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Abstract

This thesis concerns two distinct areas of research (i) the development of a practical
set of methods for the classification of spacetimes in general relativity, and (ii) the
numerical solution of the vacuum Einstein equations on null hypersurfaces.

The first part examines the Cartan-Karlhede method for determining a unique
classification of algebraically distinct spacetimes. A key aspect of this method is the
establishment of a set of 'standard forms' for symmetric spinors. A set of standard
forms is developed, with an emphasis on the need for consistency, and reduction of
computational complexity. The Cartan-Karlhede method has been incorporated into
a set of programs for the computer algebra system Maple and form a general set of
tools for the use of relativists. Certain inherent difficulties with the Cartan-Karlhede
methods, such as the need to determine the roots of high order polynomials, are
identified, along with potential alternative methods for handling these difficulties.

The second part of the thesis details the development of a Cauchy-characteristic
matching (CCM) code in axisymmetry. In the CCM technique, a spacetime is evolved
on two separate grids with information passed between the two. The advantage of
this method is the ability to use well-developed Cauchy codes in the interior (where
characteristics would tend to develop caustics) and a characteristic region which extends
to null infinity, alleviating the need for artificial boundary conditions. The code which is
being developed passes information in both directions across the boundary. A condition
at null infinity ensures that Bondi-type slicing of the spacetime is maintained, with the
advantage that the mass and news functions are thus easily identifiable.

A full description of the evolution systems in both the Cauchy and characteristic
regions is given. The interface is implemented along a single r = constant surface to
avoid difficulties arising from interpolation between the grids over a region. Difficulties
arise in coordinating the evolution in each region so that the required information is
provided at the boundary when it is needed, however for the given system of equations
they can be surmounted in a manner consistent with the overall evolution scheme.
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Part I

The classification of spacetimes in

general relativity



Introduction: The

Cartan-Karlhede method

When Einstein first presented his geometrical theory of the gravitational field, general

relativity, he was dismayed to think that the theory would find little practical use. The

reason for his pessimism was the complicated non-linear nature of his field equations, a

property which he thought would render exact solution virtually impossible. Within a

year of its publication, however, a most significant solution had already been discovered,

namely the spherically symmetric 'black hole' of Schwarzschild. Since then, hundreds

of exact solutions have been found, some more and some less physically significant, and

the study of their properties has become an industry in itself.

The theory of general relativity is a geometrical theory in that its solutions describe

surfaces of four dimensional spacetime. The conventional way of representing solutions

is via a line-element or a set of basis vectors, and crucial to this form of representation

is the assignment of labels to points on the surface, which amounts to the choice of

coordinates.

Early on it was recognised that the freedom to choose coordinates could be both

a benefit and a complication. On the one hand, coordinates can be fixed in such a

way as to take advantage of special symmetries of certain configurations of Einstein's

equations. In this way, the equations can be simplified dramatically and often this is the

most powerful tool available in finding exact solutions.

On the other hand, the choice of a particular set of coordinates can lead to prop-

erties which only seem to cloud the analysis by introducing effects which are not at all

physical but rather due to some limitation in the method used for labelling points on

the spacetime. A significant example of this is the coordinate singularity at r = 2m of

the Schwarzschild solution. This was long thought to be a problem with the underlying
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theory, and only later shown to be simply a result of the fact that Schwarzschild's choice

of coordinates were not appropriate for describing the entire solution.

Another problem arises when two solutions are found by different means, but pos-

sessing the same symmetries, and in different coordinates. The question arises, what are

the relations between two such solutions, and in particular, is it possible that they could

be equivalent solutions simply expressed in different coordinates? One way to answer

this question is to look for a coordinate transformation relating the two solutions. If one

can be found, then it is clear that the solutions are equivalent. However, if a coordinate

transformation can not be found, there is the problem of proving whether or not one

exists.

As might be expected, such a proof turns out to be a non-trivial exercise, at least

in practice. The theory behind such proofs has a long history, beginning with Christof-

fel (1869), who first proposed a comparison of curvature tensor components and their

derivatives. The most significant step forward was provided by Cartan (1946), who was

able to show that in 4 dimensions the required components are those of the Riemann

tensor and its first ten derivatives. With these in hand, one has in principal, all of

the necessary information. The equivalence problem then reduces to finding a set of

coordinate relations between these components calculated for the two spacetimes.

The great problem with Cartan's method comes in its implementation, since even for

algebraically simple spacetimes it can involve the computation of enormous amounts of

tensor components. A number of attempts have been made to improve on its practical

implementation, notably by Brans (1965) and Karlhede (1980). Brans' contribution

was to suggest that the SL(2, C) freedom inherent in the coordinates (a result of our

freedom to change the velocity and orientation of the coordinate frame) can be removed

by fixing the tensor components to a 'canonical' frame which is determined by the

algebraic symmetries of the solution. Karlhede formalised this idea and improved upon

it by suggesting that the frame should be fixed using the low order derivatives of the

Riemann tensor, in this way reducing the number of derivatives which eventually need

to be calculated. In this way, the number of theoretically necessary derivatives was

reduced from 10 to 7 and the total number of components which needed to be calculated

was reduced from some 27 962 020 to 436 900, a significant improvement, though still a

daunting task.

The final theoretical improvement to the basic algorithm was provided by MacCallum

and Aman (1986), who used identities satisfied by the Riemann tensor and its derivatives

to arrive at a minimal set of independent components which need to be calculated. For



1. Introduction: The Cartan-Karlhede method 4

Karlhede's method, they arrived at an upper bound for the number of components as

3156, which finally brings the problem into the realm of tractability, at least by modern

computer algebra systems. Specific algebraic types of solution have also been examined,

for instance by Collins et al. (1990), and Collins (1991). Together these papers show

that in fact it is only a very rare situation in which the full number of derivatives

of the Riemann tensor need to be calculated. In practice it seems that one rarely

needs to go past the third derivative before Karlhede's method is completed. (The first

example to require fourth order classification was discovered by Koutras (1992); see also

Skea (1997a).) Even so, the computations required to calculate the individual tensor

components are often fairly labour intensive. Brans (1965) suggested that computer

algebra systems might help in this regard. Aman (1986) was the first to develop such a

system, CLASSI, which he based on Karlhede's algorithm.

CLASSI has been used with great success in fully classifying a large number of exact

solutions. However it suffers from some shortcomings. The most serious of these is

that it is unable to perform certain algebraic operations, such as polynomial division,

which are extremely useful in tensor calculations. It is also weak in performing certain

simplifications, such as factorisation and applying trigonometric identities. In some

cases such simplifications can be crucial to the calculation of tensor components, for

when they are not applied the individual expressions can expand to a size which will fill

the memory of the computer on which it is running. The lack of advanced simplification

facilities results from the fact that CLASSI is implemented as an addition to the program

SHEEP, a computer algebra system which specialises in tensor computation but has not

been optimised for general algebraic calculations. Since SHEEP has been implemented

as a stand-alone package using the LISP programming language, it must contain its own

routines for carrying out polynomial simplifications, in general a non-trivial task which

would require many times more effort to implement than the actual tensor calculations

themselves.

To some extent, SHEEP (and hence CLASSI) are able to avoid these problems

through the use of powerful facilities for substitution of expressions. By specifying

the substitutions correctly, the user is effectively able to instruct the computer which

simplifications to apply when, often leading to a very quick and compact result. The

problem with this method, however, is that it often requires a great deal of fine-tuning

before the result is obtained. The user must step through the calculation and recognise

where substitutions might be helpful, then code these substitutions into an input file. It

is not always obvious if such substitutions will lead to an optimal form of the solution.
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Many modern commercial computer algebra systems, which did not exist at the time

of CLASSI's development, have built in facilities for carrying out simplifications of large

polynomials. The algorithms are often automatic, requiring little intervention on the

part of the user, and great efforts have been made to see that the algorithms are in

some way optimised. It would be useful, then, to be able to use such a general system

as an underlying tool for a tensor computation package, as this frees the programmer of

the tensor package from needing to implement all of the basic algebraic operations. A

large number of independent tensor packages have been written for the major computer

algebra systems Maple, Mathematica, Macsyma and Reduce.1 Notably, the package

GRTensor, (see Pollney et al. (1996)) provides extensive tensor calculation tools for

relativists working within the Maple computer algebra system.

This thesis details an implementation of the Cartan-Karlhede method within Maple,

developed by the author in collaboration with Jim Skea (UERJ, Brazil) and Ray

d'Inverno (Southampton). The study of the applicability of standard forms carried

out in the next chapter, the algorithms presented, and the computer algebra software

designed for the required operations on spinor components are the original work of the

author. The procedures described aim at creating an efficient, powerful, and usable set

of computational tools for the manipulation of 2-spinor components in relativity.

1.1 The spinor formalism

To answer the question of how we can decide whether two spacetimes are equivalent,

we must first ask what information do we have regarding a spacetime, and how can it

be used. Generally, this information comes in the form of curvature tensor components,

whether specified in a particular coordinate system via a metric, or in terms of a given

set of basis vectors (frame). The difficulty arises from the fact that the individual com-

ponents of the curvature tensors vary under changes of coordinates as well as rotations

of the underlying frame. A pair of spacetimes will be called equivalent if a coordinate

transformation exists which maps any tensor component calculated in the one spacetime

onto the corresponding tensor component in the other.

In fact, from this definition, the solution to the equivalence problem is already ap-

parent. Namely, we examine the action of an arbitrary coordinate transformation on

some number of tensor components in the one spacetime, and set these equal to the
1 An incomplete listing of publicly available tensor packages can be found at

http://astro.queensu.ca/~grtensor/.
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components of the second spacetime to solve for the coordinate transformation.

The question then arises as to how many, and in particular which, tensor components

will be sufficient to guarantee the consistency of such a solution, if it exists. In the

following sections, the general solution, due to Cartan, to this problem is presented.

Important improvements arising from specialising the frame were later introduced by

Karlhede, and finally MacCallum and Aman were able to determine a necessary and

sufficient set of tensor components required to establish equivalence.

The method of Cartan-Karlhede requires only that the components of the curvature

be represented in terms of a frame with fixed metric components. We will find, however,

that certain symmetries among components of the curvature tensor are most easily seen

when they are expressed in a particular frame formalism, namely the 2-spinor approach

of Penrose.

Spin transformations

Consider standard Minkowski space, M, with coordinates (t, x, y, z) and metric 77^ given

by

1 0 0 0

0 - 1 0 0
Vab = VT" =

0 0 - 1 0

\0 0 0 - 1 /

(1.1)

so that vectors ua and va in M have their inner product given by

uavhr]ab = utvt - uxvx - UyVy - uzvz. (1.2)

The Lorentz norm is defined by taking the inner product of a vector with itself, uau677a;,.

A transformation which preserves the Lorentz norm is called a Lorentz transformation.

The form of the Lorentz norm divides vectors into three distinct classes, timelike,

spacelike, and null, based on whether their inner product is, respectively, positive, neg-

ative or zero. Thus, a null vector ka is a vector at P satisfying

ka = (kt,kx,ky,kz), (1.3)

(h)2 - (fcx)2 - (ky)
2 - (kz)

2 = 0. (1.4)

We will focus our attention on a particular class of null vectors, the null directions,

defined to be those null vectors whose spacelike parts have unit norm, that is, those for



1. Introduction: The Cartan-Karlhede method

P{l,kT,ky,kZ)

Figure 1.1: Stereographic projection from S+ to the Argand plane.

which

(1.5)

We can distinguish two classes of such vectors, those for which k$ is +1 or — 1, said to

exist on either the future null cone, S+, or the past null cone, S~. Note that each of

these classes of null directions can be parametrized by points on the unit sphere, for

instance,

kx = sin 6+ cos <p+, ky — sin 6+ sin (p+, kz = cos 9+ (1.6)

and as such can be brought into one-to-one correspondence with points £ of the Argand

plane (with oo attached) via the standard Riemann stereographic projection,

(1.7)
2 l-kz

(see Fig. 1.1).

The final refinement to this picture which we will make is that rather than use a

single complex number £, we choose to map each point of 5+onto a complex pair (£,77),

where

C = Uv- (1.8)

This seemingly extra complication allows us to define the notion of a spin transformation,

namely the map

£ H-> a£ + /3r],

v >-> T£ + Si!,

where a, /?, 7, and S, are complex scalars satisfying

(1.9)

(1.10)

(1.11)
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This transformation can be represented in terms of a spin matrix. A,

(1.12)

where

detA = l. (1.13)

Significantly, the spin matrices form a group, the special linear group of 2 x 2 complex

matrices, referred to as 5L(2,C). In fact, it is possible to prove the following result:

Theorem 1 (PR 1.2.27) Every spin transformation corresponds to a unique restricted

Lorentz transformation. Conversely every restricted Lorentz transformation corresponds

to precisely two spin transformation, one being the negative of the other.

That two spin transformations correspond to a single Lorentz transformation is a result

of the fact that both A and —A have the same effect on (,. A proof of the given result

can be found in Penrose and Rindler (1984).

To summarise, we have defined a correspondence between null directions at P and

the complex pair (£,77). The correspondence is such that Lorentz transformations of the

former can be mapped on to spin transformations of the latter.

Spinors and spin bases

The complex pair (77, £) representing a particular null direction can be used to define a

spin vector via

K : = ( A C < V ) , (1.14)

K ° : = £ , K1:=n. (1.15)

For the space of spin vectors, the operations of scalar multiplication and addition are

defined as usual, as well as a symplectic inner product,

/ \ ( fir i r\i I •—— ( / A r v • / \ r v 1 . I X . J . O )

( 0 1 \ 1 / 0 1 \ / 0 i O l i 1 \ /1 1 T\

K ,K ) + (W ,U ) = (K +UJ ,K +CJ ), (1.17)
< K,U) >=K°UJ1 - K1^0 , (1.18)

for spin vectors K and u, and complex scalar A. It can be shown that these operations

are invariant under spin transformations.
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We can introduce indices to the notation by writing

K* = ( « V ) , uA = {u\u>\ (1-19)

and defining an antisymmetric object, eAB, to play the role of the inner product,

< K,U >= £ABKAWB, (1.20)

with

SAB = SBA, (1.21)

and summation over the repeated indices assumed.

The eAB object can be used to define a mapping to the dual KB of the spin vector KB

via

KB •= KAeAB. (1.22)

The components of KB are related to those of KA via

Ko = - K 1 , KI = K°. (1.23)

A pair of spin vectors (oA,tA) are called a spin basis if their inner product satisfies

eABoAtB = 1. (1.24)

An arbitrary spin vector can be represented in terms of the spin basis by

K
A
 = K°OA + K1LA, (1.25)

where K° := —LAKA and K1 := OAKA, and the inner product itself can be written

£AB = oAtB - LAOB, eAB = OALB - LAOB. (1.26)

A final technical issue arises when we consider the operation of complex conjugation

on spin vectors, necessary if we wish to recover the real valued components of null

vectors from the complex valued spin vectors. Unfortunately, if we are to maintain

Lorentz covariance, then the conjugates of spin vectors can not be considered to be in

the same spin space as the original vectors. As a result, we introduce a new spin space

corresponding to the conjugate space of spin vectors KA, and delineate its members by

placing a prime on its index labels. Thus if we denote complex conjugation by a bar, we

write

^ = KA'. (1.27)
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By transforming a null vector ka to a point on the complex plane, £ = £/rj, via the

stereographic projection described above, it is possible to show that the components of

any null vector are given by the following formula:

•nVj

Remembering the definition of the spin vector KA = (K0,^) = (£,77) suggests that we

can make the following correspondence between null directions and spin vectors:

L.O, , . KA-A' (1 >)Q\

where the indices are identified via (0,1,2,3) -H- (00', 01', 10', 11'). Given a spin basis

(oA, LA) we can use this relationship to establish a set of four independent null vectors,

la ~ o
AbA\ ma := oAlA\ fha := iAbA\ na := iAlA\ (1.30)

which satisfy the requirements of a Newman-Penrose null tetrad. Namely,

lana = 1, mafha = - 1 , (1.31)

and all other inner products are zero.

Thus, any vector ka whose components are expressed in the given null frame as

ka = kol
a + hma + k2rha + k3n

a, (1.32)

has a natural expression in terms of a 2-spinor formed by replacing the null basis vectors

with the corresponding spin basis combinations,

ka ^ -> K
AA' = k0o

AoA' + kxo
AlA' + k2i

AdA' + k3i
AtA\ (1.33)

For the given spin basis, the identification can be carried out explicitly using the Infeld-

van der Waerden symbols,

(1.34)

so that

KAA>. (1.35)

In fact, we will use these symbols more generally to define the correspondence between

tensors of n indices a,b,c,..., with spinors of In indices A, A', B, B', C,C,
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Curvature

We can now proceed to define the notion of covariant differentiation in spinor terms.

This is a more complicated procedure than for a standard coordinate basis because

of the inability to express the Lie derivative as a spinor. However, it can be shown

(Penrose and Rindler (1984)) that a derivative operator V AA> exists uniquely as a map

VAyl' : X- ^ ^AA'X... when it is subjected to the following requirements:

ii. VAA'{64>) = <t>VAA'6 + 9VAA,cj>,

iii. <f> = VAA<6 implies 4> = ^AA'Q,

iv. VAA>eBC = VAA,eBC = 0,

v- ^AA' commutes with any index substitution not involving A or A',

vi- ^AA'^BB'f = ^BB'^AA'I for all scalars / ,

vii. for any derivation D acting on spinor fields there exists a spinor £AA' such that

Dcf, = ZAA'VAA><t> for a l l <f>.

With this definition, we can construct a set of spinor Ricci rotation coefficients, in

analogy with the usual procedure for bases, via

FCC'AB = £AA£cC£c'Cliycc>EB
A, (1.36)

where components are understood to be in terms of the spin basis eA
A — (oA, tA).

We next proceed to construct the spinor form of the curvature tensors. First note

that in terms of the null tetrad ea
a = ( / a ,m a ,m a , n a ) , we have the following definition

of the Riemann curvature tensor,

Rabcd := 2eaQV [cVd]e°6. (1.37)

where V a is the normal coordinate covariant derivative. The spinor analogy of this

definition is

RABCDA'B'C'D' = 2 £ B , » £ B ' . 4 ' V [ C C ' V £ ) D / ] ( £ B
B £ B

 B>) (1.38a)

= 2EBAEB.A,EB' BlV[cclVDDl]e
B

B + ex., (1.38b)

= 2EBAEA'B'\'[CC>VDD']E
B

B + c.c, (1.38c)
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where 'c.c.' denotes the complex conjugates of the listed terms. By defining the operator

PI „ — FA B X7 i T7 i (~\ "iQ\
L-'AB — t v A'(A V B)B I {i.oa)

and noting that

2V[aV6] = eAA>UBB, + eBBlUAA,, (1.40)

(see Stewart (1990)) we can decompose the curvature spinor as follows. First define the

scalar A, and the Weyl spinor, and Ricci spinor, respectively, as

A := \eBAnABeB
B, (1.41)

:= eBAnC{DeB
B) = $ M B C D ) , (1.42)

,y (1.43)

Then the curvature spinor can be written in terms of these quantities as

RABCDA'B'&D' = £A'B'EC'D'(^ABCD - 2Ae (^ ( C£D ) B )) + eA>B>ECD$ABC'D' + C.C.. (1.44)

We note finally that the curvature spinors are related to their tensorial counterparts as

follows:

R = 24A, (1.45)

Sab = ~2$ABA>B<, (1.46)

Cabcd = ^ABCD£A'B'£C'D' + ^A'B'C'D'£AB£CD, (1-47)

Rabcd = RABCDA'B'C'D'I (1-48)

where the Infeld-van der Waerden symbols are implicitly used to relate quantities across

the equals signs, and the curvature tensors are defined as

Cabcd •= Rabcd - 2St[a[c£d]6] - ^Rg[a[c9d]b], (1-49)

Sab ••= Rab ~ \R, (1.50)

Rab •= gcdRcabd, (1.51)

R := 9abRab- (1.52)

Some properties of spinors at a point

The following theorems relating to the properties of spinors will prove useful for the

analysis of the following chapters. Full proofs and discussion can be found in Penrose

and Rindler (1984) under the listed theorem numbers.
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Theorem 2 (PR 2.5.56) The condition aA/3B = 0 at a point is necessary and sufficient

for aA and (3B to be scalar multiples of each other at that point.

Theorem 3 (PR 3.3.54) Any spinor <J>AB...NA B'-N' is the sum of the symmetric spinor

4>{AB...N)(A B '"N ) and °f outer products of e's with symmetric spinors of lower valence.

Theorem 4 (PR 3.5.18) If 4>AB...L = 4>{AB...L) ̂  0 then

<f>AB...N = oeiAPB ... XN) (1.53)

for some spin vectors aA,f3B,\N, called the principal spinors of<j)AB...N. This decompo-

sition is unique up to proportionality or reordering of the factors.

Further, since any spin vector can be expanded as a sum of the spin basis vectors,

aA = aioA + a2iA, (1-54)

we see that it is possible to expand any unprimed symmetric spinor in terms of the spin

basis as

fn\
<I>AB...N = ( j > o O A o B . . . o N - n ( j ) i ( i A o B . . . o ) N + . . . + )(S>2{I'AI'B • • . o ) N + ...

W ( 1 . 5 5 )

• • • + <Pn( 0

with <j>i,<f>2,--- , 0n, complex scalars dependent on the principle spinors. (The factors

(—l)fc and (?) in front of each term have been introduced to allow us to write

4>k--=<l>AB...sOAoB...LN, (1.56)

where 4>AB...N is contracted with k iAs and n — k oAs.)

A method of determining the principle spinors is suggested by Theorem 2. Namely,

consider the contraction of 4>AB...N with the spinor (A = (l,z), with complex valued z:

4>AB...SCAC,B • • • C = a(AtAf3B<;B • • • A N J C " . (1-57)

This polynomial in z only equals zero when at least one of the individual index contrac-

tions, eg. QxC*) equals zero. By Theorem 2, this indicates that £A is proportional to

the particular principle spinor with which it has been contracted. Thus, the principle

spinors can be found by determining the roots of the nth order polynomial

^o + 4>\z + foz2 + • • • + <j)nz
n = 0, (1.58)

where the coefficients 4>Q ... (j>n are exactly those of the spin basis expansion, (1.55).
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The Newman-Penrose formalism

Later, we will often find it useful to represent spinor components in terms of the notation

established by Newman and Penrose (1962), referred to as the NP formalism. As a final

bit of notation, we list the relationships between the spinor quantities and their NP

counterparts.

The NP quantities are based upon the representation of the spacetime in terms of a

tetrad composed of four null vectors, (la, ma, fha, na) which satisfies the inner product

relationships

gabl
ana = 1 9abmaiha = - 1 , (1.59)

with all other inner products being zero. As mentioned above, exactly such a tetrad can

be formed in terms of the spin basis eA
A = (oA, t,A), namely, by defining

la:=oA5A', ma:=oAlA\ ma := iAbA', na := iAlA\ (1.60)

la : = oAoAi, ma := oAtA>, ma : = LAOA>, na : = iAlA>. (1-61)

Derivatives along these directions are denoted by the symbols

D := ZaVQ, 8 := m aV a , 8 := mQVa, A := n a V a , (1.62)

corresponding respectively to the 00', 01', 10', andl l ' components of the spinor covariant

derivative operator V^^' •

The NP spin coefficients are a set of twelve scalars representing the components of

the Ricci rotation coefficients. They are defined in Table 1.1.

1.2 The equivalence problem

According to the above prescription, we describe a spacetime ^# by a coordinate patch

xM on which is defined a spin basis (oA,cA), which can be subjected to SL(2, C) rotations,

e, or discrete transformations of the basis, m. Two spacetimes are said to be equivalent

if and only if there is a correspondence

x» = ^ ( s " ) , (1.63)

I = c(e), (1.64)

rh = rh(m), (1.65)
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NP coefficients GHP coefficients spin basis components

K

P

a

T

e

a

P

7

n

A

V-

V

K

P

a

T

_y

-P'

P

7

- T '

-a'

-P'

-K'

oADoA

oA5oA

oA6oA

oAAoA

LA

i'

c

DoA

*6oA

lSoA

'AoA

LADLA

iA6iA

LA6LA

LAALA

NP frame components Rotation coefficients

maDla

ma5la

TTh 01 r\

maAla

\{naDla-

\{na5la-

\{na8la-

\{naAla-

\-ma

\-ma

\-ma

\-ma

Dfha)

6fha)

6ma)

Affla)

fha

fhc

fhc

ma

Dma

lSma

l8ma

Ama

r

r

r

r

00' 00

IO'OO

01'

11'

00

00

loo

r10

rO i

r u

'01

'01

'01

'01

Too'ii

r t fu

r«-u

r,,u

Table 1.1: The Newman-Penrose spin coefficients are listed in the upper left-hand box.
Their definitions in various notations are given by the corresponding entries of the subse-
quent boxes. Though not described in the text, the GHP versions of the spin coefficients
are listed for cross reference with work using the formalism of Geroch et. al. (1973).

which gives

oA{x*i,i, m) = oA(xfl,e,Tn),

ZA(x>J-,i,ni) = LA(x^,e,m).

(1.66)

(1.67)

The early work on the equivalence problem was due to Christoffel (Christoffel (1869),

Thomas (1934)), who showed that, for metrics without symmetry, the equivalence of a

pair of metrics could be decided by computing the Riemann tensor and a finite number

of its derivatives in coordinate bases, and for four dimensional spaces, at most the 20th

derivatives would be required.

By specifying the space using a frame with constant metric components, Cartan

(1946) was able to improve this technique significantly, showing that the maximum

number of differentiations to be carried out is 10. Translated into the language of

spinors, Cartan's equivalence theorem can be stated as follows:

Theorem 5 Two regions JM and ^ of two n-dimensional Riemannian manifolds are
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locally equivalent if and only if the set of equations

= VABCD (1.68a)

(1.68b)

[ p+p+^ l J p+lp+i (1.68C)

and

(1.69a)

(1.69b)

1 P + P + 1 1 1 P + 1 P + 1 (1-69C)

and

A = A (1.70a)

VB£ 'A = V£ £ ,A (1.70b)

V £ l £ i • • • V£ p + l E-+ iA = VElE[ ... V E p + l 4 + i A, (1.70c)

are compatible as equations in the coordinates x^ and x^, and the frame rotations e and

e, and where p + 1 is the first derivative which is functionally dependent on the lower

order derivatives of the curvature spinors, p+ 1 < n(n + l)/2.

For convenience, we define a number of sets Rl,i = 0 , . . . ,p + 1 to contain the

components of the ith derivatives of the curvature spinors. The term independence used

in the above theorem, corresponds to the requirement that the rank of the Jacobian

constructed from the components of 5 = R° U . . . U Rp is equal to the rank of the

Jacobian of S U Rp+1. It can be shown that p + 1 < n, the number of coordinates. For

a proof of the equivalence theorem, the reader is referred to Cartan (1946) or Karlhede

(1979).

Cartan's method provided an important reduction in the calculational effort in com-

parison with Christoffel's original coordinate based approach. However, if the equiv-

alence theorem is followed explicitly, the components to be calculated still numbers

27 926 020. A further reduction is obtained when one recognises that not all of these
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components are independent, due to the Ricci and Bianchi identities and their differen-

tial concomitants. A minimal set of components (numbering 8690 in total) was provided

by MacCallum and Aman (1986), and we quote their result here. At the qth derivative

of the curvature, the independent spinor components are given by the following:

• The totally symmetrized q-th derivatives of A.

• The totally symmetrized q-th derivatives of \t ABCD •

• The totally symmetrized q-th derivatives of $ABA'B'-

• For q > 1, the totally symmetrized (q—l)-th derivatives of 'S.ABCA' : = ^DA'^ABCD

(which is one side of the Bianchi identities).

• For q > 2, the d'Alembertian VAA'VAA> applied to all of the quantities calculated

for order q — 2.

The term 'totally symmetrized' here refers to a symmetrization over each of its primed

and unprimed indices. In fact, every spinor which is calculated in the classification

procedure is symmetric in its indices.

As a notational convenience (which we will also make use of throughout the rest of

this report), we follow the common practice of labelling individual components of such

spinors using two subscripts which count the number of i^s and t^s which have been

contracted with the spinor to arrive at the component. Thus,

$30' := *ABCDO\BLCLD, (1.71)

$ „ ' := $ABA>B>oALBdA'lB\ (1.72)

MO L L O O L . {l.lo)

Note that since all of the spinors above are symmetric under interchange of indices, the

notation assigns a unique label to each component.

The total number of primed and unprimed indices of a particular spinor is called

its valence. Thus ^ABCD, ^ABA'B',
 a nd VEE1^ABCD have valences of (4,0), (2,2) and

(5,1) respectively.

1.3 The Cartan-Karlhede Method

A great deal of the effort expended in carrying out Cartan's method for classifying space-

times arises from the need to determine the six degrees of SL(2,C) rotational freedom
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of the frame. Realizing this, Karlhede (1980) suggested that the computational effort

might be reduced if for a given spacetime the frame could be fixed in some unambiguous

way, effectively reducing the dimension of the frame bundle. In practice, the frame is

fixed using the components of the curvature spinors, by requiring that they take on some

canonical, or standard, form.

Karlhede's method proceeds as follows:

1. Calculate the curvature spinor components, R° — {^ABCD,^ABA'B'-,^}-

2. Determine the isotropy group, H, under which the components are invariant.

3. Fix the frame up to H by requiring that the curvature components take on a

canonical form.

4. Calculate the first derivatives, R}, of the curvature spinors.

5. If H is non-empty, then determine if it can be reduced by fixing a canonical form

for the derivatives of the Riemann tensor.

6. Continue the procedure to the higher derivatives until the frame is maximally fixed

and the required number of free components are found.

Using this method, it can be shown that for a general spacetime, at most the 7th

covariant derivative of the curvature tensor need be calculated, or a total of 3156 in-

dependent terms. In fact, one rarely needs to go past the third covariant derivative

(Koutras (1992), Skea (1997a), Skea (1997c)). For Petrov Type N metrics, the upper

bound is known to be the sixth derivative (Collins (1991), Machado Ramos and Vickers

(1996)), while for vacuum Type D metrics, a theoretical upper bound of three deriva-

tives has been determined (Collins et al. (1990), Collins et al. (1991)), though it may be

possible to reduce this in light of the fact that all of the metrics in Kinnersley's classes

have required at most two derivatives for full classification (Kinnersley (1969)).

Finally, we point out the crucial dependence of Karlhede's method on the ability to

define a consistent set of standard forms for the curvature spinors and to calculate the

transformations to the standard form. In fact, this makes up the bulk of the effort in

carrying out the method, as the emphasis in the next chapter makes clear.



Standard forms for symmetric

spinors

The equivalence of a pair of spacetimes is most easily established when the components of

the relevant curvature spinors have been expressed in some standard (or canonical) form

for which the frame rotational freedom has been restricted as far as possible. In fact, the

specification of a consistent set of canonical forms and the procedures for transforming

spinors into the appropriate form, makes up the most involved task in carrying out the

Cartan-Karlhede method.

Recall that 5L(2,C) transformations of spinors can be represented as 2 x 2 complex

valued matrices such that

a
where a8 - /3-y = 1. (2.1)

Under such transformations, components of an arbitrary symmetric spinor, x> are mod-

ified by a polynomial of its components, Xab'i a n d the transformation coefficients a, /?,

7 and S,

X ' '-* P* ' (x> ai Pi 7) $) (2-2)

By making use of these transformations, restrictions can be placed on the individual

components of a spinor in order that the six parameter SL(2, C) freedom can be removed

as much as possible. For instance, by requiring that the Xab' component be zero, we

restrict two parameters of the frame freedom by requiring that

Pab>(x,a,,6,'y,6)=0. (2.3)

Such restrictions are applied to as many components as necessary, until the SL(2, C)

freedom has been entirely removed or the spinor components are invariant under any

remaining freedom.

19



2. Standard forms for symmetric spinors 20

When the restrictions are applied in such a way that the spinor components are

consistently transformed to the same form, independent of their initial configuration,

then we say that the spinor is in a standard form. The spin basis (or equivalently null

frame) under which the spinor takes on its standard form is called the standard frame.

Two practical problems arise when trying to solve for a frame rotation which will

bring a spinor into a standard form. The first is that it is not guaranteed, for a particular

standard form, that such a solution exists. In particular, the spinor components may

themselves satisfy algebraic interrelationships which make prohibit a consistent solution

for a, /3, 7, S, for a given set of component restrictions, Pabi(x,a,P,j,8). These special

situations must be isolated and alternate standard forms which guarantee a solution

defined. That is, there will be alternate standard forms depending on the algebraic type

of the spinor in question.

A further difficulty arises when one tries to solve polynomials of the form (2.3) for the

spin transformation components. In general, these polynomials will be of high order in

the components, which themselves form a six parameter family, and obtaining a solution,

even if it exists, will be a non-trivial task. As a result, in practice it is common first to

consider the transformation of spinor components under specific subgroups of 51,(2, C).

For instance, it is possible to show that any member of SL(2, C) can be represented as

a product of a spin, boost, or null rotation about either oA or iA, where these terms are

defined by the following matrices:

eie

0

0. - J
spin

X 0

\0 I/A

boost

) f )
,0 l) \P l) (2.4)

null rotation null rotation

about tA about oA

where 9 and A are real, and a and /3 are complex valued parameters. This corresponds

directly to the analogous reduction of SO(3) rotations in terms of Euler angles.

We can examine the effect of these transformations on a given spinor, and use this

to define a standard form for each type. This procedure requires some care, however,

because if the chosen subgroups of SL(2, C) do not commute, then the final form of the

spinor components after each of the transformations has been applied will be dependent

on the original orientation of the given frame.

For the particular case of the equivalence problem in general relativity, however, both

of these problems can be overcome. Note that the first step of the Cartan-Karlhede

procedure involves the reduction of the Oth order (Weyl and Ricci) spinors to a standard

form. In fact, well established invariant procedures have long existed for doing just
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that, namely the Petrov classification of the Weyl spinor, and the Segre classification of

the Ricci spinor. These classifications force the components of the named spinors into

particular form depending on their algebraic type. Each of these types is invariant under

only limited subgroups of 5L(2, C). Thus for the remaining spinors (ie. the derivatives

of the Weyl and Ricci spinors, and the Ricci scalar), we only have to specify the standard

forms under these particular subgroups.

This chapter establishes the procedures necessary for the reduction of the Oth order

Weyl and Ricci spinors to a standard form. Assuming that such a reduction has been

carried out, we show that the remaining degrees of freedom in the frame can be system-

atically removed using the components of the derivatives of these tensors in a way such

that the final forms of the spinor components are independent of the initial frame orien-

tation. Some problems with the given methods are discussed, as well as some possible

modifications of the standard problem in order to avoid them.

2.1 The Weyl spinor

The first spinor to be considered in fixing the frame of a general spacetime is the Weyl

spinor. Its classification into six distinct types according to the multiplicities of its

principal null directions was first carried out by Petrov (1954) (cf. Penrose and Rindler

(1986)). The classification is based on the decomposition of the Weyl spinor into its

principle spinors, as described by Theorem 4,

^ABCD = a(ApBjc6D). (2.5)

The different Petrov types of $ABCD are given by the coincidences of these principle

spinors, specified as follows:

, (2.6)

II • ^ABCD = otiAaB-yc5Dh (2.7)

D : ^ABCD = (X(AOLBPCPD), (2.8)

III : ^ABCD = <x{AaBac5D), (2.9)

N : VABCD = aiAaBacaD), (2.10)

0 : *ABCD=0, (2.11)

where it is assumed that aA, (3A, -yA, and 5A are all non-proportional and non-vanishing.
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Determination of the Petrov type

Referring to the methods outlined in Section 1.1, the principle null directions can be

found by determining the roots of the quartic equation

^424 + V^z3 + \I>2-z2 + $>iz + \&o = 0. (2-12)

An algorithm for solving this problem was first presented by d'Inverno and Russell-

Clark (1971), based on calculating the invariants

/ := *ABCD*ABCD, (2.13)

J •= ^ABCD^CDEF^ABEF, (2-14)

and making note of the identities

I = J = 0 for Petrov types III and N, (2.15)

73 = 27J2 for Petrov types II and D. (2.16)

These are combined with the identities

K = 0 for Petrov Types D and N, (2.17)

L = 0 for Petrov Type JV, (2.18)

N = 0 for Petrov Type D, (2.19)

where

K := ^ri1Jf42 — 3^r4^Er3^r2 + 2\l/33, (2.20)

L := ̂ 2^4 - * 3 3 , (2-21)

N := 12L2 - * 4
2 7 , (2.22)

to form a set of conditions which lead to an unambiguous determination of the Petrov

type.

A number of improvements to this algorithm have since arisen (Fitch (1971), Hon

(1975), Aman et al. (1991), and Letniowski and McLenaghan (1988)), focusing on refine-

ments of the given conditions and the practicality of leaving the higher order calculations

until as late as possible. In Section 3.4 we describe software which has been written to

calculate the Petrov type in Maple. The algorithm used is essentially the version of

Letniowski and McLenaghan (1988) and is described in full in Appendix A.
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Standard forms for the Weyl spinor

As discussed in the introduction to this chapter, the specification of a standard form

for ^ABCD can be carried out using spin rotations to fix some subset of its 5 complex

valued components \£o • • • ̂ 4- This is carried out by aligning the spin basis relative to

the principle null directions of the Weyl spinor. It is useful to consider each Petrov type

individually.

Type N: Using a null rotation about tA, we can fix oA to be a multiple of the single

principle spinor. From the expansion (1.55), it is clear that in the new frame

the components ^a of the Weyl spinor are all equal to zero except for ^4. A

combination of spin and boost can be used to fix the value of ^4 to 1. The

resulting components are

f 0 = § ! = § 2 = f 3 = 0, |r4 = 1, (2.23)

which are invariant under the action of null rotations about oA.

Type III: A null rotation about iA can be used to fix oA to lie in the direction of the

repeated principle spinor. A second null rotation, this time about the new oA,

brings iA in line with the second principle null spinor. A contraction with the

Weyl tensor in the new basis reveals that all of the components are zero except

for ^ 3 . Using the remaining spin and boost freedom we can fix the value of this

component to 1. Thus,

\j>0 = ^ = $ 2 = $ 4 = 0, vj>3 = i, (2.24)

Note that ^3 is not invariant under any of the chosen subgroups of SL(2,C), and

by requiring these values for the Weyl components the spin basis is entirely fixed.

Type D: The two null rotations are used successively to bring spin basis vectors into line

with the two repeated principle spinors. As a result, the only non-zero component

is ^2) which is invariant under spins and boosts.

§ 0 = § ! = vj*3 = * 4 = 0, * 2 + 0, (2.25)

Type II: A null rotation about iA fixes oA to in the direction of the repeated principle

spinor, setting the ^0 a n d * i components equal to zero in the new frame. If we

examine the effect of a null rotation about oA on the resulting components, we find
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that

^2 >->• *2, (2.26a)

*3 >->• ̂ 3 + 3a* 2 , (2.26b)

* 4 H $ 4 + 4 Q * 3 + 6a2*2- (2.26c)

Thus by solving for a using the second of these formulas,

# ^ = 0, (2.27)

we can use the null rotation to align iA in such a way that ^3 is reduced to zero.

A spin and boost is then used to fix the value of ^4 to 1, resulting in the standard

form

*o = * i = *3 = 0, $2 + 0, §4 = 1. (2.28)

Since ^3 is not invariant under any of the specified subgroups of SL(2, C), the

frame is entirely fixed by this standard form.

Type I: A null rotation about oA with coefficient ft given by the solution to the equation

* 3 /? 3 + 3^2/82 + 3# i£ + #0 = 0, (2.29)

sets ^1 equal to zero. A further null rotation about iA with parameter a given by

^ 3 + *3 = 0, (2.30)

aligns the basis in such a way that ^3 is also zero. The remaining non-zero com-

ponents transform under spins and boosts as

*o •->• A4e4i0*o, (2.31a)

^2 >-> *2, (2.31b)

* 4 M- A- 4 e - 4 ** 4 , (2.31c)

By choosing A and 8, we are able to set *o equal to ^4. The resulting components

are

$! = * 3 = 0, * 2 ^ 0, §3 = *4 ¥= 0, (2.32)

which together are not invariant under the subgroups of 5L(2, C), and so with the

components of the Weyl spinor in this form the spin basis is entirely fixed.
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Petrov

Type

I

II

III

D

N

0

*o

X

0

0

0

0

0

Weyl

* i

0

0

0

0

0

0

components

* 2

Y

X

0

X

0

0

# 3

0

0

1

0

0

0

±x
1

0

0

1

0

Remaining

Isotropy

-

-

-

spin and boost

2d null

SL{2,C)

Table 2.1: Canonical components of the Weyl spinor. Entries X and Y represent inde-
pendent functions of the coordinates. The isotropy groups are described in the text.

The results of the operations carried out above are summarised in Table 2.1.

The choice of canonical frames specified above does not constitute the only possible

choice. In particular, for Type / it may be the case that other forms might be preferred.

An alternate standard form would be to set ^o = ^4 = 0 and ^ i = ^3. This entails a

disadvantage in that the transformation coefficient is, in general, the solution of a quartic

equation in the \&4S. However, in some practical situations, a frame may be given in a

form for which the Weyl spinor components naturally fall into this latter form. In this

case, as we will see below, the equations which must be solved in order to transform the

spacetime into the alternate form can be prohibitively difficult.

A more trivial variation of the Type / standard form is to use the spin/boost trans-

formation to set ^4 = 1, leaving ^0 free. Note that in reducing a Type I spacetime with

components

to its canonical form, a spin/boost transformation is applied, with the parameters

\eie = (^0/*4)1/4, (2.34)

in order to transform the components to the canonical form of Table 2.1. The trans-

formed components become

, 0,

On the other hand, if the canonical form

(2.35)

(2.36)
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is chosen, the transformed components will take the form

1, 0, * 2 , 0, #o*4- (2.37)

Thus without any computational cost, we've avoided the need to introduce a radical into

the expressions for the components. Prom the standpoint of computer implementation

of the procedure, this can be an important difference, as computer algebra systems

often run into difficulty with the choice of the correct root in radical expressions. A

further advantage will arise when it comes time to calculate the derivatives of the spinor

components. Since the derivative of the constant $4 is zero, it is possible that the

alternate canonical form will lead to fewer non-zero components in later calculations.

The avoidance of the radical can also be an important simplification to the calculation

of the derivatives of the Weyl spinor.

Note that although a frame in standard form leads to simplified expressions for its

curvature tensor components, it is not always the case that the components of the frame

itself will be in their simplest possible form. An alternate standard form may result in

simpler expressions for the Za,na,ma,ma basis vectors. For example, CLASSI currently

allows an alternate standard form for Type / spacetimes, namely allowing ^0 = ±^4-

In two practical situations that have arisen (the classification of the cylindrical van

Stockum metric (Kramer et al. (1980)) and the Tariq-Tupper spacetime (Tariq and

Tupper (1975))), a simplified standard frame is found by setting \&o = —^4- Similarly,

in the Types II and N cases, one might also expect that simpler frames might arise if

\&4 is alternately allowed to equal — 1, and similarly for ^3 in the Type III case, though

no practical examples are known in which this is the case.

In fact, however, by examining the transformation of, for instance, \&o and ^4,

#0 •->- e4ietf0, *4 •->• e-4i(?#4, (2.38)

we see that the difference between the two standard forms ^0 = ±^4 is simply a constant

rotation by an angle 9 = n/8. Further, while alternate standard frames are acceptable

when one is trying to determine the independent components specifying the spacetime,

if these components are to be compared with those of another spacetime in order to

determine a possible coordinate transformation, it is necessary that the two share the

same standard form. For these reasons, the current version of the classification software

holds to the canonical forms specified in Table 2.1, carrying out the extra 7r/8 rotation

if necessary.
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Transformations to standard form

In Appendix B, the transformations required to bring a general Weyl spinor into the

standard forms listed in Table 2.1 are listed. The transformations are given in the form

of SL(2,C)spin matrices, and the particular transformation to be applied is determined

by

i. the Petrov type of the Weyl spinor,

ii. the initial form of the Weyl spinor components.

Here 'initial form' refers to which of the components are zero or non-zero in the initial

frame. Thus, for example, if a particular spacetime is determined to be of Type D, and

its components are in the form

$o = * i = 0, $ 2 / *3^4^ 0, (2.39)

then a transformation to the standard form for Type D is given by

( ) ( ] (2.40)

with

Two points are of note. Firstly, explicit transformation functions have not been

specified for certain initial configurations of Type I and / / spacetime, namely those for

which the initial components are in the form

Type

I ^ 0 0 0 7^0 T^O

1,11 ^ 0 0 ^ 0 ^ 0 T^O

/ , / / 7^0 ^ 0 0 7^0 7^0

7,7/ ^ 0 7^0 7^0 T^O ^0

For these cases, the determination of the components of the spin transformation involves

the solution of a quartic equation, and thus have not been specified. To date, these types

are not handled by any software programs for classification, eg. CLASSI.
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Secondly, although the transformations might be determinable, their coefficients may

themselves turn out to be quite complicated, to the extent that their application may

be limited.

Finally, the spin matrices that bring the Weyl components into canonical form are

not unique in the sense that their coefficients are often the solution of some quadratic,

cubic, or quartic equation, of which one root must be selected. Selection of alternate

roots will lead to the same values for the Weyl coefficients, but they specify different

rotations of the frame. Though, by definition, they each result in the same Weyl spinor

components, other spinors may differ in their component values depending on which root

is chosen. This issue has not arisen in practical situations and as yet it is not clear how

it can best be handled.

These problems are fundamental to the Karlhede method and must be solved in order

for it to be applicable to truly general situations.

2.2 The Ricci spinor

The classification of the Ricci spinor is a somewhat more involved matter than that of

the Weyl spinor as a consequence of the fact that it possesses both primed and unprimed

indices. The most widely applied classification scheme was presented by Segre (1884),

distinguishing 15 different types of Ricci spinor.

From the standpoint of the Cartan-Karlhede method, a full Segre classification is

only required in the case in which the spacetime is conformally fiat {^ABCD — 0). In this

case, the frame retains its full Lorentz freedom, and must be fixed as far as possible by

transforming the Ricci components into a canonical form. A suggested set of canonical

components is given in Table 2.2, which uses the existing CLASSI forms as a reference.

For the non-trivial Weyl types, it will generally be impossible to bring the Ricci

tensor into its canonical form, since there will not be enough freedom left in the frame.

In such cases the Segre classification can be foregone, and the methods of the next

section applied to find a canonical form for the Ricci tensor by treating it as a general

symmetric spinor. In practice, however, since the Segre classification can yield useful

physical insight, it is carried out even though the transformation to the components

given in Table 2.2 is not applied.

A practical method of carrying out the classification on the computer was presented

by Joly and MacCallum (1990) and improved by Seixas (1991). It should be noted

that while the algorithm is sufficient to distinguish most Segre types, there are cases in
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Segre

Type

[111,1]

[11, ZZ]

[11,2]

[1,3]

[1(1,2)1

[(1,3)]

[(11), ZZ]

[(11)2]

[11(1,1)]

[(11)1,1]

[(11X1,1)1

[(11,2)]

[1(11,1)1

[(HI),!]

[(111,1)]

Common

Name

general

PPII
PP III
null

coincident

complex

halfway

boost

spin

non-null

electromagnetic

pure radiation

tachyon fluid

perfect fluid

vacuum

g

z

2

3

n

4

c

h

b

s

e

r

t

P

0

*oo'

X

-X

0

0

0

0

-X

0

0

X

0

0

-2X

2X

0

0

0

0

xi
0

0

0

0

0

0

0

0

0

0

0

Ricci Components

Y 6 R
XT' ^ TTJ

X € R

R 2Y

2X

0

0

0

0

0

0

0

0

0

z
z
Y

Y

X

0

Y

X

Y

Y

X

0

X

X

0

* 1 2 '

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

X

X

±1

0

±1

0

X

±1

0

X

0

±1

-2X

2X

0

Remaining

Isotropy

none

none

none

none

Id null

Id null

spin

spin

boost

spin

spin/boost

2-d null, spin

SO(2,1)

SO(3)

SL(2,C)

Table 2.2: Canonical forms for the Ricci spinor. Entries X, Y
of the coordinates. Isotropy groups are described in the text.

and Z represent functions
(Based on Skea (1996))

which the distinguishing factor between one and another case is the sign of one of the

canonical components. Since computer algebra systems cannot generally make such an

evaluation for symbolic quantities, these cases can not be distinguished algorithmically.

These difficulties are discussed in Skea (1996).

2.3 Standard forms for general spinors

To this point, we have specified standard forms for the Weyl and Ricci spinors. By

requiring that the frame be such that the components of these tensors satisfy the given

standard forms, the rotational freedom is reduced to a subgroup of SX(2,C). In fact,

for most algebraic types of spacetime, the frame is immediately fixed by the form of

the Weyl and Ricci spinor and it is only for the particular cases listed in Table 2.3

that there is any rotational freedom left in the frame. For such cases, it is necessary to

examine the derivatives of the curvature spinors in order to determine if the frame can

be further fixed. Thus, in order to complete the process of frame fixing, what is required

is a method of determining the invariance groups of spinor components, and a set of

consistent standard forms for general spinors of valence (m,n).
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Weyl

0

0

N, 0

N, 0

D, 0

D, 0

I, D,

types

0

Rice

Pi

t,

r,

r,

e,

r,

P,

0

0

0

4,

b,

e,

, t ,

i types

n,

0

s,

e,

0

h, c, 0

b, z, g, 0

Freedom

50(3)

50(2,1)

2d null

Id null

boost

spin

o — L interchange

Table 2.3: Subgroups of 5L(2, C) under which the Weyl and Ricci components may
be invariant. In such cases, canonical forms for the higher derivatives of the curvature
spinors must be specified.

The general procedure begins by noting which components are invariant under the

given subgroup. Once these are known, a method can be specified for stepping through

the components to determine a unique component which does vary under the spin trans-

formation. An algebraic condition is then placed on the component and the frame

transformed to ensure that the condition is satisfied, removing the group freedom. It is

necessary that the procedure for locating this component be unambiguous in the sense

that although many of the components may vary under the given transformation, the

procedure must always locate and fix the same component of a particular spinor in a

given spacetime. This can usually be done by specifying one component as a starting

point, and a procedure for stepping through the remaining spinor components.

The following sections consider each subgroup of 5L(2, C) in turn, detailing how the

invariance can be detected in a general spinor, and, given that the spinor is not invariant,

how the group is used to fix the spinor into a standard form specific to that rotation

group.

o — i interchange

Once the Weyl tensor has been classified, this is the only discrete transformation under

which a spacetime may be invariant. For a spinor x of valence {m,n), interchange of oA

and iA has the effect of swapping the x*b' component with the X(m-O)(n-i,)' component.

The test for o - i invariance consists of checking each such pair in turn. If one of the pair

is zero and the other non-zero, then we choose to be biased towards the upper diagonal,

so that oA and iA are selected to make the component with higher indices non-zero.
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(0,n) m/2 (m,n)

n/2

o
0
o
o
©

1

o
o
o
o
o

v©

o
o
o
o
o
o

© ©x©

o
o
o
•
o
o
o

© © ©

oV®
o
o
o
o
o

o ©
o
o
o
o

o
o
o
o

Test sequence:
fora = 0...(m + n)/2 do

for b = min(a, n ) . . . 0 do
C\ = X(a-b)b')

(0,0) (m,0)

= 0 and C2 7^0 then
standard form = False

else if Ci^O and C2 = 0 then
standard form = True

else
Continue

end if
end do

end do

Figure 2.1: The standard form for the i — o interchange. A search for non-invariant
components begins with the (0,0) and (m, n) components and proceeds along diagonals,
comparing cross diagonal pairs. If the component in the lower diagonal is non-zero, the
spinor is in canonical form (True). If the component in the upper diagonal is non-zero,
the spinor is not in canonical form (False) and a n o - i swap transformation can be
applied to bring it into canonical form. If both components are non-zero, the form is
indeterminate and the test continues to the next pair.

The test begins with a comparison of the (0,0) and (m, n) components, and proceeds

by stepping first the unprimed, then the primed indices until the first o — L asymmetry

is detected.

For example, if x is a spinor of valence (4,4), first the pair Xoo' a n d X44' a r e checked,

then X01' and X43') etc., until all the test for o - t symmetry fails, or all of the components

have been checked. If, for instance, the next component to be checked, X20') is non-zero

while its 'partner', X24') is z e r o > t n e n t n e o - t symmetry is lost. In this case, the canonical

preference for non-zero components in the upper indices means that o and 1 would be

swapped to bring the spinors into canonical form.

Note that the given test does not necessarily determine ' invariance', for if a given

pair of components are both non-zero but not equal, then the spinor is clearly not

invariant, but this will not be detected. However, in such cases it is ambiguous as to

which component should preferably sit in the upper diagonal. That is, it is difficult to

specify a consistent standard form for components which differ in this way. From an

algorithmic point of view, the best that can be done is to keep track of the fact that this

freedom has not yet been fixed, as it is not a difficult matter to transform the spacetime

under this discrete symmetry later on, if need be.
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Boosts

Boosts are a one parameter transformation under which the spin basis transforms as

oA -»• Ao°, LA -> A"V, (2.42)

with real parameter A. The (a, b) component of a symmetric spinor transforms as

Xab'^^a-{m~a)+b-{n'b)Xab', (2.43)

and the invariant components satisfy

a + b= -{m + n). (2.44)

The boost transformation can be used to fix the magnitude of individual spinor

components. A useful standard form for boosts is suggested when we note that in

practical situations, it is often the case that a spinor is presented in a frame such that

the magnitude of cross-diagonal components is equal. By requiring that this be true

for some given cross-diagonal pair Xab' a n d X(m~b){n-ay it *s possible to solve for the

transformation parameter A via

\a-(m-a)+6-(n-6) | i _ \(m-6)-6+(n-a)-ai I
A IXab'l — A IX(m-6)(n-a)'l>

or,

\4(a+6)-2(m+n) _ \X(m-b)(n-a)'\ (2.46)

If the two components already have equal magnitude, as is often the case, then the spinor

is already in standard form, A = 1, and no transformation is necessary.

For spinors which are not automatically in standard form, it is significant that the

exponent for A has its maximum value for the (0,0) and (m, n) components. Thus by

requiring that this pair have equal magnitude, it is likely that the solution for A will be

a high order radical. A better choice would be a component pair closer to the invariant

diagonal. For instance, along the first diagonal the components are transformed as a

quadratic in A, while the order increases by a factor of two with each step away from

the invariant diagonal.

Resulting from these considerations, the standard form compares pairs of components

across the invariant diagonal starting with components closest to the invariant diagonal.

The first pair in which at least one of the members is non-zero is used to fix the canonical

form by requiring that the pair have equal magnitude. If one of the pair is zero, then

the requirement is that the other have magnitude one.
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(0,n) (m,n)

• © o o o o o
© • © o o o o
O © • 0.
o o © c
o o a G
o o o ©jsi • ©
o o o

O O
i © o

0©

OX0X©
(0,0) (m,0)

Test sequence:
for a= (m + n- l ) /2 . . . 0 do

c = max(0, n — a)
for b = 0 . . . n — c do

Cl = X(a-l.)l>',

C2 = X(m+n-o-t-c)(b+c)'
if Ci ^ 0 or C2 ^ 0 then

if | d | = |C2| or
(C\C2 = 0 and |Ci + C2| = I) then
standard form = True

else
standard form = False

end if
else

Continue
end if

end do
end do

Figure 2.2: The standard form for boost transformations. Components are checked
along the a + b = constant diagonals, moving outwards from the invariant diagonal. The
standard form requires that the first non-zero component pair have equal magnitude,
or in the case that one is zero then the other must have a magnitude of one. Invariant
components are marked in grey in the figure.

Spins

Spins are a one parameter group representing the transformations

oA -4 e~i9tA. (2.47)

Under such a transformation, the xa6' component of a spinor are changed by a phase

factor

v , _> pt(o-(m-o)-6+(n-6))9
Xab' ' c /Lab'

(2.48)

where (m, n) is the valence of x- The components which are invariant under (2.48) are

the ones for which (a, b) satisfy

a — b — -(m — n)
It

(2.49)

(for hermitian spinors, these are the components on the diagonal).

The spin freedom can be fixed by specifying the phase of some non-zero, non-invariant

component. In order to determine which component to fix, note that in this case it is

not as important to reduce the exponent of the transformation, as it only affects the

multiple of some angle 6 which is applied. In the example displayed in Figure 2.3, the

first diagonal (components 1 to 6) are transformed by an angle 26, while those in the

corners (x6o' a n d Xoe') a r e transformed by an angle 126. Effectively, there should be no
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(0,n) (m,n)

o o o o o © •
o o o o © • ©
o o © ,© • Q/O

(/o o
o o
o o

© </o o o o
(0,0) (m,0)

Test sequence:
for a = (m- n)/2 + 1. . . m do

c = min(n, m — a)
for b = 0. . . c to

( ()
ifCi ^ 0 or C2 7^0 then

if phase{Ci) = phased ) or
(CiC2=0 and CX + C2 € R
standard form = True

else
standard form = False

end if
else

Continue
end if

end do
end do

then

Figure 2.3: The standard form for spin transformations. Components are checked along
the a — b = constant diagonals, moving outwards from the invariant diagonal. The
standard form requires that the first non-zero component pair have equal phase, or in
the case that one is zero, the other must be real. Invariant components are marked in
grey in the figure.

extra difficulty in solving for the exponent of the latter. However, for consistency with

the boost case, we choose to step first along diagonals nearest to the invariant diagonal,

thus ensuring that the multiplier is as small as possible when solving for 0.

The search is carried out by examining pairs of components across the diagonal until

one or the other of a pair is non-zero. The canonical form requires that both members

of the pair have equal phase (if the spinor is hermitian, this implies that the components

be real and equal). If one of the pair is zero, the other is required to be real.

Another potential standard form would be, for instance, to require that one of the

pair be pure real. It is not clear that this brings any particular advantage over the chosen

form. Further, in practical situations it is often the case that a spinor is presented in

a frame in which the cross diagonal components are already of equal phase, and thus

already in the suggested canonical form.

Null rotations

Null rotational freedom forms a slightly more complicated class than the groups studied

so far. Rather than simply multiplying each component by a factor raised to some

exponent, the image of the transformation is a polynomial in the non-zero coefficients.

Consider first the null rotation about the oA spinor,

aoA (2.50)
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The transformation of a particular spinor component xab' c a n most easily be worked

out by expanding the component in terms of terms of the basis spinors, oA and iA. For

instance, if Xab' 1S a spinor of valence (2,2), then the (2,0) component can be written as

X20' =XABA'B"<At'BoA'dB', (2.51a)

as can be seen from the expansion (1.55) Under (2.50) this component transforms to

'iS+OLO*)^3 +aoB)dA'dB> (2.51b)

-» X20' + 2ax10' + a2Xoo'- (2.51c)

For a symmetric spinor of valence (m,n), the general formula for the transformed (a, b)

component is given by

(!)0 (2-52)
r=0 s=G

For the opposite form of null rotation (oA —> oA + (3LA, IA —> iA) the analogous formula

is found by replacing a with m — a and b with n — b.

To define the standard form appropriately, we must determine which of the spinor

components are invariant under the null rotations and how the remaining components

can be manipulated. Consider first the expansion of the transformed coefficient with the

highest index values, namely Xmn'>

x ~ I " " (2-53)

Since this is a polynomial in each of the coefficients of X) it is clear that if any of the

Xab' a r e non-zero, then the value of xmn ' will be altered by the null rotation. Thus the

condition for xmn ' to be invariant under (2.50) is that it be the only non-zero component.

In this case the spinor itself, XABA'B'I
 w m l clearly be invariant.

There are other situations, however, when the spinor is invariant, namely under

certain 1-parameter subgroups of the null rotations. Consider first the case in which a

is pure real and examine the resulting transformation of the xmn' component:

Xmn' -> Xmn' + Q (^X(m-l)n' + ™Xm(n-l)')

1 9 / , 1
+ -a* {m[m - l)X(m-2)n' + 2mnx(m_1)(n-i)' + n(n - l)Xm(n-2)'J +

-\—a3 \m(m — l)(m — 2)X(m-3)n' + 3m(m — l)nx(m_2)(n_i)'+ (2-54)
6

+3mn(n — l)X(m-i)(n-2i' + +n(n —
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Since a can be chosen arbitrarily, each of the terms must equal zero if xmn'
 1S to be

invariant. We arrive at the conditions

-i)n' + nXm(n-i)' = 0 ' (2.55a)

-2>»' + 2mnx(m_1)(n_1y + n{n - l)xm(B_2)» = 0, (2.55b)

m(m - l)(m - 2)x(m_s)B, + 3m(m - l)nx(ra_2)(B_1)» +

+3mn(n - l)x(m_1)(n_2) ' + n{n - l)(n - 2)xm(B_S)' = 0, (2.55c)

Xoo' = 0. (2.55d)

The transformations of the other components of x give further conditions. Notably, from

X(m-i)n', we find

(m - l)x(m-2)n' + «X(m-i)(n-i)' = 0, (2.56a)

(m - l)(m - 2)x(m_3)n' + 2(m - l j n x ^ . j ) ^ . ! / + n{n - l)x(m-i)(n-2)' = 0, (2.56b)

Prom the transformation of Xm(n-i)'i

-i)(n-i)' + (n - l)Xm(n-2)' = 0, (2.57a)

' + (" - l)(n - 2)xm(n-3) ' = 0, (2.57b)

And from the first order in a terms of the transformations of X(m-2)n'> X(m-i)(n-,i)' a n d

Xm(n-2)'» we find

(m - 2)x(m_3)n' + «X(m-2)(n-i)' = 0, (2.58a)

(m - l)X(m-2)(n-l)' + (n~ l)X(m-l)(n-2)' = 0, (2.58b)

n»X(m-l)(n-2)' + ( " - 2)Xm(n-3)' = 0- (2.58c)

Equation (2.55a) give the only condition on the pair of components

{X(m-i)n')Xm(n-i)'} while equations (2.55b),(2.56a),(2.57a) are three compatible

restrictions on the components {X(m-!)»'.X(m-i)(n-i]'.Xm(,-!)'}' However, equations

(2.55c),(2.56b),(2.57b),(2.58a),(2.58b), (2.58c) are a set of six conditions on the four

components X(m-3)n'» X(m-2)(n-n'» X(m-n(n-2)', Xm(n-3)'- These components must

therefore be zero.

We arrive at the following result: A symmetric spinor x of valence (m, n) is invariant

under null rotations of type (2.50) with real parameter a if and only if the following
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conditions are satisfied:

_ n — 1 m — 1
X(m-l)(n-l)' — ~~~Xm(n-2)' = ~" X(m-2)n': (2.59a)

"lX(m-l)B' = -nXm(n-l)' . (2.59b)

Xa6' = 0 otherwise. (2.59c)

Corresponding conditions exist for the case where a is allowed to be any other 1-

parameter subgroup of (2.50). For instance, in the case that a is pure imaginary, we

have:

n — \ m — 1
X(m-l)(n-l)' = — — Xm(n-2)' = X(m-2)»'. (2.60a)

lit til

n»X(m-i)»' ="Xm(,-i) '> (2.60b)

Xo6' = 0 otherwise. (2.60c)

The current code is able to detect whether the components are invariant under the

general 1-parameter null rotations, however canonical forms are only defined for the

case for which the parameter is purely real or purely imaginary.

The problem of finding an appropriate standard form is more involved in the case

of null rotations than for the previously considered isotropy groups. One possibility is

simply to use the null rotation to set the value of the xmn' component, so that in the

case of 2-dim null isotropy, Xmn' would be set to zero, while in the 1-dim case, either

its real or complex parts would be eliminated. The advantage of this choice of standard

form is that it is easily recognisable by examining a single component of the tensor

in question. The major drawback, however, is that if the spinor is not already in its

standard form, then a value of a must be determined to bring it into its standard form by

setting equation (2.54) to zero. Of all of the components of XABA'B'-* t n e transformation

of the (m, n) component involves the highest order polynomial in a, and is generally

the most complicated, every other non-zero component contributing. Prom a practical

standpoint, then, it may prove impossible to determine an appropriate a to bring the

spinor into its standard form.

Another potential standard form involves searching for the non-invariant component

with the lowest order transformation function. To do this, the components of the spinor

are stepped through beginning with the (0,0) component and proceeding along diagonals

as depicted in Figure 2.3, until the first non-zero component is reached. The diagonal in

which this component appears is invariant since each term in its transformation function

involves a spinor component 'above and to the left,' all of which are known to be zero.
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Test sequence:
for a = 0. . . m + n — ldo

c = max(0,o — m)
for 6 = 0. . . min(a, n) — c do

tfX^-b-cHb-HO' 7^0 then
for a = a. . . m + n — 1 do

c = max(0,a- m)
for 6 = 0 . . . min(a, n) — c do

if Re-invariance test fails and
(0,n) (m,n) Re(xaS') = 0 then

R=True
else

R=False
end if
if Im-invariance test fails and

Im(Xai') = 0 then
I=True

else
I=False

end if
if R and I are assigned then

(0,0) (m,0) re-standard form = R
im-standard form = I

else
Continue

end if
end do

end do
end if

end do
end do

Figure 2.4: The standard form for null rotations about oA. Components are searched
along the diagonals beginning with Xoo'- When the first non-zero component is found
(B in the diagram), the next diagonal is checked for its invariance properties under null
rotations, beginning with the first non-invariant component A. The spinor is in canonical
form if the first component which fails the test for invariance under real parameters a
(equation (2.61a)) has a zero real part, and the first component which fails the test for
invariance under imaginary parameters (equation (2.61a)) has a zero imaginary part.
In this case the value True is returned. Components continue to be checked until both
invariance types have been established.

The next diagonal is the first non-invariant diagonal. The transformations of components

in this diagonal are linear functions of the rotation parameter a. For each component

Xai,' along this diagonal, the tests

aX(a-i)b' =6Xa<i,-i)'» and (2.61a)

l)t' = -&Xa((,-l)S (2.61b)

are carried out. If the former fails, then the component varies under the real part of a. If

the latter fails, then the component varies under the imaginary part of a. If neither fails,

then the next component in the diagonal is checked and the process continued until a

non-invariant component is found. For the first component xab' which fails the imaginary
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invariance test (2.61b), the standard form is determined by fixing the imaginary part of

a so that the imaginary part of Xab' is transformed to zero,

Xob'Xa(6-l)' ~~ Xab'Xa(b-l)' fey r.ty\
01' 2b|Xo(i )_ l / |

2 ' [Lbl)

For the first component xab' which fails the real invariance test, (2.61a), the standard

form is determined by fixing the real part of a so that the real part of Xab' IS transformed

to zero,

ot =z ~ .

A component which has failed both invariance tests can be set to zero using the

transformation parameter

We have seen, then, that for any of the possible isometry groups which remain once

the Weyl spinor has been fixed, a canonical form for general symmetric spinors can be

defined which fixes the components of the spinor relative to the isometry group. To

implement the Cartan-Karlhede method, then, there remains to choose an appropriate

set of spinors, and an order for which the isometry tests are to be applied to produce a

unambiguous set of components which can be compared between different spacetimes.

A practical procedure for carrying out this comparison is provided in the next chapter.



Classification in practice

A procedure for classifying general spacetimes using the components of their spinor com-

ponents has been described in the previous chapter. Unfortunately, the technical effort

involved in carrying out this procedure can be enormous, even for very simple classes of

spacetimes, due to the need to take multiple derivatives and perform transformations on

a large number of spinor components. This type of operation, however, is ideally suited

to computer algebra systems, which are able to carry out the necessary multiplications

and expansions with great speed and accuracy.

The first to suggest the use of a computer in solving the equivalence problem was

Brans (1965), who developed a modified form of Cartan's method involving fixing the

frame using the highest derivatives of the curvature tensors. With the introduction of

Karlhede's method, the first serious effort at using computer algebra to solve the equiv-

alence problem was carried out in Stockholm, with the major development work being

done by Jan Aman (Aman and Karlhede (1980), Aman (1986)). Over the years a number

of other authors have contributed to produce the package known as CLASSI. CLASSI

is a Lisp-based system, derived from the previously existing computer algebra system

SHEEP. As such, it has a number of beneficial features, including speed, compactness

and, after a long development cycle in which it has been quite thoroughly tested, ac-

curacy. Its practical use has been demonstrated by its authors by the compilation of a

large database of fully classified exact solutions Skea (1997b).

In compiling this database, however, certain deficiencies in the software became clear.

First of all, the SHEEP code which carries out the computer algebra was developed in

the early days of computer algebra by researchers working in relativity. As such, a

number of modern features which one has come to expect in more powerful systems are

not present within SHEEP, such as the ability to carry out polynomial divisions and

40
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factorisations. This limits CLASSI's ability to carry out certain simplifications which

would greatly ease the classification of some spacetimes. In practice, this has meant

that a great deal of work must be done by the user in configuring the input so that the

resulting expressions can be handled. This can be especially difficult for users who are

not proficient in Lisp or the subtleties of the SHEEP system. The use of the software

thus entails a steep learning curve which has limited its widespread acceptance.

Further, the techniques used by the CLASSI software have not been fully elucidated

in any publication or user manual. This includes specification of the standard forms

which it uses for the classifications of high order spinors. This has made results from the

software difficult to verify. In fact, the canonical forms can not be determined without

reading the source code which performs the transformations. This has also influenced

its reliability. For some time the electromagnetic Type N solutions given by Eq. 32.61

of Kramer et al. (1980) could not be correctly put into a standard form. The source of

the problem was difficult to determine, since the intended standard form was not known.

It was only through a re-examination of how a standard form for null rotations might

be defined that it was determined that an error existed in CLASSI's specification of a

standard form for that particular isometry.

For these reasons, it was decided that the classification methods should be revisited,

with the aim of producing an updated package. This work was begun in 1997 as a

collaboration between Ray d'Inverno and Jim Skea (two of the original developers of the

SHEEP and CLASSI systems), and Kay 11 Lake and the author, who have, with Peter

Musgrave, developed an alternate tensor calculation within Maple, called GRTensor.

It was hoped that by re-examining the various aspects of the classification methods,

a better understanding of how they might best be carried out could be obtained. In

addition, the methods could be fully elucidated and explained, and particular sticking

points highlighted, and possibly overcome. The result of this work is the spinor computer

algebra package, which works within Maple in conjunction with GRTensor, and which

will be described in this chapter.

3.1 The choice of platform

One of the main objectives of the current work is to place the classification methods in

the context of a powerful modern computer algebra system.

A great deal of progress has been made in the field of computer algebra since the

appearance of the first SHEEP systems in the 1970s. Modern systems possess well
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developed, fast, efficient, and reliable algorithms for performing the computationally

intensive algebraic tasks required by the classification methods. The development of

these algorithms is a highly technical science, and one for which a specialised knowledge

is required. The effort involved in developing such a system from scratch is enormous.

It is thus a great advantage if one can make use of a system which already exists.

Further, modern computer algebra systems generally are supplied with advanced

user interfaces, making use of displayed PostScript for the output of equations. They

also possess various tools for the formatting of output, allowing equations to be con-

verted to a variety of formats (eg. L5Tf<jX) for text processing, or C or Fortran code for

implementation in numerical codes.

Among such systems are the packages Axiom, Macsyma, Maple, Mathematica, Mu-

Pad, and Reduce. Each of these packages possesses similar features and capabilities.

Determining which of these is the most appropriate based on purely technical grounds is

a highly controversial business. Attempts have been made at providing independent test

suites of problems to test the capabilities of computer algebra systems. However, the

results can usually be questioned on the grounds that they emphasise particular types

of problems, or that the solutions may have simply not been implemented correctly in

a given system. In fact, because each of the named systems provide their own com-

mand language, it can be argued that any problem that can be solved in one is likely

to be soluble in another by writing a program corresponding to the given algorithm.

The distinguishing aspect between the different systems then becomes its 'ease of use',

a somewhat less quantifiable property.

There are a number of other non-technical aspects that must be considered. The most

important of these is availability. Each of the systems above is a commercial package,

and as such must be purchased (the exception being the relatively new system, MuPad,

which is available free of charge to academic institutions). The extent to which a system

is used will depend on whether a researcher will have access to the software through an

institutional license, or whether they must purchase the software individually themselves

(as is often the case with students). In the latter case, it is important that the chosen

system have fully functional editions available at a low price.

In the original development of the GRTensor system, it was decided that of the

systems available at the time, MapleV formed the most appropriate platform. It is a

powerful system with a simple user interface and interpreted programming language. In

tests of simplification of large polynomials (crucial for work with tensors), it significantly

outperformed the concurrent editions of Mathematica and Macsyma. It provides well
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developed interfaces for the output of data to LJTgjX and other programming languages.

Further, Maple has a widespread acceptance in academic faculties. It is common for

maths and physics faculties to possess site-wide licences, so that researchers and students

are able to make use of the software at no personal expense. The added benefit of this

wide acceptance is that that code written for Maple on a particular machine can be run

on any other Maple system, so in this sense the programs become platform-independent.

These aspects singled out Maple as a quite sensible choice for development of a tensor

algebra system.

There are, however, certain drawbacks in writing code for a single computer algebra

system, and in particular Maple. The greatest of these is that there is no control of

the development of the underlying platform. Maple continues to be developed, and

with each new release software written for it must be updated and re-tested. Although

later versions of Maple attempt to remain consistent in their programming language

with earlier versions, this has never worked with absolute accuracy, and with each new

Maple release from Release 2 (in which the original versions of GRTensor were written)

to Release 6 (the current Maple release which is expected to complete beta testing in

March 2000) changes to the GRTensor code have been required. More disturbing, later

editions have Maple have not always proved to be faster or more efficient in performing

individual calculations, in some cases quite the contrary.

Maple itself also has some inconvenient properties in its handling of algebraic ex-

pressions. The largest of these is that the ordering of expressions is not determined

lexically, but rather is dependent on the memory addressing of individual quantities. As

such, calculations carried out in subsequent Maple sessions can seem quite different in

appearance. Code which performs substitutions based on the ordering of expressions

will also not work reliably. Radicals can also prove to be a problem, in particular the

identification of expressions such as

y/x - y , iy/y - x. (3.1)

In terms where both forms of such components arise, it can require a great deal of effort

to convince Maple to perform simplifications which are obvious to the user.

It must be realized, however, that each of the packages in question possess similar dis-

advantages arising from their individual behaviour, and that for the algebraic operations

in question, Maple has generally been found to outperform its rivals.
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3.2 GRTensorll

The GRTensor package was originally developed in 1991 by Peter Musgrave and Kayll

Lake, as a means of calculating curvature tensors and scalar polynomial invariants in

general relativity. Although it proved to be both fast and powerful in calculating the

objects for which it was designed, its data structures and interface left little room for

expansion of its capabilities. As such, in collaboration with the author, in 1993 devel-

opment switched to a more ambitious package, called GRTensorll. The new package

included the ability to calculate tensors in any index configuration, and allowed users to

define their own tensors using a simple interface. Further, support for tetrad formalisms,

and in particular the Newman-Penrose formalism, was added.

Basic commands

The design philosophy of GRTensor1 can be embodied in the following points:

i. No quantity should need to be computed twice. Index symmetries are used when-

ever possible. Intermediate objects (such as the Christoffel symbols in the calcu-

lation of the Riemann tensor) are stored and re-used when required.

ii. The user should have control over each step of the calculation. Rather than cal-

culating the Riemann tensor in a single step, the user is able to first calculate and

examine the intermediate objects, to which simplifications and substitutions can

be applied.

The importance of the second point can not be overstated. In fact, using GRTensor it has

been possible to show that the most significant aspect in improving the speed of a tensor

calculation are the simplifications that are applied at each stage, independent of the

particular summation algorithm or formalism in which the components are calculated

Pollney et al. (1996).

The user interface of GRTensor is built around three principle commands,

grcalc calculates the components of tensors;

grdisplay displays the components;

gralter applies simplification routines to tensors.

'The package GRTensor is understood to refer to GRTensorll, as the original MapleV.2 package is

defunct.
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Tensor names, with their index configurations, are supplied as arguments to these com-

mands. For example, the Ricci tensor can be referenced as

R(dn,dn) (=Rab), R(up,dn) (= Ra
b), R(bup,bdn) (=i? a

b ) ,

where the last example uses the labels bup and bdn to reference the components of the

Ricci tensor in terms of a basis rather than metric coordinates.

Thus, to calculate the Ricci tensor for a given spacetime, apply trigonometric sim-

plification, and then display the resulting components, the following set of commands

can be used:

grcalc ( R(dn,dn) ) ;

gral ter ( R(dn,dn), t r i g ) ;

grdisplay ( R(dn,dn) ) ;

Additional commands exist to carry out further manipulations of the output. The

grcomponentO command can be used to assign tensor components to a Maple variable.

The grmap () command can be used to apply any Maple function to each component of

a tensor.

Input of spacetimes

The primary input to GRTensor is a file specifying the spacetime geometry either in

the form of a metric, gab, or frame, ea
6, with basis vectors satisfying some constant

valued inner product,2 ?7ab := ea
aeba- An example of an input file for the Tolman dust

solution is given in Figure (3.1). The coordinates are specified by the variables xl_ to

x4_, and the covariant metric tensor components, gab, are contained in the variables

gll_ to g44_. Note that only the non-zero, upper-diagonal components are stored.

The optional variable sig_ can be used to specify the signature of the metric. The

constraint , variable exists if there are additional conditions which are satisfied by

the metric functions which the user might wish to supply at some time later in the

calculation. Finally, the Inf o_ variable can be used to store some descriptive information

regarding the spacetime. The particular example can be stored in ASCII form as , for

instance, dustl.mpl. The command qload(dustl) loads the file into GRTensor and

assigns the individual tensor components to their respective internal data structures.
2In fact, certain fundamental tensors, such as the Riemann and Ricci tensors and their polynomial

invariants, can be calculated with a non-constant basis inner product. The usefulness of such definitions

was suggested to the authors by C. W. Misner (personal communication) in relation to some calculations
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Ndinu := 4:

xl. := r:

i2_ := theta:

x3_ := phi:

i4. := t:

sig. := 2:

gll_ := diff ( R(r,t),r)-2/(l+f(r) ):

g22. := R(r,t)-2:

g33. := R(r,t)"2*sin(theta)~2:

g44. := -1:

constraint- :=[ diff(diff(R(r,t),r),t) = (2*diff(m(r),r)/R(r,t)

- 2*m(r)*diff(R(r,t),r)/R(r,t)-2

+ diff(f(r),r))/(2*sqrt(2*m(r)/R(r,t)+f(r))),

diff(R(r,t),t) = sqrt(2*m(r)/R(r,t)+f(r)),

diff(diff(R(r,t),t),t) = -m(r)/R(r,t)~2,

diff(diff(diff(R(r,t),t),r),t) = -diff(m(r),r)/R(r,t)-2 +

2*m(r)*diff(R(r,t),r)/R(r,t)-3

]:

Info_:= 'The Tolman dust solution (Proc. Nat. Acad. Sci. 20, 169,1934)':

Figure 3.1: The metric file dustl .mpl from the standard metric library.

Tensor definitions within GRTensor

The tensor definitions themselves are stored in the grGJDbjDef data structure. Individual

tensors are referenced using the tensor name, so that grG_ObjDef [G(dn,dn)] holds

the definition for the covariant components of the Einstein tensor. A tensor definition

consists of a number of fields giving information as to how a tensor is to be calculated,

displayed, and referenced. The grC_depends field contains a set of tensors on which the

given tensor depends. Thus, for the Einstein tensor, the line

grGJDbjDef [G(dn,dn)] [grCjdepends] := {g(dn,dn) , R(dn,dn) , Ricciscalar} :

indicates that in order to calculate G(dn,dn), the objects g(dn,dn), R(dn,dn), and

Ricciscalar must first be known. When a request to calculate a given tensor is made

using grcalcO, a list of such dependencies is constructed and each tensor in the list

calculated in turn.

The actual component calculation is carried out by a pair of functions. The field

grCLsymFn points to a function which specifies which of the tensor components are to be

calculated. It takes the form of a number of loops through the independent components,

with cross assignments for components which can be identified by the index symmetry.

For instance, for a symmetric two index tensor, grC_symFn would specify a loop through

the components in the upper diagonal and cross-references to the components in the

lower diagonal. For each component in the loop, the grCLsymFn calls a function which

is pointed to by the variable grC_calcFn. This is the function which actually specifies

for mixmaster spacetimes.
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grG_ObjDef [GCdn.dnU [grCheader] := 'Covariant E ins te in ' :
grG_ObjDef [G(dn,dnD [grCjrootStr] := 'G ' :
grG_ObjDef [G(dn,dnD [grCjroot] := Gdndn_:
grCObjDef [GCdn.dn]] [grCJ.ndexList] := [dn.dn] :
grG_0bjDef [G (dn, dn3 [grCcalcFn] : = grF.calc.Gdndn:
grG_ObjDef [GCdn.dn] [grCcalcFnPanns] := [] :
grG_ObjDef [G(dn,dn'] [grC_symmetry] := grF_sym_sym2:
grG_ObjDef[G(dn,dnl [grCjdepends] := g(dn,dn), R(dn.dn), Ricciscalar:
grF_calc_Gdndn := proc (object, index)

s := grG_Rdndn_[gname,al_,a2_]
- l/2*(grGgdndn_[gnameJal_,a2_] * grG_scalarR_[gname]) :

end:

Figure 3.2: The GRTeisor object definition for the covariant Einstein tensor. The
grC_calcFn field namesthe function used to calculate each component. The symmetry
function, grF_sym_sym2,is the name of a generic function used to calculate the compo-
nents of symmetric tensirs with two indices.

the formula for the calculation of each tensor component in terms of the components of

tensors specified in the lependency list.

The final importantfield of the object definition structure, grC_root, specifies the

name of the array in wiich the final components are stored. In general, the name is

constructed from the nane of the tensor with its index configuration. In the case of the

covariant Einstein tenser, G(dn,dn), the results will be placed in the array grG_Gdndn_.

An additional complicaion comes from the fact that we may wish to calculate the com-

ponents of the Einsteintensor for various spacetimes in a given session. By convention,

to distinguish these tb first field of the component array will be the metric name.

The remaining fields aB indexed numerically and contain the individual components.

Thus, grG_Gdndn_[dus1l,l,2] stores the Gyi component of the Einstein tensor for the

dustl spacetime, whilegrG_Gdndn_[schv,3,3] stores the G33 component for the schw

spacetime.

A full example of ddnition of the Einstein tensor within GRTensor is given in Figure

(3.2). Note that althoigh the index configuration is specified as part of the definition,

only a single definitionfor each object is required. Tensor definitions for the alternate

index configurations oi a given tensor are generated automatically when they are re-

quired. That is, if the ?% components of the Einstein tensor are to be calculated, then

an internal definition (f G(up,dn) is created, its calculation function corresponding to

the contraction of G(di,dn) with the contravariant metric tensor.
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Tensor definitions such as the one described above can be created much more easily

using the function grdef (). This command creates both a calculation function and an

optimised symmetry function from a parsed string. For instance, the tensor definition

displayed in Figure (3.2) could have been created automatically using the command

grdef ( fG{ (a b) } := R{ a b} - (1/2) * g{a b}* Ricciscalar' ) ;

(Note that the indices on the left-hand side are enclosed in round brackets, indicating the

symmetry of the Einstein tensor). A full description of the usage of grdef ()is beyond

the scope of this thesis. However it should be noted that in principle, almost every

object defined within the GRTensor standard libraries could have been denned using

a grdef () command. This would entail a number of benefits, such as reduced size of

source code and increased readability, the only disadvantage being the slight increase in

calculation time the first time a tensor is referenced due to the need to construct a tensor

definition from the grdef () string. At the current time, however, within the GRTensor

source code objects continue to have explicit definitions in the form of Figure (3.2).

Because the standard library has existed for some time and is extremely well tested, it

is thought to be more prudent to retain the original definitions for the time being.

Object libraries

As a final point, we note that a certain amount of modularity can be achieved by grouping

together related tensor definitions into separate Maple libraries. This has the advantage

that only certain definitions need to be loaded at any time, corresponding the the parts

of the package which is being used. For instance, almost the entire set of standard ob-

jects defined for tetrads and the NP-formalism exist in the external basislib.m library,

which is loaded automatically when the user attempts to grcalcOone of the objects in

question. If calculations are done exclusively in metric coordinates, the NP definitions

are never loaded. Similar add-on libraries exist for scalar polynomial invariants and some

vector field definitions, as well as a large library for calculations involving the junctions

between spacetimes Musgrave and Lake (1996), Musgrave and Lake (1997). The spinor

object definitions and tools for carrying out the Cartan-Karlhede method have similarly

been coded into an external library for GRTensor, called spinor.m.
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3.3 Spinor tools

The main requirements of the Cartan-Karlhede method are a set of tools for calculation

of the minimal set of spinors determined by MacCallum and Aman (1986), and their

transformation under 5L(2,C) rotations.

Although the required objects are spinors, and thus defined for a spin basis,the

relation between spin bases and null tetrads (see Eq. (1.30)) allows all of the calculations

to be carried out within the context of the NP formalism which is already defined within

GRTensor. The spacetime specified in the form of an NP tetrad is required as input.

Derivative operators and symmetric spinors

New objects within the spinor package are the set of symmetric spinors listed by Mac-

Callum and Aman (1986). Although calculations are done within the NP formalism, it

is convenient notationally to retain the notion of the objects as symmetric spinors. Thus

objects can be referenced using the 2-index notation described in Section 1.2.

The fundamental objects, the Weyl spinor, Ricci spinor, and Ricci scalar, are already

denned within the NP formalism, and thus are calculable from the frame within GRTen-

sor. Within the spinor package, they are referenced as WeylSp, RicciSp, and Lambda.

Thus the command

grcalc ( WeylSp ) ;

would calculate the covariant Weyl spinor components. Individual components are dis-

played and accessed using the 2-index notation. Thus the output of the above command

would be displayed using

grdisplay ( WeylSp ) ;

Weyl spinor

for the schw spacetime

2m

where \&20 corresponds to the usual NP component ^2- The 2-index notation carries over

to the use of the grcomponentO command. Thus the \&20' component can be accessed

using the command

grcomponent ( WeylSp, [2,0] ) ;
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Note that because the index pair are not conventional spinor indices, there are some

restrictions placed on the operations allowed with symmetric spinors. Thus the oper-

ation of raising indices, or contracting indices within grdef ( ) , are not defined for the

symmetric spinors given by the spinor package.

The higher order objects correspond to different forms of the covariant derivative of

the curvature spinors. Three derivative operators are defined to perform these calcula-

tions, each of which taking a valence {m,n) symmetric spinor, XAB' = XA1...AmB'1...B'n ̂

their argument.

SymD[x] calculates the valence (m + l ,n + 1) spinor corresponding to its symmetrized

covariant derivative,

m + 1n+l1[...B>ny (3-2)

Dal [%] calculates the valence (m, n) spinor which is the d'Alembertian applied to x :

' ' . A r a B l . . . B ; , . (3-3)

Curl [x] calculates the valence (m — 1, n + 1) spinor corresponding to the symmetrized

covariant derivative with one index contracted,

V V X A C ' = ^Am^n+lXA1...AniB'l...B'ny (3-4)

Internally, the operators are expressed in terms of the NP formalism so that the com-

ponents of the new spinor are calculated in terms of the components of the old spinor,

the spin coefficients, and their derivatives. In particular, the (a, b) component of the

symmetrized covariant derivative, V, applied to a spinor of valence (m, n) is given by

ci{(m-a- l)KX(a+i>6' + (2a - m

{n-b- l)KXa(b+i)' + (26 - n

c2{{m - a)pxab< + (2a - m - l)c*X(a-i)6' - (a - l)Ax(a_2)6'

{n-b- l)CTX(a-i)(fc+i)' + (2b ~ n fe

c3{(m - a - l)aX(O+i)(t-i)' + (2a - m

(n - b)pxab> + {2b-n~ l)aXa(i-i)' -

C4{{m - a)Txa(fc-l)' + (2a - m - l)7X(a-i)(b-i)' - (a -

(n
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where

(m - a)(n - b) a(n - b) (m - a)b ab
c\ = , c2 = , c3 = , c4 = . (3.6)

mn van mn mn

The components of the d'Alembertian, D, of a symmetric spinor are given by

' =2(AD - 66)Xab> + (2(e + e - p) + c3e + c'3e)Axai/

+ (-2TT - c3a - c'3p)8Xab>

+ (2(Q - 0 - TT) - c3/3 - c3a)5xa6' + (2/i + C37 + c'tf)Xab>

+ (c3(Ae - 5a - <Ĵ  + D7) + c'3(Ae - 5a - 80 + Dj))Xab>

- C2(AK - 5p - <5CT )X(O+I)6
(3.7)

- p5Xa(b+1y - aSXa(b+1y + fDXaib+1y)

- c^{AR -Sp-8a

+ CI(ATT - 5A - Sn + Dv)X(a_1)b>

+ c[{TtAXaib_iy ~ A(5Xa(6-l)' ~

+ ci(A7f -5\-6p, + Z?i?)Xa(6-i)'.

where

m — a m — 2a
c\ =a/m, C2 — , C3 = , (3.8a)

m m
c[=b/n, 4= ! ! —^, 4 = ^ — ^ . (3.8b)

And finally, the 'curl' operator, V, applied to an arbitrary symmetric spinor has com-

ponents of the form

( ) + (2a - m + l)ex(a+1)i>' - (a

+ (n - b - l)KX(.+i)(i+i)' + (26 - n + l)eX(«+i)t'

- WfX(.+i)(i-i)' - (m - a + l)pX(.+i)k'

- (2a - m - l)axa6 ' + aAx(o-i)6' - (n - 6 - l)axa(b+i)'
(3.9)

- (26 - n ^ ]

+ c2[(m - o)(TX(.+2)(k-i)' + (2a - m + l)/3x(a+i)(t-i)' - (a

+ (n - 6)pX(o+i)6' + (26 - n - l)ax(a+i)(6-i)' - (6 - l)Ax(a+i)(fc-2)'

- (m - a + ^TXca+ixb-i)' - (2a - m - l)7Xa(b-D' +

- (n - 6)fx.6' - (26 - n -
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where

(3.10)
n n

(In fact, the equivalence method only requires that this operator be applied once, in

order to determine the spinor ^ABCD'-)

Each of the spinors required by the equivalence method have been given specific

definitions in the spinor package. The names by which they are referenced are listed in

Table 3.3. Note that the new object names do not follow the GRTensor convention of

listing the index configuration of each spinor. Since the 2-index convention for listing

spinor components is followed, it is implicit that each of the objects has two indices,

both of which are necessarily covariant. Thus the components of the object DalD2Psi

can be calculated using the command

grcalc ( DalD2Psi ) ;

and the (•V2^ f)23 ' component can be accessed using

grcomponent ( DalD2Psi, [2,3] ) ;

Frame rotations

The spinor package also provides a set of routines for determining the components of

the spinor under SL(2, C) rotations of the spin basis,

ad - 6c = 1 . (3.11)

An SL(2,C) transformation can be applied to any of the spinors listed above using the

command applydytr ( ) , which in addition to a list of spinors to be transformed, accepts

the following arguments:

dytr: A 2x2 array containing the components of the spin transformation to be applied.

oldname: The name of the spacetime for which the spinors are to be transformed. If

this argument is not specified, the current spacetime is assumed (ie. the spacetime

for which the most recent calculations have been carried out).

newname: A name to assign to the rotated frame. If this argument is not specified,

then a unique new name is created automatically by appending an integer to the

name of the current default spacetime.
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Name

WeylSp

DPsi

D2Psi

DnPsi

DalPsi

DalnPsi

DalDnPsi

Dal2DnPsi

Dal3DPsi

Name

Lambda

DLambda

D2Lambda

DalLambda

DnLambda

DalnLambda

DalDnLambda

Dal2DnLambda

Dal3DLambda

Definition

^ABCD

n = 1...7

n = 1...3

n = 1...5

n = 1...3

Definition

Ricci scalar

DA

n = 1...7

•"A

n = 1...3

n = 1...5

71 = 1...3

Name

RicciSp

DPhi

D2Phi

DnPhi

DalPhi

DalnPhi

DalDnPhi

Dal2DnPhi

Dal3DPhi

Name

Xi

DXi

D2Xi

DalXi

DnXi

DalnXi

DalDnXi

Dal2DnXi

Definition

n = 1.. .7

71= 1...3

n = 1...5

71= 1. . .3

Definition

V 'V 'Hi '

n = 1...6

n = 1.. .3

n = 1...4

n = 1...2

Table 3.1: Symmetric spinors defined by the spinor library.
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rotateTetrad: Specifies whether the tetrad vectors and spin coefficients are to be ro-

tated in addition to the listed spinors. This argument can take the values auto

(the frame vectors and spin coefficients are automatically rotated and assigned

values in the new frame), false (only the listed spinors are assigned in the new

frame), or prompt (the user is prompted as to whether the frame should be rotated

[default]).

overwrite: If a spinor has already been assigned in the rotated frame (whose name is

specified by newname), the user is prompted as to whether the components should

be overwritten. If overwrite is set to auto, the components are automatically

overwritten, whereas if it is set to false the components will not be overwritten.

Thus, for example, if the spinor DPsi has been calculated for the schw spacetime, an

arbitrary null rotation can be applied using the commands:

> T := matrix (2, 2, [1,0,lambda,1]);

> applydytr (DPsi, dytr=T, newname=schw2, rotateTetrad=auto);

This command will apply the transformation T to the components of DPsi. The new

components are assigned to the object DPsi in the schw2 spacetime. Note that within

GRTensor, the components of each calculable object is associated with the name of a

spacetime in order that, for instance, the Riemann tensor can be calculated in multiple

spacetimes without having to overwrite its components. In order to avoid ambiguity

about which frame the components for a given spinor have been calculated, the spinor

package regards a rotated frame to be a different spacetime (at least in the GRTensor

sense) from the original. Just as two separate metric files specify the Schwarzschild

spacetime in Bondi coordinates and Eddington-Finkelstein coordinates, a pair of frames

which differ by a 5L(2, C) rotation are also considered to be 'different'. In order to switch

between frames, the grmetricO command is used, as in standard GRTensor. Thus, in

the above example, the user would then type

> grmetric (schw2);

> grdisplay (DPsi);

in order to view the rotated components in the new (rotated) frame. Further calculations

would proceed in this frame unless the command 'grmetric(schw)' is used to return

the user to the original frame, where the original spinor components are still stored.
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The final argument in the example above specifies that the rotation is also to be

applied automatically to the frame and the spin coefficients of the schw spacetime.

If this argument were not specified, the user would be prompted as to whether this

additional operation is to be performed. In general the user would wish to answer 'yes',

since these objects will be required in the new frame if further spinor calculations are to

be carried out.

Note that in order for applydytr to work, it must have a specification of how each

of the given objects transform under spin transformations. For symmetric spinors, a

single function is used to calculated the new components. Performing an expansion of

the spinor in terms of the spin basis, Eq. (1.55), it is not difficult to see that under the

given transformation a spinor component x./ transforms as a polynomial in a, b, c, and

d, and the spinor components,

E E E E ("7) (;) (" ;j) (^—w-w-<-'^-"Xl_K,_ ,.„„
p=0 g=0 r=0 s=0 V P / W V r / W

(3.12)

where the spinor has valence (m,n).

Only objects for which a rotation function has been assigned can be rotated using

the applydytr() command. At the present time, these are the frame, the NP spin

coefficients, and the symmetric spinors listed in Table 3.3.

For any of the spinors listed in Table 3.3, as well as for the frame vectors

(la,na,Tna,rha), the applydytr() command evaluates the new components using this

polynomial.

The transformations of the spin coefficients, however, are somewhat more difficult, as

they involve derivatives of the transformation parameters. A lengthy calculation results

in the following formulas for the transformation of the spin coefficients under arbitrary

SL(2,C) rotations:

K —> - abaDa - b2bAa - abbSa - b2a8a + a2aDb + a2b5b

+ aba6b + abbAb - a3an - 2a2abe

~ a3ba - 2a2bb0 - a2bap - 2ab2aa - a2bbr - 2ab2bj

- ab2a-K - ab2bti - b3a\ - b3bu (3.13a)
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p -» - bcaDa — bdbAa — bcbSa - bdaSa + acaDb + adbAb

+ acbSb + adaSb — a2ca,K — 2aca.be

- a2cba - 2acbb(3 - a2dap - 2adaba - a2dbr - 2adbby

- b2ca-K - b2cbfj, - b2da,X - b2dbv (3.13b)

a -* - abcDa - 62dAa - abdSa - b2c5a + a2cDb + abdA

+ a2d8b + abcSb - a3cn - 2a2cbe

-a? da - 2a2dbf3 - a2bcp - 2ab2ca - a2bdr - 2ab2d'y

- ab2cn - ab2dmx - 63cA - b3dv (3.13c)

r -4 — bccDa — bddAa — bcdSa — bdcSa + accDb + addAb

+ acd6b + adc8b — a2cc.K — 2accbe

- a2cda — 2acdb/3 ~ a2dcp - 2adcba — a2ddr - 2addbj

- b2ccir - b2cdfi - b2dc\ - b2ddu (3.13d)

e -> - daaDa — bdbAa — dabSa - bdala + acaDb + cbbAb

+ acbSb + cbaSb — a2 can — acabe — a2cba — acbbf3

- abacp — b2aca — abbcr — b2bcj — abadir — a2ade

- abbdp, - a2bd/3 - b2da\ - adaba - b2dbv - adbbj (3.13e)

a —> - cdaDa — d2bAa - cdbSa - d2a6a + c2aDb + cdbAb

+ c2b5b + cda5b - ac2an - be2at — ac2ba — bc2b8

- adacp — bdaca — adbcr — bdbcy — bcadix — acade — bcbdfi — acbdfi

- bd2aX - ad2aa - bd2bv - ad2try (3.13f)

P —> — dacDa — bddAa — dad5a — bdcSa + accDb + cbdAb

+ acdSb + cbc5b — a ecu — accbe — a cda — acdb/3

- abeep — b cca — abder — b dcry — abedn — a cde

- abddfi - a2dd/3 - b2dc\ - adeba - b2ddv - addby (3.13g)

7 -> - cdcDa - d2dAa - cdd5a - d2c5a + c2cDb + cddAb

+ c d5b + cdc5b — ac CK — be ce — ac da — be dp

- adeep — bdeca — adder — bddcj — becdn — accde — beddp, — acddj3

-bd2cX-ad2ca~bd2du-ad2d'y (3.13h)
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7T -»• — daaDc - bdbAc - dabSc - bdaSc + acaDd -f cbbAd

+ acbdd + cba8d — ac2an — 2aca.de

- ac2ba - 2acbdfi - c2bap - 2bdaca - c2bbr - 2bdbcj

- d2aan - d2ab(i - bd2a\ - bd2bu (

A ->• - cdaDc - d2bAc - cdb&c - d2a5c + c2aDd + cdbAd

+ c2b5d + cda8d - c3an — 2c2ade

- c3ba - 2c2bdfi - c2dap - 2cd2aa - c2dbr - 2cd2lry

- cd2an - cd2b\i - d3a - dzbv (

pL —> — dacDc — bddAc — dadSc — bdc.Sc + accDd + cbdAd

+ acd6d + cbcEd — ac2cn — 2acc.de

- ac2do - 2acddP — c2bcp - 2bdcca - c2bdr — 2bddcj

- d2acir - d2ad~n - bd2c\ - bSdv (3.13k)

v -» — cdc.Dc - d2dAc — cdd8c - d2c8c + c2cDd + cddA

+ c2d5d + cdcdd - C3CK — 2c2cde

- c3da - 2c2ddfi - c2dcp - 2cd2ca - c2ddr - 2cd2dj

- cd2cn - cd2d~n - d3c\ - d3du (3.131)

3.4 Classification tools

To this point, tools have been described for calculating the components of all of the

independent symmetric spinors listed in MacCallum and Aman (1986), and applying

general dyad transformations to these objects. In order to carry out a full classification

of the given spacetime, the following additional tasks, specific to the equivalence problem,

must be accomplished:

• The Petrov and Segre types of the spacetime must be determined.

• The spinors must be checked to determine whether they are in a standard form.

• The isometry group of the frame must be determined.

• If a spinor is not in standard form, a spin transformation must be determined

which will bring it into its standard form.

• Independent functions among the spinor components must located.
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Petrov type

The Petrov type is determined from the Weyl spinor using the command

grcalc (ptype):

The calculation of ptype proceeds as described in Appendix A, and the result is stored

as one of 0, 1, 2, 3, d, n. Note that in many cases, the determination of the Petrov type

involves the calculation of a high order polynomial in the spin coefficients which must be

equated to zero. In general, this is well done within Maple, and by implicitly applying

expand () to the results, a correct evaluation (zero or non-zero) is almost guaranteed.

However, it is not difficult to construct situations (especially involving radicals, as de-

scribed in Section 3.1) for which a zero-function can not be automatically simplified to

zero. Thus, it is necessary that the user be able to check the intermediate calculations to

see that everything has proceeded correctly, and if not, to manipulate the troublesome

expressions.

To facilitate this, as the ptype calculation proceeds the path taken (a number from

0 to 31 corresponding to an entry of the table in Appendix A) is stored in the variable

grG_Ppath_, while the intermediate expressions on which decisions have been based,

are stored in the global variable grG_Pscalars. This variable is a set whose elements

correspond to the individual scalars which must be calculated along the given path.

Thus, if the Weyl spinor corresponds to Case 15 of the Petrov algorithm, then grG_Ppath_

will equal 15, while the grG_Pscalars_ variable will contain entries of the form I = . . . ,

F l = . . . , F2 = . . . , D = ....

The user can manipulate the entries of grG_Pscalars_ in order to ensure that all

of the zeros have been found, then run grcalc (ptype) once again. This time, the

program will recognise that the required (and hopefully fully simplified) scalars have

already been stored in the grG_Pscalars_ variable, and will prompt the user as to

whether these variables should be used as opposed to recalculating them from scratch.

By this procedure, the user is given complete control over the intermediate decision

making that takes place within the Petrov type algorithm. Fortunately, this level of

control seems only to be required in rare situations.

Isotropy testing

The next two closely related tasks are greatly simplified once the Petrov and Segre types

have been established. From Table 2.1, for instance, we see that a simple test of its
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components determines whether the Weyl spinor is in standard form for a given Petrov

type, and given a non-zero Petrov type, only a limited subgroup of the rotational freedom

remains in the frame.

The program isotes tQ is a general tool which can be used to determine whether

any given spinor is in the standard form for a particular isotropy group. Two arguments

are specified, the first being the spinor which is to be checked (any of those listed in

Table 3.3), and the second is the subgroup of SX(2,C)under which the frame is still

free to rotate. These are specified by the following strings: Inswap, Boost, Spin,

Null2D, NulllD, NullR, Nulll. The Inswap freedom refers to a swap of the oA and iA

spin basis vectors, which in a frame has the effect of swapping the la and na and the

ma and fha vectors. The Null2D isometry refers to freedom to null rotations about oA

with a complex rotation parameter A. If the null rotational freedom only holds for a

real parameter, the isotropy group can be specified as NullR, or for a strictly imaginary

parameter, Nulll. The NulllD group refers to rotations by a complex-valued parameter

for which a restriction exists relating the real and imaginary parts. (Note that although

this form of isotropy can be detected, in fact no corresponding standard form has been

defined.)

The isotes tQ function returns the Maple NULL-value if the spinor is judged to be

in a standard form for the given isotropy group, as specified in Chapter 2. If it is not in

standard form, a l i s t is returned, specifying both the isotropy group which has been

lost and the particular component which deviates from the standard.

Automatic generation of dyad transformations

Given that a spinor is not in the standard form for a particular 5L(2,C)subgroup, a

spin transformation must be applied to its components. The function dytrgenQ takes

as arguments the name of the non-standard spinor, and the isotropy group which is to

be used. The components of the spinor are then used to calculate the entries in a spin

matrix which, when applied to the spinor, will bring it into the standard from. The

2x2 array which is returned by the dytrgenQ function can be used as input to the

applydytrO function, described above.

The dytrgenO function can be applied to any of the spinors listed in Table 3.3.

Note, however, that in order to determine the appropriate standard form for a general

spinor, it is necessary that the SL(2, C)freedom already have been reduced to one of the

listed subgroups. This is only possible once the Weyl and Ricci spinors have already been
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classified, and special algorithms for the Weyl spinor are required in order to determine

the spin transformations which bring it into one of the forms listed in Table 2.1.

Given a particular configuration of zero/non-zero Weyl components, as listed in Ap-

pendix A, it is generally not difficult to determine expressions for the components of a

spin transformation as functions of the \I/;S. These are listed in Appendix B. However,

in certain complicated cases for which there is a large number on non-zero Weyl compo-

nents, it is extremely difficult to determine a general formula for the spin transformation

matrix. In order to arrive at the correct spin transformation, a general rotation is ap-

plied to the coefficients of the Weyl spinor, and the restrictions specified by the canonical

frame (eg. that certain components be zero) are used to solve for the undetermined ro-

tation parameters. Generally, this involves solving for the roots of a quartic in the Weyl

coefficients. Though for special cases, the problem can be simplified and the roots are

not difficult to find, the general solution is not known. The current set of algorithms is

not able to determine a standard form for Type I and Type II Weyl spinors arising from

paths 19, 23, 27, and 31 of the Petrov algorithm described in Appendix A. Further,

in certain cases (notably 9, 11, and 15), although the formulas for the transformation

coefficients can be found, they are complicated and may be impractical to apply. Note,

however, that this is not a problem which can be solved through better algorithm design

or more powerful simplification tools. It is a result of the fact that the transformation

coefficients are the roots of a quartic. As such, this is a fundamental limitation of the

Cartan-Karlhede method.

A final tool is required to scan the list of spinor components and extract the po-

tentially independent components. The function f ind_indep_cmpts() exists to perform

this task. The real and imaginary parts of each spinor component are extracted. From

these, the Jacobian determinant is used to determine the set of linearly independent

functions. The results are returned as a set whose entries specify: the spinor name, the

independent component number, whether it was the real or imaginary part, the actual

value of the component, and its derivatives in terms of the coordinates.

Automatic classification

The functions described in the previous paragraphs provide all of the functionality re-

quired to carry out the Cartan-Karlhede method. As a step-by-step process, however,

the method is still quite complicated to carry out. As such, the spinor package pro-

vides a classify() function which will automatically carry out the steps required to
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fully classify a spacetime. The function takes no arguments, and is assumed to work on

the current default spacetime which has been loaded into GRTensor as a null frame.

The classify () function proceeds stepwise, first determining the Petrov type of the

given spacetime (calculating the Weyl in the process, if necessary). Using the result of

the Petrov type calculation, the Weyl tensor is checked to determine whether or not it

is in canonical form, and if not, dytrgenO determines a spin transformation which is

passed to applydytr () in order to rotate the frame (and spin coefficients) to their Weyl

standard form. The new frame assuming the spacetime is not conformally fiat, is known

to be invariant under a restricted subgroup of SX(2,C). This information is stored in

the global variable grG_Isotropy_ The independent components of the Weyl spinor in

the standard frame are located using f ind_indep_cmpts(), and this information stored

in the global variable grG_indep_fns_. Note that at any time later this information

can be examined by the user in order to verify that the procedure has been carried out

correctly.

Once the Weyl-standard frame has been established, the Ricci spinor is calculated and

brought into canonical form by applying another dyad transformation if necessary. Once

again, the remaining isotropy group at this stage is recorded, and independent functions

isolated. The procedure carries on by checking the Ricci scalar for independence. At

this point, 'Level 0' is completed and the program prints out some status messages and

prompts the user as to whether they would like to proceed on to 'Level 1', namely the

first derivatives of the curvature spinors.

At this point it is possible for the user to consider whether the information that

has been displayed to this point seems correct. It is often a good idea to examine the

components of the spinors and spin coefficients in the current frame. If they are of an

extremely complicated form, the user can attempt to simplify them by applying Maple

routines through gra l te rQ.

Once the procedure has been checked to this level, the user can re-initiate the clas-

sification process by using the classify() command once again. The program will use

the information which it has already determined for the given frame, and continue from

where it left off to calculate the first derivatives of the curvature spinors. These calcu-

lated, the user is again given an opportunity to halt the process in order to check the

results before proceeding on to 'Level 2', the second derivatives.

The program halts when it determines that all of the information required for a

complete classification has been found. That is, if after two consecutive levels no more

independent functions have been found, and the isotropy group under which the frame
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is invariant has not changed, the program declares that the spacetime has been fully

classified.

Note that although the classify() command attempts to carry out the classification

automatically, the potential for user intervention is critical for all but the simplest cases.

In general, a frame which is not already in standard form will require the application of

spin transformations which result in complicated forms for the spinor components and

spin coefficients. Unless simplifications are applied to these objects, further calculations

will tend to bog down (see Pollney et al. (1996)) and a correct determination of the

independent components and standard form for subsequently calculated spinors will

become less likely. That said, it can also be noted that frames in which spacetimes are

expressed, often take advantage of algebraic symmetries, and as such it often happens

that they are presented in near-standard form. In such cases, the classification may be

able to proceed without intervention.

An example of the use of the classify() function in an examination of the Edgar-

Ludwig conformally flat metrics is given in Appendix C.

3.5 Additional tools: Complex quantities in Maple/GRTensor

The implementation of complex valued quantities within Maple possesses some inherent

difficulties which inconvenience spinor calculations.

The first of these arises from the specification of which variables are to be considered

complex and which are to be considered real. An inconvenience arises from the fact that

Maple assumes that all symbolic quantities are complex. This contradicts the common

practice in specifying spacetimes, where coordinates and functions contained in spinor

components, are generally chosen to be real. It is possible to give a variable within

Maple the property of being real using the assume () facility. Thus, in order for complex

conjugation to work as expected in the context of spinors, it would be necessary to apply

assume () to each of the coordinates and metric functions at the time that the spacetime

is loaded.

A more serious problem with complex valued functions, however, comes from Maple's

implementation of complex conjugation. The conjugate of a value is represented by

applying the function conjugate() to the value. Thus, for a complex valued function

x, we find



3. Classification in practice 63

> conjugate (x) ;

x

The problem arises when one wishes to use the conjugate within other functions, such

as diff ( ) , which can not take functions as arguments. For instance, given a function

f(z, z) of complex coordinate z, it should be possible to take the derivative

Within Maple, this is expressed as

> diff ( f ( z ,con juga t e ( z ) ) , conjugate(z) ) ;

However, this statement returns an error, because Maple does not allow a function to

be used as the variable of differentiation.

To avoid these difficulties, GRTensor and the spinor package, make use of an alter-

nate specification implemented through the use of the conjugation function conj rather

than the standard Maple conjugate function. The conj function has two distinctions.

First of all, it assumes that all variables and functions are real, unless they are listed in

the set complexSet_ Secondly, the complex conjugate of a variable is represented by

appending the string 'bar' to the end of its name. Consider the following example:

> complexSet- := {y,f};

> conj (x); conj (y); conj ( f(y,ybar) ); conj (ybar);

x, ybar, f bar (y, ybar), y

Since the conjugate has been replaced by a name, it can be used in any other function

which accepts names as arguments, that is, 'y' has the same status as 'ybar'. Thus,

commands such as diff yield the expected results:

> g(y,ybar) := y"2 + conj(y)"2;

g(y,ybar) := y2 + ybar2

> diff ( y"2 - ybar"2, ybar );

2ybar

Within the context of GRTensor, the complex valued functions and coordinates for a

given spacetime can be specified apon loading of the spacetime by adding the expression

complex. := {complex v a r i a b l e s } ;

to the metric file.
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3.6 Outstanding problems

Through use of the computer algebra tools described in this chapter, the Cartan-

Karlhede method can be implemented in order to obtain a unique algebraic classification

of a large variety of spacetimes. To regard the method as an 'algorithm' for classification

would be incorrect, however, as the definition of an algorithm implies that a solution

will be found for any set of initial data, and this is not the case for the Cartan-Karlhede

method.

The greatest difficulties arise from the fact that the fixing of a canonical frame for the

Weyl spinor, the first stage of the process, can involve solving for the roots of a quartic

equation. If this can be accomplished for a non-zero Weyl spinor, then the methods

described above will lead to a classification. The methods of fixing the frames under

spins, boosts, and null rotations, have been specified in such a way as to ensure that the

roots specifying the rotation coefficients can always be found.

As discussed in Section 3.4, however, there are examples of Weyl component config-

urations for which the components specifying the dyad transformation to standard form

can not be determined. In addition to this, for some of the cases for which an expression

for the dyad transformation exists, the expression turns out to be complicated enough

that it is possible that it will be of little practical use, for components transformed un-

der the specified transformation will not yield to simplifications. We emphasise that the

problem is not one that increased computational power is likely to solve. It is a result of

the complicated nature of the roots of general quartic equations which must be solved

in order to carry out the Cartan-Karlhede method successfully.

A possible way of avoiding this problem is to expand the allowed set of standard

forms. Certain initial configurations of Weyl tensor components can be transformed

more naturally into standard forms other than the ones specified. For instance, the

frame for the Petrov Type I cylindrical Van Stockum spacetime van Stockum (1937)

(see also Kramer et al. (1980), page 222), is specified in the CLASSI database Skea

(1997b) as

la = [1/V2,0, e-a2p2/2/V2, ap2/V2], (3.15a)

na = [1/V2,0, -e-a2p2/2/V2, aP
2/V2], (3.15b)

ma = [0, e - a V / 2 / V 2 , 0 , ip/V2], (3.15c)

where the coordinates are (i,p, z,(/>), and a is a real constant. For this frame, the Weyl
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components take the simple form

*! = liflV2"2, * 2 = J a V 2 ' 2 , * 3 = - ^ a 3 e a 2 ' 2 . (3.16)
Zi O £*

In order to bring the Weyl spinor into the standard form specified for Type I spacetimes

(ie. \&o = ^4, ̂ l = ^3 = 0), a transformation of the form

1(1 _ i)
T = | 2K '" 2 r ' • ' " I , where A = ~ • ~>- (3.17)

is required. Under this rotation, the frame vectors take the form

-\ + 2ap + y - 1 - 2ap e~a2P2/2 ^2 - a y / 2 \ / - l + 2ap - V~l -
6Q ~ l l ( l 4 2 2 ) 1 / 4 ' / ' ^ 6( l - 4 a 2 p 2 ) 1 / 4 ' x/2 ' ^ 6 (1 - 4a2p2)1 /4 '

( }

V2V-1 + 2ap + y - 1 - lap e""2^/2 \/2 _a2p2/2 y - 1 + 2ap - ^ - 1 - 2ap
[T ' X 6 (l-4a2p2)1/4

( }

" 1 ~ 2aP
'U ' 4 ZC ( l - 4 a V ) i / 4

N/2 2(1 - 4a2p2)1/4 + iap(y/-l + lap - y - 1 - 2ap)1

" X (1 - 4aV)V4 J-

and the Weyl components are

(3.19)

Unfortunately, when this spacetime is rotated into the standard frame, its frame com-

ponents take on a much more complicated form than in the original frame. This is not

a fatal problem, however it can lead to computational difficulties later on when higher

order derivatives of the curvature spinors need to be evaluated.

The current implementation of the CLASSI software avoids this problem by allowing

a variety of 'alternate' standard forms for Type I metrics. Of the nineteen Type I metrics

listed in the CLASSI database, three have been allowed to assume an alternate Type I

standard form. These are listed in Table 3.6. Of these cases, both the van Stockum and

Newman-Tambourino spacetimes require moderately complicated transformations of the

form listed above in order to bring them into canonical form, while the Tariq-Tupper

spacetime requires a simple spin with coefficient (—I)1/8 in order to fix ̂ o = ^4> thus

introducing little computational expense.
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Spacetime

CylindricalVanStockum 0 X Y -X 0

NewmanTambourinoLimit 0 X Y X 0

TariqTupper X 0 Y 0 -X

Table 3.2: Spacetimes for which CLASSI accepts alternate standard forms.

While the tolerance of alternate standard forms can reduce the computational effort

in determining a set of independent components for the curvature spinors, it is difficult

to reconcile with the Cartan-Karlhede method, which is based upon a strict adherence to

a given set of standard forms. The final stage of the determination of the equivalence of

two spacetimes requires that the individual spinor components be compared one against

the other. If the two spacetimes have been expressed in different standard frames, this

can not be done directly, and a mapping is required from the components of one to those

of the other. This mapping is given by the transformation between the two alternate

standard forms. For this reason, at the present time the spinor package imposes a strict

adherence to the standard forms specified in Table 2.1.

A final point of note is that even when a unique set of standard forms for the curvature

spinors has been fixed, it is not necessarily true that the frames which satisfy these forms

are unique. For instance, in the above example the transformation to the standard form

involve an 8th root of a factor in the matrix coefficients. Depending on which root is

chosen, there are eight potential frames which will result in the given standard form,

corresponding to rotations of the ma vector by an angle of TT/4. This can lead to

difficulties in the final stage of the procedure when components between two spacetimes

are compared, for if the two frames differ, a consistent set of equations may not result.

This said, it should also be pointed out that in practice the potential discrepancy has

not arisen.

All of the problems described above are a direct result of the difficulty in defining

an unambiguous standard frame for a given spacetime. It is worth considering, then,

whether alternate methods might exist in which rigid adherence to a standard frame

is a less stringent requirement. As mentioned, the CLASSI program already accepts

alternate standard frames for Petrov Type I spacetimes, though a formalism for how

these are to be used in solving the equivalence problem has not been documented.
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One such method to use is the original procedure described by Cartan, in which the

frame is left completely arbitrary with the penalty of having to extract the rotational

information from higher order derivatives of the curvature spinors. Although this re-

quires the calculation of many more spinor components, the ability to choose the frame

arbitrarily means that one can always choose a frame in which the curvature compo-

nents take on a relatively simple form. It is not impossible that the resulting reduction

in computational effort will more than compensate for the need to calculate higher or-

der derivatives. As evidence, note that the time required to calculate an object even

as simple as the Riemann tensor can vary by many orders of magnitude depending on

the input and simplification strategy used (see the discussion in Pollney et al. (1996)).

If the standard frame for a given spacetime does not correspond to an optimal frame

for computation, it is possible that the procedure will get bogged down in calculation

of even the low order derivatives, while in the computationally optimal frame, the high

order derivatives are calculated with ease.

In fact, a procedure embodying the benefits of both methods might be found in a

compromise between the fixed and free frame methods. For example, the independent

spinor components can be expressed in the form of GHP style quantities with given spin

and boost weights. These two degrees of freedom can be removed from the frame quite

easily, while the remaining freedom could be solved for using higher spinor derivatives.

Finally, we make note of the information available from an alternate source, the scalar

polynomial (sp) invariants formed from index contractions of the curvature spinors. In

many senses, they are ideal for the purpose of determining coordinate transformations

between spacetimes, for the information which they give is completely independent of

the frame in which the spacetime is expressed. Traditionally their use has been avoided,

however, because of the inherent ambiguities in the information which they provide.

Crucially, it has often been pointed out that for plane waves all of the sp-invariants

are zero, making such spacetimes indistinguishable from flat space. This fact can be

attributed to the fact that the Lorentz rotation group 5L(2,C) is non-compact, and

flat space arises as the limit of an infinite boost of the plane wave spacetimes (Schmidt

(1994)), a point enforced by an example of a class of Type N spacetimes which are

distinguishable from flat space but not from each other using sp-invariants (Schmidt

(1998)). Thus it seems that sp-invariants can at best distinguish spacetimes up to their

Geroch limits (Geroch (1977)).

A further difficulty arises from the fact that for a general spacetime, a necessary
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and sufficient set of sp-invariants to determine whether a consistent set of coordinate

transformations might exist has not been determined. This is closely related to the

problem of finding an independent set of sp-invariants, which has occupied a number of

researchers over the years (see Penrose and Rindler (1986), and Carminati and McLe-

naghan (1991) and the references therein). Even at the level of the Oth order curvature

spinors (the Weyl and Ricci spinors) a sufficient independent set for general spacetimes

has proved elusive. However, for specific spacetimes the problem can be solved using

the techniques of Carminati and McLenaghan (1991) of specifying relations between the

spinor components and evaluating invariants constructed from index contractions until

an independent set satisfying the expected number of degrees of freedom is found. This

process might even yield to a degree of mechanisation, as the construction of invariants

is simply a matter of permutations of index contractions, and software for carrying out

this task has been developed by the author to find all of the identities among invariants

up to degree 5 in the curvature spinors (Pollney (1996)).

Despite the difficulties, the ease of calculation of the sp-invariants make them an

attractive alternative to the Cartan-Karlhede components. For Type I spacetimes, the

functional information in the Weyl tensor is found through the calculation of the two

scalars

I:=VABCDt>ABCD, J:=yABcDyCDEFyEFAB, (3.20)

which can be used to obtain the same information as one gets from the ^o and \?2

components of the standard frame. Importantly, although the calculation of I and

J involves respectively quadratic and cubic polynomials in the Weyl components,

one avoids the need to solve a quartic equation in order to determine transformation

coefficients for the standard frame. Thus, in cases where the Cartan-Karlhede method

can make no progress, information can still be extracted from the sp-invariants. A

formalised method making use of this information might form a useful alternative for

cases to which it proves difficult to apply the Cartan-Karlhede method.

A number of difficulties in applying the Cartan-Karlhede method have been

identified. Generally they arise from the trade-off between the number of computations

required when the frame is left free, as in Cartan's original description, against the

difficulties involved with fixing the frame into a generally applicable standard form.

While the latter method can be computationally the most efficient in terms of the

number of components to be calculated, there are cases where, in contrast to Cartan's
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Petrov Type:

# of examples:

0

42

N

27

D

114

III

8

II

3

I

19

Total

213

Table 3.3: The number of examples contained in the spacetime database at the time of

writing, grouped by Petrov type.

method, it can not be carried out, due to the fact that the transformation coefficients

arise as solutions to high order polynomials. That said, it should be noted that in

practice the Cartan-Karlhede method has been used to construct a database of some 213

spacetimes, with the only departures from the method arising from the three spacetimes

discussed above. Table 3.6 gives the breakdown for the number of spacetimes included

in the database for each Petrov type. The grouping of the spacetimes which have been

included reflect the fact that the study of exact solutions has concentrated on the

algebraically special spacetimes. In this practical sense, a tool which efficiently classifies

algebraically special metrics, as the Cartan-Karlhede method does, is appropriate. As

the study of spacetimes moves on to the more general situations of Type I metrics,

however, the need for alternative tools may become more apparent.

An important omission in the current state of the methods, however, is the inclu-

sion of a Segre classification and dyad transformations to bring the Ricci spinor into a

standard form. This work will be necessary for a fully functional classification package,

for at the moment conformally flat spacetimes can not be handled reliably. That said,

it can be noted that in a number of cases a reliable classification has resulted for con-

formally flat spacetimes simply by fixing the frame by placing the Ricci spinor in one

of the general standard forms for spinors described in Chapter 2. This is possible for

spacetimes which are input using frames which are already 'close' to their final standard

form. However, because the standard forms are specified only in terms of reduced sub-

groups of SX(2,C), these methods will not generally be successful without a first stage

(Segre classification) to reduce the frame freedom to one of these subgroups. A number

of prescriptions for classifying the Ricci spinor exist in the literature (eg. Penrose and

Rindler (1986), Cormack and Hall (1979), Joly and MacCallum (1990)). Work to de-

velop a Segre classification code compatible with the spinor package is currently being

carried out in collaboration with Jim Skea of UERJ, Brazil.

Greater concerns for the success of any classification via the Cartan-Karlhede method
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arise from the problems discussed at the end of Chapter 3. The need to solve a quartic

equation as part of the method provides insurmountable difficulties for the classifica-

tion of certain types of initial data. Alternative methods, either formalising some more

general notion of 'standard' frames (for example, using alternate standard frames de-

pending on the form of the original frame), or making use of alternate sources of algebraic

information, such as the curvature invariants, are paths worthy of further exploration.

Finally, we note the great potential for application of the spinor tools. The CLASSI

program has already been used by Skea (1997b) and co-workers to create a database of

more than two hundred spacetimes, available online via the Internet. This database has

the potential to serve as a valuable resource to the community of relativity researchers

in the form of a consistently updated version of the well-used 'Exact Solutions' book

Kramer et al. (1980). A continuation and expansion of this effort would provide a useful

test of the new software and methods which have been developed.
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Numerical techniques for the

solution of Einstein's equations

To this point, this thesis has concerned itself with the algebraic study of exact solutions

of Einstein's field equations. Indeed, the study of exact solutions has to this day provided

virtually all of our current understanding of the properties and dynamics of gravitational

fields. Unfortunately, these results have been derived only for very specialised situations.

The complexity of the field equations demand that if any analytical progress is to be

made, simplifying assumptions must be applied. Typically, restrictions on the geometry

(such as spacelike homogeneity in cosmology, or spherical symmetry in the study of

isolated bodies) are introduced in order to reduce the equations to a tractable system.

Since these symmetries are expected to be good approximations to realistic physical

configurations, they have been used to good effect to obtain an understanding of the

features and effects that might be expected to arise from a given distribution of matter.

The physical relevance of these results, however, is generally limited to the symme-

tries of the spacetime in question. In recent years increased effort has gone into the

construction of instruments capable of directly measuring gravitational effects. As such,

the interest in more 'realistic' (or at least more generic) models approximating some

potentially measurable physical system has intensified. At the same time, computer

technology has advanced to the point where large-scale computations involving equa-

tions of the complexity of the full Einstein field equations can reasonably be carried

out. As a result, the past two decades have seen a shift in focus among relativists

towards numerical studies of the gravitational field. Such studies are now for the first

time yielding insights into models which represent important physical process such as

the inspiral of matter onto a neutron star or black hole, and neutron star and black

hole collisions. Further, numerical computations have also been used in spacetimes

72
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with a specialised symmetry to obtain results which had previously been unknown to

analytical studies, notably the discovery of critical phenomena in spherical symmetry

by Choptuik (1993).

A framework for studying the field equations numerically was laid out in the early

60's by Arnowitt et al. (1962). In their formalism, the spacetime is foliated by spacelike

3-surfaces whose metric components are evolved in the direction of a timelike vector. As

such, it is often referred to as a 3+1 technique, or, because the initial spacelike surface

can be thought of as a Cauchy surface (on which all of the data required by subsequent

evolution has been specified), a Cauchy evolution.1 The 3+1 methods provide a useful

system of evolution equations for general relativistic systems. The data and coordinates

are specified on spacelike slices, and thus have somewhat physical interpretations, and

the equations can be set up in such a way as to provide a future evolution which tends

to avoid both physical and coordinate singularities. As such, they have become the

commonly applied method of performing numerical evolutions of isolated sources in

general relativity. Problems still exist in specifying physically relevant initial data which

satisfy the constraints, the choice of appropriate slicing and shift conditions, and the

excision of trapped surfaces, and solutions to these difficulties are the topic of active

study in the relativity community.

A particular problem associated with 3+1 evolutions arises exactly from the feature

which makes these methods so intuitively attractive: the spacelike nature of the evolved

surfaces. Because the computation is intended to be carried out within the physical

memory of a computer, the computational grid is neccessarily finite. This problem is

traditionally avoided through use of a grid which is large in comparison with the scale of

the physical phenomena being studied so that boundary effects are minimised. Further,

asymptotic expansions of the relevant fields can be used to induce artificial boundary

conditions which have small error provided that they are applied at a large distance from

the source.

Working against the need to use a grid which extends to large radius, however, is the

fact that the grid must also be fine enough to resolve the detailed dynamics in the area

of the source. Either the physical spacing of the grid points must be reduced over the

whole grid, or an adaptive grid must be introduced which has increased resolution in the

region of interest. The latter method is the subject of active research, but has proven

'in fact, because numerical evolutions necessarily have a finite grid size (ie. an edge), the term

'Cauchy' is used somewhat loosely.
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difficult to implement in generic situations. Reducing the grid spacing over the whole

grid, however, has the effect of moving the boundaries closer to the relevant physical

region, increasing the error introduced by approximate boundary conditions.

A further problem arises from the fact that the 3+1 evolution neccessarily involves

the choice of a time direction. As a result, the grid variables on the spacelike slices are

not covariantly defined and will have values depending on the chosen slicing. Covariant

physical quantities, such as the emitted gravitational radiation, can only be determined

by examining the asymptotic forms of the grid variables at large radius where invariant

definitions exist. As the boundaries of the grid are moved inwards, these approximations

become correspondingly less accurate.

Alternative evolution methods have been considered for numerical relativity in an

attempt to overcome the weaknesses of the standard 3+1 approach. In particular, the

study of characteristic methods by Bondi and co-workers in the early 1960s, and the

related compactification of asymptotically flat spacetimes by Penrose, suggest methods

by which the problems of the finite boundary can be removed completely.

In order to study gravitational radiation, Bondi et al. (1962) developed a set of

coordinates based on a foliation by characteristic surfaces whose generators are null

geodesies. The field equations for the corresponding metric fall into a heirarchical system

for which a well defined integration procedure can be defined, given appropriate initial

data. Further, in the given coordinates the asymptotic behaviour of the metric fields

is well defined provided that the spacetime satisfies some notion of asymptotic flatness

and that particular components of the field can be unambiguously identified with the

gravitational mass and two gravitational wave polarisation modes.

Penrose (1963) demonstrated that for such spacetimes, a new set of unphysical coor-

dinates could be specified for which the infinite extensions of the time and space direc-

tions could be placed at a finite coordinate distance. These methods have been used to

great effect in the study of the asymptotic behaviour of spacetimes, as well as providing

an intuitive way of representing important features of spacetime structure, the familiar

Penrose spacetime diagrams. Though originally developed for the purpose of analytic

studies, the technique of compactification is potentially of great use for numerical work,

since it corresponds to mapping the infinite extent of a spacetime onto a finite region,

and thus the need for artificial boundaries is removed.

Characteristic methods, however, do bring with them their own set of difficulties,

most noticeably in the form of caustics of the null surface generators. Since the coor-
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Figure 4.1: An example of coordinate compactification, the Schwarzschild spacetime in

Kruskal coordinates. See Hawking and Ellis (1972) for a description.

dinate system is constructed from null geodesies, coordinate singularities result when

the geodesies are focussed. This will happen in the presence of an arbitrarily small lens

if it is located far enough from the radiation source. Thus, caustics are a generic fea-

ture of spacetimes possessing large-scale inhomogeneities (see the discussion in Winicour

(1999)).

The problem is particularly acute in relativity, where the singularities occur in the

coordinate systems themselves, rather than simply physical fields on a fixed backround

as in other theories. A great deal of effort has been expended on attempting to

integrate the equations past such points (see Stewart and Friedrich (1982), Friedrich

and Stewart (1983)), though only point caustics in axially symmetric spacetimes have

been successfully handled in this way numerically (Gomez et al. (1994)) at great

computational expense. It is typical, then, to restrict characteristic evolutions to

settings in which caustics can be avoided.

Cauchy-characteristic matching (CCM) is an attempt to take advantage of the

strengths of both the 3+1 and characteristic evolution schemes. The spacetime is par-

titioned into regions consisting of an interior which is described using a 3+1 foliation,

and an exterior described by a compactified null hypersurface foliation extending to null

infinity. The boundary between the two is a (usually timelike) surface across which in-

formation is passed at each evolution step. Thus the characteristic region can be seen to

provide accurate outer boundary conditions for the 3+1 region, which in turn provides

inner boundary conditions for the characteristic region. Importantly from a motiva-
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Cauchy region

r=0

Characteristic Region

r=C

Figure 4.2: Basic setup for the CCM problem. The interior region (from r = 0 to some

boundary r = C) is described by a 3+1 evolution, while the exterior, extending to J^+,

is evolved using characteristic methods.

tional standpoint, it was shown by Bishop et al. (1996) that the ratio of computation

required by CCM compared to waveform extraction goes to zero as the target error in

the calculation is decreased.

A great deal of work has gone into proving the viability of such methods since their

introduction by Bishop (1992). Early studies passing information across an interface for

a wave equation in curved space was achieved by Clarke and d'Inverno (1994). A rela-

tivistic code which passed information across a boundary in the cylindrical symmetric

vacuum was investigated in Clarke et al. (1995) and Dubai et al. (1995), using an inter-

face 'region' for which characteristic grid values were interpolated onto the Cauchy grid

in order to obtain appropriate values for derivatives of metric variables on the Cauchy

boundary. Recently, the cylindrical CCM problem has been revisited at Southampton

in a study of the dynamics of time dependent cosmic strings (Sjodin et al. (2000)).

Cauchy-characteristic matching has also been the subject of detailed study by the

Pittsburgh Relativity Group. Initial feasability tests evolved an Einstein-Klein-Gordon

system in spherical symmetry (Gomez et al. (1996)). This work was later used to

determine whether a characteristic code might form a useful inner boundary condition

for black hole spacetimes as a potential replacement for apparent horizon excision

Gomez et al. (1997). The first attempts at matching in full 3D involved a scalar wave

evolution on flat spacetime Bishop et al. (1996). In this case, the interior Cauchy

region used Cartesion coordinates, and interpolations were performed at the interface
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to transform grid variables to the exterior radial coordinates and back. In each of these

tests it was found that a characteristic exterior improved the performance over the

corresponding waveform extraction to a given accuracy. A more comprehensive review

of progress in the development of characteristic methods in numerical relativity, and in

particular CCM methods, can be found in Winicour (1998).

The current work at Southampton focuses on constructing a Cauchy characteristic

matching code in axial symmetry. A theoretical basis for studying the problem in axial

symmetry was constructed by d'Inverno and Vickers (1996) and d'Inverno and Vickers

(1997). This thesis expands on these foundations by providing a practical matching

between a Bondi-type characteristic evolution on the exterior, and an interior Cauchy

evolution based on the axisymmetric code of Stark and Piran (1987). Importantly,

the Southampton approach matches numerical gridpoints in the interior to points on

the exterior at the interface so that the need to interpolate data to points not on one

or the other grid is minimised. Both the metric variables and their derivatives are

passed between grids as required by means of the standard coordinate transformations

along the t = constant slices of the r = constant world tube representing the interface.

A consistent evolution scheme has been developed so that the boundary information

required on either the interior or exterior grids of a timeslice can always be obtained

from data known on the other grid.

The following sections give a general overview of the standard descriptions of space-

time foliation for both the Cauchy and characteristic regions. The treatment of the

Cauchy region is the standard ADM evolution of data given by the metric and extrin-

sic curvature. The characteristic formulation follows that originally outlined by Bondi

and Sachs. The description deviates from the original treatment in the asympototic

behaviour of the metric functions. Fixing coordinates on a sphere of finite radius neces-

sitates an important generalisation in the radial fall-off near null infinity. Specific details

of the Southampton implementations of the codes are discussed in the next chapter.

4.1 Cauchy methods: Spacetime as a 3D foliation

The most commonly applied approach to solving the gravitational field equations numer-

ically is to formulate them as an initial value problem with data specified on spacelike

hypersurfaces. The first such formulation was carried out by Arnowitt et al. (1962), who

developed a natural foliation of the spacetime into slices representing the 3-dimensional
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Figure 4.3: A pair of nearby spacelike slices separated by a proper time dr = adt.

The grid point x is transported from S< to St+dt along the vector v whereas Eulerian

observers follow n. On T,t+dti the displacement between the two are given by the vector

space at one instant in time, and specified propagation equations which, given initial data

at one such instant, allow one to determine the corresponding data at any later time.

This technique has been used in a number of studies, both numerical as well as analyti-

cal, where the formulation of Einstein's equations as an initial value (Cauchy) problem

is required. The following section outlines the basic quantities defined by the formalism

and establishes notation to be used in later sections. A comprehensive description of the

formalism can be found in York (1979).

Initial data

The foliation is constructed as a family of spacelike hypersurfaces with normal vector

field na satisfying nana = 1 and whose integral curves are parametrised by a variable t.

A vector va represents the difference between a coordinate point on a single slice and the

corresponding point on an adjacent slice. The 4-vector va can be decomposed in terms

of the normal as

v
a = ana (3a, (4.1)
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where a is a scalar (called the lapse) and /3 is a 3-vector (the shift) chosen to be orthog-

onal to the surface normal,

Pana = 0. (4.2)

If Eulerian observers are regarded as moving along integral curves denned by na, then

the shift can be thought of as the velocity of the coordinate system relative to these

observers.

A metric is induced on a slice, E t by projecting the 4-metric of the spacetime onto

the slice defined by the normal, via the operator

Pb
a = P\ = 6a

b + nanb, (4.3)

so that

Kb = PaCPbd9cd = 9ab + nanb. (4.4)

We are free to choose a set of local coordinates xa = (i,zM) which is adapted to the

foliation and va such that the relevant quantities take the form

«« = (1,0,0,0), Pa = (O,p\02,p3), hab = 6\5b
vh^. (4.5)

In these coordinates, and defining h^h"" = Sa
fl, the four dimensional line element takes

its canonical 3+1 form,

ds2 = -a2dt2 + h^dx* + Pdt){dxv + p"dt). (4.6)

The spatial 3-metric, h^u is sufficient to describe the intrinsic geometry of a given space-

like hypersurface. A complete description of the geometry, however, also requires a

specification of how these surfaces are embedded in the 4-dimensional spacetime. This

information is encoded in the extrinsic curvature tensor defined by

Kab = -\cnhab, (4.7)

where Cn is the Lie derivative with respect to na. The symmetric tensor Kab is conjugate

to hab and can be thought of as 'velocity' of the 3-metric on a slice. Note also that, like

hab, the extrinsic curvature resides entirely within a given slice in the sense that

Kabn
b = 0. (4.8)

That is, it does not depend on any information which is not on the t = constant slice.
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Field equations

Einstein's equations express a relationship between the curvature of the spacetime to the

distribution of matter. In rewriting the equations in a 3+1 form, it is required, therefore,

to have an expression for the curvature in terms of the data known on a slice.

The curvature tensor on a given 3-dimensional slice is defined by the commutator of

the covariant derivative acting on a spacelike vector in the slice,

a = (3>Vd
(3)VcA;a - ( 3 ) V c

( 3 ) V d fc a . (4.9)

where (3) V is the covariant derivative in terms of the connection formed from the 3-metric

on the slice, hab.

An expansion of the expressions for the second covariant derivative of ka (see, for

example, Hawking and Ellis (1973)), shows that (3)-Ra6c<2 is related to the curvature of

the 4-space via Gauss' equation,

(3)Ra
bcd = RefghP

aePfbP9cPhd + K\Kbd - Ka
dKbc. (4.10)

And the covariant derivatives of the extrinsic curvature are related to the 4-curvature

via Codazzi's equation,

Rabcdnd = i3)VbK
a

c - ( 3 )V c t fV (4.11)

The stress-energy tensor is decomposed in the 3+1 formalism into the quantities

p = Tahn
anb, (4.12)

f = -Pa
cT

c
bn\ (4.13)

Sab = Pc
aP

dbTcd, (4.14)

representing respectively the energy density, 3-momentum, and stress tensor of the mat-

ter fields as seen by the Eulerian observers.

The Einstein equations can be written in terms of their projections onto the spacelike

slice and its normal as follows,

Gabn
anb = i( (3 )fl + (trX)2 - KabK

ab) = 2-irp, (4.15)

GcbP
acnb = wVb{Kab - habtiK) = 8nja, (4.16)

GcdP
c
aP\ = Sab. (4.17)
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where the Gauss-Codazzi equations have been used to simplify (4.15) and (4.16). Equa-

tion (4.17) can be solved for the time derivative of the extrinsic curvature to give

= a{Rab - 2KacK
c
b + KabtxK) - %ir{Sab - -habtxS)

2 (4.18)
- (3)Va6a.

With this expression and the definition of the extrinsic curvature via Eq. (4.7), time

derivatives of both Kab and hab are completely specified. In this sense, {hab, Kab) can

be thought of as appropriate data to characterise the entire geometry of the spacetime;

if they are known on a single slice then Eqs. (4.17) can be used to evolve them to a later

time.

Equations 4.18 represent four of the ten Einstein equations. Equations (4.15) and

(4.16), remain unused and would seem to overdetermine the system. Note that neither

contain time derivatives, and thus depend only on data on a given slice. They are thus

called the constraint equations and must be satisfied by any set data set {hab,Kab} that

is consistent with the Einstein equations. In fact, the Bianchi identities can be used to

show that if the constraint equations are satisfied on a single slice, then they will be

satisfied at any later time Wald (1984).

The constraint equations are not explicitly required by any evolution scheme, but

can be useful in numerical implementations, as they are sometimes easier to solve for a

given piece of data than a corresponding evolution equation, or can be used to simplify

the form of the evolution equations. Further, they can be used to provide a useful

check of the accuracy of a numerical solution by comparing the data determined from

the constraints with the evolved data. Evolution schemes which enforce the constraint

equations at each timestep are known as constrained evolutions. As they usually take

the form of elliptic equations, however, the constraint equations can be computationally

expensive to solve, and thus the accuracy gained from a fully constrained evolution tends

not to compensate for the increased time required. Further, procedures for enforcing the

constraint equations are not well developed.

As a final note, it should be realised that the ADM system of equations for the metric

and extrinsic curvature are by no means the only possible evolution system that can be

used. In fact, the stability properties of the ADM equations remain obscure because

of their complicated form. A great deal of effort has gone into the reformulation of the

Einstein equations as a hyperbolic system to which well-known stability theorems can be

applied (Reula (1998), Friedrich and Rendall (2000)). This reformulation usually comes

at the expense of introducing additional metric variables as data, with the reward that
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the resulting increased number of equations are of a simpler form and can be more easily

converted to stable finite difference equations. In recent years a number of promising

numerical results have emerged using such symmetric hyperbolic systems, suggesting

that the comparitively 'brute-force' calculations of ADM may eventually have to yield to

more subtle mathematics for the stable solution of some problems (for instance Friedrich

(1981)).

4.2 Characteristic methods: The Bondi-Sachs coordinate system

The previous section described a method of slicing a 4-dimensional spacetime into a set

of spacelike 3-surfaces, providing an intuitive picture of spacetime taken as a series of

snapshots, each describing an instant of time as seen by some observer. Although it

seems natural to divide the spacetime into space and time in this way, for many appli-

cations alternative formulations have proven quite useful in interpreting the equations

and the behaviour of the physical variables. In particular, early studies of the nature of

gravitational radiation focussed heavily on the analogies between the gravitational field

equations and the well studied wave equations of electrodynamics (Pirani (1965)). As in

electromagnetic theory, the existence of gravitational wavefronts is related to the ability

to construct non-analalytic solutions of the field equations. Such discontinuities occur

along characteristic surfaces, which can be shown to be the null surfaces in a general

spacetime.

The characteristic formulation of the Einstein field equations became the subject of

active study in the early 60s with the seminal works of Bondi et al. (1962) and Sachs

(1962). They fixed an appropriate set of coordinates along the null geodesies of the

spacetime. This relationship between the coordinates and the geometry simplified both

the field equations as well as the interpretation of the gravitational degrees of freedom

by means of exact asymptotic analysis.

Although the Bondi system has been treated in numerous places in the literature, a

clear statement of the restrictions to the metric and coordinates involved is crucial for

the specification of the interface with the 3+1 interior required by CCM. The following

section unifies material which can be found elsewhere, but establishes and emphasises

the points which will be relevant to the development of the Southampton CCM code,

in particular with regards to the asymptotic falloff of the metric functions.

The Bondi-Sachs coordinate system is constructed by first supposing that there exists
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a function u(x) defined on the spacetime whose level surfaces are null,

gabdaudbu = 0. (4.19)

This involves no loss of generality, since it can be shown that if the field equations are

to admit characteristic surfaces (ie. if wave-like solutions exist) then these surfaces are

null and conversely that null surfaces are characteristic Pirani (1965).

Define ka to be the normal to the u = constant level surfaces. Then the ka are also

null

ka = gabdau = » kak
a = 0, kbVbk

a = 0. (4.20)

The vector field ka determines a congruence of null geodesies which is both normal to

the surfaces u = constant but which also lies within these very surfaces.

Through any point, the family of ingoing and outgoing null geodesies each have

spherical topology, and as such, can be labelled using polar-type coordinates 9 and <f>.

Assume that this has been done on some appropriate S2 within the spacetime. If they

are chosen so that

kada9 = 0, and kada<f> = 0 (4.21)

then 6 and <f> are constant along each null ray.

Finally, points along the geodesies are parametrised by a scalar function r which

can be written as a function of it, 9 and </> whose only restriction is that Jacobian be

non-zero. Among other things, this demands that the expansion of the congruence be

non-zero

p = l-Vak
a ± 0, (4.22)

excluding plane or cylindrical waves from the coordinate construction.

Since r is the only coordinate which varies along the null geodesies, tangent vectors

to the null congruence have the form

/" = (0,1,0,0) =<5°i, (4.23)

in terms of the coordinates (x°,xx,x2,x3) = (u,r,9,(f>). These are parallel to the ka

denning the congruence so that

ka = ula = u5ai (4.24)
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for some factor u){u,6,(f>). These properties result in certain coordinate conditions on

the metric. Namely, by construction we have

ga0 = la^u5
a
1. (4.25)

Thus a metric based on the given coordinates satisfies

3°° = g
02 = 5

0 3 = 0. (4.26)

The final coordinate condition which can be applied is the choice of parametrisation of

r, corresponding to a choice of u. Bondi chose r to be the luminosity distance, defined

by fixing the determinant of the gAB

det(ff.4s) = = r4 sin2 9. (4.27)

The result of applying this condition is that 2-spheres of constant u and r have a proper

area A-nr2.

The four conditions (4.26) and (4.27) fix the metric as far as it is possible using the

coordinates. The result is a metric which (following Bondi) we write in the form

ds2 = -(Ve2f}/r)du2 - 2e20dudr + r2hAB{dxA - UAdu){dxB - UBdu), (4.28)

where

/e27cosh2<5 sinh25 \
hAB=\ . (4.29)

y sinh2<5 e~2"< cosh 26J

The six metric functions {7,8, f3, U2, U3,V} correspond to the six degrees of freedom

remaining in the metric once the coordinate conditions have been applied, and have

been chosen in such a way as to provide ready geometric and physical interpretations.

Specifically, the variables 8 and 7 define the conformal geometry of the spacelike surfaces

of constant radius. They encode the two radiative degrees of freedom, as will be seen

from the discussion of the Bondi news functions in Section 4.2, below (d'Inverno and

Stachel (1978). An explicit calculation of Eq. (4.22) yields

p = e~20/r, (4.30)

lending (5 an interpretation in terms of the expansion of the null congruence. The field V

is the analog of the Newtonian potential and, as will be seen from its asymptotic expan-

sion, encodes the mass aspect of the system. In fact, for the Schwarzschild spacetime,
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'ray': u=const,
6 =const
<j) =const

Figure 4.4: The Bondi-Sachs coordinate system fixes the coordinates to null rays of the

spacetime, parametrised by the luminosity parameter r. The metric functions V and UA

act analogously to the lapse and shift in transporting coordinates from one r — constant

slice to another.

V = M, the constant parameter describing the mass of the black hole. A geometric

interpretation arises from a consideration of the line element on an r = constant surface,

ds2 = -{Ve2P/r)du2 + r2hab{dxA - UAdu){dxB - UBdu). (4.31)

A comparison with the 3+1 line element, Eq. (4.6), suggests that Ve2^ jr acts as a lapse

function, — UA as a shift, and r2h,AB as the metric on 2-surfaces of constant it which

foliate the r = constant world-tube.

The metric is specialised to axisymmetry by simply restricting the dependence of the

metric variables on the coordinates so that

85 9 7 _ dp _ dU _ dW __ dV _
(4.32)

and the further restriction 7 = 6 can be used to ensure that the 0 is a hypersurface

orthogonal Killing vector.
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It is appropriate to make one more important point regarding the choice of the 8

and <p coordinates. In the original treatment of Bondi, these coordinates are fixed at

J^+ where u is known to be a non-spacelike coordinate. For the purposes of matching

the characteristic coordinates to an interior Cauchy slicing, it will be convenient to

choose 9 and 0 on a closed surface at finite r, representing the interface. For such a

situation, care must be taken to ensure that as the null geodesies map these coordinates

to ^+, u remains non-spacelike there. The analogy used by Bondi is that of a spotlight

which projects a beam onto some surface distant enough that successive points have

spacelike rather than timelike separation. This can be checked by verifying that the goo

component of the metric remains positive, and might be expected to cause particular

difficulties for coordinate systems co-rotating with some interior matter source, or an

interface within the Killing horizon of a Kerr metric (ie. subjected to frame dragging).

There are indications, however, that such a spacelike shift at J^+ may not pose great

difficulties to numerical evolutions (Bishop et al. (1997), Brady et al. (1998)).

Field equations

Some very useful features of the Bondi-Sachs formulation become apparent when the

vacuum field equations are written out in terms of the metric variables defined in the

previous section. The set of ten equations can be grouped into the following classification,

originally due to Bondi:

i. main equations:

(a) hypersurface equations (4), RrT = RTA = }IABRAB — 0

(b) dynamical equations (2), RAB ~ h,ABhCDRCD/2

ii. trivial equation (1), RuT = 0

iii. supplementary conditions (3), Ruu = RUA — 0

The reasons for classifying the equations in this way is determined by the contracted

Bianchi identities which can be used to show that the trivial equation is satisfied au-

tomatically as a consequence of the main equations. The supplementary conditions

are also satisfied over the entire spacetime provided that they are satisfied on a single

r = constant slice.

The splitting of the main equations into two subgroups is determined by the fact

that the 'hypersurface equations' contain no derivatives of the metric components with
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respect to the retarded time u. This allows them to be evaluated on a single u =

constant hypersurface. The remaining pair, however, contain time derivatives of the

spatial metric, duhAB and thus depend on information off of the slice.

The hypersurface equations take on the following form when written out schemati-

cally. First of all, from the i?rr, Rrg, R^-^ and gABRAB components respectively,

dr0 = Fi{y,6), (4.33a)

d rP = F2(7,<5,/3), (4.33b)

drQ - F3(7,5,/S), (4.33c)

drU = FA(-r,6,0,P,Q), (4.33d)

drW = F5(7,8,/3,P,Q), (4.33e)

drV = F6(7,8,0,U,W) (4.33f)

where P and Q are intermediate variables defined by

'P\ A OR (e2jcosh(2<5) sinh(2(5) \ (dru\ . _. .
= r V 2 " V ' r4e-^hABdrU

A. (4.34)
QJ \ sinh(2<5) e-

27cosh(2(5)y \drW)

The right-hand sides of equations (4.33a)-(4.33f) are functions which depend only on

their specified arguments and their spacelike (r, 9, eft) derivatives. This suggests that if

8 and 7 are known on a single u = constant slice, then 0, U and W can be determined

by successive integrations of (4.33a), (4.33b), (4.33c), and the inversion of (4.34). Then

V can be determined on the slice by integrating the final hypersurface equation (4.33f).

That is, knowledge of 8 and 7 on a single slice allows one to determine all of the other

metric variables on that same slice.

The two evolution equations can be written in terms of auxiliary variables

0i = rcosh(2<5)du7 fo = rdu8 (4.35)

in the form:

dT<f>i + ffa = F7(j, 8,0, U, W, V), (4.36a)

drfo - fh = F8(-y,8,(3,U,W,V), (4.36b)

where / = 2sinh(2<5)<9r7. This is coupled set of differential equations which, when

solved, yield the u derivatives of 7 and 8. Once again, the right-hand sides of these

equations depend only on the metric functions and their spacelike derivatives. Thus, if

the metric functions have been determined over a given slice, then the time evolution of
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7 and 5 can be determined. This knowledge can be used to determine 7 and S at some

nearby future time, at which point enough data exists that the process can be repeated

to determine the remaining metric variables on the slice.

The entire Bondi process involves a total of eight first-order integrations in r and

two in u, each of which introduces an integration 'constant'. The constants for the u

integrations are fixed by initial data for 6 and 7. The remainder can be dealt with as

follows:

• Three (PQ, QQ, VO) can be specified as initial conditions on an r = constant surface

and integrated forward in time using the supplementary conditions.

• Two (do, WQ) can be set using an appropriate outgoing radiation condition at null

infinity.

• One (/So) can be set to zero by virtue of coordinate transformations provided the

outgoing radiation condition is satisfied.

• Two {du8o,dujo) remain freely specifiable and, as discussed below, correspond to

the quadrupole modes of gravitational radiation.

The entire evolution of the system is determined by the specification (7,5) on an initial

u — constant slice once the integration constants (du5o,dujo) have been fixed. In par-

ticular, if the latter are specified on some finite r = constant 2-surface, they determine

5 and 7 on the entire surface all the way out to J^+, prompting Bondi to christen their

u-derivatives the news functions.

The presence of integration constants can be related to the form of the asymptotic

expansions of the metric variables and will be discussed in more detail in the next

section. For the moment, however, we note that the listed methods for reducing the

(UQ,WO, /3Q) to zero depend on a choice of coordinates at J^+. For the purpose of

the CCM numerical code, this is not ideal, as it would be preferable to be able to fix

the coordinates at the interface with the Cauchy region. As a result, in practice the

restrictions on these variables will not be applied. Instead each of the functions of

integration will be set by extracting data from the Cauchy interior at the r — constant

interface. The supplementary conditions become redundant, but can be used as a check

on the accuracy of the integrations in much the same way as the constraint equations

are used in the 3+1 formulation.
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Asymptotic behaviour of the metric variables

An important feature of the original treatment of the Bondi metric was the careful

analysis of the asymptotic behaviour of the metric functions. By restricting consideration

to isolated sources, the metric was supposed to be asymptotically Minkowskian with

only outgoing radiation. Bondi showed that these conditions could be used to set strict

conditions on the falloff of each of the metric functions as r —> oo.

For the moment, we will suppose only a very general falloff of each of the metric

functions, so that as r —> oo on a single u = constant hypersurface, S, we have

5->60, 7-+7o, U->U0, W-+Wo, P-tfo (4.37)

It can be shown (see Sachs (1962), Christodoulou and Klainerman (1993)) that a coor-

dinate transformation ip exists such that 5 and 7 are reduced to zero,

~50 = V>*<50 = 0, 70 = ^*7o = 0. (4.38)

This is equivalent to transforming the metric of the asymptotic S2 to the standard metric

on a sphere,

hABdxAdxB = d92 + sin2 9d<j>2. (4.39)

A further coordinate transformation, Xi c a n be applied to reduce the asymptotic be-

haviour of U and W to

Uo = X*U0 = 0, Wo = X*W0 = 0, (4.40)

while preserving the asymptotic form of 6 and 7. Significantly, the applied transforma-

tions involve only equations on the hypersurface. The asymptotic behaviour of /3 can

also be fixed through a coordinate transformation so that

Po = 0. (4.41)

However the required coordinate transformation generally is u dependent. It corresponds

to a deformation of S which can be viewed as a condition on the lapse, or a slicing

condition.

In expanding the metric functions asymptotically, Bondi et al. (1962) came across the

following disturbing behaviour: If a polynomial expansion was assumed asymptotically

for 8 and 7,

5 -> <*„ + - + % + O(r~3), 7-+70 + - + ^t + O(r~3), (4.42)
r r r r
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then the corresponding expansions of U, W, and V involved terms logarithmic in r.

They found, however, that they could remove these terms through the application of

an intuitively reasonable condition, corresponding roughly to a Sommerfeld radiation

condition. For general non-zero asymptotic 6 and 7, this can be formulated as

2
CDh% = 0, (4.43)

where

h°AB = lim hAB
r—¥oo

d2

(4.44)

or using the more specific falloffs of Eq. (4.38), the more familiar form

lim r
T—>OO or1

d2

= 0, lim r2-5-2
r>oo or1E r->oo

= 0. (4.45)
E

(Bondi et al. (1962)). These conditions form a restriction on the coefficients 72 and of

the 82 of the expansions (4.42) which are enough to remove logarithmic terms from the

asymptotic expansions of the other metric variables. The restrictions take the form

72 = -2tanh(2<50)7i<5i, S2 = sinh(250) cosh(2(J0)7i, (4.46)

d'Inverno and Vickers (1997), which are reduced to zero for the Bondi asymptotic ex-

pansions, 70 = <5o = 0.

If these conditions hold, then it can be shown that the remaining metric variables

have polynomial expansions:

/3-*/30 + ^ + ^ | + O(r- 3) , (4.47a)

U-*Uo + — + ^ + O(r~3), (4.47b)
r T
W\ W-} o

W -> Wo + — + - i + O{r-3), (4.47c)
r rl

V -> V_2r
2 + V_jr + Vo + — + ^ + O{r~3), (4.47d)

r r

where the expansion coefficients are all functions of (u,0, (f>). The transformation, x 0 ^ ;

to coordinates for which the leading coefficients of 7, 6, U and W are zero can be written

in terms of the expansion coefficients as:

cosh 250 (
d0.U;du) + sinh2S0 (dcf> - ^-du) , (4.48a)

V Sin0 / V sm0 Jsin0
Wn

^ u , (4.48b)

f = r/w, (4.48c)
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where

u = x / c o s h 2 < 5 0 e 7 0 ^ . (4.49)
SHIP

The restriction, (4.41), of the asymptotic behaviour of ft to a Bondi-type falloff for

which (3Q — 0 is determined from the gur component of the metric. Under the given

transformation,

tf M # £ l (4.50)y y dxadxb u

Thus we require

A logw, (4.51)

to ensure that each of the metric coefficients can be reduced to their Bondi-type

asymptotics.

In summary, we have applied two restrictions on the asymptotic behaviour of the

metric functions. The first is that they have a polynomial falloff as r —> oo without

logarithic terms. This is equivalent to the imposition of an 'outgoing radiation condition',

Eq. (4.43). The second restriction is that the spacetime should be sliced in such a way

that the reduction of 5, 7, U and W to their asymptotic Bondi form also reduces /3.

This will enable us to more easily make the transformation to Bondi coordinates when

it becomes neccessary to extract the outgoing radiation and mass parameters.

It should be noted that the necessity of applying these conditions has in recent years

come into question. At the time of the original analysis, an appropriate definition of

aysmptotic flatness had not been formulated. Instead, the spacetime was required to

be asymptotically Minkowskian and the outgoing radiation condition considered a rea-

sonable requirement. In the intervening years as the understanding of the nature of

</+ has crystalised (see, for instance, the discussion in Wald (1984), or the definitions

provided by Hawking and Ellis (1973) or Stewart (1990)), these conditions have been

found to be excessively restrictive. (In particular, it can be shown that when the condi-

tions for a metric to be conformally compactified are satisfied, then J^+ is an incoming

null surface.) Thus there can be no influx of null or timelike fields across J^+ into the

spacetime, and the outgoing radiation condition becomes redundant. Without this re-

striction, the asymptotic falloff of the metric variables becomes more complicated, as

logarithmic terms are no longer prevented from appearing. Such spacetimes have been

recently studied by Winicour (1985) and Chrusciel et al. (1995). Note, however, since
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the numerical solution of the equation proceeds in an outward direction and does not

at any point make use of the asymptotic expansion of the metric variables or enforce

any particular asymptotic behaviour, the presence of log terms will not influence the

behaviour of evolution codes constructed from the Bondi equations.



The Southampton axisymmetric

CCM code

The method of Cauchy-characteristic matching is a particularly difficult one to imple-

ment and test numerically, for it essentially involves the test of three independent codes.

In order to have a reliable test of the interface, both the interior and exterior codes

should be known to be stable as independent codes using (exact or artificial) boundary

conditions. A successful test of the full CCM code would then require that when the

codes are connected across an interface, a similar level of stability and accuracy should

be obtained.

Axisymmetric Cauchy evolutions were first applied to the study of gravitational

collapse of stellar formations by Nakamura and Sato (1981). Their scheme tracked the

evolution of matter and the formation of a black hole, but was not accurate enough to

compute the emitted gravitational radiation. More sophisticated approaches were taken

by Evans (1986), for non-rotating matter configurations, and Abrahams et al. (1994)

for the case of rotating collisionless (dust) particles. Dynamic axisymmetric fields in

vacuum have been used in the study of the collapse of pure gravitational waves to form

a black hole Abrahams and Evans (1992), Abrahams and Evans (1993), as well and the

evolution of distorted, rotating and colliding black holes (Bernstein et al. (1994), Brandt

and Seidel (1995), Anninos et al. (1995)) as a precursor and complement to the study

of these problems in full 3D by the Grand Challenge Alliance. More recently, it has

been suggested that reliable and efficient axisymmetric codes can be implemented by a

reduction of a fully 3D code to a 'plane' with appropriate boundary conditions. The use

of Cartesian coordinates avoids many of the axis problems commonly associated with

numerical implementations of axisymmetric problems (Krivan et al. (1997), Alcubierre

et al. (1999)).

93
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In the mid-1980s, the numerical evolution of matter fields in axisymmetry was

visited by Stark and Piran (1987). Their code was tested in both vacuum and matter

configurations, and was used to compute the gravitational radiation emitted from a

collapsing black hole based on a formalism developed in Bardeen and Piran (1983)

which took special care to construct ADM-type equations based which could be reliably

implemented in a stable manner. Further, their evolution variables were chosen for

their well-defined behaviour at both the inner (r=0) and outer boundaries, and at

the poles where axisymmetric codes have traditionally encountered difficulties. At

the outer boundary, the choice of variables allowed the two independent polarisation

amplitudes of emitted radiation to be easily extracted to good approximation. These

strengths suggested that a code based on the methods of Stark and Piran would form

a good basis for the Cauchy evolution module of an axisymmetric CCM code. The

details of the the implementation of the Cauchy region are described below in Section 5.1.

The application of characteristic methods in axisymmetry has been far less common.

In fact, because the characteristic field equations gain little in complexity in the transi-

tion from 2 to 3 dimensions, and because their numerical application was first studied

somewhat later than the corresponding ADM-type evolutions (and hence at a time when

computing power was less of a limiting factor), the tendency has been to move directly

to the development of 3D characteristic codes, skipping axisymmetry entirely. A number

of successes have been reported in this arena, especially in the work at the Pittsburgh

Relativity Group, most notably in the stable evolution of a distorted black hole to more

than 10000M (Gomez et al. (1998), Gomez (1998)). Their codes make use of the 'eth'

formalism to construct coordinates and derivative operators free of the singularities nor-

mally associated with spherical coordinate systems. Evolution is carried out using a

second order scheme based on the surface area of parallelograms in double-null coordi-

nates (Gomez et al. (1992)). More recently, this model has been used in axisymmetry to

accurately study the geometry of the event horizons of colliding black holes (Husa and

Winicour (1999)).

For the Southampton matching code, it was decided that an independent code

would be developed based on the Bondi-Sachs formalism described in the previous

section. This would allow a degree of customisation of the coordinates and variables at

the interface so as to provide a more convenient matching. In particular, by matching

angular coordinates across the interface, the amount of interpolation between variables

on the interior and exterior grids could be minimised. The cost entailed through the use
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of polar coordinates are potential problems with behaviour of metric functions atthe

origin. These are handled via appropriate expansions of the metric functions in these

regions, as described below. Details of the equations used are given in Section 5.2.

In numerically passing data across the interface from Cauchy to characteristic regions,

it is important to keep track of the relationship between the locations of the two regions'

respective computational grid points. Points on the numerical Cauchy grid generally

do not lie on points of the characteristic grid, however by fixing the coordinates on

the exterior region relative to the interior, these points can be chosen to line up on a

single t = constant,r = constant surface (a line in axisymmetry where invariance in

the <fr direction is imposed). The metric data can then be carried across the interface

via the standard coordinate transformations between regions, and are placed exactly

on points of the opposing grid. This removes a common source of error, namely the

interpolation of unevenly spaced data onto a numerical grid. The Southampton approach

transforms both metric functions and their derivatives, where necessary, along a single

line to provide appropriate boundary data for the opposing region. Modules for both

extracting (Cauchy —>• characteristic) and injecting (Cauchy <— characteristic) data

have been developed. Information is passed in both directions as required, resulting

in true 'matching' of data between the regions. The requisite equations describing the

transformations are outlined in Section 5.3.

The Southampton axisymmetric CCM project is a collaborative effort carried out

by Chris Clarke, Mark Dubai, Ray dTnverno, James Vickers, and the author. The

implementation of the Cauchy code as an independent entity was largely the work of

Mark Dubai, and modified by the author for the purposes of attaching a characteristic

interface. Chris Clarke began an implementation of the interface which was largely

rewritten and extended by the author. The implementation of the characteristic code,

as well as the design of the complete system of interacting codes comprises the main

body of the author's original work which is described by this thesis.

5.1 The Stark-Piran axisymmetric 3+1 scheme

The formulation of the Einstein equations used by Stark and Piran (1987) follows the

standard ADM treatment presented in the previous chapter with specific choices of shift

and slicing conditions used to simplify the evolution system. In their notation, the line
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element is written

ds2 = -(a2 - NaN
Q)dt2 - 2NadxQdt + hapdxadx0, (5.1)

A local coordinate system, (xa) = (t,xa) = (t,r,9,4>), which is adapted to the foliation

is introduced so that

V
a = ana + Na = {1,0,0,0), Na = (0, AT, JVe, A^), hab = 8\8b

ph
a0. (5.2)

are the coordinate transport, shift, and spatial 3-metric (introduced in Section 4.1).

Coordinate conditions are used to simplify the form of the metric tensor and Einstein

equations. In particular, 8 and <p are chosen to represent spherical polar coordinates so

that the off-diagonal components hrg and hr$ vanish, and the spatial metric can be

written in the form

QdxP = A2dr2 + r2{B~2d92 + B2 sin2 0 ( # + £ sinfl)2). (5.3)

The quantity B is related to an auxiliary variable r\ via the definition

B2 = 1 + j] sin2 9, (5.4)

where 77 and £ are the two independent polarisation amplitudes, h+ and hx respectively,

of gravitational waves in the transverse traceless gauge,

rt

h+:=r) sin2 9, hx:=-sin2e aA'1^ (5.5)
Jo

for large values of the radial coordinate.

The parametrisation of the radial gauge requires some consideration. Bardeen and

Piran (1983) suggest that for the system in question, some advantage can be gained if

the r coordinate is fixed to satisfy the condition that the determinant of

det ha0 = r4 sin2 9, (5.6)

ie. that surface elements of constant r have area r2 sin 9d9d<f>. In particular, they

find that this radial gauge leads to a parabolic equation for the shift component

Ne, in contrast to the elliptic equation associated with the more commonly used

isothermal gauge (a generalisation of isotropic coordinates to non-spherically symmetric

spacetimes).
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With these coordinate choices in place, the metric data which are evolved are the

following:

a, (lapse)

/3r = Nr/r, G = Nel sin0, N+, (shift)

A (the radial metric component \/h^)

77, f, (wave-modes).

Extrinsic curvature components are projected onto a basis of orthonormal vectors,

e$ = [A-\0,0], eS = [O,B/r,-£Bsin0/r], eg = [0,0, l/(Br sin0)], (5.7)

so that the independent components of the extrinsic curvature in axially symmetry can

be represented by the set

K2 = K12, K3 = K1S,
1 (5-8)

K+ = ~(K33 -K22)/ sin2 9, Kx - K23/ sin2 0,

where the form of K+ and Kx are chosen so that they represent the even and odd parity

modes (in the linearised case) and are conjugate to 77 and £ respectively.

Gauge conditions

An unconventional slicing condition is used in order to improve the behaviour of the

metric variables at the interior (r = 0) and exterior boundaries, as well as simplify the

integration of the field equations. Bardeen and Piran (1983) studied the condition of

polar slicing, defined by

K = K\, (5.9)

extensively. In regards to the variables defined above, they find it has a number of

advantages over the more commonly applied maximal slicing for which the trace of the

extrinsic curvature is zero,

K = 0. (5.10)

For the given system, polar slicing involves a parabolic equation for the lapse which is

much less expensive to solve numerically than the corresponding elliptical equation in

maximal slicing. Polar slicing also exhibits strong singularity avoiding properties, and

when used in combination with the radial gauge results in a simple outer boundary
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HellipticBfi

lapse

parabolic

Figure 5.1: The function C(r) = (1 — (r/ro)2)5/2 is used to implement a 'mixed' slicing

condition, which is maximal at r = 0 and polar for r > TQ. The integration of the lapse

over the Cauchy grid is carried out in two parts corresponding to an outer parabolic

region and inner elliptic region where C(r) is non-zero.

condition on the lapse (see below). At the origin (where maximal slicing has a perfectly

well-defined lapse) the lapse is irregular for polar slicing.

In order to take advantage of the benefits of both types of slicing, Bardeen and

Piran (1983) suggest that a mixed slicing condition be used. The trace of the extrinsic

curvature is set as follows:

K = (1 - C(r))Kr
r, (5.11)

where C(r) = 1 at the origin and decreases to zero before reaching the outer boundary.

Significantly, the equation for the lapse is inward parabolic on outer region where the

spacetime is polar sliced, and switches to an elliptic equation as C(r) becomes non-zero

(Bardeen and Piran (1983)). The lapse is thus solved inwards from the outer boundary,

and its value at the edge of the elliptic region is used as a boundary condition for an

elliptic solver acting over the inner maximally sliced region around the origin. The

integration is represented schematically in Figure 5.1.
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Integration procedure

A combination of evolution equations, constraints, and gauge conditions are used to

determine the data on a new timeslice given that on the old. A number of the metric

variables are solved as radial differential equations within a given slice, and as such can

only be solved after the data on which they depend exist on that slice. Thus, the order

in which the integrations are carried out is of particular importance and will also be

significant at the characteristic matching interface where the order of operations will

determine which data are available at the inner boundary of the characteristic region

and at what stages data is required for the Cauchy evolution.

The order in which the Cauchy integration is carried out is summarised as follows.

The particular form of the equations which are used is given explicitly in Stark and

Piran (1987).

• The radiation modes r\ and £ are evolved to the next timeslice using a pair of

evolution equations of the form

dft] = - ((1 - x2){dxG + 2NK+) + 2xG)r) - 8XG - 2NK+

-rpdrTi + Gil-x^dxT], (5.12)

dt(drO = dx((l - x2)G) - dr(r/3r))& ~ d^NKzAr-1!!-1)

- dr{2NKxB~2) - rprdr{dr0 + G(1 - x2)dx{drt). (5.13)

Note that rather than £ itself, the evolution equation actually determines <9r£.

In fact, the integration scheme can be carried out using only the latter, though

analysis of the emitted radiation will require a calculation of £ by a subsequent

radial integration. The extrinsic curvature variables are also determined straight-

forwardly using the evolution equations,

=2N{\ - x2){Kl + K2) - 2AB{1 - x2)K2dxp
r - A-ldr{A-ldTN)

- A-lr-2dr{{\ - x2)NB28xA) - 2 A 2

4 - x2)2 + 2Nr~lA-*

- x2)dxKu (5.14a)
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dtK2 ={-xG + NK + N{(^C + l)Ki + (1 - x2)K+))K2

+ 2NK3KX (1 - x2) + Br~ldx{A~ldrN)

+ (1 - x2)K+) - BA~2r-2dx{NA)C + l)K + (1 2)K) BA~2r-2
C

lr-1 - rprdrK2+ ((l x)dx{A

+ G(l - x2)dxK2, (5.14b)

dtKz ={-xG + NK + N{-Ki - \CKX + K+{1 - x2)))Kz

- 2NK2KX{1 - x2) - r{AB)-ldTGKx{\ - x2)

- ((1 - x2)dx{NB*A-\drZ)) - AxNBAA-l{drO)l{Wr)

- r/3rdrK3 + G(l - x2)dxK3, (5.14c)

dtK+ ={-2xG + NK)K+ - N{2{1 - x2)K2
x + K\ + K2) - r{AB)-ldTGK2

- dT{r2NA-1drr])/(2AB2r2) + -B2r~2{dxxN + NA~ldxxA)

2(1 - x2)(B-4{drT])2 + B4(dr0
2) ~ r/3rdrK+

- x2)dxK+, (5.14d)

dtKx ={-2xG + NK + 2NK+{1 - x2))Kx

- ]-A-1{Br)-2dr{r2NB4A-1{drO) + rdrGK3/{AB)

- rj3TdrKx + G(l - x2)dxKx. (5.14e)

The metric variable A is determined from the Hamiltonian constraint which for

the radial gauge is an outward parabolic equation in r, and as such requires no

outer boundary condition:

drA = -A2r-Xdx{{l - x2)B2dxA) + A{Sx - 1) + A-\S2 + 1) (5.15)

where

51 =r2{(K% + K2
X){1 - x2)2 + {K2 + K2){1 - x2) + ^C2K2 + CKKY) (5.16a)

52 =l-r2{\ - x2)2(B'4(drV)2 + B4(dr0
2) (5.16b)

The equation can be solved on the new slice using only the data which has been

calculated to this point.

The shift components /3r and G and the lapse, N, form a set of coupled equations

on a slice which are integrated iteratively. The equations for G and N are inward

parabolic in the polar sliced region, while j3r is determined algebraically once G and



5. The Southampton axisymmetric CCM code 101

iV are known. At this point, initial data for the inward phase of the integration

integration of N is required at the interface. The equations for G and /3r are

determined from the shift conditions:

drG =^r-\AB)2dxx{{l - x2)G) + Cdx{NKx) - 4NK2(AB)~\ (5.17a)

f = ^ x ( ( l - x2)G) + l-NCKu (5.17b)

while the lapse is given by

CA-ldr{A-ldrN) - 2A~2r-1drN + CA^r^d^l - x2)AB2dxN)

+(1 - C)r-2dx{{l - x2)B2dxN) = S + AN, (5.18)

where

S =rdTCpTKx + 2(1 - C)AB{\ - x2)dxp
TK2, (5.19a)

A =(1 - C)(r-2(1 - A-2) - \r-2dxx{{\ - x2)2
V)

+ \A-\B-\driif + B4(dr0
2)(l - x2)2) + (1 + C){K% + Kl){\ - x2)2

+ (3C - l){Kl + Kl){\ - x2) + C(l - ^C)(l + C)Kl (5.19b)

and the function C controls the slicing condition, as described in Section 5.1. We

follow Stark and Piran and choose it to be of the form

C = (1 - (r/ro)2)n (5.20)

with ro a constant.

• The shift component N^ is not required for the Stark-Piran integration procedure,

however it can be found by performing a radial integration of the shift equation

drN4" = -2NKzAr~lB-1 - £(1 - x2)dTG. (5.21)

Note that this procedure differs somewhat from that presented in Stark and Piran

(1987) for the same system of equations. An examination of the equations determining

the lapse N and two shift components /3r and G shows they are in fact coupled on a given

t = constant slice. As a result, the advantages of using an inward parabolic equation

for N in the polar-sliced region is offset by the fact that an iterative procedure with an

initial guess for j3T will be required even in the parabolic region. In fact, this coupling

between j3r and N is extended even to the determination of iV at the interface as will

be seen in Section 5.4.
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Once the integrations are completed and the data is determined on a slice, a boundary

condition is used to determine the radial derivatives of the metric variables at the outer

edge of the grid.

Boundary conditions

Boundary conditions for the axially symmetric 3+1 system are discussed in detail in

Bardeen and Piran (1983). There are three boundaries to be considered: the origin, the

polar axis, and the outer radial boundary.

Regularity conditions are used to determine appropriate expansions for the metric

variables in the neighbourhood of the origin and the polar axis. In fact, on the axis,

the condition that the appropriate quantities vanish can be enforced automatically by

choosing as variables functions weighted with appropriate exponents of sin#.

For the standard Cauchy evolutions carried out by Stark and Piran, an outgoing

wave condition was used at the outer boundary. For polar-sliced hypersurfaces, Bardeen

and Piran (1983) show that as r —>• oo,

NA = 1 + O{r~2), (5.22)

which is the analogue of the Robin boundary condition. This condition is accurate to

order r~2 (compared to the r~l accuracy for the corresponding Dirichlet condition) and

has the additional benefit of being simple to apply once A has been determined.

Of the other metric variables, A and G do not require an outer boundary condition,

as they are integrated radially outwards. Outer boundary conditions for the wave modes

(77, £) and their corresponding momenta (K+,KX) are set to be that of purely outgoing

spherical radial waves for the Cauchy code on its own. Similarly, the remaining extrinsic

curvature variables (K\,K2-,Kj,) vanish to order r~3 (Stark and Piran (1987)) and so

are set to zero.

Note that these approximations are not required when the Cauchy code is interfaced

with a characteristic code. Rather, waveforms passing outwards at the boundary will

be transferred to the characteristic code for a full integration to J^+, whereas quantities

requiring outer boundary values (notably N) are provided these by the corresponding

characteristic data passed inwards. Details of how this is accomplished are given in

Section 5.3.



5. The Southampton axisymmetric CCM code 103

5.2 A Bondi-Sachs characteristic scheme

The implementation of the characteristic scheme in the Southampton code is somewhat

simpler to describe due to the form of the Bondi equations. As described in the previous

chapter, in the characteristic coordinate system the Bondi variables form a hierarchical

system. On each slice, the data 7 and 8 as well as appropriate data at the interface

are enough to determine the metric variables /3, U, W, and V on a single u = constant

slice, as well as the u-derivatives of 7 and 8 which can be used to evolve the initial data

forward.

The coordinates used in the characteristic region are those of Section 4.2 with one

notable difference. The radial coordinate r is replaced by

V = l/r, (5.23)

so that null infinity is mapped to the surface y = 0 and the coordinate is well defined over

the numerical grid provided that the inner boundary is located at some finite non-zero

radius. For the convenience of matching with the Cauchy region, the function

x = cos 0 (5.24)

replaces the 9 coordinate in the equations that follow.

With these coordinate choices, the Bondi field equations take the following explicit

form:

^ 5 + (dy6)2)y, (5.25a)

dyP =(-4cosh225(dy7):r/\/l ~ x2 + (2cosh2

- 4cosh2 25{dxl){dyl) - 4{dx0)/y - 2(dxyf3)

+ 8sinh25cosh2S{dx6){dy-y) - 4:{dy5){dx8))y/l - x2)/y2, (5.25b)

8yQ =(-4{(dyS) + {dy-y) sinh26cosh28)x/VT^x1 + (-4{dyf){dx8)

+ 2{dxy8) - 4{dxj){dy5) - A{dxl){dy-y) sinh26 cosh25

+ 8(dx<5)(dy7) cosh2 26 + 2{dxy^) sinh 28 cosh 28) y/l - x2)e2^/y2, (5.25c)
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dyV = - x2)(+2((dx8)2 + (dxl)
2 - (dxi){dxp)) + (dx(3)2

- (dxxl)) + x{{dxi) - 2(dxp) + 3(ds7)) - 1)

- x2){{dxx8) + {dx8){2{dx/3) - 4(0s7))) - 4x{dx6)))

+ cosh25e~2l){e-2~<(dyW)2 + e^{dyU)2)/4 - {dxyU)\/l - x2/2

+ {dyU)x/2Vl ~x2 + e~psmh25{dyU){dyW)/2)/y2

-x2- Ux/y/l - x2)/y3, (5.25d)

dy<l>x -

cosh2SV(dy-y)y/2 + (e-^(e~^(dyW)2 -

{dxp)2)(l - x2)/2 + {smh28((dxU){dy6)

2U{{dxl){dy5) + (dx6)(dyl)) + cosh25((dxyU)/4

U{dxyl) + {dxU){dyl)))\/l-x
2/2 + (sinh28{U{dy6) + e"27\dyW) /A)

cosh28{e-2iW(dy8) + {dyU)/A - {dyl))l2)x/s/l - x2)/y

(-(e"27sinh25W + cosh25U)x/y/l - x2f2 - (cosh28{{dxU)/2

(5-25e)

dy<h + f<f>i = V2(cosh28sm\i28V{dyl)
2 - ((dy8)(dyV) + V{dy8)y))/2 - y(dy8)V/2

+ (e 2 ^ 2 7 sinh2<5((aiI/3) + (9^)2)(1 - x2)/2 + ((dxU)(dy8)/2

+ e-^{dxyW)IA + {dyU){dx8)/2 - e-27 cosh2 28(dxW)(dyj) + U{dxy8)

- cosh28sinh28{dy^)({dxU) + 2U{dx-y)))yJl - x2

- e'2? sinh2<5(e27{dyU)2 + e-
27(9yVF)2)/8

- e~20 cosh 28{dyU){dyW)f4 + {e~21 {dyW)/A - U(dy8)/2

9y7) - cosh25sinh2<5C/(a!/7))x/\/l - x2)/y

+ U(dx8)Vl-x2)/y2,

where the functions P and Q are those defined by Equations (4.34), namely

P =(-e2/3+27(dyt/) cosh 2(5 - e^{dyW)smh28)/y2,

Q ={-e
20{dyU)sinh28 - e2(3+2'<(dyW)cosh28)/y'2

(5.25f)

(5.26a)

(5.26b)
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and the auxiliary variables <f>i, </>2, and / , are denned in terms of the u derivatives of 7

and 5 by

cf>1=cosh25{dul)/y, (5-27)

h =(dj)/y, (5.28)

/ = -2(^,7) sinh26. (5.29)

As noted in the previous chapter, the system of equations in the order

(5.25a), (5.25b), (5.25c), (5.26a), (5.26b), (5.25d), (5.25e), (5.25f),

is hierarchical in that all of the data required by the right-hand side of the later equations

will be available if the earlier equations have been solved.

Initial data for each of the y integrations is supplied at the Cauchy interface, with one

notable exception. We wish to match points on the characteristic grid with the Cauchy

grid at the interface between the two. To accomplish this, the (y, 6, (f>) coordinates on the

characteristic region are fixed at the interface rather than J^+, and as such will generally

not result in Bondi-type asymptotic behaviour of the metric functions. A coordinate

transformation to Bondi coordinates can, however, be carried out provided that the

metric variable /3 satisfies the condition given by Equation (4.51) at J^+. Enforcing this

condition amounts to setting 'initial' data for the y-integration of (5 along a u = constant

slice via Equation (5.25a). That is, in order to ensure that a Bondi-type coordinate

system exists, we will choose to set ft at ^"+ and integrate it inwards towards the

interface with the Cauchy region.

To understand the influence of this on the Cauchy data at the interface, recall that it

was the slicing condition in the Cauchy region which determined the form of boundary

condition which would normally be used instead of the characteristic interface. In par-

ticular, the fact that the spacetime was polar sliced in the neighbourhood of the interface

resulted in an approximate condition on the lapse, (NA) ~ 1, as suggested by Equa-

tion (5.22). In Section 4.2, asymptotic expansions of the characteristic metric functions

was related to the outgoing wave condition originally posed by Bondi et al. (1962). So

the imposition of the condition on /3 at J^+ can be seen as an extension of placing an

outer boundary condition on the lapse in the Cauchy region. We will see in Section 5.3

that the Cauchy lapse will not be uniquely determined without first determining the

characteristic (3 and imposing the polar slicing condition at the interface.
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The evolution algorithm

The hierarchical structure of the Bondi equations leads to a very simple evolution system

on a null slice. Taking into account the comments made in the previous section, the

following scheme has been implemented to evolve the data on the characteristic grid:

1. The metric functions 8 and 7 are specified on an initial u — constant retarded time

slice. Values for 5y and j y are determined from these for later use.

2. P is determined by the Bondi slicing requirement, Equation (4.51) at null infinity

and integrated inwards over the grid to the Cauchy boundary.

3. The auxiliary variables P and Q are determined on the slice by outward integra-

tion of Equations (5.25b) and (5.25c) from the interface. Initial values for these

integrations can be given in the form of values for {dyU)j and (dyW)j so that P

and Q are determined on I via Equations (5.26a) and (5.26b).

4. U and W are determined on the slice by an outward integration of the inversions

of Equations (5.26a) and (5.26b) to form equations for dyU and dyW. Initial data

for U and W are specified at the interface.

5. V is determined on the slice via an outward integration of Equation (5.25d) with

initial data on the interface.

6. The coupled system given by Equations (5.25e) and (5.25f) are solved for <f>\ and

(f>2. These are used to determine duj and du6 on the slice via Equations (5.27) and

(5.28). Initial data is specified at the interface in the form of values for (duj)\i

and (du8)\i.

7. The values of 9U7 and du5 are used to integrate 7 and 5 to some future u + Au.

The procedure is then repeated from the beginning.

Finally, we note that the integration procedure as specified makes no use of the supple-

mentary conditions described in Section 4.2. Enforcing these equations can be shown

to be equivalent to specifying values for {P, Q, U, W, V} on a y = constant world-tube

(see, for example Sachs (1962), d'Inverno and Vickers (1997)). Thus by making use of

them, the amount of information which is required to be passed across the interface

can be reduced. In fact, however, we take the position that in order to ensure a better

correspondence between the numerical Cauchy and characteristic data, it is preferable

to extract this information from the Cauchy interface. The supplementary conditions is
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then used as a check on the data in much the same way that the constraints are used in

Cauchy evolutions.

Behaviour at the boundaries

The characteristic grid has four boundaries at which the behaviour of the metric

functions must be controlled. The innermost of these is the most significant for the

purpose of Cauchy-characteristic matching, as it is located at the interface with the

Cauchy region. The data required for the radial outward integration of the Bondi

metric variables are placed here based on their values on the corresponding points

on the Cauchy grid. The procedure for carrying this out is the subject of the next section.

The outer boundary for the characteristic grid is located at J^+, corresponding to

the surface y = 0 of the compactified radial coordinate. Since this is an ingoing null

surface, data on J^+ is not causally connected with data on the grid, and thus should not

influence the numerical calculations. This is reflected by the fact that the integrations

for the metric functions are, for the most part, performed in an outward direction. The

finite difference equations use only data from grid points interior to the point being

calculated, and so data at J^+ need not be specified.

The exception to this is the calculation of /3 which, as mentioned in the previous

section, is required to be of a form which allows transformations of the asymptotic

metric functions to Bondi-type quantities defined at J^+. This is accomplished by

calculating j3 at </+ via Equation (4.51) and integrating inwards. Although this might

be considered to violate causality, in fact the condition on j3 corresponds to a gauge

choice on the slicing of the spacetime, and as such does not involve the propagation

of a physical field. Further, the determination of j5 via Equation (5.25a) is in terms

of the functions 7 and 5 which have been determined in a manner consistent with the

causality. Thus it is not expected that the non-standard integration of /? will have

adverse affects with regards to the integration scheme.

The behaviour of the metric functions at the equator are determined by the assumed

reflection symmetry of the metric in the Cauchy region, which necessarily carries over

to the characteristic metric functions. In particular, an examination of individual

Bondi metric components given by Equation (4.28) under the requirement of reflection

symmetry across the equator suggests that 7, /3, U and V are even across the equator,
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whereas 8 and W are odd.

The poles are traditionally the source of difficulties for numerical codes in spherical

coordinates, for they represent a coordinate singularity in the metric components where

sin# —> 0(x —> 1). In order to ensure that no coordinate 'kinks' exist on the axis, it

must be possible to choose a Minkowskian tangent metric there. The condition that the

radius of a circle approach 2n results in the following behaviour of the metric functions:

7-»(l -x2)y(x), 6->{1 -x2)8{x), (5.30a)

U ->\/ l -x2U{x), W ->Vl - x2W(x), (5.30b)

P ->)8(ar), V ->V(x), (5.30c)

where hatted quantities are regular functions of x as x —> 1. Thus the values of 7,5, U, W

as well as the derivatives dxj and dx8 go to zero as the axis is approached.

5.3 Data transfer across the interface

The CCM method requires that information be carried accurately across the interface

between the interior Cauchy region and exterior characteristic region. The particular

choice of integration scheme demands that the information be carried in both directions.

Thus, data on the characteristic region provide an outer boundary condition for the

Cauchy code, which the Cauchy data specifies interior values for outward integration of

the Bondi metric quantities in the characteristic region.

A variety of problems must be overcome at the interface. Most significantly, although

the interface is viewed as a world-tube on a single two-dimensional surface, not all of the

data which are passed across the interface are local to the surface. In particular, for an

interface at a constant radius, radial derivatives of the data are required to be passed.

Numerical determination of these derivatives require that the data be known on both

sides of the interface in the given coordinate system.

In the past, this difficulty has been overcome by placing data past the outer edge

of a grid by interpolating data from the other grid (see Figure 5.2). This has been

applied effectively by Dubai et al. (1995) in cylindrical symmetry. In order to maintain

second order accuracy in the derivatives, a fourth order interpolation scheme was used.

Note, however, that the ability of this code to perform the necessary interpolations to

the desired accuracy benefitted from the high degree of symmetry of the problem under

study, and in more general spacetimes the interpolation of points from one grid to the



5. The Southampton axisymmetric CCM code 109

Figure 5.2: One method of determining the radial derivative of a characteristic function

at a point A on the interface, is to place data at a ghost-point B via interpolation from

the known Cauchy data. The complementary procedure can be used to determine radial

derivatives on the Cauchy side of the interface.

other is a far more sensitive problem. Bishop et al. (1996) have reported success in

the extraction of waves to a quasi-spherical characteristic region using such a 'thick'

interface, and the technique has been suggested as a means of matching the stable

Pittsburgh characteristic code with a Cauchy module based on the successors to the

Grand Challenge effort (Winicour (1998)).

A somewhat different approach is taken by the Southampton axisymmetric CCM

code.

• The equations for transforming both the metric functions and their derivatives

between coordinates are applied at the interface. This means that ghost grid

points are not needed in order to calculate derivatives there. Thus the matching

is performed at a single r = constant (y — constant) surface with no need for

interpolations from points on the interior of either grid.

• A further simplification at the interface is introduced by matching the angular

9 and (f> coordinate in the characteristic region with that denned in the Cauchy

region.

As a result of these considerations, data specified at the outermost grid points of the
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Cauchy region are transformed directly on to grid points of the characteristic region

with no need for interpolation, thus avoiding a large source of inaccuracy as well as

computational complexity involved in the extraction/injection procedure.

For the purposes of the section, the coordinates on the Cauchy grid are labelled

xa = (t, r, x, (j)) while those in the characteristic region are distinguished with a tilde,

xa = (u, y,x,4>). Recall that following Stark and Piran (1987), the coordinate x = cos#

is used as the angular coordinate, while axisymmetry implies that fields are independent

of 4>. The coordinate transformation between regions takes place at the interface, I,

which is fixed to the constant coordinate location r = 1 in the Cauchy region, and y = 1

in the characteristic region. On / we also require that both the timelike coordinates and

angular coordinates match, so that

t = u, x = x , a n d <f> — </>. (5.31)

The transformation of evolution data from one system to the other will require the

transformation of both the metric components and their derivatives at some interface

surface. The transformations from Cauchy ga(, to characteristic gab can be found, as

usual, by computing

dxc dxd

( 5 - 3 2 )

. . . dxdxdx , ( d2xd dxe
 i dxd

and corresponding transformations in the other direction found by switching ~ with

non-~ quantities. The detailed calculations involved in determining these quantities is

outlined in d'Inverno and Vickers (1997), and only the relevant results are presented

here except for the case of the transformation of d\goi and d\gu, where a correction to

the published derivation and result is required.

For the transformation from the Cauchy to characteristic coordinates, it is found

that

dxa\ (dxa dxa dxa\ A

where Ya is denned in terms of the Stark-Piran variables by

Xa = (1, v, GVl-x2, N*), (5.35)

v = pr + N/A. (5.36)
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The result of the application of this transformation (and its derivatives) via Equation

(5.33) are the following expressions for the components of the characteristic metric com-

ponents in terms of the Cauchy data at the interface:

5oo =5oo, (5.37a)

AB (5.37b)

(5.37c)

9AB =gAB, (5.37d)

(5.37e)

=dt(PXagOa), (5.37f)

(5-37g)

(5.37h)

=2dt(PXa)g0a + PXadagOo, (5.37i)

=eXagOa, (5.37j)

=do(PXa)gaA + dA(PXa)gOa + pXadAgOa, (5.37k)

di~gAB =p(dAXagaB + dBXagaA + Xada9AB), (5.371)

=dcgoo, (5.37m)

dc'goi =dc(pXagOa), (5.37n)

, (5.37o)

B, (5.37p)

where

' l (5.38)

(5.39)

and ryAB is the matrix inverse of gAB, ie. 7 gBC — 8 c-

The inverse transformation from characteristic to Cauchy coordinates is given by
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where Ya is given by

, (5.41)

(5-42)
u-p

v = — (9oo2psoi - 9AB9OA9QB), (5.43)
9oi

P = -\dx(g
2AgQAy/l-x*). (5.44)

It is significant to note that the expression for p can only be fixed once the slicing

condition in the Cauchy region is known. In the case under consideration, polar slicing

trK = Kr
r is used in the region of the interface. It is shown in d'Inverno (1995) that in

axial symmetry this condition can be re-expressed as a condition on the metric variables.

In the present context, this can be written

5oi = -rpgn, (5-45)

with p = p given by Equation (5.44).

In terms of the given transformation and its derivatives, the Cauchy metric compo-

nents in terms of the characteristic components on the interface are given by

900 =9oo, (5.46a)

901 =\ ( -9oo + 9-j + 9AB~90A~9^ , (5.46b)

(5.46c)

(5.46d)

9AB =9AB (5.46e)

<9o9oo =<9ogoo, (5.46f)

3o9oi =do(yQ9oa), (5.46g)

<9o9o.4 =do9oA, (5.46h)

dogu =do(~9abY
aYb), (5.46i)

B (5.46j)



5. The Southampton axisymmetric CCM code 113

=2d0Y
ag0a + YadagOo, (5.46k)

=K, (5.461)

=digoA, (5.46m)

=*?, (5.46n)

B)Ya + YadagAB (5.46o)

(5.46p)

=dc{goaYa), (5.46q)

(5.46r)

a ^ 6 ) , (5.46s)

(5.46t)

where

« = (p + y a d a p)saby a y 6 - ^ (5.47)

and 77 is determined by Equation (5.65), derived below.

As a final note, we emphasise that the calculations in this section are dependent

on the chosen gauge in both the Cauchy and characteristic regions. In particular, a

derivation of the parameter u which determines the transformations to goi and g\\ in

the Cauchy regions, shows that the value of v is only uniquely fixed once a slicing

condition on the Cauchy region is selected. Thus, for Cauchy systems in which other

slicings are used, alternate forms of these transformations are required. This can be

a difficult point, as it is not necessarily the case that a particular lapse equation will

lead to an explicit condition on the metric components which can be used to fix the

coordinate transformation. It is often the case that slicing conditions result in elliptic

equations for the lapse (eg. maximal slicing) and the shift (eg. minimal strain shift,

Smarr and York (1978), Brady et al. (1998)). These equations can only be solved once

appropriate boundary values have been specified. Boundary values, however, can only be

determined once the gauge variables themselves have been extracted to determine data

on the characteristic grid. It is significant in the system presented here the values of U,

W, and V on the characteristic region are determined at the interface from the metric

components 501 and goA- According to Equations (5.37a), these components can only

be determined once the shift and lapse are known on the Cauchy side of the interface.
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However a given choice of shift and lapse may depend for outer boundary conditions on

the values of the characteristic U, W, and V.

In fact, for the evolution system in question, the issue can be sidestepped via a

method presented in Section 5.3 which is consistent with the overall evolution scheme in

the Cauchy region. The extent to which such methods can be found for generic slicings,

however, is not clear.

The injection of dign

In d'Inverno and Vickers (1997), a confusion between variables on the characteristic

and Cauchy sides in Equations (154) to (156) of that paper, results in an erroneous

calculation for the derivative of d\g\\ in Equation (160), as was pointed out by Chris

Clarke (personal communication). The problem can be corrected via the following

calculation.

To begin, recall that the Cauchy coordinates are written in the radial gauge and as

such satisfy the determinant condition (5.6), namely

det7,4B = r 4s in 20. (5.48)

Differentiating this with respect to r gives

lABdrjABT4 sin2 9 = 4r3 sin2 6 = > jABdr^AB = - , (5.49)

r
and similarly, differentiating with respect to t and 9 give

lABdaAB =0 (5.50)

=1 co t^ (5.51)

The Christoffel symbols of the first kind are defined by

= ^{d(a9b)c - dcgab) (5-52)

Then, in terms of the above results, we have

7;(l(d{A9B)i 9I9AB)) ^ l d l l A B (5.53a)

(5.53b)

7ABTCAB = lABdBlCA - ^ C — ^ 2 (
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where we've used the fact that ga\ = 0 and goa = Pa for the Cauchy metric. Taking the

derivative of Equation (5.53a) with respect to r gives

r2 '

which upon expanding the covariant derivative in the second term becomes

= \ - (5.55)

The Christoffel symbols can now be expanded in terms of the metric variables. The first

term becomes

7\ = da
ABr1AB = \lAClBDdllABdllCD. (5.56)

The second term on the left can more easily be expressed by first defining the following

contractions of the Christoffel symbols:

Qo = 1ABT*AB = lABdA/3B, (5.57)

Qi = 1ABT1AB = -l-!ABdllAB = - - , (5.58)

Qc = 1ABTCAB = lABdclAB - S2c cot 0. (5.59)

In terms of these variables, the second term becomes

T2 = 7cdrciiQd - ^(-do7n + 2d1/?1)5
0aQa + -dl9

laQa - -dBlllg
BaQa. (5.60)

The final term on the right, which significantly involves an r derivatives of the Christoffel

symbols, can be re-expressed in terms 6 derivatives and the Riemann tensor through use

of the Ricci identity,

lABdyTlAB = jAB(R1AiB + OAFUB). (5.61)

The result is expanded in terms of the metric quantities to yield

4 4 7 U B U (5.62)

To this point, all calculations have been performed with the coordinates and metric

components of the Cauchy system. However, using the transformations of the metric

variables and their derivatives, which are known except for 9i<?oi and <9i<7n, we can

rewrite the metric components in terms of their corresponding values in the characteristic
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coordinates. Note the two functions for which the transformations are not known are

related via Equation (5.45). In particular, taking the derivative of this equation yields

= pgn + dipgn + pdign- (5.63)

This is used to eliminate digoi from T2,

i - 211ldlP)g°aQa + dllu(-pg°aQa + ^ l a Q a )
2

( ^
2 2 (5.64)

Using this expression, and Equation (5.55) along with the expansions (5.56) and (5.62),

we can solve for d\g\\ as

= (-pg°aQa + \glaQa)-\2ir2 -T,- h-do-m - 211idlP)9
0aQa +

2 2 (5.65)
B A B

On I each of terms, here given in terms of Cauchy components, can be written in

the characteristic variables by making the transformations given by Equations (5.46a)-

(5.46t), making note that

p = pdxp = dape\RlAiB = RaAbB~e\e\ (5-66)

(d'Inverno and Vickers (1997)). The result is that Equation (5.65) determines the value

of 7) referred to in Equation (5.46n) entirely in terms of characteristic variables at the

interface.

Given the transformation equations (5.46a)-(5.46t) and (5.37a)-(5.37p), it is possible

to determine the metric coefficients at the interface in one of the coordinate systems given

the other. The actual variables used by Stark-Piran, and those of the Bondi metric, can

be solved for the metric functions, as can the necessary radial derivatives required to

provide data on the interface.

The only problem that might arise concerns whether enough information exists at a

particular stage of the evolution so that the transformations can be carried out. In fact,

a fully consistent procedure can be denned in which it can be shown that at each stage of

the evolution, enough information exists to perform the required integrations on either

the Cauchy or characteristic grids, and to carry out any required coordinate transfor-

mations in order to determine boundary information at the interface. The description

of this procedure is the subject of the next section.
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Determination of the Cauchy lapse from incomplete characteristic data

An important factor in practical implementation of any of the coordinate transformations

is how much information is actually available in the form of calculated components.

This problem is particularly acute with the Stark-Piran and Bondi systems where the

calculation of each evolution variable can take place only once certain previous data have

been calculated, so that the order of integration is fairly rigidly structured.

An examination of the metric components in the Cauchy region (see Appendix D)

and the injection equations (5.46a)-(5.46t) shows that at the point at which boundary

data for the inward integration of N is required, not enough information exists in the

characteristic region to inject the metric components required to solve for N. However,

note that the entire integration of iV in the Cauchy region is coupled to the value of

/3 r, and as such requires an initial guess for this quantity. By extending this to the

transformation at the interface, we can determine an outer boundary condition for N

using characteristic data in combination with a value for f}r in the Cauchy region. The

injection equation for <?oi is given by Equation (5.46a),

501 = - (-500 + {o- p)goi + gABgoAgoB) • (5.67)

The expressions for goa and QAB are transformed to their Cauchy equivalents via Equa-

tions (5.46a). The same can be done for the expanded form of v resulting in the expres-

sion

v = —(5oo + 2p5oi ~ 5A B5O^5OB)- (5.68)
5oi

Finally, note that p = p = fiT follows from the derivation of Equation (5.45) and the

definition of p via Equation (5.44) respectively. This, along with Equations (5.68),(5.67),

and (5.68), leads to the equation

5oi(5oo + 2^501 - gABgoAgoB) = /3r5oi• (5.69)

The values of the Cauchy metric components at I,

5oo = -N2 + A2((3r)2 + gABgoAgoB, (5.70)

can = -A2{3r, (5.71)

and the characteristic component,

5oi = ~e2/3, (5.72)
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are substituted into this expression and the result solved for the lapse to give

N2 = A2(f3T)2 + e20{e20/A - 2(/3r)) (5.73)

where care must be taken to distinguish the Stark-Piran shift component f5T with the

characteristic metric variable /3. This is an equation for the lapse in terms of data which

is already known at the interface (Cauchy A is determined in Step 2, characteristic /3 in

Step 6) and the value of /3r which is not yet know exactly but results from the coupled

system with N. Thus the transformation (5.73) at the interface is applied iteratively

until a result is converged upon, just as is the equation for N and /3r over the entire

Cauchy grid.

Once the lapse equations have been solved, all of the metric information is known on

the Cauchy side of the interface. Thus enough information exists to extract the required

inner boundary data for the remaining characteristic integrations. The only remaining

task is to fix the boundary conditions of metric variables on the Cauchy grid (namely

their radial derivatives) via injection so that a full set of data exists for the procedure

to begin at the next timestep.

5.4 A scheme for coordinating Cauchy and characteristic codes

With the theoretical groundwork for both evolution systems laid, as well as a specification

for how they can be matched, the only remaining task is to specify a consistent procedure

for performing the integration as a complete system. A full procedure for the evolution

of a spacetime constructed from 3+1 and characteristic regions which pass information

back and forth across a boundary is conditioned by a number of requirements:

• The order of integration of the metric variables in the Cauchy interior;

• The boundary data required by the metric variables in the Cauchy region;

• The order of integration of the metric variables in the characteristic region;

• The boundary data required by the metric variables in the characteristic region;

• The information (in the form of calculable metric components gat, and gab required

by each of the coordinate transformations from one region to the other.

Essentially, the order of operations must be specified in such a manner that each inte-

gration step possesses enough information in the form of boundary conditions that it

can be carried out.
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The integration of the Cauchy lapse function a provides a particular difficulty in

that, unlike the other variables, it must be integrated inwards from the characteristic

boundary. Its value is dependent on the characteristic parameter /3, which it will be

remembered is determined by the Bondi slicing condition, (4.51), at null infinity.

Beyond this, we note the following relevant points:

• The Cauchy variables 77 and £ are sufficient to determine the transverse 2-metric

gAB at the interface. Each of these can be determined by evolution from the

previous slice.

• The characteristic variables 7 and <5 can be determined from the metric components

at the interface.

The transformation of gAB to gAB on the characteristic side of the interface is

given simply by

9AB - 9AB- (5.74)

The Cauchy extrinsic curvature data {K\, K2,Ks, K+, Kx } can be determined by

evolution from the previous slice.

The Cauchy variable A = y/gi^ is determined on the new slice via outward radial

integration, and so requires no outer boundary value.

The determination of the lapse, N, on the Cauchy slice is an inward radial inte-

gration in the polar sliced region which neighbours the interface, and thus requires

an outer boundary condition. In order to set this, a value of the Bondi variable j5

is required at the interface.

The value of /3 at the interface is set by solving the Bondi slicing condition (4.51)

at J^+ and integrating inwards via (5.25a). This involves the solution of an elliptic

equation, (4.48a) for 9 over the sphere at J^+.

Once N has been set, the remaining Cauchy variables {/3r,iV^,G} can be de-

termined on the new timeslice. These data can be extracted at the interface to

determine inner boundary data for the outward integration of the remaining char-

acteristic variables.

The values of the characteristic variables and their derivatives at the interface can

be injected to set outer boundary data for the variables on the Cauchy grid.
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These considerations lead to the following consistent procedure for carrying out an

integration over the full Cauchy and characteristic regions so that sufficient boundary

information is supplied to each region as required. For each step of the procedure, a

table listing which information is known in each part of the grid on both the original

(t = to) and evolved (t = ti) is given. The procedure begins by assuming a full

knowledge of metric variables on the initial slice and is complete when the equivalent

information has been placed on the evolved slice:

Time

ti

to

Cauchy

T),Z,Kab,A,G,!3T,N

Interface

•q, £, Kab, A, G, /T, N, 5,7, U, U,r, W, W,r, V

Characteristic

6,j,j3,U,W,V

Given this data at to, new data (indicated in boldface) are determined on the t\ slice

by the following steps:

1. Cauchy: Using data at to, solve for the metric variables {77, £} over the Cauchy

grid at t\ by integrating equations (5.12) and (5.13).

Time

ti

to

Cauchy

r,,Z,Kab,A,G,/3r,N

Interface

7j, f, Kab, A, G, Pr, N, S, 7, U, U,r, W, W,r, V

Characteristic

6,i,P,U,W,V

2. Cauchy: Solve for the extrinsic curvature components {K+,KX, K\,Ki, K3}, over

the Cauchy grid at <i by integrating equations (5.14a)-(5.14e).

Time

ti

to

Cauchy

r)^,Kab,A,G,pr,N

Interface

77, f, Kab, A, G, /T, N, 6,7, U, U.T, W, W,r, V

Characteristic

6,-y,P,U,W,V

3. Cauchy: Solve for A over the Cauchy grid at t\ by carrying out an outward inte-

gration of equation (5.15).

Time

ti

to

Cauchy

r],£,Kab,A

ri,Z,Kab,A,G,pT,N

Interface

v^,Kab,A,G,/3\N,5,1,U,U,r,W,W,r,V

Characteristic

5,-y,P,U,W,V

4. Interface: Transform the 3-metric components hap (dependent on A, 77, £) from

3+1 to Bondi coordinates using equation (5.37a) at the interface in order to de-

termine initial data for the Bondi S and 7.



5. The Southampton axisymmetric CCM code 121

Time

t i

to

Cauchy

•n,z,Kab,A

T),£,Kab,A,G,/3r,N

Interface

<5,7

7?,£, Kab, A, G, 0r,N, S, 7, U, U,r,W, W,T,V

Characteristic

8n,p,U,W,V

5. Characteristic: Perform an outward integration of {8,7}, using the hypersurface

evolution equations (5.25e) and (5.25f) and initial data at I supplied in the previous

step.

Time

ti

to

Cauchy

r},i,Kab

V,Z,Kab

A

A, G,fir,N

Interface

8,1

r),Z,Kab,A G,/3r, N,S,y U,U,r,W,W,r,V

Characteristic

<5,7

<5,7,/?,L/,TV,V,<5>u,7,u

6. Characteristic: Use the Bondi slicing condition and the values of 6 and 7 at J^+

in order to determine initial data for ft as described in Section 4.2. Integrate j3

inwards over the characteristic grid.

Time

ti

to

Cauchy

T],£,Kab,A

r,,^Kab,A,G,Pr,N

Interface

8,1

77, £, Kab, A, G, /3r,N, S, 7, U, U,T,W, W,r, V

Characteristic

8,1,13

<5,7,/?,[/,W,V,<5,u,7,u

7. Interface: Transform the value of /3 at / (which determines the Bondi #oi compo-

nent) via equation (5.37a) to determine a value for the lapse, a, on the interior

(see the discussion below).

Time

t i

to

Cauchy

rj,£,Kab,A

•n^,Kab,A,G,Pr,N

Interface

(PI, 8,1

77, $, Kab, A, G, Pr, N, S, 7, U, U,T, W, W,r, V

Characteristic

8,1,0

5,-/,j3,U,W,V,6lU,i,u

8. Cauchy:

(a) Given a value for /T, inject the characteristic /3 data to determine a value for

the lapse, N, at the interface of the *i Cauchy grid.

(b) Integrate the coupled equations (5.17a)-(5.18) for G, (3T, and iV.

The data for (3T from the second of these steps is used as input for the first step,

and the process is repeated until convergence to a specified accuracy.

Time

t!

to

Cauchy

n,£,,Kab,A,G,F,N

•q,i,Kab,A,G,Pr,N

Interface

Pr,sn

77, £, Kab, A, G, Pr,N, 5,7, U, U,r,W, W,r, V

Characteristic

8,1, P
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9. Interface: The Cauchy metric components gab are fully determined at this stage,

and are transformed to determine the remaining Bondi metric components via

equations (5.37a), which in turn are used to determine initial values for the Bondi

functions [/, W, V.

Time

ti

to

Cauchy

r),i,Kab,A,G,pT,N

•n,Z,Kab,A,G,pr,N

Interface

F,6,-y,U,U,r,W,W,r.,V

ri,t,Kab,A, G,/3T,N,6,7, U,U,r,W,W,r,V

Characteristic

S,-y,0,U,W,V,5,u,r,

10. Characteristic: An outward integration from the interface is used to determine

{[/, W, V}, over the characteristic grid at t\.

Time

ti

to

Cauchy

T),t,Kab,A,G,0r,N

r,,Z,Kab,A,G,pr,N

Interface

Pr,5n,U,U,r,W,W,r,V

V,^Kab,A,G,pr,N,Sn,U,U,r,W,W,T,V

Characteristic

6,-y,/3,U,W,V

11. Interface: At this point all of the metric functions on each grid have been de-

termined for t\. Data from each side of the interface are used to determine the

required derivatives of the metric functions at I so that the process can be repeated

from Step 1.

Time

ti

to

Cauchy

v,Z,Pr,Kab

r),£,Kab,A,

,A

G,

,G,N

N,pr

Interface

ri,Z,Kal

T],£, Kab, A,

1,G,

G,(3T

3r,N

,N,8,

d,-r,U,U,r,W,W,r,

-y,U,U,r,W,W,r,V

V

Characteristic

S, 7, j3, U, W, V

S,-Y,P,U,W,V,

12. At this stage, all of the data for both regions exists on the t\ slice and the process

can be repeated to evolve to a future t<i-

Time

t + 2

h

Cauchy

V,i,Kab,A,G,pr,N

Interface

7?, £, Kab, A, G, P\ N, 5,7, U, U,r, W, W,T, V

Characteristic

6,-y,P,U,W,V

It can be shown that at all stages of the calculation enough data exists to perform

the required integrations. The only difficulty results in providing initial data for N in

the coupled solution of the shift and lapse equations in Step 8.

5.5 Numerical implementation

The scheme for matching a Stark-Piran type interior Cauchy system with a Bondi char-

acteristic system which has been outlined in the previous sections is in the final stages
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of being implemented as a numerical code by the Southampton Relativity Group. In

general, standard finite differencing techniques are used with the goal of achieving sec-

ond order accuracy and convergence as well as long term stability. The intention is that

this should be achievable first by each of the interior and exterior regions, and then by

the system as a whole.

Grid structure

The Cauchy grid

In setting up the grid for the Cauchy evolution, we follow closely the layout proposed by

Stark and Piran (1987). Significantly, attention is paid to the relative placement of the

individual variables on the grid so that their values and derivatives are centred correctly

relative to each other depending on how they appear in Equations (5.12)—(5.21), as well

as to their behaviour at the grid boundaries, in particular the polar axis.

Following Stark and Piran (1987), a system of two grids (labelled 'a' and '&') in

the radial direction are used. The distance between grid points is set at a uniform Ar

for each grid. The two grids are offset by half a radial distance, Ar/2, so that points

on the 6-grid are centred between points on the a-grid and vice-versa. The purpose

for the offset is to preserve the natural placement of the grid variables based on their

determining equations. For instance, though the variable £ can be placed on the a-grid,

the variable which is actually evolved is its radial derivative dr£ via Equation (5.13),

which when finite differenced should be centred half-way between grid points, ie. on the

fr-grid. Because of the offset, both the a- and b-grids can not each have points at the

origin and interface. We choose to place the origin (r = 0) on a point of the b-gvid and

the interface, I, on the a-grid.

A similar setup is used in the radial direction. Recall that the coordinate x = cos 6

is used as an angular coordinate and ranges from the value 0 at the equator to 1 at the

polar axis. An angular a-grid with even spacing Ax is constructed to have points which

straddle both the pole and the equator. This is so the equations for variables place

on this grid will not be required to take values at the poles, where factors of (1 — x2)

commonly cause degeneracy. An angular fr-grid is offset by a distance Ax/2 from the

a-grid. Both the pole and the equator sit on points of this grid.

The result is that individual variables are each placed on one of four grid structures

defined by the two radial and two angular grids: aa, ab, ba, bb.

Derivatives at the boundaries are handled through the use of ghost-points beyond
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the physically relevant sections of the grids. Values of functions at these points are

determined by their expected behaviour at the boundaries, as discussed in Section 5.1. In

particular, at the origin the expansions listed in Bardeen and Piran (1983) are enforced,

while at the poles and equator the even/oddness of the variables are used to determine

their values immediately beyond the boundary.

The entire grid layout for the Cauchy region, including ghost zones, is displayed in

Figure 5.3.

The characteristic grid

In many senses the evolution system for the Bondi variables is much less complex than

that in the Cauchy region, and as such a simpler grid structure is used. Rather than

multiple offset grids, variables are placed at points on a single grid. The radial grid

has points uniformly spaced at distances Ay, and both the interface and null infinity

are points on the grid. The angular grid points are placed at values of the interior

Cauchy grids so that data transferred to or from the interior will require a minimum

of interpolation. Thus a grid spacing of Ax/2 is used, where Ax is the corresponding

distance between points on each of the a and b Cauchy grids. Ghost zones are also

used at the pole and equator, with values of grid variables set using the expansions of

5.2. A boundary condition is not set at y = 0 (J^+), as the equations determining the

grid variables on a slice are integrated in an outward direction, except for the Bondi

variable /3 which is integrated inwards and whose value at </"+ is set using the Bondi

slicing condition as described in Sections 5.2 and 4.2. As such, radial derivatives of the

grid functions are not needed at </"+. Radial derivatives at the Cauchy interface are

determined by extraction, and are used to place values of the grid functions on a ghost

zone point. The layout of the characteristic grid is shown in Figure 5.5.

The interface

The interface exists along a single r = y — constant line on each of the Cauchy and

characteristic grid structures. The transformation equations listed in Section 5.3 are

used to convert data known on the line represented by the interface on one grid to data

on the corresponding line of the other. Figure 5.5 shows the mapping of interface points

between the two regions.

A problem arises due to the complicated nature of the Stark-Piran grid structure.

The 6-grid does not have points on the interface, and thus interpolation is required to
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I

I

I

Figure 5.3: The grid structure of the Cauchy evolution scheme. Points on the a-grid
(respectively in r and x) are indicated by and those on the fr-grid by dotted lines. The
placement of the Stark-Piran variables on each of the grids is shown. The physical region
is the lightly shaded region in the centre, surrounded by ghost zones where data is placed
to allow the calculation of derivatives at the boundaries of the grid. The interface with
the characteristic region is located at a point on the radial a-grid.
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i=ny i=ny-1 i=2 i=1 i=0
rid

C
CD

-Q

C

CD

x=1+dx

x=1-dx —

Ax=2dx

x=0
x=-dx

North pole

Equator

y=l+Ay y=l y=l- Ay Ay y=0

Figure 5.4: The grid structure for the characteristic region. A single grid is used, the
interface with the Cauchy region lying to the left and <#+ at the right. Note that the
angular dx corresponds to half of the angular Arc of the Cauchy grid.

place data appropriately on / before they can be transformed to their characteristic

values.

For data injected from the characteristic grid, the values of the functions themselves,

as well as their radial derivatives, are supplied by the interface module. The latter is

used to supply data at the ghost points via the finite difference formula

2[drY]IAr + O(r2), (5.75)

where Y is a generic grid variable and [3ry]/ the value of its radial derivative as supplied

by the interface module at / .

Note also that because the characteristic grid is twice as dense as the individual

Cauchy grids, interpolation in the x direction is also required at the Cauchy interface.

Characteristic grid-points at I are located at points on either the a- or fe-grids, so that

variables from the alternate grid must be interpolated if their value is required.
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Cauchy region Characteristic region

-Interface •

----O

B-grid

A-grid

Figure 5.5: The correspondence between points of the Cauchy and characteristic grids.

Finite difference techniques

In general, standard second order finite differencing techniques are used to represent the

derivatives of the variables on each of the two grids. In particular, if the differencing

operators

y i+1 - Yi-U A2Y, = Yi+1 - 2Yi + Y^, (5.76)

(5.77)

then r derivatives of a grid function Y at a point T{ are approximated by

], = AYi/2Ar, [drrY}i = AYt/Ar2,

where Ay = yI+1 — y; is constant over the grid, with corresponding equations for angular

derivatives and y derivatives in the characteristic region.

Various interpolations are required, in particular at the interface where function

values in the Cauchy region must be centred at locations of the characteristic grid

points. Note, however, that by the choice of interface as an r = constant line which has

points on grids in both interior and exterior region, the difficulties usually encountered

in performing interpolations between coordinate systems are largely avoided. The
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M I H-1

Figure 5.6: Computational molecule for the staggered leapfrog scheme.

location of the characteristic interface grid points are fixed on points of the Cauchy

grids by the choice of angular coordinate in the characteristic region. In general, fourth

order interpolations are carried out in order to maintain a second order truncation error

in the derivatives.

The time evolution equations in both the Cauchy and characteristic regions are

carried out using a staggered leapfrog technique in order to achieve second order accuracy

in time. For a given variable Y known at timesteps n and n — 1, the value at n + 1 is

calculated via

T1 = YV + [dtY^ijAt/Ax, (5.78)

where the value of [c^Y71]^ is determined by the evolution equation reduced to a finite

differenced version centred at the grid point ij. Note that with the difference operators

specified above, the computational molecule for the determination of this quantity ex-

tends from i — 1 to i +1 in the radial direction and j — 1 to j + 1 in the angular direction,

as shown in Figure 5.5.

The staggered leapfrog scheme is well known to be susceptible to 'mesh drifting' (see,

for instance, Press et al. (1986)). To compensate for this, a dissipative term of the form

b Yi - 4Yi+1 + Yi+2) (5.79)

has been found to remove the high frequency mode instabilities. Note that the term is

of order four and as such does not influence the second order accuracy of the overall

scheme Kreiss and Oliger (1973).



5. The Southampton axisymmetric CCM code 129

At two stages of the calculation, elliptic equations are required to be solved. The

first is in the maximally sliced region of the Cauchy grid where the equation for the lapse

becomes elliptic. The value of N in this region are determined by a standard successive

over-relaxation method. An initial guess for the values of each variable is obtained from

the previous slice. Boundary values are obtained from the result of the inward integration

of the parabolic equation for the lapse in the polar sliced region. Although the solution

of the elliptic problem is iterative, the slicing parameter C{r) (see Section 5.1) is chosen

so as to limit the elliptic solve to a small region around the origin, and convergence is

shown to be rapid in tests of the independent Cauchy code.

A second elliptic integration takes place in the specification of the characteristic

variable ft at J:+ via the Bondi slicing condition. Equation (4.48a) is solved along the

y — 0 surface representing Ĵ "1", which reduces to a line in axial symmetry. Once again,

successive over-relaxation is used with a source provided by the values of 7 and S at y+

which have been determined from the previous timestep.

A full implementation of all three portions of the code has been carried out by Mark

Dubai, Chris Clarke, Ray d'Inverno and the author. The Cauchy code has been well

tested and reproduces the vacuum results of Stark and Piran (1987) using Robin outer

boundary conditions. Teukolsky wave initial data have been used as the primary test

bed (Teukolsky (1982)) with wave amplitudes given in terms of y = t — r by the function

F(y) = Ayexp(-y2). (5.80)

for a small amplitude A on the order of 10~3. The waves are found to propagate off of

the outer grid boundary. However, after a time corresponding to approximately a single

wavelength, an instability in the elliptic region, originating at r = 0, begins to grow

leading to late-time innacuracies which propagate outwards (see Figure 5.7). The source

of this instability is currently being investigated.

The characteristic code is also fully implemented and has been tested by placing

the data derived from exact solutions on the interior interface. In particular, the

Schwarzschild solution and the boost-rotation symmetric solution of Bicak et al. (1988).

The latter is defined only on an initial hypersurface, where given data in 5 and 7, the char-

acteristic code has been found to reproduce the exact solution accurately. Schwarzshild

data can be evolved stably for an indefinite amount of time, maintaining accuracy to

within machine error. Unfortunately, since this data is manifestly static, the dynamic

evolution of the Bondi variables can not be adequately tested by this means. Small

perturbations on the Schwarzschild data have also been tested, however. For instance,
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o.ooe
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Figure 5.7: Teukolsky wave evolution using an amplitude parameter of A — 0.001. The
metric function 77 is shown after 50, 200, 500, and 800 timesteps. Beyond approximately
700 timesteps an instability at the origin begins to affect the grid function calculation
in the elliptic region. Though the run can be continued to 1400 timesteps, the results
become progressively less accurate.

the data

= Ael (5.81)

specified at the interface results in an evolution of the metric variables, though not

comparable to an exact solution (see Figure 5.8). Under such perturbations, the charac-

teristic code has been found to evolve stably and smoothly until beyond the time when

the perturbation has become negligible. It is optimistic to note that in these tests the

specification of data for /3 at J>+ has not been found to induce any problems in the

evolution.

The interface is a difficult component to test in isolation, as a proper test requires an

exact solution on either side. Since interpolations of metric variables are required, these

solutions must be known in a region on either side of the line which forms the interface.

For certain of the more simple transformation equations, arbitrary functional data can

be given and the outcome of the transformation compared to what would be expected

by a hand calculation. In general, however, errors in the transformation equations are

expected to be made apparent on the integration of the codes in the form of spurious
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Figure 5.8: The characteristic grid functions 7 and U at a representative time for the
perturbed Schwarzschild spacetime. Note that J^+corresponds to y = 0 in the figures.

waveforms generated at the interface.

More thorough tests of both the Cauchy and characteristic codes are still being car-

ried out, however, and will be presented elsewhere. In particular, it is expected that the

instabilities known to be present in the Cauchy code will require further understanding

before a reasonably stable and accurate CCM run is to be expected.

Grid spacing and stability in the Cauchy region

Crucial to the stability of any numerical code is the relationship of the timestep, At,

between evolved slices and the grid spacing, Ar and rA9. For linear (or linearised)

hyperbolic equations, a von Neumann stability analysis leads to the Courant criterion,

At < -Ax,
v

(5.82)

where v is the characteristic velocity. In geometric terms, this can be viewed as the

statement that the grids must be set up so that the value of a grid function at a point

is causally related to the data which determine it: The analytic domain of dependence

of a point must lie within the numerical domain of dependence.

Using this as a guiding principle, a causality condition on the timestep can be devel-

oped by considering the equations of null geodesies for the given system. For the metric,

Eq. (5.1), the null geodesies are determined from the equation

- (a 2 - NaN
a)dt2 - 2NadxQdt + ha0dxadxp = 0, (5.83)
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from which we find equations for dr/dt and dO/dt,

^ = ^ - (NT ± (iV2 - / i 2 ^ ^ 2 ^

2-(N2 - A^V")))1/2) , (5.84)

^ ( ^ ± (Ardt = / ^

(iV2 _ NaN*)))1^ . (5.85)

Following Stark and Piran (1987), we determine the maximum values of these equations

in terms of variations of r, 6 and $ in order to determine the furthest extent of the light

cones at a point in the r and 9 directions,

(5.86)

^ < max | - Ng/hgg ± {Nl/hgg + N2/hrr + N ^ + {N2 - iVfliV
a))1/2//ig/2|. (5.87)

Thus for the given system, a statement with the same causality implications as Eq.

(5.82) is

(•y Ji\-\/2 A™ A~

(5.88)A i < m i n Vi * ' ~ " A r

d6/dt\max ' dr/dt\ms

In principle, the parabolic equations for A, G and N impose analogous restrictions

on the allowed relationships between the sizes of the radial and angular grid sizes. The

equations for these variables (compare Eqs. (5.15), (5.17a), (5.18)) are of the form

drG =XGdxx ((1 - x2)G) + SG, (5.89)

drA =XA8X ((1 - z 2 ) ^ 2 ^ ) + SA, (5.90)

drN = - XNdx ((1 - x2)B23xN) +KN + SN. (5.91)

A 2-iteration Crank-Nicholson scheme is used for the finite differencing of these equa-

tions. The implementation of the scheme replaces the partial differential equation with

variable coefficient D(r),

by the (implicit) finite differenced equation

_ n pn+l f..n+l j . .,

Ar ~ 2Ax2 2Ax2

n
(5.93)

2AX2 " 2AX2
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Substituting a test solution u1? = ^"e1-7'*^1, as usual for a von Neumann analysis, we find

that the difference scheme has an amplification factor given by

l -2a"s in 2 A;A*/2

1 + 2a n + 1 sin2 kAx/2 V ' ;

where an = (-D"+1 + £)"_i). Thus we see that for positive Dn, the stability condition

for the Crank-Nicholson scheme does not place any restriction on Ar for individual

equations of the form (5.92).

Note, however, that certain complications arise in the Stark-Piran system due to

the coupled nature of the parabolic equations. In particular, since the integrations of JV

and G are coupled, and one is inward stable while the other is outward stable, a more

sophisticated analysis should be conducted in order to determine potential stability

problems for given choices of Ar and Ax.

We make one further note on the usefulness of applying a von Neumann analysis to

the full system of Stark-Piran equations in order to identify potentially unstable modes.

Two types of instabilities can occur. Numerical instabilities result from rapidly growing

solutions to the finite difference equations which are not solutions of the corresponding

continuum equations. The establishment of von Neumann conditions such as those dis-

cussed above is aimed at reducing the effect of such modes. Alternatively, the continuum

equations might admit modes which are absent in the desired solution, but are excited by

numerical perturbations. Examples of the analysis of these modes for various evolution

systems are given by Scheel et al. (1998), and Alcubierre et al. (1999).

The role of constraint violating modes also remains controversial (Choptuik (1991),

Frittelli (1997)). As noted in Section 4.1, though analytically the constraint equations

can be expected to hold for all times if they hold on a single slice, this is not necessarily

true of the finite differenced versions of the evolution equations. Unstable modes in

the numerical equations can drive the constraints away from their initial zero value

(Detweiler (1987)). To avoid such instabilities, constraint enforcing terms have been

proposed, such as adding terms of the form

+ e (WR + (trK)2 - KabK
ab) (5.95)

(where e is a parameter and the term vanishes when the constraints are satisfied) at an

appropriate point in the evolution system as a constraint 'driver' term. Analyses of such

methods have, however, shown that the stability of the system can depend crucially on

the value chosen for the parameter e which controls the extent to which the constraint

is blended in to the system (Alcubierre et al. (1999)).
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It seems, then, that the stability of the system can be determined by the manner in

which the constraint equations are applied. A stability analysis should be able to shed

some light on whether the Stark-Piran system of equations inherits any such unstable

modes which would require special treatment to remove.

In practice, the implementation of the Stark-Piran code considered here calculates

the momentum constraint equation for given timesteps as the evolution and outputs its

Li norm as a check on its error. The Hamiltonian constraint, on the other hand, is used

in the determination of the metric variable A. As a check on this value, the evolution

equation for A,

HA

( d ( 0 r )= (dr(r0) + NK1)A (5.96)

can be integrated for comparison. This provides a check on a stable evolution to ensure

that it is producing a result consistent with the full set of Einstein equations. However,

it will not detect the presence of unstable modes in the numerical system which can grow

to halt the calculation.



Conclusions

The algebraic classification of spacetimes

In the first part of this thesis, a methodology was developed for classifying exact solutions

of the Einstein Field equations. The system that was described is based upon the Cartan-

Karlhede methods. These methods were examined in more detail than has previously

been published, however, and particular techniques were proposed for dealing with the

numerous problems that are faced.

In Section 2.3, the notion of a standard form for the Weyl spinor was generalised

to arbitrary symmetric spinors. Algorithmic techniques for determining these standard

forms, as well as the transformations required to convert a spinor with arbitrary coeffi-

cients to one of these forms. The techniques have been designed to be both efficient in

terms of the number of computations required, and also to simplify the form of the final

expressions. The result of applying these transformations to the curvature spinor and its

derivatives is a full algebraic classification of the exact solution. As well as elucidating

symmetry properties of the spacetime, this classification can also be used to determine

the equivalence between pairs of spacetimes in a coordinate invariant manner.

A number of difficulties in the Cartan-Karlhede methods have also been identified.

In particular, the transformation coefficients for the standard form of an algebraically

general spacetime arise as a result of solving a high-order polynomial. Although tech-

niques exist up to 4th order, the resulting coefficients can be unwieldy both in carrying

out the computations and in their later interpretation. This problem arises already at

the first stage (Petrov classification) of the procedure. As a result, all of the spacetimes

which have been classified in practice have been algebraically special or specified in a

carefully chosen frame. Past the first stage of the classification procedure, however, the

standard forms developed in Section 2.3 ensure that no more than a quadratic ever need

be calculated.

Though the methods for are not difficult to specify, the sheer number of calculations

135
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that must be carried out is enormous. Thus, a set of computer algebra tools, described

in Chapter 3, was developed to determine the algebraic symmetries of a spacetime,

derivative operators associated with spinors, and perform transformations on spinor

components. As a result of this work, the GRTensor computer algebra system has been

extended to include a number of tools useful to researchers in the field of exact solutions.

The ultimate objective is to use GRTensor as the front end of the computer data base

of exact solutions Skea (1997b), so that the members of the user community themselves

will be able to submit candidate solutions to update the database.

Numerical integrations via Cauchy-characteristic matching

The accurate representation of outer boundaries of a numerical grid is an acute problem

for modern approaches to numerical relativity. As highly nonlinear problems such as

the merger of black hole pairs are achieving greater success, the standard approaches to

handling boundary conditions are becoming an increasing source of error, both for the

evolution itself, and for the interpretation of data which is produced.

In this thesis is presented a structure for solving this problem in axial symmetry. The

development of three independent codes is presented, for each of the Cauchy, character-

istic regions, and that of the matching interface between them. Further, the solutions to

the problems that need to be handled by such a code, in the form of gauge conditions

and data transfer at the interface, have been presented.

A procedure for transforming both the metric coefficients and their derivatives be-

tween Cauchy and characteristic components was outlined in 5.3. The significance of this

is that through use of these transformations, a complicated interpolation between grids

over a region can be avoided, as all of the data is transformed on a single r = constant

line.

For the particular axisymmetric Cauchy code of Stark and Piran (1987), a number

of issues arise in attempting to provide a characteristic outer boundary. A consistent

evolution strategy on the Cauchy grid, differing somewhat from the original presentation

of Stark and Piran in its determination of a number of the grid variables, was presented

in Section 5.1. This minimum number of variables includes a component which can be

related to the choice of slicing at J^+. As such, it is fixed using a condition specified

in Section 4.2 that the asymptotic form of the metric variables be transformable to

that of the original studies by Bondi. Even with this specification, however, a value

for the lapse can not be obtained at the interface via a simple transformation at the
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interface. Instead, Section 5.3 showed that a combination of interior and exterior data

consistent with the evolution scheme on the Cauchy region is sufficient to provide an

outer boundary. The issue highlights a particular problem with the implementation of

any Cauchy-characteristic scheme, namely that of being able to provide the information

at the interface when it is needed. This problem is expected to be particularly acute in

situations in which an elliptic equation must be solved for the shift and the lapse.

Finally, Section 5.4 tied the two systems of equations together with the transforma-

tion equations at the interface to provide a scheme for the evolution of the full CCM

system. The system is consistent in the sense that appropriate data in the form of

boundary conditions at the interface is present at each stage of the integration.

Details of the numerical implementation of the system were given at the end of Chap-

ter 5. The fact that the numerical implementation is nearing completion but has yet to

be properly tested gives certain scope for future work. The axisymmetric code represents

a step in a ladder of increased complexity for the Southampton CCM project, which first

used single dimensional codes as testbeds for the CCM concept, has moved to two di-

mensions, and will progress to three. Fortunately many of the equations developed here,

in particular in the characteristic region and at the interface, require very little mod-

ification in the progression to three dimensions and potentially Cartesian coordinates.

The problems that have been identified here will also need to be faced in more general

codes and it is hoped that the experiences gained here can provide a strong background

for their solution.
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An algorithm for the
determination of the Petrov type

The presentation of an algorithm for the determination of the Petrov type by Let-
niowski and McLenaghan (1988) builds on the original work of d'Inverno and Russell-
Clark (1971) and later extensions to be found in Fitch (1971), Hon (1975), Aman et al.
(1991). It's main advantage is the simplicity of its representation. In many cases one can
determine the Petrov type simply by knowing which of the Weyl spinor components are
zero. In other cases, a simple check using a polynomial formed from the non-zero indices
suffices to distinguish the Petrov type. Thus, a table is constructed with each row rep-
resenting a possible zero/non-zero component configuration, listed in binary order, and
the tests required to determine the Petrov type. A code to calculate the Petrov type,
then, would apply only the tests corresponding to the initial Weyl spinor configuration.
The amount of coding can be reduced by recognizing that a number of cases are identical
once the \&o <-> ̂ 4 and \&i -f-> *3 components are interchanged.

When applying this type of algorithm within a computer algebra system, however,
some care on the part of the user is required. In order to arrive at its conclusion, the
system must establish whether certain polynomials formed from the Weyl spinor com-
ponents are equal to zero. Whether this can be done accurately is strongly dependent
on the ability of the computer algebra system to simplify the given polynomials appro-
priately. For instance, the computer algebra system Maple will only give a zero result
for

once the routine r ads imp 0 has been applied. It is important, then, that the system be
able to present its internal calculations to the user for checking.

The complete algorithm is listed in Table A.I, with some special cases given below.
A derivation of the listed tests can be found in Letniowski and McLenaghan (1988).

Case

0

1

2

3

4

5

0

0

0

0

0

0

* i

0

0

0

0

0

0

0

0

0

0

N

N

* 3

0

0

N

N

0

0

* 4

0

N

0

N

0

N

Analysis

TypeO

Type N

Type II

Type III

TypeD

Type II
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Case

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

*o

0

0

0

0

0

0

0

0

0

0

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

0

0

N

N

N

N

N

N

N

N

0

0

0

0

0

0

0

0

N

N

N

N

N

N

N

N

* 2

N

N

0

0

0

0

N

N

N

N

0

0

0

0

N

N

N

N

0

0

0

0

N

N

N

N

* 3

N

N

0

0

N

N

0

0

N

N

0

0

N

N

0

0

N

N

0

0

N

N

0

0

N

N

* 4

0

N

0

N

0

N

0

N

0

N

0

N

0

N

0

N

0

N

0

N

0

N

0

N

0

N

Analysis

Type II

o I true =>
2*3 - 3*2*4 = 0 <

[ false =>

Type II (see 2.)

Type I

Type I

27* 4
2 *i + 64*3

3 = 0 \ tTUe

[false

Type II (see 6.)

1 false =4>

9*22 - 16*1*3 = 0 <
[ false -

Type I, II or III (see Case 15

Type N (see 1.)

Type I

Type I (see 9.)

* o * 4
3 - 27*3

4 = 0 <
[ false -

Type II (see 5.)

9*22-*4*4=o(f;e =>
[false =>

Type I or II (see 13.)

Type I, II or III (see Case 23

Type III (see 3.)

Type I or II (see 19.)

Type I or II (see 11.)

Type I, II, III or D (see Case

Type II or D (see 7.)

Type I, II or III (see 23.)

Type I, II or III (see 15.)

TypeD

Type II

=*> Type II

=* Type I

Type II

Type I

=$• T y p e I

below)

=J> Type II

=» Type I

TypeD

Type I

, below)

27, below)

Type I, II, III, N or D (see Case 31, below)
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Case 15:

Define

J :=3* 2
2 -4# i* 3 ,

F1 := $2*3 -3* i* 4 )

F2 := 9*2*4 - 8*3
2,

D := 3Fi2 + 2IF2.

The following tests lead
if I = 0 then

if Fi = 0
otherwise

otherwise
if Fj = 0
otherwise
otherwise

Case 23:

Define

to the Petrov type:

then Type II,
Type I,

or F2=0
if D = 9
Type I.

then Type I
I then Type I

7 :=

J := 4^2*4 - 3 * 3
2

F3 := * 0 ^ - 2*2A

D := * 4 / 2 - 3JF3.

The following tests lead to the Petrov type:
if / = 0 then

if J = 0 then Type III,
otherwise Type I,

otherwise
if J = 0 or F3=0 then Type I,
otherwise if D = 0 then Type II,
otherwise Type I.

Case 27:

Define

I :=

J : = -

D := 73 - 27J2,

U :=

V :=

W :=
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The following tests lead to the Petrov type:
if V = 0 then

if U = 0 then Type D,
otherwise if W = 0 then Type II,
otherwise Type I,

otherwise if / = 0 then
if J = 0 then Type III,
otherwise if D ^ 0 or J = 0 then Type I,
otherwise if D = 0 then Type II,
otherwise Type I.

Case 31:

Define

H : = \I>oV[>2 - ^ i

F :

A :

E :

I — E-4A,

G :=

J := 4 3

5 := V / ~ 3i?2,

D:=I3 - 27J2.

The following tests lead to the Petrov type:
if if = 0 then

if F - 0 then
if £ = 0 then Type N,
otherwise Type I,

otherwise,
if E = 0 then if Q = 0 then Type II,

otherwise Type I,
otherwise

if / = 0 or D + 0 Type I,
otherwise Type II,

otherwise
if I = 0 then if J = 0 then Type III,

otherwise Type I,
otherwise if G = 0 then

if Z = 0 then Type D,
otherwise if S = 0 then Type II,
otherwise Type I,

otherwise if J = 0 or D ^ 0 then Type I,
otherwise Type II.



B

Transformations to standard form
for given Petrov types

The spin matrices which will transform a general Weyl tensor into the canonical forms
listed in Table 2.1 are given below. The transformation to be used is determined by
the initial zero/non-zero state of the individual Weyl tensor components and the Petrov
type. Transformations are decomposed into a pair of null rotations about each of the
Weyl spinors and a scaling spin-boost as follows:

Xa
(B.I)

The following table lists an appropriate choice of a, /3 and A which will bring the Weyl
spinor into its standard form. For most algebraically special cases, the expressions are
of a simple form and are stated explicitly. The more general type I and II configurations
(in particular cases 19, 23, 27, 31) require the solution of a quartic, and it will only be for
very special values of the Weyl components that a practically useful dyad transformation
can be found.

1

2

3

4

Weyl components

(0,0,0,0,N)

(0,0,0,N,0)

(0,0,0,N,N)

(0,0,N,0,0)

Type

N

III

III

D

Transformation

a = 0

p = o
A = * f
a = 0

/3 = 0

A = * J / 2

a = 0

/5 = - * 3 ^ 4 / 4

A=*r
a = 0

(3 = 0

A = 1
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5

6

7

8

9

10

11

12

13

Weyl components

(0,0,N,0,N)

(0,0,N,N,0)

(0,0,N,N,N)

(0,N,0,0,0)

(0,N,0,0,N)

(0,N,0,N,0)

(0,N,0,N,N)

(0,N,0,N,N)

(0,N,N,0,0)

(0,N,N,0,N)

Type

II

II

D

II

—

I

I

II

I

—

II

I

Transformation

Q = 0

p = o
A = * 4

/ 4

a = 0

/3 = -^ 3 /3*2

a = 0

/3 = - * 3 / 3 * 2

A = l

a = 0

0 = -* 3 /3*2

A = (-2*§/3*2 + ^4)1/4

(equivalent to case 2 under basis interchange)

a = 0

/3 = ( -* 4 / 4* 1)1/3

A = l

(result is type 14.)

a=-(*i/*3)1/2

/3 = (l/2)0J/3/*i)1/2

A = (-l)3/4(4*3/*?)1/8/2

a = - 8 * 3 / 3 ^ 4

/3 = 5*4/16^3

A = (l/2)(-2^4 /3)1 / 4

a = 0

0 = -(l/6)(-(3a)2 /3 + 12*3)/(3a)1/3y^"

A = 1

where a = - 9 # 4 ^ 1 / 2 + \/3(64*3 + 27*^^1/2

(result is type 14.)

(equivalent to case 6 under basis interchange)

a = - * ! / * 2

p = 2 ^ 2 / 3 ^

A = (2*3/3*2)i/4

a = 0
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14

15

15

16

17

18

19

Weyl components

(O,N,N,N,O)

(O,N,N,N,N)

(N,0,0,0,0)

(N,O,O,O,N)

(N,O,O,N,O)

(N,O,O,N,N)

Type

II

I

III

II

I

—

I

—

II

I

Transformation

j3 = (<J2/3 + *?, - * 2 a 1 / 3 ) / 2 a 1 / 3 * 1

A = 1

where a = - * ? * 4 - *?, + * * / 2 ( * 2 * 4 + 2*3)1/2^

(result is type 14.)

a = -4* i /3* 2

(3 = 3*2/8*1

A = (3/2)(*|/12*f)1/4

a = (*!/*3)1/2

y5 = -(l/2)(*3/*i)1 /2

A = (*3/2*1(4%/*7W + 3*2))1/4

a = -2*i/*2

P = * 2 /2* i

A = * 2 / 2 ( -* i ) 1 / 2

a = 0

/3 = - ^ 2 / 2 * !

A = l

(result is type 11.)

a = 0
a 02/3 (32/3ff2/3-12*1*3+91'2(*2-o-1/3))

A = 1

where a = 18*!*2*3 - 9*?*4 - 9* | + * iA/37,

7 = 64*!*! - 36*^*^ - 108*1*2*3*4

+27*?*! + 54*3,*4

(equivalent to case 1 under basis interchange)

a = 0

/3 = 0

A = * o 1 / 4

(equivalent to case 9 under basis interchange)

a = -3* 3 /*4

P = 2*4/9*3

A = (*4/9)1/4

a is root of * 0 z 4 + 4*32 + * 4 = 0

0 = 0
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20

21

22

23

24

25

26

27

28

29

30

Weyl components

(N,0,N,0,0)

(N,0,N,0,N)

(N,0,N,N,0)

(N,0,N,N,N)

(N,N,0,0,0)

(N,N,0,0,N)

(N,N,0,N,0)

(N,N,0,N,N)

(N,N,N,0,0)

(N,N,N,0,N)

(N,N,N,N,0)

Type

—

D

I

—

Ill

1,11

—

—

—

D

III

1,11

—

—

—

Transformation

A = l

(result is type 15.)

(equivalent to case 5 under basis interchange)

A = 1

A = ^ 1 / 4

(equivalent to case 13 under basis interchange)

a = - 2 ^ 4 / 3 ^ 3

a is root of ^4Z4 + 4^3Z3 + 6\Ef2-z2 + ^0 = 0

p = 0

A — 1

(result is type 15.)

(equivalent to case 3 under basis interchange)

(equivalent to case 19 under basis interchange)

(equivalent to case 11 under basis interchange)

a — (1 + \ /3)^o/2^i

P = -^i/\/3^o

A = l

A = - 2 * i / 2 / * 0

A = l

(result is type 23.)

(equivalent to case 7 under basis interchange)

(equivalent to case 23 under basis interchange)

(equivalent to case 15 under basis interchange)
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31

Weyl components

(N,N,N,N,N)

Type

N

D

III

1,11

Transformation

a = -^4/^3

0 = 0

A = tf3/*4/4

ct = ^0/^+

0 = -t+t_/2-\/3\l

A = «+/2>/3(*f -

where t± = — \?i

a = z((^o^2 — ̂

A = (^f| — * 2 * 4 >

a is root of * 4 z 4

A = l

(result is type 15

>o

- V

±

?)

1/

+

.)

?o*2)1 / 2

\/3(^^ - *o*2) 1 / 2

/(*2*4 - *1))1 / 4

4

4*3Z3 + 6*2-22 + 4^12: + \J>0 = 0



c
A classification of the
Edgar-Ludwig metrics

The following is a transcript of Maple output displaying the use of the spinor package to
classify the Edgar-Ludwig conformally flat pure radiation metrics Wils (1989), Koutras
(1992), Skea (1997a).

> r e s t a r t : g r t ( ) :

GRTensorll Version 1.65b (R4)

5 December 1997

Developed by Peter Musgrave, Denis Pollney and Kayll Lake

Copyright 1994 ~ 1997 by the authors.

Latest version available from : http : //astro.queensu.ca/'grtensor/

Defaults read from / home / dp / grii / Iib4 /[ grtensor .ini
> gr l ib ( classify ) :

Cartan-Karlhede classification routines
Version 0.9 4 Dec 1997

> qload ( EL ) ;

Calculated ds for EL (.021 sec.)

Default spacetime = EL

For the EL spacetime :

Coordinates

x{up)

x a = [u, w, x, y]

Line element

ds2 =
{2f(u)xg(u)y + 2f(u)xh(u)+2t(u)x3+2{{u)xy2-w2) dus+2xdudw

—2w du d x — dx2 — dy2

> nptetrad ():

For the EL spacetime :
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Basis inner product

rj(bup, bup)

0 1

1 0

0 0

0 0

0 0

0 - 1

0 0 - 1 0

Null tetrad (covariant components)

NPl(rfn)

la = [x, 0, 0, 0]

NPn(dn)

1 2 f(u) x g(u) y + 2 i(u) x h(u) + 2 f(u) z3 + 2 f(u) x

x

NPm(dn)

m Q = fo, 0, - i > / 2 , -

NPmbar(dn)

The null tetrad has been stored as e(bdn,dn).

> classifyO ;

Basis/tetrad related object definitions
Last modified 5 February 1997
Lambda is zero.
WeylSp is zero.

Fixing RicciSp under {SL(2,C)} transformations.
RicciSp can be modified by the following transformations: {Boost,
Inswap}
RicciSp is in canonical form for the Inswap isotropy.
RicciSp is not in canonical form for Boost transformations.
Transforming RicciSp.
RicciSp is in standard form.
Dyad transformation stored as: dyfix[0]
The rotated frame has been named ELO.
Default metric is now ELO
Isotropies of the ELO frame: {Spin, Null2D}
Fixed spinors: {RicciSp}

Level 0 frame fixing completed.
Remaining isotropy: {Spin, Null2D}

Found 0 independent functions.
Level 0 completed.
Continue? (l=yes [default], other=no):
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> 1;

Fixing DPhi under {Spin, Null2D} transformations.
DPhi can be modified by the following transformations: {NullR, Spin}
DPhi is in canonical form for the Spin isotropy.
DPhi is not in canonical form for NullR transformations.
Transforming DPhi.
DPhi is in standard form.
Dyad transformation stored as: dyfix[l]
The rotated frame has been named ELO1.
Default metric is now ELO1
Isotropies of the EL01 frame: {NullI}
Fixed spinors: {DPhi, RicciSp}

Level 1 frame fixing completed.
Remaining isotropy: {NullI}

Found 1 independent function.
Level 1 completed.
Continue? (l=yes [default], other=no):

> i;

Fixing D2Phi under {NullI} transformations.
D2Phi is invariant under {NullI} transformations.
Isotropies of the EL01 frame: {NullI}
Fixed spinors: {DPhi, RicciSp, D2Phi}

Fixing DalPhi under {NullI} transformations.
DalPhi is invariant under {NullI} transformations.
Isotropies of the EL01 frame: {NullI}
Fixed spinors: {DPhi, RicciSp, D2Phi, DalPhi}

Level 2 frame fixing completed.
Remaining isotropy: {NullI}

Found 3 independent functions.
Level 2 completed.
Continue? (l=yes [default], other=no):

> l;

Fixing D3Phi under {NullI} transformations.
D3Phi is invariant under {NullI} transformations.
Isotropies of the EL01 frame: {NullI}
Fixed spinors: {DPhi, RicciSp, D2Phi, D3Phi, DalPhi}

Fixing DalDPhi under {NullI} transformations.
DalDPhi is invariant under {NullI} transformations.
Isotropies of the ELO1 frame: {NullI}
Fixed spinors: {DPhi, RicciSp, DalDPhi, D2Phi, D3Phi, DalPhi}

Level 3 frame fixing completed.
Remaining isotropy: {NullI}

Found 4 independent functions.
Level 3 completed.
Continue? (l=yes [default], other=no):
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> 1;

Fixing D4Phi under {NullI} transformations.
D4Phi is invariant under {NullI} transformations.
Isotropies of the ELOl frame: {NullI}
Fixed spinors: {DPhi, RicciSp, DalDPhi, D2Phi, D4Phi, D3Phi, DalPhi}

Fixing DalD2Phi under {NullI} transformations.
DalD2Phi is invariant under {NullI} transformations.
Isotropies of the ELOl frame: {NullI}
Fixed spinors: {DPhi, RicciSp, DalDPhi, D2Phi, DalD2Phi, D4Phi,
D3Phi, DalPhi}

Fixing Dal2Phi under {NullI} transformations.
Dal2Phi is invariant under {NullI} transformations.
Isotropies of the ELOl frame: {NullI}
Fixed spinors: {DPhi, RicciSp, DalDPhi, D2Phi, DalD2Phi, Dal2Phi,
D4Phi, D3Phi, DalPhi}

Level 4 frame fixing completed.
Remaining isotropy: {NullI}

Found 4 independent functions.
Level 4 completed.
Continue? (l=yes [default], other=no):

> 1

1

ELOl has been fully classified.

Results have been stored as the ELOl spacetime.
The isotropy of the spacetime is: {NullI}
Independent functions are stored in the global variable:
grG_indep_fns_[ELOl]
> idisplay ();

Independent components for the ELOl spacetime

25 V2(&f(u))* 5 . . . ,uu , „
h'5) 24 f(u)9/2z3/2 12 f(u)3/2z9/2 8 f(u)5/2z7/2 6 y

5 Iy/2wy 5 V2u)h(u) lV2w(^i{u)) 5\/2wg(u)y 5

3 J{{u)x5/2 6 y ^ x 7 / 2 4 f(u)5/2a;5/2 6 y ^ i 7 / 2 6 y^Jx7/2

5 lV2(£{(u))g(u) 5lV2(&f(u))y 5
1212 f(li)3/2x3/2 6 f(u)3/2 ^3/2 12 f(u)3/2

5 V2(£i(u))g(u)y 5
12 f(u)3/2x5/2 12

5 V2w 5 V2(^:
f(u)5/2X3/2 4 ^/iffixS/2 6 yfiffixW 12 f(u)3/2yi
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5 ( ^ 5 w2

+ T77

d2

9 f(u)3 x 18 f(u)2 x2 18 f(u) rr3 2 f(u)2 x

1 g(^)y 1 h(u) 5 _ 1. y^
2 x2 2 a:2 2 2 x2

3 ̂  x x 1 4r, f(u) 2 w
3f(u)3/2j3/2 3 yf^Jx5/2



D

Metric components for the
Stark-Piran and Bondi systems

The following tables list the values of the Stark-Piran metric components in terms of
the variables used in Stark and Piran (1987) and those used in d'Inverno and Vickers
(1996). For convenience of comparisons at the interface, the Bondi metric components
of d'Inverno and Vickers (1997) are also listed.

Stark & Piran <—> Rd'I k JAV

N <—>a.

B2 = 1 + rj sin2 6 <—>• 733/r2 sin2 9,

Z <—> 72 3 / r 2 5 2 sin3 9,

A2 <—»7n,

G = Ne/sin9 <—> -f32/sin9,

153
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Metric components:

Rd'I & JAV Stark &: Piran Bondi

9oo -AT2 + r2[A2(F)2 + sin2

sin4 9]G2 + 2B2Z sin2 6GN* 2r2UW sinh 25 - r2W2e~2"1 cosh 25)

+B2{N't>)2)]

-rA2[3r -e2?

902 -r2{Ue2i cosh 26 + W sinh 26)

sin2 9N<t>)

903 -r2B2 sin2 fl($ sin2 6G + N+) -r2 sin9{U sinh 26 + We'2'' cosh 26)

9n A2

91.4 0

922 722 r2e2Tcosh2<5

923 723 r2 sin ^ sinh 26

933 733 r 2 B 2 sin2 9 r2e~2T sin2 6> cosh 2<5

°° - I / a 2 -I IN2 0

01 -r/3r/N2 - e " 2 ^

02 2/a2P2/a -Gsin9/N2

03

U J L _ O31)2

711 a2

1 2
rsin60rG

N2 lie'2?
13 We-20/sm9
22 733,

r4sin2 0
B2 _ sin2 9G2

e~2i cosh 25/r2

23 sinBGN'1' -smh26/r2sm6

33 e2^ cosh 26/r2 sin2
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