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ABSTRACT 

Military organisations today operate small fleets of unique aircraft and need to be sure that 

the spares purchased to support operations meet the organisations needs whilst remaining 

the minimum necessary to minimise unnecessary government expenditure. Historically this 

task was undertaken by using historical consumption as the basis of the calculation. This is 

not seen as appropriate today and a range of deterministic models are used to produce the 

spares lists. However, their failure to apply a particular flying programme means that the 

output is viewed with some scepticism by military staffs. Simulation provides the means to 

apply that flying programme and, moreover, allows a series of what if evaluations to be 

undertaken. 

This thesis covers the work undertaken by myself to design and produce a suitable 

simulation application to meet the above requirement. Whilst data was available it was of 

a simple form without sufficient fidelity to allow the underlying distributions to be derived. 

Consequently, the opportunity to examine the effect of applying different distributions for 

both failure and repair times was taken allowing the scope of the work to broaden. Having 

produced the simulation a number of alternative flying programmes were simulated to 

identity their impact on the overall achievement and aircraft availability. 

This work has allowed me to not only provide a model which can be used with a 

deterministic application to assess the validity of the spares list but, has also allowed 

investigation into the effect of applying different distributions to both failure and repair 

times. 
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LIST OF ABBREViATTONS 

ALSSim Analysis of Logistic support Simulation model. 

LITS Logistic Information Technology System. The new computer system 

being introduced by the RAF to collect and analyse failure and repair data 

for LRIs. This system will replace the MDC. 

LRI Line Replaceable Items. The repairable components removed from the 

aircraft. 

MDC Maintenance Data Computer. The computer system used by the RAF to 

collect and analyse failure and repair data for LRIs. 

MTBF Mean Time Between Failures. The average time that it takes a given LRI 

type to fail in use. 

MTTR Mean Time To Repair. The average time taken to repair a given LRI. 

MWO Maintenance Work Order. The document completed by a technician which 

details the work done and the time taken to complete the task. 

RAF Royal Air Force. 

SA Support Authority. The organisation that decides the engineering support 

policy for the aircraft and its components. 

USAF United States Air Force 



INTRODUCTION 

Since its creation on 1 April 1918, the RAF has faced the problem of how to provide 

sufficient spares and repair facilities at the right place to ensure maximum operational 

availability whilst minimising the support costs. Although the model for support inherited 

from the Army met the initial needs, as the complexity of aircraft has grown so the RAF 

has had to develop its own resupply model. Today the RAF makes use of a suite of highly 

capable deterministic computer tools designed to meet the unique needs of a high tech 

military operation. However, there remains a lack of confidence in the fidelity of the 

model's solutions. This is because the model gives an output in terms of general system 

availability rather than the probability that a particular target flying programme can be met. 

To achieve this level of confidence it is necessary to use a model which produces the 

results in a form that is meaningful to the operational customer. 

THE DEVELOPMENT OF LOGISTIC SUPPORT WITHIN THE RAF 

During the First World War the support of aircraft was relatively simple due to four 

factors. Firstly, the aircraft in use were of limited complexity and many of the spares 

required were manufactured at Aircraft Support Parks close to the Operational Squadrons 

[1]. Secondly, as most aircraft operated from airfields located in Western France the 

logistical support tail to the United Kingdom was quite short. Thirdly, a policy of 

cannibalising war and accident damaged aircraft was used as a means of increasing the 

spares available at the operating bases. Finally, the rate of development of new aircraft 

types was rapid with most types having an effective in-service life in the range of 10 

months. 

With the end of the First World War the pressing need for constant improvement of 

aircraft was removed. During the 1920s and 1930s the RAF took on the responsibility of 

policing the remote areas of the Empire and for the first time experienced major problems 

with the provision of spares. Aircraft complexity was increasing, operations were 

mounted thousands of miles from the manufacturing base and the lack of effective hostile 

fire reduced the availability of damaged aircraft for cannibalisation. Two problems had to 

be resolved in order that the RAF provide effective support to its widely dispersed 

operations. Firstly, there was a need to provide well equipped support facilities in-theatre 

capable of manufacturing and repairing a wide range of components with an extensive 



spares holding. Secondly, there was a need to ensure that the lengthy supply line from the 

United Kingdom did not adversely affect aircraft availability. The first problem was solved 

by developing the Aircraft Support model from the First World War into larger centralised 

maintenance establishments. The second was more difficult to solve in that it required 

logisticians to attempt to guess fiature requirements and the model adopted was to assume 

that the known historical demands were representative of ftiture requirements. 

The early stages of the Second World War had a close correlation with operations in the 

First World War in that the majority of operations were close to the United Kingdom 

manufacturing base. Indeed, after the fall of France and throughout the Battle of Britain 

the supply pipeline was extremely short. However, there were aspects of this war as it 

continued that made support different. Firstly, the complexity of aircraft was much greater 

which resulted in greater reliance on industry support. Secondly, there was a need to 

support operations in the Middle and Far East and this placed a considerable strain on the 

ability to provide effective support in those theatres. As the War developed the RAF 

found that it was fighting a highly mobile war and consequently spent much time and 

money redeveloping the mobile support sites that had been the norm m the First World 

War. 

The end of the Second World War saw the introduction of the Jet engine and the start of 

the period of history known as the Cold War. Aircraft complexity was vastly greater than 

had been the case hitherto and the cost of the aircraft combined with the time taken to 

develop new aircraft meant that Air Forces were now operating aircraft types for several 

decades. Moreover, the cost of spares were many times higher than hitherto and it was 

recognised that there was a need to find an effective method of determining the correct 

number of spares required and the most appropriate location to store them. Early models 

made use of a Poisson distribution applied to the failure times for components, the 

required shelf satisfaction rate and the known or anticipated repair time. From this was 

derived the list of spares required and the expected cost of these spares. As is often the 

case, the use of computer models to ascertain the spares required to support aircraft 

operations was met with some scepticism and was only accepted into general use within 

the USAF once it had proved its worth in a practical field test at George Air Force base in 

1966 [2]. These early models, and the algorithms contained within them, form the basis of 

all the deterministic scaling models in use within the USAF and RAF today. 
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PROBLEM BACKGROUND 

In common with most other nation's air forces, the RAF operates relatively small fleets of 

unique aircraft. This means that, unlike commercial airlines whose use of similar aircraft 

means that they can purchase shares cheaply, the RAF is forced to procure small stocks of 

expensive spares to support its operations. Moreover, the need to operate at remote 

locations worldwide has meant that those spares can spend considerable time within the 

pipeline between those bases and the centralised repair locations. For this reason a great 

deal of time and money has been expended over many years to derive not only the 

appropriate number of spares to purchase but also where best to store them when not 

required for use. Although it would appear to be most efficient to hold those stocks 

forward, the need for expensive repair equipment and warehouse facilities in theatre often 

precludes that option. Thus the RAF has developed a system whereby repairs are 

undertaken at the location where the cost is minimised. Thus, items with a low cost of 

repair are repaired at the base and repairs that are high cost or require specialist skills 

and/or equipment are carried out in industry. Similarly, spares which fall into the category 

of high turnover are held on operational units with other spares held at the centralised 

depot. A deterministic sparing model is used to derive the best location to store items and 

the quantities of any given item at each location. 

The Royal Air Force Support Chain 

The RAF engineering support infrastructure is organised as a series of levels, known as 

lines, with each undertaking different depth of maintenance on Line Replaceable Items 

(LRIs) dependent on the policy set by the aircraft's engineering Support Authority (SA). 

The first line is at the aircraft operating squadron and the only work undertaken here is 

replacement of complete LRIs. The second line is located on the operating base and 

undertakes some limited deeper rectification work comprising of module and circuit board 

level changes as appropriate. Third and fourth line undertake deeper component repairs, 

the difference between the two being that third line is manned by government employees 

whilst fourth line is industry. The decision as to whether the repair is undertaken at third 

or fourth line is taken by the aircraft SA and takes account of such factors as the repair 

capacity at third line, the cost of repair at fourth line and the cost of any specialist repair 

equipment. 



Figure 1 shows a representation of the simplified logistic cycle for military aircraft 

operations. The aircraft crew identifies that a system is inoperative and report the failure 

to the squadron's technical staff. The system is tested by the first line ground crew and the 

defective component removed from the aircraft and replaced with a serviceable item from 

stock. The removed LRI is then passed to second line where the item is either repaired 

and returned to stock if it is within the capability of the bay or returned to third or fourth 

line as appropriate if deeper repair is required. Those items returned to the deeper repair 

lines line are repaired there and returned to stock. 

First Line 

/ " 
stock i 

7 \ 1 Third/ 
y Fourth Line 

Second Line 

Figure 1. The Simplified Logistic Cycle. 

The deterministic models in use within the defence modelling institutions are powerful 

applications which make use of accepted marginal analysis algorithms to assess the effect 

on the overall system availability of a purchase of one of each spare in isolation. Having 

done so, the spare with most effect on system availability is added to the purchase list and 

the same process repeated. This continues until the model achieves the desired system 

availability or the maximum cost limit is reached. 

The Use of Simulation to Support the Outputs Of Deterministic Models 

There are, however, two main limitations to deterministic models which have given rise to 

the desire to use simulation to support the findings of the model. The first relates to the 

way that the model addresses system utilisation. Having been given the target e.g. number 
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of flying hours per aircraft per month the model assesses the amount of that period that the 

system is available and uses this to produce the overall system availability. In real life, the 

operator is interested not in this overall system availability but that which pertains to the 

time that the aircraft is required. Thus an average system availability of say 75% appears 

at first examination to give a good result. However, this is of little use if the aircraft if the 

normal flying day is between 8:00 am and 5:00 pm and the aircraft are never available 

between 8:00 am and 2:00 pm. Secondly, the mathematical model used within the 

application does not assess the ability of the support model being analysed to support a 

particular flying programme. The use of a simulation allows an assessment of the validity 

of the deterministic model's output against a particular flying programme to derive the 

mission success rate of a particular scale. This allows the operational customer to have 

confidence that the proposed scale will meet the operational needs, 

THE ANALYSIS OF LOGISTIC SUPPORT SIMULATION f ALSSIM^ 

The Design Process 

There is a tendency for much of the literature dealing with the use of simulation as a tool 

to problem solving to assume that the decision has already been made that simulation is the 

most appropriate means to examine the problem being considered. Therefore, they deal 

extensively with the issues to be considered when designing and using the simulation 

model and largely ignore the broader aspects of the methods that should be employed to 

address the whole problem from its inception to the presentation of the results. Simulation 

is not the only way to arrive at the solution and often the most appropriate method is one 

or more practical trials of each of the various solutions. The analyst must always 

remember that a simulation is merely a theoretical representation of the actual environment 

and should, therefore, only be undertaken when actual trials of the alternative options are 

either inappropriate or not practical. For a simple problem such as a shopkeeper wanting 

to ascertain whether the sales of bread would be increased if the location of the product 

within the store was changed a practical trial would clearly show the effect of moving 

stock to a new location. However, employing an additional member of staff for 4 weeks 

to identify whether the addition of another till would improve sales by reducing queuing 

time would not make commercial sense and in this case a relatively simple simulation 

would be an appropriate way to undertake the study. Thus, before designing a simulation 

to solve a problem, the following questions should be considered: 
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Could this problem be solved by physical experimentation? 

Is the solution by physical experimentation practical? 

Is the use of simulation appropriate? 

Only once these questions have been satisfactorily answered should the problem of the 

design of the simulated environment be considered. Once the decision has been taken that 

simulation is the best option there is a need for a structured approach to the design and 

implementation of the model which is best achieved by adopting a process such as that 

shown below at figure 2. The version shown here is somewhat simplified and in practice 

this would be an iterative process incorporating tests and feed back loops throughout with 

each iteration adding to the knowledge base until the end product provides an acceptable 

representation of the environment being examined [3], 

Collect Data 

Identify the 
environmental entities 

Identify the data required 

Produce ttie results 

Design the Simulation 

Define the problem 

Run the problem 

Figure 2. The Simulation Design Process. 

Before addressing the specifics of the design of ALSSim it is necessary to examine the 

three fundamental questions raised above to decide whether the use of simulation as a 

means to assess the spares scaling produced by the RAF's deterministic scaling model is 

practical and, more importantly, appropriate. Clearly, as demonstrated in the trial 
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undertaken by the USAF in 1965 [4] it is possible to undertake a practical trial to confirm 

the validity of the scale of spares. However, this test was undertaken over a period of 6 

months to ensure that short term variability in the demand levels was evened out. Thus, 

although possible, the use of physical trials is not a practical solution to the need to assess 

the impact of derived scales of spares. A shorter duration for a test would not allow a 

representative demand population to be achieved as the arising rates for individual LRIs 

tends to be very low and there is a high risk that decisions on the final composition and 

distribution of the spares could be taken on the basis of a skewed demand distribution 

rather than a representation of a steady state demand profile. Therefore, the use of 

simulation in this case is highly appropriate in that it allows a simulated trial of a protracted 

operational period to be undertaken in a very short time ensuring that short term transients 

in the demand distribution are damped out allowing the analyst to take a view based on the 

steady state requirement for spares. 

Having concluded that simulation is a viable way of examining the problem, it is worth 

examining the general design of the ALSSim application. Figure 3 shows this in terms of 

the input files required and the output file from the simulation. There are 3 main factors 

which will have an influence on the final results of the simulation: the target flying 

programme, the LRI reliability and the LRJ scales to be examined. This data is input into 

the simulation by means of reading in files prepared off-line thus reducing the time taken to 

run the overall simulation problem. The results are output to a single text file allowing the 

use of whatever word processing or spreadsheet application is to analyse the data. 

Flying 

Programme 
Flying 

Programme 
Flying 

Programme 
J 

LRI 
Reliability 

A, 

V 
Simulation 

A 
Results 

LRI Scales 
1 

LRI Scales LRI Scales 

Figure 3. ALSSim Generic Design. 

15 



Entities 

In any operational research study making use of simulation as the modelling tool it is 

necessary to determine the elements of the model and in particular which of these need to 

be modelled as distinct entities and which can be simply represented as variables. 

Moreover, it is necessary to ensure that a balance is reached between tracking too many 

individual entities leading to the simulation running too slow and too few reducing the 

quality of the solution to an unacceptably low level. The basis of any discrete event 

simulation is the selection of the core entities which are required to represent the system to 

be analysed. These entities may either be permanent or temporary and could take the form 

of physical items e.g. a hospital bed or a queue such as that of customers awaiting service. 

In the latter case, the entity may be created several times during the course of the model 

running or could exist throughout the entire run. Therefore, it is not of importance 

whether an entity is temporary or permanent but rather that it will exist within the 

simulation and that it will interact with other entities. The selection of the correct items to 

be dealt with as entities within the simulation is crucial if the application is to run quickly 

and the selection of something as an entity must depend on its relevance to the problem 

being considered. Thus, in the case of a hospital simulation the consideration of individual 

patients may not be of relevance and, therefore, the model would not include an entity of 

patient although of course we all recognise that each patient exists as an individual in the 

actual hospital. 

In this study the main candidate entities were as follows: pre flight servicing teams, 

missions, aircraft, and LRIs. The criteria used to decide whether to use a variable or to 

have distinct entities were as follows: 

Are the states for the entity digital or can it have a number of states? 

Does the entity have permanence throughout the simulation? 

Does the entity move from one location to another in the course of the simulation? 

Application of these criteria led to the conclusion that the pre flight servicing teams were 

either occupied or available and, therefore, could be modelled effectively by a counter. 

The lack of permanence for the missions coupled with the fact that they were the main 

input parameter setting the simulation target meant that they were best modelled as 

non-permanent entities. The aircraft were core elements of the simulation which existed 
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throughout it and could take a range of states and thus, they are dealt with as permanent 

entities. Finally, as the LRIs were components whose simulation location would change 

throughout the simulation they could be modelled by means of individual entities. 

However, further analysis revealed that to model each individual LRI would not only lead 

to excessive memory overheads but also a considerable reduction in execution speed. For 

this reason it was decided that there should be two separate entities for LRIs, one to cover 

the positions on the aircraft and one to deal with them when removed from the aircraft. In 

the latter case, the entity concerned LRI types containing counters for the various states 

and locations thus reducing considerably the amount of memory required. 

The Mission Entity 

The mission requirements are read in from a data file and placed within the event queue 

such that they are called at the relevant time within the simulation run. Each mission event 

comprises of a particular number of flights to be flown, a target take off time and a mission 

duration. For a mission to be launched there must be sufficient aircraft available for 

tasking for all of the flights contained within it. Once the mission has either been launched 

or cancelled it is discarded. The state diagram for the mission entity is as shown in figure 

4. 

In event lis* 
Generate J 

Requirement 
Required 

Insuficient 
Aircraftlavailable 

Store Mission 
Requirement 

Sufficient 

Available 
Fly Mission 

/ 
Aircraft Available 

In Delayed \ <= Max Allowed Delay 

Flight List 

> Max 
Allowed Delay 

Cancel 
M̂ ŵ 

Figure 4. The Mission Entity. 

17 



The mission event is loaded by the simulation controller and if sufficient serviceable 

aircraft are available the number of flights contained within the mission is identified. For 

each flight within the overall mission an aircraft is allocated, the landing time inserted into 

the event queue and the counter recording the number of flights launched on time 

incremented. Once all flights within the mission are dealt with the mission event is ended. 

If insufficient aircraft are available the mission is placed into another queue which contains 

all those missions which could not be launched on time. After this each time an aircraft 

becomes available for tasking the first mission in the delayed mission queue is checked and 

the latest launch time for the mission compared to the current simulation clock time. If the 

simulation clock time is less than the latest acceptable take off time the process described 

above takes place with the aircraft allocated and landing times inserted into the event list. 

There are 2 counters for late launches which cover success in the first or second half of the 

acceptable delay period respectively and the relevant one is increased by the number of 

flights launched. If the simulation clock time is greater than the latest acceptable take off 

time for the mission then the mission is removed from the delayed mission list and the 

cancelled flights counter increased by the number of flights associated with it. In order to 

minimise the number of cancelled flights, ALSSim has been designed such that the delayed 

missions have priority over new missions for aircraft allocation and the queue is sorted to 

ensure that the earlier the planned launch time the closer the mission is to the front of the 

queue. 

The Aircraft Entity 

Unlike the mission entities, the aircraft entities have permanence and exist throughout the 

simulation. Each aircraft can, for the purposes of the simulation, be considered to be a 

collection of LRI positions which either have a LRI fitted or not. Each fitted LRI can 

either be serviceable or unserviceable as appropriate. The state diagram for the aircraft 

entity is at figure 5. 



Pre Flight 
Servicing 

% 
Serviceable 

Available 

Serviceable | < -
Fil Serviceable 

LRI 

Fly Flight 

A 
Landed 

/ 
/ \ 

In Repair 

Unserviceable 

Remove LRI 

from aircraft 

Figure 5. The Aircraft Entity. 

The aircraft entities are created at the start of the simulation and have their states set to 

available for tasking at the start of each run. The aircraft is allocated to the first available 

flight and once it has landed will be examined for serviceability. If one or more LRIs are 

unserviceable it will have all of these unserviceable LRJs replaced to restore it to a 

serviceable state. If all LRIs are serviceable, or the activity necessary to restore it to a 

serviceable state has been completed, the aircraft will have a pre flight servicing. A pre 

flight servicing is a relatively low level activity which comprises of a refuel and some basic 

oil and fluid level checks and, if necessary, replenishments. Once the pre flight servicing is 

completed the aircraft state is changed to available at which point it will then be available 

for fiarther tasking. 

The Line Replaceable Item Entity 

Although the LRIs within the simulation have been treated differently from the other 

entities in that they are not treated as a separate entity but are incorporated within other 

simulation entities, each LRI does follow a logical path between the various states and 

repair sites and could have been individually tracked if the simulation required that degree 

of granularity. Thus, although, each individual LRI is not instantiated as an unique object 

within the simulation it is necessary to understand the various states that are being 

represented within the application. The state diagram which describes the activities which 

occur for each LRI is at figure 6. 
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LRI not required 
for aircraft 

Transfer to 
station stock 

LRI required at unit 

LRI not required at unit 

LRI required at unit /Serviceable 
Transfer to 
depot stock 

Figure 6. The LRI Entity. 

The repair cycle starts when a LRI fails on an aircraft. The failed LRI is removed and, if 

available, a serviceable replacement from stock fitted to return the aircraft to a serviceable 

status. If the repair is within the capability of the unit the removed LRI is returned to the 

second line facility on the base for repair before being fitted to an aircraft if there is an 

aircraft that requires that component or placed within unit stock if not required for an 

aircraft. If the repair is beyond the capability of the second line bay the LRI is transported 

to the third or fourth line repair facility as appropriate. Once the repair is complete at this 

deeper repair location the repaired LRI is either dispatched to the unit if it is required for 

an aircraft or to depot stock if not. Within ALSSim all repairs are dealt with in terms of 

elapsed time and the manpower involved in undertaking repairs at the various maintenance 

levels are not modelled. 
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Simulation Language or Computer Language 

The decision as to whether to produce the simulation using a standardised simulation 

language or to by means of programming using a computer language such as FORTRAN 

or C++ lies with the analyst. The former has the advantage that it has been optimised to 

meet the requirements of a simulation application and contains a large number of building 

blocks which when assembled will produce a simulation application to meet the needs of 

the analyst. However, it may result in an application with a number of redundant features 

within it slowing down the overall execution. The use of a pure programming language 

allows the analyst to design the application such that it only uses those features which are 

needed resulting in taut code and a faster application. Its drawback is that it requires 

extensive knowledge of the language to make best use of it, moreover, the need to 

programme the application line by line increases the development time of the simulation. 

Recent developments to the Microsoft C++ computer language has meant that there is 

now a range of class libraries available to undertake such tasks as linked list production 

and management. This simplifes the task for the programmer in that it allows the 

development of the application as a hybrid between the historical computer languages 

which required the entire application to be built from first principles and simulation 

languages which were a combination of a series of building blocks linked together. The 

ALSSim simulation used to support this study was, therefore, written in Microsoft C++ 

version 5.0 achieving the dual aim of simplicity of code and speed of execution. The 

ALSSim application code is detailed at Appendix 1. 

21 



The ALSSim Simulation Application 

Input Files Simulation Files Output File 

Simulation 
Parameters ALSSimDoc 

Simidation Output File 
Control File 

Program 

Inlerface 
ALSSimView 

User Interface 
Controller 

Event 
List 

Run 
Results 

Random 
Number 

Gen 

Delayed 
Wisswns 

Progress 
Indicator 

Aircralt 

/ T \ 

Finished ; Finished ; 
Dialog 

g - Input/output File 

' I - Linked List 

User Information 

Figure 7. The Simulation Files. 

As can be seen in figure 7 there are several of elements within the simulation that interact 

with each other. The application can be considered to comprise of 4 separate elements; 

the input files, the simulation files, the output file and the user interface. There is also an 

additional file created by Visual C++ which acts as an overarching control for the rest of 

the application. However, as this file is created and used by the operating system and not 

modified in any way whilst producing this simulation, it has been excluded from the figure. 

The 3 input files and the output file are external to the actual simulation and have been 

covered earlier in this treatise and will, therefore, not be covered in depth at this stage. 

It is a convention within Microsoft Visual C++ that the file that manages the storage and 

flow of data within the application is described as a document file and in the case of 

ALSSim this file is named ALSSimDoc. As well as providing the overall control of the 

simulation this file also contains the majority of the simulation code. The other files within 

the simulation contain the data and code specific to particular entities by means of linked 

lists. 
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The final element of the simulation relates to the interface with the application user. As 

with the document file Visual C++ convention describes this as a View file and in the case 

of ALSSim it is named ALS Sim View. Underpinning this file are 3 separate user interfaces 

which are used at different times within the simulation run. The menu comprises of both 

menu choices and buttons and provides the facility for the user to enter the names of the 

input and output files and having done so to initiate a run of the simulation. The run 

option is greyed out until all file names are entered thus ensuring that the simulation cannot 

be started inadvertently before all necessary information is available. The progress 

indicator is a simple bar which gives an indication of progress whilst the simulation is 

actually running. This indicator serves 2 purposes. Firstly, as it grows at the end of each 

run it gives confidence that the simulation has not stopped and secondly, it gives an visual 

indication of what proportion of the runs have been completed. The finished dialogue box 

gives an indication of the achievements and gives the user the choice between exiting the 

application or running another option. 

Data 

Clearly, before any simulation of a system can be carried out there is a need to collect data 

which will then be used within the simulation. In some cases there will already be a 

plentiful supply of data and the analyst need only select the appropriate data from that 

available in order to meet the requirements. Often, however, there is little or no available 

data and it is necessary to identify what is needed in order to produce the solution to the 

question being considered. Thus it is essential not only to know what data could be 

collected but also to have a clear understanding of the structure of the model and thus the 

data required to solve the problem. For this reason, the identification of the data to be 

collected is not the first stage of the process but should only be undertaken once the 

bounds of the problem have been defined, the entities that are contained within it identified 

and the state changes that will take place to those entities derived. 

Since the 1970s, The RAF has been collecting failure and repair data for all its aircraft. 

This is achieved by the technician undertaking a task completing a Maintenance Work 

Order (MWO) on which is detailed the task undertaken and the time taken to complete 

that task. Where this task involves the a component's removal from or refit to an aircraft, 

the MWO also contains the aircraft flying hours allowing the tracking of the time that a 
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particular component has been fitted to the aircraft and thus the failure time for that 

component to be calculated. This data is collected at every RAF unit and forwarded to a 

central point to be stored on the RAF's Maintenance Data Computer (MDC). For each 

LRI there are 4 parameters that are required for use within the models that can be 

calculated from the data stored on this computer, the Mean Time Between Failure 

(MTBF), the mean time for removal, the Mean Time To Repair (MTTR) and the mean 

time for refit. This cycle will repeat many times for an LRI and is shown in figure 8 below. 

MTBF 

Removal 

Figure 8. The LRI Life Cycle. 

The calculation of the times for each of the 4 parameters for each LRI is achieved by 

taking a snapshot of the total data and using this to calculate the values which will be used 

within the models. MTBF for each LRI type is derived by calculating the mean time that 

each LRI is fitted to an aircraft before it fails in use. The other 3 are identified by 

examination of the time taken to undertake the work as recorded on the MWO by the 

tradesman. Although this method of data collection and analysis is simple and ensures that 

the recent data is available for use within the scaling models, it does suffer from the 

introduction of small errors which will affect the results of the modelling. Some distortion 

of the MTBF occurs because the time recorded on the MDC as the LRI failure time may 

not be that at which the failure actually occurred but rather the time of the landing of the 

aircraft post mission. Thus, a component that was fitted to an aircraft on a mission of 1 Vi 

hours duration which failed on take off would have a recorded failure time 1 16 hours later 

than actually occurred. However, as most LRIs have MTBFs of thousands of hours this is 

unlikely to have much impact on the simulation results. Similarly, the quality of the data 

obtained from the information entered by the tradesmen on the MWO depends on the 

tradesman accurately entering the total time taken to carry out the task. Thus, there are 
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likely to be some small errors inherent in this data although, the magnitude of the repair 

time is such that minor errors in terms of a few minutes is not considered to be significant. 

This problem is compounded by the fact that fourth line does not provide repair time data 

and, therefore, the RAF uses elapsed time to model the time taken to repair at fourth line. 

Notwithstanding these problems with the data it is considered that the values obtained are 

within an acceptable degree of acceptability for use within the models in use today within 

the RAF. 

There is one more issue related to the examination of data that relates to the MDC and the 

production of the values to be used within the models. Although the hardware and 

software are not the original many of the routines contained within it are old machine code 

instructions which are by their very nature difficult to read and modify. At the time that 

the routines for the production of the MTBF, MTTR and removal and refit values were 

written, the use of modelling within the RAF was in its infancy and it was considered that a 

single value for each was acceptable. Moreover, aircraft were not designed with 

maintenance in mind and little was known within the RAF about failure modes of 

equipment. It was recognised that mechanical components would eventually fail as a result 

of wearing out and it was the practice to set the maintenance policy for this type of 

component such that the component would be removed from the aircraft before this wear 

out occurred. In the case of electronic components it was believed that wear out was not 

a factor and their maintenance policies tended to be set up with replacement on condition. 

That is that the LRI would only be removed if it had failed. Even in the mid 1980s 

teaching within the RAF's training schools took little account of reliability and personnel 

were taught that failures occurred in accordance with the "bathtub" curve shown at figure 

9. It was believed that after the first 2 to 3 years of an aircraft's operation that it and the 

LRIs contained within it were in the steady state portion of the curve and that, therefore, 

all LRIs could be considered to be operating in constant hazard. 
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Figure 9. The Bathtub Curve. 

It is now recognised that this logic is flawed and that any given component could exhibit a 

number of failure modes throughout its total life giving rise to a complicated distribution 

with a profile that may well cnange as the LRI ages. Moreover, the time taken to repair 

the defective components is subject to variability and is also likely to have a correlation 

with the failure mode. Therefore, repair time should also have a distribution that could be 

applied to the model to provide a more realistic output. However, it would be extremely 

costly to rewrite the code contained within the MDC at this late stage of its life to produce 

this level of functionality. The RAF is presently in the process of introducing a new 

Logistics Information Technology System (LITS) in conjunction with IBM which will 

include software routines to produce the underpinning data necessary to allow the 

derivation of distributions for both failure and repair parameters. It will also provide a 

mechanism by which better information about fourth line repair data can be collected. The 

inclusion of these improvements into the scaling models in the future will in turn lead to an 

improvement in the quality of the output of the models. 

Pseudo Random Number Generation 

In order to effectively operate a stochastic model there must be some degree of 

randomness within the simulation. In order to achieve this there should be some means by 

which numbers from a uniform distribution U(0,1) can be produced for use within the 

simulation. However, true random numbers are not only difficult to produce but are also 
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likely to be of little value if the requirement is to replicate the simulation to examine an 

number of alternative configurations in order to determine the best solution. There is, 

therefore, a need to provide a balance between the need for an randomness for each 

number produced and the requirement to replicate the sequence of numbers each time the 

simulation is run. One means of doing this is to apply a sequence of numbers from a table 

of genuine random numbers such as that produced by the Rand corporation in 1955 [5]. 

The main drawback with using tables is the need to store all the numbers that will be used 

within the simulation on the computer. More recently, in 1996 a CD-ROM containing 

4.8 billion random bits was produced by Marsaglia [6] which overcomes the need to store 

the numbers within the computers memory but suffers in that accessing a CD-ROM is 

relatively slow. An alternative, would be to derive an algorithm that could be used within 

a digital computer which, whilst it would not produce truly random numbers, produces 

numbers of sufficiently acceptable randomness that they can be considered to be pseudo 

random. Moreover, the number produced by the algorithm depends totally on the original 

seed used within the algorithm ensuring that it is an easy matter to replicate the values 

used allowing the same sequence of numbers to be used to examine each alternative 

option. Law and Kelton [7] put forward the following 4 properties that a good pseudo 

random number generator must possess: 

1. Above all, the numbers produced should appear to be distributed 

unifornily on [0,1] and should not exhibit any correlation with each other; 

otherwise, the simulation's results may be completely invalid. 

2. From a practical standpoint, we would naturally like the generator to be 

fast and avoid the needfor a lot of storage. 

3. We would like to be able to reproduce a given stream of random numbers 

exactly, for tu'o reasons. First, this can sometimes make debugging or 

verification of the computer easier. More important, we might want to use 

identical random numbers in simulating different systems in order to obtain a 

more precise comparison... 

4. There should be provision in the generator for producing several separate 

"streams" of random numbers... 
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A practical means of producing pseudo random numbers which does meet all the above 

requirements is to use a Linear Congmential Generator along the lines of that originally 

proposed by Lehmer in 1951 [4] [5] [6], This type of generator takes the form 

== 4-c)(m()Clfyz) jGor M > 0 (1) 

where n is the pseudo random integer produced and a, c and m are fixed integer constants. 

For this generator to work all of the factors must be non-negative integers as must the 

seed value rig. The simulation is likely to use a large number of pseudo random numbers 

and, therefore, for the generator to be of use it must have a long cycle length. It has been 

shown that in order to achieve a full cycle of numbers the factors within the generator 

must meet the following conditions [7]; 

1. There must be no integer other than 1 that is an integer divisor of both c 

7M. 

am exacr q/"(^-7/ 

3. If m is divisible by 4 then (a-1) must also be divisible by 4. 

It is not difficult to devise values that can be used within a Linear Congruential Generator 

that meet the requirements given above and as a result it was used for a number of years 

as the basis for most pseudo random number generators supporting simulation modelling. 

However, it is somewhat simplistic in that each new number is only calculated using the 

previous value. A better algorithm to use [8] makes use of a generator which, whilst still 

meeting the requirements detailed above is recursive in nature and is of the form 

jc, = fa,*,., 4- t (/t) 

where the order k and modulus m are positive integers and the coefficients a,, ..., â  are 

integers in the range -(m - 1), ... , m - 1. 

As computer processing speed gets faster so the complexity of the random number 

generator can increase without there being a marked increase in the processing speed of 

the simulation. In their paper [9] L'Ecuyer and Andres proposed a generator that 
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provided uniform random number generation by means of a combination of four linear 

congruential generators. The paper also includes C code for the proposed generator and it 

this code that is used within ALSSim to provide the pseudo random numbers that are used 

to support the simulation. 

Although it is acceptable to use all the numbers from a single stream with each event as it 

occurs picking up the next number in the sequence, this is not a good way to control a 

simulation. When undertaking a study with a number of alternative options to be 

considered, it is necessary to be sure that any given event occurs at the same time for all 

the alternative options being examined otherwise there is a risk that the results for some 

options are distorted by the simulation events happening at different times. The effect of 

this type of approach is explained in detail by Pidd [14], This problem is easily solved by 

using several streams of numbers with each stream specific to a particular event within the 

simulation. However, it is important to ensure that the starting seed for each stream is 

sufficiently far apart from the others to minimise the risk of reusing the same numbers and 

thus the streams may start at ni, niooooi,n2ooooi.. etc thus reducing the risk of replication. 

Of course there is always a risk of streams overlapping if a run uses a large number of 

random numbers in which case the same number will be used more than once. 

The ALSSim simulation makes use of 5 pseudo random number streams with separate 

streams used for LRI failure time, time for LRI repair, selection of whether the repair 

occurs at the unit or the depot, no fault found in the LRI at the unit repair facility and no 

fault found in the LRI at the depot. In each case the starting stream seeds are separated by 

100,000 numbers virtually eliminating the likelihood of repeated use of any given numbers. 

Similarly, each run has a different set of starting seeds to eliminate unintentional distortion 

of the final results caused by reusing the same numbers for more than one run. 

Testing of Pseudo Random Number Generators 

The pseudo random number generator used within the simulation will produce a series of 

numbers which lie within the range 0<u<m - 1. If the generator is valid it will produce a 

uniform distribution of values \]{0,m-I) and we convert those numbers to a U(0,1) 

uniform distribution before using within the simulation. It would, nonetheless, be unwise 

to accept at face value that the particular combination of generator, seed value and 

constants produce a valid and hence acceptable uniform distribution without undertaking 
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some tests to confirm this. The testing of generators is covered in depth in the literature 

[15][16][17][18], however, there is no requirement to carry out all the available tests in 

order to prove the acceptability of the generator used as no pseudo random generator is 

capable of producing true random numbers and all that is required is an acceptable degree 

of randomness. Thus a range of tests which are not closely related are selected giving a 

sufficient breadth of examination for an acceptable level of confidence that the generator is 

sufficiently random to meet the needs of the simulation. These range from simple to apply 

tests such as those testing for uniformity, through scatter graph examinations to tests 

examining length of runs and poker tests. In each case the results are examined for Chi-

square uniformity and the overall results examined. The failure of any one test is not be 

sufficient to dismiss the generator as the aim is to obtain an overall assessment not a series 

of yes/no criteria all of which must be met. 

Although the use of the values contained within the design of the generator proposed by 

L'Ecuyer and Andres [19] gives a degree of confidence that the generator within ALSSim 

will produce valid numbers for use within the simulation, it would be unwise to accept 

them at face value. Moreover, only by undertaking testing is it possible to be sure that the 

particular implementation within ALSSim provides a valid generator producing acceptable 

pseudo random numbers. In testing ALSSim a total of 50,000 random numbers split into 

10 equal sized groups were produced and the following tests applied to them: Stagger 

Chart plots, Frequency Test, Poker test, Gap test. Distribution of Pairs test, Frequency of 

Pairs test and Runs test. The results of these tests for the ALSSim pseudo random number 

generator is shown at Appendix 2. 

Input Distribution Selection 

Having selected a good pseudo random number generator it is necessary to address the 

selection of the input distribution for events. Dependent on the nature of the problem it 

may not be practical to collect large quantities of data or storage considerations within the 

simulation application or its host computer may preclude the storage of large numbers of 

empirical values. Clearly, the selection of an appropriate distribution is important if the 

correct deductions are to be drawn from the results obtained. Where the data is available 

it is possible to examine it in order to ascertain the best correlation between it and the 

various distributions which can be used. However, when data is either scarce or of 

insufficient fidelity for this analysis to be undertaken it is necessary to consider the various 

30 



options available before choosing what is considered to be the most appropriate 

distribution for the aspect of the problem being examined. Fortunately, considerable work 

has gone on in the past to identify appropriate distributions that can be used in the 

simulation dependent on what the input is. A particularly good coverage of this is covered 

by Law and Kelton [20] which also covers the various factors to be considered. 

In the case of ALSSim, for the reasons explained earlier, it was not possible to derive 

appropriate distributions for MTBF and MTTR from the data available. Therefore, it was 

necessary to identify appropriate distributions by experimentation and to prevent the 

interaction between multiple distributions affecting this analysis it was split into 2 distinct 

phases. The first phase fixed the repair time and examined alternative distributions which 

could be used to model the LRI MTBFs. Once a distribution had been selected it was 

used to model MTBF and a similar process was applied to identify the distribution that 

would be used to model LRI MTTR. The following candidate distributions were 

examined in both phases: Exponential, Lognormal, Normal, Triangular and Weibull. In 

each case the particular equations used to generate the particular distributions within the 

simulations were as described by Cheng [21]. For each distribution a series of simulations 

were run against the same flying programme, spares failure and repair information and 

spares scale with the number of aircraft available incremented each simulation to give the 

number of flights flown for aircraft availability numbers from 1 to 36. 

Derivation of MTBF Distribution 

Before going on to derive the actual distribution to be used to model MTBFs it is 

appropriate to define the baselines against which the particular distribution's results will be 

judged. In terms of the number of flights flown it is known from examination of the flying 

programme file that the maximum possible is 1920 flights. This provides the first 

comparative measure. The second involves comparing the flights flown against those that 

would be achieved if the failure and repair times were both fixed to the mean values. The 

third is a subjective measure of examining the variance. If we recall that the flying 

programme being used has been designed to be met by an overall availability of 36 aircraft 

we can reasonably expect the variance to reduce as the number of aircraft available 

approaches 36. 
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Fixed Failure - Fixed Repair 

The first runs of the simulation were undertaken with both the failure and repair times 

fixed to the values read in from the LRI data input file. This set of runs provided a set of 

values which could then be used to examine the results of the runs for the various failure 

distributions. For this case the failure time ( X )for any given LRI with a mean failure time 
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Figure 10. Flights Flown for Fixed Failure and Repair Time. 

As can be clearly seen by examination of figure 10 the use of fixed failure and repair times 

gives a poor result with a final achievement of less than 50% of the tasked flights flown. 

This is not perhaps what would be expected, however, the results are valid and can be 

explained by considering what is happening within the simulation. Where a fixed failure 

time is used, any given LRI fails at the same elapsed flying hours on every aircraft. In the 

case of some of the LRIs the fixed repair time is longer than the overall simulation time. 

Moreover, there are insufficient spares to allow all failures to be solved from stock. The 

combination of these 2 factors means that an aircraft suffering one of these failures never 
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becomes serviceable which results in a steady reduction in the number of aircraft available 

and hence a poor final achievement. 
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Figure 11. Variance for Fixed Failure and Repair I'ime. 

Figure 11 shows the variance for the fixed failure case. Although the failure and repair 

times are fixed there is a small variance in this case which results from the use of a uniform 

distribution to model the likelihood that the component is found to have no fault on it 

when it arrives at the repair location. In this case, the LRI is returned to the shelf in a 

relatively short period of time. As can be seen by the very small values for variance this 

has little impact on the overall results of the simulation run. 

Exponential Failure - Fixed Repair 

One of the easiest distributions to model is the exponential in that the only factor that 

needs to be known is the mean MTBF(//). Thus for an Exp(/i) where // > 0 the failure 

time for a particular LRI {X) calculated when fitted to a particular aircraft is: 

X = —u ln(l — f / ) (4) 
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Figure 12. Flights Flown for an Exponential Failure Distribution. 

Figure 12 shows that the use exponential distribution to model failure times results in 

a much improved flight success rate than the fixed failure time for all runs with a maximum 

achievement in the order of 78%. The initially high rate of increase in the flight 

achievement reduces to a lower rate from the 13 aircraft case onwards. 

400000 

350000 

300000 

250000 

: 200000 

150000 

100000 

50000 

CO If) r- o 
Number of Aircraft 

-Fixed -Exponential 

Figure 13. Variance for an Exponential Failure Distribution 
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Figure 13 shows the variance for the exponential distribution. In this case there is a rapid 

rise in variance until the 13 aircraft case after which the variance is relatively constant 

throughout the rest of the runs with most results falling within a band lying between 

250,000 and 360,000. 

Normal Failure - Fixed Repair 

There are a number of different ways of returning a normal value for a distribution with a 

mean MTBF (ji) and a known variance (cr). In this case it has been decided to use the 

Polar version of the Box-Muller transform. Thus for a Normal (//,cr) the failure time for a 

particular LRI {X) is: 

[/, =;W(0,l) ,[ /^ =7(Ar(0,l) 

F, =2[/ , = 2 ( / , - 1 

V w 

jr, + (5) 

jT, + (6) 

In the case of ALSSim we only require one value to be returned so the second value of X 

is discarded each time the calculation is undertaken. The Normal distribution is an open 

distribution which returns values which lay in the range -oo < 0 < oo . However, as 

ALSSim is using this distribution to model failure times of equipment a negative value for 

failure time is neither wanted nor appropriate. Thus the above value for failure time {Xi) 

must return a value greater than 0 in order to be of use within the simulation. In order to 

achieve this the ALSSim Normal distribution is constrained such that all values lie within 

the range O.ln < p < 1.9|j. thus ensuring that results are valid and that the results are not 

skewed by having one tail longer than the other. Bounding the possible values in this way 

does result in the elimination of very long times to failure but, as these are likely to be very 

rare, their elimination is not likely to have a significant impact on the overall result. 
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Figure 14. Flights Flown for the Normal Failure Distributions. 

Figure 14 shows the results for a range of normal distributions where the mean values 

remained the same for all simulation runs but the variance was varied. As can be seen 

there is little difference in the results obtained for each alternative variance throughout the 

range of simulations and all show a marked improvement on the fixed case and a maximum 

flight achievement in the order of 95% of those tasked. 
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Figure 15. Variance for the Normal Failure Distributions. 
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Figure 15 shows the variance for the normal distribution runs and as with the flight 

achievement shows little difference for the various variances examined. It can be clearly 

seen that there is an initially steep increase in the variance where few aircraft are available 

where the requirement for lengthy repairs to an individual aircraft followed by a relatively 

steady decline as the number of aircraft available increases. Whilst there is little to choose 

between the various alternative options the line for a variance of 0.1 jj. shows the closest 

approximation to the mean value and is, therefore, taken forward for consideration as a 

candidate distribution. 

Lognormal Failure - Fixed Repair 

In order to find the failure time for a LRI (X) for a LRI subject to Lognormal distribution 

for failure with a mean MTBF (//) and a known variance {(/) we must first find the normal 

return and then calculate e raised to the power of that value. Thus for a Lognormal (ju,cr) 

the failure time for a particular LRI (X) calculated when fitted to a particular aircraft is: 

(7) 

2000 

1800 

1600 

1400 

1200 

C 1000 

1= 800 

600 

400 

200 

Number of Aircraft 

•Target -Fixed —®—var =0.1^—o—var = 0 . 2 ^ — v a r =0.3^—a—var =0.5|i 

Figure 16. Flights Flown for the Lognormal Failure Distributions. 
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Figure 16 snows the results for a range of Lognormal distributions with a constant mean 

for each LRI failure but a variable variance. As with the previous options examined the 

results are considerably better than that for the fixed failure time resulting in a maximum 

flight achievement in the order of 95%. 
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Figure 17. Variance for the Lognormal Failure Distributions. 

Figure 17 shows that, whilst the results for the runs for the Lognormal distribution has the 

same sort of shape as that of the Normal distribution model, the Lognormal model exhibits 

considerably greater variability in the variance results. However, it can be seen above that 

for most values of available aircraft the variance = 0. l | i results in a lower variance value 

and a higher overall flight achievement. Thus the Lognormal ((i,0. Ifj.) distribution will be 

considered further as a candidate distribution for the failure distribution. 

Triangular Failure - Fixed Repair 

The triangular distribution is a simple distribution that is often used when little is known 

about the data distribution. For this distribution 3 parameters are required: the minimum 

(a), the mode (b), and the maximum (c). The input file for ALSSim gives values for the 

minimum, maximum and a divisor (cf). The mode is calculated by: 

b - a + 
c - o 

d 
(8) 



The failure time (Xt) for a Triangular(a, b, c) a < b < c is given by the formula: 

. ( 6 - a ) 

( 
r = # 7 

} 
Else 
{ 

r = i 
} 

+ ( c - a ) 7 (9) 

The mean (|ii) for a Triangular(a,^,c) is given by 

(10) 

Whilst this gives a value for failure for the Triangular(a,Z>,c) distribution it must be related 

back to the LRJ mean before it can be used within the simulation. Thus the true failure 

time (X) for a LRI with MTBF (//) is: 

= 0 1 ) 
A 
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Figure 18, Flights Flown for the Triangular Failure Distributions. 

Figure 18 shows the number of flights flown for a series of Triangular distributions with a 

minimum of 0.1 p., a maximun. of i .9|j, and a range of divisors. It can be observed that the 

shape of the various Triangular distributions being considered has little impact on the 

results achieved throughout the range of available aircraft. The maximum achievement for 

the Triangular distribution is approximately 93%. 

Figure 19 below reveals a similar generic shape to the variance results for the Lognormal 

distribution already considered albeit there is greater variability in the actual values for the 

various alternative Triangular distributions. None of the 3 options considered stand out as 

a better model than the other 2 and whilst the divisor of 1/3 was chosen as the candidate 

choice for further evaluation either of the other 2 could just as easily have been selected. 
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Figure 19. Variance for the Triangular Failure Distributions. 

Weibull Failure - Fixed Repair 

The final distribution family considered as possible models for the failure distribution is the 

Weibull. The Weibull distribution requires 2 parameters, the scale parameter (a) and the 

shape parameter (b). The scale parameter is based on the LRI MTBF (ju) and is given by 

a = 

r 1 + 
(12) 

Thus it can be seen that the scale parameter for each individual LRI is different and that, 

therefore, the failure time for a particular LRI (X) subject to a Weibull(a,6) distribution is 

given by: 

= ##(0,1) 

= l n ( l - ^ ) (13) 
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Figure 20. Flights Flown for the Weibull Failure Distributions. 

Figure 20 shows the results of the runs using various shape parameters for the Weibull 

distribution. Worthy of note is the set of results for the shape parameter = I. When this is 

the case the Weibull distribution is the same as the exponential distribution. Examination 

of the results for b = 1 and the exponential model reveals exactly the same results as for 

the exponential distribution discussed earlier. In terms of the number of flights achieved, 

the number of flights achieved at the higher end of the availability range is very similar and 

gives a maximum of approximately 93%. As the number of aircraft available is reduced 

there is a wider spread for shape parameters less than 3. 

Figure 21 below gives the variance results for the various Weibull runs and again the runs 

for a shape parameter of 1 replicates the results of the exponential runs. In terms of the 

choice of candidate distribution we should select a distribution with a shape parameter 

which gives a good result and a low value for variance. Examination of the Flights 

Achieved graph shows that shape parameters of 4 and 5 gives very similar, but better than 

the other values, and examination of the Variance graph reveals that the shape parameter 

of 4 gives a slightly less variable variance than that for 5. Therefore, the Weibull 

distribution Weibull(a,4) is used as a candidate distribution for the failure distribution. 
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Figure 21. Variance for the Weibull Failure Distributions. 

Having examined a range of alternative distributions to identify which should be 

considered as candidates for the LRJ failure distribution, it is now appropriate to examine 

them against one another to identify which is the most appropriate. 
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Figure 22. Flights Flown for the Alternative Failure Distributions. 
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Figure 22 shows graphically the number of flights achieved for each distribution being 

considered. In order to eliminate distributions as not appropriate, they were evaluated 

against 2 criteria with those that failed either excluded from further consideration. Firstly, 

it was known that the target achievement for 36 aircraft was 1920 flights and that, 

therefore, any distribution that did not give a result within a reasonable range of that value 

was excluded. Secondly, as the scaling was based on the requirements for 36 aircraft to 

achieve the mission task it was unlikely that there were sufficient spares to allow the task 

to be met with far fewer aircraft and, therefore, any distribution that met the task with far 

fewer aircraft would be excluded. As can be clearly seen both the fixed failure time and 

the Exponential distribution fail the first of the criteria with achievements of approximately 

50% and 78% of the target flight achievement respectively. All of the other distributions 

give similar results throughout the range of simulations and thus the Normal, Lognormal, 

Triangular and Weibull distributions need to be considered further to decide which is most 

appropriate. 
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Figure 23. Variance for the Alternative Failure Distributions. 

Figure 23 shows the variance for the distributions which generated the results in figure 22. 

Examination of variance traces for the distributions reveals that each shows a similar trend 

with an initial rise in variance, as the number of aircraft available builds so variability in the 

random numbers starts to play a role, followed by a continual decline as the number of 
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aircraft available increases thus reducing the variability between individual runs. There is 

little to choose between the various alternatives although, the Weibull distribution 

generally achieves a slightly higher flight achievement and has lower values for variance. 

Therefore, it was decided to use the Weibull distribution with a shape parameter of 4 to 

model LRI failures. 

Derivation of the Distribution to be used as the LRI Failure Distribution 

Having decided that Weibull is an appropriate distribution to use to represent LRI failure, 

a view that is supported in [22], a similar process was carried out as described above to 

determine the most appropriate distribution to use to model variability in the repair times. 

In this case the Weibull (|J.,4) distribution was used to model failure times with repair times 

modelled using the Exponential, Lognormal, Normal, Triangular and Weibull distributions. 

For simplicity the same values were used for each distribution as had been selected for 

final consideration for the failure distribution. Figure 24 shows graphically the results of 

the various distributions. 
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Figure 24. Flights Flown for the Alternative Repair Distributions. 

Examination of figure 24 shows that there is little difference in the results of the various 

distributions and that, therefore, it would appear that any of the distributions would 
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provide an acceptable option for modelling repair time. This graph presents insufficient 

evidence to make a positive choice and, in order to do so, the variance for the runs, shown 

at figure 25 needs to be examined. 
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Figure 25. Variance for the Alternative Repair Distributions. 
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Examination of figure 25 reveals that for once again there is no distribution that stands out 

clearly as the most appropriate to model repair times. In order to make that decision it is 

appropriate to undertake closer examination of the variance for the runs undertaken with 

the higher numbers of aircraft available. This is achieved by figure 26, below, which 

focuses in on the variance results for aircraft availability numbers from 20 to 36. 

Examination shows that all of the alternative distributions have a degree of variation in the 

results. However, the Lognormal distribution has fewer large peaks and troughs than the 

others leading to the conclusion, confirmed in [23], that a Lognormal distribution is an 

appropriate distribution to use for LRI repair times. 
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Figure 26. Variance for the Alternative Repair Distributions for Upper Range of Aircraft 

Available Runs. 

Thus the ALSSim simulation application makes use of 3 distributions to introduce 

variability, a Weibull distribution for failure time, a uniform distribution to select the repair 

location and a lognormal distribution for the LRI repair times. 

Results 

As has already been stated the ALSSim simulation produces a single output file which 

contains all the results within a single series of runs. This file is produced as a text file 

which can then be read into a range of word processing and spreadsheet packages for 

further analysis offline. Whilst it was possible to include graphical functionality within the 

simulation this would have required extensive additional design to provide a feature that is 

already available within all spreadsheet packages. Moreover, by providing the raw figures 

rather than a graph it is a relatively simple matter to present the results in a slightly 

different fashion thus permitting different views of the overall information available. 

The actual file can be considered to have 5 different sets of results contained within it. 

The first contains the basic information necessary to repeat the simulation if required. It 

details the input and output file names, the number of runs per simulation, the number of 
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aircraft available, the duration of the pre flight servicing, the maximum delay permitted and 

the distributions used within the simulation and their parameters. The second section, 

shown at table 1, deals with the mean mission statistics and the resultant variance. 

Total Variance Percentage 
Tasked Flights 1 9 2 0 . 0 0 

Flights Achieved 1 8 8 9 . 6 8 G 7 4 & 1 8 9 8 . 4 2 

On Time 1 8 8 6 . 4 0 8 0 9 3 . 4 1 9 8 . 2 5 

First Half Flight Delay Maximum 2 . 3 0 5 1 3 4 & 1 2 

Second Half Flight Delay Maximum CX98 1 0 . 7 0 0 . 0 5 

Cancelled Flights 3 0 . 3 2 6 7 4 0 1 8 1 5 8 

In Flight Aborts 1 2 1 . 7 8 2 0 2 1 0 . 4 0 6 . 3 4 

Launched Flights Succeeded 1 7 3 5 . 7 8 3 7 3 5 2 . 8 0 9 1 . 8 6 

Launched Flights Failed 6 9 . 7 2 8 1 1 4 . 0 8 3 6 9 

Table 1. Mission Achievement Means. 

The third section gives, for each aircraft, the proportion of the simulation time that it spent 

in the various alternative serviceability states in both terms of number of hours and 

percentage of the total simul&iion An example of these results is given at table 2 for the 

first 5 aircraft. 

Aircraft 
Number 

Unserviceable Awaiting 
Flight 
Servicing 

In Flight 
Servicing 

Serviceable Flying 

1 1 2 4 8 . 3 1 0 4 7 8 . 0 5 1 7 8 4 . 0 2 4 7 3 . 6 2 

2 1 2 6 1 . 6 9 0 4 7 5 . 4 3 1 7 7 5 . 8 9 4 7 0 . 9 8 

3 1 1 9 1 . 0 1 0 3 2 1 . 0 5 2 1 5 4 . 5 2 3 1 7 4 1 

4 1 1 5 4 . 5 0 0 2 9 1 . 9 6 2 2 4 8 . 9 7 2 8 8 . 5 7 

5 1 1 6 1 . 8 2 0 2 7 7 J 8 2 2 7 0 . 8 0 2 7 4 . 2 0 

Table 2. Time Spent in Alternative States. 

The fourth section gives, for each day of the simulation, the mean number of aircraft in 

each state as at the start of each day. Table 3 shows the results for the first 5 days of the 

simulation. 
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Day 
Number 

Serviceable Flying Unserviceable In Pre Flight 
Servicing 

Awaiting Pre 
Flight 
Servicing 

1 3 6 . 0 0 0 0 0 0 
2 3 3 . 6 6 0 0 4 3 1 . 9 1 0 
3 3 2 . 8 8 0 1 ^ 6 1 . 8 6 0 
4 3 2 . 2 4 0 1 . 9 1 1 . 8 5 0 
5 3 1 . 8 1 0 2 . 3 5 1 . 8 4 0 

Table 3, Daily Aircraft States. 

The fifth, and final, section of the results file gives the mission achievements for each day 

of the simulation. As before this is a mean and table 4 shows the results for the first 5 days 

of the simulation. 

Delay 
Day Tasked On Less More Cancel Successful In Successful Failed 
No Flights Time Than Than Take Offs Flight Missions Mission 

1 / 2 1 / 2 Abort s 
Max Max 

1 16 1 6 . 0 0 0 0 0 1 6 . 0 0 0 7 9 1 4 . 3 0 ( 1 4 7 

2 1 6 1 6 . 0 0 0 0 0 1 6 . 0 0 a 9 0 1 3 . 7 8 0 . 6 0 

3 1 6 1 5 . 7 8 0 0 0 1 5 . 7 8 0 . 7 0 1 3 . 8 7 CX37 

4 16 12x52 0 0 0 1 5 5 2 0 . 6 0 13^41 0 . 3 4 

5 1 6 15.92 0 0 0.7 1 5 . 9 2 1 . 1 0 l - L I I a 7 5 

Table 4. Daily Mission Achievements. 

Simulation Verification and Validation 

The final aspect to be considered within a general review of features of simulation is that 

of the verification and validation of the model. Having designed the simulation to 

represent the environment to be examined, it is necessary for the analyst to be satisfied that 

the interactions that take place within the simulation accurately represents those of the real 

world. The mistake that can be easily made by an inexperienced analyst is to wait until the 

application has been programmed before undertaking this activity. The correct approach is 

to validate each stage of the development with the customer to ensure that not only are the 

assumptions made within the model correct but also that the questions that require 

answering are addressed by the simulation. There are a number of techniques for doing 

this dependant on the design technique that has been used by the analyst ranging from the 

production of activity cycle diagrams for an activity approach to the simulation [24] to 

49 



state diagrams for an object oriented approach [25]. Only when the conceptual model has 

been validated and accepted as an accurate representation of the real world problem to be 

modelled should actual programming commence. Having completed the production of the 

simulation application the analyst needs to verify that the code written accurately models 

the agreed conceptual model and also that the results produced are correct, simulation 

models are by the nature of what they are complicated models which contain a number of 

subroutines each of which need to be checked for accuracy and their effect on the rest of 

the application. There are a number of techniques that can be used to achieve this 

function[26][27]. Verification is not a quick process but is essential if the customer is to 

have confidence in the output of the simulation. Therefore, it is necessary to undertake 

sufficient verification to prove the efficacy of the simulation whilst ensuring that no more 

of this process is undertaken than is necessary to achieve that aim. There are 2 main 

questions in this process that must be addressed. Firstly, does the simulation and its 

internal features accurately model the problem as articulated by the agreed system model. 

Secondly, are the outputs of the model correct. The first can best be answered by 

obtaining an event trace and manually working through it. This will ensure that the correct 

flow through the events are occurring and if compared with a manual work through of the 

problem that the various subroutines are producing the correct inputs to the event decision 

making process. The latter can be simply achieved by one of 2 methods. If there is a 

similar model in use the outputs of both can be compared to see if they are similar or the 

simulation could be used to model the system as it stands and a comparison made between 

the actual achievements and those predicted by the simulation. 

The validation of ALSSim was undertaken as a 2 stage process. Firstly, before 

undertaking any programming, it was necessary to develop the underlying model and, 

having done so, to examine it against reality to ensure that the proposed model represented 

reality to a sufficient fidelity to be acceptable. This was accomplished by producing the 

activity cycle diagram at Appendix 3 and then discussing this proposed model with the 

RAF's logistic modelling staffs and practical aircraft engineers to determine whether it 

contained a sufficient level of detail to adequately represent the system being examined. 

Once that was agreed the simulation application could be designed and programmed. 

Once that was complete, the second stage of the validation process was undertaken by 

running the simulation and obtaining an event trace showing all events that occurred and 

the time at which each took place. Comparison of this trace manually against the model 

50 



already agreed confirmed that the programmed simulation matched the design model. 

Once the application was accepted as a valid representation of the real world it was then 

necessary to validate the output to ensure that the results produced are acceptable. For 

some years, the RAF has been using an simulation application which has been developed 

in-house using FORTRAN as the programming language. This application used a simple 

underlying model and suffered from memory constraints and a lack of speed, taking some 

hours to run each option. This compares with ALSSim which achieves the same run in 

minutes. The outputs for mission achievement for both were compared using test data and 

were found to produce similar results. Further verification was achieved by comparing the 

results of ALSSim with the deterministic model which revealed similar values for system 

availability. Having completed this process, and accepted that ALSSim was both valid and 

verified, it was ready for use. 

THE USE OF ALSSIM AS A PROBLEM SOLVING TOOL 

Baseline Problem 

All that has gone before describes the theoretical aspects of the problem leading to the 

design and programming of a simulation application for use as an evaluation tool. The 

remainder of this treatise describes the practical use of the simulation and considers the 

results produced and the message to a user. Before using ALSSim as a tool to test the 

effect of various changes to the input parameters it is first necessary to provide a baseline 

against which the changes can be examined. This was achieved by running the following 

simulation problem; 

What is the effect on the number of flights flown of altering the number of aircraft 

available to fly a specified flying task of 8 missions of 2 aircraft each mission for 5 

days each week over a 24 week period? No mission will launch unless 2 aircraft 

are available to fly and the current time is no later than one hour past the original 

planned launch time for the mission. The reliability of the LRIs and number of 

flight servicing teams remain constant over all alternative options. The LRI spares 

file is that produced using the deterministic models to provide an overall system 

availability of 80% over the simulation period. 

The above problem is actually the set of parameters used to develop the simulation 

features that have already been covered earlier. Figures 27 and 28 respectively show the 
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number of flights achieved for each variation in the number of aircraft and the run 

variances for these results. 
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Figure 27. Flights Flown for the Baseline Option. 

Initial Analysis of figure 27 reveals that there are 3 distinct regions. Region 1 shows a 

rapid increase in the number of flights flown which reflects the marked effect that each 

increase in the number of aircraft has on the number of flights that are successfully flown. 

Region 2, whilst continuing to exhibit an improving achievement has a reduced gradient 

reflecting a reduction in the impact of each increase in the number of aircraft available. In 

region 3 the gradient reduces further and reflects an approach to the asymptotic point 

where further increases in the number of aircraft available will nit improve overall result 

achieved. Figure 28 shows the variances for these runs and permits further examination 

of the 3 zones to see if there is any correlation between the observed changes in Figure 27 

and the variances. 
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Figure 28. Variance for the Baseline Option. 

Examination of the variance for the three regions described above shows that the results 

for region 1 show a rapidly increasing variance which reflects the wider variation that 

occurs as the number of airci aft is increased and the range of possible outcomes increases 

rapidly. Region 2 shows a reduction in the gradient but nonetheless reveals that the 

variance continues to increase over this range, decreasing variance as the number of 

aircraft increases to the point that there is sufficient availability to meet the requirement 

and individual unserviceabilities has a decreasing impact on the overall availability. Region 

3 rapidly decreasing variance as the number of aircraft increases to the point that there is 

sufficient availability to meet the requirement and individual unserviceabilities has a 

decreasing impact on the overall availability. 

Whilst the results of this baseline study reflect the expectation it is worthwhile examining 

the results in order to construct a confidence interval for the mean values achieved. This 

will give an indication of the degree of spread of acceptable outcomes and hence a feel for 

the acceptability of the final result. The formula to be used in calculating the confidence 

interval is [28] 

n 
(14) 
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where X is the derived mean, is the 1-0(72 critical point for a t distribution with n-1 

degrees of freedom and is obtained from the table [29], a is the confidence interval, is 

the sample variance and n the number of runs. An explanation and proof of this is given in 

[30]. For the baseline case it was decided to use a confidence interval of 0.9 leading to the 

use of a tn-i,1-072 = 1.66. The resultant upper and lower bounds for each result was 

calculated and is presented graphically at figure 29. 

Number of Aircraft 

-2 ac Lower -Upper 

Figure 29. Flights Flown for the Baseline Option showing Upper and Lower Confidence 

Boundaries. 

Figure 29 shows a close correlation between the result achieved and the upper and lower 

boundaries of the 90% confidence interval which reflects a simulation with limited variance 

in the various runs. This is particularly apparent in the high range of aircraft availability 

and further reinforces the earlier expressed views that the simulation application uses 

appropriate input distributions and models the environment correctly. 

Variation in number of aircraft per mission with total number of flights remaining 

the same 

This baseline case can now be used as a means to assess the effect of varying the various 

parameters to see their impact on the final result. The first variation to be considered is 
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that of varying the mission requirements in terms of the number of flights launched on each 

mission whilst keeping the total number of flights and thus the flying commitment 

constant. Figures 30 and 31 show the flight achievement and variance for 3 separate 

cases; the baseline 2 aircraft missions, 4 aircraft missions, and 1 aircraft missions. 
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Figure 30. Flights Flown for the 1920 Flights Option. 

Examination of figure 30 shows that, for the 1 aircraft per mission option, the curve of the 

graph shows a close correlation with that derived for the 2 aircraft per mission baseline 

case throughout the range of maximum aircraft available. For the 4 aircraft per mission 

the results are close to those for the baseline case but there is some deviation below 12 

aircraft and above 21 aircraft available. The former is a direct result of the requirement to 

have a minimum number of aircraft available before a mission will be launched. Thus for a 

4 aircraft per mission tasking no flights will be flown where the maximum possible number 

of aircraft available is less than 4. Above 21 aircraft the 4 aircraft per mission option tends 

to underperform the other 2 options slightly. This leads to the conclusion that whilst the 

number of aircraft required per each mission has some impact on the total number of 

flights launched for any given maximum aircraft availability this impact is not marked. 
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Figure 31. Variance for the 1920 Flights Option. 

For this conclusion to be supported it would be expected that the variance for the 1 

aircraft per mission and the 2 aircraft per mission option would be similar whilst that for 

the 4 aircraft per mission would be greater than the others. Indeed, examination of figure 

31 supports this conclusion but reveals that the variance at the higher number of aircraft 

availability is markedly reduced when compared to that for the earlier runs. Thus both 

graphs support the view that increasing the number of aircraft required per mission has 

little overall impact on the final achievement at the higher number of aircraft availability. 

Neither of these graphs provide sufficient information to allow an objective view to be 

taken of why this should be so and it is, therefore, necessary to examine aircraft availability 

in order to ascertain whether that explains the high task achievement. 

Figure 32 shows the mean aircraft availability for the various mission options. 

Examination of this graphs shows that, with the exception of the start where minimum 

aircraft requirements plays a large part, the mean aircraft availability rises at a relatively 

constant rate as the number of aircraft available increases. There is evidence of a curve 

with the increases in availability less for as the available aircraft is incremented at the 

higher numbers. Moreover, the high overall system availability supports the high flight 
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achievements and also shows a good correlation with the outputs of the deterministic 

model which gave an overall system availability of 80% for the 36 aircraft case. 
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Figure 32. Mean Aircraft Availability for the 1920 Flights Option. 

Whilst figures 30 to 32 are useful for examining the overall effect of the 3 alternative flying 

programmes, they are not suitable for identifying whether the mission profile is sustainable 

beyond the 166^ day. Focusing on a single case allows a deeper examination of the 3 

options in order to make this judgement and it appropriate to consider 2 measures: the 

number of flights flown per day and the aircraft availability per day. Clearly, this could be 

done for each of the number of aircraft available runs, however, this is both time 

consuming and potentially confusing. The 36 aircraft results reflect the number of aircraft 

against which the original scale was derived and for this reason was chosen as the case to 

be examined. 
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Figure 33. 36 Aircraft Mean Daily Flights Flown for the 1920 Flights Option, 

Figure 33 shows the number of flights flown per day for each of the aircraft per mission 

options. It is immediately noticeable that there is a regular drop to 0 which reflects the 

fact that missions are only tasked for the first 5 days of each week. In all cases the number 

of missions flown is initially 100% until day 50 at which point there is a step down to a 

new steady state figure of approximately 90%. The small peaks at the beginning of each 

week reflects the effect of aircraft recovery on days 6 and 7 without any tasking. 

Examination of figure 34 below reveals several interesting features. Firstly, it can be 

confirmed that the availability increases every day 6 and 7 as was surmised from the 

increased flight achievement at the start of each week. Secondly, the 1 aircraft per mission 

tasking results in an improved aircraft availability when compared with the baseline case as 

each aircraft becoming available allows a mission to be flown. This results in aircraft 

failing earlier than the baseline case and consequently becoming available sooner. It would 

be expected, using the same logic, that the 4 aircraft per mission case would result in a 

reduced availability, however, this is not the case as can be seen in figure 34. 
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Figure 34, 36 Aircraft Mean Daily Aircraft Availability for the 1920 Flights Option. 

This reverse of the expectatioii is as a consequence of the number of aircraft required to be 

available before a mission is launched resulting in more aircraft being available than for the 

baseline case whilst still insufficient to meet the minimum of 4 required for a mission. It is 

also of interest to note that, although the number of missions launched per day has a 

simple step function, the number of aircraft available each day for all the alternative 

options decays throughout the simulation and has yet to reach a steady state. Thus it can 

reasonably be concluded that there will come a point at which the flying programme 

becomes unviable but, that the information available does not permit that time to be 

calculated. 

Variation in number of aircraft per mission with total number of flights also varying 

Examination of alternative factor changes can be carried out in a similar manner to that of 

varying the number of flights per mission detailed above. The baseline case was derived 

using 8 missions of 2 flights per mission per day with a flying week of 5 days, equivalent to 

Monday to Friday. Thus a total of 1920 flights were tasked over a period of 166 days. By 

applying the same mission timings as for the baseline case but changing the number of 

flights required per mission examination of the effect of either halving or doubling the total 

flights to be flown can be undertaken. 
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Figure 35. Flights Flown for the Variable Flights Option. 

Figure 35 shows the flight achievements for the 3 options. However, as the target number 

of flights to be flown is different for each of the 3 options further manipulation of the data 

is required to allow comparison of the various achievements. 
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Figure 36. Percentage of Flights Flown for the Variable Flights Option. 
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In order to accomplish an effective comparison it is necessary to assess the achievement 

against the number of flights actually tasked and that is shown in figure 36.This 

comparison reveals a set of results which accords with what it would be reasonable to 

expect. The 1 aircraft option reflects half as many flights required as the baseline, 960 

rather than 1920, and results in a much quicker increase to a maximum. What is 

interesting to note is to observe that the reduction in flights is still insufficient to reach 

100% showing that aircraft unserviceability still reduces the achievement, albeit only in the 

order of 2% rather than 6% for the baseline. Doubling the number of flights required to 

3840 results in a marked reduction in achievement throughout the range. This is as 

expected as the harder the fleet is worked the greater the number of unservicabilities. As 

the repair time for components is significant for a number of LRIs this result suggests a 

fleet with a declining number of aircraft available due to more LRIs contained within the 

repair chain than was intended when the scale was derived. As the scaling was undertaken 

for a fleet of 36 aircraft flying 1920 flights this result is not unexpected. 
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Figure 37. Variance for the Variable Flights Option. 

Examination of the figure does show that there is a very large difference in the variance 

and the shape of the variance curves particularly for the 4 aircraft per mission option. 

However, as with the examination of flight achievement the direct comparison of variance 
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as portrayed in figure 37 is not useful as each relates to a different target and hence a 

different outcome. There is, therefore, a need to use another criteria against which the 

examination can be undertaken. An examination of the 90% confidence range would give 

an indication of the acceptability of the results as a means of judging the effect of altering 

the number of flights to be targeted. 
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Figure 38. Upper and Lower 90% Confidence Boundaries for the Variable Flights Option. 

Again this graph, whilst giving an impression of the width of the various bands, fails to 

give sufficient information to make a judgement at to how the final result compares. In 

order to achieve that the results should be converted into a percentage of the number of 

flights tasked which would give an idea of the spread compared against a common base. 

Figure 39 goes one stage further in that it shows the distance in from the achieved mean of 

the lower confidence limit compared with the target number of flights. Thus an 

achievement of 87% with a lower confidence band value of 80% will have a distance of 

7%. Clearly this is the same value for the upper confidence limit as this lies as far above 

the achieved value as the lower limit lies below it. 
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Figure 39. Distance of the Lower Confidence Limit from the Mean for the Variable Flights 

Option. 

It can be seen that the larger the number of flights required to be mounted the greater the 

Confidence spread and, therefore, the wider the range of answers that would be 

statistically acceptable. Thus, as the number of flights is increased the probability that a 

satisfactory number of flights would be flown becomes increasingly unlikely and action 

would need to be taken to ensure that the achievement does not fall to an unacceptably 

low 

CONCLUSIONS 

The use of deterministic models to derive spares scales to support an operational task has 

been a key component of the RAF's modelling toolset for some years although, it was 

recognised at an early stage that, whilst the output was of use to maintenance staffs, the 

model failed to give the operational customers confidence that their needs would be met. 

This need could best be met by the development of a simulation application which would 

the effectiveness of a scale derived by a deterministic spares scaling application to be 

examined against a set flying programme. Whilst this has been technically feasible for 

some time the only atternpt made by the RAF was both slow in operation and limited in 

functionality restricting its use to relatively simple questions of the total number of 
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missions that could be flown. The introduction of modern programming languages with 

built in functionality and the increasing power of desktop computers has allowed the 

development of a simulation that is both quick in operation, minutes rather than hours, and 

powerful in terms of the functionality that can be included. By taking advantage of these 

improvements, the development of ALSSim has allowed a wider range of questions to be 

asked ranging from the number of flights that are launched through to the mean aircraft 

availability. Simulation allows a greater fidelity of answer than is easily achieved with a 

deterministic model and allows the researcher to identify the effect of reducing the overall 

number of aircraft available through to the effect on a particular number of aircraft of 

varying the flying programme. Moreover, examination of the effect of changing the target 

flying rate can be easily studied as shown above allowing a judgement to be made as to 

whether it is appropriate or, indeed, possible to do so. Furthermore, the use of a 

simulation also provides the data necessary to undertake deeper investigation into the 

reasons why particular trends are taking place, something that cannot be done with the 

more simple deterministic models. Therefore, simulation has a place in the toolset of the 

modern aircraft logistic support analyst and provides a powerful tool capable of both 

providing the operational customer with a greater level of confidence in the proposed 

scales and allowing better ways of managing particularly scarce assets to be proposed. 

FURTHER WORK 

This study has resulted in an effective simulation programme which allows a number of 

fundamental questions to be asked relating to the ability of a given aircraft type with 

known equipment and reliability to achieve a stated flying programme with a particular 

scale which has been optimised using a deterministic application. To date the operation of 

the aircraft at a single base supported by a single repair depot has been considered. This 

could now be expanded to take account of multiple operating bases and/or repair sites 

allowing a wider range of questions to be asked. The model has been designed around the 

need to develop a simulation for aircraft and could, therefore, be used to support any 

organisation operating aircraft although, for fleets such as airlines, which take off and land 

at different locations, further development of the model would be necessary. Equally the 

model could be used with relatively minor alteration to examine any vehicle or piece of 

equipment which was subject to failures related to operating hours. 
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APPENDIX ONE ALSSIM COMPUTER CODE 

Overview 
This appendix contains all the source code for the ALSSim application except for that 
which is generated by the Microsoft C++ compiler as the underlying application control 
code. Thus only those files that have been modified by myself to incorporate additional 
code are included in this appendix. For each component of the simulation application 
there are 2 files, the header file in which all the parameters and operations are declared and 
the program file which contains the application code for the various operations. The first 
section of this appendix lists the code files in alphabetical order and gives a brief statement 
as to their purpose. The second section gives the code for each file in turn. 

Aircraft - The code specific to the aircraft entity and the code to control LRIs fitted to the 
aircraft. 

ALSSimDoc - The code that controls the simulation. These files contain the event 
controller and all the control code for each event. 

DailyResults - The code used to calculate aircraft availability at the start of each day and 
the flight achievements for each day for each run. The results are kept in a linked list and 
used at the end of each set of simulation to calculate the overall results. 

DelayedFlight - The code relating to the delayed flight list. 

DlgSimulationFinished - The code for the dialog box that is generated at the end of each 
run to give an overview of the run achievements. 

Event - The code required to populate and obtain data from the simulation event linked 
list. 

RandomNumber - The code for the pseudo random number generator. This code is NOT 
my own. It is the code provided by L'Ecoyer and Andres in their paper on A Random 
Number Generator Based on the Combination of Four LCGs. 

SBarSimProgress - The code to generate a progress bar at the bottom of the screen whilst 
the simulation is running. This bar serves no purpose other than to indicate how far the 
application is through the runs. 

Stock - The code for each LRI type dealing with the off aircraft aspects. This file contains 
details of serviceable stock levels at both unit and depot, repair times, numbers required 
for aircraft and numbers unserviceable at both the unit and depot. 
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Aircraft 

//Aircraft.h interface of the C Aircraft class 
class CAircraft ; public CObject 
{ 

//Attributes 
private: 

bool bFirstLRI; 
bool bFirstTime; 
bool bInFlightAbortState; 
bool bLRIFailureFound; 
bool bLRJRequired; 
float fAircraftFailureTime; 
float fAircraftFlyingHours; 
float fAircraftPlannedLandingTime; 
float fClockTime; 
float fLastEventTime; 
float fLRIFailureTime; 
float fTimeAwaitingPreFlightServicing; 
float fTimeFlying; 
float fTimelnPreFlightServicing; 
float fTimeServiceable; 
float fTimeUnserviceable; 
float fTotalTimeAwaitingPreFlightServicing; 
float fTotalTimeFlying; 
float fTotalTimelnPreFlightServicing; 
float fTotalTimeServiceable; 
float fTotalTimeUnserviceable; 
int iAircraftNumber; 
int iAircraftState; 
int iLRJPosition; 
int iLRIState; 
int iLRIType; 
int iNumberOfFailedEssentialLRJs; 
int iNumberOfFailedNonEssentialLRIs; 
int iNumberOfLRIsRemoved; 
int iNumberOfLRIsRequired; 
int iNumberOfLRIsUnserviceable; 
// Class declaration for LRIs 

class CLRI: public CObject 

( 
//Attributes 
private; 

float fLRIFailureTime; 
int iLRIPosition; 
int iLRIState; 
int iLRIType; 

//Operations 
public: 

CLRIOO 
CLRI (int iPositionjnt iType,float fFailureTime) 
{ 
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iLRIPosition = iPosition; 
iLRIState = 1; 
iLRIType = iType; 
fLRIFailureTime = fFailureTime; 

) 
float GetLRIFailureTimeQ; 
int GetLRIFositionQ; 
int GetLRJStateQ; 
int GetLRITypeO; 
void ResetLRI(float fFailureTime); 
void SetLRIFailureTime(float fAircraftFlyingHours,float fMeanFailureTime); 
void SetLRIState(int iState); 
-CLRIO{} 

}; 

CObList Irilist; 
CLRI* pLRI; 
POSITION LRIPos; 

//Operations for the Aircraft Class 
public: 

CAircraft(){} 
CAircraft(int iNumber) 
{ 

iAircraftNumber = iNumber; 
iAircraftState = 1; 
iNumberOfFailedEssentialLRIs = 0; 
iNumberOfFailedNonEssentialLRIs = 0; 
iNumberOfLRIsRemoved = 0; 
iNumberOfLRIsRequired = 0; 
iNumberOfLRIsUnserviceable - 0; 
fAircraftFlyingHours = 0.0; 
fTimeAwaitingPreFlightServicing = 0.0; 
fLastEventTime = 0.0; 
fTimeFlying = 0.0; 
fTimelnPreFlightServicing - 0.0; 
fTimeUnserviceable = 0.0; 
fTimeServiceable = 0.0; 

} 
bool CheckLRITypeRequired(int iLRIType); 
bool GetlnFlightAbortStateQ; 
bool ResetLRI(float fFailureTime); 
float GetAircraftFlyingHoursO; 
float GetAircraftFailureTimeQ; 
float GetAircraftPlannedLandingTimeO; 
float GetLRIFailureTime(int iLRIPosition); 
float GetTimeAwaitingPreFlightServicing(int iNumberOfRuns); 
float GetTimeFlying(int iNumberOfRuns); 
float GetTimeInPreFlightServicing(int iNumberOfRuns); 
float GetTimeServiceable(int iNumberOflRuns); 
float GetTimeUnserviceable(int iNumberOfRuns); 
int AddNewLRI(int iPosition,int iType,float fFailureTime); 
int GetAircraftNumberO; 
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int GetAircraftStateQ; 
int GetNumberOfFailedEssentialLRIsO; 
int GetNumberOfFailedNonEssentialLRIsO; 
int GetNumberOfLRIsRequired(); 
int GetNumberOfLRIsUnserviceableQ; 
int GetLRIFailedInFlight(bool bFirstTime,float fEventDuration); 
int GetLRlStateO; 
int GetLRIType(bool bFirstTime); 
int GetUnserviceableLRJTypeQ; 
int RemoveUnserviceableLRIs(bool bFirstTime); 
int UpdateLRIRequired(int iTypejnt iState); 
void DeleteLRIsQ; 
void IncrementNumberOfEssentialLRIFailuresO; 
void IncrementNumberOfNonEssentialLRIFaiiuresO; 
void ReduceNumberOfLRIsRequiredO; 
void ResetAircrafl(); 
void SavePlannedLandingTime(float fClockTime,float fEventDuration); 
void SetAircraflState(int iAircraflState); 
void SetEndOfRunTotals(float fClockTime); 
void SetLRIState(int iLRIPosition,int iLRIState); 
void SetInFlightAbortState(bool bInFlightAbort); 
void SetTimeAwaitingPreFlightServicing(f[oat fClockTime); 
void SetTimeFlying(float fClockTime); 
void SetTimelnPreFlightSen'icingffloat fClockTime); 
void SetTimeServiceable(float fClockTime); 
void SetTimeUnserviceable(float fClockTime); 
void UpdateAircraftOnLanding(float fClockTime,float fFlightDuration, 

int iMaximumFailuresNonEssentialLRIs); 
void UpdateRemovedLRJ(int iPosition,int iState); 
void UpdateReplacedLRI(int iPosition,float fFailureTime); 
-CAircraftQO 

}; 

//Aircraft, cpp implementation of the C Aircraft class 
#include "stdafx.h" 
#include "Aircraft.h" 
// CAircraft commands 
bool CAircraft:: CheckLR]TypeRequired(int iType) 
{ 

bLRIRequired = false; 
for (LRIPos = lriIist.GetHeadPosition();LRIPos != NULL;) 
( 

pLRI = (CLRI*)lnlist.GetNext(LRIPos); 
iLRIType - pLRI->GetLRIType(); 
if (iLRlType - = iType) 
{ 

if ( pLRI->GetLRIState() == 4) 

{ 
bLRIRequired = true; 
break; 
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else 
{ 

if (iLRJType > iType) 
break; 

} 
} 
return bLRJRequired; 

} 
bool CAircraft::GetInFlightAbortState() 
{ 

return blnFlightAbortState; 
} 
bool CAircrafl:;ResetLRI(float fFailureTime) 
{ 

pLRI = (CLRI*)lnlist.GetAt(LRIPos); 
pLRI->ResetLRJ(fFailureTime); 
pLRI = (CLRJ*)lhlist.GetNext(LRIPos); 
if(LRIPos = NULL) 

return true; 
else 

return false; 

loat CAircraft; ;GetAircraftFailureTime() 

return fAircraftFailureTime; 

loat CAircraft::GetAircraftFlyingHoursQ 

return fAircraftFlyingHours; 

float CAircraft::GetAircraftPlannedLandingTime() 

return fAircraftPlannedLandingTime; 

float CAircraft::GetLRJFailureTime(int iLRIPosition) 

fLRIFailureTime = pLRI->GetLRJFailureTime(); 

return fLRIFailureTime; 

float CAircraft::GetTimeAwaitingPreFlightServicing{int iNumberOfRuns) 

return fTimeAwaitingPreFlightServicing/iNumberOfRuns; 

float CAircraft::GetTimeFlying(int iNumberOfRuns) 

return fTimeFlying/iNumberOfRuns; 

float CAircraft::GetTimeInPreFlightServicing(int iNumberOfRuns) 

return fTimelnPreFlightServicing/iNumberOfRuns; 
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float CAircraft::GetTimeServiceable(int iNumberOfRuns) 
{ 

return fTimeServiceable/iNumberOfRuns; 
} 
float CAircrafTt::GetTimeUnserviceable(int iNumberOfRuns) 
{ 

return fTimeUnserviceable/iNumberOfRuns; 
} 
int CAircraft: :AddNewLR](int iLRIPosition,int iLRIType,float fFailureTime) 
{ 

if (iLRIPosition == 1|| fFailureTime < fAircraftFailureTime) 
( 

fAircraftFailureTime = fFailureTime; 
} 
lrilist.AddTail(new CLRI(iLRIPosition,iLRIType,fFailureTime)); 
iLRIPosition++; 
return iLRIPosition; 

} 
int CAircraft::GetAircraftNumber() 
{ 

return iAircraftNumber; 
} 
int CAircraft: :GetAircraftState() 
( 

return iAircraftState; 
} 
int CAircraft::GetNumberOfFailedEssentialLRIs() 
{ 

return iNumberOfFailedEssentialLRIs; 
} 
int CAircraft::GetNumberOfFailedNonEssentialLRIs() 
{ 

return iNumberOfFailedNonEssentialLRIs; 

1 
int CAircraft:: GetLRIFailedInFlight(bool bFirstTime,float fEventDuration) 
{ 

bLRIFailureFound = false; 
if (bFirstTime == true) 
( 

LRIPos = Irilist.GetHeadPositionO; 
} 
pLRI = (CLRI*)lrilist.GetNext(LRIPos); 
while (LRIPos != NULL) 
{ 

// Check if the LRI fails this flight 
if (pLRI->GetLRIFaiIureTime() <= fAircraftFlyingHours + fEventDuration 

&& pLRl->GetLRlState() == 1) 
( 

bLRIFailureFound = true; 
//get LRI position 
iLRIPosition = pLRl->GetLRlPosition(); 
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break; 
} 
else 
{ 

// step on to next LRI in the list 
pLRI = (CLRI*)lnlist.GetNext(LRIPos); 

} 
} 
//return LRI position 
if (bLRIFailureFound) 
{ 

return iLRJPosition; 
} 
else 
{ 

return (0); 
} 

} 
int CAircraft::GetLRIState() 
{ 

return iLRIState; 
} 
int CAircraft.:GetLRIType(bool bFirstTime) 
( 

if (bFirstTime) 
{ 

LRIPos = Irilist.GetHeadPositionO; 
} 
pLRI = (CLRI*)lnlist.GetAt(LRIPos); 
iLRIType = pLRI->GetLRIType(); 
return iLRIType; 

} 
int CAircraft::GetNumberOflLRIsRequired() 
{ 

return iNumberOflLRIsRequired; 
) 
int CAircraft::GetNumberOfiLRIsUnserviceable() 
{ 

return iNumberOfLRIsUnserviceable; 
) 
int CAircraft:. GetUnserviceableLRlType() 
{ 

iLRIType - pLRI->GetLRIType(); 
return iLRIType; 

} 
int CAircraft::RemoveUnserviceableLRIs(bool bFirstTime) 
{ 

if (bFirstTime) 
( 

LRIPos = Irilist.GetHeadPositionO; 
} 
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pLRI = (CLRI*)ln]ist.GetAt(LRIPos); 
if (pLRI->GetLRIState() = 2) 
{ 

// change LRI State to Being removed(3) 
iLRI State = 3; 
pLRI->SetLRIState(iLRIState); 
iNumberOfLRIsUnserviceable--; 
iNumberOfLRIsRemoved++; 
//return LRI position 
iLRIPosition = pLRI->GetLRIPosition{); 
return iLRIPosition; 

} 
else 

( 
// step on to next LRI in the list 
pLRI = (CLRI*)lhlist GetNext(LRIPos); 
return (0); 

} 
} 
int CAircraft::UpdateLRlRequired(int iType,int iState) 
{ 

for (LRIPos = lrilist,GetHeadPosition();LRIPos != NULL;) 

{ 
pLRI = (CLRI*)lnlist.GetNext(LRIPos); 
if ((pLRI->GetLRITypeO = iType) && (pLRI->GetLRIState() = 4)) 
( 

pLRI->SetLRIState(iState); 
iLRIPosition - pLRI->GetLRIPosition(); 
break; 

} 
} 
return iLRIPosition; 

} 
void CAircraft;;DeleteLRIs() 
{ 

POSITION LRIPos = Irilist.GetHeadPositionO; 
// Delete the LRI objects 
while (LRIPos !=NULL) 
{ 

delete Irilist.GetNext(LRIPos); 
} 

Irilist.RemoveAllO; 

void CAircraft::IncrementNumberOfEssentialLRIFailures() 

iNumberOfFailedEssentialLRIs++; 

void CAircraft.:IncrementNumberOfNonEssentialLRlFailures() 

iNuniber01F'ailedNonEssentialLRIs++; 
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void CAircraft; ;ReduceNumberOfLRIsRequired() 
{ 

iNumberOfLRIsRequired--; 
} 
void CAircraft:;ResetAircraft() 
{ 

i Aircraft State = 1; 
iNumberOfFailedEssentialLRIs = 0; 
iNumberOfFailedNonEssentialLRIs = 0; 
iNumberOfLRIsRequired = 0; 
iNumberOfLRIsRemoved = 0; 
iNumberOfLRIsUnserviceable = 0; 
fAircraftFlyingHours = 0.0; 
fLastEventTime = 0.0; 
// Reset first failure time for each installed LRI 
LRIPos = Irilist.GetHeadPositionO; 
pLRI = (CLRI*)lnlist.GetNext(LRIPos); 
fAircraftFailureTime = pLRI->GetLRIFailureTime(); 
while (LRIPos != NULL) 
{ 

pLRI = (CLRI*)lrilist.GetNext(LRIPos); 
fLRIFailureTime = pLRI->GetLRIFailureTime(); 
if (flLRIFailureTime < fAircraftFailureTime) 

fAircraAFailureTiir" = fLRIFailureTime; 
} 

} 
void CAircraft:: SavePlannedLandingTime(float fClockTime,float fEventDuration) 
{ 

fAircraftPlannedLandingTime = fClockTime + fEventDuration; 
} 
void CAircraft;:SetAircraftState(int iState) 
( 

iAircraftState = i State; 
} 
void CAircraft::SetEndOfRunTotals(f]oat fClockTime) 
( 

// Update counter for state at the end of the run 
switch (iAircraftState) 
( 
case 1; 

SetTimeServiceable(fClockTime); 
break; 

case 2: 
SetTimeFlying(fClockTime); 
break; 

case 3: 
SetTimeUnserviceable(fClockTime); 
break; 

case 4: 
SetTimelnPreFlightServicing(fClockTime); 
break; 
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case 5: 
SetTimeAwaitingPreFlightServicing(fClockTime); 
break; 

} 
} 
void CAircraft;;SetInFlightAbortState(bool bAbortState) 

( 
bInFlight Abort State = bAbortState; 

} 
void CAircraft::SetLRJState(int iPosition,int iState) 

( 
for (LRIPos = lrilist.GetHeadPosition();LRIPos != NULL;) 

( 
pLRI = (CLRI*)lnlist.GetNext(LR]Pos); 
if (pLRJ->GetLRIPosition() == iPosition) 

{ 
iLRIState = i State; 
pLRI->SetLRIState(iLRIState); 
break; 

} 
} 

void CAircraft;:SetTimeAwaitingPreFlightServicing(float fClockTime) 

fTimeAwaitingPreFIightServicing += fClockTime - fLastEventTime; 
fLastEventTime = fClockTime; 

void CAircraft::SetTimeF!ying(float fClockTime) 

fTimeFlying += fClockTime - fLastEventTime; 

fLastEventTime = fClockTime; 

Old CAircraft; ;SetTimeInPreFlightServicing(f!oat fClockTime) 

fTimelnPreFlightServicing + - fClockTime - fLastEventTime; 

fLastEventTime = fClockTime; 

void CAircraA::SetTimeServiceable(float fClockTime) 

fTimeServiceable += fClockTime - fLastEventTime; 

fLastEventTime = fClockTime; 

void CAircraft::SetTimeUnserviceable(float fClockTime) 

fTimeUnserviceable += fClockTime - fLastEventTime; 
fLastEventTime = fClockTime; 

void CAircraft::UpdateAircraftOnLanding(fIoat fClockTime,float fFlightDuration, 
int iMaxNonEssentialFailures) 
fAircraftFlyingHours += fFlightDuration; 
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// Update Time Flying Counter 
SetTimeFlying(fClockTime); 
// Check for failures and set aircraft state accordingly 
if(iNumberOfFailedEssentialLRIs > 0 || 

iNumberOfFailedNonEssentialLRIs > iMaxNonEssentialFailures) 

{ 
// Change aircraft state to Unserviceable(3) 
i Aircraft State = 3; 
iNumberOfLRIsUnserviceable = iNumberOfFailedEssentialLRIs + 

iNumberOfFailedNonEssentialLRIs; 
iNumberOfFailedEssentialLRJs = 0; 
iNumberOfFailedNonEssentialLRIs = 0; 

} 
else 
{ 

// Change aircraft state to In Flight Servicing(4) 
iAircraftState = 4; 

} 
} 
void CAircraft;:UpdateRemovedLRI(int iPosition,int iState) 
{ 

if (iState == 4) 
iNumberOfLRIsRequired++; 

for (LRIPos = lrilist,GetHe=)dPosition();LRIPos != NULL;) 

{ 
pLRI = (CLRI*)lnlist GetNext(LRIPos); 
if (pLRI->GetLRIPosition() == iPosition) 

{ 
pLRI->SetLRIState(iState); 
break; 

} 
} 

) 
void CAircraft: :UpdateReplacedLRI(int iPosition,float fFailureTime) 
{ 

for (LRIPos = lrilist.GetHeadPosition();LRIPos != NULL;) 

{ 
pLRI = (CLRI*)lnlist.GetNext(LRIPos); 
iLRIPosition = pLRI->GetLRIPosition(); 
if (iLRIPosition = iPosition) 

{ 
// Change LRI state to Serviceable Fitted(l) 
iLRIState = 1; 
pLRI->SetLRIState(iLRIState); 
pLRI->SetLRIFailureTime(fAircraftFlyingHours,fT'ailureTime); 
iNumberOfLRIsRemoved—; 
// All LRIs fitted and Serviceable 
if (iNumberOfLRIsRemoved == 0) 

{ 
// Update-the next failure time for the aircraft 
LRIPos = Irilist.GetHeadPositionO; 
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pLRI = (CLRI*)lnlist.GetNext(LRIPos); 
fAircraftFailureTime == pLRI->GetLRJFailureTime(), 
while (LRIPos != NULL) 
{ 

pLRI = (CLRI*)lnlist.GetNext(LRIPos); 
fLRIFailurcTime = pLRI->GetLRIFailureTime(); 
if (fLRIFailureTime < fAircraftFailureTime) 

fAircraftFailureTime - fLRJFailureTime; 
} 
// Change Aircraft state to in Flight Servicing 
i Aircraft State = 4; 
break; 

} 
} 
else 
{ 

if (iLRJPosition > iPosition) 
break; 

} 
} 

/ CLRI commands 

nt CAircraft::CLRI;:GetLRIPosition() 

return iLRJPosition; 

nt CAircraft::CLRJ;:GetLRIState() 

return iLRIState; 

nt CAircraft:: CLRI :;GetLRIType() 

return iLRIType; 

oat CAircraft; .CLRI: ;GetLRIFailureTime() 

return flLRIFailureTime; 

void CAircraft;:CLRI;:ResetLRI(float fFailureTime) 

iLRIState = 1; 

fLRIFailureTime = fFailureTime; 

void CAircraft: .CLRI.: SetLRlFailureTime(ftoat fAircraftFlyingHours,float fFailureTime) 

fLRJFailureTime = fAircraftFlyingHours + fFailureTime; 

void CAircraft::CLRI::SetLRlState(int iState) 

iLRIState - iState; 
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ALSSimDoc 

// ALSSimDoc. h ; interface of the CALSSimDoc class 
#if 
!defined(AFX_ALSSIMDOC_H_AC08B32B_CFl 111D1_A97A_444553546I6F_IN 
CLUDEDJ 
#defme 
AFX_ALSSIMDOC_H_AC08B32B_CFnj 1DI_A97A_444553S46I6F__INCLUDED 
#if_MSC_VER>= 1000 
#pragma once 
#endif//_MSC_VER>= 1000 
// Forward References 
class CSimProgressStatusBar; 
class CALSSimDoc ; public CDocument 
{ 

protected: // create from serialization only 
CALSSimDocO; 
DECLARE_DYNCREATE(CALSSimDoc) 

// Attributes 
private: 

bool bAcceptableResult; 
bool bAircraftAllocatedToFlight; 
bool bEndRun; 
bool bEvenNumberRun; 
bool bFirstTime; 
bool bFlyingProgrammeFileLoaded; 
bool bInFlightAbortState; 
bool bLastLRI; 
bool bLRJDataFileLoaded, 
bool bLRJRepairOnUnit; 
bool bLRIStockFileLoaded; 
bool bResultsFileLoaded; 
bool bSecondNormalAvailable; 
bool bSimulationParametersFileLoaded; 
bool bStoringEvents; 
CString sFlyingProgrammeFile; 
C String sLRIDataFile; 
CString sLRIStockFile; 
C String sResultsFile; 
CString sSimParametersFile; 
float fAircraftFailureTime; 
float fAircraftFlyingHours; 
float fAircraftPlannedLandingTime; 
float fClockTime; 
float fDepotUnitTransferTime; 
float feEventDuration; 
float feEventTime; 
float fePreviousEventTime; 
float fEventDuration; 
float flEventTime; 
float fFailureGamma; 
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float fFailureMin; 
float fFailureMax; 
float fFailureShape; 
float fFailureVariance; 
float fLastTakeOffTime; 
float fLogMean; 
float fLogMu; 
float fLogVariance; 
float fLRIDepotRepairTime; 
float fLRIFailureMax; 
float fLRIFailureMin; 
float fl^RIFailureTime; 
float fl^RIMeanFailureTime; 
float fl^RIMeanRepairTime; 
float fl^RIProportionRepairedAtUnit; 
float fl^RIRefitTime; 
float fl-.RIRemovalTime; 
float fLRIRepairTime; 
float fl^RIUnitRepairTime; 
float fl^RIVariance; 
float flVIaximumFlightDelay; 
float flvIeanFlightsCancelled; 
float flVleanFlightsFail; 
float fMeanFlightsFirstHalflDelay; 
float fMeanFlightsInFlighiAbort; 
float flVIeanFlightsOnTime; 
float fMeanFlightsSecondHalfl)elay; 
float fMeanFlightsSucceed; 
float flVIeanFIightsTakeOfF; 
float flVIeanFlightsTasked; 
float flVleanNumberOfAircraftAwaitingPreFlightServicing; 
float fMeanNumberOfAircrafl;Flying; 
float fMeanNumberOfAircrafl;InPreFlightServicing; 
float AMeanNumberOfAircraftServiceable; 
float fiVIeanNumberOfAircraftUnserviceable; 
float flVIeanNumberOflDailyFlightsCancelled; 
float flVIeanNumberOfDailyFlightsFail; 
float AVIeanNumberOflDailyFlightsFirstHalflDelay; 
float fMeanNumberOflDailyFlightsInFlightAbort; 
float AVIeanNumberOflDailyFlightsOnTime; 
float flVleanNumberOfl)ailyFlightsSecondHalfDelay; 
float fMeanNumberOfl)ailyFlightsSucceed; 
float fMeanNumberOflDailyFIightsTakeOfl; 
float fMeanNumberOflDailyFlightsTasked; 
float fMeanTimeUnserviceable; 
float fMeanTimeAwaitingPreFlightServicing; 
float flVfeanTimelnPreFlightServicing; 
float flVTeanTimeServiceable; 
float flVIeanTimeFlying; 
float flVfissionSuccessPoint; 
float fNoFaultFoundAtDepotFactor; 
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float fNoFaultFoundAtUnitFactor; 
float fNormalCalculationValue; 
float fNormalCheckValue; 
float fNormalFinalValuel; 
float fNormalFinalValue2; 
float fNormalNumber; 
float fNorma!Value!; 
float fNormalValue2; 
float fNumberOfAircraftAwaitingPreFlight Servicing; 
float fNumberOfAircraftFlying; 
float fNumberOfAircraftlnPreFlightServicing; 
float fNumberOfAircraftServiceable; 
float fNumberOfAircraftUnserviceable; 
float fNumberOflDaiiyFlightsCancelled; 
float fNumberOfDailyFlightsFail; 
float fNumberOfDailyFlightsFirstHalflDelay; 
float fNumberOflDailyFlightsInFlightAbort; 
float fMumberOflDailyFlightsOnTime; 
float fNumberOfDailyFlightsSecondHalfDelay; 
float fNumberOfDailyFlightsSucceed; 
float fNumberOfDailyFlightsTakeOfl^; 
float fNumberOfDailyFlightsTasked; 
float fNumberOfFlightsCancelled; 
float flSfumberOfFlightsFail; 
float fNumberOfFIightsSucceed; 
float fNumberOfFlightsFirstHalfDelay; 
float iNumberOfFlightsInFlightAbort; 
float fNumberOfl^lightsOnTime; 
float fNumberOfFlightsSecondHalfDelay; 
float fNumberOfFlightsTakeOfF; 
float fl^umberOfFIightsTasked; 
float fPercentageFlightsCancelled; 
float fPercentageFlightsFail; 
float fPercentageFlightsFirstHalfDelay; 
float fPercentageFlightsInFlightAbort; 
float fPercentageFlightsOnTime; 
float fPercentageFlightsSecondHalfDelay; 
float fPercentageFlightsSucceed; 
float fPercentageFlightsTakeOff; 
float fPreFlightServicingDuration; 
float fPreviousEventTime; 
float fRandomNumber; 
float fRandomNumber 1; 
float fRandomNumberl; 
float fReliabilityFactor; 
float fRepairFactor; 
float fRepairGamma; 
float fRepairMax; 
float fRepairMin; 
float fRepairShape; 
float fRepairVariance; 
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float fResult; 
float fScale, 
float fTimeUnserviceable; 
float fTimeAwaitingPreFlightServicing; 
float fTimelnPreFlightServicing; 
float fTimeServiceable; 
float fTimeFlying; 
float fTriangleDiv; 
float fTriangleMin; 
float fTriangleMax; 
float fTriangleMode; 
float fTriangleRange; 
float fVarianceFIightsCancelled; 
float fVarianceFlightsFail; 
float fVarianceFlightsSucceed; 
float fVarianceFlightsFirstHalfDelay; 
float fVarianceFlightsInFlightAbort; 
float fVarianceFlightsOnXime; 
float fVarianceFlightsSecondHalfDelay; 
float fVarianceFlightsTakeOfF; 
HANDLE hFile; 
hyper hRandomNumber; 
int iAircraflNumber; 
int i Aircraft State; 
int iCount; 
int iDayNumber; 
int ieAircraftNumber; 
int ieEventNumber; 
int ieLRIPosition; 
int ieLRIType; 
int ieNumberOfAircraft; 
int ieNumberOfLRIs; 
int iEventNumber; 
int iFailureDistributionUsed; 
int iFailureDivisor; 
int iLastRunFlightsCancelled; 
int iLastRunFlightsFirstHalfDelay; 
int iLastRunFlightsOnTime; 
int iLastRunFlightsSecondHalfDelay; 
int iLastRunFlightsTasked; 
int iLRIDepotStock; 
int iLRIEssential; 
int iLRINumberFitted; 
int iLRIPosition; 
int iLRIState; 
int iLRIType; 
int iLRIUnit Stock; 
int iNumberOfAircraft; 
int iNumberOfAircraft Available; 
int iNumberOfAircraftAwaitingPreFlightServicing; 
int iNumberOfAircraftFlying; 
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int iNumberOfAircraftlnPreFlightServicing; 
int iNumberOfAircraftServiceable; 
int iNumberOfAircraftUnserviceable; 
int iNumberOfDailyFIightsCancelled; 
int iNumberOfDailyFlightsFail; 
int iNumberOfDailyFlightsFirstHalfDelay; 
int iNumberOfDailyFlightsInFlightAbort; 
int iNumberOfDailyFlightsOnTime; 
int iNumberOfDailyFlightsSecondHalfDelay; 
int iNumberOfDailyFlightsSucceed; 
int iNumberOfDailyFlightsTasked; 
int iNumberOfDays; 
int iNumberOfFailedEssentialLRJs; 
int iNumberOfFailedNonEssentialLRIs; 
int iMaximumFailuresNonEssentialLRIs; 
int iNumberOfFlightsCancelled; 
int iNumberOfFlightsDelayed; 
int iNumberOiFlightsFail; 
int iNumberOfFlightsFirstHalfDelay; 
int iNumberOfFlightsInFlightAbort; 
int iNumberOfFlightsOnTime; 
int iNumberOfFlightsSecondHalfDelay; 
int iNumberOfFlightsSucceed; 
int iNumberOfFlightsTakeOff; 
int iNumberOfFlightsTasLed; 
int iNumberOfLRIs; 
int iNumberOfLRIsUnserviceable; 
int iNumberOflPreFlightServicingTearns; 
int iNumberOfRuns; 
int iRandomNumberDivisionConstant; 
int iRandomNumberSeed; 
int iRandomNumberStream; 
int iRepairDistributionUsed; 
int iRepairDivisor; 
int iRunNumber; 
int iSquareNumberOfFlightsCancelled; 
int iSquareNumberOfFlightsFail; 
int iSquareNumberOfFlightsSucceed; 
int iSquareNumberOfFlightsFirstHalfDelay; 
int iSquareNumberOfFlightsInFlightAbort; 
int iSquareNumberOfFliglitsOnTime; 
int iSquareNumberOfFlightsSecondHalfDelay; 
int iSquareNumberOfFlightsTakeOff; 
int iStartNumberOfAircraft; 
int iStaitRunNumberOfPreFlightServicingTeams; 
int iStockType; 
int iTotalFlightsCancelled; 
int iTotalFlightsFail; 
int iTotalFlightsFirstHalfDelay; 
int iTotalFlightsInFlightAbort; 
int iTotalFlightsOnTime; 
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int iTotalFlightsSecondHalfDelay; 
int iTotalFlightsSucceed; 
int iTotalFlightsTakeOff; 
int iTotalFlightsTasked; 

// Operations 
public: 

boo! IsValidFileSpec (LPCSTR IpszFileSpec); 
float GetBoundedNormal(CObList& randomnumberlist, 

int iRandomNumberStream,float fLRIMean,float fMin,float fMax, 
float fLRIVariance); 

float GetExponentialResult(CObList& randomnumberlist,int iStreamNumber, 
float fMean); 

float GetLognormalResult(CObList& randomnumberlist,int iStreamNumber, 
float fMean,float fVariance); 

float GetNormalResult(CObList& randomnumberlist,int iStreamNumber,float fMean, 
float fVariance); 

float GetRandomNumber(CObList& randomnumberlist,int iStreamNumber); 
float GetTriangularResult(CObList& randomnumberlist,int iStreamNumber, 

float fMean,float fMin,float fMax, float fDivisor); 
float GetWeibullResult(CObList& randomnumberlist,int iStreamNumber, 

float fMean,float fShape,float fGamma); 
int GetNextEvent(CObList& aircraAlist,CObList& delayedflightlist, 

CObList& eventlist,CObList& randomnumberlist, CObList& runresultlist, 
CObList& stocklist); 

void AllocateLRIToAircraft(L.ObList& aircraftlist,CObList& eventlist, 
CObList& stocklist,int iLRIType); 

void CreateAircraft(CObList& aircraftlist,CObList& randomnumberlist, 
CObList& stocklist); 

void CreateDailyResults(CObList& dailyresultslist,int iNumberOfDays); 
void CreateRandomNumberStreams(CObList& randomnumberlist); 
void EndSimulation(CObList& aircraftlist,CObList& runresultlist, 

CObList& randomnumberlist,CObList& stocklist); 
void InsertEvent(CObList& eventlist, int iEventNumber, float fEventTime, 

float fPreviousEventTime,int iAircrafitNumber,int iNumberOfAircraft, 
int iLRIPosition,int iLRIType,int iNumberOfLRIs,float fEventDuration); 

void LoadSimuIationScenarioDetailsQ; 
void ReleaseMemory(CObList& aircraftlist,CObList& randomnumberlist, 

CObList& runresultlist,CObList& stocklist); 
void SaveDailyFlyingStats(CObList& dailyresultslist,int iDayNumber, 

int iNumberOfDailyFlightsTasked,int iNumberOfDailyFlightsOnTime, 
int iNumberOfDailyFlightsFirstHalfDelay, 
int iNumberOfDailyFlightsSecondHalfDelay, 
int iNumberOfDailyFlightsCancelled,int iNumberOfDailyFlightsInFlightAbort, 
int iNumberOfDailyFlightsFail,int iNumberOfDailyFlightsSucceed); 

void SaveEvent(int iEventNumber,float fClockTime,int iAircraftNumber, 
int iNumberOfAircraft,int iLRIPosition,int iLRIType,int iNumberOfLRIs, 
float fEventDuration); 

void SetUpEventList(CObList& eventlist); 
void ZeroDailyFlightsCountersO; 
void ZeroDailyStatesCountersO; 
void ZeroRunCountersQ; 

82 



void ZeroSimulationCountersQ; 
// Event Operations 
public: 

void EventEndRun(CObList& aircraftlist,CObList& delayedflightlist, 
CObList& eventlist,CObList& randomnumberlist,CObList& runresultlist, 
CObListfe stocklist); 

void EventInFlightFailure(CObList& aircraftlist,CObList& eventlist, 
CObList& stocklist); 

void EventLanding(CObList& aircraftIist,CObList& eventlist,CObList& stocklist); 
void EventLRIArrival(CObList& aircraftlist,CObList& eventlist, 

CObList& randomnumberlist,CObList& stocklist); 
void EventLRJRemovalComplete(CObList& aircraftlist,CObList& eventlist, 

CObList& randomnumberlist,CObList& stocklist); 
void EventLRIRepairComplete(CObList& aircraftlist,CObList& eventlist, 

CObList& stocklist); 
void EventLRIReplacementComplete(CObList& aircraftIist,CObList& eventlist, 

CObList& randomnumberlist,CObList& stocklist); 
void EventMissionRequired(CObList& aircraftlist,CObList& delayedflightlist, 

CObList& eventlist,CObList& stocklist); 
void EventNewDay(CObList& aircraftlist,CObList& eventlist,CObList& runresultlist, 

CObList& stocklist,bool bEndRun); 
void EventPreFlightServicingComplete(CObList& aircraftlist, 

CObList& delayedflightlist, CObList& eventlist,CObList& stocklist); 
void EventPreFlightServicingStart(CObList& eventlist); 
void EventTakeOff(CObList& aircraft!ist,CObList& eventlist,CObList& stocklist, 

int iAircraftNumber,int iEventNumber); 
// Overrides 
// ClassWizard generated virtual function overrides 
//{{AFX_VIRTUAL(CALSSimDoc) 
public; 
virtual BOOL OnNewDocument(); 
virtual void Serialize(CArchive& ar); 
//nAFX_VIRTUAL 

// Implementation 
public: 

virtual -CALSSimDocQ; 
#ifyef_DEBUG 

virtual void AssertValidQ const; 
virtual void Dump(CDumpContext& dc) const; 

#endif 
// Generated message map functions 
protected: 

//{{AFX_MSG(CALSSimDoc) 
afk_msg void OnSimulationRun(); 
afx msg void OnUpdateSimulationRun(CCmdUI* pCmdUI); 
afx msg void OnFiIeOpenSimulationParameters(); 
afx msg void OnUpdateFileOpenSimulationParameters(CCmdUI* pCmdUI); 
afx msg void OnFileOpenFlyingProgramme(); 
afx msg void OnUpdateFileOpenFlyingProgramme(CCmdUI* pCmdUI); 
afx msg void OnFileOpenLRIDataFile(); 
afx msg void OnUpdateFileOpenLRIDataFiie(CCmdUI* pCmdUI); 
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afx msg void OnFileOpenLRJStockFile(); 
afx msg void OnUpdateFileOpenLRlStockFile(CCmdUI* pCmdUI); 
afx_msg void OnFileOpenResultsFile(); 
afx msg void OnUpdateFileOpenResuitsFile(CCmdUI* pCmdUI); 
//}}AFX_MSG 
DECLARE_MESSAGE_MAP() 

}; 

//{{AFX_INSERT_LOCATION}} 
// Microsoft Developer Studio will insert additional declarations immediately before the 
previous line. 
#endif // 
!defined(AFX_ALSSIMDOC H AC08B32B CFll l l D l A97A 44455354616F_IN 
CLUDEDJ 
// ALSSimDoc.cpp ; implementation of the CALSSimDoc class 
#include "stdafx.h" 
#include "ALSSim.h" 
#include "ALSSimDoc.h" 
#include "ALSSimView.h" 
#include "mainfrm.h" 
//Include file handling and Maths classes 
#include "fstream.h" 
#include "math.h" 
// Include the Dialog class 
#include "DlgSimulationFinished.h" 
#include "DlgClearInputPara..ieiers.h" 
// Include the Simulation Progress Bar class 
#include "SBarSimProgress.h" 
// Include the list classes 
^include "Aircraft.h" 
#include "DelayedFlight.h" 
#include "Event.h" 
#include "RandomNumber.h" 
#include "DailyResults.h" 
#include "Stock.h" 
#ifdef_DEBUG 
#deRne new DEBUGNEW 
#undefTHIS_FILE 
static char THIS_FILE[] = _FILE__; 
#endif 
// CALSSimDoc 
IMPLEMENT_DYNCREATE(CALSSimDoc, CDocument) 
BEGIN MESSAGE MAP(CALSSimDoc, CDocument) 

//{{AFX_MSG_MAP(CALSSimDoc) 
ON_COMMAND(ID SIMULATION RUN, OnSimulationRun) 
ON UPDATE COMMAND_UI(ID SIMULATION RUN, 

OnUpdateSimulationRun) 
ON_COMMAND(ID FILE_OPEN_SIMULATIONPARAMETERS, 

OnFileOpenSimulationParameters) 
ON UPDATE COMMAND UI(ID_FILE_OPEN SIMULATION?ARAMETERS, 

OnUpdateFileOpenSimulationParameters) 
ON COMMAND(ID FILE OPEN FLYINGPROGRAMME, 
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OnFileOpenFlyingProgramme) 
ON_UPDATE_COMMAND UI(ID FILE OPEN FLYINGPROGRAMME, 

OnUpdateFileOpenFlyingProgramme) 
ON_COMMAND(ID_FILE OPEN LRIDATAFILE, OnFileOpenLRIDataFile) 
ON_UPDATE_COMMAND UI(ID_FILE OPEN_LRIDATAFILE, 

OnUpdateFileOpenLRIDataPile) 
ON_COMMAND(ID_FILE_OPEN_LRISTOCKFILE, OnFileOpenLRIStockFile) 
ON_UPDATE_COMMAND_UI(ID FILE OPEN_LRISTOCKFILE, 

OnUpdateFileOpenLRJStockFile) 
ON_COMMAND(ID_FILE_OPEN_RESULTSFILE, OnFileOpenResultsFile) 
ON_UPDATE COMMAND_UI(ID_FILE OPEN_RESULTSFILE, 

OnUpdateFileOpenResultsFile) 
//}}AFX_MSG_MAP 

END_MESSAGE_MAP() 
// CALSSimDoc construction/destruction 
CALSSimDoc: :CALSSimDoc() 
{ 
} 
CALSSimDoc: :~CALSSiniDoc() 
{ 
} 
BOOL CALSSiniDoc;;OnNewDocument() 
( 

if (!CDocument::OnNewDocument()) 
return FALSE; 

bSimulationParametersFileLoaded = false; 
bFlyingProgrammeFileLoaded = false; 
bLRJDataFileLoaded = false; 
bLRIStockFileLoaded = false; 
bResultsFileLoaded = false; 
return TRUE; 

} 
// CALSSimDoc serialization 
void CALSSimDoc::Serialize(CArchive& ar) 
{ 

if (ar.IsStoringO) 
{ 
} 
else 
( 
} 

} 
// CALSSimDoc diagnostics 
#ifdef_DEBUG 

void CALSSimDoc::AssertValid() const 

( 
CDocument:: Assert ValidQ; 

} 
void CALSSimDoc::Dump(CDumpContext& dc) const 

( 
CDocument: :Dump(dc); 
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} 
#endif//_DEBUG 
// CALSSimDoc Main Simulation control Command 
void CALSSiniDoc:;OnSimulationRun() 
{ 

//Zero simulation Counters 
ZeroSimulationCountersQ; 
// Create the Object lists 
CObList aircraftlist; 
CObList delayedflightlist; 
CObList eventlist; 
CObList randomnumberlist; 
CObList dailyresultslist; 
CObList stocklist; 
// Open the Events storage file 
ofstream EventOF("Event.txt"); 
// load in objects and set them up 
LoadSimulationScenarioDetails(); 
// Create the progress control for the simulation 
CSimProgressStatusBar* pSimStatus - CALSSimApp:;GetApp()-> 

GetMainFrame()->GetStatusBar(); 
if(pSimStatus) 
{ 

CString Label; 
Label.LoadStnng(ID5_SiMULATIONPROGRESS); 
pSimStatus->SetSimProgressLabel(Label); 
// Flip the status bar to progress mode 
pSimStatus->ShowSimProgressDisplay(true); 
CProgressCtrl* pSimProgress = pSimStatus->GetProgressCtrl(); 
if (pSimProgress) 
{ 

pSimProgress->SetRange(0,iNumberOfR.uns); 
pSimProgress->SetStep(l); 

} 
} 
// Create the Random Number Streams 
CreateRandomNumberStreams(randomnumberlist); 
//create the aircraft objects including fitted LRIs and stocks 
CreateAircraft(aircraftlist, randomnumberlist, stocklist); 
// Run the Simulation 
for (iRunNumber = 1 ;iRunNumber <= iNumberOfRuns;iRunNumber++) 
{ 

// Update the progress bar 
CProgressCtrl* pSimProgress = pSimStatus->GetProgressCtrl(); 
if (pSimProgress) 
{ 

pSimProgress->Steplt(); 
} 
// Reset End Run Boolean Variable 
bEndRun = false;. 
// Reset Normal Number Calculated Boolean Variable 
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bSecondNormalAvailable = false; 
//Reset the Number Of Aircraft Available Counter 
iNumberOfAircraftAvailable = iStartNumberOfAircraft; 
// Zero run counters 
ZeroRunCounters(); 
// Zero the Daily Flight Achievement Counters 
ZeroDailyFlightsCountersO; 
// Set Store Events switch for the first run 
if (iRunNumber == 1) 

bStoringEvents = true; 
else 

bStoringEvents = false; 
// Populate the event list 
SetUpEventList(eventlist); 
// Zero Day Number 
iDayNumber = 0; 
// Set Event number to ensure that simulation runs 
iEventNumber = 1; 
while (iEventNumber != 0) 

( 
// Run the simulation event controller 
iEventNumber = GetNextEvent(aircraftlist, delayedflightlist, eventlist, 

randomnumberlist, 
dailyresultslist, stocklist); 
//Action the event 
switch (iEventNumber) 
{ 
case 0: 

EventEndRun(aircraftlist,delayedflightlist,eventlist,randomnumberlist, 
dailyresultslist, stocklist); 

break; 
case 1: 

EventNewDay(aircraftlist,eventlist,dailyresultslist, stocklist,bEndRun); 
break; 

case 2: 
EventMissionRequired(aircraftlist,delayedflightlist,eventlist,stocklist); 
break; 

case 3: 
EventLanding(aircraftlist,eventlist, stocklist); 
break; 

case 4; 
EventPreFlightServicingComplete(aircraftlist,delayedflightlist,eventlist, 

stocklist); 
break; 

case 5 : 
EventLRIRemovalComplete(aircraftlist,eventlist,randomnumberlist, 

stocklist); 
break; 

case 6: 
EventLRIReplacementComplete(aircraftlist,eventlist,randomnumberlist, 

stocklist); 
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break; 
case 7: 

EventLRIRepairComplete(aircraftIist,eventlist,stocklist); 
break; 

case 8 ; 
EventLRIArrival(aircraftlist,eventlist,randomnumberlist,stocklist); 
break; 

case 11; 
EventInFlightFailure( aircraftlist,eventlist,stocklist); 
break; 

} 
} 

} 
// End of simulation 
// Turn Off the progress bar 
pSimStatus->ShowSiniProgressDisplay(false); 
EndSimulation( aircraftlist,dailyresultslist,randomnumberlist,stocklist); 

} 
// CALSSimDoc Simulation Controller 
int CALSSimDoc;:GetNextEvent(CObList& aircraftlist, CObList& delayedflightlist, 

CObList& eventlist, CObList& randomnumberlist, CObList& dailyresultslist, 
CObList& stocklist) 

{ 
//Get next event to be actioned 
CEvent* pEvent; 
POSITION EventPos = eventlist.GetHeadPosition(); 
pEvent = (CEvent * )eventlist. Get At(EventPos); 
iEventNumber = pEvent->GetEventNumber(); 
iAircraftNumber = pEvent->GetAircraftNumber(); 
iNumberOfAircraft = pEvent->GetNumberOfAircraft(); 
iLRIPosition = pEvent->GetLRIPosition(); 
iLRJType - pEvent->GetLRIType(); 
iNumberOfLRIs = pEvent->GetNumberOfLRIs(); 
fClockTime = pEvent->GetEventTime(); 
fPreviousEventTime = pEvent->GetPreviousEventTime(); 
fEventDuration = pEvent->GetEventDuration(); 
//Release the memory occupied by the event object 
delete eventlist.GetNext(EventPos); 
eventlist. RemoveHead(); 
// Return the event Number 
return iEventNumber; 

} 
// CALSSimDoc Events 
// Event 0 - Event End Run 
void CALSSimDoc::EventEndRun(CObList& aircraftlist,CObList& delayedflightlist, 

CObList& eventlist, CObList& randomnumberlist,CObList& dailyresultslist, 
CObList& stocklist) 

{ 
// Set end run boolean variable 
bEndRun = true; 
// list control variables 
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CAircraft* pAircraft; 
POSITION AircraftPos; 
CDelayedFlight* pDelayedFlight; 
CRandomNumber* pRandomNumber; 
POSITION RandomNumberPos; 
CStock* pStock; 
POSITION StockPos; 
// If storing events, save the End Run Event to the events filefile 
if (bStoringE vents) 
( 

iAircraftNumber = 0; 
iLRIPosition = 0; 
iLRIType = 0; 
SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft, 

iLRIPosition,iLRIType,iNuniberOfLRIs,flEventDuration); 
} 
// Get all outstanding flights and cancel them 
iNumberOflFlightsCancelled += iNumberOfFlightsDelayed; 
iNumberOfDailyFlightsCancelled += iNumberOfFlightsDelayed; 
// Call event new day to store aircraft states and daily flight achievements 
EventNewDay(aircraftlist,eventlist,dailyresultslist,stocklist,bEndRun); 
// Save Flight counters for this run 
// Total take ofFs this run 
iNumberOfFlightsTakeOff = iNumberOfiFlightsOnTime + 

iNumberOfFlightsFirslIialtDelay + iNumberOfFlightsSecondHalfDelay; 
// The totals of the run results so far 
iTotalFlightsTasked += iNumberOfFlightsTasked; 
iTotalFlightsOnTime += iNumberOfFlightsOnTime; 
iTotalFlightsFirstHalfDelay += iNumberOfFlightsFirstHalfDelay; 
iTotalFlightsSecondHalfDelay += iNumberOfFlightsSecondHalfDelay; 
iTotalFlightsCancelled += iNumberOfFlightsCancelled; 
iTotalFlightsInFlightAbort += iNumberOfFlightsInFlight Abort; 
iTotalFlightsFail += iNumberOfFlightsFail; 
iTotalFlightsSucceed += iNumberOfFlightsSucceed; 
iTotalFlightsTakeOflf += iNumberOfFlightsTakeOff; 
// Squares of the results so far 
// Calculate the square of the sums of the recorded results 
iSquareNumberOfFlightsOnTime += pow(iNumberOfFlightsOnTime,2); 
iSquareNumberOfFlightsFirstHalfDelay += pow(iNumberOfFlightsFirstHalfDelay,2); 
iSquareNumberOfFlightsSecondHalflDelay += 

pow( iNumberOfFlightsSecondHalfDelay,2); 
iSquareNumberOfFlightsCancelled += pow(iNumberOfFlightsCancelled,2); 
iSquareNumberOfFlightsInFlightAbort += pow(iNumberOfFlightsInFlightAbort,2); 
iSquareNumberOfFlightsTakeOff += pow(iNumberOfFlightsTakeOfF,2); 
iSquareNumberOfFlightsFail += pow(iNumberOflFlightsFail,2); 
iSquareNumberOfFlightsSucceed += pow(iNumberOfFlightsSucceed,2); 

// Clear the Delayed Flights list and release the memory 
POSITION DelayedFlightPos = delayedflightlist.GetHeadPositionQ; 
// Delete the Delayed Flight objects 
while (DelayedFlightPos != NULL) 
{ 
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delete aircraftlist.GetNext(DelayedFlightPos); 
} 
delayedflightlist.RemoveAllO; 
// Calculate new seeds for the streams 
pRandomNumber = (CRandomNumber*)randomnumberlist.GetHead(); 
pRandomNumber->SetNewRandomNumberSeed(); 
// Reset the LRIs fitted to the aircraft 
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;) 

{ 
p Stock = (CStock*)stocklist.GetNext(StockPos); 
pStock->ResetStock(); 
iLRIType = pStock->GetStockType(); 
flLRIFailureTime = pStock->GetMeanFailureTime(); 
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;) 
{ 

i f ( iLRIType= 1) 
bFirstTime = true; 

else 
bFirstTime = false; 

pAircraft - (CAircraft*)aircraftlist.GetNext(AircraftPos); 
// Get Failure Time For LRU 
while ( pAircraft->GetLRIType(bFirstTime) = iLRIType) 
{ 

// action on failure distribution used 
switch(iFailurcDistributionUsed) 
{ 
case 0: // none 

flLRIFailureTime = fReliabilityFactor * fLRIMeanFailureTime; 
break; 

case 1; // exponential 
fLRIFailureTime = fReliabilityFactor * 

GetExponentialResult( randomnumberlist, 
iRandomNumberStream,fLRIMearLFailureTime); 

break; 
case 2: // Lognormal 

fLRIFailureTime = fReliabilityFactor * 
GetLognormalResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,fFailure Variance); 

break; 
case 3: // Normal 

// Return is bounded to ensure no negative values 
// Max, Min and Variance read in from Simulation parameters File 
flLRIFailureTime = fReliabilityFactor * 

GetBoundedNormal(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,fFailureMin,fFailureMax,fFailure Variance); 

break; 
case 4: // Triangular 

fLRIFailureTime = fReliabilityFactor * 
GetTriangularResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,fFailureMin,fFailureMax,iFailureDivisor); 

break; 
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case 5: //Weibull 
fLRIFailureTime = fReliabiUtyFactor * 

GetWeibullResuIt(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,fFailureShape,fFailureGamma); 

break; 
} 

// Reset LRJ with new failure time for next run 
bLastLRI = pAircraft->ResetLRI(fLRIFailureTime); 
if(bLastLRI) 

break; 
bFirstTime = false; 

} 
} 

} 
// Reset the aircraft 
for (AircraftPos = aircraftlist,GetHeadPosition();AircraftPos!= NULL;) 
{ 

p Aircraft = (CAircraft*)aircraftlist.GetNext(Aircrafl;Pos); 
pAircraft->SetEndOfRunTotals(fClockTime); 
pAircraft->ResetAircraft(); 

} 
// Reset the number of Pre-flight servicing teams 
iNumberOfPreFlightServicingTeams - iStartRunNumberOfPreFlightServicingTeams; 

} 
// Event 11 - Event In Flight failure 
void CALSSimDoc;;EventInFlightFailure(CObList& aircraftlist,CObList& eventlist, 

CObList& stocklist) 
{ 

CAircraft* pAircraft; 
POSITION AircraftPos; 
CStock* pStock; 
POSITION StockPos; 
// If storing events, save the In Flight Failure Event to the events file 
if (bStoringE vents) 
{ -

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft, 
iLRIPosition,iLRIType,iNumberOfLRIs,fEventDuration); 

} 
// Get Aircraft pointer 
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;) 
( 

p Aircraft = (CAircraft*)aircraftlist.GetNext( AircraftPos); 
if (pAircraft->GetAircraftNumber() == iAircraftNumber) 

{ 
// Change LRI state to unserviceable fitted (State 2) 
iLRI State = 2; 
pAircraft->SetLRIState(iLRIPosition,iLRIState); 
// Check if the failure is to an essential LRI 
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;) 
{ 

pStock = (CStock*)stocklist.GetNext(StockPos); 
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if (pStock->GetStockType() == iLRIType) 
{ 

if (pStock->GetLRIEssentiality() == 1) 
( 

// Increment the number of Essential failures 
pAircraft->IncrementNumberOfEssentialLRIFailures(); 
if (pAircraft->GetInFlightAbortState() == false) 
{ 

// In Flight Abort will occur 
bInFlightAbortState = true; 
pAircraft->SetInFlightAbortState(bIrLFlightAbortState); 
iNumberOfFlightsInFlightAbort++; 
iNumberOfDailyFlightsIrLFlightAbort++; 

if (fClockTime - fPreviousEventTime < fEventDuration * 
fMissionSuccessPoint) 

{ 
iNumberOfFlightsFail++; 
iNumberOfDailyFlightsFail++; 

} 
else 
{ 

iNumberOfFlightsSucceed++; 
iNumberOfDailyFlightsSucceed++; 

} 
if (fClockTime - fPreviousEventTime < fEventDuration / 2) 

{ 
// landing time = current time + flight time 
feEventTime = fClockTime + (fClockTime -

fPreviousEventTime); 
fcEventDuration = 2 * (fClockTime -

fPreviousEventTime); 
// Insert landing event into the event queue 
ieEventNumber = 3; 
ieAircraftNumber = iAircraftNumber; 
ieNumberOfAircraft = 1; 
ieLRIPosition = 0; 
ieLRIType = 0; 
ieNumberOfLRIs = 0; 
fePreviousEventTime = fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime, 

fePreviousEventTime,ieAircraftNumber, 
ieNumberOfAircraft,ieLRIPosition,ieLRIType, 
ieNumberOfLRIs,feEventOuration); 

} 
} 
break; 

} 
else 
{ . 

//Increment the number of non essential failures 
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pAircraft->IncrementNumberOfNonEssentialLRIFailures(); 
} 

} 
} 
break; 

} 
} 

} 
//Event 3 - Event Landing 
void CALSSimDoc::EventLanding(CObList& aircraftlist,CObList& eventlist, 

CObList& stocklist) 
{ 

// list control variables 
CAircraft* pAircraft; 
POSITION AircraAPos; 
CEvent* pEvent; 
POSITION EventPosl,EventPos2; 
CStock* pStock; 
POSITION StockPos; 
for (AircraftPos = aircraftlist.GetHeadPosition();AircraflPos != NULL;) 
{ 

p Aircraft = (CAircraft*)aircraftlist.GetNext(AircraflPos); 
if (pAircrafl->GetAircraftNumber() == iAircraftNumber) 
{ 
// If landing as a result of an in-flight Abort 

if (pAircraA->GetInFlightAbortState() == true) 

{ 
// Get the planned landing time 
fAircraftPlannedLandingTime = pAircraft-

>GetAircraftPlannedLandingTime(); 
for (EventPosl = eventlist,GetHeadPosition();EventPosl != NULL;) 

{ 
EventPosl = EventPosl; 
pEvent = (CEvent*)eventlist.GetNext(EventPosl); 
if (pEvent->GetAircraftNumber() == iAircraftNumber 

&& pEvent->GetEventTime() <= fAircraftPlannedLandingTime) 
{ 

eventlist.RemoveAt(EventPos2); 
} 
else 
{ 

if (pEvent->GetEventTime() > fAircraftPlannedLandingTime) 

{ 
break; 

} 
} 

} 
} 
//Update the aircraft flying hours and ascertain its serviceability state 
pAircraft->UpdateAircraftOnLanding(fClockTime,fEventDuration, 
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iMaximumFailuresNonEssentialLRJs); 
// If storing events, save the Landing Event to the events filefile 
if (bStoringEvents) 
( 

fEventDuration = 0; 
SaveEvent(iEventNumber,fClockTime,iAircraftNumber, 

iNumberOfAircraft,iLRIPosition, iLRIType,iNumberOflLRIs, 
fEventDuration); 

} 
// All fitted LRJs serviceable 
if (pAircraft->GetAircraftState() == 4) 
{ 

// And there is a pre-flight servicing team available 
if (iNumberOfPreFlightServicingTeams > 0) 
{ 

EventPreFlightServicingStart(eventlist); 
} 
// otherwise change aircraft state to awaiting flight servicing(5) 
else 
{ 

iAircraftState = 5; 
pAircraft->SetAircraftState(iAircraftState); 

} 
} 
// One or more LRis unserviceable 
else 
{ 

iNumberOfLRIsUnserviceable = pAircraft-
>GetNumberOfLRIsUnserviceable(); 

// Set boolean variable to ensure search starts at head of list 
bPirstTime = true; 
while (iNumberOfLRJsUnserviceable > 0) 

{ 
iLRIPosition = pAircraft->RemoveUnserviceableLRIs(bFirstTime); 
// Get the LRI Type as well 
bFirstTime = false; 
if (iLRIPosition > 0) 
{ 

iLRIType = p Aircraft->GetUnserviceableLRIType(); 
// Get duration of LRI removal from station stock file 
for (StockPos = stocklist.GetHeadPositionO;StockPos != NULL;) 
( 

pStock = (CStock*)stocklist.GetNext(StockPos); 
iStockType = pStock->GetStockType(); 
if (iStockType == iLRIType) 
{ 

fEventDuration - pStock->GetRemovalTime(); 
break; 

} 
} . 

//Insert LRI Removal complete event for this LRI into event queue 
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ieEventNumber = 5; 
ieAircraftNumber = iAircraftNumber; 
ieNumberOfAircraft = 1; 
ieLRIPosition = iLRIPosition; 
ieLRIType = iLRIType; 
ieNumberOfLRIs = 0; 
feEventDuration = fEventDuration; 
feEventTime = fClockTime +feEventDuration; 
fePreviousEventTime = fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime, 

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft, 
ieLRIPosition,ieLRIType,ieNumberOfLRIs,feEventDuration); 

// Update check controllers 
iNumberOfLRIsUnserviceable—; 

} 
} 

} 
break; 

} 
} 

} 
//Event 8 - Event LRI Arrival 
void CALSSiniDoc::EventLRIArrival(CObList& aircraftlist,CObList& eventlist, 

CObList& randomnumberlist,CObList& stocklist) 
{ 

// list control variables 
CStock* pStock; 
POSITION StockPos; 
if (bStoringEvents) 
( 

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft, 
iLRIPosition,iLRIType,iNumberOfLRJs,fEventDuration); 

} 
// Find the LRI Type that has been delivered 
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;) 
{ 

pStock = (CStock*)stocklist.GetNext(StockPos); 
if (pStock->GetStockType() == iLRIType) 

{ 
// Arrival at the unit 
if (iAircraftNumber == 0) 

{ 
iCount = iNumberOfLRIs; 
for (iCount;iCount > 0;iCount—) 
{ 

// LRI Required for an aircraft 
if (pStock->GetNumberRequiredForAircraft() > 0) 

{ 
pStock->ReduceNumberRequiredForAircraft(); 
AllocateLRIToAircraft(aircraftlist,eventlist,stocklist,iLRIType); 
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// Otherwise increment the units serviceable stock 
else 
{ 

iNumberOfLRJs = iCount; 
pStock->IncreaseUnitServiceableStock(iNumberOfLRJs); 
break; 

} 
} 
break; 

} 
// Arrival at the Depot 
else 
{ 

// Calculate the repair time 
iCount = iNumberOfLRJs; 
for (iCount;iCount > 0;iCount—) 
{ 

// Get Repair Time for Depot repair of LRI and 
// insert a LRI Repair complete event into the queue 
ieEventNumber = 7; 
ieAircraftNumber - iAircraftNumber; 
ieNumberOfAircraft = 0; 
ieLRIType = iLRIType; 
ieLRIPosition = 0; 
ieNumberOfLRIs = 1; 
fLRIMeanRepairTime = pStock->GetDepotRepairTime(); 
// Add repair time randomness if appropriate 
// Switch depending on distribution used 
iRandomNumberStream = 2; 
// action on repair distribution used 
switch (iRepairDistributionUsed) 
{ 
case 0: // none 

feEventDuration = fReliabilityFactor * fLRIMeanRepairTime; 
break; 

case 1: // exponential 
feEventDuration = fReliabilityF actor * 

GetExponentialResult(randomnumberlist, 
iRandomNumberStream,fLRIMeanRepairTime); 

break; 
case 2: // Lognormal 

feEventDuration = fReliabilityFactor * 
GetLognormalResult(randomnumberlist, 
iRandomNumberStream,fLRIMeanRepairTime, 
fRepairVariance); 

break; 
case 3: // Normal 

// Return is bounded to ensure no negative values 
// Max, Min and Variance read in from Simulation parameters File 
feEventDuration = fReliabilityFactor * 

GetBoundedNormal(randomnumberlist, 
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iRandornNurnberStream,fLRJMeanRepairTime,fRepairMin, 
fRepairMax, fRepair Vari ance); 

break; 
case 4: // Triangular 

feEventDuration = fReliabilityFactor * 
GetTriangularResult(randomnumberlist, 
iRandomNumberStream,fLRIMeanRepairTime,fRepairMin, 
fRepairMax,iRepairDivisor); 

break; 
case 5: // Weibull 

feEventDuration = fReliabilityFactor * 
GetWeibullResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanRepairTime,fRepairShape,fRepairGamnia); 

break; 
} 
// Check if the LRI has a spurious fault 
if (fNoFaultFoundAtDepotPactor > 0) 
{ 

iRandomNumberStream = 5; 
// get random number 
fRandomNumber = GetRandomNumber(randomnumberlist, 

iRandomNumberStream); 
// Depot repair time = test time = 0.2 * repair time 
if (fRandomNumber <= fNoFaultFoundAtDepotFactor) 
{ 

feEventDuration *= 0.2; 
} 

} 
feEventTime - fClockTime +feEventDuration; 
fePreviousEventTime - fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime, 

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft, 
ieLRIPosition,ieLRIType,ieNumberOfLRIs,feEventDuration); 

} 
break; 

) 
} 

} 
} 
//Event 5 - Event LRI Removal Complete 
void CALSSimDoc::EventLRJRemovalComplete(CObList& aircraftlist, 

CObList& eventlist,CObList& randomnumberlist,CObList& stocklist) 
( 

// list control variables 
CAircraft* pAircraft; 
POSITION AircraftPos; 
CStock* pStock; 
POSITION StockPos; 
if (bStoringEvents) 
{ . 

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft, 
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iLRJPosition,iLRIType,iNumberOfLRIs,iEventDuration); 
} 
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;) 
{ 

p Aircraft = (CAircraft*)aircraftlist.GetNext^ AircraftPos); 
if (pAircraft->GetAircraftNumber() == iAircraftNumber) 
( 

// Action repair and replacement if spare available 
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;) 
{ 

pStock = (CStock*)stocklist.GetNext(StockPos); 
if (pStock->GetStockType() = iLRIType) 
{ 

// Get Repair location 
// get random number 
iRandomNumberStream = 3; 
fLRIProportionRepairedAtUnit = 

GetRandomNumber(randomnumberlist,iRandomNumberStream); 
//send random number to p Stock 
bLRIRepairOnUnit = (pStock-> 

LRIRepairedOnUnit(fLRIProportionRepairedAtUnit)); 
if (bLRIRepairOnUnit) 
{ 

// Get Repair Time for Unit repair of LRJ and insert a LRI Repair 
// complete event into the queue 
ieEventNumber = 7; 
ieAircraftNumber = 0; 
ieNumberOfAircraft = 0; 
ieLRIPosition = 0; 
ieLRIType = iLRIType; 
icNumberOfLRIs = 1; 
fLRIMeanRepairTime = pStock->GetUnitRepairTime(); 
// add repair time randomness if appropriate 
iRandomNumberStream = 2; 
// action on repair distribution used 
switch (iRepairDistributionUsed) 
{ 

case 0: // none 
feEventDuration = fReliabilityFactor * 

fLRIMeanRepairTime; 
break; 

case 1: // exponential 
feEventDuration = fReliabilityF actor * 

GetExponentialResult(randomnumberlist, 
iRandomNumberStream,fL.RIMeanRepairTime); 

break; 
case 2: //Lognormal 

feEventDuration = fReliabilityFactor * 
GetLognormalResult(randomnumberlist, 
iRandomNumberStream,fLRIMeanRepairTime, 
fRepairVariance); 
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break; 
case 3: // Normal 

// Return is bounded to ensure no negative values 
// Max, Minand Variance read in from Simulation 
// parameters File 
feEventDuration = fReliabilityFactor * 

GetBoundedNormal(randomnumberlist, 
iRandomNumberStream,flLRJMeanRepairTime, 
fRepairMin,fllepairMax,fRepairVariance); 

break; 
case 4: // Triangular 

feEventDuration - fReliabilityFactor * 
GetTriangularResult(randomnumberIist, 
iRandomNumberStream,fLRIMeanRepairTime, 
fRepairMin,flR.epairMax,iRepairDivisor); 

break; 
case 5; // Weibull 

feEventDuration = fReliabilityFactor * 
GetWeibullResult(randomnumberlist, 
iRandomNumberStream,fLRIMeanRepairTime, 
fRepairShape,fRepairGamma); 

break; 
} 
// check for no fault found 
if (fNoFaultFoundAtUnitFactor > 0) 
{ 

iRandomNumberStream = 4; 
// get random number 
fRandomNumber = GetRandomNumber(randomnumberlist, 

iRandomNumberStream); 
// if random number < fNoFaultFoundAtUnit Factor 
// Unit repair time = test time = .2 * repair time 
if (fRandomNumber <= fNoFaultFoundAtUnitFactor) 

( 
feEventDuration *= 0.2; 

} 
} 
feEventTime = fClockTime +feEventDuration; 
fePreviousEventTime = fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime, 

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft, 
ieLRJPosition,ieLRIType,ieNumberOfLRIs,feEventDuration); 

} 
else 
{ 

// Increment the number of unserviceable LRIs in stock 
pStock->IncreaseUnitUnserviceab]eStock(); 

} 
// If stock is available at the unit to replace removed LRI 
if (p$tock->GetUnitServiceableStock() > 0) 
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// Reduce Serviceable Stock 
pStock->ReduceUnitServiceableStock(); 
// Change LRI state to being fitted(5) 
iLRIState = 5; 
pAircraft->UpdateRemovedLRI(iLRIPosition,iLRIState); 
// If LRI being replaced call Iru replacement event 
fEventDuration = pStock->GetReplacementTime(); 
// Insert a LRI replacement complete event into the event queue 
ieEventNumber = 6; 
ieAircraftNumber = iAircraftNumber; 
ieNumberOfAircraft = 1; 
ieLRIPosition = iLRIPosition; 
ieLRIType = iLRIType; 
ieNumberOfLRIs = 0; 
feEventDuration = fEventDuration; 
feEventTime = fClockXime +feEventDuration; 
fePreviousEventXime = fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime, 

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft, 
ieLRIPosition,ieLRIType,ieNumberOfLRIs,feEventDuration); 

break; 
} 
// No stock is available at the unit to replace removed LRI 
else 
{ 

// Change LRI State to removed and increment number of LRIs 
// required for aircraft 
iLRIState = 4; 
pAircraft->UpdateRemovedLRI(iLRIPosition,iLRIState); 
// Increment Number of spares of this type required for aircraft 
pStock->IncreaseNumberRequiredForAircraft(); 
// Check if a spare available at the depot 
if (pStock->GetDepotServiceableStock() > 0) 

{ 
// Reduce Serviceable Stock 
pStock->ReduceDepotServiceableStock(); 
// Increment Allocated Stock 
pStock->IncreaseDepotAllocatedStock(); 

} 
break; 

} 
} 

} 
break; 

} 
} 
//Event 7 - Event LRI Repair Complete 
void CALSSimDoc::EventLRlRepairComplete(CObList& aircraftlist,CObList& eventlist, 

CObList& stocklist) 
{ 
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// list control variables 
CStock* pStock; 
POSITION StockPos; 
iLRIPosition = 0; 
if (bStoringEvents) 

( 
SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft, 

iLRIPosition,iLRIType,iNumberOflLRIs,fEventDuration); 
} 
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;) 

{ 
pStock = (CStock*)stocklist.GetNext(StockPos); 
if (pStock->GetStockType() == iLRlType) 

{ 
// LRI Repaired at the unit 
if (iAircraftNumber == 0) 

{ 
// If LRIs of this type required for aircraft 
if (pStock->GetNumberRequiredForAircraft() > 0) 
{ 

pStock->ReduceNumberRequiredForAircraft(); 
AllocateLRIToAircraft(aircraftlist,eventlist,stocklist,iLRIType); 
break; 

} 
// Otherwise increase serviceable stock of this type 
else 
{ 

iNumberOfLRIs = 1; 
pStock->IncreaseUnitServiceableStock(iNumberOfLRIs); 
break; 

} 
} 
// LRI Repaired at the Depot 
else 
{ 

// LRI required at the unit 
if (pStock->MoreLRIsRequiredAtUnit() || 

(pStock->GetNumberRequiredForAircrafi:() > 0)) 

{ 
pStock->IncreaseDepotAllocatedStock(); 

} 
// LRI not required at the unit 
else 
{ 

pStock->lncreaseDepotServiceableStock(); 
break; 

} 
} 

1 
) 
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//Event 6 - Event LRI Replacement Complete 
void CALSSimDoc::EventLRIReplacementComplete(CObList& aircraftlist, 

CObList& eventlist,CObList& randomnumberlist,CObList& stocklist) 
{ 

// list control variables 
CAircraft* pAircraft; 
POSITION AircraAPos; 
CStock* pStock; 
POSITION StockPos; 
if (bStoringEvents) 
{ 

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft, 
iLRIPosition,iLRIType,iNumberOfLRIs,fEventDuration); 

} 
// Get mean time to failure for this type of LRI 
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;) 
{ 

pStock = (CStock*)stocklist.GetNext(StockPos); 
if (pStock->GetStockType() == iLRIType) 

( 
fLRIMeanFailureTime = pStock->GetMeanFailureTime(); 
break; 

} 
} 
// Calculate failure time for this LRI 
iRandomNumberStream = 1; 
// action on failure distribution used 
switch (iFailureDistributionUsed) 
{ 

case 0: // none 
fLRIFailureTime = fReliabilityFactor * flLRIMeanFailureTime; 
break; 

case 1: // Exponential 
fLRIFailureTime = fReliabilityFactor * 
GetExponentialResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime); 

break; 
case 2: // Lognormal 

fLRIFailureTime = fReliabilityFactor * 
GetLognormalResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,flFailure Variance); 

break; 
case 3: // Normal 

// Return is bounded to ensure no negative values 
// Max, Min and Variance read in from Simulation parameters File 
fLRIFailureTime = fReliabilityFactor * 

GetBoundedNormal(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,fFailureMin,fFailureMax,fFailure Variance); 

break; 
case 4: // Triangular 
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fLRJFailureTime = fReliabilityFactor * 
GetTriangularResult(randomnumberlist,iRandomNumberStream, 
fLRJMeanFailureTime,fFailureMin,fFailureMax,iFailureDivisor); 

break; 
case 5: // Weibull 

fLRJFailureTime = fReliabilityF actor * 
GetWeibullResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,fFailureShape,fFailureGamma); 

break; 
} 
// Update the aircraft and relevant LRl 
for (AircraftPos = aircrafllist.GetHeadPosition();AircraftPos != NULL;) 
( 

p Aircraft = (CAircraft*)aircraftlist.GetNext( AircraftPos); 
if (pAircraft->GetAircraftNumber() == iAircraftNumber) 
( 

pAircraft->UpdateReplacedLRJ(iLRIPosition,fLRIFailureTime); 
//If no unserviceable LRIs fitted 
if (pAircraft->GetAjrcraftState() == 4) 
{ 

// Update the Unserviceable time counter 
pAircraft->SetTimeUnserviceable(fClockTime); 
// And there is a pre-flight servicing team available 
if (iNumberOfPreFlightServicingTeams > 0) 
{ 

EventPreFlightServicingStart(eventlist); 
// Decrement number of servicing teams 

} 
else 
{ 

iAircraftState = 5; 
pAircraft->Set Aircraft State(i Aircraft State); 

} 
} 
break; 

} 
} 

} 
//Event 2 - Event Mission Required 
void CALSSimDoc:;EventMissionRequired(CObList& aircraftlist, 

CObList& delayedflightlist,CObList& eventlist,CObList& stocklist) 
{ 

// list control variables 
CAircraft* pAircraft; 
POSITION AircraftPos; 
if (bStoringEvents) 
{ 

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft, 
iLRIPosition,iLRIType,iNumberOfLRIs,fEventDuration); 

) 
// Incease Daily Missions Tasked Counter 
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iNumberOfDailyFlightsTasked += iNumberOfAircraft; 
if (iNumberOfAircraftAvailable >= iNumberOfAircraft) 
{ 

iNumberOfAircraftAvailable -= iNumberOfAircraft; 
for (iNumberOfAircraft;iNumberOfAircraft > 0;iNumberOfAircraft—) 
( 

// Get first aircraft available and allocate it 
for (AircraftPos = aircraftlist,GetHeadPosition();AircraftPos != NULL;) 
{ 

p Aircraft =(CAircraft*)aircraftlist.GetNext(AircraftPos); 
if (pAircraft->GetAircraftState() == 1) 

{ 
iAircraftNumber = pAircraft->GetAircraftNumber(); 
EventTakeOfif(aircraftlist,eventlist,stocklist,iAircraftNumber, 

iEventNumber); 
break; 

} 
} 

} 
} 
else 
// Action if no aircraft allocated to the flight 

( 
//increment number of delayed flights 
iNumberOfFlightsDeiayed+= iNumberOfAircraft; 
//Add the flight to the list of delayed flights 
delayedflightlist.AddTail(new CDelayedFlight(fClockTime,iNumberOfAircraft, 

fMaximumFlightDelay,fEventDuration)); 
} 

} 
//Event 1 - Event New Day 
void CALSSimDoc;:EventNewDay(CObList& aircraftlist,CObList& eventlist, 

CObList& dailyresultslist,CObList& stocklist,bool bEndRun) 
{ 

// list control variables 
CAircraft* pAircraft; 
POSITION AircraftPos; 
CDailyResults* pDailyResults; 
POSITION DailyResultsPos; 
CStock* pStock; 
POSITION StockPos; 
// Increment day number; 
iDayNumber++; 
//Zero the daily results counters 
ZeroDailyStatesCounters(); 
// create the daily results linked list 
if (iRunNumber == 1) 
{ 

dailyresultslist.AddTail(new CDailyResults(iDayNumber)); 
) 
// If storing events, save the End Run Event to the events filefile 
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if (bStoringE vents) 
{ 

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft, 
iLRIPosition,iLRJType,iNumberOfLRIs,fEventDuration); 

} 
// If not called by Event End Run, get the aircraft states and store 
//values in the daily results within the run results file 
if (bEndRun = false) 
{ 

for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;) 

{ 
p Aircraft =(C Aircraft * )aircraftlist. GetNext( AircraftPos); 
iAircraftState = pAircraft->GetAircraftState(); 
switch (iAircraftState) 

{ 
case 1: 

iNumberOfAircraftServiceable++; 
break; 

case 2: 
iNumberOfAircraftFlying++; 
break; 

case 3: 
iNumberOfAircraftUnserviceable++; 
break; 

case 4: 
iNumberOfAircraftInPreFlightServicing++; 
break; 

case 5: 
iNumberOfAircraftAwaitingPreFlightServicing++; 
break; 

} 
} 
// store aircraft states and daily flight achievements for the day 
// Sum of all runs 
for (DailyResultsPos = dailyresultslist.GetHeadPosition(); 

DailyResultsPos != NULL;) 

{ 
pDailyResults =(CDailyResults*)dailyresultslist.GetNext(DailyResultsPos); 
if (pDailyResults->GetDayNumber() == iDayNumber) 

{ 
pDailyResults-

>SaveDailyAircraftStates(iNumberOfAircraftServiceable, 
iNumberOfAircraftFlying,iNumberOfAircraftUnserviceable, 
iNumberOfAircraftlnPreFlightServicing, 
iNumberOfAircraftAwaitingPreFlightServicing); 

break; 
} 

} 
} 
if (iDayNumber > 1) 
{ 
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SaveDailyFlyingStats(daiIyresuItslist,iDayNumber, 
iNumberOfDailyFlightsTasked,iNumberOfDailyFlightsOnTime, 

iNumberOfDailyFlightsFirstHalfDelay, 
iNumberOfDailyFlightsSecondHalfDelay,iNumberOfDailyFlightsCancelled, 

iNumberOfDailyFIightsInFlightAbort,iNumberOfDai!yFlightsFail, 
iNumberOfDailyFlightsSucceed); 

} 
// Zero the Daily Flight Achievement Counters 
ZeroDailyFlightsCountersO; 
// Check to see if any LRJs need moving from their current location 
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;) 
{ 

pStock = (CStock*)stocklist.GetNext(StockPos); 
// Are there any Unserviceable LRIs in Stock at the unit 
iNumberOfLRIs = pStock->GetUnitUnserviceableStock(); 
if (iNumberOfLRIs > 0) 

{ 
// Zero the Number of Unserviceable LRIs in Stock 
pStock->ZeroUnitUnserviceableStock(); 
// Insert LRI arrival event into event list 
ieEventNumber = 8; 
ie AircraftNumber = -1; 
ieNumberOfAircraft = 0; 
ieLRIPosition = 0; 
ieLRIType = pStock->GetStockType(); 
ieNumberOfLRIs = iNumberOfLRIs; 
feEventDuration = ADepotUnitTransferTime; 
feEventTime = fClockTime +feEventDuration; 
fePreviousEventTime = fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime, 

ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition,ieLRIType, 
ieNumberOfLRIs,feEventDuration); 

} 
// Are there any Serviceable LRIs at the depot to be transferred to the unit 
iNumberOfLRIs = pStock->GetDepotAllocatedStock(); 
if (iNumberOfLRIs > 0) 
{ 

// Zero the number of LRIs at the depot awaiting allocation 
pStock->ZeroDepotAllocatedStock(); 
// Insert LRI arrival event into event list 
ieEventNumber = 8; 
ieAircraftNumber = 0; 
ieNumberOfAircraft = 0; 
ieLRIPosition = 0; 
ieLRIType = pStock->GetStockType(); 
ieNumberOfLRIs = iNumberOfLRIs; 
feEventDuration = fDepotUnitTransferTime; 
feEventTime = fClockTime +feEventDuration; 
fePreviousEventTime = fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime, 

ieAircraftNumber, ieNumberOfAircraft,ieLRIPosition,ieLRIType, 
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ieNumberOfLRIs,feEventDuration); 
} 

} 
} 
//Event 4 - Event Pre Flight Servicing Complete 
void CALSSimDoc::EventPreFlightServicingComplete(CObList& aircraftlist, 

CObList& delayedflightlist,CObList& eventlist,CObList& stocklist) 
{ 

// list control variables 
CAircraft* pAircraft; 
POSITION AircraftPos; 
CDelayedFlight* pDelayedFlight; 
POSITION DelayedFlightPosl; 
POSITION DelayedFlightPos2; 
// Increment the number of aircraft available for allocation to missions 
iNumberOfAircraftAvailable++; 
// Find the aircraft that has just had its pre-flight servicing completed 
iLRJPosition = 0; 
iLRIType = 0; 
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;) 

{ 
p Aircraft = (C Aircraft * )aircraftlist. GetNext( AircraftPos); 
if (pAircraft->GetAircraftNumber() == iAircraftNumber) 
{ 

iAircraftState = 1; 
p Ai rcraA-> S et Aircraft State(i Aircraft St ate); 
// Update the Flight Servicing time counter 
pAircraft->SetTimeInPreFlightServicing(fClockTime); 
// If storing events, save the Landing Event to the events filefile 
if (bStoringEvents) 
{ 

SaveEvent(iEventNumber,fClockTime,iAircraftNumber, 
iNumberOfAircraft,iLRIPosition, iLRIType,iNumberOfLRIs, 
fEventDuration); 

} 
break; 

} 
) 
// If there are any delayed flights outstanding and aircraft not allocated to mission 
b Aircraft AllocatedToFlight = false; 
for (DelayedFlightPosl = delayedflightlist.GetHeadPosition(); 

DelayedFlightPosl != NULL;) 
{ 

DelayedFlightPosl = DelayedFlightPosl; 
pDelayedFlight = 

(CDelayedFlight*)delayedflightlist.GetNext(DelayedFlightPosl); 
fLastTakeOftTime = pDelayedFlight->GetLastTakeOffTime(); 
iNumberOfAircraft = pDelayedFlight->GetNumberOfAircraftRequired(); 
// If latest time has already passed cancel the flight 
if (fClockTime > fLastTakeOftTime) 
{ 
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delayedflightlist.RemoveAt(DeIayedFlightPos2); 
iNumberOfFlightsCancelled+= iNumberOfAircraft; 
iNumberOfDailyFlightsCance!led+= iNumberOfAircraft; 
iNumberOflFlightsDelayed-= iNumberOfAircraft; 
// Release the memory occupied by the delayed flight object 
delete pDelayedFlight; 

} 
// If current time within acceptable delay range and sufficient aircraft available 
else 
{ 

if (iNumberOfAircraftAvailable >= iNumberOfAircraft) 
{ 

// Reduce the number of aircraft available 
iNumberOfAircraftAvailable -= iNumberOfAircraft; 
iNumberOfFlightsDelayed -= iNumberOfAircraft; 
fEventDuration = pDelayedFlight->GetFlightDuration(); 
delayedflightlist.RemoveAt(DelayedFlightPos2); 
iNumberOfAircraft—; 
// Allocate aircraft to the mission 
b Aircraft AllocatedToFlight = true; 
EventTakeOff'(aircraftlist,eventlist,stocklist,iAircraftNumber, 

iEventNumber); 
// Allocate any other aircraft required 
for (iNumberOfAircraft;iNumberOfAircraft > 0;iNumberOfAircraft—) 

( 
// Get first aircraft available and allocate it 
for (AircraftPos = aircraftlist.GetHeadPosition(); 

AircraftPos != NULL;) 
{ 

p Aircraft =(C Aircraft * )aircraftlist. GetNext( AircraftPos); 
if (pAircraft->GetAircraftState() == 1) 

{ 
iAircfaftNumber = pAircraft->GetAircraftNumber(); 
EventTakeOff"(aircraftlist,eventlist,stocklist,iAircraftNumber, 

iEventNumber); 
break; 

} 
} 

} 
// Release the memory occupied by the delayed flight object 
delete pDelayedFlight; 

} 
} 
if (bAircraftAllocatedToFlight == true) 

( 
break; 

} 
} 
// increment the number of pre-flight servicing teams available 
iNumberOflPreFlightServicingTeams++; 
// check to see if any aircraft are awaiting pre-flight servicing 
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for (AircraftPos = aircrafi;list.GetHeadPosition();AircraftPos != NULL;) 
{ 

p Aircraft = (CAircraft*)aircraftlist.GetNext(AircraftPos); 
// Aircraft waiting for pre-flightservicing 
if(pAircraft->GetAircraftState() == 5) 

{ 
iAircraftNumber = pAircraft->GetAircraftNumber(); 
iAircraftState = 4; 
pAircraft->SetAircraftState(iAircraftState); 
// Update the awaiting Pre-Flight Servicing time counter 
pAircraft->SetTimeAwaitingPreFlightServicing(fClockTime); 
EventPreFlightServicingStart(eventlist); 
break; 

} 
} 

} 
//Event 10 - Event Pre Flight Servicing Start 
void CALSSimDoc::EventPreFlightServicingStart(CObList& eventlist) 

{ 
iEventNumber = 10; 
// Decrement number of sevicing teams 
iNumberOfPreFlightServicingXeams—; 
// If storing events, save the Event to the events filefile 
if (bStoringEvents) 
{ 

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft, 
iLRIPosition,iLRIType,iNumberOfLRIs,fEventDuration); 

} 
//Insert pre-flight servicing complete event for this aircraft into the event queue 
ieEventNumber = 4; 
ieAircraftNumber = iAircraftNumber; 
ieNumberOfAircraft = 1; 
ieLRIPosition = 0; 
ieLRIType = 0; 
ieNumberOfLRIs = 0; 
feEventDuration = fPreFlightServicingDuration; 
feEventXime = fClockTime +feEventDuration; 
fePreviousEventTime = fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime, 

ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition,ieLRIType, 
ieNumberOfLRIs,feEventDuration); 

} 
//Event 9 - Event Take Off 
void CALSSimDoc::EventTakeOfF(CObList& aircraftlist,CObList& eventlist, 

CObList& stocklist,int iAircraftNumber,int iEventNumber) 
{ 

CAircraft* pAircraft; 
POSITION AircraftPos; 
CStock* pStock; 
POSITION StockPos; 
//change aircraft state to flying 
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for (AircraftPos = aircrafi:list.GetHeadPosition();AircraftPos !=NIJLL;) 
{ 

p Aircraft = (CAircraft*)aircraftlist.GetNext( AircraftPos); 
if (pAircraft->GetAircraftNumber() == iAircraftNumber) 

{ 
iAircraftState = 2; 
pAircraft->SetAircraftState(iAircraftState); 
// Set In Flight Abort Boolean variable to false 
bInFlight Abort State = false; 
pAircraft->SetInFlightAbortState(bInFlightAbortState); 
if (iEventNumber == 2) 
{ 

// Update the serviceable time counter and Change Aircraft State 
pAircraft->SetTimeServiceable(fClockTime); 
// Increment flights on time counters 
iNumberOfFlightsOnTime++; 
iNumberOfDailyFlightsOnTime++; 

} 
else 
{ 

// increment the relevant flightdelay counter 
if (fLastTakeOffTime - fClockTime < fMaximumFlightDelay/2) 
( 

iNumberOfFlightsSecondHalfDelay++; 
iNumberOrDailyFlightsSecondHalfDelay++; 

} 
else 
{ 

iNumberOflFlightsFirstHalfDelay++; 
iNumberOfDailyFlightsFirstHalfDelay++; 

} 
} 
b Aircraft AllocatedToFlight = true; 
// If storing events, save the Take Off Event to the events filefile 
if (bStoringE vents) 
{ 

iEventNumber = 9; 
iLRIPosition = 0; 
iLRIType = 0; 
SaveEvent(iEventNumber,fClockTime,iAircraftNumber, 

iNumberOfAircraft, iLRIPosition,iLRIType,iNumberOfLRIs, 
fEventDuration); 

} 
// If failure before planned landing set up in flight failure 
fAircraftFailureTime = pAircraft->GetAircraftFailureTime(); 
fAircraftFlyingHours = pAircraft->GetAircraftFlyingHours(); 
iNumberOfFailedEssentialLRIs = 0; 
if ( fAircraftFailureTime < fAircraftFlyingHours + fEventDuration) 

( 
bFirstTime = true; 
iLRIPosition = 1; 
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while (iLRIPosition > 0) 
{ 

iLRIPosition = pAircraft-> 
GetLRIFailedInFlight(bFirstTime,fEventDuration); 

bFirstTime = false; 
// Get the LRI position 
if (iLRIPosition > 0) 
{ 

iLRIType = pAircraft->GetUnserviceableLRIType(); 
// Get LRI Essentiality 
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;) 
{ 

p Stock = (CStock*)stocklist.GetNext(StockPos); 
if (pStock->GetStockType() == iLRIType) 
( 

if (pStock->GetLRIEssentiality() == 1) 
( 

// Increment the number of essential failure 
iNumberOfFailedEssentialLRIs++; 
fLRIFailureXime = pAircraft-> 

GetLRIFailureTime(iLRIPosition); 
// Insert an in flight failure event into the event queue 
ieEventNumber =11; 
ieAircraftNumber = iAircraftNumber; 
ieNumberOfAircraft = 1; 
feEventTime = fClockXime +fLRIFailureTime -

fAircraftFlyingHours; 
ieLRIPosition = iLRIPosition; 
ieLRIType = iLRIType; 
ieNumberOfLRIs = 1; 
feEventDuration = fEventDuration; 
fePreviousEventTime = fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime, 

fePreviousEventTime,ieAircraftNumber, 
ieNumberOfAircraft,ieLRIPosition,ieLRIType, 
ieNumberOfLRIs,feEventDuration); 

} 
break; 

} 
} 

} 
// Check to see if essential LRIs have failed 
if (iNumberOflFailedEssentialLRIs == 0) 

{ 
// The mission will be a success 
iNumberOfFlightsSucceed++; 
iNumberOfDailyFlightsSucceed++; 

} 
// Save planned mission times for landing cleanup 
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pAircraft->SavePlannedLandingTime(fClockTime,fEventDuration); 
//Insert a landing event for this flight into the event queue 
ieEventNumber - 3; 
feEventTime = fClockTime +fEventDuration; 
ieAircraftNumber = iAircraftNumber; 
ieNumberOfAircraft = 1; 
ieLRIPosition = 0; 
ieLRJType - 0; 
ieNumberOfLRIs = 0; 
feEventDuration = fEventDuration; 
fePreviousEventTime - fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime, 

ieAircraftNumber,ieNumberOfAircraft,ieLRJPosition,ieLRIType, 
ieNumberOfLRJs,feEventDuration); 

break; 
} 

} 
} 
// CALSSimDoc commands 
bool CALSSimDoc: :IsValidFileSpec (LPCSTR IpszFileSpec) 
( 

OFSTRUCT of; 
if (OpenFile (IpszFileSpec, &of: OF EXIST) = HFILE_ERROR) 
{ 

return false; 
} 
else 
{ 

return true; 
} 

} 
float CALSSimDoc;;GetBoundedNormal(CObList& randomnumberlist, 

int iRandomNumberStream,float fLRIMeanFailTime,float fFailMin, 
float fFailMax,float fVariance) 

{ 
fLRIFailureMin = fLRIMeanFailTime * fFailMin; 
fLRIFailureMax - fLRIMeanFailTime * fFailMax; 
fLRIFailureTime - 0; 
while ((fLRIFailureTime < (fLRIFailureMin)) ||(fLRIFailureTime > 

(ALRIFailureMax))) 

{ 
flLRlFailureTime = flReliabilityFactor * 

GetNormalResult(randomnumberlist,iRandomNumberStream, 
flLRIMeanFailTime,fVariance); 

1 
return fLRIFailureTime; 

} 
float CALSSimDoc::GetExponentialResult(CObList& randomnumberlist, 
int iStreamNumber,float fMean) 
{ 

fRandomNumber = GetRandomNumber(randomnumberlist,iStreamNumber); 
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(Result = (-fMean)*log(l - fRandomNumber); 
return fResult; 

} 
float CALSSimDoc::GetLognormalResult(CObList& randomnumberlist, 

int iStreamNumber,float fMean,float fVariance) 
( 

// use a Lognormal(l,fVariance) distribution 
fLogMu = 1; 
fLog Variance = fV ariance; 
fLogMean = exp(fLogMu + fLog Variance/2); 
// get normal value then convert 
feEventDuration =GetNormalResult(randornnumberlist,iRandomNumberStream, 

fLogMu,flLog Variance); 
fResult = exp(feEventDuration); 
// Convert the value to take account of the actual mean 
fResult = (fResult * fMean)/fLogMean; 
return fResult; 

} 
float CALSSimDoc::GetNormalResult(CObList& randomnumberlist, 

int iStreamNumber,float fMean,float fVariance) 
{ 

// First generate a U(0,1) value 
// formula generates 2 numbers but only one is used 
bAcceptableResult = false; 
while (bAcceptableResult '= true) 
{ 

fRandomNumber 1 = GetRandomNumber(randomnumberlist,iStreamNumber); 
fRandomNumber2 = GetRandomNumber(randomnumberlist,iStreamNumber); 
fNormalValue 1 = 2*fRandomNumberl - 1; 
fNormalValue2 = 2*flR.andomNumber2 - 1; 
fNormalCheck Value = pow(fNormal Value 1,2) + pow(fNormalValue2,2); 
if (fNormalCheck Value <=1) 

{ 
bAcceptableResult = true; 
fNormalCalculation Value = 

sqrt((-2 * log(fNormalCheck Value))/fNformalCheck Value); 
// calculate for N(l,fVariance) 
fNormalNumber = 1 + (sqrt(fVariance) * fNormal Value 1 * 

fNormalCalculation Value); 
fNormalNumber = fNormalNumber * fMean; 
// Second value not used thus not calculated or returned 

} 
} 
return fNormalNumber; 

} 
float CALSSimDoc::GetRandomNumber(CObList& randomnumberlist, 
int iStreamNumber) 
{ 

// Set up pointers to the Random Number Class 
CRandomNumber* pRandomNumber; 
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pRandomNumber = (CRandomNumber*)randomnumberlist.GetHead(); 
fRandomNumber = pRandomNumber->GenVal(iStreamNumber); 
return fRandomNumber; 

} 
float CALSSimDoc::GetTriangularResult(CObList& randomnumberlist, 

int iStreamNumber,float fLRIMean,float fTriangleMin,float fTriangleMax, 
float fTriangleDiv) 

{ 
// shape parameters read in from file 
// mode = min +(max-min)/div 
float B,T,X; // temporary variables used within the operation 
fTriangleRange - fTriangleMax - fTriangleMin; 
fTriangleMode -fTriangleMin + (fTriangleRange/fTriangleDiv); 
B = (fTriangleMode - fTriangleMin)/fTriangleRange; 
fRandomNumber = GetRandomNumber(randomnumberlist,iStreamNumber); 
if (fRandomNumber < B) 

T = sqrt(B * fRandomNumber); 
else 

T = 1 - sqrt((l - B)*(l - fRandomNumber)); 
X = (fTriangleMin + (frriangleRange*T)); 
// Convert the result to take account of the LRI Mean 
fResult = (X * fLRIMean)/((fTriangIeMin + fTriangleMax + fTriangleMode)/]); 
return fResult; 

} 
float CALSSimDoc:;GetWeibullResult(CObList& randomnumberlist,int iStreamNumber, 

float fLRIMean,float fShape, float fGamma) 
{ 
// a = fScale; 
// b = fShape; 
// a = fLRIMean /fGamma where fGamma = gamma(l + 1/b) entered as fixed value 

fScale = fLRIMean / fGamma; 
fRandomNumber = GetRandomNumber( randomnumberlist,iStreamNumber); 
fResult = fScale*(pow(-log(l-fRandomNumber), 1/fShape)); 
return fResult; 

} 
/ Allocate the repaired LRI to an aircraft 
void CALSSimDoc::AIlocateLRIToAircraft(CObList& aircraftlist,CObList& eventlist, 

CObList& stocklist,int iLRIType) 
{ 

// Set up pointers to Classes 
CAircraft* pAircraft; 
POSITION AircraflPos; 
CStock* pStock; 
POSITION StockPos; 
for (AircraftPos = aircraftlist,GetHeadPosition();AircraflPos != NULL;) 
{ 

p Aircraft = (CAircraft*)aircraftlist.GetNext( AircraftPos); 
// Aircraft requires LRI of some type 
if (pAircraft->GetNumberOflLRIsRequired() > 0) 
{ 

// LRI of this type required on the aircraft 
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if (pAircraft->CheckLRITypeRequired(iLRJType)) 
{ 

// Decrement the number of LRIs Required on the Aircraft 
pAircraft->ReduceNumberOfLRIsRequired(); 
// Change LRl state to being fitted(5) 
iLRIState = 5; 
// Get the LRl position for the LRl to be fitted to 
iLRIPosition = pAircraft->UpdateLRIRequired(iLRIType,iLRIState); 
// Set up LRl replacement event 
for (StockPos = stocklist.GetHeadPosition();StockPos !=NULL;) 

{ 
pStock = (CStock*)stocklist.GetNext(StockPos); , 
if (pStock->GetStockType() == iLRIType) 

{ 
fEventDuration = pStock->GetReplacementTime(); 
break; 

} 
} 
//Insert a LRl replacement complete event into the event queue 
ieEventNumber = 6; 
ieAircraftNumber = pAircraft->GetAircraftNumber(); 
leNumberOfAircraA ^ 1; 
ieLRJPosition = iLRIPosition; 
ieLRIType = iLRJType; 
ieNumberOfLRls = 0; 
feEventDuration = fEventDuration; 
feEventTime = fClockXime + feEventDuration; 
fePreviousEventXime = fClockTime; 
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime, 

ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition,ieLRIType, 
ieNumberOfLRls,feEventDuration); 

break; 
} 

} 
} 

} 
void CALSSimDoc;:CreateAircraft(CObList& aircraftlist, CObList& randomnumberlist, 

CObList& stocklist) 
{ 

// Set up the pointer to access the aircraft list 
CAircraft* pAircraft; 
// Create the aircraft and the fitted LRIs 
for (iAircraftNumber = 1 ;iAircraftNumber <= iNumberOfAircraft; 

iAircraftNumber++) 
{ 

aircraftlist.AddTail(new CAircraft(iAircraftNumber)); 
p Aircraft = (CAircraft*)aircraftlist.GetTail(); 
// Open the LRl data and LRl stock files 
ifstream LRIDatalF(sLRIDataFile); 
ifstream LRlStOGkIF(sLRIStockpile); 
//Read in the LRl data and build LRIs into the aircraft and LRl Stock files 
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LRIDatalF » iLRIType » iLRTNfumberFitted » fLRIMeanFailureTime » 
iLRIEssential » fLRIRemovalTime » fLRIRefitTime » 
fLRIProportionRepairedAtUnit»fLRIUnitRepairTime » 
fLRIDepotRepairTime; 

iLRIPosition = 1; 
while (LRIDatalF) 
( 

// Calculate LRI FailureTime 
iRandomNumberStream = 1; 
for (iLRINumberFitted;iLRINumberFitted > 0;iLRINumberFitted—) 
{ . . . . 

// action on failure distribution used 
switch(iFailureDistributionUsed) 
{ 
case 0: // none 

fLRIFailureTime = fReliabilityFactor * fLRIMeanFailureXime; 
break; 

case 1: // exponential 
fLRIFailureTime = fReliabilityFactor * 

GetExponentialResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime); 

break; 
case 2: // Lognormal 

fLRIFailureTime = fReliabilityFactor * 
GetLognormalResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,fFailureVariance); 

break; 
case 3: // Normal 

// Return is bounded to ensure no negative values 
// Max, Min and Variance read in from Simulation parameters File 
fLRIFailureTime = fReliabilityFactor * 

GetBoundedNormal(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,fFailureMin,fFailureMax,fFailure Variance); 

break; 
case 4: // Triangular 

fLRIFailureTime = fReliabilityFactor * 
GetTriangularResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,flFailureMin,fFailureMax,iFailureDivisor); 

break; 
case 5: // Weibull 

fLRIFailureTime = fReliabilityFactor * 
GetWeibullResult(randomnumberlist,iRandomNumberStream, 
fLRIMeanFailureTime,fFailureShape,fFailureGamma); 

break; 
} 
// Generate new LRIs within the Aircraft class and return LRI position 
iLRIPosition = pAircraft-> 

AddNewLRI(iLRIPosition,iLRIType,fLRIFailureTime); 
} 
if (iAircraftNumber — 1) 
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} 

LRIStocklF » iLRIType » iLRJUnitStock » iLRJDepotStock; 
stocklist,AddTail(new CStock(iLRJType,fLRJMeanFailureTime, 

iLRIEssential,fLRIRemovalTime,fLRIRefitTime, 
fLRIProportionRepairedAtUnit,fLRIUnitRepairTime, 
fLRIDepotRepairTime,iLRIUnitStock,iLRIDepotStock)); 

} 
LRIDatalF » iLRIType » iLRINumberFitted » fLRIMeanFailureTime » 

iLRIEssential » fLRIRemovalTime » fLRIRefitTime » 
fLRIProportionRepairedAtUnit» fLRIUnitRepairTime » 
fLRIDepotRepairTime; 

} 
void CALSSimDoc::CreateDailyResults(CObList& dailyresultslist,int iNumberOfDays) 
{ 

for (iDayNumber = 1 ;iDayNumber <= iNumberOfDays;iDayNumber++) 
{ 

dailyresultslist.AddTail(new CDailyResults(iDayNumber)); 
} 

} 
void CALSSimDoc: :CreateRandomNumberStreams(CObList& randomnumberlist) 
{ 

randomnumberlist. AddTail(new CRandomNumber()); 
} 
void CALSSimDoc::EndSimuiation(CObList& aircraftlist,CObList& dailyresulisiist, 

CObList& randomnumberlist, CObList& stocklist) 
( 

// list control variables 
CAircraft* pAircraft; 
POSITION AircraftPos; 
CDailyResults* pDailyResults; 
POSITION DailyResultsPos; 
// Open the Output file 
ofstream ResultsOF(sResultsFile); 
// Change integer counters to floating point counters 
fNumberOfiFlightsCancelled = iTotalFlightsCancelled; 
fNumberOfFlightsFail = iTotalFlightsFail; 
fNumberOfFlightsFirstHalflDelay = iTotalFlightsFirstHalfDelay; 
fNumberOfFlightsInFlightAbort = iTotalFlightsInFlightAbort; 
fNumberOfFlightsOnTime = iTotalFlightsOnTime; 
fNumberOfFlightsSecondHalfDelay = iTotalFlightsSecondHalflDelay; 
fNfumberOfFlightsSucceed = iTotalFlightsSucceed; 
fNumberOfFlightsTakeOff = iTotalFlightsTakeOff; 
fNumberOfiFlightsTasked = iTotalFlightsTasked; 
// Calculate Means 
fMeanFlightsTasked = fNumberOfiFlightsTasked/iNumberOfRuns; 
fMeanFlightsOnTime = fNumberOlF'lightsOnTime/iNumberOfRuns; 
fMeanFlightsFirstHalfDelay = fNfumberOfFIightsFirstHalfDelay/iNumberOfRuns; 
fMeanFlightsSecondHalfDelay = 

ASfumberOfFlightsSecondHalfDelay/iNumberOfRuns; 
fMeanFlightsCancelled = fNumberOfFlightsCancelled/lNumberOfRuns; 
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fMeanFlightsTakeOff = fMeanFlightsOnTime + fMeanFlightsFirstHalfDelay + 
fMeanFlightsSecondHalfDelay; 

fMeanFlightsInFlightAbort = fNumberOfFlightsInFlightAbort/iNumberOfRuns; 
fMeanFlightsFail = fNumberOfFlightsFail/iNumberOfRuns; 
fMeanFlightsSucceed = fNumberOfFlightsSucceed/iNumberOfRuns; 
// Calculate Variances 
fVarianceFlightsOnTime = (iSquareNumberOfFlightsOnTime -

(2 * fNfumberOfFlightsOnTime * fMeanFlightsOnTime) + 
(iNumberOfRuns * pow(fMeanFlightsOnTime,2)))/(iNumberOfRuns - 1); 

fVarianceFlightsFirstHalfDelay = (iSquareNumberOfFlightsFirstHalfDelay -
(2 * fNumberOfFlightsFirstHallDelay * fMeanFlightsFirstHalfDelay) + 
(iNumberOfRuns * pow(fMeanFlightsFirstHalfDelay,2)))/(iNumberOfR.uns - 1); 

fVarianceFlightsSecondHalfDelay = (iSquareNumberOfFlightsSecondHalfDelay -
(2 * fNumberOfFlightsSecondHalfDelay * fMeanFlightsSecondHalfDelay) + 
(iNumberOfR-uns * pow(fMeanFlightsSecondHalfDelay,2)))/ 

(iNumberOfRuns - 1); 
fVarianceFlightsCancelled = (iSquareNumberOfFlightsCancelled -

(2 * fNumberOfFlightsCancelled * fMeanFlightsCancelled) + 
(iNumberOfRuns * pow(fMeanFlightsCancelled,2)))/(iNumberOfRuns - 1); 

fVarianceFlightsInFlightAbort = (iSquareNumberOfFlightsInFlightAbort -
(2 * fNumberOfFlightsInFlightAbort * fMeanFlightsInFlightAbort) + 
(iNumberOfRuns * pow(fMeanFlightsInFlightAbort,2)))/(iNumberOfRuns - 1); 

fVarianceFlightsTakeOfF= (iSquareNumberOfFlightsTakeOfF -
(2 * fNumberOfFlightsTakeOff * fMeanFlightsTakeOff) + 
(iNumberOfRuns * pr"A'(^rivieanFlightsTake0fr,2)))/(iNumbe; 0fRuns - 1), 

fVarianceFlightsFail = (iSquareNumberOfFlightsFail -
(2 * fNumberOfFlightsFail * fMeanFlightsFail) + 
(iNumberOfRuns * pow(fMeanFlightsFail,2)))/(iNumberOfRuns - 1); 

fVarianceFlightsSucceed = (iSquareNumberOfFlightsSucceed -
(2 * fNumberOfFlightsSucceed * fMeanFlightsSucceed) + 
(iNumberOfRuns * pow(fMeanFlightsSucceed,2)))/(iNumberOfRuns - 1); 

// Calculate Percentages 
fPercentageFlightsOnTime = fMeanFlightsOnTime/fMeanFlightsTasked *100; 
fPercentageFlightsFirstHalfDelay = fMeanFlightsFirstHalfDelay/ 

fMeanFlightsTasked *I00; 
fPercentageFlightsSecondHalfDelay = fMeanFlightsSecondHalfDelay/ 

fMeanFlightsTasked *100; 
fPercentageFlightsCancelled = fMeanFlightsCancelled/fMeanFlightsTasked *100; 
fPercentageFlightsTakeOfF- fPercentageFlightsOnTime + 

fPercentageFlightsFirstHalfDelay + fPercentageFlightsSecondHalfDelay; 
fPercentageFlightsInFlightAbort = fMeanFlightsInFlight Abort/ 

fMeanFlightsTasked* 100; 
fPercentageFlightsFail = fMeanFlightsFail/fN^eanFlightsTakeOfP 100; 
fPercentageFlightsSucceed = fMeanFlightsSucceed/fMeanFlightsTakeOfP 100; 
// Save The Simulation Results to the results file 
// Simulation Filenames 
ResultsOF « "Simulation Run Results File\n\n"; 
ResultsOF « "Simulation Files\n"; 
ResultsOF « "Simulation Input File\t\t" « sSimParametersFile « "\n"; 
ResultsOF « "Flying Programme \t\t" « sFlyingProgrammeFile « "\n"; 
ResultsOF « "LRI Data File \t\t" « sLRIDataFile « "\n"; 
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ResultsOF « "LRI Stock File \t\t" « sLRIStockFile « "\n"; 
ResultsOF « "Results File \t\t" « sResultsFile « "\n\n"; 
// Simulation Input Parameters 
ResultsOF « "Simulation Input parameters \n"; 
ResultsOF « "Number of Runs\t\ t \ t \ t"« iNumberOfRuns « "\n"; 
ResultsOF « "Number of Days\t\t \ t \ t"« iNumberOflDays « "\n"; 
ResultsOF « "Number of Aircraft\t\t\t\t" « iStartNumberOfAircraft « "\n"; 
ResultsOF « "Number of Pre-Flight Servicing teams\t\t\t\t" « 

iNumberOfPreFlightServicingTeams « "\n"; 
ResultsOF « "Pre-Flight Servicing Duration (hours)\t\t\t\t" « 

fPreFlightServicingDuration « "\n"; 
ResultsOF « "Maximum Delay for Flights (hours)\t\t\t\t" « 

fMaximumFlightDelay « "\n\n"; 
// Distribution Types and Parameters 
ResultsOF « "Distributions Used\n"; 
// Failure Distributions used 
switch (iFailureDistributionUsed) 
{ 
case 0; // None 

ResultsOF « "Failure - None"; 
break; 

case 1: // Exponential 
ResultsOF « "Failure - Exponential"; 
break; 

case 2; // Lognormal 
ResultsOF « "Failure - Lognormal\nVariance" « (FailureVariance; 
break; 

case 3: // Normal 
ResultsOF « "Failure - Normal\nMinimum\t" « fFailureMin « 

"\nMaximum\t" « fFailureMax; 
ResultsOF « "\nVariance\t" « fFailureVariance; 
break; 

case 4: // Triangular 
ResultsOF « "Failure - Triangular\nMinimum\t" « fFai lureMin« 

"\nMaximum\t" «fFai lureMax; 
ResultsOF « "\nDivisor\t" « iFailureDivisor; 
break; 

case 5 ; // Weibull 
ResultsOF « "Failure - Weibull\nShape\t" « fFailureShape; 
ResultsOF « "\nGamma\t" « fFailureGamma; 
break; 

} 
switch (iRepairDistributionUsed) 
{ 
case 0: // None 

ResultsOF « "\nRepair - None"; 
break; 

case 1: // Exponential 
ResultsOF « "\nRepair - Exponential"; 
break; 

case 2: // Lognormal 
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ResultsOF « "\nRepair - Lognornial\nVariance\t" « fRepairVariance; 
break; 

case 3; // Normal 
ResultsOF « "VnRepair - Normal\nMinimum\t" « fRepairMin « 

"\nMaximum\t" « fRepa i rMax; 
ResultsOF « "\nVariance\t" « fRepairVariance; 
break; 

case 4: // Triangular 
ResultsOF « "\nRepair - Triangular\nMinimum\t" « fRepairMin« 

"\nMaximum\t" « fRepa i rMax; 
ResultsOF « "\nDivisor\t" « iRepairDivisor; 
break; 

case 5: // Weibull 
ResultsOF « "VnRepair - Weibull\nShape\t" « fRepairShape; 
ResultsOF « "\nGamma\t" « fRepairGamma; 
break; 

} 
// Simulation Flight Statistics 
ResultsOF « "\n\nSimulation MeansVn"; 
ResultsOF « "\t\t\t\tTotal\tVariance\tPercentage\n"; 
ResultsOF « "Tasked Flights\t\t\t\t" « fMeanFlightsTasked « " \ n " ; 
ResultsOF « "Flights Achieved\t\t\t\t" «fMeanFlightsTakeOff « "\t" « 

fVarianceFlightsTakeOff « "\t" « fPercentageFlightsTakeOff « " \ n " ; 
ResultsOF « "On TimeWAt" «fMeanFlightsOnTime « " \ t " « 

fVarianceFlightsOnTime « "\t" « fPercentageFlightsOnTime « "\n"; 
ResultsOF « "First Half Flight Delay Maximum\t\t\t\t" « 

fMeanFlightsFirstHalfDelay « "\t" « fVarianceFlightsFirstHalfDelay « "\t" « 
fPercentageFlightsFirstHalfDelay « "\n"; 

ResultsOF « "Second Half Flight Delay Maximum\t\t\t\t" « 
fMeanFlightsSecondHalfDelay « "\t" « f\'^arianceFlightsSecondHalfDelay « 
"\t" « fPercentageFlightsSecondHalfDelay « "\n"; 

ResultsOF « "Cancelled Flights\t\t\t\t" «fMeanFlightsCancelled « "\t" « 
fVarianceFlightsCancelled « "\t" « fPercentageFlightsCancelled « "\n"; 

ResultsOF « "In Flight Aborts\t\t\t\t" « fMeanFlightsInFlightAbort « "\t" « 
fVarianceFlightsInFlightAbort « "\t" « fPercentageFlightsInFlightAbort « 
"\n"; 

ResultsOF « "Launched Flights Succeeded\t\t\t\t" « fMeanFlightsSucceed « 
"\t" « fVarianceFlightsSucceed « "\t" « fPercentageFlightsSucceed « "\n"; 

ResultsOF « "Launched Flights Failed\t\t\t\t" « fMeanFlightsFail « "\t" « 
fVarianceFlightsFail « "\t" « fPercentageFlightsFail « "\n\n"; 

// Aircraft mean time per run spent in States 
ResultsOF « "Mean Hours For Aircraft States \n\n"; 
ResultsOF « "Aircraft\tUnserviceable\t Awaiting Flight\tln Flight\tServicable\t 

Flying\n"; 
ResultsOF « "Number\t\tServicing\tServicing\n"; 
// Zero Counters for calculation of means 
flimeUnserviceable = 0; 
fTimeAwaitingPreFlightServicing = 0; 
fTimelnPreFlightServicing = 0; 
fTimeServiceable = 0;-
fTimeFlying = 0; 

120 



fMeanTimeUnserviceable = 0; 
fMeanTimeAwaitingPreFlightServicing = 0; 
fMeanXimelnPreFlightServicing = 0; 
fMeanTimeServiceable = 0; 
fMeanTimeFlying = 0; 
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos!=NULL;) 

{ 
pAircraft - (CAircraft*)aircraftlist.GetNext(AircraftPos); 
iAircraftNumber = pAircraft->GetAircraftNumber(); 
ResultsOF «iAircraftNumber « " \ t " ; 
fTimeUnserviceable = pAircraft->GetTimeUnserviceable(iNumberOfRuns); 
fMeanTimeUnserviceable += fTimeUnserviceable; 
ResultsOF «frimeUnserviceable « "\t"; 
fTimeAwaitingPrcFlight Servicing = pAircraft-> 

GetTimeAwaitingPreFlightServicing(iNumberOfRuns); 
fMeanTime AwaitingPreFlight S ervicing += fTimcAwaitingPreFlightServicing; 
ResultsOF « fTimeAwaitingPreFlightServicing « "\t"; 
frimelnPreFlightServicing = pAircraft-> 

GetTimelnPreFlightServicing(iNumberOfRuns); 
fMeanXimelnPreFlightServicing += fTimelnPreFlight Servicing; 
ResultsOF « frimelnPreFlightServicing « "\t"; 
fTimeServiceable = p Aircraft->GetTimeServiceable(iNumberOfRuns); 
fMeanTimeServiceable += fTimeServiceable; 
ResultsOF « fTimeServiceable « "\t"; 
fTimeFlying = pAirciaft->GetTimeFlying(iNumberOfRuns); 
fMeanTimeFlying += fTimeFlying; 
ResultsOF « fTimeFlying « "\n"; 

} 
// save Mean values to file 
fMeanTimeUnserviceable = fMeanTimeUnserviceable/iAircraftNumber; 
fMeanTimeAwaitingPreFlightServicing = 

fMeanTimeAwaitingPreFlightServicing/iAircraftNumber; 
fMeanTimelnPreFlightServicing = fTimelnPreFlightServicing/iAircraftNumber; 
fMeanTimeServiceable = fMeanTimeServiceable/iAircraftNumber; 
MeanTimeFlying = fMeanTimeFlying/iAircraftNumber; 
ResultsOF « "Mean\t" « fMeanTimeUnserviceable « "\t" « 

fMeanTimeAwaitingPreFlightServicing « "\t" « fTimelnPreFlight Servicing « 
"\t" « fMeanTimeServiceable « "\t" « fMeanTimeFlying « "\n"; 

// Aircraft percentage of time per run in States 
ResultsOF « "\nPercentage of Simulation For Aircraft States \n\n"; 
ResultsOF « "Aircraft\tUnserviceable\tAwaiting Flight\tln FlightXtServicable\t 

Flying\n"; 
ResultsOF « "Number\t\tServicing\tServicing\n"; 
// Zero Counters for calculation of means 
flimeUnserviceable = 0; 
flimeAwaitingPreFlight Servicing = 0; 
frimelnPreFlightServicing = 0; 
flimeServiceable = 0; 
fTimeFlying == 0; 
fMeanTimeUnserviceable = 0; 
fMeanTimeAwaitingPreFlightServicing = 0; 
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fMeanTimelnPreFlightServicing = 0; 
fMeanTimeServiceable = 0; 
fMeanXimeFlying = 0; 
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos!=NULL;) 
{ 

p Aircraft = (CAircraft*)aircraftlist.GetNext( AircraftPos); 
iAircraftNumber = pAjrcraft->GetAircraftNumber(); 
ResultsOF «iAircraf tNumber 
fTimeUnserviceable = pAircraft-> 

GetTimeUnserviceable(iNumberOfRuns)/fdockTime* 100; 
fMeanTimeUnserviceable += fTimeUnserviceable; 
ResultsOF «fTimeUnserviceable « "\t"; 
fTimeAwaitingPreFlightServicing = pAircraft-> 

GetTimeAwaitingPreFlightServicing(iNumberOfRuns)/fClockTime* 100; 
fMeanTimeAwaitingPreFlightServicing += fTimeAwaitingPreFlightServicing; 
ResultsOF «fTimeAwaitingPreFlightServicing « "\t"; 
fTimelnPreFlightServicing = pAircraft-> 

GetTimeInPreFlightServicing(iNumberOfRuns)/fClockTime* 100; 
fMeanTimelnPreFlightServicing += fTimelnPreFlightServicing; 
ResultsOF «fTimeInPreFlightServicing « "\t"; 
fTimeServiceable = pAircraft-> 

GetTimeServiceable(iNumberOfRuns)/fClockTime* 100; 
fMeanTimeServiceable += fTimeServiceable; 
ResultsOF «fTimeServiceable « "\t"; 
fTimeFlying = pAirci aft->GetTimeFlying(iNumberOfRuns)/fCiockTime* 100; 
fMeanTimeFlying += fTimeFlying; 
ResultsOF «fTimeFlying « "\n"; 

} 
// save Mean values to file 
fMeanTimeUnserviceable = fMeanTimeUnserviceable/iAircraftNumber; 
fMeanTimeAwaitingPreFlightServicing = 

fMeanTimeAwaitingPreFlightServicing/iAircraftNumber; 
fTimelnPreFlightServicing = fTimelnPreFlightServicing/iAircraftNumber; 
fMeanTimeServiceable = fMeanTimeServiceable/iAircraftNumber; 
fMeanTimeFlying = fMeanTimeFlying/iAircraftNumber; 
ResultsOF « "Mean\t" « fMeanTimeUnserviceable « "\t" « 

fMeanTimeAwaitingPreFIightServicing « "\t" « fTimelnPreFlightServicing « 
"\t" « fMeanTimeServiceable « "\t" « fMeanTimeFlying « "\n"; 

// Daily Aircraft State figures 
ResultsOF « "\nDaily AircraftStates\n\n"; 
ResultsOF « "Day\tServiceable\tFlying\tUnserviceable\tIn Pre\tAwaiting\n"; 
ResultsOF « "Number\t\t\t\tFlight Servicing\tPre Flight Servicing\n"; 
for (iDayNumber = l;iDayNumber <= iNumberOfDays;iDayNumber++) 
{ 

for (DailyResultsPos = dailyresultslist.GetHeadPosition(); 
DailyResultsPos!=NULL;) 

{ 
pDailyResults = (CDailyResults*)dailyresultslist.GetNext(DailyResultsPos); 
if (pDailyResults->GetDayNumber() == iDayNumber) 
( 

// Read in Aircraft state details 
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fNumberOfAircraftServiceable = pDailyResults-> 
GetNumberOfAircraftServiceableO; 

fNumberOfAircraftFlying = pDailyResults-> 
GetNumberOfAircraftFlyingO; 

fNumberOfAircraftUnserviceable = pDailyResults-> 
GetNumberOfAircraftUnserviceable(); 

fNumberOfAircraftlnPreFlightServicing = pDailyResults-> 
GetNumberOfAircraftlnPreFlightServicingO; 

fNumberOfAircraftAwaitingPreFlightServicing - pDailyResults-> 
GetNumberOfAircraftAwaitingPreFlightServicingO; 

// Calculate the means 
fMeanNumberOfAircraftServiceable = 

fNumberOfAircraftServiceable/iNumberOfRuns; 
fMeanNumberOfAircraftFlying = 

fNumberOfAircraftFlying/iNumberOfRuns; 
fMeanNumberOfAircraftUnserviceable = 

fNumberOfAircraftUnserviceable/iNumberOfRuns; 
fMeanNumberOfAircraftlnPreFlightServicing = 

fNumberOfAircraftlnPreFlightServicing/iNumberOfRuns; 
fMeanNumberOfAircraftAwaitingPreFlightServicing = 

fNumberOfAircraftAwaitingPreFlightServicing/iNumberOfRuns; 
ResultsOF « iDayNumber « "\t" « 

fMeanNumberOfAircraftServiceable « "\t" « 
fMeanNumberOfAircraftFlying; 

ResultsOF "\t" « fMeanNumberOfAircraftUnserviceable « "\t" « 
fMeanNumberOfAircraftlnPreFlightServicing; 

ResultsOF « "\t" « fMeanNumberOfAircraftAwaitingPreFlightServicing 
« "\n"; 

break; 
} 

} 
} 
// Daily Flight Results 
ResultsOF « "\nDaily Flight Results\n\n"; 
ResultsOF « "Day\tTasked\tOn Time\tLess Than\t 

More Than\tCancelled\tSuccessful\tIn Flight\tSuccessfial\tFailed\n"; 
ResultsOF « "Number\tFlights\t\tHalf Maximum DelayVt 

Half Maximum Delay\t\tTake OflfsVt Abort\tMissions\tMissions\n"; 
for (iDayNumber = l;iDayNumber <= iNumberOfDays;iDayNumber++) 
{ 

for (DailyResultsPos = 
dailyresultslist.GetHeadPosition();DailyResultsPos!=NULL;) 

{ 
pDailyResults = (CDailyResults*)dailyresultslist.GetNext(DailyResultsPos); 
if (pDailyResults->GetDayNumber() = iDayNumber) 

{ 
// Read in Flight Details 
fNumberOfDailyFlightsCancelled = pDailyResults-> 

GetNumberOfDailyFlightsCancelledQ; 
fNumberOfDailyFlightsFail = pDailyResults-> 

GetNumberOfDailyFlightsFaiI(); 

123 



] 

fNumberOfDailyFlightsFirstHalfDelay = pDailyResults-> 
GetNumberOfDailyFlightsFirstHalfDelayO; 

fNumberOfDailyFIightsInFlightAbort = pDailyResuIts-> 
GetNumberOfDailyFlightsInFlightAbortO; 

fNumberOfDailyFlightsOnTime = pDaiIyResults-> 
GetNumberOfDailyFlightsOnTime(); 

fNumberOfDailyFlightsSecondHalfDelay = pDailyResults-> 
GetNumberOfDailyFlightsSecondHalfDelayO; 

fNumberOfDailyFIightsSucceed = pDailyResults-> 
GetNumberOfDailyFlightsSucceedO; 

fNumberOfDailyFlightsTasked = pDailyResults-> 
GetNumberOfDailyFlightsTasked(); 

// Calculte the means 
fNumberOfDailyFlightsTakeOfF = fNumberOfDailyFlightsOnTime + 

fNumberOfDailyFlightsFirstHalfDelay + 
fNumberOfDailyFlightsSecondHalfDelay; 

fMeanNumberOfDailyFlightsCancelled -
fNumberOfDailyFlightsCancelled/iNumberOfRuns; 

fMeanNumberOfDailyFlightsFail = 
fNumberOfDailyFlightsFail/iNumberOfRuns; 

fMeanNumberOfDailyFlightsFirstFIalfDelay = 
fNumberOfDailyFlightsFirstFIalfDelay/iNumberOfRuns; 

fMeanNumberOfDailyFlightsInFlightAbort = 
fNumberOfDailyFlightsInFlightAbort/iNumberOfRuns; 

fMeanNumbcrOfDailyFlightsOnTime = 
fNumberOfDailyFlightsOnTime/iNumberOfRuns; 

£MeanNumberOfDailyFlightsSecondHalfDelay = 
fNumberOfDailyFlightsSecondHalfDelay/iNumberOfRuns; 

fMeanNumberOfDailyFlightsSucceed = 
fNumberOfDailyFlightsSucceed/iNumberOfRuns; 

fMeanNumberOfDailyFlightsTakeOfF= 
fNumberOfDailyFlightsTakeOff/iNumberOfRuns; 

fMeanNumberOfDailyFlightsT asked = 
fNumberOfDailyFlightsTasked/iNumberOfRuns; 

// Save the means to the results file 
ResultsOF « iDayNumber « "\t" « 

fMeanNumberOfDailyFlightsTasked « "\t" « 
£MeanNumberOfDailyFlightsOnTime ; 

ResultsOF « "\t" «fMeanNumberOfDailyFlightsFirstHalfDelay « 
"\t" « fMeanNumberOfDailyFlightsSecondHalfDelay; 

ResultsOF « "\t" « fMeanNumberOfDailyFlightsCancelled « 
"\t" «fMeanNumberOfDailyFlightsTakeOfF; 

ResultsOF « "\t" « fMeanNumberOfDailyFlightsInFlightAbort « 
"\t" «fMeanNumberOfDailyFlightsSucceed; 

ResultsOF « "\t" « fMeanNumberOfDailyFlightsFail « "\n"; 

} 
} 
// Release the memory used before displaying results 
ReleaseMemory(aircrafi:list,randomnumberlist,dailyresultslist,stocklist); 
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// Show basic simulation results on screen 
CDlgSimulationFinished dig; 
dig.m_MeanFlightsT asked = fMeanFlightsTasked; 
dlg.m_MeanFlightsOnTime = fMeanFlightsOnTime; 
dlg.m_MeanFiightsFirstHalfDelay = fMeanFlightsFirstHalfDelay; 
dlg.m_MeanFlightsSecondHalfDelay = fMeanFlightsSecondHalfDelay; 
dlg.m_MeanFlightsCancelled = fMeanFlightsCancelled; 
dlg.m_MeanFlightsTakeOfF= fMeanFlightsTakeOff; 
dig. m_MeanFlightsInFlight Abort = fMeanFlightsInFlight Abort; 
dig. mMeanFlightsFail = fMeanFlightsFail; 
dlg.m_MeanFlightsSucceed = fMeanFlightsSucceed; 
dlg.m_PercentageFlightsOnTime = fPercentageFlightsOnTime; 
dlg.m_PercentageFlightsFirstHalfDelay = fPercentageFlightsFirstHalfDelay; 
dlg.m_PercentageFlightsSecondHalfDelay = fPercentageFlightsSecondHalfDelay; 
dlg.m_PercentageFlightsCancelled = fPercentageFlightsCancelled; 
dlg.m_PercentageFlightsTakeOff = fPercentageFlightsTakeOfF; 
dig. m_PercentageFlightsInFIight Abort = fPercentageFlightsInFlight Abort; 
dlg.m_PercentageFlightsFail = fPercentageFIightsFail; 
dlg.m_PercentageFlightsSucceed = fPercentageFlightsSucceed; 
// Dialog to allow choice between exiting the programme or running another problem 
if (dlg.DoModalO = nX)K) 
{ 

CDlgClearlnputParameters dig; 
if (dlg.DoModalO = IDOK) 
{ 

bSimulationParametersFileLoaded = false; 
bFlyingProgrammeFileLoaded = false; 
bLRIDataFileLoaded = false; 
bLRIStockJFileLoaded = false; 

} 
bResultsFileLoaded = false; 

} 
} 
//Insert an event into the queue 
void CALSSimDoc;;InsertEvent(CObList& eventlist, int iEventNumber, 

float fEventTime,float fPreviousEventTime,int iAircraftNumber, 
int iNumberOfAircraftjnt iLRIPosition,int iLRJType,int iNumberOflLRIs, 
float fEventDuration) 

{ 
// Set up pointers to Event Class 
CEvent* pEvent; 
POSITION EventPosl, EventPosl; 
for(EventPosl = eventlist.GetHeadPosition();EventPosl != NULL;) 
{ 

// set up a second position reference 
// this is required as GetNext moves the pointer on one place 
EventPos2 = EventPosl; 
pEvent=(CEvent*)eventlist.GetNext(EventPosl); 
if (pEvent->GetEventTime() > fEventTime) 
( 

eventlist.InsertBefore(EventPos2,new CEvent(iEventNumber,fEventTime, 
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fPreviousEventTime,iAircraftNumber,iNumberOfAircraft,iLRIPosition, 
iLRIType,iNumberOfLRls,fEventDuration)); 

break; 
} 

} 
} 
void CALSSimDoc; ;LoadSimulationScenarioDetails() 
{ 

// Open the Simulation Parameter files 
ifstream SimParalF(sSimParametersFile); 
SimParaIF» iNumberOfRuns » iNumberOfAircraft » 

iMaximumFailuresNonEssentialLRIs »fMaximumFlightDelay » 
fMissionSuccessPoint»iNumberOfPreFlightServicingTeams » 
fPreFlightServicingDuration » fDepotUnitTransferTime » 
iFailureDistributionUsed » iRepairDistributionUsed » fReliabilityFactor » 
fRepairFactor » fNoFauItFoundAtUnitFactor » fNoFauItFoundAtDepotFactor; 

// Read in extra data for those distributions that need it 

switch (iFailureDistributionUsed) 
{ 

case 2: // Lognormal - Variance for underlying Normal 
SimParalF » flFailureVariance; 
break; 

case 3: // Normal - Min, Max and Variance needed 
SimParalF » fFailureMin »fFailureMax » fFailureVariance; 
break; 

case 4: // Triangular - Max, Min and Mode Divisor needed 
SimParalF » fFailureMin »fFailureMax » iFailureDivisor; 
break; 

case 5: // Weibull - Shape and Gamma needed 
SimParalF » fFailureShape » fFailureGamma; 
break; 

} _ 
switch (iRepairDistributionUsed) 
{ 

case 2; // Lognormal - Variance for underlying Normal 
SimParalF » fRepairVariance; 
break; 

case 3: // Normal - Min, Max and Variance needed 
SimParalF » fRepairMin »fRepai rMax » fRepairVariance; 
break; 

case 4: // Triangular - Max, Min and Mode Divisor needed 
SimParalF » fRepairMin »fRepai rMax » iRepairDivisor; 
break; 

case 5: // Weibull - Shape and Gamma needed 
SimParalF » fRepairShape »fFailureGamma; 
break; 

} 
// get value for Aircraft and Pre Flight Servicing Teams for resetting for each run 
iStartNumberOfAircraft = iNumberOfAircraft; 
iStartRunNumberOfPreFlightServicingTeams = iNumberOfPreFlightServicingTeams; 
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void CALSSimDoc:iOnFileOperiFlyingProgrammeO 
{ 

static char BASED CODE szFilter[] = 
"Flying Programme Files (*.fly)|*.fly|All Files (*.*)"\ 
III* *||". 

CFileDialog dlg(true,NULL,sFlyingProgrammeFile,NULL,szFilter); 
if (dlg,DoModal() == IDOK) 

{ 
sFlyingProgrammeFile = dlg.GetPathName(); 
// Check for bad Flying Programme file 
if(!IsValidFileSpec(sFlyingProgrammeFile)) 
( 

bFlyingProgrammeFileLoaded = false; 
C String ErrMsg; 
AfxFormatSthngl(ErrMsg,IDS_ERJRFMT_INVALIDFILE2, 

sFlyingProgrammeFile); 
MessageBox (NULL,ErrMsg,"File Selection Error",MB_ICONERROR); 

} 
else 
{ 

bFlyingProgrammeFileLoaded = true; 
} 

} 
else 
{ 

sFlyingProgrammeFile = ""; 
bFlyingProgrammeFileLoaded = false; 

} 
} 
void CALSSimDoc; ;OnFileOpenLRIDataFile() 
{ 

static char BASED CODE szFilter[} = 
"LRI Data Files (*.dat)|*.dat|A]l Files (*.*)"\ 
H|* 

CFileDialog dlg(true,NULL,sLRIDataFile,NULL,szFilter); 
if (dlg.DoModalQ = IDOK) 
( 

sLRIDataFile = dlg.GetPathName(); 
// Check for bad LRI Data file 
if(!IsValidFileSpec( sLRIDataFile)) 
{ 

bLRIDataFileLoaded = false; 
CString ErrMsg; 
AfxFormatStnngl(ErrMsg,IDS_ERRFMT_INVALIDFILE3,sLRIDataFile); 
MessageBox (NULL,ErrMsg,"File Selection Error",MB ICONERROR); 

} 
else 
{ 

bLRIDataFileLoaded = true; 
} 

} 
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else 
{ 

sLRIDataFile = 
bLRIDataFileLoaded = false; 

) 
} 
void CALSSimDoc::OnFileOpenLRIStockFile() 
{ 

static char BASED CODE szFiIter[] = 
"LRI Stock Files (*.stk)|*.stk|All Files (*.*)"\ 
H j * * j | H . 

CFileDialog dlg(tme,NULL,sLRIStockFile,NULL,szFilter); 
if (dlg.DoModalQ = IDOK) 
{ 

sLRIStockFile = dlg.GetPathName(); 
// Check for bad LRJ.Stock file 
if(!IsValidFileSpec(sLRIStockFile)) 
( 

bLRIStockFileLoaded = false; 
CString ErrMsg; 
AfxFormatStnngl(ErrMsg,IDS_ERRFMT_INVALIDFILE4,sLRIStockFile); 
MessageBox (NULL,ErrMsg,"File Selection Error",MB ICONERROR); 

} 
else 
{ 

bLRIStockFileLoaded = true; 
} 

} 
else 
{ 

sLRIStockFile = 
bLRIStockFileLoaded = false; 

} 
} 
void CALSSimDoc::OnFileOpenResultsFile() 
{ 

static char BASED CODE szFilter[] = 
"Results Files (*.res)|*.res|All Files (*.*)"\ 
III* *||ll. 

CFileDialog dlg(false,NULL,sResultsFile,NULL,szFilter); 
if (dlg.DoModalQ = IDOK) 
{ 

sResultsFile = dlg.GetPathName(); 
if (dlg.GetFileExtO = " " ) 
{ 

sResultsFile += "res"; 
} 
// Check if Results file selected exists 
if(! Is ValidFileSpec(sResultsFile)) 
( 

hFile = (HANDLE)CreateFile(sResultsFile,GENERIC_WRITE,0, 
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NULL ,CREATE_NEW, FILE_ATTRIBUTE_NORMAL,NULL); 
CloseHandle( hFile); 
bResuItsFileLoaded = true; 

} 
// Results file already exists 

else 

( 
C String FileMsg; 
AfxFormatStringl(FileMsg, IDS_ERRFMT_FILEEXISTS,sResultsFi)e); 
if(MessageBox (NULL,FileMsg, "Results Filename", 

MB_SYSTEMMODAL|MB_ICONQUESTION|MB_YESNO) = 
IDYES) 
{ 

hFile = (HANDLE)CreateFi]e(sResultsFile,GENERIC_WRITE,0, 
NULL ,CREATE_ALWAYS, 

FILE_ATTRIBUTE_NORMAL,NULL)i 
CloseHandle( hFile); 
bResuItsFileLoaded = true; 

} 
else 
{ 

bResultsFilcLoaded = false; 
) 

} 
} 
else 
{ 

sResultsFile = ""; 
bResuItsFileLoaded = false; 

} 
} 
void CALSSimDoc::OnFileOpenSimulationParameters() 
( 

static char BASED CODE szFilter[] = 
"Simulation Parameter Files (*.sim)|*.sim|All Files (*.*)"\ 

CFileDialog dlg(true,NULL,sSimParametersFile,NULL,szFilter); 
if (dlg.DoModalQ = IDOK) 
{ 

sSimParametersFile = dlg.GetPathName(); 
// Check for bad Simulation Parameter file 
if(! IsValidFileSpec(sSimParametersFile)) 
{ 

bSimulationParametersFileLoaded = false; 
CString ErrMsg; 
AM^ormatString] (ErrMsg,IDS_ERRFMT INVALIDFILE1, 

sSimParametersFile); 
MessageBox (NULL,ErrMsg,"File Selection Error",MB_ICONERROR); 

} 
else 
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{ 
bSimulationParametersFileLoaded = true; 

} 
} 
else 
{ 

sSimParametersFile = 
bSimulationParametersFileLoaded = false; 

} 
} 
void CALSSimDoc::OnUpdateFileOpenFlyingProgramme(CCmdUI* pCmdUI) 
{ 

if(bFlyingProgrammeFileLoaded == true) 

( 
pCmdUI->SetCheck( 1); 

} 
else 

pCmdUI->SetCheck(0); 

} 
void CALSSimDoc::OnUpdateFileOpenLRlDataFile(CCmdUl* pCmdUI) 
{ 

if(bLRJDataFileLoaded == true) 

{ 
pCmdUI->SetCheck( 1); 

} 
else 

pCmdUI->SetCheck(0); 

) 
void CALSSimDoc: :OnUpdateFileOpenLRIStockFile(CCmdUI* pCmdUI) 
{ 

if(bLRIStockFileLoaded = true) 

( 
pCmdUI->SetCheck( 1); 

} 
else 

pCmdUI->SetCheck(0); 

} 
void CALSSimDoc::OnUpdateFileOpenResultsFile(CCmdUI* pCmdUI) 

{ 
if(bResultsFileLoaded == true) 

{ 
pCmdUI->SetCheck( 1); 

} 
else 

pCmdUI-> SetCheck(O); 

} 
void CALSSimDoc::OnUpdateFileOpenSimulationParameters(CCmdUI* pCmdUI) 
{ 

if(bSimulationParametersFiieLoaded == true) 
{ 

pCmdLfI->SetCheck( 1); 
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} 
else 

pCmdUI->SetCheck(0); 

i 
void CALSSimDoc::OnUpdateSimulationRun(CCmdUI* pCmdUI) 
{ 

if((bSimulationParametersFileLoaded == true) && 
(bFlyingProgrammeFileLoaded == true) && (bLRIDataPiieLoaded == true) && 
(bLRJStockFileLoaded == true)&& (bResultsFileLoaded == true)) 

( 
pCmdUI->Enable(true); 

} 
else 

pCmdUI->E'nable(false); 
} 
void CALSSimDoc::ReleaseMemory(CObList& aircraftlist, 

CObList& randomnumberlist,CObList& dailyresultslist,CObList& stocklist) 
// Deletes the lists and releases the memory used by the simulation 
{ 

// Set up pointers to the simulation objects 
CAircraft* pAircraft; 
POSITION AircraftPos = aircraftlist.GetHeadPosition(); 
// Delete the Aircraft and LRJ objects 
while (AircraftPos != NULL) 
{ 

// Delete the LRJ objects for each aircraft 
p Aircraft =(CAircraft*)aircraftlist.GetAt(AircraftPos); 
pAircraft->DeleteLRJs(); 
delete aircraftlist.GetNext(AircraftPos); 

} 
aircraftli st. Remove All(); 
// Delete the Random Number objects 
POSITION RandomNumberPos = randomnumberlist.GetHeadPosition(); 
while (RandomNumberPos != NULL) 

{ 
delete randomnumberlist.GetNext(RandomNumberPos); 

} 
randomnumberlist. Remove All(); 
// Delete the Daily Results objects 
POSITION DailyResultsPos = dailyresultslist.GetHeadPosition(); 
while (DailyResultsPos != NULL) 
{ 

delete dailyresultslist.GetNext(DailyResuItsPos); 
} 
dailyresultslist.RemoveAll(); 
//Delete the Stock Objects 
POSITION StockPos = stocklist.GetHeadPosition(); 
while (StockPos != NULL) 
{ 

delete stocklist.GetNext(StockPos); 
} 
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stocklist.RemoveAll(); 
} 
void CALSSimLDoc::SaveDailyFlyingStats(CObList& dailyresultslist,int iDayNumber, 
int iNumberOfDailyFlightsTaskedjnt iNumberOfDailyFlightsOnTime, 
int iNumberOfDailyFlightsFirstHallDelay,int iNumberOfDailyFlightsSecondHalfDelay, 
int iNumberOfDailyFlightsCancelledjnt iNumberOfDailyFlightsInFlightAbort, 
int iNumberOfDailyFlightsFail,int iNumberOfDailyFlightsSucceed) 
{ 

// Set up pointers to the simulation objects 
CDailyResults* pDailyResults; 
POSITION DailyResultsPos; 
// Get correct daily results memory block then 
// store daily flight achievements for the day 
for (DailyResultsPos = dailyresultslist.GetHeadPosition();DailyResultsPos != NULL;) 
{ 

pDailyResults =(CDailyResults*)dailyresultslist.GetNext(DailyResultsPos); 
if (pDailyResults->GetDayNumber() — (iDayNumber - 1)) 
( 

pDailyResults->SaveDailyFlyingStats(iNumberOfDailyFlightsTasked, 
iNumberOfiDailyFlightsOnTime,iNumberOfDailyFlightsFirstHalfDelay, 
iNumberOfDailyFlightsSecondHalfDelay, 
iNumberOfDailyFlightsCancelledJNumberOfDailyFlightsInFlightAbort, 
iNumberOfDailyFlightsFail,iNumberOfDailyFlightsSucceed); 

break; 
} 

} 
} 
void CALSSimDoc:: SaveEvent(int iEventNumber,float fClockTime,int iAircraftNumber, 

int iNumberOfAircraft,int iLRIPositionJnt iLRITypeJnt iNumberOfLRIs, 
float fEventDuration) 

{ 
// Open the Events storage file 
ofstream EventOF("Event,txt",ios;;app ); 
// Save event details 
EventOF « iEventNumber « " \ t " « fClockTime « " \ t " « iA i r c r a f tNumber« 

"\t" « iNumberOfAircraft « "\t" « iLRJPosition « " \ t " « iLRIType« "\t" « 
iNumberOfLRIs « "\t" « fEventDuration « " \ n " ; 

} 
// Create the Simulation Event List 
void CALSSimDoc::SetUpEventList(CObList& eventlist) 
{ 

// Open the flying programme file 
ifstream FlightDatalF(sFlyingProgrammeFile); 
// Open the Events storage file 
ofstream EventOF("Event.txt",ios::app ); 
if (bStoringEvents) 
{ 

// save run number 
EventOF « "Run Number = " « iRunNumber « "\n"; 

} 
// set up First New Day event for time = 0.0 
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ieEventNumber = 1; 
feEventTime = 0,0; 
eventlist,AdclTail(new CEvent(ieEventNumber,feEventTime)); 
// Set up the target flying programme 
ieEventNumber = 2; 
ieAircraftNumber = 0; 
ieLRIPosition = 0; 
ieLRJType = 0; 
ieNumberOfLRIs = 0; 
fePreviousEventTime = 0; 
FlightDatalF » feEventTime » feEventDuration » ieNumberOfAircraft; 
while (FlightDatalF) 

( 
eventlist.AddTail(new CEvent(ieEventNumber,feEventTime, 

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition, 
ieLRIType,ieNumberOflLRIs,feEventDuration)); 

iNumberOfFlightsTasked+= ieNumberOfAircraft; 
FlightDatalF » feEventTime » feEventDuration » ieNumberOfAircraft; 

} 
iNumberOfDays = feEventTime/24.0 + 1; 
// Set up new day events 
ieEventNumber = 1; 
ieAircraftNumber = 0; 
ieNumberOfAircraft = 0; 
ieLRIPosition = 0; 
ieLRJType = 0; 
ieNumberOfLRIs = 0; 
feEventDuration = 0; 
fePreviousEventTime = 0; 
for (iDayNumber =l;iDayNumber < iNumberOfDays;iDayNumber++) 
{ 

feEventTime = iDayNumber * 24.0; 
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime, 

ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition,ieLRIType, 
ieNumberOfLRIs,feEventDuration); 

} 
// Set up end run event 
ieEventNumber = 0; 
feEventTime = iNumberOfDays * 24,0; 
eventlist,AddTail(new CEvent(ieEventNumber,feEventTime)); 
// allocate an event number to ensure that get event runs 
iEventNumber =1; 
// If storing events, save event headings to the Event file 
if (bStoringE vents) 
( 

EventOF « "Event\tTime\tAircraft\tNumber of\tLRI\tLRI\tNumber\tEvent\n"; 
EventOF « "Number\t\tNumber\tAircraft\tPosition\tType\tof LRIs\tDuration\n"; 

} 
} 
void CALSSimDoc: :ZeroDailyFIightsCounters() 
{ 
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iNumberOfDailyFlightsCancelled = 0; 
iNumberOfDailyFlightsFail = 0; 
iNumberOfDailyFlightsFirstHalfDelay = 0, 
iNumberOfDailyFlightsInFlightAbort = 0; 
iNumberOfDailyFlightsOnTime = 0; 
iNumberOfDailyFlightsSecondHalfDelay = 0; 
iNumberOfDailyFlightsSucceed = 0; 
iNumberOfDailyFlightsTasked = 0; 

} 
void CALSSimDoc: :ZeroDailyStatesCounters() 
{ 

// Zero the aircraft state counters 
iNumberOfAircraftAwaitingPreFlightServicing = 0; 
iNumberOfAircraftFlying = 0; 
iNumberOfAircraftlnPreFlightServicing = 0; 
iNumberOfAircraftServiceable = 0; 
iNumberOfAircraftUnserviceable = 0; 

} 
void CALSSimDoc: :ZeroRunCounters() 
{ 

// Zero Flight Counters 
iNumberOfFlightsDelayed = 0; 
iNumberOfFlightsTasked = 0; 
iNumberOfFhghtsOnTime = 0; 
iNumberOfFlightsFirstHalfDelay = 0; 
iNumberOfFlightsSecondHalfDelay = 0; 
iNumberOfFlightsCancelled = 0; 
iNumberOfFlightsInFlightAbort = 0; 
iNumberOfFlightsFail - 0; 
iNumberOfFlightsSucceed = 0; 

} 
void CALSSimDoc: :ZeroSimulationCounters() 
( 

iSquareNumberOfFlightsCancelled = 0; 
iSquareNumberOfFlightsFail = 0; 
iSquareNumberOfFlightsSucceed = 0; 
iSquareNumberOfFlightsFirstHalfDelay = 0; 
iSquareNumberOfFlightsInFlightAbort = 0; 
iSquareNumberOfFlightsOnXime = 0; 
iSquareNumberOflFlightsSecondHallDelay = 0; 
iSquareNumberOfFlightsTakeOff = 0; 
iTotalFlightsCancelled = 0; 

iTotalFlightsFail = 0; 
iTotalFiightsFirstHalfDelay = 0; 
iTotalFlightsIuFlightAbort = 0; 
iTotalFlightsOnTime = 0; 
iTotalFiightsSecondHalfDelay = 0; 
iTotalFlightsSucceed = 0; 
iTotalFlightsTakeOfF= 0; 
iTotalFlightsTasked = 0; 

} 
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Daily Results 

//DailyResults.h interface of the CDailyResults class 
class CDailyResults : public CObject 
{ 

//Attributes 
private: 

int iDayNumber; 
int iNumberOfAircraftAwaitingPreFlightServicing; 
int iNumberOfAircraftFlying; 
int iNumberOfAircraftlnPreFlightServicing; 
int iNumberOfAircraftServiceable; 
int iNumberOfAircraftUnserviceable; 
int iNumberOfDailyFlightsCancelled; 
int iNumberOfDailyFlightsFail; 
int iNumberOfDailyFlightsFirstHalfDelay; 
int iNumberOfDailyFlightsInFlightAbort; 
int iNumberOfDailyFlightsOnTime; 
int iNumberOfDailyFlightsSecondHalfDelay; 
int iNumberOlDailyFlightsSucceed; 
int iNumberOfDailyFlightsTasked; 

//Operations 
public: 

CDailyResultsQO 
CDailyResults(int iDayNo) 
( 

iDayNumber =iDayNo; 
iNumberOfAjrcraftServiceable= 0; 
iNumberOfAircraftFlying= 0; 
iNumberOfAircraftUnserviceable= 0; 
iNumberOfAircraftInPreFlightServicing= 0; 
iNumberOfAircraftAwaitingPreFlightServicing= 0; 
iNumberOfDailyFlightsCancelled = 0; 
iNumberOfDailyFlightsFail = 0; 
iNumberOfDailyFlightsFirstHalfDelay = 0; 
iNumberOfDailyFlightsInFlightAbort = 0; 
iNumberOfDailyFlightsOnTime = 0; 
iNumberOfDailyFlightsSecondHalfDelay = 0; 
iNumberOfDailyFlightsSucceed = 0; 
iNumberOfDailyFlightsTasked = 0; 

} 
int GetDayNumber(); 
int GetNumberOfAircraftAwaitingPreFlightServicingO; 
int GetNumberOfAircraflFlyingO; 
int GetNumberOfAircraftlnPreFlightServicingO; 
int GetNumb erOfAi rcraft S ervi ceabl e(); 
int GetNumberOfAircraflUnserviceableO; 
int GetNumberOfDailyFlightsCancelledO; 
int GetNumberOfDailyFlightsFailQ, 
int GetNumberOfDailyFlightsFirstHalfDelayO; 
int GetNumberOfDailyFlightsInFlightAbortO; 
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int GetNumberOfDailyFlightsOnTime(); 
int GetNumberOfDailyFlightsSecondHalfDelayO; 
int GetNumberOfDailyFlightsSucceed(); 
int GetNumberOfDailyFlightsTaskedQ; 
void SaveDailyAircraftStates(int iNumberOfAircraftServiceable, 

int iNumberOfAircraftFlying,int iNumberOfAircraftUnserviceabie, 
int iNumberOfAircraftlnPreFlightServicing, 
int iNumberOfAircraftAwaitingPreFlightServicing); 

void SaveDailyFlyingStats(int iNumberOfDailyFIightsTasked, 
int iNumberOfDailyFlightsOnTime,int iNumberOfDailyFIightsFirstHalfDelay, 
int iNumberOfDailyFlightsSecondHalfDelay, 
int iNumberOfDailyFlightsCancelled,int iNumberOfDailyFIightsInFlightAbort, 
int iNumberOfDailyFlightsFail,int iNumberOfDailyFlightsSucceed); 

~CDailyResults(){} 

/DailyResults.cpp . implementation of the CDailyResults class 
#include "stdafic.h" 
#include "DailyResults.h" 
/ CDailyResults commands 
nt CDailyResults: ;GetDayNumber() 

return iDayNumber; 

nt CDailyResults::GetNumberOfAircraftAwaitingPreFlightServicing() 

return iNumberOfAircraftAwaitingPreFlightServicing; 

nt CDailyResults: :GetNumberOfAircraftFlying() 

return iNumberOfAircraflFlying; 

nt CDailyResults: :GetNumberOfAircraftInPreFlightServicing() 

return iNumberOfAircraftlnPreFlightServicing; 

nt CDailyResults::GetNumberOfAircraftServiceable() 

return iNumberOfAircraftServiceable; 

nt CDailyResults: :GetNumberOfAircraftUnserviceable() 

return iNumberOfAircraftUnserviceabie; 

int CDailyResults: :GetNumberOfDailyFlightsCancelled() 

return iNumberOfDailyFlightsCancelled; 

int CDailyResults::GetNumberOfDailyFlightsFail() 

return iNumberOfDailyFlightsFail; 
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nt CDailyResults; ;GetNumberOfDailyFlightsFirstHalfDelay() 

return iNumberOfDailyFlightsFirstHalfDelay; 

nt CDailyResults: :GetNumberOfDai]yFlightsInFlightAbort() 

return iNumberOfDailyFlightsInFlightAbort; 

int CDailyResuits; :GetNumberOfDailyFlightsOnTime() 

return iNumberOfDailyFlightsOnTime; 

int CDailyResults::GetNumberOfDailyFIightsSecondHalfDelay() 

return iNumberOfDailyFlightsSecondHalfDelay; 

int CDailyResults: :GetNumberOfDaiIyFlightsSucceed() 

return iNumberOfDailyFlightsSucceed; 

int CDailyResults::GetNumberOfDailyFlightsTask:ed() 

return iNumberOfDailyFlightsTasked; 

void CDailyResults: :SaveDailyAircraftStates(int iNumAircraftServ,int iNumAircraftFly, 
int iNumAircraftUnservJnt iNumAircraftPreFlight, 
int NumAircraftAwaitingPreFlight) 

( 
iNumberOfAircraftServiceable += iNumAircraftServ; 
iNumberOfAircraftFlying += iNumAircraftFly; 
iNumberOfAircraftUnserviceable += iNumAircraftUnserv; 
iNumberOfAircraftlnPreFlightServicing += iNumAircraftPreFlight; 
iNumberOfAircraftAwaitingPreFlightServicing + - iNumAircraftAwaitingPreFlight; 

} 
void CDailyResults: :SaveDailyFlyingStats(int iDailyFlightsTasked, 

int iDailyFlightsOnTime,int iDailyFlightsFirstHalfDelay, 
int iDailyFlightsSecondHalfDelay,int iDailyFlightsCancelled, 
int iDailyFlightsInFlightAbortjnt iDailyFlightsFail,int iDailyFlightsSucceed) 

{ 

} 

iNumberOfDailyFlightsTasked += iDailyFlightsTasked; 
iNumberOfDailyFlightsOnTime+= iDailyFlightsOnTime; 
iNumberOfDailyFlightsFirstHalfDelay += iDailyFlightsFirstHalfDelay; 
iNumberOfDailyFlightsSecondHalfDelay += iDailyFlightsSecondHalfDelay; 
iNumberOfDailyFlightsCancelled += iDailyFlightsCancelled; 
iNumberOfDailyFlightsInFlightAbort += iDailyFlightsInFlightAbort; 
iNumberOfDailyFlightsFail += iDailyFlightsFail; 
iNumberOfDailyFlightsSucceed += iDailyFlightsSucceed; 

Delayed Flight 

// DelayedFlights.h : interface of the CDelayedFlights class 
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class CDelayedFlight : public CObject 
{ 

private: 
//Attributes 

float fPlannedTakeOfflime; 
float fLastTakeOfFTime; 
float fFlightDuration; 
int iNumberOfAircraftRequired; 

public: 
//Operations 

CDelayedFlight(){} 
CDelayedFlight(float fClockTime,int iNumberOfAircraft, 

float fFlightDelayMaximum,float fDuration) 
{ 

iNumberOfAircraftRequired = iNumberOfAircraft; 
fPlannedTakeOfFTime = fClockTime; 
fLastTakeOfFTime = fClockTime + fFlightDelayMaximum; 
fFlightDuration = fDuration; 

} 
float GetLastTakeOfTTimeO; 
float GetFlightDurationO; 
int GetNumberOfAircraftRequiredO; 
~CDelayedFlight(){} 

}; 

// DelayedFlights.cpp : implementation of the CDelayedFlights class 
#include "stdafic.h" 
#include "DelayedFlight.h" 
// CDelayedFlight commands 
float CDelayedFlight::GetLastTakeOffrime() 
{ 

return fLastTakeOftTime; 
} 
float CDelayedFlight::GetFlightDurationO 
{ 

return fFlightDuration; 

I 
int CDelayedFlight::GetNumberOfAircraftRequiredO 
{ 

return iNumberOfAircraftRequired; 
} 

DIgSimuIationFinished 

#if 
!defined(AFX_DLGSIMULATI0NFINISHED_H19FF3 ICA_2D64_11D2_9F27_4445 
53 546 ] 6F_INCLUDED J 
#define 
AFX DLGSIMULATIONFINISHED H__19FF31CA_2D64_11D2 9F27_444553546]6 
F_INCLUDED_ 
#if_MSC_VER >= 1000 
#pragma once 
#endif// _MSC_VER >= 1000 
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// DlgSimulationPinished.h ; header file 
// CDlgSimulationFinished dialog 
class CDlgSimulationFinished : public CDialog 
{ 

// Construction 
public; 

CDlgSimulationFinished(CWnd* pParent = NULL); // standard constructor 

// Dialog Data 
//{{AFX_DATA(CDlgSimulationFinished) 
enum {IDD = IDD SIMULATIONflNISHEDDIALOG 
float m_MeanFlightsCancelled; 
float m_MeanFlightsFirstHalfDelay; 
float m_MeanFlightsOnTime; 
float m_MeanFlightsSecondHalfDelay; 
float m_MeanFlightsTasked; 
float m_PercentageFlightsCancelled; 
float m_PercentageFlightsFirstHalfDelay; 
float m_PercentageFlightsOnTime; 
float m_PercentageFlightsSecondHalfDelay; 
float m_MeanFlightsFail; 
float m_MeanFlightsInFlightAbort; 
float m_MeanFlightsSucceed; 
float m_MeanFlightsTakeOfiF; 
float m_PercentageFlightsFail; 
float m_PercentageFlightsInFlightAbort; 
float m_PercentageFlightsSucceed; 
float m_PercentageFlightsTakeOfF; 
//}}AFX_DATA 

// Overrides 
// ClassWizard generated virtual function overrides 
//{(AFX_VIRTUAL(CDlgSimulationFinished) 
protected; 
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 
//}}AFX_VIRTUAL 

// Implementation 
protected; 

// Generated message map functions 
//{{AFX_MSG(CDlgSimulationFinished) 
afx_msg void OnButtonExitSimulation(); 
//}}AFX_MSG 
DECLARE_MESSAGE_MAP() 

}; 
//{{AFX_INSERT_LOCATION}) 
// Microsoft Developer Studio will insert additional declarations immediately before the 
previous line. 
#endif // 
!defined(AFX_DLGSIMULATI0NriNISHED_H_]9FF31CA_2D64_11D2_9F27_4445 
53 54616F_INCLUDED J 
//DlgSimulationFinished.cpp ; implementation file 
^include "stdafx.h" 
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#include "ALSSim.h" 
#include "DlgSimulationFinished.h" 
#iWef_DEBUG 
#define new DEBUG_NEW 
#undefTHIS_FILE 
static char THIS_FILE[] = _ F I L E _ ; 
#endif 
// CDlgSimulationFinished dialog 
CDlgSimulationFinished::CDlgSimulationFinished(CWnd* pParent /*=NULL*/) 

: CDialog(CDlgSimulationFinished:;IDD, pParent) 
{ 

//{(AFX_DATA_INIT(CDIgSimulationFinished) 
mMeanFlightsCan celled = O.Of; 
m_MeanFlightsFirstHalfDelay = O.Of; 
m_MeanFlightsOnTinie = O.Of; 
mMeanFlightsSecondHalfDelay = O.Of; 
m_MeanFlightsTasked = O.Of; 
m_MeanFlightsFail = O.Of; 
m_MeanFlightsInFlight Abort = O.Of; 
m_MeanFlightsSucceed = O.Of; 
m_MeanFlightsTakeOfif = m_MeanFlightsOnTime + m_MeanFlightsFirstHalfDelay + 

mMeanFlightsSecondHalfDelay; 
mPercentageFlightsCancelled = O.Of; 
m_PercentageFlightsFirstHalfDelay = O.Of; 
mPercentageFlightsOnTime = O.Of; 
m_PercentageFlightsSecondHalfDelay = O.Of; 
mPercentageFI ightsFail = O.Of; 
mPercentageFlightsInFlightAbort = O.Of; 
m_PercentageFlightsSucceed = O.Of; 
m_PercentageFlightsTakeOff = O.Of; 
//}}AFX_DATA_INIT 

} 
void CDlgSimulationFinished::DoDataExchange(CDataExchange* pDX) 
( 

CDialog: :DoDataExchange(pDX); 
// {{AFX_DATA_MAP(CDlgSimulationFinished) 
DDX_Text(pDX, IDC_MEANFLIGFITSCANCELLED, m MeanFlightsCancelled); 
DDX_Text(pDX, IDC_MEANFLIGHTSFIRSTHALFDELAY, 

m_MeanFlightsFirstHalfDelay); 
DDX_Text(pDX, IDC_MEANFLIGHTSONTIME, m_MeanFlightsOnTime); 
DDX Text(pDX, IDC_MEANFLIGHTSSECONDHALFDELAY, 

mMeanFlightsSecondHalfDelay); 
DDX_Text(pDX, IDC_MEANFLIGHTSTASKED. m_MeanFlightsTasked); 
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSCANCELLED, 

mPercentageFlightsCancelled); 
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSFIRSTHALFDELAY, 

mPercentageFlightsFirstHalfDel ay); 
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSONTIME, 

mPercentageFlightsOnTime); 
DDX_Text(pDX, ipC_PERCENTAGEFLIGHTSSECONDHALFDELAY, 

m_PercentageFlightsSecondHalfDeiay); 
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DDX_Text(pDX, IDC_MEANFLIGHTSFAILED, m MeanFlightsFail); 
DDX_Text(pDX, IDC_MEANFLIGHTSINFLIGHTABORT, 

m_MeanFlightsInFlight Abort); 
DDX_Text(pDX, IDC_MEANFLIGHTS SUCCEED, m MeanFlightsSucceed); 
DDX_Text(pDX, IDC_MEANFLIGHTSTAKEOFF, m MeanFlightsTakeOR); 
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSFAILED, m_PercentageFlightsFail); 
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSINFLIGHTABORT, 

m_PercentageFlightsInFlightAbort); 
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSSUCCEED, 

m_PercentageFlightsSucceed); 
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSTAKEOFF, 

m_PercentageFlightsTakeOff); 
//}}AFX_DATA_MAP 

} 
BEGIN_MESSAGE_MAP(CDlgSimulationFinished, CDialog) 

//{{AFX_MSG_MAP(CDlgSimulationFinished) 
ON_BN_CLICKED(IDC_BUTTON_EXITSIMULATION, OnButtonExitSimulation) 
//}}AFX_MSG_MAP 

END_MESSAGE_MAP() 
// CDlgSimulationFinished message handlers 
void CDlgSimulationFinished::OnButtonExitSimulation() 
( 

// Same as selecting the x on the top right 
ASSERT(AA(GetMainWnd() !=NULL); 
AixGetMainWnd()->SendMessage(WM__CLOSE); 

} 

Event 

// Event, h : interface of the CEvent class 
class CEvent : public CObject 
{ 

private: 
//Attributes 

float fEventDuration; 
float fEventTime; 
float fPreviousEventTime; 
int iAircraftNumber; 
int iEventNumber; 
int iLRIPosition; 
int iLRIType; 
int iNumberOfAircraft; 
int iNumberOfLRIs; 

public: 
//Operations 

CEvent(){} 
CEvent(int iEvent,float fTime,float fPreviousTime = 0,int iTailNumber = 0, 

int iNumber = 0,int iPosition = 0,int iType = 0,int INumberLRI = 0, 
float fDuration = 0.0) 

( 
iEventNumber = iEvent; 
fEventTime = fTime; 
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fPreviousEventTime = fPreviousTime; 
iAircraftNumber = iTailNumber, 
iNumberOfAircraft = iNumber; 
iLRIPosition = iPosition; 
iLRIType = iType; 
iNumberOfLRIs = iNumberLRI; 
fEventDuration = (Duration; 

} 
float GetEventDurationQ; 
float GetEventTimeQ; 
float GetPreviousEventTime(); 
int GetAircrafitNumberO; 
int GetEventNumber(); 
int GetLRIPosition(); 
int GetLRITypeO; 
int GetNumberOfAircraftO; 
int GetNumberOfLRIsO; 
~CEvent(){} 

}; 

//Event.cpp : implementation of the CEvent class 
include "stdafx.h" 
#include "Event.h" 
/ CEvent commands 
float CEvent: :GetEventDuration() 
{ 

return fEventDuration; 
} 
float CEvent::GetEventTime() 
( 

return fEventTime; 
} 
float CEvent::GetPreviousEventTime() 

{ 
return fPreviousEventTime; 

} 
int CEvent::GetAircraftNumberQ 

( 
return iAircraftNumber; 

} 
int CEvent ::GetEventNumber() 
( 

return iEventNumber; 
} 
int CEvent: :GetLRIPosition() 
{ 

return iLRIPosition; 
} 
int CEvent: GetLRITypeO 
{ 

return iLRIType; , 
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int CEvent::GetNumberOfAircraft() 
( 

return iNumberOfAircraft; 
} 
int CEvent::GetNumberOfLRIs() 
{ 

return iNumberOfLRIs; 
} 

Random Number 

//RandomNumber.h interface of the CRandomNumber class 
#ifhdefH_CLCG4_H 
#define H_CLCG4_H 
#define Maxgen 100 
typedef unsigned short int Gen; 
typedef enum (InitialSeed, LastSeed, NewSeed} SeedType; 
class CRandomNumber : public CObject 
{ 

//Attributes 
//Operations 
public: 

CRandomNumberO 
{ 

Init(31,4]); 
}; 

void Init (long v, long w); 
void InitDefault (); 
void SetlnitialSeed (long s[4]); 
void InitGenerator (Gen g, SeedType Where); 
void Set Seed (Gen g, long s[4]); 
void Get State (Gen g, long s[4]); 
void WriteState (Gen g); . 
void SetNewRandomNumberSeedO; 
double GenVal (Gen g); 
-CRandomNumberO {} 

); 

#endif 
//RandomNumber.cpp implementation of the CRandomNumber class 
#include "stdafk.h" 
#include "RandomNumber.h" 
// CRandomNumber commands 

// Private part. */ 

#define H 32768 /* = 2^15 : use in MultModM. */ 
static long aw[4], avw[4], /* a[j]^{2'^w} et a[j]'^{2'^{v+w}}. */ 

a[4] = { 45991,207707,138556.49689 }, 
m[4] = ( 2147483647,2147483543,2147483423,2147483323 }; 

static long Ig[4][Maxgen+]], Lg[4][Maxgen+]], Cg[4][Maxgen+l]; 
/* Initial seed, previous seed, and current seed. */ 
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static short i, j; 
static long MultModM (long s, long t, long M) 
// Returns (s*t) MOD M. Assumes that -M < s < M and -M < t < M. 
// See L'Ecuyer and Cote (1991). 
( 

long R, SO, SI, q, qh, rh, k; 
i f ( s < 0 ) 

s += M; 
i f ( t < 0 ) 

t+=Pdi 
i f ( s < H ) 
{ 

50 = s; 
R = 0; 

} 
else 
{ 

51 =s/H; 
S0 = s-]3*S1; 
qh = M/H; 
rh = M - H*qh; 
if (SI >=H) 

{ 
S1-=H; k - t /qh; 
R = H * (t - k*qh) - k*rh; 

while (R < 0) 
R += M; 

} 
else R = 0; 
f (S lM=0) 
{ 

q = M/S1; k = t/q; 

R - - k * ( M - S l * q ) i 
i f ( R > 0 ) 

R -= M; 
R += Sl*(t - k*q); 
while (R < 0) 

R+=Id; 
} 
k = R/qh; 
R = H * (R - k*qh) - k*rh; 
while (R < 0) 

R + = M; 
} 
if (SO 1=0) 
{ 

q = M/SO; 
k = U î 
R-=k*(M-SO*qX 
ifOl>CO 

R-=1W: 
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R += so * (t - k*q); 
while (R < 0) 

R + = M ; 
} 

return R; 
} 
/* */ 

/* Public part. */ 
/* */ 

void CRandomNumber. :InitGenerator (Gen g, SeedType Where) 
( 

if (g > Maxgen) printf ("ERROR; InitGenerator with g > Maxgen \n"); 
for (j = 0; j < 4; j-H-) 

{ 
switch (Where) 
{ 

case InitialSeed ; 
Lg = ig U][g]; 
break; 

case NewSeed ; 
Lg |j][g] - MultModM (aw [j], Lg [i][g], m Q]); 
break; 

case LastSeed ; 
break; 

} 
Cg D][g] = Lg |j][g]; 

) 
} 
void CRandomNumber;; SetNewRandomNumberSeed() 
( 

Geng; 
for (g = 1; g<= Maxgen;g-H-) 
{ 

InitGenerator(g,NewSeed); 
} 

} 
void CRandomNumber;;SetSeed (Gen g, long s[4]) 
{ 

if (g > Maxgen) printf ("ERROR; SetSeed with g > Maxgen \n"); 
for (j = 0; j < 4; j++) Ig (j][g] = s [)]; 
InitGenerator (g, InitialSeed); 

} 
void CRandomNumber;;WriteState (Gen g) 
( 

printf ("\n State of generator g = %u g); 
for (i = 0;j <4;]++) 
{ 

printf ("\n Cg[%u] = %lu", j, Cg|j][g]); 
} 
printf ("\n"); 
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void CRandomNumber::GetState (Gen g, long s[4]) 
{ 

for (i = 0; j < 4; j-H-) s [j] = Cg 
} 
void CRandomNumber::SetInitialSeed (long s[4]) 
( 

Gen g; 
fbr(j = 0 ; j < 4 ; ]++) 

Ig D][0] = s [j]; 
InitGenerator (0, InitialSeed); 
for (g = I; g <= Maxgen; g-H-) 

{ 
for (j = 0; j < 4; j + + ) 

Ig D][g] = MultModM (avw Q], Ig |j][g-l], m [)]); 
InitGenerator (g, InitialSeed); 

} 
} 
void CRandomNumber;:Init (long v, long w) 

{ 
long sd[4] = {11111111, 22222222, 33333333, 44444444}; 
for (i = 0; j < 4; j++) 
{ 

aw [j] = a [)]; 
for (i = 1; i <= w; i++) 

aw [j] = MultModM (aw [j], aw [j], m[j]); 
avw jj] = aw [j]; 
for (i = 1; i <= v; i++) 

avw jj] = MultModM (avw [)], avw [)], m[j]); 

} 
SetlnitialSeed (sd); 

} 
double CRandomNumber::GenVal (Gen g) 

{ 
long k,s; 
double u; 
u = 0.0; 
if (g > Maxgen) 

printf ("ERROR: Genval with g > Maxgen \n"); 
s = Cg [0][g]; 
k = s / 46693; 
s = 45991 * (s - k * 46693) - k * 25884; 
i f ( s < 0 ) s = 8 + 2147483647; 
Cg [0][g] = s; 
u = u + 4.65661287524579692e-10 * s; 
s = Cg[l][g]; 
k = s / 10339; 
s = 207707 * (s - k * 10339) - k * 870; 
if (s < 0) 

s = 8 + 2147483543; 
Cg[ l ] [g] = s; 
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u = u-4.656613100759859936-10 * s; 
i f ( u < 0 ) 

u = u + 1.0; 
s = Cg 
k = s / 15499; 

s = 138556 * (s - k * 15499) - k * 3979; 
if (s < 0) 

s = s +2147483423; 
Cg [2][g] = s; 
u = u + 4.656613360968421316-10 * s; 
i f (u>= 1.0) 

u = u - 1.0; 
s = Cg [3][g]; 
k = s /43218; 
s = 49689 * (s - k * 43218) - k * 24121; 
if (s < 0) 

s = s +2147483323; 
Cg [3][g] = s; 
u = u - 4.656613577808911346-10 * s; 
if (u < 0) 

u = u + 1.0; 
return (u); 

} 
void CRandomNumber::InitDefault () 
{ 

Init (31,41); 
} 

Simulation Progress Bar 

#if !d6fin6d(AFX_SBARSIMPROGRESS_H_C665B001_E38A_l 1D1_A97A_ 
444553 54616F_INCLUDED J 

#define 
AFX_SB ARSIMPROGRESS_H_C665BOO 1 _E3 8A_11D1 _A97 A_444553 54616F_ 

INCLUDED_ 
#if_MSC_VER>=1000 
#pragma once 
#endif//_MSC_VER>= 1000 
// SBarSimProgress.h : header file 

const int PROGRESS_CTRL_CX - 300;//160; 
const int X MARGIN = 5; // X value used for margins and control spacing 
const int Y MARGIN = 2; // Y value used for margins and control spacing 

// CSimProgressStatusBar window 
class CSimProgressStatusBar : public CStatusBar 
{ 

// Construction 
public: 

CSimProgressStatusBarQ; 
// Attributes 
public: 
protected: 

bool m bSimProgressMode; 
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CProgressCtrl m_SimProgressCtrl; 
Cstatic m_SimProgressLabel; 
int m_iSimProgressCtrlWidth; 

// Operations 
public: 

CProgressCtrl* GetProgressCtrlQ (return &m_SimProgressCtrl;} 
void RecalcSimProgressDisplayQ; 
void SetSimProgressCtrlWidth(UINT nWidth = PROGRESS_CTRL_CX); 
void SetSimProgressLabel (LPCSTR IpszSimProgressLabel); 
void ShowSimProgressDisplay(bool bShow = true); 

// Overrides 
// ClassWizard generated virtual function overrides 
//{{AFX_VIRTUAL(CSimProgressStatusBar) 
//}}AFX_VniTUAL 

// Implementation 
public; 

virtual ~CSimProgressStatusBar(); 
// Generated message map functions 

protected: 
//((AFX_MSG(CSiniProgressStatusBar) 
afx msg int OnCreate(LPCREATESTRUCT IpCreateStruct); 
afx msg void OnPaint(); 
//}}AFX_MSG 
DECLARE_MESSAGE_MAP() 

}; 

//{{AFX_INSERT_LOC ATION}} 
#endif// !defined(AFX_SBARSIMPROGRESS_H__C665B001_E38A_l ID1_A97A_ 

444553 54616F_INCLUDED J 
// SBarSimProgress.cpp : implementation file 
#include "stdafx.h" 
#include "ALSSim.h" 
#include "SBarSimProgress.h" 
#if(lef_DEBUG 
#define new DEBUG_NEW 
#undefTHIS_FILE 
static char THIS_FILE[] = _ F I L E _ ; 
#endif 
// CSimProgressStatusBar 
CSimProgressStatusBar::CSimProgressStatusBar() 
{ 

mbSimProgressMode = false; 
mJSimProgressCtrlWidth = PROGRESS_CTRL_CX; 

} 
CSimProgressStatusBar: :-CSimProgressStatusBar() 
{ 
} 
BEGIN_MESSAGE_M.AP(CSimProgressStatusBar, CStatusBar) 

//((AFX_MSG_MAP(CSimProgressStatusBar) 
ON_WM_CREATE() 
ON_WM_PAINT()_ 
//}}AFX_MSG_MAP 
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END_MESSAGE_MAP() 
// CSimProgressStatusBar Commands 
// Set width of the status bar 
void CSimProgressStatusBar;:RecalcSiniProgressDisplay() 
{ 

// Adjust the positions of the Label and Progress Controls 
// Place the Label Control to the left of the 
// Progress Control 
// Label Text [Progress control] 
CRect ControlRect; 
CRect ClientRect; 
GetClientRect(&ClientRect); 
ControlRect = ClientRect; 
//Set up Text Label using the rest of the status bar area 
ControlRect.left + - X MARGIN ; 
ControlRect. right = ControlRect. left +110; 
ControlRect.top += YMARGIN; 
ControlRect.bottom -= Y MARGIN; 
m_SimProgressLabel.MoveWindow(ControlRect, false); 
// Set up the Progress Bar 
ControlRect.left = ControlRect,right + X MARGIN; 
ControlRect. right = ControlRect. left + mJSimProgressCtrlWidth; 
m_SimProgressCtrl.MoveWindow(ControlRect, false); 

} 
// Set width of the status bar 
void CSimProgressStatusBar::SetSimProgressCtrlWidth(UrNT nWidth) 
{ 

m_iSimProgressCtrlWidth = n Width; 
} 
void CSimProgressStatusBar::SetSimProgressLabel (LPCSTR IpszSimProgressLabel) 
{ 

m_SimProgressLabel.SetWindowText(lpszSimProgressLabel); 

// If displaying progress, update 
// placement of label and progress control 
if(m_bSimProgressMode) 
{ 

RecalcSimProgressDisplayO; 
InvalidateO; 
UpdateWindowO; 

} 
} 
void CSimProgressStatusBar: :ShowSimProgressDisplay(bool bShow) 
{ 

mbSimProgressMode = bShow; 
if(m_bSimProgressMode) 
( 

RecalcSimProgressDisplayO, 

1 
m_SimProgressLabel.ShowWindow(m_bSimProgressMode ? 

SW_SH0W:SW1HIDE); 
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m_SimProgressCtrl.ShowWindow(m_bSimProgressMode ? SW SHOW :SW_HIDE); 
lnvalidate(); 
UpdateWindowQ; 

) 
// CProgressStatusBar message handlers 
int CSimProgressStatusBar::OnCreate(LPCREATESTRUCT IpCreateStruct) 
{ 

if (CStatusBar::OnCreate(lpCreateStruct) == -1) 
return -1; 

// Create the Progress Control, size and position will be calculated 
// later from ShowSimProgressDisplay() call 
if(!m_SimProgressCtrl.Create(0, // Style - Don't Show Position or Percent 

CRect(0,0,0,0), // Initial position 
this, // Parent 
0)) // Child ID 

{ 
return -1; 

} 
// Create the Progress Label - we'll calculate its size and 
// position later - in response to a ShowProgressDisplay() call, 
if (!m_SimProgressLabel.Create( NULL, // Text 

WS_CHILD|SS_LEFT, // Style 
CRect(0,0,0,0), //Initial Position 
this)) // Parent 

{ 
return -1; 

) 
// Use the same font as the Status Bar 
m_SimProgressLabel,SetFont(GetFont()); 
return 0; 

} 
void CSimProgressStatusBar: ;OnPaint() 
{ 

CPaintDC dc(this); // device context for painting 
// If displaying the Progress Control we need to handle the 
// painting of the Status Bar,otherwise use the base class 
if(!m_bSimProgressMode) 
{ 

CStatusBar; :OnPaint(); 
} 

} 

Stock 

// Stock, h : interface of the CStock class 

class CStock : public CObject 

( 
private: 
//Attributes 

bool bLRIRepairedOnUnit; 
float fLRlDepotRepairTime; 
float fLRIMeanPailureTime; 
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float fLRJProportionRepairedAtUnit; 
float fLRIRefitTime; 
float fLRIRemovalTime; 
float ELRIUnitRepairTime; 
int iLRIDepotAllocatedStock; 
int iLRIDepotServiceableStock; 
int iLRIDepotStartingStock; 
int iLRIEssential; 
int iLRJNumberRequiredForAircraft; 
int iLRIType; 
int iLRIUnitServiceableStock; 
int iLRIUnitUnserviceableStock; 
int iLRIUnitStartingStock; 

public: 
//Operations 

CStockOO 
CStock(int iType,float fFailure,int iEssential,float fRemoval,float fRefit, 

float fProportionRepairedAtUnit,float fUnitRepairTime, 
float fDepotRepairTime,int iUnitStock,int iDepotStock) 

{ 
iLRIDepotStartingStock = iDepotStock; 
iLRIDepotServiceableStock = iDepotStock; 
iLRIType = iType; 
iLRIEssential = iEssential; 
iLRIUnitStartingStock = iUnitStock; 
iLRJUnitServiceableStock = iUnitStock; 
fLRIDepotRepairTime = fDepotRepairTime; 
fLRIMeanFailureTime = fFailure; 
fLRIProportionRepairedAtUnit = fProportionRepairedAtUnit; 
fLRIRefitTime = fRefit; 
fLRIRemovalTime = fRemoval; 
fLRIUnitRepairTime = fUnitRepairTime; 
// Zero the stock counters 
iLRIDepotAllocatedStock = 0; 
iLRINumberRequiredFor Aircraft = 0; 
iLRIUnitUnserviceableStock = 0; 

} 
bool LRIRepairedOnUnit(float fLRJProportion); 
bool MoreLRJsRequiredAtUnitO; 
float GetDepotRepairTime(); 
float GetMeanFailureTimeQ; 
float GetRemovalTimeO; 
float GetReplacementTimeO; 
float GetUnitRepairTimeO; 
int GetDepotAllocatedStock(); 
int GetDepotServiceableStockQ; 
int GetLRlEssentialityO; 
int GetNumberRequiredForAircraftO; 
int GetStockTypeO; 
int GetUnitServiceableStockQ; 
int GetUnitUnserviceableStockO; 
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void IncreaseDepotAJlocatedStockO; 
void IncreaseDepotServiceableStockQ; 
void IncreaseNumberRequiredForAircraftO; 
void IncreaseUnitServiceableStock(int iNumber); 
void IncreaseUnitUnserviceableStock(); 
void ReduceDepotServiceabIeStock(); 
void ReduceNumberRequiredForAircraftO; 
void ReduceUnitServiceableStockO; 
void ResetStockO; 
void ZeroDepotAllocatedStock(); 
void ZeroUnitUnserviceableStockO; 
~CStock(){} 

}; 
// Stock.cpp : implementation of the CStock class 
#include "stdaix.h" 
#include "Stock.h" 
// CStock commands 
bool CStock: :LRIRepairedOnUnit(float fLRIProportion) 
( 

// Identify whether LRI repaired on the unit or at the depot 
if (fLRIProportion <= fLRIProportionRepairedAtUnit) 

{ 
bLRIRepairedOnUnit = true; 

} 
else 
{ 

bLRIRepairedOnUnit = false; 

} 
return bLRIRepairedOnUnit; 

} 
bool CStock: :MoreLRIsRequiredAtUnit() 
{ 

if (iLRIUnitServiceableStock < iLRIUnitStartingStock) 
return true; 

else 
return false; 

} 
float CStock::GetDepotRepairTime() 
{ 

return fLRIDepotRepairTime; 
} 
float CStock: :GetMeanFailureTime() 
{ 

return fLRIMeanFailureTime; 
} 
float CStock: :GetRemovalTime() 
{ 

return flLRIRemovalTime; 
} 
float CStock: :GetReplacementTime() 
{ 
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return fLRIRefitTime; 
) 
float C Stock:; GetUnitRepairTime() 
( 

return fLRIUnitRepairTime; 
} 
int CStock:;GetDepotAJlocatedStock() 
( 

return iLRIDepotAllocatedStock; 
} 
int CStock; ;GetDepotServiceableStock() 
( 

return iLRIDepotServiceableStock; 
} 
int CStock;;GetLRIEssentiality() 
( 

return iLRIEssential; 
} 
int C Stock ;;GetNumberRequiredForAircraft() 
{ 

return iLRINumberRequiredForAircraft; 
} 
int CStock; ;GetStockType() 
{ 

return iLRIType; 
} 
int CStock; ;GetUnitServiceableStock() 
{ 

return iLRIUnitServiceableStock; 
} 
int CStock;;GetUnitUnserviceableStock() 
{ 

return iLRIUnitUnserviceableStock; 
} 
void CStock;;IncreaseDepotAllocatedStock() 
{ 

iLRIDepotA]locatedStock++; 

} 
void CStock; ;IncreaseDepotServiceableStock() 

( 
iLRIDepotServiceableStock++; 

} 
void CStock;;IncreaseNumberRequiredForAircraft() 
{ 

iLRINumberRequiredForAircraft++; 
} 
void CStock; ;IncreaseUnitServiceableStock(int iNumber) 
{ 

iLRIUnitServiceableStock+= iNumber; 
} 
void CStock; ;IncreaseUnitUnserviceableStock() 
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iLRIUnitUnserviceableStock++; 

void CStock: :ReduceDepotServiceableStock() 

iLRIDepotServiceableStock—; 

void CStock: :ReduceNumberRequiredForAircraft() 

iLRINumberRequiredForAircraft—; 

void CStock: :ReduceUnitServiceableStock() 

iLRJUnitServiceableStock--; 

void CStock: :ResetStock() 

iLRIDepotServiceableStock - iLRIDcpotStartingStock; 
iLRIUnitServiceableStock = iLRIUnitStartingStock; 
iLRIDepotAllocatedStock = 0; 
iLRIUnitUnserviceableStock = 0; 
iLRJNumberRequiredForAircraft = 0; 

void CStock: :ZeroDepotAllocatedStock() 

iLRIDepotAJlocatedStock = 0; 

void CStock: :ZeroUnitUnserviceableStock() 

iLRIUnitUnserviceableStock = 0; 
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APPENDIX TWO RESULTS OF THE TESTING OF THE ALSSIM RANDOM 

NUMBER GENERATOR 

This Appendix deals with the tests applied to the ALSSim pseudo Random number 

generator. For these tests a total of 4,000 numbers were generated lying in the range 0 < x 

< 1 and the following series of tests applied to them. The results of the tests and the 

analysis follows this descriptive section. 

Scatter Chart 

The purpose of a scatter chart is to attempt to identify if there are any clearly discernible 

patterns which would point to a lack of randomness within the generator. This is 

accomplished by taking a line from the current number on the x axis and one from the 

previous number on the y axis and plotting a point where the 2 intersect. 

Summary Table 

Although not directly a test in its own right a summary sheet detailing the results of the 

various tests is included at this stage for ease of examination. A summary of the 

statistic calculated from the test results detailed below and the 0.95 quantile for the 

appropriate degrees of freedom. This is followed by a brief statement identifying any tests 

which have failed. The data underpinning this summary is included afterwards for each 

group of numbers. 

Frequency Test 

In the frequency test we are attempting to ascertain whether the numbers are evenly 

distributed over the range 0 < x < 1 and thus confirming that the generator produces an 

acceptable approximation to a normal distribution. 

Poker Test 

In a 5 card poker test the number produced are converted into integers in the range 0 < x < 

9 and divided into 800 groups of 5 numbers each. The frequency of the occurrence of 

particular groups of numbers is then examined against the known probabilities of these 

sequences occurring in 5 card poker. 
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Gap Test 

As with the poker test the gap test uses the numbers converted into integers in the range 

0 < X < 9 and then examines the length of the gap between occurrences of a particular 

number that occurs frequently, in this case 9, and compares this with the expected 

frequency. 

Distribution of Pairs Test 

This test examines the number of pairs found within the group of numbers being examined. 

The numbers are converted into integers in the range 0 < x < 9 and the group is then 

divided into 400 groups of 10 numbers each. The number of pairs within each sub-group 

is counted and the findings compared with the theoretical expectation. 

Frequency of Pairs Test 

The frequency of pairs test uses the numbers converted into integers in the range 0 < x < 9 

and tests for pairs of numbers over the entire rage of 4000 numbers. The frequency of the 

occurrence of each pair is compared with the theoretical expectation. 
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Summary 

Test Degrees 
of 

Freedom 
Test 

Result 
95% from 

TaMe 
Frequency 9 11406 16 92 
Poker 4 2 3 4 7 9 488 
Gap 10 4 140 18 307 
Distribution of Pairs 9 12 183 16 92 
Frequency of Pairs 3 6.231 7 815 

Examination of the test results for this group of 4000 pseudorandom numbers against a 

null hypothesis shows that in all cases the C^statistic lies inside the 95% region of 

acceptability. Thus this generator produces numbers that can be considered to be 

sufficiently random to be used within the simulation. 

Frequency Test 
Range Actual Expected 
0.1 410 400 (X25 
0.2 365 400 3.063 
0.3 364 400 3 24 
0.4 424 400 144 
0.5 400 400 0 
0.6 424 400 144 
0.7 399 400 0.003 
0.8 404 400 0 04 
0.9 386 400 0 49 
1 424 400 T44 
Total 4000 4000 11406 

Poker Test 

Hand 
Observed 
Actual Expected 

Grouped 
Actual Expected c ' 

All different 238 24192 238 24L92 0 064 
IP&f 419 4012 419 4 0 1 2 0.7 

2 Pairs 76 86 4 76 86 4 1252 
3 of a kind 57 57 6 57 5 7 6 0 006 
Full House 5 7.2 9 10 88 0 325 
4 of a kind 3 3.6 
5 of a kind 1 0 08 
Total 799 800 799 800 2347 
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Gap Test 
Gap Actual Expected 

1 45 4 2 4 0 159 
2 33 38 16 0 698 
3 32 34 34 0 159 
4 39 30.91 2 117 
5 29 2782 0 05 
6 29 25 04 0.626 
7 22 22.53 (yoi2 
8 19 20 28 0.081 
9 18 18.25 0.003 

>10 158 164 27 (X239 
Total 424 424 4 144 

Distribution of Pairs Test 

PWf Actual Expected C ' 
0 33 33 0 

11 26 33 1485 
22 28 33 0 758 
33 34 33 0 03 
44 45 33 4 364 
55 26 33 T485 
66 28 33 (1758 
77 39 33 1.091 
88 30 33 (1273 
99 41 33 L939 

Total 330 330 12 183 

Frequency of Pairs Test 

Number 
Observed 
Actual Expected 

Grouped 
Actual Expected c ' 

0 169 154 97 169 154.96 L270 
1 149 170 29 149 170.28 2 662 
2 67 ' 64 49 67 64 48 0.098 
3 13 9^7 15 10 25 2 201 
4 2 0 48 
5 0 0 

Total 400 400 400 399.97 6 231 
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APPENDIX THREE ALSSIM ACTIVITY CYCLE DIAGRAM 

This appendix shows the total activity diagram for the three entities contained within 

ALSSim. Each of the entities; mission, aircraft and LRJ have been discussed independently 

within the main text and were drawn in figures 4 to 6. The purpose of this Appendix is to 

draw the 3 figures together to allow the interaction of the three entity types to be clearly 

seen. 
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(;i f)s;svuRif ()i? riEitJvis 

Backorder A term used to describe a hole awaiting a spare. An aircraft subject 

to a backorder is unserviceable until such time as the LRI is received 

and fitted. 

Depot A combined repair and storage location for LRIs 

Failure Time The time taken for a component fitted to an aircraft to fail in use. 

First Line The operational Squadron for the aircraft. 

Fourth Line The location within industry that removed LRIs are dispatched to 

for deep repairs. 

Mission A number of flights that are required to be flown at the same time.. 

Mission Duration The length of a mission. Adding this value to the achieved take off 

time gives the landing time. 

Mission Success The proportion of missions that are launched within the acceptable 

Rate window. 

Pipeline The route between the operational and repair locations through 

which defective components and spares pass. 

ScMe The number of each type of spare required to support system 

availability targets. The scale is derived by using a deterministic 

scaling application. 

Second Line The component servicing bays located on the operational unit. 

Serviceable The term used to describe a LRI that is working. 
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Shelf Satisfaction The percentage of items satisfied from shelf stock without the need 

Rate for a backorder. 

Squadron The operational organisation which operate the aircraft. 

System 

Availability 

The proportion of the total modelled time that a given system can be 

expected to be available for use. 

Technician RAF Maintenance Personnel. 

Third Line The location within the RAF that removed components are 

dispatched to for deep repairs. 

Unserviceable Term used to describe a LRI that has failed. 
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