
UMVERSITY OF SOUTHAMPTON

A Simulation Study of the Effectiveness of

an Aircraft Operations Logistic Support Package

Colin Benford BSc

Master of Philosophy

Faculty Of Mathematics

February 2001

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

IfAJCUTLTrif C)F NdVlTTHILNdATriCZS

C)PEFLATlCHyAl,PUESE/lRC%i

Master of Philosophy

A SIMULATION STUDY OF THE EFFECTIVENESS OF AN AIRCRAFT

OPERATIONS LOGISTIC SUPPORT PACKAGE

by Colin Benford

ABSTRACT

Military organisations today operate small fleets of unique aircraft and need to be sure that

the spares purchased to support operations meet the organisations needs whilst remaining

the minimum necessary to minimise unnecessary government expenditure. Historically this

task was undertaken by using historical consumption as the basis of the calculation. This is

not seen as appropriate today and a range of deterministic models are used to produce the

spares lists. However, their failure to apply a particular flying programme means that the

output is viewed with some scepticism by military staffs. Simulation provides the means to

apply that flying programme and, moreover, allows a series of what if evaluations to be

undertaken.

This thesis covers the work undertaken by myself to design and produce a suitable

simulation application to meet the above requirement. Whilst data was available it was of

a simple form without sufficient fidelity to allow the underlying distributions to be derived.

Consequently, the opportunity to examine the effect of applying different distributions for

both failure and repair times was taken allowing the scope of the work to broaden. Having

produced the simulation a number of alternative flying programmes were simulated to

identity their impact on the overall achievement and aircraft availability.

This work has allowed me to not only provide a model which can be used with a

deterministic application to assess the validity of the spares list but, has also allowed

investigation into the effect of applying different distributions to both failure and repair

times.

LIST OF CONTENTS

LIST OF CONTENTS I

LIST OF TABLES 3

LIST OF FIGURES 4

LIST OF APPENDICES 6

ACKNOWLEDGEMENTS 7

LIST OF ABBREVIATIONS 8

INTRODUCTION 9

THE DEVELOPMENT OF LOGISTIC SUPPORT WITHIN THE RAF 9

PROBLEM BACKGROUND 11

The Royal Air Force Support Chain 11

The Use of Simulation to Support the Outputs Of Deterministic Models 12

THE ANALYSIS OF LOGISTIC SUPPORT SIMULATION (ALSSIM) 13

The Design Process 13

Entities 16

The Mission Entity 17

The Aircraft Entity 18

The Line Replaceable Item Entity 19

Simulation Language or Computer Language 21

The ALSSim Simulation Application 22

Data 23

Pseudo Random Number Generation 26

Testing of Pseudo Random Number Generators 29

Input Distribution Selection 30

Derivation ofMTBF Distribution 31

Fixed Failure - Fixed Repair 32

Exponential Failure - Fixed Repair 33

Normal Failure - Fixed Repair 35

Lognormal Failure - Fixed Repair 37

Triangular Failure - Fixed Repair 38

Weibull Failure - Fixed Repair 41

Derivation of the Distribution to be used as the LRI Failure Distribution 45

Results 47

Simulation Verification and Validation 49

THE USE OF ALSSIM AS A PROBLEM SOLVING TOOL 51

Baseline Problem 51

Variation in number of aircraft per mission with total number of flights remaining the

same 54

Variation in number of aircraft per mission with total number of flights also varying.... 59

CONCLUSIONS 63

FURTHER WORK 64

APPENDIX ONE ALSSIM COMPUTER CODE 65

Overview 65

Aircraft 66

ALSSimDoc 77

Daily Results 135

Delayed Flight 137

DlgSimulationFinished 138

Event 141

Random Number 143

Simulation Progress Bar 147

Stock 150

APPENDIX TWO RESULTS OF THE TESTING OF THE ALSSIM RANDOM

NUMBER GENERATOR 155

APPENDIX THREE ALSSIM ACTIVITY CYCLE DIAGRAM 160

GLOSSARY OF TERMS 162

BIBLIOGRAPHY : 164

LIST OF REFERENCES ' 165

LIST OF TABLES

1. Mission Achievement Means.

2. Time Spent in Alternative States.

3. Daily Aircraft States.

4. Daily Mission Achievements.

LIST OF FIGURES

1. The Simplified Logistic Cycle.

2. The Simulation Design Process.

3. ALS Sim Generic Design.

4. The Mission Entity.

5. The Aircraft Entity.

6. The LRI Entity.

7. The Simulation Files.

8. TheLRILKeC^de.

9. The Bathtub Curve.

10. Flights Flown for Fixed Failure and Repair Times.

11. Variance for Fixed Failure and Repair Times.

12. Flights Flown for an Exponential Failure Distribution.

13. Variance for an Exponential Failure Distribution.

14. Flights Flown for the Normal Failure Distributions.

15. Variance for the Normal Failure Distributions.

16. Flights Flown for the Lognormal Failure Distributions.

17. Variance for the Lognormal Failure Distributions.

18. Flights Flown for the Triangular Failure Distributions.

19. Variance for the Triangular Failure Distributions.

20. Flights Flown for the Weibull Failure Distributions.

21. Variance for the Weibull Failure Distributions.

22. Flights Flown for the Alternative Failure Distributions.

23. Variance for the Alternative Failure Distributions.

24. Flights Flown for the Alternative Repair Distributions.

25. Variance for the Alternative Repair Distributions.

26. Variance for the Alternative Repair Distributions for Upper Range of Aircraft

Available Runs.

27. Flights Flown for the Baseline Option.

28. Variance for the Baseline Option.

29. Flights Flown for the Baseline Option showing Upper and Lower Confidence

Boundaries.

30. Flights Flown for the 1920 Flights Option.

31. Variance for the 1920 Flights Option.

4

32. Mean Aircraft Availability for the 1920 Flights Option.

33. 36 Aircraft Mean Daily Flights Flown for the 1920 Flights Option.

34. 36 Aircraft Mean Daily Aircraft Availability for the 1920 Flights Option.

35. Flights Flown for the Variable Flights Option.

36. Percentage of Flights Flown for the Variable Flights Option.

37. Variance for the Variable Flights Option.

38. Upper and Lower 90% Confidence Boundaries for the Variable Flights Option

39. Distance of the Lower Confidence Limit from the Mean for the Variable Flights

Option.

LIST OF APPENDICES

1. ALSSim Computer Code.

2. Results of the Testing of the ALSSim Random Number Generator.

3. ALSSim Activity Cycle Diagram.

ACKNOWLEDGEMENTS

My thanks to Professor Lillian Barras for her encouragement to go ahead with undertaking

this study and Dr Arjin Shahani and Professor Russell Cheng for their help and guidance

throughout the research and production of this thesis.

LIST OF ABBREViATTONS

ALSSim Analysis of Logistic support Simulation model.

LITS Logistic Information Technology System. The new computer system

being introduced by the RAF to collect and analyse failure and repair data

for LRIs. This system will replace the MDC.

LRI Line Replaceable Items. The repairable components removed from the

aircraft.

MDC Maintenance Data Computer. The computer system used by the RAF to

collect and analyse failure and repair data for LRIs.

MTBF Mean Time Between Failures. The average time that it takes a given LRI

type to fail in use.

MTTR Mean Time To Repair. The average time taken to repair a given LRI.

MWO Maintenance Work Order. The document completed by a technician which

details the work done and the time taken to complete the task.

RAF Royal Air Force.

SA Support Authority. The organisation that decides the engineering support

policy for the aircraft and its components.

USAF United States Air Force

INTRODUCTION

Since its creation on 1 April 1918, the RAF has faced the problem of how to provide

sufficient spares and repair facilities at the right place to ensure maximum operational

availability whilst minimising the support costs. Although the model for support inherited

from the Army met the initial needs, as the complexity of aircraft has grown so the RAF

has had to develop its own resupply model. Today the RAF makes use of a suite of highly

capable deterministic computer tools designed to meet the unique needs of a high tech

military operation. However, there remains a lack of confidence in the fidelity of the

model's solutions. This is because the model gives an output in terms of general system

availability rather than the probability that a particular target flying programme can be met.

To achieve this level of confidence it is necessary to use a model which produces the

results in a form that is meaningful to the operational customer.

THE DEVELOPMENT OF LOGISTIC SUPPORT WITHIN THE RAF

During the First World War the support of aircraft was relatively simple due to four

factors. Firstly, the aircraft in use were of limited complexity and many of the spares

required were manufactured at Aircraft Support Parks close to the Operational Squadrons

[1]. Secondly, as most aircraft operated from airfields located in Western France the

logistical support tail to the United Kingdom was quite short. Thirdly, a policy of

cannibalising war and accident damaged aircraft was used as a means of increasing the

spares available at the operating bases. Finally, the rate of development of new aircraft

types was rapid with most types having an effective in-service life in the range of 10

months.

With the end of the First World War the pressing need for constant improvement of

aircraft was removed. During the 1920s and 1930s the RAF took on the responsibility of

policing the remote areas of the Empire and for the first time experienced major problems

with the provision of spares. Aircraft complexity was increasing, operations were

mounted thousands of miles from the manufacturing base and the lack of effective hostile

fire reduced the availability of damaged aircraft for cannibalisation. Two problems had to

be resolved in order that the RAF provide effective support to its widely dispersed

operations. Firstly, there was a need to provide well equipped support facilities in-theatre

capable of manufacturing and repairing a wide range of components with an extensive

spares holding. Secondly, there was a need to ensure that the lengthy supply line from the

United Kingdom did not adversely affect aircraft availability. The first problem was solved

by developing the Aircraft Support model from the First World War into larger centralised

maintenance establishments. The second was more difficult to solve in that it required

logisticians to attempt to guess fiature requirements and the model adopted was to assume

that the known historical demands were representative of ftiture requirements.

The early stages of the Second World War had a close correlation with operations in the

First World War in that the majority of operations were close to the United Kingdom

manufacturing base. Indeed, after the fall of France and throughout the Battle of Britain

the supply pipeline was extremely short. However, there were aspects of this war as it

continued that made support different. Firstly, the complexity of aircraft was much greater

which resulted in greater reliance on industry support. Secondly, there was a need to

support operations in the Middle and Far East and this placed a considerable strain on the

ability to provide effective support in those theatres. As the War developed the RAF

found that it was fighting a highly mobile war and consequently spent much time and

money redeveloping the mobile support sites that had been the norm m the First World

War.

The end of the Second World War saw the introduction of the Jet engine and the start of

the period of history known as the Cold War. Aircraft complexity was vastly greater than

had been the case hitherto and the cost of the aircraft combined with the time taken to

develop new aircraft meant that Air Forces were now operating aircraft types for several

decades. Moreover, the cost of spares were many times higher than hitherto and it was

recognised that there was a need to find an effective method of determining the correct

number of spares required and the most appropriate location to store them. Early models

made use of a Poisson distribution applied to the failure times for components, the

required shelf satisfaction rate and the known or anticipated repair time. From this was

derived the list of spares required and the expected cost of these spares. As is often the

case, the use of computer models to ascertain the spares required to support aircraft

operations was met with some scepticism and was only accepted into general use within

the USAF once it had proved its worth in a practical field test at George Air Force base in

1966 [2]. These early models, and the algorithms contained within them, form the basis of

all the deterministic scaling models in use within the USAF and RAF today.

10

PROBLEM BACKGROUND

In common with most other nation's air forces, the RAF operates relatively small fleets of

unique aircraft. This means that, unlike commercial airlines whose use of similar aircraft

means that they can purchase shares cheaply, the RAF is forced to procure small stocks of

expensive spares to support its operations. Moreover, the need to operate at remote

locations worldwide has meant that those spares can spend considerable time within the

pipeline between those bases and the centralised repair locations. For this reason a great

deal of time and money has been expended over many years to derive not only the

appropriate number of spares to purchase but also where best to store them when not

required for use. Although it would appear to be most efficient to hold those stocks

forward, the need for expensive repair equipment and warehouse facilities in theatre often

precludes that option. Thus the RAF has developed a system whereby repairs are

undertaken at the location where the cost is minimised. Thus, items with a low cost of

repair are repaired at the base and repairs that are high cost or require specialist skills

and/or equipment are carried out in industry. Similarly, spares which fall into the category

of high turnover are held on operational units with other spares held at the centralised

depot. A deterministic sparing model is used to derive the best location to store items and

the quantities of any given item at each location.

The Royal Air Force Support Chain

The RAF engineering support infrastructure is organised as a series of levels, known as

lines, with each undertaking different depth of maintenance on Line Replaceable Items

(LRIs) dependent on the policy set by the aircraft's engineering Support Authority (SA).

The first line is at the aircraft operating squadron and the only work undertaken here is

replacement of complete LRIs. The second line is located on the operating base and

undertakes some limited deeper rectification work comprising of module and circuit board

level changes as appropriate. Third and fourth line undertake deeper component repairs,

the difference between the two being that third line is manned by government employees

whilst fourth line is industry. The decision as to whether the repair is undertaken at third

or fourth line is taken by the aircraft SA and takes account of such factors as the repair

capacity at third line, the cost of repair at fourth line and the cost of any specialist repair

equipment.

Figure 1 shows a representation of the simplified logistic cycle for military aircraft

operations. The aircraft crew identifies that a system is inoperative and report the failure

to the squadron's technical staff. The system is tested by the first line ground crew and the

defective component removed from the aircraft and replaced with a serviceable item from

stock. The removed LRI is then passed to second line where the item is either repaired

and returned to stock if it is within the capability of the bay or returned to third or fourth

line as appropriate if deeper repair is required. Those items returned to the deeper repair

lines line are repaired there and returned to stock.

First Line

/ "
stock i

7 \ 1 Third/
y Fourth Line

Second Line

Figure 1. The Simplified Logistic Cycle.

The deterministic models in use within the defence modelling institutions are powerful

applications which make use of accepted marginal analysis algorithms to assess the effect

on the overall system availability of a purchase of one of each spare in isolation. Having

done so, the spare with most effect on system availability is added to the purchase list and

the same process repeated. This continues until the model achieves the desired system

availability or the maximum cost limit is reached.

The Use of Simulation to Support the Outputs Of Deterministic Models

There are, however, two main limitations to deterministic models which have given rise to

the desire to use simulation to support the findings of the model. The first relates to the

way that the model addresses system utilisation. Having been given the target e.g. number

12

of flying hours per aircraft per month the model assesses the amount of that period that the

system is available and uses this to produce the overall system availability. In real life, the

operator is interested not in this overall system availability but that which pertains to the

time that the aircraft is required. Thus an average system availability of say 75% appears

at first examination to give a good result. However, this is of little use if the aircraft if the

normal flying day is between 8:00 am and 5:00 pm and the aircraft are never available

between 8:00 am and 2:00 pm. Secondly, the mathematical model used within the

application does not assess the ability of the support model being analysed to support a

particular flying programme. The use of a simulation allows an assessment of the validity

of the deterministic model's output against a particular flying programme to derive the

mission success rate of a particular scale. This allows the operational customer to have

confidence that the proposed scale will meet the operational needs,

THE ANALYSIS OF LOGISTIC SUPPORT SIMULATION f ALSSIM^

The Design Process

There is a tendency for much of the literature dealing with the use of simulation as a tool

to problem solving to assume that the decision has already been made that simulation is the

most appropriate means to examine the problem being considered. Therefore, they deal

extensively with the issues to be considered when designing and using the simulation

model and largely ignore the broader aspects of the methods that should be employed to

address the whole problem from its inception to the presentation of the results. Simulation

is not the only way to arrive at the solution and often the most appropriate method is one

or more practical trials of each of the various solutions. The analyst must always

remember that a simulation is merely a theoretical representation of the actual environment

and should, therefore, only be undertaken when actual trials of the alternative options are

either inappropriate or not practical. For a simple problem such as a shopkeeper wanting

to ascertain whether the sales of bread would be increased if the location of the product

within the store was changed a practical trial would clearly show the effect of moving

stock to a new location. However, employing an additional member of staff for 4 weeks

to identify whether the addition of another till would improve sales by reducing queuing

time would not make commercial sense and in this case a relatively simple simulation

would be an appropriate way to undertake the study. Thus, before designing a simulation

to solve a problem, the following questions should be considered:

13

Could this problem be solved by physical experimentation?

Is the solution by physical experimentation practical?

Is the use of simulation appropriate?

Only once these questions have been satisfactorily answered should the problem of the

design of the simulated environment be considered. Once the decision has been taken that

simulation is the best option there is a need for a structured approach to the design and

implementation of the model which is best achieved by adopting a process such as that

shown below at figure 2. The version shown here is somewhat simplified and in practice

this would be an iterative process incorporating tests and feed back loops throughout with

each iteration adding to the knowledge base until the end product provides an acceptable

representation of the environment being examined [3],

Collect Data

Identify the
environmental entities

Identify the data required

Produce ttie results

Design the Simulation

Define the problem

Run the problem

Figure 2. The Simulation Design Process.

Before addressing the specifics of the design of ALSSim it is necessary to examine the

three fundamental questions raised above to decide whether the use of simulation as a

means to assess the spares scaling produced by the RAF's deterministic scaling model is

practical and, more importantly, appropriate. Clearly, as demonstrated in the trial

14

undertaken by the USAF in 1965 [4] it is possible to undertake a practical trial to confirm

the validity of the scale of spares. However, this test was undertaken over a period of 6

months to ensure that short term variability in the demand levels was evened out. Thus,

although possible, the use of physical trials is not a practical solution to the need to assess

the impact of derived scales of spares. A shorter duration for a test would not allow a

representative demand population to be achieved as the arising rates for individual LRIs

tends to be very low and there is a high risk that decisions on the final composition and

distribution of the spares could be taken on the basis of a skewed demand distribution

rather than a representation of a steady state demand profile. Therefore, the use of

simulation in this case is highly appropriate in that it allows a simulated trial of a protracted

operational period to be undertaken in a very short time ensuring that short term transients

in the demand distribution are damped out allowing the analyst to take a view based on the

steady state requirement for spares.

Having concluded that simulation is a viable way of examining the problem, it is worth

examining the general design of the ALSSim application. Figure 3 shows this in terms of

the input files required and the output file from the simulation. There are 3 main factors

which will have an influence on the final results of the simulation: the target flying

programme, the LRI reliability and the LRJ scales to be examined. This data is input into

the simulation by means of reading in files prepared off-line thus reducing the time taken to

run the overall simulation problem. The results are output to a single text file allowing the

use of whatever word processing or spreadsheet application is to analyse the data.

Flying

Programme
Flying

Programme
Flying

Programme
J

LRI
Reliability

A,

V
Simulation

A
Results

LRI Scales
1

LRI Scales LRI Scales

Figure 3. ALSSim Generic Design.

15

Entities

In any operational research study making use of simulation as the modelling tool it is

necessary to determine the elements of the model and in particular which of these need to

be modelled as distinct entities and which can be simply represented as variables.

Moreover, it is necessary to ensure that a balance is reached between tracking too many

individual entities leading to the simulation running too slow and too few reducing the

quality of the solution to an unacceptably low level. The basis of any discrete event

simulation is the selection of the core entities which are required to represent the system to

be analysed. These entities may either be permanent or temporary and could take the form

of physical items e.g. a hospital bed or a queue such as that of customers awaiting service.

In the latter case, the entity may be created several times during the course of the model

running or could exist throughout the entire run. Therefore, it is not of importance

whether an entity is temporary or permanent but rather that it will exist within the

simulation and that it will interact with other entities. The selection of the correct items to

be dealt with as entities within the simulation is crucial if the application is to run quickly

and the selection of something as an entity must depend on its relevance to the problem

being considered. Thus, in the case of a hospital simulation the consideration of individual

patients may not be of relevance and, therefore, the model would not include an entity of

patient although of course we all recognise that each patient exists as an individual in the

actual hospital.

In this study the main candidate entities were as follows: pre flight servicing teams,

missions, aircraft, and LRIs. The criteria used to decide whether to use a variable or to

have distinct entities were as follows:

Are the states for the entity digital or can it have a number of states?

Does the entity have permanence throughout the simulation?

Does the entity move from one location to another in the course of the simulation?

Application of these criteria led to the conclusion that the pre flight servicing teams were

either occupied or available and, therefore, could be modelled effectively by a counter.

The lack of permanence for the missions coupled with the fact that they were the main

input parameter setting the simulation target meant that they were best modelled as

non-permanent entities. The aircraft were core elements of the simulation which existed

16

throughout it and could take a range of states and thus, they are dealt with as permanent

entities. Finally, as the LRIs were components whose simulation location would change

throughout the simulation they could be modelled by means of individual entities.

However, further analysis revealed that to model each individual LRI would not only lead

to excessive memory overheads but also a considerable reduction in execution speed. For

this reason it was decided that there should be two separate entities for LRIs, one to cover

the positions on the aircraft and one to deal with them when removed from the aircraft. In

the latter case, the entity concerned LRI types containing counters for the various states

and locations thus reducing considerably the amount of memory required.

The Mission Entity

The mission requirements are read in from a data file and placed within the event queue

such that they are called at the relevant time within the simulation run. Each mission event

comprises of a particular number of flights to be flown, a target take off time and a mission

duration. For a mission to be launched there must be sufficient aircraft available for

tasking for all of the flights contained within it. Once the mission has either been launched

or cancelled it is discarded. The state diagram for the mission entity is as shown in figure

4.

In event lis*
Generate J

Requirement
Required

Insuficient
Aircraftlavailable

Store Mission
Requirement

Sufficient

Available
Fly Mission

/
Aircraft Available

In Delayed \ <= Max Allowed Delay

Flight List

> Max
Allowed Delay

Cancel
M̂ ŵ

Figure 4. The Mission Entity.

17

The mission event is loaded by the simulation controller and if sufficient serviceable

aircraft are available the number of flights contained within the mission is identified. For

each flight within the overall mission an aircraft is allocated, the landing time inserted into

the event queue and the counter recording the number of flights launched on time

incremented. Once all flights within the mission are dealt with the mission event is ended.

If insufficient aircraft are available the mission is placed into another queue which contains

all those missions which could not be launched on time. After this each time an aircraft

becomes available for tasking the first mission in the delayed mission queue is checked and

the latest launch time for the mission compared to the current simulation clock time. If the

simulation clock time is less than the latest acceptable take off time the process described

above takes place with the aircraft allocated and landing times inserted into the event list.

There are 2 counters for late launches which cover success in the first or second half of the

acceptable delay period respectively and the relevant one is increased by the number of

flights launched. If the simulation clock time is greater than the latest acceptable take off

time for the mission then the mission is removed from the delayed mission list and the

cancelled flights counter increased by the number of flights associated with it. In order to

minimise the number of cancelled flights, ALSSim has been designed such that the delayed

missions have priority over new missions for aircraft allocation and the queue is sorted to

ensure that the earlier the planned launch time the closer the mission is to the front of the

queue.

The Aircraft Entity

Unlike the mission entities, the aircraft entities have permanence and exist throughout the

simulation. Each aircraft can, for the purposes of the simulation, be considered to be a

collection of LRI positions which either have a LRI fitted or not. Each fitted LRI can

either be serviceable or unserviceable as appropriate. The state diagram for the aircraft

entity is at figure 5.

Pre Flight
Servicing

%
Serviceable

Available

Serviceable | < -
Fil Serviceable

LRI

Fly Flight

A
Landed

/
/ \

In Repair

Unserviceable

Remove LRI

from aircraft

Figure 5. The Aircraft Entity.

The aircraft entities are created at the start of the simulation and have their states set to

available for tasking at the start of each run. The aircraft is allocated to the first available

flight and once it has landed will be examined for serviceability. If one or more LRIs are

unserviceable it will have all of these unserviceable LRJs replaced to restore it to a

serviceable state. If all LRIs are serviceable, or the activity necessary to restore it to a

serviceable state has been completed, the aircraft will have a pre flight servicing. A pre

flight servicing is a relatively low level activity which comprises of a refuel and some basic

oil and fluid level checks and, if necessary, replenishments. Once the pre flight servicing is

completed the aircraft state is changed to available at which point it will then be available

for fiarther tasking.

The Line Replaceable Item Entity

Although the LRIs within the simulation have been treated differently from the other

entities in that they are not treated as a separate entity but are incorporated within other

simulation entities, each LRI does follow a logical path between the various states and

repair sites and could have been individually tracked if the simulation required that degree

of granularity. Thus, although, each individual LRI is not instantiated as an unique object

within the simulation it is necessary to understand the various states that are being

represented within the application. The state diagram which describes the activities which

occur for each LRI is at figure 6.

19

LRI fitted to
Aircrat

Unserviceable
Remove LRI
from aircraft

Fit LRI to
aircraft

i

LRI reqiured

for aircraft
LRI reqiured

/3eiviceable\
for aircraft

1 LRI in stock 1

LRI can nol
Unservice^le\ be repaired
LRI rem wed / at second line

Transfer LRI
to third or
fourth line

LRI can be repaired
at second line

Repar LRI
/LRI at third or

1 fourth line

Repair LRI

LRI not required
for aircraft

Transfer to
station stock

LRI required at unit

LRI not required at unit

LRI required at unit /Serviceable
Transfer to
depot stock

Figure 6. The LRI Entity.

The repair cycle starts when a LRI fails on an aircraft. The failed LRI is removed and, if

available, a serviceable replacement from stock fitted to return the aircraft to a serviceable

status. If the repair is within the capability of the unit the removed LRI is returned to the

second line facility on the base for repair before being fitted to an aircraft if there is an

aircraft that requires that component or placed within unit stock if not required for an

aircraft. If the repair is beyond the capability of the second line bay the LRI is transported

to the third or fourth line repair facility as appropriate. Once the repair is complete at this

deeper repair location the repaired LRI is either dispatched to the unit if it is required for

an aircraft or to depot stock if not. Within ALSSim all repairs are dealt with in terms of

elapsed time and the manpower involved in undertaking repairs at the various maintenance

levels are not modelled.

20

Simulation Language or Computer Language

The decision as to whether to produce the simulation using a standardised simulation

language or to by means of programming using a computer language such as FORTRAN

or C++ lies with the analyst. The former has the advantage that it has been optimised to

meet the requirements of a simulation application and contains a large number of building

blocks which when assembled will produce a simulation application to meet the needs of

the analyst. However, it may result in an application with a number of redundant features

within it slowing down the overall execution. The use of a pure programming language

allows the analyst to design the application such that it only uses those features which are

needed resulting in taut code and a faster application. Its drawback is that it requires

extensive knowledge of the language to make best use of it, moreover, the need to

programme the application line by line increases the development time of the simulation.

Recent developments to the Microsoft C++ computer language has meant that there is

now a range of class libraries available to undertake such tasks as linked list production

and management. This simplifes the task for the programmer in that it allows the

development of the application as a hybrid between the historical computer languages

which required the entire application to be built from first principles and simulation

languages which were a combination of a series of building blocks linked together. The

ALSSim simulation used to support this study was, therefore, written in Microsoft C++

version 5.0 achieving the dual aim of simplicity of code and speed of execution. The

ALSSim application code is detailed at Appendix 1.

21

The ALSSim Simulation Application

Input Files Simulation Files Output File

Simulation
Parameters ALSSimDoc

Simidation Output File
Control File

Program

Inlerface
ALSSimView

User Interface
Controller

Event
List

Run
Results

Random
Number

Gen

Delayed
Wisswns

Progress
Indicator

Aircralt

/ T \

Finished ; Finished ;
Dialog

g - Input/output File

' I - Linked List

User Information

Figure 7. The Simulation Files.

As can be seen in figure 7 there are several of elements within the simulation that interact

with each other. The application can be considered to comprise of 4 separate elements;

the input files, the simulation files, the output file and the user interface. There is also an

additional file created by Visual C++ which acts as an overarching control for the rest of

the application. However, as this file is created and used by the operating system and not

modified in any way whilst producing this simulation, it has been excluded from the figure.

The 3 input files and the output file are external to the actual simulation and have been

covered earlier in this treatise and will, therefore, not be covered in depth at this stage.

It is a convention within Microsoft Visual C++ that the file that manages the storage and

flow of data within the application is described as a document file and in the case of

ALSSim this file is named ALSSimDoc. As well as providing the overall control of the

simulation this file also contains the majority of the simulation code. The other files within

the simulation contain the data and code specific to particular entities by means of linked

lists.

22

The final element of the simulation relates to the interface with the application user. As

with the document file Visual C++ convention describes this as a View file and in the case

of ALSSim it is named ALS Sim View. Underpinning this file are 3 separate user interfaces

which are used at different times within the simulation run. The menu comprises of both

menu choices and buttons and provides the facility for the user to enter the names of the

input and output files and having done so to initiate a run of the simulation. The run

option is greyed out until all file names are entered thus ensuring that the simulation cannot

be started inadvertently before all necessary information is available. The progress

indicator is a simple bar which gives an indication of progress whilst the simulation is

actually running. This indicator serves 2 purposes. Firstly, as it grows at the end of each

run it gives confidence that the simulation has not stopped and secondly, it gives an visual

indication of what proportion of the runs have been completed. The finished dialogue box

gives an indication of the achievements and gives the user the choice between exiting the

application or running another option.

Data

Clearly, before any simulation of a system can be carried out there is a need to collect data

which will then be used within the simulation. In some cases there will already be a

plentiful supply of data and the analyst need only select the appropriate data from that

available in order to meet the requirements. Often, however, there is little or no available

data and it is necessary to identify what is needed in order to produce the solution to the

question being considered. Thus it is essential not only to know what data could be

collected but also to have a clear understanding of the structure of the model and thus the

data required to solve the problem. For this reason, the identification of the data to be

collected is not the first stage of the process but should only be undertaken once the

bounds of the problem have been defined, the entities that are contained within it identified

and the state changes that will take place to those entities derived.

Since the 1970s, The RAF has been collecting failure and repair data for all its aircraft.

This is achieved by the technician undertaking a task completing a Maintenance Work

Order (MWO) on which is detailed the task undertaken and the time taken to complete

that task. Where this task involves the a component's removal from or refit to an aircraft,

the MWO also contains the aircraft flying hours allowing the tracking of the time that a

23

particular component has been fitted to the aircraft and thus the failure time for that

component to be calculated. This data is collected at every RAF unit and forwarded to a

central point to be stored on the RAF's Maintenance Data Computer (MDC). For each

LRI there are 4 parameters that are required for use within the models that can be

calculated from the data stored on this computer, the Mean Time Between Failure

(MTBF), the mean time for removal, the Mean Time To Repair (MTTR) and the mean

time for refit. This cycle will repeat many times for an LRI and is shown in figure 8 below.

MTBF

Removal

Figure 8. The LRI Life Cycle.

The calculation of the times for each of the 4 parameters for each LRI is achieved by

taking a snapshot of the total data and using this to calculate the values which will be used

within the models. MTBF for each LRI type is derived by calculating the mean time that

each LRI is fitted to an aircraft before it fails in use. The other 3 are identified by

examination of the time taken to undertake the work as recorded on the MWO by the

tradesman. Although this method of data collection and analysis is simple and ensures that

the recent data is available for use within the scaling models, it does suffer from the

introduction of small errors which will affect the results of the modelling. Some distortion

of the MTBF occurs because the time recorded on the MDC as the LRI failure time may

not be that at which the failure actually occurred but rather the time of the landing of the

aircraft post mission. Thus, a component that was fitted to an aircraft on a mission of 1 Vi

hours duration which failed on take off would have a recorded failure time 1 16 hours later

than actually occurred. However, as most LRIs have MTBFs of thousands of hours this is

unlikely to have much impact on the simulation results. Similarly, the quality of the data

obtained from the information entered by the tradesmen on the MWO depends on the

tradesman accurately entering the total time taken to carry out the task. Thus, there are

24

likely to be some small errors inherent in this data although, the magnitude of the repair

time is such that minor errors in terms of a few minutes is not considered to be significant.

This problem is compounded by the fact that fourth line does not provide repair time data

and, therefore, the RAF uses elapsed time to model the time taken to repair at fourth line.

Notwithstanding these problems with the data it is considered that the values obtained are

within an acceptable degree of acceptability for use within the models in use today within

the RAF.

There is one more issue related to the examination of data that relates to the MDC and the

production of the values to be used within the models. Although the hardware and

software are not the original many of the routines contained within it are old machine code

instructions which are by their very nature difficult to read and modify. At the time that

the routines for the production of the MTBF, MTTR and removal and refit values were

written, the use of modelling within the RAF was in its infancy and it was considered that a

single value for each was acceptable. Moreover, aircraft were not designed with

maintenance in mind and little was known within the RAF about failure modes of

equipment. It was recognised that mechanical components would eventually fail as a result

of wearing out and it was the practice to set the maintenance policy for this type of

component such that the component would be removed from the aircraft before this wear

out occurred. In the case of electronic components it was believed that wear out was not

a factor and their maintenance policies tended to be set up with replacement on condition.

That is that the LRI would only be removed if it had failed. Even in the mid 1980s

teaching within the RAF's training schools took little account of reliability and personnel

were taught that failures occurred in accordance with the "bathtub" curve shown at figure

9. It was believed that after the first 2 to 3 years of an aircraft's operation that it and the

LRIs contained within it were in the steady state portion of the curve and that, therefore,

all LRIs could be considered to be operating in constant hazard.

25

Probability
of Failure

Wear Steady State Wear
In Out

Mechanical
Component
In use Life

Time in use

Figure 9. The Bathtub Curve.

It is now recognised that this logic is flawed and that any given component could exhibit a

number of failure modes throughout its total life giving rise to a complicated distribution

with a profile that may well cnange as the LRI ages. Moreover, the time taken to repair

the defective components is subject to variability and is also likely to have a correlation

with the failure mode. Therefore, repair time should also have a distribution that could be

applied to the model to provide a more realistic output. However, it would be extremely

costly to rewrite the code contained within the MDC at this late stage of its life to produce

this level of functionality. The RAF is presently in the process of introducing a new

Logistics Information Technology System (LITS) in conjunction with IBM which will

include software routines to produce the underpinning data necessary to allow the

derivation of distributions for both failure and repair parameters. It will also provide a

mechanism by which better information about fourth line repair data can be collected. The

inclusion of these improvements into the scaling models in the future will in turn lead to an

improvement in the quality of the output of the models.

Pseudo Random Number Generation

In order to effectively operate a stochastic model there must be some degree of

randomness within the simulation. In order to achieve this there should be some means by

which numbers from a uniform distribution U(0,1) can be produced for use within the

simulation. However, true random numbers are not only difficult to produce but are also

26

likely to be of little value if the requirement is to replicate the simulation to examine an

number of alternative configurations in order to determine the best solution. There is,

therefore, a need to provide a balance between the need for an randomness for each

number produced and the requirement to replicate the sequence of numbers each time the

simulation is run. One means of doing this is to apply a sequence of numbers from a table

of genuine random numbers such as that produced by the Rand corporation in 1955 [5].

The main drawback with using tables is the need to store all the numbers that will be used

within the simulation on the computer. More recently, in 1996 a CD-ROM containing

4.8 billion random bits was produced by Marsaglia [6] which overcomes the need to store

the numbers within the computers memory but suffers in that accessing a CD-ROM is

relatively slow. An alternative, would be to derive an algorithm that could be used within

a digital computer which, whilst it would not produce truly random numbers, produces

numbers of sufficiently acceptable randomness that they can be considered to be pseudo

random. Moreover, the number produced by the algorithm depends totally on the original

seed used within the algorithm ensuring that it is an easy matter to replicate the values

used allowing the same sequence of numbers to be used to examine each alternative

option. Law and Kelton [7] put forward the following 4 properties that a good pseudo

random number generator must possess:

1. Above all, the numbers produced should appear to be distributed

unifornily on [0,1] and should not exhibit any correlation with each other;

otherwise, the simulation's results may be completely invalid.

2. From a practical standpoint, we would naturally like the generator to be

fast and avoid the needfor a lot of storage.

3. We would like to be able to reproduce a given stream of random numbers

exactly, for tu'o reasons. First, this can sometimes make debugging or

verification of the computer easier. More important, we might want to use

identical random numbers in simulating different systems in order to obtain a

more precise comparison...

4. There should be provision in the generator for producing several separate

"streams" of random numbers...

27

A practical means of producing pseudo random numbers which does meet all the above

requirements is to use a Linear Congmential Generator along the lines of that originally

proposed by Lehmer in 1951 [4] [5] [6], This type of generator takes the form

== 4-c)(m()Clfyz) jGor M > 0 (1)

where n is the pseudo random integer produced and a, c and m are fixed integer constants.

For this generator to work all of the factors must be non-negative integers as must the

seed value rig. The simulation is likely to use a large number of pseudo random numbers

and, therefore, for the generator to be of use it must have a long cycle length. It has been

shown that in order to achieve a full cycle of numbers the factors within the generator

must meet the following conditions [7];

1. There must be no integer other than 1 that is an integer divisor of both c

7M.

am exacr q/"(^-7/

3. If m is divisible by 4 then (a-1) must also be divisible by 4.

It is not difficult to devise values that can be used within a Linear Congruential Generator

that meet the requirements given above and as a result it was used for a number of years

as the basis for most pseudo random number generators supporting simulation modelling.

However, it is somewhat simplistic in that each new number is only calculated using the

previous value. A better algorithm to use [8] makes use of a generator which, whilst still

meeting the requirements detailed above is recursive in nature and is of the form

jc, = fa,*,., 4- t (/t)

where the order k and modulus m are positive integers and the coefficients a,, ..., â are

integers in the range -(m - 1), ... , m - 1.

As computer processing speed gets faster so the complexity of the random number

generator can increase without there being a marked increase in the processing speed of

the simulation. In their paper [9] L'Ecuyer and Andres proposed a generator that

28

provided uniform random number generation by means of a combination of four linear

congruential generators. The paper also includes C code for the proposed generator and it

this code that is used within ALSSim to provide the pseudo random numbers that are used

to support the simulation.

Although it is acceptable to use all the numbers from a single stream with each event as it

occurs picking up the next number in the sequence, this is not a good way to control a

simulation. When undertaking a study with a number of alternative options to be

considered, it is necessary to be sure that any given event occurs at the same time for all

the alternative options being examined otherwise there is a risk that the results for some

options are distorted by the simulation events happening at different times. The effect of

this type of approach is explained in detail by Pidd [14], This problem is easily solved by

using several streams of numbers with each stream specific to a particular event within the

simulation. However, it is important to ensure that the starting seed for each stream is

sufficiently far apart from the others to minimise the risk of reusing the same numbers and

thus the streams may start at ni, niooooi,n2ooooi.. etc thus reducing the risk of replication.

Of course there is always a risk of streams overlapping if a run uses a large number of

random numbers in which case the same number will be used more than once.

The ALSSim simulation makes use of 5 pseudo random number streams with separate

streams used for LRI failure time, time for LRI repair, selection of whether the repair

occurs at the unit or the depot, no fault found in the LRI at the unit repair facility and no

fault found in the LRI at the depot. In each case the starting stream seeds are separated by

100,000 numbers virtually eliminating the likelihood of repeated use of any given numbers.

Similarly, each run has a different set of starting seeds to eliminate unintentional distortion

of the final results caused by reusing the same numbers for more than one run.

Testing of Pseudo Random Number Generators

The pseudo random number generator used within the simulation will produce a series of

numbers which lie within the range 0<u<m - 1. If the generator is valid it will produce a

uniform distribution of values \]{0,m-I) and we convert those numbers to a U(0,1)

uniform distribution before using within the simulation. It would, nonetheless, be unwise

to accept at face value that the particular combination of generator, seed value and

constants produce a valid and hence acceptable uniform distribution without undertaking

29

some tests to confirm this. The testing of generators is covered in depth in the literature

[15][16][17][18], however, there is no requirement to carry out all the available tests in

order to prove the acceptability of the generator used as no pseudo random generator is

capable of producing true random numbers and all that is required is an acceptable degree

of randomness. Thus a range of tests which are not closely related are selected giving a

sufficient breadth of examination for an acceptable level of confidence that the generator is

sufficiently random to meet the needs of the simulation. These range from simple to apply

tests such as those testing for uniformity, through scatter graph examinations to tests

examining length of runs and poker tests. In each case the results are examined for Chi-

square uniformity and the overall results examined. The failure of any one test is not be

sufficient to dismiss the generator as the aim is to obtain an overall assessment not a series

of yes/no criteria all of which must be met.

Although the use of the values contained within the design of the generator proposed by

L'Ecuyer and Andres [19] gives a degree of confidence that the generator within ALSSim

will produce valid numbers for use within the simulation, it would be unwise to accept

them at face value. Moreover, only by undertaking testing is it possible to be sure that the

particular implementation within ALSSim provides a valid generator producing acceptable

pseudo random numbers. In testing ALSSim a total of 50,000 random numbers split into

10 equal sized groups were produced and the following tests applied to them: Stagger

Chart plots, Frequency Test, Poker test, Gap test. Distribution of Pairs test, Frequency of

Pairs test and Runs test. The results of these tests for the ALSSim pseudo random number

generator is shown at Appendix 2.

Input Distribution Selection

Having selected a good pseudo random number generator it is necessary to address the

selection of the input distribution for events. Dependent on the nature of the problem it

may not be practical to collect large quantities of data or storage considerations within the

simulation application or its host computer may preclude the storage of large numbers of

empirical values. Clearly, the selection of an appropriate distribution is important if the

correct deductions are to be drawn from the results obtained. Where the data is available

it is possible to examine it in order to ascertain the best correlation between it and the

various distributions which can be used. However, when data is either scarce or of

insufficient fidelity for this analysis to be undertaken it is necessary to consider the various

30

options available before choosing what is considered to be the most appropriate

distribution for the aspect of the problem being examined. Fortunately, considerable work

has gone on in the past to identify appropriate distributions that can be used in the

simulation dependent on what the input is. A particularly good coverage of this is covered

by Law and Kelton [20] which also covers the various factors to be considered.

In the case of ALSSim, for the reasons explained earlier, it was not possible to derive

appropriate distributions for MTBF and MTTR from the data available. Therefore, it was

necessary to identify appropriate distributions by experimentation and to prevent the

interaction between multiple distributions affecting this analysis it was split into 2 distinct

phases. The first phase fixed the repair time and examined alternative distributions which

could be used to model the LRI MTBFs. Once a distribution had been selected it was

used to model MTBF and a similar process was applied to identify the distribution that

would be used to model LRI MTTR. The following candidate distributions were

examined in both phases: Exponential, Lognormal, Normal, Triangular and Weibull. In

each case the particular equations used to generate the particular distributions within the

simulations were as described by Cheng [21]. For each distribution a series of simulations

were run against the same flying programme, spares failure and repair information and

spares scale with the number of aircraft available incremented each simulation to give the

number of flights flown for aircraft availability numbers from 1 to 36.

Derivation of MTBF Distribution

Before going on to derive the actual distribution to be used to model MTBFs it is

appropriate to define the baselines against which the particular distribution's results will be

judged. In terms of the number of flights flown it is known from examination of the flying

programme file that the maximum possible is 1920 flights. This provides the first

comparative measure. The second involves comparing the flights flown against those that

would be achieved if the failure and repair times were both fixed to the mean values. The

third is a subjective measure of examining the variance. If we recall that the flying

programme being used has been designed to be met by an overall availability of 36 aircraft

we can reasonably expect the variance to reduce as the number of aircraft available

approaches 36.

31

Fixed Failure - Fixed Repair

The first runs of the simulation were undertaken with both the failure and repair times

fixed to the values read in from the LRI data input file. This set of runs provided a set of

values which could then be used to examine the results of the runs for the various failure

distributions. For this case the failure time (X)for any given LRI with a mean failure time

0 4 i&

X - jj. (3)

2000

1800

1600

1400

1200

1000

800

600

400

200

0 4^—I—I 1—I 1—I—i—I—I—I 1 1—I—I—I—I j—I—I 1—H
• ^ (N c o « T m < D r - c o c n o

Number of Aircraft

H 1 1 1—I—I 1—I—I—I—

•Fixed Target -

Figure 10. Flights Flown for Fixed Failure and Repair Time.

As can be clearly seen by examination of figure 10 the use of fixed failure and repair times

gives a poor result with a final achievement of less than 50% of the tasked flights flown.

This is not perhaps what would be expected, however, the results are valid and can be

explained by considering what is happening within the simulation. Where a fixed failure

time is used, any given LRI fails at the same elapsed flying hours on every aircraft. In the

case of some of the LRIs the fixed repair time is longer than the overall simulation time.

Moreover, there are insufficient spares to allow all failures to be solved from stock. The

combination of these 2 factors means that an aircraft suffering one of these failures never

32

becomes serviceable which results in a steady reduction in the number of aircraft available

and hence a poor final achievement.

H H
T - C N f 0 ' « T t 0 C D r - - c 0 0 5 O

I 'T ' I

Number of Aircraft

• Fi.xed

Figure 11. Variance for Fixed Failure and Repair I'ime.

Figure 11 shows the variance for the fixed failure case. Although the failure and repair

times are fixed there is a small variance in this case which results from the use of a uniform

distribution to model the likelihood that the component is found to have no fault on it

when it arrives at the repair location. In this case, the LRI is returned to the shelf in a

relatively short period of time. As can be seen by the very small values for variance this

has little impact on the overall results of the simulation run.

Exponential Failure - Fixed Repair

One of the easiest distributions to model is the exponential in that the only factor that

needs to be known is the mean MTBF(//). Thus for an Exp(/i) where // > 0 the failure

time for a particular LRI {X) calculated when fitted to a particular aircraft is:

X = —u ln(l — f /) (4)

33

U.1000

u. 800

Number of Aircraft

-Fixed -Exponential — Target •

Figure 12. Flights Flown for an Exponential Failure Distribution.

Figure 12 shows that the use exponential distribution to model failure times results in

a much improved flight success rate than the fixed failure time for all runs with a maximum

achievement in the order of 78%. The initially high rate of increase in the flight

achievement reduces to a lower rate from the 13 aircraft case onwards.

400000

350000

300000

250000

: 200000

150000

100000

50000

CO If) r- o
Number of Aircraft

-Fixed -Exponential

Figure 13. Variance for an Exponential Failure Distribution

34

Figure 13 shows the variance for the exponential distribution. In this case there is a rapid

rise in variance until the 13 aircraft case after which the variance is relatively constant

throughout the rest of the runs with most results falling within a band lying between

250,000 and 360,000.

Normal Failure - Fixed Repair

There are a number of different ways of returning a normal value for a distribution with a

mean MTBF (ji) and a known variance (cr). In this case it has been decided to use the

Polar version of the Box-Muller transform. Thus for a Normal (//,cr) the failure time for a

particular LRI {X) is:

[/, =;W(0,l) ,[/^ =7(Ar(0,l)

F, =2[/ , = 2 (/ , - 1

V w

jr, + (5)

jT, + (6)

In the case of ALSSim we only require one value to be returned so the second value of X

is discarded each time the calculation is undertaken. The Normal distribution is an open

distribution which returns values which lay in the range -oo < 0 < oo . However, as

ALSSim is using this distribution to model failure times of equipment a negative value for

failure time is neither wanted nor appropriate. Thus the above value for failure time {Xi)

must return a value greater than 0 in order to be of use within the simulation. In order to

achieve this the ALSSim Normal distribution is constrained such that all values lie within

the range O.ln < p < 1.9|j. thus ensuring that results are valid and that the results are not

skewed by having one tail longer than the other. Bounding the possible values in this way

does result in the elimination of very long times to failure but, as these are likely to be very

rare, their elimination is not likely to have a significant impact on the overall result.

35

1600

Number of Aircraft

• T a r g e t • F i x e d • v a r = 0 . 1 | j , — o — v a r = 0 . 2 | i — v a r = 0 . 3 | i — o — v a r = 0 . 5 n

Figure 14. Flights Flown for the Normal Failure Distributions.

Figure 14 shows the results for a range of normal distributions where the mean values

remained the same for all simulation runs but the variance was varied. As can be seen

there is little difference in the results obtained for each alternative variance throughout the

range of simulations and all show a marked improvement on the fixed case and a maximum

flight achievement in the order of 95% of those tasked.

450000

400000

350000

300000

250000

200000

150000

100000

50000

Number of Aircraft

-Fixed gi - var =0.1 var =0.2).i A var =0.3|.i—a—var =0.5p.

Figure 15. Variance for the Normal Failure Distributions.

36

Figure 15 shows the variance for the normal distribution runs and as with the flight

achievement shows little difference for the various variances examined. It can be clearly

seen that there is an initially steep increase in the variance where few aircraft are available

where the requirement for lengthy repairs to an individual aircraft followed by a relatively

steady decline as the number of aircraft available increases. Whilst there is little to choose

between the various alternative options the line for a variance of 0.1 jj. shows the closest

approximation to the mean value and is, therefore, taken forward for consideration as a

candidate distribution.

Lognormal Failure - Fixed Repair

In order to find the failure time for a LRI (X) for a LRI subject to Lognormal distribution

for failure with a mean MTBF (//) and a known variance {(/) we must first find the normal

return and then calculate e raised to the power of that value. Thus for a Lognormal (ju,cr)

the failure time for a particular LRI (X) calculated when fitted to a particular aircraft is:

(7)

2000

1800

1600

1400

1200

C 1000

1= 800

600

400

200

Number of Aircraft

•Target -Fixed —®—var =0.1^—o—var = 0 . 2 ^ — v a r =0.3^—a—var =0.5|i

Figure 16. Flights Flown for the Lognormal Failure Distributions.

37

Figure 16 snows the results for a range of Lognormal distributions with a constant mean

for each LRI failure but a variable variance. As with the previous options examined the

results are considerably better than that for the fixed failure time resulting in a maximum

flight achievement in the order of 95%.

450000

400000

350000

300000

250000

200000

150000

100000

50000

Number of Aircraft

— Fixed —a—var =0.1(1 —o—var=0.2|i — v a r =0.3p —o—var =0.5)1

Figure 17. Variance for the Lognormal Failure Distributions.

Figure 17 shows that, whilst the results for the runs for the Lognormal distribution has the

same sort of shape as that of the Normal distribution model, the Lognormal model exhibits

considerably greater variability in the variance results. However, it can be seen above that

for most values of available aircraft the variance = 0. l | i results in a lower variance value

and a higher overall flight achievement. Thus the Lognormal ((i,0. Ifj.) distribution will be

considered further as a candidate distribution for the failure distribution.

Triangular Failure - Fixed Repair

The triangular distribution is a simple distribution that is often used when little is known

about the data distribution. For this distribution 3 parameters are required: the minimum

(a), the mode (b), and the maximum (c). The input file for ALSSim gives values for the

minimum, maximum and a divisor (cf). The mode is calculated by:

b - a +
c - o

d
(8)

The failure time (Xt) for a Triangular(a, b, c) a < b < c is given by the formula:

. (6 - a)

(
r = # 7

}
Else
{

r = i
}

+ (c - a) 7 (9)

The mean (|ii) for a Triangular(a,^,c) is given by

(10)

Whilst this gives a value for failure for the Triangular(a,Z>,c) distribution it must be related

back to the LRJ mean before it can be used within the simulation. Thus the true failure

time (X) for a LRI with MTBF (//) is:

= 0 1)
A

39

2000

1800

1600

1400

1200

1000

C 800

600

400

200

Number of Aircraft

•Target -Fixed —H—1/3 • 1 /2 —A— 2/3

Figure 18, Flights Flown for the Triangular Failure Distributions.

Figure 18 shows the number of flights flown for a series of Triangular distributions with a

minimum of 0.1 p., a maximun. of i .9|j, and a range of divisors. It can be observed that the

shape of the various Triangular distributions being considered has little impact on the

results achieved throughout the range of available aircraft. The maximum achievement for

the Triangular distribution is approximately 93%.

Figure 19 below reveals a similar generic shape to the variance results for the Lognormal

distribution already considered albeit there is greater variability in the actual values for the

various alternative Triangular distributions. None of the 3 options considered stand out as

a better model than the other 2 and whilst the divisor of 1/3 was chosen as the candidate

choice for further evaluation either of the other 2 could just as easily have been selected.

40

450000

400000

350000

300000

250000

200000

150000

100000

50000

0 i — r

Number of Aircraft

• Fixed —m—1/3 1/2 - A - 2 / 3

Figure 19. Variance for the Triangular Failure Distributions.

Weibull Failure - Fixed Repair

The final distribution family considered as possible models for the failure distribution is the

Weibull. The Weibull distribution requires 2 parameters, the scale parameter (a) and the

shape parameter (b). The scale parameter is based on the LRI MTBF (ju) and is given by

a =

r 1 +
(12)

Thus it can be seen that the scale parameter for each individual LRI is different and that,

therefore, the failure time for a particular LRI (X) subject to a Weibull(a,6) distribution is

given by:

= ##(0,1)

= l n (l - ^) (13)

41

Number of Aircraft

Fixed - * - Shqse = 1 —o— Shape = 1.5 —A—Shape = 2 -e—Shape = 3 —*—9iape = 4 -6—Shape = 5

Figure 20. Flights Flown for the Weibull Failure Distributions.

Figure 20 shows the results of the runs using various shape parameters for the Weibull

distribution. Worthy of note is the set of results for the shape parameter = I. When this is

the case the Weibull distribution is the same as the exponential distribution. Examination

of the results for b = 1 and the exponential model reveals exactly the same results as for

the exponential distribution discussed earlier. In terms of the number of flights achieved,

the number of flights achieved at the higher end of the availability range is very similar and

gives a maximum of approximately 93%. As the number of aircraft available is reduced

there is a wider spread for shape parameters less than 3.

Figure 21 below gives the variance results for the various Weibull runs and again the runs

for a shape parameter of 1 replicates the results of the exponential runs. In terms of the

choice of candidate distribution we should select a distribution with a shape parameter

which gives a good result and a low value for variance. Examination of the Flights

Achieved graph shows that shape parameters of 4 and 5 gives very similar, but better than

the other values, and examination of the Variance graph reveals that the shape parameter

of 4 gives a slightly less variable variance than that for 5. Therefore, the Weibull

distribution Weibull(a,4) is used as a candidate distribution for the failure distribution.

42

450000

400000

350000

300000

250000

200000

150000

100000

50000

Number of Aircraft

Fixed —B—Shape = 1 —o—Shape = 1.5 --A— Shape = 2 Shape = 3 —canape = 4 - ^ S h a p e = 5

Figure 21. Variance for the Weibull Failure Distributions.

Having examined a range of alternative distributions to identify which should be

considered as candidates for the LRJ failure distribution, it is now appropriate to examine

them against one another to identify which is the most appropriate.

g" 800

t
Nunriw of Aircraft

"Target Fixed Exponential —o—Lognormal -A—Normal -o-Triangular

Figure 22. Flights Flown for the Alternative Failure Distributions.

•\Ajfeibull

43

Figure 22 shows graphically the number of flights achieved for each distribution being

considered. In order to eliminate distributions as not appropriate, they were evaluated

against 2 criteria with those that failed either excluded from further consideration. Firstly,

it was known that the target achievement for 36 aircraft was 1920 flights and that,

therefore, any distribution that did not give a result within a reasonable range of that value

was excluded. Secondly, as the scaling was based on the requirements for 36 aircraft to

achieve the mission task it was unlikely that there were sufficient spares to allow the task

to be met with far fewer aircraft and, therefore, any distribution that met the task with far

fewer aircraft would be excluded. As can be clearly seen both the fixed failure time and

the Exponential distribution fail the first of the criteria with achievements of approximately

50% and 78% of the target flight achievement respectively. All of the other distributions

give similar results throughout the range of simulations and thus the Normal, Lognormal,

Triangular and Weibull distributions need to be considered further to decide which is most

appropriate.

150000

400000

350000

300000

250000

k 200000

150000

100000

50000

Number of Aircraft

-—"Target Fixed -a—Exponential -o-Lognomial - ^ N o r m a l -o—Triangular —V\feibull

Figure 23. Variance for the Alternative Failure Distributions.

Figure 23 shows the variance for the distributions which generated the results in figure 22.

Examination of variance traces for the distributions reveals that each shows a similar trend

with an initial rise in variance, as the number of aircraft available builds so variability in the

random numbers starts to play a role, followed by a continual decline as the number of

44

aircraft available increases thus reducing the variability between individual runs. There is

little to choose between the various alternatives although, the Weibull distribution

generally achieves a slightly higher flight achievement and has lower values for variance.

Therefore, it was decided to use the Weibull distribution with a shape parameter of 4 to

model LRI failures.

Derivation of the Distribution to be used as the LRI Failure Distribution

Having decided that Weibull is an appropriate distribution to use to represent LRI failure,

a view that is supported in [22], a similar process was carried out as described above to

determine the most appropriate distribution to use to model variability in the repair times.

In this case the Weibull (|J.,4) distribution was used to model failure times with repair times

modelled using the Exponential, Lognormal, Normal, Triangular and Weibull distributions.

For simplicity the same values were used for each distribution as had been selected for

final consideration for the failure distribution. Figure 24 shows graphically the results of

the various distributions.

^ 1000

S= 800

Number of Aircraft

"Target Fixed Exponential —o—Lognormal -A—Normal -o—Triangular -4—\Afeibull

Figure 24. Flights Flown for the Alternative Repair Distributions.

Examination of figure 24 shows that there is little difference in the results of the various

distributions and that, therefore, it would appear that any of the distributions would

45

provide an acceptable option for modelling repair time. This graph presents insufficient

evidence to make a positive choice and, in order to do so, the variance for the runs, shown

at figure 25 needs to be examined.

500000

450000

400000

350000

300000

g 250000

200000

150000

100000

50000

CM CN (N
Number of Alrcraf*

"Target Fixed Exponential -o—Lognormai -A—Nonral -o—Triangular

Figure 25. Variance for the Alternative Repair Distributions.

-\Afeibull

Examination of figure 25 reveals that for once again there is no distribution that stands out

clearly as the most appropriate to model repair times. In order to make that decision it is

appropriate to undertake closer examination of the variance for the runs undertaken with

the higher numbers of aircraft available. This is achieved by figure 26, below, which

focuses in on the variance results for aircraft availability numbers from 20 to 36.

Examination shows that all of the alternative distributions have a degree of variation in the

results. However, the Lognormal distribution has fewer large peaks and troughs than the

others leading to the conclusion, confirmed in [23], that a Lognormal distribution is an

appropriate distribution to use for LRI repair times.

4 6

300000

250000

200000

H 150000

100000

50000

% 21 22 23 24 25 % 27 28 M M 31 % # # # %

Number of Aircraft

-None Exponential —o—Lognormal Normal —o—Triangular —•—Weibull

Figure 26. Variance for the Alternative Repair Distributions for Upper Range of Aircraft

Available Runs.

Thus the ALSSim simulation application makes use of 3 distributions to introduce

variability, a Weibull distribution for failure time, a uniform distribution to select the repair

location and a lognormal distribution for the LRI repair times.

Results

As has already been stated the ALSSim simulation produces a single output file which

contains all the results within a single series of runs. This file is produced as a text file

which can then be read into a range of word processing and spreadsheet packages for

further analysis offline. Whilst it was possible to include graphical functionality within the

simulation this would have required extensive additional design to provide a feature that is

already available within all spreadsheet packages. Moreover, by providing the raw figures

rather than a graph it is a relatively simple matter to present the results in a slightly

different fashion thus permitting different views of the overall information available.

The actual file can be considered to have 5 different sets of results contained within it.

The first contains the basic information necessary to repeat the simulation if required. It

details the input and output file names, the number of runs per simulation, the number of

47

aircraft available, the duration of the pre flight servicing, the maximum delay permitted and

the distributions used within the simulation and their parameters. The second section,

shown at table 1, deals with the mean mission statistics and the resultant variance.

Total Variance Percentage
Tasked Flights 1 9 2 0 . 0 0

Flights Achieved 1 8 8 9 . 6 8 G 7 4 & 1 8 9 8 . 4 2

On Time 1 8 8 6 . 4 0 8 0 9 3 . 4 1 9 8 . 2 5

First Half Flight Delay Maximum 2 . 3 0 5 1 3 4 & 1 2

Second Half Flight Delay Maximum CX98 1 0 . 7 0 0 . 0 5

Cancelled Flights 3 0 . 3 2 6 7 4 0 1 8 1 5 8

In Flight Aborts 1 2 1 . 7 8 2 0 2 1 0 . 4 0 6 . 3 4

Launched Flights Succeeded 1 7 3 5 . 7 8 3 7 3 5 2 . 8 0 9 1 . 8 6

Launched Flights Failed 6 9 . 7 2 8 1 1 4 . 0 8 3 6 9

Table 1. Mission Achievement Means.

The third section gives, for each aircraft, the proportion of the simulation time that it spent

in the various alternative serviceability states in both terms of number of hours and

percentage of the total simul&iion An example of these results is given at table 2 for the

first 5 aircraft.

Aircraft
Number

Unserviceable Awaiting
Flight
Servicing

In Flight
Servicing

Serviceable Flying

1 1 2 4 8 . 3 1 0 4 7 8 . 0 5 1 7 8 4 . 0 2 4 7 3 . 6 2

2 1 2 6 1 . 6 9 0 4 7 5 . 4 3 1 7 7 5 . 8 9 4 7 0 . 9 8

3 1 1 9 1 . 0 1 0 3 2 1 . 0 5 2 1 5 4 . 5 2 3 1 7 4 1

4 1 1 5 4 . 5 0 0 2 9 1 . 9 6 2 2 4 8 . 9 7 2 8 8 . 5 7

5 1 1 6 1 . 8 2 0 2 7 7 J 8 2 2 7 0 . 8 0 2 7 4 . 2 0

Table 2. Time Spent in Alternative States.

The fourth section gives, for each day of the simulation, the mean number of aircraft in

each state as at the start of each day. Table 3 shows the results for the first 5 days of the

simulation.

48

Day
Number

Serviceable Flying Unserviceable In Pre Flight
Servicing

Awaiting Pre
Flight
Servicing

1 3 6 . 0 0 0 0 0 0
2 3 3 . 6 6 0 0 4 3 1 . 9 1 0
3 3 2 . 8 8 0 1 ^ 6 1 . 8 6 0
4 3 2 . 2 4 0 1 . 9 1 1 . 8 5 0
5 3 1 . 8 1 0 2 . 3 5 1 . 8 4 0

Table 3, Daily Aircraft States.

The fifth, and final, section of the results file gives the mission achievements for each day

of the simulation. As before this is a mean and table 4 shows the results for the first 5 days

of the simulation.

Delay
Day Tasked On Less More Cancel Successful In Successful Failed
No Flights Time Than Than Take Offs Flight Missions Mission

1 / 2 1 / 2 Abort s
Max Max

1 16 1 6 . 0 0 0 0 0 1 6 . 0 0 0 7 9 1 4 . 3 0 (1 4 7

2 1 6 1 6 . 0 0 0 0 0 1 6 . 0 0 a 9 0 1 3 . 7 8 0 . 6 0

3 1 6 1 5 . 7 8 0 0 0 1 5 . 7 8 0 . 7 0 1 3 . 8 7 CX37

4 16 12x52 0 0 0 1 5 5 2 0 . 6 0 13^41 0 . 3 4

5 1 6 15.92 0 0 0.7 1 5 . 9 2 1 . 1 0 l - L I I a 7 5

Table 4. Daily Mission Achievements.

Simulation Verification and Validation

The final aspect to be considered within a general review of features of simulation is that

of the verification and validation of the model. Having designed the simulation to

represent the environment to be examined, it is necessary for the analyst to be satisfied that

the interactions that take place within the simulation accurately represents those of the real

world. The mistake that can be easily made by an inexperienced analyst is to wait until the

application has been programmed before undertaking this activity. The correct approach is

to validate each stage of the development with the customer to ensure that not only are the

assumptions made within the model correct but also that the questions that require

answering are addressed by the simulation. There are a number of techniques for doing

this dependant on the design technique that has been used by the analyst ranging from the

production of activity cycle diagrams for an activity approach to the simulation [24] to

49

state diagrams for an object oriented approach [25]. Only when the conceptual model has

been validated and accepted as an accurate representation of the real world problem to be

modelled should actual programming commence. Having completed the production of the

simulation application the analyst needs to verify that the code written accurately models

the agreed conceptual model and also that the results produced are correct, simulation

models are by the nature of what they are complicated models which contain a number of

subroutines each of which need to be checked for accuracy and their effect on the rest of

the application. There are a number of techniques that can be used to achieve this

function[26][27]. Verification is not a quick process but is essential if the customer is to

have confidence in the output of the simulation. Therefore, it is necessary to undertake

sufficient verification to prove the efficacy of the simulation whilst ensuring that no more

of this process is undertaken than is necessary to achieve that aim. There are 2 main

questions in this process that must be addressed. Firstly, does the simulation and its

internal features accurately model the problem as articulated by the agreed system model.

Secondly, are the outputs of the model correct. The first can best be answered by

obtaining an event trace and manually working through it. This will ensure that the correct

flow through the events are occurring and if compared with a manual work through of the

problem that the various subroutines are producing the correct inputs to the event decision

making process. The latter can be simply achieved by one of 2 methods. If there is a

similar model in use the outputs of both can be compared to see if they are similar or the

simulation could be used to model the system as it stands and a comparison made between

the actual achievements and those predicted by the simulation.

The validation of ALSSim was undertaken as a 2 stage process. Firstly, before

undertaking any programming, it was necessary to develop the underlying model and,

having done so, to examine it against reality to ensure that the proposed model represented

reality to a sufficient fidelity to be acceptable. This was accomplished by producing the

activity cycle diagram at Appendix 3 and then discussing this proposed model with the

RAF's logistic modelling staffs and practical aircraft engineers to determine whether it

contained a sufficient level of detail to adequately represent the system being examined.

Once that was agreed the simulation application could be designed and programmed.

Once that was complete, the second stage of the validation process was undertaken by

running the simulation and obtaining an event trace showing all events that occurred and

the time at which each took place. Comparison of this trace manually against the model

50

already agreed confirmed that the programmed simulation matched the design model.

Once the application was accepted as a valid representation of the real world it was then

necessary to validate the output to ensure that the results produced are acceptable. For

some years, the RAF has been using an simulation application which has been developed

in-house using FORTRAN as the programming language. This application used a simple

underlying model and suffered from memory constraints and a lack of speed, taking some

hours to run each option. This compares with ALSSim which achieves the same run in

minutes. The outputs for mission achievement for both were compared using test data and

were found to produce similar results. Further verification was achieved by comparing the

results of ALSSim with the deterministic model which revealed similar values for system

availability. Having completed this process, and accepted that ALSSim was both valid and

verified, it was ready for use.

THE USE OF ALSSIM AS A PROBLEM SOLVING TOOL

Baseline Problem

All that has gone before describes the theoretical aspects of the problem leading to the

design and programming of a simulation application for use as an evaluation tool. The

remainder of this treatise describes the practical use of the simulation and considers the

results produced and the message to a user. Before using ALSSim as a tool to test the

effect of various changes to the input parameters it is first necessary to provide a baseline

against which the changes can be examined. This was achieved by running the following

simulation problem;

What is the effect on the number of flights flown of altering the number of aircraft

available to fly a specified flying task of 8 missions of 2 aircraft each mission for 5

days each week over a 24 week period? No mission will launch unless 2 aircraft

are available to fly and the current time is no later than one hour past the original

planned launch time for the mission. The reliability of the LRIs and number of

flight servicing teams remain constant over all alternative options. The LRI spares

file is that produced using the deterministic models to provide an overall system

availability of 80% over the simulation period.

The above problem is actually the set of parameters used to develop the simulation

features that have already been covered earlier. Figures 27 and 28 respectively show the

51

number of flights achieved for each variation in the number of aircraft and the run

variances for these results.

2000

1500

I 1000

/

/ ^ 2 3

Number of Aircraft

Figure 27. Flights Flown for the Baseline Option.

Initial Analysis of figure 27 reveals that there are 3 distinct regions. Region 1 shows a

rapid increase in the number of flights flown which reflects the marked effect that each

increase in the number of aircraft has on the number of flights that are successfully flown.

Region 2, whilst continuing to exhibit an improving achievement has a reduced gradient

reflecting a reduction in the impact of each increase in the number of aircraft available. In

region 3 the gradient reduces further and reflects an approach to the asymptotic point

where further increases in the number of aircraft available will nit improve overall result

achieved. Figure 28 shows the variances for these runs and permits further examination

of the 3 zones to see if there is any correlation between the observed changes in Figure 27

and the variances.

52

600000

%0M0

400000

300000

200000

100000

/ 1 2 3

Number of Aircraft

Figure 28. Variance for the Baseline Option.

Examination of the variance for the three regions described above shows that the results

for region 1 show a rapidly increasing variance which reflects the wider variation that

occurs as the number of airci aft is increased and the range of possible outcomes increases

rapidly. Region 2 shows a reduction in the gradient but nonetheless reveals that the

variance continues to increase over this range, decreasing variance as the number of

aircraft increases to the point that there is sufficient availability to meet the requirement

and individual unserviceabilities has a decreasing impact on the overall availability. Region

3 rapidly decreasing variance as the number of aircraft increases to the point that there is

sufficient availability to meet the requirement and individual unserviceabilities has a

decreasing impact on the overall availability.

Whilst the results of this baseline study reflect the expectation it is worthwhile examining

the results in order to construct a confidence interval for the mean values achieved. This

will give an indication of the degree of spread of acceptable outcomes and hence a feel for

the acceptability of the final result. The formula to be used in calculating the confidence

interval is [28]

n
(14)

53

where X is the derived mean, is the 1-0(72 critical point for a t distribution with n-1

degrees of freedom and is obtained from the table [29], a is the confidence interval, is

the sample variance and n the number of runs. An explanation and proof of this is given in

[30]. For the baseline case it was decided to use a confidence interval of 0.9 leading to the

use of a tn-i,1-072 = 1.66. The resultant upper and lower bounds for each result was

calculated and is presented graphically at figure 29.

Number of Aircraft

-2 ac Lower -Upper

Figure 29. Flights Flown for the Baseline Option showing Upper and Lower Confidence

Boundaries.

Figure 29 shows a close correlation between the result achieved and the upper and lower

boundaries of the 90% confidence interval which reflects a simulation with limited variance

in the various runs. This is particularly apparent in the high range of aircraft availability

and further reinforces the earlier expressed views that the simulation application uses

appropriate input distributions and models the environment correctly.

Variation in number of aircraft per mission with total number of flights remaining

the same

This baseline case can now be used as a means to assess the effect of varying the various

parameters to see their impact on the final result. The first variation to be considered is

54

that of varying the mission requirements in terms of the number of flights launched on each

mission whilst keeping the total number of flights and thus the flying commitment

constant. Figures 30 and 31 show the flight achievement and variance for 3 separate

cases; the baseline 2 aircraft missions, 4 aircraft missions, and 1 aircraft missions.

2000

"• 1000

0 —»—«—i—I—I 1 1—I—I (-
« - (N m v m (o r ~ . c o o) 0 ^

H—I—I—I—h i 1 1 1 1 1 1 1 1 1 1 1 1 1 h-

Number of Aircraft

'Target •1 ac -2 ac ac

Figure 30. Flights Flown for the 1920 Flights Option.

Examination of figure 30 shows that, for the 1 aircraft per mission option, the curve of the

graph shows a close correlation with that derived for the 2 aircraft per mission baseline

case throughout the range of maximum aircraft available. For the 4 aircraft per mission

the results are close to those for the baseline case but there is some deviation below 12

aircraft and above 21 aircraft available. The former is a direct result of the requirement to

have a minimum number of aircraft available before a mission will be launched. Thus for a

4 aircraft per mission tasking no flights will be flown where the maximum possible number

of aircraft available is less than 4. Above 21 aircraft the 4 aircraft per mission option tends

to underperform the other 2 options slightly. This leads to the conclusion that whilst the

number of aircraft required per each mission has some impact on the total number of

flights launched for any given maximum aircraft availability this impact is not marked.

55

450000

400000

350000

300000

250000

w 200000

150000

100000

50000

0 —*—<>—I 1 1 1—I—I—I—I—i—I—I—I—I 1—I 1—I—I—1—I 1 1
Number of Aircraft

•1 ac -2ac •4ac

Figure 31. Variance for the 1920 Flights Option.

For this conclusion to be supported it would be expected that the variance for the 1

aircraft per mission and the 2 aircraft per mission option would be similar whilst that for

the 4 aircraft per mission would be greater than the others. Indeed, examination of figure

31 supports this conclusion but reveals that the variance at the higher number of aircraft

availability is markedly reduced when compared to that for the earlier runs. Thus both

graphs support the view that increasing the number of aircraft required per mission has

little overall impact on the final achievement at the higher number of aircraft availability.

Neither of these graphs provide sufficient information to allow an objective view to be

taken of why this should be so and it is, therefore, necessary to examine aircraft availability

in order to ascertain whether that explains the high task achievement.

Figure 32 shows the mean aircraft availability for the various mission options.

Examination of this graphs shows that, with the exception of the start where minimum

aircraft requirements plays a large part, the mean aircraft availability rises at a relatively

constant rate as the number of aircraft available increases. There is evidence of a curve

with the increases in availability less for as the available aircraft is incremented at the

higher numbers. Moreover, the high overall system availability supports the high flight

56

achievements and also shows a good correlation with the outputs of the deterministic

model which gave an overall system availability of 80% for the 36 aircraft case.

100.00 *

90 00

80 00

20.00

10CW

0 0 0

60 00

w 50.00

30.00

_j j — I 1 — I — H 1 i 1—I—I i 1 1 1 1 1 H

Number of Aircraft

1 ac -2 ac ac

Figure 32. Mean Aircraft Availability for the 1920 Flights Option.

Whilst figures 30 to 32 are useful for examining the overall effect of the 3 alternative flying

programmes, they are not suitable for identifying whether the mission profile is sustainable

beyond the 166^ day. Focusing on a single case allows a deeper examination of the 3

options in order to make this judgement and it appropriate to consider 2 measures: the

number of flights flown per day and the aircraft availability per day. Clearly, this could be

done for each of the number of aircraft available runs, however, this is both time

consuming and potentially confusing. The 36 aircraft results reflect the number of aircraft

against which the original scale was derived and for this reason was chosen as the case to

be examined.

57

16 caxD-®CEO-̂^

1 4 -

12

10

4 ..

+H-HWtt

M

w+iwmtwpttwwmiHî ^

D a y Number

• 1 ac —*—2 ac ac

Figure 33. 36 Aircraft Mean Daily Flights Flown for the 1920 Flights Option,

Figure 33 shows the number of flights flown per day for each of the aircraft per mission

options. It is immediately noticeable that there is a regular drop to 0 which reflects the

fact that missions are only tasked for the first 5 days of each week. In all cases the number

of missions flown is initially 100% until day 50 at which point there is a step down to a

new steady state figure of approximately 90%. The small peaks at the beginning of each

week reflects the effect of aircraft recovery on days 6 and 7 without any tasking.

Examination of figure 34 below reveals several interesting features. Firstly, it can be

confirmed that the availability increases every day 6 and 7 as was surmised from the

increased flight achievement at the start of each week. Secondly, the 1 aircraft per mission

tasking results in an improved aircraft availability when compared with the baseline case as

each aircraft becoming available allows a mission to be flown. This results in aircraft

failing earlier than the baseline case and consequently becoming available sooner. It would

be expected, using the same logic, that the 4 aircraft per mission case would result in a

reduced availability, however, this is not the case as can be seen in figure 34.

58

25

I 20

< 15

10

0 liiiiiniiiiiiiiiiinii

Day Number

•1 ac •2 ac -4 ac

Figure 34, 36 Aircraft Mean Daily Aircraft Availability for the 1920 Flights Option.

This reverse of the expectatioii is as a consequence of the number of aircraft required to be

available before a mission is launched resulting in more aircraft being available than for the

baseline case whilst still insufficient to meet the minimum of 4 required for a mission. It is

also of interest to note that, although the number of missions launched per day has a

simple step function, the number of aircraft available each day for all the alternative

options decays throughout the simulation and has yet to reach a steady state. Thus it can

reasonably be concluded that there will come a point at which the flying programme

becomes unviable but, that the information available does not permit that time to be

calculated.

Variation in number of aircraft per mission with total number of flights also varying

Examination of alternative factor changes can be carried out in a similar manner to that of

varying the number of flights per mission detailed above. The baseline case was derived

using 8 missions of 2 flights per mission per day with a flying week of 5 days, equivalent to

Monday to Friday. Thus a total of 1920 flights were tasked over a period of 166 days. By

applying the same mission timings as for the baseline case but changing the number of

flights required per mission examination of the effect of either halving or doubling the total

flights to be flown can be undertaken.

59

3500

3000

2500

2000

, 1500

1000

500

H—I—I 1 1—I—I—I—I—I 1—I—I—I—i 1 1—I—I 1—I 1—I 1- H 1—I 1—H

Number of Aircraft

•1 ac —B—2 ac ac

Figure 35. Flights Flown for the Variable Flights Option.

Figure 35 shows the flight achievements for the 3 options. However, as the target number

of flights to be flown is different for each of the 3 options further manipulation of the data

is required to allow comparison of the various achievements.

9 60

0. 30

Number of Aircraft

•1 ac — 2 ac ac

Figure 36. Percentage of Flights Flown for the Variable Flights Option.

60

In order to accomplish an effective comparison it is necessary to assess the achievement

against the number of flights actually tasked and that is shown in figure 36.This

comparison reveals a set of results which accords with what it would be reasonable to

expect. The 1 aircraft option reflects half as many flights required as the baseline, 960

rather than 1920, and results in a much quicker increase to a maximum. What is

interesting to note is to observe that the reduction in flights is still insufficient to reach

100% showing that aircraft unserviceability still reduces the achievement, albeit only in the

order of 2% rather than 6% for the baseline. Doubling the number of flights required to

3840 results in a marked reduction in achievement throughout the range. This is as

expected as the harder the fleet is worked the greater the number of unservicabilities. As

the repair time for components is significant for a number of LRIs this result suggests a

fleet with a declining number of aircraft available due to more LRIs contained within the

repair chain than was intended when the scale was derived. As the scaling was undertaken

for a fleet of 36 aircraft flying 1920 flights this result is not unexpected.

1800000

1600000

1400000

1200000

1000000

800000

600000

200000

Number of Aircraft

• 1 ac —B—2 ac ac

Figure 37. Variance for the Variable Flights Option.

Examination of the figure does show that there is a very large difference in the variance

and the shape of the variance curves particularly for the 4 aircraft per mission option.

However, as with the examination of flight achievement the direct comparison of variance

61

as portrayed in figure 37 is not useful as each relates to a different target and hence a

different outcome. There is, therefore, a need to use another criteria against which the

examination can be undertaken. An examination of the 90% confidence range would give

an indication of the acceptability of the results as a means of judging the effect of altering

the number of flights to be targeted.

4000,00

3500.00

3000 0 0

2500.00

I 2000,00

0 00 4—4—I 1—\—I—I—I—I 1 1 1 1—I—I—I 1 1 1

1500 00

1000.00

500 00

Number of Aircraft

•1 ac •2 ac ac

Figure 38. Upper and Lower 90% Confidence Boundaries for the Variable Flights Option.

Again this graph, whilst giving an impression of the width of the various bands, fails to

give sufficient information to make a judgement at to how the final result compares. In

order to achieve that the results should be converted into a percentage of the number of

flights tasked which would give an idea of the spread compared against a common base.

Figure 39 goes one stage further in that it shows the distance in from the achieved mean of

the lower confidence limit compared with the target number of flights. Thus an

achievement of 87% with a lower confidence band value of 80% will have a distance of

7%. Clearly this is the same value for the upper confidence limit as this lies as far above

the achieved value as the lower limit lies below it.

62

3

0 6—(>
o a c o ' ^ t n t D r - c o o i o

Number of Aircraft

•1 ac -2 ac ac

Figure 39. Distance of the Lower Confidence Limit from the Mean for the Variable Flights

Option.

It can be seen that the larger the number of flights required to be mounted the greater the

Confidence spread and, therefore, the wider the range of answers that would be

statistically acceptable. Thus, as the number of flights is increased the probability that a

satisfactory number of flights would be flown becomes increasingly unlikely and action

would need to be taken to ensure that the achievement does not fall to an unacceptably

low

CONCLUSIONS

The use of deterministic models to derive spares scales to support an operational task has

been a key component of the RAF's modelling toolset for some years although, it was

recognised at an early stage that, whilst the output was of use to maintenance staffs, the

model failed to give the operational customers confidence that their needs would be met.

This need could best be met by the development of a simulation application which would

the effectiveness of a scale derived by a deterministic spares scaling application to be

examined against a set flying programme. Whilst this has been technically feasible for

some time the only atternpt made by the RAF was both slow in operation and limited in

functionality restricting its use to relatively simple questions of the total number of

63

missions that could be flown. The introduction of modern programming languages with

built in functionality and the increasing power of desktop computers has allowed the

development of a simulation that is both quick in operation, minutes rather than hours, and

powerful in terms of the functionality that can be included. By taking advantage of these

improvements, the development of ALSSim has allowed a wider range of questions to be

asked ranging from the number of flights that are launched through to the mean aircraft

availability. Simulation allows a greater fidelity of answer than is easily achieved with a

deterministic model and allows the researcher to identify the effect of reducing the overall

number of aircraft available through to the effect on a particular number of aircraft of

varying the flying programme. Moreover, examination of the effect of changing the target

flying rate can be easily studied as shown above allowing a judgement to be made as to

whether it is appropriate or, indeed, possible to do so. Furthermore, the use of a

simulation also provides the data necessary to undertake deeper investigation into the

reasons why particular trends are taking place, something that cannot be done with the

more simple deterministic models. Therefore, simulation has a place in the toolset of the

modern aircraft logistic support analyst and provides a powerful tool capable of both

providing the operational customer with a greater level of confidence in the proposed

scales and allowing better ways of managing particularly scarce assets to be proposed.

FURTHER WORK

This study has resulted in an effective simulation programme which allows a number of

fundamental questions to be asked relating to the ability of a given aircraft type with

known equipment and reliability to achieve a stated flying programme with a particular

scale which has been optimised using a deterministic application. To date the operation of

the aircraft at a single base supported by a single repair depot has been considered. This

could now be expanded to take account of multiple operating bases and/or repair sites

allowing a wider range of questions to be asked. The model has been designed around the

need to develop a simulation for aircraft and could, therefore, be used to support any

organisation operating aircraft although, for fleets such as airlines, which take off and land

at different locations, further development of the model would be necessary. Equally the

model could be used with relatively minor alteration to examine any vehicle or piece of

equipment which was subject to failures related to operating hours.

64

APPENDIX ONE ALSSIM COMPUTER CODE

Overview
This appendix contains all the source code for the ALSSim application except for that
which is generated by the Microsoft C++ compiler as the underlying application control
code. Thus only those files that have been modified by myself to incorporate additional
code are included in this appendix. For each component of the simulation application
there are 2 files, the header file in which all the parameters and operations are declared and
the program file which contains the application code for the various operations. The first
section of this appendix lists the code files in alphabetical order and gives a brief statement
as to their purpose. The second section gives the code for each file in turn.

Aircraft - The code specific to the aircraft entity and the code to control LRIs fitted to the
aircraft.

ALSSimDoc - The code that controls the simulation. These files contain the event
controller and all the control code for each event.

DailyResults - The code used to calculate aircraft availability at the start of each day and
the flight achievements for each day for each run. The results are kept in a linked list and
used at the end of each set of simulation to calculate the overall results.

DelayedFlight - The code relating to the delayed flight list.

DlgSimulationFinished - The code for the dialog box that is generated at the end of each
run to give an overview of the run achievements.

Event - The code required to populate and obtain data from the simulation event linked
list.

RandomNumber - The code for the pseudo random number generator. This code is NOT
my own. It is the code provided by L'Ecoyer and Andres in their paper on A Random
Number Generator Based on the Combination of Four LCGs.

SBarSimProgress - The code to generate a progress bar at the bottom of the screen whilst
the simulation is running. This bar serves no purpose other than to indicate how far the
application is through the runs.

Stock - The code for each LRI type dealing with the off aircraft aspects. This file contains
details of serviceable stock levels at both unit and depot, repair times, numbers required
for aircraft and numbers unserviceable at both the unit and depot.

65

Aircraft

//Aircraft.h interface of the C Aircraft class
class CAircraft ; public CObject
{

//Attributes
private:

bool bFirstLRI;
bool bFirstTime;
bool bInFlightAbortState;
bool bLRIFailureFound;
bool bLRJRequired;
float fAircraftFailureTime;
float fAircraftFlyingHours;
float fAircraftPlannedLandingTime;
float fClockTime;
float fLastEventTime;
float fLRIFailureTime;
float fTimeAwaitingPreFlightServicing;
float fTimeFlying;
float fTimelnPreFlightServicing;
float fTimeServiceable;
float fTimeUnserviceable;
float fTotalTimeAwaitingPreFlightServicing;
float fTotalTimeFlying;
float fTotalTimelnPreFlightServicing;
float fTotalTimeServiceable;
float fTotalTimeUnserviceable;
int iAircraftNumber;
int iAircraftState;
int iLRJPosition;
int iLRIState;
int iLRIType;
int iNumberOfFailedEssentialLRJs;
int iNumberOfFailedNonEssentialLRIs;
int iNumberOfLRIsRemoved;
int iNumberOfLRIsRequired;
int iNumberOfLRIsUnserviceable;
// Class declaration for LRIs

class CLRI: public CObject

(
//Attributes
private;

float fLRIFailureTime;
int iLRIPosition;
int iLRIState;
int iLRIType;

//Operations
public:

CLRIOO
CLRI (int iPositionjnt iType,float fFailureTime)
{

66

iLRIPosition = iPosition;
iLRIState = 1;
iLRIType = iType;
fLRIFailureTime = fFailureTime;

)
float GetLRIFailureTimeQ;
int GetLRIFositionQ;
int GetLRJStateQ;
int GetLRITypeO;
void ResetLRI(float fFailureTime);
void SetLRIFailureTime(float fAircraftFlyingHours,float fMeanFailureTime);
void SetLRIState(int iState);
-CLRIO{}

};

CObList Irilist;
CLRI* pLRI;
POSITION LRIPos;

//Operations for the Aircraft Class
public:

CAircraft(){}
CAircraft(int iNumber)
{

iAircraftNumber = iNumber;
iAircraftState = 1;
iNumberOfFailedEssentialLRIs = 0;
iNumberOfFailedNonEssentialLRIs = 0;
iNumberOfLRIsRemoved = 0;
iNumberOfLRIsRequired = 0;
iNumberOfLRIsUnserviceable - 0;
fAircraftFlyingHours = 0.0;
fTimeAwaitingPreFlightServicing = 0.0;
fLastEventTime = 0.0;
fTimeFlying = 0.0;
fTimelnPreFlightServicing - 0.0;
fTimeUnserviceable = 0.0;
fTimeServiceable = 0.0;

}
bool CheckLRITypeRequired(int iLRIType);
bool GetlnFlightAbortStateQ;
bool ResetLRI(float fFailureTime);
float GetAircraftFlyingHoursO;
float GetAircraftFailureTimeQ;
float GetAircraftPlannedLandingTimeO;
float GetLRIFailureTime(int iLRIPosition);
float GetTimeAwaitingPreFlightServicing(int iNumberOfRuns);
float GetTimeFlying(int iNumberOfRuns);
float GetTimeInPreFlightServicing(int iNumberOfRuns);
float GetTimeServiceable(int iNumberOflRuns);
float GetTimeUnserviceable(int iNumberOfRuns);
int AddNewLRI(int iPosition,int iType,float fFailureTime);
int GetAircraftNumberO;

67

int GetAircraftStateQ;
int GetNumberOfFailedEssentialLRIsO;
int GetNumberOfFailedNonEssentialLRIsO;
int GetNumberOfLRIsRequired();
int GetNumberOfLRIsUnserviceableQ;
int GetLRIFailedInFlight(bool bFirstTime,float fEventDuration);
int GetLRlStateO;
int GetLRIType(bool bFirstTime);
int GetUnserviceableLRJTypeQ;
int RemoveUnserviceableLRIs(bool bFirstTime);
int UpdateLRIRequired(int iTypejnt iState);
void DeleteLRIsQ;
void IncrementNumberOfEssentialLRIFailuresO;
void IncrementNumberOfNonEssentialLRIFaiiuresO;
void ReduceNumberOfLRIsRequiredO;
void ResetAircrafl();
void SavePlannedLandingTime(float fClockTime,float fEventDuration);
void SetAircraflState(int iAircraflState);
void SetEndOfRunTotals(float fClockTime);
void SetLRIState(int iLRIPosition,int iLRIState);
void SetInFlightAbortState(bool bInFlightAbort);
void SetTimeAwaitingPreFlightServicing(f[oat fClockTime);
void SetTimeFlying(float fClockTime);
void SetTimelnPreFlightSen'icingffloat fClockTime);
void SetTimeServiceable(float fClockTime);
void SetTimeUnserviceable(float fClockTime);
void UpdateAircraftOnLanding(float fClockTime,float fFlightDuration,

int iMaximumFailuresNonEssentialLRIs);
void UpdateRemovedLRJ(int iPosition,int iState);
void UpdateReplacedLRI(int iPosition,float fFailureTime);
-CAircraftQO

};

//Aircraft, cpp implementation of the C Aircraft class
#include "stdafx.h"
#include "Aircraft.h"
// CAircraft commands
bool CAircraft:: CheckLR]TypeRequired(int iType)
{

bLRIRequired = false;
for (LRIPos = lriIist.GetHeadPosition();LRIPos != NULL;)
(

pLRI = (CLRI*)lnlist.GetNext(LRIPos);
iLRIType - pLRI->GetLRIType();
if (iLRlType - = iType)
{

if (pLRI->GetLRIState() == 4)

{
bLRIRequired = true;
break;

68

else
{

if (iLRJType > iType)
break;

}
}
return bLRJRequired;

}
bool CAircraft::GetInFlightAbortState()
{

return blnFlightAbortState;
}
bool CAircrafl:;ResetLRI(float fFailureTime)
{

pLRI = (CLRI*)lnlist.GetAt(LRIPos);
pLRI->ResetLRJ(fFailureTime);
pLRI = (CLRJ*)lhlist.GetNext(LRIPos);
if(LRIPos = NULL)

return true;
else

return false;

loat CAircraft; ;GetAircraftFailureTime()

return fAircraftFailureTime;

loat CAircraft::GetAircraftFlyingHoursQ

return fAircraftFlyingHours;

float CAircraft::GetAircraftPlannedLandingTime()

return fAircraftPlannedLandingTime;

float CAircraft::GetLRJFailureTime(int iLRIPosition)

fLRIFailureTime = pLRI->GetLRJFailureTime();

return fLRIFailureTime;

float CAircraft::GetTimeAwaitingPreFlightServicing{int iNumberOfRuns)

return fTimeAwaitingPreFlightServicing/iNumberOfRuns;

float CAircraft::GetTimeFlying(int iNumberOfRuns)

return fTimeFlying/iNumberOfRuns;

float CAircraft::GetTimeInPreFlightServicing(int iNumberOfRuns)

return fTimelnPreFlightServicing/iNumberOfRuns;

69

float CAircraft::GetTimeServiceable(int iNumberOfRuns)
{

return fTimeServiceable/iNumberOfRuns;
}
float CAircrafTt::GetTimeUnserviceable(int iNumberOfRuns)
{

return fTimeUnserviceable/iNumberOfRuns;
}
int CAircraft: :AddNewLR](int iLRIPosition,int iLRIType,float fFailureTime)
{

if (iLRIPosition == 1|| fFailureTime < fAircraftFailureTime)
(

fAircraftFailureTime = fFailureTime;
}
lrilist.AddTail(new CLRI(iLRIPosition,iLRIType,fFailureTime));
iLRIPosition++;
return iLRIPosition;

}
int CAircraft::GetAircraftNumber()
{

return iAircraftNumber;
}
int CAircraft: :GetAircraftState()
(

return iAircraftState;
}
int CAircraft::GetNumberOfFailedEssentialLRIs()
{

return iNumberOfFailedEssentialLRIs;
}
int CAircraft::GetNumberOfFailedNonEssentialLRIs()
{

return iNumberOfFailedNonEssentialLRIs;

1
int CAircraft:: GetLRIFailedInFlight(bool bFirstTime,float fEventDuration)
{

bLRIFailureFound = false;
if (bFirstTime == true)
(

LRIPos = Irilist.GetHeadPositionO;
}
pLRI = (CLRI*)lrilist.GetNext(LRIPos);
while (LRIPos != NULL)
{

// Check if the LRI fails this flight
if (pLRI->GetLRIFaiIureTime() <= fAircraftFlyingHours + fEventDuration

&& pLRl->GetLRlState() == 1)
(

bLRIFailureFound = true;
//get LRI position
iLRIPosition = pLRl->GetLRlPosition();

70

break;
}
else
{

// step on to next LRI in the list
pLRI = (CLRI*)lnlist.GetNext(LRIPos);

}
}
//return LRI position
if (bLRIFailureFound)
{

return iLRJPosition;
}
else
{

return (0);
}

}
int CAircraft::GetLRIState()
{

return iLRIState;
}
int CAircraft.:GetLRIType(bool bFirstTime)
(

if (bFirstTime)
{

LRIPos = Irilist.GetHeadPositionO;
}
pLRI = (CLRI*)lnlist.GetAt(LRIPos);
iLRIType = pLRI->GetLRIType();
return iLRIType;

}
int CAircraft::GetNumberOflLRIsRequired()
{

return iNumberOflLRIsRequired;
)
int CAircraft::GetNumberOfiLRIsUnserviceable()
{

return iNumberOfLRIsUnserviceable;
)
int CAircraft:. GetUnserviceableLRlType()
{

iLRIType - pLRI->GetLRIType();
return iLRIType;

}
int CAircraft::RemoveUnserviceableLRIs(bool bFirstTime)
{

if (bFirstTime)
(

LRIPos = Irilist.GetHeadPositionO;
}

71

pLRI = (CLRI*)ln]ist.GetAt(LRIPos);
if (pLRI->GetLRIState() = 2)
{

// change LRI State to Being removed(3)
iLRI State = 3;
pLRI->SetLRIState(iLRIState);
iNumberOfLRIsUnserviceable--;
iNumberOfLRIsRemoved++;
//return LRI position
iLRIPosition = pLRI->GetLRIPosition{);
return iLRIPosition;

}
else

(
// step on to next LRI in the list
pLRI = (CLRI*)lhlist GetNext(LRIPos);
return (0);

}
}
int CAircraft::UpdateLRlRequired(int iType,int iState)
{

for (LRIPos = lrilist,GetHeadPosition();LRIPos != NULL;)

{
pLRI = (CLRI*)lnlist.GetNext(LRIPos);
if ((pLRI->GetLRITypeO = iType) && (pLRI->GetLRIState() = 4))
(

pLRI->SetLRIState(iState);
iLRIPosition - pLRI->GetLRIPosition();
break;

}
}
return iLRIPosition;

}
void CAircraft;;DeleteLRIs()
{

POSITION LRIPos = Irilist.GetHeadPositionO;
// Delete the LRI objects
while (LRIPos !=NULL)
{

delete Irilist.GetNext(LRIPos);
}

Irilist.RemoveAllO;

void CAircraft::IncrementNumberOfEssentialLRIFailures()

iNumberOfFailedEssentialLRIs++;

void CAircraft.:IncrementNumberOfNonEssentialLRlFailures()

iNuniber01F'ailedNonEssentialLRIs++;

72

void CAircraft; ;ReduceNumberOfLRIsRequired()
{

iNumberOfLRIsRequired--;
}
void CAircraft:;ResetAircraft()
{

i Aircraft State = 1;
iNumberOfFailedEssentialLRIs = 0;
iNumberOfFailedNonEssentialLRIs = 0;
iNumberOfLRIsRequired = 0;
iNumberOfLRIsRemoved = 0;
iNumberOfLRIsUnserviceable = 0;
fAircraftFlyingHours = 0.0;
fLastEventTime = 0.0;
// Reset first failure time for each installed LRI
LRIPos = Irilist.GetHeadPositionO;
pLRI = (CLRI*)lnlist.GetNext(LRIPos);
fAircraftFailureTime = pLRI->GetLRIFailureTime();
while (LRIPos != NULL)
{

pLRI = (CLRI*)lrilist.GetNext(LRIPos);
fLRIFailureTime = pLRI->GetLRIFailureTime();
if (flLRIFailureTime < fAircraftFailureTime)

fAircraAFailureTiir" = fLRIFailureTime;
}

}
void CAircraft:: SavePlannedLandingTime(float fClockTime,float fEventDuration)
{

fAircraftPlannedLandingTime = fClockTime + fEventDuration;
}
void CAircraft;:SetAircraftState(int iState)
(

iAircraftState = i State;
}
void CAircraft::SetEndOfRunTotals(f]oat fClockTime)
(

// Update counter for state at the end of the run
switch (iAircraftState)
(
case 1;

SetTimeServiceable(fClockTime);
break;

case 2:
SetTimeFlying(fClockTime);
break;

case 3:
SetTimeUnserviceable(fClockTime);
break;

case 4:
SetTimelnPreFlightServicing(fClockTime);
break;

73

case 5:
SetTimeAwaitingPreFlightServicing(fClockTime);
break;

}
}
void CAircraft;;SetInFlightAbortState(bool bAbortState)

(
bInFlight Abort State = bAbortState;

}
void CAircraft::SetLRJState(int iPosition,int iState)

(
for (LRIPos = lrilist.GetHeadPosition();LRIPos != NULL;)

(
pLRI = (CLRI*)lnlist.GetNext(LR]Pos);
if (pLRJ->GetLRIPosition() == iPosition)

{
iLRIState = i State;
pLRI->SetLRIState(iLRIState);
break;

}
}

void CAircraft;:SetTimeAwaitingPreFlightServicing(float fClockTime)

fTimeAwaitingPreFIightServicing += fClockTime - fLastEventTime;
fLastEventTime = fClockTime;

void CAircraft::SetTimeF!ying(float fClockTime)

fTimeFlying += fClockTime - fLastEventTime;

fLastEventTime = fClockTime;

Old CAircraft; ;SetTimeInPreFlightServicing(f!oat fClockTime)

fTimelnPreFlightServicing + - fClockTime - fLastEventTime;

fLastEventTime = fClockTime;

void CAircraA::SetTimeServiceable(float fClockTime)

fTimeServiceable += fClockTime - fLastEventTime;

fLastEventTime = fClockTime;

void CAircraft::SetTimeUnserviceable(float fClockTime)

fTimeUnserviceable += fClockTime - fLastEventTime;
fLastEventTime = fClockTime;

void CAircraft::UpdateAircraftOnLanding(fIoat fClockTime,float fFlightDuration,
int iMaxNonEssentialFailures)
fAircraftFlyingHours += fFlightDuration;

74

// Update Time Flying Counter
SetTimeFlying(fClockTime);
// Check for failures and set aircraft state accordingly
if(iNumberOfFailedEssentialLRIs > 0 ||

iNumberOfFailedNonEssentialLRIs > iMaxNonEssentialFailures)

{
// Change aircraft state to Unserviceable(3)
i Aircraft State = 3;
iNumberOfLRIsUnserviceable = iNumberOfFailedEssentialLRIs +

iNumberOfFailedNonEssentialLRIs;
iNumberOfFailedEssentialLRJs = 0;
iNumberOfFailedNonEssentialLRIs = 0;

}
else
{

// Change aircraft state to In Flight Servicing(4)
iAircraftState = 4;

}
}
void CAircraft;:UpdateRemovedLRI(int iPosition,int iState)
{

if (iState == 4)
iNumberOfLRIsRequired++;

for (LRIPos = lrilist,GetHe=)dPosition();LRIPos != NULL;)

{
pLRI = (CLRI*)lnlist GetNext(LRIPos);
if (pLRI->GetLRIPosition() == iPosition)

{
pLRI->SetLRIState(iState);
break;

}
}

)
void CAircraft: :UpdateReplacedLRI(int iPosition,float fFailureTime)
{

for (LRIPos = lrilist.GetHeadPosition();LRIPos != NULL;)

{
pLRI = (CLRI*)lnlist.GetNext(LRIPos);
iLRIPosition = pLRI->GetLRIPosition();
if (iLRIPosition = iPosition)

{
// Change LRI state to Serviceable Fitted(l)
iLRIState = 1;
pLRI->SetLRIState(iLRIState);
pLRI->SetLRIFailureTime(fAircraftFlyingHours,fT'ailureTime);
iNumberOfLRIsRemoved—;
// All LRIs fitted and Serviceable
if (iNumberOfLRIsRemoved == 0)

{
// Update-the next failure time for the aircraft
LRIPos = Irilist.GetHeadPositionO;

75

pLRI = (CLRI*)lnlist.GetNext(LRIPos);
fAircraftFailureTime == pLRI->GetLRJFailureTime(),
while (LRIPos != NULL)
{

pLRI = (CLRI*)lnlist.GetNext(LRIPos);
fLRIFailurcTime = pLRI->GetLRIFailureTime();
if (fLRIFailureTime < fAircraftFailureTime)

fAircraftFailureTime - fLRJFailureTime;
}
// Change Aircraft state to in Flight Servicing
i Aircraft State = 4;
break;

}
}
else
{

if (iLRJPosition > iPosition)
break;

}
}

/ CLRI commands

nt CAircraft::CLRI;:GetLRIPosition()

return iLRJPosition;

nt CAircraft::CLRJ;:GetLRIState()

return iLRIState;

nt CAircraft:: CLRI :;GetLRIType()

return iLRIType;

oat CAircraft; .CLRI: ;GetLRIFailureTime()

return flLRIFailureTime;

void CAircraft;:CLRI;:ResetLRI(float fFailureTime)

iLRIState = 1;

fLRIFailureTime = fFailureTime;

void CAircraft: .CLRI.: SetLRlFailureTime(ftoat fAircraftFlyingHours,float fFailureTime)

fLRJFailureTime = fAircraftFlyingHours + fFailureTime;

void CAircraft::CLRI::SetLRlState(int iState)

iLRIState - iState;

76

ALSSimDoc

// ALSSimDoc. h ; interface of the CALSSimDoc class
#if
!defined(AFX_ALSSIMDOC_H_AC08B32B_CFl 111D1_A97A_444553546I6F_IN
CLUDEDJ
#defme
AFX_ALSSIMDOC_H_AC08B32B_CFnj 1DI_A97A_444553S46I6F__INCLUDED
#if_MSC_VER>= 1000
#pragma once
#endif//_MSC_VER>= 1000
// Forward References
class CSimProgressStatusBar;
class CALSSimDoc ; public CDocument
{

protected: // create from serialization only
CALSSimDocO;
DECLARE_DYNCREATE(CALSSimDoc)

// Attributes
private:

bool bAcceptableResult;
bool bAircraftAllocatedToFlight;
bool bEndRun;
bool bEvenNumberRun;
bool bFirstTime;
bool bFlyingProgrammeFileLoaded;
bool bInFlightAbortState;
bool bLastLRI;
bool bLRJDataFileLoaded,
bool bLRJRepairOnUnit;
bool bLRIStockFileLoaded;
bool bResultsFileLoaded;
bool bSecondNormalAvailable;
bool bSimulationParametersFileLoaded;
bool bStoringEvents;
CString sFlyingProgrammeFile;
C String sLRIDataFile;
CString sLRIStockFile;
C String sResultsFile;
CString sSimParametersFile;
float fAircraftFailureTime;
float fAircraftFlyingHours;
float fAircraftPlannedLandingTime;
float fClockTime;
float fDepotUnitTransferTime;
float feEventDuration;
float feEventTime;
float fePreviousEventTime;
float fEventDuration;
float flEventTime;
float fFailureGamma;

77

float fFailureMin;
float fFailureMax;
float fFailureShape;
float fFailureVariance;
float fLastTakeOffTime;
float fLogMean;
float fLogMu;
float fLogVariance;
float fLRIDepotRepairTime;
float fLRIFailureMax;
float fLRIFailureMin;
float fl^RIFailureTime;
float fl^RIMeanFailureTime;
float fl^RIMeanRepairTime;
float fl^RIProportionRepairedAtUnit;
float fl^RIRefitTime;
float fl-.RIRemovalTime;
float fLRIRepairTime;
float fl^RIUnitRepairTime;
float fl^RIVariance;
float flVIaximumFlightDelay;
float flvIeanFlightsCancelled;
float flVleanFlightsFail;
float fMeanFlightsFirstHalflDelay;
float fMeanFlightsInFlighiAbort;
float flVIeanFlightsOnTime;
float fMeanFlightsSecondHalfl)elay;
float fMeanFlightsSucceed;
float flVIeanFIightsTakeOfF;
float flVIeanFlightsTasked;
float flVleanNumberOfAircraftAwaitingPreFlightServicing;
float fMeanNumberOfAircrafl;Flying;
float fMeanNumberOfAircrafl;InPreFlightServicing;
float AMeanNumberOfAircraftServiceable;
float fiVIeanNumberOfAircraftUnserviceable;
float flVIeanNumberOflDailyFlightsCancelled;
float flVIeanNumberOfDailyFlightsFail;
float AVIeanNumberOflDailyFlightsFirstHalflDelay;
float fMeanNumberOflDailyFlightsInFlightAbort;
float AVIeanNumberOflDailyFlightsOnTime;
float flVleanNumberOfl)ailyFlightsSecondHalfDelay;
float fMeanNumberOfl)ailyFlightsSucceed;
float fMeanNumberOflDailyFIightsTakeOfl;
float fMeanNumberOflDailyFlightsTasked;
float fMeanTimeUnserviceable;
float fMeanTimeAwaitingPreFlightServicing;
float flVfeanTimelnPreFlightServicing;
float flVTeanTimeServiceable;
float flVIeanTimeFlying;
float flVfissionSuccessPoint;
float fNoFaultFoundAtDepotFactor;

78

float fNoFaultFoundAtUnitFactor;
float fNormalCalculationValue;
float fNormalCheckValue;
float fNormalFinalValuel;
float fNormalFinalValue2;
float fNormalNumber;
float fNorma!Value!;
float fNormalValue2;
float fNumberOfAircraftAwaitingPreFlight Servicing;
float fNumberOfAircraftFlying;
float fNumberOfAircraftlnPreFlightServicing;
float fNumberOfAircraftServiceable;
float fNumberOfAircraftUnserviceable;
float fNumberOflDaiiyFlightsCancelled;
float fNumberOfDailyFlightsFail;
float fNumberOfDailyFlightsFirstHalflDelay;
float fNumberOflDailyFlightsInFlightAbort;
float fMumberOflDailyFlightsOnTime;
float fNumberOfDailyFlightsSecondHalfDelay;
float fNumberOfDailyFlightsSucceed;
float fNumberOfDailyFlightsTakeOfl^;
float fNumberOfDailyFlightsTasked;
float fNumberOfFlightsCancelled;
float flSfumberOfFlightsFail;
float fNumberOfFIightsSucceed;
float fNumberOfFlightsFirstHalfDelay;
float iNumberOfFlightsInFlightAbort;
float fNumberOfl^lightsOnTime;
float fNumberOfFlightsSecondHalfDelay;
float fNumberOfFlightsTakeOfF;
float fl^umberOfFIightsTasked;
float fPercentageFlightsCancelled;
float fPercentageFlightsFail;
float fPercentageFlightsFirstHalfDelay;
float fPercentageFlightsInFlightAbort;
float fPercentageFlightsOnTime;
float fPercentageFlightsSecondHalfDelay;
float fPercentageFlightsSucceed;
float fPercentageFlightsTakeOff;
float fPreFlightServicingDuration;
float fPreviousEventTime;
float fRandomNumber;
float fRandomNumber 1;
float fRandomNumberl;
float fReliabilityFactor;
float fRepairFactor;
float fRepairGamma;
float fRepairMax;
float fRepairMin;
float fRepairShape;
float fRepairVariance;

79

float fResult;
float fScale,
float fTimeUnserviceable;
float fTimeAwaitingPreFlightServicing;
float fTimelnPreFlightServicing;
float fTimeServiceable;
float fTimeFlying;
float fTriangleDiv;
float fTriangleMin;
float fTriangleMax;
float fTriangleMode;
float fTriangleRange;
float fVarianceFIightsCancelled;
float fVarianceFlightsFail;
float fVarianceFlightsSucceed;
float fVarianceFlightsFirstHalfDelay;
float fVarianceFlightsInFlightAbort;
float fVarianceFlightsOnXime;
float fVarianceFlightsSecondHalfDelay;
float fVarianceFlightsTakeOfF;
HANDLE hFile;
hyper hRandomNumber;
int iAircraflNumber;
int i Aircraft State;
int iCount;
int iDayNumber;
int ieAircraftNumber;
int ieEventNumber;
int ieLRIPosition;
int ieLRIType;
int ieNumberOfAircraft;
int ieNumberOfLRIs;
int iEventNumber;
int iFailureDistributionUsed;
int iFailureDivisor;
int iLastRunFlightsCancelled;
int iLastRunFlightsFirstHalfDelay;
int iLastRunFlightsOnTime;
int iLastRunFlightsSecondHalfDelay;
int iLastRunFlightsTasked;
int iLRIDepotStock;
int iLRIEssential;
int iLRINumberFitted;
int iLRIPosition;
int iLRIState;
int iLRIType;
int iLRIUnit Stock;
int iNumberOfAircraft;
int iNumberOfAircraft Available;
int iNumberOfAircraftAwaitingPreFlightServicing;
int iNumberOfAircraftFlying;

80

int iNumberOfAircraftlnPreFlightServicing;
int iNumberOfAircraftServiceable;
int iNumberOfAircraftUnserviceable;
int iNumberOfDailyFIightsCancelled;
int iNumberOfDailyFlightsFail;
int iNumberOfDailyFlightsFirstHalfDelay;
int iNumberOfDailyFlightsInFlightAbort;
int iNumberOfDailyFlightsOnTime;
int iNumberOfDailyFlightsSecondHalfDelay;
int iNumberOfDailyFlightsSucceed;
int iNumberOfDailyFlightsTasked;
int iNumberOfDays;
int iNumberOfFailedEssentialLRJs;
int iNumberOfFailedNonEssentialLRIs;
int iMaximumFailuresNonEssentialLRIs;
int iNumberOfFlightsCancelled;
int iNumberOfFlightsDelayed;
int iNumberOiFlightsFail;
int iNumberOfFlightsFirstHalfDelay;
int iNumberOfFlightsInFlightAbort;
int iNumberOfFlightsOnTime;
int iNumberOfFlightsSecondHalfDelay;
int iNumberOfFlightsSucceed;
int iNumberOfFlightsTakeOff;
int iNumberOfFlightsTasLed;
int iNumberOfLRIs;
int iNumberOfLRIsUnserviceable;
int iNumberOflPreFlightServicingTearns;
int iNumberOfRuns;
int iRandomNumberDivisionConstant;
int iRandomNumberSeed;
int iRandomNumberStream;
int iRepairDistributionUsed;
int iRepairDivisor;
int iRunNumber;
int iSquareNumberOfFlightsCancelled;
int iSquareNumberOfFlightsFail;
int iSquareNumberOfFlightsSucceed;
int iSquareNumberOfFlightsFirstHalfDelay;
int iSquareNumberOfFlightsInFlightAbort;
int iSquareNumberOfFliglitsOnTime;
int iSquareNumberOfFlightsSecondHalfDelay;
int iSquareNumberOfFlightsTakeOff;
int iStartNumberOfAircraft;
int iStaitRunNumberOfPreFlightServicingTeams;
int iStockType;
int iTotalFlightsCancelled;
int iTotalFlightsFail;
int iTotalFlightsFirstHalfDelay;
int iTotalFlightsInFlightAbort;
int iTotalFlightsOnTime;

81

int iTotalFlightsSecondHalfDelay;
int iTotalFlightsSucceed;
int iTotalFlightsTakeOff;
int iTotalFlightsTasked;

// Operations
public:

boo! IsValidFileSpec (LPCSTR IpszFileSpec);
float GetBoundedNormal(CObList& randomnumberlist,

int iRandomNumberStream,float fLRIMean,float fMin,float fMax,
float fLRIVariance);

float GetExponentialResult(CObList& randomnumberlist,int iStreamNumber,
float fMean);

float GetLognormalResult(CObList& randomnumberlist,int iStreamNumber,
float fMean,float fVariance);

float GetNormalResult(CObList& randomnumberlist,int iStreamNumber,float fMean,
float fVariance);

float GetRandomNumber(CObList& randomnumberlist,int iStreamNumber);
float GetTriangularResult(CObList& randomnumberlist,int iStreamNumber,

float fMean,float fMin,float fMax, float fDivisor);
float GetWeibullResult(CObList& randomnumberlist,int iStreamNumber,

float fMean,float fShape,float fGamma);
int GetNextEvent(CObList& aircraAlist,CObList& delayedflightlist,

CObList& eventlist,CObList& randomnumberlist, CObList& runresultlist,
CObList& stocklist);

void AllocateLRIToAircraft(L.ObList& aircraftlist,CObList& eventlist,
CObList& stocklist,int iLRIType);

void CreateAircraft(CObList& aircraftlist,CObList& randomnumberlist,
CObList& stocklist);

void CreateDailyResults(CObList& dailyresultslist,int iNumberOfDays);
void CreateRandomNumberStreams(CObList& randomnumberlist);
void EndSimulation(CObList& aircraftlist,CObList& runresultlist,

CObList& randomnumberlist,CObList& stocklist);
void InsertEvent(CObList& eventlist, int iEventNumber, float fEventTime,

float fPreviousEventTime,int iAircrafitNumber,int iNumberOfAircraft,
int iLRIPosition,int iLRIType,int iNumberOfLRIs,float fEventDuration);

void LoadSimuIationScenarioDetailsQ;
void ReleaseMemory(CObList& aircraftlist,CObList& randomnumberlist,

CObList& runresultlist,CObList& stocklist);
void SaveDailyFlyingStats(CObList& dailyresultslist,int iDayNumber,

int iNumberOfDailyFlightsTasked,int iNumberOfDailyFlightsOnTime,
int iNumberOfDailyFlightsFirstHalfDelay,
int iNumberOfDailyFlightsSecondHalfDelay,
int iNumberOfDailyFlightsCancelled,int iNumberOfDailyFlightsInFlightAbort,
int iNumberOfDailyFlightsFail,int iNumberOfDailyFlightsSucceed);

void SaveEvent(int iEventNumber,float fClockTime,int iAircraftNumber,
int iNumberOfAircraft,int iLRIPosition,int iLRIType,int iNumberOfLRIs,
float fEventDuration);

void SetUpEventList(CObList& eventlist);
void ZeroDailyFlightsCountersO;
void ZeroDailyStatesCountersO;
void ZeroRunCountersQ;

82

void ZeroSimulationCountersQ;
// Event Operations
public:

void EventEndRun(CObList& aircraftlist,CObList& delayedflightlist,
CObList& eventlist,CObList& randomnumberlist,CObList& runresultlist,
CObListfe stocklist);

void EventInFlightFailure(CObList& aircraftlist,CObList& eventlist,
CObList& stocklist);

void EventLanding(CObList& aircraftIist,CObList& eventlist,CObList& stocklist);
void EventLRIArrival(CObList& aircraftlist,CObList& eventlist,

CObList& randomnumberlist,CObList& stocklist);
void EventLRJRemovalComplete(CObList& aircraftlist,CObList& eventlist,

CObList& randomnumberlist,CObList& stocklist);
void EventLRIRepairComplete(CObList& aircraftlist,CObList& eventlist,

CObList& stocklist);
void EventLRIReplacementComplete(CObList& aircraftIist,CObList& eventlist,

CObList& randomnumberlist,CObList& stocklist);
void EventMissionRequired(CObList& aircraftlist,CObList& delayedflightlist,

CObList& eventlist,CObList& stocklist);
void EventNewDay(CObList& aircraftlist,CObList& eventlist,CObList& runresultlist,

CObList& stocklist,bool bEndRun);
void EventPreFlightServicingComplete(CObList& aircraftlist,

CObList& delayedflightlist, CObList& eventlist,CObList& stocklist);
void EventPreFlightServicingStart(CObList& eventlist);
void EventTakeOff(CObList& aircraft!ist,CObList& eventlist,CObList& stocklist,

int iAircraftNumber,int iEventNumber);
// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CALSSimDoc)
public;
virtual BOOL OnNewDocument();
virtual void Serialize(CArchive& ar);
//nAFX_VIRTUAL

// Implementation
public:

virtual -CALSSimDocQ;
#ifyef_DEBUG

virtual void AssertValidQ const;
virtual void Dump(CDumpContext& dc) const;

#endif
// Generated message map functions
protected:

//{{AFX_MSG(CALSSimDoc)
afk_msg void OnSimulationRun();
afx msg void OnUpdateSimulationRun(CCmdUI* pCmdUI);
afx msg void OnFiIeOpenSimulationParameters();
afx msg void OnUpdateFileOpenSimulationParameters(CCmdUI* pCmdUI);
afx msg void OnFileOpenFlyingProgramme();
afx msg void OnUpdateFileOpenFlyingProgramme(CCmdUI* pCmdUI);
afx msg void OnFileOpenLRIDataFile();
afx msg void OnUpdateFileOpenLRIDataFiie(CCmdUI* pCmdUI);

83

afx msg void OnFileOpenLRJStockFile();
afx msg void OnUpdateFileOpenLRlStockFile(CCmdUI* pCmdUI);
afx_msg void OnFileOpenResultsFile();
afx msg void OnUpdateFileOpenResuitsFile(CCmdUI* pCmdUI);
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

};

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the
previous line.
#endif //
!defined(AFX_ALSSIMDOC H AC08B32B CFll l l D l A97A 44455354616F_IN
CLUDEDJ
// ALSSimDoc.cpp ; implementation of the CALSSimDoc class
#include "stdafx.h"
#include "ALSSim.h"
#include "ALSSimDoc.h"
#include "ALSSimView.h"
#include "mainfrm.h"
//Include file handling and Maths classes
#include "fstream.h"
#include "math.h"
// Include the Dialog class
#include "DlgSimulationFinished.h"
#include "DlgClearInputPara..ieiers.h"
// Include the Simulation Progress Bar class
#include "SBarSimProgress.h"
// Include the list classes
^include "Aircraft.h"
#include "DelayedFlight.h"
#include "Event.h"
#include "RandomNumber.h"
#include "DailyResults.h"
#include "Stock.h"
#ifdef_DEBUG
#deRne new DEBUGNEW
#undefTHIS_FILE
static char THIS_FILE[] = _FILE__;
#endif
// CALSSimDoc
IMPLEMENT_DYNCREATE(CALSSimDoc, CDocument)
BEGIN MESSAGE MAP(CALSSimDoc, CDocument)

//{{AFX_MSG_MAP(CALSSimDoc)
ON_COMMAND(ID SIMULATION RUN, OnSimulationRun)
ON UPDATE COMMAND_UI(ID SIMULATION RUN,

OnUpdateSimulationRun)
ON_COMMAND(ID FILE_OPEN_SIMULATIONPARAMETERS,

OnFileOpenSimulationParameters)
ON UPDATE COMMAND UI(ID_FILE_OPEN SIMULATION?ARAMETERS,

OnUpdateFileOpenSimulationParameters)
ON COMMAND(ID FILE OPEN FLYINGPROGRAMME,

84

OnFileOpenFlyingProgramme)
ON_UPDATE_COMMAND UI(ID FILE OPEN FLYINGPROGRAMME,

OnUpdateFileOpenFlyingProgramme)
ON_COMMAND(ID_FILE OPEN LRIDATAFILE, OnFileOpenLRIDataFile)
ON_UPDATE_COMMAND UI(ID_FILE OPEN_LRIDATAFILE,

OnUpdateFileOpenLRIDataPile)
ON_COMMAND(ID_FILE_OPEN_LRISTOCKFILE, OnFileOpenLRIStockFile)
ON_UPDATE_COMMAND_UI(ID FILE OPEN_LRISTOCKFILE,

OnUpdateFileOpenLRJStockFile)
ON_COMMAND(ID_FILE_OPEN_RESULTSFILE, OnFileOpenResultsFile)
ON_UPDATE COMMAND_UI(ID_FILE OPEN_RESULTSFILE,

OnUpdateFileOpenResultsFile)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()
// CALSSimDoc construction/destruction
CALSSimDoc: :CALSSimDoc()
{
}
CALSSimDoc: :~CALSSiniDoc()
{
}
BOOL CALSSiniDoc;;OnNewDocument()
(

if (!CDocument::OnNewDocument())
return FALSE;

bSimulationParametersFileLoaded = false;
bFlyingProgrammeFileLoaded = false;
bLRJDataFileLoaded = false;
bLRIStockFileLoaded = false;
bResultsFileLoaded = false;
return TRUE;

}
// CALSSimDoc serialization
void CALSSimDoc::Serialize(CArchive& ar)
{

if (ar.IsStoringO)
{
}
else
(
}

}
// CALSSimDoc diagnostics
#ifdef_DEBUG

void CALSSimDoc::AssertValid() const

(
CDocument:: Assert ValidQ;

}
void CALSSimDoc::Dump(CDumpContext& dc) const

(
CDocument: :Dump(dc);

85

}
#endif//_DEBUG
// CALSSimDoc Main Simulation control Command
void CALSSiniDoc:;OnSimulationRun()
{

//Zero simulation Counters
ZeroSimulationCountersQ;
// Create the Object lists
CObList aircraftlist;
CObList delayedflightlist;
CObList eventlist;
CObList randomnumberlist;
CObList dailyresultslist;
CObList stocklist;
// Open the Events storage file
ofstream EventOF("Event.txt");
// load in objects and set them up
LoadSimulationScenarioDetails();
// Create the progress control for the simulation
CSimProgressStatusBar* pSimStatus - CALSSimApp:;GetApp()->

GetMainFrame()->GetStatusBar();
if(pSimStatus)
{

CString Label;
Label.LoadStnng(ID5_SiMULATIONPROGRESS);
pSimStatus->SetSimProgressLabel(Label);
// Flip the status bar to progress mode
pSimStatus->ShowSimProgressDisplay(true);
CProgressCtrl* pSimProgress = pSimStatus->GetProgressCtrl();
if (pSimProgress)
{

pSimProgress->SetRange(0,iNumberOfR.uns);
pSimProgress->SetStep(l);

}
}
// Create the Random Number Streams
CreateRandomNumberStreams(randomnumberlist);
//create the aircraft objects including fitted LRIs and stocks
CreateAircraft(aircraftlist, randomnumberlist, stocklist);
// Run the Simulation
for (iRunNumber = 1 ;iRunNumber <= iNumberOfRuns;iRunNumber++)
{

// Update the progress bar
CProgressCtrl* pSimProgress = pSimStatus->GetProgressCtrl();
if (pSimProgress)
{

pSimProgress->Steplt();
}
// Reset End Run Boolean Variable
bEndRun = false;.
// Reset Normal Number Calculated Boolean Variable

86

bSecondNormalAvailable = false;
//Reset the Number Of Aircraft Available Counter
iNumberOfAircraftAvailable = iStartNumberOfAircraft;
// Zero run counters
ZeroRunCounters();
// Zero the Daily Flight Achievement Counters
ZeroDailyFlightsCountersO;
// Set Store Events switch for the first run
if (iRunNumber == 1)

bStoringEvents = true;
else

bStoringEvents = false;
// Populate the event list
SetUpEventList(eventlist);
// Zero Day Number
iDayNumber = 0;
// Set Event number to ensure that simulation runs
iEventNumber = 1;
while (iEventNumber != 0)

(
// Run the simulation event controller
iEventNumber = GetNextEvent(aircraftlist, delayedflightlist, eventlist,

randomnumberlist,
dailyresultslist, stocklist);
//Action the event
switch (iEventNumber)
{
case 0:

EventEndRun(aircraftlist,delayedflightlist,eventlist,randomnumberlist,
dailyresultslist, stocklist);

break;
case 1:

EventNewDay(aircraftlist,eventlist,dailyresultslist, stocklist,bEndRun);
break;

case 2:
EventMissionRequired(aircraftlist,delayedflightlist,eventlist,stocklist);
break;

case 3:
EventLanding(aircraftlist,eventlist, stocklist);
break;

case 4;
EventPreFlightServicingComplete(aircraftlist,delayedflightlist,eventlist,

stocklist);
break;

case 5 :
EventLRIRemovalComplete(aircraftlist,eventlist,randomnumberlist,

stocklist);
break;

case 6:
EventLRIReplacementComplete(aircraftlist,eventlist,randomnumberlist,

stocklist);

87

break;
case 7:

EventLRIRepairComplete(aircraftIist,eventlist,stocklist);
break;

case 8 ;
EventLRIArrival(aircraftlist,eventlist,randomnumberlist,stocklist);
break;

case 11;
EventInFlightFailure(aircraftlist,eventlist,stocklist);
break;

}
}

}
// End of simulation
// Turn Off the progress bar
pSimStatus->ShowSiniProgressDisplay(false);
EndSimulation(aircraftlist,dailyresultslist,randomnumberlist,stocklist);

}
// CALSSimDoc Simulation Controller
int CALSSimDoc;:GetNextEvent(CObList& aircraftlist, CObList& delayedflightlist,

CObList& eventlist, CObList& randomnumberlist, CObList& dailyresultslist,
CObList& stocklist)

{
//Get next event to be actioned
CEvent* pEvent;
POSITION EventPos = eventlist.GetHeadPosition();
pEvent = (CEvent *)eventlist. Get At(EventPos);
iEventNumber = pEvent->GetEventNumber();
iAircraftNumber = pEvent->GetAircraftNumber();
iNumberOfAircraft = pEvent->GetNumberOfAircraft();
iLRIPosition = pEvent->GetLRIPosition();
iLRJType - pEvent->GetLRIType();
iNumberOfLRIs = pEvent->GetNumberOfLRIs();
fClockTime = pEvent->GetEventTime();
fPreviousEventTime = pEvent->GetPreviousEventTime();
fEventDuration = pEvent->GetEventDuration();
//Release the memory occupied by the event object
delete eventlist.GetNext(EventPos);
eventlist. RemoveHead();
// Return the event Number
return iEventNumber;

}
// CALSSimDoc Events
// Event 0 - Event End Run
void CALSSimDoc::EventEndRun(CObList& aircraftlist,CObList& delayedflightlist,

CObList& eventlist, CObList& randomnumberlist,CObList& dailyresultslist,
CObList& stocklist)

{
// Set end run boolean variable
bEndRun = true;
// list control variables

88

CAircraft* pAircraft;
POSITION AircraftPos;
CDelayedFlight* pDelayedFlight;
CRandomNumber* pRandomNumber;
POSITION RandomNumberPos;
CStock* pStock;
POSITION StockPos;
// If storing events, save the End Run Event to the events filefile
if (bStoringE vents)
(

iAircraftNumber = 0;
iLRIPosition = 0;
iLRIType = 0;
SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft,

iLRIPosition,iLRIType,iNuniberOfLRIs,flEventDuration);
}
// Get all outstanding flights and cancel them
iNumberOflFlightsCancelled += iNumberOfFlightsDelayed;
iNumberOfDailyFlightsCancelled += iNumberOfFlightsDelayed;
// Call event new day to store aircraft states and daily flight achievements
EventNewDay(aircraftlist,eventlist,dailyresultslist,stocklist,bEndRun);
// Save Flight counters for this run
// Total take ofFs this run
iNumberOfFlightsTakeOff = iNumberOfiFlightsOnTime +

iNumberOfFlightsFirslIialtDelay + iNumberOfFlightsSecondHalfDelay;
// The totals of the run results so far
iTotalFlightsTasked += iNumberOfFlightsTasked;
iTotalFlightsOnTime += iNumberOfFlightsOnTime;
iTotalFlightsFirstHalfDelay += iNumberOfFlightsFirstHalfDelay;
iTotalFlightsSecondHalfDelay += iNumberOfFlightsSecondHalfDelay;
iTotalFlightsCancelled += iNumberOfFlightsCancelled;
iTotalFlightsInFlightAbort += iNumberOfFlightsInFlight Abort;
iTotalFlightsFail += iNumberOfFlightsFail;
iTotalFlightsSucceed += iNumberOfFlightsSucceed;
iTotalFlightsTakeOflf += iNumberOfFlightsTakeOff;
// Squares of the results so far
// Calculate the square of the sums of the recorded results
iSquareNumberOfFlightsOnTime += pow(iNumberOfFlightsOnTime,2);
iSquareNumberOfFlightsFirstHalfDelay += pow(iNumberOfFlightsFirstHalfDelay,2);
iSquareNumberOfFlightsSecondHalflDelay +=

pow(iNumberOfFlightsSecondHalfDelay,2);
iSquareNumberOfFlightsCancelled += pow(iNumberOfFlightsCancelled,2);
iSquareNumberOfFlightsInFlightAbort += pow(iNumberOfFlightsInFlightAbort,2);
iSquareNumberOfFlightsTakeOff += pow(iNumberOfFlightsTakeOfF,2);
iSquareNumberOfFlightsFail += pow(iNumberOflFlightsFail,2);
iSquareNumberOfFlightsSucceed += pow(iNumberOfFlightsSucceed,2);

// Clear the Delayed Flights list and release the memory
POSITION DelayedFlightPos = delayedflightlist.GetHeadPositionQ;
// Delete the Delayed Flight objects
while (DelayedFlightPos != NULL)
{

89

delete aircraftlist.GetNext(DelayedFlightPos);
}
delayedflightlist.RemoveAllO;
// Calculate new seeds for the streams
pRandomNumber = (CRandomNumber*)randomnumberlist.GetHead();
pRandomNumber->SetNewRandomNumberSeed();
// Reset the LRIs fitted to the aircraft
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;)

{
p Stock = (CStock*)stocklist.GetNext(StockPos);
pStock->ResetStock();
iLRIType = pStock->GetStockType();
flLRIFailureTime = pStock->GetMeanFailureTime();
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;)
{

i f (iLRIType= 1)
bFirstTime = true;

else
bFirstTime = false;

pAircraft - (CAircraft*)aircraftlist.GetNext(AircraftPos);
// Get Failure Time For LRU
while (pAircraft->GetLRIType(bFirstTime) = iLRIType)
{

// action on failure distribution used
switch(iFailurcDistributionUsed)
{
case 0: // none

flLRIFailureTime = fReliabilityFactor * fLRIMeanFailureTime;
break;

case 1; // exponential
fLRIFailureTime = fReliabilityFactor *

GetExponentialResult(randomnumberlist,
iRandomNumberStream,fLRIMearLFailureTime);

break;
case 2: // Lognormal

fLRIFailureTime = fReliabilityFactor *
GetLognormalResult(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,fFailure Variance);

break;
case 3: // Normal

// Return is bounded to ensure no negative values
// Max, Min and Variance read in from Simulation parameters File
flLRIFailureTime = fReliabilityFactor *

GetBoundedNormal(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,fFailureMin,fFailureMax,fFailure Variance);

break;
case 4: // Triangular

fLRIFailureTime = fReliabilityFactor *
GetTriangularResult(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,fFailureMin,fFailureMax,iFailureDivisor);

break;

90

case 5: //Weibull
fLRIFailureTime = fReliabiUtyFactor *

GetWeibullResuIt(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,fFailureShape,fFailureGamma);

break;
}

// Reset LRJ with new failure time for next run
bLastLRI = pAircraft->ResetLRI(fLRIFailureTime);
if(bLastLRI)

break;
bFirstTime = false;

}
}

}
// Reset the aircraft
for (AircraftPos = aircraftlist,GetHeadPosition();AircraftPos!= NULL;)
{

p Aircraft = (CAircraft*)aircraftlist.GetNext(Aircrafl;Pos);
pAircraft->SetEndOfRunTotals(fClockTime);
pAircraft->ResetAircraft();

}
// Reset the number of Pre-flight servicing teams
iNumberOfPreFlightServicingTeams - iStartRunNumberOfPreFlightServicingTeams;

}
// Event 11 - Event In Flight failure
void CALSSimDoc;;EventInFlightFailure(CObList& aircraftlist,CObList& eventlist,

CObList& stocklist)
{

CAircraft* pAircraft;
POSITION AircraftPos;
CStock* pStock;
POSITION StockPos;
// If storing events, save the In Flight Failure Event to the events file
if (bStoringE vents)
{ -

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft,
iLRIPosition,iLRIType,iNumberOfLRIs,fEventDuration);

}
// Get Aircraft pointer
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;)
(

p Aircraft = (CAircraft*)aircraftlist.GetNext(AircraftPos);
if (pAircraft->GetAircraftNumber() == iAircraftNumber)

{
// Change LRI state to unserviceable fitted (State 2)
iLRI State = 2;
pAircraft->SetLRIState(iLRIPosition,iLRIState);
// Check if the failure is to an essential LRI
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;)
{

pStock = (CStock*)stocklist.GetNext(StockPos);

91

if (pStock->GetStockType() == iLRIType)
{

if (pStock->GetLRIEssentiality() == 1)
(

// Increment the number of Essential failures
pAircraft->IncrementNumberOfEssentialLRIFailures();
if (pAircraft->GetInFlightAbortState() == false)
{

// In Flight Abort will occur
bInFlightAbortState = true;
pAircraft->SetInFlightAbortState(bIrLFlightAbortState);
iNumberOfFlightsInFlightAbort++;
iNumberOfDailyFlightsIrLFlightAbort++;

if (fClockTime - fPreviousEventTime < fEventDuration *
fMissionSuccessPoint)

{
iNumberOfFlightsFail++;
iNumberOfDailyFlightsFail++;

}
else
{

iNumberOfFlightsSucceed++;
iNumberOfDailyFlightsSucceed++;

}
if (fClockTime - fPreviousEventTime < fEventDuration / 2)

{
// landing time = current time + flight time
feEventTime = fClockTime + (fClockTime -

fPreviousEventTime);
fcEventDuration = 2 * (fClockTime -

fPreviousEventTime);
// Insert landing event into the event queue
ieEventNumber = 3;
ieAircraftNumber = iAircraftNumber;
ieNumberOfAircraft = 1;
ieLRIPosition = 0;
ieLRIType = 0;
ieNumberOfLRIs = 0;
fePreviousEventTime = fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,

fePreviousEventTime,ieAircraftNumber,
ieNumberOfAircraft,ieLRIPosition,ieLRIType,
ieNumberOfLRIs,feEventOuration);

}
}
break;

}
else
{ .

//Increment the number of non essential failures

92

pAircraft->IncrementNumberOfNonEssentialLRIFailures();
}

}
}
break;

}
}

}
//Event 3 - Event Landing
void CALSSimDoc::EventLanding(CObList& aircraftlist,CObList& eventlist,

CObList& stocklist)
{

// list control variables
CAircraft* pAircraft;
POSITION AircraAPos;
CEvent* pEvent;
POSITION EventPosl,EventPos2;
CStock* pStock;
POSITION StockPos;
for (AircraftPos = aircraftlist.GetHeadPosition();AircraflPos != NULL;)
{

p Aircraft = (CAircraft*)aircraftlist.GetNext(AircraflPos);
if (pAircrafl->GetAircraftNumber() == iAircraftNumber)
{
// If landing as a result of an in-flight Abort

if (pAircraA->GetInFlightAbortState() == true)

{
// Get the planned landing time
fAircraftPlannedLandingTime = pAircraft-

>GetAircraftPlannedLandingTime();
for (EventPosl = eventlist,GetHeadPosition();EventPosl != NULL;)

{
EventPosl = EventPosl;
pEvent = (CEvent*)eventlist.GetNext(EventPosl);
if (pEvent->GetAircraftNumber() == iAircraftNumber

&& pEvent->GetEventTime() <= fAircraftPlannedLandingTime)
{

eventlist.RemoveAt(EventPos2);
}
else
{

if (pEvent->GetEventTime() > fAircraftPlannedLandingTime)

{
break;

}
}

}
}
//Update the aircraft flying hours and ascertain its serviceability state
pAircraft->UpdateAircraftOnLanding(fClockTime,fEventDuration,

93

iMaximumFailuresNonEssentialLRJs);
// If storing events, save the Landing Event to the events filefile
if (bStoringEvents)
(

fEventDuration = 0;
SaveEvent(iEventNumber,fClockTime,iAircraftNumber,

iNumberOfAircraft,iLRIPosition, iLRIType,iNumberOflLRIs,
fEventDuration);

}
// All fitted LRJs serviceable
if (pAircraft->GetAircraftState() == 4)
{

// And there is a pre-flight servicing team available
if (iNumberOfPreFlightServicingTeams > 0)
{

EventPreFlightServicingStart(eventlist);
}
// otherwise change aircraft state to awaiting flight servicing(5)
else
{

iAircraftState = 5;
pAircraft->SetAircraftState(iAircraftState);

}
}
// One or more LRis unserviceable
else
{

iNumberOfLRIsUnserviceable = pAircraft-
>GetNumberOfLRIsUnserviceable();

// Set boolean variable to ensure search starts at head of list
bPirstTime = true;
while (iNumberOfLRJsUnserviceable > 0)

{
iLRIPosition = pAircraft->RemoveUnserviceableLRIs(bFirstTime);
// Get the LRI Type as well
bFirstTime = false;
if (iLRIPosition > 0)
{

iLRIType = p Aircraft->GetUnserviceableLRIType();
// Get duration of LRI removal from station stock file
for (StockPos = stocklist.GetHeadPositionO;StockPos != NULL;)
(

pStock = (CStock*)stocklist.GetNext(StockPos);
iStockType = pStock->GetStockType();
if (iStockType == iLRIType)
{

fEventDuration - pStock->GetRemovalTime();
break;

}
} .

//Insert LRI Removal complete event for this LRI into event queue

94

ieEventNumber = 5;
ieAircraftNumber = iAircraftNumber;
ieNumberOfAircraft = 1;
ieLRIPosition = iLRIPosition;
ieLRIType = iLRIType;
ieNumberOfLRIs = 0;
feEventDuration = fEventDuration;
feEventTime = fClockTime +feEventDuration;
fePreviousEventTime = fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft,
ieLRIPosition,ieLRIType,ieNumberOfLRIs,feEventDuration);

// Update check controllers
iNumberOfLRIsUnserviceable—;

}
}

}
break;

}
}

}
//Event 8 - Event LRI Arrival
void CALSSiniDoc::EventLRIArrival(CObList& aircraftlist,CObList& eventlist,

CObList& randomnumberlist,CObList& stocklist)
{

// list control variables
CStock* pStock;
POSITION StockPos;
if (bStoringEvents)
(

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft,
iLRIPosition,iLRIType,iNumberOfLRJs,fEventDuration);

}
// Find the LRI Type that has been delivered
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;)
{

pStock = (CStock*)stocklist.GetNext(StockPos);
if (pStock->GetStockType() == iLRIType)

{
// Arrival at the unit
if (iAircraftNumber == 0)

{
iCount = iNumberOfLRIs;
for (iCount;iCount > 0;iCount—)
{

// LRI Required for an aircraft
if (pStock->GetNumberRequiredForAircraft() > 0)

{
pStock->ReduceNumberRequiredForAircraft();
AllocateLRIToAircraft(aircraftlist,eventlist,stocklist,iLRIType);

95

// Otherwise increment the units serviceable stock
else
{

iNumberOfLRJs = iCount;
pStock->IncreaseUnitServiceableStock(iNumberOfLRJs);
break;

}
}
break;

}
// Arrival at the Depot
else
{

// Calculate the repair time
iCount = iNumberOfLRJs;
for (iCount;iCount > 0;iCount—)
{

// Get Repair Time for Depot repair of LRI and
// insert a LRI Repair complete event into the queue
ieEventNumber = 7;
ieAircraftNumber - iAircraftNumber;
ieNumberOfAircraft = 0;
ieLRIType = iLRIType;
ieLRIPosition = 0;
ieNumberOfLRIs = 1;
fLRIMeanRepairTime = pStock->GetDepotRepairTime();
// Add repair time randomness if appropriate
// Switch depending on distribution used
iRandomNumberStream = 2;
// action on repair distribution used
switch (iRepairDistributionUsed)
{
case 0: // none

feEventDuration = fReliabilityFactor * fLRIMeanRepairTime;
break;

case 1: // exponential
feEventDuration = fReliabilityF actor *

GetExponentialResult(randomnumberlist,
iRandomNumberStream,fLRIMeanRepairTime);

break;
case 2: // Lognormal

feEventDuration = fReliabilityFactor *
GetLognormalResult(randomnumberlist,
iRandomNumberStream,fLRIMeanRepairTime,
fRepairVariance);

break;
case 3: // Normal

// Return is bounded to ensure no negative values
// Max, Min and Variance read in from Simulation parameters File
feEventDuration = fReliabilityFactor *

GetBoundedNormal(randomnumberlist,

96

iRandornNurnberStream,fLRJMeanRepairTime,fRepairMin,
fRepairMax, fRepair Vari ance);

break;
case 4: // Triangular

feEventDuration = fReliabilityFactor *
GetTriangularResult(randomnumberlist,
iRandomNumberStream,fLRIMeanRepairTime,fRepairMin,
fRepairMax,iRepairDivisor);

break;
case 5: // Weibull

feEventDuration = fReliabilityFactor *
GetWeibullResult(randomnumberlist,iRandomNumberStream,
fLRIMeanRepairTime,fRepairShape,fRepairGamnia);

break;
}
// Check if the LRI has a spurious fault
if (fNoFaultFoundAtDepotPactor > 0)
{

iRandomNumberStream = 5;
// get random number
fRandomNumber = GetRandomNumber(randomnumberlist,

iRandomNumberStream);
// Depot repair time = test time = 0.2 * repair time
if (fRandomNumber <= fNoFaultFoundAtDepotFactor)
{

feEventDuration *= 0.2;
}

}
feEventTime - fClockTime +feEventDuration;
fePreviousEventTime - fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft,
ieLRIPosition,ieLRIType,ieNumberOfLRIs,feEventDuration);

}
break;

)
}

}
}
//Event 5 - Event LRI Removal Complete
void CALSSimDoc::EventLRJRemovalComplete(CObList& aircraftlist,

CObList& eventlist,CObList& randomnumberlist,CObList& stocklist)
(

// list control variables
CAircraft* pAircraft;
POSITION AircraftPos;
CStock* pStock;
POSITION StockPos;
if (bStoringEvents)
{ .

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft,

97

iLRJPosition,iLRIType,iNumberOfLRIs,iEventDuration);
}
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;)
{

p Aircraft = (CAircraft*)aircraftlist.GetNext^ AircraftPos);
if (pAircraft->GetAircraftNumber() == iAircraftNumber)
(

// Action repair and replacement if spare available
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;)
{

pStock = (CStock*)stocklist.GetNext(StockPos);
if (pStock->GetStockType() = iLRIType)
{

// Get Repair location
// get random number
iRandomNumberStream = 3;
fLRIProportionRepairedAtUnit =

GetRandomNumber(randomnumberlist,iRandomNumberStream);
//send random number to p Stock
bLRIRepairOnUnit = (pStock->

LRIRepairedOnUnit(fLRIProportionRepairedAtUnit));
if (bLRIRepairOnUnit)
{

// Get Repair Time for Unit repair of LRJ and insert a LRI Repair
// complete event into the queue
ieEventNumber = 7;
ieAircraftNumber = 0;
ieNumberOfAircraft = 0;
ieLRIPosition = 0;
ieLRIType = iLRIType;
icNumberOfLRIs = 1;
fLRIMeanRepairTime = pStock->GetUnitRepairTime();
// add repair time randomness if appropriate
iRandomNumberStream = 2;
// action on repair distribution used
switch (iRepairDistributionUsed)
{

case 0: // none
feEventDuration = fReliabilityFactor *

fLRIMeanRepairTime;
break;

case 1: // exponential
feEventDuration = fReliabilityF actor *

GetExponentialResult(randomnumberlist,
iRandomNumberStream,fL.RIMeanRepairTime);

break;
case 2: //Lognormal

feEventDuration = fReliabilityFactor *
GetLognormalResult(randomnumberlist,
iRandomNumberStream,fLRIMeanRepairTime,
fRepairVariance);

98

break;
case 3: // Normal

// Return is bounded to ensure no negative values
// Max, Minand Variance read in from Simulation
// parameters File
feEventDuration = fReliabilityFactor *

GetBoundedNormal(randomnumberlist,
iRandomNumberStream,flLRJMeanRepairTime,
fRepairMin,fllepairMax,fRepairVariance);

break;
case 4: // Triangular

feEventDuration - fReliabilityFactor *
GetTriangularResult(randomnumberIist,
iRandomNumberStream,fLRIMeanRepairTime,
fRepairMin,flR.epairMax,iRepairDivisor);

break;
case 5; // Weibull

feEventDuration = fReliabilityFactor *
GetWeibullResult(randomnumberlist,
iRandomNumberStream,fLRIMeanRepairTime,
fRepairShape,fRepairGamma);

break;
}
// check for no fault found
if (fNoFaultFoundAtUnitFactor > 0)
{

iRandomNumberStream = 4;
// get random number
fRandomNumber = GetRandomNumber(randomnumberlist,

iRandomNumberStream);
// if random number < fNoFaultFoundAtUnit Factor
// Unit repair time = test time = .2 * repair time
if (fRandomNumber <= fNoFaultFoundAtUnitFactor)

(
feEventDuration *= 0.2;

}
}
feEventTime = fClockTime +feEventDuration;
fePreviousEventTime = fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft,
ieLRJPosition,ieLRIType,ieNumberOfLRIs,feEventDuration);

}
else
{

// Increment the number of unserviceable LRIs in stock
pStock->IncreaseUnitUnserviceab]eStock();

}
// If stock is available at the unit to replace removed LRI
if (p$tock->GetUnitServiceableStock() > 0)

99

// Reduce Serviceable Stock
pStock->ReduceUnitServiceableStock();
// Change LRI state to being fitted(5)
iLRIState = 5;
pAircraft->UpdateRemovedLRI(iLRIPosition,iLRIState);
// If LRI being replaced call Iru replacement event
fEventDuration = pStock->GetReplacementTime();
// Insert a LRI replacement complete event into the event queue
ieEventNumber = 6;
ieAircraftNumber = iAircraftNumber;
ieNumberOfAircraft = 1;
ieLRIPosition = iLRIPosition;
ieLRIType = iLRIType;
ieNumberOfLRIs = 0;
feEventDuration = fEventDuration;
feEventTime = fClockXime +feEventDuration;
fePreviousEventXime = fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft,
ieLRIPosition,ieLRIType,ieNumberOfLRIs,feEventDuration);

break;
}
// No stock is available at the unit to replace removed LRI
else
{

// Change LRI State to removed and increment number of LRIs
// required for aircraft
iLRIState = 4;
pAircraft->UpdateRemovedLRI(iLRIPosition,iLRIState);
// Increment Number of spares of this type required for aircraft
pStock->IncreaseNumberRequiredForAircraft();
// Check if a spare available at the depot
if (pStock->GetDepotServiceableStock() > 0)

{
// Reduce Serviceable Stock
pStock->ReduceDepotServiceableStock();
// Increment Allocated Stock
pStock->IncreaseDepotAllocatedStock();

}
break;

}
}

}
break;

}
}
//Event 7 - Event LRI Repair Complete
void CALSSimDoc::EventLRlRepairComplete(CObList& aircraftlist,CObList& eventlist,

CObList& stocklist)
{

100

// list control variables
CStock* pStock;
POSITION StockPos;
iLRIPosition = 0;
if (bStoringEvents)

(
SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft,

iLRIPosition,iLRIType,iNumberOflLRIs,fEventDuration);
}
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;)

{
pStock = (CStock*)stocklist.GetNext(StockPos);
if (pStock->GetStockType() == iLRlType)

{
// LRI Repaired at the unit
if (iAircraftNumber == 0)

{
// If LRIs of this type required for aircraft
if (pStock->GetNumberRequiredForAircraft() > 0)
{

pStock->ReduceNumberRequiredForAircraft();
AllocateLRIToAircraft(aircraftlist,eventlist,stocklist,iLRIType);
break;

}
// Otherwise increase serviceable stock of this type
else
{

iNumberOfLRIs = 1;
pStock->IncreaseUnitServiceableStock(iNumberOfLRIs);
break;

}
}
// LRI Repaired at the Depot
else
{

// LRI required at the unit
if (pStock->MoreLRIsRequiredAtUnit() ||

(pStock->GetNumberRequiredForAircrafi:() > 0))

{
pStock->IncreaseDepotAllocatedStock();

}
// LRI not required at the unit
else
{

pStock->lncreaseDepotServiceableStock();
break;

}
}

1
)

101

//Event 6 - Event LRI Replacement Complete
void CALSSimDoc::EventLRIReplacementComplete(CObList& aircraftlist,

CObList& eventlist,CObList& randomnumberlist,CObList& stocklist)
{

// list control variables
CAircraft* pAircraft;
POSITION AircraAPos;
CStock* pStock;
POSITION StockPos;
if (bStoringEvents)
{

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft,
iLRIPosition,iLRIType,iNumberOfLRIs,fEventDuration);

}
// Get mean time to failure for this type of LRI
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;)
{

pStock = (CStock*)stocklist.GetNext(StockPos);
if (pStock->GetStockType() == iLRIType)

(
fLRIMeanFailureTime = pStock->GetMeanFailureTime();
break;

}
}
// Calculate failure time for this LRI
iRandomNumberStream = 1;
// action on failure distribution used
switch (iFailureDistributionUsed)
{

case 0: // none
fLRIFailureTime = fReliabilityFactor * flLRIMeanFailureTime;
break;

case 1: // Exponential
fLRIFailureTime = fReliabilityFactor *
GetExponentialResult(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime);

break;
case 2: // Lognormal

fLRIFailureTime = fReliabilityFactor *
GetLognormalResult(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,flFailure Variance);

break;
case 3: // Normal

// Return is bounded to ensure no negative values
// Max, Min and Variance read in from Simulation parameters File
fLRIFailureTime = fReliabilityFactor *

GetBoundedNormal(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,fFailureMin,fFailureMax,fFailure Variance);

break;
case 4: // Triangular

102

fLRJFailureTime = fReliabilityFactor *
GetTriangularResult(randomnumberlist,iRandomNumberStream,
fLRJMeanFailureTime,fFailureMin,fFailureMax,iFailureDivisor);

break;
case 5: // Weibull

fLRJFailureTime = fReliabilityF actor *
GetWeibullResult(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,fFailureShape,fFailureGamma);

break;
}
// Update the aircraft and relevant LRl
for (AircraftPos = aircrafllist.GetHeadPosition();AircraftPos != NULL;)
(

p Aircraft = (CAircraft*)aircraftlist.GetNext(AircraftPos);
if (pAircraft->GetAircraftNumber() == iAircraftNumber)
(

pAircraft->UpdateReplacedLRJ(iLRIPosition,fLRIFailureTime);
//If no unserviceable LRIs fitted
if (pAircraft->GetAjrcraftState() == 4)
{

// Update the Unserviceable time counter
pAircraft->SetTimeUnserviceable(fClockTime);
// And there is a pre-flight servicing team available
if (iNumberOfPreFlightServicingTeams > 0)
{

EventPreFlightServicingStart(eventlist);
// Decrement number of servicing teams

}
else
{

iAircraftState = 5;
pAircraft->Set Aircraft State(i Aircraft State);

}
}
break;

}
}

}
//Event 2 - Event Mission Required
void CALSSimDoc:;EventMissionRequired(CObList& aircraftlist,

CObList& delayedflightlist,CObList& eventlist,CObList& stocklist)
{

// list control variables
CAircraft* pAircraft;
POSITION AircraftPos;
if (bStoringEvents)
{

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft,
iLRIPosition,iLRIType,iNumberOfLRIs,fEventDuration);

)
// Incease Daily Missions Tasked Counter

103

iNumberOfDailyFlightsTasked += iNumberOfAircraft;
if (iNumberOfAircraftAvailable >= iNumberOfAircraft)
{

iNumberOfAircraftAvailable -= iNumberOfAircraft;
for (iNumberOfAircraft;iNumberOfAircraft > 0;iNumberOfAircraft—)
(

// Get first aircraft available and allocate it
for (AircraftPos = aircraftlist,GetHeadPosition();AircraftPos != NULL;)
{

p Aircraft =(CAircraft*)aircraftlist.GetNext(AircraftPos);
if (pAircraft->GetAircraftState() == 1)

{
iAircraftNumber = pAircraft->GetAircraftNumber();
EventTakeOfif(aircraftlist,eventlist,stocklist,iAircraftNumber,

iEventNumber);
break;

}
}

}
}
else
// Action if no aircraft allocated to the flight

(
//increment number of delayed flights
iNumberOfFlightsDeiayed+= iNumberOfAircraft;
//Add the flight to the list of delayed flights
delayedflightlist.AddTail(new CDelayedFlight(fClockTime,iNumberOfAircraft,

fMaximumFlightDelay,fEventDuration));
}

}
//Event 1 - Event New Day
void CALSSimDoc;:EventNewDay(CObList& aircraftlist,CObList& eventlist,

CObList& dailyresultslist,CObList& stocklist,bool bEndRun)
{

// list control variables
CAircraft* pAircraft;
POSITION AircraftPos;
CDailyResults* pDailyResults;
POSITION DailyResultsPos;
CStock* pStock;
POSITION StockPos;
// Increment day number;
iDayNumber++;
//Zero the daily results counters
ZeroDailyStatesCounters();
// create the daily results linked list
if (iRunNumber == 1)
{

dailyresultslist.AddTail(new CDailyResults(iDayNumber));
)
// If storing events, save the End Run Event to the events filefile

104

if (bStoringE vents)
{

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft,
iLRIPosition,iLRJType,iNumberOfLRIs,fEventDuration);

}
// If not called by Event End Run, get the aircraft states and store
//values in the daily results within the run results file
if (bEndRun = false)
{

for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;)

{
p Aircraft =(C Aircraft *)aircraftlist. GetNext(AircraftPos);
iAircraftState = pAircraft->GetAircraftState();
switch (iAircraftState)

{
case 1:

iNumberOfAircraftServiceable++;
break;

case 2:
iNumberOfAircraftFlying++;
break;

case 3:
iNumberOfAircraftUnserviceable++;
break;

case 4:
iNumberOfAircraftInPreFlightServicing++;
break;

case 5:
iNumberOfAircraftAwaitingPreFlightServicing++;
break;

}
}
// store aircraft states and daily flight achievements for the day
// Sum of all runs
for (DailyResultsPos = dailyresultslist.GetHeadPosition();

DailyResultsPos != NULL;)

{
pDailyResults =(CDailyResults*)dailyresultslist.GetNext(DailyResultsPos);
if (pDailyResults->GetDayNumber() == iDayNumber)

{
pDailyResults-

>SaveDailyAircraftStates(iNumberOfAircraftServiceable,
iNumberOfAircraftFlying,iNumberOfAircraftUnserviceable,
iNumberOfAircraftlnPreFlightServicing,
iNumberOfAircraftAwaitingPreFlightServicing);

break;
}

}
}
if (iDayNumber > 1)
{

105

SaveDailyFlyingStats(daiIyresuItslist,iDayNumber,
iNumberOfDailyFlightsTasked,iNumberOfDailyFlightsOnTime,

iNumberOfDailyFlightsFirstHalfDelay,
iNumberOfDailyFlightsSecondHalfDelay,iNumberOfDailyFlightsCancelled,

iNumberOfDailyFIightsInFlightAbort,iNumberOfDai!yFlightsFail,
iNumberOfDailyFlightsSucceed);

}
// Zero the Daily Flight Achievement Counters
ZeroDailyFlightsCountersO;
// Check to see if any LRJs need moving from their current location
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;)
{

pStock = (CStock*)stocklist.GetNext(StockPos);
// Are there any Unserviceable LRIs in Stock at the unit
iNumberOfLRIs = pStock->GetUnitUnserviceableStock();
if (iNumberOfLRIs > 0)

{
// Zero the Number of Unserviceable LRIs in Stock
pStock->ZeroUnitUnserviceableStock();
// Insert LRI arrival event into event list
ieEventNumber = 8;
ie AircraftNumber = -1;
ieNumberOfAircraft = 0;
ieLRIPosition = 0;
ieLRIType = pStock->GetStockType();
ieNumberOfLRIs = iNumberOfLRIs;
feEventDuration = ADepotUnitTransferTime;
feEventTime = fClockTime +feEventDuration;
fePreviousEventTime = fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime,

ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition,ieLRIType,
ieNumberOfLRIs,feEventDuration);

}
// Are there any Serviceable LRIs at the depot to be transferred to the unit
iNumberOfLRIs = pStock->GetDepotAllocatedStock();
if (iNumberOfLRIs > 0)
{

// Zero the number of LRIs at the depot awaiting allocation
pStock->ZeroDepotAllocatedStock();
// Insert LRI arrival event into event list
ieEventNumber = 8;
ieAircraftNumber = 0;
ieNumberOfAircraft = 0;
ieLRIPosition = 0;
ieLRIType = pStock->GetStockType();
ieNumberOfLRIs = iNumberOfLRIs;
feEventDuration = fDepotUnitTransferTime;
feEventTime = fClockTime +feEventDuration;
fePreviousEventTime = fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime,

ieAircraftNumber, ieNumberOfAircraft,ieLRIPosition,ieLRIType,

106

ieNumberOfLRIs,feEventDuration);
}

}
}
//Event 4 - Event Pre Flight Servicing Complete
void CALSSimDoc::EventPreFlightServicingComplete(CObList& aircraftlist,

CObList& delayedflightlist,CObList& eventlist,CObList& stocklist)
{

// list control variables
CAircraft* pAircraft;
POSITION AircraftPos;
CDelayedFlight* pDelayedFlight;
POSITION DelayedFlightPosl;
POSITION DelayedFlightPos2;
// Increment the number of aircraft available for allocation to missions
iNumberOfAircraftAvailable++;
// Find the aircraft that has just had its pre-flight servicing completed
iLRJPosition = 0;
iLRIType = 0;
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos != NULL;)

{
p Aircraft = (C Aircraft *)aircraftlist. GetNext(AircraftPos);
if (pAircraft->GetAircraftNumber() == iAircraftNumber)
{

iAircraftState = 1;
p Ai rcraA-> S et Aircraft State(i Aircraft St ate);
// Update the Flight Servicing time counter
pAircraft->SetTimeInPreFlightServicing(fClockTime);
// If storing events, save the Landing Event to the events filefile
if (bStoringEvents)
{

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,
iNumberOfAircraft,iLRIPosition, iLRIType,iNumberOfLRIs,
fEventDuration);

}
break;

}
)
// If there are any delayed flights outstanding and aircraft not allocated to mission
b Aircraft AllocatedToFlight = false;
for (DelayedFlightPosl = delayedflightlist.GetHeadPosition();

DelayedFlightPosl != NULL;)
{

DelayedFlightPosl = DelayedFlightPosl;
pDelayedFlight =

(CDelayedFlight*)delayedflightlist.GetNext(DelayedFlightPosl);
fLastTakeOftTime = pDelayedFlight->GetLastTakeOffTime();
iNumberOfAircraft = pDelayedFlight->GetNumberOfAircraftRequired();
// If latest time has already passed cancel the flight
if (fClockTime > fLastTakeOftTime)
{

107

delayedflightlist.RemoveAt(DeIayedFlightPos2);
iNumberOfFlightsCancelled+= iNumberOfAircraft;
iNumberOfDailyFlightsCance!led+= iNumberOfAircraft;
iNumberOflFlightsDelayed-= iNumberOfAircraft;
// Release the memory occupied by the delayed flight object
delete pDelayedFlight;

}
// If current time within acceptable delay range and sufficient aircraft available
else
{

if (iNumberOfAircraftAvailable >= iNumberOfAircraft)
{

// Reduce the number of aircraft available
iNumberOfAircraftAvailable -= iNumberOfAircraft;
iNumberOfFlightsDelayed -= iNumberOfAircraft;
fEventDuration = pDelayedFlight->GetFlightDuration();
delayedflightlist.RemoveAt(DelayedFlightPos2);
iNumberOfAircraft—;
// Allocate aircraft to the mission
b Aircraft AllocatedToFlight = true;
EventTakeOff'(aircraftlist,eventlist,stocklist,iAircraftNumber,

iEventNumber);
// Allocate any other aircraft required
for (iNumberOfAircraft;iNumberOfAircraft > 0;iNumberOfAircraft—)

(
// Get first aircraft available and allocate it
for (AircraftPos = aircraftlist.GetHeadPosition();

AircraftPos != NULL;)
{

p Aircraft =(C Aircraft *)aircraftlist. GetNext(AircraftPos);
if (pAircraft->GetAircraftState() == 1)

{
iAircfaftNumber = pAircraft->GetAircraftNumber();
EventTakeOff"(aircraftlist,eventlist,stocklist,iAircraftNumber,

iEventNumber);
break;

}
}

}
// Release the memory occupied by the delayed flight object
delete pDelayedFlight;

}
}
if (bAircraftAllocatedToFlight == true)

(
break;

}
}
// increment the number of pre-flight servicing teams available
iNumberOflPreFlightServicingTeams++;
// check to see if any aircraft are awaiting pre-flight servicing

108

for (AircraftPos = aircrafi;list.GetHeadPosition();AircraftPos != NULL;)
{

p Aircraft = (CAircraft*)aircraftlist.GetNext(AircraftPos);
// Aircraft waiting for pre-flightservicing
if(pAircraft->GetAircraftState() == 5)

{
iAircraftNumber = pAircraft->GetAircraftNumber();
iAircraftState = 4;
pAircraft->SetAircraftState(iAircraftState);
// Update the awaiting Pre-Flight Servicing time counter
pAircraft->SetTimeAwaitingPreFlightServicing(fClockTime);
EventPreFlightServicingStart(eventlist);
break;

}
}

}
//Event 10 - Event Pre Flight Servicing Start
void CALSSimDoc::EventPreFlightServicingStart(CObList& eventlist)

{
iEventNumber = 10;
// Decrement number of sevicing teams
iNumberOfPreFlightServicingXeams—;
// If storing events, save the Event to the events filefile
if (bStoringEvents)
{

SaveEvent(iEventNumber,fClockTime,iAircraftNumber,iNumberOfAircraft,
iLRIPosition,iLRIType,iNumberOfLRIs,fEventDuration);

}
//Insert pre-flight servicing complete event for this aircraft into the event queue
ieEventNumber = 4;
ieAircraftNumber = iAircraftNumber;
ieNumberOfAircraft = 1;
ieLRIPosition = 0;
ieLRIType = 0;
ieNumberOfLRIs = 0;
feEventDuration = fPreFlightServicingDuration;
feEventXime = fClockTime +feEventDuration;
fePreviousEventTime = fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime,

ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition,ieLRIType,
ieNumberOfLRIs,feEventDuration);

}
//Event 9 - Event Take Off
void CALSSimDoc::EventTakeOfF(CObList& aircraftlist,CObList& eventlist,

CObList& stocklist,int iAircraftNumber,int iEventNumber)
{

CAircraft* pAircraft;
POSITION AircraftPos;
CStock* pStock;
POSITION StockPos;
//change aircraft state to flying

109

for (AircraftPos = aircrafi:list.GetHeadPosition();AircraftPos !=NIJLL;)
{

p Aircraft = (CAircraft*)aircraftlist.GetNext(AircraftPos);
if (pAircraft->GetAircraftNumber() == iAircraftNumber)

{
iAircraftState = 2;
pAircraft->SetAircraftState(iAircraftState);
// Set In Flight Abort Boolean variable to false
bInFlight Abort State = false;
pAircraft->SetInFlightAbortState(bInFlightAbortState);
if (iEventNumber == 2)
{

// Update the serviceable time counter and Change Aircraft State
pAircraft->SetTimeServiceable(fClockTime);
// Increment flights on time counters
iNumberOfFlightsOnTime++;
iNumberOfDailyFlightsOnTime++;

}
else
{

// increment the relevant flightdelay counter
if (fLastTakeOffTime - fClockTime < fMaximumFlightDelay/2)
(

iNumberOfFlightsSecondHalfDelay++;
iNumberOrDailyFlightsSecondHalfDelay++;

}
else
{

iNumberOflFlightsFirstHalfDelay++;
iNumberOfDailyFlightsFirstHalfDelay++;

}
}
b Aircraft AllocatedToFlight = true;
// If storing events, save the Take Off Event to the events filefile
if (bStoringE vents)
{

iEventNumber = 9;
iLRIPosition = 0;
iLRIType = 0;
SaveEvent(iEventNumber,fClockTime,iAircraftNumber,

iNumberOfAircraft, iLRIPosition,iLRIType,iNumberOfLRIs,
fEventDuration);

}
// If failure before planned landing set up in flight failure
fAircraftFailureTime = pAircraft->GetAircraftFailureTime();
fAircraftFlyingHours = pAircraft->GetAircraftFlyingHours();
iNumberOfFailedEssentialLRIs = 0;
if (fAircraftFailureTime < fAircraftFlyingHours + fEventDuration)

(
bFirstTime = true;
iLRIPosition = 1;

110

while (iLRIPosition > 0)
{

iLRIPosition = pAircraft->
GetLRIFailedInFlight(bFirstTime,fEventDuration);

bFirstTime = false;
// Get the LRI position
if (iLRIPosition > 0)
{

iLRIType = pAircraft->GetUnserviceableLRIType();
// Get LRI Essentiality
for (StockPos = stocklist.GetHeadPosition();StockPos != NULL;)
{

p Stock = (CStock*)stocklist.GetNext(StockPos);
if (pStock->GetStockType() == iLRIType)
(

if (pStock->GetLRIEssentiality() == 1)
(

// Increment the number of essential failure
iNumberOfFailedEssentialLRIs++;
fLRIFailureXime = pAircraft->

GetLRIFailureTime(iLRIPosition);
// Insert an in flight failure event into the event queue
ieEventNumber =11;
ieAircraftNumber = iAircraftNumber;
ieNumberOfAircraft = 1;
feEventTime = fClockXime +fLRIFailureTime -

fAircraftFlyingHours;
ieLRIPosition = iLRIPosition;
ieLRIType = iLRIType;
ieNumberOfLRIs = 1;
feEventDuration = fEventDuration;
fePreviousEventTime = fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,

fePreviousEventTime,ieAircraftNumber,
ieNumberOfAircraft,ieLRIPosition,ieLRIType,
ieNumberOfLRIs,feEventDuration);

}
break;

}
}

}
// Check to see if essential LRIs have failed
if (iNumberOflFailedEssentialLRIs == 0)

{
// The mission will be a success
iNumberOfFlightsSucceed++;
iNumberOfDailyFlightsSucceed++;

}
// Save planned mission times for landing cleanup

11

pAircraft->SavePlannedLandingTime(fClockTime,fEventDuration);
//Insert a landing event for this flight into the event queue
ieEventNumber - 3;
feEventTime = fClockTime +fEventDuration;
ieAircraftNumber = iAircraftNumber;
ieNumberOfAircraft = 1;
ieLRIPosition = 0;
ieLRJType - 0;
ieNumberOfLRIs = 0;
feEventDuration = fEventDuration;
fePreviousEventTime - fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime,

ieAircraftNumber,ieNumberOfAircraft,ieLRJPosition,ieLRIType,
ieNumberOfLRJs,feEventDuration);

break;
}

}
}
// CALSSimDoc commands
bool CALSSimDoc: :IsValidFileSpec (LPCSTR IpszFileSpec)
(

OFSTRUCT of;
if (OpenFile (IpszFileSpec, &of: OF EXIST) = HFILE_ERROR)
{

return false;
}
else
{

return true;
}

}
float CALSSimDoc;;GetBoundedNormal(CObList& randomnumberlist,

int iRandomNumberStream,float fLRIMeanFailTime,float fFailMin,
float fFailMax,float fVariance)

{
fLRIFailureMin = fLRIMeanFailTime * fFailMin;
fLRIFailureMax - fLRIMeanFailTime * fFailMax;
fLRIFailureTime - 0;
while ((fLRIFailureTime < (fLRIFailureMin)) ||(fLRIFailureTime >

(ALRIFailureMax)))

{
flLRlFailureTime = flReliabilityFactor *

GetNormalResult(randomnumberlist,iRandomNumberStream,
flLRIMeanFailTime,fVariance);

1
return fLRIFailureTime;

}
float CALSSimDoc::GetExponentialResult(CObList& randomnumberlist,
int iStreamNumber,float fMean)
{

fRandomNumber = GetRandomNumber(randomnumberlist,iStreamNumber);

112

(Result = (-fMean)*log(l - fRandomNumber);
return fResult;

}
float CALSSimDoc::GetLognormalResult(CObList& randomnumberlist,

int iStreamNumber,float fMean,float fVariance)
(

// use a Lognormal(l,fVariance) distribution
fLogMu = 1;
fLog Variance = fV ariance;
fLogMean = exp(fLogMu + fLog Variance/2);
// get normal value then convert
feEventDuration =GetNormalResult(randornnumberlist,iRandomNumberStream,

fLogMu,flLog Variance);
fResult = exp(feEventDuration);
// Convert the value to take account of the actual mean
fResult = (fResult * fMean)/fLogMean;
return fResult;

}
float CALSSimDoc::GetNormalResult(CObList& randomnumberlist,

int iStreamNumber,float fMean,float fVariance)
{

// First generate a U(0,1) value
// formula generates 2 numbers but only one is used
bAcceptableResult = false;
while (bAcceptableResult '= true)
{

fRandomNumber 1 = GetRandomNumber(randomnumberlist,iStreamNumber);
fRandomNumber2 = GetRandomNumber(randomnumberlist,iStreamNumber);
fNormalValue 1 = 2*fRandomNumberl - 1;
fNormalValue2 = 2*flR.andomNumber2 - 1;
fNormalCheck Value = pow(fNormal Value 1,2) + pow(fNormalValue2,2);
if (fNormalCheck Value <=1)

{
bAcceptableResult = true;
fNormalCalculation Value =

sqrt((-2 * log(fNormalCheck Value))/fNformalCheck Value);
// calculate for N(l,fVariance)
fNormalNumber = 1 + (sqrt(fVariance) * fNormal Value 1 *

fNormalCalculation Value);
fNormalNumber = fNormalNumber * fMean;
// Second value not used thus not calculated or returned

}
}
return fNormalNumber;

}
float CALSSimDoc::GetRandomNumber(CObList& randomnumberlist,
int iStreamNumber)
{

// Set up pointers to the Random Number Class
CRandomNumber* pRandomNumber;

113

pRandomNumber = (CRandomNumber*)randomnumberlist.GetHead();
fRandomNumber = pRandomNumber->GenVal(iStreamNumber);
return fRandomNumber;

}
float CALSSimDoc::GetTriangularResult(CObList& randomnumberlist,

int iStreamNumber,float fLRIMean,float fTriangleMin,float fTriangleMax,
float fTriangleDiv)

{
// shape parameters read in from file
// mode = min +(max-min)/div
float B,T,X; // temporary variables used within the operation
fTriangleRange - fTriangleMax - fTriangleMin;
fTriangleMode -fTriangleMin + (fTriangleRange/fTriangleDiv);
B = (fTriangleMode - fTriangleMin)/fTriangleRange;
fRandomNumber = GetRandomNumber(randomnumberlist,iStreamNumber);
if (fRandomNumber < B)

T = sqrt(B * fRandomNumber);
else

T = 1 - sqrt((l - B)*(l - fRandomNumber));
X = (fTriangleMin + (frriangleRange*T));
// Convert the result to take account of the LRI Mean
fResult = (X * fLRIMean)/((fTriangIeMin + fTriangleMax + fTriangleMode)/]);
return fResult;

}
float CALSSimDoc:;GetWeibullResult(CObList& randomnumberlist,int iStreamNumber,

float fLRIMean,float fShape, float fGamma)
{
// a = fScale;
// b = fShape;
// a = fLRIMean /fGamma where fGamma = gamma(l + 1/b) entered as fixed value

fScale = fLRIMean / fGamma;
fRandomNumber = GetRandomNumber(randomnumberlist,iStreamNumber);
fResult = fScale*(pow(-log(l-fRandomNumber), 1/fShape));
return fResult;

}
/ Allocate the repaired LRI to an aircraft
void CALSSimDoc::AIlocateLRIToAircraft(CObList& aircraftlist,CObList& eventlist,

CObList& stocklist,int iLRIType)
{

// Set up pointers to Classes
CAircraft* pAircraft;
POSITION AircraflPos;
CStock* pStock;
POSITION StockPos;
for (AircraftPos = aircraftlist,GetHeadPosition();AircraflPos != NULL;)
{

p Aircraft = (CAircraft*)aircraftlist.GetNext(AircraftPos);
// Aircraft requires LRI of some type
if (pAircraft->GetNumberOflLRIsRequired() > 0)
{

// LRI of this type required on the aircraft

114

if (pAircraft->CheckLRITypeRequired(iLRJType))
{

// Decrement the number of LRIs Required on the Aircraft
pAircraft->ReduceNumberOfLRIsRequired();
// Change LRl state to being fitted(5)
iLRIState = 5;
// Get the LRl position for the LRl to be fitted to
iLRIPosition = pAircraft->UpdateLRIRequired(iLRIType,iLRIState);
// Set up LRl replacement event
for (StockPos = stocklist.GetHeadPosition();StockPos !=NULL;)

{
pStock = (CStock*)stocklist.GetNext(StockPos); ,
if (pStock->GetStockType() == iLRIType)

{
fEventDuration = pStock->GetReplacementTime();
break;

}
}
//Insert a LRl replacement complete event into the event queue
ieEventNumber = 6;
ieAircraftNumber = pAircraft->GetAircraftNumber();
leNumberOfAircraA ^ 1;
ieLRJPosition = iLRIPosition;
ieLRIType = iLRJType;
ieNumberOfLRls = 0;
feEventDuration = fEventDuration;
feEventTime = fClockXime + feEventDuration;
fePreviousEventXime = fClockTime;
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime,

ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition,ieLRIType,
ieNumberOfLRls,feEventDuration);

break;
}

}
}

}
void CALSSimDoc;:CreateAircraft(CObList& aircraftlist, CObList& randomnumberlist,

CObList& stocklist)
{

// Set up the pointer to access the aircraft list
CAircraft* pAircraft;
// Create the aircraft and the fitted LRIs
for (iAircraftNumber = 1 ;iAircraftNumber <= iNumberOfAircraft;

iAircraftNumber++)
{

aircraftlist.AddTail(new CAircraft(iAircraftNumber));
p Aircraft = (CAircraft*)aircraftlist.GetTail();
// Open the LRl data and LRl stock files
ifstream LRIDatalF(sLRIDataFile);
ifstream LRlStOGkIF(sLRIStockpile);
//Read in the LRl data and build LRIs into the aircraft and LRl Stock files

115

LRIDatalF » iLRIType » iLRTNfumberFitted » fLRIMeanFailureTime »
iLRIEssential » fLRIRemovalTime » fLRIRefitTime »
fLRIProportionRepairedAtUnit»fLRIUnitRepairTime »
fLRIDepotRepairTime;

iLRIPosition = 1;
while (LRIDatalF)
(

// Calculate LRI FailureTime
iRandomNumberStream = 1;
for (iLRINumberFitted;iLRINumberFitted > 0;iLRINumberFitted—)
{

// action on failure distribution used
switch(iFailureDistributionUsed)
{
case 0: // none

fLRIFailureTime = fReliabilityFactor * fLRIMeanFailureXime;
break;

case 1: // exponential
fLRIFailureTime = fReliabilityFactor *

GetExponentialResult(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime);

break;
case 2: // Lognormal

fLRIFailureTime = fReliabilityFactor *
GetLognormalResult(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,fFailureVariance);

break;
case 3: // Normal

// Return is bounded to ensure no negative values
// Max, Min and Variance read in from Simulation parameters File
fLRIFailureTime = fReliabilityFactor *

GetBoundedNormal(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,fFailureMin,fFailureMax,fFailure Variance);

break;
case 4: // Triangular

fLRIFailureTime = fReliabilityFactor *
GetTriangularResult(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,flFailureMin,fFailureMax,iFailureDivisor);

break;
case 5: // Weibull

fLRIFailureTime = fReliabilityFactor *
GetWeibullResult(randomnumberlist,iRandomNumberStream,
fLRIMeanFailureTime,fFailureShape,fFailureGamma);

break;
}
// Generate new LRIs within the Aircraft class and return LRI position
iLRIPosition = pAircraft->

AddNewLRI(iLRIPosition,iLRIType,fLRIFailureTime);
}
if (iAircraftNumber — 1)

] 16

}

LRIStocklF » iLRIType » iLRJUnitStock » iLRJDepotStock;
stocklist,AddTail(new CStock(iLRJType,fLRJMeanFailureTime,

iLRIEssential,fLRIRemovalTime,fLRIRefitTime,
fLRIProportionRepairedAtUnit,fLRIUnitRepairTime,
fLRIDepotRepairTime,iLRIUnitStock,iLRIDepotStock));

}
LRIDatalF » iLRIType » iLRINumberFitted » fLRIMeanFailureTime »

iLRIEssential » fLRIRemovalTime » fLRIRefitTime »
fLRIProportionRepairedAtUnit» fLRIUnitRepairTime »
fLRIDepotRepairTime;

}
void CALSSimDoc::CreateDailyResults(CObList& dailyresultslist,int iNumberOfDays)
{

for (iDayNumber = 1 ;iDayNumber <= iNumberOfDays;iDayNumber++)
{

dailyresultslist.AddTail(new CDailyResults(iDayNumber));
}

}
void CALSSimDoc: :CreateRandomNumberStreams(CObList& randomnumberlist)
{

randomnumberlist. AddTail(new CRandomNumber());
}
void CALSSimDoc::EndSimuiation(CObList& aircraftlist,CObList& dailyresulisiist,

CObList& randomnumberlist, CObList& stocklist)
(

// list control variables
CAircraft* pAircraft;
POSITION AircraftPos;
CDailyResults* pDailyResults;
POSITION DailyResultsPos;
// Open the Output file
ofstream ResultsOF(sResultsFile);
// Change integer counters to floating point counters
fNumberOfiFlightsCancelled = iTotalFlightsCancelled;
fNumberOfFlightsFail = iTotalFlightsFail;
fNumberOfFlightsFirstHalflDelay = iTotalFlightsFirstHalfDelay;
fNumberOfFlightsInFlightAbort = iTotalFlightsInFlightAbort;
fNumberOfFlightsOnTime = iTotalFlightsOnTime;
fNumberOfFlightsSecondHalfDelay = iTotalFlightsSecondHalflDelay;
fNfumberOfFlightsSucceed = iTotalFlightsSucceed;
fNumberOfFlightsTakeOff = iTotalFlightsTakeOff;
fNumberOfiFlightsTasked = iTotalFlightsTasked;
// Calculate Means
fMeanFlightsTasked = fNumberOfiFlightsTasked/iNumberOfRuns;
fMeanFlightsOnTime = fNumberOlF'lightsOnTime/iNumberOfRuns;
fMeanFlightsFirstHalfDelay = fNfumberOfFIightsFirstHalfDelay/iNumberOfRuns;
fMeanFlightsSecondHalfDelay =

ASfumberOfFlightsSecondHalfDelay/iNumberOfRuns;
fMeanFlightsCancelled = fNumberOfFlightsCancelled/lNumberOfRuns;

117

fMeanFlightsTakeOff = fMeanFlightsOnTime + fMeanFlightsFirstHalfDelay +
fMeanFlightsSecondHalfDelay;

fMeanFlightsInFlightAbort = fNumberOfFlightsInFlightAbort/iNumberOfRuns;
fMeanFlightsFail = fNumberOfFlightsFail/iNumberOfRuns;
fMeanFlightsSucceed = fNumberOfFlightsSucceed/iNumberOfRuns;
// Calculate Variances
fVarianceFlightsOnTime = (iSquareNumberOfFlightsOnTime -

(2 * fNfumberOfFlightsOnTime * fMeanFlightsOnTime) +
(iNumberOfRuns * pow(fMeanFlightsOnTime,2)))/(iNumberOfRuns - 1);

fVarianceFlightsFirstHalfDelay = (iSquareNumberOfFlightsFirstHalfDelay -
(2 * fNumberOfFlightsFirstHallDelay * fMeanFlightsFirstHalfDelay) +
(iNumberOfRuns * pow(fMeanFlightsFirstHalfDelay,2)))/(iNumberOfR.uns - 1);

fVarianceFlightsSecondHalfDelay = (iSquareNumberOfFlightsSecondHalfDelay -
(2 * fNumberOfFlightsSecondHalfDelay * fMeanFlightsSecondHalfDelay) +
(iNumberOfR-uns * pow(fMeanFlightsSecondHalfDelay,2)))/

(iNumberOfRuns - 1);
fVarianceFlightsCancelled = (iSquareNumberOfFlightsCancelled -

(2 * fNumberOfFlightsCancelled * fMeanFlightsCancelled) +
(iNumberOfRuns * pow(fMeanFlightsCancelled,2)))/(iNumberOfRuns - 1);

fVarianceFlightsInFlightAbort = (iSquareNumberOfFlightsInFlightAbort -
(2 * fNumberOfFlightsInFlightAbort * fMeanFlightsInFlightAbort) +
(iNumberOfRuns * pow(fMeanFlightsInFlightAbort,2)))/(iNumberOfRuns - 1);

fVarianceFlightsTakeOfF= (iSquareNumberOfFlightsTakeOfF -
(2 * fNumberOfFlightsTakeOff * fMeanFlightsTakeOff) +
(iNumberOfRuns * pr"A'(^rivieanFlightsTake0fr,2)))/(iNumbe; 0fRuns - 1),

fVarianceFlightsFail = (iSquareNumberOfFlightsFail -
(2 * fNumberOfFlightsFail * fMeanFlightsFail) +
(iNumberOfRuns * pow(fMeanFlightsFail,2)))/(iNumberOfRuns - 1);

fVarianceFlightsSucceed = (iSquareNumberOfFlightsSucceed -
(2 * fNumberOfFlightsSucceed * fMeanFlightsSucceed) +
(iNumberOfRuns * pow(fMeanFlightsSucceed,2)))/(iNumberOfRuns - 1);

// Calculate Percentages
fPercentageFlightsOnTime = fMeanFlightsOnTime/fMeanFlightsTasked *100;
fPercentageFlightsFirstHalfDelay = fMeanFlightsFirstHalfDelay/

fMeanFlightsTasked *I00;
fPercentageFlightsSecondHalfDelay = fMeanFlightsSecondHalfDelay/

fMeanFlightsTasked *100;
fPercentageFlightsCancelled = fMeanFlightsCancelled/fMeanFlightsTasked *100;
fPercentageFlightsTakeOfF- fPercentageFlightsOnTime +

fPercentageFlightsFirstHalfDelay + fPercentageFlightsSecondHalfDelay;
fPercentageFlightsInFlightAbort = fMeanFlightsInFlight Abort/

fMeanFlightsTasked* 100;
fPercentageFlightsFail = fMeanFlightsFail/fN^eanFlightsTakeOfP 100;
fPercentageFlightsSucceed = fMeanFlightsSucceed/fMeanFlightsTakeOfP 100;
// Save The Simulation Results to the results file
// Simulation Filenames
ResultsOF « "Simulation Run Results File\n\n";
ResultsOF « "Simulation Files\n";
ResultsOF « "Simulation Input File\t\t" « sSimParametersFile « "\n";
ResultsOF « "Flying Programme \t\t" « sFlyingProgrammeFile « "\n";
ResultsOF « "LRI Data File \t\t" « sLRIDataFile « "\n";

118

ResultsOF « "LRI Stock File \t\t" « sLRIStockFile « "\n";
ResultsOF « "Results File \t\t" « sResultsFile « "\n\n";
// Simulation Input Parameters
ResultsOF « "Simulation Input parameters \n";
ResultsOF « "Number of Runs\t\ t \ t \ t"« iNumberOfRuns « "\n";
ResultsOF « "Number of Days\t\t \ t \ t"« iNumberOflDays « "\n";
ResultsOF « "Number of Aircraft\t\t\t\t" « iStartNumberOfAircraft « "\n";
ResultsOF « "Number of Pre-Flight Servicing teams\t\t\t\t" «

iNumberOfPreFlightServicingTeams « "\n";
ResultsOF « "Pre-Flight Servicing Duration (hours)\t\t\t\t" «

fPreFlightServicingDuration « "\n";
ResultsOF « "Maximum Delay for Flights (hours)\t\t\t\t" «

fMaximumFlightDelay « "\n\n";
// Distribution Types and Parameters
ResultsOF « "Distributions Used\n";
// Failure Distributions used
switch (iFailureDistributionUsed)
{
case 0; // None

ResultsOF « "Failure - None";
break;

case 1: // Exponential
ResultsOF « "Failure - Exponential";
break;

case 2; // Lognormal
ResultsOF « "Failure - Lognormal\nVariance" « (FailureVariance;
break;

case 3: // Normal
ResultsOF « "Failure - Normal\nMinimum\t" « fFailureMin «

"\nMaximum\t" « fFailureMax;
ResultsOF « "\nVariance\t" « fFailureVariance;
break;

case 4: // Triangular
ResultsOF « "Failure - Triangular\nMinimum\t" « fFai lureMin«

"\nMaximum\t" «fFai lureMax;
ResultsOF « "\nDivisor\t" « iFailureDivisor;
break;

case 5 ; // Weibull
ResultsOF « "Failure - Weibull\nShape\t" « fFailureShape;
ResultsOF « "\nGamma\t" « fFailureGamma;
break;

}
switch (iRepairDistributionUsed)
{
case 0: // None

ResultsOF « "\nRepair - None";
break;

case 1: // Exponential
ResultsOF « "\nRepair - Exponential";
break;

case 2: // Lognormal

119

ResultsOF « "\nRepair - Lognornial\nVariance\t" « fRepairVariance;
break;

case 3; // Normal
ResultsOF « "VnRepair - Normal\nMinimum\t" « fRepairMin «

"\nMaximum\t" « fRepa i rMax;
ResultsOF « "\nVariance\t" « fRepairVariance;
break;

case 4: // Triangular
ResultsOF « "\nRepair - Triangular\nMinimum\t" « fRepairMin«

"\nMaximum\t" « fRepa i rMax;
ResultsOF « "\nDivisor\t" « iRepairDivisor;
break;

case 5: // Weibull
ResultsOF « "VnRepair - Weibull\nShape\t" « fRepairShape;
ResultsOF « "\nGamma\t" « fRepairGamma;
break;

}
// Simulation Flight Statistics
ResultsOF « "\n\nSimulation MeansVn";
ResultsOF « "\t\t\t\tTotal\tVariance\tPercentage\n";
ResultsOF « "Tasked Flights\t\t\t\t" « fMeanFlightsTasked « " \ n " ;
ResultsOF « "Flights Achieved\t\t\t\t" «fMeanFlightsTakeOff « "\t" «

fVarianceFlightsTakeOff « "\t" « fPercentageFlightsTakeOff « " \ n " ;
ResultsOF « "On TimeWAt" «fMeanFlightsOnTime « " \ t " «

fVarianceFlightsOnTime « "\t" « fPercentageFlightsOnTime « "\n";
ResultsOF « "First Half Flight Delay Maximum\t\t\t\t" «

fMeanFlightsFirstHalfDelay « "\t" « fVarianceFlightsFirstHalfDelay « "\t" «
fPercentageFlightsFirstHalfDelay « "\n";

ResultsOF « "Second Half Flight Delay Maximum\t\t\t\t" «
fMeanFlightsSecondHalfDelay « "\t" « f\'^arianceFlightsSecondHalfDelay «
"\t" « fPercentageFlightsSecondHalfDelay « "\n";

ResultsOF « "Cancelled Flights\t\t\t\t" «fMeanFlightsCancelled « "\t" «
fVarianceFlightsCancelled « "\t" « fPercentageFlightsCancelled « "\n";

ResultsOF « "In Flight Aborts\t\t\t\t" « fMeanFlightsInFlightAbort « "\t" «
fVarianceFlightsInFlightAbort « "\t" « fPercentageFlightsInFlightAbort «
"\n";

ResultsOF « "Launched Flights Succeeded\t\t\t\t" « fMeanFlightsSucceed «
"\t" « fVarianceFlightsSucceed « "\t" « fPercentageFlightsSucceed « "\n";

ResultsOF « "Launched Flights Failed\t\t\t\t" « fMeanFlightsFail « "\t" «
fVarianceFlightsFail « "\t" « fPercentageFlightsFail « "\n\n";

// Aircraft mean time per run spent in States
ResultsOF « "Mean Hours For Aircraft States \n\n";
ResultsOF « "Aircraft\tUnserviceable\t Awaiting Flight\tln Flight\tServicable\t

Flying\n";
ResultsOF « "Number\t\tServicing\tServicing\n";
// Zero Counters for calculation of means
flimeUnserviceable = 0;
fTimeAwaitingPreFlightServicing = 0;
fTimelnPreFlightServicing = 0;
fTimeServiceable = 0;-
fTimeFlying = 0;

120

fMeanTimeUnserviceable = 0;
fMeanTimeAwaitingPreFlightServicing = 0;
fMeanXimelnPreFlightServicing = 0;
fMeanTimeServiceable = 0;
fMeanTimeFlying = 0;
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos!=NULL;)

{
pAircraft - (CAircraft*)aircraftlist.GetNext(AircraftPos);
iAircraftNumber = pAircraft->GetAircraftNumber();
ResultsOF «iAircraftNumber « " \ t " ;
fTimeUnserviceable = pAircraft->GetTimeUnserviceable(iNumberOfRuns);
fMeanTimeUnserviceable += fTimeUnserviceable;
ResultsOF «frimeUnserviceable « "\t";
fTimeAwaitingPrcFlight Servicing = pAircraft->

GetTimeAwaitingPreFlightServicing(iNumberOfRuns);
fMeanTime AwaitingPreFlight S ervicing += fTimcAwaitingPreFlightServicing;
ResultsOF « fTimeAwaitingPreFlightServicing « "\t";
frimelnPreFlightServicing = pAircraft->

GetTimelnPreFlightServicing(iNumberOfRuns);
fMeanXimelnPreFlightServicing += fTimelnPreFlight Servicing;
ResultsOF « frimelnPreFlightServicing « "\t";
fTimeServiceable = p Aircraft->GetTimeServiceable(iNumberOfRuns);
fMeanTimeServiceable += fTimeServiceable;
ResultsOF « fTimeServiceable « "\t";
fTimeFlying = pAirciaft->GetTimeFlying(iNumberOfRuns);
fMeanTimeFlying += fTimeFlying;
ResultsOF « fTimeFlying « "\n";

}
// save Mean values to file
fMeanTimeUnserviceable = fMeanTimeUnserviceable/iAircraftNumber;
fMeanTimeAwaitingPreFlightServicing =

fMeanTimeAwaitingPreFlightServicing/iAircraftNumber;
fMeanTimelnPreFlightServicing = fTimelnPreFlightServicing/iAircraftNumber;
fMeanTimeServiceable = fMeanTimeServiceable/iAircraftNumber;
MeanTimeFlying = fMeanTimeFlying/iAircraftNumber;
ResultsOF « "Mean\t" « fMeanTimeUnserviceable « "\t" «

fMeanTimeAwaitingPreFlightServicing « "\t" « fTimelnPreFlight Servicing «
"\t" « fMeanTimeServiceable « "\t" « fMeanTimeFlying « "\n";

// Aircraft percentage of time per run in States
ResultsOF « "\nPercentage of Simulation For Aircraft States \n\n";
ResultsOF « "Aircraft\tUnserviceable\tAwaiting Flight\tln FlightXtServicable\t

Flying\n";
ResultsOF « "Number\t\tServicing\tServicing\n";
// Zero Counters for calculation of means
flimeUnserviceable = 0;
flimeAwaitingPreFlight Servicing = 0;
frimelnPreFlightServicing = 0;
flimeServiceable = 0;
fTimeFlying == 0;
fMeanTimeUnserviceable = 0;
fMeanTimeAwaitingPreFlightServicing = 0;

121

fMeanTimelnPreFlightServicing = 0;
fMeanTimeServiceable = 0;
fMeanXimeFlying = 0;
for (AircraftPos = aircraftlist.GetHeadPosition();AircraftPos!=NULL;)
{

p Aircraft = (CAircraft*)aircraftlist.GetNext(AircraftPos);
iAircraftNumber = pAjrcraft->GetAircraftNumber();
ResultsOF «iAircraf tNumber
fTimeUnserviceable = pAircraft->

GetTimeUnserviceable(iNumberOfRuns)/fdockTime* 100;
fMeanTimeUnserviceable += fTimeUnserviceable;
ResultsOF «fTimeUnserviceable « "\t";
fTimeAwaitingPreFlightServicing = pAircraft->

GetTimeAwaitingPreFlightServicing(iNumberOfRuns)/fClockTime* 100;
fMeanTimeAwaitingPreFlightServicing += fTimeAwaitingPreFlightServicing;
ResultsOF «fTimeAwaitingPreFlightServicing « "\t";
fTimelnPreFlightServicing = pAircraft->

GetTimeInPreFlightServicing(iNumberOfRuns)/fClockTime* 100;
fMeanTimelnPreFlightServicing += fTimelnPreFlightServicing;
ResultsOF «fTimeInPreFlightServicing « "\t";
fTimeServiceable = pAircraft->

GetTimeServiceable(iNumberOfRuns)/fClockTime* 100;
fMeanTimeServiceable += fTimeServiceable;
ResultsOF «fTimeServiceable « "\t";
fTimeFlying = pAirci aft->GetTimeFlying(iNumberOfRuns)/fCiockTime* 100;
fMeanTimeFlying += fTimeFlying;
ResultsOF «fTimeFlying « "\n";

}
// save Mean values to file
fMeanTimeUnserviceable = fMeanTimeUnserviceable/iAircraftNumber;
fMeanTimeAwaitingPreFlightServicing =

fMeanTimeAwaitingPreFlightServicing/iAircraftNumber;
fTimelnPreFlightServicing = fTimelnPreFlightServicing/iAircraftNumber;
fMeanTimeServiceable = fMeanTimeServiceable/iAircraftNumber;
fMeanTimeFlying = fMeanTimeFlying/iAircraftNumber;
ResultsOF « "Mean\t" « fMeanTimeUnserviceable « "\t" «

fMeanTimeAwaitingPreFIightServicing « "\t" « fTimelnPreFlightServicing «
"\t" « fMeanTimeServiceable « "\t" « fMeanTimeFlying « "\n";

// Daily Aircraft State figures
ResultsOF « "\nDaily AircraftStates\n\n";
ResultsOF « "Day\tServiceable\tFlying\tUnserviceable\tIn Pre\tAwaiting\n";
ResultsOF « "Number\t\t\t\tFlight Servicing\tPre Flight Servicing\n";
for (iDayNumber = l;iDayNumber <= iNumberOfDays;iDayNumber++)
{

for (DailyResultsPos = dailyresultslist.GetHeadPosition();
DailyResultsPos!=NULL;)

{
pDailyResults = (CDailyResults*)dailyresultslist.GetNext(DailyResultsPos);
if (pDailyResults->GetDayNumber() == iDayNumber)
(

// Read in Aircraft state details

122

fNumberOfAircraftServiceable = pDailyResults->
GetNumberOfAircraftServiceableO;

fNumberOfAircraftFlying = pDailyResults->
GetNumberOfAircraftFlyingO;

fNumberOfAircraftUnserviceable = pDailyResults->
GetNumberOfAircraftUnserviceable();

fNumberOfAircraftlnPreFlightServicing = pDailyResults->
GetNumberOfAircraftlnPreFlightServicingO;

fNumberOfAircraftAwaitingPreFlightServicing - pDailyResults->
GetNumberOfAircraftAwaitingPreFlightServicingO;

// Calculate the means
fMeanNumberOfAircraftServiceable =

fNumberOfAircraftServiceable/iNumberOfRuns;
fMeanNumberOfAircraftFlying =

fNumberOfAircraftFlying/iNumberOfRuns;
fMeanNumberOfAircraftUnserviceable =

fNumberOfAircraftUnserviceable/iNumberOfRuns;
fMeanNumberOfAircraftlnPreFlightServicing =

fNumberOfAircraftlnPreFlightServicing/iNumberOfRuns;
fMeanNumberOfAircraftAwaitingPreFlightServicing =

fNumberOfAircraftAwaitingPreFlightServicing/iNumberOfRuns;
ResultsOF « iDayNumber « "\t" «

fMeanNumberOfAircraftServiceable « "\t" «
fMeanNumberOfAircraftFlying;

ResultsOF "\t" « fMeanNumberOfAircraftUnserviceable « "\t" «
fMeanNumberOfAircraftlnPreFlightServicing;

ResultsOF « "\t" « fMeanNumberOfAircraftAwaitingPreFlightServicing
« "\n";

break;
}

}
}
// Daily Flight Results
ResultsOF « "\nDaily Flight Results\n\n";
ResultsOF « "Day\tTasked\tOn Time\tLess Than\t

More Than\tCancelled\tSuccessful\tIn Flight\tSuccessfial\tFailed\n";
ResultsOF « "Number\tFlights\t\tHalf Maximum DelayVt

Half Maximum Delay\t\tTake OflfsVt Abort\tMissions\tMissions\n";
for (iDayNumber = l;iDayNumber <= iNumberOfDays;iDayNumber++)
{

for (DailyResultsPos =
dailyresultslist.GetHeadPosition();DailyResultsPos!=NULL;)

{
pDailyResults = (CDailyResults*)dailyresultslist.GetNext(DailyResultsPos);
if (pDailyResults->GetDayNumber() = iDayNumber)

{
// Read in Flight Details
fNumberOfDailyFlightsCancelled = pDailyResults->

GetNumberOfDailyFlightsCancelledQ;
fNumberOfDailyFlightsFail = pDailyResults->

GetNumberOfDailyFlightsFaiI();

123

]

fNumberOfDailyFlightsFirstHalfDelay = pDailyResults->
GetNumberOfDailyFlightsFirstHalfDelayO;

fNumberOfDailyFIightsInFlightAbort = pDailyResuIts->
GetNumberOfDailyFlightsInFlightAbortO;

fNumberOfDailyFlightsOnTime = pDaiIyResults->
GetNumberOfDailyFlightsOnTime();

fNumberOfDailyFlightsSecondHalfDelay = pDailyResults->
GetNumberOfDailyFlightsSecondHalfDelayO;

fNumberOfDailyFIightsSucceed = pDailyResults->
GetNumberOfDailyFlightsSucceedO;

fNumberOfDailyFlightsTasked = pDailyResults->
GetNumberOfDailyFlightsTasked();

// Calculte the means
fNumberOfDailyFlightsTakeOfF = fNumberOfDailyFlightsOnTime +

fNumberOfDailyFlightsFirstHalfDelay +
fNumberOfDailyFlightsSecondHalfDelay;

fMeanNumberOfDailyFlightsCancelled -
fNumberOfDailyFlightsCancelled/iNumberOfRuns;

fMeanNumberOfDailyFlightsFail =
fNumberOfDailyFlightsFail/iNumberOfRuns;

fMeanNumberOfDailyFlightsFirstFIalfDelay =
fNumberOfDailyFlightsFirstFIalfDelay/iNumberOfRuns;

fMeanNumberOfDailyFlightsInFlightAbort =
fNumberOfDailyFlightsInFlightAbort/iNumberOfRuns;

fMeanNumbcrOfDailyFlightsOnTime =
fNumberOfDailyFlightsOnTime/iNumberOfRuns;

£MeanNumberOfDailyFlightsSecondHalfDelay =
fNumberOfDailyFlightsSecondHalfDelay/iNumberOfRuns;

fMeanNumberOfDailyFlightsSucceed =
fNumberOfDailyFlightsSucceed/iNumberOfRuns;

fMeanNumberOfDailyFlightsTakeOfF=
fNumberOfDailyFlightsTakeOff/iNumberOfRuns;

fMeanNumberOfDailyFlightsT asked =
fNumberOfDailyFlightsTasked/iNumberOfRuns;

// Save the means to the results file
ResultsOF « iDayNumber « "\t" «

fMeanNumberOfDailyFlightsTasked « "\t" «
£MeanNumberOfDailyFlightsOnTime ;

ResultsOF « "\t" «fMeanNumberOfDailyFlightsFirstHalfDelay «
"\t" « fMeanNumberOfDailyFlightsSecondHalfDelay;

ResultsOF « "\t" « fMeanNumberOfDailyFlightsCancelled «
"\t" «fMeanNumberOfDailyFlightsTakeOfF;

ResultsOF « "\t" « fMeanNumberOfDailyFlightsInFlightAbort «
"\t" «fMeanNumberOfDailyFlightsSucceed;

ResultsOF « "\t" « fMeanNumberOfDailyFlightsFail « "\n";

}
}
// Release the memory used before displaying results
ReleaseMemory(aircrafi:list,randomnumberlist,dailyresultslist,stocklist);

124

// Show basic simulation results on screen
CDlgSimulationFinished dig;
dig.m_MeanFlightsT asked = fMeanFlightsTasked;
dlg.m_MeanFlightsOnTime = fMeanFlightsOnTime;
dlg.m_MeanFiightsFirstHalfDelay = fMeanFlightsFirstHalfDelay;
dlg.m_MeanFlightsSecondHalfDelay = fMeanFlightsSecondHalfDelay;
dlg.m_MeanFlightsCancelled = fMeanFlightsCancelled;
dlg.m_MeanFlightsTakeOfF= fMeanFlightsTakeOff;
dig. m_MeanFlightsInFlight Abort = fMeanFlightsInFlight Abort;
dig. mMeanFlightsFail = fMeanFlightsFail;
dlg.m_MeanFlightsSucceed = fMeanFlightsSucceed;
dlg.m_PercentageFlightsOnTime = fPercentageFlightsOnTime;
dlg.m_PercentageFlightsFirstHalfDelay = fPercentageFlightsFirstHalfDelay;
dlg.m_PercentageFlightsSecondHalfDelay = fPercentageFlightsSecondHalfDelay;
dlg.m_PercentageFlightsCancelled = fPercentageFlightsCancelled;
dlg.m_PercentageFlightsTakeOff = fPercentageFlightsTakeOfF;
dig. m_PercentageFlightsInFIight Abort = fPercentageFlightsInFlight Abort;
dlg.m_PercentageFlightsFail = fPercentageFIightsFail;
dlg.m_PercentageFlightsSucceed = fPercentageFlightsSucceed;
// Dialog to allow choice between exiting the programme or running another problem
if (dlg.DoModalO = nX)K)
{

CDlgClearlnputParameters dig;
if (dlg.DoModalO = IDOK)
{

bSimulationParametersFileLoaded = false;
bFlyingProgrammeFileLoaded = false;
bLRIDataFileLoaded = false;
bLRIStockJFileLoaded = false;

}
bResultsFileLoaded = false;

}
}
//Insert an event into the queue
void CALSSimDoc;;InsertEvent(CObList& eventlist, int iEventNumber,

float fEventTime,float fPreviousEventTime,int iAircraftNumber,
int iNumberOfAircraftjnt iLRIPosition,int iLRJType,int iNumberOflLRIs,
float fEventDuration)

{
// Set up pointers to Event Class
CEvent* pEvent;
POSITION EventPosl, EventPosl;
for(EventPosl = eventlist.GetHeadPosition();EventPosl != NULL;)
{

// set up a second position reference
// this is required as GetNext moves the pointer on one place
EventPos2 = EventPosl;
pEvent=(CEvent*)eventlist.GetNext(EventPosl);
if (pEvent->GetEventTime() > fEventTime)
(

eventlist.InsertBefore(EventPos2,new CEvent(iEventNumber,fEventTime,

125

fPreviousEventTime,iAircraftNumber,iNumberOfAircraft,iLRIPosition,
iLRIType,iNumberOfLRls,fEventDuration));

break;
}

}
}
void CALSSimDoc; ;LoadSimulationScenarioDetails()
{

// Open the Simulation Parameter files
ifstream SimParalF(sSimParametersFile);
SimParaIF» iNumberOfRuns » iNumberOfAircraft »

iMaximumFailuresNonEssentialLRIs »fMaximumFlightDelay »
fMissionSuccessPoint»iNumberOfPreFlightServicingTeams »
fPreFlightServicingDuration » fDepotUnitTransferTime »
iFailureDistributionUsed » iRepairDistributionUsed » fReliabilityFactor »
fRepairFactor » fNoFauItFoundAtUnitFactor » fNoFauItFoundAtDepotFactor;

// Read in extra data for those distributions that need it

switch (iFailureDistributionUsed)
{

case 2: // Lognormal - Variance for underlying Normal
SimParalF » flFailureVariance;
break;

case 3: // Normal - Min, Max and Variance needed
SimParalF » fFailureMin »fFailureMax » fFailureVariance;
break;

case 4: // Triangular - Max, Min and Mode Divisor needed
SimParalF » fFailureMin »fFailureMax » iFailureDivisor;
break;

case 5: // Weibull - Shape and Gamma needed
SimParalF » fFailureShape » fFailureGamma;
break;

} _
switch (iRepairDistributionUsed)
{

case 2; // Lognormal - Variance for underlying Normal
SimParalF » fRepairVariance;
break;

case 3: // Normal - Min, Max and Variance needed
SimParalF » fRepairMin »fRepai rMax » fRepairVariance;
break;

case 4: // Triangular - Max, Min and Mode Divisor needed
SimParalF » fRepairMin »fRepai rMax » iRepairDivisor;
break;

case 5: // Weibull - Shape and Gamma needed
SimParalF » fRepairShape »fFailureGamma;
break;

}
// get value for Aircraft and Pre Flight Servicing Teams for resetting for each run
iStartNumberOfAircraft = iNumberOfAircraft;
iStartRunNumberOfPreFlightServicingTeams = iNumberOfPreFlightServicingTeams;

126

void CALSSimDoc:iOnFileOperiFlyingProgrammeO
{

static char BASED CODE szFilter[] =
"Flying Programme Files (*.fly)|*.fly|All Files (*.*)"\
III* *||".

CFileDialog dlg(true,NULL,sFlyingProgrammeFile,NULL,szFilter);
if (dlg,DoModal() == IDOK)

{
sFlyingProgrammeFile = dlg.GetPathName();
// Check for bad Flying Programme file
if(!IsValidFileSpec(sFlyingProgrammeFile))
(

bFlyingProgrammeFileLoaded = false;
C String ErrMsg;
AfxFormatSthngl(ErrMsg,IDS_ERJRFMT_INVALIDFILE2,

sFlyingProgrammeFile);
MessageBox (NULL,ErrMsg,"File Selection Error",MB_ICONERROR);

}
else
{

bFlyingProgrammeFileLoaded = true;
}

}
else
{

sFlyingProgrammeFile = "";
bFlyingProgrammeFileLoaded = false;

}
}
void CALSSimDoc; ;OnFileOpenLRIDataFile()
{

static char BASED CODE szFilter[} =
"LRI Data Files (*.dat)|*.dat|A]l Files (*.*)"\
H|*

CFileDialog dlg(true,NULL,sLRIDataFile,NULL,szFilter);
if (dlg.DoModalQ = IDOK)
(

sLRIDataFile = dlg.GetPathName();
// Check for bad LRI Data file
if(!IsValidFileSpec(sLRIDataFile))
{

bLRIDataFileLoaded = false;
CString ErrMsg;
AfxFormatStnngl(ErrMsg,IDS_ERRFMT_INVALIDFILE3,sLRIDataFile);
MessageBox (NULL,ErrMsg,"File Selection Error",MB ICONERROR);

}
else
{

bLRIDataFileLoaded = true;
}

}

127

else
{

sLRIDataFile =
bLRIDataFileLoaded = false;

)
}
void CALSSimDoc::OnFileOpenLRIStockFile()
{

static char BASED CODE szFiIter[] =
"LRI Stock Files (*.stk)|*.stk|All Files (*.*)"\
H j * * j | H .

CFileDialog dlg(tme,NULL,sLRIStockFile,NULL,szFilter);
if (dlg.DoModalQ = IDOK)
{

sLRIStockFile = dlg.GetPathName();
// Check for bad LRJ.Stock file
if(!IsValidFileSpec(sLRIStockFile))
(

bLRIStockFileLoaded = false;
CString ErrMsg;
AfxFormatStnngl(ErrMsg,IDS_ERRFMT_INVALIDFILE4,sLRIStockFile);
MessageBox (NULL,ErrMsg,"File Selection Error",MB ICONERROR);

}
else
{

bLRIStockFileLoaded = true;
}

}
else
{

sLRIStockFile =
bLRIStockFileLoaded = false;

}
}
void CALSSimDoc::OnFileOpenResultsFile()
{

static char BASED CODE szFilter[] =
"Results Files (*.res)|*.res|All Files (*.*)"\
III* *||ll.

CFileDialog dlg(false,NULL,sResultsFile,NULL,szFilter);
if (dlg.DoModalQ = IDOK)
{

sResultsFile = dlg.GetPathName();
if (dlg.GetFileExtO = " ")
{

sResultsFile += "res";
}
// Check if Results file selected exists
if(! Is ValidFileSpec(sResultsFile))
(

hFile = (HANDLE)CreateFile(sResultsFile,GENERIC_WRITE,0,

128

NULL ,CREATE_NEW, FILE_ATTRIBUTE_NORMAL,NULL);
CloseHandle(hFile);
bResuItsFileLoaded = true;

}
// Results file already exists

else

(
C String FileMsg;
AfxFormatStringl(FileMsg, IDS_ERRFMT_FILEEXISTS,sResultsFi)e);
if(MessageBox (NULL,FileMsg, "Results Filename",

MB_SYSTEMMODAL|MB_ICONQUESTION|MB_YESNO) =
IDYES)
{

hFile = (HANDLE)CreateFi]e(sResultsFile,GENERIC_WRITE,0,
NULL ,CREATE_ALWAYS,

FILE_ATTRIBUTE_NORMAL,NULL)i
CloseHandle(hFile);
bResuItsFileLoaded = true;

}
else
{

bResultsFilcLoaded = false;
)

}
}
else
{

sResultsFile = "";
bResuItsFileLoaded = false;

}
}
void CALSSimDoc::OnFileOpenSimulationParameters()
(

static char BASED CODE szFilter[] =
"Simulation Parameter Files (*.sim)|*.sim|All Files (*.*)"\

CFileDialog dlg(true,NULL,sSimParametersFile,NULL,szFilter);
if (dlg.DoModalQ = IDOK)
{

sSimParametersFile = dlg.GetPathName();
// Check for bad Simulation Parameter file
if(! IsValidFileSpec(sSimParametersFile))
{

bSimulationParametersFileLoaded = false;
CString ErrMsg;
AM^ormatString] (ErrMsg,IDS_ERRFMT INVALIDFILE1,

sSimParametersFile);
MessageBox (NULL,ErrMsg,"File Selection Error",MB_ICONERROR);

}
else

129

{
bSimulationParametersFileLoaded = true;

}
}
else
{

sSimParametersFile =
bSimulationParametersFileLoaded = false;

}
}
void CALSSimDoc::OnUpdateFileOpenFlyingProgramme(CCmdUI* pCmdUI)
{

if(bFlyingProgrammeFileLoaded == true)

(
pCmdUI->SetCheck(1);

}
else

pCmdUI->SetCheck(0);

}
void CALSSimDoc::OnUpdateFileOpenLRlDataFile(CCmdUl* pCmdUI)
{

if(bLRJDataFileLoaded == true)

{
pCmdUI->SetCheck(1);

}
else

pCmdUI->SetCheck(0);

)
void CALSSimDoc: :OnUpdateFileOpenLRIStockFile(CCmdUI* pCmdUI)
{

if(bLRIStockFileLoaded = true)

(
pCmdUI->SetCheck(1);

}
else

pCmdUI->SetCheck(0);

}
void CALSSimDoc::OnUpdateFileOpenResultsFile(CCmdUI* pCmdUI)

{
if(bResultsFileLoaded == true)

{
pCmdUI->SetCheck(1);

}
else

pCmdUI-> SetCheck(O);

}
void CALSSimDoc::OnUpdateFileOpenSimulationParameters(CCmdUI* pCmdUI)
{

if(bSimulationParametersFiieLoaded == true)
{

pCmdLfI->SetCheck(1);

130

}
else

pCmdUI->SetCheck(0);

i
void CALSSimDoc::OnUpdateSimulationRun(CCmdUI* pCmdUI)
{

if((bSimulationParametersFileLoaded == true) &&
(bFlyingProgrammeFileLoaded == true) && (bLRIDataPiieLoaded == true) &&
(bLRJStockFileLoaded == true)&& (bResultsFileLoaded == true))

(
pCmdUI->Enable(true);

}
else

pCmdUI->E'nable(false);
}
void CALSSimDoc::ReleaseMemory(CObList& aircraftlist,

CObList& randomnumberlist,CObList& dailyresultslist,CObList& stocklist)
// Deletes the lists and releases the memory used by the simulation
{

// Set up pointers to the simulation objects
CAircraft* pAircraft;
POSITION AircraftPos = aircraftlist.GetHeadPosition();
// Delete the Aircraft and LRJ objects
while (AircraftPos != NULL)
{

// Delete the LRJ objects for each aircraft
p Aircraft =(CAircraft*)aircraftlist.GetAt(AircraftPos);
pAircraft->DeleteLRJs();
delete aircraftlist.GetNext(AircraftPos);

}
aircraftli st. Remove All();
// Delete the Random Number objects
POSITION RandomNumberPos = randomnumberlist.GetHeadPosition();
while (RandomNumberPos != NULL)

{
delete randomnumberlist.GetNext(RandomNumberPos);

}
randomnumberlist. Remove All();
// Delete the Daily Results objects
POSITION DailyResultsPos = dailyresultslist.GetHeadPosition();
while (DailyResultsPos != NULL)
{

delete dailyresultslist.GetNext(DailyResuItsPos);
}
dailyresultslist.RemoveAll();
//Delete the Stock Objects
POSITION StockPos = stocklist.GetHeadPosition();
while (StockPos != NULL)
{

delete stocklist.GetNext(StockPos);
}

131

stocklist.RemoveAll();
}
void CALSSimLDoc::SaveDailyFlyingStats(CObList& dailyresultslist,int iDayNumber,
int iNumberOfDailyFlightsTaskedjnt iNumberOfDailyFlightsOnTime,
int iNumberOfDailyFlightsFirstHallDelay,int iNumberOfDailyFlightsSecondHalfDelay,
int iNumberOfDailyFlightsCancelledjnt iNumberOfDailyFlightsInFlightAbort,
int iNumberOfDailyFlightsFail,int iNumberOfDailyFlightsSucceed)
{

// Set up pointers to the simulation objects
CDailyResults* pDailyResults;
POSITION DailyResultsPos;
// Get correct daily results memory block then
// store daily flight achievements for the day
for (DailyResultsPos = dailyresultslist.GetHeadPosition();DailyResultsPos != NULL;)
{

pDailyResults =(CDailyResults*)dailyresultslist.GetNext(DailyResultsPos);
if (pDailyResults->GetDayNumber() — (iDayNumber - 1))
(

pDailyResults->SaveDailyFlyingStats(iNumberOfDailyFlightsTasked,
iNumberOfiDailyFlightsOnTime,iNumberOfDailyFlightsFirstHalfDelay,
iNumberOfDailyFlightsSecondHalfDelay,
iNumberOfDailyFlightsCancelledJNumberOfDailyFlightsInFlightAbort,
iNumberOfDailyFlightsFail,iNumberOfDailyFlightsSucceed);

break;
}

}
}
void CALSSimDoc:: SaveEvent(int iEventNumber,float fClockTime,int iAircraftNumber,

int iNumberOfAircraft,int iLRIPositionJnt iLRITypeJnt iNumberOfLRIs,
float fEventDuration)

{
// Open the Events storage file
ofstream EventOF("Event,txt",ios;;app);
// Save event details
EventOF « iEventNumber « " \ t " « fClockTime « " \ t " « iA i r c r a f tNumber«

"\t" « iNumberOfAircraft « "\t" « iLRJPosition « " \ t " « iLRIType« "\t" «
iNumberOfLRIs « "\t" « fEventDuration « " \ n " ;

}
// Create the Simulation Event List
void CALSSimDoc::SetUpEventList(CObList& eventlist)
{

// Open the flying programme file
ifstream FlightDatalF(sFlyingProgrammeFile);
// Open the Events storage file
ofstream EventOF("Event.txt",ios::app);
if (bStoringEvents)
{

// save run number
EventOF « "Run Number = " « iRunNumber « "\n";

}
// set up First New Day event for time = 0.0

132

ieEventNumber = 1;
feEventTime = 0,0;
eventlist,AdclTail(new CEvent(ieEventNumber,feEventTime));
// Set up the target flying programme
ieEventNumber = 2;
ieAircraftNumber = 0;
ieLRIPosition = 0;
ieLRJType = 0;
ieNumberOfLRIs = 0;
fePreviousEventTime = 0;
FlightDatalF » feEventTime » feEventDuration » ieNumberOfAircraft;
while (FlightDatalF)

(
eventlist.AddTail(new CEvent(ieEventNumber,feEventTime,

fePreviousEventTime,ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition,
ieLRIType,ieNumberOflLRIs,feEventDuration));

iNumberOfFlightsTasked+= ieNumberOfAircraft;
FlightDatalF » feEventTime » feEventDuration » ieNumberOfAircraft;

}
iNumberOfDays = feEventTime/24.0 + 1;
// Set up new day events
ieEventNumber = 1;
ieAircraftNumber = 0;
ieNumberOfAircraft = 0;
ieLRIPosition = 0;
ieLRJType = 0;
ieNumberOfLRIs = 0;
feEventDuration = 0;
fePreviousEventTime = 0;
for (iDayNumber =l;iDayNumber < iNumberOfDays;iDayNumber++)
{

feEventTime = iDayNumber * 24.0;
InsertEvent(eventlist,ieEventNumber,feEventTime,fePreviousEventTime,

ieAircraftNumber,ieNumberOfAircraft,ieLRIPosition,ieLRIType,
ieNumberOfLRIs,feEventDuration);

}
// Set up end run event
ieEventNumber = 0;
feEventTime = iNumberOfDays * 24,0;
eventlist,AddTail(new CEvent(ieEventNumber,feEventTime));
// allocate an event number to ensure that get event runs
iEventNumber =1;
// If storing events, save event headings to the Event file
if (bStoringE vents)
(

EventOF « "Event\tTime\tAircraft\tNumber of\tLRI\tLRI\tNumber\tEvent\n";
EventOF « "Number\t\tNumber\tAircraft\tPosition\tType\tof LRIs\tDuration\n";

}
}
void CALSSimDoc: :ZeroDailyFIightsCounters()
{

133

iNumberOfDailyFlightsCancelled = 0;
iNumberOfDailyFlightsFail = 0;
iNumberOfDailyFlightsFirstHalfDelay = 0,
iNumberOfDailyFlightsInFlightAbort = 0;
iNumberOfDailyFlightsOnTime = 0;
iNumberOfDailyFlightsSecondHalfDelay = 0;
iNumberOfDailyFlightsSucceed = 0;
iNumberOfDailyFlightsTasked = 0;

}
void CALSSimDoc: :ZeroDailyStatesCounters()
{

// Zero the aircraft state counters
iNumberOfAircraftAwaitingPreFlightServicing = 0;
iNumberOfAircraftFlying = 0;
iNumberOfAircraftlnPreFlightServicing = 0;
iNumberOfAircraftServiceable = 0;
iNumberOfAircraftUnserviceable = 0;

}
void CALSSimDoc: :ZeroRunCounters()
{

// Zero Flight Counters
iNumberOfFlightsDelayed = 0;
iNumberOfFlightsTasked = 0;
iNumberOfFhghtsOnTime = 0;
iNumberOfFlightsFirstHalfDelay = 0;
iNumberOfFlightsSecondHalfDelay = 0;
iNumberOfFlightsCancelled = 0;
iNumberOfFlightsInFlightAbort = 0;
iNumberOfFlightsFail - 0;
iNumberOfFlightsSucceed = 0;

}
void CALSSimDoc: :ZeroSimulationCounters()
(

iSquareNumberOfFlightsCancelled = 0;
iSquareNumberOfFlightsFail = 0;
iSquareNumberOfFlightsSucceed = 0;
iSquareNumberOfFlightsFirstHalfDelay = 0;
iSquareNumberOfFlightsInFlightAbort = 0;
iSquareNumberOfFlightsOnXime = 0;
iSquareNumberOflFlightsSecondHallDelay = 0;
iSquareNumberOfFlightsTakeOff = 0;
iTotalFlightsCancelled = 0;

iTotalFlightsFail = 0;
iTotalFiightsFirstHalfDelay = 0;
iTotalFlightsIuFlightAbort = 0;
iTotalFlightsOnTime = 0;
iTotalFiightsSecondHalfDelay = 0;
iTotalFlightsSucceed = 0;
iTotalFlightsTakeOfF= 0;
iTotalFlightsTasked = 0;

}

134

Daily Results

//DailyResults.h interface of the CDailyResults class
class CDailyResults : public CObject
{

//Attributes
private:

int iDayNumber;
int iNumberOfAircraftAwaitingPreFlightServicing;
int iNumberOfAircraftFlying;
int iNumberOfAircraftlnPreFlightServicing;
int iNumberOfAircraftServiceable;
int iNumberOfAircraftUnserviceable;
int iNumberOfDailyFlightsCancelled;
int iNumberOfDailyFlightsFail;
int iNumberOfDailyFlightsFirstHalfDelay;
int iNumberOfDailyFlightsInFlightAbort;
int iNumberOfDailyFlightsOnTime;
int iNumberOfDailyFlightsSecondHalfDelay;
int iNumberOlDailyFlightsSucceed;
int iNumberOfDailyFlightsTasked;

//Operations
public:

CDailyResultsQO
CDailyResults(int iDayNo)
(

iDayNumber =iDayNo;
iNumberOfAjrcraftServiceable= 0;
iNumberOfAircraftFlying= 0;
iNumberOfAircraftUnserviceable= 0;
iNumberOfAircraftInPreFlightServicing= 0;
iNumberOfAircraftAwaitingPreFlightServicing= 0;
iNumberOfDailyFlightsCancelled = 0;
iNumberOfDailyFlightsFail = 0;
iNumberOfDailyFlightsFirstHalfDelay = 0;
iNumberOfDailyFlightsInFlightAbort = 0;
iNumberOfDailyFlightsOnTime = 0;
iNumberOfDailyFlightsSecondHalfDelay = 0;
iNumberOfDailyFlightsSucceed = 0;
iNumberOfDailyFlightsTasked = 0;

}
int GetDayNumber();
int GetNumberOfAircraftAwaitingPreFlightServicingO;
int GetNumberOfAircraflFlyingO;
int GetNumberOfAircraftlnPreFlightServicingO;
int GetNumb erOfAi rcraft S ervi ceabl e();
int GetNumberOfAircraflUnserviceableO;
int GetNumberOfDailyFlightsCancelledO;
int GetNumberOfDailyFlightsFailQ,
int GetNumberOfDailyFlightsFirstHalfDelayO;
int GetNumberOfDailyFlightsInFlightAbortO;

135

int GetNumberOfDailyFlightsOnTime();
int GetNumberOfDailyFlightsSecondHalfDelayO;
int GetNumberOfDailyFlightsSucceed();
int GetNumberOfDailyFlightsTaskedQ;
void SaveDailyAircraftStates(int iNumberOfAircraftServiceable,

int iNumberOfAircraftFlying,int iNumberOfAircraftUnserviceabie,
int iNumberOfAircraftlnPreFlightServicing,
int iNumberOfAircraftAwaitingPreFlightServicing);

void SaveDailyFlyingStats(int iNumberOfDailyFIightsTasked,
int iNumberOfDailyFlightsOnTime,int iNumberOfDailyFIightsFirstHalfDelay,
int iNumberOfDailyFlightsSecondHalfDelay,
int iNumberOfDailyFlightsCancelled,int iNumberOfDailyFIightsInFlightAbort,
int iNumberOfDailyFlightsFail,int iNumberOfDailyFlightsSucceed);

~CDailyResults(){}

/DailyResults.cpp . implementation of the CDailyResults class
#include "stdafic.h"
#include "DailyResults.h"
/ CDailyResults commands
nt CDailyResults: ;GetDayNumber()

return iDayNumber;

nt CDailyResults::GetNumberOfAircraftAwaitingPreFlightServicing()

return iNumberOfAircraftAwaitingPreFlightServicing;

nt CDailyResults: :GetNumberOfAircraftFlying()

return iNumberOfAircraflFlying;

nt CDailyResults: :GetNumberOfAircraftInPreFlightServicing()

return iNumberOfAircraftlnPreFlightServicing;

nt CDailyResults::GetNumberOfAircraftServiceable()

return iNumberOfAircraftServiceable;

nt CDailyResults: :GetNumberOfAircraftUnserviceable()

return iNumberOfAircraftUnserviceabie;

int CDailyResults: :GetNumberOfDailyFlightsCancelled()

return iNumberOfDailyFlightsCancelled;

int CDailyResults::GetNumberOfDailyFlightsFail()

return iNumberOfDailyFlightsFail;

136

nt CDailyResults; ;GetNumberOfDailyFlightsFirstHalfDelay()

return iNumberOfDailyFlightsFirstHalfDelay;

nt CDailyResults: :GetNumberOfDai]yFlightsInFlightAbort()

return iNumberOfDailyFlightsInFlightAbort;

int CDailyResuits; :GetNumberOfDailyFlightsOnTime()

return iNumberOfDailyFlightsOnTime;

int CDailyResults::GetNumberOfDailyFIightsSecondHalfDelay()

return iNumberOfDailyFlightsSecondHalfDelay;

int CDailyResults: :GetNumberOfDaiIyFlightsSucceed()

return iNumberOfDailyFlightsSucceed;

int CDailyResults::GetNumberOfDailyFlightsTask:ed()

return iNumberOfDailyFlightsTasked;

void CDailyResults: :SaveDailyAircraftStates(int iNumAircraftServ,int iNumAircraftFly,
int iNumAircraftUnservJnt iNumAircraftPreFlight,
int NumAircraftAwaitingPreFlight)

(
iNumberOfAircraftServiceable += iNumAircraftServ;
iNumberOfAircraftFlying += iNumAircraftFly;
iNumberOfAircraftUnserviceable += iNumAircraftUnserv;
iNumberOfAircraftlnPreFlightServicing += iNumAircraftPreFlight;
iNumberOfAircraftAwaitingPreFlightServicing + - iNumAircraftAwaitingPreFlight;

}
void CDailyResults: :SaveDailyFlyingStats(int iDailyFlightsTasked,

int iDailyFlightsOnTime,int iDailyFlightsFirstHalfDelay,
int iDailyFlightsSecondHalfDelay,int iDailyFlightsCancelled,
int iDailyFlightsInFlightAbortjnt iDailyFlightsFail,int iDailyFlightsSucceed)

{

}

iNumberOfDailyFlightsTasked += iDailyFlightsTasked;
iNumberOfDailyFlightsOnTime+= iDailyFlightsOnTime;
iNumberOfDailyFlightsFirstHalfDelay += iDailyFlightsFirstHalfDelay;
iNumberOfDailyFlightsSecondHalfDelay += iDailyFlightsSecondHalfDelay;
iNumberOfDailyFlightsCancelled += iDailyFlightsCancelled;
iNumberOfDailyFlightsInFlightAbort += iDailyFlightsInFlightAbort;
iNumberOfDailyFlightsFail += iDailyFlightsFail;
iNumberOfDailyFlightsSucceed += iDailyFlightsSucceed;

Delayed Flight

// DelayedFlights.h : interface of the CDelayedFlights class

137

class CDelayedFlight : public CObject
{

private:
//Attributes

float fPlannedTakeOfflime;
float fLastTakeOfFTime;
float fFlightDuration;
int iNumberOfAircraftRequired;

public:
//Operations

CDelayedFlight(){}
CDelayedFlight(float fClockTime,int iNumberOfAircraft,

float fFlightDelayMaximum,float fDuration)
{

iNumberOfAircraftRequired = iNumberOfAircraft;
fPlannedTakeOfFTime = fClockTime;
fLastTakeOfFTime = fClockTime + fFlightDelayMaximum;
fFlightDuration = fDuration;

}
float GetLastTakeOfTTimeO;
float GetFlightDurationO;
int GetNumberOfAircraftRequiredO;
~CDelayedFlight(){}

};

// DelayedFlights.cpp : implementation of the CDelayedFlights class
#include "stdafic.h"
#include "DelayedFlight.h"
// CDelayedFlight commands
float CDelayedFlight::GetLastTakeOffrime()
{

return fLastTakeOftTime;
}
float CDelayedFlight::GetFlightDurationO
{

return fFlightDuration;

I
int CDelayedFlight::GetNumberOfAircraftRequiredO
{

return iNumberOfAircraftRequired;
}

DIgSimuIationFinished

#if
!defined(AFX_DLGSIMULATI0NFINISHED_H19FF3 ICA_2D64_11D2_9F27_4445
53 546] 6F_INCLUDED J
#define
AFX DLGSIMULATIONFINISHED H__19FF31CA_2D64_11D2 9F27_444553546]6
F_INCLUDED_
#if_MSC_VER >= 1000
#pragma once
#endif// _MSC_VER >= 1000

US

// DlgSimulationPinished.h ; header file
// CDlgSimulationFinished dialog
class CDlgSimulationFinished : public CDialog
{

// Construction
public;

CDlgSimulationFinished(CWnd* pParent = NULL); // standard constructor

// Dialog Data
//{{AFX_DATA(CDlgSimulationFinished)
enum {IDD = IDD SIMULATIONflNISHEDDIALOG
float m_MeanFlightsCancelled;
float m_MeanFlightsFirstHalfDelay;
float m_MeanFlightsOnTime;
float m_MeanFlightsSecondHalfDelay;
float m_MeanFlightsTasked;
float m_PercentageFlightsCancelled;
float m_PercentageFlightsFirstHalfDelay;
float m_PercentageFlightsOnTime;
float m_PercentageFlightsSecondHalfDelay;
float m_MeanFlightsFail;
float m_MeanFlightsInFlightAbort;
float m_MeanFlightsSucceed;
float m_MeanFlightsTakeOfiF;
float m_PercentageFlightsFail;
float m_PercentageFlightsInFlightAbort;
float m_PercentageFlightsSucceed;
float m_PercentageFlightsTakeOfF;
//}}AFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
//{(AFX_VIRTUAL(CDlgSimulationFinished)
protected;
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected;

// Generated message map functions
//{{AFX_MSG(CDlgSimulationFinished)
afx_msg void OnButtonExitSimulation();
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

};
//{{AFX_INSERT_LOCATION})
// Microsoft Developer Studio will insert additional declarations immediately before the
previous line.
#endif //
!defined(AFX_DLGSIMULATI0NriNISHED_H_]9FF31CA_2D64_11D2_9F27_4445
53 54616F_INCLUDED J
//DlgSimulationFinished.cpp ; implementation file
^include "stdafx.h"

139

#include "ALSSim.h"
#include "DlgSimulationFinished.h"
#iWef_DEBUG
#define new DEBUG_NEW
#undefTHIS_FILE
static char THIS_FILE[] = _ F I L E _ ;
#endif
// CDlgSimulationFinished dialog
CDlgSimulationFinished::CDlgSimulationFinished(CWnd* pParent /*=NULL*/)

: CDialog(CDlgSimulationFinished:;IDD, pParent)
{

//{(AFX_DATA_INIT(CDIgSimulationFinished)
mMeanFlightsCan celled = O.Of;
m_MeanFlightsFirstHalfDelay = O.Of;
m_MeanFlightsOnTinie = O.Of;
mMeanFlightsSecondHalfDelay = O.Of;
m_MeanFlightsTasked = O.Of;
m_MeanFlightsFail = O.Of;
m_MeanFlightsInFlight Abort = O.Of;
m_MeanFlightsSucceed = O.Of;
m_MeanFlightsTakeOfif = m_MeanFlightsOnTime + m_MeanFlightsFirstHalfDelay +

mMeanFlightsSecondHalfDelay;
mPercentageFlightsCancelled = O.Of;
m_PercentageFlightsFirstHalfDelay = O.Of;
mPercentageFlightsOnTime = O.Of;
m_PercentageFlightsSecondHalfDelay = O.Of;
mPercentageFI ightsFail = O.Of;
mPercentageFlightsInFlightAbort = O.Of;
m_PercentageFlightsSucceed = O.Of;
m_PercentageFlightsTakeOff = O.Of;
//}}AFX_DATA_INIT

}
void CDlgSimulationFinished::DoDataExchange(CDataExchange* pDX)
(

CDialog: :DoDataExchange(pDX);
// {{AFX_DATA_MAP(CDlgSimulationFinished)
DDX_Text(pDX, IDC_MEANFLIGFITSCANCELLED, m MeanFlightsCancelled);
DDX_Text(pDX, IDC_MEANFLIGHTSFIRSTHALFDELAY,

m_MeanFlightsFirstHalfDelay);
DDX_Text(pDX, IDC_MEANFLIGHTSONTIME, m_MeanFlightsOnTime);
DDX Text(pDX, IDC_MEANFLIGHTSSECONDHALFDELAY,

mMeanFlightsSecondHalfDelay);
DDX_Text(pDX, IDC_MEANFLIGHTSTASKED. m_MeanFlightsTasked);
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSCANCELLED,

mPercentageFlightsCancelled);
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSFIRSTHALFDELAY,

mPercentageFlightsFirstHalfDel ay);
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSONTIME,

mPercentageFlightsOnTime);
DDX_Text(pDX, ipC_PERCENTAGEFLIGHTSSECONDHALFDELAY,

m_PercentageFlightsSecondHalfDeiay);

140

DDX_Text(pDX, IDC_MEANFLIGHTSFAILED, m MeanFlightsFail);
DDX_Text(pDX, IDC_MEANFLIGHTSINFLIGHTABORT,

m_MeanFlightsInFlight Abort);
DDX_Text(pDX, IDC_MEANFLIGHTS SUCCEED, m MeanFlightsSucceed);
DDX_Text(pDX, IDC_MEANFLIGHTSTAKEOFF, m MeanFlightsTakeOR);
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSFAILED, m_PercentageFlightsFail);
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSINFLIGHTABORT,

m_PercentageFlightsInFlightAbort);
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSSUCCEED,

m_PercentageFlightsSucceed);
DDX_Text(pDX, IDC_PERCENTAGEFLIGHTSTAKEOFF,

m_PercentageFlightsTakeOff);
//}}AFX_DATA_MAP

}
BEGIN_MESSAGE_MAP(CDlgSimulationFinished, CDialog)

//{{AFX_MSG_MAP(CDlgSimulationFinished)
ON_BN_CLICKED(IDC_BUTTON_EXITSIMULATION, OnButtonExitSimulation)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()
// CDlgSimulationFinished message handlers
void CDlgSimulationFinished::OnButtonExitSimulation()
(

// Same as selecting the x on the top right
ASSERT(AA(GetMainWnd() !=NULL);
AixGetMainWnd()->SendMessage(WM__CLOSE);

}

Event

// Event, h : interface of the CEvent class
class CEvent : public CObject
{

private:
//Attributes

float fEventDuration;
float fEventTime;
float fPreviousEventTime;
int iAircraftNumber;
int iEventNumber;
int iLRIPosition;
int iLRIType;
int iNumberOfAircraft;
int iNumberOfLRIs;

public:
//Operations

CEvent(){}
CEvent(int iEvent,float fTime,float fPreviousTime = 0,int iTailNumber = 0,

int iNumber = 0,int iPosition = 0,int iType = 0,int INumberLRI = 0,
float fDuration = 0.0)

(
iEventNumber = iEvent;
fEventTime = fTime;

141

fPreviousEventTime = fPreviousTime;
iAircraftNumber = iTailNumber,
iNumberOfAircraft = iNumber;
iLRIPosition = iPosition;
iLRIType = iType;
iNumberOfLRIs = iNumberLRI;
fEventDuration = (Duration;

}
float GetEventDurationQ;
float GetEventTimeQ;
float GetPreviousEventTime();
int GetAircrafitNumberO;
int GetEventNumber();
int GetLRIPosition();
int GetLRITypeO;
int GetNumberOfAircraftO;
int GetNumberOfLRIsO;
~CEvent(){}

};

//Event.cpp : implementation of the CEvent class
include "stdafx.h"
#include "Event.h"
/ CEvent commands
float CEvent: :GetEventDuration()
{

return fEventDuration;
}
float CEvent::GetEventTime()
(

return fEventTime;
}
float CEvent::GetPreviousEventTime()

{
return fPreviousEventTime;

}
int CEvent::GetAircraftNumberQ

(
return iAircraftNumber;

}
int CEvent ::GetEventNumber()
(

return iEventNumber;
}
int CEvent: :GetLRIPosition()
{

return iLRIPosition;
}
int CEvent: GetLRITypeO
{

return iLRIType; ,

142

int CEvent::GetNumberOfAircraft()
(

return iNumberOfAircraft;
}
int CEvent::GetNumberOfLRIs()
{

return iNumberOfLRIs;
}

Random Number

//RandomNumber.h interface of the CRandomNumber class
#ifhdefH_CLCG4_H
#define H_CLCG4_H
#define Maxgen 100
typedef unsigned short int Gen;
typedef enum (InitialSeed, LastSeed, NewSeed} SeedType;
class CRandomNumber : public CObject
{

//Attributes
//Operations
public:

CRandomNumberO
{

Init(31,4]);
};

void Init (long v, long w);
void InitDefault ();
void SetlnitialSeed (long s[4]);
void InitGenerator (Gen g, SeedType Where);
void Set Seed (Gen g, long s[4]);
void Get State (Gen g, long s[4]);
void WriteState (Gen g); .
void SetNewRandomNumberSeedO;
double GenVal (Gen g);
-CRandomNumberO {}

);

#endif
//RandomNumber.cpp implementation of the CRandomNumber class
#include "stdafk.h"
#include "RandomNumber.h"
// CRandomNumber commands

// Private part. */

#define H 32768 /* = 2^15 : use in MultModM. */
static long aw[4], avw[4], /* a[j]^{2'^w} et a[j]'^{2'^{v+w}}. */

a[4] = { 45991,207707,138556.49689 },
m[4] = (2147483647,2147483543,2147483423,2147483323 };

static long Ig[4][Maxgen+]], Lg[4][Maxgen+]], Cg[4][Maxgen+l];
/* Initial seed, previous seed, and current seed. */

143

static short i, j;
static long MultModM (long s, long t, long M)
// Returns (s*t) MOD M. Assumes that -M < s < M and -M < t < M.
// See L'Ecuyer and Cote (1991).
(

long R, SO, SI, q, qh, rh, k;
i f (s < 0)

s += M;
i f (t < 0)

t+=Pdi
i f (s < H)
{

50 = s;
R = 0;

}
else
{

51 =s/H;
S0 = s-]3*S1;
qh = M/H;
rh = M - H*qh;
if (SI >=H)

{
S1-=H; k - t /qh;
R = H * (t - k*qh) - k*rh;

while (R < 0)
R += M;

}
else R = 0;
f (S lM=0)
{

q = M/S1; k = t/q;

R - - k * (M - S l * q) i
i f (R > 0)

R -= M;
R += Sl*(t - k*q);
while (R < 0)

R+=Id;
}
k = R/qh;
R = H * (R - k*qh) - k*rh;
while (R < 0)

R + = M;
}
if (SO 1=0)
{

q = M/SO;
k = U î
R-=k*(M-SO*qX
ifOl>CO

R-=1W:

144

R += so * (t - k*q);
while (R < 0)

R + = M ;
}

return R;
}
/* */

/* Public part. */
/* */

void CRandomNumber. :InitGenerator (Gen g, SeedType Where)
(

if (g > Maxgen) printf ("ERROR; InitGenerator with g > Maxgen \n");
for (j = 0; j < 4; j-H-)

{
switch (Where)
{

case InitialSeed ;
Lg = ig U][g];
break;

case NewSeed ;
Lg |j][g] - MultModM (aw [j], Lg [i][g], m Q]);
break;

case LastSeed ;
break;

}
Cg D][g] = Lg |j][g];

)
}
void CRandomNumber;; SetNewRandomNumberSeed()
(

Geng;
for (g = 1; g<= Maxgen;g-H-)
{

InitGenerator(g,NewSeed);
}

}
void CRandomNumber;;SetSeed (Gen g, long s[4])
{

if (g > Maxgen) printf ("ERROR; SetSeed with g > Maxgen \n");
for (j = 0; j < 4; j++) Ig (j][g] = s [)];
InitGenerator (g, InitialSeed);

}
void CRandomNumber;;WriteState (Gen g)
(

printf ("\n State of generator g = %u g);
for (i = 0;j <4;]++)
{

printf ("\n Cg[%u] = %lu", j, Cg|j][g]);
}
printf ("\n");

145

void CRandomNumber::GetState (Gen g, long s[4])
{

for (i = 0; j < 4; j-H-) s [j] = Cg
}
void CRandomNumber::SetInitialSeed (long s[4])
(

Gen g;
fbr(j = 0 ; j < 4 ;]++)

Ig D][0] = s [j];
InitGenerator (0, InitialSeed);
for (g = I; g <= Maxgen; g-H-)

{
for (j = 0; j < 4; j + +)

Ig D][g] = MultModM (avw Q], Ig |j][g-l], m [)]);
InitGenerator (g, InitialSeed);

}
}
void CRandomNumber;:Init (long v, long w)

{
long sd[4] = {11111111, 22222222, 33333333, 44444444};
for (i = 0; j < 4; j++)
{

aw [j] = a [)];
for (i = 1; i <= w; i++)

aw [j] = MultModM (aw [j], aw [j], m[j]);
avw jj] = aw [j];
for (i = 1; i <= v; i++)

avw jj] = MultModM (avw [)], avw [)], m[j]);

}
SetlnitialSeed (sd);

}
double CRandomNumber::GenVal (Gen g)

{
long k,s;
double u;
u = 0.0;
if (g > Maxgen)

printf ("ERROR: Genval with g > Maxgen \n");
s = Cg [0][g];
k = s / 46693;
s = 45991 * (s - k * 46693) - k * 25884;
i f (s < 0) s = 8 + 2147483647;
Cg [0][g] = s;
u = u + 4.65661287524579692e-10 * s;
s = Cg[l][g];
k = s / 10339;
s = 207707 * (s - k * 10339) - k * 870;
if (s < 0)

s = 8 + 2147483543;
Cg[l] [g] = s;

146

u = u-4.656613100759859936-10 * s;
i f (u < 0)

u = u + 1.0;
s = Cg
k = s / 15499;

s = 138556 * (s - k * 15499) - k * 3979;
if (s < 0)

s = s +2147483423;
Cg [2][g] = s;
u = u + 4.656613360968421316-10 * s;
i f (u>= 1.0)

u = u - 1.0;
s = Cg [3][g];
k = s /43218;
s = 49689 * (s - k * 43218) - k * 24121;
if (s < 0)

s = s +2147483323;
Cg [3][g] = s;
u = u - 4.656613577808911346-10 * s;
if (u < 0)

u = u + 1.0;
return (u);

}
void CRandomNumber::InitDefault ()
{

Init (31,41);
}

Simulation Progress Bar

#if !d6fin6d(AFX_SBARSIMPROGRESS_H_C665B001_E38A_l 1D1_A97A_
444553 54616F_INCLUDED J

#define
AFX_SB ARSIMPROGRESS_H_C665BOO 1 _E3 8A_11D1 _A97 A_444553 54616F_

INCLUDED_
#if_MSC_VER>=1000
#pragma once
#endif//_MSC_VER>= 1000
// SBarSimProgress.h : header file

const int PROGRESS_CTRL_CX - 300;//160;
const int X MARGIN = 5; // X value used for margins and control spacing
const int Y MARGIN = 2; // Y value used for margins and control spacing

// CSimProgressStatusBar window
class CSimProgressStatusBar : public CStatusBar
{

// Construction
public:

CSimProgressStatusBarQ;
// Attributes
public:
protected:

bool m bSimProgressMode;

147

CProgressCtrl m_SimProgressCtrl;
Cstatic m_SimProgressLabel;
int m_iSimProgressCtrlWidth;

// Operations
public:

CProgressCtrl* GetProgressCtrlQ (return &m_SimProgressCtrl;}
void RecalcSimProgressDisplayQ;
void SetSimProgressCtrlWidth(UINT nWidth = PROGRESS_CTRL_CX);
void SetSimProgressLabel (LPCSTR IpszSimProgressLabel);
void ShowSimProgressDisplay(bool bShow = true);

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CSimProgressStatusBar)
//}}AFX_VniTUAL

// Implementation
public;

virtual ~CSimProgressStatusBar();
// Generated message map functions

protected:
//((AFX_MSG(CSiniProgressStatusBar)
afx msg int OnCreate(LPCREATESTRUCT IpCreateStruct);
afx msg void OnPaint();
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

};

//{{AFX_INSERT_LOC ATION}}
#endif// !defined(AFX_SBARSIMPROGRESS_H__C665B001_E38A_l ID1_A97A_

444553 54616F_INCLUDED J
// SBarSimProgress.cpp : implementation file
#include "stdafx.h"
#include "ALSSim.h"
#include "SBarSimProgress.h"
#if(lef_DEBUG
#define new DEBUG_NEW
#undefTHIS_FILE
static char THIS_FILE[] = _ F I L E _ ;
#endif
// CSimProgressStatusBar
CSimProgressStatusBar::CSimProgressStatusBar()
{

mbSimProgressMode = false;
mJSimProgressCtrlWidth = PROGRESS_CTRL_CX;

}
CSimProgressStatusBar: :-CSimProgressStatusBar()
{
}
BEGIN_MESSAGE_M.AP(CSimProgressStatusBar, CStatusBar)

//((AFX_MSG_MAP(CSimProgressStatusBar)
ON_WM_CREATE()
ON_WM_PAINT()_
//}}AFX_MSG_MAP

148

END_MESSAGE_MAP()
// CSimProgressStatusBar Commands
// Set width of the status bar
void CSimProgressStatusBar;:RecalcSiniProgressDisplay()
{

// Adjust the positions of the Label and Progress Controls
// Place the Label Control to the left of the
// Progress Control
// Label Text [Progress control]
CRect ControlRect;
CRect ClientRect;
GetClientRect(&ClientRect);
ControlRect = ClientRect;
//Set up Text Label using the rest of the status bar area
ControlRect.left + - X MARGIN ;
ControlRect. right = ControlRect. left +110;
ControlRect.top += YMARGIN;
ControlRect.bottom -= Y MARGIN;
m_SimProgressLabel.MoveWindow(ControlRect, false);
// Set up the Progress Bar
ControlRect.left = ControlRect,right + X MARGIN;
ControlRect. right = ControlRect. left + mJSimProgressCtrlWidth;
m_SimProgressCtrl.MoveWindow(ControlRect, false);

}
// Set width of the status bar
void CSimProgressStatusBar::SetSimProgressCtrlWidth(UrNT nWidth)
{

m_iSimProgressCtrlWidth = n Width;
}
void CSimProgressStatusBar::SetSimProgressLabel (LPCSTR IpszSimProgressLabel)
{

m_SimProgressLabel.SetWindowText(lpszSimProgressLabel);

// If displaying progress, update
// placement of label and progress control
if(m_bSimProgressMode)
{

RecalcSimProgressDisplayO;
InvalidateO;
UpdateWindowO;

}
}
void CSimProgressStatusBar: :ShowSimProgressDisplay(bool bShow)
{

mbSimProgressMode = bShow;
if(m_bSimProgressMode)
(

RecalcSimProgressDisplayO,

1
m_SimProgressLabel.ShowWindow(m_bSimProgressMode ?

SW_SH0W:SW1HIDE);

149

m_SimProgressCtrl.ShowWindow(m_bSimProgressMode ? SW SHOW :SW_HIDE);
lnvalidate();
UpdateWindowQ;

)
// CProgressStatusBar message handlers
int CSimProgressStatusBar::OnCreate(LPCREATESTRUCT IpCreateStruct)
{

if (CStatusBar::OnCreate(lpCreateStruct) == -1)
return -1;

// Create the Progress Control, size and position will be calculated
// later from ShowSimProgressDisplay() call
if(!m_SimProgressCtrl.Create(0, // Style - Don't Show Position or Percent

CRect(0,0,0,0), // Initial position
this, // Parent
0)) // Child ID

{
return -1;

}
// Create the Progress Label - we'll calculate its size and
// position later - in response to a ShowProgressDisplay() call,
if (!m_SimProgressLabel.Create(NULL, // Text

WS_CHILD|SS_LEFT, // Style
CRect(0,0,0,0), //Initial Position
this)) // Parent

{
return -1;

)
// Use the same font as the Status Bar
m_SimProgressLabel,SetFont(GetFont());
return 0;

}
void CSimProgressStatusBar: ;OnPaint()
{

CPaintDC dc(this); // device context for painting
// If displaying the Progress Control we need to handle the
// painting of the Status Bar,otherwise use the base class
if(!m_bSimProgressMode)
{

CStatusBar; :OnPaint();
}

}

Stock

// Stock, h : interface of the CStock class

class CStock : public CObject

(
private:
//Attributes

bool bLRIRepairedOnUnit;
float fLRlDepotRepairTime;
float fLRIMeanPailureTime;

150

float fLRJProportionRepairedAtUnit;
float fLRIRefitTime;
float fLRIRemovalTime;
float ELRIUnitRepairTime;
int iLRIDepotAllocatedStock;
int iLRIDepotServiceableStock;
int iLRIDepotStartingStock;
int iLRIEssential;
int iLRJNumberRequiredForAircraft;
int iLRIType;
int iLRIUnitServiceableStock;
int iLRIUnitUnserviceableStock;
int iLRIUnitStartingStock;

public:
//Operations

CStockOO
CStock(int iType,float fFailure,int iEssential,float fRemoval,float fRefit,

float fProportionRepairedAtUnit,float fUnitRepairTime,
float fDepotRepairTime,int iUnitStock,int iDepotStock)

{
iLRIDepotStartingStock = iDepotStock;
iLRIDepotServiceableStock = iDepotStock;
iLRIType = iType;
iLRIEssential = iEssential;
iLRIUnitStartingStock = iUnitStock;
iLRJUnitServiceableStock = iUnitStock;
fLRIDepotRepairTime = fDepotRepairTime;
fLRIMeanFailureTime = fFailure;
fLRIProportionRepairedAtUnit = fProportionRepairedAtUnit;
fLRIRefitTime = fRefit;
fLRIRemovalTime = fRemoval;
fLRIUnitRepairTime = fUnitRepairTime;
// Zero the stock counters
iLRIDepotAllocatedStock = 0;
iLRINumberRequiredFor Aircraft = 0;
iLRIUnitUnserviceableStock = 0;

}
bool LRIRepairedOnUnit(float fLRJProportion);
bool MoreLRJsRequiredAtUnitO;
float GetDepotRepairTime();
float GetMeanFailureTimeQ;
float GetRemovalTimeO;
float GetReplacementTimeO;
float GetUnitRepairTimeO;
int GetDepotAllocatedStock();
int GetDepotServiceableStockQ;
int GetLRlEssentialityO;
int GetNumberRequiredForAircraftO;
int GetStockTypeO;
int GetUnitServiceableStockQ;
int GetUnitUnserviceableStockO;

151

void IncreaseDepotAJlocatedStockO;
void IncreaseDepotServiceableStockQ;
void IncreaseNumberRequiredForAircraftO;
void IncreaseUnitServiceableStock(int iNumber);
void IncreaseUnitUnserviceableStock();
void ReduceDepotServiceabIeStock();
void ReduceNumberRequiredForAircraftO;
void ReduceUnitServiceableStockO;
void ResetStockO;
void ZeroDepotAllocatedStock();
void ZeroUnitUnserviceableStockO;
~CStock(){}

};
// Stock.cpp : implementation of the CStock class
#include "stdaix.h"
#include "Stock.h"
// CStock commands
bool CStock: :LRIRepairedOnUnit(float fLRIProportion)
(

// Identify whether LRI repaired on the unit or at the depot
if (fLRIProportion <= fLRIProportionRepairedAtUnit)

{
bLRIRepairedOnUnit = true;

}
else
{

bLRIRepairedOnUnit = false;

}
return bLRIRepairedOnUnit;

}
bool CStock: :MoreLRIsRequiredAtUnit()
{

if (iLRIUnitServiceableStock < iLRIUnitStartingStock)
return true;

else
return false;

}
float CStock::GetDepotRepairTime()
{

return fLRIDepotRepairTime;
}
float CStock: :GetMeanFailureTime()
{

return fLRIMeanFailureTime;
}
float CStock: :GetRemovalTime()
{

return flLRIRemovalTime;
}
float CStock: :GetReplacementTime()
{

152

return fLRIRefitTime;
)
float C Stock:; GetUnitRepairTime()
(

return fLRIUnitRepairTime;
}
int CStock:;GetDepotAJlocatedStock()
(

return iLRIDepotAllocatedStock;
}
int CStock; ;GetDepotServiceableStock()
(

return iLRIDepotServiceableStock;
}
int CStock;;GetLRIEssentiality()
(

return iLRIEssential;
}
int C Stock ;;GetNumberRequiredForAircraft()
{

return iLRINumberRequiredForAircraft;
}
int CStock; ;GetStockType()
{

return iLRIType;
}
int CStock; ;GetUnitServiceableStock()
{

return iLRIUnitServiceableStock;
}
int CStock;;GetUnitUnserviceableStock()
{

return iLRIUnitUnserviceableStock;
}
void CStock;;IncreaseDepotAllocatedStock()
{

iLRIDepotA]locatedStock++;

}
void CStock; ;IncreaseDepotServiceableStock()

(
iLRIDepotServiceableStock++;

}
void CStock;;IncreaseNumberRequiredForAircraft()
{

iLRINumberRequiredForAircraft++;
}
void CStock; ;IncreaseUnitServiceableStock(int iNumber)
{

iLRIUnitServiceableStock+= iNumber;
}
void CStock; ;IncreaseUnitUnserviceableStock()

153

iLRIUnitUnserviceableStock++;

void CStock: :ReduceDepotServiceableStock()

iLRIDepotServiceableStock—;

void CStock: :ReduceNumberRequiredForAircraft()

iLRINumberRequiredForAircraft—;

void CStock: :ReduceUnitServiceableStock()

iLRJUnitServiceableStock--;

void CStock: :ResetStock()

iLRIDepotServiceableStock - iLRIDcpotStartingStock;
iLRIUnitServiceableStock = iLRIUnitStartingStock;
iLRIDepotAllocatedStock = 0;
iLRIUnitUnserviceableStock = 0;
iLRJNumberRequiredForAircraft = 0;

void CStock: :ZeroDepotAllocatedStock()

iLRIDepotAJlocatedStock = 0;

void CStock: :ZeroUnitUnserviceableStock()

iLRIUnitUnserviceableStock = 0;

154

APPENDIX TWO RESULTS OF THE TESTING OF THE ALSSIM RANDOM

NUMBER GENERATOR

This Appendix deals with the tests applied to the ALSSim pseudo Random number

generator. For these tests a total of 4,000 numbers were generated lying in the range 0 < x

< 1 and the following series of tests applied to them. The results of the tests and the

analysis follows this descriptive section.

Scatter Chart

The purpose of a scatter chart is to attempt to identify if there are any clearly discernible

patterns which would point to a lack of randomness within the generator. This is

accomplished by taking a line from the current number on the x axis and one from the

previous number on the y axis and plotting a point where the 2 intersect.

Summary Table

Although not directly a test in its own right a summary sheet detailing the results of the

various tests is included at this stage for ease of examination. A summary of the

statistic calculated from the test results detailed below and the 0.95 quantile for the

appropriate degrees of freedom. This is followed by a brief statement identifying any tests

which have failed. The data underpinning this summary is included afterwards for each

group of numbers.

Frequency Test

In the frequency test we are attempting to ascertain whether the numbers are evenly

distributed over the range 0 < x < 1 and thus confirming that the generator produces an

acceptable approximation to a normal distribution.

Poker Test

In a 5 card poker test the number produced are converted into integers in the range 0 < x <

9 and divided into 800 groups of 5 numbers each. The frequency of the occurrence of

particular groups of numbers is then examined against the known probabilities of these

sequences occurring in 5 card poker.

155

Gap Test

As with the poker test the gap test uses the numbers converted into integers in the range

0 < X < 9 and then examines the length of the gap between occurrences of a particular

number that occurs frequently, in this case 9, and compares this with the expected

frequency.

Distribution of Pairs Test

This test examines the number of pairs found within the group of numbers being examined.

The numbers are converted into integers in the range 0 < x < 9 and the group is then

divided into 400 groups of 10 numbers each. The number of pairs within each sub-group

is counted and the findings compared with the theoretical expectation.

Frequency of Pairs Test

The frequency of pairs test uses the numbers converted into integers in the range 0 < x < 9

and tests for pairs of numbers over the entire rage of 4000 numbers. The frequency of the

occurrence of each pair is compared with the theoretical expectation.

156

mimm d

SSfea
, °

CD in -"t CO csj
o o o o o

157

Summary

Test Degrees
of

Freedom
Test

Result
95% from

TaMe
Frequency 9 11406 16 92
Poker 4 2 3 4 7 9 488
Gap 10 4 140 18 307
Distribution of Pairs 9 12 183 16 92
Frequency of Pairs 3 6.231 7 815

Examination of the test results for this group of 4000 pseudorandom numbers against a

null hypothesis shows that in all cases the C^statistic lies inside the 95% region of

acceptability. Thus this generator produces numbers that can be considered to be

sufficiently random to be used within the simulation.

Frequency Test
Range Actual Expected
0.1 410 400 (X25
0.2 365 400 3.063
0.3 364 400 3 24
0.4 424 400 144
0.5 400 400 0
0.6 424 400 144
0.7 399 400 0.003
0.8 404 400 0 04
0.9 386 400 0 49
1 424 400 T44
Total 4000 4000 11406

Poker Test

Hand
Observed
Actual Expected

Grouped
Actual Expected c '

All different 238 24192 238 24L92 0 064
IP&f 419 4012 419 4 0 1 2 0.7

2 Pairs 76 86 4 76 86 4 1252
3 of a kind 57 57 6 57 5 7 6 0 006
Full House 5 7.2 9 10 88 0 325
4 of a kind 3 3.6
5 of a kind 1 0 08
Total 799 800 799 800 2347

158

Gap Test
Gap Actual Expected

1 45 4 2 4 0 159
2 33 38 16 0 698
3 32 34 34 0 159
4 39 30.91 2 117
5 29 2782 0 05
6 29 25 04 0.626
7 22 22.53 (yoi2
8 19 20 28 0.081
9 18 18.25 0.003

>10 158 164 27 (X239
Total 424 424 4 144

Distribution of Pairs Test

PWf Actual Expected C '
0 33 33 0

11 26 33 1485
22 28 33 0 758
33 34 33 0 03
44 45 33 4 364
55 26 33 T485
66 28 33 (1758
77 39 33 1.091
88 30 33 (1273
99 41 33 L939

Total 330 330 12 183

Frequency of Pairs Test

Number
Observed
Actual Expected

Grouped
Actual Expected c '

0 169 154 97 169 154.96 L270
1 149 170 29 149 170.28 2 662
2 67 ' 64 49 67 64 48 0.098
3 13 9^7 15 10 25 2 201
4 2 0 48
5 0 0

Total 400 400 400 399.97 6 231

159

APPENDIX THREE ALSSIM ACTIVITY CYCLE DIAGRAM

This appendix shows the total activity diagram for the three entities contained within

ALSSim. Each of the entities; mission, aircraft and LRJ have been discussed independently

within the main text and were drawn in figures 4 to 6. The purpose of this Appendix is to

draw the 3 figures together to allow the interaction of the three entity types to be clearly

seen.

160

Pre Flight

Servicing

Pre Flight

Servicing

Available

/ In event

^ list

Right ^

cancelled j

Generate

Requirement

Serviceable

- W Fly Flighl Landed

Aircraft \

Available \

Unserviceable

\

Required

Bight

Completed

: \

No aircraft Aircraft available
available <= max delay

V \

Store Flighl

requirement

Cancel flight

In

delayed
flight list

> Max delay

1;'

f

failed on

airciaft

LRI fails

Transfer to

Ctepot

I Serviceable

\ on aircraft

Requires

repair

Remove LRI from

aircraft
I

%pai r al depol

In

repar

FH Serviceable LRI

" \ removed) R^pair^
alunH

Required for

aircraft""

I
Repaired •

In unit \

stock /

Not required for aircraft

i

Placed in unit

stock

Repair

Repaired |—- -Not required

at unit'^ ^

Required

at unit

Transfer to

unit

T

Serviceable

In depot ^

stock /

Placed in depot

stock

161

(;i f)s;svuRif ()i? riEitJvis

Backorder A term used to describe a hole awaiting a spare. An aircraft subject

to a backorder is unserviceable until such time as the LRI is received

and fitted.

Depot A combined repair and storage location for LRIs

Failure Time The time taken for a component fitted to an aircraft to fail in use.

First Line The operational Squadron for the aircraft.

Fourth Line The location within industry that removed LRIs are dispatched to

for deep repairs.

Mission A number of flights that are required to be flown at the same time..

Mission Duration The length of a mission. Adding this value to the achieved take off

time gives the landing time.

Mission Success The proportion of missions that are launched within the acceptable

Rate window.

Pipeline The route between the operational and repair locations through

which defective components and spares pass.

ScMe The number of each type of spare required to support system

availability targets. The scale is derived by using a deterministic

scaling application.

Second Line The component servicing bays located on the operational unit.

Serviceable The term used to describe a LRI that is working.

162

Shelf Satisfaction The percentage of items satisfied from shelf stock without the need

Rate for a backorder.

Squadron The operational organisation which operate the aircraft.

System

Availability

The proportion of the total modelled time that a given system can be

expected to be available for use.

Technician RAF Maintenance Personnel.

Third Line The location within the RAF that removed components are

dispatched to for deep repairs.

Unserviceable Term used to describe a LRI that has failed.

163

Banks J Ed., Handbook of Simulation, John Wiley and Sons, 1998

Conolly B, f b/w/wg 2."
Randomization, Ellis Horwood,1981.

Dye P, 'The Royal Flying Corps Logistic Organisation', Air Power Review Autumn 1998.

Kleijnen J and van Groenendaal W, Simulation a Statistical Perspective, John Wiley and
Sons, 1992.

Knuth D E, The Art of Computer Programming Vol 2: Semimmierical Algorithms,
Adison-Wesley, 1981.

Kobayashi H, Modeling and Analysis: An introduction to System Performance Evaluation
Methodology, Adison-Wesley, 1978.

L'Ecuyer P and Andres T H, Random Number Generator Based on the Combination of
Four LCGs, http://www.iro.umontreal.ca/~lecuyer/papers,htm.

Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991.

Marsaglia G, Marsaglia's Random Number CDROM, http://stat,fsu.edu/~geo/

Morgan B J T, Elements of Simulation, Chapman and Hall, 1984.

Pidd M, Computer Simulation in Management Science, John Wiley and Sons, 1992.

Rand Corporation, A Million Random Digits with 100,000 Normal Deviates, Free Press,
1955

Rumbaugh J, Blaha M, Premerlani W, Eddy F and Lorenson W, Object-Oriented
ModeUng and Design, Prentice Hall, 1991.

Sherbrooke C C, Optimal Inventory Modeling of Systems, John Wiley and Sons, 1992.

164

http://www.iro.umontreal.ca/~lecuyer/papers,htm

LIST OF REFERENCES

1 Dye P, 'The Royal Flying Corps Logistic Organisation', Air Power Review Autumn 1998

pp 42-58.

2 Sherbrooke C C, Optimal Inventory Modeling of Systems, John Wiley and Sons, 1992

pp 9-11.

3 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

pp 106-107.

4 Sherbrooke C C, Optimal Inventory Modeling of Systems, John Wiley and Sons, 1992

pp 9-12.

5 Rand Corporation, A Million Random Digits with 100,000 Normal Deviates, Free Press,

1955.

6 Marsaglia G, Marsaglia's Random Number CDROM, http://stat.fsu.edu/~geo/

7 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

pp 423-424.

8 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

pp 424-431.

9 Pidd M, Computer Simulation in Management Science, John Wiley and Sons, 1992

pp 196-200.

10 Banks J Ed., Handbook of Simulation, John Wiley and Sons, 1998 pp 94 - 95, pi 04.

11 Knuth D E, The Art of Computer Programming, Volume 2: Seminumerical

Algorithms, Second Edition, Addison-Wesley, 1981 pp 16-18.

12 Banks J Ed., Handbook of Sinndation, John Wiley and Sons, 1998 pp 102-106,

13 L'Ecuyer P and Andres T H, ^ Random Number Generator Based on the

Combination of Four LCGs, http://www.iro.umontreal.ca/~lecuyer/papers.htm,

paper 39.

14 Pidd M, Computer Simulation in Management Science, John Wiley and Sons, 1992

pp 227-228.

15 Morgan B J T, Elements of Simulation, Chapman and Hall, 1984 pp 139-148.

16 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

pp 436-447.

17 Conolly B, Techniques in Operational Research Volume 2: Models Search and

Randomization, Ellis Horwood,1981 pp 212-220,

18 Kleijnen J and van Groenendaal W, Simulation a Statistical Perspective, John Wiley

and Sons, 1992 pp 22-28.

165

http://stat.fsu.edu/~geo/
http://www.iro.umontreal.ca/~lecuyer/papers.htm

19 L'Ecuyer P and Andres T H,A Random Number Generator Based on the

Combination of Four LCGs, http://www.iro.umontreal.ca/~lecuyer/papers.htm,

paper 39.

20 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

pp 332-350.

21 Banks J Ed., Handbook of Simidation, John Wiley and Sons, 1998 pp 150-159.

22 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

p333.

23 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

p337.

24 Pidd M, Computer Simulation in Management Science, John Wiley and Sons, 1992

pp 31-46.

25 Rumbaugh J, Blaha M, Premerlani W, Eddy F and Lorenson W, Object-Oriented

Modeling and Design, Prentice Hall, 1991 pp 173-179.

26 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

pp 302-306.

27 Kleijnen J and van Groenendaal W, Simulation a Statistical Perspective, John Wiley

and Sons, 1992 pp 205-207.

28 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

pg288.

29 Law A M and Kelton W D, Simidation Modeling and Analysis, McGraw-Hill, 1991

pg 738 Table T.l

30 Law A M and Kelton W D, Simulation Modeling and Analysis, McGraw-Hill, 1991

pp 297-288.

166

http://www.iro.umontreal.ca/~lecuyer/papers.htm

