 

to store the current tree position and returned data as part of the tree data structure itself. 

Both software versions are written in the C language, with direct equivalent hardware 

versions written using behavioural VHDL. 

8 
0) 
c 

1 
8 

S 

n recursive 

I iterative 

softw are 

82 

168 

hardware 

111 

191 

Figure 6.20 Source code line count for each implementation 

The size results shown by Figure 6.20 show that for both the hardware and software 

implementations, the recursive version is almost half the size of the equivalent iterative 

version. Notice that the software version written in C is slightly less verbose than the 

equivalent behavioural VHDL description. The source code for each implementation is 

available in machine-readable form, which shows the more readable style of the recursive 

versions. 

The hardware designs are simulated with a 25MHz clock, with the same 4Mbyte heap 

manager as used by the demonstrators. The memory space is simulated as standard fast 

page mode DRAM and the procedural recursion stack held in onboard simulated SRAM. 

The software designs are directly measured on two platforms in order to gain a better 

understanding of the interaction between the many differences between them and the 

hardware being tested. The first platform is an Intel Pentium 75MHz PC, with 16 Mbytes 

of DRAM clocked at 33 MHz and 256Kbytes of SRAM processor cache. This machine 

uses the Windows95 operating system. The second platform is a laptop computer, running 

an Intel Pentium III 850MHz SpeedStep processor with 256Mbyte SDRAM clocked at 



DJ.D. Milton, 2002 Chapter 6: Practical synthesis 213 

100 MHz and with a 256Kbyte level-2 integrated SRAM cache running at the processor 

frequency. This machine uses the Windows2000 operating system. 

6.4.3 Comparison 

A set of different sized data files is created, where each file is parsed to generate the tree 

data structure of the test design. The files are created to generate balanced tree depths of 5, 

10,15 and 20 when parsed. 

The generated expression consists of a balanced tree of addition operators with the number 

3 at every leaf of the tree. Each tree node is used to store either the leaf number or an 

operator and two references to child nodes. 

Tree depth 5 10 15 20 

Character count 125 /k093 131,069 4,194,301 

Object count 63 2XW7 65,535 2,097,151 

Iterative memory (words) 441 14,329 458,745 14,680,057 

Recursive memory (words) 252 8,188 262M40 8,388,604 

...(3+3)... result 96 3,072 98,304 3,145,728 

Table 6.5 Data set statistics 

The measurement of time in the hardware version is made by direct simulation. This 

produces exact results each time. Reading a fine-grained timer before and after each 

design phase performs the software time measurement. Repeating the experiment many 

times and calculating the average time increases the accuracy for the software 

implementations. 



D.J.D, Milton, 2002 Chapter 6: Practical synthesis 214 

a) parser duration b) calculation duration 

1,000,000,000 

100.000,000 

10,000,000 

1,000,000 

100.000 - -

10.000 

5 10 15 M 
t ree dep th level 

- p 7 5 recursive 

- p 7 5 iterative 

-laptop recursive 

-laptop iterative 

-hardware 
recufBlve 

-hardware 
iterative 

1,000 

5 10 ^ # 
t ree dep th level 

- p 7 5 recursive 

- p 7 5 iterative 

-laptop recursive 

-laptop iterative 

-hardware 

recursive 

-hardware iterative 

c) deletion duration d) total duration 

1,000,000,000 

100.000.000 

10.000,000 

1,000,000 

100.000 

10.000 

1.000 

5 10 ^ # 
t r ee dep th level 

- p 7 5 recursive 

- p 7 5 iterative 

-laptop recursive 

-laptop iterative 

-hardware 

recursive 

-hardware iterative 

1,000,000,000 

100,000,000 

10,000,000 

1,000,000 

100,000 

10,000 

1,000 

100 

10 

1 

5 10 15 # 
t r ee dep th level 

- p 7 5 recursive 

- p 7 5 Iterative 

-laptop recursive 

-laptop iterative 

-hardware 

recursive 

-hardware iterative 

Figure 6.21 Time taken by simulations 

The results shown in Figure 6.21 are the measured times for each design compared against 

each other for the three different phases (Figure 6.21a to Figure 6.21c) with the total 

duration shown in Figure 6.21d. The time is shown on a logarithmic scale due to the 

logarithmic complexity of the problem for the different tree depths created. Each extra 

level added to the tree doubles the problem size, memory requirements and the time taken 

for tree traversal. The hardware implementations are only simulated up to a tree depth 

level of 15 due to memory size restrictions, while the software is also measured for a tree 

depth level of 20. 

The results show a straight-line trend in every implementation except for the software 

parsing of smaller designs and of the calculation phase of the largest tree depth level on 

the P75 platform. The deviation for the small software designs can be attributed to the 

increased proportional overhead of the file handling routines that are included as part of 

the simulation times. The P75 platforms performance suffers with the largest design, as the 

memory requirements of the problem exceed the available memory space available from 

the system DRAM, with the system resorting to memory page swapping with the hard 

disk. The changes in proportions between the different phases of the design are shown 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 215 

graphically in Figure 6.22, which shows the normalised phase time for the different tree 

depth levels for each implementation of the system (Figure 6.22a to Figure 6.22f). 

a) P75 recursive software 

t l 

100% 

• delete 

•calculation 

• parse 

10 15 M 

tree depth level 

c) Laptop recursive software 

100% 

•dele te 

•calculation 

• p a r s e 

10 15 M 

tree depth level 

e) Recursive hardware 

tl 
100% 

80% 

60% 

40% 

20% 

0% 

•dele te 

•calculation 

• p a r s e 

5 10 15 

tree depth level 

b) P75 iterative software 

u •de le te 

•calculation 

• p a r s e 

10 15 20 

tree depth level 

d) Laptop iterative software 

100%% 

•de le te 

•calculation 

• p a r s e 

10 15 # 

tree depth level 

f) iterative liardware 

calculation 

• p a r s e 

5 10 15 

tree depth level 

Figure 6.22 Simulation phase time proportions 

Figure 6.22 shows that the hardware implementation is unaffected by the depth level of the 

tree. This means that the allocation and deallocation methods take a proportional amount 

of time for the three phases for each input file size. As the number of memory operations 

in each phase procedure is fixed, this shows that the hardware allocator takes a linear 

amount of time to allocate an object. The proportional results shown for the software 

implementations both show that smaller designs spend more time parsing the input file. 

This is due to the file handling routines being measured as part of the parser timing 

statistics, whereas the hardware design receives its data through a communications port, 

which has a linear simulated communication time. 



D.J.D. Milton, 2002 Chapter 6: Practical synthesis 216 

The measured times are also affected by the simulated clock speed of the hardware and the 

CPU and memory clock speeds of the software platforms. However, the major bottleneck 

in all systems is still the available memory bandwidth, as the test is extremely memory 

intensive. In this respect, the choice of memory type and access structure (caching system) 

is extremely critical for all platforms. 

Tree depth level 5 10 15 20 

P75 recursive 

software 

Parse 3,994 29,291 647,104 41,138,408 
P75 recursive 

software 

Calculate 48 t241 40,468 40,172,254 P75 recursive 

software Delete 253 7,203 240,763 33,367,057 

P75 recursive 

software 

Total 4,295 37/35 928,335 114,677,719 

P75 iterative 

software 

Parse 4^M 27,360 635/35 85,288,260 
P75 iterative 

software 

Calculate 64 1,950 82^93 134^W6J19 P75 iterative 

software Delete 362 9,007 287.874 64.087,000 

P75 iterative 

software 

Total 4,570 38,317 1,005,802 284,321,379 

Laptop recursive 

software 

Parse 981 1,913 52/67 1,434,524 
Laptop recursive 

software 

Calculate 5 80 6,699 213,303 Laptop recursive 

software Delete 20 530 24^88 800,837 

Laptop recursive 

software 

Total 1,006 2,523 84,154 2,448,664 

Laptop iterative 

software 

Parse 981 2,591 103,131 1,827,548 
Laptop iterative 

software 

Calculate 6 177 12,961 429,444 Laptop iterative 

software Delete 21 610 30J24 969,628 

Laptop iterative 

software 

Total 1,008 3,378 146,216 3,226,620 

Recursive 

hardware 

Parse 205 6^22 211,963 

Recursive 

hardware 

Calculate 81 2,621 83,972 Recursive 

hardware Delete 181 5,858 187,484 

Recursive 

hardware 

Total 467 15J01 483,419 

Iterative 

hardware 

Parse 338 10,968 351,180 

Iterative 

hardware 

Calculate 240 7,857 25tG49 Iterative 

hardware Delete 296 9,605 307,737 

Iterative 

hardware 

Total 874 28/WO 910,566 

Table 6.6 Complete measured time results In |ns 

Table 6.6 shows the measured times for every simulation in tabular form. Looking at a tree 

depth level of 15 and the two recursively implemented designs, the total measured time 

taken for the software version on the laptop is 84,154jis while the simulated hardware 

version takes 483,419)j,s. This means that the laptop software runs 5.74 times faster than 

the hardware. This is to be expected though, as the two systems are not realistically 

comparable due to the completely different system specification. A better comparison is 

made with the P75 software platform, which takes 928,335p,s. This result shows the 



D J.D. Milton, 2002 Chapter 6; Practical synthesis 2 1 7 

software to be 1.92 times slower than the hardware. Closer inspection of the P75 platform 

however, shows that most time is spent in the parsing phase, where a combination of 

memory allocation and file handling is measured. The actual calculation phase times of 

40,468|J.s for software (P75) and 83,972p,s for hardware show the software running 2.08 

times faster than the hardware, which can be partially attributed to the differences in 

memory systems between the two platforms, with the SRAM cache system on the 

software platform and the slow random accesses made to DRAM on the hardware 

platform. Conversely, notice that the deallocation phase in the same test takes 240,763|is 

for the P75 and 187,484|a,s for the hardware, making the hardware 1.28 times faster. 

The 25MHz simulated hardware clock speed is set due to the assumed implementation of 

an FPGA. The equivalent design, optimised for implementation in an ASIC would reach 

clock ft-equencies that match and exceed the memory frequency used in the laptop 

platform. Also, the underlying hardware memory implementation can be tailored to the 

application, with the use of different underlying memory types, speeds, allocation methods 

and caching systems. Embedded DRAM [52] could be used for better power performance 

and wider data interface or an SRAM version of the same heap controller could be 

designed. This is estimated to increase the available memory bandwidth by a factor of six. 

All of these memory structure optimisation choices are only possible in the hardware 

synthesis environment. 

The argument for the use of recursion by a system derives firom the increased complexity 

of the behavioural source code and the increased measured time taken for an iterative 

implementation of both the hardware and software designs. However, the reason for the 

increased time taken for the iterative versions shown here is that they require more heap 

memory accesses (random access) due to their implementation method. The hardware 

version shows this especially, with differences in the types of memory used for the heap 

and stack dynamic memory, with a recursive version more dependent upon the SRAM 

based stack memory capable of outperforming a design more dependent upon the slower 

DRAM based heap memory. If an SRAM based heap manager were implemented, then the 

1.9 times speedup gained by using recursion would be reduced to almost the same level. 

The same argument holds for the software-based implementations, where the procedure 

stack is partially implemented using an SRAM based circular buffer within the processor. 



DJ.D. Milton, 2002 Chapter 7: Conclusions and further work 218 

Chapter 7 

Conclusions and further work 

The work described in this thesis extended the scope of the MOODS synthesis system to 

include dynamic memory support, both explicit allocation of user objects with the use of 

the heap and implicit allocation of local subprogram variables with the use of the stack, 

allowing procedural recursion. 

The source language used for all designs synthesised by MOODS at present is VHDL. 

This language is compiled into a language neutral ICODE format that is directly processed 

by MOODS. Most modifications made to the system consisted of additions made to the 

VHDL compiler, with only procedural recursion requiring changes to the synthesis core. 

VHDL is a language designed for the description of hardware, but allows for many 

abstraction levels of design description, including the software-like behavioural level, 

which now, due to the work carried out, includes the ability to directly describe dynamic 

objects within the synthesis environment. 

The methods used in the modified behavioural synthesis, allowing dynamic memory, 

borrow heavily from the software domain, with the implementation of both a heap 

management system and a stack controlling mechanism. The algorithm used in the heap 

manager is both space and speed efficient, giving a fixed maximum time for allocation and 

deallocation of objects. It is very simple to interface to a different memory management 

scheme that is optimised for different area constraints (both physical design area and 

memory efficiency) and memory allocation performance, as the allocation scheme is not 

built into the synthesis process. 

The enhancements made to MOODS allow the generation of two demonstration systems 

that both demonstrate the usefulness of dynamic object creation, especially when the 

source language supports the allocation constructs. The tracker demonstrator shows that it 

is possible to use the dynamically created objects in a real-time environment, with the use 



D.J.D. Milton, 2002 Chapter 7: Conclusions and fiirther work 2 1 9 

of concurrent processes and shared data structures. The expression evaluator demonstrator 

shows the ability and use of procedural recursion, especially when used to control the 

recursive data structures created dynamically on the heap. 

The research carried out within this project enables the MOODS synthesis system to 

synthesise designs with dynamic memory constructs. There is scope for improvement in 

the currently implemented system, both with the synthesis process in general and with the 

methods used in the dynamic memory subsystems. A number of suggested enhancements 

are described in the rest of this chapter, which could form the basis for future research 

topics. 

7.1 ICODE optimisation 

The use of source-level optimisation has been shown to produce better synthesis results 

[94], with modifications made directly to the source VHDL. However, this technique 

could not be used at the same time as the modified VHDL compiler, as the source level 

optimiser does not support the memory constructs used in the VHDL language. 

A solution to this problem would be to move the stage at which the source optimisation 

occurs into the ICODE domain. The benefits of this are twofold. The first benefit would be 

the ability for source code optimisation to be used in conjunction with dynamic memory 

constructs, even allowing optimisation of the number of memory accesses required [111] 

due to common sub-expression sharing. The second benefit would be complete language 

independence for the optimisation process, with optimisation occurring on the language 

neutral ICODE. 

The benefits of just one optimisation at the ICODE level have been shown in this thesis, 

that of procedural inlining. A fiill set of optimisations [112] could drastically reduce the 

area and delay of some designs that are written for clarity, not efficiency. 

7.2 Heap modifications 

The modifications discussed here relate to the explicit object creation part of the dynamic 

memory allocation structure to which each user design is linked. 



D.J.D. Milton, 2002 Chapter 7: Conclusions and further work 2 2 0 

The first modification relates to the efficiency of behavioural synthesis when dynamic 

memory is used. At the present time, each translation of a dynamic memory access is a 

number of ICODE instructions that interface with the underlying heap manager. This leads 

to a lot of replication of sequences of ICODE instructions, each performing exactly the 

same operation. Every instance of the access functions is optimised separately during 

synthesis, and this slows the optimisation. 

Expanded modules [3] are designed with optimisation efficiency in mind, where a 

sequence of instructions is represented by a single instruction. The use of expanded 

modules to describe the memory access procedures would allow a speedup in optimisation 

time, with the pre-optimised interface sequence being expanded from the single instruction 

reference in the last stages of optimisation. 

The creation of a number of expanded module interface operations would also allow the 

migration of the concurrent heap interface multiplexor process into the MOODS core, 

which frees all future compilers from needing to generate this structure. 

The current implementation of the heap manager subsystem uses a single allocation 

method, with direct access to the underlying DRAM, using completely random access 

(negating Fast-Page-Mode use). The second modification could be to implement a number 

of allocation algorithms within a set of heap management subsystems, where the choice of 

which allocation method to use could be explicitly selected by the user, or left to an 

automated choice, dependent on user constraints and/or source analysis. The automatic 

linkage of this subsystem would also be preferable. 

The underlying storage mechanism used by the heap manager could be implemented 

within a number of technologies, including SRAM, faster DRAM of various types (FPM, 

EDO, SDRAM), or a mix of technologies with the faster memories being used for speed 

sensitive areas of allocation. This allows even more choice in the number of heap 

management systems that can be used. 

If the hardware destination of a design is to be an FPGA, then the use of more specialised 

FPGA architectures that contain a number of SRAM memory blocks could be utilised. 

These would allow the stack and heap to be implemented internally either partially or 



DJ.D. Milton, 2002 Chapter 7: Conclusions and further work 2 2 1 

fully, dependent on memory requirements. The XILINX 'Virtex' series of FPGA, 

containing 'SelectRAM' is an example of such a specialised architecture. 

The completely random access of the storage space of the underlying dynamic objects 

negates the use of advanced memory data streaming, such as fast-page-mode access or 

burst-mode access of particular types of DRAM. This slows the available memory access 

speed to the random access speed. There are two possible solutions to this problem. 

The implementation of a cache controller between the heap management algorithm and the 

underlying memory controller forms another memory interface level. Such a system could 

be designed to use the faster memory accesses of the available large-scale memory, while 

providing single-cycle access to data that is referenced by the cache, from the use of 

SRAM based storage. The use of a caching system could be another parameter used in the 

selection of a heap management system. 

The second solution could be to provide an enhanced interface to include memory-type 

specific accesses in the generated ICODE. This could require knowledge of which heap 

management subsystem is to be used before compilation, as the enhanced interface may 

not be available in all management systems. Such accesses could be formed from analysis 

of the source code, where a streamed memory access contained by a loop could map onto 

a fast-page-mode DRAM access or burst-mode access [113]. This requires investigation to 

determine the workability of the solution over the cache solution. 

7.3 Stack modifications 

The modifications discussed here relate to the implicit object creation part of the dynamic 

memory allocation structure that is created for each design utilising procedural recursion. 

At present, a design using procedural recursion is limited to a single process that uses 

recursive procedures. A design may contain more than one process, with only one able to 

use recursion. This is due to the current implementation of the call stack, as a single 

contiguous memory block per design. 

The lack of analysis for a list of all possible concurrent calls to all the statically generated 

procedures also has effects upon the generation of recursive procedures. If any procedure 



DJ.D. Milton, 2002 Chapter 7: Conclusions and fiirther work 2 2 2 

is called from more than one process, then this procedure either has to be replicated (if the 

procedure does not communicate directly with any internal signals or design ports), or 

blocked for concurrent access (with the automatic generation of mutex wrapper fimction 

blocks around the procedure). At present, all concurrent access to a generated subprogram 

is reliant upon explicit user-defined access confrol within the design source code, not upon 

the synthesis system. The generated structures for concurrent access of general procedures 

require specification before the additional structures required for concurrent access of 

recursive procedures can be specified. 

Dependent on whether a recursive procedure is replicated or access-controlled during 

generation allows for different methods for the allocation of procedure-local frame data. 

Replication can enable access to completely concurrent stacks using different access ports, 

whereas a single access-controlled procedure can use only a single port into a stack 

system. In this case, the underlying stack mechanism of the contiguous block of memory 

with a single stack head pointer cannot be used. A more complex system possibly based 

upon the heap allocation methods and with an automatic generation of a linked list 

structure between stack frames could be used. 

There is only one implementation of stack-frame handling in the current system, where the 

data is stored in a single memory array with a single access port. This forces every access 

of the stack to happen in separate control states, inducing a sequential delay to designs. An 

alternative implementation could be used for designs optimised for delay, where each 

variable requiring stack storage could have an associated local stack. This would allow 

concurrent access of each stack variable. Sharing of stack arrays for local variables 

between mutually exclusive recursive procedures could also be allowed. Some static 

analysis of the likely storage space requirements would be required, in order to balance the 

amount of data stored in each stack array. 

For larger stack requirements, it may be useful to create an external stack interface, like 

the heap manager interface. This would allow interfacing to a number of memory 

technologies, including SRAM and DRAM again. 

An alternative to the separate external stack memory and heap memory could be to 

combine the two in some manner, where a limited built-in stack is provided in the same 

manner as before, with the heap memory accessed whenever the stack overflows or 



D.J.D. Milton, 2002 Chapter 7; Conclusions and further work 2 2 3 

underflows. The heap could be used to allocate enough space for the stack frame used in a 

recursive procedure when the stack overflows. In this way, the stack is used as a circular 

window into a potentially larger memory base, with the slower heap only being accessed 

during excessive recursion. This also removes the stack overflow exception. 

7.4 Exception handling 

There are currently two hardware exceptions that are not directly accessible from the 

VHDL language, which can break a design under certain circumstances. These exceptions 

are effectively memory allocation problems due to the limited underlying memory space 

available to the user's design. The exceptions occur when the heap manager is incapable 

of allocating the required user object or when the stack overflows due to excessive 

procedural recursion. The stack overflow problem could be reduced to the heap allocation 

problem, with the last given stack modification of the combined windowing stack. 

The main disadvantage encountered is the lack of accessibility of the exception as part of 

the VHDL language. The only way that the exception can currently be handled is if an 

allocation returns a null reference. This means that the user's design must test every 

allocation to see if it failed, and act accordingly in some controlled manner. This can lead 

to large, ugly and unreadable source code. A better mechanism, which removes the need 

for user testing, may be to build the exception handling into the synthesised design, where 

some form of registered status output could give an indication of system health. This 

indicator could allow for the switching of backup systems in place of the currently active 

system. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 2 4 

Appendix A 

Collateral projects 

During this research, a number of smaller projects were undertaken to gain familiarity 

with the MOODS synthesis system. These projects are designed to enhance the system in 

general and supplement the demonstrators described in Appendix C. Other users of 

MOODS for further development and demonstrations have subsequently used some of 

these projects. 

The first VHDL based project was to implement a VGA controller library. This subsystem 

has been the most widely used bolt-on component and has been implemented in three 

major versions using two different technology bases. The system is used as a viewable 

output method for designs requiring a visual user interface, where a standard VGA 

monitor screen is used to display the signals directly generated from the VGA controller. 

The interface to the concurrent controller is procedure based with direct calls made from 

the user's design used to draw objects such as rectangles, text and straight lines from 

arbitrary points. 

The second VHDL based project was to implement an interface to a standard PS2-based 

101-key ASCn keyboard. This subsystem will form the input to various designs requiring 

a number of keyboard switches. This system is the second most widely used with most 

demonstrators comprising of a monitor, keyboard and the created driving hardware. 

The final VHDL based project was to implement an interface to a standard serial port. 

This project was designed specifically for the tracker demonstrator described in Chapter 6 

and Appendix C. However, the general-purpose nature of the subsystem lent itself to being 

created as a completely self-contained project. Only the input half of the serial port 

interface is implemented, with the output half being an easy addition if ever required. This 

interface is implemented, as the first two, with a concurrent controller driven by calls to a 

set of sequential interface procedures. 



DJ.D. Milton, 2002 Appendix A: Collateral projects 2 2 5 

The next project, the wave viewer is software based. It was designed to gain some more 

familiarity with the MFC class libraries used to generate windows programs. A wave 

viewer generally forms one of the visualisation methods of a digital simulator. A 

proprietary input file format was designed for use with this program and the viewer has 

been used with a neuron simulator and is currently forming the output visualisation 

method for a digital simulator based on the internal MOODS data structures. 

Older versions of MOODS generate the final RTL VHDL output directly firom the core. 

With the introduction of multiple concurrent components, in the form of the various 

library components and more importantly, the heap management component, a method to 

link these automatically into the final structural output becomes necessary. The program; 

'DDFLink'; is used as a final stage data structure translation tool, and is currently being 

expanded in order to generate EDIF output directly from the data structures represented by 

the 'DDF' file format described in appendix D. 

The first six months of the PhD were used to try to find a niche within the 3D graphics 

research area that could be the base for the entire research project. However, this time 

proved the beginning of the period of major commercial growth in this area, which 

effectively halted the research efforts in the direction that was beginning to be taken. 

Within this period, a small 3D graphics engine was written in software that was loosely 

based upon the PHIGS hierarchical data structures used to generate 3-dimentional objects. 

This software used a 3D accelerator card created by the company '3DFX'. This program is 

described in the final section of this appendix. 

A.1 VGA controller library 

The VGA controller is designed as a component to which the user's design interfaces via 

the VGA Interface package that contains various set-up and drawing procedures. This 

section explains the various aspects of all the versions of the VGA controllers and their 

respective interfaces. The VGA controller library forms the cornerstone of many of the 

demonstrators built by the research group. Various versions of this library exist, with 

optimisations made with respect to the target hardware and to the type of design that 

utilised the library. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 2 6 

A. 1.1 Overview 

The VGA system is a graphical interface that can be used by calling VHDL procedures. It 

outputs all the signals necessary to drive a VGA monitor at the standard 640x480 

resolution [114], The dot-clock for this resolution is 25.125MHz, which determines the 

clock frequency supplied to every version of the VGA controller. 

It is targetted at the PCB described in Appendix C. This board uses a XILINX XC4062XL 

FPGA, has IM of DRAM frame buffer memory and has a triple 8-bit DAC for driving a 

monitor. It has since been updated to use a third party board provided by XESS, which 

uses a XILINX Virtex-800 FPGA, with a different frame buffer stored within SRAM and 

a RAMDAC instead of a DAC. The use of SRAM allows single cycle read-access, which 

enables an 8-bit per pixel (256 colour) version to be produced (even with a reduced SRAM 

data path width), with a direct port to the frame buffer being provided for this instead of 

the object rendering capabilities found in the 4-bit per pixel (16 colour) version initially 

designed. 

A. 1.1.1 Controller 

This component forms the concurrently active low-level driving system that generates the 

SYNC signals and colour output that drives the VGA monitor screen directly. It makes use 

of a frame buffer memory into which stored images are rendered. These images are 

serialised into a raster-scan, passed through a palette-lookup system and drive the monitor 

with the generated signals. The memory effectively introduces a large time buffer in which 

to work asynchronously with the output signal generation. 

The images are produced by various memory modification routines that, in the case of the 

16-colour version, are capable of drawing bitmapped text characters, rectangles and 

straight lines anywhere within the memory space. The 256-colour version of the controller 

has two direct memory access ports to the underlying memory and no direct rendering 

capabilities itself This design is optimised for producing more colour intensive outputs 

such as realistic picture visualisation. 



D J.D. Milton, 2002 Appendix A: Collateral projects 2 2 7 

A. 1.1.2 Interface 

This package is used by the user design and handles the communication between the user 

design and the VGA controller system. It is wise to use only the procedures defined within 

the package and not to drive the signals directly. Some of these interface procedures are 

inlined and others are not, depending on tests for what gives the best results. 

A.1.1.3 Simulation 

A Modelsim simulation library exists for the 4-bit (16 colour) version of the VGA 

controller. The simulation uses Modelsim's C-interface into the simulation structures that 

enable various hooks to be utilised. The point of the simulation library is that the user can 

link to the virtual VGA controller given by the library and it will create a window on the 

simulation computer that displays exactly what will be displayed after the synthesis and 

place and route process. 

File name Description 

vgajsim_pck.vhd VHDL component interface - virtual VGA controller interface 

vga_sim_bdy. vhd VHDL component body - empty body required by Modelsim 

text2col2.bmp The text ROM stored as a bitmap 

mti_vga1.dll The executable that generates the window 

Table A.7 Files required for VGA controller simulation 

Simulation can be either at the behavioural level (source code before synthesis - use 

'vga_controller__source') or at the structural level (VHDL code after synthesis - use 

'vga_controller^). The VGA Controller component used during RTL synthesis is replaced 

by the simulation component given in 'vga_sim _pck.vhd\ Note that a simulation of the 

text ROM is included within the DLL, so the address of the text ROM is supplied to the 

controller, not the resulting data. The simulation name, position of the text ROM bitmap 

and the default palette are set-up using VHDL generics passed into the simulation 

component. The position of the DLL executable is set up within the architecture itself and 

should remain fixed. 

At present, no simulation library exists for the 256-colour version of the controller. The 

only indirect method for visualising what will be produced is to use the actual controller 

source itself Accepting the semaphore accesses may be enough for visual inspection of 

whether the user design is working or not. 



DJ.D. Milton, 2002 Appendix A: Collateral projects 228 

A.1.1.4 Source VHDL structure 

The three versions of controller are each contained in a single file each. The controllers 

interface to one of two constants packages and one of two palette setup packages. The 

interface package used by the user also has two versions. The two versions are necessary, 

as each provides a completely different interface to the underlying controller. 

The VGA Controller design is created jfrom the VHDL files shown in Table A.8. Note that 

only the 4-bit version of the controller is available for the university board. 

4-bit (16 colours) 8-bit (256 colours) 

University Board vga_const.vhd 

vga_palette.vhd 

vga_controller.vhd 

N/A 

XESS Board vga_Gonst.vhd 

vga_palette.vhd 

vga_controller_xess.vhd 

vga_const_8bit.vhd 

vga_palette_8bit.vhd 

vga_controller_xess_8bit.vhd 

Table A.8 Files required for the VGA controller 

The user must interface to the VGA controller using the files shown in Table A. 9. Note 

that the interface is not dependent on which PCB is used, only the number of bits used to 

store a single pixel. 

4-bit (16 colours) 8-bit (256 colours) 

University Board vga_const.vhd 

vgajnterface.vhd 
N/A 

XESS Board vga_Gonst.vhd 

vgajnterface.vhd 

vga_const_8bit.vhd 

vga_palette_8bit.vhd 

Table A.9 Files required for the user to interface to the VGA controller 

A.1.1.5 Design structure and style 

The VGA controller system is designed as a completely independent component that is 

linked with any user design after MOODS optimisation. At present, the linking is 

performed manually (by the user) with an RTL VHDL wrapper file. To use the VGA 

system, the user must include interface signals in the design port list and call the interface 

procedures as defined within the interface package, passing the relevant ports into the 

procedures. All one-way communication is controlled by a number of semaphore-

acknowledge signal pairs, which are toggled when data is transferred. The master of 



D.J.D. Milton, 2002 Appendix A: Collateral projects 229 

communication drives the semaphore (indicating that data is available for transfer or that 

data is required from the slave). The slave to the communication reacts to the toggled 

master semaphore by toggling the acknowledge signal, either reading the data from the 

master or returning data to the master (or both). The semaphores are controlled by the 

interface procedures. 

Pod WO 

Top Level 

User I/O 

User Design 

User Interface 

VGA yO 

VGA 
Controller 

or 
Simulation Library 

Figure A.1 VHDL Wrapper file structure 

The wrapper file is required to link together any user designs with any pre-compiled 

library components such as the VGA controller system. The user must supply it. Each 

version of the VGA controller has a different interface and needs different buffering and 

tri-stating actions performed to some of its ports. 

The clock supplied to the VGA confroller system must be 25MHz. Any other component 

can be run at their designated speed, including the component that interfaces to the VGA 

controller. If two different clocks are used, then extra buffers will be required between the 

subsystems. If asynchronous clocks are supplied, then all signals will require double 

buffering in both directions. If divided clocks are generated from the 25MHz base clock, 

then single buffers are required for all outputs from the fast system into the inputs of the 

slow system. 

Pin constraints are used to define which pins of the FPGA to use for the I/O signals. They 

are contained in a UCF file. Two versions are available, one for each board. The 

constraints file maps onto the names given in the main entity port list, so all VGA specific 

ports keep the same name. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 3 0 

The VGA system on the XESS board conflicts with some of the Ethernet interface chip 

connections. Directly drive the Ethernet output enable line with 1' to disable the Ethernet 

chip. 

A. 1.2 Original 16-colour interface 

The low-level interface that is provided by the controller gives the ability to draw very fast 

horizontal lines in the current drawing colour. The only alternative to this is to draw the 

same horizontal line masked with a pattern derived from a ROM. This second alternative 

allows bitmapped text characters to be produced. 

This simple interface is not directly accessible to the user. Instead, the user performs 

drawing actions that utilise multiple communications with the underlying low-level 

interface to draw more complex objects. These high-level drawing algorithms are 

contained in the interface procedures provided. 

Most interfacing procedures are simple value setting procedures that check whether it is 

safe to set the value by the use of the drawing semaphore and acknowledge that are part of 

the interface required in the user's design. The procedures will block until the VGA 

controller allows them to continue. All interfacing uses the 'render_sem / render_ack' 

semaphore-acknowledge pair to handle the transfer of data, except any palette 

modification that uses a dedicated port using a similar pair of signals ^palette jnodify_sem 

/palette jnodify_ack\ This means that any palette modification can occur in parallel to 

any drawing procedures. 

All drawing procedures should be called from only one user process. Multiple process use 

requires the user to serialize the calls to the interface procedures using some form of user-

generated semaphores. Single process use of the interface is recommended for the various 

interface calls for simplicity and safety. 

The system is set up as a registered state machine and the set-up parameters are passed 

separately from the drawing procedures. For example, to draw a rectangle in XOR mode 

using colour 15, first call the vga setmode procedure, then set the drawing colour by 

calling vga_setforecolour and finally draw the rectangle by calling the vga_drawrect 



DJ.D. Milton, 2002 Appendix A; Collateral projects 2 3 1 

procedure. The set-up information is persistent, so to draw another rectangle in the same 

colour in the same mode only requires another call to vga_drawrect. 

Most interface procedures are inlined into the user code using the method of placing a call 

to the 'inline' procedure in the body of the procedure being inlined. This means that most 

calls to the VGA interface will be hidden in the final implementation. An exception to this 

is the arbitrary line drawing algorithm, due to its complexity. If it were inlined, the 

compilation time for multiple calls to the inlined line drawing procedure would be 

prohibitive and generate more hardware than necessary. Definitions of the interface 

procedures are provided in the following sections, along with descriptions of their actions. 

These procedures are defined in the interface package. 

A.1.2.1 Interface types 

A number of VHDL types are defined for interfacing with the VGA controller. These 

types are defined within the constants package and are shown below: 

subtype vga_colour_type is bit_vector(C0L0UR_BITS-1 downto 0); 

subtype vga_red_type is bit_vector(RED_BITS-1 downto 0); 

subtype vga_green_type is bit_vector(GREEN_BITS-1 downto 0); 

subtype vga_blue_type is bit_vector(BLUE_BITS-1 downto 0); 

subtype vga_rgb_type is bit_vector(RGB_BITS-1 downto 0); 

subtype vga_mode_type is bit_vector{M0DE_BITS-1 downto 0); 

subtype vga_page_type is bit_vector{PAGE_BITS-1 downto 0); 

subtype vga_xpos_type is bit_vector(XBITS-l downto 0); 

subtype vga_ypos_type is bit_vector(YBITS-l downto 0); 

subtype ascii_type is bit_vector{ASCII_BITS-1 downto 0); 

subtype vga_textsize_type is bit_vector(TEXTSIZE_BITS-1 downto 0); 

subtype vga_text_xpos_type is bit_vector{TEXTP0S_XBITS-1 downto 0); 

subtype vga_text_ypos_type is bit_vector(TEXTP0S_YBITS-1 downto 0); 

subtype vga_text_inc_type is bit_vector(TEXTP0S_INCBITS-1 downto 0); 

A. 1.2.2 System setup 

The user's design is the master of communication with the slave VGA design. The 

communication semaphores used within the interface procedures require initialisation at 

startup. An initialisation procedure is provided, which is used to set up both interface 

semaphores 'render_sem'' and 'palettejnodijy_sem'' (called once per semaphore signal): 

procedure vga_initialise{signal semaphore : out bit); 



D J.D. Milton, 2002 Appendix A; Collateral projects 2 3 2 

A.1.2.3 Drawing attributes 

The VGA controller system has registered settings for the currently rastered page, the page 

to render into, drawing mode, colour and background colour. The interface procedure 

declarations for modification of these settings are listed below; 

procedure vga_setdefaults ( 

— ports 

signal render_sein : in bit; 

signal render_ack : in bit; 

signal render_page ; out vga_page_type; 

signal raster_page : out vga_page_type; 

signal render_mode : out vga_mode_type; 

signal render_colour : out vga_colour_type; 

signal render_backcolour : out vga_colour_type 

) ; 

Description; Set pages to PAGED, mode to MODE DD BOTH and colours to COL O. 

procedure vga_setrasterpage ( 

-- ports 

signal render_sem ; in bit; 

signal render_ack : in bit; 

signal raster_page : out vga_page_type; 

— user input 

page : in vga_page_type 

) ; 

Description; Set the viewed page to the 'page' input. Page values can be PAGED, 

PAGEl, PAGE2 or PAGES 

procedure vga_setrenderpage ( 

-- ports 

signal render_sem : in bit; 

signal ren.der_ack ; in bit; 

signal render_page : out vga_page_type; 

-- user input 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 3 3 

page : in vga_page_type 

) ; 

Description: Set the page to draw to from the 'page' input. Page values can be PAGED, 

PAGEl, PAGE2 or PAGE3 

procedure vga_setinode ( 

— ports 

signal render_sem : in bit; 

signal render_ack : in bit; 

signal render_mode : out vga_mode__type; 

-- user input 

mode : in vga_mode_type 

) ; 

Description: Set the drawing mode (XOR/direct, foreground only/both foreground and 

background). Mode values can be MODE DD FORE, MODE DD BOTH, 

MODE XOR FORE or MODE XOR BOTH 

procedure vga_setforecolour { 

— ports 

signal render_sein : in bit; 

signal render_ack : in bit; 

signal render_colour : out vga_colour_type; 

-- user inputs 

colour : in vga_colour_type -- which colour to adjust to 

Description: Set the foreground colour (0 to 15). The colour is a 4-bit value and 16 

constants have been defined for each value, ranging from COL O to COL 15 

procedure vga_setbackcolour ( 

— ports 

signal render_sem : in bit; 

signal render_ack : in bit; 

signal render_backcolour : out vga_colour_type; 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 3 4 

-- user inputs 

colour : in vga_colour_type -- which colour to adjust to 

) ; 

Description: Set the background colour (0 to 15). This colour is only used within the 

character drawing procedure. The colour is a 4-bit value and 16 constants have been 

defined for each value, ranging fi-om COL 0 to COL 15. 

A. 1.2.4 Palette modification 

Dynamic palette modification capabilities are provided, which can enhance the static 

palette values used within the VGA controller. Two interface procedures are provided: 

procedure vga_setpalette_rgb ( 

— ports 

signal palette_modify_sem : inout bit; 

signal palette_modify_ack : in bit; 

signal palette_modify_addr : out vga_colour_type; 

signal palette_modify_val : out vga_rgb_type; 

-- user input 

colour : in vga_colour_type; -- which colour to adjust 

rgb : in vga_rgb_type — the new rgb value 

) ; 

Description: Set the palette colour (0 to 15) with RGB (0 to 4096). The 'colour' input says 

which colour index to adjust the palette of The 'rgb' input gives the 12-bit concatenated 

RED & GREEN & BLUE value. 

procedure vga_setpalette { 

— ports 

signal palette_modify_sem : inout bit; 

signal palette_modify_ack : in bit; 

signal palette_modify_addr : out vga_colour_type; 

signal palette_modify_val : out vga_rgb_type; 

— user input 

colour : in vga_colour_type; — which colour to adjust 

red : in vga_red_type; — the red component of the palette 

green : in vga__green_type; — the green component of the palette 



D.J.D. Milton, 2002 Appendix A; Collateral projects 235 

blue : in vga_blue_type -- the blue component of the palette 

) ; 

Description; Set the palette colour (0 to 15) with separate Red, Green and Blue values. The 

'colour' input says which colour index to adjust the palette of. The 'red\ 'green' and 

'blue' values give the palette shade in the 4-bit triple. 

A.1.2.5 Drawing horizontal lines 

The VGA controller has the horizontal line as the primitive from which all other drawing 

procedures generate their screen objects. The character drawing procedure uses a slightly 

different version of the same low-level horizontal line drawing routine in the controller, by 

allowing masking of each horizontal line via the text ROM. The low-level horizontal line 

algorithm is the most efficient and simplest method of drawing; hence the direct interface 

to it as a procedure call within the interface. The low level renderer does not care which 

way round the two X-values for the left and right position of the horizontal line are given. 

It will draw between and including the two X positions at the given Y position. An 

interface procedure is provided; 

procedure vga_drawhorzline ( 

— ports 

signal render sem : inout bit; 

signal render ack : in bit; 

signal render type : out bit; 

signal render xone : out vga_xpos _type; 

signal render xtwo : out vga_xpos_ _type; 

signal render _ypos : out vga ypos _type; 

-- user input 

xl : in vga_xpos_type; 

x2 : in vga_xpos_type; 

y : in vga_ypos_type 

) ; 

Description: Draw a horizontal line (fast) between inputs 'xF and 'x2' at y-position 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 3 6 

A.1.2.6 Drawing filled rectangles 

The rectangle-drawing algorithm is simply a loop between the two Y positions given. A 

test is made before the loop to determine which Y position is larger, and swapped if 

necessary. For each Y position, a horizontal line is drawn between the two given X 

positions. This functionality is provided within the interface procedure: 

procedure vga_drawrect ( 

-- ports 

signal render_ _sem : inout bit; 

signal render ack : in bit; 

signal render type : out bit; 

signal render xone ; out vga_xpos _type; 

signal render_ xtwo : out vga_xpos _type; 

signal render ypos ; out vga_ypos _type; 

-- user input 

xl : in vga_xpos_type; 

yl : in vga_ypos_type; 

x2 : in vga_xpos_type; 

y2 : in vga_ypos type 

Description: Draw a rectangle between (and including) two comer points given by the 

inputs ('x7', y r ) and ('x2', 'y2'). 

A.1.2.7 Drawing arbitrary lines 

Due to speed and size constraints, an integer incremental line drawing algorithm is used to 

draw a single-pixel thick line from two specified end points. Any two points can be given 

with no restrictions on the orientation of the line or relative positions of the end points. 

Bresenham first demonstrated the underlying algorithm [116], which is limited to lines 

fi-om 0 to 45 degrees above the x-axis. Modifications were required to allow the algorithm 

to work with arbitrary end points and orientation. These modifications include 

optimisations to use the low-level draw horizontal line algorithm efficiently. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 237 

Bresenham's algorithm works by keeping a cumulative integer error value by adding and 

subtracting one of two terms dependent on whether the present value of the cumulative 

value is larger than zero. The algorithm and example line is shown in Figure A.2. 

dra\v7i empty 
pixel 

axis 

X = xO 
y = yO 
dx = x1 - xO 
dy = y1 - yO 
d = 2dy - dx 
loop 

DRAW PIXEL(x,y) 
exit loop when x = x1 
X = x+1 
if d>0 then 

y = y+1 
d = d+2dy-2dx 

else 
d = d+2dy 

end if 

Ad 
end loop 

xO = 0, x1 =6, yO = 0, y1 = 4 
dy = yl-yO = 4, dx = x1-xO = 6 
d = 2 (initial) X = 0 y = 0 
d = 2+8-12 = -2 X = 1 y = 1 
d = -2+8 = 6 X = 2 y = 1 
d = 6+8-12 = 2 x=3 y = 2 
d = 2+8-12 = -2 X = 4 y = 3 
d = -2+8 = 6 X = 5 y = 3 
d = 6+8-12 = 2 X = 6 y = 4 

Figure A.2 Bresenhams line drawing algorithm 

The algorithm shows that the x-position is incremented on every iteration of the loop and 

the y-position is only incremented when the decision value d is larger than zero. The 

algorithm also shows that when the decision variable d is smaller than or equal to zero, the 

next value of is an increment of 2*dy, which is always positive or zero with slope 

restrictions. The alternative increment of 2*dy - 2*dx is always negative or zero as dy is 

always smaller than or equal to dx for slopes limited from 0 to 45 degrees. 

To allow lines of any orientation to be drawn requires two modifications. The first 

modification takes the two end-points and calculates the positive versions ofdy and dx, 

and makes a note of which (if any) were negative. The starting point is set as the point 

with the smaller x-value and the ending point is set as the point with the larger x-value. 

The algorithm then increments the x-value as normal until it reaches the ending x-value. 

The decision-making is exactly the same. When an increment of the y-value is required, 

the polarity of both dx and dy are tested to see whether they are the same. If both are 



D.J.D. Milton, 2002 Appendix A: Collateral projects 238 

positive or both are negative, then the y-value is incremented as usual, but if only one is 

negative, then the y-value is decremented. This allows the shaded range shown in Figure 

A. 3 to be rendered correctly. 

\ . j 
^ \ 1 3 ^ 

line-drawing 

I / 
Y a ™ ' K f / / 

^ W 

- 4 5 \ 

Figure A.3 Rendering angles for partial line drawing implementations 

This is half of the total line-drawing angle range that is possible. The ranges from 45 to 

135 degrees and -45 to -135 degrees also need supporting. This is done with the second 

modification. Once the positive values of dx and dy have been calculated, a simple test of 

which is larger will determine whether the range is from the shaded range {dx > dy) or the 

non-shaded range {dx < dy). lfdx> dy then the present algorithm will work. However, the 

alternative range requires the second modification. The modification is to have a second 

copy of the line drawing algorithm that works in the alternative range. This is simply a 

case of rotating the algorithm by 90 degrees by exchanging x-values for y-values, so that 

the y-value is always incremented and the x-value is incremented (or decremented) 

dependent on the decision variable. 

The final modification only applies to the original algorithm that increments the x-value. 

This is for time-efficiency reasons and involves replacing the draw-pixel call with a draw-

horizontal-line call that is only called when the y-value changes. 

All of the functionality described above is provided in the interface procedure. The 

procedure is not inlined into the user's code due to the size of the replicated structures; 



DJ.D. Milton, 2002 Appendix A: Collateral projects 2 3 9 

procedure vga_drawline ( 

— ports 

signal render_sem : inout bit; 

signal render_ack : in bit; 

signal render_type : out bit; 

signal render_xone : out vga_xpos_type; 

signal render_xtwo : out vga_xpos_type; 

signal render ypos : out vga ypos type; 

user input 

xl : in vga xpos type; 

yi : in vga_ypos_ type; 

x2 : in vga_xpos_ _type; 

y2 : in vga_ypos_ type 

) ; 

Description: Draw a line between (and including) two arbitrary points given by the inputs 

A.1.2.8 Drawing characters 

As the text character x-position is forced to be in alignment with the 8-pixel word 

boundaries, due to the limited pixel masking available for the text mask, the y-position is 

also forced into 8-pixel alignment from the top of the screen. This means that the character 

will snap to the 8-pixel aligned top-left position. In fact, a different co-ordinate system is 

used that holds positions 80 x 60 text positions instead of 640 x 480 pixel positions. Only 

one position is supplied to the character drawing algorithm. 

The character x-position and x-size are given to the low-level text-line algorithm (within 

the VGA controller) first, as these do not change for the rest of the character algorithm. 

Then the code enters a loop that counts up to eight, for each line of the 8 by 8 character. 

The first action is to output the address of the present line of the particular character being 

drawn to the text ROM. Then the code enters another loop that is nested within the first, 

which loops depending on the given y-size. The y-size can be 1 of 4 values that allow a 

character to be drawn with a height of 8, 16, 24 or 32 pixels. For each iteration of the inner 

loop, one horizontal text-line is drawn at the present y-position and the y-position iterator 

is incremented. The character is drawn once the final rendered line of the eighth character 

line is reached. 



D.J.D. Milton, 2002 Appendix A; Collateral projects 240 

Each character hne uses the modified horizontal line drawing algorithm within the VGA 

controller. The value given from the text ROM is used to mask the horizontal line in one 

of four text X-sizes, with widths possible in the same range as heights (8, 16, 24 or 32 

pixels). 

The text mask is generated from a bitmap shown in Figure A.4. A small program has been 

produced that will convert such a bitmap used in the Modelsim simulation into the 

required format for an internal VHDL lookup table, or as an EPROM bitmap for use in an 

external 2K ROM. 

16 characters per row 

(/) 

1 
ro 
ro •g 

CD 

O 

2 
CD 

Char 0 to 15 
Char 16 to 31 
Char 32 to 47 
Char 48 to 63 
Char 64 to 79 
Char 80 to 95 

Char 96 to 111 
Char 112 to 127; 

Char 128 to 143 
Char 144 to 159 
Char 160 to 175 
Char 176 to 191 
Char 192 to 207 
Char 208 to 223 
Char 224 to 239 
Char 240 to 255, 

1 2 3 4 S 6 7 8 9 : ; < = > ? 
ftBCDEFG H I J A L M N O 
G R S T U U W X V 2 C \ 1 1 _ 
a b c d e f g h i j k I m n o 

r s t u u w x u z - C I 

i 

Figure A.4 ASCII character map image in a 2K ROM 

The declaration of the interface procedure to draw characters is shown below: 

procedure vga_drawchar ( 

-- ports 

signal render_ _sem inout bit; 

signal render_ _ack in bit; 

signal render_ type : out bit; 

signal render_ xone : out vga_xpos_type; 

signal render_ _xtwo : out vga_xpos_type; 

signal render_ _ypos : out vga_ypos_type; 

signal render_ _text_ size : out vga_textsize_type; 

signal render_ _textrom_addr ; out vga_textrom_address type; 



DJ.D. Milton, 2002 Appendix A: Collateral projects 2 4 1 

-- user input 

X : in vga_text_xpos_type; 

y : in vga_text__ypos_type; 

xsize : in vga_textsize_type; — x size 

ysize : in vga_textsize_type; -- y size 

ascii : in ascii_type — ASCII code for the character 

) ; 

Description: Draw an ASCII text character at an 8-pixel aligned position given by the 

inputs 'x' and '_y'. The character is drawn with X and Y sizes given by inputs 'xsize' and 

'ysize'. Four constants are provided to describe the size as TEXTSIZE8, TEXTSIZE16, 

TEXTSIZE24 or TEXTSIZE32. The four enumerated values can be stored in two bits. 

The 'ascii' input requires eight bits in order to reference the 256 available characters, with 

various constants defined using the ASCII standard character map. The text ROM holds 

the character masks used within this procedure. 

A. 1.2.9 Vertical blanking 

The VGA controller generates a signal that defines when the raster-scan is within the 

vertical blanking period. It forms a 60Hz signal with 45/480 mark/space ratio (45 blanked 

lines to 480 drawn lines). This signal is passed into the two vertical blanking procedures to 

determine when to synchronise the drawing of items to the screen: 

procedure vga_wait_for_vertical_blanking ( 

signal vert_blank : in bit ); 

Description: Wait for the vertical blanking period to begin. 

function vga_vertical_blanking ( 

signal vert_blank : in bit) return boolean; 

Description: Return whether the raster-scan is currently in the vertical blanking period 

(true) or rastering the memory contents (false). 

A.1.2.10 Using the interface 

Any user design can drive a VGA screen. The requirements for doing this are as follows: 

• include references to the constants and interface packages. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 4 2 

• Add a list of port signals to the user design as given in comments at the top of the 

interface package. 

• Call the initiahse procedure (as defined in the interface package) passing both the 

rendering semaphore ^render_sem' and the palette modification semaphore 

^palette_modify_sem' as parameters. 

® Call any other drawing procedure as required, passing references to the relevant 

ports defined at the top of the user code and any other parameters that the drawing 

procedures require. 

This is illustrated in the following example: 

1 use work.icode_ops.all; — icode operations 
2 use work.vga_const.all; — VGA constants 
3 use work.vga_interface.all; — VGA interface 
4 entity vga_test is 
5 port ( 
6 — VGA controller interface ports - must be included by user 
7 render_sein : inout bit; 
8 render_ack : in bit; 
9 render_type : out bit; 
10 render_xone : out vga_xpos_type; 
11 render_xtwo : out vga_xpos_type; 
12 render_ypos : out vga_ypos_type; 
13 render_page ; out vga_page_type; 
14 raster_page : out vga_page_type; 
15 render_mode : out vga_mode_type; 
16 render_colour ; out vga_colour_type; 
17 render_backcolour : out vga_colour_type; 
18 render_text_size : out vga_textsize_type; 
19 render_textrom_addr : out vga_textrom_address_type; 
20 palette_modify_sem : inout bit; 
21 palette_inodify_ack : in bit; 
22 palette_modify_addr : out vga_colour_type; 
23 palette_inodify_val : out vga_rgb_type; 
24 vert_blank : in bit 
25 ) ; 
26 end; 
27 
28 architecture behave of vga_test is 
29 begin 
30 control_process : process 
31 begin 
32 — initialize the interface to the vga system 
33 vga_initialize(render_sem) ; 
34 vga_initialize(palette_modify_sem) ; 
35 
36 vga_setrasterpage(render_sem, render_ack, raster_page, PAGED); 
37 vga_setrenderpage(render_sem, render_ack, render_page, PAGED); 
38 vga_setmode{render_sem, render_ack, render_mode, MODE_DD_BOTH); 
39 vga_setforecolour(render_sem, render_ack, render_colour, C0L_15); 
40 vga_setbackcolour(render_sem, render_ack, render_backcolour, COL_0); 
41 
42 — draw the background using the set colour value 
43 vga_drawrect(render_sem, render_ack, render_type, render_xone, render_xtwo, 
44 render_ypos, convert_int2bv(0,10), convert_int2bv(0,9), 
45 convert_int2bv(63 9, 10), convert_int2bv(479, 9)) ; 
46 
47 -- draw all characters 
48 for ch in 0 to 255 loop 



DJ.D. Milton, 2002 Appendix A; Collateral projects 2 4 3 

49 vga_drawchar(render_sem, render_ack, render_type, render_xone, 
50 render_xtwo, render_ypos, render_text_size, 
51 render_textroin_addr, convert_int2bv(10,7), 
52 convert_int2bv(6,6), TEXTSIZE8, TEXTSIZE8, 
53 convert_int2bv(ch, ASCII_BITS)); 
54 end loop; 
55 
56 — runtime palette modification 
57 for pal in 0 to 15 loop 
58 vga_setpalette (palette_modify_sem, palette__modify_ack;, 
59 palette_modify_addr, palette_modify_val, 
60 pal, pal, pal, pal); 
61 end loop; 
62 
63 -- wait forever 
64 loop 
65 wait for 100 ns; 
66 end loop; 
67 end process control_process; 
68 end behave; 

The example shows how to set up the drawing area by drawing a rectangle covering the 

entire visible screen area (line 43). This is required as the underlying memory that contains 

the raster image powers up with random values contained in each pixel. The example also 

shows how to draw all the characters, with each character drawn in the same position (line 

49). As the drawing mode is set to directly draw both the foreground and background 

colours (line 38), each character will overwrite any previous character image completely. 

Finally, the colour palette is modified into a grey-scale (line 58) by looping through all 

sixteen colours, changing the values for red, green and blue into the same value as the 

colour index. 

A.1.2.11 General tips for use 

The initialise procedures must be called for each semaphore port. The set defaults 

procedure is not required, but can prove useful for setting global start-up parameters. 

There are four viewable pages within the frame buffer, the raster page is the one that is 

being viewed (raster-scanned onto the VGA screen) and the render page is the page to 

which all drawing procedures write. The pages can be the same if only one page is 

required. Drawing actions can be hidden if drawn to a non-viewed page, and then viewed 

by swapping the raster page onto the previously hidden page. 

There are sixteen viewable colours. The foreground colour is the one used in every 

drawing procedure. The background colour is only used within the text drawing 

procedure, and forms the text character mask zero bits. The zero bits of the text character 



D.J.D. Milton, 2002 Appendix A; Collateral projects 2 4 4 

mask are drawn in the background colour only when the mode is set to draw foreground 

and background colours. 

There are four modes made from a combination of two switches, Direct-draw the 

foreground and background colours (MODE_DD_BOTH), Direct-draw the foreground 

colour only (MODE_DD_FORE), XOR the foreground and background colours with the 

presently held colours within the frame buffer (MODE_XOR_BOTH) and XOR the 

foreground colour only with the frame buffer (MODE XOR FORE). XOR mode is useful 

for drawing mouse cursors. 

The 16-coiour palette holds 12-bit RGB representations (4-bits red, 4-bits green, 4-bits 

blue), so there are a possible 4096 shades of colour that can be drawn, with only 16 

viewable at any one time. The default palette is set up within the VGA controller by 

including packages with differing constant values. The set-palette procedures can be used 

at run-time to dynamically update the palette values. 

The vertical blanking position is a 60Hz waveform that is true when the raster-scan is not 

one of the viewed 480 lines of the actual 525 raster-scan lines. The blanking period is used 

for the monitor to make the raster-scan fly back to the top of the screen ready for the next 

scan. By waiting for the blanking period to begin, it is possible to perform all the drawing 

procedures after this event (within the blanking period) so that the drawing is hidden. 

Conversely, the time could be used to swap raster pages, which would mean that tearing (a 

feature of changing the raster page midway through rastering) does not occur. 

The four drawing procedures provided perform all the write access to the frame buffer. All 

except the character drawing take X-positions using the VHDL type 'vga_xpos_type\ and 

Y-positions using the VHDL type 'vga^pos type' defined in the constants package. 

These are defined as constrained bit_vectors of lengths 10 and 9 respectively. They form 

the co-ordinate system of 640 by 480 resolution (can actually hold 1024 by 512). The 

origin is in the top left comer of the screen, with X increasing to the right, and Y 

increasing downwards. 

The horizontal line drawing procedure is the most efficient and should be used if any 

horizontal lines are to be drawn. The rectangle-drawing algorithm should be used for any 

vertical lines or upriglit boxes, giving any two comers to draw the rectangle between. The 



D.J.D. Milton, 2002 Appendix A; Collateral projects 245 

line drawing algorithm should only be used to draw lines of unknown orientation. 

Characters can be drawn on 8-pixel boundaries, and consequently their co-ordinates are 

stored as 7 and 6 bit wide bit_vectors using the VHDL types 'vga_text_xpos_type' and 

'vga_text_ypos_type\ The characters can be drawn with different sizes in both X and Y 

co-ordinates. Each character is an 8 by 8 pixel mask that can be stretched to be drawn in 8 

(TEXTSIZE8), 16 (TEXTSIZE16), 24 (TEXTSIZE24) or 32 (TEXTSIZE32) pixels. 

The size information is passed as 'vga_textsize_type'. The character drawn is given as an 

ASCn number (8 bits) defined as 'ascii_type\ 

A.1.3 Original 16-colour controller 

This was the first controller produced and has been revised since that time. This section 

explains the overall layout of the source code, explaining what each concurrent process 

does. It will not go into great detail of the source code. The controller is written to control 

the underlying DRAM memory [95]. The data path width is 32-bits, which allows 8 pixels 

to be accessed within one memory read/write. 

User Interface Memory Interfac^ DRAM 
memory 
controller 

Low level 
rendering 

User Palette 
Interface 

Sync 
palette and ^ 
rastering 

Raster 
FIFO buffer 

Refresh 
Timer 

•AC 
interface 

Figure A.5 DRAM-based VGA controller process communication 

The user interface links to the ports provided by the user and driven by the interface 

package procedures. It controls the low level rendering system. This is the process that 

draws horizontal lines and text masked horizontal lines. The process itself is written in 

such a way to re-use the fundamental algorithm, but with sUght changes for the two 

different drawing styles. Read-modify-write access is given, as the XOR mode, text 

drawing and line ends require that the present memory value is masked or used in some 

way in the new value to place into the same memory location. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 4 6 

The rendering process interfaces directly to the memory controller, which provides a port 

into the external single-port DRAM. The port provided is a read-modify-write port, with 

page mode access provided. The memory controller also provides another port for the 

raster FIFO buffer. This port has fast page mode read access. The process itself generates 

all the timing signals necessary to drive the external DRAM. Alternatives to the single-

port DRAM, optimised for video applications exist [115], but are not used here. 

As DRAM requires constant refreshing, a refresh timer is provided within a separate 

process that tells the memory controller to perform a refresh action. The refresh actions are 

buffered so a constant refreshing rate is guaranteed. Refreshing has the highest priority of 

any action on the memory but will not stop any other type of access once started. 

The raster FIFO buffer is provided to increase the maximum data throughput bandwidth, 

as the memory controller has an associated latency. It also allows the use of fast page 

mode accesses within the memory controller. It stores 16 data words, each of which holds 

8 pixels, so the FIFO holds 128 pixels at a time. The buffer is told to fill up with 

information when it goes below a certain threshold and is told to stop filling, when it 

becomes full. In this way, raster access takes only 1/3 of the available memory access time 

in large memory access bursts. 

The sync and raster process is written in such a way that it can be optimised down to one 

control cycle. This is achieved with no read-after-write accesses of any local variables 

(those that are not optimised out), instead generating a pipelined data flow stream with the 

use of write-after-read accesses. It generates the VSYNC, HSYNC, blanking, vertical 

blanking and RGB output signals to feed the monitor and DAC. The clock frequency 

defines the dot-clock (25 MHz = 1 pixel output every 40 ns). This means that eight pixels 

(4 bits each) in one internal data-word (32 bits) are read every eight clock-cycles. 

A. 1.4 XESS 16-colour controller 

The second controller took the first confroller as a template and was re-designed to use a 

RAMDAC for the output stage (no internal palette lookup), and give an SRAM interface 

to the same amount of data space, but with a reduced data path width of 16-bits. The 

controller layout is shown in Figure A.6. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 247 

The low level rendering system and raster FIFO buffer are exactly the same as the DRAM 

version. The refresh timer process has been removed due to SRAM not requiring 

refreshes. An extra palette modification and RAMDAC setup process has been added to 

drive the data bus of the RAMDAC used on the XESS board. 

SRAM 
memory 
controller 

Memory Interface Low level 
rendering 

User Interface 

Palette 
control 

Sync and 
rastering W FIFO buffer 

RAMDAC 
Interface 

User 
Palette 
Interface 

Figure A.6 SRAM-based VGA controller process communication 

The sync and rastering process has changed in terms of not requiring internal palette 

lookup due to the external palette as part of the RAMDAC, but remains largely the same, 

outputting the palette index instead of the resolved RGB colour value. 

The major change is to the memory controller, due to the use of SRAM instead of DRAM, 

but also due to the reduced data path width and increased address count. Internally, 

everything in the VGA controller still uses a 32-bit data path width, so the memory 

controller now has to perform 2 reads / writes for every data word. This is the source of 

inefficiency in the memory access method. 

A.1.5 XESS 256-colour interface 

This section describes how to use the 256-colour VGA controller, or more importantly, 

how to interface to the controller. This version has no rendering capabilities. Instead, two 

frame buffer direct memory interfaces are provided. There are two interface ports for the 

initial use of the 256-colour version. 

The version of the controller that this interface uses can only use the SRAM frame buffer 

due to speed considerations. 



D.J.D. Milton, 2002 Appendix A; Collateral projects 2 4 8 

There is also an extra output from the controller in this design, indicating when the palette 

modification is active. This is due to the shared RAMDAC data bus with the Ethernet 10 

signals with the FPGA. When palette modification is required, this extra signal goes high, 

which forces the Ethernet drivers to tri-state and enables the data lines to the RAMDAC. 

All rendering procedures have been removed for the 8-bit version, leaving only selected 

procedures that have any meaning, such as 'vga_setrasterpage' or 'vga_setpalette'. 

Only the raster page is defined. As no rendering occurs, there is no render page. There are 

now only two available pages, due to the increased memory cost of 8-bits per pixel instead 

of 4-bits per pixel. 

Palette modifications occur in the usual way, by checking the palette modification 

semaphore and acknowledge signals, and only performing a modification when allowed. 

The procedures are blocking. 

Vertical blanking exists for this version and is used in exactly the same way. 

Two new procedures are added, which define the only method of reading and writing to 

the SRAM frame buffer. They are 'vga_mem_read' and vga mem write'. The port 

passed into these two procedures is one of the two defined for the VGA controller. Each 

port has its own semaphore and acknowledge. These two procedures form a direct 

memory access port into the framebuffer memory. 

A.1.5.1 Using the interface 

The requirements for interfacing to the 256-colour VGA screen are as follows; 

e Include references to the constants and interface packages. 

• Add a list of port signals to the user design as given in comments at the top of the 

interface package. Only include as many memory ports as are required. Port 1 has 

access priority over port 2. 

• Call the initialise procedure (as defined in the interface package) passing the 

memory access semaphore 'mpl_sem' and/or 'mp2jsem' as parameters. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 249 

® Call any other memory access procedure as required, passing references to the 

relevant ports defined at the top of the user code and any other parameters that the 

procedures require. 

The system is set up as a frame buffer that gets rastered to the VGA screen. Call 

vga_setrasterpage to setup which page is rastered. The user interface is now a direct 

memory interface, so knowledge of the addressing scheme is required for correct access. 

The memory data path is 16 bits wide, which contains 2 pixels, horizontally next to each 

other. The left-most pixel is contained in bits (15 downto 8) and the right-most pixel is 

contained in bits (7 downto 0) of the data path used in the direct memory interface. 

The addressing scheme of the 2-pixel word is given in Figure A. 7. 

9 bits - Y Position (0 to 479) —> 1 bit 
Page 

<— 9 bits - X Position (0 to 319) 

Value 0 = top of screen 
Value 479 = bottom of screen 

1 bit 
Page 4 • 

Addresses pixel pairs, so actually 
(0 to 639) without the LSB 

b%18 
T 

bit 10 
T 
bK9 bM8 bitO 

Figure A.7 Pixel addressing scheme for the 256-colour controller 

A.1.5.2 interface types 

A number of VHDL types are defined for interfacing with the 256-colour VGA controller. 

These types are defined within the constants package and are shown below; 

subtype vga_colour_type is bit_vector(C0L0UR_BITS-1 downto 0); 

subtype vga_red_type is bit_vector(RED_BITS-1 downto 0); 

subtype vga_green_type is bit_vector(GREEN_BITS-1 downto 0); 

subtype vga_blue_type is bit_vector(BLUE_BITS-1 downto 0); 

subtype vga_rgb_type is bit_vector{RGB_BITS-1 downto 0); 

subtype vga_page_type is bit; 

subtype vga_xpos_type is bit_vector(XBITS-1 downto 0); 

subtype vga_ypos_type is bit_vector(YBITS-1 downto 0); 

subtype vga_framebuffer_address_type is bit_vector(FRAMEBUFF_ADBITS-1 downto 0) ; 

subtype vga_framebuffer_data_type is bit_vector(FRAMEBUFF_DPBITS-1 downto 0); 

A.1.5.3 Interface procedures 

This section describes each interface procedure, the port list and use. The procedures are 

defined in the interface package. 



DJ.D. Milton, 2002 Appendix A: Collateral projects 2 5 0 

procedure vga_initialise ( signal semaphore : out bit ); 

Description; Called once at startup within the process that is driving the VGA system to 

setup the interface semaphores 'mpl_sem' and 'mp2_sem\ Call once per semaphore. 

procedure vga_setrasterpage ( 

— ports 

signal render_sein : in bit; 

signal rencier_ack : in bit; 

signal raster_page : out vga_page_type; 

-- user input 

page : in vga_page_type 

) ; 

Description; Set the viewed page to the 'page' input. Page values can be PAGEO or 

PAGEl 

procedure vga__setpalette_rgb ( 

— ports 

signal palette_modify_sein : inout bit; 

signal palette_modify_ack : in bit; 

signal palette_modify_addr : out vga_colour_type; 

signal palette_modify_val : out vga_rgb_type; 

— user input 

colour : in vga_colour_type; -- which colour to adjust 

rgb : in vga_rgb_type — the new rgb value 

) ; 

Description; Set the palette colour (0 to 255) with RGB (0 to 16777215). The 'colour' 

input says which colour index to adjust the palette of. The 'rgb' input gives the 24-bit 

concatenated RED & GREEN & BLUE value. 

procedure vga_setpalette ( 

-- ports 

signal palette_modify_sem : inout bit; 

signal palette_modify ack : in bit; 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 5 1 

signal palette_modify_addr : out vga_colour_type; 

signal palette_modify_val : out vga_rgb_type; 

-- user input 

colour ; in vga_colour_type; -- which colour to adjust 

red : in vga_red_type; — the red component of the palette 

green : in vga_green_type; -- the green component of the palette 

blue : in vga_blue_type — the blue component of the palette 

) ; 

Description: Set the palette colour (0 to 255) with separate Red, Green and Blue values. 

The 'colour' input says which colour index to adjust the palette of. The 'red\ 'green' and 

'blue' values give the palette shade in the 8-bit triple. 

procedure vga_wait_for_vertical_blanking ( 

signal vert_blank ; in bit ); 

Description: Wait for the vertical blanking period to begin. 

function vga_vertical_blanking ( 

signal vert_blank : in bit ) return boolean; 

Description: Return whether the raster-scan is currently in the vertical blanking period 

(true) or rastering the memory contents (false). 

procedure vga_mem_read ( 

-- ports 

signal mp_sem : incut bit; 

signal mp_ack : in bit; 

signal mp_rd : out bit; 

signal mp_addr : out vga_framebuffer_address_type; 

signal mp_data_out : in vga_framebuffer_data_type; 

— user input 

address : in vga_framebuffer_address_type; 

data : out v g a f r a m e b u f f e r data type 



DJ.D. Milton, 2002 Appendix A: Collateral projects 2 5 2 

Description: The memory read access procedure. Use this with either of the ports into the 

frame buffer. The 'address' input is the 19-bit address and the 'data' output is the 16-bit 

result from the read (this contains two 8-bit pixels). 

procedure vga_inein_write ( 

-- ports 

signal mp_sem : inout bit; 

signal mp_ack : in bit; 

signal mp_rd : out bit; 

signal mp_addr : out vga_framebuffer__address_type; 

signal mp_data : out vga_framebuffer_data_type; 

— user input 

address : in vga_framebuffer_address__type; 

data : in vga_framebuffer_data_type 

) ; 

Description: The memory write access procedure. Use this with either of the ports into the 

frame buffer. The 'address' input is the 19-bit address and the 'data' input is the 16-bit 

value to be written into the frame buffer (this contains two 8-bit pixels). 

A.1.6 XESS 256-colour controller 

The VGA confroller with 8-bits per pixel is again derived from the original controller. The 

final design is able to raster to the screen using only half of the memory access time for 

the rastering process. 

This level of data bandwidth was achieved with a different method for buffering the raster 

data-stream. 

Figure A. 8 shows the system layout. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 253 

Memory Port 1 User Interface SRAIVI 
memory 

\nterface controller 

Palette 
control 

Sync and 
rastering M 

RAMDAC 
Interface 

Memory Interface i— ^ 

Palette 
Interface 

Raster 
Front/Back 

buffer 

Figure A.8 SRAM-based 8-bit per pixel VGA controller process communication 

The raster buffer is no longer interfaced to via a process. It is now written to by the SRAM 

memory controller directly and read fi-om the rastering process directly. It is set-up not as 

a dual-port RAM, but as two RAM-arrays - a front/back buffer arrangement. While the 

system is rastering from the front buffer, the SRAM controller is filling the back buffer. 

This means that no addressing conflicts exist between the two buffers. When the rasterer 

reads the last address of the front buffer, the two buffers are swapped over and rastering 

now continues from what used to be the back buffer. At this point, the SRAM controller is 

triggered to fill up what used to be the front buffer with the next set of raster data. 

The SRAM controller is able to read in one word per clock-cycle, which means that it can 

read two pixels per clock-cycle. The rasterer outputs one pixel per clock-cycle, so 

consequently this allows half of the memory access time to be used for the external user 

ports, which perform single accesses on the memory (two pixels at a time). Two user ports 

are provided at the request of the initial users of this particular controller. 

This version of the palette no longer contains constant values for each colour, due to the 

shear number of constants required (256). Instead, a procedure is called to setup the 

default palette from within the RAMDAC setup process within the controller. All other 

RAMDAC access procedures are now stored within the palette package. The default 

palette is grey-scale, as this produces the simplest setup algorithm that gives a unique 

colour for each palette index value. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 254 

A.2 Keyboard controller library 

The purpose of the keyboard controller is to form an interface with a standard PC 

keyboard from any design using MOODS. This forms a powerful direct user input method 

for many designs. 

The library forms a concurrent component that is inherently timing critical due to the 

serial nature of the transmitted data from the keyboard. However, this criticality is 

removed if the design is written with the assumption that the keyboard controller is run at 

a greater speed than the serial data that forms its input. This means that behavioural 

synthesis becomes more suited to the problem. This is found to be the case in all 

demonstrators so far, as the serial data clock is in the order of kHz, and most designs use 

at least IMHz as the system clock. 

A.2.1 VHDL files 

The interfacing method is the same as used in the VGA confroller system, with a 

concurrent component accessed by interface procedures that drive an external port 

attached to the user's design. The three required VHDL files listed below. 

Filename Description 

Keyboard_const vhd Constants package 

Keyboard_controller. vhd Concurrent controller component 

Keyboardjnterface.vhd Interface package to the controller 

Table A.10 Files required for the keyboard controller 

The constants package is referenced within the controller component for the scan-code 

data type definition and the serial data width constant. The constants package also requires 

referencing within the user's design for the same data types and a number of constant 

scancode conversions that make the source VHDL easier to read. The user's design also 

requires a link to the interface package, which contains a number of interface procedures 

that can be called to determine whether any key has been pressed. 

The controller file contains an entity/architecture pair that completely defines the actions 

of the controller. The port list of the controller takes the serial data lines as input and 



DJ.D. Milton, 2002 Appendix A: Collateral projects 255 

drives the interface ports that the interface procedures Unk into. Note that a standard 

keyboard uses a common-collector drive, which enables bi-directional serial data flow 

used for keyboard setup, but the controller only implements the receiving of data from the 

keyboard. This means that the clock and data lines are taken as inputs only. 

As the keyboard inputs are completely asynchronous to any design that uses it, with no 

access to the internal clock used by the keyboard itself, the serial data and clock require 

extra double buffering to stop the possibility of metastability occurring on the inputs from 

feeding into the controller. 

The same theory is used between the user's design and controller design if different 

asynchronous clocks are utilised within each subsystem. 

A.2.2 Controller 

The controller component performs two actions upon the serial data to fully provide 

information about the keypresses occurring to the keyboard. 

The first action is to translate the incoming serial data into a parallel representation, and 

the second is to perform partial translation upon this data to gain information about the 

keypresses such as whether the key pressed is an extended character and whether the key 

has been pressed or released. The basic control flow can be seen in Figure A.9. 

f 
Initialise interface 

V V 

r 
Serial to parallel conversion 

of the serial Input data 
V 

r 
r 

Translation of the data word 
and drive the Interface 

V y 

Figure A.9 Keyboard controller design flow 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 5 6 

A.2.2.1 Serial to parallel 

The two inputs generated by the keyboard are single signals. The first is a clock signal that 

is used to synchronise the other signal, the serial data line. The keyboard itself also 

requires a power supply. 

The serial data is assigned on the rising edge of the clock, which means that the data can 

be read on the falling edge of the clock. An initial start bit is added to the serial data 

stream, which then has a single byte transmitted from the least significant bit to the most 

significant bit of the byte. A final stop bit finishes the stream for a single byte. The stream 

can be seen in Figure A. 10. 

LSB y bit1 bit2 X bit3 t bit4 I bits X bit6 X MSB 

Figure A.10 Keyboard serial data stream 

The method used to read this data into internal parallel storage is to shift the data into the 

most significant bit of an 8-bit shift register. After the initial start bit, the data is shifted for 

8 cycles and then the final stop bit is acknowledged without shifting in the stop data. A 

counter is used to count the fixed number of input clock cycles. 

A.2.2.2 Translation of meaning 

Once the data is stored in an internal byte, the meaning of the data is partially translated. 

The keyboard sends a single byte for a key-press or auto-repeated key-press. This single 

byte is the scan-code for the particular key being pressed. If a valid scan-code is received, 

then the controller drives the interface semaphores to say that a valid key-press has 

occurred. 

If the data byte is a special character hex 'FO', this determines that the next byte to be sent 

will be a scan-code value. The meaning of this is that the scan-code sent in the next byte 

will indicate that the key has been released, not pressed. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 257 

Another possible special character is hex 'E0\ which determines that the following scan-

code value will form an extended character. The use of these characters is for double-

purpose keys such as the two sets of arrow keys, so that the same scan-codes can be used 

for each key, with finer-grained distinction being available through whether the scan-code 

given is jfrom an extended key. If an extended key is released, then both 'EO' and 'FO' will 

be sent before the scan-code value itself 

The final special character is hex ^EV, which means that the break key has been pressed. 

It is followed directly with seven other bytes that effectively presses and releases a single 

extended key. This situation is coped with by counting the bytes after the initial special 

character. 

A scan-code is only released to the interface once all the precursor bytes have been read 

and translated into single bits that are transmitted through the interface so that the interface 

procedures can make use of them. 

The returned translation of the keyboard data byte stream is illustrated in Table A. 11. The 

'SO item within the table represents a valid scan-code that is not any of the special 

characters: 'F0\ 'EO' or 'EF. The 'xx' item is a don't-care byte. Each stream becomes a 

single communication with the user's design, returning the scan-code and whether 

extended and/or released. 

Input stream Scancode Extended Released 

SC SC False False 

FO-SC SC False True 

EO-SC SC True False 

EO-FO-SC SC True True 

E1 -xx-xx-xx-xx-xx-xx-xx E1 False False 

Table A. 11 Keyboard data stream translation 

A.2.3 Interface 

The interface is defined in terms of interface procedures that the user passes the port 

parameters that link directly into the keyboard controller. As well as the relevant port 

parameters, the other parameters of the interface procedures will take other controlling 

parameters and return the scan-code with any other extra information. 



DJ.D. Milton, 2002 Appendix A: Collateral projects 2 5 8 

The interface procedures act upon the interface semaphores and transmitted data to control 

the flow of information between designs. The acknowledge to the communication 

semaphore requires setting up at the beginning of the user's design using the dedicated 

setup procedure, passing the semaphore signal as a signal to modify. Note that the 

keyboard controller is the master of communication and the user's design is a slave. 

The rest of the interface procedures will return the scan-code and whether the key is 

extended. Four versions of the procedure call exist that allow the user to call blocking or 

non-blocking versions and to either check or specify whether the key has been pressed or 

released. 

A.2.3.1 Interface types 

A single VHDL subtype is created for use when interfacing to the keyboard controller. It 

defines the storage required for the scancode and is defined within the constants package. 

subtype scancode_type is bit_vector(KEY_SCAN_BITS-1 downto 0); 

A.2.3.2 Interface procedures 

This section describes each interface procedure, the port list and use. The procedures are 

defined in the interface package. 

procedure keyboard_setup ( 

signal kint_ack : out bit ); 

Description; Called once at startup within the process that is accepting keyboard input. 

The procedure sets up the interface acknowledge signal ''kint_ack\ 

procedure keyboard_getkey_wait 

— interface 

signal kint_sem : in bit; 

signal kint ack ; inout bit; 

signal kint_released 

signal kint_extended 

signal kint scancode 

in bit; 

in bit; 

in scancode type; 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 5 9 

-- user data 

released : out bit; 

extended : out bit; 

scancode : out scancode_type 

) ; 

Description: The procedure will return only when the keyboard data stream is folly 

decoded. Information about the key pressed is passed by the outputs 'released', 'extended' 

and 'scancode'. 

procedure keyboard_getkey_nowait { 

-- interface 

signal kint_sem ; in bit; 

signal kint_ack : inout bit; 

signal kint_released ; in bit; 

signal kint_extended : in bit; 

signal kint_scancode : in scancode_type; 

-- user data 

valid : out bit; 

released : out bit; 

extended : out bit; 

scancode : out scancode_type 

) ; 

Description: The procedure will return straight away, even if no key-press data is 

available. The 'valid' output tells the user whether a key has been pressed. 

procedure keyboard_getkey_updown_wait ( 

— interface 

signal kint_sem : in bit; 

signal kint_ack : inout bit; 

signal kint_released : in bit; 

signal kint_extended : in bit; 

signal kint scancode : in scancode type; 

— user data 

released 

extended 

scancode 

in bit; 

out bit; 

out scancode type 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 6 0 

) ; 

Description: The procedure will return only when a key action has been decoded that is the 

same as the given key-press direction of the 'released' input. 

procedure keyboard_getkey_updown_nowait ( 

— interface 

signal kint_sem : in bit; 

signal kint_ack : inout bit; 

signal kint_released : in bit; 

signal kint_extended : in bit; 

signal kint_scancode : in scancode_type; 

-- user data 

released : in bit; 

valid : out bit; 

extended : out bit; 

scancode : out scancode_type 

) ; 

Description: The procedure will return straight away, even if no key press data is available 

{'valid'' returned as false). The procedure also filters out keyboard actions that do not 

comply with the direction of the 'released' input by returning the 'valid' output as false. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 6 1 

A.3 Serial port library 

The standard serial port is similar in concept to the data transmitted through the keyboard 

controller. The main difference is that a timing clock is not provided. Instead of this, the 

serial data stream is generated with a known data rate: the baud rate. 

A serial port interface is bi-directional, with two separate data channels for each 

directional flow. In fact there are four channels, with the two other channels used for flow 

control. The typical configuration though is in null-modem form that just utilises the two 

data channels. This is the form of controller that is implemented. 

There are now a wide diversity of baud rates that form the standard settings for a serial 

interface transmission, ranging from 120 data bits per second up to 256k data bits per 

second. These differences are due to the standard serial port protocol surviving through a 

large number of technology speed-ups. Any baud rate is supportable within the 

implemented controller with simple external constant changes. 

The standard data is sent as packets of up to eight bits. One start bit is always required for 

data synchronisation; with the possibility for a parity bit for error checking and the stop bit 

length can be adjusted. The implemented controller accepts only one protocol, that of one 

start bit, eight data bits, no parity bits and one stop bit, which allows full bytes to be 

transmitted at any time. 

The system is split into two separate halves, one for the transmission of serial data and the 

other for receiving of serial data. Only the data receiver is implemented at the present time 

with scope built in to the interface to transmit a data stream. This is because the only 

system requiring this capability to date is the tracker demonstrator (see Appendix C). The 

data transmitter is relatively simple in comparison to the receiver. 

A.3.1 VHDL files 

The interfacing method is the same as the VGA controller and keyboard controller 

systems, with a concurrent component accessed by interface procedures that drive an 

external port created within the user's design. There are four VHDL files listed in Table 



DJ.D. Milton, 2002 Appendix A: Collateral projects 262 

A. 12 that implement the whole library. Note that the transmitter controller component is 

not currently implemented. 

Filename Description 

Serialport_const. vhd Constants package 

Serialportjnterface. vhd Interface package to concurrent controllers 

Serialport_receive_controller.vhd Receiver controller concurrent component 

Senalport_transmit_controller.vhd Transmitter controller concurrent component 

Table A.12 Files required for the serial port interface 

The constants package is referenced by the controller components for the data type 

definition and the serial data width constant. The constants package also requires 

referencing by the user's design for the same data types and a number of constant values 

that define the baud rate for various controller clock speeds. The user's design also 

requires a link to the interface package, which contains a number of interface procedures 

that can be called to either transmit or receive serial data. 

A.3.2 Receiver controller 

The receiver controller is implemented using two concurrent processes that communicate 

with each other using internal signals. The first process controls the flow of each bit into 

the system, while the other process with which the first communicates acts as a serial bit-

rate timer for synchronisation timing with the incoming data stream. 

The timer process takes a constant value that defines the rate of data flow (baud rate) after 

the controller clock is taken into account. Exact timing can be produced with careful 

VHDL code that is passed through MOODS. This is achieved by the implementation of 

the timing process, which has one control state that activates itself continuously. 

The timer process can act in one of two modes, either count for a full serial data period, or 

count for half that data period. The reason for this is due to the position of reading the 

incoming data flow. Synchronisation is achieved by sensing the start bit of the data flow. 

Straight after this, the timer is set going to count for half a data period. The timer 

communicates with the controlling process to say when this period is over. This means 

that control is given back to the controlling process halfway into the start data bit. It is at 

this point that the data is most likely to be stable. 



DJ.D. Milton, 2002 Appendix A: Collateral projects 263 

The rest of the data bits are then read in one after the other with the intermediate times 

counted by the data rate timer that is now set to count for whole data periods. This means 

that every bit after the start bit is read in the middle of the data bit. This will only work 

when you receive data that has been transmitted at the same baud rate. 

concurrent 
branch 

count for 8 full data periods, 
shifting in the serial data after 

each count 

count for 1 full data period, 
finishing half way through the 

stop bit 

Initialise interface, counter 
and internal counter interface 

sense start data bit 

count for half a data period, 
into the centre of the start bit 

Start count or half count 
when told to via a semaphore 

from the other process 

Continue counting until the 
constant limit is reached 

Acknowledge the count has 
finished 

Figure A.11 Serial port receiver controller design flow 

The conceptual control flow is shown in Figure A. 11 above. The right hand flow 

represents the data rate timer that is started by the main controlling process represented by 

the left hand flow. The controlling process uses the timer in the last three conceptual 

states. The first state takes the control flow into the middle of the start bit, which is always 

'1'. The next state loops eight times for each data bit, reading in the data stream into a 

shift register. The last state reads for another whole data period, which leaves the 

controller reading the middle of the stop bit, which is always '0'. As the stop bit is always 

'0', it is safe to leave the controller reading the middle of that bit. This enables re-

synchronisation with the next data stream that is sensed on the next rising edge of the 

incoming data. The serial to parallel data stream reading is shown in Figure A. 12. 



D J.D. Milton, 2002 Appendix A: Collateral projects 2 6 4 

Figure A.12 Serial link data stream 

Data is read at the mid-point of each data bit so that the data stream is at its most stable. 

Note that the actual data is inverted, so the serial data is fed through an inverter before 

being shifted into the shift register that will contain the data byte at the end of the serial 

data stream. A single sample is taken with no oversampling. 

The timing constant is calculated from a formula that takes the required baud rate (bits per 

second) and the system clock rate (Hz) as parameters. The constant value generated is the 

value that the counter process needs to count that will represent the period of one data bit. 

An exact representation is not necessary due to the re-synchronisation characteristics of 

the data stream before every transmitted byte. The formula is shown below. 

^ system _ clock ^ 

haudrate 
count = mm 

V 

- 1 

A.3.3 Interface 

The interface is formed from procedures that access a port into the two controllers. Only 

the receiver controller is implemented, but the interface to the transmitter controller exists 

within the interface library. The interface is set up using the initialisation procedure 

provided. After that, it is simply a case of calling the set of four procedures to transmit and 

receive data. Two versions of transmit and receive procedures exist. The first pair are 

blocking procedures in that they will only return once the data has been transmitted or 

received. The second pair are non-blocking and will return straight away even if no data 

has been transferred. A returned bit tells the user whether any data was transmitted or 

received. 

All communication with the controllers is formed using semaphore-acknowledge signal 

pairs, with data I/O sequenced using the semaphores. 



D J.D. Milton, 2002 Appendix A: Collateral projects 2 6 5 

All communication is un-buffered, which means that a transmission will block over a 

number of bytes sent and the receiver has to accept data at the byte-rate or above for the 

data not to be corrupted by missing received bytes. The act of buffering the serial port is 

left to the user if required. This is indeed what happens within the tracker demonstrator. 

A.3.3.1 Interface types 

Two VHDL types are defined for interfacing with the serial port controllers. These types 

are defined within the constants package and are shown below; 

subtype serialport_data_type is bit_vector(SERIALP0RT_DATA_BITS-1 downto 0); 

subtype serialport_baudrate_type is bit_vector(SERiaLPORT_BADDRATE_BITS-l downto 0); 

A.3.3.2 Interface procedures 

This section describes each interface procedure, the port list and use. The procedures are 

defined in the interface package. 

procedure serialport_initialize ( 

signal serialport_sem_ack : out bit ); 

Description: Called once at startup within each process that receives or transmits serial 

data. The procedure sets up the transmission semaphore 'serialportJrans_sem' or the 

receiver acknowledge signal ^serialport_recvjick\ 

procedure serialport_transmit_data ( 

— interface 

signal serialport_trans_sem : inout bit; 

signal serialport_trans_ack : in bit; 

signal serialport_trans_data : out serialport_data_type; 

— user data 

dataword : in serialport_data_type 

) ; 

Description: Transmits a single data word 'dataword' through the serial port, blocking the 

user's design until transmission is possible. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 6 6 

procedure serialport_transmit_data_nonblocking ( 

-- interface 

signal serialport_trans_sem : inout bit; 

signal serialport_trans_ack : in bit; 

signal serialport_trans_data ; out serialport_data_type; 

-- user data 

transmitted : out boolean; 

dataword : in serialport_data_type 

) ; 

Description; Transmits a single data word 'dataword'' through the serial port, without 

blocking the user's design. The output 'transmitted' tells the user whether the data was 

sent. 

procedure serialport_receive_data { 

-- interface 

signal serialport_recv_sein : in bit; 

signal serialport_recv_ack ; inout bit; 

signal serialport_recv_data : in serialport_data_type; 

-- user data 

dataword ; out serialport_data_type 

) ; 

Description; Receive a single data word 'dataword' through the serial port, blocking the 

user's design until data is received. 

procedure serialport_receive_data_nonblocking ( 

-- interface 

signal serialport_recv_sem : in bit; 

signal serialport_recv_ack : inout bit; 

signal serialport_recv_data : in serialport_data_type; 

— user data 

received : out boolean; 

dataword : out serialport_data_type 



D.J.D. Milton, 2002 Appendix A; Collateral projects 267 

Description: Receive a single data word 'dataword' through the serial port, without 

blocking the user's design. The output ''received' tells the user whether any data is 

received. 

A.3.4 Serial port pin specification 

The serial port standard also includes a number of pin specifications that are shown here. 

There are two standard pin specifications for the two different connectors that are used. 

These connectors are a 9-pin D-type and a 25-pin D-type connector. The pin-out 

specification is shown in Table A. 13. 

9-Pin 25-Pin Acronym Full-Name Dir Meaning 

3 2 TxD Transmit Data Transmit data from port 

2 3 RxD Receive Data Receives data into port 

7 4 RTS Request to send RTS/CTS flow control 

8 5 CIS Clear to send e RTS/CTS flow control 

6 6 DSR Data set ready e Incoming data ready 

4 20 DTR Data terminal ready Outgoing data ready 

1 8 DCD (CD) Data carrier detect e Modem connected to another 

9 22 Rl Ring indicator Telephone line ringing 

5 7 GND Signal Ground - Earth 

Table A.13 Serial port pin specification 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 6 8 

A.4 Wave viewer 

This software project was written with the need to display a set of digital and analogue 

waves. Simulation is an essential part of any design flow. Whilst commercial simulators 

all obviously have their own display subsystems, the synthesis flow in MOODS goes 

through two intermediate forms, ICODE and DDF. Simulation of these is addressed by 

other projects, but a common viewer is an extremely useful tool. The wave history file 

used in the viewer is a simple text file explained in the next section. The program is 

written for a windows-based environment using MFC. 

I file 

The file used to display the events on a number of signals from a digital simulator is 

defined here. It contains signal drawing set-up information and the actual history of each 

signal. Comments can be added on each line by the delimiter #. Signal types can be 

defined by the keyword TYPE and can be based on an enumeration, integer or analogue 

value by the keywords ENUM, INT and ANALOGUE respectively. 

The definition of an enumeration is used for discrete signals such as the VHDL 'bit' that 

can have values '0' and '1'. The set-up of an enumeration includes the method of display 

for each enumeration value and the initial value. The definition of an integer allows a 

wave to have any discrete values within the specified range and also specifies the initial 

value. This wave is displayed by value. The definition of an analogue signal allows a wave 

to have any floating-point value within the specified range and also requires an initial 

value. This signal is displayed as an actual analogue waveform. No interpolation between 

values is performed at present. 

The starting time is given using the keyword TIME, which also defines the time scale in 

terms of a unit s, ms, us, ns, ps or fs. 

Signals are defined using the keyword SIGNAL after which the name of the signal is 

supplied along with the type of signal that must be one of the previously defined types. 



DJ.D. Milton, 2002 Appendix A: Collateral projects 2 6 9 

Vectors of signals can also be defined using the keyword VECTOR after which the name, 

type and vector length is supplied. It is planned in future to allow vectors of vectors of any 

recursive depth, but this is currently not implemented. 

The rest of the file is made from wave history values for each signal. These lines start with 

a time value. The next item is the name of the wave that is changing at the specified time 

point. Listed after the name is the new value (or values for vector waves). An example 

wave file is shown below: 

1 # this is the first wave view file 
2 # created by Dan on 6/12/98 
3 
4 # TYPE is a data type that you use 
5 # for instance bits or std_logic are an Enumerated Type 
6 # or a byte is a restricted integer 
7 # or a voltage is an analogue signal 
8 # implemented types at the moment : 
9 # TYPE ENOM name numVals InitialVal 

10 # list of ENUM values with drawing style 
11 # TYPE INT name min max InitialVal 
12 # TYPE ANALOGUE name min max InitialVal 
13 
14 # defining type ''bit' with 2 enumeration types 
15 # with '0' being the default starting value 
16 TYPE ENUM bit 2 0 

17 O I ^ W 
I B 1 HIGH BLACK 
19 
20 # defining type •'std_logic' with 9 enumeration types 
21 # with •'U' being the default starting value 
22 TYPE ENUM std_logic 9 U 
23 O I ^ W B U K ^ 
24 1 HIGH BLACK 
25 0 BOTH GREEN 
26 X BOTH RED 
27 Z MID BLACK 
28 W BOTH BLUE 
29 L LOW BLUE 
30 H HIGH BLUE 
31 - BOTH PURPLE 
32 
33 # defining type 'byte' as an integer range 0 to 255 
34 # with 0 being the starting value 
35 TYPE INT byte 0 255 0 
36 
37 # defining type 'voltage' as an analogue floating point 
38 # value with range -1.8 to 7.54 with 0 being the starting value 
39 TYPE ANALOGUE voltage -1.8 7.54 0.0 
40 
41 # Time definition - define start time (float) 
42 # and time scale (s,ms,us,ns,ps,fs) 
43 TIME 0.0 ns 
44 
45 # signal definitions (using types) 
46 # two types of signal : (1) Single, (2) Vector 
47 SIGNAL testl bit 
48 SIGNAL test2 std_logic 
49 SIGNAL tests byte 
50 SIGNAL test4 voltage 
51 VECTOR tests bit 8 



D.J.D. Milton, 2002 Appendix A; Collateral projects 270 

52 VECTOR test 6 std logic 4 
53 VECTOR test7 byte 2 
54 VECTOR tests voltage 2 
55 
56 # wave history lists 
57 1.0 testl 1 
58 5.0 testl 0 
59 6.0 testl 1 
60 7 . 0 testl 0 
61 
62 0.5 test2 u 
63 1.5 test2 0 
64 2.5 test2 1 
65 3.5 test2 X 
66 4 . 5 test2 z 
67 5.5 test2 w 
68 6.5 test2 L 
69 7.5 test2 H 
70 8.5 test2 -

71 
72 3.2 tests 128 
73 3.8 tests 255 
74 4.5 tests 1 ^ 
75 
76 2 .1 test4 0.01 
77 2.2 test4 0.5 
78 2.3 test4 1.5 
79 2.4 test4 2.5 
80 2.5 test4 3.5 
81 2.6 test4 4.0 
82 2.7 test4 4.3 
83 2.8 test4 4 . 6 
84 2.9 test4 4.8 
85 3.0 test4 4.9 
86 3.1 test4 4.95 
87 3.2 test4 5.0 
88 
89 10 test5 00001111 
90 12.5 tests 01011110 
91 
92 10 teste xxxx 
93 11 tests zzoo 
94 12 tests IIZZ 
95 13 tests LLHH 
96 
97 1.0 test? 0 255 
98 2.8 test? 128 254 
99 5.6 test? 129 253 

100 12.3 test? 129 252 
101 
102 3.6 tests 0.36 0.0 
103 17.3 tests 5.0 0.0 
104 34.0 tests 4.3 0.5 
105 45.1 tests 5.0 2.5 
106 73.0 tests 4.9 4.8 
107 80 tests 1.0 5.0 
108 # end of file 

A.4.2 User interface 

The user interface is very simple to use. Open the file created from the simulator and the 

initial view will be of the whole wave history. Four buttons at the bottom left of the 

window allow the user to zoom in and out in time. The LAST button will zoom to the last 



D.J.D. Milton, 2002 Appendix A: Collateral projects 271 

position shown before a button press. The RANGE button will zoom out to the full history 

range and the IN and OUT buttons will zoom in and out. The horizontal scroll bar allows 

the user to display a selected time period when zoomed in and the vertical scroll bar 

determines which waves are displayed if not enough room exists to display them all. A 

screenshot of the program displaying a portion of the file shown above is shown in Figure 

A. 13 below. 

£dit View VjJindow Help temp - I S l x l 

I m\m m |JI 
1.00ns 1.50ns 2.00ns 2.50ns 3.00ns 3.50ns 4.00ns 4.50ns 5.00ns 

testl .dvw 

bit. testl _ r 
stdjogic: test2 ~ 

byte: test3 ~ 
voltage: test4 ; 

bit_vector; testS ~ 
bit: test5(7) _ 
bit; test5(B) _ 
bit: test5(5) _ 
bit; test5(4) _ 
bit: test5(3) _ 
bit: test5(2) _ 
bit: test5(1)_ 
bit: test5(0) _ 

stcl_logic_vector: testB ~ 
stdjogic: testB(3) ~ 
stdjogic: test6(2) ~ 
stdjogic: test6(1)~ 
std_logic: test6(0) ~ 

byte; test7(1) ~ 
byte: test7(0) ^ 

Last iRangej Out ] In (<] J 
Ready 

I 128 I 255 I ~ 

00000000 

uuuu 

128 
255 254 

r 
NUM 4 

Figure A.13 Wave viewer screen shot 



D.J.D. Milton, 2002 Appendix A: Collateral projects 111 

A.5 DDFLink 

The DDFLink system was originally written to be a linker for various sub-designs 

produced by MOODS. The plan was to build an object capable of holding the entire data 

structure that MOODS contains. This object would then be made into a persistent object 

with the addition of reading and writing file I/O functionality using the DDF file format 

that was previously used within the expanded modules section of MOODS and is 

generated as one of the last processes in MOODS. 

The reason a linker was necessary was due to the methodology of having a separate heap 

memory controller that formed the underlying heap management structure for the dynamic 

memory allocation. There was also scope for making the linker more general purpose in 

that many designs are built fi-om a multitude of concurrent components that require joining 

together at the structural level to form a complete design. 

This can be seen from the first three sections of this Appendix, where each VHDL project 

produces a concurrent component that requires linking into the user's main design. 

The required functionality of the linker is to load in the multiple designs (in internal 

MOODS data structure form), perform the linking actions upon the data structures, which 

creates a single DDF object from the multiple input DDF objects. Then, the structural 

output VHDL is generated directly from the linked DDF object. 

However, the frill project had to be significantly reduced in scope due to increasing time 

pressures. It was felt that a frill automatic linker, though desirable, was not an essential 

part of the dynamic memory system that is discussed in Chapter 4. 

The reduced project now forms the basis for a data structure converter for the MOODS 

internal data structures. The complete MOODS data structures can be held within the DDF 

object as planned, the object is frilly persistent and structural VHDL can be generated 

directly from this persistent object. DDFLink forms a separate console process that is 

executed after each synthesis run of a design. 



D.J.D. Milton, 2002 Appendix A; Collateral projects 2 7 3 

The DDFLink project was not written from scratch. It utihsed a large section of code that 

was written specifically for expanded modules within MOODS. The expanded module 

code creates a number of objects that represents a large proportion of the entire MOODS 

data structures. It is from this code that the DDF object is based. This code had the 

definitions of the internal data structure objects and a nearly complete parser for inputting 

those objects from a DDF file. From this basis, a completed object was produced with a 

full input parser. The object was then made persistent by writing the output routines from 

the object that recreates the DDF file used for input. In this way, if any modifications to 

the DDF object occur, the results can be stored back into another (or the same) DDF file. 

The object persistence routines that formed the output DDF file were generated from a 

rough translation of the actual MOODS internal data structures that are implemented in a 

different style of C. 

The VHDL output file that forms the translation from the internal DDF object into a 

VHDL form that can be parsed by a third party RTL synthesis tool was generated in much 

the same way as the object persistence routines, in that a rough translation from the old 

output stage of MOODS was made to use the newer DDF object being created for 

DDFLink. The VHDL output was then modified to produce a more readable and traceable 

version of the output file. This was accomplished by adding more comments and more 

importantly, removing a lot of indirection between data path nodes and control nodes. 

A.5.1 DDF object 

Sections A.5.1.1 to A.5.L16 contain brief notes on the internal data structures used in 

DDFLink. They are intended to be used in conjunction with a source browser and the 

MOODS internals documentation [66] and do not stand alone. The data structures mirror 

the core structures used within MOODS. 

The DDF object is created as a single class with no base class. Within the class, a number 

of structures and classes are defined. These define the subcomponents of the DDF object. 

These substructures are used internally to hold the entire data structure. A single list 

template class is utilised that allows generic doubly linked lists to be created as wrappers 

around the various data structures. 



DJ.D. Milton, 2002 Appendix A: Collateral projects 2 7 4 

The DDF object is the root container for a full MOODS design. It contains the root lists of 

modules, control nodes, control arcs, ICODE instructions, data path nodes, data path nets, 

ICODE variables and conditions. It also points to the module that forms the main program. 

The sub-objects that are directly and indirectly contained within the DDF object are 

explained in the next subsections. 

The main links to sub-objects that the DDF object contains are the list of modules and the 

program module pointer, the list of data path nodes and the list of conditional signals. 

A.5.1.1 Module 

A module represents a complete flow of control. This could be a conversion of a single 

procedure, or the conversion of the root design, with the various concurrent branches 

representing the concurrent processes. The module is identified by a unique ID and by a 

string name that represents the original name of the translated procedure or entity name. 

Each module contains a list of control nodes that implement the entire control flow for the 

module. This is achieved with a single pointer to the starting control node and a list of end 

nodes. A single ICODE instruction is used within the module to represent the I/O 

parameter list. This is the header instruction used within the ICODE file. A link to a single 

conditional signal defines the end signal for the module. 

The actual I/O parameters of the global design are held in a number of 'ModPin' 

structures. 

A.5.1.2 ControlNode 

Each control node has a unique ED in the form of an integer. There are also various node 

types, which are represented by an enumeration. The probability of the node be active is 

also given, which allows power calculations to be made. 

The control node structure contains a link back into the module that contains the control 

node. There is another link to a module that is only used within a call control node. This 

link defines the module to activate on the call. 



DJ.D. Milton, 2002 Appendix A: Collateral projects 275 

The control graph is implemented using the control node and control arc structures. These, 

when linked together, form a completely contained graph of control flow. The control 

node has a list of input arcs that activate the node, and a list of output arcs that activate the 

next node. These links only form the structure of the graph, with control of the flow 

performed by other structures. 

Each control node has a conditional signal defined that is linked into the implementing 

cell. This determines when the node is active. Another conditional signal is defined here 

for call nodes. This signal defines the end signal linked into the call control cell. 

Each control node will implement a number of ICODE instructions. These are linked to 

via a list of 'Instruction' structures. 

A link to the underlying cell that implements the control node is made via an integer ID 

representation of a cell number within the technology dependent library. 

A.5.1.3 ControlArc 

The control arc structure forms the arc between the control node structures. A single link 

to the previous control node and another single link to the next control node are contained 

within this structure. 

The conditional signal used to determine whether this branch of control flow is taken or 

not is contained in the control arc. Each arc also has a unique ID and a probability factor. 

The arc also knows whether it is a feedback arc. 

A.5.1.4 Instruction 

The Instruction structure represents an ICODE instruction. As such, it has a unique 

instruction ID and a reference to a group of instructions that define a data dependent flow 

of control. The instruction type is contained as a member of the structure, along with the 

input and output parameters of the instruction, held in two lists pointing to the 'InstIO' 

structure. Extra parameters dependent on the instruction type are contained in a member 

union of data types. A link to a list of data path nodes is contained. The data path nodes 

listed performs the actions of the ICODE instruction. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 7 6 

A link back to the module that contains the instruction is given. This is replicated by the 

link within the control node that contains the instruction. 

As the instruction has a close resemblance to the original source code, a link back to this 

code is given with two links into the 'file_info' structure, that reference the source VHDL 

file position and the generated ICODE files instruction position. 

Once the final stage of MOODS has been performed, a number of extra conditions exist. 

Two of these conditions are held in the instruction structure. The first is for general 

instructions and determines the exact point at which the instruction is executed. The 

second was an addition made for recursion. This instruction is used within recurse call 

nodes, and determines the end condition for a particular recurse control cell. 

A.5.1.5 InstIO 

The 'InstIO' structure contains the I/O parameters for every ICODE instruction 

represented by the 'Instruction' structure. This structure points to either an ICODE 

variable (could be a temporary variable) or a constant. If a constant is represented, then the 

structure must feed only an input of an ICODE instruction. A variable link is formed firom 

a direct link to the 'Variable' structure, and a constant is represented by an integer with a 

defined base. 

A.5.1.6 Data Path Node 

The data path node structure is a representation of the linkage to the actual cell that is the 

implementation. A link to the underlying cell that implements the data path node is made 

via an integer ID representation of a cell number within the technology dependent library. 

The instructions that the data path node implements are held within a member list of the 

structure. An adder, for instance, could be shared among various add ICODE instructions. 

The node has a unique number and type. The width (number of bits) of the data that flows 

through the node is also given here. 

The data path is formed from the linking of various data path nodes together via an 

intermediate data structure, the 'DPNet' structure. These nets form the inputs into the data 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 7 7 

path node and the outputs from it. Multiple nets could be formed each way, so a list of nets 

is used to represent the I/O. Data path nodes represent cells such as registers, adders and 

multiplexors. These cells require some form of control. This is formed from a link into the 

'DPControl' structure with another list of controls per bit of the data path node. 

A.5.1.7 DPNet 

The 'DPNet' structure, or the data path net to give it its full representative name creates 

every link between the data path nodes. It does this indirectly through the 'DPNetPin' 

structure. It has a link to the source data path node and the destination data path node 

through two links to the 'DPNetPin' structure. It also contains a link to a conditional 

signal that is used to control multiplexor select control signals. This select signal is 

indirectly created from the list of instructions that that are also linked to within the 

'DPNet' structure. 

A.5.1.8 DPNetPin 

The reason that the 'DPNet' structure does not link directly to its source and destination 

data path nodes is that in certain cases, the link is not to a data path node at all. This is the 

reason for the 'DPNetPin' structure. It is possible for this structure to link to a data path 

node, a conditional signal or a constant. Obviously, the constant can only be the source 

part of the 'DPNet', as a constant cannot be the destination of a calculation. 

The 'DPNetPin' structure has a member determining the type of linkage. It also has a 

union member that contains the links to the relevant data type. The structure also contains 

the active bit-range of the connection, a link to an ICODE variable if the link is found to 

drive a data path node with a variable representation and an activation instruction and 

condition that tells when the net will be active. 

A.5.1.9 DPControl 

This structure forms the controlling input to data path nodes. It links to a particular pin of 

the data path node and a specified range of the bits controlled within the node. It has a 

reference to the ALU pin to access in the case of the data path node cell representing a 

multi-function node type. It also has a reference to the activating ICODE instruction and 

controlling conditional signal. The conditional signal may be null, which means that the 



D.J.D. Milton, 2002 Appendix A; Collateral projects 2 7 8 

control input is fed with a constant zero. This situation occurs when particular data path 

node control inputs are unused, such as for the 'C/ear' and 'Sef inputs of most generated 

register nodes. 

A.5.1.10 Variable 

The 'Variable' structure references an ICODE variable that has been maintained through 

the optimisation process. The reason for this structure is so that the generated VHDL files 

that are created from the data structures have some form of correlation with the inputted 

design. 

Each variable has a unique ID and is of known type. The variable has a name that is 

representative of the original variable name that flows through from the compiler. The 

variable also has known width and knows from which module it is created. A link back to 

original source code and the representative ICODE file positions are gained from two links 

to the 'file_info' structure. 

A data path node in the generated structures represents a variable, so a direct link to the 

relevant node is contained within the structure. A number of extra parameters are also 

stored, dependent on the variable type. If the variable is an alias then a link to the parent 

variable is given, along with the bit-range of the parent variable that it aliases. If the 

variable is representative of a ROM, then an extra link is made into the ROM constant data 

that is used directly within the outputted VHDL file. This link is to the 'const_node' 

structure. The variable could be representative of an I/O port, in which case a reference of 

the relevant 'ModPin' structure is formed. 

A.5.1.11 Condition 

A conditional signal represents a single bit equation. The 'Condition' structure is used 

throughout the DDF object to represent the linking signals between the control and data 

paths and visa versa. The signal has a unique integer identifier and a reference to a 

containing net. The actual Boolean equation is formed from the 'BoolEqn' class object, 

which is linked to within the 'Condition' structure. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 7 9 

A.5.1.12 BoolEqn 

The Boolean equation structure is created from an internal binary tree representation. Each 

binary node of the tree can represent an equation operator. The operators allowed are 

'AND', 'OR', 'XOR' and 'NOT'. The structure of the binary tree represents the hierarchy 

within the equation. The source of the signals that the equation operates upon can be from 

many sources. The sources allowed are an ICODE variable, a control node active signal, 

another conditional equation or a constant. 

A.5.1.13 Const_node 

This small structure is used to contain a single ROM value. Generating a number of these 

structures, and filling the contents with the ICODE ROM values create the full ROM. 

A.5.1.14 ModPIn 

This small structure contains information about the module I/O lists. Both the width of the 

port and the link to the representative variable is contained, along with a pin number of the 

data path node that represents the modules I/O parameters. 

A.5.1.15 CaseSelect 

The 'CaseSelect' structure is used within the ICODE instruction when the multiple 

alternative control flow is created with the use of the 'SWITCHON' or 'DECODE' 

instructions. The ICODE instruction contains a list of these structures with the number of 

items in the list dependent on the number of alternatives to the ICODE instruction. 

The structure contains a constant number that represents each alternative. A constant '-1' 

represents the default alternative. The structure also contains a link to the conditional 

signal that gets activated on the given switch alternative. This effectively means that the 

created signal will be formed from a particular output of a decode data path node. 

A.5.1.16 Fi lejnfo 

This structure was retrofitted into the variable and instruction structures. It contains a 

single reference to a source file position; both line number and column position. The file 



D J.D. Milton, 2002 Appendix A: Collateral projects 2 8 0 

reference is made via an integer index into a map of these indexes with the string 

representations of the full path of the filename. 

A.5.2 DDF parser 

Reading an ASCII representation of the object from a file creates the DDF object. The 

structure of the file means that it requires parsing. As with any language, the parser uses a 

lexical analyser to read the input data in the form of lexical tokens. 

The parser to feed the data structures with the relevant information then uses these tokens. 

Two passes of the file are required due to the forward declaration of various objects within 

the file. The first pass builds up most of the data structures, but missing most of the links 

between the structures. The second pass is used to fill in these links. 

The reason a parser is required in the first place is that the ASCII representation is human 

readable. It is not wise to manually edit the DDF file unless the user knows exactly how it 

represents the underlying object. 

The definition of this internal proprietary language is found in Appendix D. 

A.5.3 DDF output 

The generation of the DDF file is simpler than the reading of the same file. The DDF file 

is generated from the internal data structures in exactly the same form as it was read into 

the objects. This means that the objects have file-based persistence. 

The definition of the internal proprietary language 'DDF' or 'Design Data Format' is 

found within Appendix D. The file is a direct representation of the data structures. The 

output dump was written from scratch using the MOODS DDF dump as a template for the 

style of file to be produced. 

A.5.4 VHDL output 

The DDF class is used to generate the final structural VHDL. It performs this operation in 

a near one to one relationship with the underlying data structures. This is because the 



D.J.D. Milton, 2002 Appendix A: Collateral projects 281 

underlying data structures are designed to represent a structural representation of the 

behavioural design inputted by the user. 

The VHDL output consists of various areas of the file that correspond to the various data 

structures within the DDF object. These main areas are the conditional signal equations, 

the control graph representation and the data path representation. Between these three 

sections, links are made directly between the items created with the declared signals that 

are produced within each section. These signals are declared within the single architectural 

representation of the entire design. The body of the architecture contains the instantiation 

of the control path, data path and conditional equations. The file also contains an entity 

declaration that defines the interface to the outside world. This interface is similar to the 

initial entity port declarations of the source code, except that clock and reset signals are 

added. 

The direct translation of the original methods for outputting of the structural VHDL was 

only the first stage of creating the new output style of VHDL. The underlying methods for 

output stayed the same, yet the code produced is more readable and traceable with the 

removal of all indirection between data path nodes in the form of the data path nets. 

Whenever a reference to a data path net is found, the link, in the form of the data path net 

and data path net pins is traced back to the connecting item, and the signal that forms the 

output of that item is used instead. 

A number of information comments are now also passed through the system, which tells 

the reader of the VHDL file where all the inputs to the data path nodes are derived fi-om, 

what the connectivity of the control path signals are and what instructions are executed by 

each data path node. Variable names are used where applicable, with shared variable 

definitions being defined also. 

The underlying conditional equation store was found to be inefficient, so a simple 

indirection removal produces links into the condition store that can be derived directly 

from the inputs to the condition store. This allows direct linkages through the conditional 

equations to be bypassed completely, resulting in more traceable linkage between the 

control and data paths. 



D.J.D. Milton, 2002 Appendix A; Collateral projects 282 

The data path nodes are implemented by a component instantiation of a pre-defined 

generic component. The width is passed into the component, which defines the size of the 

item to be produced. The library that contains these underlying components is optimised 

for RTL synthesis. Control nodes are implemented within the same library and in the same 

manner. Control nodes correspond to control states in a one to one representation. The 

linkage between control nodes are formed from the signals defined for each node and the 

conditional signals used to direct the flow of control dependent on the actions of the data 

path. 

A.5.5 VDF output 

While developing the DDF system, a graphical user interface (GUI) was also being 

produced. This GUI enables multiple views into the synthesis process to be created. One 

of these views is a direct window onto the DDF data structures, displayed in graphical 

form. At the time of writing, one main view existed into the internal data structures of 

MOODS; that of the module list with contained control graph (nodes and arcs) with 

instruction linkages. 

The method for input into the GUI is via two methods, the first is by direct transmission 

between the concurrent programs via a pipe and the second is via loading a representation 

of the DDF object &om a file. The VDF file was produced as an alternative to the DDF 

representation due to the loading speed of a full parse of the whole DDF file. 

The VDF representation contains only the information required about the control graph 

and instructions contained within the graph. The file is stored in exactly the same method 

as the pipe transmission data, which means that only one pass is required to build up the 

full representation within the GUI. The file is ASCII based, though a binary version would 

be more efficient. 

The VDF file is created within the final internal object conversion stage at the same time 

as the resultant structural VHDL file is generated. The GUI displays it by loading the DDF 

file (which links to the VDF file internally). An example of the displayed graph produced 

by the GUI is shown in Figure A. 14. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 283 

MOODS Piped Design - recursion testl 

wbelected State Information 
10 C24 
M factorial 
O General Node 

H & Previous Sl:ates 
: f c23 

B & Next Sl:3tes 
^ 6 c27 

6 & Instruction Group List 
•© Group 25 
B — MINUS 

I ID i24 
S & Source Info 

i H Line 66 
10 Pos 9 

^ H c;\djdnn\larchje\vhdl\recursionJ:est\recursionJtestl.vhd 
i A C*' ICODE Info 

6 -%% MEMREAD 
I ID 125 

13 (S> Source Info 
i n Line 66 

: H Pos9 
^ i n c:\djdm\larch_e\vhdl\recursion_test\recursion_testl,vhd 

IS ICODE Info 
© Group 26 
B P PROTECT 

I ID 126 
S & Source Info 

: H Line 66 
I 1 P O S 9 

i HI c;\djdm\larch_elvhdl\recursion_test\recursion_testl,vhd 
13 • Of ICODE Info 

H Line 69 
I B POS 28 
• HI C!\DXir<l\LflRCH_E\vhdl\recurslon_test\recursion_testl .xic 

Figure A.14 Control graph and highlighted control node instructions 

The figure shows two modules within the design, the left hand module 'ml' being the 

main program and the right hand module 'ml2' a recursive procedure. Nodes 'c4' and 'c6' 

are calls to the recursive module 'ml2' and node 'c23' is the only recursive call to the 

same module. Node 'c24' is highlighted with 'c27' being shown as the only node activated 

by 'c24\ 

The right hand view pane displays information about the highlighted node 'c24'. It lists 

the next and previous nodes activated through the control arcs and lists the instructions 

that are active within the control node. These are 'i24' and 'i25' within group 25 and 'i26' 

within group 26. Note the link back into the original source file and the ICODE file for 

every instruction. 



DJ.D. Milton, 2002 Appendix A: Collateral projects 2 8 4 

A.5.6 Linking DDF objects 

The original purpose of the DDFLink program was to link together multiple 

representations of designs produced by MOODS stored in DDF format into a single 

representation and outputted in a structural VHDL form. The base for this procedure has 

been formed with all the file handling and VHDL generation sections completed. The only 

task now is to link multiple input files in some way and output the new results. 

A number of items are required in order to fully link multiple designs together. These 

items are noted fi'om the experiences of linking MOODS designs together manually using 

a structural VHDL top-level file representation that contains links to the underlying 

MOODS designs as components within the top-level file. 

Simply creating a netlist representation of the pin linkages between MOODS designs is 

not quite enough; although this would form the input method of describing what 

subsystems are linked to other subsystems. Because each subsystem can be driven from a 

different clock, buffers are required between each system that synchronise the 

transmission signals into the input clock rate of each design. This means that 

asynchronous subsystems require double-buffered inputs and systems using clocks derived 

firom each other can use a single input buffer to remove the unknown timing element on 

inputs. 

The user makes the decision about clock speeds for the subsystems, but as the initial 

source has no explicit reference to the clock inputs of a design, another method of input is 

required. This may be performed by synthesis directives or by external clock selection. 

The linker may then generate clock dividers between systems automatically. 

Another useful extra component used for interfacing to the outside world is the tri-state 

buffer. This is heavily used within memory controllers and any design that requires access 

to a shared bus. The control of the tri-state direction is made via another output from the 

user's design. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 285 

A.6 3D graphics 

The beginning of the PhD was spent researching into the general area of three-dimensional 

graphics [116]. The general research topic was within the area of 3D graphics primitive 

rendering. More specifically, the rendering of 3D primitives is best achieved using some 

form of hardware acceleration. In particular, research into the possibility of parallelisation 

techniques using existing 3D rendering accelerators, such as the Voodoo Graphics chipset 

produced by 3DFX (a company based in California) was undertaken. This was partly due 

to the vastly decreased cost of commercial rendering chipsets, which had occurred because 

of the gaming industry [117], and the availability of high performance PCs. 

Historically, the initial use of 3D graphics was mainly with flight simulation. The 3D 

graphics subject area was and still is booming with interest, due to the attraction of 

submersive 3D games. This means that many people worldwide are researching into the 

whole subject area. 

A.6.1 Hierarchical rendering engine 

While researching into the 3D graphics area, a demonstration rendering-engine was 

produced. This software program uses a few ideas from the 3D graphics area to create a 

rendering system that takes a hierarchical description of three-dimensional objects within a 

world and displays them from any position and direction. The program utilises an 

underlying hardware accelerated triangle renderer from 3DFX. 

The following will outline some of the software techniques used. The test program renders 

a virtual world, which is defined in a hierarchical manner, using an acyclic graph of object 

nodes and node transformations. The language used to store the fiill hierarchy is also 

discussed. 

A.6.1.1 Composition 

The basic rendering unit used within the hardware accelerator is the triangle with texture 

mapping and linear colouration changes. Objects can be composed from the base triangle 



D.J.D. Milton, 2002 Appendix A; Collateral projects 286 

primitive. The reason for the use of triangles as the basic drawing primitive is that it 

allows a fast rendering algorithm with the benefit that the triangle primitive is planar. 

For instance, a rectangle can be composed of two triangles, and a cube can be built from 

six squares, and hence twelve triangles. These are very simple objects, but serve as 

demonstration. 

Figure A.15 Basic primitive composition 

For some objects, such as curved surfaces, the composition using triangles will result in an 

approximation to the real object. 

Figure A.16 Curved primitive composition from approximation 

The level of detail used to approximate the real object is in a trade-off between rendering 

speed, as it takes longer to render a greater number of triangles due to the extra 

calculations involved with dimensional transformation [118]. 

A.6.1.2 Frustrum 

The viewing firustrum defines the volume of a virtual world that is visible within the 2D 

representation of the world. In the case of a perspective view on the world, it is composed 

of six intersecting planes, where any object contained within the conical box shaped 



D.J.D. Milton, 2002 Appendix A: Collateral projects 287 

volume is displayed. The diagram below shows the frustrum within world space and can 

have an arbitrary orientation. 

Clipping 
Plane 

Front 
Clipping 

Plane 

Position 

Figure A.17 Frustrum for perspective views 

The six planes intersect at the eight points, A to H within Figure A.17. These planes are 

called the clipping planes as any object which intersects them has both a part within the 

viewing volume and a part outside of the viewing volume, and hence the object requires 

clipping before it is drawn. The six planes are defined within Table A. 14. 

Plane Defining points Plane Defining points 

Front ABCD Right DCGH 

Back EFGH Top BFGC 

Left EFBA Bottom AEHD 

Table A.14 Frustrum view plane definitions 

The viewplane as shown in Figure A.17 is a representation of the 2D screen used to view 

the 3D volume. It defines the plane relative to the viewing position where any object at the 

same distance as the viewing plane from the viewing position will be rendered with no 

change in scale due to the perspective transformation, which is introduced in Section 

A.6.1.6. 



D.J.D. Milton, 2002 Appendix A; Collateral projects 2 8 8 

A.6.1.3 Hierarchical objects 

In the representation of a virtual world, the world is made from a graph of object nodes, 

with the transition from each node to another representing a relative node transformation. 

An object node holds a list of primitive objects (triangles) to render, a list of 

transformations of other nodes and a bounding sphere. The bounding sphere is explained 

more in the next section, but it is simply a minimal sphere that encompasses the 3D space 

taken up by the list of triangle primitives and the list of transformed child nodes. 

A node transformation consists of a change in relative position, scaling and orientation of 

child nodes from a parent node. A 4 by 4 multiplication matrix can represent this 

transformation. 

The node-transform structure of the graph allows recursive loops to be formed between the 

nodes. If any loops exist, then the rendering pipeline would recurse forever. The program 

has set a limit to the depth of the graph arbitrarily to be 100 nodes deep. Any child nodes 

after this depth will not be drawn. This means that a loop within the graph could exist, but 

it is recommended that the designer of the world does not use loops, as the highly 

recursive nature of the program could result in exponential decrease in rendering 

performance. 

The graph structure allows multiple instances of a node object to exist. This allows great 

possibilities for object re-use. For example, in Figure A.18 the top node of a 'Car' may 

have four pointers of transformations to a 'Wheel' node. The transformations of the four 

pointers each give a relative position, scale and orientation of the 'Wheel' node object from 

the parent car object node. Another transformation pointer within the 'Car' node may give 

information about the rest of the car body. 



D.J.D. MHton, 2002 Appendix A; Collateral projects 289 

ROOT 
NODE 

Key: 

NAME) = NODE 

NODE 
1RAN5F0BM 

LAND 

PATE ROAD 

ARM BODY 

FOOT 

FOOT 
BODY 

Figure A.18 Hierarchical graph world construction 

Note that a node does not have to contain any triangle primitives or any child node 

transformations. It is usual for the initial parent nodes of the graph to hold nothing but 

node transformations. The leaves' of the graph hold no transformations, but may contain 

triangle primitives to render relative to the transformation path starting jfrom the root node. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 290 

A.6.1.4 Bounding spheres 

The apphcation of bounding spheres is in speeding up the rendering of a scene by 

performing global culls of large sections of the world graph. Any volume can be used for 

this selective cull, but a sphere is an object that requires only one transformation per level 

of hierarchy within the object node graph. 

Bounding Sphere 

Primitives Child Node transformed 
Bounding Spheres 

Figure A.19 Bounding sphere definition 

The sphere is linked to a single node of the object graph. Its volume contains the entire list 

of objects and sub-objects of those objects and the drawing primitives themselves. 

A calculation is made when the graph is first implemented that determines the minimum 

volume of the sphere that holds the entire sub-branch of all child objects and primitives. 

The sphere is used when recursively following the world object graph when rendering a 

scene. A check is made upon the sphere against the viewing frustrum. If the spheres 

volume is found to be completely outside of the viewing frustrum, then none of the objects 

within the sphere need be drawn, so the entire branch of the object graph can be omitted 

from the rendering system. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 291 

Frustrum 

Frustrum 
Plane 

Figure A.20 Bounding sphere check against frustrum 

Another alternative occurs when the sphere is completely contained within the viewing 

frustrum. In this case, no further clipping calculations of child objects need be applied, as 

they are guaranteed to be completely contained within the frustrum, as the sphere that 

contains them is completely contained. 

If the sphere is intersected by one of the planes of the viewing frustrum then all child 

objects require ftirther tests for frustrum intersection individually. The reason these tests 

are required is due to the necessity of clipping 3D objects. 

A.6.1.5 Clipping 

When an object node contains drawing primitives (triangles) that could intersect with the 

viewing frustrum, then tests need to be made upon each primitive in order for individual 

clipping to occur. 

Clipping is required so that primitives are not drawn out of the visible screen area that the 

world is being viewed from. There are four types of intersections of a triangle with a view 

frustrum illustrated in Figure A.21. 



D.J.D. Milton, 2002 Appendix A; Collateral projects 292 

Inside the 
Oasel Frustrum 

Case 2 

Figure A.21 Primitive intersections with frustrum resulting in clipping 

The first case occurs when all three vertices are outside of the frustrum. This means that 

the primitive triangle does not require drawing. The second case occurs when one vertex is 

contained within the frustrum, but the other two are not. This means that the two 

intersection points need calculating and a single triangle drawn using the two new points 

and the single point contained within the frustrum. The third case occurs when two 

vertices are contained within the fhistrum and the third is not. Similarly to the second case, 

the two new intersection points are calculated. The resulting object has four vertices 

however, so requires splitting into two triangle fragments for the underlying hardware 

renderer. The fourth case is when all three vertices are completely contained within the 

frustrum. No clipping is required in this case and the triangle is drawn directly. 

Note that the test for intersection with every plane of the fhistrum is required, which could 

result in a number of fi-agments in extreme cases of triangles intersecting more than one 

plane. 

A.6.1.6 Depth transformation 

After the objects have been rotated, translated, scaled and clipped into the view fhistrum 

volume, the next stage is to perform a transformation that gives some depth queuing 

information into the resultant image. This transformation is the act of transforming the 

view fhistrum conical volume into a volume with parallel planes. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 293 

This transformation effectively scales the x and y position of a point using the inverse z 

position of the same point. This means that the closer an object is to the view position, the 

further the transformation will move the x and y positions of the point. This gives a 

perspective feel to the resultant image. 

3D space - Side view 

B 

E 

1 2 3 

A 

Transform 

Division by Z 
with scaling 

Z=0 
ds IF 

depth 

2D space - Side view 

View plane 

\ e ; B' 

I I 

-fr-i p 
'• ds 

^ 
Z=Q depth 

D' 

Figure A.22 Depth transformation 

After the transformation, the z position is no longer used as part of the positional 

information of the point, so the transformation performs a 3D to 2D screen transformation 

with respect to the frustrum. This can be seen in Figure A.22. The three lines in the 

diagram show their transformed sizes in the 2D space. Note that infinite scaling occurs at 

the viewing position. That is why the front clipping plane is needed, so not to produce any 

division by zero calculations within this transformation. 

A.6.1.7 Rendering pipeline 

All of the features discussed so far form part of the rendering pipeline. This is the path that 

is taken to draw the entire scene derived from the graph of hierarchical objects. The 

pipeline starts from the root node of the world graph and works through the entire graph 

making decisions dependent on the current viewing position, direction and angle (forming 

the frustrum). The program flow is seen in Figure A.23. 



D.J.D. Milton, 2002 Appendix A: Collateral projects 294 

Root Node 
May need 
clipping 

Cliild 
node 

May need 
clipping Outside Inside 

(:hHd 
node 

No 
clipping 
required Clipping 

required 

Voodoo 3D 
Accelerator 

Voodoo 
card contro Display 

START 

Render 
Triangle 

Perform 3D model 
transform 

Clip Primitive 
(Triangularization) 

Perform 3D model 
transform 

Perfonn 3D to 2D 
transform 

Check against 
viewfrustrum 

Transform 
Bounding 
Sphere 

Reject this 
Node branch 

Transform 
transformation 

matrix 

Transfomi 
transformation 

matrix 

Check boundi ng 
sphere agai nst view 

frustrum 

For each Primitive 
in list 

For e a ± Node 
transform in list 

For each Primitive 
in list 

For each Node 
transform in list 

Figure A.23 Rendering pipeline 

A.6.1.8 Hierarchical language 

The language used to describe the hierarchical world is written in plain ASCII text. It uses 

integer IDs to distinguish between graph node objects. A graph node also contains a name 

for information only. The root node is made distinct by having a 'ROOT' item within the 

node definition. Each node can also contain any number of triangles and transformations 

of child nodes, referenced by their IDs. 



D.J.D. Milton, 2002 Appendix A; Collateral projects 2 9 5 

The user walks around the world using a vehicle, which can have an associated object 

graph of its own, so that multiple users could recognise each other within the generated 

environment. 

Limited animations are allowed within the transformation that are referenced by animation 

IDs of the 'ANIMATE' object. Animations in scale and rotation are given. 

A number of lighting objects can also be created that have global effect upon the world. 

These have their own descriptors. All of these features can be seen within the example 

description below. 

1 NODE 
2 ID 5 
3 NAME road_bend 
4 TRIANGLE 
5 V0=[-5.000 0.000 5.000] 
6 Vl=[5.000 0.000 5 .000] 
7 V2=[5.000 0.000 - 5.000] 
8 C0=[255.0 255.0 255.0 255.0] 
9 Cl=[255.0 255.0 255.0 255.0] 

10 C2=[255.0 255.0 255. 0 255.0] 
11 TEXTURE road3.3df 
12 T0=[0.0 256.0] 
13 T1=[0.0 0.0] 
14 T2=[256.0 0.0] 
15 TRIANGLE 
16 V0-[-5.000 0.000 5.000] 
17 Vl=[5.000 0.000 — 5.000] 
18 V2=[-5.000 0.000 -5.000] 
19 C0=[255.0 255.0 255.0 255.0] 
20 Cl=[255.0 255.0 255.0 255.0] 
21 C2=[255.0 255.0 255.0 255.0] 
22 TEXTURE road3.3df 
23 T0=[0.0 256.0] 
24 Tl=[256.0 0.0] 
25 T2=[256.0 256.0] 
26 TRANSFORM 
27 NODE 17 
28 ANIMATE NONE 
29 POSITION-[3.200 0 .000 -3.200] 
30 =[-0.707 0.000 ' -0.707 
31 RY =[^^00 1 .000 0.000] 
32 RZ =[0^07 0 .000 -0.707] 
33 SCALE =[1.000 1 .000 1.000] 
34 
35 NODE 
36 ROOT 
37 ID 0 
38 NAME RootNode 
39 TRANSFORM 
40 N 0 ^ 5 
41 ANIMATE 0 
42 POSITION=[0.000 0 .000 0.000] 
43 fW =[1.000 0 .000 0.000] 
44 RY =UXOOO 1 .000 0.000] 
45 RZ -[0.000 0 .000 1.000] 
46 =[1.000 1 .000 1.000] 
47 
48 VEHICLE 
49 VIEW 



D.J.D. Milton, 2002 Appendix A: Collateral projects 2 9 6 

50 MOVE 
51 POSITION=[0.000 1.000 0.000] 
52 N =[0.000 0.000 1.000] 
53 =[0.000 1.000 0.000] 
54 SPEED 0.000 
55 PITCH 0.000 
56 ROLL 0.000 
57 YAM 0.000 
58 NODE 4 
59 
60 ANIMATE 
61 ID 0 
62 NAME Scale 
63 ACTIVE TRUE 
64 PITCH 0.000 
65 ROLL 0.000 
66 YAW 0.000 
67 SCALEPEAK= [0.400 0.400 0.400] 
68 SCALEANGLE= [0.452 2.713 2.973] 
69 SCALEANGIjERATE= [0.017 0.020 0.052] 
70 
71 LIGHT 
72 ID 0 
73 NAME main 
74 DIST 50.0 
75 ORIGIN =[0.000 0.000 0.000] 
76 RX =[1.000 0.000 0.000] 
77 RY =[0.000 1.000 0.000] 
78 RZ =[0.000 0.000 1.000] 
79 ANIMATE-[0.320 0.000 0.200] 
80 COLOUR =[255.0 255.0 220.0 220.0] 

A.6.1.9 Summary 

These pages have given a basic introduction to the fundamental viewing frustrum which is 

used within most 3D applications, along with the depth transform which gives the one 

point perspective appearance. Various aspects of the rendering pipeline within the 

software have been introduced, which gives a relatively efficient method of world 

database parsing. 

Some hardware acceleration considerations have been taken into account in the designing 

of the rendering pipeline, such as with the primitive definition of the triangle and the 

clipping of these primitives with a method known as 'Triangularization'. 

A.6.2 Results 

The software rendering-pipeline has been implemented within the test program. It is 

written using C++. Some screenshots generated from this program can be seen in Figure 

A.24 to Figure A.28, which visually show the hierarchical structure of the virtual worlds 

created, with repetition of child objects forming more complex parent structures. 



D.J.D. Milton, 2002 Appendix A; Collateral projects 297 

Oe sig" 

Figure A.24 A potential group logo 

Figure A.25 A second potential group logo 



DJ.D. Milton, 2002 Appendix A: Collateral projects 298 

Figure A.26 A street scene 

Figure A.27 Another street scene from a different angle 

Figure A.28 A wide angled view of the street scene with fog, light and lens flare 



DJ.D. Milton, 2002 Appendix B: Paper 2 9 9 

Appendix B 

Paper 

This appendix contains the paper given at the Forum on Design Languages (FDL) 

conference 2000. 



D.J.D. Milton, 2002 Appendix B: Paper 300 

Dynamic memory allocation in a VHDL behavioural 

synthesis system 

Daniel Milton Andrew Brown Alan Williams 

Southampton University, UK Southampton University, UK Southampton University, UK 

djdm97r@ecs.soton.ac. uk adb@ecs.soton.ac. uk acw@ecs.soton. ac. uk 

Abstract 

VHDL is capable of describing the dynamic allocation of memory resources at 'run-time 

This paper describes how this concept may be supported in a hardware synthesis 

environment. This requires a heap management system to be synthesised and implicitly 

accessed from within any user code, supporting the use of the VHDL access type. A 

method for controlling the storage of dynamic information (the heap manager) is 

reviewed. Issues such as timing and fragmentation are also discussed. An example of a 

design synthesised using the methods shown is reviewed last, which demonstrates the 

power of the technique. 

1. Introduction 

Memory allocation has typically been limited to use within the software domain, with no 

direct equivalence in the field of hardware synthesis. Hardware synthesis is migrating onto 

higher-level behavioural synthesis, with behavioural descriptions of digital designs in 

VHDL capable of describing the allocation of memory (variable) resources dynamically at 

'run-time'. This paper describes how this capability is supported in the context of a 

behavioural synthesis suite, MOODS, developed at Southampton University [1]. 

A truly dynamic allocation of storage elements requires that a run-time system exists, with 

access to a memory resource (the heap) of a size capable of storing the maximum amount 

of information that the user requires. This subsystem is responsible for managing the 

memory resource under dynamic access from the user's behavioural design. 

The low-level interface to this run-time system defines the four main accesses, namely 

'allocate a block of memory\ ''de-allocate a block of memory', 'read from a memory 

mailto:djdm97r@ecs.soton.ac
mailto:adb@ecs.soton.ac


D.J.D. Milton, 2002 Appendix B: Paper 301 

location'' and ^write to a memory location'. The VHDL compiler used during synthesis 

can then be modified to convert the given abstract behavioural VHDL into low-level calls 

to the relevant access procedures of the run-time heap management system [3]. 

User Source Code 

SOURCE 1 SOURCE 2 
VHDL VHDL 

System Source Files 

ICODE OPS HEAP 
MACRO OPS INTERFACE 

MOODS Synthesis System 

Library Manager 

FPGALm 

ASIC LIB 

VHDL2IC 
(modified compiler) 

j ICODE 

MOODS 
Qthesis Core) (Sy 
MOODS 
Qthesis Core) 

DDF 
D DF2VHDL 

System Control 

SUBPROCESS 
CONTROL 

RTL VHDL Wrapper 
' r 

HEAP MANAGER 
STRUCTURAL VHDL 4 

USERS STRUCTURAL 
VHDL 

Figure 1 MOODS synthesis system overview 

Figure 1 shows a system overview incorporating the subsystem necessary to support 

dynamic access. 

2. Benefits of dynamic allocation 

High-level hardware description languages allow the user a rich vocabulary of constructs 

to describe a system. Almost inevitably, only a subset of this HDL is synthesizable. The 

goal of this research (alongside all other synthesis research at Southampton) is to increase 

the size of the synthesizable subset, giving rise to a corresponding increase in the power of 

the language subset available to the user. 

Using access structures allows the user to form relatively complex data structures such as 

linked lists, tree structures and any other structures more normally associated with 

software design. This is achieved with the use of an access type (memory pointer) 



D.J.D. Milton, 2002 Appendix B; Paper 302 

referencing a record type (collection of elements), with access types (optionally) contained 

as record elements, which may circularly reference the same record type. 

3. Dynamic allocation within VHDL 

The use of VHDL as the source language for synthesis puts in place various language-

defined constraints when designing with dynamic storage [2,6]. The concept of the access-

type (a memory 'pointer') allows a great deal of type checking to be performed, which 

reduces the probability of errors within the user code. VHDL does not allow type 

conversions involving access types, or having generic access types such as allowed within 

C with the use of void* [5]. Access types must all be defined as variables, which disallows 

the transmission of the information stored within these types from one concurrent process 

to another. These limitations are all defined for valid reasons, but in practical use, tend to 

over-constrain the user's design. 

#1 Shared heap variables not allowed 

User Design RTL 
VHDL 

RTL VHDL 
HEAP 

MANAGER 
#1 

Double 
Interface 

RTL VHDL 
HEAP 

MANAGER 
#2 

#2 Shared heap variables allowed 

User Design RTL 
VHDL 

eap 
MUX 

Single 
Interface 

RTL VHDL 
HEAP 

MANAGER 

Figure 2 Concurrency support methods 

One major aspect of VHDL is its in-built support for concurrency in the form of multiple 

processes, within which all sequential code is contained. It is perfectly possible to require 

access to the heap fi-om within more than one process, so that the user can utilize the 

benefits of concurrency. One method for dynamic memory access in multi-process designs 

is to create a heap manager for each process that requires it. This would potentially allow 

different heap management systems to exist for each process. However, this would require 

extra space (silicon area) for the heap management system and the associated separate 

memory block. Another method for concurrent dynamic access is to share the heap 



D.J.D. Milton, 2002 Appendix B: Paper 303 

manager between the processes that access dynamic information, with access of the heap 

effectively serialized with the use of mutexes and semaphores and an arbitration process. 

This second method also allows pointers to be passed between processes (using shared 

variables in VHDL'93, or by designing in a different language such as System-C). Care 

must be taken when designing with shared variables, as their use can give differing results 

within different simulators. Both methods of concurrent access methods are shown in 

figure 2. The second method of the multiplexed heap is the one adopted in the present 

system. 

4. Heap management 

The heap management system is complex, and can form a substantial section of the final 

synthesized design (1039 CLBs within a Xilinx XC4062XL FPGA, 45% of the chip). 

However, as the compiler knows only how to interface to this system, with no 

dependencies on the method of allocation, this allows entirely different heap management 

systems to be 'plugged-in', with control over this process given to the user via various 

compile-time constraints. The user need not know of the complexities involved in the sub-

component. Moreover, the heap manager is a fixed size overhead. 

This section describes the heap management algorithm [4], used to support the method of 

abstract description taken by the user of the system. The algorithm is relatively simple; it 

is highly memory space-efficient and extremely fast. However, it has some drawbacks 

because of this simplicity. 

4.1 The algorithm 

The algorithm requires a large memory space that can be split up into a number of smaller 

memory spaces (pages). The size of the page determines the maximum object size that can 

be allocated. When the heap is active, each page is used to store objects of one size only, 

with the size of the objects and various list pointers stored at the head of the page. A list of 

all pages in use is kept within the first page in memory, which is not used for any other 

purpose. The active-page table and each page header form a small memory overhead. A 

view of the memory map created by this heap manager is shown in figure 3. 



DJ.D. Milton, 2002 Appendix B: Paper 3 0 4 

The heap starts out as being initially empty, with a list of free pages being formed by the 

first word within each page, and the address of the head of the list being kept within the 

manager. The allocation method first looks at the active-page table, which is stored within 

the first page of memory and determines whether any page with the required object size is 

currently in use with space ready for allocation. If a page exists, then the object is returned 

as the next free object in the active page. If the page is frill after the allocation, it is 

removed from the active page table. If a page with the current object size is not active, 

then the free-page list is used to get a new page to begin allocation onto. The page header 

is set up with the required object size and inserted onto the active page list, and the object 

returned from the first available space within the page. All free-lists are generated within 

the main memory space, and therefore each list has zero space-overhead. The only wasted 

space is formed when a page is full of objects, but there exists unused space due to the 

page object size being too large to fit in the unused space. The active-page table uses one 

page, and each page has its header, which forms the rest of the space-overhead. 

The heap manager is designed with a 32-bit data path. This means that all allocated objects 

will need to fit within 32 bits, or be split up into smaller chunks so that they do. The 

present compiler does not support single objects with storage requirements of greater than 

32 bits. It does support arrays of objects and records of objects, where each sub-object is 

still limited to 32 bits. Storage inefficiencies can result from the use of objects that take 

less than 32 bits. A method to reduce these inefficiencies is data packing, where the data-

space can be used to a greater degree by packing multiple objects into the 32-bit data 

space whenever possible. Various tradeoffs are involved here, involving memory size 

usage, the speed of access and the extra cost of synthesized hardware to perform data-path 

multiplexing. The present compiler does not support data packing. 

4.2 Implementation 

For designs specified in VHDL, both signals and variables are mapped onto physical, 

hardware registers. (MOODS may optimise some of these out of existence.) For both 

FPGA and ASIC targets, these registers will be geometrically scattered throughout the 

design. The dynamic memory system cannot map objects onto these static constructs, so a 

RAM bank has to be made available to the system. The size of this RAM will directly 

affect the internal synthesized address path widths of the user design and the heap 



D.J.D. Milton, 2002 Appendix B: Paper 305 

management system. The heap manager returning a null address, as dictated by the VHDL 

standard, communicates run time heap exhaustion. It is left to the designer to handle this 

event. 

Total Memory Map 

Page Page Page Page Page Page Page Page Page Page Page 
0 1 2 3 4 5 6 7 n-2 n-1 n 

Page in use 

J 
J C1> Cl> 
u N N N 

00 00 00 

S 
<u 
N 
cn 

Valid Object Size 
Page List Head / ' 

Pointers 

In-use Page Header 

t - ' Free Page Free Page 

Undefined Undefined 

Free List 
Head 

Prev Next Object Object Un- Free List 
Page Page Size Count allocated Head 

Figure 3 Heap manager memory space 

5. Timing 

The VHDL timing model for allocation, de-allocation and de-referencing access types 

(reading from or writing to the value stored on the heap) specifies that each access take 

zero time. However, it is impossible to meet these timing constraints within physical 

hardware due to the current lack of zero-latency, infinite-bandwidth memory. The 

behavioural synthesis paradigm embodied within MOODS allows the relaxation of timing 

constraints in non-timing critical code sections. This means that the usefulness of dynamic 

allocation of memory resources is constrained to these non-timing critical sections, at least 

in terms of access latency. This constraint is not as restrictive as it first may seem, and 

actually forces the user to use dynamic allocation only within completely behavioural 

(high-level, non-timing critical) code. This is not to say that the heap access bandwidth 

cannot be changed with the use of a different heap management sub-component. 

The underlying use of DRAM forms a major timing issue, where better bandwidth-

performance may be gained from utilizing the fast page mode access and by using faster 

DRAM or different styles of DRAM such as EDO or SDRAM. Adding a cache between 



DJ.D. Milton, 2002 Appendix B; Paper 3Q5 

the DRAM controller and the heap manager may give increased latency-driven 

performance. A redesign of the heap manager to use multiple blocks of memory for 

different management sections, such as by using fast SRAM for the dedicated page-lookup 

tables would increase the performance of allocation and de-allocation. This would be very 

useful for designs that allocate and de-allocate for a large proportion of their running time. 

A method for determining the proportion of time spent using the various accesses can be 

found from a form of profiling, which enables the most frequently used access to be 

optimized the most over lesser-used accesses. 

6. IVIemory fragmentation 

Any system, hardware or software, that supports dynamic allocation and deallocation may 

experience fragmentation, which can dramatically reduce its efficiency and effective 

capacity. Careful coding can always be employed to reduce or even eliminate the problem, 

but the whole point of behavioural synthesis is that the designer can express him/herself in 

a manner sympathetic to the nature of the design, without having to worry about the 

implementation details. 

Inevitably, some form of defragmentation support must be made available, and equally 

inevitably, there are tradeoffs: 

> Rearranging the memory contents transparently to the parent process at run time 

implies some kind of memory mapping (v iable) with an associated time and space 

cost. (The indirection effectively halves the dataflow bandwidth of the heap.) 

> The parent process itself may be delayed (locked out) while the defragmentation 

process is accessing the physical RAM. (The act of copying memory can also take a 

large proportion of time, where the latency for allocation access when de-

fragmentation is required could stop the use of the heap in any code requiring a level 

of guaranteed timing.) 

> The defragmentation controller requires silicon area. 



DJ.D. Milton, 2002 Appendix B: Paper 3Q7 

For a given design, a strategic (i.e. human) decision needs to be taken about whether the 

defragmentation process is invoked manually (i.e. by the high level design) or 

automatically (i.e. by the heap manager when it decides it is necessary). 

7. Procedural recursion 

The capability to create recursive data structures is usually accompanied with the 

capability of using procedural recursion to generate and parse these data structures. 

Behavioural synthesis disallows recursion as it creates static instances of the procedures' 

control mechanism (possibly inlined) and the associated local variables (data path) will 

generally be held in statically created registers or RAM-banks. 

Procedural recursion requires a dynamic structure in the form of a stack, which holds the 

local variables within the procedure, and the return 'address' of the control flow. 

It is planned for MOODS to support recursion, which will complement the dynamic data 

structure support. 

8. Exemplar for the memory allocation techniques 

An outline description of a physical FPGA-based exemplar for the memory allocation 

method described within the paper is given. The example makes use of the dynamic 

memory capabilities at the behavioural level and demonstrates some of the benefits of 

increasing the scope of the 'synthesizable subset' of VHDL. 

The design consists of five processes, two of which access the same data set within the 

heap by the use of some shared variables for base pointers. 

The object of the design is to act as an audio sequencer with a built-in audio sampler. This 

setup is commonly known as a 'Tracker'. The overall design uses other synthesised 

components such as the keyboard controller, which performs basic serial to parallel 

conversion and the VGA rendering system, which drives a standard 640x480 VGA screen 

resolution and includes a rudimentary set of hardware implemented rendering functions. 



D.J.D. Milton, 2002 Appendix B: Paper 308 

The tracker design includes two FIFO buffers to keep a constant audio stream flowing 

through the system. The main process receives and sends audio data from and to these 

buffers. It tries to keep the output buffer as full as possible and the input buffer as empty 

as possible, so as not to cause any under/overflow. The main control process is designed to 

keep the global audio bandwidth at a rate of 48Ksamples/second. The FIFO buffers take 

care of any latency caused by allocation / deallocation from the heap. 

The audio I/O controller communicates with an external stereo; 16-bit per channel 

ADC/DAC chip using this chips serial interface protocol. 

Tracker Example VHDL Structure 

Audio 
Out Main 

Control 
Process 

(bandwidth 
< critical) , 

Input 
FIFO 

Auto 
generated 

Audio I/O 
Controller 

Shared 
variables 

Heap 
MUX 

VGA 
Drive 

Process 
Output 
FIFO Audio 

HEAP 
MANAGER 

KEYBOARD 
CONTROL 

VGA 
RENDERING 

SYSTEM 

Figure 4 Physical example of an FPGA-based design using the heap manager 

The design uses a completely dynamic data structure that is formed from many different 

types of fixed size structures. A general linked list structure is also defined, along with list 

object insertion, deletion and iteration procedures. The base pointers of each list which is 

viewed by the user in some form is created as a shared variable, so that the main process 

and the VGA drive (drawing) process can access the same data structures concurrently. 

The system is completely under the control of the user via the keyboard controller, which 

directly influences the main control process. 

The user is able to record a sample, via the analogue audio input. A sample is created as a 

sample record that is inserted into the global list of samples. The sample record contains a 



DJ.D. Milton, 2002 Appendix B: Paper 3Q9 

pointer to a list of sample data blocks that the audio data is written into. The audio data 

fills up the sample block at the audio data rate. Once the block is full, a new block of data 

is allocated and added to the end of the sample block list, and data written into this new 

block. This continues until the user stops recording the sample. A single contiguous block 

of data cannot be allocated for the whole sample due to the unknown size of the data array 

at the time of allocation. 

The sequencer section contains two global lists. The first list holds sequence blocks, which 

have a variable-time length, and themselves contain a list of sequence items, which can be 

placed at any time point, on any output track. These sequence items determine when 

particular samples are played and at what frequency they are played back (to form 

different notes). The user has a choice of eight output tracks on which to play a sample, 

which means that the system can play up to eight samples simultaneously, digitally mixed 

together. 

The second global list is the playlist of sequence blocks, which forms a list (in playback 

order) of pointers to the sequence block items within the sequence block list. 

The VGA process (or drawing process) has access to the base pointers of the three global 

lists and draws the selected items under control of the main process. Care is taken not to 

allow list modification while iteration of the list is occurring within the drawing process. 



DJ.D. Milton, 2002 Appendix B: Paper 310 

000 Sfip 
001 Smp 

PLAY LIST 

00 Seq 

: : 
02 Seq 
" 000.3 

§1 
SEQUEMCE LIST 04C#3 

§1 
08C*3 

§1 
0CC»3 

00 Seq 0DC«3 
8i g; 

10C.3 

i | c . 3 
MIXED AUDIO 

Figure 5 Tracker User Interface 

This design took one month to create, simulate and physically build, which demonstrates 

the power of behavioural synthesis, along with the ease of use of the dynamic data types 

and abstract structures. 

Figure 5 shows a screenshot of the user interface to the tracker in action. 

Figure 6 shows a screenshot of the heap manager monitor, that shows which pages are free 

/ partially full / full, and which pages are currently being accessed. The example heap 

manager uses 4 Mbytes of DRAM and splits this into 255 usable pages that each hold up 

to 16Kbytes (4 Kwords). 



D.J.D. Milton, 2002 Appendix B: Paper 3 J J 

Active Page 1, partially Page 10. full Page 15, full 
Page full and active and active and not active 
Table 

E m a a n a m 

Page 255, free J* 
and not active / 

Figure 6 Heap manager monitor 

9. References 

[1] Williams, Alan C., "A Behavioural VHDL Synthesis System using Data Path 

Optimisation", PhD Thesis, University of Southampton, October 1997. 

[2] Rush ton, Andrew, VHDL for Logic Synthesis, McGraw-Hill, ISBN 0-07-709092-6. 

[3] Aho, Alfred V., Sethi, Ravi, Ullman, Jeffrey D., Compilers - Principles, Techniques, 

and Tools, Addison-Wesley, ISBN 0-201-10194-7. 

[4] Gontmakher, Sasha, Horn, IIan, "Efficient Memory Allocation", Dr. Dobb's Journal, 

January 1999, pp. 116-119. 

[5] Semeria, Luc, Sato, Koichi, De Micheli, Giovanni, "Resolution of Dynamic Memory 

Allocation and Pointers for the Behavioral Synthesis from C", DATE-Conference 

proceedings, March 2000, pp. 312-319. 

[6] "IEEE Standard VHDL Language Reference Manual (Integrated with VHDL-AMS 

Changes), IEEE Std 1076.1 (proposal)", April 1998. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 3 2 2 

Appendix C 

Demonstrators in detail 

This appendix gives implementation details of a number of demonstrators that were 

produced to illustrate the capabilities of the MOODS synthesis system. Section C.l 

describes an audio processor system that uses DRAM memory for sample storage. Section 

C.2 gives specific information about the general purpose PCS with the VGA output port 

described within Chapter 6, Section 6.1.1. The connectivity of the motherboard described 

within Chapter 6, Section 6.1.3.1 is given in Section C.3. The serial interface design that 

drives the VGA controller system within the two core demonstrators is explained within 

Section C.4 and the implementation of the heap management system used within the same 

system is described within Section C.5. The tracker demonstrator core is described within 

Section C.6, followed by an explanation of the expression evaluator core in Section C.l. 

C.1 Echo demo 

This design was developed concurrently with the VGA controller system to test the 

memory controller timing and PCS manufacturing software. The initial version of this 

design used a general-purpose wire-wrapped FPGA test-board, but migrated to a fall PCB 

stand-alone system as it turned out to be a reasonable demonstrator of the capabilities of 

MOODS. It is usually referred to as 'the talking widget'. 

The original design was written with the aim of producing only one effect, the effect being 

an echo chamber. It had only 64K of 4-bit DRAM (32Kbyte) that allowed an audio echo 

with a maximum period of one second. The memory was upgraded to 1Mbyte when the 

PCB was designed. This memory size is readily available from one 30-pin SIMM and 

allows a maximum echo period of 26 seconds. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 3 1 3 

The purpose of the design changed once the relatively simple echo chamber had been 

proven to work on the test board, as it was found that a larger design could fit within the 

FPGA that was currently being used. As well as the echo chamber, two further effects 

were added to the design. The first is a pitch-shift effect and the second is a phasing effect. 

The system is very simple to use, with only three push-switches and two variable-gain 

potentiometers. The first variable resistor controls the analogue audio input level into the 

ADC. The second controls the analogue audio feedback that is fed from the DAC output 

and mixed with the audio input that is fed into the ADC. 

The first push-button controls the mode of operation. There are four modes of operation, 

which are indicated by the two LEDs next to the mode button. Mode 0 (both LEDs off) 

indicates that the audio signal is passed directly through the digital system with minimal 

delay. Mode 1 (bottom LED on) indicates that the processor is acting as an echo chamber. 

The level of analogue feedback and the delay period determines the rate at which the echo 

decays. Mode 2 (top LED on) indicates that the processor is shifting the pitch of the audio 

input and Mode 3 (both LEDs on) indicates that the processor is producing a continuously 

variable delay function (phasing using analogue feedback). 

The two other buttons are used for the adjustment of the effect attributes, one button for up 

and the other for down. Each effect has one variable attribute that allows different sounds 

to be produced for each effect. The variable attribute for the echo effect is the delay. The 

pitch shift variable is the output rate and the phasing variable is the rate of change of 

delay. 

The design is implemented using a 6MHz clock, from which a IMHz clock is derived. 

This is for use by the ADC. The sample rate of 46.9 kHz is also derived from the system 

clock by a binary division of 128. The ADC (ZN427E-8) and DAC (DAC0800) used are 

both 8-bit devices. The FPGA that forms the system designed with MOODS is the 

XTLINX Spartan XCSIO in the PC84 package. The memory can be any 30-pin 1Mbyte 

SIMM. 

This section details the implementation of the system, including the analogue and digital 

data paths, the methods that produce the three effects, the internal FPGA design methods 

including the memory controller and the design of the PCS for local construction. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 314 

C.1.1 Analogue data path 

The design is a digital signal processing system. It has an analogue input and an analogue 

output with some analogue amplification, buffering and feedback. A block-diagram of the 

overall system is shown within Figure C.l. 

Input Adjustable 
Gain Amp Mixer ADC ADC 

Control Display 
Buttons LEDS 

FPGA 

Control 
Clock 

DAC Buffer DAC Buffer 

Analogue Feedback 

Output 

Adjustable 
Gain 

Figure C.1 Effects system dataflow diagram 

The system is composed from the core digital system within the FPGA to the ancillary 

analogue conversion components that convert the audio signal into and firom a sampled 

digital form. The main audio feedback path that is useful for producing the phasing effect 

is via the analogue path shown on the diagram. 

C.1.2 Effect methods 

This section describes the methods used to generate each of the effects found within the 

digital signal processing design. 

C. 1.2.1 Echo effect 

Delaying the audio signal with an amount of time that can be varied produces the echo 

effect. The echo period can be varied firom a few milliseconds to up to 26 seconds. Using 

the DRAM as a FIFO buffer, where the audio data is inserted at the same rate that it is 

removed from the memory, produces the delay. Varying the size of the FIFO buffer 

enables the delay to be changed. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 3 1 5 

The FIFO-buffer only needs to store one memory address that contains both the start and 

end points of the FIFO. For every data sample, the memory is read at the present address 

with this data being pushed onto the DAC, and then written to with the data just received 

from the ADC. The memory data has effectively been replaced by a newer sample. The 

address is then incremented ready for the next access. The point at which the address 

wraps around to zero gives the delay period. 

Full Address Range 

FIFO Address Range 

Newest Samples N Oldest Samples 
II NULL Addresses 

Start Address Current Address FIFO limit End Address 

Figure C.2 Echo effect memory mapping 

C.1.2.2 Pitch shift effect 

The second effect is the pitch shift effect. This effect is generated in a similar manner to 

the echo effect in that the data is fed into a rotating buffer. However, the difference is that 

the buffer is of fixed length (Ik) and the output is generated from a different address from 

the input. This effect works by sampling the input data at a fixed rate (46.9kHz) into the 

rotational buffer and outputting this data at a different rate. This rate is determined by a 

variable attribute. 

The buffer always holds 1/46"^ of a second worth of samples, giving a minimum frequency 

of 46Hz. By outputting the samples at a different rate, the pitch of the audio is changed. 

This method produces two unwanted but practically unnoticeable effects. When the output 

sample rate is faster than the input sample rate, the first anomaly occurs when the output 

sample position catches up with the input sample. When this happens, the next output 

sample will effectively be taken from 1/46̂ ^ of a second before the present output sample. 

This may produce a noticeable jump, or 'click' on the audio output if the start and end 

samples were noticeably different. The same will occur when the output rate is slower than 

the input rate, but this time with the jump occurring forward in time by 1/46"^ of a second. 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 3 2 5 

The second anomaly is due to the same procedure for the pitch shift. If the output rate is 

much faster than the input rate, then the sampled audio signal will be repeated on the 

output as the output catches up with the input and wraps around backwards in time. On the 

other hand, when the output rate is much slower than the input rate, some data samples 

will be lost. This is due to the input data position catching up with the output data position 

and overwriting the data that was written 1/46''̂  of a second ago that has not yet been 

outputted by the system. 

IM Full Address Range 

IK Used Address Range 

=F 
Elatas-] 

i k 

Newest Samples g Oldest Sample^ 

Variable Rat«3-186 kHz Fixed &te 47kHz 
NULL Addresses 

Start Address Output Address Input Address IK limit End Address 

Figure C.3 Pitch shift effect memory mapping 

This effect turned out to work well with a proportion of analogue feedback. It produces a 

phasing-like effect as well as the actual pitch shift. This effect can make speech sound like 

'Pinky and Perky' down to 'Darth Vader'. 

C. 1.2.3 Phasing effect 

This effect is generated by continuously shortening then lengthening the FIFO buffer that 

contains samples with a short delay period. The rate at which the buffer is expanded and 

contracted is adjustable to create various effects. This effect relies on the analogue 

feedback to create the interference patterns in the frequency domain that causes the 

phasing effect. 

The method that produces this effect suffers from excessive 'clicking' when the buffer size 

is being contracted. This is due to the input and output sample rates being the same, with 

large jumps in time to shorten and expand the delay time. A better method would be to 

derive the sample rate from a similar method used in the pitch shift effect. 



DJ.D. Milton, 2002 Appendix C; Demonstrators in detail 3 j 7 

C.1.3 Digital design - multiple processes 

As this design is very timing-critical, much use is made of multiple communicating 

processes. This allows a lot of parallelism and simplifies what would be complex 

procedures if written with a single thread of code. There are nine processes, each with 

their own purpose. These are explained in the further sections. 

C.1.3.1 Rate process 

This process simply generates two pulses every 128 clock cycles (the audio rate). One 

pulses 64 cycles offset from the other pulse. This is used for the read from memory sample 

rate generation (output timing) and the write to memory sample rate generation (input 

timing). 

C.1.3.2 Phase shift process 

The phase shift process continuously increments and decrements a value that is used for 

the phasing effect. This value determines the present delay of the effect. The rate at which 

the value is changed is determined by another value that can be edited by user input. 

C.1.3.3 Button process 

The button process controls the present state of the system. It forms the interface to the 

user. It uses the three button inputs to change various system attributes. The first button 

controls the present effect in operation by cycling through each mode on every button 

press. The button needs to be pushed and released for every change in mode. The second 

and third buttons have similar, but opposite effects. Depending on the present mode 

(which effect is in operation), these two buttons increment or decrement a single value that 

is used within each effect. For the direct audio pass through mode, these two buttons have 

no effect. For the echo mode, the two buttons increase and decrease the delay of the echo. 

For the pitch shift mode, these buttons adjust the relative pitch and for the phasing mode, 

the rate of change of phase delay is adjusted. 

C.1.3.4 Debounce process 

The button process to introduce a time delay that is necessary to remove signal bouncing 

from the button input uses the debounce process. It is also used to set an auto-repeat rate 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 3]^g 

for the continuous button pressing of the attribute change buttons within the button 

process. 

C.1.3.5 Second rate process 

This process is used in a similar way to the first rate process in that it generates a 

semaphore with a particular time period. However, the frequency for the second 

semaphore to be set is adjustable from 23 kHz to 186 kHz. This semaphore is used for the 

pitch bend effect as the rate at which the samples are outputted to the DAC. The value that 

controls the period is set within the button process. 

C.1.3.6 ADC clock process 

As the ADC used required a maximum clock period of 1 MHz, a division by six of the 

system clock was necessary to generate this frequency. This is the sole purpose of this 

process. Having six control states for which the ADC clock is set for three and reset for 

the other three performs the clock division. 

C.1.3.7 ADC control process 

A separate process to control the external ADC was required due to the conversion time of 

this device approaching the input sample rate. A pipelined approach to the data received 

from this input was taken, in that the present value received from the ADC is used as the 

input data, and when a memory write is performed with this data, a new ADC conversion 

is initiated ready for the next memory write. 

C.1.3.8 Control process 

The control process performs all the sequencing of the memory accesses, ADC reads and 

DAC writes dependent on the present mode of operation. It also generates the correct 

memory address for each access and drives the refreshing of the DRAM. It forms the basic 

algorithm for each of the effects that are generated. 

C.1.3.9 Memory process 

The memory process is the main reason for this project to be designed and built. This is 

the process that was initially used to test the various access modes and timing attributes of 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 3 2 9 

the fast page mode DRAM. However, this incarnation only performs CAS before RAS 

refreshing and single-byte non-page-mode read and writes. This was all that was required 

from this system as memory bandwidth and latency was not such a constraint as for the 

VGA controller. 

One major flaw that was found with the interpretation of the given timing from the 

memory data books was that the address setup time has a minimum of 0ns. However, this 

does not mean that the address can be set up at the same time as the two address strobes, 

/RAS and /CAS. The actual timing requires a small period between the two. This is 

achieved by inserting a clock cycle. This turns out not to impose much timing penalty due 

to the many other timing constraints that also need to be met. Along with the changes to 

the memory timing, the MOODS control graph was utilised as the controller state 

machine. With the initial version of the controller using a style of VHDL that forced 

MOODS to optimise an entire state machine process into one control state, the produced 

design was larger than necessary. 

C.1.4 PCB design and production 

As this design was relatively simple, a simple two-layer PCB could be used for producing 

the demonstration. This allowed the use of the in-house PCB manufacturing facilities that 

can produce boards with a minimum track width of 12mil. The same software was used to 

produce both this design and the VGA controller general-purpose board. Once the board 

was built, it was populated and tested manually. A composite picture showing the tracks 

and components from the layout tool is shown within Figure C.4. 

One method that was used with this board was to force the routing algorithm to route on 

the bottom layer whenever it could and to use the top layer only when it was necessary. 

This meant that there were fewer vias to solder, greater testability of the final board, and 

only single sided soldering was necessary for every component, which meant that hand 

soldering was possible. A picture of the final implementation of the effects processor is 

shown in Figure C.5. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 320 

txcO 
o ^ o o 

i i 
iM LM324 

pusn h'usn 
Switch Switch 

Figure C.4 Effects processor PCB track layout 

t?w m n i 9 9 i i m m u H P l i 

0 o i l 
0 B o y " 
0 -O a 

S F. I 
OCvMHz 

• QC2001/4D a a a a a a a 
c*twi3 o n 
c im-o • ' f ? 

o o u u 

Figure 0.5 Effects processor PCB picture 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 321 

C.2 PCB design 

The Printed Circuit Board information shown here relates to the first PCB described 

within Chapter 6, Section 6.1.1. The second PCB described within Section 6.1.2 was 

designed separately and is described in more detail within [106]. 

C.2.1 Programming the FPGA 

The FPGA device used can be programmed in one of eight modes. An external interface to 

the entire programming system is contained within expansion port A, which enables any 

of these modes to be utilised. However, the board is designed with one of two modes in 

mind. The FPGA requires programming every time that it is powered up. 

The first is the slave serial mode, used to program the device from a computer download 

cable. This mode is used during development of the digital system and is interfaced by a 

limited set of programming pins that can be connected via the external programming 

connector, shown within Figure C.6. The meanings of these pins are further explained 

within [104]. 

TDI TCK /PROG DIN DONE CCLK GND VCC (5V) 

® ® ® © ® ® ® 
TDO TMS DOUT DONE HDC LDC /INIT 

@ ® ® ® ® ® 

Figure C.6 External programming connector 

The second supported mode is the master parallel (up) mode that is used when a design 

has been settled upon. An onboard ROM that is capable of storing a single configuration 

supports this mode. 

The mode selection is made via a set of DIP-switches that pull the FPGA's mode selection 

pins low. The mode selection pins are also accessible firom expansion port A. The DIP-

switch positions for both supported modes are shown within Figure C.7. Note that only 

three of the four switched are connected. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 322 

switch knob 

/ \ 
/ \ 

1 - off < A 

top of 
board 

0 = on 

N/C MO M1 M2 N/C MO Ml M2 

a) slave serial b) master parallel (up) 

F igure C.7 Programming mode DIP switch settings 

C.2.2 FPGA pin-out 

The pin constraints listed within Section C.2.3 reference FPGA pad names of the PG475 

package whose bottom-view layout is shown within Figure C.8. 

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 
^o^o^o^ o°o°o°o 

o o o o o o o o o o o o o o o o o o o o 
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

0 12 14 1* 18 20 22 24 26 28 30 32 34 3* 38 40 
^ 13 M # 19 a a a ^ m M # m* 

P G 4 7 5 BOTTOM VIEW 

Figure C.8 FPGA package used by the PCB 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 323 

C.2.3 Pin constraints 

All ancillary components designed into the PCS are connected to the core FPGA. The 

connections between the FPGA pins and component pins are listed in the tables below. A 

few connections are shared between the onboard components and the external connectors. 

These do not restrict the use of any component on the board unless connected externally. 

Clock pin FPGA pin Comment 

Clock 1 F38 GCK2, 25 MHz, Shared with expansion port A, B11 

Clock 2 J37 GCK3, Shared with expansion port A, B12 

Table C.1 Clock pin constraints 

Keyboard pin FPGA pin Comment 

Clock AN1 Common collector 1/0 (mainly input) 

Data AN3 Common collector I/O (mainly input) 

Table C.2 Keyboard pin constraints 

Mouse pin FPGA pin Comment 

Clock AM4 Common collector I/O (pull-down only) 

Data AN5 Common collector I/O (pull-down only) 

Table C.3 Mouse pin constraints 

Serial port pin FPGA pin Comment 

R1 AP2 Serial Data Receive (RxD) 

T1 AW3 Serial Data Transmit (TxD) 

shared with PA1 program address 

R2 AR1 Clear to send (CTS) 

T2 ATS Request to send (RTS) 

Table C.4 Serial port pin constraints 

Text ROM pin FPGA pin Comment 

Address 0 F24 Least significant address bit 

Address 1 824 

Address 2 D26 

Address 3 G27 

Address 4 B28 

Address 5 B32 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 324 

Text ROM pin FPGA pin Comment 

Address 6 B34 

Address 7 C37 

Address 8 C33 

Address 9 C31 

Address 10 C29 IVlost significant address (11 bits = 2K) 

Data 0 F22 Least significant data bit 

Data 1 C21 

Data 2 D20 

Data 3 E19 

Data 4 F20 

Data 5 D22 

Data 6 G23 

Data 7 G25 IVlost significant data (8 bits) 

Table C.5 Text ROM pin constraints 

VGA&DACpin FPGA pin Comment 

Blanking G9 Composite of Vertical and Horizontal blanking 

VSync C15 Vertical Sync signal 

HSync A15 Horizontal Sync signal 

Blue 7 D14 Most significant bit for Blue colour (8 bits) 

Blue 6 614 

Blue 5 A13 

Blue 4 A11 

Blue 3 B12 

Blue 2 C11 

Blue 1 D10 

Blue 0 B10 Least significant bit for Blue colour 

Green 7 C9 Most significant bit for Green colour (8 bits) 

Green 6 G11 

Green 5 E9 

Green 4 F12 

Green 3 E11 

Green 2 E13 

Green 1 D12 

Green 0 F14 Least significant bit for Green colour 

Red 7 C5 Most significant bit for Red colour (8 bits) 

Red 6 A5 

Red 5 86 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 325 

VGA&DACpin FPGA pin Comment 

Red 4 A7 

Red 3 E7 

Red 2 B8 

Red 1 D8 

Red 0 A9 Least significant bit for Red colour 

Table C,6 Video signal pin constraints 

VGA DRAM pin FPGA pin Comment 

/RAS BA11 Inverted Row Address Strobe 

/CAS AY10 Inverted Column Address Strobe 

/WE AW11 Inverted Write Enable signal 

Address 0 AV12 Least significant address bit 

Address 1 AY12 

Address 2 BA13 

Address 3 AV14 

Address 4 AY14 

Address 5 AT14 

Address 6 AW13 

Address 7 AU13 

Address 8 AT12 Most significant address, multiplexed 9 bits = 256Kword 

Data 0 AT16 Least significant data bit 

Data 1 AT18 

Data 2 AT24 

Data 3 AU23 

Data 4 AT2 

Data 5 AU3 

Data 6 AU9 

Data 7 AT4 

Data 8 AU17 

Data 9 AV18 

Data 10 AV20 

Data 11 AU19 

Data 12 AV2 

Data 13 AV4 

Data 14 AV10 

Data 15 AU11 

Data 16 AV16 

Data 17 AW17 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 326 

VGA DRAM pin FPGA pin Comment 

Data 18 AW19 

Data 19 AY18 

Data 20 AW1 

Data 21 AW5 

Data 22 AW9 

Data 23 AY8 

Data 24 BA15 

Data 25 BA19 

Data 2S BA23 

Data 27 AY20 

Data 28 AY4 

Data 29 BA5 

Data 30 BA9 

Data 31 BA7 Most significant data (32 bits) 

Table C.7 Frame buffer DRAM pin constraints 

DRAM 0 pin FPGA pin Comment 

/RAS AL3 inverted Row Address Strobe 

/CAS 84 inverted Column Address Strobe 

/WE AGS inverted Write Enable signal 

Address 0 H6 Least significant address bit 

Address 1 J5 

Address 2 L7 

Address 3 M6 

Address 4 P4 

Address 5 R7 

Address 6 V6 

Address 7 T4 

Address 8 AB6 

Address 9 AF6 

Address 10 ACS Most significant address, multiplexed 11 bits = 4Mword 

Data 0 G5 Least significant data bit 

Data 1 K6 

Data 2 N3 

Data 3 T6 

Data 4 AK6 

Data 5 AGS 

Data 6 AK4 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 327 

DRAM 0 pin FPGA pin Comment 

Data 7 AL5 

Data 8 F4 

Data 9 K4 

Data 10 N1 

Data 11 R5 

Data 12 Y6 
Data 13 AF4 

Data 14 AJ5 

Data 15 AJ3 Most significant data (16 bits) 

Table C.8 General purpose DRAM bank 0 pin constraints 

DRAM 1 pin FPGA pin Comment 

/RAS AM2 Inverted Row Address Strobe 

/CAS C3 Inverted Column Address Strobe 

/WE AG1 Inverted Write Enable signal 

Address 0 H4 Least significant address bit 

Address 1 J3 

Address 2 L5 

Address 3 L3 

Address 4 N5 

Address 5 P2 

Address 6 U7 

Address 7 U3 

Address 8 AB2 

Address 9 ACS 

Address 10 AC1 Most significant address, multiplexed 11 bits = 4Mword 

Data 0 F2 Least significant data bit 

Data 1 K2 

Data 2 M4 

Data 3 R3 

Data 4 W5 

Data 5 AE5 

Data 6 AH4 

Data 7 AK2 

Data 8 E1 

Data 9 J1 

Data 10 IVI2 

Data 11 R1 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 328 

DRAM 1 pin FPGA pin Comment 

Data 12 W3 

Data 13 AE3 

Data 14 AH2 

Data 15 AJ1 Most significant data (16 bits) 

Table C.9 General purpose DRAM bank 1 pin constraints 

Expansion A pin FPGA pin Comment 

A1 AR7 PAG, AA/S 

A2 AW3 PA1, GCK7, shared with Serial port RS232 T1 

A3 AU1 PA2, CS1 

A4 AM6 PA3 

A5 AD6 PA4 

A6 AD4 PAS 

A7 AB4 PAG 

A8 AA3 PA7 

A9 Y2 PA8 

A10 Y4 PAG 

A11 V2 PAID 

A12 V4 PA11 

A13 H2 PA12 

A14 G1 PA13 

A15 E3 PA14 

A16 E5 PA15, GCK8 

A17 G7 PA16. GCK1 

A18 D4 PA17 

A19 U5 PA18 

A20 W1 PA19 

A21 AC7 PA20 

A22 AD2 PA21 

A23 AU5 PDO, DIN 

A24 AV8 PD1 

A25 AW15 PD2 

A26 AW21 PD3 

A27 AY22 PD4 

A28 BA29 PD5 

A29 AV34 PD6 

A30 AU35 PD7 

A31 AN35 /PROG 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 329 

Expansion A pin FPGA pin Comment 

A32 AR35 DONE 

B1 E35 MO 

B2 A39 M1 

B3 G33 M2 

84 AV6 DOUT, GCK6 

85 Y38 /INIT 

86 C41 LDC 

87 G35 HOC 

88 AR5 CCLK 

89 AY6 RDY, /BUSY, /RCLK 

810 AY28 /CSO 

811 F38 GCK2, shared with Clock 1 (25 MHz) 

812 J37 GCK3, shared with Clock 2 

813 AU39 GCK4 

814 AV38 GCK5 

815 AN7 TOO 

816 D6 TDI 

817 F8 TCK 

818 C13 TMS 

819 BA21 /RS 

820 A29 General purpose I/O 

821 D30 General purpose I/O 

822 E31 General purpose I/O 

823 E33 General purpose I/O 

824 D34 General purpose I/O 

825 B36 General purpose I/O 

826 838 General purpose I/O 

827 C39 General purpose I/O 

828 E41 General purpose I/O 

829 G41 General purpose I/O 

830 H40 General purpose I/O 

831 J41 General purpose I/O 

832 K40 General purpose I/O 

CI D16 General purpose I/O 

C2 N/C 

C3 C17 General purpose I/O 

C4 D18 General purpose I/O 

C5 B18 General purpose I/O 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 330 

Expansion A pin FPGA pin Comment 

C6 C19 General purpose I/O 

C7 A19 General purpose I/O 

C8 B20 General purpose I/O 

C9 A21 General purpose I/O 

C10 B22 General purpose I/O 

C11 E23 General purpose I/O 

C12 C23 General purpose I/O 

C13 A23 General purpose I/O 

C14 D24 General purpose I/O 

C15 N/C 

C16 C25 General purpose I/O 

C17 C27 General purpose I/O 

C18 A27 General purpose I/O 

C19 D28 General purpose I/O 

C20 E29 General purpose I/O 

C21 B30 General purpose I/O 

C22 N/C 

C23 A33 General purpose I/O 

C24 A35 General purpose I/O 

C25 D36 General purpose I/O 

C26 N/C 

C27 D40 General purpose I/O 

C28 F40 General purpose I/O 

C29 N/C 

C30 H38 General purpose I/O 

C31 J39 General purpose I/O 

C32 K38 General purpose I/O 

T a b l e C.10 Expansion port A pin constraints 

Expansion B pin FPGA pin Comment 

A1 L39 General purpose I/O 

A2 M40 General purpose I/O 

A3 N41 General purpose I/O 

A4 P40 General purpose I/O 

AS R41 General purpose I/O 

A6 U39 General purpose I/O 

AT V40 General purpose I/O 

AS W41 General purpose I/O 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 331 

Expansion B pin FPGA pin Comment 

A9 Y40 General purpose I/O 

A10 AB40 General purpose I/O 

A11 AC41 General purpose I/O 

A12 AD40 General purpose I/O 

A13 AF38 General purpose I/O 

A14 AG41 General purpose I/O 

A15 AH40 General purpose I/O 

A16 AJ41 General purpose I/O 

A17 AK40 General purpose I/O 

A18 AL39 General purpose I/O 

A19 AM40 General purpose I/O 

A20 AN41 General purpose I/O 

A21 AP40 General purpose I/O 

A22 AT40 General purpose I/O 

A23 AU41 General purpose I/O 

A24 BA39 General purpose I/O 

A25 AY38 General purpose I/O 

A26 BA37 General purpose I/O 

A27 AY36 General purpose I/O 

A28 BA35 General purpose I/O 

A29 BASS General purpose I/O 

A30 AY32 General purpose I/O 

A31 BAS1 General purpose I/O 

A32 BA27 General purpose I/O 

B1 L37 General purpose I/O 

82 M38 General purpose I/O 

83 N39 General purpose I/O 

84 P38 General purpose 1/0 

85 RS9 General purpose I/O 

86 T38 General purpose I/O 

87 V38 General purpose I/O 

88 WS9 General purpose I/O 

89 AAS9 General purpose I/O 

810 ABS8 General purpose I/O 

811 AC39 General purpose I/O 

812 AD38 General purpose I/O 

813 AF36 General purpose I/O 

814 AG39 General purpose I/O 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 332 

Expansion B pin FPGA pin Comment 

B15 AH38 General purpose 1/0 

816 AJ39 General purpose I/O 

B17 AK38 General purpose I/O 

B18 AL37 General purpose I/O 

B19 AN39 General purpose I/O 

B20 AP38 General purpose I/O 

B21 AR41 General purpose I/O 

B22 AT38 General purpose I/O 

B23 AW39 General purpose I/O 

B24 AY34 General purpose I/O 

B25 AW33 General purpose I/O 

B26 AW31 General purpose I/O 

B27 AY30 General purpose I/O 

B28 AW29 General purpose I/O 

B29 AW27 General purpose I/O 

B30 AW25 General purpose I/O 

B31 AY24 General purpose I/O 

B32 AW23 General purpose I/O 

C1 GND 

C2 Unregulated power supply 

C3 M36 General purpose I/O 

C4 N37 General purpose I/O 

C5 R37 General purpose I/O 

C6 U37 General purpose I/O 

C7 V36 General purpose I/O 

C8 W37 General purpose I/O 

C9 AB36 General purpose I/O 

C10 AC37 General purpose I/O 

C11 AD36 General purpose I/O 

C12 AE37 General purpose I/O 

C13 AE39 General purpose I/O 

C14 AG37 General purpose I/O 

C15 AJ37 General purpose I/O 

C16 AK36 General purpose I/O 

C17 AM36 General purpose I/O 

C18 AM38 General purpose I/O 

C19 AN37 General purpose I/O 

C20 AP36 General purpose I/O 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 333 

Expansion B pin FPGA pin Comment 

C21 AR37 General purpose I/O 

C22 AV40 General purpose 1/0 

C23 AU37 General purpose I/O 

C24 AV36 General purpose I/O 

C25 AU33 General purpose I/O 

C26 AV32 General purpose I/O 

C27 AU31 General purpose I/O 

C28 AV30 General purpose I/O 

C29 AV28 General purpose I/O 

C30 AV26 General purpose I/O 

C31 AV24 General purpose I/O 

C32 AV22 General purpose I/O 

Table C.11 Expansion port B pin constraints 

C.2.4 Track layout 

An automated routing program was used to connect the pins of each component within the 

PCB. The results of this formed the layer masks used to produce the PCB. The PCB is of a 

four-layer construction with a ground-plane layer, the power-plane layer (split into the 

various regulated power supply ranges) and top and bottom signal routing layers. Figure 

C.9 shows a composite reproduction of the masks used for the PCB production. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 334 

S O O O O O I O 
IOO0D05 

0-CZD-
o-CZDf 
o-dD 

r 

n s i i M R y 

i « 
zxww 

• o o o 0 

oo oo 

m 

Figure C.9 General purpose PCB track layout 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 335 

C.3 Demonstrator motherboard 

The motherboard used within the demonstration designs was built manually using 

soldered wire-wrap wire on a grid-type pad board. It has seven 96-way female connectors 

which plug directly into the three FPGA boards (2 connectors each) and the audio board 

(single connector). The motherboard is described within Chapter 6, Section 6.1.3.1. The 

connecting wires that form the linkage between each system are shown within the 

following tables, which each show the pin linkage for each expansion port of each 

connecting board. 

Table C.12 below contains the wire names for the main system board expansion port B. It 

links to the heap manager board, VGA-drive board and audio board. 

Pin 
Pin row 

Pin A B C Pin 
dir wire name dir wire name dir wire name 

1 Bl heap addr(19) 1 RESET (GND) GND 
2 Bl heap addr(18) 1 vga vert blank SUPPLY 
3 Bl heap addr (17) 0 vga serial data (11) 
4 Bl heap addr (16) 0 vga serial data (10) 
5 Bl heap addr (15) 0 vpa serial data (9) 
6 Bl heap addr(14) 0 vga serial data (8) 
7 Bl heap addr(13) 0 vga serial data (7) 
8 Bl heap addr(12) 0 vga serial data (6) 
9 Bl heap addr(11) 0 vga serial data (5) 
10 Bl heap addr (10) 0 vga serial data (4) 
11 Bl heap addr(9) 0 vga serial data (3) 
12 Bl heap addr(8) 0 vga serial data (2) 
13 Bl heap addr(7) 0 vga serial data (1) 
14 Bl heap addr(6) 0 vga serial data (0) 
15 Bl heap addr(5) 
16 Bl heap addr(4) 0 vga serial sem 
17 Bl heap addr(3) 1 vga serial _ack 
18 Bl heap addr(2) 
19 Bl heap addr(1) 
20 Bl heap addr(0) 0 heap sem 
21 O heap size offset (11) 0 heap cont(1) 
22 0 heap size offset (10) 0 heap cont(0) 
23 o heap size offset (9) 1 heap ack 
24 0 heap size offset (8) 0 heap addr in valid 0 audio elk 
25 0 heap size offset (7) 0 heap data in valid 0 audio leds (3) 
26 0 heap size offset (6) 0 audio leds (2) 
27 0 heap size offset (5) 0 audio leds (1) 
28 0 heap size offset (4) 0 audio leds (0) 
29 0 heap size offset (3) 1 audio sclk 
30 0 heap size offset (2) o audio sdin 
31 0 heap size offset (1) 1 audio sdout 
32 o heap size offset (0) 1 audio ssync 

Table C.12 Main board expansion port B (top) 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 336 

Table C. 13 below contains the wire names for the main system board expansion port B. It 

links to the heap manager board (data path), contains the synchronisation signals and links 

to an external configuration ROM system that enables more than one configuration to be 

loaded into the main system. Two EPROMs contain the core designs for both the tracker 

and expression evaluator systems. These are held on the motherboard itself, along with the 

address decoding logic that selects which ROM to use. 

Pin 
Pin row 

Pin A B C Pin 
dir wire name dir wire name dir wire name 

1 O PAO 81 heap data (31) 
2 0 PA1 81 heap data (30) 
3 0 PA2 81 heap data (29) 
4 0 PAS 81 heap data (28) 
5 o PA4 81 heap data (27) 
6 o PAS 81 heap data (26) 
7 0 PAG 81 heap data (25) 
8 o PA7 Bl heap data (24) 
9 o PAS 81 heap data (23) 
10 0 PA9 81 heap data (22) 
11 o PA10 81 heap data (21) 
12 o PA11 81 heap data (20) 
13 0 PA12 1 ZERO B0ARD2 81 heap data (19) 
14 o PA13 1 ZERO BOARDS 81 heap data (18) 
15 o PA14 81 heap data (17) 
16 0 PA15 81 heap data (16) 
17 o PA16 81 heap data (15) 
18 0 PA17 81 heap data (14) 
19 0 PA18 81 heap data (13) 
20 0 PA19 0 START 81 heap data (12) 
21 0 PA20 Bl heap data (11) 
22 0 PA21 81 heap data (10) 
23 1 PDO 81 heap ..data (9) 
24 1 PD1 81 heap data (8) 
25 1 PD2 81 heap data (7) 
26 1 PD3 81 heap data (6) 
27 1 PD4 81 heap data (5) 
28 1 PD5 81 heap data (4) 
29 1 PD6 81 heap data (3) 
30 1 PD7 81 heap data (2) 
31 81 heap data (1) 
32 o DONE 81 heap data (0) 

Table C.13 Main board expansion port A (bottom) 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 337 

Table C.14 below contains the wire names for the heap manager board expansion port A. 

It links the heap control, offset and address signals to the main system board, along with 

the system synchronisation signals. 

Pin 
Pin row 

Pin A B C Pin 
dir wire name dir wire name dir wire name 

1 Bl heap addr(19) 
2 
3 Bl heap addr(18) 
4 Bl heap addr (17) 
5 Bl heap addr(16) 
6 Bl heap addr(15) 
7 Bl heap addr(14) 
8 Bl heap addr(13) 
9 Bl heap addr(12) 
10 Bl heap_ addr (11) 
11 Bl heap addr(10) 
12 Bl heap addr(9) 
13 0 ZERO Bl heap addr(8) 
14 1 START Bl heap addr(7) 
15 
16 Bl heap addr(6) 
17 Bl heap., addr (5) 
18 Bl heap addr(4) 
19 Bl heap addr(3) 
20 1 heap sem Bl heap addr(2) 
21 1 heap cont (1) Bl heap addr(1) 
22 1 heap cont (0) 
23 0 heap ack Bl heap, addr (0) 
24 I heap addr in valid 
25 1 heap data in valid 
26 1 heap size offset (11) 
27 1 heap size offset (10) 1 heap size offset (4) 
28 1 heap size offset (9) 1 heap size offset (3) 
29 1 heap size offset (8) 
30 1 heap size offset (7) 1 heap size offset (2) 
31 1 heap size offset (6) 1 heap size offset (1) 
32 1 heap size offset (5) 1 heapsizeoffset (0) 

Table C.14 Heap manager board expansion port A (top) 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 338 

Table C.15 below contains the wire names for the heap manager board expansion port B. 

It links the heap data signals to the main system board. It also drives two LEDs dependent 

on the activity of the heap transmission data and VGA driver activity for debugging 

purposes. 

Pin 
Pin row 

Pin A B C Pin 
dir wire name dir wire name dir wire name 

1 Bl heap data (31) RESET (GND) GND 
2 Bl heap data (30) SUPPLY 
3 Bl heap data (29) 
4 Bl heap data (28) 
5 Bl heap data (27) 
6 Bl heap data (26) 
7 Bl heap data (25) 
8 Bl heap data (24) 
9 Bl heap data (23) 
10 Bl heap data (22) 
11 Bl heap data (21) 
12 Bl heap data (20) 
13 Bl heap data (19) 
14 Bl heap data (18) 
15 Bl heap data (17) 
16 Bl heap data (16) 
17 Bl heap data (15) 
18 Bl heap data (14) 
19 Bl heap data (13) 
20 Bl heap data (12) 
21 Bl heap data (11) 
22 Bl heap data (10) 
23 Bl heap data (9) 
24 Bl heap data (8) 
25 Bl heap data (7) 
26 Bl heap data (6) 
27 Bl heap data (5) 
28 Bl heap data (4) 
29 Bl heap data (3) 
30 Bl heap data (2) 
31 Bl heap data (1) O vga active 
32 Bl heap data (0) 0 heap active 

Table C.15 Heap manager board expansion port B (bottom) 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 3 3 9 

Table C.16 below contains the wire names for the VGA drive board expansion port A. It 

links all the serially interfaced VGA communication signals and the system 

synchronisation signals. 

Table C.16 VGA drive board expansion port A (top) 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 340 

Table C.17 below contains the wire names for the VGA drive board expansion port B. It 

exists as a placeholder for the power supply and reset signal (connected to ground). It also 

drives two LEDs dependent on the activity of the serial transmission data and VGA driver 

activity for debugging purposes. 

Pin 
Pin row 

Pin A B C Pin 
dir wire name dir wire name dir wire name 

1 RESET (GND) GND 
2 SUPPLY 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 O vga active 
32 O serial active 

Table C.17 VGA drive board expansion port B (bottom) 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 341 

Table C.18 below contains the wire names for the audio board connector. The audio board 

was originally designed to connect to expansion port B of the first PCB directly. The 

motherboard uses the provided 3.3V regulated power supply to drive all the T constants 

back into the audio board. The audio serial communication signals link directly to the 

main system board. The audio board also contains four LEDs that are directly driven from 

the main system board. These are used for debugging purposes. 

Pin 
Pin row 

Pin A B C Pin 
dir wire name dir wire name dir wire name 

1 1 audio SIVI0DE(3)D'' GND 
2 1 audio SMODEfZ)"^ SUPPLY 
3 1 audio SMODE(1)"0" 1 audio clt<out 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 0 +3.3 Volts ("1") 
16 
17 1 audio MF8 SFS2 "0" 
18 1 audio IVIF7 SFS1 
19 0 « audio IVIF6 DI2 » 
20 1 audio MF5 D02 "0" 
21 1 audio MF4 MA "1" 
22 1 audio MF3 F3 "0" 
23 1 audio MF2 F2 "0" 
24 1 audio iVlFI F1 "0" 
25 0 « audio DM » 
26 1 audio D01 "0" 
27 1 audio nPDN"1" 1 audio leds (3) 
28 1 audio nRESET"1" 1 audio leds (2) 
29 0 audio SDOUT 1 audio leds (1) 
30 1 audio SDIN 1 audio leds (0) 
31 0 audio SSYNC 
32 0 audio SCLK 

Table C.18 Audio Board 

The motherboard also contains a provision for two configuration ROMs that drive the 

main system board (the other two FPGA boards program themselves directly). The two 

ROMs contain the tracker design and the expression evaluator design. The particular 

design is selected via a DIP-switch on the motherboard. The address decoding logic for 

ROM selection, along with the EPROM connectivity is shown within Figure C.IO. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 342 

Address 
switch 

DONE 

EPROM 1 

switch = 0 selects EPROM 1 
switch = 1 selects EPROM 2 

/OE 

/CS addr 

data 

EPROM 2 

T 
Data 

/OE 

addr /CS 

data 

Figure C.10 Address decoder logic 

The 'DONE' signal input is driven from the FPGA, and is low when programming. The 

switch input is from the selector DIP-switch. Two signals are generated that drive the 

chip-select and output-enable inputs of both EPROMS. This enables the data paths to be 

joined directly into a single data path, as only one EPROM will drive its outputs at any 

one time. The FPGA reads all 8 data bits in parallel from the programming data lines when 

programming. The FPGA also drives the address bus from the programming address lines. 

It is only in parallel modes that the addresses are driven and all 8 data input bits are used. 

The address counts from zero, up through the frill address range required for a frill 

configuration, controlled by the FPGA, which is master. 

C.4 VGA serial interface controller 

The serial interface to the VGA controller system was designed to reduce the pin count 

required between the user's design that draws objects and the VGA confroller design that 

performs the actual drawing actions and displays them on a monitor. It does this by 

creating communication instructions that contain differing data dependent on the 

preceding instructions. Different actions require different numbers of instructions 

dependent on the amount of data that is required. The entire interface requires only 15 bits 

for all communications, 12 of which are instruction data bits. 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 343 

C.4.1 Interface 

Four types of communication are supported, each relating to a different VGA interface 

procedure. The procedures supported are a change in foreground drawing colour, a palette 

change, the drawing of a rectangle and the drawing of a character. Four interface 

procedures are provided for the user to use within a limited version of the VGA interface 

procedures. These procedures take the given drawing data from the user's design and split 

the information into a number of instructions. The first instruction contains information 

about the type of interface procedure also. 

Interface 

procedure 

Set foreground 

colour 
Set palette Draw rectangle Draw character 

10 bits 4 4 + 12 10 + 9 + 10 + 9 7 + 6 + 2 + 2 + 8 

Instruction bits 2 2 2 2 

Total bits 6 18 40 27 

Instruction 0 type + colour type + colour type + xO type + xO 

Instruction 1 RGB yO yO + xs + ys 

Instruction 2 x1 char 

Instruction 3 y1 

Table C.19 Information contained within serial interface ins tructions 

The number of instructions required for a transmission is dependent upon the number of 

bits requiring transmission and the data path width of the semi-serial transmission data. 

The instruction data is transmitted within 12 bits, of which 2 bits are used within the initial 

instruction to determine the type of transmission. Note that the foreground colour setting is 

achieved within a single instruction, as it only requires 6 bits of data. 

The limited set of interface procedures requires that the VGA controller system be held in 

constant drawing mode within the same pages. The mode chosen for the tracker and the 

expression evaluator is a direct-draw of the foreground only (for text), with both 

foreground and background pages held as page zero. 

C.4.2 Controller 

The controller is used to directly connect to the VGA controller system. It is contained 

within the same FPGA, where pin limitations are not an issue. It performs the inverse of 

the VGA serial interface procedures, by decoding the incoming instruction data. 



D.J.D. Milton, 2 0 0 2 Append ix C: Demons t ra to r s in detail 344 

The control flow within the decoder is shown within Figure C. 11. It effectively reads in an 

initial instruction and works out the type of information held within the instruction and 

any following instructions. 

Initialise interface 
Draw "RESET" 

T 

set 
foreground 

colour 
V 

get next 
instruction 

get next 
instruction 

I I 

draw 
rectangle 

get initial instruction 
and decode type 

get next 
instruction 

set palette get next get next 
value instruction instruction 

T 
get next draw 

instruction character 
, 

Figure C.11 VGA serial controller control flow 

Then a choice of flow is made dependent on the type, which allows a further set of 

instructions to be read in. After the correct number of instructions is read, the drawing 

action is performed via the VGA interface procedures to the underlying VGA controller 

and control returns to the initial point of reading in the next instruction. The controller 

design is a slave to the user's design, which initiates all transmission. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 345 

C.5 Heap manager 

The heap management system described within Chapter 4 has been implemented within an 

FPGA. It is described using behavioural VHDL and synthesised using MOODS itself. The 

memory space controlled by the system is IMword, where each word is 32 bits. 

During development, various versions of the manager were created, each based upon the 

last. The final version used to demonstrate the capabilities of synthesised systems that use 

dynamically allocated memory has a real-time VGA display driven by the heap system. 

The information displayed is explained within Chapter 6. The information is displayed in 

real time with no effect on the speed of allocation or any other communication with the 

user's design. 

C.5.1 Code implementation 

The system is designed with the use of various concurrent processes. The main heap 

management algorithm is implemented within one of these processes. Other processes are 

used to control the underlying DRAM, for which a refresh counter takes another process. 

The real time VGA drive monitor resides within another process, using a buffered 

communication process to form the zero-time-overhead hnk with the heap management 

algorithm process. The heap management algorithm is implemented using a number of 

procedures, some of which are used for communication with the other processes within the 

design. 

USER port 

Real-time 
monitor VGA 

drive 

DRAM 
controller 

Core 
Management 

process 
Refresh 
counter 

buffer 

Figure C.12 Heap manager communicating processes 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 3 4 5 

C.5.2 DRAIVI control process 

This process is used to sequence the address and data lines to the DRAM memory bank 

used to store all heap management and user data. DRAM has a multiplexed address bus 

that is controlled by row and column strobe signals (/RAS and /CAS). The direction of 

data flow is controlled by a third 'write-enable' signal (/WE). This type of memory also 

requires constant refreshing pulses, due to the charged-capacitor method of data storage. 

This process controls three interface sequences. The refreshing sequence consists of 

driving the /CAS then /RAS signals, then resetting both. This operation is required every 

128 cycles using a 12.5MHz clock on average. Each refreshing operation refreshes a 

single row of the memory grid. An internal counter within the DRAM controls the selected 

row. The two other operations are a single read and write access to any address within the 

memory. Both accesses begin by setting the row address on the address bus, driving the 

/RAS signal, then setting the column address on the address bus and then driving the /CAS 

signal. A memory read is performed by not driving the /WE signal, where the data appears 

on the data bus after a small delay from driving the /CAS signal. A memory write is 

performed by setting the data on the data bus and driving the /WE signal before the /CAS 

signal is driven. All operations return once the /RAS, /CAS and /WE signals are reset. 

C.5.3 Refresh timer process 

This process simply generates a signal that inverts every 128 clock-cycles. The DRAM 

memory controller to initiate a refreshing sequence uses this signal and acknowledges it 

via an internal acknowledge variable. It is impossible to miss a refresh inversion due to the 

limited time taken by all memory accesses, and the refreshing takes priority over all other 

accesses. 

C.5.4 Core process 

This process performs all the controlling actions for the heap algorithm. It forms the 

interface with the user's design via the heap manager port and interfaces with the DRAM 

memory controller for all memory reads and writes of the fixed data space that the 

manager is controlling. It also communicates with the display buffer, telling the display 

process what to display. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 3 4 7 

C.5.4.1 Memory access interface procedures 

All memory accesses are made via the two interface procedures defined within the core 

process. These communicate with the DRAM controller via a set of internal signals that 

hold the address and data busses and the communication semaphores. The internal address 

bus holds a full width address. The two operations are a completely dynamic access read 

and write of a single data word (32 bits). The controller does not exploit the fast page 

mode action of the DRAM. 

C.5.4.2 Setup 

The initial stages of the algorithm call for the setup of the underlying memory. This 

consists of the creation of the free-list of all pages and the null page pointer setup. 

The free page list is created by looping through all available pages, from page 255 to page 

1. The first word within each page is written with the base address of the previous page 

within the loop and the free list base pointer will hold the base pointer of page 1. Each 

loop operation requires a single memory write access, totalling 255 writes. 

The page pointers held within page zero are all required to point to a null page initially. 

This is simply achieved by looping for all words within page zero, writing a null address 

into each data word. This also requires only one memory write access per loop iteration, 

totalling 4090 writes (the number of valid page sizes). 

C.5.4.3 User Interface loop 

All communication with the user's design is initiated by that design, with the heap 

management system acting as a slave to the master user's design. Once the heap 

management algorithm setup has occurred, the heap manager enters the user interface 

loop, in which any of the four actions upon the heap can be entered. The four actions 

supported are an allocation of a number of words, the deallocation of a given word block 

and the read and write of a single word from within the allocated objects. These are all 

explained within Chapter 4. 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 348 

C.5.4.4 Heap management procedures 

The management algorithm is created from a number of procedures that each perform 

specific actions upon the heap data space. They are called from the user design 

communications of each type of access. The call graph for each section within the heap 

management process is shown with Figure C.13. 

Management 
process 1 

a 
i s 

i 
Aaapmacf 
Aaapwrge 1 

/)@8paA()c@fe 1 
® -

1 

DRAM setup 1 1 f 
sef semapAofe 

allocate 
page 1 f 

a 
S 

AreepageKsf # -

setup page 1 1 f 
/Teaderwnfes 7 

allocate a 
object £ s 

frzc count check 2 

urWocafed 2 2 

Avefsf 1 1 

check page 
full 1 

& 

1 s 

A*e, 2 

unlink page S 1 s 

check page 2 

umWcd&BCf 1 

unRnk Awifisf 2 3 

deallocate 
object £ 

2 
i f 

deccozynf 1 1 
Anee W 1 2 

check page 
empty 1 f 1 

afbccounf 1 

deallocate 
1 

2 1 page t u 
free page list 

« 
link page i i 1 
check page 2 
/wTkcKnecf 3 

4 

get next 
page 1 

a 
i f 

memo/yreed 1 

255 

write next 
page 1 

a 
i 

a 
S 

memo/y wnfe 1 

Figure C.13 Heap management algorithm call graph 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 3 4 9 

The DRAM setup procedure simply initiates the communication semaphore used 

internally by the DRAM read and write procedures. 

Note that each procedure contains a count of the number of memory read and write actions 

performed on the heap data space. This gives an idea of the number of read and write 

operations required for each action, with the simple heap read and write actions mapping 

directly onto a single DRAM read and write operation and the more complicated 

allocation and deallocation operations taking multiple memory read and write operations. 

All procedures are also inlined into the calling process for speed and area considerations. 

The 'write next page' procedure simply writes a given next page pointer into the base 

address of a given page. This is used for the insertion of free pages onto the free page list. 

The 'get next page' procedure performs the opposite operation to the 'write next page' 

procedure, in that it reads the address of the next page pointer from a given page. This is 

used for the removal of a page from the free page list. 

The 'allocate page' procedure is used to remove a page from the free page list. It 

decrements an internal free page counter also. 

The 'deallocatepage' procedure is used to re-insert a page onto the free page list. It 

increments the internal free page counter also. 

Once a new page has been taken from the free list of pages, the 'setup page' procedure is 

called to fill the header with the valid values for the object size, object unallocated pointer 

and free object list base pointer. It also inserts the page onto the page size page pointer 

within page zero and sets up the next and previous pointers of the page to point to itself 

The 'allocate object' procedure is used to return an object pointer from within a given 

page. It first checks the free object list from within the page and returns the head of the list 

if any objects exist within the list. If no objects are in the free list, then the procedure will 

return the unallocated pointer and increment the same pointer (checking for no more 

space). The number of allocated objects within the page is also incremented. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 3 5 0 

The ^deallocate objecf procedure performs the opposite operation to the ^allocate objecf 

procedure in that it takes an object pointer and inserts the object onto the free list of 

objects within the given page. It also decrements the object count within the page. 

The 'checkpage fuW procedure is used to determine whether the page is completely full 

of objects after an object is allocated from the page. It first checks the unallocated pointer 

then the free list if there is no space left from the unallocated space. If both the free list 

head pointer and the unallocated space are null, then the page is full of objects. 

The 'checkpage empty' procedure is used to determine whether the page is completely 

empty of objects after an object is deallocated from the page. It checks the object count 

value to determine whether any objects are contained. 

The 'unlink page' procedure is used to remove a page from the doubly linked list of pages 

currently in use for a particular object size. If the page is the only page within the list, then 

the page size pointer is set to null. If there are other pages within the list, then the links of 

the doubly linked list of the next and previous pages are linked together, removing the 

given page from the list. The page size pointer is reset to the next page within the list if it 

points to the page being removed. 

The 'linkpage' procedure performs the opposite operation to the 'unlinkpage' procedure. 

It is used to insert a given page into the doubly linked list. The page size pointer is 

checked first for the availability of the doubly linked list. If one doesn't exist, then the 

given page is set up as the only page within the list and the page size pointer is set to point 

to it. If a list already exists, then the page is inserted before the current head of the list by 

the adjustment of the four next and previous pointers of the given page and the pages 

already within the list. 

C.5.4.5 Memory status Interface procedures 

These procedures are called to fill the memory status buffer with the page status 

information. They communicate with the buffer process via some internal signals and 

communication semaphores. They are blocking procedures that are called in positions that 

do not add an increased number of control states required for the communication. They are 

also inlined into the calling process. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 3 5 1 

The procedures are called from the heap management process (are not shown within the 

call graph of Figure C.13). They all take a page as a parameter and write different 

information into the buffer about the given page. They all set the page as being accessed 

and used (the page becomes highlighted). 

If the user makes a heap read or heap write operation, the ''set page status used' procedure 

is called for the page that contains the object that is being accessed. This just sets the page 

as being accessed and used. 

The 'set page status free' procedure is called from the heap setup phase for each page 

inserted onto the free list. It is also called from a deallocation, when a page is re-inserted 

onto the free page list. The buffer is set as the page being empty. 

The 'setpage status partfulV procedure is called from both the allocation and deallocation 

operations. The page is set as being partially full and in use. It is called within allocation 

when a page is taken from the free page list and becomes active. It is called within 

deallocation when a page has an object removed, which results in the page being 

reinserted onto the active page doubly linked list. 

The 'set page status fulV procedure is only called from an allocation, where a page 

becomes totally full from an object allocation. The page is removed from the active page 

list in this case. 

C.5.5 IVIemory map buffer process 

The buffer process is used to control an internal RAM array that stores a representation of 

the state of each page within the heap management algorithm. Four bits are required per 

page, with 256 pages (addresses into the RAM) requiring storage. The buffer has an 8-bit 

address and 4-bit data path. 

Two bits are used to describe the allocation state of the page. One bit determines that the 

page is empty (free) while the other specifies that the page is full. If both are false, then 

the page is partially frill of objects. It is invalid for both to be true, as a page cannot be 

both empty and full of objects at the same time. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 3 5 2 

The other two bits determine whether the page has been accessed within the VGA frame 

raster scan period (1/60^^ of a second). Two bits are required for persistence of the 

information through at least one raster scan period. The heap management process for any 

access of the page sets both bits. The bits are reset one after the other by the VGA drive 

process, which provides the time-out of the raster scan period. The VGA drive process has 

an interface to the buffer that is second in priority to the heap manager interface to the 

buffer. The heap manager interface is write-only, while the VGA drive process has 

read/write access to the buffer. 

C.5.6 VGA drive process 

This process is used to draw a graphical representation of the contents of the buffer 

controlled by the buffer process. The process draws a representation of every page within 

the heap management algorithm in a 16 by 16 grid in the centre of the screen. 

The drawing process begins with the setting up of the interface to the VGA controller, 

initialisation of the colour palette and the erasure of the background screen. The process 

then enters an infinite loop. The drawing process is then forced to wait for the vertical 

blanking period to begin. Once the vertical blanking period is entered, an inner loop 

counts for each page, with the screen coordinates being calculated to produce a square grid 

of pages, starting at the top left comer for page zero. 

It is at this point within the inner loop that the page buffer is read for the relevant page. An 

interface procedure is created within the VGA drive process for this purpose. The 

information for the page is returned and the activity bits contained within the buffer are 

reset one at a time. The page information is then rendered to the VGA controller via two 

coloured rectangles that overlap to form a central rectangle with a border at the current 

page coordinates. The larger rectangle forms the border and is coloured light grey to show 

page activity and dark grey to show no activity within the page. The inner rectangle is 

coloured in one of three colours dependent on the allocation status of the page, where blue 

represents a page on the free page list, green represents a page that has objects contained 

within it but not fiill and red represents a page that is completely full of objects. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 3 5 3 

C.6 Tracker demo 

The tracker design is given a basic data structure and user guide overview within Chapter 

6, Section 6.2. This appendix section gives a more detailed description of the methodology 

used within the behavioural VHDL source code to produce a working tracker design. 

C.6.1 Code implementation 

The two core features to the design methodology used are with the use of the dynamic data 

structures (what is being demonstrated) and with the use of concurrent processes to handle 

relatively strict data throughput timing constraints. The audio throughput data requires 

44,100 sample values per second, which equates to an allowable time period of 22,675 ns 

per sample. With a system clock running at 12 MHz, the audio streams have 272 clock 

cycles of processing time. 

This number of clock cycles is enough for the relatively simple operations performed on 

the audio data. However, the dynamic memory element to the design requires sample 

block allocation, where each single physical memory allocation takes about 80 cycles to 

complete due to the underlying sequential DRAM memory operations. General memory 

accesses take around 10 cycles to complete when asynchronous communication buffering 

is taken into account. 

As all dynamic memory accesses require sequential operation, the number of clock cycles 

taken within a single audio value period can exceed the 272-cycle limit. However, on 

average, the number of cycles required for each audio value will be less than the clock 

cycle limitation, which means that if the audio data streams were buffered with a number 

of FIFO buffers capable of storing a number of values to average out the differences in 

time to process each audio data value, the memory latency issue would disappear, leaving 

only the memory bandwidth as the system limitation. 

The system is designed using two core processes to handle the real time audio processing 

and the output user interface drawing. Each audio stream is buffered using a 16-element 

FIFO. The audio streams are taken from the ADC/DAG controller process, which 

communicates with the external interface chip. 



D.J.D. Milton, 2 0 0 2 Append ix C: Demonst ra tors in detail 354 

K E Y B O A R D port 

Input 
FIFO 
buffer 

Core 
Management 

process 

V G A drawing 

process 
Audio 
Control 

Output 
FIFO 
buffer 

Serial 
port FIFO 

buffer 

Startup 
sync 

SERIAL port S Y N C p o d 

Figure C.14 Tracker processes and data flow 

C.6.2 Data structures 

The stored samples and sequences are all stored dynamically using VHDL data structure 

constructs. These are formed from aggregate record types and array types with access type 

references to the dynamic creation of these data structures. 

C.6.2.1 General linked lists 

The general linked list structure is explained within Chapter 6.2.1.1. It is formed from a 

base list record type that stores a list of element type record items, which each point to the 

actual data structure being listed. This structure allows for common code to implement the 

list insertion, deletion and traversal operations that are used within each list, leading to 

smaller source code size. The alternative would be to have each listed data structure form 

a list within itself 

C.6.2.2 Strings 

Strings are used for text descriptions of samples and sequences. They are formed from a 

limited array (16 elements) of ASCII character types. They are created dynamically with 

the use of access type variables that reference the array type. In the current 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 3 5 5 

implementation, only the serial download mode is capable of filling the strings with 

arbitrary description data. 

C.6.2.3 Samples 

A sample is formed from a record type variable that contains the various items that make 

up the full description of an audio sample. The record elements include an integer ID for 

the sample, a string description (referenced by an access type to a string array) and the 

sample block list, which contains all sample data stream values. The list is formed from a 

reference to a linked list base data structure. 

The sample block list holds a number of fixed length arrays of data stream elements, 

which when put together, form the dynamic length sample stream. A sample stream is 

stored in this way due to the unknown length of the sample, even when recording. The 

sample record type also contains an element that holds the last valid index into the tail 

sample data block, as the tail may only contain a partial array of valid data stream items. 

A pair of sample block iterators are also stored within the sample record, along with index 

positions within the referenced sample block. These store the sample block looping 

positions, that are used when a sample is played past its ending position. The sample may 

be played as looped or single-shot, which is determined by the final sample record 

element. These sample array references are set to the first and last valid elements within 

the entire sample by default. 

C.6.2.4 Sequences 

A sequence is formed fi-om a single record type. This record contains elements that give 

each sequence a unique integer ID and a text description in the same manner as the sample 

description. The sequence is capable of holding a reference to a number of note items at 

any time point using any of the 8 channels. The length of time that a sequence stores is 

held within an element within the sequence record (the default is 128 time positions, with 

256 being the maximum). This stores the last time point to be used within the sequence. 

The notes stored within the sequence are contained within another linked list structure, 

with a reference to the base pointer of this linked list being the last element within the 

sequence record. 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 3 5 5 

The linked list of sequence elements contains a sorted list of items. The sorting occurs by 

insertion at the correct element position. Sorting occurs in two dimensions, with the time 

position being the first, followed by the channel number. 

Each sequence note item is itself contained within a record, with elements describing the 

item position, both time and channel, and the description of the note to be played at that 

time position, using a reference to a sample and a playback speed determined by an octave 

number (bass-1 to treble-5) and a note number (A to G^). A null sample reference will stop 

playback on the relevant channel. 

The sequence elements are stored in this manner due to the sparse nature of the notes. An 

array of sequence point items would quickly fill the available memory space. This list is 

capable of full insertion and deletion capabilities via the input user interface. 

C.6.2.5 Playlist 

The playlist is formed from a list of references to the iteration list items held within the 

sequence list. It only references the sequences, forming a secondary link into the sequence 

list data structure. Full list insertion and deletion capabilities are supported. A link to the 

iteration element within the sequence list is formed due to the capability of alteration of 

the referenced sequence via iteration through the sequence list. A reference to the 

sequence item itself would not allow this, as the sequence has no link to the containing list 

data structure. 

C.6.2.6 Real-time buffer arrays 

As the output user interface is drawn within a separate process from the audio processing 

process and the user interface draws a representation of the various data streams for each 

channel and the mixed output stream, the information to draw requires transferral from 

one process to the other. This would usually be achieved with the use of a number of 

statically created buffers. However, as the amount of data to be stored within these arrays 

is relatively large, the storage space is allocated from the heap dynamically as the heap is 

capable of storing a large amount of data. This is only performed once on system 

initialisation. Shared variables hold the base references to the dynamic arrays and 

communication is performed by semaphore and acknowledge signals. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 3 5 7 

C.6.3 Concurrent process communication 

The flow of data between processes is controlled by a number of semaphore and 

acknowledge signal pairs, each controlling the flow of data being transferred by data 

signals and shared variables. 

C.6.3.1 Semaphore signals and shared variables 

Shared variables are used for the transferral of access type held information between 

concurrent processes, while signals are used for the transferral of all other data types. A 

pair of semaphore and acknowledge signal bits control the data flow with one process as 

the master. The master process initiates the communication with the inversion of the 

semaphore signal and the slave process acknowledges the communication with the 

inversion of the acknowledge signal. Data flow can be in either direction. The core audio 

processing process is the master of all data communications both to and from it. 

C.6.3.2 User interface redraw control 

The ability to read the dynamic data structures within one process while concurrently 

modifying the same data structures within another process has potential pitfalls. For this 

reason, the user interface process (which draws a representation of the data structures) is 

controlled by the audio processing process, which is capable of the modification of all 

sections of the data structures. 

All redraws made by the user interface are initiated by the audio processing process from 

within the internal audio processing loop. At times it is impossible to update sections of 

the output user interface due to the relevant sections of the data structures being modified. 

The user interface may also take a long time to draw sections of its display. It is critical 

that the drawing process does not delay the audio process, so the redrawing of display 

sections is initiated via internal flags within the audio process that only get serviced when 

all other drawing has finished. 

C.6.4 Core process 

The core system process handles all data structure creation and modification via the input 

user interface. It also drives the output user interface, telling it what to draw. The process 



DJ.D. Milton, 2002 Appendix C; Demonstrators in detail 3 5 g 

loop is also used to form the mixed audio output signal that drives the output FIFO buffer 

and records the buffered audio input stream when required. 

C.6.4.1 Keyboard interface 

A standard QWERTY keyboard is used as the input device for the tracker system. The 

core process interfaces with it via the non-blocking communication procedure of the 

keyboard interface. The keys pressed directly influence data structure modification, audio 

mixing control and sequence recording and playback. 

C.6.4.2 Serial port interface 

The serial port is interfaced with via an input FIFO buffer. The buffer uses the interface 

procedures provided by the serial port interface package, while the core process uses 

internal communications with the FIFO buffer. The serial port is only read within the 

serial download mode, which stops all audio processing and user interface control. 

The serial download loop is used to create all data structures held within the tracker. This 

facilitates the storage of sequences and samples within a computer hard disk, A 

communications protocol exists that makes the computer the master system, only releasing 

the tracker system into the main audio processing loop once all data has been downloaded. 

All drawing is flagged to redraw after a serial port download. 

C.6.4.3 Operation modes 

There are three operating modes that select the functionality of various shared keyboard 

operations. Each mode is contained within the main audio processing loop unlike the serial 

port download loop. The sample mode allows for the creation, modification and viewing 

of a number of samples. The sequence mode allows for the creation, modification and 

viewing of a number of sequences. The playlist mode allows for the modification of the 

playlist of sequences. All modes, except the recording of sequences or samples, support 

manual mixed audio playback and the playback of the currently selected sequence or the 

entire playlist of sequences. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 3 5 9 

C.6.4.4 Sample recording (sampler) 

A new sample is recorded from the input audio stream by being in the sample mode and 

pressing the 'R' key. This action dynamically creates a new sample and inserts it onto the 

sample list. The sample record is then initialised and the sample block list is generated. 

The input audio stream is then taken from the input FIFO buffer and fills the sample block 

with the data. Whenever the sample block becomes full, a new block is allocated and 

inserted onto the end of the block list. The incoming audio data then fills the new block. 

Recording finishes by releasing the 'R' key, which enables the polyphonic playback on 

each channel again. The sample and sample list are flagged to redraw after a new sample 

is created. 

C.6.4.5 Sequence editing 

A new sequence can be created, inserted and initialised within the sequence mode. The 

cursor position within the sequence denotes the time and channel position where a new 

note item would be inserted when in sequence recording mode. Instead of the note 

keypresses driving the polyphonic mixed output audio playback, the note is inserted into 

the sequence point list in the correct sorted position. A reference to the note point before 

the highlighted position is always kept as the position to insert after. If a note item already 

exists at the insertion position, then the note item is deleted before reinsertion of the new 

note item. The sequence is flagged as requiring a redraw after every modification and the 

sequence list is flagged to redraw after a new sequence is created. 

C.6.4.6 Playlist editing 

The playlist can be edited within the playhst mode. The list can be iterated through, which 

selects a different sequence. Each change of list position flags a redraw of the playlist, 

sequence list and referenced sequence. A list insertion will insert at the currently selected 

list position, using the currently selected sequence as the inserted value. Only the playlist 

is flagged to redraw in this situation. The list modification is performed by the generic list 

modification procedures. 

C.6.4.7 Sample playback 

Sample playback is initiated by a manual user keypress or via the sequencer. The same 

code is used for both. The only difference being that a playback channel is selected for the 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 350 

manual note playback, while the channel is known for the sequenced playback. Once a 

channel is set as playing a particular sample using a given note and octave, the data within 

the sample is incremented through using an over-sampled index. Only the most significant 

bits of the index are used for the sample index position. This index gives the current 

playback sample value position within a sample block. Whenever the index wraps around, 

the next sample block is iterated to. 

The rate of audio output playback is fixed at 44.1 kHz. The different frequencies required 

for the different notes and octaves are created by incrementing the sample index position 

by a different amount depending on the note being played. This is where the over-

sampling of the index position is used, with bass notes being incremented by a number 

effectively lower than 1 (if the over-sampled index position is taken to be a fixed point 

fractional number, with the only bits used as the index value being the integer part, with 

the over-sample bits being the fractional part), and treble notes being incremented by a 

number effectively greater than 1 index position. Middle-C is the recording rate, which is 

played back with an increment of exactly 1 index position per stored data value. 

The 8 dual-16-bit stereo audio channels and the dual-16-bit audio input stream from the 

ADC are mixed into the single stereo audio output stream by simply adding the sample 

values for each channel together, along with the audio input stream values from the ADC. 

The stereo audio values are treated as two signed numbers, where addition beyond the bit-

range limits of the dual-16-bit output will result in the audio signals being clipped to the 

minimum or maximum limits of twos-complement 16-bit numbers. 

C.6.4.8 Sequencer playback 

The sequencer can be played from the playlist of sequences or from the selected sequence 

only. The only difference is that the playlist item is iterated (and looped back) when 

played from the playlist, which selects a different sequence to play from each time the 

sequence increments past the last time position. 

A sequence is played by incrementing the time position to be played back. Each time this 

happens, each sequence point item for the current playback time position is read and acted 

upon. The movement through time of the sequence is performed at a slower rate 

determined by an internal counter and variable counter limit. This means that the speed of 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 261 

playback of the sequence can be altered, with the use of the global sequence speed 

counter. The default rate for playback gives 8 sequence time positions per second. 

Whenever the time position changes, the sequence point items for the time row are read 

and, if they exist, are placed in the playback channel in which they reference. The 

playback channel holds the current sample being played on that channel, the rate of 

playback and the current iteration position through the sample. The iteration position is 

reset to the first sample index within the sample whenever a new item on that channel is 

found. Storing a null reference to a sample within a sequence time point can halt playback 

of a note on a given channel. 

C.6.5 Drawing process 

The drawing process interfaces with the VGA display system via the serial interface to 

that controller. The serial interface is explained within Appendix C.4. The process draws a 

representation of the contents of the data structures used within the tracker. The core 

control process initiates all drawing once the initial setup phase is complete. The drawing 

mode is fixed as direct draw of the foreground only within page 0, rastering from page 0 

also. This means that everything drawn overwrites what was previously at the drawing 

position, except the text background colour, which is not drawn at all. Only a single frame 

buffer page is used. 

C.6.5.1 Initial setup 

The drawing process sets up the interface to the VGA serial controller by calling the 

initialise procedure defined within the interface package. After this, the palette is set up for 

the colour scheme used within the tracker. Then the background screen is drawn, with the 

various window borders and constant description strings. After this setup phase, the main 

drawing loop is entered, which awaits the core process to tell the drawing process what 

sections of the data structures to draw. 

C.6.5.2 Drawing strings 

Two types of string can be drawn, constant and variable type strings. Constant strings hold 

the various banners used to describe the sections. These are drawn from a constant internal 

ROM, with base and end indexes into the ROM defined as constants. A procedure that 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 352 

loops from two indexes into the ROM given a drawing position and size is created to draw 

constant strings horizontally. 

The variable type string is drawn in the same manner, except that it takes an access type 

variable input that references a string created on the heap. All strings are arrays of 16 

characters. The drawing procedure also takes a drawing position and an end index. If a 

null character is found within the string, then drawing stops at that point. 

C.6.5.3 Drawing generic lists 

The same generic drawing procedure is used to draw the three base lists of the sample list, 

playlist and sequence list on the left hand side of the screen. The procedure takes the 

drawing positions for the upper, middle and lower y-positions and the left and right x-

positions. It also takes the current list iteration position and the type of list being drawn. 

The procedure draws over the background first, removing the previous list contents. This 

is followed by the iteration through the list, following the previous references drawing the 

contents up the screen and the next references drawn down the screen. The information 

drawn is with respect to the given type of list, with samples and sequences having their 

integer IDs and text descriptions listed. The playlist type draws the referenced sequence 

information. 

C.6.5.4 Drawing real-time audio 

The real-time audio signal representation is drawn only once every frame. The blanking 

period of the VGA controller is used to reset the acknowledge signal that tells the audio 

process to refill the audio drawing data buffers. Once filled, the audio process sends a 

semaphore signal to initiate the drawing. 

The background box containing the drawn wave is drawn first. Then, simply looping 

through, reading the array values stored by the shared variable reference of the 

dynamically created arrays and drawing the wave section at that position draws the waves. 

The wave is drawn from left to right with the left sample overwriting the right sample. A 

vertical line is drawn between the old sample value and the new sample value at the 

current index and x-position. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 263 

C.6.5.5 Drawing samples 

The currently selected sample is drawn at the top of the screen next to the sample list. 

Only a small section of the sample is drawn, starting from a sample block iterator not 

necessarily the first block within the list. The sample drawing uses the same code to draw 

the wave sections, with iteration through the sample block list and indexes within each 

block used to provide the stereo drawing data. 

C.6.5.6 Drawing sequences 

The sequence drawing takes up the proportion of the displayed screen. The drawing 

algorithm used to draw the selected sequence is formed from a loop, starting from the time 

position at the top of the screen, finishing at the time position at the bottom of the screen. 

An inner loop counts through each audio channel. This looping method means that the 

sorted list of sequence points will be in iteration order. 

Firstly, for every iteration of the outer loop, the time value is drawn down the left hand 

side by drawing over the previous time value and drawing the new time value represented 

in hexadecimal. Every fourth value is drawn in a lighter shade. Each charmel is then drawn 

across the screen within the inner loop by drawing over the previous item and then 

redrawing the sequence point at that position if one exists at that point. Every time a 

sequence point is found, the drawing process iterates onto the next item. 

The current cursor position is found in the centre of the screen, where the background is 

drawn in a different colour. If the looped drawing position is out of range of the sequence 

time range, then just the background is drawn in a lighter shade, with no time value drawn 

down the left hand side and no sequence point items drawn. 

A valid sequence point is drawn with a representation of the sample ID, note and octave 

used. A null sample will be drawn as a horizontal line, which represents a note stop 

position. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 3 5 4 

C.6.6 Buffer processes 

These processes serve to hnk the core audio processing system to the outside world. They 

provide the transferral of data between systems eliminating the dependence on the 

underlying memory latency. 

C.6.6.1 ADC / DAC controller 

The external audio interface is formed from a combination 16-bit stereo ADC/DAC chip. 

Communications with the device is via two serial interfaces, both under control from the 

chip itself Communication is synchronous due to the shared system clock of 12 MHz. The 

audio data is read in and sent out to the external chip using two 64-bit shift registers. The 

64 bits contain the stereo sample and 32 bits of control data. The shift register process that 

interfaces with the external chip links with the audio input FIFO buffer and the audio 

output FIFO buffer. 

C.6.6.2 Input audio FIFO 

There are 16 memory locations available for stereo samples within this process. The ADC 

shift register controller process feeds the buffer. The core audio process reads data from 

the buffer. The audio process only uses the input buffer when recording input samples. 

When it does this, it attempts to keep the buffer as empty as possible. 

C.6.6.3 Output audio FIFO 

The buffer size is the same as the input FIFO buffer. Samples are read from the buffer by 

the DAC shift register controller process. The core audio process writes data samples into 

the buffer. The audio process always outputs data to the buffer unless in the serial port 

download mode. The core audio process attempts to keep the buffer as fiill as possible. 

C.6.6.4 Serial port Input FIFO 

This buffer is only used when downloading data from the serial port. It is capable of 

storing 16 serial data words (8-bits each). The buffer is filled when new data appears from 

the serial port receiver controller. The core process only reads data from the buffer when 

serially downloading data and tries to keep the buffer as empty as possible when 

downloading. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 355 

C.6.6.5 Multi-chip Synchronisation 

As the system has been partitioned into three separate boards, each with a separate FPGA 

containing the local configurations. The timing of the start-up of each system is not 

guaranteed at any time. Each system has its own resetting mechanism due to various 

communication problems encountered. Instead of synchronising the resetting mechanisms, 

a system to guarantee the synchronisation to a particular time point within each design has 

been created. This allows the communications between the systems to be set up in the 

correct order. A process exists within the tracker to control this synchronisation, which 

makes use of the FPGA programming signals. 

C.7 Expression evaluator demo 

The expression evaluator design is given a basic data structure and user guide overview 

within Chapter 6, Section 6.3. This appendix section gives a more detailed description of 

the methodology used within the behavioural VHDL source code to produce the 

expression evaluator. 

C.7.1 Code Implementation 

This design was produced as a single process system, so all actions occur in sequence with 

no concurrent process communication. The partitioning of the underlying system required 

the same synchronisation as found within the tracker design. This was added with a simple 

controller process that only allows the main process to continue once the correct 

synchronisation conditions are satisfied. 

The point of the demonstrator is to show the use of recursion within a hardware design. 

With this in mind, four of the expression modification procedures are created with a 

recursive implementation. 

C.7.2 Data structures 

The two main data structures within the system are designed to hold the dynamic coloured 

text log and to hold a representation of the expression itself. These are dynamic structures 

allocated using the same heap manager system as used within the tracker design. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 355 

C.7.2.1 Dynamic log structure 

The dynamic coloured text log is created from a linked list structure that is contained 

within a record type structure. The record contains next and previous linked list record 

references that form the links in the list and a reference to a full line of text. A line of text 

is defined as an array of characters of fixed length (78 characters), where each character is 

held within a 12-bit representation; the most significant 4 bits containing the character 

colour and the least significant 8 bits containing a standard ASCII character 

representation. 

The text log will be used to output a continuous stream of text that represents the actions 

performed on the expression at the various recursion depths. The entire log will be 

available, even when it cannot be viewed fully on the screen. This is the reason for the text 

storage of the log. The user will be able to scroll up and down the log, viewing the full 

event history. 

C.7.2.2 Expression binary tree structure 

The expression is held within a single record type structure as described within Chapter 

6.3.1.1. The record contains left and right child operand references which enable a binary 

tree to be built and the operation to be performed upon the operands. The tree node also 

holds an integer value that is used for holding the leaf values and the transitory expression 

results for each level of the tree. The transitory results are used within the recursive 

expression drawing and evaluation procedures. 

C.7.3 Text log procedures 

The log is built from the data structure explained within C.7.2.1, but is requires 

functionality to create, modify, draw, scroll and delete it. The log is filled from various 

calls to the log manipulation procedures made from the various tree modification 

procedures and other user input. The log is created by first creating a line to draw into, 

then drawing all the relevant text information on that line in character order then finishing 

the line with an end-offline (EOL) character. New lines are only created when required, 

with the log starting as initially empty. Text drawing and insertion occurs on a character-

by-character basis with the use of higher level drawing procedures. 



D.J.D. Milton, 2002 Appendix C; Demonstrators in detail 357 

C.7.3.1 Full log redraw 

The only time that the full log text requires a redraw is during a scroll through the log and 

when a new line is created that pushes the top line out of viewable range. 

The log is drawn within two nested loops, the outer loop working upwards through the log 

lines, iterating from the current bottom scroll line position and the inner loop used to draw 

the character on each line. A by-product of redrawing the log is to reset the top scroll line 

position as the last viewable line. This reference is used within the scrolling procedure. 

Overwriting the background for every line with the background colour draws each line, 

followed by the printing of each stored character within the line, starting from the left 

character and working to the right until the EOL character or the line limit is found. Each 

character is drawn in its stored colour by resetting the drawing colour before each 

character is printed. 

C.7.3.2 Line creation 

A new line must be created before any new text is drawn. The line creation procedure 

firstly physically allocates the memory required for the linked list iterator record and the 

lines character array. The reference to the line array is stored within the linked list iterator. 

The linked list iterator is then inserted at the head of the linked list by reassigning the head 

reference of the list and linking the new iterators previous reference to the old head. If the 

list is empty, then the list base reference is also assigned to the new iterator. The bottom 

scroll position is also set to reference the newly created line iterator. 

If the number of lines within the log exceeds the number of viewable lines, then a call to 

the full log redraw procedure is made. The log is redrawn from the bottom scroll 

reference, which has been set to point at the new line. The redraw resets the top scroll 

reference. 

Finally, the current cursor position is set as the first character within the new line, ready 

for the text insertion procedures to use the cursor. The first character also has the EOL 

character written to it in case the line has no text inserted before the next new line 

creation. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 3g§ 

C.7.3.3 Text insertion 

When the log is edited on a single character basis, the drawing always occurs at the bottom 

of the log at the current cursor position, which is always visible when the log is in the 

process of being modified. This means that each character is drawn separately without the 

need for drawing the entire log. 

The single character insertion modifies the character at the current cursor position. The 

cursor position is incremented after the modification. The character is drawn using the 

current drawing colour, which is set dependent on the information being drawn. The 

character is both drawn to the screen and inserted into the log line array. 

C.7.3,4 Drawing strings 

The only strings to be entered into the log are derived fi-om a constant source. These are 

stored within an internal ROM. The colours used for each string are also stored within a 

ROM. The string drawing procedure uses the contents of the two ROMs to insert the 

constant characters of the ROM into the dynamic log at the current cursor position, one 

character at a time. The log insertion colour is reset to the correct colour before any 

characters are inserted and the string within the ROM is selected by a starting index into 

the ROM. Character insertion is performed within a loop that terminates when a null 

character is found within the ROM contents. The character insertion procedure is used for 

each character. 

C.7.3.5 Drawing integers 

The drawing of integers is performed in two stages. The first stage converts the internal 

32-bit binary representation into a 40-bit BCD representation. This conversion provides a 

maximum of 10 characters to draw. The number drawn will be in base-10 format. The 

second stage is to insert the converted text representation of the decimal numbers 

contained within the result of the conversion into the log. 

The conversion of an integer representation into a BCD representation is formed from a 

hardware implementation of the algorithm found in [119]. The algorithm is implemented 

with the BCD representation being stored within a RAM array, which allows a very 

compact storage space, hence size for the conversion procedure. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 359 

The converted number is inserted into the log by looping from the most significant BCD 

number down to the least significant. Drawing only begins once a number other than zero 

is found for each BCD value. The conversion of the zero offset number into an ASCII 

representation is made with the addition of an offset of 48, which is the ASCII number 

character '0' . 

C.7.3.6 Scrolling up and down the log 

The contents of the log may only be scrolled once all log modification has ceased and the 

contents of the log spans more than the viewable number of lines on the screen. The 

scrolling procedure is passed a number of lines to scroll by and the direction to scroll. 

The first stage is to adjust the top and bottom scroll pointers through the linked list of log 

lines by the number of lines to scroll by. If the limits of the log are found in the direction 

of scrolling, then the scroll pointers are not modified. 

The second stage is to redraw the log contents at the current scrolling position. This is 

performed by a simple call to the frill log redraw procedure. 

C.7.3.7 Dynamic log erasure 

The user may erase the log contents. The procedure to perform this operation simply 

iterates through the linked list, deleting each line array and linked list iterator element. 

After every line has been deleted, the linked list base and head pointers are reset and the 

full log background is drawn over, which removes all traces of the log from the screen. 

C.7.4 Tree modification and recursion 

The four recursive procedures within the expression evaluator design are explained within 

the following sections. The first procedure is a recursive implementation of the factorial 

calculation. This calculation was used within testing. All of the procedures have had a log 

output included, which shows the recursive calculations being made with the use of 

indented lines within the log. Each level of indent represents a single level of recursion 

depth. The indent value is adjusted as a global variable within each procedure so that it 

does not require stack storage. The three other procedures relate to the modification, 

drawing and deletion of the binary tree that holds the expression. 



D.J.D. Milton, 2002 Appendix C: Demonstrators in detail 3 7 0 

C.7.4.1 Factorial evaluation 

The factorial of a number is a unary operation. It takes a single operand and returns a 

single result. It is just as easy to calculate the factorial iteratively as it is recursively. M this 

respect, the iterative version is a preferable implementation method. However, the 

recursive implementation was used during recursion testing and has been included within 

the expression evaluator because of this. 

The basic algorithm has had a number of calls to the log output procedures added. These 

give a textual representation of the input of the factorial procedure while recursing up the 

stack and give the result at each level while recursing back down through the call stack. 

The algorithm first tests the inputted value for being above 1. If the inputted value is 1 or 

less, then a result of 1 is returned. If the inputted value is greater than 1, the factorial 

procedure is called recursively, passing the inputted value subtracted by 1. The value 

returned by the recursive call is then multiplied by the inputted value and returned from 

the current factorial call. This results in the factorial result that is formed from the 

multiplication of a number by the set of numbers less than it, down to the number 1. 

C.7.4.2 Recursive expression evaluation 

The main expression evaluator procedure passes the single expression tree node reference 

as an 'inout' parameter, meaning that the given node is both taken as an input, capable of 

modification and returned as an output. If the passed parameter is null, then the reference 

does not contain a tree node. In this case, a new node is allocated for it before the main 

expression evaluation loop is entered. The default settings for a new node are that both 

child references are set to null and the operation is set as a simple leaf value container, 

whose value is set to zero. 

The core expression evaluation is made within the user interface loop. Firstly, the 

expression is evaluated with the calculation of the result of the operation held by the given 

node. This simply uses the results held within the child operands (if they exist) and the 

operation type within the given node. If any child does not exist, then the operand is taken 

to equal zero. Secondly, the binary tree is drawn from the current node position by the 

recursive drawing procedure and the result of the expression printed in the log. 



DJ.D. Milton, 2002 Appendix C: Demonstrators in detail 2>1\ 

Then, user input via the keyboard is required. The blocking interface procedure is called, 

which waits for a downward-keystroke. A number of actions to modify the tree node 

dependent on the key pressed are then undertaken, including the creation, insertion, 

swapping and deletion of child operands, the recursive evaluation of the child operands 

(which is formed from a recursive call to this expression evaluation procedure, passing a 

reference to the relevant child node), the recursive return to the parent expression 

evaluation procedure (or the root calling process) and the modification of the type of 

operation at the currently referenced tree node. 

Each keyboard action will result in a loop back to the beginning of the user interface loop, 

with the expression being re-evaluated, drawn and logged. 

C.7.4.3 Recursive expression tree drawing 

The drawing of the expression tree from the current tree node being evaluated is 

performed once per user interface loop iteration. The recursion process only recurses to a 

depth of four node levels due to the limited screen space available. The tree is drawn in a 

depth first manner, with the local node being drawn before recursing into the child 

operand nodes. The tree is drawn with the currently edited node being drawn at the root of 

the tree. Child nodes are drawn below the given node, with left operands drawn to the left. 

The recursion depth determines the horizontal distance between the nodes. 

The contents of the node are drawn first, with the box representing the node having the 

operation and value drawn within it. Then the link joining the given node to its parent 

node is drawn using a number of characters. Finally, both the left and right operands are 

recursively drawn only when drawing space is available. If no space is available and child 

operands exist, then linking stubs are drawn, indicating further tree nodes exist. 

C.7.4.4 Recursive expression deletion 

The recursive tree deletion procedure simply checks for a null tree item first, returning 

straight away when found. The deletion operation is logged and then the deletion 

procedure is recursively called for both the left and right operands. Finally, the local node 

is deleted and the deletion procedure recursively returns. This deletes an entire branch of 

the tree in a depth first traversal. 



D.J.D. Milton, 2002 Appendix D: File formats 3 7 2 

Appendix D 

File formats 

This appendix explains the format of the two main data files that contain a representation 

of the user's design within the MOODS synthesis environment. The first, extended 

ICODE (Intermediate CODE) is generated from the VHDL compiler and now includes 

structures that enable recursion. The second, DDF (Design Data Format), is a 

representation of the entire MOODS internal data structures. This file fully contains all 

information represented within the initial ICODE file taken as input to MOODS. 

D.1 BNF descriptions 

The Backus-Naur Format (BNF) is used to describe the full syntax of a parsed language. It 

does not describe what the language means. The descriptions of the ICODE and DDF file 

format both use BNF notation (Sections D.2.2 and D.3.2). 

The notation is built firom a number of base descriptor names starting from the root file 

descriptor. The names are listed in alphabetical order. Each descriptor has a left and right 

part, with the left part containing the descriptor name (a single string without space that 

can contain underscores) and the right part containing an expression that can hold 

references to other descriptors and physical text: 

Descriptor name ::= expression ( descriptor_links, text) 

Any text links are given in bold font, with single text characters bounded by single quotes. 

Links to other descriptors are given in normal font with the possibility of extra prepended 

italicised use information, separated by underscore characters: 

descriptor_link = M5'e_m/o_descriptor_name 



D.J.D. Milton, 2002 Appendix D: File formats 373 

The right hand expression is generated from a number of basic constructs that operate on 

both text and descriptor link items. An expression can contain a sequence of items and 

formatting constructs; 

e Item 1 Item2 Items = sequence of items 

9 Item1 I Item2 = only one item is used (could have more than one | operator) 

8 {ITEM } = zero or more items, following each other in sequence 

® [ ITEM ] = the item is optional 

D.2 ICODE 

The ICODE file is a textual representation of the user's design that has passed through the 

original source compiler. The file is a language independent representation of the original 

source code, which allows different languages to be used as input to the MOODS 

synthesis system. At present, the only compiler is the original VHDL compiler. 

The style of the ICODE file is of a sequential set of instructions, each with an activation 

list defining the flow of control through the instructions. If no activations exist for an 

instruction, then the following instruction is implied as the only activated instruction. 

Multiple activations can exist from a single instruction, which defines either a concurrent 

branch or a conditional branch in the control flow. 

The instructions are held within a container 'module\ with the root module defining the 

'program'. Each module has a header that is described in terms of a single header ICODE 

instruction. The header includes all the I/O associated with the module. The list of 

translated register variables, memory variables, ports, aliases and temporary variables 

follow the header instruction. The port definitions map directly onto the I/O list of the 

header instruction and define the direction of the port. 

A general variable is contained within an ICODE 'register'. This defines a single storage 

space for user data. Arrays of data can be held within 'ram' definitions, which require an 

address index into the array whenever used. Constant arrays are held within Vom' 

definitions and have the contents of the ROM follow the ROM variable definition. A 

ROM can be read from only, never written. The index address is provided in the same way 

as the RAM address. 



D.J.D. Milton, 2002 Appendix D: File formats 374 

The names used for variables and module names can be made from any unreserved 

combination of alphanumeric characters (including single underscores but not 

including ICODE delimiters), reserved names being the ICODE instruction keywords. The 

names are case insensitive. 

Each module defines a completely contained subprogram that can be called from any other 

module. The addition of procedural recursion allows these modules to call each other 

within recursive loops. A recursive definition requires extra information in the form of a 

stack declaration and modification instructions. These are added as auto-generated items 

from the compiler. 

All ICODE instructions act upon the variables, ports and aliases defined within the 

module. All submodules can access the variables within the root module and the variables 

contained within the module itself The root module can only access the variables defined 

within itself 

Each ICODE instruction line has the general form: 

<label> INSTR <input list>, <output list> <activations> <info> 

The label is optional and is used to provide a reference for any activations contained after 

other instructions. The instruction can either be a built-in instruction or be separately 

defined within a configuration file. The input list and output list contain references to the 

variables being acted upon. These lists are comma separated with the number of inputs and 

outputs being defined by the instruction. The activations reference the initial labels defined 

before other ICODE instruction. The info field after the instruction defines any related 

information such as original source line number references and activation probabilities for 

conditional instructions. Each instruction is contained within one line unless separated into 

multiple lines using the '\' delimiter. 

The control flow of a design is handled by a small set of special ICODE instructions. 

These inbuilt ICODE instructions are listed in Table D.l. 



DJ.D. Milton, 2002 Appendix D; File formats 375 

Special Control Instruction Description 

IF and IFNOT These instructions take a single input variable of a single bit 

and conditionally take the true branch defined by the ACTT 

activation if the input bit is '1' for IF or '0' for IFNOT. The false 

branch defined by the ACTF activation is taken as the 

alternative. 

SWITCHON and DECODE Both of these instructions test a single input variable of known 

width for a set of alternative values. The DECODE instruction 

is used in cases where all alternatives are tested, and the 

SWITCHON instruction is used for a limited set test. Each 

case alternative is held on a separate line of the file in 

increasing sequential order. The SWITCHON instruction will 

include a default case that forms every alternative to the 

values tested. A separate activation list defined by ACT is 

given for each alternative. 

COUNT and COUNTDN These instructions operate on special counter variables that 

will be mapped onto physical counters. The COUNT 

instruction increments the counter, while the COUNTDN 

instruction decrements the counter. The counter value is 

tested for the loop limit before the counter modification and a 

true or false conditional branch taken at this point. 

COLLECT COLLECT instructions operate on the return of control flow 

from multiple concurrent threads. The use of this instruction 

has been disallowed in the present compiler incarnation due to 

all branches being conditional apart from the process 

concurrent branches, which never re-converge. The 

COLLECT instruction will wait for a fixed number (defined as 

an input to the instruction) of activations to activate it before it 

will pass control onto the following instruction. 



D.J.D. Milton, 2002 Appendix D: File formats 376 

Special Control Instruction Description 

MODULEAP and RECURSE These two instructions form the calling method between 

modules and the root program. The MODULEAP instruction 

forms the non-recursive call and the RECURSE instruction 

performs a call within a recursive loop. Both instructions take 

the module name of the module being called, along with the 

map of I/O parameters to pass into the parameter list of the 

defined module. The call instructions activate the first 

instruction within the called module, only returning control to 

the instruction after the call instruction when the 

ENDMODULE instruction of the called module is reached. The 

RECURSE instruction also passes a constant return address 

reference value implicitly used within the controlling state 

machine. 

Table D.1 Special control instructions 

The ICODE file begins with a list of original source files using a comment declaration. 

This defines a map of unique integer identifiers to the full path specification of the original 

file. The identifier is used within the source file information cross-references for each 

ICODE instruction. A general comment is defined using the C++ delimiter and a file 

information comment is defined using 7/F'. 

D.2.1 Example ICODE file with recursion 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

An example of an ICODE file is given in Listing D.l. The file contains two modules, one 

of which is recursive. The additions made for recursion can be seen in the variable lists of 

the root module, the initial setup of the stack pointer and return addresses within the root 

module and the extra ICODE instructions that modify the stack, return address and I/O 

ports around each recursive call within the recursive module. 

Listing D.1 Example ICODE file 
// ***** Extended ICODE Design File (ACW format 25/4/96) 
// ***** Generated by Vhdl2IC (v 1.9.5) on Tue Apr 10 13:01:43 2001 
// ***** from recursion_testl.vhd dated Tue Mar 27 17:27:58 2001 
// ***** Adding VHDL line number comments (DJDM 17/02/00) 

//F 1 "c:\djdm\larch_e\moods\librarY\standard.pck" 
//F 2 "c : \djdm\larch_e\moods\library\pack;ages . vhd" 
//F 3 "C:\DJDM\LARCH_E\vhdl\recursion_test\recursion_testl.vhd" 

// ***** Main program "recursion_testl" declaration ***** 
PROGRAM recursion testl input, output {In:4, pos:l, file:3} 

// I/O port declarations 



D.J.D. Milton, 2002 Appendix D: File formats 377 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

inport 
outport 

input 
output 

[0:31] 
[0:31] 

// ***** Variable/register declarations 
register 
register 
register 
register 
register 
ram 

ret [0:31] 
factorial_ra [0:0] 
factorial_inval_in [0:31] 
factorial_outval_out [0:31] 
stack_pointer [0:7] 
stack [0:31] 

( l n : 6 , pos:5} 
(ln:7) 

{In:71, pos:14) 
(file:0) 
{In:58, pos:7, file:3} 
{ln:59} 
(file:0) 
address [0:255] 

move 
move 

#0, stack_pointer 
#%0, factorial ra 

// * * * * * * * * * * process PRl i p * * * * * * * * 

30 .PRl MODULEAP factorial #5, ret (In: :82, pos : :5, file:3} 
31 move ret, output (In; :83, pos 1 :12) 
32 MODULEAP factorial input, ret {In: :84, pos: :5} 
33 move ret, output (In: ;85, pos: = 12} 
34 move #12:32, ret (In: 86, pos: :9} 
35 protect (In: 87, pos: :5} 
36 move ret, output ACT PRl (In: 88, pos: :12} 
37 / / * * * * * * * * * * end process PRl ********** 
38 ENDMODULE recursion_testl (In: 92, pos: :1} 
39 /y ***** End of main program " recursion testl" declaration 

// ***** Recursive Module "factorial" declaration ***** 
RECMODULE factorial factorial ra inval, outval (In:56, pos:5} 

// ***** I/O port declarations 
inport inval [0:31] 
outport outval [0:31] 

Variable/register declarations // • 
register 
// temp 
// temp 

.if14_true_15 

.if14 false 15 

local 
121 
123 

eq 
if 

(In:58, pos:7) 
{ln:59} 

(In:61, pos:16} 

.Iabel32 

move 
minus 
memwrite 
plus 
move 
memwrite 
plus 
move 
RECURSE factorial 
minus 
memread 
protect 
minus 
memread 
protect 
move 
mult 
ENDMODULE 

[0:31] 
[0:32] 
[0 :0] 

inval, #1:32, 123 (In:63} 
123 ACTT ifl4_true_15 ACTF ifl4_false_16 

(pt:0.500000, pf:0.500000, pos:7} 
#1:32, outval ACT label32 (In:64, pos:16} 
inval, #1:32, 121 (In:66, pos:25} 

factorial_inval_in, stack[stack_pointer] (pos:9} 
stack_pointer, #1, stack_pointer 
121, factorial_inval_in 
factorial_ra, stack[stack_pointer] 
stack_pointer, #1, stack_pointer 
#%1, factorial_ra 

#11 factorial_inval_in, factorial_outval_out 
stack_pointer, #1, stack_pointer 
stack[stack pointer], factorial ra 

// ***** End of recursive module 

stack_pointer, #1, stack_pointer 
stack[stack_pointer], factorial_inval_in 

factorial_outval_out, local 
local, inval, outval (In:67, pos:25} 
factorial (In:69, pos:5} 

factorial" declaration ***** 



D.J.D. Milton, 2002 Appendix D; File formats 37§ 

D.2.2 ICODE grammar in BNF form 

Extended ICODE description 

{ filemap comment } 

program_declaration 

{ submodule_declaration } 

act_list :;= 

labeljidme { Za6gZ_name} 

actf_list 

ACTF actlist 

actt list ::= 

ACT act list 

I ACTT act list 

alias_declaration ::= 

ALIAS alias_yar_p.dime a/za5_range FROM parent_var_name var_sub_range 

binary_integer 

' % ' binary_integer_val { binary_integer_val} 

binary_integer_val 

o r i ' 

call inst ::= 

moduleap_inst 

I recurseinst 

collect inst ;:= 

COLLECT collectj:ount_\xiiGgQX [ info ] 

conditional inst: := 

conditional inst name cond_yar actt list actf_list [ info ] 

conditional_inst_name :;= 

IF IIFNOT 



D.J.D. Milton, 2002 Appendix D: File formats 379 

constant :;= 

'#' integer [ wzŴA decimal integer ] 

count_inst ::= 

count_inst_name counter_yax increment_consXdLnX end_tQxm actt_list actf_list 

count_inst_name ;:= 

COUNT ICOUNTDN 

counter_declaration ::= 

counter_type counter_ndimQ counter 

counter_type ;:= 

COUNTER I COUNTDN 

decimal_integer: := 

decimal_integer_val { decimal_integer_val } 

decimal_integer_val ;:= 

'0' I T I '2' I '3' I '4' I '5' I '6' I '7' I '8' I '9' 

declaration 

iojport_declaration 

I variable_declaration 

declaration_part ;:= 

{ declaration [info] } 

decode inst ::= 

DECODE decodejy2x [ info ] 

{ CASE constant actt list [ info ] } 

filemap comment ::= 

//Fj?/e_z<i_decimal_integer ""/z/e Jullj)ath_stnng "" 

float ::= 

decimal_integer decimal_integer [ 'e' decimal_integer ] 

general_inst' :;= 

general_inst_name io_list [ actt list ] [ info ] 

' General instructions are defined in the ICODE instruction database and may be enhanced as required. 



D.J.D. Milton, 2002 Appendix D: File formats 3gQ 

general_inst_name ::= 

EQ I LS |LE I NE | GE | GR 
I rf(]rr | viNi) | ()R 1 
lisnEisiiPiJLrs I fwocRnLRs | AdnLnL/r | i ) i i / 

I LSHIFT I RSmrr | ROL I ROR 
I MOVE I SETTRUE | HIGHZ 

hex integer ::= 

'$ ' hex_integer_val { hex_integer_val} 

hex_integer_val ::= 

0' I U ' I '2' I 3 ' I '4' I '5' I '6' I '7' | '8' | '9' | 'A' | B | C | D | 'E' | F 

info : — 

[ '{ ' info_item { infoj tem } '}' ] 

info_item 

info_specif ier info_value 

info_specifier ::= 

111 I pos I file I pt I pf I its 

info_value ::= 

decimal_integer | float 

instruction 

general_inst 

I memory inst 

I count_inst 

I conditional_inst 

I switch_inst 

I decode_inst 

I collect inst 

I call_inst 

integer 

binary_integer ( octal integer | decimal_integer | hex_integer 

io_list ::= 

term { term } 



D.J.D. Milton, 2002 Appendix D: File formats 3g2 

io_port_declaration ::= 

iojport_type io_j)ort_psme. io_por?_range 

io_port_type ::= 

INPORT I OUTPORT 

memory_inst ::= 

memory_read_inst | memory_write_inst 

memory_read_inst ::= 

MEMREAD memory_var_na.me '[' address_tQmi']' read_var_namc [ info ] 

memory_write_inst :;= 

MEMWRITE wrzYe_term memory_var_na.me '[' address_term ']' 

moduieap_inst ::= 

MODULEAP modulejxsmQ io list [ info ] 

name 

string 

octal_integer ::= 

'&' octal_integer_val { octal_integer_val } 

octal_integer_val ::= 

'0' I '1' I '2' I '3' I '4' I '5' I '6' I '7' 

process ::= 

[labeljismc ] instruction 

process_part ::= 

{process } 

program declaration ::= 

PROGRAM program_namQ io list [ actt list ] [ info ] 

declaration_part 

process_part 

ENDMODULE [ programjuame ] [ info ] 

ram_declaration; := 

RAM ram_var_name data_rmge ADDRESS addressjcange 



DJ.D. Milton, 2002 Appendix D: File formats 3 g 2 

'[' low_bit_index_mteger highJjitJndexJntQgsr:']' 

recurse_inst ::= 

RECURSE recmodule_name return jxddress_const2Lnt io_list [ info ] 

register_declaration ::= 

REGISTER varname var_range 

rom_declaration 

ROM rom_yar_nsme data_x2inge ADDRESS address_jsxige 

string ::= 

string char { string_char } 

string_char ::= 

'a' I 'b' I 'c' I'd' I 'e' | T | 'g' | 'h' | T | | 'k' | T | 'm' | n' | 'o' | 'p' | q' | r' 

's ' I I u ' I 'v' I 'w' I 'x' I 'y' I 'z' I 'A' I B | C | D | 'E ' | F ' | 'G | H | I ' | 

J' I 'K' I L' I 'M' I 'N' I O I 'P' I Q I 'R' I'S' | 'T' | 'U' | ' V | W | 'X | 'Y' 
I' ' I I ^ ' I' ' 

submodule_declaration ::= 

submodule_normal | submodule_recursive 

submodule_normal ::= 

MODULE module jizme io_Iist [ actt_list ] [ info ] 

declaration_part 

process_j)art 

ENDMODULE [ module_name ] [ info ] 

submodule_recursive ::= 

RECMODULE modulejiame return jxddressjiamQ io_list [ actt_list ] [ info ] 

declaration_part 

process__part 

ENDMODULE [ module_name ] [ info ] 

switch_inst 

SWITCHON switchjvar [ info ] 

{ CASE constant actt list [ info ] } 

DEFAULT actt list [ info ] 



D J.D. Milton, 2002 Appendix D: File formats 3§3 

term : ;= 

constant | var 

var ::= 

var_name | temporaryji>ariable_dQC\ma\_mtQgQr 

variable_declaration 

register_declaration 

I alias_declaration 

I ram_declaration 

I rom_declaration 

I counter declaration 

D.3 DDF 

The Design Data Format (DDF) file is a direct representation of the full internal data 

structures used within MOODS. These data structures are explained within Appendix A.5, 

which describes the program 'DDFLink'. The DDF file can be generated at any time 

within the synthesis process. Two types of represented data can be contained, with the 

second type containing all the additional logic generated within the post-processing step. It 

is the second type that is used within DDFLink. The first type is just a subset of the second 

type, without the additions made after synthesis. 

D.3.1 Example DDF file with recursion 

The main sections within the DDF file are the file list, module declarations, data path 

definition, conditional signal definitions and the module library link. 

The file list is used to determine a cross-reference back to the originating source files and 

ICODE file. A file ID that is used elsewhere within the DDF file references the names. 

The list of modules contains the full ICODE description as found within the ICODE file. 

In addition to this, the ICODE instructions are placed into control states, which operate 

within one time-step. These control states are held in a subsection of the module. The 

header ICODE instruction forms the header subsection of each module. The list of 

variables is held in a separate subsection. 



D.J.D. Milton, 2002 Appendix D: File formats 3 g 4 

The data path for the full design is held within a single data path section. This section 

contains all references to the underlying implementing cells and the linkages between 

these cells in the form of nets. 

The condition list is also held within a single section after the data path. This section 

contains the list of all Boolean equations that form the link between the data path and the 

various control paths defined within the list of modules. 

The final section within the DDF file is the module library section. This section is used for 

linking technology specific information derived from a particular module library into the 

DDF file description. A separate module library parser that does not need to know about 

the DDF files data format reads the data held within this section. 

Examples of these sections are shown in Listing D.2 below. The version number at the 

head of the file determines the present version of the DDF file. This is present so that the 

DDF parser can load only up to date files. The listing has been cut down for brevity 

reasons and hence does not contain a complete design. 

Listing D.2 Example Design Data Format file 
1 ddf version : 100; 

3 file list 
4 { 
5 file fl ; "c; \djdm\larch_e\moods\library\standard.pck"; 
6 file f2 : "c: \djdia\larch_e\moods\library\packages.vhd"; 
7 file f3 : "C: \DJDM\LARCH_E\vhdl\recursion testXrecursion test2 
8 file f4 : "C: \DJDM\LARCH_E\vhdl\recursion testXrecursion test2 

10 
) 

11 module m6 
12 { 
13 header { 
14 instruction 16 { 
15 icode : recmodule func; 
16 input : iv; 
17 output : ov; 
18 prob ; 0; 
19 sourcepos : f3,16,5; 
20 icodepos : f4,36,10; 
21 } 

22 end : s63; 
23 } 
24 variables 
25 { 
26 port v8 : iv[0:3] is u8 sourcepos f3,18,7 icodepos f4,39,7; 
27 register v9 : ov[0:3] sourcepos f3,19,7 icodepos f4,40,8; 
28 register vlO : local[0:3] sourcepos f3,21,16 icodepos f4,43, 
29 temp v20 : var_sl05[0:0]; 
30 } 
31 control path c7 : c7, cl8 
32 { 
33 conditional c7 { 



DJ.D. Milton, 2002 Appendix D: File formats 3g5 

34 cell : 6; 
35 signal : sl9; 
36 prob : 0; 
37 group gl3 { 
38 instruction 17 : eq iv, #1:4, var_sl05 
39 sourcepos £3,23,13 icodepos £4,46,23; 
40 instruction 18 : if var_sl05 
41 sourcepos £3,23,7 icodepos £4,47,23; 
42 instruction 113 : move #1:1, func_ra when s22 prob 0.5 
43 sourcepos £3,26,9 icodepos £4,52,25; 
44 instruction 112 : plus stack_pointer_l, #1:0, stack_pointer_l when s22 
45 prob 0.5 sourcepos £3,26,9 icodepos £4,51,25; 
46 instruction ill : memwrite £unc_ra, stack_l[stack_pointer_l] when s22 
47 prob 0.5 sourcepos £3,26,9 icodepos £4,50,29; 
48 instruction 19 : move #1:4, ov when s20 prob 0.5 
49 sourcepos £3,24,12 icodepos £4,48,25; 
50 instruction 110 : minus iv, #1:4, £unc_iv_in when s22 prob 0.5 
51 sourcepos £3,26,17 icodepos £4,49,26; 
52 ) 
53 activate al3 : cl4 when s22 prob 0.5; 
54 ) 
55 recurse cl4 { 
56 cell : 13; 
57 signal : s28; 
58 module : m6; 
59 prob : 0; 
60 instruction 114 { 
61 icode : recurse func; 
62 input : £unc_iv_in; 
63 output : £unc_ov_out; 
64 prob : 0.5; 
65 end : s64; 
66 sourcepos : £3,26,9; 
67 icodepos : £4,53,28; 
68 } 
69 activate al4 : cl5; 
70 } 
71 general cl5 { 
72 cell : 14; 
73 signal : s30; 
74 prob : 0; 
75 group gl6 { 
76 instruction 115 : minus stack_pointer_l, #1:0, stack_pointer_l prob 0.5 
77 sourcepos £3,26,9 icodepos £4,54,26; 
78 instruction 116 : memread stack_l[stack_pointer_l], £unc_ra prob 0.5 
79 sourcepos £3,26,9 icodepos £4,55,28; 
80 } 
81 instruction 117 : protect prob 0.5 sourcepos £3,26,9 icodepos £4,56,28; 
82 activate al7 : cl8; 
83 ) 
84 general cl8 { 
85 cell : 17; 
86 signal : s33; 
87 prob : 0; 
88 group gl9 { 
89 instruction 118 : move func_ov_out, local prob 0.5 
90 sourcepos £3,26,9 icodepos £4,57,25; 
91 instruction 119 : plus local, #1:4, ov prob 0.5 
92 sourcepos £3,27,21 icodepos £4,58,25; 
93 } 
94 } 
95 } 
96 } 
97 
98 module ml 
99 { 

100 header { 
101 instruction 11 ( 
102 icode : program recursion_test2; 



D.J.D. Milton, 2002 Appendix D: File formats 386 

103 
104 
105 
106 
107 
108 
109 
110 
111 
112 

113 
114 
115 
115 
117 
118 
119 
120 
121 
122 

123 

124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 

141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 

input : di; 
output ; do; 
prob : 0; 
sourcepos : £3,4,1; 
icodepos ; £4,11,8; 

variables 
{ 

port vl : di[0:3] is ul sourcepos £3,6,5 icodepos £4,14,7; 
register v2 : do[0:3] is u2 sourcepos £3,7,5 icodepos £4,15,8; 
register v3 : func_ra[0:0] is u3 icodepos £4,18,9; 
register v4 : £unc_iv_in[0;3] is u4 sourcepos £3,18,7 icodepos £4,19,9; 
register v5 : func_ov_out[0;3] is u5 sourcepos £3,19,7 icodepos £4,20,9; 
register v5 : stack_pointer_l[0:3] is u6 icodepos £4,21,9; 
ram vl : stack_l[0:31] address [0:15] is u7 icodepos £4,22,4; 
register v3 6 : £unc_ra_decode[0:1] is u21; 

} 
c2 control_path 

{ 

general c2 { 
cell : 3; 
signal : sl2; 
prob : 0; 

instruction 12 
instruction 13 
activate a3 

} 

c4 

move #0:0, stack_pointer_l icodepos £4,24,25; 
move #0:1, £unc ra icodepos £4,25,25; 

c4; 

call c4 { 
cell : 5; 
signal : si4; 
module : m6; 
prob : 0; 
instruction 14 { 

icode : moduleap £unc; 
input : di; 

output : do; 
sourcepos : £3,33,5; 
icodepos : £4,29,29; 

} 
feedback a4 c4; 

data_path 
{ 

port ul { 
width : [0:3]; 
cell : 20; 
net n40 { 

source : pin output1[0:3] is vl; 
links : i4; 
condition : s56; 
destination : pin input1[0:3] @ ul8 is v8 on 14, 

158 } 

159 ) 
160 storage u2 { 

161 width : [0:3]; 

162 cell : 21; 
163 control : pin load_ _en [3 3] when s4 5; 
164 control : pin load_ _en [2 2] when s4 6; 
165 control : pin load _en [1 1] when s4 6; 
166 control : pin load_ en [ 0 0] when s4 6; 
167 } 
168 storage u3 { 

169 width : [0:0]; 

170 cell : 22; 
171 instruction : 113, 13; 



DJ.D. Milton, 2002 Appendix D: File formats 3 §7 

172 control : pin load_en[0:0] when s50; 
173 net n41 { 
174 source : pin outputl[0:0]; 
175 destination : pin inputl[0:0] @ u21; 
176 } 
177 net n41 { 
178 source : pin outputl[0:0] is v3; 
179 links : ill; 
180 destination : pin inputl[0:0] @ u7 is v7 ; 
181 } 
182 ) 
183 memory u7 { 
184 width : [0:31]; 
185 cell : 26; 
186 instruction : il6, ill; 
187 control : pin write[0:0] when s4 8; 
188 control : pin read[0:0] when s49; 
189 net n45 { 
190 source : pin outputl[0:0] is v7; 
191 links : 116; 
192 condition : s4 9; 
193 destination : pin inputl[0:0] @ ulO is v3 on 116; 
194 } 
195 } 
196 port u8 { 
197 width : [0:3]; 
198 cell : 27; 
199 net n46 { 
200 source : pin outputl[0:3] is v8; 
201 links : 110; 
202 condition : s48; 
203 destination : pin inputl[0:3] @ ul9 is v8 on 110; 
204 } 
205 net n46 { 
206 source : pin outputl[0:3] is v8; 
207 links : 17; 
208 destination : pin inputl[0:3] @ ul2 is v8; 
209 } 
210 ) 
211 interconnect u9 { 
212 width : [0:3]; 
213 cell : 51; 
214 net n47 { 
215 source : pin outputl[0:3]; 
216 destination : pin inputl[0:3] @ u2; 
217 } 
218 } 
219 functional ul3 { 
220 width : [0:3]; 
221 cell : 39; 
222 instruction : 110, 115, il9; 
223 control : pin select[0:0] select 14 on 119 when s40; 
224 control : pin select [0:0] select 15 on 110 when s55; 
225 net n50 { 
226 source : pin outputl[0:3] is v9; 
227 1^^^ : 1 ^ 1 1 ^ 
228 condition : s57; 
229 destination : pin inputl[0:3] @ u9 is v2 on 119; 
230 } 
231 net n50 { 
232 source : pin outputl[0:3] is v9; 
233 links : 114, 119; 
234 condition : s52; 
235 destination : pin inputl[0:3] @ ul5 is v5 on 119; 
236 } 
237 net nSO { 
238 source : pin outputl[0:3] is v6; 
239 links : 115; 
240 condition : s49; 



D.JJD. Milton, 2002 Appendix D; File formats 388 

241 

242 
243 

244 

245 
246 

247 
248 

249 

250 

251 

252 
253 
254 

255 

256 
257 

258 

259 

260 
261 
262 
263 

264 
265 

266 
267 

268 
269 
270 

271 

272 
273 

274 

275 
276 

277 

278 

279 

280 
281 
282 
283 
284 

285 
286 
287 

288 
289 

290 

291 

292 

293 

294 
295 

296 

297 
298 

299 
300 

destination : pin inputl[0:3] @ ul6 is v6 on il5; 
} 
net n50 { 

source : pin outputl[0:3] is v6; 
links : 116, il5; 
condition : s49; 
destination : pin inputl[0:3] @ ul7 is v7 on 115; 

} 
net n50 { 

source : pin outputl[0:3] is v4; 
links : ilO; 
destination : pin inputl[0:3] @ u4 is v4; 

} 
} 

net nO { 
source : #1 on 19; 
links : 14, 19; 
condition : s58; 
destination : pin inputl [0:3] @ u9 is v2 on 19; 

} 
net nO { 

source : #0 on 13; 
links : 13; 
condition : s47; 
destination : pin inputl[0:0] @ ulO is v3 on 13; 

} 

condition list 

signal s20 
signal s22 
signal s37 
signal s38 
signal s39 
signal s40 
signal s41 
signal s42 
signal s43 
signal s44 
signal s45 
signal s46 
signal s47 
signal s48 
signal s49 
signal s50 
signal s52 
signal s53 
signal s54 
signal s55 
signal s56 
signal s57 
signal s58 
signal s59 
signal s60 
signal s61 
signal s62 
signal s63 
signal s64 

v2 0 on n3 9; 
/s20 on n38; 
s37 on n37 
s38 on n36 
sl4 on n35 
s33 on n34 
(S40.S37) 
(S41.S39) 
(sl9.s20) 
^M3.s37) 
{s44.s39) 

on n33 
on n32 
on n31 
on n30 
on n2 9 

{s42 + s45) on n28; 
sl2 on n27; 
(sl9.s22) on n26; 
s30 on n25; 
(s49 + s47 + s48) on n24; 
(s40.s38) on n22; 
(s43.s38) on n21; 
{s52 + s53) on n20; 
(s48 + s49) on nl9; 
(s37.s39) on nl8; 
(s56.s40) on nl7; 
{s56.s43) on nl6; 
(s40 + s48) on nl5; 
sl9 on nl4; 
{s60.s20) on nl3; 
(s40 + s61) on nl2; 
(s37.s62) on nil; 
{s38.s62) on nlO; 



D.J.D. Milton, 2002 Appendix D: File formats 389 

D.3.2 DDF file format grammar in BNF form 

Design Data Description 

version 

[ file_list ] 

module_list 

data_path 

condition_list 

[ module_library ] 

activation_definition ::= 

activate | feedback arc number control_number 

[ when co«<izYzo«_signal_number ] [ prob float ] 

alias_declaration ::= 

alias variable_number alias_yariable_nsmQ a/Mi'_range from variablejiamQ 

variable sub range 

arc number 
[ 'a' ] decimal_integer 

binary_integer ;:= 

' % ' binary_integer_val { binary_integer_val} 

binary_integer_val ::= 

0' I 

bool and ::= 

bool term { b o o l term } 

boolean_expression ::= 

bool_term | ' ( ' bool and | bool or ')' 

bool or ::= 

bool term {'+' bool term} 

bool_term ::= 

7' bool term | signal_number | variable_number 



D.J.D. Milton, 2002 Appendix D: File formats 3 9 0 

condition list ::= 

condition list 

{ signal_definition} 

constant; := 

'# ' integer [ w z W r A decimaMnteger ] 

constant_list ::= 

constant { constant } 

control_block ::= 

controljpath ^fa/f_control_number e«<i_control_number_list 

{ control_node_definition} 

control_definition ::= 

control I erased c o n t r o l c o n t r o l end 

control end ::= 

pin variable jssms, 5'/z'ce_range 

[ is variable_nuniber ] 

[ when signal_number ] 

[ on instruction_nuniber ] 

[ select a/w_zYem_decimal_integer ] 

control_node_definition ::= 

control_type control_number control_specification 

control_number ::= 

[ 'c' ] decimal_integer 

control_number_list 

control_number { control_number } 

control__parameter ::= 

loop_its decimal integer 

I prob float 

I s i gna l s igna l_number 

I ce l lce/ /_r^re«ce_decin ia l_ in teger 

I module ca//e(i_module_number 

I end ca//_e«£/_signal_nuniber 



D.J.D. Milton, 2002 Appendix D: File formats 2 9 1 

control_specification 

{ control_parameter} 

{ group_definition } 

{instmction_definition } 

{ activation_definition } 

control type 

general | fork | collect | conditional | call | recurse | dot 

counter_declaration ;:= 

counter | countdn variable_number counter_variable_mme variable_rsagQ 

data_path :;= 

datajpath 

{unit_definition} 

{net_definition} 

decimal_integer ::= 

decimal_integer_val { decimal_integer_val} 

decimal_integer_val ;:= 

'0' I T I '2' I '3' I '4' I '5' I '6' I '7' | '8' I '9' 

file_list ::= 

f i l e j i s t 

file_list_item ::= 

file file_number ""/z/e_string " " 

file_number ;:= 

[ ' f ] decimal_integer 

file_position 

file_niimber /zne_decimal_integer co/w772«_decimal_integer 



D.J.D. Milton, 2002 Appendix D: File formats 3 9 2 

float ::= 

decimal_integer decimal_integer [ 'e' decimal_integer ] 

group_definition ::= 

group group_number 

{instruction_definition } 

group_number 

[ 'g' ] decimal_integer 

header_definition ::= 

header 

/zefl(ier_instruction_definition 

[ end mo(iw/e_e«^/_signal_number ] 

hex_integer ::= 

hex_integer_val { hex_integer_val } 

hex_integer_val ::= 

' 0 ' I 1' I ' 2 ' I 3 ' I ' 4 ' I ' 5 ' I ' 6 ' I ' 7 ' I '8 ' | ' 9 ' | ' A ' | B | C | D | ' E ' | ' F ' 

icode_instruction_name^ ;:= 

eq j Is I le I ne I ge I gr I not | and | or | xor 

I neg I plus I minus | mult | div | Ishift | rshift | rol | ror 

I move I settrue | highz | memread | memwrite | count | countdn 

I if I ifnot I collect | decode | switchon | moduleap | recurse 

I program | module | recmodule 

instruction_definition ::= 

instruction instruction_number instruction_specification 

instruction_number ::= 

[ 'i' ] decimal integer 

instruction_number_list ::= 

instruction_number { instruction_number } 

• The built-in instructions may be enhanced by extra instructions defined in the ICODE instruction database. 



D.J.D. Milton, 2002 Appendix D: File formats 3 9 3 

instructionjparameter ::= 

icode icode_instruction_name 

I i n p u t i n p u t j . o _ \ \ s t 

I o u t p u t o u t p u t 

I condition signal_number 

I activate signal_number 

I prob float 

I mutual listinstruction_number_list 

I sourcepos 5owrce_file_position 

I icodepos /co(ie_file_position 

I end recwr5e_e/z<i_signal_number 

instmction_specification ::= 

instruction_specification_block_mode | instmction_specification_single_line 

instruction specification block mode ::= 

'{' {instructionjparameter } '}' 

instruction_specification_single_line : := 

icode_instruction_name 

iol ist 

[ when signal_number ] 

[ prob float ] 

[ sourcepos 50Mrce_file_position ] 

[ icodepos zco(ie_filejposition ] 

integer ::= 

binary integer | octal_integer | decimal_integer | hex_integer 

io_list ::= 

io_list_item { io_list_item } 

io list item 
variable_name | tempomry_variable_decimal_mtegQV | 

input_constmt | memory_reference 

memory_reference 

memory variable name '[' address variable name I address constant '1' 



D.J.D. Milton, 2002 Appendix D: File formats 3 9 4 

memory_declaration ::= 

ram | rom variable_number memory_yariablej\sxns, widthj:2a\gQ 

address addressj:m\gQ data '[ ' constant_list']' 

module_definition 

module module_number 

header_definition 

variable_block 

control block 

module_library ::= 

module library 
library_contents^ 

niodule_list 

{module_definition } 

module_number 

[ 'm' ] decimal_integer 

name ::= 

string 

net_definition 

net I erased net net_number net_specification 

net_end ::= 

pin variable slicej:2in%Q unit_number | constant | signal_number 

[ is variable_number ] [ on instruction_number ] 

net_number ::= 

[ 'n' ] decimal_integer 

netjparameter ::= 

source sourcejiet_Gn.6. 

I destination destinationjxet_Qnd 

I links instraction_number_Iist 

I condition signal_number 

' The cell library references are not read with the DDF parser, so are not subjected to this BNF grammar. 



D J.D. Milton, 2002 Appendix D: File formats 3 9 5 

net_specification ;:= 

'{' { netjparameter } '}' 

octal_integer ::= 

octal_integer_val { octal_integer_val } 

octal_integer_val ;:= 

' 0 ' I ' 1 ' I ' 2 ' I ' 3 ' I ' 4 ' I ' 5 ' I ' 6 ' I ' 7 ' 

port_declaration ::= 

port variable_number port_yariable_name variable 

range ::= 

'[ ' /ow_6zY_integer high_bit_mtQgQr ']' 

register_declaration :;= 

register variable_number register_yariable_nmn.Q variable 

signal_defmition ;:= 

signal signal number signal_specification 

signal number 
[ 's ' ] decimal_integer 

signal_specification ::= 

boolean_expression on net_number 

string ::= 

string char { string char } 

string char ::= 

'a ' I b ' I c' I d ' I 'e' | T | 'g' | h ' | T | ' j ' | k ' | T | ' m ' | 'n ' | o' | 'p ' | q ' | ' r ' | 

's' I f I n' I 'v' I 'w' I I y I z' I 'A' I B I C I D I 'E' I 'F' | G | 'H' | I | 

J' I 'K' I L' I 'M' I 'N' I O I P I Q I R I'S' | T' | 'U' | ' V | W | X | Y' 
Cry?|49|C/5|C\5|C 514? 
Zv I . I / I \ I _ I -

temp_declaration ;:= 

temp variable_number tempjyariablejimxQ variablej:axigQ 

unit_definition ::= 

unit_type unit_nuniber unit_specification 



D.J.D. Milton, 2002 Appendix D: File formats 3 9 5 

unit_number 

[ 'u' ] decimal_integer 

unitjparameter ; := 

width range 

I ce l ldecimal_integer 

I instruction instruction_number_list 

I net_definition 

I control definition 

unit_specification ::= 

{ unit_paraineter } 

unit_type :;= 

storage | functional | boolean | interconnect | port | memory 

variable_block 

variables 

{ variable_declaration } 

variable_declaration 

variable_type_declaration 

[ is unit_number ] 

[ sourcepos source_f\le_posiXion ] 

[ icodepos zcoJe_file__position ] 

variable_type_declaration 

port_declaration 

I register_declaration 

I temp_declaration 

I alias_declaration 

I counter_declaration 

I memory_declaration 

variable_number ::= 

[ 'v' ] decimal_integer 

version ;:= 

ddf_version decimal_integer 



D J .D. Milton, 2002 References 3 9 7 

References 

1. Baker, K. R., "Multiple Objective Optimisation of Data and Control Paths in a 

Behavioural Silicon Compiler", PhD Thesis, University of Southampton, Sept 

1992. 

2. Baker, K. R. - Currie, A. J. - Nichols, K. G., "Multiple Objective Optimisation in a 

Behavioural Synthesis System", lEE Proceedings - G, Vol. 140, No. 4, Aug 1993, 

pp 253-260. 

3. Williams, A. C., "A Behavioural VHDL Synthesis System using Data path 

Optimisation", PhD Thesis, University of Southampton, July 1997. 

4. "IEEE Standard VHDL Reference Manual, IEEE Std 1076-1987", IEEE Catalog 

No. SHI 1957,1987. 

5. 'IEEE Standard VHDL Ref^ence Manual, IEEE Std 1076-1993", IEEE Catalog 

No. SHI6840,1993. 

6. Ecker, W., "Dynamic, Semi-Dynamic and Static Datatypes in VHDL", First 

International Forum on Design Languages, 1998, Tutorial #3. 

7. Camposano, R., "From Behavior to Structure: High-Level Synthesis", IEEE Design 

and Test of Computers, Vol. 7, No. 5, Oct 1990, pp 8-19. 

8. De Micheli, G., "Synthesis and Optimization of Digital Circuits", McGraw-Hill 

International Editions 1994, ISBN 0-07-016333-2. 

9. Gajski, D. D. [editor], "Silicon Compilation", Addison-Wesley 1988, ISBN: 0-201-

09915-2. 



D.J.D. Milton, 2002 References 3 9 3 

10. Camposano, R., "Behavioral Synthesis", Design Automation Conference, Ch. 161, 

Jun 1996, pp. 33-34. 

11. Genoe, M. - Vanoostende, P. - Van Wauwe, G., "On the use of VHDL-based 

behavioural synthesis for telecom ASIC design". International Symposium on 

System Synthesis, 1995, Session 3. 

12. Lin, Y. -L., "Survey Paper: Recent Developments in High-level Synthesis", ACM 

Transactions on Design Automation of Electronic Systems, Vol. 2, No. 1, Jan 1997, 

pp 2-21. 

13. Peng, Z. - Kuchcinski, K., "Automated Transformation of Algorithms into 

Register-Transfer Level Implementations", IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, Vol. 13, No. 2, Feb 1994, pp 150-165. 

14. Gajski, D. D. - Ramachandran, L., "Introduction to High-Level Synthesis", IEEE 

Design and Test of Computers, Vol. 11, No. 4, 1994, pp 45-54. 

15. Brewer, F. - Gajski, D., "Chippe: A System for Constraint Driven Behavioral 

Synthesis", IEEE Transactions on Computer-Aided Design, Vol. 9, No. 7, Jul 1990, 

pp 681-695. 

16. Paulin, P. G. - Knight, J. P., "Force-Directed Scheduling for the Behavioral 

Synthesis of ASIC's", IEEE Transactions on Computer-Aided Design, Vol. 8, No. 

6, Jun 1989, pp 661-679. 

17. Kurdahi, F. J. - Parker, A. C., "REAL: A Program for REgister Allocation", 

Proceedings of the 24^ Design Automation Conference, 1987, pp 210-215. 

18. Camposano, R. - Saunders, L. F. - Tabet, R. M., "VHDL as Input for High Level 

Synthesis", IEEE Design and Test of Computers, Mar 1991, pp 43-49. 

19. Rushton, A., '"VHDL for Logic Synthesis 2""̂  Ed.", Wiley, 1998, ISBN: 0-471-

98325-X. 



D J .D. Milton, 2002 References 3 9 9 

20. "Modelsim SE/EE User's manual. Version 5.4c", Model Technology, Jul 2000. 

21. "ADA 95 Reference manual", ISO/IEC/ANSI 8652:1995, February 1995. 

22. De Micheli, G., "Hardware Synthesis from C/C++ Models", Proceedings of the 

Design Automation and Test in Europe Conference, 1999, pp 382-383. 

23. Wakabayashi, K., "C-based Synthesis Experiences with a Behaviour Synthesiser, 

"Cyber"", Proceedings of the Design Automation and Test in Europe Conference, 

1999, Session 6A, pp 390-393. 

24. Ghosh, A. - Kunkel, J. - Liao, S., "Hardware Synthesis from C/C++", Proceedings 

of the Design Automation and Test in Europe Conference, 1999, Session 6A, pp 

387-389. 

25. Verkest, D. - Kunkel, J. - Schirrmeister, F., "System Level Design Using C++", 

Proceedings of the Design Automation and Test in Europe Conference, 2000, 

Session 2A, pp 74-81. 

26. "SystemC Version 1.0 User's Guide", Synopsys Inc., CoWare Inc., Frontier Design 

Inc., 2000. 

27. Balakrishnan, M. - Majumdar, A. K. - Banerji, D. K. - Linders, J. G. - Majithia, J. 

C., "Allocation of Multiport Memories in Data Path Synthesis", IEEE Transactions 

on Computer-Aided Design, Vol. 7, No. 4, April 1988, pp 536-540. 

28. Park, N. - Parker, A. C., "SEHWA: A Software Package for Synthesis of Pipelines 

from Behavioral Specifications", IEEE Transactions on Computer-Aided Design, 

Vol. 7, No. 3, March 1988, pp. 356-370. 

29. "The SPARC Architecture Manual, Version 8", SPARC International Inc., 1991. 



D.J.D. Milton, 2002 References 4QQ 

30. Wilson, P. R. - Johnstone, M. S. - Neely, M. - Boles, D., "Dynamic Storage 

Allocation: A survey and Critical Review", University of Texas, Department of 

Computer Science, 1995. 

31. Knuth, D. E., "Fundamental Algorithms, Volume 1, on the Art of Computer 

Programming", Addison-Wesley Publishing Company, 1973. 

32. Zom, B. - Grunwald, D., "Evaluating Models of Memory Allocation", ACM 

Transactions on Modeling and Computer Simulation, Vol. 4, No. 1, Jan 1994, pp 

107-131. 

33. Vo, K. -P., "Vmalloc: A General and Efficient Memory Allocator", Software 

Practice and Experience, Vol. 26, No. 3, Mar 1996, pp 357-374. 

34. Grunwald, D. - Zom, B., "CustoMalloc: Efficient Synthesised Memory 

Allocators", Software - Practice and Experience, Vol. 23, No. 8, Aug 1993, pp 851-

869. 

35. Detlefs, D. - Dosser, A., "Memory Allocation Costs in Large C and C++ 

Programs", Software Practice and Experience, Vol. 24, No. 6, Jun 1994, pp 527-

542. 

36. Brent, R. P., "Efficient Implementation of the First-Fit Strategy for Dynamic 

Storage Allocation", ACM Transactions on Programming Languages and Systems, 

Vol. 11, No. 3, July 1989, pp 388-403. 

37. Richter, H. T., "Fast Memory Allocation", Dr. Dobb's Journal, May 1998, pp 78-

87. 

38. GontmaMier, S. - Horn, L, "Efficient Memory Allocation", Dr. Dobb's Journal, 

January 1999, pp 116-119. 

39. Zom, B., "The Measured Cost of Conservative Garbage Collection", Software -

Practice and Experience, Vol. 23, No. 7, July 1993, pp 733-756. 



DJ.D. Milton, 2002 References 4Q2 

40. Boehm, H. -J., "Dynamic Memory Allocation and Garbage Collection", Computers 

in Physics, Vol. 9, No. 3, May/Jun 1995, pp 297-303. 

41. Boehm, H. -J. - Weiser, M., "Garbage Collection in an Uncooperative 

Environment", Software - Practice and Experience, Vol. 18, No. 9, Sept 1988, pp 

807-820. 

42. Spertus, M., "C++ and Garbage Collection", Dr. Dobb's Journal, Dec 1997, pp 36-

41. 

43. Camposano, R. - Rosenstiel, W., "Synthesising Circuits from Behavioural 

Descriptions", IEEE Transactions on Computer-Aided Design, Vol. 8, No. 2, Feb 

1989. 

44. De Man, H. - Rabaey, J. - Six, P. - Claesen, L., "Cathedral II: A Silicon Compiler 

for Digital Signal Processing", IEEE Design and Test, Dec 1986, pp 13-25. 

45. Peng, Z., "Synthesis of VLSI Systems with the CAMAD Design Aid", Proceedings 

of the 23"^ ACM/IEEE Design Automation Conference, 1986, pp 278-284. 

46. Bardsley, A. - Edwards, D. A., "The Balsa Asynchronous Circuit Synthesis 

System", Proceedings of the International Forum on Design Languages (FDL), 

Sept 2000, pp 37-44. 

47. Bardsley, A. - Edwards, D. A., "Synthesising an asynchronous DMA controller 

with Balsa", Journal of Systems Architecture 46, 2000. 

48. "Behavioral Compiler User Guide", Version 2000.11, Nov 2000, Synopsys. 

49. "Visual Architect", http://www.cadence.com/articlesA^isualArc.html, Cadence. 

50. "Monet", http://www.mentor.com/monet/. Mentor Graphics. 

http://www.cadence.com/articlesA%5eisualArc.html
http://www.mentor.com/monet/


DJ.D. Milton, 2002 References 4 0 2 

51. Catthoor, F., "Energy-delay efficient data storage and transfer architectures: circuit 

technology versus design methodology solutions", Proceedings of the Design 

Automation and Test in Europe Conference, 1998, Session 9C, pp 709-715. 

52. Wehn, N. - Hein, S., "Embedded DRAM Architectural Trade-Offs", Proceedings of 

the Design Automation and Test in Europe Conference, 1998, Session 9C, pp 704-

708. 

53. Catthoor, F. - Dutt, N. D. - Kozyrakis, C. E., "Hot topic session: How to solve the 

current memory access and data transfer bottlenecks: at the processor architecture 

or at the compiler level?", Proceedings of the Design Automation and Test in 

Europe Conference, 2000, Session 6B, pp 426-433. 

54. Semeria, L. - Sato, K. - De Micheli, G., "Memory Representation and Hardware 

Synthesis of C Code with Pointers and Complex Data Structures", Computer 

Systems Lab, Stanford University, 2000. 

55. Semeria, L. - De Micheli, G., "SpC: Synthesis of Pointers in C. Application of 

Pointer Analysis to the Behavioural Synthesis from C", Computer System 

Laboratory, Stanford University, 1998. 

56. Semeria, L. - Sato, K. - De Micheli, G., "Resolution of Dynamic Memory 

Allocation and Pointers for the Behavioural Synthesis from C", Proceedings of the 

Design Automation and Test in Europe Conference, 2000, pp 312-319. 

57. Verkest, D. - Da Silva, J. L. - Ykman, C. - Croes, K. - Miranda, M. - Wuytack, S. -

De Jong, G. - Catthoor, F. - De Man, H., "Matisse: A system-on-chip design 

methodology emphasizing dynamic memory management". Proceedings of the 

IEEE Computer Society Workshop on VLSI System Level Design, 1998. 

58. "Matisse", http://www.imec.be/matisse/. 

http://www.imec.be/matisse/


DJ.D. Milton, 2002 References 4Q3 

59. Kucukcakar, K. - Chen, C. -T. - Gong, J. - Philipsen, W. - Tkacik, T. E., "Matisse; 

An Architectural Design Tool for Commodity ICs", IEEE Design and Test of 

Computers, Apr-Jun 1998, pp 22-33. 

60. Wuytack, S. - Catthoor, F. V. M. - De Man, H. J., "Transforming Set Data Types to 

Power Optimal Data Structures", IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, Vol. 15, No. 6, Jun 1996, pp 619-629. 

61. Da Silva, J. L. - Ykman-Couvreur, C. - Miranda, M. - Croes, K. - Wuytack, S. - De 

Jong, G. - Catthoor, F. - Verkest, D. - Six, P. - De Man, H., "Efficient System 

Exploration and Synthesis of Applications with Dynamic Data Storage and 

Intensive Data Transfer", Proceedings of the 35^ Design Automation Conference, 

June 1998, pp 76-81. 

62. Wuytack, S. - Da Silva, J. L. - Catthoor, F. - De Jong, G. - Ykman, C., "Memory 

Management for Embedded Network Applications", IEEE Transactions on 

Computer-Aided Design, Vol. 18, No. 5, May 1999, pp 533-544. 

63. Ellervee, P. - Miranda, M. - Catthoor, F. - Hemani, A., "System-Level Data Format 

Exploration for Dynamically Allocated Data Structures", Proceedings of the 37^ 

Design Automation Conference, 2000, Session 32, pp 556-559. 

64. Lin, B. - De Jong, G. - Verdonck, C. - Wuytack, S. - Catthoor, F., "Background 

Memory Management for Dynamic Data Structure Intensive Processing Systems", 

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. 

65. Ykman-Couvreur, C. - Verkest, D. - Svantesson, B. - Hemani, A. - Wolf, F., 

"Stepwise Exploration and System Synthesis firom SDL of an Operation and 

Maintenance Component in ATM switches", International Symposium on System 

Synthesis, Nov 1999, pp 85-91. 

66. "MOODS Internals version 1.0", LME Design Automation, July 2001. 



DJ.D. Milton, 2002 References 4 0 4 

67. Baker, K. R., "Final Report: Application Specific Synthesis Enforcing Testability 

(ASSET)", University of Southampton, October 1995. 

68. Brown, A. D. - Williams, A. C., "The MOODS Behavioural Synthesis System", 

Proceedings of the S"' International Forum on Design Languages (FDL), Sept 2000, 

pp 17-21. 

69. "Design Compiler User Guide", Version 2000.05, May 2000, Synopsys. 

70. "Synergy VHDL Synthesizer and Optimizer Tutorial", Cadence Design Systems, 

Version 2.2, June 1995. 

71. "LeonardoSpectrum User's Guide", Exemplar Logic, Inc. Version 1999.1, 1999. 

72. "Quick Start Guide for Xilinx Alliance Series 1.5", Xilinx, Version 1.5, 1998. 

73. Rutenbar, R. A. (chair), "Panel; (When) Will FPGAs Kill ASICs?", Proceedings of 

the 38^ Design Automation Conference, 2001, Session 21, pp 321-322. 

74. Williams, A. C. - Brown, A. D. - Baidas, Z. A., "Optimisation in behavioural 

synthesis using hierarchical expansion: Module ripping", lEE Proceedings on 

Computers and Digital Techniques, Vol. 148, No. 1, Jan 2001, pp 31-43. 

75. Williams, A. C. - Brown, A. D. - Baidas, Z. A., "Hierarchical Module Expansion in 

a VHDL Behavioural Synthesis System", FDL'98, Sep 1998. 

76. Ly, T. - Knapp, D. - Miller, R. - MacMillen, D., "Scheduling using Behavioral 

Templates", Proceedings of the 32"^ ACM/IEEE Design Automation Conference, 

Session 7,1995. 

77. Aho, A. V. - Sethi, R. - Ullman, J. D., "Compilers - Principles, Techniques and 

Tools", Addison-Wesley Publishing Company, 1986, ISBN 0-201-10194-7. 



DJ.D. Milton, 2002 References 4 0 5 

78. Baker, K. R., "Writing Behavioural VHDL for MOODS Synthesis - User Manual 

for MOODS vl.xx", University of Southampton, July 1993. 

79. Baker, K. R., "The MOODS Synthesis System - User Manual for MOODS v2.xx", 

University of Southampton, July 1993. 

80. Ramachandran, L. - Vahid, F. - Narayan, S. - Gajski, D. D., "Semantics and 

Synthesis of Signals in Behavioral VHDL", Proceedings EuroDAC '92, 1992, pp. 

616-621. 

81. Williams, A. C. - Brown, A. D. - Zwolinski, M., "Simultaneous optimisation of 

dynamic power, area and delay in behavioural synthesis", lEE Proceedings on 

Computers and Digital Techniques, Vol. 147, No. 6, Nov 2000, pp 383-390. 

82. Williams, A. C. - Brown, A. D. - Zwolinski, M., "A VHDL Behavioural Synthesis 

System Featuring Simultaneous Optimisation of Dynamic Power, Area and Delay", 

Proceedings of the 3"̂  hitemational Forum on Design Languages (FDL), Sept 2000, 

pp 23-30. 

83. Rutenbar, R. A., "Simulated Annealing Algorithms: An Overview", IEEE Circuits 

and Devices, January 1989, pp. 19-26. 

84. Kirkpatrick, S - Gelatt Jr., C. D. - Vecchi, M. P., "Optimization by Simulated 

Annealing", Science, 13 May 1983, Vol. 220, No. 4598, pp. 671-680. 

85. Kirkpatrick, S., "Optimization by Simulated Annealing: Quantitive Studies", 

Journal of Statistical Physics, Vol. 34, Nos. 5/6, 1984, pp. 975-986. 

86. Metropolis, N. - Rosenbluth, A. - Teller, A. - Teller, E., "Equation of State 

Calculations by Fast Computing Machines", Journal of Chemical Physics, Vol. 21, 

1087,1953. 

87. Baker, K. R. - Brown, A. D., "A Goal Directed Heuristic Optimisation Algorithm 

for the MOODS Synthesis System", University of Southampton, 1995. 



DJ.D. Milton, 2002 References 4 0 5 

88. Brown, A. D. - Baker, K. R. - Williams, A. C., "On-Line Testing of Statically and 

Dynamically Scheduled Synthesized Systems", IEEE Transactions on Computer-

Aided Design, Vol. 16, No. 1, Jan 1997, pp 47-57. 

89. Williams, A. C. - Brown, A. D. - Zwolinski, M., "In-line test of synthesised 

systems exploiting latency analysis", lEE Proceedings on Computers and Digital 

Techniques, Vol. 147, No. 1, Jan 2000, pp 33-41. 

90. Kumar, V. - Grama, A. - Gupta, A. - Karypis, G., "Introduction to Parallel 

Computing. Design and Analysis of Algorithms", Benjamin/Cummings Publishing 

Company, 1994, ISBN: 0-8053-3170-0. 

91. 'Draft IEEE Standard VHDL Reference Manual, IEEE Std 1076a-2000". 

92. Nijhar, T. P. K. - Brown, A. D., "Source Level Optimisation of VHDL for 

Behavioural Synthesis", lEE Proceedings on Computers and Digital Techniques, 

Vol. 144, No. 1, Jan 1997. 

93. Nijhar, T. P. K. - Brown, A. D., "HDL-Specific Source Level Behavioural 

Optimisation", lEE Proceedings on Computers and Digital Techniques, Vol. 144, 

No. 2, Mar 1997, pp 138-144. 

94. Nijhar, T. P. K., "Source Code Optimisation in a High Level Synthesis System", 

PhD Thesis, University of Southampton, Apr 1997. 

95. "Fujitsu MB81C4256 DRAM data sheet", Fujitsu. 

96. "IEEE Standard Multivalue Logic System for VHDL Model Interoperability 

(Std logic l 164)", IEEE Design Automation Standards Committee (1993b). 

97. Chiou, D. - Jain, P - Rudolph, L - Devadas, S., "Application-Specific Memory 

Management for Embedded Systems Using Software-Controlled Caches", 

Proceedings of the 37^ Design Automation Conference, 2000, pp 416-419. 



D J .D. Milton, 2002 References 4 0 7 

98. Kandemir, M. - Ramanujam, J. - Irwin, M. J. - Vijaykrishnan, N. - Kadayif, I. -

Parikh, A., "Dynamic Management of Scratch-Pad Memory Space", Proceedings of 

the 38^ Design Automation Conference, 2001, Session 42, pp 690-695. 

99. Grunwald, D. - Zom, B. - Henderson, R., "Improving the Cache Locality of 

Memory Allocation", Proceedings of the ACM-SIGPLAN Conference on 

Programming Language Design and Implementation, 1993, pp 177-186. 

100. "Cypress CY7C185 SRAM data sheet", Cypress Semiconductor Corporation, Aug 

1998. 

101. Ramachandran, L. - Narayan, S. - Vahid, F. - Gajski, D. D., "Synthesis of 

Functions and Procedures in Behavioral VHDL", Proceedings EuroDAC '93, 1993, 

pp 560-565. 

102. Baker, K. R. - Brown, A. D. - Currie, A. J., "Optimisation Efficiency in 

Behavioural Synthesis", lEE Proceedings on Circuits, Devices and Systems, Vol. 

141, No. 5, Oct 1994, pp 399-406. 

103. Milton, D. J. D. - Brown, A. D. - Williams, A. C., "Dynamic Memory Allocation in 

a VHDL Behavioural Synthesis System", Proceedings of the 3"̂  International 

Forum on Design Languages (FDL), Sept 2000, pp 45-51. 

104. "The Programmable Logic Data Book", XILINX, San Jose, CA, PN 0010323, 

1998. 

105. Harrild, B., "High Level Behavioural Synthesis of Conway's "Life"", B.Eng. 

Project report. Department of Electronics and Computer Science, University of 

Southampton, 2001. 

106. Baidas, Z. A., "High-level Floating-point Synthesis", PhD Thesis, University of 

Southampton, July 2000. 



D.J.D. Milton, 2002 References 4 0 8 

107. Baidas, Z. A. - Brown, A. D. - Williams, A. C., "A VHDL Behavioural Synthesis 

System with Floating Point Support", Proceedings of the 3"̂  International Forum on 

Design Languages (FDL), Sept 2000, pp 31-36. 

108. Wakerly, J. F., "Digital Design Principles and Practices", Prentice Hall, 1990, 

ISBN: 0-13-212838-1. 

109. Sacker, M. - Williams, A. C. - Brown, A. D., "Case Study: Comparing Behavioural 

with RTL Synthesis in the Development of a Programmable Digital Filter using 

VHDL", Proceedings of the 3"̂  International Forum on Design Languages (FDL), 

Sept 2000, pp 53-59. 

110. Kreyszig, E., "Advanced Engineering Mathematics", 7th Ed., John Wiley & Sons, 

1993, ISBN: 0-471-59989-1. 

111. Kolson, D. J. - Nicolau, A. - Dutt, N., "Elimination of Redundant Memory Traffic 

in High-Level Synthesis", IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, Vol. 15, No. 11, Nov 1996, pp 1354-1364. 

112. Gupta, S. - Savoiu, N. - Kim, S. - Dutt, N. - Gupta, R. - Nicolau, A., "Speculation 

Techniques for High Level Synthesis of Control Intensive Designs", Proceedings 

of the 38^ Design Automation Conference, 2001, Session 18, pp 269-272. 

113. Grun, P. - Dutt, N. - Nicolau, A., "Memory aware compilation through accurate 

timing extraction". Proceedings of the 37^ Design Automation Conference, 2000, 

Session 19, pp 316-321. 

114. "VGA timing information", 

http://www.hut.fi/Misc/Electronics/Docs/pc/vga_timing.htmL 

115. Nicoud, J. -D., "Video RAMs: Structure and Applications", IEEE Micro, Feb 1998, 

pp 8-27. 

http://www.hut.fi/Misc/Electronics/Docs/pc/vga_timing.htmL


DJ.D. Milton, 2002 References 4 0 9 

116. Foley, J. D. - Van Dam, A. - Feiner, S. K. - Hughes, J. F., "Computer Graphics 

Principles and Practice", Addison Wesley, 1996, ISBN: 0-201-84840-6. 

117. Bishop, L. - Eberly, D. - Whitted, T. - Finch, M. - Shantz, M., "Designing a PC 

Game Engine", IEEE Computer Graphics and Applications, Jan/Feb 1998, pp 46-

53. 

118. Cignoni, P. - Puppo, E. - Scopigno, R., "Representation and Visualization of 

Terrain Surfaces at Variable Resolution", Scientific Visualisation 98, World 

Scientific, pp 50-68. 

119. "The TTL Data Book for design engineers, 2"'̂  Ed.", Binary to BCD conversion, 

Texas Instruments, 1977. 


