University of Southampton

Algebraic and numerical techniques
in general relativity:

The classification of spacetimes
via the Cartan-Karlhede method,
and

Cauchy-Characteristic matching for
numerically generated spacetimes

by

Denis Pollney

Submitted for the degree of Doctor of Philosophy

Faculty of Mathematical Studies

February 2000

Abstract

This thesis concerns two distinct areas of research (i) the development of a practical
set of methods for the classification of spacetimes in general relativity, and (ii) the
numerical solution of the vacuum Einstein equations on null hypersurfaces.

The first part examines the Cartan-Karlhede method for determining a unique
classification of algebraically distinct spacetimes. A key aspect of this method is the
establishment of a set of ‘standard forms’ for symmetric spinors. A set of standard
forms is developed, with an emphasis on the need for consistency, and reduction of
computational complexity. The Cartan-Karlhede method has been incorporated into
a set of programs for the computer algebra system Maple and form a general set of
tools for the use of relativists. Certain inherent difficulties with the Cartan-Karlhede
methods, such as the need to determine the roots of high order polynomials, are
identified, along with potential alternative methods for handling these difficulties.

The second part of the thesis details the development of a Cauchy-characteristic
matching (CCM) code in axisymmetry. In the CCM technique, a spacetime is evolved
on two separate grids with information passed between the two. The advantage of
this method is the ability to use well-developed Cauchy codes in the interior (where
characteristics would tend to develop caustics) and a characteristic region which extends
to null infinity, alleviating the need for artificial boundary conditions. The code which is
being developed passes information in both directions across the boundary. A condition
at null infinity ensures that Bondi-type slicing of the spacetime is maintained, with the
advantage that the mass and news functions are thus easily identifiable.

A full description of the evolution systems in both the Cauchy and characteristic
regions is given. The interface is implemented along a single r = constant surface to
avoid difficulties arising from interpolation between the grids over a region. Difficulties
arise in coordinating the evolution in each region so that the required information is
provided at the boundary when it is needed, however for the given system of equations
they can be surmounted in a manner consistent with the overall evolution scheme.

Acknowledgements

The subject matter in covered by this thesis is broad in its scope, ranging from 2-spinor
calculus, to applied numerical techniques, to asymptotic expansions of gravitational wave
equations. I do not claim to be an expert in any of these fields, in fact I sometimes see
myself in the role of ‘jack of all trades, master of none.” But in putting this work together,
I have been grateful to be able to call on the varied expertise of the many others who
have been so helpful whenever I have asked for advice.

In particular, I would like to thank Jim Skea, of the University of Rio de Janeiro, for
his help in planning and implementing the set of classification algorithms that make up
the first part of this thesis.

I'd also like to thank Kayll Lake, my previous supervisor at Queen’s University,
for giving me the opportunity to get involved in the GRTensor project. As much as I
complain, fixing Maple bugs is often a welcome distraction from numerical cookery in
Fortran.

The Cauchy code developed for the second half of this thesis is largely the work of
Mark Dubal, for whom I am very grateful for the effort he devoted to developing this
complicated and crucial piece of the CCM puzzle.

I would like to thank Chris Clarke for his patient and precise work on the interface on
both the theoretical and coding sides, and for his persistence with it when many other
interesting problems called for his attention.

The Southampton relativity grad students during my time here, John Goodwin, Paul
Lambert, and Paoclo Matteucci, Robert Sjodin, Uli Sperhake, and Rhiannon Williams
have been a great source of friendship and advice during my time here, and a special
thanks to the Jonathan Wilson for keeping the group (or at least our machines) up and
running.

James Vickers has contributed his theoretical knowledge and intuition to every aspect
of this project, and I wish I were able to code new ideas as fast as he thinks them up.

And finally, I'd like to thank my supervisor, Ray d’Inverno, who has headed the
Southampton CCM effort and been an invaluble source of support, encouragement, ideas
and optimism at times when these things were very hard to come by, and especially for
giving me the opportunity to come to Southampton in the first place. In a scientific
world that can often seem quite specialised, the breadth of experience that I've been
exposed to over my time in Southampton is something that I'm sure will benefit me for
the rest of my career and for which I am very grateful.

Denis Pollney
Potsdam, February 2000.

Contents

I The classification of spacetimes in general relativity 1
1 Introduction: The Cartan-Karlhede method 2
1.1 Thespinor formalism. 5
Spin transformations e 6
Spinorsand spinbases Lo oL, 8
Curvature e e e e e e e e e e e 11

Some properties of spinorsatapoint 12

The Newman-Penrose formalism 14

1.2 Theequivalenceproblem 14
1.3 The Cartan-Karlhede Method 17

2 Standard forms for symmetric spinors 19
2.1 The Weylspinor i 21
Determination of the Petrovtype 22
Standard forms for the Weylspinor 23
Transformations to standard form 27

2.2 TheRiccispinor i e 28
2.3 Standard forms for general spinors L. 29
o—¢tinterchange e, 30

Boosts e e e e e 32

SPINS . . . o o i e e e e e e e e e 33
Nullrotations o o e e e e 34

3 Classification in practice 40
3.1 Thechoiceof platform, 41
3.2 GRTensorIl e e e 44
Basiccommands e 44

Input of spacetimes 45

Tensor definitions within GRTensor 46

Object libraries e 48

3.3 Spinortools 49
Derivative operators and symmetric spinors 49
Framerotations 52

3.4 Classificationtools e 57
Petrov type e 58
Isotropy testing L 58
Automatic generation of dyad transformations 59
Automatic classification L L L L L oL 60

3.5 Additional tools: Complex quantities in Maple/GRTensor 62
3.6 Outstanding problems L oo 64

iii

CONTENTS iv

II Cauchy-characteristic matching in axial symmetry 71
4 Numerical techniques for the solution of Einstein’s equations 72
4.1 Cauchy methods: Spacetime as a 3D foliation 77
Initialdata e 78

Field equations 80

4.2- Characteristic methods: The Bondi-Sachs coordinate system 82
Fieldequations e 86
Asymptotic behaviour of the metric variables 89

5 The Southampton axisymmetric CCM code 93
5.1 The Stark-Piran axisymmetric 341 scheme 95
Gauge conditions L e e e 97
Integration procedure o 99
Boundary conditions e 102

5.2 A Bondi-Sachs characteristic scheme oL, 103
The evolution algorithm 106
Behaviour at the boundaries. 107

5.3 Data transfer across the interface 108
The injection of 01811 - - - -« « ¢ o 0 i e e e 114
Determination of the Cauchy lapse from incomplete characteristic data . . 117

5.4 A scheme for coordinating Cauchy and characteristic codes 118
5.5 Numerical implementation 122
Grid structure e e e e e e 123

Finite difference techniques 127

Grid spacing and stability in the Cauchy region 131
Conclusions 135
The algebraic classification of spacetimes. 135
Numerical integrations via Cauchy-characteristic matching 136
Appendices 138
A An algorithm for the determination of the Petrov type 139
B Transformations to standard form for given Petrov types 143
C A classification of the Edgar-Ludwig metrics 148
D Metric components for the Stark-Piran and Bondi systems 153

Bibliography 155

Part 1

The classification of spacetimes in

general relativity

Introduction: The

Cartan-Karlhede method

When Einstein first presented his geometrical theory of the gravitational field, general
relativity, he was dismayed to think that the theory would find little practical use. The
reason for his pessimism was the complicated non-linear nature of his field equations, a
property which he thought would render exact solution virtually impossible. Within a
year of its publication, however, a most significant solution had already been discovered,
namely the spherically symmetric ‘black hole’ of Schwarzschild. Since then, hundreds
of exact solutions have been found, some more and some less physically significant, and
the study of their properties has become an industry in itself.

The theory of general relativity is a geometrical theory in that its solutions describe
surfaces of four dimensional spacetime. The conventional way of representing solutions
is via a line-element or a set of basis vectors, and crucial to this form of representation
is the assignment of labels to points on the surface, which amounts to the choice of
coordinates.

Early on it was recognised that the freedom to choose coordinates could be both
a benefit and a complication. On the one hand, coordinates can be fixed in such a
way as to take advantage of special symmetries of certain configurations of Einstein’s
equations. In this way, the equations can be simplified dramatically and often this is the
most powerful tool available in finding exact solutions.

On the other hand, the choice of a particular set of coordinates can lead to prop-
erties which only seem to cloud the analysis by introducing effects which are not at all
physical but rather due to some limitation in the method used for labelling points on
the spacetime. A significant example of this is the coordinate singularity at r = 2m of

the Schwarzschild solution. This was long thought to be a problem with the underlying

1. Introduction: The Cartan-Karlhede method 3

theory, and only later shown to be simply a result of the fact that Schwarzschild’s choice
of coordinates were not appropriate for describing the entire solution.

Another problem arises when two solutions are found by different means, but pos-
sessing the same symmetries, and in different coordinates. The question arises, what are
the relations between two such solutions, and in particular, is it possible that they could
be equivalent solutions simply expressed in different coordinates? One way to answer
this question is to look for a coordinate transformation relating the two solutions. If one
can be found, then it is clear that the solutions are equivalent. However, if a coordinate
transformation can not be found, there is the problem of proving whether or not one
exists.

As might be expected, such a proof turns out to be a non-trivial exercise, at least
in practice. The theory behind such proofs has a long history, beginning with Christof-
fel (1869), who first proposed a comparison of curvature tensor components and their
derivatives. The most significant step forward was provided by Cartan (1946), who was
able to show that in 4 dimensions the required components are those of the Riemann
tensor and its first ten derivatives. With these in hand, one has in principal, all of
the necessary information. The equivalence problem then reduces to finding a set of
coordinate relations between these components calculated for the two spacetimes.

The great problem with Cartan’s method comes in its implementation, since even for
algebraically simple spacetimes it can involve the computation of enormous amounts of
tensor components. A number of attempts have been made to improve on its practical
implementation, notably by Brans (1965) and Karlhede (1980). Brans’ contribution
was to suggest that the SL(2,C) freedom inherent in the coordinates (a result of our
freedom to change the velocity and orientation of the coordinate frame) can be removed
by fixing the tensor components to a ‘canonical’ frame which is determined by the
algebraic symmetries of the solution. Karlhede formalised this idea and improved upon
it by suggesting that the frame should be fixed using the low order derivatives of the
Riemann tensor, in this way reducing the number of derivatives which eventually need
to be calculated. In this way, the number of theoretically necessary derivatives was
reduced from 10 to 7 and the total number of components which needed to be calculated
was reduced from some 27 962 020 to 436 900, a significant improvement, though still a
daunting task.

The final theoretical improvement to the basic algorithm was provided by MacCallum
and Aman (1986), who used identities satisfied by the Riemann tensor and its derivatives

to arrive at a minimal set of independent components which need to be calculated. For

1. Introduction: The Cartan-Karlhede method 4

Karlhede’s method, they arrived at an upper bound for the number of components as
3156, which finally brings the problem into the realm of tractability, at least by modern
computer algebra systems. Specific algebraic types of solution have also been examined,
for instance by Collins et al. (1990), and Collins (1991). Together these papers show
that in fact it is only a very rare situation in which the full number of derivatives
of the Riemann tensor need to be calculated. In practice it seems that one rarely
needs to go past the third derivative before Karlhede’s method is completed. (The first
example to require fourth order classification was discovered by Koutras (1992); see also
Skea (1997a).) Even so, the computations required to calculate the individual tensor
components are often fairly labour intensive. Brans (1965) suggested that computer
algebra systems might help in this regard. Aman (1986) was the first to develop such a
system, CLASSI, which he based on Karlhede’s algorithm.

CLASSI has been used with great success in fully classifying a large number of exact
solutions. However it suffers from some shortcomings. The most serious of these is
that it is unable to perform certain algebraic operations, such as polynomial division,
which are extremely useful in tensor calculations. It is also weak in performing certain
simplifications, such as factorisation and applying trigonometric identities. In some
cases such simplifications can be crucial to the calculation of tensor components, for
when they are not applied the individual expressions can expand to a size which will fill
the memory of the computer on which it is running. The lack of advanced simplification
facilities results from the fact that CLLASSI is implemented as an addition to the program
SHEEP, a computer algebra system which specialises in tensor computation but has not
been optimised for general algebraic calculations. Since SHEEP has been implemented
as a stand-alone package using the LISP programming language, it must contain its own
routines for carrying out polynomial simplifications, in general a non-trivial task which
would require many times more effort to implement than the actual tensor calculations
themselves.

To some extent, SHEEP (and hence CLASSI) are able to avoid these problems
through the use of powerful facilities for substitution of expressions. By specifying
the substitutions correctly, the user is effectively able to instruct the computer which
simplifications to apply when, often leading to a very quick and compact result. The
problem with this method, however, is that it often requires a great deal of fine-tuning
before the result is obtained. The user must step through the calculation and recognise
where substitutions might be helpful, then code these substitutions into an input file. It

is not always obvious if such substitutions will lead to an optimal form of the solution.

1. Introduction: The Cartan-Karlhede method 5

Many modern commercial computer algebra systems, which did not exist at the time
of CLASSI’s development, have built in facilities for carrying out simplifications of large
polynomials. The algorithms are often automatic, requiring little intervention on the
part of the user, and great efforts have been made to see that the algorithms are in
some way optimised. It would be useful, then, to be able to use such a general system
as an underlying tool for a tensor computation package, as this frees the programmer of
the tensor package from needing to implement all of the basic algebraic operations. A
large number of independent tensor packages have been written for the major computer
algebra systems Maple, Mathematica, Macsyma and Reduce.! Notably, the package
GRTensor, (see Pollney et al. (1996)) provides extensive tensor calculation tools for
relativists working within the Maple computer algebra system.

This thesis details an implementation of the Cartan-Karlhede method within Maple,
developed by the author in collaboration with Jim Skea (UERJ, Brazil) and Ray
d’Inverno (Southampton). The study of the applicability of standard forms carried
out in the next chapter, the algorithms presented, and the computer algebra software
designed for the required operations on spinor components are the original work of the
author. The procedures described aim at creating an efficient, powerful, and usable set

of computational tools for the manipulation of 2-spinor components in relativity.

1.1 The spinor formalism

To answer the question of how we can decide whether two spacetimes are equivalent,
we must first ask what information do we have regarding a spacetime, and how can it
be used. Generally, this information comes in the form of curvature tensor components,
whether specified in a particular coordinate system via a metric, or in terms of a given
set of basis vectors (frame). The difficulty arises from the fact that the individual com-
ponents of the curvature tensors vary under changes of coordinates as well as rotations
of the underlying frame. A pair of spacetimes will be called eguivalent if a coordinate
transformation exists which maps any tensor component calculated in the one spacetime
onto the corresponding tensor component in the other.

In fact, from this definition, the solution to the equivalence problem is already ap-
parent. Namely, we examine the action of an arbitrary coordinate transformation on

some number of tensor components in the one spacetime, and set these equal to the

! An incomplete listing of publicly available tensor packages can be found at

http://astro.queensu.ca/ grtensor/.

1. Introduction: The Cartan-Karlhede method 6

components of the second spacetime to solve for the coordinate transformation.

The question then arises as to how many, and in particular which, tensor components
will be sufficient to guarantee the consistency of such a solution, if it exists. In the
following sections, the general solution, due to Cartan, to this problem is presented.
Important improvements arising from specialising the frame were later introduced by
Karlhede, and finally MacCallum and Aman were able to determine a necessary and
sufficient set of tensor components required to establish equivalence.

The method of Cartan-Karlhede requires only that the components of the curvature
be represented in terms of a frame with fixed metric components. We will find, however,
that certain symmetries among components of the curvature tensor are most easily seen
when they are expressed in a particular frame formalism, namely the 2-spinor approach

of Penrose.

Spin transformations

Consider standard Minkowski space, M, with coordinates (¢, z, y, 2) and metric 7,5 given

by

1 0 0 0
ab 0 -1 0 0
Nab = N" = , (1.1)
0 0 -1 0
0 0 0 -1
so that vectors u® and v* in M have their inner product given by
P nep = ugvy — Ugvg — UyUy — UV, (1.2)

The Lorentz norm is defined by taking the inner product of a vector with itself, u®ubn,.
A transformation which preserves the Lorentz norm is called a Lorentz transformation.

The form of the Lorentz norm divides vectors into three distinct classes, timelike,
spacelike, and null, based on whether their inner product is, respectively, positive, neg-

ative or zero. Thus, a null vector k% is a vector at P satisfying

kS = (ky, kg, ky, kz), (1.3)

(ke)? ~ (kz)? = (ky)? = (k2)* = 0. (1.4)

We will focus our attention on a particular class of null vectors, the null directions,

defined to be those null vectors whose spacelike parts have unit norm, that is, those for

1. Introduction: The Cartan-Karlhede method 7

Figure 1.1: Stereographic projection from S* to the Argand plane.

which

(kz)? + (k)2 + (k)2 = 1. (1.5)

We can distinguish two classes of such vectors, those for which k4 is +1 or —1, said to
exist on either the future null cone, S*, or the past null cone, S~. Note that each of
these classes of null directions can be parametrized by points on the unit sphere, for

instance,
ky = sinf% cos ¢*, ky = sin 6" sin ¢+, k, = cos@* (1.6)

and as such can be brought into one-to-one correspondence with points ¢ of the Argand
plane (with oo attached) via the standard Riemann stereographic projection,

¢= ei¢+ cot H_t = ———kx + iky.

21—k, (1.7)

(see Fig. 1.1).
The final refinement to this picture which we will make is that rather than use a
single complex number (, we choose to map each point of S*onto a complex pair (¢,7),

where

¢=¢/n. (1.8)

This seemingly extra complication allows us to define the notion of a spin transformation,

namely the map

¢ af + B, (1.9)

n~ y€+ on, (1.10)
where a, f3, v, and J, are complex scalars satisfying

ad — By =1. (1.11)

1. Introduction: The Cartan-Karlhede method 8

This transformation can be represented in terms of a spin matriz, A,

(9

a B
v 4

where

A= , det A = 1. (1.13)
Significantly, the spin matrices form a group, the special linear group of 2 x 2 complex

matrices, referred to as SL(2,C). In fact, it is possible to prove the following result:

Theorem 1 (PR 1.2.27) Every spin transformation corresponds to a unique restricted
Lorentz transformation. Conversely every restricted Lorentz transformation corresponds

to precisely two spin transformation, one being the negative of the other.

That'two spin transformations correspond to a single Lorentz transformation is a result
of the fact that both A and — A have the same effect on (. A proof of the given result
can be found in Penrose and Rindler (1984).

To summarise, we have defined a correspondence between null directions at P and
the complex pair (&,7). The correspondence is such that Lorentz transformations of the

former can be mapped on to spin transformations of the latter.

Spinors and spin bases

The complex pair (n,£) representing a particular null direction can be used to define a

spin vector via

k= (k% K1), (1.14)

k) =g, k! =n. (1.15)

For the space of spin vectors, the operations of scalar multiplication and addition are

defined as usual, as well as a symplectic inner product,

A, k1) =(A&?, A1), (1.16)
(%, 61 + (W0 wh) =(k" 4+ W0, k' + W), (1.17)
< kyw >=kw! — kW0, (1.18)

for spin vectors k and w, and complex scalar A. It can be shown that these operations

are invariant under spin transformations.

1. Introduction: The Cartan-Karlhede method 9

We can introduce indices to the notation by writing
k4 = (K2, k1), w? = (W0, wh), (1.19)
and defining an antisymmetric object, €45, to play the role of the inner product,
< K,w >= g pk WP, (1.20)
with
€aB = —Epa, (1.21)

and summation over the repeated indices assumed.
The €45 object can be used to define a mapping to the dual kp of the spin vector k®

via
kg = K €ap. (1.22)
The components of kp are related to those of k* via
Ko = —K!, k1 = K. (1.23)
A pair of spin vectors (0*,:*) are called a spin basis if their inner product satisfies
eap0?® = 1. (1.24)

An arbitrary spin vector can be represented in terms of the spin basis by

0

k* = ko + kli4, (1.25)

0

where k% := - k* and k! := 0,k%, and the inner product itself can be written
A bl p

€ap = Oalp — L40B, e?® = 0% - 110", (1.26)

A final technical issue arises when we consider the operation of complex conjugation
on spin vectors, necessary if we wish to recover the real valued components of null
vectors from the complex valued spin vectors. Unfortunately, if we are to maintain
Lorentz covariance, then the conjugates of spin vectors can not be considered to be in
the same spin space as the original vectors. As a result, we introduce a new spin space
corresponding to the conjugate space of spin vectors x*, and delineate its members by
placing a prime on its index labels. Thus if we denote complex conjugation by a bar, we

write

3
Il
A

(1.27)

1. Introduction: The Cartan-Karlhede method 10

By transforming a null vector k® to a point on the complex plane, ¢ = £/7, via the
stereographic projection described above, it is possible to show that the components of

any null vector are given by the following formula:

ko ki ¢ &7 (5) €)

> - (1.28)
ky k3 &n nq n

Remembering the definition of the spin vector k* = (k% k!) = (£,7) suggests that we

can make the following correspondence between null directions and spin vectors:
L (1.29)

where the indices are identified via (0,1,2,3) « (00’,01’,10',11’). Given a spin basis
(o*,¢*) we can use this relationship to establish a set of four independent null vectors,

19:=0%0", m®:=0"T", m®:=14%", n®:=.4T" (1.30)
which satisfy the requirements of a Newman-Penrose null tetrad. Namely,

ng =1, mim® = -1, (1.31)

and all other inner products are zero.

Thus, any vector k* whose components are expressed in the given null frame as
k® = kol® + kym® + komn® + k3n®, (1.32)

has a natural expression in terms of a 2-spinor formed by replacing the null basis vectors

with the corresponding spin basis combinations,
k% s k4% = kgo0® + k1o"TY + kouto? + k3 AT, (1.33)

For the given spin basis, the identification can be carried out explicitly using the Infeld-

van der Waerden symbols,

' 1 01 , 1 1 0
AB . = 10, AB T — p— 11,
go . \/i 1 0 gaB g1 \/i 01 GaB
(1.34)
1 0 2 ' 1 1 0
AB' 2 AB 3
= =) g3 = = ",
g2 \/i -.Z O gAB \/i 0 _1 gAB
so that
k® = g 0%k (1.35)

In fact, we will use these symbols more generally to define the correspondence between

tensors of n indices a, b, c, ..., with spinors of 2n indices A, A’, B, B',C,C’,....

1. Introduction: The Cartan-Karlhede method 11

Curvature

We can now proceed to define the notion of covariant differentiation in spinor terms.
This is a more complicated procedure than for a standard coordinate basis because
of the inability to express the Lie derivative as a spinor. However, it can be shown
. (Penrose and Rindler (1984)) that a derivative operator V ., exists uniquely as a map

Vaa @ X.. = V,ux.. when it is subjected to the following requirements:
L Vaw(0+¢)=V,u00+Vuud,
. Vau(09) = ¢V 440 + 0V 448,
iti. ¢ =V,00 implies ¢=V,,0,
iv. Vapepe = Vaue?® =0,
v. V . commutes with any index substitution not involving 4 or A',
vi. Vo Vg f = VeV, f for all scalars f,

vii. for any derivation D acting on spinor fields there exists a spinor é#4 such that

D¢ = £44'V 440 ¢ for all ¢.

With this definition, we can construct a set of spinor Ricci rotation coefficients, in

analogy with the usual procedure for bases, via
Toctas = €aatcec’ Voores®, (1.36)

where components are understood to be in terms of the spin basis € 4* = (0%, ¢%).
We next proceed to construct the spinor form of the curvature tensors. First note
that in terms of the null tetrad e,® = (I%, m?,m?,n%), we have the following definition

of the Riemann curvature tensor,
Rabed := 2€aa ViV €% (1.37)

where V, is the normal coordinate covariant derivative. The spinor analogy of this

definition is

!
Rupcparp'c'n = 253:453'.4'V[CC'VDD’](EBBsB 5') (1.38a)
= 2€BAEB’A'€B’B'V[CC’VDD’]SBB + c.c., (138b)

= 2€BA€A'B'V[CC'VDD’]EBB + c.c., (138C)

1. Introduction: The Cartan-Karlhede method 12

where ‘c.c.’ denotes the complex conjugates of the listed terms. By defining the operator
Oan = €%V 44V, (1.39)

and noting that
0V, V) = e4wDpp + €5 D (1.40)

(see Stewart (1990)) we can decompose the curvature spinor as follows. First define the

scalar A, and the Weyl spinor, and Ricci spinor, respectively, as

1
A= geBADABeBB, (1.41)
Yapeop i= EBADC(DEBB) = ‘I’(ABCD)a (1-42)
P apap = EpaOupe®p = Q@ apy(a'5')- (1.43)

Then the curvature spinor can be written in terms of these quantities as
Rupcpar'c'n’ = €arp€c'p'(Yascp — 2A€acepypy) + €arp'€cpPanpcip + ... (1.44)

We note finally that the curvature spinors are related to their tensorial counterparts as

follows:

R =24A, (1.45)
Sab = ~2P 4545, (1.46)
Cabed = YapcpEap€c'p' + ¥ arp'c'p'€ancps (1.47)
Robcd = Rapepa's'c'n's (1.48)

where the Infeld-van der Waerden symbols are implicitly used to relate quantities across

the equals signs, and the curvature tensors are defined as

Cabed := Rabed = 25[a[c9dpp) — %Rg[a[cgd]b], (1.49)
Sap = Rap — %R, (1.50)
Ray = g°*Reaba; (1.51)

R := ¢®* Ry (1.52)

Some properties of spinors at a point

The following theorems relating to the properties of spinors will prove useful for the
analysis of the following chapters. Full proofs and discussion can be found in Penrose

and Rindler (1984) under the listed theorem numbers.

1. Introduction: The Cartan-Karlhede method 13

Theorem 2 (PR 2.5.56) The condition a,8% = 0 at a point is necessary and sufficient

for as and By to be scalar multiples of each other at that point.

Theorem 3 (PR 3.8.54) Any spinor ¢p.p_n* B~V is the sum of the symmetric spinor

A'B'.

! . . .
das...N ~N) and of outer products of €’s with symmetric spinors of lower valence.

Theorem 4 (PR 3.5.18) If ¢AB...L = ¢(AB...L) # O then

$ap.n =uPs - Ay (1.53)

for some spin vectors a4, s, An, called the principal spinors of ¢a5..n. This decompo-

sition is unique up to proportionality or reordering of the factors.
Further, since any spin vector can be expanded as a sum of the spin basis vectors,
Q4 = (104 + Qoly, (1.54)

we see that it is possible to expand any unprimed symmetric spinor in terms of the spin

basis as
n

Gap. N =00040p ...0n —NP1(Ls05...0)n + ...+ (2)¢2(LALB c Oyt

(1.55)
coit Gnltats .. U)n,

with @1, ¢9,...,¢n, complex scalars dependent on the principle spinors. (The factors

(=1)* and (}) in front of each term have been introduced to allow us to write
d)k = ¢AB”_NOAOB ...LN, (156)

where ¢,y is contracted with k ¢*s and n — k 0”s.)
A method of determining the principle spinors is suggested by Theorem 2. Namely,

consider the contraction of ¢ .5 n with the spinor {(# = (1, z), with complex valued z:
¢AB...N<ACB <o CN = a(ACAﬁBCB e AN)CN- (1.57)

This polynomial in z only equals zero when at least one of the individual index contrac-
tions, eg. a,(*, equals zero. By Theorem 2, this indicates that (# is proportional to
the particular principle spinor with which it has been contracted. Thus, the principle

spinors can be found by determining the roots of the nth order polynomial
o+ 1z + §22” + ... + g2 =0, (1.58)

where the coefficients ¢y . .. ¢ are exactly those of the spin basis expansion, (1.55).

1. Introduction: The Cartan-Karlhede method 14

The Newman-Penrose formalism

Later, we will often find it useful to represent spinor components in terms of the notation
established by Newman and Penrose (1962), referred to as the NP formalism. As a final
bit of notation, we list the relationships between the spinor quantities and their NP
counterparts.

The NP quantities are based upon the representation of the spacetime in terms of a
tetrad composed of four null vectors, (I*,m?,m* n®) which satisfies the inner product

relationships
gapl®n® =1 gapm®m® = -1, (1.59)

with all other inner products being zero. As mentioned above, exactly such a tetrad can

be formed in terms of the spin basis e4* = (0*,:#), namely, by defining

_al _al - —al Al
[*:=0%", m%:=o0%", m®:=.4%", n’:=.7", (1.60)

lg:= 040,41, Mg :=04ly, Mg :i= 1404, Tg:i=Laly. (1.61)

Derivatives along these directions are denoted by the symbols

D :=1°V,, §6:=mV,, 0§:=mV, A:=nV,, (1.62)

corresponding respectively to the 00’,01’,10’,and11’ components of the spinor covariant
derivative operator V , 4.
The NP spin coefficients are a set of twelve scalars representing the components of

the Ricci rotation coefficients. They are defined in Table 1.1.

1.2 The equivalence problem

According to the above prescription, we describe a spacetime .# by a coordinate patch
z* on which is defined a spin basis (0#, ¢*), which can be subjected to SL(2, C) rotations,
€, or discrete transformations of the basis, m. Two spacetimes are said to be equivalent

if and only if there is a correspondence

it = 4 ("), (1.63)
& = é(e), (1.64)
7 = m(m), (1.65)

1. Introduction: The Cartan-Karlhede method 15

NP coefficients GHP coefficients spin basis components
K € T K —' -7 0*Do, *Do, "D,
p a A p -p —o' 0480, 1480, 1A0uu
o B o B —p 0480, 180, 10,
T v v T ¥ —K' 0*Ao, *Ao, 14AL,

NP frame components Rotation coefficients
m2DlI, %(naDla +m®*Dmg) meDm, Fovoo Tooor Toornr

m“gla %(nagla + m“ST‘na) m“Sma Livoo Tioor T
maéla %(n“éla + m“dﬁta) T'n“cSma Fm’oo F01’01 F01’11

meAl, %(naAla + m®Am,) Mm*Am, Fivoo Tiver Tan

Table 1.1: The Newman-Penrose spin coefficients are listed in the upper left-hand box.
Their definitions in various notations are given by the corresponding entries of the subse-
quent boxes. Though not described in the text, the GHP versions of the spin coefficients
are listed for cross reference with work using the formalism of Geroch et. al. (1973).

which gives

o (z#,€,m) = o*(z*,€,m), (1.66)

i (z*,E,m) = A (z#, e, m). (1.67)

The early work on the equivalence problem was due to Christoffel (Christoffel (1869),
Thomas (1934)), who showed that, for metrics without symmetry, the equivalence of a
pair of metrics could be decided by computing the Riemann tensor and a finite number
of its derivatives in coordinate bases, and for four dimensional spaces, at most the 20th
derivatives would be required.

By specifying the space using a frame with constant metric components, Cartan
(1946) was able to improve this technique significantly, showing that the maximum
number of differentiations to be carried out is 10. Translated into the language of

spinors, Cartan’s equivalence theorem can be stated as follows:

Theorem 5 Two regions .# and M of two m-dimensional Riemannian manifolds are

1. Introduction: The Cartan-Karlhede method 16

locally equivalent if and only if the set of equations

¥ 4nco = Yascon (1.68a)
VerVasop = Ver Vascn (1.68b)
65131 e 6EP+1E;’+1 ‘i’ABcp = VElE; - vEp+1E;)+1 |\ (1.68C)
and
B uparn =Paparn (1.69a)
6E}s"i)ABA’B’ = Ve Papap (1.69b)
6}:15; ‘.- 65,,,,_115;“(5/13}1’3' = VEIE'I e VEPHE;H‘I)ABA'BH (1.69¢)
and
A=A (1.70a)
Vieg A =VowA (1.70b)

ﬁElEll..-6 j.\szlE’l-..VE A, (1-70C)

1] !
Ept+18p4s p+1Ep+1

are compatible as equations in the coordinates £* and T*, and the frame rotations € and
€, and where p + 1 is the first derivative which is functionally dependent on the lower

order derivatives of the curvature spinors, p+1 < n(n+1)/2.

For convenience, we define a number of sets Ri = 0,..., p + 1 to contain the
components of the ¢th derivatives of the curvature spinors. The term independence used
in the above theorem, corresponds to the requirement that the rank of the Jacobian
constructed from the components of S = R®U ... U RP is equal to the rank of the
Jacobian of S U RP*L. 1t can be shown that p + 1 < n, the number of coordinates. For
a proof of the equivalence theorem, the reader is referred to Cartan (1946) or Karlhede

(1979).

Cartan’s method provided an important reduction in the calculational effort in com-
parison with Christoffel’s original coordinate based approach. However, if the equiv-
alence theorem is followed explicitly, the components to be calculated still numbers

27 926 020. A further reduction is obtained when one recognises that not all of these

1. Introduction: The Cartan-Karlhede method 17

components are independent, due to the Ricci and Bianchi identities and their differen-
tial concomitants. A minimal set of components (numbering 8690 in total) was provided
by MacCallum and Aman (1986), and we quote their result here. At the gth derivative

of the curvature, the independent spinor components are given by the following:

o The totally symmetrized g-th derivatives of A.

The totally symmetrized g-th derivatives of ¥ 4pcp.

The totally symmetrized ¢-th derivatives of ® 4pa'p:.

For q > 1, the totally symmetrized (g—1)-th derivatives of Sapca := VP 4 ¥ apcD

(which is one side of the Bianchi identities).

For g > 2, the d’Alembertian VA4V 4 4/ applied to all of the quantities calculated
for order ¢ — 2.

The term ‘totally symmetrized’ here refers to a symmetrization over each of its primed
and unprimed indices. In fact, every spinor which is calculated in the classification
procedure is symmetric in its indices.

As a notational convenience (which we will also make use of throughout the rest of
this report), we follow the common practice of labelling individual components of such
spinors using two subscripts which count the number of :4s and s which have been

contracted with the spinor to arrive at the component. Thus,

U,y = \IIABCDOALBLCLD, (1.71)
o,y = ®apapot Bt (1.72)
(V®)y = Vco®apapyotBif4e" (1.73)

Note that since all of the spinors above are symmetric under interchange of indices, the
notation assigns a unique label to each component.

The total number of primed and unprimed indices of a particular spinor is called
its valence. Thus U apcp, ®aparp, and VEg' ¥ apcp have valences of (4,0), (2,2) and

(5,1) respectively.

1.3 The Cartan-Karlhede Method

A great deal of the effort expended in carrying out Cartan’s method for classifying space-

times arises from the need to determine the six degrees of SL(2,C) rotational freedom

1. Introduction: The Cartan-Karlhede method 18

of the frame. Realizing this, Karlhede (1980) suggested that the computational effort
might be reduced if for a given spacetime the frame could be fixed in some unambiguous
way, effectively reducing the dimension of the frame bundle. In practice, the frame is

fixed using the components of the curvature spinors, by requiring that they take on some

canonical, or standard, form.

Karlhede’s method proceeds as follows:
1. Calculate the curvature spinor components, R® = {¥ 5cp, Papars, A}
2. Determine the isotropy group, H, under which the components are invariant.

3. Fix the frame up to H by requiring that the curvature components take on a

canonical form.
4. Calculate the first derivatives, R', of the curvature spinors.

5. If H is non-empty, then determine if it can be reduced by fixing a canonical form

for the derivatives of the Riemann tensor.

6. Continue the procedure to the higher derivatives until the frame is maximally fixed

and the required number of free components are found.

Using this method, it can be shown that for a general spacetime, at most the 7th
covariant derivative of the curvature tensor need be calculated, or a total of 3156 in-
dependent terms. In fact, one rarely needs to go past the third covariant derivative
(Koutras (1992), Skea (1997a), Skea (1997c)). For Petrov Type N metrics, the upper
bound is known to be the sixth derivative (Collins (1991), Machado Ramos and Vickers
(1996)), while for vacuum Type D metrics, a theoretical upper bound of three deriva-
tives has been determined (Collins et al. (1990), Collins et al. (1991)), though it may be
possible to reduce this in light of the fact that all of the metrics in Kinnersley’s classes
have required at most two derivatives for full classification (Kinnersley (1969)).

Finally, we point out the crucial dependence of Karlhede’s method on the ability to
define a consistent set of standard forms for the curvature spinors and to calculate the
transformations to the standard form. In fact, this makes up the bulk of the effort in

carrying out the method, as the emphasis in the next chapter makes clear.

Standard forms for symmetric

spinors

The equivalence of a pair of spacetimes is most easily established when the components of
the relevant curvature spinors have been expressed in some standard (or canonical) form
for which the frame rotational freedom has been restricted as far as possible. In fact, the
specification of a consistent set of canonical forms and the procedures for transforming
spinors into the appropriate form, makes up the most involved task in carrying out the
Cartan-Karlhede method.
Recall that SL(2,C) transformations of spinors can be represented as 2 X 2 complex
valued matrices such that
(":) o [® P (O:) where ab — fy = 1. @2.1)
L N 8 L
Under such transformations, components of an arbitrary symmetric spinor, x, are mod-
ified by a polynomial of its components, x,,, and the transformation coeflicients o, f,

v and 4,

Xat' 7 Pab’(X’ «, 6a 7 6) (22)

By making use of these transformations, restrictions can be placed on the individual
components of a spinor in order that the six parameter SL(2,C) freedom can be removed
as much as possible. For instance, by requiring that the x,, component be zero, we

restrict two parameters of the frame freedom by requiring that
Pab’(X’ a,IB7775) =0. (23)

Such restrictions are applied to as many components as necessary, until the SL(2,C)
freedom has been entirely removed or the spinor components are invariant under any

remaining freedom.

19

2. Standard forms for symmetric spinors 20

When the restrictions are applied in such a way that the spinor components are
consistently transformed to the same form, independent of their initial configuration,
then we say that the spinor is in a standard form. The spin basis (or equivalently null
frame) under which the spinor takes on its standard form is called the standard frame.

Two practical problems arise when trying to solve for a frame rotation which will
bring a spinor into a standard form. The first is that it is not guaranteed, for a particular
standard form, that such a solution exists. In particular, the spinor components may
themselves satisfy algebraic interrelationships which make prohibit a consistent solution
for a, B, v, 4, for a given set of component restrictions, P, (x, @, 8,7,6). These special
situations must be isolated and alternate standard forms which guarantee a solution
defined. That is, there will be alternate standard forms depending on the algebraic type
of the spinor in question.

A further difficulty arises when one tries to solve polynomials of the form (2.3) for the
spin transformation components. In general, these polynomials will be of high order in
the components, which themselves form a six parameter family, and obtaining a solution,
even if it exists, will be a non-trivial task. As a result, in practice it is common first to
consider the transformation of spinor components under specific subgroups of SL(2,C).
For instance, it is possible to show that any member of SL(2,C) can be represented as
a product of a spin, boost, or null rotation about either 0# or ¢*, where these terms are

defined by the following matrices:

e 0 A0 1 a 10

0 e ¥ 0 1/X 0 1 g 1 (2.4)
spin boost null rotation null rotation
P about 1A about o4

where 6 and X are real, and o and § are complex valued parameters. This corresponds
directly to the analogous reduction of SO(3) rotations in terms of Euler angles.

We can examine the effect of these transformations on a given spinor, and use this
to define a standard form for each type. This procedure requires some care, however,
because if the chosen subgroups of SL(2,C) do not commute, then the final form of the
spinor components after each of the transformations has been applied will be dependent
on the original orientation of the given frame.

For the particular case of the equivalence problem in general relativity, however, both
of these problems can be overcome. Note that the first step of the Cartan-Karlhede
procedure involves the reduction of the Oth order (Weyl and Ricci) spinors to a standard

form. In fact, well established invariant procedures have long existed for doing just

2. Standard forms for symmetric spinors 21

that, namely the Petrov classification of the Weyl spinor, and the Segré classification of
the Ricci spinor. These classifications force the components of the named spinors into
particular form depending on their algebraic type. Each of these types is invariant under
only limited subgroups of SL(2,C). Thus for the remaining spinors (ie. the derivatives
of the Weyl and Ricci spinors, and the Ricci scalar), we only have to specify the standard
forms under these particular subgroups.

This chapter establishes the procedures necessary for the reduction of the Oth order
Weyl and Ricci spinors to a standard form. Assuming that such a reduction has been
carried out, we show that the remaining degrees of freedom in the frame can be system-
atically removed using the components of the derivatives of these tensors in a way such
that the final forms of the spinor components are independent of the initial frame orien-
tation. Some problems with the given methods are discussed, as well as some possible

modifications of the standard problem in order to avoid them.

2.1 The Weyl spinor

The first spinor to be considered in fixing the frame of a general spacetime is the Weyl
spinor. Its classification into six distinct types according to the multiplicities of its
principal null directions was first carried out by Petrov (1954) (cf. Penrose and Rindler
(1986)). The classification is based on the decomposition of the Weyl spinor into its

principle spinors, as described by Theorem 4,

V500 = @aBsYclp)- (2.5)

The different Petrov types of ¥ ,pcp are given by the coincidences of these principle

spinors, specified as follows:

I: 9,pcp = uBp¥clp), (2.6)
IT: Wupop = aa0pYclp), (2.7)
D: Vupop = auapBfecBn, (2.8)

IIT: V,pop = aaapacdpy, (2.9)
N: VUupop = qa0pQcap), (2.10)
0: Uupep =0, (2.11)

where it is assumed that a4, B4, 74, and 4 are all non-proportional and non-vanishing.

2. Standard forms for symmetric spinors 22

Determination of the Petrov type

Referring to the methods outlined in Section 1.1, the principle null directions can be

found by determining the roots of the quartic equation
Uyzt + U32% + U2 + Uy2 + Ty = 0. (2.12)

An algorithm for solving this problem was first presented by d’Inverno and Russell-

Clark (1971), based on calculating the invariants

I:= V50,0457, (2.13)

J = \IIABCD\I’CDEF\I/ABEF, (2.14)
and making note of the identities

I=J=0 f{or Petrov types III and N, (2.15)

I? =27J% for Petrov types IT and D. (2.16)

These are combined with the identities

K =0 for Petrov Types D and N, (2.17)
L =0 for Petrov Type N, (2.18)
N =0 for Petrov Type D, (2.19)
where
K = U,0,4% - 30,030, + 20,3 (2.20)
L= U0y — 038 (2.21)
N :=12L% - ¥,°], (2.22)

to form a set of conditions which lead to an unambiguous determination of the Petrov
type.

A number of improvements to this algorithm have since arisen (Fitch (1971), Hon
(1975), Aman et al. (1991), and Letniowski and McLenaghan (1988)), focusing on refine-
ments of the given conditions and the practicality of leaving the higher order calculations
until as late as possible. In Section 3.4 we describe software which has been written to
calculate the Petrov type in Maple. The algorithm used is essentially the version of

Letniowski and McLenaghan (1988) and is described in full in Appendix A.

2. Standard forms for symmetric spinors 23

Standard forms for the Weyl spinor

As discussed in the introduction to this chapter, the specification of a standard form
for ¥, pcp can be carried out using spin rotations to fix some subset of its 5 complex
valued components ¥q...¥4. This is carried out by aligning the spin basis relative to

the principle null directions of the Weyl spinor. It is useful to consider each Petrov type

individually.

Type N: Using a null rotation about ¢4, we can fix 0# to be a multiple of the single
principle spinor. From the expansion (1.55), it is clear that in the new frame
the components ¥, of the Weyl spinor are all equal to zero except for ¥y. A

combination of spin and boost can be used to fix the value of ¥4 to 1. The

resulting components are
Uo=U;1=0y=¥3=0, Ty=1, (2.23)
which are invariant under the action of null rotations about o*.

Type III: A null rotation about ¢, can be used to fix 0, to lie in the direction of the
repeated principle spinor. A second null rotation, this time about the new 4,4,
brings ¢, in line with the secondbprinciple null spinor. A contraction with the
Weyl tensor in the new basis reveals that all of the components are zero except
for ¥3. Using the remaining spin and boost freedom we can fix the value of this

component to 1. Thus,
Uo=0, =0y =94=0, ¥3=1, (2.24)

Note that U3 is not invariant under any of the chosen subgroups of SL(2,C), and

by requiring these values for the Weyl components the spin basis is entirely fixed.

Type D: The two null rotations are used successively to bring spin basis vectors into line
with the two repeated principle spinors. As a result, the only non-zero component

is Uy, which is invariant under spins and boosts.

Go=0, =03 =04=0, Uy #0, (2.25)

Type II: A null rotation about ¢, fixes 04 to in the direction of the repeated principle
spinor, setting the \ilo and \ill components equal to zero in the new frame. If we

examine the effect of a null rotation about 0,4 on the resulting components, we find

2. Standard forms for symmetric spinors 24

that
‘i’z — \ilg, (2.26&)
T3 = U3 + 3Ty, (2.26b)
Ty Uy + 4a¥3 + 62275, (2.26¢)

Thus by solving for a using the second of these formulas,
T3 + 30y =0, (2.27)

we can use the null rotation to align ¢, in such a way that U3 is reduced to zero.

A spin and boost is then used to fix the value of ¥4 to 1, resulting in the standard

form
Tp=0; =T3=0, Fy#£0, ¥y=1. (2.28)

Since ¥3 is not invariant under any of the specified subgroups of SL(2,C), the

frame is entirely fixed by this standard form.
Type I: A null rotation about o, with coeflicient S given by the solution to the equation
U383 + 30,82 + 30,8+ Ty =0, (2.29)
sets U1 equal to zero. A further null rotation about ¢, with parameter o given by
Yool + 3Usa 4 ¥3 = 0, (2.30)

aligns the basis in such a way that ¥3 is also zero. The remaining non-zero com-

ponents transform under spins and boosts as

\i'o — /\4e4i9\~1’0, (2.31&)
\ifz — \1/2, (2.31b)
Ty A e 400, (2.31c)

By choosing A and 6, we are able to set ¥y equal to ¥y. The resulting components

are
F1=03=0, T#0, ¥3=74#0, (2.32)

which together are not invariant under the subgroups of SL(2,C), and so with the

components of the Weyl spinor in this form the spin basis is entirely fixed.

2. Standard forms for symmetric spinors 25

Petrov Weyl components Remaining
Type | ¥y ¥, ¥, V3 ¥, | Isotropy

I X 0 Y 0 X |-

IT 0 0 X o0 1 |-

II 0 0 o0 1 0 |-

D 0 0 X o0 0 | spin and boost
N 0 0 0 0 1 | 2d null

o) 0o 0 0 o0 0 | SL(2,C)

Table 2.1: Canonical components of the Weyl spinor. Entries X and Y represent inde-
pendent functions of the coordinates. The isotropy groups are described in the text.

The results of the operations carried out above are summarised in Table 2.1.

The choice of canonical frames specified above does not constitute the only possible
choice. In particular, for Type I it may be the case that other forms might be preferred.
An alternate standard form would be to set ¥y = U4 = 0 and ¥ = ¥5. This entails a
disadvantage in that the transformation coefficient is, in general, the solution of a quartic
equation in the ¥4s. However, in some practical situations, a frame may be given in a
form for which the Weyl spinor components naturally fall into this latter form. In this
case, as we will see below, the equations which must be solved in order to transform the
spacetime into the alternate form can be prohibitively difficult.

A more trivial variation of the Type I standard form is to use the spin/boost trans-
formation to set ¥4 =1, leaving T free. Note that in reducing a Type I spacetime with

components
{To, ¥1, ¥, U3, Uy} = {¥y,0,¥,,0,¥,} (2.33)
to its canonical form, a spin/boost transformation is applied, with the parameters
Ae? = (Wo/0y)Y4, (2.34)

in order to transform the components to the canonical form of Table 2.1. The trans-

formed components become
(TeWa)'/2, 0, Wy, 0,(ToTy)"/, (2.35)
On the other hand, if the canonical form

{\I’07\1117\Il27\1l3a\114} = {1’07Y30a Z} (236)

2. Standard forms for symmetric spinors 26

is chosen, the transformed components will take the form
1, 0, Yo, 0, TpUy. (2.37)

Thus without any computational cost, we've avoided the need to introduce a radical into
the expressions for the components. From the standpoint of computer implementation
of the procedure, this can be an important difference, as computer algebra systems
often run into difficulty with the choice of the correct root in radical expressions. A
further advantage will arise when it comes time to calculate the derivatives of the spinor
components. Since the derivative of the constant Wy is zero, it is possible that the
alternate canonical form will lead to fewer non-zero components in later calculations.
The avoidance of the radical can also be an important simplification to the calculation
of the derivatives of the Weyl spinor.

Note that although a frame in standard form leads to simplified expressions for its
curvature tensor components, it is not always the case that the components of the frame
itself will be in their simplest possible form. An alternate standard form may result in
simpler expressions for the (%, 1%, m®, m® basis vectors. For example, CLASSI currently
allows an alternate standard form for Type I spacetimes, namely allowing ¥y = £0y.
In two practical situations that have arisen (the classification of the cylindrical van
Stockum metric (Kramer et al. (1980)) and the Tarig-Tupper spacetime (Tariq and
Tupper (1975))), a simplified standard frame is found by setting ¥y = — 4. Similarly,
in the Types I] and N cases, one might also expect that simpler frames might arise if
U4 is alternately allowed to equal —1, and similarly for ¥3 in the Type 111 case, though
no practical examples are known in which this is the case.

In fact, however, by examining the transformation of, for instance, ¥y and ¥y,
o = ey, Ty e 400, (2.38)

we see that the difference between the two standard forms ¥y = ¥, is simply a constant
rotation by an angle 8§ = 7/8. Further, while alternate standard frames are acceptable
when one is trying to determine the independent components specifying the spacetime,
if these components are to be compared with those of another spacetime in order to
determine a possible coordinate transformation, it is necessary that the two share the
same standard form. For these reasons, the current version of the classification software
holds to the canonical forms specified in Table 2.1, carrying out the extra m/8 rotation

if necessary.

2. Standard forms for symmetric spinors 27

Transformations to standard form

In Appendix B, the transformations required to bring a general Weyl spinor into the
standard forms listed in Table 2.1 are listed. The transformations are given in the form
of SL(2,C)spin matrices, and the particular transformation to be applied is determined

by
i. the Petrov type of the Weyl spinor,
ii. the initial form of the Weyl spinor components.

Here ‘initial form’ refers to which of the components are zero or non-zero in the initial
frame. Thus, for example, if a particular spacetime is determined to be of Type D, and

its components are in the form
Vo=T; =0, VUgps# U3#Ty#0, (2.39)

then a transformation to the standard form for Type D is given by

(O"> W EE (°A> (2.40)
La fo 1/f1) \ta
with
_ 20? 1/4 _ 1
fl—(—§§;+\lf4) , fa= 370, (2.41)

Two points are of note. Firstly, explicit transformation functions have not been
specified for certain initial configurations of Type I and I spacetime, namely those for

which the initial components are in the form

Type \I’O \1/1 \112 \113 \1’4

I #0 0 0 #0 #0
ILII #0 0 #0 #0 #0
ILIT #0 #0 0 #0 #0

LII #0 #0 #0 #0 #0

For these cases, the determination of the components of the spin transformation involves
the solution of a quartic equation, and thus have not been specified. To date, these types

are not handled by any software programs for classification, eg. CLASSI.

2. Standard forms for symmetric spinors 28

Secondly, although the transformations might be determinable, their coefficients may
themselves turn out to be quite complicated, to the extent that their application may
be limited.

Finally, the spin matrices that bring the Weyl components into canonical form are
not unique in the sense that their coefficients are often the solution of some quadratic,
cubic, or quartic equation, of which one root must be selected. Selection of alternate
roots will lead to the same values for the Weyl coefficients, but they specify different
rotations of the frame. Though, by definition, they each result in the same Weyl spinor
components, other spinors may differ in their component values depending on which root
is chosen. This issue has not arisen in practical situations and as yet it is not clear how
it can best be handled.

These problems are fundamental to the Karlhede method and must be solved in order

for it to be applicable to truly general situations.

2.2 The Ricci spinor

The classification of the Ricci spinor is a somewhat more involved matter than that of
the Weyl spinor as a consequence of the fact that it possesses both primed and unprimed
indices. The most widely applied classification scheme was presented by Segré (1884),
distinguishing 15 different types of Ricci spinor.

From the standpoint of the Cartan-Karlhede method, a full Segré classification is
only required in the case in which the spacetime is conformally flat (¥ 4505 = 0). In this
case, the frame retains its full Lorentz freedom, and must be fixed as far as possible by
transforming the Ricci components into a canonical form. A suggested set of canonical
components is given in Table 2.2, which uses the existing CLASSI forms as a reference.

For the non-trivial Weyl types, it will generally be impossible to bring the Ricci
tensor into its canonical form, since there will not be enough freedom left in the frame.
In such cases the Segré classification can be foregone, and the methods of the next
section applied to find a canonical form for the Ricci tensor by treating it as a general
symmetric spinor. In practice, however, since the Segré classification can yield useful
physical insight, it is carried out even though the transformation to the components
given in Table 2.2 is not applied.

A practical method of carrying out the classification on the computer was presented
by Joly and MacCallum (1990) and improved by Seixas (1991). It should be noted

that while the algorithm is sufficient to distinguish most Segré types, there are cases in

2. Standard forms for symmetric spinors 29

Segré Common Ricci Components Remaining
Type Name Do 29 Doy @0 &, P,y | Isotropy
[111,1] general g X 0 YeR Z 0 X none
[11,22] z | =X 0 YeR 2Z 0 X | none
11,2] PPII 2 0 0 XeR Y 0 +1 none
(1,3] PP III 3] 0 X¢R 2v Y 0 0 | none
[1(1,2)] null n 0 0 2X X 0 +1 | 1d null
[(1,3)] coincident 4 0 0 0 0 1 0 1d null
{(11),ZZ) | complex c| -X 0 0 Y 0 X | spin
[(11)2] halfway h 0 0 0 X 0 +1 | spin
[11(1,1)] boost b 0 0 XeR Y 0 0 boost
[(11)1,1] spin s] X 0 Y 0 X | spin
[(11)(1,1)] | non-null e 0 0 0 X 0 0 spin/boost
electromagnetic
[(11,2)] pure radiation r 0 0 0 0 0 +1 | 2-d null, spin
[1(11,1)] | tachyon fluid t|-2Xx 0 0 X 0 -2X|50(21)
[(111),1] perfect fluid pl 2X 0 0 X 0 2X | SO(3)
[(111,1)) vacuum 0 0 0 0 0 0 0 SL(2,C)

Table 2.2: Canonical forms for the Ricci spinor. Entries X, Y and Z represent functions
of the coordinates. Isotropy groups are described in the text. (Based on Skea (1996))

which the distinguishing factor between one and another case is the sign of one of the
canonical components. Since computer algebra systems cannot generally make such an
evaluation for symbolic quantities, these cases can not be distinguished algorithmically.

These difficulties are discussed in Skea (1996).

2.3 Standard forms for general spinors

To this point, we have specified standard forms for the Weyl and Ricci spinors. By
requiring that the frame be such that the components of these tensors satisfy the given
standard forms, the rotational freedom is reduced to a subgroup of SL(2,C). In fact,
for most algebraic types of spacetime, the frame is immediately fixed by the form of
the Weyl and Ricci spinor and it is only for the particular cases listed in Table 2.3
that there is any rotational freedom left in the frame. For such cases, it is necessary to
examine the derivatives of the curvature spinors in order to determine if the frame can
be further fixed. Thus, in order to complete the process of frame fixing, what is required
is a method of determining the invariance groups of spinor components, and a set of

consistent standard forms for general spinors of valence (m,n).

2. Standard forms for symmetric spinors 30

Weyl types Ricci types Freedom

0 p, 0 50(3)

0 t, 0 S0(2,1)

N, 0 r, 0 2d null

N, 0 r,4,n,0 1d null

D, 0 e, b, 0 boost

D, 0 r,e, s, hc O spin

I,D,0 p,t, e, b, 2,8 0 o—interchange

Table 2.3: Subgroups of SL(2,C) under which the Weyl and Ricci components may
be invariant. In such cases, canonical forms for the higher derivatives of the curvature
spinors must be specified.

The general procedure begins by noting which components are invariant under the
given subgroup. Once these are known, a method can be specified for stepping through
the components to determine a unique component which does vary under the spin trans-
formation. An algebraic condition is then placed on the component and the frame
transformed to ensure that the condition is satisfied, removing the group freedom. It is
necessary that the procedure for locating this component be unambiguous in the sense
that although many of the components may vary under the given transformation, the
procedure must always locate and fix the same component of a particular spinor in a
given spacetime. This can usually be done by specifying one component as a starting
point, and a procedure for stepping through the remaining spinor components.

The following sections consider each subgroup of SL(2,C) in turn, detailing how the
invariance can be detected in a general spinor, and, given that the spinor is not invariant,

how the group is used to fix the spinor into a standard form specific to that rotation

group.

o — ¢ interchange

Once the Weyl tensor has been classified, this is the only discrete transformation under
which a spacetime may be invariant. For a spinor x of valence (m,n), interchange of o*
and (* has the effect of swapping the x,, component with the X(._ayn-s cOmponent.
The test for o — ¢ invariance consists of checking each such pair in turn. If one of the pair
is zero and the other non-zero, then we choose to be biased towards the upper diagonal,

so that o* and ¢4 are selected to make the component with higher indices non-zero.

2. Standard forms for symmetric spinors 31

Test sequence:

On) ne (im0 fora=0...(m+n)/2 do
0 00 @\®\® for b = min(a,n)...0 do
QO0O0000BD g1f§<--b>»~
O00000W ifCy = 0 and Gy # 0 then

standard form = False

2|0 008000 else if C; # 0 and Cy = 0 then
@ O0OO0000O0 standard form = True
®® 00000 i N
©%® 0 0 0 0 endif

(0,0) (m,0) eniindo 4

Figure 2.1: The standard form for the ¢« — o interchange. A search for non-invariant
components begins with the (0,0) and (m,n) components and proceeds along diagonals,
comparing cross diagonal pairs. If the component in the lower diagonal is non-zero, the
spinor is in canonical form (7rue). If the component in the upper diagonal is non-zero,
the spinor is not in canonical form (False) and an o — ¢ swap transformation can be
applied to bring it into canonical form. If both components are non-zero, the form is
indeterminate and the test continues to the next pair.

The test begins with a comparison of the (0,0) and (m,n) components, and proceeds
by stepping first the unprimed, then the primed indices until the first o — + asymmetry
is detected.

For example, if x is a spinor of valence (4,4), first the pair x,y and X,y are checked,
then X, and x.y, etc., until all the test for 0— symmetry fails, or all of the components
have been checked. If, for instance, the next component to be checked, x,y, is non-zero
while its ‘partner’, X,y , is zero, then the o—. symmetry is lost. In this case, the canonical
preference for non-zero components in the upper indices means that o and ¢ would be
swapped to bring the spinors into canonical form.

Note that the given test does not necessarily determine ‘invariance’, for if a given
pair of components are both non-zero but not equal, then the spinor is clearly not
invariant, but this will not be detected. However, in such cases it is ambiguous as to
which component should preferably sit in the upper diagonal. That is, it is difficult to
specify a consistent standard form for components which differ in this way. From an
algorithmic point of view, the best that can be done is to keep track of the fact that this
freedom has not yet been fixed, as it is not a difficult matter to transform the spacetime

under this discrete symmetry later on, if need be.

2. Standard forms for symmetric spinors 32

Boosts

Boosts are a one parameter transformation under which the spin basis transforms as

0* = Ao®, = AL, (2.42)
with real parameter A. The (a,b) component of a symmetric spinor transforms as

Xay — AT(mma)Fo=(n=b)y (2.43)
and the invariant components satisfy

1
a+b= §(m+n). (2.44)

The boost transformation can be used to fix the magnitude of individual spinor
components. A useful standard form for boosts is suggested when we note that in
practical situations, it is often the case that a spinor is presented in a frame such that
the magnitude of cross-diagonal components is equal. By requiring that this be true
for some given cross-diagonal pair X,y and X(m-um-ey it is possible to solve for the

transformation parameter A via

Ae=(m=a)tb=(n=0) |y | = Alm=b)=bt(n—a)=a|y vl (2.45)
or,
\da+b)=2(mtn) _ Xon-ninoy| (2.46)
,Xabll

If the two components already have equal magnitude, as is often the case, then the spinor
is already in standard form, A = 1, and no transformation is necessary.

For spinors which are not automatically in standard form, it is significant that the
exponent for A has its maximum value for the (0,0) and (m,n) components. Thus by
requiring that this pair have equal magnitude, it is likely that the solution for A will be
a high order radical. A better choice would be a component pair closer to the invariant
diagonal. For instance, along the first diagonal the components are transformed as a
quadratic in A, while the order increases by a factor of two with each step away from
the invariant diagonal.

Resulting from these considerations, the standard form compares pairs of components
across the invariant diagonal starting with components closest to the invariant diagonal.
The first pair in which at least one of the members is non-zero is used to fix the canonical
form by requiring that the pair have equal magnitude. If one of the pair is zero, then

the requirement is that the other have magnitude one.

2. Standard forms for symmetric spinors 33

Test sequence:
fora=(m+n-1)/2...0do

¢ = max(0,n — a)

O.n) (m,n) forb=0...n—cdo
o @ O O O O O gl-—'—X(a-b)b'a
= m4n—~a—b—c)(btc)’
QRGP 90 if C, £0 or Oy £0 then
ONON NONOySNe if |C1| = |Cs| or
oo %% O (Ci 00 0aid |Gy +.05| % 1)then
standard form = True
O O ®\\@ .\@\@ else
ol B¢ ®:\\®\.\® ens;;i:?dard form = False
ONONONORORON else
Continue
©.0) (m.0) end if
end do
end do

Figure 2.2: The standard form for boost transformations. Components are checked
along the a + b = constant diagonals, moving outwards from the invariant diagonal. The
standard form requires that the first non-zero component pair have equal magnitude,
or in the case that one is zero then the other must have a magnitude of one. Invariant
components are marked in grey in the figure.

Spins

Spins are a one parameter group representing the transformations

0* = €l%?, A e, (2.47)

Under such a transformation, the x,, component of a spinor are changed by a phase

factor
Yoy = ei(a—(m—a)—b+(n—b))exab, (248)

where (m,n) is the valence of x. The components which are invariant under (2.48) are

the ones for which (a, b) satisfy
1
a—-b= §(m - n) (2.49)

(for hermitian spinors, these are the components on the diagonal).

The spin freedom can be fixed by specifying the phase of some non-zero, non-invariant
component. In order to determine which component to fix, note that in this case it is
not as important to reduce the exponent of the transformation, as it only affects the
multiple of some angle 6 which is applied. In the example displayed in Figure 2.3, the
first diagonal (components 1 to 6) are transformed by an angle 26, while those in the

corners (xe and Xos') are transformed by an angle 126. Effectively, there should be no

2. Standard forms for symmetric spinors 34

Test sequence:
fora=(m-n)/2+4+1...m do
¢ = min(n,m — a)

(O,n) (m,n) forbi=0...cto
O 0%@ 'O O/® 5] C1 = X(asor's
C3 = Xncc—aitp)m=cts)
00005 @0 iy # 0.0 Cy # 0 then
OO0 ®® ./@/O if phase(C) = phase(C;) or
(C1C2=0 and C; + C; € R) then
O /Q/. /® SN stalndza.rd form =1 Tr'uz
@ ®@ ® ®0OO0 else
®/ ./ / -3 0 enzt;;?dard form = False
® O O0OO0O0 else ‘
0.0) (m.,0) eugoir;tmue
end do
end do

Figure 2.3: The standard form for spin transformations. Components are checked along
the a — b = constant diagonals, moving outwards from the invariant diagonal. The
standard form requires that the first non-zero component pair have equal phase, or in
the case that one is zero, the other must be real. Invariant components are marked in
grey in the figure.

extra difficulty in solving for the exponent of the latter. However, for consistency with
the boost case, we choose to step first along diagonals nearest to the invariant diagonal,
thus ensuring that the multiplier is as small as possible when solving for 6.

The search is carried out by examining pairs of components across the diagonal until
one or the other of a pair is non-zero. The canonical form requires that both members
of the pair have equal phase (if the spinor is hermitian, this implies that the components
be real and equal). If one of the pair is zero, the other is required to be real.

Another potential standard form would be, for instance, to require that one of the
pair be pure real. It is not clear that this brings any particular advantage over the chosen
form. Further, in practical situations it is often the case that a spinor is presented in
a frame in which the cross diagonal components are already of equal phase, and thus

already in the suggested canonical form.

Null rotations

Null rotational freedom forms a slightly more complicated class than the groups studied
so far. Rather than simply multiplying each component by a factor raised to some
exponent, the image of the transformation is a polynomial in the non-zero coefficients.

Consider first the null rotation about the o* spinor,

0? — 0%, =t + a0t a€C. (2.50)

2. Standard forms for symmetric spinors 35

The transformation of a particular spinor component x,, can most easily be worked
out by expanding the component in terms of terms of the basis spinors, 0# and . For

instance, if x,y is a spinor of valence (2,2), then the (2,0) component can be written as

!

Xao' = Xaparpt* 170" 0%, (2.51a)
as can be seen from the expansion (1.55) Under (2.50) this component transforms to

= Xapap (14 + @0?) (WP + QOB)5Al5B’ (2.51b)

= Xao 2010 + & Xoo'- (2.51c)

For a symmetric spinor of valence (m,n), the general formula for the transformed (a, b)

component is given by

a b
a) /by ,._
Xap' = ZZ (7-) (S)a asX(a-r)(b—s)" (252)

r=0 s=0
For the opposite form of null rotation (04 — 04 + f14,14 — 14) the analogous formula
is found by replacing a with m — a and b with n — b.

To define the standard form appropriately, we must determine which of the spinor
components are invariant under the null rotations and how the remaining components
can be manipulated. Consider first the expansion of the transformed coefficient with the
highest index values, namely x,../,

Xmn! = Xemn! + TMOX (e 1yn’ + NEX pm(m1y + %m(m — 1) X eyt

L (2.53)
- =2
+ MNAGX (m-1yn-1y + in(n - 1)& Xm(nay + - -

Since this is a polynomial in each of the coefficients of y, it is clear that if any of the
X.»' are non-zero, then the value of x,.,. will be altered by the null rotation. Thus the
condition for ¥, to be invariant under (2.50) is that it be the only non-zero component.
In this case the spinor itself, x 454’5, Will clearly be invariant.

There are other situations, however, when the spinor is invariant, namely under
certain 1-parameter subgroups of the null rotations. Consider first the case in which «
is pure real and examine the resulting transformation of the x,,.. component:

Xmn! = Xennt + & (MX(moty’ + WXm(n1y)

+ %az (m(m ~ D)X mo2n’ + 2MNX (1)) + (10 — l)xm(,,_g):] +
+ 263 [m(m — 1)(m = DXosyr + 3l = DXy + (2.54)
+3mn(n = 1)Xmo1ymozy + +0(n — 1)(n = 2)Xmemay | + - - -

e ™ 0o

2. Standard forms for symmetric spinors 36

Since a can be chosen arbitrarily, each of the terms must equal zero if x_, ./ is to be

invariant. We arrive at the conditions

mx(m—l)n' + nXm(n—l)' = 07 (2.55&)
m(m - 1)X(m-—2)n' + 2mnx(m—l)(n-—1)’ + n(n - 1)Xm(n—2)’ = 07 (255b)
m(m — 1)(m — 2)X(m—3)n’ +3m(m - l)nX(m—z)(n—x)’+

+3mn(n = 1)X(mo1yn_zy + n(n — 1)(n — 2)Xmn_sy =0, (2.55¢)

Yoo = 0. (2.55d)

The transformations of the other components of x give further conditions. Notably, from

X(m-1yn'» We find

(m = 1)X(mozyn' + X (m-1)n—1y =0, (2.56a)

(m - 1)(m - 2)X(m—3)n’ + 2(m - l)nX(m-z)(n—l)’ + n(n - 1)X(m—1)(n-2)’ =0, (2-56b)

From the transformation of x,.._1y,

MY (m-1)(n-1)) T (n— 1)Xm(n—2)' =0, (2.57a)

m(m - 1)X(m—2)(n—1)’ + 2m(n - I)X(m—l)(n—Z)l + (TL - 1)(11 - 2)Xm(n—3)/ = O, (257b)

And from the first order in o terms of the transformations of X (,._2)n’s X(m-1)(n-qy and

Xm(n—2)' 3 we ﬁnd

(m - 2)X(m—3)n’ + nX(m—Z)(n—l)’ = 0, (2583.)
(M = 1)Xm-2ytn-1y + (7 = D)X(m-1)(nozy =0, (2.58b)
MX (m-1)(n-2) T (n = 2)Xm(n_sy = 0. (2.58¢)

Equation (2.55a) give the only condition on the pair of components
{X(m-1yn's Xmn—1y } While equations (2.55b),(2.56a),(2.57a) are three compatible
restrictions on the components {X(m_g)n/,x(m_l)(n_l)f, xm(n_g)f}. However, equations
(2.55¢),(2.56b),(2.57b),(2.58a),(2.58b), (2.58c) are a set of six conditions on the four
components Xm_sn's X(m-2)(n-1)'> X(m-1)n-2)s Xm(n-3y+- Lhese components must
therefore be zero.

We arrive at the following result: A symmetric spinor x of valence (m,n) is invariant

under null rotations of type (2.50) with real parameter « if and only if the following

2. Standard forms for symmetric spinors 37

conditions are satisfied:

n-—1 m-—1
X(m—l)(ﬁ‘l)l == m Xm(n—2)' = - n X(m—2)n'7 (2593)
mx(m—l)n’ = -’n’Xm(n.—l)’) (2-59b)
Y. = 0 otherwise. (2.59c¢)

Corresponding conditions exist for the case where a is allowed to be any other 1-

parameter subgroup of (2.50). For instance, in the case that « is pure imaginary, we

have:
n—1 m—1
Xem-n(n-1) = T Xmn-2y = T Xm-2n's (2.60a)
mX(m—l)n' = ann(n—l)', (260b)
Xoy =0 otherwise. (2.60c)

The current code is able to detect whether the components are invariant under the
general 1-parameter null rotations, however canonical forms are only defined for the
case for which the parameter is purely real or purely imaginary.

The problem of finding an appropriate standard form is more involved in the case
of null rotations than for the previously considered isotropy groups. One possibility is
simply to use the null rotation to set the value of the x,.,, component, so that in the
case of 2-dim null isotropy, X,..- would be set to zero, while in the 1-dim case, either
its real or complex parts would be eliminated. The advantage of this choice of standard
form is that it is easily recognisable by examining a single component of the tensor
in question. The major drawback, however, is that if the spinor is not already in its
standard form, then a value of & must be determined to bring it into its standard form by
setting equation (2.54) to zero. Of all of the components of X 4545, the transformation
of the (m,n) component involves the highest order polynomial in @, and is generally
the most complicated, every other non-zero component contributing. From a practical
standpoint, then, it may prove impossible to determine an appropriate « to bring the
spinor into its standard form.

Another potential standard form involves searching for the non-invariant component
with the lowest order transformation function. To do this, the components of the spinor
are stepped through beginning with the (0,0) component and proceeding along diagonals
as depicted in Figure 2.3, until the first non-zero component is reached. The diagonal in
which this component appears is invariant since each term in its transformation function

involves a spinor component ‘above and to the left,” all of which are known to be zero.

2. Standard forms for symmetric spinors 38

Test sequence:
fora=0...m+n-1do
¢ = max(0,a — m)
forb=0...min(a,n) — c do
if X(a—b-c)b+ey 7 0 then
fora=a..m+n-1do
¢ = max(0,a — m)
for b=0...min(@,n) — ¢ do
if Re-invariance test fails and
(O,n) (m,n) Re(xa) = 0 then
R=True
else
R=False
end if
if Im-invariance test fails and
Im(x.s) = 0 then
I=True
else
I=False
end if
if R and I are assigned then
0,0 (m,0) re-standard form = R
im-standard form = I
else
Continue
end if
end do
end do
end if
end do
end do

® O OO
L3Rl i
Q.00 0
0000
O QA0 L3

S
o
O

©
.
&

QO Qrd O30 13
O QGO g0 0

Figure 2.4: The standard form for null rotations about o#. Components are searched
along the diagonals beginning with x,¢. When the first non-zero component is found
(B in the diagram), the next diagonal is checked for its invariance properties under null
rotations, beginning with the first non-invariant component A. The spinor is in canonical
form if the first component which fails the test for invariance under real parameters o
(equation (2.61a)) has a zero real part, and the first component which fails the test for
invariance under imaginary parameters (equation (2.61a)) has a zero imaginary part.
In this case the value True is returned. Components continue to be checked until both
invariance types have been established.

The next diagonal is the first non-invariant diagonal. The transformations of components
in this diagonal are linear functions of the rotation parameter . For each component

Xao»' along this diagonal, the tests

X (a—1)p' = bXa(b—l)', and (2.61a)
CX (a—-1)8' = =bXap-1y» (2.61b)
are carried out. If the former fails, then the component varies under the real part of a. If
the latter fails, then the component varies under the imaginary part of a. If neither fails,

then the next component in the diagonal is checked and the process continued until a

non-invariant component is found. For the first component x,,» which fails the imaginary

2. Standard forms for symmetric spinors 39

invariance test (2.61b), the standard form is determined by fixing the imaginary part of

a so that the imaginary part of x,, is transformed to zero,

_ Xot' Xap—1) = Xabv' Xab—1)'
2lea(b—l)’ l2

For the first component y,,» which fails the real invariance test, (2.61a), the standard

(2.62)

form is determined by fixing the real part of o so that the real part of x,, is transformed

to zero,

_ Xab' Xa=1) T Xab' Xa(p-1)’
2bIXa(b—1)’|2

A component which has failed both invariance tests can be set to zero using the

(2.63)

transformation parameter

_ —@Xop' X(a—1)p' T bXab’Xa(b—l)'
=— .
a |X(a-1)b)’|2 + b2|Xa(b-1))'|2

(2.64)

We have seen, then, that for any of the possible isometry groups which remain once
the Weyl spinor has been fixed, a canonical form for general symmetric spinors can be
defined which fixes the components of the spinor relative to the isometry group. To
implement the Cartan-Karlhede method, then, there remains to choose an appropriate
set of spinors, and an order for which the isometry tests are to be applied to produce a
unambiguous set of components which can be compared between different spacetimes.

A practical procedure for carrying out this comparison is provided in the next chapter.

Classification in practice

A procedure for classifying general spacetimes using the components of their spinor com-
ponents has been described in the previous chapter. Unfortunately, the technical effort
involved in carrying out this procedure can be enormous, even for very simple classes of
spacetimes, due to the need to take multiple derivatives and perform transformations on
a large number of spinor components. This type of operation, however, is ideally suited
to computer algebra systems, which are able to carry out the necessary multiplications
and expansions with great speed and accuracy.

The first to suggest the use of a computer in solving the equivalence problem was
Brans (1965), who developed a modified form of Cartan’s method involving fixing the
frame using the highest derivatives of the curvature tensors. With the introduction of
Karlhede’s method, the first serious effort at using computer algebra to solve the equiv-
alence problem was carried out in Stockholm, with the major development work being
done by Jan Aman (Aman and Karlhede (1980), Aman (1986)). Over the years a number
of other authors have contributed to produce the package known as CLASSI. CLASSI
is a Lisp-based system, derived from the previously existing computer algebra system
SHEEP. As such, it has a number of beneficial features, including speed, compactness
and, after a long development cycle in which it has been quite thoroughly tested, ac-
curacy. Its practical use has been demonstrated by its authors by the compilation of a
large database of fully classified exact solutions Skea (1997b).

In compiling this database, however, certain deficiencies in the software became clear.
First of all, the SHEEP code which carries out the computer algebra was developed in
the early days of computer algebra by researchers working in relativity. As such, a
number of modern features which one has come to expect in more powerful systems are

not present within SHEEP, such as the ability to carry out polynomial divisions and

40

3. Classification in practice 41

factorisations. This limits CLASSI’s ability to carry out certain simplifications which
would greatly ease the classification of some spacetimes. In practice, this has meant
that a great deal of work must be done by the user in configuring the input so that the
resulting expressions can be handled. This can be especially difficult for users who are
not proficient in Lisp or the subtleties of the SHEEP system. The use of the software
thus entails a steep learning curve which has limited its widespread acceptance.

Further, the techniques used by the CLASSI software have not been fully elucidated
in any publication or user manual. This includes specification of the standard forms
which it uses for the classifications of high order spinors. This has made results from the
software difficult to verify. In fact, the canonical forms can not be determined without
reading the source code which performs the transformations. This has also influenced
its reliability. For some time the electromagnetic Type N solutions given by Eq. 32.61
of Kramer et al. (1980) could not be correctly put into a standard form. The source of
the problem was difficult to determine, since the intended standard form was not known.
It was only through a re-examination of how a standard form for null rotations might
be defined that it was determined that an error existed in CLASSI’s specification of a
standard form for that particular isometry.

For these reasons, it was decided that the classification methods should be revisited,
with the aim of producing an updated package. This work was begun in 1997 as a
collaboration between Ray d'Inverno and Jim Skea (two of the original developers of the
SHEEP and CLASSI systems), and Kayll Lake and the author, who have, with Peter
Musgrave, developed an alternate tensor calculation within Maple, called GRTensor.
It was hoped that by re-examining the various aspects of the classification methods,
a better understanding of how they might best be carried out could be obtained. In
addition, the methods could be fully elucidated and explained, and particular sticking
points highlighted, and possibly overcome. The result of this work is the spinor computer
algebra package, which works within Maple in conjunction with GRTensor, and which

will be described in this chapter.

3.1 The choice of platform

One of the main objectives of the current work is to place the classification methods in
the context of a powerful modern computer algebra system.
A great deal of progress has been made in the field of computer algebra since the

appearance of the first SHEEP systems in the 1970s. Modern systems possess well

3. Classification in practice 42

developed, fast, efficient, and reliable algorithms for performing the computationally
intensive algebraic tasks required by the classification methods. The development of
these algorithms is a highly technical science, and one for which a specialised knowledge
is required. The effort involved in developing such a system from scratch is enormous.
It is thus a great advantage if one can make use of a system which already exists.

Further, modern computer algebra systems generally are supplied with advanced
user interfaces, making use of displayed PostScript for the output of equations. They
also possess various tools for the formatting of output, allowing equations to be con-
verted to a variety of formats (eg. IATEX) for text processing, or C or Fortran code for
implementation in numerical codes.

Among such systems are the packages Axiom, Macsyma, Maple, Mathematica, Mu-
Pad, and Reduce. Each of these packages possesses similar features and capabilities.
Determining which of these is the most appropriate based on purely technical grounds is
a highly controversial business. Attempts have been made at providing independent test
suites of problems to test the capabilities of computer algebra systems. However, the
results can usually be questioned on the grounds that they emphasise particular types
of problems, or that the solutions may have simply not been implemented correctly in
a given system. In fact, because each of the named systems provide their own com-
mand language, it can be argued that any problem that can be solved in one is likely
to be soluble in another by writing a program corresponding to the given algorithm.
The distinguishing aspect between the different systems then becomes its ‘ease of use’,
a somewhat less quantifiable property.

There are a number of other non-technical aspects that must be considered. The most
important of these is availability. Each of the systems above is a commercial package,
and as such must be purchased (the exception being the relatively new system, MuPad,
which is available free of charge to academic institutions). The extent to which a system
is used will depend on whether a researcher will have access to the software through an
institutional license, or whether they must purchase the software individually themselves
(as is often the case with students). In the latter case, it is important that the chosen
system have fully functional editions available at a low price.

In the original development of the GRTensor system, it was decided that of the
systems available at the time, MapleV formed the most appropriate platform. It is a
powerful system with a simple user interface and interpreted programming language. In
tests of simplification of large polynomials (crucial for work with tensors), it significantly

outperformed the concurrent editions of Mathematica and Macsyma. It provides well

3. Classification in practice 43

developed interfaces for the output of data to IWTEX and other programming languages.
Further, Maple has a widespread acceptance in academic faculties. It is common for
maths and physics faculties to possess site-wide licences, so that researchers and students
are able to make use of the software at no personal expense. The added benefit of this
wide acceptance is that that code written for Maple on a particular machine can be run
on any other Maple system, so in this sense the programs become platform-independent.
These aspects singled out Maple as a quite sensible choice for development of a tensor
algebra system.

There are, however, certain drawbacks in writing code for a single computer algebra
system, and in particular Maple. The greatest of these is that there is no control of
the development of the underlying platform. Maple continues to be developed, and
with each new release software written for it must be updated and re-tested. Although
later versions of Maple attempt to remain consistent in their programming language
with earlier versions, this has never worked with absolute accuracy, and with each new
Maple release from Release 2 (in which the original versions of GRTensor were written)
to Release 6 (the current Maple release which is expected to complete beta testing in
March 2000) changes to the GRTensor code have been required. More disturbing, later
editions have Maple have not always proved to be faster or more efficient in performing
individual calculations, in some cases quite the contrary.

Maple itself also has some inconvenient properties in its handling of algebraic ex-
pressions. The largest of these is that the ordering of expressions is not determined
lexically, but rather is dependent on the memory addressing of individual quantities. As
such, calculations carried out in subsequent Maple sessions can seem quite different in
appearance. Code which performs substitutions based on the ordering of expressions
will also not work reliably. Radicals can also prove to be a problem, in particular the

identification of expressions such as

VI=y, Vi (3.1)

In terms where both forms of such components arise, it can require a great deal of effort
to convince Maple to perform simplifications which are obvious to the user.

It must be realized, however, that each of the packages in question possess similar dis-
advantages arising from their individual behaviour, and that for the algebraic operations

in question, Maple has generally been found to outperform its rivals.

3. Classification in practice 44

3.2 GRTensorll

The GRTensor package was originally developed in 1991 by Peter Musgrave and Kayll
Lake, as a means of calculating curvature tensors and scalar polynomial invariants in
general relativity. Although it proved to be both fast and powerful in calculating the
objects for which it was designed, its data structures and interface left little room for
expansion of its capabilities. As such, in collaboration with the author, in 1993 devel-
opment switched to a more ambitious package, called GRTensorIl. The new package
included the ability to calculate tensors in any index configuration, and allowed users to
define their own tensors using a simple interface. Further, support for tetrad formalisms,

and in particular the Newman-Penrose formalism, was added.

Basic commands
The design philosophy of GRTensor! can be embodied in the following points:

i. No quantity should need to be computed twice. Index symmetries are used when-
ever possible. Intermediate objects (such as the Christoffel symbols in the calcu-

lation of the Riemann tensor) are stored and re-used when required.

ii. The user should have control over each step of the calculation. Rather than cal-
culating the Riemann tensor in a single step, the user is able to first calculate and
examine the intermediate objects, to which simplifications and substitutions can

be applied.

The importance of the second point can not be overstated. In fact, using GRTensor it has
been possible to show that the most significant aspect in improving the speed of a tensor
calculation are the simplifications that are applied at each stage, independent of the
particular summation algorithm or formalism in which the components are calculated
Pollney et al. (1996).

The user interface of GRTensor is built around three principle commands,
grecalc calculates the components of tensors;
grdisplay displays the components;

gralter applies simplification routines to tensors.

!The package GRTensor is understood to refer to GRTensorll, as the original MapleV.2 package is

defunct.

3. Classification in practice 45

Tensor names, with their index configurations, are supplied as arguments to these com-

mands. For example, the Ricci tensor can be referenced as
R(dn,dn) (= Ry), R(up,dn) (= Rab)a R(bup,bdn) (= R*y),

where the last example uses the labels bup and bdn to reference the components of the
Ricci tensor in terms of a basis rather than metric coordinates.

Thus, to calculate the Ricci tensor for a given spacetime, apply trigonometric sim-
plification, and then display the resulting components, the following set of commands

can be used:

grcalc (R(dn,dn));
gralter (R(dn,dn), trig);
grdisplay (R(dn,dn));

Additional commands exist to carry out further manipulations of the output. The
grcomponent () command can be used to assign tensor components to a Maple variable.
The grmap()command can be used to apply any Maple function to each component of

a tensor.

Input of spacetimes

The primary input to GRTensor is a file specifying the spacetime geometry either in
the form of a metric, gq, Or frame, ea’, with basis vectors satisfying some constant
valued inner product,? 7ap := €a%epe. An example of an input file for the Tolman dust
solution is given in Figure (3.1). The coordinates are specified by the variables x1_ to
x4_, and the covariant metric tensor components, gqp, are contained in the variables
gll_ to g44_. Note that only the non-zero, upper-diagonal components are stored.
The optional variable sig_ can be used to specify the signature of the metric. The
constraint_ variable exists if there are additional conditions which are satisfied by
the metric functions which the user might wish to supply at some time later in the
calculation. Finally, the Info_variable can be used to store some descriptive information
regarding the spacetime. The particular example can be stored in ASCII form as , for
instance, dustl.mpl. The command gload(dustl) loads the file into GRTensor and

assigns the individual tensor components to their respective internal data structures.

2Tn fact, certain fundamental tensors, such as the Riemann and Ricci tensors and their polynomial
invariants, can be calculated with a non-constant basis inner product. The usefulness of such definitions

was suggested to the authors by C. W. Misner (personal communication) in relation to some calculations

8. Classification in practice 46

Ndim. := 4:

xi. := r:

x2_ := theta:

x3_ := phi:

x4_ := t:

sig. := 2:

gli_ := diff (R(x,t),r)"2/(1+£f(x)):
g22_ := R(r,t)"2:

g33. := R(r,t)"2*sin(theta)"2:

gd4. 1= -1:
constraint. :=[diff(diff(R(r,t),r),t) = (2=diff(m(r),r)/R(r,t)
- 2#m(r)*diff (R(r,t),r)/R(r,t)" 2
+ diff(£(r),r))/(2*sqrt (2*m(x) /R(x,t)+£(x))),
diff (R(r,t),t) = sqrt(2+m(r)/R(r,t)+f(r)),
diff (diff (R(r,t),t),t) = -m(r)/R(r,t)"2,
diff(diff (diff (R(xr,t),t),r),t) = ~diff(m(r),r)/R(x,t)"2 +
2*m(r)*diff (R(xr,t),r)/R(xr,t) "3
]:
Info_:= ‘The Tolman dust solution (Proc. Nat. Acad. Sci. 20, 169,1934)°¢:

Figure 3.1: The metric file dust1.mpl from the standard metric library.

Tensor definitions within GRTensor

The tensor definitions themselves are stored in the grG_ObjDef data structure. Individual
tensors are referenced using the tensor name, so that grG_ObjDef [G(dn,dn)] holds
the definition for the covariant components of the Einstein tensor. A tensor definition
consists of a number of fields giving information as to how a tensor is to be calculated,
displayed, and referenced. The grC_depends field contains a set of tensors on which the

given tensor depends. Thus, for the Einstein tensor, the line
grG_ObjDef [G(dn,dn)] [grCdepends] := {g(dn,dn), R(dn,dn), Ricciscalar}:

indicates that in order to calculate G(dn,dn), the objects g(dn,dn), R(dn,dn), and
Ricciscalar must first be known. When a request to calculate a given tensor is made
using grcalc(), a list of such dependencies is constructed and each tensor in the list
calculated in turn.

The actual component calculation is carried out by a pair of functions. The field
grC_symFn points to a function which specifies which of the tensor components are to be
calculated. It takes the form of a number of loops through the independent components,
with cross assignments for components which can be identified by the index symmetry.
For instance, for a symmetric two index tensor, grC_symFn would specify a loop through
the components in the upper diagonal and cross-references to the components in the
lower diagonal. For each component in the loop, the grC_symFn calls a function which

is pointed to by the variable grC_calcFn. This is the function which actually specifies

for mixmaster spacetimes.

3. Classification in practice 47

grG_0bjDef [G(dn,dn] [grCheader] := ‘Covariant Einstein®:
grG_0bjDef [G(dn,dn] [grCrootStr] := ‘G ¢:
grG_ObjDef [G(dn,dn] [grCroot] := Gdndn_:
grG_0bjDef [G(dn,dn] [grC-indexList] := [dn,dn]:
grG_ObjDef [G(dn,dn] [grCcalcFn] := grF_calc_Gdndn:
grG_0bjDef (G(dn,dn] [grC.calcFnParms] := [J:
grG_0bjDef [G(dn,dn] [grC_symmetry] := grF_sym sym2:
grG_0bjDef [G(dn,dn] [grC_depends] := g(dn,dn), R(dn,dn), Ricciscalar:
grF._calc_Gdndn := goc (object, index)

s := grG_Rdndn[gname,al_,a2]

- 1/2*(grGgdndn_[gname,al_,a2_.] * grG_scalarR_[gname]):

end:

Figure 3.2: The GRTessor object definition for the covariant Einstein tensor. The
grC_calcFn field namesthe function used to calculate each component. The symmetry
function, grF_sym_sym2,is the name of a generic function used to calculate the compo-
nents of symmetric tensrs with two indices.

the formula for the calcilation of each tensor component in terms of the components of
tensors specified in the lependency list.

The final importantfield of the object definition structure, grC_root, specifies the
name of the array in wich the final components are stored. In general, the name is
constructed from the nane of the tensor with its index configuration. In the case of the
covariant Einstein tensa, G(dn,dn), the results will be placed in the array grG_Gdndn_.
An additional complicaion comes from the fact that we may wish to calculate the com-
ponents of the Einsteintensor for various spacetimes in a given session. By convention,
to distinguish these th first field of the component array will be the metric name.
The remaining fields ae indexed numerically and contain the individual components.
Thus, grG_Gdndn_[dusil,1,2] stores the G12 component of the Einstein tensor for the
dust1 spacetime, whilegrG.Gdndn_[schw,3,3] stores the G33 component for the schw
spacetime.

A full example of deinition of the Einstein tensor within GRTensor is given in Figure
(3.2). Note that althogh the index configuration is specified as part of the definition,
only a single definitionfor each object is required. Tensor definitions for the alternate
index configurations ofa given tensor are generated automatically when they are re-
quired. That is, if the 7%, components of the Einstein tensor are to be calculated, then
an internal definition ¢ G(up,dn) is created, its calculation function corresponding to

the contraction of G{(d:,dn) with the contravariant metric tensor.

3. Classtfication in practice 48

Tensor definitions such as the one described above can be created much more easily
using the function grdef (). This command creates both a calculation function and an
optimised symmetry function from a parsed string. For instance, the tensor definition

displayed in Figure (3.2) could have been created automatically using the command
grdef (‘G{ (a b) } := R{ a b} - (1/2) * g{a b}* Ricciscalar®);

(Note that the indices on the left-hand side are enclosed in round brackets, indicating the
symmetry of the Einstein tensor). A full description of the usage of grdef()is beyond
the scope of this thesis. However it should be noted that in principle, almost every
object defined within the GRTensor standard libraries could have been defined using
a grdef ()command. This would entail a number of benefits, such as reduced size of
source code and increased readability, the only disadvantage being the slight increase in
calculation time the first time a tensor is referenced due to the need to construct a tensor
definition from the grdef ()string. At the current time, however, within the GRTensor
source code objects continue to have explicit definitions in the form of Figure (3.2).
Because the standard library has existed for some time and is extremely well tested, it

is thought to be more prudent to retain the original definitions for the time being.

Object libraries

As a final point, we note that a certain amount of modularity can be achieved by grouping
together related tensor definitions into separate Maple libraries. This has the advantage
that only certain definitions need to be loaded at any time, corresponding the the parts
of the package which is being used. For instance, almost the entire set of standard ob-
jects defined for tetrads and the NP-formalism exist in the external basislib.m library,
which is loaded automatically when the user attempts to grcalc()one of the objects in
question. If calculations are done exclusively in metric coordinates, the NP definitions
are never loaded. Similar add-on libraries exist for scalar polynomial invariants and some
vector field definitions, as well as a large library for calculations involving the junctions
between spacetimes Musgrave and Lake (1996), Musgrave and Lake (1997). The spinor
object definitions and tools for carrying out the Cartan-Karlhede method have similarly

been coded into an external library for GRTensor, called spinor.m.

3. Classification in practice 49

3.3 Spinor tools

The main requirements of the Cartan-Karlhede method are a set of tools for calculation
of the minimal set of spinors determined by MacCallum and Aman (1986), and their
transformation under SL(2,C) rotations.

Although the required objects are spinors, and thus defined for a spin basis,the
relation between spin bases and null tetrads (see Eq. (1.30)) allows all of the calculations
to be carried out within the context of the NP formalism which is already defined within

GRTensor. The spacetime specified in the form of an NP tetrad is required as input.

Derivative operators and symmetric spinors

New objects within the spinor package are the set of symmetric spinors listed by Mac-
Callum and Aman (1986). Although calculations are done within the NP formalism, it
is convenient notationally to retain the notion of the objects as symmetric spinors. Thus
objects can be referenced using the 2-index notation described in Section 1.2.

The fundamental objects, the Weyl spinor, Ricci spinor, and Ricci scalar, are already
defined within the NP formalism, and thus are calculable from the frame within GRTen-
sor. Within the spinor package, they are referenced as WeylSp, RicciSp, and Lambda.

Thus the command
grcalc (WeylSp);

would calculate the covariant Weyl spinor components. Individual components are dis-
played and accessed using the 2-index notation. Thus the output of the above command

would be displayed using
grdisplay (WeylSp);

Weyl spinor

for the schw spacetime

2m
Y20 = —3

where ¥,, corresponds to the usual NP component ¥,. The 2-index notation carries over
to the use of the grcomponent () command. Thus the ¥,y component can be accessed

using the command

grcomponent (WeylSp, [2,0]);

3. Classification in practice 50

Note that because the index pair are not conventional spinor indices, there are some
restrictions placed on the operations allowed with symmetric spinors. Thus the oper-
ation of raising indices, or contracting indices within grdef (), are not defined for the
symmetric spinors given by the spinor package.

The higher order objects correspond to different forms of the covariant derivative of
the curvature spinors. Three derivative operators are defined to perform these calcula-
tions, each of which taking a valence (m,n) symmetric spinor, X5’ = X4,..4m B)..5, as

their argument.

SymD[x] calculates the valence (m + 1,n + 1) spinor corresponding to its symmetrized

covariant derivative,
VXas = V(A,,,HB;HXAI...A,,,B’I...B;)- (3.2)
Dal[x] calculates the valence (m,n) spinor which is the d’Alembertian applied to x:
VCD'VCDIXAB’ = VCD’VCD’X(A]...A,,,B;...B;,)- (3.3)

Curl[x] calculates the valence (m — 1,n + 1) spinor corresponding to the symmetrized

covariant derivative with one index contracted,
A —_ A
Vi Xact =V ™ (B, 41 XAy Am BBl) (3.4)

Internally, the operators are expressed in terms of the NP formalism so that the com-
ponents of the new spinor are calculated in terms of the components of the old spinor,
the spin coefficients, and their derivatives. In particular, the (a,b) component of the

symmetrized covariant derivative, V, applied to a spinor of valence (m,n) is given by

(VX)ar =1D X + CaBX (@ 1yo1y + €38Xago-1y + 20X (@
+ei((m—a—1)kxX@ryw + (206 —m + 1)exXay — AT X @1y
4+ (n = b= 1)&Xaps1y + (20— 1+ 1)Exay — bTXag-1y)
+ ca((m — a)pxy + (2a —m — l)aX(a.—l)b' - (a— 1)/\X(a_z)b’
+(n~b- 1)5X(a-1)(b+1)' +(2b~n+ l)Bx(a—l)b’ - bﬁX(a_l)(b—l)’) (3.5)
+ c3((m — @~ 1)0X ary-1y + (26 =M+ 1)BXapo1y — GUX(am1)p-1y'
+ (1 — b)pxey + (26 = 1~ 1)@Xao-1y — (0~ 1)AXap_2y)
+ ca((m — a)TXap-1y + (26 =M =)YX(@-1yp-1y — (@ = 1)VX(a-2)6-1y

+ (n - b)iX(a—l)bl + (2b —-n- 1)’—7X(a-1)(b—1)’ - (b - 1)1_/X(a—1)(b—2)')

3. Classification in practice 51

where
- -b -b —a)b b
cy = ______(m a)(n), Cc2 = __a(n), 3 = _______(m)) C4 = 2 (3.6)
mn mn mn mn
The components of the d’Alembertian, O, of a symmetric spinor are given by
(Ox)ar =2(AD - 88)Xay + (2(e + & = p) + c3e + &) Axaw
+ (=27 — ez — 5B)dxay
+(2(@ = B~) — 3B — 3@)0xay + (21 + 37 + 5T Xy
+ (c3(Ae — ba ~ 68 + D) + (A& = 6& — 68 + D)) Xy
—C2 (K'AX(a+1)b’ - ng(a+l)b’ - U5X(a+1)b’ + TDX(a.+1)b')
—co(AKk — 0p — 60 + D7) X (aq1ys'
e (3.7)
- c,2(k’AXa(b+l)' - ﬁaXa(b+1)’ - 55Xa(b+1)’ + 'FDXa(b+1)’)
- O’z(AR —-dp— 85 + DF)Xasry
+ 1 (TAX -1y = ASX(a—l)b’ — wOX a1y + VDX(G-x)b’)
+c1 (AT — 86X ~ 6p + Dv) X1y
+ C,1 (ﬁ-AXa(b—l)' - /_\5Xa(b-1)’ - l—l’(sXa(—b—l)’ + DDXa(b—n’)
+ (AT — 6X ~ 8fi + DV)Xagp1y'»
where
— -2
¢ =a/m, c2 =0 a, 3 =0 a, (3.8a)
m m
n—>b n —2b
c; =b/n, cy e ¢y = — (3.8b)

And finally, the ‘curl’ operator, V, applied to an arbitrary symmetric spinor has com-
ponents of the form
(©X)ab' =Cl(DX(a+l)b’ - SXab') - CZ(AXaa,-l)’ - 5X(a+1)(b—1)’)
+ c1[(m — @)k X(aiap + (26 = M + 1)eX(arryy — (@ + 1)7xoy
+ (n = b— D)EX(arnosy + (20 =1+ 1)Ex iy
— WX @41yo1y — (M — @+ 1)pX@r1yw
—(2a — m — Dax.y + aAX (a1 — (7= b= 1)0Xa1y 39)
— (26— 1+ 1)BXay + OiEXapo-1y]
+ co[(m — a)oX(ar2y -1y T (2a —m + 1)BX(a-H)(b—X)’ —(a+ 1).“‘Xa(b—1)’
4+ (n = B)pX sy + (20 =1 ~ 1)&X(asr)p-1y — (b~ 1)5‘X(a+1)(b—2)'
= (m=a+1)TX@ino-1) — (2a ~m — 1)7Xu(b-1)’ + aVX (a-1yp-1y

- (Tl - b)'fXab’ - (2b -n - 1)’7Xa(b-1)’ + (b - l)DXa(b—z)’]a

3. Classification in practice 52

where

-% '
el (3.10)
n n

(In fact, the equivalence method only requires that this operator be applied once, in
order to determine the spinor Z ,5¢p.)

Each of the spinors required by the equivalence method have been given specific
definitions in the spinor package. The names by which they are referenced are listed in
Table 3.3. Note that the new object names do not follow the GRTensor convention of
listing the index configuration of each spinor. Since the 2-index convention for listing
spinor components is followed, it is implicit that each of the objects has two indices,
both of which are necessarily covariant. Thus the components of the object DalD2Psi

can be calculated using the command
grcalc (DalD2Psi);
and the (OV?¥),, component can be accessed using

grcomponent (DalD2Psi, [2,3]);

Frame rotations

The spinor package also provides a set of routines for determining the components of

the spinor under SL(2,C) rotations of the spin basis,

A a b A
(TA) - <(:A) ad — be = 1. (3.11)
[4]

An SL(2,C) transformation can be applied to any of the spinors listed above using the
command applydytr (), which in addition to a list of spinors to be transformed, accepts

the following arguments:
dytr: A 2x2 array containing the components of the spin transformation to be applied.

oldname: The name of the spacetime for which the spinors are to be transformed. If
this argument is not specified, the current spacetime is assumed (ie. the spacetime

for which the most recent calculations have been carried out).

newname: A name to assign to the rotated frame. If this argument is not specified,
then a unique new name is created automatically by appending an integer to the

name of the current default spacetime.

3. Classification in practice

53

Name Definition Name Definition

WeylSp ¥ 4pen RicciSp i S

DPsi Vaa'¥sepr) DPhi Viaa®Pocr o

D2Psi Va'Vep¥eper D2Phi Viaa' Ve ®cpo o

DnPsi V(AlA'l - Vana, ¥eenr, DnPhi V(AIA’l o Vaa, ®pope)
n=1...7 n=1...7

DalPsi OV 4500 DalPhi O® 4pur 5

DalnPsi O™ ipep DalnPhi mil
n=1...3 n=1...3

DalDnPsi OVaia1---Vaua, Wagep || DalDnPhi | OV 4 40 ooV 4 @uparp
n=1...5 n=1...5

Dal2DnPsi O2Va,at -+ Vagar Yapep || Dal2DnPhi | OV, 4 ...V 4 @uparp

=1...3 n=1...3

Dal3DPsi 3V an Ysenr Dal3DPhi | O3V 4 ®@pcpicr)

Name Definition Name Definition

Lambda Ricci scalar Xi VA5 ¥ascD)

DLambda VauA DXi VunEscps

D2Lambda Van' Vs D2Xi V' VesEcpso

DalLambda OA DalXi OZ 4504

DnLambda Via e VA DnXi Viaay - Va4, Epcop)
n=1...7 n=1...6

DalnLambda arA DalnXi O"Z pca’
n=1...3 n=1...3

DalDnLambda | OV, 4 ... Vapar A DalDnXi OVaa; - Vaa,Eapoa
n=1...3 n=1...4

Dal2DnLambda | OV, 4 ...V, « A Dal2DnXi | 0%V, ...V, wr Eapoar
n=1...3 n=1...2

Dal3DLambda | 0%V, . A

Table 3.1: Symmetric spinors defined by the spinor library.

3. Classification in practice 54

rotateTetrad: Specifies whether the tetrad vectors and spin coefficients are to be ro-
tated in addition to the listed spinors. This argument can take the values auto
(the frame vectors and spin coefficients are automatically rotated and assigned
values in the new frame), false (only the listed spinors are assigned in the new

frame), or prompt (the user is prompted as to whether the frame should be rotated

[default]).

overwrite: If a spinor has already been assigned in the rotated frame (whose name is
specified by newname), the user is prompted as to whether the components should
be overwritten. If overwrite is set to auto, the components are automatically

overwritten, whereas if it is set to false the components will not be overwritten.

Thus, for example, if the spinor DPsi has been calculated for the schw spacetime, an

arbitrary null rotation can be applied using the commands:
> T := matrix (2, 2, [1,0,lambda,1]);

10
Al

> applydytr (DPsi, dytr=T, newname=schw2, rotateTetrad=auto);

This command will apply the transformation T to the components of DPsi. The new
components are assigned to the object DPsi in the schw2 spacetime. Note that within
GRTensor, the components of each calculable object is associated with the name of a
spacetime in order that, for instance, the Riemann tensor can be calculated in multiple
spacetimes without having to overwrite its components. In order to avoid ambiguity
about which frame the components for a given spinor have been calculated, the spinor
package regards a rotated frame to be a different spacetime (at least in the GRTensor
sense) from the original. Just as two separate metric files specify the Schwarzschild
spacetime in Bondi coordinates and Eddington-Finkelstein coordinates, a pair of frames
which differ by a SL(2, C) rotation are also considered to be ‘different’. In order to switch
between frames, the grmetric()command is used, as in standard GRTensor. Thus, in

the above example, the user would then type
> grmetric (schw2);
> grdisplay (DPsi);

in order to view the rotated components in the new (rotated) frame. Further calculations
would proceed in this frame unless the command ‘grmetric(schw)’ is used to return

the user to the original frame, where the original spinor components are still stored.

3. Classification in practice 95

The final argument in the example above specifies that the rotation is also to be
applied automatically to the frame and the spin coefficients of the schw spacetime.
If this argument were not specified, the user would be prompted as to whether this
additional operation is to be performed. In general the user would wish to answer ‘yes’,
since these objects will be required in the new frame if further spinor calculations are to
be carried out.

Note that in order for applydytr to work, it must have a specification of how each
of the given objects transform under spin transformations. For symmetric spinors, a
single function is used to calculated the new components. Performing an expansion of
the spinor in terms of the spin basis, Eq. (1.55), it is not difficult to see that under the
given transformation a spinor component x,;» transforms as a polynomial in a, b, ¢, and

d, and the spinor components,

m—i i n—j j . .] .
m-—1 1 n-—7 J i L
Z Z Z (p) <Q) (T) (5> apbm l pchz qarbn ! rcsdj sx(m—l’—q)(ﬂ—'r—s)'a

p=0 g=0 r=0 s=0
(3.12)
where the spinor has valence (m,n).

Only objects for which a rotation function has been assigned can be rotated using
the applydytr() command. At the present time, these are the frame, the ‘NP spin
coeflicients, and the symmetric spinors listed in Table 3.3.

For any of the spinors listed in Table 3.3, as well as for the frame vectors
(1% n®,m* m®), the applydytr () command evaluates the new components using this
polynomial.

The transformations of the spin coefficients, however, are somewhat more difficult, as
they involve derivatives of the transformation parameters. A lengthy calculation results

in the following formulas for the transformation of the spin coefficients under arbitrary

SL(2,C) rotations:

k — — abaDa — b2bAa — abbda — b*@da + a*aDb + a*bsb
+ abadb + abbAb — a3ax — 2a°abe
~ a%bo — 24%bbB — a%bap — 2ab’acy — a’bbr — 20b%by

~ ab?am — ab®by — b3ax ~ b’bv (3.13a)

3. Classification in practice 56

p — ~ bcaDa — bdbAa — bebda — bdada + acaDb + adbAb

+ achdb + adadb — a*cik — 2acabe

— a’cho — 2achbB - a’dap — 2adabo — adbr — 2adbby

~ b2can — b’chy — b2da\ — bidbv (3.13b)
o = — abeDa ~ b*dAa ~ abdéa — b*¢da + a’cDb + abdA

+ a®dsb + abcdb — alex — 2a’cbe

- a®do — 2a%dbB — a?bép — 2ab%ca — a’bdr — 2ab’dy

— ab’én — ab’dmz — b3E) — B3dy (3.13¢)
7 — — beeDa ~ bddAa ~ bedda — bdéda + aceDb + addAb

+ acdéb + adedb — a’cék — 2acébe

— a*cdo ~ 2acdbB — a’dép — 2adébe — a’ddr ~ 2addby

- b?cem — bPedy — b2de) — b2ddy (3.13d)
¢ = — daaDa — bdbAa — dabda ~ bdada + acaDb + cbbAb

+ acbéb + cbadb — a’cax — acabe — a’cbo — achbf

— abacp — b%aca — abber — b2bey — abadm — a®ade

— abbdy — a*bdB — b2da) — adaba — b2dbv — adbby (3.13¢)
a = — cdaDa — d*bAa — cdbda ~ d*ada + c*aDb + cdbAb

+ c2b8b + cdadb — ac’ak — bclae — ac’bo — be*bB

— adacp — bdaca — adbct — bdbery — beadn —~ acade — bebdy — acbdf

— bd%a — ad’aa ~ bd®bv — ad®by (3.13f)
B8 — — datDa — bddAa — dadda — bdéda + accDb + cbdAb

+ acdéb + cbedb — a®cék — actbe — a’edo ~ acdbB

— abécp — b?éca — abder — bidey — abedm — a’cde

— abddp — a®ddpB — b de) — adeba — b*ddv — addby (3.13g)
v = — cdeDa — d*dAa — cddda — d*Eda + c2eDb + cddAb

+ c?dsb + cdesh — ac’tk — bc?Ee — ac’do — be*dS

— adécp — bdeca ~ adder — bddey — beedm — actde — beddy — acddf

— bd®eA — ad®ca — bd*dv — ad’dy (3.13h)

3. Classification in practice 57

7 — — dadaDc — bdbAc ~ dabc — bdadc + acaDd + cbbAd

+ acbdd + cbadd — ac’ar — 2acide

— ac®bo — 2achdf — c*bap — 2bdaca — c?bbr — 2bdbey

— d%aan — d%aby — bd%a) — bd?by (3.131)
A = — cdaDc — d*bAc ~ cdbdc — d?adc + c*aDd + cdbAd

+ ¢?béd + cdadd — c3ax — 2c*ade

— c3bo — 2c2bdB — c*dap — 2cd*aa — ?dbr — 2cd*by

— cd®an — cd®by — d3%a — by (3.13j)
p — — daéDc — bddAc — daddc — bdéde + aceDd + cbdAd

+ acddd + cbcdd — ac?ck — 2acéde

— ac*do — 2acddB — &2 bep — 2bdéco — c*bdr — 2bddey

— d%agr — d*ady — bd%eX — bd*dv (3.13k)
v ~ — cdeDc — d?dAc — cddéc — d*ede + c*eDd + cddA

+ c2déd + cdcdd — c3ek — 2c%cde

— 3do — 2c2ddp — Adep — 2cd®ea —~ ddr — 2cd*dy

— cd?er — cd?dy — e\ — d3dv (3.131)

3.4 Classification tools

To this point, tools have been described for calculating the components of all of the
independent symmetric spinors listed in MacCallum and Aman (1986), and applying
general dyad transformations to these objects. In order to carry out a full classification
of the given spacetime, the following additional tasks, specific to the equivalence problem,

must be accomplished:
e The Petrov and Segré types of the spacetime must be determined.
e The spinors must be checked to determine whether they are in a standard form.
e The isometry group of the frame must be determined.

e If a spinor is not in standard form, a spin transformation must be determined

which will bring it into its standard form.

¢ Independent functions among the spinor components must located.

3. Classification in practice 58

Petrov type
The Petrov type is determined from the Weyl spinor using the command
grcalc (ptype):

The calculation of ptype proceeds as described in Appendix A, and the result is stored
as one of 0, 1, 2, 3, d, n. Note that in many cases, the determination of the Petrov type
involves the calculation of a high order polynomial in the spin coefficients which must be
equated to zero. In general, this is well done within Maple, and by implicitly applying
expand() to the results, a correct evaluation (zero or non-zero) is almost guaranteed.
However, it is not difficult to construct situations (especially involving radicals, as de-
scribed in Section 3.1) for which a zero-function can not be automatically simplified to
zero. Thus, it is necessary that the user be able to check the intermediate calculations to
see that everything has proceeded correctly, and if not, to manipulate the troublesome
expressions.

To facilitate this, as the ptype calculation proceeds the path taken (a number from
0 to 31 corresponding to an entry of the table in Appendix A) is stored in the variable
grG_Ppath_, while the intermediate expressions on which decisions have been based,
are stored in the global variable grG_Pscalars. This variable is a set whose elements
correspond to the individual scalars which must be calculated along the given path.
Thus, if the Weyl spinor corresponds to Case 15 of the Petrov algorithm, then grG Ppath_
will equal 15, while the grG_Pscalars_ variable will contain entries of the form I = ...,
Fl=...,F2=...,D=....

The user can manipulate the entries of grG Pscalars_ in order to ensure that all
of the zeros have been found, then run grcalc (ptype) once again. This time, the
program will recognise that the required (and hopefully fully simplified) scalars have
already been stored in the grG_Pscalars_ variable, and will prompt the user as to
whether these variables should be used as opposed to recalculating them from scratch.
By this procedure, the user is given complete control over the intermediate decision
making that takes place within the Petrov type algorithm. Fortunately, this level of

control seems only to be required in rare situations.

Isotropy testing

The next two closely related tasks are greatly simplified once the Petrov and Segré types

have been established. From Table 2.1, for instance, we see that a simple test of its

3. Classification in practice 59

components determines whether the Weyl spinor is in standard form for a given Petrov
type, and given a non-zero Petrov type, only a limited subgroup of the rotational freedom
remains in the frame.

The program isotest() is a general tool which can be used to determine whether
any given spinor is in the standard form for a particular isotropy group. Two arguments
are specified, the first being the spinor which is to be checked (any of those listed in
Table 3.3), and the second is the subgroup of SL(2,C)under which the frame is still
free to rotate. These are specified by the following strings: 1lnswap, Boost, Spin,
Null2D, NulliD, NullR, Nulll. The lnswap freedom refers to a swap of the o* and +*
spin basis vectors, which in a frame has the effect of swapping the [* and n® and the
m® and m? vectors. The Null2D isometry refers to freedom to null rotations about o#
with a complex rotation parameter A. If the null rotational freedom only holds for a
real parameter, the isotropy group can be specified as NullR, or for a strictly imaginary
parameter, NullI. The NulliD group refers to rotations by a complex-valued parameter
for which a restriction exists relating the real and imaginary parts. (Note that although
this form of isotropy can be detected, in fact no corresponding standard form has been
defined.)

The isotest() function returns the Maple NULL-value if the spinor is judged to be
in a standard form for the given isotropy group, as specified in Chapter 2. If it is not in
standard form, a list is returned, specifying both the isotropy group which has been

lost and the particular component which deviates from the standard.

Automatic generation of dyad transformations

Given that a spinor is not in the standard form for a particular SL(2,C)subgroup, a
spin transformation must be applied to its components. The function dytrgen() takes
as arguments the name of the non-standard spinor, and the isotropy group which is to
be used. The components of the spinor are then used to calculate the entries in a spin
matrix which, when applied to the spinor, will bring it into the standard from. The
2x2 array which is returned by the dytrgen() function can be used as input to the
applydytr () function, described above.

The dytrgen() function can be applied to any of the spinors listed in Table 3.3.
Note, however, that in order to determine the appropriate standard form for a general
spinor, it is necessary that the SL(2, C)freedom already have been reduced to one of the

listed subgroups. This is only possible once the Weyl and Ricci spinors have already been

3. Classification in practice 60

classified, and special algorithms for the Weyl spinor are required in order to determine
the spin transformations which bring it into one of the forms listed in Table 2.1.

Given a particular configuration of zero/non-zero Weyl components, as listed in Ap-
pendix A, it is generally not difficult to determine expressions for the components of a
spin transformation as functions of the ¥;s. These are listed in Appendix B. However,
in certain complicated cases for which there is a large number on non-zero Weyl compo-
nents, it is extremely difficult to determine a general formula for the spin transformation
matrix. In order to arrive at the correct spin transformation, a general rotation is ap-
plied to the coefficients of the Weyl spinor, and the restrictions specified by the canonical
frame (eg. that certain components be zero) are used to solve for the undetermined ro-
tation parameters. Generally, this involves solving for the roots of a quartic in the Weyl
coefficients. Though for special cases, the problem can be simplified and the roots are
not difficult to find, the general solution is not known. The current set of algorithms is
not able to determine a standard form for Type I and Type II Weyl spinors arising from
paths 19, 23, 27, and 31 of the Petrov algorithm described in Appendix A. Further,
in certain cases (notably 9, 11, and 15), although the formulas for the transformation
coeflicients can be found, they are complicated and may be impractical to apply. Note,
however, that this is not a problem which can be solved through better algorithm design
or more powerful simplification tools. It is a result of the fact that the transformation
coefficients are the roots of a quartic. As such, this is a fundamental limitation of the
Cartan-Karlhede method.

A final tool is required to scan the list of spinor components and extract the po-
tentially independent components. The function find_indep_cmpts() exists to perform
this task. The real and imaginary parts of each spinor component are extracted. From
these, the Jacobian determinant is used to determine the set of linearly independent
functions. The results are returned as a set whose entries specify: the spinor name, the
independent component number, whether it was the real or imaginary part, the actual

value of the component, and its derivatives in terms of the coordinates.

Automatic classification

The functions described in the previous paragraphs provide all of the functionality re-
quired to carry out the Cartan-Karlhede method. As a step-by-step process, however,
the method is still quite complicated to carry out. As such, the spinor package pro-

vides a classify() function which will automatically carry out the steps required to

3. Classification in practice 61

fully classify a spacetime. The function takes no arguments, and is assumed to work on
the current default spacetime which has been loaded into GRTensor as a null frame.

The classify() function proceeds stepwise, first determining the Petrov type of the
given spacetime (calculating the Weyl in the process, if necessary). Using the result of
the Petrov type calculation, the Weyl tensor is checked to determine whether or not it
is in canonical form, and if not, dytrgen() determines a spin transformation which is
passed to applydytr () in order to rotate the frame (and spin coefficients) to their Weyl
standard form. The new frame assuming the spacetime is not conformally flat, is known
to be invariant under a restricted subgroup of SL(2,C). This information is stored in
the global variable grG_Isotropy.. The independent components of the Weyl spinor in
the standard frame are located using find_indep_cmpts(), and this information stored
in the global variable grG_indep_fns_. Note that at any time later this information
can be examined by the user in order to verify that the procedure has been carried out
correctly.

Once the Weyl-standard frame has been established, the Ricci spinor is calculated and
brought into canonical form by applying another dyad transformation if necessary. Once
again, the remaining isotropy group at this stage is recorded, and independent functions
isolated. The procedure carries on by checking the Ricci scalar for independence. At
this point, ‘Level 0’ is completed and the program prints out some status messages and
prompts the user as to whether they would like to proceed on to ‘Level 1’, namely the
first derivatives of the curvature spinors.

At this point it is possible for the user to consider whether the information that
has been displayed to this point seems correct. It is often a good idea to examine the
components of the spinors and spin coeflicients in the current frame. If they are of an
extremely complicated form, the user can attempt to simplify them by applying Maple
routines through gralter().

Once the procedure has been checked to this level, the user can re-initiate the clas-
sification process by using the classify() command once again. The program will use
the information which it has already determined for the given frame, and continue from
where it left off to calculate the first derivatives of the curvature spinors. These calcu-
lated, the user is again given an opportunity to halt the process in order to check the
results before proceeding on to ‘Level 2’, the second derivatives.

The program halts when it determines that all of the information required for a
complete classification has been found. That is, if after two consecutive levels no more

independent functions have been found, and the isotropy group under which the frame

3. Classtfication in practice 62

is invariant has not changed, the program declares that the spacetime has been fully
classified.

Note that although the classify() command attempts to carry out the classification
automatically, the potential for user intervention is critical for all but the simplest cases.
In general, a frame which is not already in standard form will require the application of
spin transformations which result in complicated forms for the spinor components and
spin coefficients. Unless simplifications are applied to these objects, further calculations
will tend to bog down (see Pollney et al. (1996)) and a correct determination of the
independent components and standard form for subsequently calculated spinors will
become less likely. That said, it can also be noted that frames in which spacetimes are
expressed, often take advantage of algebraic symmetries, and as such it often happens
that they are presented in near-standard form. In such cases, the classification may be
able to proceed without intervention.

An example of the use of the classify() function in an examination of the Edgar-

Ludwig conformally flat metrics is given in Appendix C.

3.5 Additional tools: Complex quantities in Maple/GRTensor

The implementation of complex valued quantities within Maple possesses some inherent
difficulties which inconvenience spinor calculations.

The first of these arises from the specification of which variables are to be considered
complex and which are to be considered real. An inconvenience arises from the fact that
Maple assumes that all symbolic quantities are complex. This contradicts the common
practice in specifying spacetimes, where coordinates and functions contained in spinor
components, are generally chosen to be real. It is possible to give a variable within
Maple the property of being real using the assume () facility. Thus, in order for complex
conjugation to work as expected in the context of spinors, it would be necessary to apply
assume () to each of the coordinates and metric functions at the time that the spacetime
is loaded.

A more serious problem with complex valued functions, however, comes from Maple’s
implementation of complex conjugation. The conjugate of a value is represented by
applying the function conjugate() to the value. Thus, for a complex valued function

z, we find

3. Classtfication in practice 63

> conjugate (x);

The problem arises when one wishes to use the conjugate within other functions, such
as diff (), which can not take functions as arguments. For instance, given a function

f(z,2) of complex coordinate z, it should be possible to take the derivative

81(2,2)

= (3.14)

Within Maple, this is expressed as
> diff (f(z,conjugate(z)), conjugate(z));

However, this statement returns an error, because Maple does not allow a function to
be used as the variable of differentiation.

To avoid these difficulties, GRTensor and the spinor package, make use of an alter-
nate specification implemented through the use of the conjugation function conj rather
than the standard Maple conjugate function. The conj function has two distinctions.
First of all, it assumes that all variables and functions are real, unless they are listed in
the set complexSet._. Secondly, the complex conjugate of a variable is represented by
appending the string ‘bar’ to the end of its name. Consider the following example:

> complexSet_ := {y,f};

> conj (x); conj (y); conj (f(y,ybar)); conj (ybar);
z, ybar, fbar(y,ybar), Y

Since the conjugate has been replaced by a name, it can be used in any other function
which accepts names as arguments, that is, ‘y’ has the same status as ‘ybar’. Thus,

commands such as diff yield the expected results:

> g(y,ybar) := y°2 + conj(y)~2;

g(y, ybar) := y? + ybar?
> diff (y"2 - ybar~2, ybar);
2ybar

Within the context of GRTensor, the complex valued functions and coordinates for a
given spacetime can be specified apon loading of the spacetime by adding the expression

complex_ := {complex variables};

to the metric file.

3. Classification in practice 64

3.6 Outstanding problems

Through use of the computer algebra tools described in this chapter, the Cartan-
Karlhede method can be implemented in order to obtain a unique algebraic classification
of a large variety of spacetimes. To regard the method as an ‘algorithm’ for classification
would be incorrect, however, as the definition of an algorithm implies that a solution
will be found for any set of initial data, and this is not the case for the Cartan-Karlhede
method.

The greatest difficulties arise from the fact that the fixing of a canonical frame for the
Weyl spinor, the first stage of the process, can involve solving for the roots of a quartic
equation. If this can be accomplished for a non-zero Weyl spinor, then the methods
described above will lead to a classification. The methods of fixing the frames under
spins, boosts, and null rotations, have been specified in such a way as to ensure that the
roots specifying the rotation coefficients can always be found.

As discussed in Section 3.4, however, there are examples of Weyl component config-
urations for which the components specifying the dyad transformation to standard form
can not be determined. In addition to this, for some of the cases for which an expression
for the dyad transformation exists, the expression turns out to be complicated enough
that it is possible that it will be of little practical use, for components transformed un-
der the specified transformation will not yield to simplifications. We emphasise that the
problem is not one that increased computational power is likely to solve. It is a result of
the complicated nature of the roots of general quartic equations which must be solved
in order to carry out the Cartan-Karlhede method successfully.

A possible way of avoiding this problem is to expand the allowed set of standard
forms. Certain initial configurations of Weyl tensor components can be transformed
more naturally into standard forms other than the ones specified. For instance, the
frame for the Petrov Type I cylindrical Van Stockum spacetime van Stockum (1937)
(see also Kramer et al. (1980), page 222), is specified in the CLASSI database Skea
(1997b) as

lg = [1/\/5,0,6"“2"2/2/\/5, ap*/V2, (3.15a)
ng = [1/v/2,0,—e~%7*12/\/2, ap? V2, (3.15b)
Mg = [O,e_az”z/z/\/i,o,ip/\/i], (3.15¢)

where the coordinates are (i, p, z, ¢), and a is a real constant. For this frame, the Weyl

8. Classification in practice 65

components take the simple form
1
U, = Eiase"z“’z, Uy = -;:0,26“2‘02, Uy = ——;—ia3ea2”2. (3.16)

In order to bring the Weyl spinor into the standard form specified for Type I spacetimes

(ie. ¥ =¥y, ¥; = ¥3 = 0), a transformation of the form

14 2ap

, where A = 1= 2ap’

la-9A8 1 44)Al/8
21() 2(1+19) (3.17)
3

~1(1-9)A7V8 L1 44)A4A7Y/8

is required. Under this rotation, the frame vectors take the form

] _[L/_z\/——1+2ap+\/—1—2ap e=a’*/2 ﬁ —a?pt2V—1+2ap—+/-1-2ap
o =

4 (1 - 4a2p?)1/4 V2 4 € (1 — 4a2p?)1/4 :
V2 —T+2ap++v/-1=2a
o : 2\§ T (3.18a)
4 (1 — 4a2p?)V/
n =[£ V-1+2ap+y-1-2ap _6—02p2/2 Qe—azpz/z v—-1+2ap—+/-1-2ap
a 4 (1- 4a2p2)1/4) \/§ "4 = 4a2p2)1/4 ,
V2 =1+ 2ap+ /=1 2ap
R Ty Y (3.18b)
z[_[gi\[—l + 2ap — /=1 —2ap 0 _ﬁie_azpzﬂ vV=142ap++/-1-2ap
‘ 4 (1 - 4a2p2)}/4 4 (1 — 4a2p?)1/4 ’
ﬁ?(l —4a2p2)1/4+iap(\/—1+2ap—\/—1—2ap)] (3.180)
4 (1 — 4a2p?)1/4 : 18¢

and the Weyl components are
Uy = —;—az(l - 4a2p2)1/2ea2”2, Uy = %azea L Uy = —;—aQ(l - 4a2p2)1/28a2”2.
(3.19)
Unfortunately, when this spacetime is rotated into the standard frame, its frame com-
ponents take on a much more complicated form than in the original frame. This is not
a fatal problem, however it can lead to computational difficulties later on when higher
order derivatives of the curvature spinors need to be evaluated.
The current implementation of the CLASSI software avoids this problem by allowing
a variety of ‘alternate’ standard forms for Type I metrics. Of the nineteen Type I metrics
listed in the CLASSI database, three have been allowed to assume an alternate Type I
standard form. These are listed in Table 3.6. Of these cases, both the van Stockum and
Newman-Tambourino spacetimes require moderately complicated transformations of the
form listed above in order to bring them into canonical form, while the Tarig-Tupper
spacetime requires a simple spin with coefficient (—1)!/8 in order to fix ¥y = ¥y, thus

introducing little computational expense.

3. Classification in practice 66

Spacetime \Ilo \111 ‘1/2 \I/3 \1/4

CylindricalVanStockum 0 X Y -X O

NewmanTambourinoLimit O X Y X 0

TariqTupper X 0 Y 0 -X

Table 3.2: Spacetimes for which CLASSI accepts alternate standard forms.

While the tolerance of alternate standard forms can reduce the computational effort
in determining a set of independent components for the curvature spinors, it is difficult
to reconcile with the Cartan-Karlhede method, which is based upon a strict adherence to
a given set of standard forms. The final stage of the determination of the equivalence of
two spacetimes requires that the individual spinor components be compared one against
the other. If the two spacetimes have been expressed in different standard frames, this
can not be done directly, and a mapping is required from the components of one to those
of the other. This mapping is given by the transformation between the two alternate
standard forms. For this reason, at the present time the spinor package imposes a strict
adherence to the standard forms specified in Table 2.1.

A final point of note is that even when a unique set of standard forms for the curvature
spinors has been fixed, it is not necessarily true that the frames which satisfy these forms
are unique. For instance, in the above example the transformation to the standard form
involve an 8th root of a factor in the matrix coefficients. Depending on which root is
chosen, there are eight potential frames which will result in the given standard form,
corresponding to rotations of the m® vector by an angle of n/4. This can lead to
difficulties in the final stage of the procedure when components between two spacetimes
are compared, for if the two frames differ, a consistent set of equations may not result.
This said, it should also be pointed out that in practice the potential discrepancy has
not arisen.

All of the problems described above are a direct result of the difficulty in defining
an unambiguous standard frame for a given spacetime. It is worth considering, then,
whether alternate methods might exist in which rigid adherence to a standard frame
is a less stringent requirement. As mentioned, the CLASSI program already accepts
alternate standard frames for Petrov Type I spacetimes, though a formalism for how

these are to be used in solving the equivalence problem has not been documented.

3. Classification in practice 67

One such method to use is the original procedure described by Cartan, in which the
frame is left completely arbitrary with the penalty of having to extract the rotational
information from higher order derivatives of the curvature spinors. Although this re-
quires the calculation of many more spinor components, the ability to choose the frame
arbitrarily means that one can always choose a frame in which the curvature compo-
nents take on a relatively simple form. It is not impossible that the resulting reduction
in computational effort will more than compensate for the need to calculate higher or-
der derivatives. As evidence, note that the time required to calculate an object even
as simple as the Riemann tensor can vary by many orders of magnitude depending on
the input and simplification strategy used (see the discussion in Pollney et al. (1996)).
If the standard frame for a given spacetime does not correspond to an optimal frame
for computation, it is possible that the procedure will get bogged down in calculation
of even the low order derivatives, while in the computationally optimal frame, the high
order derivatives are calculated with ease.

In fact, a procedure embodying the benefits of both methods might be found in a
compromise between the fixed and free frame methods. For example, the independent
spinor components can be expressed in the form of GHP style quantities with given spin
and boost weights. These two degrees of freedom can be removed from the frame quite

easily, while the remaining freedom could be solved for using higher spinor derivatives.

Finally, we make note of the information available from an alternate source, the scalar
polynomial (sp) invariants formed from index contractions of the curvature spinors. In
many senses, they are ideal for the purpose of determining coordinate transformations
between spacetimes, for the information which they give is completely independent of
the frame in which the spacetime is expressed. Traditionally their use has been avoided,
however, because of the inherent ambiguities in the information which they provide.
Crucially, it has often been pointed out that for plane waves all of the sp-invariants
are zero, making such spacetimes indistinguishable from flat space. This fact can be
attributed to the fact that the Lorentz rotation group SL(2,C) is non-compact, and
flat space arises as the limit of an infinite boost of the plane wave spacetimes (Schmidt
(1994)), a point enforced by an example of a class of Type N spacetimes which are
distinguishable from flat space but not from each other using sp-invariants (Schmidt
(1998)). Thus it seems that sp-invariants can at best distinguish spacetimes up to their
Geroch limits (Geroch (1977)).

A further difficulty arises from the fact that for a general spacetime, a necessary

3. Classification in practice 68

and sufficient set of sp-invariants to determine whether a consistent set of coordinate
transformations might exist has not been determined. This is closely related to the
problem of finding an independent set of sp-invariants, which has occupied a number of
researchers over the years (see Penrose and Rindler (1986), and Carminati and McLe-
naghan (1991) and the references therein). Even at the level of the Oth order curvature
spinors (the Weyl and Ricci spinors) a sufficient independent set for general spacetimes
has proved elusive. However, for specific spacetimes the problem can be solved using
the techniques of Carminati and McLenaghan (1991) of specifying relations between the
spinor components and evaluating invariants constructed from index contractions until
an independent set satisfying the expected number of degrees of freedom is found. This
process might even yield to a degree of mechanisation, as the construction of invariants
is simply a matter of permutations of index contractions, and software for carrying out
this task has been developed by the author to find all of the identities among invariants
up to degree 5 in the curvature spinors {Pollney (1996)).

Despite the difficulties, the ease of calculation of the sp-invariants make them an
attractive alternative to the Cartan-Karlhede components. For Type I spacetimes, the
functional information in the Weyl tensor is found through the calculation of the two

scalars’
I:= \I’ABCD\I,ABCD, J:= \I/ABCD\IlCDEF\IlEFAB, (3.20)

which can be used to obtain the same information as one gets from the ¥ and Uy
components of the standard frame. Importantly, although the calculation of I and
J involves respectively quadratic and cubic polynomials in the Weyl components,
one avoids the need to solve a quartic equation in order to determine transformation
coefficients for the standard frame. Thus, in cases where the Cartan-Karlhede method
can make no progress, information can still be extracted from the sp-invariants. A
formalised method making use of this information might form a useful alternative for

cases to which it proves difficult to apply the Cartan-Karlhede method.

A number of difficulties in applying the Cartan-Karlhede method have been
identified. Generally they arise from the trade-off between the number of computations
required when the frame is left free, as in Cartan’s original description, against the
difficulties involved with fixing the frame into a generally applicable standard form.
While the latter method can be computationally the most efficient in terms of the

number of components to be calculated, there are cases where, in contrast to Cartan’s

3. Classification in practice 69

Petrov Type: 00 N D I II I Total

of examples: 42 27 114 8 3 19 213

Table 3.3: The number of examples contained in the spacetime database at the time of

writing, grouped by Petrov type.

method, it can not be carried out, due to the fact that the transformation coefficients
arise as solutions to high order polynomials. That said, it should be noted that in
practice the Cartan-Karlhede method has been used to construct a database of some 213
spacetimes, with the only departures from the method arising from the three spacetimes
discussed above. Table 3.6 gives the breakdown for the number of spacetimes included
in the database for each Petrov type. The grouping of the spacetimes which have been
included reflect the fact that the study of exact solutions has concentrated on the
algebraically special spacetimes. In this practical sense, a tool which efficiently classifies
algebraically special metrics, as the Cartan-Karlhede method does, is appropriate. As
the study of spacetimes moves on to the more general situations of Type I metrics,

however, the need for alternative tools may become more apparent.

An important omission in the current state of the methods, however, is the inclu-
sion of a Segré classification and dyad transformations to bring the Ricci spinor into a
standard form. This work will be necessary for a fully functional classification package,
for at the moment conformally flat spacetimes can not be handled reliably. That said,
it can be noted that in a number of cases a reliable classification has resulted for con-
formally flat spacetimes simply by fixing the frame by placing the Ricci spinor in one
of the general standard forms for spinors described in Chapter 2. This is possible for
spacetimes which are input using frames which are already ‘close’ to their final standard
form. However, because the standard forms are specified only in terms of reduced sub-
groups of SL(2,C), these methods will not generally be successful without a first stage
(Segré classification) to reduce the frame freedom to one of these subgroups. A number
of prescriptions for classifying the Ricci spinor exist in the literature (eg. Penrose and
Rindler (1986), Cormack and Hall (1979), Joly and MacCallum (1990)). Work to de-
velop a Segré classification code compatible with the spinor package is currently being
carried out in collaboration with Jim Skea of UERJ, Brazil.

Greater concerns for the success of any classification via the Cartan-Karlhede method

8. Classification in practice 70

arise from the problems discussed at the end of Chapter 3. The need to solve a quartic
equation as part of the method provides insurmountable difficulties for the classifica-
tion of certain types of initial data. Alternative methods, either formalising some more
general notion of ‘standard’ frames (for example, using alternate standard frames de-
pending on the form of the original frame}, or making use of alternate sources of algebraic
information, such as the curvature invariants, are paths worthy of further exploration.
Finally, we note the great potential for application of the spinor tools. The CLASSI
program has already been used by Skea (1997b) and co-workers to create a database of
more than two hundred spacetimes, available online via the Internet. This database has
the potential to serve as a valuable resource to the community of relativity researchers
in the form of a consistently updated version of the well-used ‘Exact Solutions’ book
Kramer et al. (1980). A continuation and expansion of this effort would provide a useful

test of the new software and methods which have been developed.

Part 11

Cauchy-characteristic matching in

axial symmetry

71

4

Numerical techniques for the

solution of Einstein’s equations

To this point, this thesis has concerned itself with the algebraic study of exact solutions
of Einstein’s field equations. Indeed, the study of exact solutions has to this day provided
virtually all of our current understanding of the properties and dynamics of gravitational
fields. Unfortunately, these results have been derived only for very specialised situations.
The complexity of the field equations demand that if any analytical progress is to be
made, simplifying assumptions must be applied. Typically, restrictions on the geometry
(such as spacelike homogeneity in cosmology, or spherical symmetry in the study of
isolated bodies) are introduced in order to reduce the equations to a tractable system.
Since these symmetries are expected to be good approximations to realistic physical
configurations, they have been used to good effect to obtain an understanding of the
features and effects that might be expected to arise from a given distribution of matter.

The physical relevance of these results, however, is generally limited to the symme-
tries of the spacetime in question. In recent years increased effort has gone into the
construction of instruments capable of directly measuring gravitational effects. As such,
the interest in more ‘realistic’ (or at least more generic) models approximating some
potentially measurable physical system has intensified. At the same time, computer
technology has advanced to the point where large-scale computations involving equa-
tions of the complexity of the full Einstein field equations can reasonably be carried
out. As a result, the past two decades have seen a shift in focus among relativists
towards numerical studies of the gravitational field. Such studies are now for the first
time yielding insights into models which represent important physical process such as
the inspiral of matter onto a neutron star or black hole, and neutron star and black

hole collisions. Further, numerical computations have also been used in spacetimes

72

4. Numerical techniques for the solution of Einstein’s equations 73

with a specialised symmetry to obtain results which had previously been unknown to

analytical studies, notably the discovery of critical phenomena in spherical symmetry

by Choptuik (1993).

A framework for studying the field equations numerically was laid out in the early
60’s by Arnowitt et al. (1962). In their formalism, the spacetime is foliated by spacelike
3-surfaces whose metric components are evolved in the direction of a timelike vector. As
such, it is often referred to as a 3+1 technique, or, because the initial spacelike surface
can be thought of as a Cauchy surface (on which all of the data required by subsequent
evolution has been specified), a Cauchy evolution.! The 3+1 methods provide a useful
system of evolution equations for general relativistic systems. The data and coordinates
are specified on spacelike slices, and thus have somewhat physical interpretations, and
the equations can be set up in such a way as to provide a future evolution which tends
to avoid both physical and coordinate singularities. As such, they have become the
commonly applied method of performing numerical evolutions of isolated sources in
general relativity. Problems still exist in specifying physically relevant initial data which
satisfy the constraints, the choice of appropriate slicing and shift conditions, and the
excision of trapped surfaces, and solutions to these difficulties are the topic of active
study in the relativity community.

A particular problem associated with 3+1 evolutions arises exactly from the feature
which makes these methods so intuitively attractive: the spacelike nature of the evolved
surfaces. Because the computation is intended to be carried out within the physical
memory of a computer, the computational grid is neccessarily finite. This problem is
traditionally avoided through use of a grid which is large in comparison with the scale of
the physical phenomena being studied so that boundary effects are minimised. Further,
asymptotic expansions of the relevant fields can be used to induce artificial boundary
conditions which have small error provided that they are applied at a large distance from
the source.

Working against the need to use a grid which extends to large radius, however, is the
fact that the grid must also be fine enough to resolve the detailed dynamics in the area
of the source. Either the physical spacing of the grid points must be reduced over the
whole grid, or an adaptive grid must be introduced which has increased resolution in the

region of interest. The latter method is the subject of active research, but has proven

In fact, because numerical evolutions necessarily have a finite grid size (je. an edge), the term

‘Cauchy’ is used somewhat loosely.

4. Numerical technigques for the solution of Einstein’s equations 74

difficult to implement in generic situations. Reducing the grid spacing over the whole
grid, however, has the effect of moving the boundaries closer to the relevant physical
region, increasing the error introduced by approximate boundary conditions.

A further problem arises from the fact that the 3+1 evolution neccessarily involves
the choice of a time direction. As a result, the grid variables on the spacelike slices are
not covariantly defined and will have values depending on the chosen slicing. Covariant
physical quantities, such as the emitted gravitational radiation, can only be determined
by examining the asymptotic forms of the grid variables at large radius where invariant
definitions exist. As the boundaries of the grid are moved inwards, these approximations

become correspondingly less accurate.

Alternative evolution methods have been considered for numerical relativity in an
attempt to overcome the weaknesses of the standard 3+1 approach. In particular, the
study of characteristic methods by Bondi and co-workers in the early 1960s, and the
related compactification of asymptotically flat spacetimes by Penrose, suggest methods
by which the problems of the finite boundary can be removed completely.

In order to study gravitational radiation, Bondi et al. (1962) developed a set of
coordinates based on a foliation by characteristic surfaces whose generators are null
geodesics. The field equations for the corresponding metric fall into a heirarchical system
for which a well defined integration procedure can be defined, given appropriate initial
data. Further, in the given coordinates the asymptotic behaviour of the metric fields
is well defined provided that the spacetime satisfies some notion of asymptotic flatness
and that particular components of the field can be unambiguously identified with the
gravitational mass and two gravitational wave polarisation modes.

Penrose (1963) demonstrated that for such spacetimes, a new set of unphysical coor-
dinates could be specified for which the infinite extensions of the time and space direc-
tions could be placed at a finite coordinate distance. These methods have been used to
great effect in the study of the asymptotic behaviour of spacetimes, as well as providing
an intuitive way of representing important features of spacetime structure, the familiar
Penrose spacetime diagrams. Though originally developed for the purpose of analytic
studies, the technique of compactification is potentially of great use for numerical work,
since it corresponds to mapping the infinite extent of a spacetime onto a finite region,
and thus the need for artificial boundaries is removed.

Characteristic methods, however, do bring with them their own set of difficulties,

most noticeably in the form of caustics of the null surface generators. Since the coor-

4. Numerical techniques for the solution of Einstein’s equations 75

Figure 4.1: An example of coordinate compactification, the Schwarzschild spacetime in

Kruskal coordinates. See Hawking and Ellis (1972) for a description.

dinate system is constructed from null geodesics, coordinate singularities result when
the geodesics are focussed. This will happen in the presence of an arbitrarily small lens
if it is located far enough from the radiation source. Thus, caustics are a generic fea-
ture of spacetimes possessing large-scale inhomogeneities (see the discussion in Winicour
(1999)).

The problem is particularly acute in relativity, where the singularities occur in the
coordinate systems themselves, rather than simply physical fields on a fixed backround
as in other theories. A great deal of effort has been expended on attempting to
integrate the equations past such points (see Stewart and Friedrich (1982), Friedrich
and Stewart (1983)), though only point caustics in axially symmetric spacetimes have
been successfully handled in this way numerically (Gémez et al. (1994)) at great
computational expense. It is typical, then, to restrict characteristic evolutions to

settings in which caustics can be avoided.

Cauchy-characteristic matching (CCM) is an attempt to take advantage of the
strengths of both the 3+1 and characteristic evolution schemes. The spacetime is par-
titioned into regions consisting of an interior which is described using a 34-1 foliation,
and an exterior described by a compactified null hypersurface foliation extending to null
infinity. The boundary between the two is a (usually timelike) surface across which in-
formation is passed at each evolution step. Thus the characteristic region can be seen to
provide accurate outer boundary conditions for the 3+1 region, which in turn provides

inner boundary conditions for the characteristic region. Importantly from a motiva-

4. Numerical techniques for the solution of Einstein’s equations 76

Cauchy region Characteristic Region

r=0 >

Figure 4.2: Basic setup for the CCM problem. The interior region (from r = 0 to some
boundary r = C) is described by a 3+1 evolution, while the exterior, extending to ¥+,

is evolved using characteristic methods.

tional standpoint, it was shown by Bishop et al. (1996) that the ratio of computation
required by CCM compared to waveform extraction goes to zero as the target error in
the calculation is decreased.

A great deal of work has gone into proving the viability of such methods since their
introduction by Bishop (1992). Early studies passing information across an interface for
a wave equation in curved space was achieved by Clarke and d’Inverno (1994). A rela-
tivistic code which passed information across a boundary in the cylindrical symmetric
vacuum was investigated in Clarke et al. (1995) and Dubal et al. (1995), using an inter-
face ‘region’ for which characteristic grid values were interpolated onto the Cauchy grid
in order to obtain appropriate values for derivatives of metric variables on the Cauchy
boundary. Recently, the cylindrical CCM problem has been revisited at Southampton
in a study of the dynamics of time dependent cosmic strings (Sjodin et al. (2000)).

Cauchy-characteristic matching has also been the subject of detailed study by the
Pittsburgh Relativity Group. Initial feasability tests evolved an Einstein-Klein-Gordon
system in spherical symmetry (Gémez et al. (1996)). This work was later used to
determine whether a characteristic code might form a useful inner boundary condition
for black hole spacetimes as a potential replacement for apparent horizon excision
Gémez et al. (1997). The first attempts at matching in full 3D involved a scalar wave
evolution on flat spacetime Bishop et al. (1996). In this case, the interior Cauchy

region used Cartesion coordinates, and interpolations were performed at the interface

4. Numerical techniques for the solution of Einstein’s equations 77

to transform grid variables to the exterior radial coordinates and back. In each of these
tests it was found that a characteristic exterior improved the performance over the
corresponding waveform extraction to a given accuracy. A more comprehensive review
of progress in the development of characteristic methods in numerical relativity, and in

particular CCM methods, can be found in Winicour (1998).

The current work at Southampton focuses on constructing a Cauchy characteristic
matching code in axial symmetry. A theoretical basis for studying the problem in axial
symmetry was constructed by d’Inverno and Vickers (1996) and d’Inverno and Vickers
(1997). This thesis expands on these foundations by providing a practical matching
between a Bondi-type characteristic evolution on the exterior, and an interior Cauchy
evolution based on the axisymmetric code of Stark and Piran (1987). Importantly,
the Southampton approach matches numerical gridpoints in the interior to points on
the exterior at the interface so that the need to interpolate data to points not on one
or the other grid is minimised. Both the metric variables and their derivatives are
passed between grids as required by means of the standard coordinate transformations
along the t = constant slices of the r = constant world tube representing the interface.
A consistent evolution scheme has been developed so that the boundary information
required on either the interior or exterior grids of a timeslice can always be obtained
from data known on the other grid.

The following sections give a general overview of the standard descriptions of space-
time foliation for both the Cauchy and characteristic regions. The treatment of the
Cauchy region is the standard ADM evolution of data given by the metric and extrin-
sic curvature. The characteristic formulation follows that originally outlined by Bondi
and Sachs. The description deviates from the original treatment in the asympototic
behaviour of the metric functions. Fixing coordinates on a sphere of finite radius neces-
sitates an important generalisation in the radial fall-off near null infinity. Specific details

of the Southampton implementations of the codes are discussed in the next chapter.

4.1 Cauchy methods: Spacetime as a 3D foliation

The most commonly applied approach to solving the gravitational field equations numer-
ically is to formulate them as an initial value problem with data specified on spacelike
hypersurfaces. The first such formulation was carried out by Arnowitt et al. (1962), who

developed a natural foliation of the spacetime into slices representing the 3-dimensional

4. Numerical techniques for the solution of Finstein’s equations 78

Figure 4.3: A pair of nearby spacelike slices separated by a proper time dr = adt.
The grid point z is transported from ¥; to ;.4 along the vector v whereas Eulerian

observers follow n. On X;,4, the displacement between the two are given by the vector

Bidt.

space at one instant in time, and specified propagation equations which, given initial data
at one such instant, allow one to determine the corresponding data at any later time.
This technique has been used in a number of studies, both numerical as well as analyti-
cal, where the formulation of Einstein’s equations as an initial value (Cauchy) problem
is required. The following section outlines the basic quantities defined by the formalism
and establishes notation to be used in later sections. A comprehensive description of the

formalism can be found in York (1979).

Initial data

The foliation is constructed as a family of spacelike hypersurfaces with normal vector
field n® satisfying n®n, = 1 and whose integral curves are parametrised by a variable ¢.
A vector v® represents the difference between a coordinate point on a single slice and the
corresponding point on an adjacent slice. The 4-vector v® can be decomposed in terms

of the normal as

v = an® + g, (4.1)

4. Numerical techniques for the solution of Einstein’s equations 79

where a is a scalar (called the lapse) and 8 is a 3-vector (the shift) chosen to be orthog-

onal to the surface normal,
Ben, = 0. (4.2)

If Eulerian observers are regarded as moving along integral curves defined by n®, then

the shift can be thought of as the velocity of the coordinate system relative to these

observers.

A metric is induced on a slice, ¥; by projecting the 4-metric of the spacetime onto

the slice defined by the normal, via the operator
B = P% = §% + n%ny, (4.3)
so that
hab = PPy’ ged = gab + Mamip- (4.4)

We are free to choose a set of local coordinates z* = (¢,z*) which is adapted to the

foliation and v® such that the relevant quantities take the form
v® =(1,0,0,0), B*=(0,8,8%p8%), h® =458 h". (4.5)

In these coordinates, and defining h,, h"? = 69, the four dimensional line element takes

its canonical 3+1 form,
ds? = —a?dt? + hy, (dz¥ + BHdt)(dz” + B¥dt). (4.6)

The spatial 3-metric, h,, is sufficient to describe the intrinsic geometry of a given space-
like hypersurface. A complete description of the geometry, however, also requires a
specification of how these surfaces are embedded in the 4-dimensional spacetime. This

information is encoded in the eztrinsic curvature tensor defined by
1
Koy = _Eﬁnhab, (4.7)

where L,, is the Lie derivative with respect to n®. The symmetric tensor K,y is conjugate
to hgp and can be thought of as ‘velocity’ of the 3-metric on a slice. Note also that, like

hap, the extrinsic curvature resides entirely within a given slice in the sense that
Kanb =0. (4.8)

That is, it does not depend on any information which is not on the t = constant slice.

4. Numerical techniques for the solution of Einstein’s equations 80

Field equations

Einstein’s equations express a relationship between the curvature of the spacetime to the
distribution of matter. In rewriting the equations in a 3+1 form, it is required, therefore,
to have an expression for the curvature in terms of the data known on a slice.

The curvature tensor on a given 3-dimensional slice is defined by the commutator of

the covariant derivative acting on a spacelike vector in the slice,
@ R%peak® = OV OV kS — OV BV 4k (4.9)

where ®V is the covariant derivative in terms of the connection formed from the 3-metric
on the slice, hgp.
An expansion of the expressions for the second covariant derivative of k% (see, for

example, Hawking and Ellis (1973)), shows that ® Rg;.q is related to the curvature of

the 4-space via Gauss’ equation,
@ R%cq = Repgn P?ePT,PI Py + K Kpy — K°1Kpe. (4.10)

And the covariant derivatives of the extrinsic curvature are related to the 4-curvature

via Codazzi’s equation,
R%ean® = OV, K%, — OV K%, (4.11)

The stress-energy tensor is decomposed in the 3+1 formalism into the quantities

p = Typnon?, (4.12)
§% = =P T%n’, (4.13)
Sap = Pcanchda (4'14)

representing respectively the energy density, 3-momentum, and stress tensor of the mat-
ter fields as seen by the Eulerian observers.
The Einstein equations can be written in terms of their projections onto the spacelike

slice and its normal as follows,

Gapnin® = —;—(“)R + (trK)? — K, K®) = 2np, (4.15)
G P%nb = OV, (KY — k%K) = 875, (4.16)
GegP%aP% = Sab. (4.17)

4. Numerical techniques for the solution of Einstein’s equations 81

where the Gauss-Codazzi equations have been used to simplify (4.15) and (4.16). Equa-
tion (4.17) can be solved for the time derivative of the extrinsic curvature to give
LoKa = o(Ray ~ 2KacKy + KaptrK) — 87(Sup — 5haatrS)
(4.18)
— dnphgy — BV ga.

With this expression and the definition of the extrinsic curvature via Eq. (4.7), time
derivatives of both K, and hy, are completely specified. In this sense, {hgp, Kqp} can
be thought of as appropriate data to characterise the entire geometry of the spacetime;
if they are known on a single slice then Egs. (4.17) can be used to evolve them to a later
time.

Equations 4.18 represent four of the ten Einstein equations. Equations (4.15) and
(4.16), remain unused and would seem to overdetermine the system. Note that neither
contain time derivatives, and thus depend only on data on a given slice. They are thus
called the constraint equations and must be satisfied by any set data set {hqp, Kop} that
is consistent with the Einstein equations. In fact, the Bianchi identities can be used to
show that if the constraint equations are satisfied on a single slice, then they will be
satisfied at any later time Wald (1984).

The constraint equations are not explicitly required by any evolution scheme, but
can be useful in numerical implementations, as they are sometimes easier to solve for a
given piece of data than a corresponding evolution equation, or can be used to simplify
the form of the evolution equations. Further, they can be used to provide a useful
check of the accuracy of a numerical solution by comparing the data determined from
the constraints with the evolved data. Evolution schemes which enforce the constraint
equations at each timestep are known as constrained evolutions. As they usually take
the form of elliptic equations, however, the constraint equations can be computationally
expensive to solve, and thus the accuracy gained from a fully constrained evolution tends
not to compensate for the increased time required. Further, procedures for enforcing the
constraint equations are not well developed.

As a final note, it should be realised that the ADM system of equations for the metric
and extrinsic curvature are by no means the only possible evolution system that can be
used. In fact, the stability properties of the ADM equations remain obscure because
of their complicated form. A great deal of effort has gone into the reformulation of the
Einstein equations as a hyperbolic system to which well-known stability theorems can be
applied (Reula (1998), Friedrich and Rendall (2000)). This reformulation usually comes

at the expense of introducing additional metric variables as data, with the reward that

4. Numerical techniques for the solution of Einstein’s equations 82

the resulting increased number of equations are of a simpler form and can be more easily
converted to stable finite difference equations. In recent years a number of promising
numerical results have emerged using such symmetric hyperbolic systems, suggesting
that the comparitively ‘brute-force’ calculations of ADM may eventually have to yield to

more subtle mathematics for the stable solution of some problems (for instance Friedrich

(1981)).

4.2 Characteristic methods: The Bondi-Sachs coordinate system

The previous section described a method of slicing a 4-dimensional spacetime into a set
of spacelike 3-surfaces, providing an intuitive picture of spacetime taken as a series of
snapshots, each describing an instant of time as seen by some observer. Although it
seems natural to divide the spacetime into space and time in this way, for many appli-
cations alternative formulations have proven quite useful in interpreting the equations
and the behaviour of the physical variables. In particular, early studies of the nature of
gravitational radiation focussed heavily on the analogies between the gravitational field
equations and the well studied wave equations of electrodynamics (Pirani (1965)). Asin
electromagnetic theory, the existence of gravitational wavefronts is related to the ability
to construct non-analalytic solutions of the field equations. Such discontinuities occur
along characteristic surfaces, which can be shown to be the null surfaces in a general
spacetime.

The characteristic formulation of the Einstein field equations became the subject of
active study in the early 60s with the seminal works of Bondi et al. (1962) and Sachs
(1962). They fixed an appropriate set of coordinates along the null geodesics of the
spacetime. This relationship between the coordinates and the geometry simplified both
the field equations as well as the interpretation of the gravitational degrees of freedom
by means of exact asymptotic analysis.

Although the Bondi system has been treated in numerous places in the literature, a
clear statement of the restrictions to the metric and coordinates involved is crucial for
the specification of the interface with the 341 interior required by CCM. The following
section unifies material which can be found elsewhere, but establishes and emphasises
the points which will be relevant to the development of the Southampton CCM code,

in particular with regards to the asymptotic falloff of the metric functions.

The Bondi-Sachs coordinate system is constructed by first supposing that there exists

4. Numerical techniques for the solution of Einstein’s equations 83

a function u(z) defined on the spacetime whose level surfaces are null,
9®0,ubyu = 0. (4.19)

This involves no loss of generality, since it can be shown that if the field equations are
to admit characteristic surfaces (ie. if wave-like solutions exist) then these surfaces are
null and conversely that null surfaces are characteristic Pirani (1965).

Define k% to be the normal to the u = constant level surfaces. Then the k% are also

null
k® = g®0u = kk®=0, KkPVyk® =0. (4.20)

The vector field k* determines a congruence of null geodesics which is both normal to
the surfaces u = constant but which also lies within these very surfaces.

Through any point, the family of ingoing and outgoing null geodesics each have
spherical topology, and as such, can be labelled using polar-type coordinates 6 and ¢.
Assume that this has been done on some appropriate S? within the spacetime. If they

are chosen so that
k8,8 =0, and k®9,¢ =0 (4.21)

then 8 and ¢ are constant along each null ray.

Finally, points along the geodesics are parametrised by a scalar function r which
can be written as a function of u, 8 and ¢ whose only restriction is that Jacobian be
non-zero. Among other things, this demands that the expansion of the congruence be

non-zero
a 4

excluding plane or cylindrical waves from the coordinate construction.
Since r is the only coordinate which varies along the null geodesics, tangent vectors

to the null congruence have the form
[=(0,1,0,0) = 6%, (4.23)

in terms of the coordinates (z°,z!,22,2%) = (u,7,0,¢). These are parallel to the k®

defining the congruence so that

k¢ = wl® = wd* (4.24)

4. Numerical techniques for the solution of Einstein’s equations 84

for some factor w(u,8,$). These properties result in certain coordinate conditions on

the metric. Namely, by construction we have
g% =1° = wé*y. (4.25)
Thus a metric based on the given coordinates satisfies
g% = g% = g% =g, (4.26)

The final coordinate condition which can be applied is the choice of parametrisation of
r, corresponding to a choice of w. Bondi chose r to be the luminosity distance, defined

by fixing the determinant of the g4p

det(gan) = | 7 I | = rtsin?o. (4.27)

geo 9o
The result of applying this condition is that 2-spheres of constant u and r have a proper
area 4mr2,
The four conditions (4.26) and (4.27) fix the metric as far as it is possible using the

coordinates. The result is a metric which (following Bondi) we write in the form
ds? = —(Ve? /r)du? — 2¢*P dudr + r*hap(dz? — UAdu)(dz® — UBdu), (4.28)

where

e cosh 26 sinh 24
hap = . (4.29)
sinh2d €727 cosh 26
The six metric functions {v,4,8,U%,U3,V} correspond to the six degrees of freedom
remaining in the metric once the coordinate conditions have been applied, and have
been chosen in such a way as to provide ready geometric and physical interpretations.
Specifically, the variables § and v define the conformal geometry of the spacelike surfaces
of constant radius. They encode the two radiative degrees of freedom, as will be seen

from the discussion of the Bondi news functions in Section 4.2, below (d’Inverno and

Stachel (1978). An explicit calculation of Eq. (4.22) yields
— 28
p=e"/r (4.30)

lending 8 an interpretation in terms of the expansion of the null congruence. The field V
is the analog of the Newtonian potential and, as will be seen from its asymptotic expan-

sion, encodes the mass aspect of the system. In fact, for the Schwarzschild spacetime,

4. Numerical techniques for the solution of Finstein’s equations 85

Y

7

r=0

30
Y

%
9..
A\

r=const

4

ray’: u=const,
0 =const
¢ =const

Figure 4.4: The Bondi-Sachs coordinate system fixes the coordinates to null rays of the
spacetime, parametrised by the luminosity parameter r. The metric functions V and U4
act analogously to the lapse and shift in transporting coordinates from one r = constant

slice to another.

V = M, the constant parameter describing the mass of the black hole. A geometric

interpretation arises from a consideration of the line element on an r = constant surface,
ds? = —(Ve? /r)du® + r’hep(dz? — UAdu)(dz? ~ UBdu). (4.31)

A comparison with the 3+1 line element, Eq. (4.6), suggests that Ve?B [r acts as a lapse
function, ~UA as a shift, and r2h4p as the metric on 2-surfaces of constant u which
foliate the r = constant world-tube.

The metric is specialised to axisymmetry by simply restricting the dependence of the

metric variables on the coordinates so that

06 _ 9y _0p _O0U _oW 9V _
8¢ 0¢ 09 0¢p 0¢ ”a¢>_0’ (4-32)

and the further restriction v = ¢ can be used to ensure that the ¢ is a hypersurface

orthogonal Killing vector.

4. Numerical techniques for the solution of Einstein’s equations 86

It is appropriate to make one more important point regarding the choice of the 6
and ¢ coordinates. In the original treatment of Bondi, these coordinates are fixed at
#* where u is known to be a non-spacelike coordinate. For the purposes of matching
the characteristic coordinates to an interior Cauchy slicing, it will be convenient to
choose € and ¢ on a closed surface at finite r, representing the interface. For such a
situation, care must be taken to ensure that as the null geodesics map these coordinates
to #*, u remains non-spacelike there. The analogy used by Bondi is that of a spotlight
which projects a beam onto some surface distant enough that successive points have
spacelike rather than timelike separation. This can be checked by verifying that the ggo
component of the metric remains positive, and might be expected to cause particular
difficulties for coordinate systems co-rotating with some interior matter source, or an
interface within the Killing horizon of a Kerr metric (ie. subjected to frame dragging).
There are indications, however, that such a spacelike shift at #* may not pose great

difficulties to numerical evolutions (Bishop et al. (1997), Brady et al. (1998)).

Field equations

Some very useful features of the Bondi-Sachs formulation become apparent when the
vacuum field equations are written out in terms of the metric variables defined in the
previous section. The set of ten equations can be grouped into the following classification,

originally due to Bondi:
i. main equations:

(a) hypersurface equations (4), Ryr = Rra = h*BRap =0

(b) dynamical equations (2), Rap — haph®® Rcp/2
ii. trivial equation (1), Ryr =0
iii. supplementary conditions (3), Ryy = Rya =0

The reasons for classifying the equations in this way is determined by the contracted
Bianchi identities which can be used to show that the trivial equation is satisfied au-
tomatically as a consequence of the main equations. The supplementary conditions
are also satisfied over the entire spacetime provided that they are satisfied on a single
7 = constant slice.

The splitting of the main equations into two subgroups is determined by the fact

that the ‘hypersurface equations’ contain no derivatives of the metric components with

4. Numerical techniques for the solution of Einstein’s equations 87

respect to the retarded time u. This allows them to be evaluated on a single u =
constant hypersurface. The remaining pair, however, contain time derivatives of the
spatial metric, d,h4p and thus depend on information off of the slice.

The hypersurface equations take on the following form when written out schemati-

cally. First of all, from the R,,, R4, R;4 and g“BR 41 components respectively,

8.8 = Fy(v,5), (4.33a)
8, P = Fy(v, 6, B), (4.33b)
8:Q = F3(v,6, B), (4.33c)
8:.U = Fy(7,6, 8, P,Q), (4.33d)
8:W = Fy(v,5,8,P,Q), (4.33¢)
8,V = Fy(v,6,8,U,W) (4.33f)

where P and @ are intermediate variables defined by

P 4 o [€7 cosh(26) sinh(24) .U
=rle

=rle Ph pd UA (4.34)
Q sinh(26) e~%7 cosh(26) A%

The right-hand sides of equations (4.33a)—(4.33f) are functions which depend only on
their specified arguments and their spacelike (7,6, ¢) derivatives. This suggests that if
d and v are known on a single u = constant slice, then 8, U and W can be determined
by successive integrations of (4.33a), (4.33b), (4.33c), and the inversion of (4.34). Then
V can be determined on the slice by integrating the final hypersurface equation (4.33f).
That is, knowledge of § and « on a single slice allows one to determine all of the other
metric variables on that same slice.

The two evolution equations can be written in terms of auxillary variables

¢1 = 7 cosh(26)0,y d2 = 1040 (4.35)
in the form:

Or¢1 + fp2 = Fr(7, 6,6, U, W, V), (4.36a)

Ordo — fé1 = F3(7,6,8,U, W, V), (4.36b)

where f = 2sinh(26)0,v. This is coupled set of differential equations which, when
solved, yield the u derivatives of v and §. Once again, the right-hand sides of these
equations depend only on the metric functions and their spacelike derivatives. Thus, if

the metric functions have been determined over a given slice, then the time evolution of

4. Numerical techniques for the solution of Finstein’s equations 88

v and ¢ can be determined. This knowledge can be used to determine v and ¢ at some
nearby future time, at which point enough data exists that the process can be repeated

to determine the remaining metric variables on the slice.

The entire Bondi process involves a total of eight first-order integrations in r and
two in u, each of which introduces an integration ‘constant’. The constants for the u

integrations are fixed by initial data for § and . The remainder can be dealt with as

follows:

e Three (P, Qo, Vp) can be specified as initial conditions on an 7 = constant surface

and integrated forward in time using the supplementary conditions.

e Two (Up, W) can be set using an appropriate outgoing radiation condition at null

infinity.

e One (By) can be set to zero by virtue of coordinate transformations provided the

outgoing radiation condition is satisfied.

e Two (8,60, 0yv0) remain freely specifiable and, as discussed below, correspond to

the quadrupole modes of gravitational radiation.

The entire evolution of the system is determined by the specification (7, §) on an initial
u = constant slice once the integration constants (0,60, dy79) have been fixed. In par-
ticular, if the latter are specified on some finite r = constant 2-surface, they determine
§ and ~y on the entire surface all the way out to .#*, prompting Bondi to christen their
u-derivatives the news functions.

The presence of integration constants can be related to the form of the asymptotic
expansions of the metric variables and will be discussed in more detail in the next
section. For the moment, however, we note that the listed methods for reducing the
(Ug, W, Bo) to zero depend on a choice of coordinates at #*. For the purpose of
the CCM numerical code, this is not ideal, as it would be preferable to be able to fix
the coordinates at the interface with the Cauchy region. As a result, in practice the
restrictions on these variables will not be applied. Instead each of the functions of
integration will be set by extracting data from the Cauchy interior at the r = constant
interface. The supplementary conditions become redundant, but can be used as a check
on the accuracy of the integrations in much the same way as the constraint equations

are used in the 3+1 formulation.

4. Numerical techniques for the solution of Finstein’s equations 89

Asymptotic behaviour of the metric variables

An important feature of the original treatment of the Bondi metric was the careful
analysis of the asymptotic behaviour of the metric functions. By restricting consideration
to isolated sources, the metric was supposed to be asymptotically Minkowskian with
only outgoing radiation. Bondi showed that these conditions could be used to set strict
conditions on the falloff of each of the metric functions as r — .

For the moment, we will suppose only a very general falloff of each of the metric

functions, so that as r — oo on a single u = constant hypersurface, ¥, we have
6 — bg, Y —* Y0, U—=Uy, W - W,, ,3 - ,30 (4.37)

It can be shown (see Sachs (1962), Christodoulou and Klainerman (1993)) that a coor-

dinate transformation % exists such that § and - are reduced to zero,
So =190 =0, =1y =0. (4.38)

This is equivalent to transforming the metric of the asymptotic 52 to the standard metric

on a sphere,
hapdz?dz? = df? + sin® 0d¢?. (4.39)

A further coordinate transformation, x, can be applied to reduce the asymptotic be-

haviour of U and W to

while preserving the asymptotic form of § and 7. Significantly, the applied transforma-
tions involve only equations on the hypersurface. The asymptotic behaviour of § can

also be fixed through a coordinate transformation so that
Bo = 0. (4.41)

However the required coordinate transformation generally is u dependent. It corresponds
to a deformation of ¥ which can be viewed as a condition on the lapse, or a slicing
condition.

In expanding the metric functions asymptotically, Bondi et al. (1962) came across the
following disturbing behaviour: If a polynomial expansion was assumed asymptotically

for § and 7,

5 6 _
b b+ =+ 300, v m+ B+ B ror), (4.42)

4. Numerical techniques for the solution of Einstein’s equations 90

then the corresponding expansions of U, W, and V involved terms logarithmic in r.
They found, however, that they could remove these terms through the application of
an intuitively reasonable condition, corresponding roughly to a Sommerfeld radiation

condition. For general non-zero asymptotic ¢ and +, this can be formulated as

1
Wap = 5h*“Phphlp =0, (4.43)
where
0 . 0) ,’,.2 82
Mo = Jmbasl e = B gl @49

or using the more specific falloffs of Eq. (4.38), the more familiar form

Y
Jim 753 (r)

2
=0, lim 7'2;—(r5)

v r—o0 Or?

=0. (4.45)
=

(Bondi et al. (1962)). These conditions form a restriction on the coefficients 7y, and of
the d7 of the expansions (4.42) which are enough to remove logarithmic terms from the

asymptotic expansions of the other metric variables. The restrictions take the form
Yo = —2 tanh(250)7161, do = sinh(260) COSh(zéo)W%, (4.46)

d’'Inverno and Vickers (1997), which are reduced to zero for the Bondi asymptotic ex-
pansions, o = g = 0.
If these conditions hold, then it can be shown that the remaining metric variables

have polynomial expansions:

1, B2

B — fo+ - + 2 +0(r™%), (4.47a)
U U.
U — U+ 71 + T_g +0(r3), (4.47b)
%%
W o Wo+ 2+ 2 4 o3, (4.47¢)
T T
Vi \%
Vo Voor2 4+ Vor+ Vo + 71 + T—§ +0(r™3), (4.47d)

where the expansion coefficients are all functions of (u, 8, ¢). The transformation, x o,
to coordinates for which the leading coefficients of 7y, §, U and W are zero can be written

in terms of the expansion coeflicients as:

i = €27 cosh 26y (M> + sinh 24 (qu - &du) , (4.48a)
sin @ sin 6 sind
~ W
df = d — —du, (4.48b)

F=rlw, (4.48c)

4. Numerical techniques for the solution of Einstein’s equations 91

where

in
w = y/cosh 2§p€™° :20 (4.49)

The restriction, (4.41), of the asymptotic behaviour of 8 to a Bondi-type falloff for

which $y = 0 is determined from the gur component of the metric. Under the given

transformation,
5 ar di. di —e” %
—e~28 . gut _ b = . 4.50
¢ I 9 dze dod w (4.50)
Thus we require
1
Bo = -5 log w, (4.51)

to ensure that each of the metric coefficients can be reduced to their Bondi-type

asymptotics.

In summary, we have applied two restrictions on the asymptotic behaviour of the
metric functions. The first is that they have a polynomial falloff as 7 — oo without
logarithic terms. This is equivalent to the imposition of an ‘outgoing radiation condition’,
Eq. (4.43). The second restriction is that the spacetime should be sliced in such a way
that the reduction of §, v, U and W to their asymptotic Bondi form also reduces S.
This will enable us to more easily make the transformation to Bondi coordinates when
it becomes neccessary to extract the outgoing radiation and mass parameters.

It should be noted that the necessity of applying these conditions has in recent years
come into question. At the time of the original analysis, an appropriate definition of
aysmptotic flatness had not been formulated. Instead, the spacetime was required to
be asymptotically Minkowskian and the outgoing radiation condition considered a rea-
sonable requirement. In the intervening years as the understanding of the nature of
#* has crystalised (see, for instance, the discussion in Wald (1984), or the definitions
provided by Hawking and Ellis (1973) or Stewart (1990)), these conditions have been
found to be excessively restrictive. (In particular, it can be shown that when the condi-
tions for a metric to be conformally compactified are satisfied, then .#* is an incoming
null surface.) Thus there can be no influx of null or timelike fields across #* into the
spacetime, and the outgoing radiation condition becomes redundant. Without this re-
striction, the asymptotic falloff of the metric variables becomes more complicated, as
logarithmic terms are no longer prevented from appearing. Such spacetimes have been

recently studied by Winicour (1985) and Chrusciel et al. (1995). Note, however, since

4. Numerical techniques for the solution of Einstein’s equations 92

the numerical solution of the equation proceeds in an outward direction and does not
at any point make use of the asymptotic expansion of the metric variables or enforce
any particular asymptotic behaviour, the presence of log terms will not influence the

behaviour of evolution codes constructed from the Bondi equations.

The Southampton axisymmetric
CCM code

The method of Cauchy-characteristic matching is a particularly difficult one to imple-
ment and test numerically, for it essentially involves the test of three independent codes.
In order to have a reliable test of the interface, both the interior and exterior codes
should be known to be stable as independent codes using (exact or artificial) boundary
conditions. A successful test of the full CCM code would then require that when the
codes are connected across an interface, a similar level of stability and accuracy should
be obtained.

Axisymmetric Cauchy evolutions were first applied to the study of gravitational
collapse of stellar formations by Nakamura and Sato (1981). Their scheme tracked the
evolution of matter and the formation of a black hole, but was not accurate enough to
compute the emitted gravitational radiation. More sophisticated approaches were taken
by Evans (1986), for non-rotating matter configurations, and Abrahams et al. (1994)
for the case of rotating collisionless (dust) particles. Dynamic axisymmetric fields in
vacuum have been used in the study of the collapse of pure gravitational waves to form
a black hole Abrahams and Evans (1992), Abrahams and Evans (1993), as well and the
evolution of distorted, rotating and colliding black holes (Bernstein et al. (1994), Brandt
and Seidel (1995), Anninos et al. (1995)) as a precursor and complement to the study
of these problems in full 3D by the Grand Challenge Alliance. More recently, it has
been suggested that reliable and efficient axisymmetric codes can be implemented by a
reduction of a fully 3D code to a ‘plane’ with appropriate boundary conditions. The use
of Cartesian coordinates avoids many of the axis problems commonly associated with
numerical implementations of axisymmetric problems (Krivan et al. (1997), Alcubierre

et al. (1999)).

93

5. The Southampton azisymmetric CCM code 94

In the mid-1980s, the numerical evolution of matter fields in axisymmetry was
visited by Stark and Piran (1987). Their code was tested in both vacuum and matter
configurations, and was used to compute the gravitational radiation emitted from a
collapsing black hole based on a formalism developed in Bardeen and Piran (1983)
which took special care to construct ADM-type equations based which could be reliably
implemented in a stable manner. Further, their evolution variables were chosen for
their well-defined behaviour at both the inner (r=0) and outer boundaries, and at
the poles where axisymmetric codes have traditionally encountered difficulties. At
the outer boundary, the choice of variables allowed the two independent polarisation
amplitudes of emitted radiation to be easily extracted to good approximation. These
strengths suggested that a code based on the methods of Stark and Piran would form
a good basis for the Cauchy evolution module of an axisymmetric CCM code. The

details of the the implementation of the Cauchy region are described below in Section 5.1.

The application of characteristic methods in axisymmetry has been far less common.
In fact, because the characteristic field equations gain little in complexity in the transi-
tion from 2 to 3 dimensions, and because their numerical application was first studied
somewhat later than the corresponding ADM-type evolutions (and hence at a time when
computing power was less of a limiting factor), the tendency has been to move directly
to the development of 3D characteristic codes, skipping axisymmetry entirely. A number
of successes have been reported in this arena, especially in the work at the Pittsburgh
Relativity Group, most notably in the stable evolution of a distorted black hole to more
than 10000M (Gémez et al. (1998), Gémez (1998)). Their codes make use of the ‘eth’
formalism to construct coordinates and derivative operators free of the singularities nor-
mally associated with spherical coordinate systems. Evolution is carried out using a
second order scheme based on the surface area of parallelograms in double-null coordi-
nates (Gémez et al. (1992)). More recently, this model has been used in axisymmetry to
accurately study the geometry of the event horizons of colliding black holes (Husa and
Winicour (1999)).

For the Southampton matching code, it was decided that an independent code
would be developed based on the Bondi-Sachs formalism described in the previous
section. This would allow a degree of customisation of the coordinates and variables at
the interface so as to provide a more convenient matching. In particular, by matching
angular coordinates across the interface, the amount of interpolation between variables

on the interior and exterior grids could be minimised. The cost entailed through the use

5. The Southampton azisymmetric CCM code 95

of polar coordinates are potential problems with behaviour of metric functions atthe
origin. These are handled via appropriate expansions of the metric functions in these

regions, as described below. Details of the equations used are given in Section 5.2.

In numerically passing data across the interface from Cauchy to characteristic regions,
it is important to keep track of the relationship between the locations of the two regions’
respective computational grid points. Points on the numerical Cauchy grid generally
do not lie on points of the characteristic grid, however by fixing the coordinates on
the exterior region relative to the interior, these points can be chosen to line up on a
single ¢ = constant,r = constant surface (a line in axisymmetry where invariance in
the ¢ direction is imposed). The metric data can then be carried across the interface
via the standard coordinate transformations between regions, and are placed exactly
on points of the opposing grid. This removes a common source of error, namely the
interpolation of unevenly spaced data onto a numerical grid. The Southampton approach
transforms both metric functions and their derivatives, where necessary, along a single
line to provide appropriate boundary data for the opposing region. Modules for both
extracting (Cauchy — characteristic) and injecting (Cauchy <« characteristic) data
have been developed. Information is passed in both directions as required, resulting
in true ‘matching’ of data between the regions. The requisite equations describing the
transformations are outlined in Section 5.3.

The Southampton axisymmetric CCM project is a collaborative effort carried out
by Chris Clarke, Mark Dubal, Ray d’Inverno, James Vickers, and the author. The
implementation of the Cauchy code as an independent entity was largely the work of
Mark Dubal, and modified by the author for the purposes of attaching a characteristic
interface. Chris Clarke began an implementation of the interface which was largely
rewritten and extended by the author. The implementation of the characteristic code,
as well as the design of the complete system of interacting codes comprises the main

body of the author’s original work which is described by this thesis.

5.1 The Stark-Piran axisymmetric 3+1 scheme

The formulation of the Einstein equations used by Stark and Piran (1987) follows the
standard ADM treatment presented in the previous chapter with specific choices of shift

and slicing conditions used to simplify the evolution system. In their notation, the line

5. The Southampton azrisymmetric CCM code 96

element is written
ds? = ~(a® — NoN°)dt? — 2N,dz®dt + hopdz®dz?, (5.1)

A local coordinate system, (z%) = (t,z%) = (¢,,6, ¢), which is adapted to the foliation

is introduced so that
v* = an® 4+ N® = (1,0,0,0), N®=(0,N",N N?%), ho =4§°,6°4h°. (5.2)

are the coordinate transport, shift, and spatial 3-metric (introduced in Section 4.1).
Coordinate conditions are used to simplify the form of the metric tensor and Einstein
equations. In particular, 8 and ¢ are chosen to represent spherical polar coordinates so

that the off-diagonal components h;¢ and h,4 vanish, and the spatial metric can be

written in the form
hogdz®dz® = A%dr? + r?(B~2d6? + B?sin? 0(d¢ + £sin 6)?). (5.3)
The quantity B is related to an auxiliary variable 7 via the definition
B? =1+ 7sin? 6, (5.4)

where 7 and £ are the two independent polarisation amplitudes, hy and hy respectively,

of gravitational waves in the transverse traceless gauge,
t
hy :=nsin?6, hy = —sin20/ aA™lEg, (5.5)
0

for large values of the radial coordinate.
The parametrisation of the radial gauge requires some consideration. Bardeen and
Piran (1983) suggest that for the system in question, some advantage can be gained if

the r coordinate is fixed to satisfy the condition that the determinant of
det hog = r*sin? 9, (5.6)

ie. that surface elements of constant r have area r?sinfdfd¢. In particular, they
find that this radial gauge leads to a parabolic equation for the shift component
N? in contrast to the elliptic equation associated with the more commonly used
isothermal gauge (a generalisation of isotropic coordinates to non-spherically symmetric

spacetimes).

5. The Southampton azisymmetric CCM code 97

With these coordinate choices in place, the metric data which are evolved are the

following:

a, lapse)

(

B =N"/r, G=N%sing, N® (shift)

A (the radial metric component \/h..)
(

n, £, wave-modes).

Extrinsic curvature components are projected onto a basis of orthonormal vectors,
e =[471,0,0], e5=[0,B/r,—¢Bsinf/r], €§ =10,0,1/(Brsind)], (5.7)

so that the independent components of the extrinsic curvature in axially symmetry can

be represented by the set

K, = K11, Ky = Kqa, K3 = Kis,

: (5.8)
Ky = 5(Kss — Ka2)/sin?0, K, = Kazs/sin’9,

where the form of K1 and K are chosen so that they represent the even and odd parity

modes (in the linearised case) and are conjugate to n and £ respectively.

Gauge conditions

An unconventional slicing condition is used in order to improve the behaviour of the
metric variables at the interior (r = 0) and exterior boundaries, as well as simplify the
integration of the field equations. Bardeen and Piran (1983) studied the condition of

polar slicing, defined by
K=K, (5.9)

extensively. In regards to the variables defined above, they find it has a number of
advantages over the more commonly applied mazimal slicing for which the trace of the

extrinsic curvature is zero,
K =0. (5.10)

For the given system, polar slicing involves a parabolic equation for the lapse which is
much less expensive to solve numerically than the corresponding elliptical equation in
maximal slicing. Polar slicing also exhibits strong singularity avoiding properties, and

when used in combination with the radial gauge results in a simple outer boundary

5. The Southampton azisymmetric CCM code 98

C(r)
lapse
——
parabolic
-
0 r /

Figure 5.1: The function C(r) = (1 — (r/r0)?)%/? is used to implement a ‘mixed’ slicing
condition, which is maximal at r = 0 and polar for r > ry. The integration of the lapse
over the Cauchy grid is carried out in two parts corresponding to an outer parabolic

region and inner elliptic region where C(r) is non-zero.

condition on the lapse (see below). At the origin (where maximal slicing has a perfectly
well-defined lapse) the lapse is irregular for polar slicing.

In order to take advantage of the benefits of both types of slicing, Bardeen and
Piran (1983) suggest that a mized slicing condition be used. The trace of the extrinsic

curvature is set as follows:
K=(1-C(r)K,, (5.11)

where C(r) = 1 at the origin and decreases to zero before reaching the outer boundary.
Significantly, the equation for the lapse is inward parabolic on outer region where the
spacetime is polar sliced, and switches to an elliptic equation as C(r) becomes non-zero
(Bardeen and Piran (1983)). The lapse is thus solved inwards from the outer boundary,
and its value at the edge of the elliptic region is used as a boundary condition for an
elliptic solver acting over the inner maximally sliced region around the origin. The

integration is represented schematically in Figure 5.1.

5. The Southampton azisymmetric CCM code 99

Integration procedure

A combination of evolution equations, constraints, and gauge conditions are used to
determine the data on a new timeslice given that on the old. A number of the metric
variables are solved as radial differential equations within a given slice, and as such can
only be solved after the data on which they depend exist on that slice. Thus, the order
in which the integrations are carried out is of particular importance and will also be
significant at the characteristic matching interface where the order of operations will
determine which data are available at the inner boundary of the characteristic region
and at what stages data is required for the Cauchy evolution.

The order in which the Cauchy integration is carried out is summarised as follows.
The particular form of the equations which are used is given explicitly in Stark and

Piran (1987).

e The radiation modes 1 and £ are evolved to the next timeslice using a pair of

evolution equations of the form

om = — ((1 - 22)(8:G + 2NK,) + 2zG)n — 8,G — 2NK
—rB70,n+ G(1 — 22)8,n, (5.12)
8:(0-8) = 8:((1 = °)G) = 8:(rB"))ér — - (2NK3Ar ™' B™Y)
— 0;(2NK«B™?) = rf78,(8:) + G(1 — £°)8:(8,£). (5.13)

Note that rather than £ itself, the evolution equation actually determines J,€.
In fact, the integration scheme can be carried out using only the latter, though
analysis of the emitted radiation will require a calculation of £ by a subsequent
radial integration. The extrinsic curvature variables are also determined straight-

forwardly using the evolution equations,

8,K1 =2N(1 — 2°)(K? + K?) — 2AB(1 ~ 2°)K8,8” — A™'6,(A7'6,N)
— A7 1r728,((1 — z2)NB29, A) — (1/2)NA~2(B~*(8,7)?
+ BY3m)(1 - z%)? +2Nr~1A33, A+ NKK,

- rB 8, K1 + G(1 — 2%)3: K1, (5.14a)

5. The Southampton azisymmetric CCM code 100

8Kz =(-2G + NK + N((-;-C’ + 1)K + (1 — 22)K4) Ka

+2NK3K, (1 — %) + Br~19,(A7'8,N)

+ r(AB)“&,G((%C + 1)K, + (1 -2z?)K,) — BA™%r29,(NA)

+ %((1 - 228, (A"IN8) — 4cNA™'0.n)B~r~! — 170, K,

+ G(1 — 22)8, K>, (5.14b)
8,K3 =(~2G + NK + N(=K; — %CKl + Ko (1 - 22)Ks

—2NK3 Ky (1 — 2?) — r(AB)"'0,GKx (1 — z?)

- ((1 = 2*)0;(NB*A71(8,¢)) — 4zcNB*A™'(8,£))/(2Br)

- 1870, K3+ G(1 — %8, K3, (5.14c)
0Ky =(-22G + NK)K, — N2(1 — 22)K2 + K2 + K?) — r(AB)™'9,GK;

— 0,(r’NA~18,m)/ (2AB?) + %B%-?(auzv + NA-16,,4)

+SNA(1—2)(BH0m)? + BH6:8)%) ~ 1B 8, K,y

+G(1 — 228, K, (5.14d)
O Ky =(-22G + NK +2NK_(1 — z%)) K

- %A‘l(Br)‘Qar(r2NB4A'1(8r§)) +18,GKs/(AB)

— B0, Ky + G(1 — 2%)0, K. (5.14e)

e The metric variable A is determined from the Hamiltonian constraint which for
the radial gauge is an outward parabolic equation in r, and as such requires no

outer boundary condition:
9 A= %AQT'IBI((I —22)B%0, A)+ A(S1 — 1)+ AN (Sp + 1) (5.15)
where

3
Sy =r’((K2 + K2)(1 - 2%)% + (K3 + K3)(1 — %) + Zcsz +CKK,) (5.16a)
1
S, =Zr2(1 - z92(B~4(8,n)? + B*(8:¢)?) (5.16b)
The equation can be solved on the new slice using only the data which has been

calculated to this point.

e The shift components 87 and G and the lapse, N, form a set of coupled equations
on a slice which are integrated iteratively. The equations for G and N are inward

parabolic in the polar sliced region, while 87 is determined algebraically once G and

5. The Southampton azisymmetric CCM code 101

N are known. At this point, initial data for the inward phase of the integration
integration of N is required at the interface. The equations for G and S" are
determined from the shift conditions:
1
8,.G =§r‘1(AB)28u((1 —z2)@) + C8,(NK,) — 4NKy(AB) ™1, (5.17a)

1
F =58:((1 -)G) + %Ncm, (5.17b)

while the lapse is given by

CA™'6,(A710,N) — 247 %19, N + CA~'r20,((1 — z2) AB%3,N)
+(1 - C)r729,((1 — £2)B?9,N) = § + AN, (5.18)

where

S =rd,CB K +2(1 — C)AB(1 — 2%)8,8" K>, (5.19a)
A=(1 = C)(2(1 = A7) = 5r20,2((1 — 2*)P)
+ TATHBTHO) + BAO.LD(1 - 2P) + (14 C)(KE + K2)(1 - 22
+(3C = 1)(K2 + K2)(1 - %) + C(1 - %cm +C)K2, (5.19b)

and the function C controls the slicing condition, as described in Section 5.1. We

follow Stark and Piran and choose it to be of the form
C=(1-(r/r)*)" (5.20)
with rg a constant.

e The shift component N? is not required for the Stark-Piran integration procedure,

however it can be found by performing a radial integration of the shift equation

O,N® = —2NK3Ar~'B~! —¢(1 - 22)8,G. (5.21)

Note that this procedure differs somewhat from that presented in Stark and Piran
(1987) for the same system of equations. An examination of the equations determining
the lapse N and two shift components 5™ and G shows they are in fact coupled on a given
t = constant slice. As a result, the advantages of using an inward parabolic equation
for N in the polar-sliced region is offset by the fact that an iterative procedure with an
initial guess for 8™ will be required even in the parabolic region. In fact, this coupling
between S7 and N is extended even to the determination of N at the interface as will

be seen in Section 5.4.

5. The Southampton azisymmetric CCM code 102

Once the integrations are completed and the data is determined on a slice, a boundary
condition is used to determine the radial derivatives of the metric variables at the outer

edge of the grid.

Boundary conditions

Boundary conditions for the axially symmetric 3+1 system are discussed in detail in
Bardeen and Piran (1983). There are three boundaries to be considered: the origin, the
polar axis, and the outer radial boundary.

Regularity conditions are used to determine appropriate expansions for the metric
variables in the neighbourhood of the origin and the polar axis. In fact, on the axis,
the condition that the appropriate quantities vanish can be enforced automatically by
choosing as variables functions weighted with appropriate exponents of sin .

For the standard Cauchy evolutions carried out by Stark and Piran, an outgoing
wave condition was used at the outer boundary. For polar-sliced hypersurfaces, Bardeen

and Piran (1983) show that as r — oo,
NA=14+0(r"2%), (5.22)

which is the analogue of the Robin boundary condition. This condition is accurate to
order 72 (compared to the 7~! accuracy for the corresponding Dirichlet condition) and
has the additional benefit of being simple to apply once A has been determined.

Of the other metric variables, A and G do not require an outer boundary condition,
as they are integrated radially outwards. Outer boundary conditions for the wave modes
(n,€) and their corresponding momenta (K, Kx) are set to be that of purely outgoing
spherical radial waves for the Cauchy code on its own. Similarly, the remaining extrinsic
curvature variables (K, K2, K3) vanish to order r—% (Stark and Piran (1987)) and so
are set to zero.

Note that these approximations are not required when the Cauchy code is interfaced
with a characteristic code. Rather, waveforms passing outwards at the boundary will
be transferred to the characteristic code for a full integration to £+, whereas quantities
requiring outer boundary values (notably N) are provided these by the corresponding
characteristic data passed inwards. Details of how this is accomplished are given in

Section 5.3.

5. The Southampton azisymmetric CCM code 103

5.2 A Bondi-Sachs characteristic scheme

The implementation of the characteristic scheme in the Southampton code is somewhat
simpler to describe due to the form of the Bondi equations. As described in the previous
chapter, in the characteristic coordinate system the Bondi variables form a hierarchical
system. On each slice, the data vy and § as well as appropriate data at the interface
are enough to determine the metric variables 8,U, W, and V on a single u = constant
slice, as well as the u-derivatives of v and § which can be used to evolve the initial data
forward.

The coordinates used in the characteristic region are those of Section 4.2 with one

notable difference. The radial coordinate r is replaced by
y=1/r, (5.23)

so that null infinity is mapped to the surface y = 0 and the coordinate is well defined over
the numerical grid provided that the inner boundary is located at some finite non-zero

radius. For the convenience of matching with the Cauchy region, the function
z =cosf (5.24)

replaces the 6 coordinate in the equations that follow.
With these coordinate choices, the Bondi field equations take the following explicit

form:

8,8 =%((ay7)2 cosh? 25 + (8,6)2)y, (5.250)
9y P =(—4cosh?26(8,7)z/V1~ 22 + (2 cosh? 26(0;,7)

— 4cosh? 26(8;7)(8y) ~ 4(8:8)]y — 2(0zyB)

+ 8sinh 26 cosh 28(9,:6)(8,7) — 4(8,6)(8:6))V1 — z2) /32, (5.25b)

9,Q =(—4((8y6) + (8y7) sinh 26 cosh 28)z/v/'1 — 22 + (—4(8y) (0:9)
+ 2(8zy8) — 4(027)(0y6) — 4(8:7)(0y7y) sinh 24 cosh 26
+ 8(826)(8y7y) cosh? 26 + 2(0zy7) sinh 26 cosh 26) v/ 1 — z2)e?7/y?, (5.25c¢)

5. The Southampton azisymmetric CCM code 104

8,V =(e¥"*(cosh 26((1 — 2®)(+2((8:0)* + (8=7)° — (8:7)(8:)) + (8:8)°
+ (822B) = (0227)) + z((07) ~ 2(0:8) + 3(8z7)) — 1)
+sinh 26((1 ~ 2%)((8226) + (826)(2(8:8) — 4(8:7))) — 42(8:6)))
+ cosh 286~ (e727(8,W)? + €7 (8,U)?) /4 — (8 U)V/1 ~ 22/2
+ (8,U)z/2V/1 — 22 + e P 5inh 28(8,U) (8, W) /2) /y*

+2((6,U)V1 - 22 — Uz/V/1 ~ 22) /48, (5.25d)

By — f2 = —(25inh 26V (8,6)(8,7y) + cosh 28(V (8,7)y + (8,V)(8,7)))y* /2
— cosh 26V (9,7)y/2 + (e % (e27(8,W)? - €27(8,U)%) /2 — €%~ ((8ezB)
+(8:8)%)(1 — £2)/2 + (sinh 26((8;U)(8,)
+2U((827)(8y6) + (8:6)(9y7)) + €7 (82y W) /4) + cosh 25((8,U) /4
+e 278, W)(8,6) + (8,U)(827)/2
+ U(8zy7) + (8:U)(8,7))) V1 — 22/2 + (sinh 26(U (8, 6) + e~ 27(8,W)/4)
+ cosh 26(e™2YW (8,6) + (8,U) /4 — (8,7))/2)z/ /1 — z2) Jy
+ (= (€27 sinh 26W + cosh 26U)z/v/1 — 2/2 — (cosh 26((8,U)/2
+U(8;7)) + e 27 sinh 26(8; W) /2)V'1 — 22) /42, (5.25¢)

By 2 + f1 = y*(cosh 26 sinh 26V (8,7)% — ((8,6)(8, V) + V(8,8)v))/2 — y(8,6)V/2

+ (€272 5inh 26((0208) + (8:8)%) (1 — 2°) /2 + ((8:U)(8,6)/2

+ e 29y W) /4 + (8,U)(0:6)/2 ~ €727 cosh? 26(0; W) (8yy) + U(0zy0)

— cosh 26 sinh 26(8,7)((8:U) + 2U(8:7))) V1 — 22

— e %P sinh 28(e®7(8,U)% + e~ 27(9,W)?)/8

— ¢ 2P cosh 26(B,U)(8,W) /4 + (727 (8,W) /4 — U(8,6) /2

— €Y cosh? 26W (8,7) — cosh 28 sinh 26U (8,7))z//1 — z2) [y

— (€ B((0:W)V1 = 22/2+ Wa/V1 - 2?)

+ U(8:6)V1 - 22) /32, (5.25¢f)
where the functions P and @ are those defined by Equations (4.34), namely

P =(—e¥+21(9,U) cosh 26 — €#(9, W) sinh 26) /42, (5.26a)

Q =(—€*3(8,U) sinh 26 — €*$+27(8, W) cosh 26) /y* (5.26b)

5. The Southampton azisymmetric CCM code 105

and the auxiliary variables ¢, ¢2, and f, are defined in terms of the u derivatives of

and é by

¢1 =cosh 28(0,7)/y, (5.27)
$2 =(8u6)/y, (5.28)
f =—2(0y7) sinh 24. (5.29)

As noted in the previous chapter, the system of equations in the order
(6.25a), (5.25b), (5.25c), (5.26a), (5.26b), (5.25d), (5.25e), (5.25f),

is hierarchical in that all of the data required by the right-hand side of the later equations
will be available if the earlier equations have been solved.

Initial data for each of the y integrations is supplied at the Cauchy interface, with one
notable exception. We wish to match points on the characteristic grid with the Cauchy
grid at the interface between the two. To accomplish this, the (y, 8, ¢) coordinates on the
characteristic region are fixed at the interface rather than .#+, and as such will generally
not result in Bondi-type asymptotic behaviour of the metric functions. A coordinate
transformation to Bondi coordinates can, however, be carried out provided that the
metric variable 3 satisfies the condition given by Equation (4.51) at .#+. Enforcing this
condition amounts to setting ‘initial’ data for the y-integration of 8 along a u = constant
slice via Equation (5.25a). That is, in order to ensure that a Bondi-type coordinate
system exists, we will choose to set § at #* and integrate it inwards towards the
interface with the Cauchy region.

To understand the influence of this on the Cauchy data at the interface, recall that it
was the slicing condition in the Cauchy region which determined the form of boundary
condition which would normally be used instead of the characteristic interface. In par-
ticular, the fact that the spacetime was polar sliced in the neighbourhood of the interface
resulted in an approximate condition on the lapse, (NA) ~ 1, as suggested by Equa-
tion (5.22). In Section 4.2, asymptotic éxpansions of the characteristic metric functions
was related to the outgoing wave condition originally posed by Bondi et al. (1962). So
the imposition of the condition on § at #* can be seen as an extension of placing an
outer boundary condition on the lapse in the Cauchy region. We will see in Section 5.3
that the Cauchy lapse will not be uniquely determined without first determining the

characteristic 8 and imposing the polar slicing condition at the interface.

5. The Southampton azisymmetric CCM code 106

The evolution algorithm

The hierarchical structure of the Bondi equations leads to a very simple evolution system
on a null slice. Taking into account the comments made in the previous section, the

following scheme has been implemented to evolve the data on the characteristic grid:

1. The metric functions § and -y are specified on an initial u = constant retarded time

slice. Values for d, and 7, are determined from these for later use.

2. B is determined by the Bondi slicing requirement, Equation (4.51) at null infinity

and integrated inwards over the grid to the Cauchy boundary.

3. The auxiliary variables P and @ are determined on the slice by outward integra-
tion of Equations (5.25b) and (5.25¢) from the interface. Initial values for these
integrations can be given in the form of values for (8,U); and (0,W); so that P

and @ are determined on I via Equations (5.26a) and (5.26b).

4. U and W are determined on the slice by an outward integration of the inversions
of Equations (5.26a) and (5.26b) to form equations for 9,U and 0,W. Initial data
for U and W are specified at the interface.

5. V is determined on the slice via an outward integration of Equation (5.25d) with

initial data on the interface.

6. The coupled system given by Equations (5.25¢) and (5.25f) are solved for ¢; and
¢2. These are used to determine 8,7y and 9,8 on the slice via Equations (5.27) and
(5.28). Initial data is specified at the interface in the form of values for (0,7)|s
and (9,9)|r.

7. The values of 8,7 and 9,0 are used to integrate v and § to some future u + Au.

The procedure is then repeated from the beginning.

Finally, we note that the integration procedure as specified makes no use of the supple-
mentary conditions described in Section 4.2. Enforcing these equations can be shown
to be equivalent to specifying values for {P,Q,U,W,V} on a y = constant world-tube
(see, for example Sachs (1962), d'Inverno and Vickers (1997)). Thus by making use of
them, the amount of information which is required to be passed across the interface
can be reduced. In fact, however, we take the position that in order to ensure a better
correspondence between the numerical Cauchy and characteristic data, it is preferable

to extract this information from the Cauchy interface. The supplementary conditions is

5. The Southampton azisymmetric CCM code 107

then used as a check on the data in much the same way that the constraints are used in

Cauchy evolutions.

Behaviour at the boundaries

The characteristic grid has four boundaries at which the behaviour of the metric
functions must be controlled. The innermost of these is the most significant for the
purpose of Cauchy-characteristic matching, as it is located at the interface with the
Cauchy region. The data required for the radial outward integration of the Bondi
metric variables are placed here based on their values on the corresponding points

on the Cauchy grid. The procedure for carrying this out is the subject of the next section.

The outer boundary for the characteristic grid is located at &+, corresponding to
the surface y = 0 of the compactified radial coordinate. Since this is an ingoing null
surface, data on £ is not causally connected with data on the grid, and thus should not
influence the numerical calculations. This is reflected by the fact that the integrations
for the metric functions are, for the most part, performed in an outward direction. The
finite difference equations use only data from grid points interior to the point being
calculated, .and so data at &£ need not be specified.

The exception to this is the calculation of S which, as mentioned in the previous
section, is required to be of a form which allows transformations of the asymptotic
metric functions to Bondi-type quantities defined at .#*. This is accomplished by
calculating 8 at £+ via Equation (4.51) and integrating inwards. Although this might
be considered to violate causality, in fact the condition on [corresponds to a gauge
choice on the slicing of the spacetime, and as such does not involve the propagation
of a physical field. Further, the determination of 8 via Equation (5.25a) is in terms
of the functions v and ¢ which have been determined in a manner consistent with the
causality. Thus it is not expected that the non-standard integration of 8 will have

adverse affects with regards to the integration scheme.

The behaviour of the metric functions at the equator are determined by the assumed
reflection symmetry of the metric in the Cauchy region, which necessarily carries over
to the characteristic metric functions. In particular, an examination of individual
Bondi metric components given by Equation (4.28) under the requirement of reflection

symmetry across the equator suggests that v, 8, U and V are even across the equator,

5. The Southampton azisymmetric CCM code 108

whereas 6 and W are odd.

The poles are traditionally the source of difficulties for numerical codes in spherical
coordinates, for they represent a coordinate singularity in the metric components where
sinf — 0(z — 1). In order to ensure that no coordinate ‘kinks’ exist on the axis, it
must be possible to choose a Minkowskian tangent metric there. The condition that the

radius of a circle approach 27 results in the following behaviour of the metric functions:

v =1 - z%)4(x), § —=(1 — z%)é(z), (5.30a)
U —V1-z2U0(z), W —V1 - 22W (x), (5.30b)
B —>B(:1:), \% —)V(z), (5.30c)

where hatted quantities are regular functions of z as z — 1. Thus the values of v, §, U, W

as well as the derivatives 0;v and 0,6 go to zero as the axis is approached.

5.3 Data transfer across the interface

The CCM method requires that information be carried accurately across the interface
between the interior Cauchy region and exterior characteristic region. The particular
choice of integration scheme demands that the information be carried in both directions.
Thus, data on the characteristic region provide an outer boundary condition for the
Cauchy code, which the Cauchy data specifies interior values for outward integration of
the Bondi metric quantities in the characteristic region.

A variety of problems must be overcome at the interface. Most significantly, although
the interface is viewed as a world-tube on a single two-dimensional surface, not all of the
data which are passed across the interface are local to the surface. In particular, for an
interface at a constant radius, radial derivatives of the data are required to be passed.
Numerical determination of these derivatives require that the data be known on both
sides of the interface in the given coordinate system.

In the past, this difficulty has been overcome by placing data past the outer edge
of a grid by interpolating data from the other grid (see Figure 5.2). This has been
applied effectively by Dubal et al. (1995) in cylindrical symmetry. In order to maintain
second order accuracy in the derivatives, a fourth order interpolation scheme was used.
Note, however, that the ability of this code to perform the necessary interpolations to
the desired accuracy benefitted from the high degree of symmetry of the problem under

study, and in more general spacetimes the interpolation of points from one grid to the

5. The Southampton azisymmetric CCM code 109

f ——] —— (]
] ———] ——— [
f—— ——

Figure 5.2: One method of determining the radial derivative of a characteristic function
at a point A on the interface, is to place data at a ghost-point B via interpolation from
the known Cauchy data. The complementary procedure can be used to determine radial

derivatives on the Cauchy side of the interface.

other is a far more sensitive problem. Bishop et al. (1996) have reported success in
the extraction of waves to a quasi-spherical characteristic region using such a ‘thick’
interface, and the technique has been suggested as a means of matching the stable
Pittsburgh characteristic code with a Cauchy module based on the successors to the
Grand Challenge effort (Winicour (1998)).

A somewhat different approach is taken by the Southampton axisymmetric CCM

code.

e The equations for transforming both the metric functions and their derivatives
between coordinates are applied at the interface. This means that ghost grid
points are not needed in order to calculate derivatives there. Thus the matching
is performed at a single r = constant (y = constant) surface with no need for

interpolations from points on the interior of either grid.

e A further simplification at the interface is introduced by matching the angular
6 and ¢ coordinate in the characteristic region with that defined in the Cauchy

region.

As a result of these considerations, data specified at the outermost grid points of the

5. The Southampton azisymmetric CCM code 110

Cauchy region are transformed directly on to grid points of the characteristic region
with no need for interpolation, thus avoiding a large source of inaccuracy as well as

computational complexity involved in the extraction/injection procedure.

For the purposes of the section, the coordinates on the Cauchy grid are labelled
= (t,7,z,¢) while those in the characteristic region are distinguished with a tilde,
a4 3

£ = (4,§,%,). Recall that following Stark and Piran (1987), the coordinate = = cos 6

is used as the angular coordinate, while axisymmetry implies that fields are independent
of ¢. The coordinate transformation between regions takes place at the interface, I,
which is fixed to the constant coordinate location r = 1 in the Cauchy region, and § =1
in the characteristic region. On I we also require that both the timelike coordinates and

angular coordinates match, so that
t=1, z=% and ¢=¢. (5.31)

The transformation of evolution data from one system to the other will require the
transformation of both the metric components and their derivatives at some interface
surface. The transformations from Cauchy g, to characteristic §,; can be found, as
usual, by computing

- dz° 0z
Gab =9ed 523 F=5> (5.32)

x4 oz ozf (8%z 9zt 9zd H%ze)g
des

Ocdor =0194 oz o0 o%° * \9a°05 020 | 95 0505 (5:35)

and corresponding transformations in the other direction found by switching ~ with
non-~ quantities. The detailed calculations involved in determining these quantities is
outlined in d’Inverno and Vickers (1997), and only the relevant results are presented
here except for the case of the transformation of 01gg1 and 8,611, where a correction to

the published derivation and result is required.

For the transformation from the Cauchy to characteristic coordinates, it is found

that

0z 0z 0z 0z° A
—) ={ ==, =, =— | =(8%,Y* 5.34
(8{2”)1 (6&:0’6:21’65’4>1 (0, 76 0)7 ()
where Y@ is defined in terms of the Stark-Piran variables by

X® = (1,v,GV1 - z2,N?), (5.35)

v=p"+ N/A. (5.36)

5. The Southampton azisymmetric CCM code

111

The result of the application of this transformation (and its derivatives) via Equation

(5.33) are the following expressions for the components of the characteristic metric com-

ponents in terms of the Cauchy data at the interface:

goo
go1
Goa

JAB

Gogoo
Oodor
OoGoa

00gaB

01900
01901
01904

01948

OcJoo
Ocgo1
Ocgoa

O0cgaB

where

=400,
=p(goo + vgo1 — ’YABQOAQOB),
=g0A,

=dAB,

=6t900,
=0:(pX“goa),
=at90A ’

ZatgAB7

=204(pX*)goa + pX*Bagoo,
=€X¢190a’
=00(pX*) g + 04(pX*)g0a + pX 0400,

=p(04X“gaB + O X *gas + X*OagaB),

=anOO,
=8C (angOa)a
=0cgoa,

=0c9AB,

p=(+ —;—(xG - V1 -229,G))7}

€ Zf(f,T],N,ﬁT,G,Nd),Kab),

and ’yAB is the matrix inverse of g4p, ie. WABQBC = §4c.

(5.37a)
(5.37b)
(5.37c)
(5.37d)

(5.37e)
(5.37f)
(5.37g)
(5.37h)

(5.37i)
(5.37j)
(5.37k)
(5.371)

(5.37m)
(5.37n)
(5.370)

(5.37p)

(5.38)

(5.39)

The inverse transformation from characteristic to Cauchy coordinates is given by

oxb

o5 98 93 o
)I: (Wa%véﬁ)[= ((5007Y 75 0)'

(5.40)

5. The Southampton azisymmetric CCM code 112

where Y is given by

Vo= (=571 5p) 7", 071§ d0a) , (5.41)
1
5 — 5.42
r=5—% (5.42)
.1, .

U= 5(900217901 ~ g*8g04908), (5.43)

N 1
b= —EBI(gZAgOA\/l — z2). (5.44)

It is significant to note that the expression for # can only be fixed once the slicing
condition in the Cauchy region is known. In the case under consideration, polar slicing
trK = K7, is used in the region of the interface. It is shown in d’Inverno (1995) that in
axial symmetry this condition can be re-expressed as a condition on the metric variables.

In the present context, this can be written

goi = —TPgi1, (5.45)

with p = p given by Equation (5.44).
In terms of the given transformation and its derivatives, the Cauchy metric compo-

nents in terms of the characteristic components on the interface are given by

900 =G0, (5.46a)
L/ g “AB~ =
gor =7 (—900 + g% + QABQOAQOB>) (5.46b)
goa =904, (5.46¢)
1 /(. g “AB~ -
gn =z (900 - 29—21 - QABQOAQOB)) (5.46d)
94B =JAB (5.46¢)
90900 =B6goo, (5.46f)
ogo1 =00 (Y *Goa), (5.46g)
Bogoa =0Goa, (5.46h)
Bogi1 =00(GasY *Y?), (5.461)

Oogoo =00JAB (5.46j)

5. The Southampton azisymmetric CCM code 113

1900 =280Y *§oa + Y *8agoo, (5.46K)
A1901 =K, (5.461)
A1904 =01Joa, (5.46m)
gn =1, (5.46n)
01948 =0a(a0p)Y* + Y 8ufan (5.460)
dcgoo =0cgoo, (5.46p)
dcgor =8¢ (GoaY?), (5.46q)
Ocgoa =0cgoa, (5.46r)
dcgn =8c(GaY°Y?), (5.465)
0cgap =0cgap (5.46t)
where

R=(p+Y0up)daY *Y" - 7 (5.47)

and 7 is determined by Equation (5.65), derived below.

As a final note, we emphasise that the calculations in this section are dependent
on the chosen gauge in both the Cauchy and characteristic regions. In particular, a
derivation of the parameter 7 which determines the transformations to go; and g1; in
the Cauchy regions, shows that the value of v is only uniquely fixed once a slicing
condition on the Cauchy region is selected. Thus, for Cauchy systems in which other
slicings are used, alternate forms of these transformations are required. This can be
a difficult point, as it is not necessarily the case that a particular lapse equation will
lead to an explicit condition on the metric components which can be used to fix the
coordinate transformation. It is often the case that slicing conditions result in elliptic
equations for the lapse (eg. maximal slicing) and the shift (eg. minimal strain shift,
Smarr and York (1978), Brady et al. (1998)). These equations can only be solved once
appropriate boundary values have been specified. Boundary values, however, can only be
determined once the gauge variables themselves have been extracted to determine data
on the characteristic grid. It is significant in the system presented here the values of U,
W, and V on the characteristic region are determined at the interface from the metric
components Jo; and oa. According to Equations (5.37a), these components can only

be determined once the shift and lapse are known on the Cauchy side of the interface.

5. The Southampton azisymmetric CCM code 114

However a given choice of shift and lapse may depend for outer boundary conditions on
the values of the characteristic U, W, and V.

In fact, for the evolution system in question, the issue can be sidestepped via a
method presented in Section 5.3 which is consistent with the overall evolution scheme in
the Cauchy region. The extent to which such methods can be found for generic slicings,

however, is not clear.

The injection of d1g11

In d’Inverno and Vickers (1997), a confusion between variables on the characteristic
and Cauchy sides in Equations (154) to (156) of that paper, results in an erroneous
calculation for the derivative of 0,g1; in Equation (160), as was pointed out by Chris
Clarke (personal communication). The problem can be corrected via the following

calculation.
To begin, recall that the Cauchy coordinates are written in the radial gauge and as
such satisfy the determinant condition (5.6), namely
detyap = r*sin? 6. (5.48)
Differentiating this with respect to r gives
AB 42 3 2 AB 4
¥ vapT”* sin“ @ = 4r°sin § = v PO yaBp = m (5.49)
and similarly, differentiating with respect to ¢t and 6 give

v 8ya8 =0 (5.50)

’)’ABag’yAB =2cot 0. (5.51)

The Christoffel symbols of the first kind are defined by

1
Peap = 5(6(agb)c — Ocgab) (5.52)

Then, in terms of the above results, we have

1 1 2
Y4BT 1B = 5(7AB(8(A9B)1 — 0194B)) = —§7AB(917AB =-= (5.53a)
v4BToap = 7P 0pB4 (5.53b)

z
1— 2

v PTcap = v*80pyca — 8c (5.53¢)

5. The Southampton azxisymmetric CCM code 115

where we’ve used the fact that g,; = 0 and gos = Ba for the Cauchy metric. Taking the

derivative of Equation (5.53a) with respect to r gives
AB AB 2
Oy Tap +7""Viliap = ot (5.54)
which upon expanding the covariant derivative in the second term becomes
r2’

2
017514 + v BT AB g1y + ¥4801T1a8 = — (5.55)

The Christoffel symbols can now be expanded in terms of the metric variables. The first

term becomes

1
Ty = 617*PT14p = '2"YAC’YBD81’YAB81')’CD- (5.56)

The second term on the left can more easily be expressed by first defining the following

contractions of the Christoffel symbols:

Qo = 7*PToap = v*884Bs, (5.57)
1 2

Q1 =7"*PT1ap = "'2"7ABal'YAB =0 (5.58)

Qc =7*PTcap = v*Pdcyap — 6%c cot 0. (5.59)

In terms of these variables, the second term becomes

1 1 1
T = y“T1Qq = 5(‘"30’)’11 +28181)9% Qs + 53191%2(1 - 533711930Qa- (5.60)

The final term on the right, which significantly involves an r derivatives of the Christoffel
symbols, can be re-expressed in terms @ derivatives and the Riemann tensor through use

of the Ricci identity,
v*BT14 = v*P(Ria1B + 04T 11B). (5.61)
The result is expanded in terms of the metric quantities to yield

1 . 1
T3 =484 — 72 (9% 0174)0017B)0 + 9" 04108711
2 4 (5.62)

1 1
+ 59103A711317Bc + ZQCDarrAcal’YBD) - v*BRia18.
To this point, all calculations have been performed with the coordinates and metric
components of the Cauchy system. However, using the transformations of the metric

variables and their derivatives, which are known except for 0;gg; and 81911, we can

rewrite the metric components in terms of their corresponding values in the characteristic

5. The Southampton azisymmetric CCM code 116

coordinates. Note the two functions for which the transformations are not known are

related via Equation (5.45). In particular, taking the derivative of this equation yields

01901 = pgi1 + O1pg11 + poig11- (5.63)

This is used to eliminate 9;gg; from Ty,

1 1
T2 =5 (=% = 2p11 — 2118:p)g% Qo + 1711 (—pg** Qo + -2-91‘1Qa)

) (5.64)
- §aBgBaQa-

Using this expression, and Equation (5.55) along with the expansions (5.56) and (5.62),
we can solve for 8,911 as
1 _ 1
d1g11 = (—pg**Qa + iglaQa) Mot -1 - 5(—30’)’11 - 2711101p)g" Q. +
1 (5.65)
533’71193%2(1 — T3 ~v*® Ry a1).
On I each of terms, here given in terms of Cauchy components, can be written in
the characteristic variables by making the transformations given by Equations (5.46a)-

(5.46t), making note that
P =poip = 0,p&¢R1418 = Roappéles (5.66)

(d’Inverno and Vickers (1997)). The result is that Equation (5.65) determines the value
of 7} referred to in Equation (5.46n) entirely in terms of characteristic variables at the
interface.

Given the transformation equations (5.46a)—(5.46t) and (5.37a)—(5.37p), it is possible
to determine the metric coefficients at the interface in one of the coordinate systems given
the other. The actual variables used by Stark-Piran, and those of the Bondi metric, can
be solved for the metric functions, as can the necessary radial derivatives required to
provide data on the interface.

The only problem that might arise concerns whether enough information exists at a
particular stage of the evolution so that the transformations can be carried out. In fact,
a fully consistent procedure can be defined in which it can be shown that at each stage of
the evolution, enough information exists to perform the required integrations on either
the Cauchy or characteristic grids, and to carry out any required coordinate transfor-
mations in order to determine boundary information at the interface. The description

of this procedure is the subject of the next section.

5. The Southampton azisymmetric CCM code 117

Determination of the Cauchy lapse from incomplete characteristic data

An important factor in practical implementation of any of the coordinate transformations
is how much information is actually available in the form of calculated components.
This problem is particularly acute with the Stark-Piran and Bondi systems where the
calculation of each evolution variable can take place only once certain previous data have
been calculated, so that the order of integration is fairly rigidly structured.

An examination of the metric components in the Cauchy region (see Appendix D)
and the injection equations (5.46a)-(5.46t) shows that at the point at which boundary
data for the inward integration of N is required, not enough information exists in the
characteristic region to inject the metric components required to solve for N. However,
note that the entire integration of N in the Cauchy region is coupled to the value of
B7, and as such requires an initial guess for this quantity. By extending this to the
transformation at the interface, we can determine an outer boundary condition for N
using characteristic data in combination with a value for §7 in the Cauchy region. The
injection equation for go; is given by Equation (5.46a),

go1 = % (=Goo + (7 = P)go1 + §*2Goados) - (5.67)
The expressions for gg, and g4p are transformed to their Cauchy equivalents via Equa-
tions (5.46a). The same can be done for the expanded form of ¥ resulting in the expres-

sion
- 1 -
U= gﬁ(goo + 25501 — 9*P goagoB). (5.68)

Finally, note that 5 = p = " follows from the derivation of Equation (5.45) and the
definition of p via Equation (5.44) respectively. This, along with Equations (5.68),(5.67),
and (5.68), leads to the equation

g01(g00 + 287 Gor — 9*P goagon) = B dor- (5.69)
The values of the Cauchy metric components at I,

goo = ~N% + A%(")2 + g*Bgoag0B, (5.70)

gor = —A*B", (5.71)
and the characteristic component,

Go1 = —€*P, (5.72)

5. The Southampton azisymmetric CCM code 118

are substituted into this expression and the result solved for the lapse to give
N? = A2(")? + (/A - 2(67)) (5.73)

where care must be taken to distinguish the Stark-Piran shift component 8" with the
characteristic metric variable . This is an equation for the lapse in terms of data which
is already known at the interface (Cauchy A is determined in Step 2, characteristic 5 in
Step 6) and the value of 87 which is not yet know exactly but results from the coupled
system with N. Thus the transformation (5.73) at the interface is applied iteratively

until a result is converged upon, just as is the equation for N and " over the entire

Cauchy grid.

Once the lapse equations have been solved, all of the metric information is known on
the Cauchy side of the interface. Thus enough information exists to extract the required
inner boundary data for the remaining characteristic integrations. The only remaining
task is to fix the boundary conditions of metric variables on the Cauchy grid (namely
their radial derivatives) via injection so that a full set of data exists for the procedure

to begin at the next timestep.

5.4 A scheme for coordinating Cauchy and characteristic codes

With the theoretical groundwork for both evolution systems laid, as well as a specification
for how they can be matched, the only remaining task is to specify a consistent procedure
for performing the integration as a complete system. A full procedure for the evolution
of a spacetime constructed from 3+1 and characteristic regions which pass information

back and forth across a boundary is conditioned by a number of requirements:

e The order of integration of the metric variables in the Cauchy interior;

The boundary data required by the metric variables in the Cauchy region;

The order of integration of the metric variables in the characteristic region;

The boundary data required by the metric variables in the characteristic region;

The information (in the form of calculable metric components gq and g,p required

by each of the coordinate transformations from one region to the other.

Essentially, the order of operations must be specified in such a manner that each inte-
gration step possesses enough information in the form of boundary conditions that it

can be carried out.

5. The Southampton azisymmetric CCM code 119

The integration of the Cauchy lapse function o provides a particular difficulty in
that, unlike the other variables, it must be integrated inwards from the characteristic
boundary. Its value is dependent on the characteristic parameter [, which it will be
remembered is determined by the Bondi slicing condition, (4.51), at null infinity.

Beyond this, we note the following relevant points:

e The Cauchy variables and ¢ are sufficient to determine the transverse 2-metric
gap at the interface. Each of these can be determined by evolution from the

previous slice.

e The characteristic variables vy and § can be determined from the metric components

Jdap at the interface.

e The transformation of gap to §ap on the characteristic side of the interface is

given simply by
GAB = gAB- (5.74)

e The Cauchy extrinsic curvature data {Kj, Ko, K3, K4, K« } can be determined by

evolution from the previous slice.

e The Cauchy variable A = /g, is determined on the new slice via outward radial

integration, and so requires no outer boundary value.

e The determination of the lapse, NV, on the Cauchy slice is an inward radial inte-
gration in the polar sliced region which neighbours the interface, and thus requires
an outer boundary condition. In order to set this, a value of the Bondi variable 3

is required at the interface.

e The value of 8 at the interface is set by solving the Bondi slicing condition (4.51)
at £+ and integrating inwards via (5.25a). This involves the solution of an elliptic

equation, (4.48a) for 6 over the sphere at &+,

e Once N has been set, the remaining Cauchy variables {57, N%,G} can be de-
termined on the new timeslice. These data can be extracted at the interface to
determine inner boundary data for the outward integration of the remaining char-

acteristic variables.

e The values of the characteristic variables and their derivatives at the interface can

be injected to set outer boundary data for the variables on the Cauchy grid.

5. The Southampton azisymmetric CCM code 120

These considerations lead to the following consistent procedure for carrying out an
integration over the full Cauchy and characteristic regions so that sufficient boundary
information is supplied to each region as required. For each step of the procedure, a
table listing which information is known in each part of the grid on both the original
(t = to) and evolved (t = t;) is given. The procedure begins by assuming a full
knowledge of metric variables on the initial slice and is complete when the equivalent

information has been placed on the evolved slice:

Time | Cauchy Interface Characteristic
ty
to ﬂy&Kn,A,G,BT,N nygaKab,AyGyBryNyé,'Y,U;U,'r,nyW,r»V 6)77B1U7W5V

Given this data at #p, new data (indicated in boldface) are determined on the ¢; slice

by the following steps:

1. Cauchy: Using data at tg, solve for the metric variables {n,{} over the Cauchy

grid at ¢; by integrating equations (5.12) and (5.13).

Time | Cauchy Interface Characteristic
t 7, €
to 7])£7Kab7Avc),Br7]V ”7,67KavayGyﬂr)N76:7yUyUJWHIyW/»T»V 5177:3) U7IV7V

2. Cauchy: Solve for the extrinsic curvature components { K, K, K1, Ko, K3}, over

the Cauchy grid at ¢; by integrating equations (5.14a)—(5.14e).

Time | Cauchy Interface Characteristic
t 7 57 Kb
to n1£7KﬂbyAyGa/Br7]V n7§>Kab7-47G7ﬂrvN76771U: U,T,W,IV‘T,V 5177ﬁ1 U7W:V

3. Cauchy: Solve for A over the Cauchy grid at ¢; by carrying out an outward inte-

gration of equation (5.15).

Time | Cauchy Interface Characteristic
t U:E:Kab, A
to T},f,Kab,A,G,,Br,JV nvg;Kabi‘47GvﬂT7N767'77U)U.MIV’W.T,V 5,’7,,3,U,W,V

4. Interface: Transform the 3-metric components h,g (dependent on A, 7, £) from
3+1 to Bondi coordinates using equation (5.37a) at the interface in order to de-

termine initial data for the Bondi § and +.

5. The Southampton azisymmetric CCM code 121
Time | Cauchy Interface Characteristic
4 7,§, Kap, A d,v
to n7E>Kab)A)G1ﬂriN 177€7Kab7AyGy,BryNaéa’Y,U»U,TyW)WyTvV (sy'yaﬂ)U:W)V

5. Characteristic: Perform an outward integration of {4,v}, using the hypersurface

evolution equations (5.25¢) and (5.25f) and initial data at I supplied in the previous

step.
Time | Cauchy Interface Characteristic
t naE)KabyA 617 677
to n751KabaA7Gv'Br7N ﬂ,E,Kab,A,G,ﬂT,N,J,"/,U,U,T,W,W,r,v 57’77ﬂ1U7W1V)6,u17,u

6. Characteristic: Use the Bondi slicing condition and the values of § and vy at &+

in order to determine initial data for £ as described in Section 4.2. Integrate

inwards over the characteristic grid.

Time | Cauchy Interface Characteristic
t) n:gvKab)A 517 6,71ﬁ
to n!£7Kab7AyGrﬁr)N n7£7Kava7GaBr»N75»71Us U‘r,“/.,W,r,V 6,’)’,,3,U,W,V,6,u,7,u

7. Interface: Transform the value of 8 at I (which determines the Bondi gg; compo-

nent) via equation (5.37a) to determine a value for the lapse, ¢, on the interior

(see the discussion below).

Time | Cauchy

Interface

Characteristic

t1 U»EvKab’A

B7), 8,y

5,7, 8

to ﬂ,f,Kab,A7G,ﬂrvN

Tlaga Kab,A’ Gv BT»N755’73 U» U,""‘CW{NV

53 Y ﬂ» U» Ws Va 6;“7 Yu

8. Cauchy:

(a) Given a value for 47, inject the characteristic 8 data to determine a value for

the lapse, N, at the interface of the ¢; Cauchy grid.

(b) Integrate the coupled equations (5.17a)-(5.18) for G, g7, and N.

The data for 87 from the second of these steps is used as input for the first step,

and the process is repeated until convergence to a specified accuracy.

Time | Cauchy

Interface

Characteristic

tl nvgvKﬂvayG’.Br’N

B”,8,~

8,7, 8

tO UyE,Kab,A,G,ﬂr»N

7, 57 Kaby ‘4> Gv ﬁry N7 6, Y U7 U,T) I"’v W.'N |4

61 Y, ﬂy Uv Wa ‘/> 6,11: You

5. The Southampton azisymmetric CCM code

122

9. Interface: The Cauchy metric components g, are fully determined at this stage,

and are transformed to determine the remaining Bondi metric components via

equations (5.37a), which in turn are used to determine initial values for the Bondi

functions U, W, V.

Time | Cauchy Interface Characteristic
3! 1,§ Kas, A,G,B",N | 87,6,v,U,U,», W, W,V 8,7, B
to T],g,Kab,A,G,IBT,N naE7Kab:A:G;.BT7N75!’YvU1U,7‘1W7W.7‘7V 617).B)U7W7‘/16,u)7,u

10. Characteristic: An outward integration from the interface is used to determine

{U, W, V}, over the characteristic grid at ;.

Time | Cauchy Interface Characteristic
tl T],E,Kab,A,G,ﬁr,Ar ﬂryé)’Y)UaU,TvaWyTvV 6!7)131U,W7V
to n,{,K,,b,A,G,ﬁ’,N T],f,Kab,A,G,ﬁr,N,(s,’)',U,U'T,W,W_r,V 6777B7U»W’V767ua7,u

11. Interface: At this point all of the metric functions on each grid have been de-

termined for ¢;. Data from each side of the interface are used to determine the

required derivatives of the metric functions at I so that the process can be repeated

from Step 1.
Time | Cauchy Interface Characteristic
tl T],E,Br,Kab,A,G,A" n3€7KGb’A7Giﬁ1‘)N16177U7U,T7W1W,T5V 6771ﬂ7U7W1V

to

n7€7 Kab,A, G) N’ ﬂr

n1€7K0b1A7G7 ﬂrva 67 ’77 U7 U,Tawy W,"‘yv

677,ﬂ7U7 W)‘/va,ua’yyu

12. At this stage, all of the data for both regions exists on the ¢; slice and the process

can be repeated to evolve to a future ¢;.

Time | Cauchy Interface Characteristic
t+2
4 n:g:KGbewG).BrwN T[,f,Kab,A,G,BT,N,é,"/,U,U,T,VV,W",-,V J:V)IBaanvv

It can be shown that at all stages of the calculation enough data exists to perform

the required integrations. The only difficulty results in providing initial data for N in

the coupled solution of the shift and lapse equations in Step 8.

5.5

Numerical implementation

The scheme for matching a Stark-Piran type interior Cauchy system with a Bondi char-

acteristic system which has been outlined in the previous sections is in the final stages

5. The Southampton azisymmetric CCM code 123

of being implemented as a numerical code by the Southampton Relativity Group. In
general, standard finite differencing techniques are used with the goal of achieving sec-
ond order accuracy and convergence as well as long term stability. The intention is that
this should be achievable first by each of the interior and exterior regions, and then by

the system as a whole.

Grid structure
The Cauchy grid

In setting up the grid for the Cauchy evolution, we follow closely the layout proposed by
Stark and Piran (1987). Significantly, attention is paid to the relative placement of the
individual variables on the grid so that their values and derivatives are centred correctly
relative to each other depending on how they appear in Equations (5.12)—(5.21), as well
as to their behaviour at the grid boundaries, in particular the polar axis.

Following Stark and Piran (1987), a system of two grids (labelled ‘@’ and ‘V’) in
the radial direction are used. The distance between grid points is set at a uniform Ar
for each grid. The two grids are offset by half a radial distance, Ar/2, so that points
on the b-grid are centred between points on the a-grid and vice-versa. The purpose
for the offset is to preserve the natural placement of the grid variables based on their
determining equations. For instance, though the variable £ can be placed on the a-grid,
the variable which is actually evolved is its radial derivative 0, via Equation (5.13),
which when finite differenced should be centred half-way between grid points, ie. on the
b-grid. Because of the offset, both the a- and b-grids can not each have points at the
origin and interface. We choose to place the origin (r = 0) on a point of the b-grid and
the interface, I, on the a-grid.

A similar setup is used in the radial direction. Recall that the coordinate z = cos
is used as an angular coordinate and ranges from the value 0 at the equator to 1 at the
polar axis. An angular a-grid with even spacing Az is constructed to have points which
straddle both the pole and the equator. This is so the equations for variables place
on this grid will not be required to take values at the poles, where factors of (1 — z?)
commonly cause degeneracy. An angular b-grid is offset by a distance Az/2 from the
a-grid. Both the pole and the equator sit on points of this grid.

The result is that individual variables are each placed on one of four grid structures
defined by the two radial and two angular grids: aa, a'b, ba, bb.

Derivatives at the boundaries are handled through the use of ghost-points beyond

5. The Southampton azisymmetric CCM code 124

the physically relevant sections of the grids. Values of functions at these points are
determined by their expected behaviour at the boundaries, as discussed in Section 5.1. In
particular, at the origin the expansions listed in Bardeen and Piran (1983) are enforced,
while at the poles and equator the even/oddness of the variables are used to determine
their values immediately beyond the boundary.

The entire grid layout for the Cauchy region, including ghost zones, is displayed in

Figure 5.3.

The characteristic grid

In many senses the evolution system for the Bondi variables is much less complex than
that in the Cauchy region, and as such a simpler grid structure is used. Rather than
multiple offset grids, variables are placed at points on a single grid. The radial grid
has points uniformly spaced at distances Ay, and both the interface and null infinity
are points on the grid. The angular grid points are placed at values of the interior
Cauchy grids so that data transferred to or from the interior will require a minimum
of interpolation. Thus a grid spacing of Az/2 is used, where Az is the corresponding
distance between points on each of the ¢ and b Cauchy grids. Ghost zones are also
used at the pole and equator, with values of grid variables set using the expansions of
5.2. A boundary condition is not set at y = 0 (#7), as the equations determining the
grid variables on a slice are integrated in an outward direction, except for the Bondi
variable § which is integrated inwards and whose value at #* is set using the Bondi
slicing condition as described in Sections 5.2 and 4.2. As such, radial derivatives of the
grid functions are not needed at #*. Radial derivatives at the Cauchy interface are
determined by extraction, and are used to place values of the grid functions on a ghost

zone point. The layout of the characteristic grid is shown in Figure 5.5.

The interface

The interface exists along a single r = y = constant line on each of the Cauchy and
characteristic grid structures. The transformation equations listed in Section 5.3 are
used to convert data known on the line represented by the interface on one grid to data
on the corresponding line of the other. Figure 5.5 shows the mapping of interface points
between the two regions.

A problem arises due to the complicated nature of the Stark-Piran grid structure.

The b-grid does not have points on the interface, and thus interpolation is required to

5. The Southampton azisymmetric CCM code 125

= -
M SRET 5P O R U
0 0 0 0 Il 1l i I
Q © Q] © Q © £
~
L
g | <
! I
~ < N
$ =
i 5= _$
Q ST
o -
S
i -~
©
N
[: o
= L e
Q e 10
1 ~
o)
1
1
1
E B
| 5
P |
- ¥
2 i g
> 1 F
Q s 2
i S
. B
1
S
: =
- Q
:
1
1
1
L L.
1 <
1
1
1
3 - e}
o 1 fy
> - >
L : Q
L
- T o
1 =k
1 1
1 1
s L.
’ 1 <
¥ 1
1 15
It EL S 1
L £ %
1 ¥ No]
1 1 't
- ; : N >
1] 1 3 = \]
] 1 1 <
e ﬂ
P : ! o
TR — 1
8 o
N
o =
[=
< i
L.
cl? <
P i

X=1+HAX——
x=1+AXx/2
=
X=p —
X=-AX/2
X=-AX—

Figure 5.3: The grid structure of the Cauchy evolution scheme. Points on the a-grid
(respectively in r and z) are indicated by and those on the b-grid by dotted lines. The
placement of the Stark-Piran variables on each of the grids is shown. The physical region
is the lightly shaded region in the centre, surrounded by ghost zones where data is placed
to allow the calculation of derivatives at the boundaries of the grid. The interface with
the characteristic region is located at a point on the radial a-grid.

5. The Southampton azisymmetric CCM code 126

i=ny i=ny-1 =2 =1 =0
X=1+dx —
North pole
x=1—
X=1-th¢ ==
SRS
EHES
> B Q
3 B
o B T
TEO Ax=2dx]:
(O]
P e Equator
=t +—
y=l+Ay y=l y=I-Ay Ay =0

Figure 5.4: The grid structure for the characteristic region. A single grid is used, the
interface with the Cauchy region lying to the left and #+ at the right. Note that the
angular dz corresponds to half of the angular Az of the Cauchy grid.

place data appropriately on I before they can be transformed to their characteristic
values.

For data injected from the characteristic grid, the values of the functions themselves,
as well as their radial derivatives, are supplied by the interface module. The latter is

used to supply data at the ghost points via the finite difference formula
Yip1 = Yoy + 26, Y] Ar + O(r?), (5.75)

where Y is a generic grid variable and [9,Y]; the value of its radial derivative as supplied
by the interface module at I.

Note also that because the characteristic grid is twice as dense as the individual
Cauchy grids, interpolation in the z direction is also required at the Cauchy interface.
Characteristic grid-points at I are located at points on either the a- or b-grids, so that

variables from the alternate grid must be interpolated if their value is required.

5. The Southampton azisymmetric CCM code 127

L3
G
W
37

Cauchy region Characteristic region
. /——Interface T ..,
"T“"i”""l :
| : « B-grid
: :
: i A-grid
[1
S S :
i]
1 1
] i
1 1
| |
[} [}
t '
ilindie efiafietialind albalialidid]
H
1
]
i
[}

 Enr ¢

Wo
P

R S N

'
t
_____-...!___.._____

Figure 5.5: The correspondence between points of the Cauchy and characteristic grids.

Finite difference techniques

In general, standard second order finite differencing techniques are used to represent the
derivatives of the variables on each of the two grids. In particular, if the differencing

operators
AY; =Y - Y, A=Y -2Yi+Yi, (5.76)
then r derivatives of a grid function Y at a point r; are approximated by
[0,Y]; = AY;/2Ar, [6:,Y]); = AY;/Ar?, (5.77)

where Ay = y;,1 —y; is constant over the grid, with corresponding equations for angular

derivatives and y derivatives in the characteristic region.

Various interpolations are required, in particular at the interface where function
values in the Cauchy region must be centred at locations of the characteristic grid
points. Note, however, that by the choice of interface as an r = constant line which has
points on grids in both interior and exterior region, the difficulties usually encountered

in performing interpolations between coordinate systems are largely avoided. The

5. The Southampton azisymmetric CCM code 128

n+1

n1

Figure 5.6: Computational molecule for the staggered leapfrog scheme.

location of the characteristic interface grid points are fixed on points of the Cauchy
grids by the choice of angular coordinate in the characteristic region. In general, fourth
order interpolations are carried out in order to maintain a second order truncation error

in the derivatives.

The time evolution equations in both the Cauchy and characteristic regions are
carried out using a staggered leapfrog technique in order to achieve second order accuracy
in time. For a given variable Y known at timesteps n and n — 1, the value at n + 1 is

calculated via
Yi;.l'*'l = Yi?_l — [atYn]ijAt/AZL‘, (578)

where the value of [0;Y™];; is determined by the evolution equation reduced to a finite
differenced version centred at the grid point ij. Note that with the difference operators
specified above, the computational molecule for the determination of this quantity ex-
tends from 7 — 1 to i+ 1 in the radial direction and 7 —1 to j+1 in the angular direction,
as shown in Figure 5.5.

The staggered leapfrog scheme is well known to be susceptible to ‘mesh drifting’ (see,

for instance, Press et al. (1986)). To compensate for this, a dissipative term of the form

1
Yo = —'1—6(Yi—2 —4Y;1 + 6Y; — 4Y;41 + Yiy2) (5.79)

has been found to remove the high frequency mode instabilities. Note that the term is
of order four and as such does not influence the second order accuracy of the overall

scheme Kreiss and Oliger (1973).

5. The Southampton azisymmetric CCM code 129

At two stages of the calculation, elliptic equations are required to be solved. The
first is in the maximally sliced region of the Cauchy grid where the equation for the lapse
becomes elliptic. The value of N in this region are determined by a standard successive
over-relaxation method. An initial guess for the values of each variable is obtained from
the previous slice. Boundary values are obtained from the result of the inward integration
of the parabolic equation for the lapse in the polar sliced region. Although the solution
of the elliptic problem is iterative, the slicing parameter C(r) (see Section 5.1) is chosen
so as to limit the elliptic solve to a small region around the origin, and convergence is
shown to be rapid in tests of the independent Cauchy code.

A second elliptic integration takes place in the specification of the characteristic
variable 8 at £+ via the Bondi slicing condition. Equation (4.48a) is solved along the
y = 0 surface representing #*, which reduces to a line in axial symmetry. Once again,
successive over-relaxation is used with a source provided by the values of v and § at £+
which have been determined from the previous timestep.

A full implementation of all three portions of the code has been carried out by Mark
Dubal, Chris Clarke, Ray d’Inverno and the author. The Cauchy code has been well
tested and reproduces the vacuum results of Stark and Piran (1987) using Robin outer
boundary conditions. Teukolsky wave initial data have been used as the primary test

bed (Teukolsky (1982)) with wave amplitudes given in terms of y = ¢ — r by the function
F(y) = Ayexp(-y®). (5.80)

for a small amplitude A on the order of 1073, The waves are found to propagate off of
the outer grid boundary. However, after a time corresponding to approximately a single
wavelength, an instability in the elliptic region, originating at r = 0, begins to grow
leading to late-time innacuracies which propagate outwards (see Figure 5.7). The source
of this instability is currently being investigated.

The characteristic code is also fully implemented and has been tested by placing
the data derived from exact solutions on the interior interface. In particular, the
Schwarzschild solution and the boost-rotation symmetric solution of Bicak et al. (1988).
The latter is defined only on an initial hypersurface, where given data in 6 and v, the char-
acteristic code has been found to reproduce the exact solution accurately. Schwarzshild
data can be evolved stably for an indefinite amount of time, maintaining accuracy to
within machine error. Unfortunately, since this data is manifestly static, the dynamic
evolution of the Bondi variables can not be adequately tested by this means. Small

perturbations on the Schwarzschild data have also been tested, however. For instance,

5. The Southampton azisymmetric CCM code 130

0.0005 55
ALK
TR
A,
AVa%%

-0.0005
-0.001
-0.0015
0.002
0.0025

Figure 5.7: Teukolsky wave evolution using an amplitude parameter of A = 0.001. The
metric function 7 is shown after 50, 200, 500, and 800 timesteps. Beyond approximately
700 timesteps an instability at the origin begins to affect the grid function calculation
in the elliptic region. Though the run can be continued to 1400 timesteps, the results
become progressively less accurate.

the data
Ol = Aet’ ~thax 5in § (5.81)

specified at the interface results in an evolution of the metric variables, though not
comparable to an exact solution (see Figure 5.8). Under such perturbations, the charac-
teristic code has been found to evolve stably and smoothly until beyond the time when
the perturbation has become negligible. It is optimistic to note that in these tests the
specification of data for 8 at .#* has not been found to induce any problems in the
evolution.

The interface is a difficult component to test in isolation, as a proper test requires an
exact solution on either side. Since interpolations of metric variables are required, these
solutions must be known in a region on either side of the line which forms the interface.
For certain of the more simple transformation equations, arbitrary functional data can
be given and the outcome of the transformation compared to what would be expected
by a hand calculation. In general, however, errors in the transformation equations are

expected to be made apparent on the integration of the codes in the form of spurious

5. The Southampton azisymmetric CCM code 131

‘ch_gamma-50.gp' —— ‘ch_U-50gp' —

'. l.i'.i"n-
i

Figure 5.8: The characteristic grid functions v and U at a representative time for the
perturbed Schwarzschild spacetime. Note that .#*+corresponds to y = 0 in the figures.

waveforms generated at the interface.

More thorough tests of both the Cauchy and characteristic codes are still being car-
ried out, however, and will be presented elsewhere. In particular, it is expected that the
instabilities known to be present in the Cauchy code will require further understanding

before a reasonably stable and accurate CCM run is to be expected.

Grid spacing and stability in the Cauchy region

Crucial to the stability of any numerical code is the relationship of the timestep, At,
between evolved slices and the grid spacing, Ar and rAf. For linear (or linearised)

hyperbolic equations, a von Neumann stability analysis leads to the Courant criterion,
1
Al £ ;Am, (5.82)

where v is the characteristic velocity. In geometric terms, this can be viewed as the
statement that the grids must be set up so that the value of a grid function at a point
is causally related to the data which determine it: The analytic domain of dependence
of a point must lie within the numerical domain of dependence.

Using this as a guiding principle, a causality condition on the timestep can be devel-
oped by considering the equations of null geodesics for the given system. For the metric,

Eq. (5.1), the null geodesics are determined from the equation

—(a® = NoN®)dt? — 2N,dz®dt + hapdz®dz? =0, (5.83)

5. The Southampton azisymmetric CCM code 132

from which we find equations for dr/dt and d6/dt,

dr 1))
= (N £ (V2 = hyr (oo + 20509 + hggd® — 2Nb — 2Ny
T
—(N? = NoNo))Y2), (5.84)
o 1 \ , . " o
dt =m (_N9 * (N — hoo(hrr7 + 2ho40¢ + hgg¢” — 2Ny7%)—
(N2 — NaN“)))l/Q) . (5.85)

Following Stark and Piran (1987), we determine the maximum values of these equations

in terms of variations of 7, § and in order to determine the furthest extent of the light

cones at a point in the r and € directions,

dr
dt
d_9
dt

<max|N" £ N/A|, (5.86)

< max| — Np/hgs £ (N3 /hop + N?/her + N3hgg + (N? — N.N®)Y2/RIIZ|. (5.87)

Thus for the given system, a statement with the same causality implications as Eq.

(5.82) is

(1 —m2)_1/2Az Ar

At < mi .
= 0 Jdt e 47/t

(5.88)

In principle, the parabolic equations for A, G and N impose analogous restrictions
on the allowed relationships between the sizes of the radial and angular grid sizes. The

equations for these variables (compare Eqgs. (5.15), (5.17a), (5.18)) are of the form

8,G =Xg0:s (1 - 2%)G) + Se, (5.89)
O A =X40; ((1 — %) B?8, A) + Sa, (5.90)
8N = — Xn0; ((1 — 2°)B?9,N) + AN + Sy. (5.91)

A 2-iteration Crank-Nicholson scheme is used for the finite differencing of these equa-
tions. The implementation of the scheme replaces the partial differential equation with

variable coefficient D(r),

Ou 0%u
2 D 2) 2= .
or (r.z) 0z? (5.92)
by the (implicit) finite differenced equation
u;-‘“ —uf _D;lillm(u?_fll + u?“) ~ D;‘fll/z(u;-“{rl + u?fllﬂ)
Ar 2Ag? 2Ag2 (5.93)

L Dinple 7)) Dy p(ef —)
2A 12 2Az?

5. The Southampton azisymmetric CCM code 133

Substituting a test solution u} = £"e*7¥A%, as usual for a von Neumann analysis, we find

that the difference scheme has an amplification factor given by
1 - 2a™sin? kAx/2

1 + 20n+1sin? kAz /2

where o = (D;IH + D;-‘_l). Thus we see that for positive D", the stability condition

£ =

(5.94)

for the Crank-Nicholson scheme does not place any restriction on Ar for individual
equations of the form (5.92).

Note, however, that certain complications arise in the Stark-Piran system due to
the coupled nature of the parabolic equations. In particular, since the integrations of N
and G are coupled, and one is inward stable while the other is outward stable, a more
sophisticated analysis should be conducted in order to determine potential stability

problems for given choices of Ar and Az.

We make one further note on the usefulness of applying a von Neumann analysis to
the full system of Stark-Piran equations in order to identify potentially unstable modes.
Two types of instabilities can occur. Numerical instabilities result from rapidly growing
solutions to the finite difference equations which are not solutions of the corresponding
continuum equations. The establishment of von Neumann conditions such as those dis-
cussed above is aimed at reducing the effect of such modes. Alternatively, the continuum
equations might admit modes which are absent in the desired solution, but are excited by
numerical perturbations. Examples of the analysis of these modes for various evolution
systems are given by Scheel et al. (1998), and Alcubierre et al. (1999).

The role of constraint violating modes also remains controversial (Choptuik (1991),
Frittelli (1997)). As noted in Section 4.1, though analytically the constraint equations
can be expected to hold for all times if they hold on a single slice, this is not necessarily
true of the finite differenced versions of the evolution equations. Unstable modes in
the numerical equations can drive the constraints away from their initial zero value
(Detweiler (1987)). To avoid such instabilities, constraint enforcing terms have been

proposed, such as adding terms of the form
+e(PR+ (trK)? — K, K) (5.95)

(where € is a parameter and the term vanishes when the constraints are satisfied) at an
appropriate point in the evolution system as a constraint ‘driver’ term. Analyses of such
methods have, however, shown that the stability of the system can depend crucially on
the value chosen for the parameter ¢ which controls the extent to which the constraint

is blended in to the system (Alcubierre et al. (1999)).

5. The Southampton azisymmetric CCM code 134

It seems, then, that the stability of the system can be determined by the manner in
which the constraint equations are applied. A stability analysis should be able to shed
some light on whether the Stark-Piran system of equations inherits any such unstable
modes which would require special treatment to remove.

In practice, the implementation of the Stark-Piran code considered here calculates
the momentum constraint equation for given timesteps as the evolution and outputs its
L+ norm as a check on its error. The Hamiltonian constraint, on the other hand, is used

in the determination of the metric variable A. As a check on this value, the evolution

equation for A,

dA
can be integrated for comparison. This provides a check on a stable evolution to ensure
that it is producing a result consistent with the full set of Einstein equations. However,

it will not detect the presence of unstable modes in the numerical system which can grow

to halt the calculation.

Conclusions

The algebraic classification of spacetimes

In the first part of this thesis, a methodology was developed for classifying exact solutions
of the Einstein Field equations. The system that was described is based upon the Cartan-
Karlhede methods. These methods were examined in more detail than has previously
been published, however, and particular techniques were proposed for dealing with the
numerous problems that are faced.

In Section 2.3, the notion of a standard form for the Weyl spinor was generalised
to arbitrary symmetric spinors. Algorithmic techniques for determining these standard
forms, as well as the transformations required to convert a spinor with arbitrary coeffi-
cients to one of these forms. The techniques have been designed to be both efficient in
terms of the number of computations required, and also to simplify the form of the final
expressions. The result of applying these transformations to the curvature spinor and its
derivatives is a full algebraic classification of the exact solution. As well as elucidating
symmetry properties of the spacetime, this classification can also be used to determine
the equivalence between pairs of spacetimes in a coordinate invariant manner.

A number of difficulties in the Cartan-Karlhede methods have also been identified.
In particular, the transformation coefficients for the standard form of an algebraically
general spacetime arise as a result of solving a high-order polynomial. Although tech-
niques exist up to 4th order, the resulting coeflicients can be unwieldy both in carrying
out the computations and in their later interpretation.” This problem arises already at
the first stage (Petrov classification) of the procedure. As a result, all of the spacetimes
which have been classified in practice have been algebraically special or specified in a
carefully chosen frame. Past the first stage of the classification procedure, however, the
standard forms developed in Section 2.3 ensure that no more than a quadratic ever need
be calculated.

Though the methods for are not difficult to specify, the sheer number of calculations

135

5. The Southampton azisymmetric CCM code 136

that must be carried out is enormous. Thus, a set of computer algebra tools, described
in Chapter 3, was developed to determine the algebraic symmetries of a spacetime,
derivative operators associated with spinors, and perform transformations on spinor
components. As a result of this work, the GRTensor computer algebra system has been
extended to include a number of tools useful to researchers in the field of exact solutions.

The ultimate objective is to use GRTensor as the front end of the computer data base
of exact solutions Skea (1997b), so that the members of the user community themselves

will be able to submit candidate solutions to update the database.

Numerical integrations via Cauchy-characteristic matching

The accurate representation of outer boundaries of a numerical grid is an acute problem
for modern approaches to numerical relativity. As highly nonlinear problems such as
the merger of black hole pairs are achieving greater success, the standard approaches to
handling boundary conditions are becoming an increasing source of error, both for the
evolution itself, and for the interpretation of data which is produced.

In this thesis is presented a structure for solving this problem in axial symmetry. The
development of three independent codes is presented, for each of the Cauchy, character-
istic regions, and that of the matching interface between them. Further, the-solutions to
the problems that need to be handled by such a code, in the form of gauge conditions
and data transfer at the interface, have been presented.

A procedure for transforming both the metric coefficients and their derivatives be-
tween Cauchy and characteristic components was outlined in 5.3. The significance of this
is that through use of these transformations, a complicated interpolation between grids
over a region can be avoided, as all of the data is transformed on a single r = constant
line.

For the particular axisymmetric Cauchy code of Stark and Piran (1987), a number
of issues arise in attempting to provide a characteristic outer boundary. A consistent
evolution strategy on the Cauchy grid, differing somewhat from the original presentation
of Stark and Piran in its determination of a number of the grid variables, was presented
in Section 5.1. This minimum number of variables includes a component which can be
related to the choice of slicing at #*. As such, it is fixed using a condition specified
in Section 4.2 that the asymptotic form of the metric variables be transformable to
that of the original studies by Bondi. Even with this specification, however, a value

for the lapse can not be obtained at the interface via a simple transformation at the

5. The Southampton azisymmetric CCM code 137

interface. Instead, Section 5.3 showed that a combination of interior and exterior data
consistent with the evolution scheme on the Cauchy region is sufficient to provide an
outer boundary. The issue highlights a particular problem with the implementation of
any Cauchy-characteristic scheme, namely that of being able to provide the information
at the interface when it is needed. This problem is expected to be particularly acute in
situations in which an elliptic equation must be solved for the shift and the lapse.

Finally, Section 5.4 tied the two systems of equations together with the transforma-
tion equations at the interface to provide a scheme for the evolution of the full CCM
system. The system is consistent in the sense that appropriate data in the form of
boundary conditions at the interface is present at each stage of the integration.

Details of the numerical implementation of the system were given at the end of Chap-
ter 5. The fact that the numerical implementation is nearing completion but has yet to
be properly tested gives certain scope for future work. The axisymmetric code represents
a step in a ladder of increased complexity for the Southampton CCM project, which first
used single dimensional codes as testbeds for the CCM concept, has moved to two di-
mensions, and will progress to three. Fortunately many of the equations developed here,
in particular in the characteristic region and at the interface, require very little mod-
ification in the progression to three dimensions and potentially Cartesian coordinates.
The problems that have been identified here will also need to be faced in more general
codes and it is hoped that the experiences gained here can provide a strong background

for their solution.

Appendices

138

A

An algorithm for the
determination of the Petrov type

The presentation of an algorithm for the determination of the Petrov type by Let-
niowski and McLenaghan (1988) builds on the original work of d’Inverno and Russell-
Clark (1971) and later extensions to be found in Fitch (1971), Hon (1975), Aman et al.
(1991). It’s main advantage is the simplicity of its representation. In many cases one can
determine the Petrov type simply by knowing which of the Weyl spinor components are
zero. In other cases, a simple check using a polynomial formed from the non-zero indices
suffices to distinguish the Petrov type. Thus, a table is constructed with each row rep-
resenting a possible zero/non-zero component configuration, listed in binary order, and
the tests required to determine the Petrov type. A code to calculate the Petrov type,
then, would apply only the tests corresponding to the initial Weyl spinor configuration.
The amount of coding can be reduced by recognizing that a number of cases are identical
once the ¥y & ¥, and ¥; & V3 components are interchanged.

When applying this type of algorithm within a computer algebra system, however,
some care on the part of the user is required. In order to arrive at its conclusion, the
system must establish whether certain polynomials formed from the Weyl spinor com-
ponents are equal to zero. Whether this can be done accurately is strongly dependent
on the ability of the computer algebra system to simplify the given polynomials appro-
priately. For instance, the computer algebra system Maple will only give a zero result
for

Vi—-z—ivr—1

once the routine radsimp() has been applied. It is important, then, that the system be
able to present its internal calculations to the user for checking.

The complete algorithm is listed in Table A.1, with some special cases given below.
A derivation of the listed tests can be found in Letniowski and McLenaghan (1988).

Case | ¥g U, ¥, Y3 Wy | Analysis
0 0 0 0 0 0 | TypeO
1 0 0 0 0 N | TypeN
2 0 0 0O N 0 |Typell
3 0 0 0 N N | Typelll
4 0 0 N O 0 | Type D
5 0 0 N 0 N | Type II

139

A. An algorithm for the determination of the Petrov type

140

Case | g VU, Wy V3 U4 | Analysis

6 0 0 N N 0 |Typell

7 10 0 N N N |2w?-30,0,=0 {;:7; z giz E

8 0 N 0 0 0 | Typell (see?2.)

9 0 N 0 0 N |Typel

10 0 N 0 N 0 |Typel

11 |0 N 0 N N |27%,20 +64¥5 =0 {Z’l‘; z g g: il
12 0 N N 0 0 |Typell (see6.)

13 |0 N N 0 N |U20,+4203=0 {;:l‘; : giz ?
4 |0 N N N 0 |90,.2—160,0;=0 {Z’l‘; :: g‘;: ?
15 0 N N N N | Typel, II or ITI (see Case 15, below)

16 N 0 0 0 0 |TypeN (seel.)

17 N 0 0 0 N |Typel

18 N 0 0 N 0 |Typel(see9.)

19 |N 0 0 N N |Uld-210%=0 {Z’l‘; z giz ?
20 N 0 N 0 0 |Typell (seeb.)

21 [N 0 N 0 N |9%2-00,=0 {;Z‘:e z gi: ?

22 N 0 N N 0 |TypelorlII(see 13.)

23 N 0 N N N | Typel, II or III (see Case 23, below)
24 N N 0 0 0 | Typelll (see 3.)

25 N N 0 0 N | TypelorlII (see 19.)
26 N N 0 N 0 |TypelorlII(seell.)
27 N N 0 N N |TypeLII, III or D (see Case 27, below)
28 N N N 0 0 | Type Il or D (see 7.)

29 N N N 0 N |Typel,II or IIT (see 23.)
30 N N N N 0 | Typel, II or III (see 15.)

31 N N N N N |TypelLII,III, N or D (see Case 31, below)

A. An algorithm for the determination of the Petrov type

Case 15:
Define
I:=30,% - 47,7,,
Fp = U053 — 30,0y,
Fy := 90,0, — 8032,
D :=3F?+2IF,.

The following tests lead to the Petrov type:
if I =0 then
if F; = 0 then Type II,
otherwise Type I,
otherwise
if 4 =0 or F5=0 then Type I
otherwise if D = 9 then Type 1
otherwise Type 1.
Case 23:

Define
I:=Uy0y + 37,2
J = 40,0, — 3032,
Fy:=UoJ — 20,1,
D :=W4I* - 3JF;.

The following tests lead to the Petrov type:
if I =0 then
if J = 0 then Type III,
otherwise Type I,
otherwise
if J =0 or F5=0 then Type I,
otherwise if D = 0 then Type II,
otherwise Type L
Case 27:

Define
I:= Uy + 20,73,
J = —003?2 — 0,20y,
D :=1%-27J%
U= Uoly + 20, T3,
V= Uols® — 0,20,

W .= \1’0\1’4 - 16\111\113.

141

A. An algorithm for the determination of the Petrov type

The following tests lead to the Petrov type:

if V =0 then
if U = 0 then Type D,
otherwise if W = 0 then Type II,
otherwise Type I,

otherwise if I = 0 then
if J =0 then Type III,
otherwise if D # 0 or J = 0 then Type I,
otherwise if D = 0 then Type II,
otherwise Type I.

Case 31:

Define

=TTy — 0,2,
= UgWU3 — U0y,
=0, U3 — Uy,
= WUy — Uy2,

i= 37U,? + 270, U3,

- O & ox» Mo

= E — 44,

= UoF — 20, H,

= UyH — U3F + UoA,
= Uy%I — 3H?,

= Wl — 12H?,

O N 1 G @

= I3 _ 2772,

The following tests lead to the Petrov type:
if H =0 then
if F =0 then
if E = 0 then Type N,
otherwise Type I,

otherwise,
if £ =0 then if @ = 0 then Type II,
otherwise Type I,
otherwise
if I =0o0r D #0 Typel,
otherwise Type II,
otherwise
if I = 0 then if J = 0 then Type III,

otherwise Type I,
otherwise if G = 0 then
if Z =0 then Type D,
otherwise if S =0 then Type 11,
otherwise Type I,
otherwise if J = 0 or D # 0 then Type I,
otherwise Type II.

142

B

Transformations to standard form
for given Petrov types

The spin matrices which will transform a general Weyl tensor into the canonical forms
listed in Table 2.1 are given below. The transformation to be used is determined by
the initial zero/non-zero state of the individual Weyl tensor components and the Petrov
type. Transformations are decomposed into a pair of null rotations about each of the
Weyl spinors and a scaling spin-boost as follows:

A0 1 0 1 « A Ao
= (B.1)
0 A“) ([3 1) (0 1) (ﬁ/A (,8a+1)/,\>

The following table lists an appropriate choice of o, 8 and A which will bring the Weyl
spinor into its standard form. For most algebraically special cases, the expressions are
of a simple form and are stated explicitly. The more general type I and II configurations
(in particular cases 19, 23, 27, 31) require the solution of a quartic, and it will only be for
very special values of the Weyl components that a practically useful dyad transformation
can be found.

Weyl components | Type | Transformation

1 | (0,0,0,0,N) N a=20
B=0
A=/

2 | (0,0,0,N,0) II1 a=0
B=0
A =Ty

3 | (0,0,0,N,N) I11 a=0
B=-V30,/4
A=y

4 | (0,0,N,0,0) D a=
B=0
A=

143

B. Transformations to standard form for given Petrov types 144

Weyl components | Type | Transformation
b) (0,0,N,0,N) II a=0
B=0
A=/t
6 (0,0,N,N,0) 1I a=20
B=-V3/3¥,
A= (-203/30,)/"
7 | (0,0,N,N,N) D a=0
B=—V¥3/3¥9
A=1
II a=0
B=—-¥3/3¥,
A= (—202/30;, + Ty)l/4
8 | (0,N,0,0,0) — (equivalent to case 2 under basis interchange)
9 | (O,N,0,0,N) I a=0
B =(~T4/401)"/3
A=1
(result is type 14.)
10 | (O,N,0,N,0) I a=—(0,/¥3)1/2
B =(1/2)(¥3/¥1)!/?
A= (1) (4B E)2
11 | (O,N,0,N,N) 1I a=—8V3/30,
B =5TU4/16¥3
A = (1/2)(-294/3)/
(0,N,0,N,N) I a=0
B = —(1/6)(~(30)** +1293)/(30)* Ty
A=1
where o0 = ~9U4U/2 + \/3(6403 + 27020,)1/2
(result is type 14.)
12 | (O,N,N,0,0) — (equivalent to case 6 under basis interchange)
13 | (0,N,N,0,N) M |a=-T/T,
B =2¥y/3%,

A = (203/302)1/4

a=0

B. Transformations to standard form for given Petrov types

145

Weyl components | Type | Transformation
B = (0%3 + U3 — Uy01/3) /20130,
A=1
where o = —U2¥, — U3 + U/ 2(V20, + 203)1/27,
(result is type 14.)
14 | (O,N,N,N,0) I1 a=-47,/37,
f=3T,/8¥,
X = (3/2)(¥3/120%)
I a=(¥,;/03)1/?
B = —(1/2)(Ws/¥1)"/?
A= (U3/20 (401 T3 + 3T,))1 /4
15 { (0,N,N,N,N) 11 a=-2V,/T,
B =¥y/2V,
A=y /2(—~Tp)1/?
11 oa=0
B =—-V9/2W,
A=1
(result is type 11.)
15 I a=0
8 = 32/3 (32/302/3~12;1’810‘{?:;:1’2(‘1’2—0”3))
A=1
where o = 180, Uy U3 — 9020, — 9U3 + ¥,./37,
v = 64T, T3 — 360302 — 108F, ¥, U370,
+27029% + 54030,
16 | (N,0,0,0,0) — (equivalent to case 1 under basis interchange)
17 | (N,0,0,0,N) I a=0
B =0
A\ = \1,61/4
18 | (N,0,0,N,0) — (equivalent to case 9 under basis interchange)
19 | (N,0,0,N,N) II a=-3V3/¥y
B =20,/97;
= (T,/9)1/4
I a is root of Wpzt + 4T3z + Uy =0

=0

B. Transformations to standard form for given Petrov types

146

Weyl components | Type | Transformation
A=1
(result is type 15.)
20 | (N,0,N,0,0) — (equivalent to case 5 under basis interchange)
21 | (N,0,N,0,N) D o= —(—¥g/3%,)!/2
B =—(1/2)(=3T2/¥o)'/?
A=1
I a=0
B=0
\= \1151/4
22 | (N,0,N,N,0) — (equivalent to case 13 under basis interchange)
23 | (N,0,N,N,N) III a=—2U,/37;
B =303/80,
A= -303%/v20,
LI a is root of Wzt + 40323 + 6T9z2 + ¥y =0
=0
A=1
(result is type 15.)
24 | (N,N,0,0,0) — (equivalent to case 3 under basis interchange)
25 | (N,N,0,0,N) — (equivalent to case 19 under basis interchange)
26 | (N,N,0,N,0) — (equivalent to case 11 under basis interchange)
27 | (N,N,0,N,N) D a=(1++/3)¥y/27,
B=-1/V3¥,
A=1
Il | a=-Ty/27,
B =T/
A= —203%
LII a=10
B=-"1/T
A=1
(result is type 23.)
28 | (N,N,N,0,0) — (equivalent to case 7 under basis interchange)
29 | (N,N,N,0,N) — (equivalent to case 23 under basis interchange)
30 | (N,N,N,N,0) — (equivalent to case 15 under basis interchange)

B. Transformations to standard form for given Petrov types 147

Weyl components | Type | Transformation
31 | (N,N,N,N,N) N a=—-Vy/¥;
=0
A= Uy 03/
D a=VYy/ts

B = ~tit_J2¢/3Uo(T? — TyTy)1/2
A =14/2V3(02 — Ty¥,)l/?
where t+ = -0 £ /3(¥? — ¥¥,)1/?

I | a=i((¥e¥y — U2)/(Ty0, — T2))1/4
B=TUy/4(V2 — yly)/2
A= (05— Uply)t/t
LII | aisroot of ¥yz? + 4323 + 6Ug2% +4¥,2 4+ Ty =0

p=0
A=1
(result is type 15.)

C

A classification of the
Edgar-Ludwig metrics

The following is a transcript of Maple output displaying the use of the spinor package to
classify the Edgar-Ludwig conformally flat pure radiation metrics Wils (1989), Koutras
(1992), Skea (1997a).

> restart: grtQ):

GRTensorll Version 1.65b (R4)
5 December 1997
Developed by Peter Musgrave, Denis Pollney and Kayll Lake
Copyright 1994 — 1997 by the authors.
Latest version available from : http : //astro.queensu.ca/ grtensor/

Defaults read from [home/dp/grii/libj [/ grtensor.ini
> grlib (classify):

Cartan-Karlhede classification routines
Version 0.9 4 Dec 1997

> qload (EL);

Calculated ds for EL (.021 sec.)
Default spacetime = EL
For the EL spacetime :
Coordinates
x(up)
%=[u, w, z, Y
Line element

ds? =
(2f(u)xg(u)y+2f(u)xh(u)+2f(u)z3+2f(u)my2—w2) du?® +2z du d w
2w du dz — dz°® - dy2

> mnptetrad (:

For the EL spacetime :

C. A classification of the Edgar-Ludwig metrics 149

Basis inner product

n(bup, bup)
(01 0 o]
L@m_ |10 0 0
00 0 -1
(00 -1 0

Null tetrad (covariant components)
NP1(dn)
lo=[z,0,0,0]

NPn(dn)

g

2 T
NPm(dn)

1 1
mg = [0, 0, —'2-\/5, —51-\/-21
NPmbar(dn)

mbar, = [O, 0, —-1\/5, %I\/i]

_ [1 2f(w)zg(@)y + 26w sh() +2{(w) e’ +2fwey’ ~w? | _w 0]

2
The null tetrad has been stored as e(bdn,dn).

> classify();

Basis/tetrad related object definitioms
Last modified 5 February 1997

Lambda is zero.

WeylSp is zero.

Fixing RicciSp under {SL(2,C)} transformations.

RicciSp can be modified by the following transformations: {Boost,
lnswap}

RicciSp is in canonical form for the lnswap isotropy.
RicciSp is not in canonical form for Boost transformations.
Transforming RicciSp.

RicciSp is in standard form.

Dyad transformation stored as: dyfix[0]

The rotated frame has been named ELO.

Default metric is now ELO

Isotropies of the ELO frame: {Spin, Null2D}

Fixed spinors: {RicciSp}

Level 0 frame fixing completed.
Remaining isotropy: {Spin, Null2D}

Found 0 independent functions.
Level O completed.
Continue? (1=yes [default], other=no):

C. A classification of the Edgar-Ludwig metrics 150

> 1;

Fixing DPhi under {Spin, Null2D} transformations.

DPhi can be modified by the following transformations: {NullR, Spin}
DPhi is in canonical form for the Spin isotropy.

DPhi is not in canonical form for NullR transformations.
Transforming DPhi.

DPhi is in standard form.

Dyad transformation stored as: dyfix[1]

The rotated frame has been named ELO1.

Default metric is now ELO1

Isotropies of the ELO1 frame: {NullI}

Fixed spinors: {DPhi, RicciSp}

Level 1 frame fixing completed.
Remaining isotropy: {NullI}

Found 1 independent function.
Level 1 completed.
Continue? (i=yes [default], other=no):

> 1;

Fixing D2Phi under {Nulll} transformations.

D2Phi is invariant under {Nulll} transformatioms.
Isotropies of the ELO1 frame: {NullI}

Fixed spinors: {DPhi, RicciSp, D2Phi}

Fixing DalPhi under {NullIl} transformatioms.
DalPhi is invariant under {Nulll} transformations.
Isotropies of the ELO1l frame: {NullI}

Fixed spinors: {DPhi, RicciSp, D2Phi, DalPhi}

Level 2 frame fixing completed.
Remaining isotropy: {NullIl}

Found 3 independent functiomns.
Level 2 completed.
Continue? (l=yes [default], other=no):

> 1;

Fixing D3Phi under {NullI} transformations.

D3Phi is invariant under {Nulll} tramnsformations.
Isotropies of the ELO1 frame: {NullI}

Fixed spinors: {DPhi, RicciSp, D2Phi, D3Phi, DalPhi}

Fixing DalDPhi under {Nulll} transformatioms.

DalDPhi is invariant under {Nulll} transformatiomns.
Isotropies of the ELO1 frame: {NullI}

Fixed spinors: {DPhi, RicciSp, DalDPhi, D2Phi, D3Phi, DalPhi}

Level 3 frame fixing completed.
Remaining isotropy: {NullI}

Found 4 independent functioms.
Level 3 completed.
Continue? (1=yes [default], other=mo):

R((D? ®)5,5) =

C. A classification of the Edgar-Ludwig metrics 151
> 1,

Fixing D4Phi under {Nulll} transformatioms.

D4Phi is invariant under {Nulll} transformations.

Isotropies of the ELO1 frame: {NullI}

Fixed spinors: {DPhi, RicciSp, DalDPhi, D2Phi, D4Phi, D3Phi, DalPhi}

Fixing DalD2Phi under {Nulll} transformations.

DalD2Phi is invariant under {Nulll} transformatioms.

Isotropies of the ELO1 frame: {Nulll}

Fixed spinors: {DPhi, RicciSp, DalDPhi, D2Phi, DalD2Phi, D4Phi,
D3Phi, DalPhi}

Fixing Dal2Phi under {NullIl} transformations.

Dal2Phi is invariant under {Nulll} transformations.

Isotropies of the ELO1 frame: {Nulll}

Fixed spinors: {DPhi, RicciSp, DalDPhi, D2Phi, DalD2Phi, Dal2Phi,
D4Phi, D3Phi, DalPhi}

Level 4 frame fixing completed.
Remaining isotropy: {Nulll}

Found 4 independent functionms.
Level 4 completed.
Continue? (1=yes [default], other=no):

> 1
1

ELO1 has been fully classified.

Results have been stored as the ELO1 spacetime.

The isotropy of the spacetime is: {NullI}

Independent functions are stored in the global variable:
grG_indep_fns_[ELO1]

> idisplay ();

Independent components for the ELOI spacetime
ﬁﬂ(%f(u))3+i V2u? _§\/§(a%f(u))w2 5 IV2wg(u)
24 f(u)9/2 23/ 12 f(u)3/22%2 8 f(u)5/227/2 5 Vi) 2372
5 IV2wy 5 V2wh(u) 1 ﬂw(ai:;f(u)) 5V2wg(u)y 5 V2wy?

T3 w6 Jime? & Twr2sl 6 Jiwa 2 6 i
5 IV2(£1fu)gu) 5IvV2Z(Ziw)y 5 v2(&f(u)h(u)

T 12 f(u)3/2 73/2 T 6 f(u)3/253/2 12 f(u)3/2 £5/2
5 V2 (& f(w) (Zrfw) | 5 vZ(Hiw)e(w)y y 5 V25 W)y
4 f(u)7/2 z3/2 12 f(u)?’/2225/2 12 f(u)3/2 5/2

C1V2(Z)y | 1V2(E) 1 v2(Fh)

Viw 5 VE(L)
4 fifu)zs2 4 (PP 4\ /T(u) 252

5
6 Vw232 12 f(u)3/?

+

>

R((D ®)2,3) = =

C. A classification of the Edgar-Ludwig metrics 152

5 (Zfw)? 5 (2fu)w 5 w? 1 2nf(u)
R(D? @ = 2% \WJ) 9 5 2 1 Bu
(D" %)) 9 flu)Pdz 18 f(u)22? t 18 f(u) 23 T3 f(u)2 z
lglu)y ITh(y) ' 5 ¥
2 z2 2 z? 2 z2

R((D*®)3,4) =

1
2
1 %f(u) 2 w
3 f(u)3/2 232 3

D

Metric components for the
Stark-Piran and Bondi systems

The following tables list the values of the Stark-Piran metric components in terms of
the variables used in Stark and Piran (1987) and those used in d’Inverno and Vickers
(1996). For convenience of comparisons at the interface, the Bondi metric components
of d’Inverno and Vickers (1997) are also listed.

Stark & Piran «+— Rd’l & JAV
N +— q,
N; +— By,
hij <— Y,

B? =1+ 7sin? 8 «— 733/r?sin? 6,
€ < yo3/r*B?sin® 6,
A% sy,
BT =N"[r+— —B'/r,
G = N%/sinf «— —p*/sin®,

N¢ s -3,

153

D. Metric components for the Stark-Piran and Bondi systems

Metric components:

154

Rd’T & JAV Stark & Piran Bondi

goo | —(a? = BHB.) | —N? 4 r2[A2(B7)? + sin? O([B~2 —(r~1Ve?# — r2U%e?" cosh 26—
+B2%¢25in® 0]G? + 2B%¢sin? 0GN? || 2r2UW sinh 26 — r>W?2e~27 cosh 26)
+B%(N?)?)]

gor | Bt ~rA%B7 _ 2B

go2 | 12484 —r?sin@([B~? + B2%¢2sin 0]G —r2(Ue? cosh 26 + W sinh 26)
+B2¢sin® ON?)

gos | v3aBt —r2B?sin? §(¢ sin? G + N?) —r2sin @(U sinh 26 + We~2 cosh 26)

g1 | M A? 0

g14 | 0 0 0

g2 | Y22 r2(B~2 + B%¢%sint) r2e27 cosh 26

923 | 723 r2B2¢sin® 6 72 sin § sinh 26

933 | 733 r?B?sin? 0 r2e~27 sin? @ cosh 26

g | —1/a2 _1/N? 0

g% | g1/a? —rB7/N? =26

g% | p*/e? —Gsinf/N? 0

g% | B3/ ~N$/N? 0

Il il AR Ve /r

g'2 :_[2_175_2 —rsi;f)ﬁfG _Ue-28

gt :—plﬁ Lger_(t ~We2$/sin6

g% Ty — %ﬁ %2- - sin_;VBQG_z e~%Y cosh 26 /r?

9% | B - 5;‘2’3 _Bszsme — €in ?\g;\m ~sinh28/r% sin

g% g (‘33222 ﬁB_zjzlz:f; ;in4 o - (1\1@2 e2Y cosh 26 /7% sin? §

Bibliography

Abrahams, A. M., C. B. Cook, S. L. Shapiro, and S. A. Teukolsky (1994). Solving
einstein’s equations for rotating space-times: Evolution of relativistic star clusters.
Phys. Rev. D49, 5153.

Abrahams, A. M. and C. R. Evans (1992). Trapping a geon: Black hole formation by
an imploding gravitational wave. Phys. Rev. D/6, 4117.

Abrahams, A. M. and C. R. Evans (1993). Critical behavior and scaling in vacuum
axisymmetric gravitational collapse. Phys. Rev. Lett. 70, 2980.

Alcubierre, M., G. Allen, B. Briiggmann, E. Seidel, and W.-M. Suen (1999). Towards an
understanding of the stability properties of the 3+1 evolution equations in general
relativity. LANL eprint archive. gr-qc/9908079.

Alcubierre, M., B. Brugmann, D. Holz, E. Seidel, R. Takahashi, and J. Thornburg
(1999). Symmetry without symmetry: Numerical simulation of axisymmetric sys-
tems using cartesian grids. LANL eprint archive. gr-qc/9908012.

Aman, J. E. (1986). Manual for CLASSI ~ classification programs for geometries in
general relativity. Technical report, University of Stockholm.

Aman, J. E., R. A. d’'Inverno, G. C. Joly, and M. A. H. MacCallum (1991). Quar-
tic equations and classification of Riemann tensors in general relativiy. Gen. Rel.
Grav. 23, 1023-1056.

Aman, J. E. and A. Karlhede (1980). A computer-aided clomplete classification of
geometries in general relativity. First results. Phys. Lett. A80, 229-231.

Anninos, P., E. Seidel, R. Price, J. Pullin, and W.-M. Suen (1995). Headon collision of
two black holes: Comparison of different approaches. Phys. Rev. D52, 4462-4480.

Arnowitt, R., S. Deser, and C. W. Misner (1962). The dynamics of general relativity.
In L. Witten (Ed.), Gravitation: an introduction to current research, Chapter 7,
pp. 227-265. John Wiley & Sons.

Bardeen, J. M. and T. Piran (1983). General relativisitic axisymmetric rotating sys-
tems: Coordinates and equations. Phys. Rep. 96, 205-250.

Bernstein, D., D. Hobill, E. Seidel, L. Smarr, and J. Towns (1994). Numerically gen-
erated axisymmetric black hole space-times: Numerical methods and code tests.
Phys. Rev. D50, 5000.

Bishop, N. T. (1992). Some aspects of the characteristic initial value problem in nu-
merical relativity. In R. d’Inverno (Ed.), Approaches to Numerical Relativity, Cam-
bridge, pp. 20-33. Cambridge University Press.

155

BIBLIOGRAPHY

Bishop, N. T., R. Gomez, P. R. Holvorcem, R. A. Matzner, P. Papadopoulos, and
J. Winicour (1996). Cauchy-Characteristic Matching: A New Approach to Radia-
tion Boundary Conditions. Phys. Rev. Lett. 76, 4303-4306.

Bishop, N. T., R. Gomez, L. Lehner, M. Maharaj, and J. Winicour (1997). High-
powered gravitational news. Phys. Rev. D56, 6298-6309. gr-qc/9708065.

Bishop, N. T., R. Gémez, L. Lehner, and J. Winicour (1996). Cauchy-characteristic
extraction in numerical relativity. Phys. Rev. D54, 6153-6165.

Bicdk, J., P. Reilly, and J. Winicour (1988). Boost-Rotation Symmetric Gravitational
Null Cone Data. Gen. Rel. Grav. 20, 171-181.

Bondi, H., M. G. J. van der Burg, and A. W. K. Metzner (1962). Gravitational waves
in general relativity VII. waves from axi-symmetric isolated systems. Proc. Roy.
Soc. Lond. A269, 21-52.

Brady, P. R., J. D. E. Creighton, and K. S. Thorne (1998). Computing the merger of
black-hole binaries: The ibbh problem. Phys. Rev. D58, 061501. gr-qc/9804057.

Brandt, S. R. and E. Seidel (1995). The evolution of distorted rotating black holes. 1:
Methods and tests. Phys. Rev. D52, 856-869. gr-qc/9412072.

Brans, C. H. (1965). Invariant approach to the geometry of spaces in general relativity.
J. Math. Phys. 6, 95-102.

Carminati, J. and R. G. McLenaghan (1991). Algebraic invariants of the riemann
tensor in a four-dimensional lorentzian space. J. Math. Phys. 82, 3135-3140.

Cartan, E. (1946). Lecons sur la géométrie des espaces de Riemann. Paris: Gauthier—
Villars.

Choptuik, M. W. (1991). Consistency of finite-difference solutions of einstein’s equa-
tions. Phys. Rev. D/4, 3124-3135.

Choptuik, M. W. (1993). Universality and scaling in gravitational collapse of a mass-
less scalar field. Phys. Rev. Lett. 70, 9-12.

Christodoulou, D. and S. Klainerman (1993). The global nonlinear stability of
Minkowski space. Princeton, NJ: Princeton University Press.

Christoffel, E. B. (1869). lber die Transformation der homogenen Differen-
tialausdriicke und der Krimmung hoherer Mannigfaltigkeiten. J. Reine Angew.
Math. 70, 46.

Chruéciel, P., M. A. H. MacCallum, and D. Singleton (1995). Gravitational waves in
general relativity XIV. Bondi expansions and the ‘polyhomogeneity’ of #+. Philos.
Trans. R. Soc. London, Ser A850, 113-137.

Clarke, C. J. S. and R. A. d’'Inverno (1994). Combining Cauchy and characteristic
numerical evolutions in curved coordinates. Class. Quantum Grav. 11, 1463-1468.

Clarke, C. J. S., R. A. d’Inverno, and J. A. Vickers (1995). Combining Cauchy
and characteristic codes. I. The vacuum cylindrically symmetric problem. Phys.
Rev. D52, 6863-6867.

Collins, J. M. (1991). The Karlhede classification of type N vacuum spacetimes. Class.
Quantum Grav. 8, 1859-1869.

156

BIBLIOGRAPHY

Collins, J. M., R. A. d’Inverno, and J. A. G. Vickers (1990). The Karlhede classification
of type D spacetimes. Class. Quantum Grav. 7, 2005-2015.

Collins, J. M., R. A. d’Inverno, and J. A. G. Vickers (1991). Upper-bounds for the
Karlhede classification of type D vacuum spacetimes. Class. Quantum Grav. 8,
L215-L217.

Cormack, W. J. and G. S. Hall (1979). Riemannian Curvature and the Classification of
the Riemann and Ricci Tensors in Space-Time. Int. Jrn. Theor. Phys. 18, 279-289.

Detweiler, S. (1987). Evolution of the constraint equations in general relativity. Phys.
Rev. D35, 1095-1099.

d’Inverno, R. A. (1995). Polar slicing in axially symmetric systems. Class. Quantum
Grav. 12, L75-L80.

d’Inverno, R. A. and R. A. Russell-Clark (1971). CLAM - its function, structure and
implementation. Computer Journal 17, 229.

d’Inverno, R. A. and J. Stachel (1978). Conformal two-structure as the gravitational
degrees of freedom in general relativity. J. Math. Phys. 19, 2447-2460.

d’Inverno, R. A. and J. A. Vickers (1996). Combining Cauchy and characteristic codes.
ITI. The interface problem in axial symmetry. Phys. Rev. D54, 4919-4928.

d’'Inverno, R. A. and J. A. Vickers (1997). Combining Cauchy and characteristic codes.
IV. The characteristic field equations in axial symmetry. Phys. Rev. D56, 772-784.

Dubal, M. R., R. A. d’Inverno, and C. J. S. Clarke (1995). Combining Cauchy and
characteristic codes. II. The interface problem for vacuum cylindrical symmetry.
Phys. Rev. D52, 6868-6881.

Evans, C. (1986). An approach for calculating axisymmetric gravitational collapse.
In J. Centrella (Ed.), Dynamical Spacetimes and Numerical Relativity, pp. 3-39.
Cambridge: Cambridge University Press.

Fitch, J. P. (1971). An algebraic manipulator. Ph. D. thesis, Cambridge University.

Friedrich, H. (1981). On the regular and asymptotic characteristic initial value problem
for Einstein’s vacuum field equations. Proc. Roy. Soc. Lond. A375, 169.

Friedrich, H. and A. D. Rendall (2000). The Cauchy problem for Einstein equations.
LANL eprint archive. gr-qc/0002074.

Friedrich, H. and J. M. Stewart (1983). Characteristic initial data and wavefront
singularities in general relativity. Proc. Roy. Soc. Lond. A385, 345-371.

Frittelli, S. (1997). Note on the propagation of the constraints in standard 3+1 general
relativity. Phys. Rev. D55, 5992-5996.

Geroch, R. P. (1977). Asymptotic structure of space-time. In F. P. Esposito and L. P.
Witten (Eds.), Asymptotic Structure of Space-Time. New York: Plenum.

Gémez, R., R. Isaacson, and J. Winicour (1992). Evolution of scalar fields from char-
acteristic data. jcompphys 968, 11.

Gémez, R., P. Laguna, P. Papadopoulos, and J. Winicour (1996). Cauchy-
characteristic evolution of Einstein-Klein-Gordon systems. Phys. Rev. D5/, 4719
4727.

157

BIBLIOGRAPHY 158

Goémez, R., L. Lehner, R. L. Marsa, and J. Winicour (1998). Moving black holes in
3d. Phys. Rev. D57, 4778-4788.

Gémez, R., R. L. Marsa, and J. Winicour (1997). Black hole excision and matching.
Phys. Rev. D56, 6310-6319.

Gémez, R., P. Papadopoulos, and J. Winicour (1994). Null cone evolution of axisym-
metric vacuum space-times. J. Math. Phys. 85, 4184-4204.

Goémez, R. e. a. (1998). Stable characteristic evolution of generic three-dimensional
single-black-hole spacetimes. Phys. Rev. Lett. 80, 3915-3918.

Hawking, S. W. and G. F. R. Ellis (1973). The large scale structure of space-time.
Cambridge: Cambridge University Press.

Hon, E. (1975). Application of REDUCE system to some problems in general relativity.
Master’s thesis, University of Waterloo.

Husa, S. and J. Winicour (1999). Asymmetric merger of black holes. Phys. Rev. D60,
4019-4032.

Joly, G. C. and M. A. H. MacCallum (1990). Computer-aided classification of the
Ricci tensor in general relativity. Class. Quantum Grav. 7, 541-556.

Karlhede, A. (1979). A review of the equivalence problem. Technical report, University
of Stockholm.

Karlhede, A. (1980). A Review of the Geometrical Equivalence of Metrics in General
Relativity. Gen. Rel. Grav. 12, 693-707.

Kinnersley, W. (1969). Type D Vacuum Metrics. J. Math. Phys. 10, 1195.

Koutras, A. (1992). A spacetime for which the Karlhede invariant classification re-
quires the 4th covariant derivative of the Riemann tensor. Class. Quantum Grav. 9,
L143-L145.

Kramer, D., H. Stephani, H. E., and M. MacCallum (1980). Ezact Solutions of Ein-
stein’s Field Equations. Cambridge: Cambridge University Press.

Kreiss, H. and J. Oliger (1973). Methods for the approximate solutions of time de-
pendent problems. Technical report, Global Atmospheric Research Program.

Krivan, W., P. Laguna, P. Papadopoulos, and N. Andersson (1997). Dynamics of
perturbations of rotating black holes. Phys. Rev. D56, 3395-3404. gr-qc/9702048.

Letniowski, F. W. and R. G. McLenaghan (1988). An improved algorithm for quartic
equation classification and Petrov classification. Gen. Rel. Grav. 20, 463-484.

MacCallum, M. A. H. and J. E. Aman (1986). Algebraically independent nth deriva-
tives of the riemann curvature spinor in a general spacetime. Class. Quantum
Grav. 3, 1133-1141.

Machado Ramos, M. P. and J. A. G. Vickers (1996). Invariant differential opera-
tors and the Karlhede classification of type N vacuum solutions. Class. Quantum
Grav. 13, 1589-1600.

Musgrave, P. and K. Lake (1996). Junctions and thin shells in general relativity using
computer algebra: I. The Darmois-Israel formalism. Class. Quantum Grav. 13,
1885-1899.

BIBLIOGRAPHY 159

Musgrave, P. and K. Lake (1997). Junctions and thin shells in general relativity using
computer algebra: I. The null formalism. Class. Quantum Grav. 14, 1285-1294.

Nakamura, T. and T. Sato (1981). General relativisitic collapse of rotating stars. Phys.
Lett. A86, 318-320.

Newman, E. T. and R. Penrose (1962). An approach to gravitational radiation by a
method of spin coefficients. J. Math. Phys. 3, 896-902. (Errata 4:998 (1963)).

Penrose, R. (1963). Asymptotic properties of fields and spacetimes. Phys. Rev. Lett. 10,
66—68.

Penrose, R. and W. Rindler (1984). Spinors and space-time, Volume 1. Cambridge:
Cambridge University Press.

Penrose, R. and W. Rindler (1986). Spinors and space-time, Volume 2. Cambridge:
Cambridge University Press.

Petrov, A. Z. (1954). Classification of spaces defined by gravitational fields. Uch. Zap.
Kazan Gos. Uniw. 114, 55-69. English translation: Tran. No. 29, Jet Propulsion
Lab. Cal. Inst. Tech. Pasadena, 1963.

Pirani, F. A. E. (1965). Introduction to gravitational radiation theory. In A. Trautman,
F. A. E. Pirani, and H. Bondi (Eds.), Lectures on general relativity and gravita-
tion: Brandeis summer institute in theoretical physics, Volume 1, pp. 251-369.
Englewood Cliffs, NJ: Prentice Hall, Inc.

Pollney, D. (1996). Identities among sp-invariants. Queens’ University, Kingston.

Pollney, D., P. Musgrave, K. Santosuosso, and K. Lake (1996). Algorithms for com-
puter algebra calculations in spacetime: I The calculation of curvature. Class.
Quantum Grav. 13, 2289-2309.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1986). Numerical
Recipes: The art of Scientific Computing. Cambridge: Cambridge University Press.

Reula, O. A. (1998). Hypberbolic methods for einstein’s equations. Living Reviews I,
1998-3.

Sachs, R. K. (1962). Gravitational waves in general relativity VIII. waves in asymp-
totically flat space-time. Proc. Roy. Soc. Lond. A270, 103-126.

Scheel, M. A., T. W. Baumgarte, G. B. Cook, S. L. Shapiro, and S. A. Teukolsky
(1998). Treating instabilities in a hyperbolic formulation of einstein’s equations.
Phys. Rev. D58, 044020.

Schmidt, H.-J. (1994). Why do all the curvature invariants of a gravitational wave
vanish? In G. A. Sardanashvily (Ed.), New frontiers in gravitation, pp. 337-344.
Palm Harbour, FL: Hadronic Press. gr-qc/9404037.

Schmidt, H.-J. (1998). Consequences of the noncompactness of the Lorentz group. Int.
J. Theor. Phys 37, 691-696. gr-qc/9512007.

Segré, C. (1884). Sulla teoria e sulla classificazione delle omografie in uno spazio
lineare ad un numero qualunque di dimensioni. Memoria della R. Accad. Lincei
serte 3a XIX, 127-148.

Seixas, W. (1991). Extensions to the computer-aided classification of the Ricci tensor.
Class. Quantum Grav. 8, 1577-1585.

BIBLIOGRAPHY

Sjodin, K. R. P., U. Sperhake, and J. A. Vickers (2000). Dynamic cosmic strings.
LANL eprint archive. gr-qc/0002096.

Skea, J. (1996). Standard forms for the ricci spinor in CLASSI. Private communication.

Skea, J. E. F. (1997a). The invariant classification of conformally flat pure radiation
spacetimes. Class. Quantum Grav. 14, 2393-2404.

Skea, J. E. F. (1997b). Online invariant classification database. WWW site:
http://edradour.symbcomp.uerj.br/.

Skea, J. E. F. (1997c). Type N spacetimes whose invariant classifications require the
fourth covariant derivative of the Riemann tensor. Class. Quantum Grav. 14, 2947-
2950.

Smarr, L. and J. W. York (1978). Kinematical conditions in the construction of space-
time. Phys. Rev. D15, 2529-2551.

Stark, R. F. and T. Piran (1987). A general relativistic code for rotating axisymmetric
configurations and gravitational radiation: Numerical methods and tests. Comput.
Phys. Rep. 5, 221-264.

Stewart, J. (1990). Advanced general relativity. Cambridge: Cambridge University
Press.

Stewart, J. M. and H. Friedrich (1982). Numerical Relativity I: The characteristic
initial value problem. Proc. Roy. Soc. Lond. A384, 427-454.

Tariq, N. and B. O. J. Tupper (1975). A class of algebraically general solutions of the
einstein-maxwell equations for non-null electromagnetic fields. grg 6, 345.

Teukolsky, S. A. (1982). Linearized quadrupole waves in general relativity and the
motion of test particles. Phys. Rev. D26, 745.

Thomas, T. Y. (1934). The Differential Invariants of Generalized Spaces. London:
Cambridge University Press.

van Stockum, W. J. (1937). The gravitational field of a distribution of particles rotat-
ing about an axis of symmetry. Proc. Roy. Soc. Edinburgh A57, 135.

Wald, R. M. (1984). General Relativity. Chicago: University of Chicago Press.

Wils, P. (1989). Homogeneous and conformally ricci flat pure radiation fields. Class.
Quantum Grav. 6, 1243-1251.

Winicour, J. (1985). Logarithmic asymptotic flatness. Found. Phys. 15, 605-615.

Winicour, J. (1998). Characteristic Evolution and Matching. Living Reviews 1, 1998-
5.

Winicour, J. (1999). The characteristic treatment of black holes. LANL eprint archive.
gr-qc/9911106.

York, J. W. (1979). Kinematics and dynamics of general relativity. In L. Smarr (Ed.),
Sources of gravitational radiation, pp. 175-201. Cambridge: Cambridge University
Press.

160

