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Inference for multivariate discrete data often concerns associations between variables 
modelled using log-linear models. This thesis focuses on the Bayesian analysis of log-
linear models. Various prior distributions are investigated which are suitable for reference 
analyses. 

The conditional Dirichlet distribution, which has the attractive property that its 
parameters may be interpreted as prior cell counts, is introduced. This prior is useful 
for both reference analyses, where small prior values are used, and as an informative 
prior, where (hypothetical) prior cell counts may be available. The conditional Dirichlet 
is shown to be equivalent to a hyper Dirichlet density (which admits straightforward 
analyses) for decomposable log-linear models. Hence a natural extension of the hyper 
Dirichlet distribution to non-decomposable models is obtained. 

The conditional Dirichlet distribution is not tractable in general, so Monte Carlo and 
other approximation methods are required. Gibbs sampling is applied to obtain samples 
from prior and posterior conditional Dirichlet distributions. The sampler is found to mix 
well, producing samples which are not highly dependent. 

Laplace's method is used for the approximation of integrals, although it is found to 
perform poorly where prior parameters take small values. However, accurate results may 
be obtained for the posterior analysis of datasets where cell counts are large. The method 
of bridge sampling is applied to the problem of determining the normalising constants for 
conditional Dirichlet distributions. The sampler is found to produce good results, even 
when prior parameters take small values, and this is illustrated by application to several 
examples. 

Jeffreys' prior, which is a reference prior by definition, is considered, and an explicit 
expression is presented for the Jeffreys' prior for a, decomposable log-linear model. In 
many cases, this is found to be a product of independent Dirichlet distributions for the 
parameters of a particular decomposition of the model. For other decomposable models, 
where the normalising constant for Jeffreys' prior is not directly available, the method 
of bridge sampling is again applied, and found to produce accurate results. The Monte 
Carlo samples needed are obtained using Metropolis Hastings sampling. 

Finally, the choice of prior distribution is considered in further detail. Unit infor-
mation priors, for which easy approximations to marginal likelihoods are available, are 
discussed, and the relationship between the Laplace approximation for marginal likeli-
hoods and the Schwarz criterion is investigated for log-linear models under multinomial 
sampling. It is shown that marginal likelihoods using Jeffreys' prior may be approximated 
by a modified version of the Schwarz approximation, with error of order n"2. 



Contents 

1 Introduction 1 

1.1 Contingency Tables 2 

1.2 Log-Linear Models 3 

1.2.1 Hierarchical Models 4 

1.&2 (^raphkalMbdds 4 

1.2.3 Decomposable Models . . . . . . . . . . . . . . . . . . . . 6 

1.3 Parameterisations 9 

1.4 Bayesian Analysis 11 

1.4.1 Prior Distributions 12 

1.4^ 12 

1.5 Bayesian Computation 14 

1.6 Outline of the Thesis 16 

2 Review of Previous Work 18 

2.1 Dirichlet Distribution 18 

2/2 IVormEdlOK&rnDidAon 

2.3 C^^^dnc^Aiodek 

2.4 Model Uncertainty 

2.4.1 Bayes Factors 

2.4.2 Computation . 24 

2.4.3 Model Averaging 26 

20 

21 

22 

22 



CONTENTS ii 

2.4.4 Markov Chain Monte Carlo Methods . . . . . . . . . . . . 27 

3 Priors for Log-Linear Model Parameters 30 

3.1 Distributions Based on the Normal Distribution 31 

3.2 Distributions based on the Dirichlet Distribution 32 

3.2.1 Conditional Dirichlet Distribution . 32 

3.2.2 Hyper Dirichlet Distribution . . . . . . . . . . . . . . . . . 37 

3.3 Relationship between Conditional Dirichlet and Hyper Dirichlet 

Distributions 38 

3.4 Discussion 49 

4 Posterior Sampling 50 

4.1 Gibbs Sampling 51 

4.1.1 Introduction 51 

4.1.2 Application to Conditional Dirichlet Distribution . . . . . 53 

4.2 Conditional Dirichlet Samples . 57 

4.2M Ex&mpbl 57 

4.2.2 Example 2 59 

4.2.3 Convergence of Gibbs Sampler 65 

4.3 Discussion 66 

5 Posterior Distributions: Model Determination 68 

5.1 Introduction 69 

5.2 Schwarz Approximation 70 

5.3 Laplace's Method 72 

5^^ 72 

5.3.2 Application to Generalised Linear Models 75 

5.3.3 Application to Conditional Dirichlet Distribution . . . . . 77 

5.3.4 Numerical Results from Laplace's Method applied to Con-

ditional Dirichlet Distributions . 80 



CONTENTS in 

5.4 Bridge Sampling 83 

5.4.1 Introduction 83 

5.4.2 Application to the Conditional Dirichlet Distribution . . . 85 

5.4.3 Numerical Examples 86 

5.4.4 Normalising Constants for Non-Decomposable Model . . . 87 

5.5 Risk Factors for Coronary Heart Disease 88 

5.6 Discussion 90 

6 Jeffreys' Prior 91 

6.1 Introduction . 91 

92 

93 

93 

94 

97 

6.1.1 Formal Definition . 

6.2 Jeffreys' Prior for Log-Linear Models 

6.2.1 Derivation 

6.2.2 Jeffreys' Prior for Saturated Log-Linear Models . . . . . 

6.3 Jeffreys' Prior for Decomposable Log-Linear Models 

6.3.1 Derivation 97 

6.4 Examples of Jeffreys' Priors 104 

6.4.1 Saturated Models 105 

6.4.2 Block Independence 108 

6.4.3 Two Variable Models 110 

6.4.4 Three Variable Models 110 

6.4.5 Four Variable Models . . . . . . . . . . . . . . . . . . . . . 115 

6.4.6 Discussion 124 

6.5 Calculation of Normalising Constants 126 

6.5.1 Bridge Sampling 126 

6.5.2 Results 129 

6.6 Conclusion 131 



CONTENTS iv 

7 Choosing A Prior Distribution 133 

7.1 Laplace's Method and the Schwarz Criterion 133 

7.2 Unit Information 135 

7.2.1 Unit Information Normal Priors . 135 

7.2.2 Unit Information and the Logistic Normal Distribution . . 137 

7.2.3 Unit Information and the Schwarz Criterion 138 

7.3 Unit Information for Dirichlet Based Priors 139 

7.3.1 Introduction 139 

7.3.2 Conditional Dirichlet Prior 140 

7.3.3 Jeffreys' Prior 141 

7.4 Application of Corrected Schwarz Approximation 143 

7.4.1 Example 1 144 

7.4.2 Example 2 147 

7.4.3 Example 3 152 

7.4.4 Further Examples 155 

7.5 Discussion . 157 

8 Further Examples 159 

8.1 Example 1 159 

8.2 Example 2 161 

9 Discussion and Extensions 163 

9.1 Discussion 163 

9.2 Extensions 165 



List of Figures 

4.1 Plots showing kernel density estimates from Gibbs samples over-

laid with the true density functions 59 

4.2 Model AC+BC+AD-\-AE+CE + DE + F (posterior probability 

0.28) 61 

4.3 Model AC-\-BC-\-AD-\-AE+BE+DE-{-F (posterior probability 

0.16) 62 

4.4 Model AC + BC + AD + AE + B E + CE + DE + F (posterior 

probability 0.07) 63 

4.5 Model A C + B C + A D + A E + C E + D E + B F (posterior probability 

0.07) 64 

4.6 Time series plots for Gibbs samples in Example 1 65 

4.7 Pairwise scatterplots for Gibbs samples in Example 1 66 

4.8 Time series plots for Gibbs samples corresponding to model AC + 

BC + A D + AE + CE + DE + F i n Example 2 67 

5.1 Plots showing convergence of Laplace estimates for various models 

with equal samples in each cell 81 

5.2 Plots showing convergence of Laplace estimates for various models 

with unbalanced cell counts 83 

6.1 Time series plot for Metropolis Hastings sample corresponding to 

B(B) 131 



LIST OF FIGURES vi 

7.1 Plot of error in corrected Schwarz approximation against sample 

size for Example 2 151 

7.2 Plot of error in corrected Schwarz approximation against sample 

size for Example 3 154 



List of Tables 

2.1 Interpretation of Bayes factors 23 

4.1 Risk factors for coronary heart disease 60 

5.1 Bridge estimates, and their respective errors, of normalising con-

stants for various models 87 

5.2 Normalising constants for model AB + BC + CD + DA 88 

5.3 Estimated Bayes factors for Heart Disease data 89 

6.1 Estimated Jeffreys' normalising constants, together with their re-

spective errors 130 

6.2 Rejection percentages for l\Ietropolis Hastings Sampler 132 

7.1 Errors in Schwarz approximations for Example 2 150 

7.2 Errors in Schwarz approximations for Example 2 — unbalanced case 152 

7.3 Errors in Schwarz approximations for Example 3 . . . . 153 

7.4 Schwarz approximation correction terms for model AB + BC + CD 155 

8.1 Chemotherapy and lymphoma 160 

8.2 Posterior model probabilities for Cancer data using various prior 

distributions 160 

8.3 Toxaemia in pregnancy 161 

8.4 Posterior model probabilities for Toxaemia data using various prior 

distributions 162 

vn 



Acknowledgements 

I would like to thank my supervisor, Dr Jon Forster, for his guidance and 

endless enthusiasm during the past four years. I would also like to thank the 

other members of staff in the Statistics group at the University of Southampton, 

in particular Professors Phil Prescott and Sue Lewis. 

This research was carried out under a research studentship from the Engi-

neering and Physical Sciences Research Council, to whom I am grateful. 

My time in Southampton haa been enriched by so many people. Thank-you 

to my housemates Chris, Jen, Rob, Eric, Pete and Ralph for putting up with 

me, and a particular thank-you to Karen for aD the fun! 

Several other friends deserve a mention in my thesis: Ben, who doesn't believe 

I am no longer going to be a student; Adam, who helped me Rnd a job; Richard, 

because I promised; Harz, for the phone calls; and Richard Ng, for his routine 

assistance! 

Finally, I am indebted to three people who have given me so much - Susan, 

who is my inspiration, and Mum and Gram, for being there. Thank you. 

vni 



Chap te r 1 

In t roduc t ion 

A contingency table is a collection of cells each containing counts of units cross-

classified according to a set of factors. The analysis of data which may be pre-

sented in contingency tables forms an important area in statistics. Contingency 

tables are often highly structured, though this structure is not often immediately 

obvious without detailed statistical analysis. However, the investigation of this 

structure is extremely important as it enables us to understand the relation-

ships between variables, and also provides the key to estimation of quantities 

of interest. The underlying structure of a contingency table is usefully repre-

sented by a formal statistical model, and a standard way of doing this is to use 

a log-hnear model, which linearly relates the logarithms of the cell means (or 

cell probabilities) to a set of model parameters. The form of this linear relation-

ship depends on the structure of the data, i e. on the relationships between the 

variables represented by the contingency table. 

Classical statistical analysis focuses on methods such as maximum likelihood 

estimation to estimate model parameters, and so to obtain estimated cell counts 

(or probabilities). However, this thesis is based on analysis %dthin a Bayesian 

framework, whereby the cell means or probabilities (or model parameters) are 

all treated as random variables and hence must be given prior distributions de-
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scribing uncertainty about them before any data have been observed. The data 

are then used to 'update' the prior distributions to form posterior distributions 

which encapsulate all the knowledge about the parameters, given the data. The 

utility of the Bayesian approach is that it enables us to obtain full posterior 

summaries of uncertainty for any function of interest. 

This thesis focuses on 'reference' prior distributions, where we have negligible 

substantive prior knowledge, and on the computation of posterior quantities of 

interest. This enables us to obtain estimates of quantities of interest, assess the 

corresponding uncertainty, Eind also to investigate the structure of the underlying 

statistical model. 

1.1 Contingency Tables 

Suppose we have a set of multivariate categorical data, where n units have been 

cross-classiAed by a number of categorical variables and the coimts of the result-

ing cross-classification presented in a contingency table. Let the set of categorical 

variables or factors be T, resulting in a |r|-way contingency table. 

Following the notation introduced by Darroch, Lauritzen and Speed (1980), 

the set of cells in the table is the set I = A' where is the set of levels of 

factor 'y. A particular cell %ill be denoted by % = : 'y E F), the corresponding 

cell count by and the cell probability by p(%), where this represents the 

probabihty that a particular unit hes in cell i. The vector of all the cell probabil-

ities will be written p, and the cell counts The total cell count will be denoted 

n, where n = ^(z). The number of cells, 77z, in the table is |7| = |7.y|. This 

notation is best illustrated by an example: 

Suppose we have three variables A, B and C, where v4 is binary and B and C 

have 3 levels, and that these variables cross-classify some data in a 3-way table. 

In this case, F — , and a cell in the table is therefore t 

where Z/t can take values 1 and 2, and and zc take values 1, 2 or 3. Hence the 
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cell which contains the data for variables A and B at level 1 and variable C at 

level 3 is % = (1,1,3), and the cell probability is p(z). 

The typical model for data in a contingency table assimies that a known 

number of individual units M are assigned at random to a particular cell % %dth 

probability ^(z). Therefore the vector of cell counts 7% has a distri-

bution, which has probability function 

- n! 

1.2 Log-Linear Models 

n(%)! 

One motivation for analysing contingency table data is modelhng the associa-

tions between classifying variables. Such considerations typically include how 

variables are conditionally independent or independent of one another. The 

standard way of doing this is by representing the underlying statistical model 

as a mocfe/. DiSerent association structures, including independence 

and conditional independence, result from models with different forms, and &om 

var̂ '̂ ing parameter values within a particular model. This section will introduce 

general log-hnear models, and also \-arious special subsets of these models. 

We assume that 71(2) is an obser '̂ation of a multinomial random variable with 

corresponding vector of cell probabilities p(%). Then, again following Darroch, 

Lauritzen and Speed (1980) we denote the log-linear model 

logX%) - t E 7 (1.1) 
acr 

where is the marginal cell = (2-,. 7 G a). As p(%) is a vector of cell probabil-

ities which sum to 1, a normalising constant is necessary in (1.1). Note that 

certain constraints must be imposed on the terms (̂ (̂ia) (which we shall refer to 

as the interaction terms) to ensure identihability. These will be discussed later. 
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A saturated model is parameterised by a full set of interaction terms, whereas 

setting certain terms to zero deEnes a particular non-saturated log-linear 

model. Hence the non-zero terms define the model, and may take arbitrary 

values. It is straightforward to write down the number of possible distinct log-

hnear models for a set of factors F; there are possible o C F, giving rise to 

2̂ '̂ ' diEerent log-linear models. 

1.2.1 Hierarchical Models 

Commonly, we do not consider the full set of log-linear models, and instead 

restrict attention to a smaller subset of these called the /og-Zmeor 

mocfek. To obtain these, we impose restrictions on the namely that 

setting equal to zero means we must also set to be zero for all 6 D o. 

For example, suppose that F — {v4, B, C} , and that = 0. In this case, we 

require = 0 in a hierarchical model. It is not possible to write an explicit 

expression for the number of such models, but this number is much smaller than 

the total number of log-linear models. 

Let us deHne the of a model as the maximal sets o such that is 

non-zero. Then a hierarchical model is determined imiquely by its generators. 

1.2.2 Graphical Models 

The set of graphical models form a highly attractive subset of the hierarchical 

models, both for ease of analysis and their obvious interpretation in terms of 

conditional independence (an interpretation which is inmiediately obvious from 

the graph). Graphical models may be either directed or undirected - the former 

pro^dde moti\'ation for some of the work in this document, although it is the 

latter which we shall define first, due to their relative simplicity. 

A graphical log-linear model may be represented by a graph, with a set of 

vertices V corresponding to the variables, and a set 6! of edges representing 
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the independence structure. The notation (X, Y) is used to represent the edge 

between variables % and K The absence of an edge between two vertices X and 

y means that % is conditionally independent of y given all other variables. This 

is equivalently written as: if (%, y ) ^ then A7 _LL y | y } . Variables 

X and y are (unconditionally) independent if no path of edges exists between 

vertices % and y, in which case % _LL y. 

A subset C of r is called a clique if the subgraph containing only elements 

of C hag an edge connecting each element (ie. is complete), and the inclusion 

of another vertex from V in C would result in at least one pair of unconnected 

vertices. A graph is triangulated if it contains no chordless cycles of length 

greater than three, and the subset D is said to subsets A and if every 

path from any vertex in A to one in B must pass through a vertex in D. In such 

a case, variables in A are conditionally independent from those in B, given D. 

As mentioned above, a hierarchical model is determined by its generators, and 

a model is if its generators correspond to the cliques of its (undirected) 

conditional independence graph. These models form a subset of the log-linear 

models. We will assume throughout that all models include the intercept term 

1̂0 and all main effect terms (̂ ^ where |a| = 1), since those without are of little 

interest. Then the (^0 possible edges in each graph gives the total number of 

possible graphical models to be 2C2'). 

A pmpA contains edges jroTTi one vertex (o another, for example 

% —> y denotes the presence on an edge from X to y, and we call X a parent 

of y and y a child of X. The edge from % to y will be written (%, y ) . The 

set of parents of y is denoted by po(y). For a subgraph A, pa(A) denotes the 

set of parents of vertices in A that are not themselves elements of A. A path of 

length n > 0 from X to y is a sequence X = Xo, - - , = y of distinct vertices 

such that (Xi_i, E ^ for all z = 1 , . . . , n. If there is a path from % to y we 

write % > y The set of vertices X such that % y are the ancestors an(y) 
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of y ajid the descendants o!e(%) of % are the vertices Y such that X >—» y . The 

nondescendants of A" are n,d(%) = V \ (de(A') U {^}). A path which starts and 

ends at the same point is known aa a c!/c/e, and a directed graph is ocyc/tc if it 

contains no cycles. 

Note that any hierarchical model can be represented by an (undirected) condi-

tional independence graph, although such a graph does not necessarily represent 

a single non-graphical model. However, these models will not be excluded from 

our analyses, as they form a rich collection of models with many applications. 

An example of such a model is the model containing the three variables A, B 

and C with interaction terms AB, /IC and BC though no 3-way interaction term 

ABC. In this case, the 2-way interactions are homogeneous with respect to the 

third variable; for example, the interaction between v4 and B does not depend 

on the value of C. Although this model is clearly not graphical, real data may be 

found to follow this pattern of association, so this model should not be excluded 

from our analyses. 

1.2.3 Decomposable Models 

Another smaller subset of models within graphical models are TTiod-

ek. These are defined as models whose joint cell probabilities may be directly 

expressed as a function of the marginal probabilities of the cliques of the model. 

An equivalence to this definition wliich is more useful in practice is that a model 

is decomposable if its graph is triangulated. 

For example, consider the model represented by the graph below. 
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This graph is clearly triangulated (with chques {/I,-8} and so the 

model is decomposable and the joint cell probabihties p may be written as a prod-

uct of the marginal and conditional probabihties Equivalently, 

the cell probabilities may be directly expressed in terms of marginal probabilities 

of cliques and separators as 

These models admit the most straightforward analyses, but clearly exclude 

many potential (and useful) models, and there is often little justification to re-

strict attention to these models other than computational considerations. 

One beneHt of decomposable models which will aid certain parts of our anal-

ysis is that, if the model is decomposable, then we may use the undirected 

conditional independence graph to construct a directed version with the same 

Markov structure (Dawid and Lauritzen, 1993). We can use this directed graph 

to obtain a of the variables in the graph, by numbering the 

vertices so that those at the 'top' of the graph (ie. the ones with no parents) 

have the lowest nimibers. The edges are hence necessarily directed from vertices 

with low numbers to those \\dth higher numbers. For directed graphs, the joint 

probability may be expressed as 

^(z) = f (-y = 41^0(7) = tpaw) 
7 = 1 

As an example of directed graphical representations, consider the model rep-

resented by the imdirected graph above. Several possible directed versions of 

this graph are possible: 
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Each of these graphs admit different perfect orderings of variables, and one 

admits two orderings. Working from left to right, the first admits orderings 

BC/l and BAC, and the second and third admit orderings CBA and ylBC 

respectively. Each of these graphs and orderings is equivalent to the others, and 

it is often the case that a single undirected graph can give rise to several diEerent 

directed versions. 

Note that in this example, the only directed graph which is not equivalent to 

the undirected version is 

B 

An easy way to see why this graph represents a diSerent model is by noting 

that an equivalent undirected graph is obtained from the directed version by 

moralising, whereby unjoined parents in the directed version are joined in the 

undirected one. Hence, the directed graph shown above would be represented by 

the undirected graph below, which corresponds to the satiurated model. 

B 

Throughout this thesis, directed and undirected graphical models will be used 

interchangeably, as they may represent identical statistical models. However, 

certain situations lend themselves more to one type than another, due to certain 

imphcations of directed graphs; for example, an arrow from to B may imply a 

temporal effect, with event vl preceeding event B. Whereas this may be desirable 
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in some examples, an undirected representation may be more appropriate in 

others. For example, a relationship between smoking and heart disease would be 

suited to a directed graph, whereaa a relationship between an individual's hand 

size and foot size would be better represented by an imdirected graph. 

1.3 Parameterisations 

In order to admit more straightforward analyses and calculations involving the 

log-linear models described above, it is helpful to consider a parameterisation 

of (1.1) where the parameters are identifiable and linearly independent. To ob-

tain this parameterisation, we shall follow the same method as Dellaportas and 

Forster (1999). 

Let us deEne a |7|-dimensional vector Ca ^ (a = ^ - Here, 

is rephcated so that (^(z) = for all %r\a, so that 

= (1 .2 ) 

acr 

We may now choose a linearly independent set of 

4 = JJ (1-41 - 1 ) 
yea 

components of for each a C F as our model parameters. We make the usual 

choice 

> 1 for all T 6 o} 

where involving ^ = 1 for some 'y are defined by prespecified constraints. 

The log-linear model is expressed in terms of log p, but since these cell prob-

abilities lie in a simplex space, where each p(%) satishes 0 < ^(t) < 1 and 

^p(^) — 1) is useful to consider a multivariate logit transformation. Through-
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out this document, two alternative definitions will be used for the vector of logit 

parameters Note, however, that a linear one to one transformation exists 

between the two versions, and the choice of deHnition is made purely for ease of 

calculations. The first definition of 9{i) is given by 

where to refers to the cell with all factors at their lowest level. We call this the 

reference cell logit, as each probability is contrasted with a reference probability 

(in this rase the first, p(io))- Note that 0(%o) = 0. This expression may be 

inverted in order to write the probabihties in terms of the logits, 

The alternative definition of is the symmetric logit 

W = l o g ( ^ ) (1.4) 

1 

where ^(p) is the geometric mean of the probabilities (g(p) — ([%% P(^))"Here, 

0 satisfies 1^0 = 0, where 1 is a vector of Ts. This transformation admits the 

same inversion as the reference cell logit, namely p(2) 

The design matrix X of a log-linear model relates 0 to the model parameters 

/3. The form of this matrix depends on the logit chosen, though clearly in the case 

of the symmetric logit, then % must satisfy = 0. The model may therefore 

be written 
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Hence. 

0(i,/3) = (.Y/3)(i) 

j 

1.4 Bayesian Analysis 

The fundamental principle of Bayesian analysis, as opposed to traditional claa-

sical methods, is that uncertainty is represented through probability. Bayesian 

inference is based upon a probability distribution for the parameter vector pzf en 

observed data rt, ie. which we call the for p. 

Bayes' theorem states that, for variables a; and i/, 

fix\y) = 
/(%/) 

Hence we use this to obtain the posterior distribution for p given n from the 

hkelihood function /(rz-lp) and the pnor for p, /(p), which represents 

the uncertainty about p prior to observing data n. 

Since the integral in the above expression merely provides the constant so that 

the posterior density /(pin.) integrates to 1, this is often omitted and we write 

/(p|?t) oc /(7%|p)/(p) 
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1.4.1 Pr ior Dis t r ibut ions 

An important choice in the analysis of log-linear models is that of the prior 

distribution /(p). The prior distribution encapsulates the previous information 

about the cell probabilities p, which may be obtained from expert opinion, pre-

vious data, or some other source. However, this information, even if available, is 

often difficult to express as a probabihty distribution. Hence it is often useful to 

perform a 'reference' analysis, where the prior distribution is called a re/ere/ice, 

or prior. This enables us to examine the inSuence of 

informative priors compared with the reference approach. 

A number of priors exist which may be used for the log-hnear model param-

eters, and which are suitable for a reference analysis. These distributions are 

introduced in Chapter 2. 

1.4.2 Model Choice 

Suppose we have a set of models, M, one of which we believe has generated our 

data 72. In o%ir case, these data are cell roimts in a contingency table, so that 

are observations of random variables ?% = (#(%),% G / ) . There 

are several problems with classical approaches to choosing a particular model 

to represent the data, and several authors have reported on this in detail (for 

example Raftery, 1996). Classical methods are based on p-values, and di@culties 

arise when comparing models which are not nested. Also, tests based on p-

values may reject acceptable models when the sample size is large, and in certain 

cases with small sample sizes the asymptotics of such statistics may break down. 

Model uncertainty is also ignored, selecting a single model in a situation where 

several plausible models exist, each with reasonable probability. To counter such 

problems, a Bayesian approach to model selection is proposed: 

Each model m G M — {mi, m2,...} specifies a distribution for n, /(?%|m, 0^), 

with the a,n unknown vector of parameters for model m. We use Bayes' the-
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orem to obtain the joint posterior distribution of m/; and 0 

Hence the posterior probabihty of model m may be found explicitly from 

where / i s the sometimes 

interpreted as the probabihty of observing the data calculated before any data 

were observed. 

If we have two competing models, mi and m2, the problem reduces to the 

calculation of a Ric(or, which is the ratio of the posterior odds to the prior 

odds, and we have 

7712 

where the second term on the right hand side is the Bayes factor for model 

1 against model 2. This may be referred to as B12, and this notation can be 

extended to the case where we have multiple plausible models, by writing as 

the Bayes factor for model j against model /c. 

The Bayes factor is related to the classical likelihood ratio statistic, as when 

the two models are distributions with no unknown parameters the two quantities 

are equal. In the more general case, there is still a correspondence between Bayes 

factors and likehhood ratio statistics, with Bayes factors obtained by integration 

instead of maximisation. 

Whereas model selection is the problem of using our data to select a single 

model m from A/, mocfeZ invoh-es estimating om' quantity of interest 
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under each of the plausible models and then obtaining a model-averaged estimate 

by placing weights on each individual estimate according to how likely eeich model 

is. This is a useful tool when we have a number of competing models, none of 

which has a dominant posterior probabihty. For example, suppose our quantity 

of interest is (̂ , which has an interpretation under every model, then we may 

obtain the posterior distribution using the expression 

n 
k 

where is obt.uned from expression (1.5) 

1.5 Bayesian Computation 

Many instances arise in Bayesian analysis where it is necessary to deal with prior 

or posterior distributions whose density functions are analytically intractable. In 

such cases, we need to resort to approximation methods. This area of (Bayesian) 

statistics has expanded dramatically with advances brought about by increased 

computing power. Various computation methods exist for addressing such prob-

lems, and these will be discussed at relevant stages in this thesis. In particular, 

methods of obtaining samples from intractable densities are described in Chap-

ters 4 and 7, and methods of approximating normalising constants are described 

in Chapter 5. Methods of obtaining samples from a specified probability distri-

bution are based on Markov chain Monte Carlo theory, which is described briefly 

here. 

It is difficult to generate independent observations from an arbitrary multi-

variate distribution; however, Markov chain Monte Carlo (MCMC) methods of 

approximation make it possible to generate a dependent sample. Suppose we 

require a sample 0̂ )̂, 0^^),... from a p-dimensional density /(0). The Markov 

c:hain Monte Caiio method involves setting up a Alarkov chain, which is a ran-
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dom mechanism whereby the distribution of depends on We know 

from Markov chain theory that will have a paj;ticular limiting 'long rim' 

equilibrium (or ergodic) distribution. Therefore, for large enough T, if ( > T, 

yg considered to be identically distributed according to this 

distribution, regardless of the value of Hence, provided we can construct a 

Markov chain whose equilibriimi distribution is /(0), then we can simulate this 

chain, and thus obtain a dependent sample from /(^). 

The value of T at which the equilibrium distribution is reached is known 

as the 'burn-in' length, and obser '̂ations before this should be discarded. In 

practice however, provided we start the chain at a plausible observation from 

/(0) (for example at the mode) then the burn-in is zero and no observations 

need be discarded. 

Samples obtained using MCMC methods are by deSnition dependent. How-

ever, provided the parameter space is explored thoroughly by the sampler, then 

it is said to be 'mixing well', and successive samples are not highly dependent. 

If, however, there is high correlation between successive observations, then the 

sampler is said to be 'mixing poorly' and a highly dependent sample will be 

produced. 

Two main methods exist for constructing suitable Markov chains with spec-

ified equihbrium distributions - Metropolis-Hastings seimpling and Gibbs sam-

pling. Gibbs sampling will be described in Chapter 4 and applied to the condi-

tional Dirichlet distribution, and Metropolis Hastings sampling will be described 

in Chapter 6 and applied to Jeffreys' prior. AICMC methods may also be used in 

calculating posterior model probabilities, and such work is reviewed in Chapter 

2. 
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1.6 Outline of the Thesis 

Chapter 2 reviews previous Bayesian approaches to the analysis of log-hnear 

models. The Dirichlet prior distribution is considered, as is a Normal prior dis-

tri'mtion for log-linear model parameters, and graphical models are reviewed. 

The Bayesian approach to accounting for model uncertainty is reviewed, includ-

ing model averaging and the use of a Markov chain Monte Carlo approach to 

calculating posterior model probabilities. 

The focus of Chapter 3 is the conditional Dirichlet distribution, whose param-

eters have the attractive interpretation as prior cell counts. Its relationship to 

the hyper Dirichlet distribution is investigated. The conditional Dirichlet density 

is shown to be equivalent to a hyper Dirichlet density for decomposable log-linear 

models. This presents a natural extension of the hyper Dirichlet distribution to 

non-decomposable models. 

The use of Gibbs samphng, based on adaptive rejection samphng, to obtain a 

Monte Carlo sample from prior and posterior conditional Dirichlet distributions 

is described in Chapter 4. The performance of this sampler is assessed, and it is 

found to mix well, producing samples which are not highly dependent. 

Chapter 5 concerns model determination, and focuses on applications where 

conditional Dirichlet prior distributions are used. The calculation of Bayes fac-

tors for comparing models requires both prior and posterior normalising con-

stants, and Laplace's method for the approximation of integrals is introduced 

and applied. However, it is found to perform poorly where prior parameters take 

small values. The method of bridge sampling, which requires a Monte Carlo 

sample, is introduced and found to produce good results, even for small prior 

l^arameters. 

Jeffreys' prior is introduced in Chapter 6. An explicit expression is presented 

for the Jeffreys' prior for a decomposable log-linear model, and in many cases this 

is found to be a product of independent Dirichlet distributions for the par ameters 
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of a particular decomposition of the model. For other decomposable models, 

Monte Carlo samples can be obtained using Aletropohs Hastings samphng, and 

then bridge sampling applied to obtain the prior normalising constants. 

In Chapter 7, the choice of prior distribution is considered in further detail. 

Unit information priors, for which easy approximations to marginal likelihoods 

are available, are discussed. The relationship between the Laplace approximation 

and the Schwarz criterion is investigated for marginal likelihoods for log-linear 

models under multinomial sampling. It is shown that marginal likelihoods us-

ing Jeffreys' prior may be approximated by a modihed version of the Schwarz 

approximation, with error of order 0(7),"^). 

Chapter 8 illustrates the various ideas introduced in the thesis on two data 

analyses. 

Finally, the results presented in the thesis are discussed in Chapter 9, and 

suggestions are given for future work. 



Chapte r 2 

Review of Previous Work 

2.1 Dirichlet Distribution 

The focus of this thesis is on the Bayesian analysis of log-linear models using 

reference or vague prior distributions, for situations where httle prior informa-

tion is available. We will pay particular attention to distributions based on the 

distribution. The Dirichlet distribution is a natural choice of prior dis-

tribution for cell probabilities p (which are positive and sum to one). Its density 

has the form 

26/ 

where a: are parameters which control the location and dispersion of the distri-

bution, and CK = 

Under multinomial sampling, the Hkehhood function for a saturated log-linear 

model is given by 

oc 

Hence the Dirichlet distribution is a conjugate prior distribution for a saturated 

log-linear model, as it leads to a Dirichlet posterior distribution with density of 

18 
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the form 

(2 .1 ) 

Conjugacy is convenient in Bayesian statistical analysis as it may (aa in tliis 

case) result in tractable computation. Rirthermore, prior specification may be 

facilitated if conjugacy is a result of prior and likelihood having a similar form. 

In such cases the 'information content' of the prior may be straightforward to 

specify. 

As may be seen from expression (2.1), the parameters cc may be considered 

as a 'prior cell count'. Hence, for reference analyses, small common values of 

o:(%) seem sensible. Indeed, Lindley (1964) considered the limiting caae where 

a:(2) = 0, producing an improper prior density (which does not integrate to 1). 

The problem with this approach is that it will lead to an improper posterior 

density if any cells have zero samples. 

Setting Q!(2) = 1 results in a uniform prior (Lidstone, 1920), a conventional 

choice for a noninformative prior density. Two other popular choices for a;(2) 

exist which are preferred in this thesis. The Srst is a!(i) = ^ (Je&eys, 1946), 

which is known as Jeffreys' prior, ajid will be considered in detail in Chapter 6. 

The second is 0!(%) — jjj (Perks, 1947), which has the appealing interpretation 

of a single prior observation distributed throughout the table, and is applied to 

various examples throughout the thesis. 

This interpretation of a Dirichlet distribution, via prior samples, makes it 

an attractive prior for use in the analysis of log-linear models. A natural ex-

tension of the Dirichlet distribution to decomposable graphical models is the 

hyper Dirichlet distribution, where each vector of clique marginal probabilities 

is distributed as Dirichlet. In this thesis, we consider another extension of the 

Dirichlet distribution, the conditional Dirichlet distribution, obtained from a sat-

urated distribution by conditioning on constraints which determine a particular 

log-linear model. Consideration of this distribution is a major component of 
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Chapter 3. 

2.2 Normal Distribution 

As defined in section 1.2, the log-hnear model parameters are unconstrained and 

allowed to take any real value, so that E A natural prior distribution 

for these parameters may therefore be multivariate normal, ie. E), 

for suitable mean /Lt and variance 2. The use of such a distribution was first 

investigated by Good (1956), though this approach was motivated by the desire to 

obtain smoothed estimates for cell probabilities with small observed frequencies, 

an idea further developed by Lenoard (1975) and Laird (1978). The purpose 

of Knuiman and Speed (1988) was to use a Normal distribution to effectively 

encapsulate prior information into the analysis of contingency tables. 

Their approach used a multivariate Normal prior for aU parameters together, 

and as such allowed separate specification of prior information for each log-linear 

model main effect or interaction term. However, they found the use of such a 

prior resulted in a generally intractable posterior distribution, and so developed a 

measure of posterior dispersion based on the curvature of the log of the posterior 

density at its mode. 

Posterior inference using Normal priors, baaed on Markov chain Monte Carlo 

sampling, is possible following results by Dellaportaa and Smith (1993). They 

present a method for sampling from a wide range of generalised linear models 

using Gibbs sampling. Their Gibbs sampler is based on the adaptive rejection 

samphng method proposed by Gilks and Wild (1992), wliich is a technique for 

sampling from any log-concave univariate probability density function, and is 

described in detail in Chapter 4. Forster and Skene (1994) used a similar Gibbs 

sampler to obtain posterior samples, for multinomial data, for prior distributions 

from the ^ family. This is a class of distributions introduced by Aitchison (1985), 

which includes the logistic Normal and Dirichlet distributions. 
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The use of Normal distributions by Albert (1996) in a model selection context 

will be reviewed later in this Chapter, and the use of Normal distributions by 

Dellaportas and Forster (1999) is explained in Chapter 7 in the context of unit 

information priors. 

2.3 Graphical Models 

The use of graphs to represent the pattern of associations in statistical models 

was introduced in section 1.2.2. Such use dates back to Wright (1921), but 

more recently it was Darroch, Lauritzen and Speed (1980) who used graphs 

in contingency table analysis, defining the subset of the hierarchical log-linear 

models known as graphical models. 

Early adopters of methods within a Bayesian framework were Spiegelhalter 

and Lauritzen (1990), and Dawid and Lauritzen (1993). Madigan and York 

(1995) presented a comprehensive discussion on Bayesian graphical models for a 

variety of discrete data problems. They first considered the problem of double 

sampling, in particular an example analysed by Lie et al (1994), and analysed 

within a Bayesian graphical model framework by York et al (1995). Graphical 

modelling was shown to allow prior information to be eEectively incorporated into 

the analysis, and model uncertaint)'̂  properly accounted for. Posterior analyses 

were more straightforward than those of Lie et al, and complex models could be 

considered without di@culty. 

A second use of graphical modelling which they considered was in closed pop-

ulation estimation. They considered an example previously analysed by Fienberg 

(1972) and Bishop et al (1975) using log-linear models. However, these analy-

ses failed to eEectively deal with prior knowledge of the population size, and 

prior knowledge about covaiiates was also difficult to encapsulate, in particular 

with missing values. Decomposable undirected graphical models were shown to 

lead to more effective analyses, allowing full use of prior knowledge based on 
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well-iinderstood quantities, and accounting for model uncertainty. 

One distribution deEned solely for decomposable giaphical models, the hy-

per Dirichlet distribution, admits straightforward inferences due to the easy im-

plementation of Monte Carlo methods in such cases. Marginal inference for a 

particular model is straightforward, and described in section 3.2.2. Also, model 

comparison may be performed using calculations local to single chques (Madigan 

and Raftery, 1994). 

2.4 Model Uncertainty 

2.4.1 Bayes Factors 

The Bayes factor was deSned in section 1.4.2 aa a measure of evidence in favour 

of model mi against model ?7i2. It is given by the expression 

In order to interpret a Bayes factor Big, a commonly used method is to 

consider the value of twice its natural logarithm, as this is on a similar scale 

to the classical likelihood ratio (deviance) statistic. Indeed, the Bayes factor is 

often seen is a Bayesian version of this classical statistic (Berger, 1985). 

Several authors have offered suggestions as to how to interpret the value of 

the Bayes factor. Table 2.1 is based on figures suggested by Raftery (1996) and 

Kass and Raftery (1995), which are in turn based on suggestions of Jeffreys 

(1961). 

Note that the choice of prior distribution is especially crucial in a model-

selection problem with vague prior information, due to the sensitivity of the 

Bayes factor in such cases. In general, prior distributions which are excessively 

diffuse may tend to favour simpler models. 
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2 log gi2 Evidence for mi 
< 0 Xegati\-e (supports 7712) 

0 to 2 Low 
2 to 6 Positive 

6 to 10 Strong 
> 10 0\'erwhelming 

Table 2.1: Interpretation of Bayes factors 

An alternative to a vague proper prior is to choose an improper prior. For 

example, in a multinomial analysis, we might consider the limiting form of the 

Dirichlet distribution, 

/(p) 

i 

The problem with this is that the marginal likelihood (and hence Bayes factor) 

is only defined up to an arbitrary constant, though a method of assigning a value 

to this constant for certain examples is given by Spiegelhalter and Smith (1981). 

A solution to this problem is to use partial Bayes factors, first introduced by 

Lempers (1971). Such an approach avoids the appearance of arbitrary constants 

(from improper priors) in the Bayes factor by partitioning the data into two 

parts (Mi,7%2)- The first part (the training sample) is used to obtain a 

posterior distribution for model parameters 0, and this is then used as a prior 

distribution in a Bayes factor for 712- O'Hagan (1991) uses a proportion of the 

data for training, whereas Berger and Pericchi (1993) use a training sample of 

minimal size (de6ned as the smallest sample size ?7io which gives proper posterior 

distributions under both models). The problem of which units to choose for the 

training sample was considered b)' Berger and Pericchi, who suggested using all 

possible training samples and a\ eraging the results or, when there are a large 

number of possible choices, averaging a random sample of choices. They call the 

resulting partial Bayes factor an intrinsic Bayes factor. 

A further refinement of the partial Bayes factor was oEered by O'Hagan 

(1995), and developed De Santis and Spezzaderri (1999). O'Hagan defines a 
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Pactional Bayes factor, which avoids the problem of choosing a training sample. 

Instead, the only choice which must be made is what fraction 1 — 6 of the data to 

use in the Bayes factor. O'Hagan advocates the choice 6 = max {mo, log n,} 

for general use. 

However, it seems imprudent to use improper priors, and unnecessary to 

use fractional Bayes factors, when a rich collection of proper vague priors are 

available, such as those based on the Dirichlet distribution, for log-linear models. 

Bayes factors based on such priors have been researched by several authors, for 

example Gunel and Dickey (1974) and Madigan and Raftery (1994), and such 

priors are considered in tWs thesis. 

2.4.2 Compu ta t i on 

The problem with the calculation of Bayes factors is that the integrals in (2.2) are, 

in general, analytically intractable, though we note that exact results are possible 

for exponential family distributions with particular conjugate priors (DeGroot 

1970). Therefore we must, in general, employ numerical methods to evaluate 

such integrals. Computation of marginal densities is a widely researched topic, 

particularly in the context of Bayesian model selection (for example Kass and 

Raftery, 1995) and many methods are available. 

Albert (1996) presented a Bayesian procedure for the selection of Poisson 

log-linear models using mixtures of multivariate Normal distributions to model 

prior opinion. His method partitioned the parameter vector into subsets 

/3 = (7),/3i,...,/3g), where the elements of are non-zero, but the elements 

of may be zero. A Normal distribution was then assigned to with 

mean 0 and variance matrix E, where has a block-diagonal structiure of mul-

tiples of identity matrices, with zeros corresponding to and a single dispersion 

parameter for each . Such prior distributions model prior behefs for each of 

the 2̂  possible models. Hypotheses setting = 0 correspond to letting tend 
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to infinity, whereas h^-potheses for non-zero values require a choice to be made 

for This choice is not arbitrary, as different values will have a pronoimced 

effect on the Bayes factor. 

Albert's proposal was to place a prior on motivated by the approach of 

Good (1976). Following applications to examples involving two- and three-way 

contingency tables, he suggested that should have a distri-

bution, where the choice of 6; depends on prior information, and may vary, 

though his advocated choice z/, = 1 corresponds to a set of Cauchy distributions. 

For cases where the parameters are known, posterior model probabilities 

are available using a Taylor series expansion and applying Laplace's method for 

integrals. The resulting approximation was found to be very accurate. 

In the more general case where each has an associated probability distri-

bution, numerical integration techniques are needed to determine the posterior 

model probabilities. This is reasonably straightforward for examples in small di-

mensions, and Albert gave an appropriate expression, together with an iterative 

extension appropriate in the more general case. Both were found to produce 

accurate results. 

A more general application of Laplace's method to generalised linear models 

was investigated by Raftery (1996), and this work is reviewed in Chapter 5. 

Alternative approaches for calculating marginal hkelihoods are available which 

use Monte Carlo samples, and a review of such work by Diciccio, Kass, Raftery 

and Wasserman (1997) is also in Chapter 5. A particular example of such a 

method used in this thesis is bridge sampling, which is applied in section 5.4.2 to 

the conditional Dirichlet distribution. Methods of estimating model probabilities 

using Markov chain Alonte Carlo approaches are reviewed in section 2.4.4. 
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2.4.3 Model Averaging 

Model averaging waa introduced in section 1.4.2, where the posterior distribution 

of a quantity of interest, say î , was given by 

This is a good way of accounting for model uncertainty, which involves the pos-

terior probabilities for each potential model. It allows all potential models to 

be considered, rather than the seemingly ad hoc approach of conditioning on a 

single model, selected using a sequence of pairwise model compeirisons. 

A solution proposed by Madigan and Raftery (1994), known as Occam's 

window, was to eliminate many of the models from (2.3). Their approach Rrst 

eliminates any model with probability much smaller than the most probable 

model, then any model with probability lower than a model nested within it. 

They gave two algorithms for identifying a set of potentially acceptable models. 

Use of this strategy typically reduces the number of models to less than 100, and 

often to under 10 (Hoeting, Madigan, Raftery and Vohnsky, 1999). 

Suggested prior distributions were given by Madigan and Raftery for apph-

cations to both directed and undirected decomposable models. Both these are 

based on the Dirichlet distribution - specifically they used hyper Dirichlet distri-

butions. They also presented a method for elicitation of such priors, appropriate 

for application in expert systems :̂ 'ith a potentially large mmiber of variables, 

ensuring consistency between the directed and undirected approaches. 

Application was made to identical datasets using both types of graphical 

representation, and similar results obtained. However, in general, the undirected 

approach was preferred as an ordering of the variables is then not needed a pnori. 

It is straightforward to proceed via this method as comparisons between models 

differing by a single edge are possible using calculations local to single cliques. 
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2.4.4 Markov Chain Monte Carlo Methods 

An alternative (and more commonly used) approach to dealing with large num-

bers of competing models is to use Markov chain Monte Carlo methods. This 

allows all possible models to be considered, as opposed to the 'Occam's window' 

approach which excludes many models from the analysis. A Markov chain is 

constructed so as to obtain a sample from /(m,, and the posterior model 

probabihties then estimated from this using the Monte Carlo sample 

proportions. 

The 'reversible jump' method of sampling was introduced by Green (1995). 

He presented a general description of the method, together with a particular 

implementation which may be adopted for log-linear models. This method was 

adapted by Dellaportas and Forster (1999) and applied to several classes of log-

linear models. A brief description of Green's method, and a review of the work 

by Dellaportas and Forster is given below. 

Suppose we have Af models, and that m G Ttf. Let the state of the Markov 

chain at time ^ be denoted . At each step, there are diSerent possible 

types of move. 

Suppose that move type p is a proposed move to m', a model with a single 

additional term and with parameter vector of higher dimension than 

This parameter vector is constructed by generating a vector u which has di-

mension equal to the difference in dimensions of the two models, using proposal 

distribution gp(u), and setting = (0^\u). The 'reverse' method is used for 

a move of type p to a model with a single term removed (ie. discard u). Moves 

are accepted with probabilities which take similar forms to those in Metropolis 

Hastings sampling. 

An alternative proposal is the 'null' mo'X'e, where Model pa-

rameters may, howe\'er, be changed. A Alarkov chain constructed using all the 

above will have equilibrium distribution /(m,0m|?T'). 
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Dellaportaa and Forster applied this method to the set of general log-hnear 

interaction models without hierarchical constraints. In this case, the model pa-

rameters 0m are those model parameters \\'hich are non-zero in the model 

concerned. Their implementation considers each of the model terms as possible 

move types, so that log-linear model terms and their corresponding parameters 

are continually added to, and removed from, the model. They allowed each non-

null move to be made with equal probability, which simphfies the expression for 

the acceptance probabilities. 

Dellaportas and Forster's null move is to use a Gibbs sampling method to 

obtain a sample for the elements of They used a multivariate normal distri-

bution fur gp(u), whose mean and variance was chosen, by investigating a 'pilot 

chain' of null moves, to optimise the performance of the procedure. They also 

assumed all models to have equal probability a pnon., and set the probability 

of the null move r = 0.25. They found the method performed well in various 

apphcations. 

A further application of this theory was made to hierarchical log-linear mod-

els, by constructing the move probabihties so that only moves to neighbouring 

hierarchical models are proposed. This is possible as any hierarchical model 

may be reached from another via only models which are themselves hierarchical. 

Models where any main effect is absent were also excluded. The method was 

also applied to graphical models, by considering at each stage of the chain the 

removal of, or addition of, an edge to the graph. Note that in this instance 

multiple log-linear model terms may be added or deleted at each stage, depend-

ing on the edge. Finally, application was made to decomposable models, using 

the same method as for graphical models but with zero probabilities /(m) for 

non-decomposable models. 

This application is similar to the method developed by Madigan and York 

(1995), who used a hyper Dirichlet prior distribution for the model parameters. 
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instead of a normal distribution. Their use of a hyper Dirichlet distribution 

allows the Baycs factor to be exactly and easily computed at each step, using 

calculations local to single cliques (Aladigan and Raftery, 1994, Dawid and Lau-

ritzen, 1989). Alarkov chain ATonte Carlo samphng may be performed for the 

/(m) margin directly (z.e. there is no need to sample from 0^)- Their method 

proved extremely elective, with runs of 10,000 or less typically adequate. 

Alternative AiCAIC methods of calculating posterior model probabilities are 

available, many of which can be formulated as special cases of the method of re-

versible jmnp. These include independence sampling, where the proposed model 

is not allowed to depend on the current model, and a method developed by Car-

lin and Chib (1995) based on Gibbs sampling. However, the former does not, 

in general, produce good results, and the latter has associated computational 

difhculties (Dellaportas, Forster and Ntzoufras, 2001). 

Raftery, Madigan and Hoeting (1997) applied both Occam's window and 

MCMC methods to model averaging for linear regression models, finding both to 

provide satisfactory results. However, Occam's window was better when the aim 

was to investigate the relationships between the variables, and MCMC methods 

better for predictive analysis and for obtaining the posterior distribution of a 

particular quantity. 



Chap te r 3 

Pr iors for Log-Linear Model 

Pa rame te r s 

An important choice in the analysis of log-linear models is that of the prior 

distribution /(p). The choice of prior distribution is especially crucial in a model 

selection problem, due to the sensitivity of the Bayes factor to the choice of 

prior, whereby certain prior distributions may tend to favour particular models, 

for example complex models, and others may favour simpler models. 

The prior distribution encapsulates the previous information about the cell 

probabihties p, which may be obtained from expert opinion, previous data, or 

some other source. However, this information, even if available, is often di&cult 

to express as a probability distribution. Hence it is often useful to perform a 'ref-

erence' analysis, where the prior distribution is called a reference, noninformative 

or diEuse prior, which also enables us to examine the influence of informative 

priors compared with the reference approach. 

A number of priors exist which may be used for the log-linear model parame-

ters, and which are suitable for a reference analysis. Several of these distributions 

are considered in this Chapter. 

30 
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3.1 Distributions Based on the Normal Distri-

bution 

As defined in section 2.2, the log-linear model parameters may be distributed as 

multivariate normal, z.e. Z), where 7̂  represents the prior behef about 

the location of the parameters, and Z represents the strength of this belief. For 

a reference analysis, the problem is whether it is possible to choose values for 

and E so that this prior distribution is noninformative. 

The prior on induces a prior distribution on logp (or equivalently on log //). 

Forster (1999) showed that a multivariate normal prior for log/j, must have a 

certain form in order for it to be invariant to permutations of the set of levels 

7̂  of each factor (a sensible requirement for a reference prior). This distribution 

takes the form 

log/2 A^(61,^a^7;) 
acr 

where the are projection matrices given by 

Ta = 

ler 

and is a d X identity matrix and a d x cf matrix of I's. The prior distri-

butions for the model parameters with the exception of /30 (corresponding 

to the intercept term), are then given by 

/3. ~ a C r 

where 

" T/i II ) o c r 
' 7 G a 7 6 a ^ ^ 

The prior for is 

A - A (̂T,â 0) 
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for a speciGed value of r. It is necessary to assume independence of the model 

parameters, though this is not restrictive as it seems sensible to do so if we are 

to perform a reference analysis. 

3.2 Distributions based on the Dirichlet Distri-

bution 

3.2.1 Condi t ional Dirichlet Dis t r ibu t ion 

An alternative choice of prior distribution is based on the Dirichlet distribution. 

This was defined for the saturated model in section 2.1 as 

tei 

where a — o;(2). 

For this saturated model, a Dirichlet prior for the cell probabilities p implies 

a prior for /3, any vector of log-linear model parameters. In order to determine 

the form of this prior, it is useful to first transform the variables as follows. 

Define the reference-cell logit in the standard way (as in section 1.3) 

= logp(2) -logp(%o) 

The Jacobian, | , for the transformation from to is easy to determine, 

by applying the expression 

i9p 



3. Priors for Log-Linear Model Parameters 33 

A standard linear algebra result gi\'es iis 

\diag{a) + bc^| = j 1 + ^ 
6(2)c(i) 

and so, applying this, we have 

dp 
i + y f W i 17 — 

, p(%o) / 44 p(j) 
\ Irlo / 

1 + 
1 _ p N \ r r 

a A ) 11 
1 

p(to) y 44 p(j) 
Jrl'O 

n 4 p(j) 

The Jacobian | J| for the transformation from to is therefore given by 

I J| = 
^0 

I I p W ) j 

This Jacobian is for the reference cell logit 0 ,̂ but the Jacobian for the symmetric 

logit is easy to determine, as we know that for some matrix M, so 

that I = I |M|. It is straightforward to show that |M| = m, so that 

1 
n X ; ) 

It is now possible to write down the Dirichlet distribution for 0: 
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g&n,".'."" 
r(a) pr 

IE/ 

r(̂ ) 

where a = c*:(̂ )-

A particular log-linear model sets ^ = X/3, for suitable (n xp) design matrix 

%, where p is the number of parameters in the model. Therefore, a distribution 

for /) in the saturated model is obtained by a simple linear transformation, 

involving the ((n — 1) x p) matrix %* which is the design matrix % excluding 

the row for io. Note that this is possible since the ^ vector is linearly dependent, 

satisfying = 0. 

We therefore obtain a distribution for /3 

y(/3) o( n&i 

oc ^ ^ (3.2) 

We shall define the CoTtdzfrnzia/ distribution for a particular log-

linear model as that distribution obtained from expression (3.2) by conditioning 

on certain /3 terms to be zero. A more formal deAnition proceeds as follows. 

To obtain a conditional Dirichlet distribution for a particular (non-saturated) 

model, we Rrst partition /3 into those effects in the model (/3J and those not in 

the model (/̂ q), and condition on = 0. We also partition X into containing 
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the rolumns corresponding to the parameters in , and ATo containing the others. 

We may order the columns in A7 such that precedes %0' Then the conditional 

Dirichlet distribution for is obtained from expression (3.2) by simiming over 

non-zero only: 

/(/3) 

Extensive investigation of this distribution for a wide range of models showed 

it to be analytically intractable in general. Normalising constants were difficult 

(or impossible) to evaluate, and it also proved impossible (in general) to obtain 

marginal likelihoods (necessary for the calculation of Bayes factors) from the 

induced posterior distributions. Therefore, posterior analysis using this class of 

priors is not straightforward. However, a hypothesised relationship between this 

distribution and the hyper Dirichlet distribution is considered in the next section, 

and such a relationship would enable this intuitively attractive distribution to 

be more readily used in practice. 

Borel Paradox 

The method of conditioning used to obtain the conditional Dirichlet distribution 

can be thought of as conditioning on a particular log-linear model. Care must be 

taken, however, as the prior distribution obtained through conditioning on a set 

of complex constraints is not invariant imder general reparameterisation of those 

constraints. This is known as the Borel paradox. However, the prior distributions 

induced under various parameterisations may be shown to be related by the 

Borel-Kolmogorov dependence formula (Gunel and Dickey, 1974): 

Suppose we have two parameterisations of a model, ^ = (^1,^2) and 8 = 

(01.02), a submodel which specifies 01 only, and an ec^uivalent submodel ^ 

concerning 01 only. Then the relationship between the priors for 03 mider the 

submodels obtained by conditioning is given by the Borel-Kolmogorov depen-
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deuce formula 

f(9,\H)<xf{e2\H) 
de. 

981 
IS Therefore the induced prior is the same if and only if the Jacobian 

constant in 

As an example, consider a 2 x 2 contingency table. Under the saturated model, 

the cell probabilities p are distributed as The independence model 

may be specified by a number of equivalent constraints. These include — 

^ = 0- 1 = 1. (Note that p(l+) - Al-

though each of the constraints define the same independence model, the marginal 

distributions obtained for p(l+) by conditioning on each constraint are not iden-

tical. Indeed, conditioning on ^ ^ = 0, - 1 and ^ 

in turn results in — l,a(2-|-) — 1), Be^a(o!(l4-),a;(2-i-) — 1) and 

Be^a(o!(l-t-),o;(2+)) distributions respectively for p(l+). 

Now consider the Bayes factor for comparing the saturated model (5") and 

independence model (/), based only on marginal data This is given by 

the expression 

Hence, for sensible inference, the marginal prior density of p(l+) should be the 

same under both models. We know that, under the saturated model, p(l+) is 

distributed as Be(a(a;(H-), a'(2-|-)). We should therefore de&ne the independence 

model using the constraint p|i2jp(2ij — 1 to obtain a consistent marginal density 

in this case. It will be showm that the conditional Dirichlet distribution results 

in such consistent marginal densities. 
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3.2.2 Hyper Dirichlet Dis t r ibut ion 

A sub-class of models which admit straightforward analyses are decomposable 

log-linear models. We may parameterise these models directly in terms of the 

chque marginal cell probabilities. The Diric/tfet distribution was proposed 

by Dawid and Lauritzen (1993) as a conjugate prior distribution for the parame-

ters of a decomposable log-linear model. A useful feature of this prior distribution 

is that the resulting posterior is also hyper Dirichlet and so may be decomposed 

by cliques, enabling straightforward analyses. 

The hyper Dirichlet prior is deAned for a decomposable model represented by 

an imdirected graph as follows: Each chque must have an independent Dirichlet 

distribution, and the marginal distributions on overlapping portions of cliques 

must be consistent regardless of the clique from which they are deri\'ed. One 

way of generating such a distribution is by deriving the prior distributions on 

the chques as the marginal distributions from a Dirichlet distribution on the full 

set of probabilities. 

For a directed graph, we know that a cell probabihty may be written 

= n 
7 

The hyper Dirichlet distribution places independent Dirichlet distributions on 

each set of conditional probabilities corresponding to a particular 'y,Zpa(')')- k 

order to ensure hyper-consistency in this instance, we require that if a variable 

appears in multiple sets of conditional probabilities, then its marginal density is 

the same regardless of from where it is derived. 

Alarginal inference from a hyper Dirichlet distribution is straightforward. Us-

ing the directed representation, we can -Ririte down the h}'per Dirichlet distribu-

tion as a product of independent Dirichlet distributions. Monte Carlo samples 

may then be obtained from each of these distributions in tiun by sampling from 



3. Pr iors for Log-Linear Model Parameters 38 

independent gamma distributions and applying the result that if Zi,Z2, - "Zp are 

independent samples from 6) distributions, then . . . , 

is a sample from a 02, - -, Op) distribu ion. 

3.3 Relationship between Conditional Dirichlet 

and Hyper Dirichlet Distributions 

In this section, the hypothesis that conditional Dirichlet and hyper Dirichlet dis-

tributions are equivalent for decomposable log-linear models will be investigated. 

Although investigation of the form of the conditional Dirichlet density /(/3) (as 

determined in section 3.2) for specific models did not yield a generally tractable 

expression, several models did in fact highlight the hypothesised relationship. 

This is exemplified here, and these examples provide an introduction to, and 

motivation for, the general proof which follows. 

Consider the 2 x 2 independence model (ie. the model with cliques {/!} and 

{B}) which is represented graphically below. 

e e 
A B 

Substituting into equation (3.2), an expression for /(/3) is obtained: 

g(a(+l)-c,(+2))/3i g(a(l+)-a(2+))/32 
— 0) OC 

(e/̂ i -H (ê 2 -t-

where, for example, a'(+l) = 13%.,2=1'̂ (̂ )- We therefore have a factorisation 

into distributions on each clique. These distributions may then be used to derive 

marginal distributions for p(l-t-) and p(4-l): 

/ (p(+l)) ocp(+l)''(+^)-Xl -p(+l))''(+-)-^ 

/ ( X i + ) ) (X p(i+)''(^+)-Xi - p(i+))''("+)-^ 
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which shows that the margins for and B each have Beta distributions. For 

example, the margin for B, p(l+), has a Be^a(a(l+), distribution, which 

is the same as the distribution obtained by marginalising from the saturated 

model. Hence the conditional distributions produced by conditioning on the 

model correspond to the marginal distributions for the cliques, which is consistent 

with the hyper Dirichlet distribution. Thus for this particular log-linear model, 

the conditional Dirichlet distribution is identical to the equivalent hyper Dirichlet 

distribution. 

A similar investigation was performed for the 2 x 2 x 2 model with cliques 

and {B, C}, represented graphically by 

However, in this case, an expression was obtained for /(/)) which does not 

readily factorise. A transformation was therefore necessary, and a set of A/s were 

deSned so that and A2 correspond to the logits of = 1) and P(v4|B = 2) 

respectively, A3 ai:d A4 to the logits of P(C|B = 1) and f (C|B — 2), and A5 to 

the logit of f (B). Using these, an expression for /(A) is obtained: 

ga(+21)Ai + Q:(+22) A2-rQ:(2+l) A3+o:(2+2)A4+a(H—[-2)A5 

^ -)- g-*'! )o(++l) _j_ gAa ̂ Q{++1) 2̂ + e'̂ 4̂ a(4-+2)̂ 2 -|- g'̂ 5̂ a(++l) 

A factorisation into independent distributions is apparent, with each of f (AjB = 

1), P(v4|B = 2), P(C|B = 1), f ( C | B = 2) and having independent 

Dirichlet distributions. Distributions for the clique margins may also be derived, 

as follows: 

Consider the clique , and heme parameters Ai, Ag and A5. From the 
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above expression, we have 

ga(+21)Ai +Q(+22)A2 4-Q:(++2)A5 
/(Ai, Ag, As) oc ^ )a(++l) _j_ g-̂ 2)"{++2) -|- ĝ 5 )ct(+ + l) 

The identity 

% f =l"g 
U i i i ) J n P(i + +) J 

may be used together with the deSnition of Ai to give p( l l+) = Similar 

expressions may be obtained for p(12+) and p(21+). These may then be used to 

obtain the marginal distribution 

/(p(ll+),p(12+),p(21+)) oc X 

(1 - p ( l l + ) - X 1 2 + ) 

A similar method results in a marginal distribution corresponding to the chque 

{g ,C} 

/(p(+ll) ,p(+12),X+21)) oc X 

(1 - p(+l l ) - X+12) - p(+21))°'(+^^)-^ 

Finally, the distribution for the margin corresponding to variable B may be 

similarly obtained 

y(p(+i+)) ocp(+i)''(+^+)-Xi -1 

As can be seen above, the margin corresponding to variable B hag a 

Be^o(a(+l+),a!(+2+)) distribution, and the margins in cliques and 

(B, C} have D%r2c/iZe((o;(ll+), a(12+), a:(21+), o:(22+)) and D2r2c/iZe((a(+ll), 

a'(+12),Q:(+21),o;(+22)) distributions respectively These distributions, and 

those presented earher for the conditional probabilities, are equivalent to those 
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obtained by meirginalising from the saturated model. Hence, these results show 

agreement with the hyper Dirichlet distribution, and so for this model the con-

ditional Dirichlet distribution is identical to the equivalent hyper Dirichlet dis-

tribution. 

The moti\'ation provided by these examples was further enhanced by using 

Gibbs sampling to obtain prior samples corresponding to a wide variety of more 

complicated models. 

General Proof of the Equivalence of Conditional and Hyper Dirichlet 

Distributions 

The hypothesised equivalence of these two classes of distributions will be proved 

by dehning an association between two different parameterisations of the same 

model. 

As shown in section 3.2.1, using the reference-cell logit, a distribution for 0 

results which is of the form 

(3.3) 
iei 

and that, by conditioning on a particular log-linear model with design matrix X, 

a distribution for ^ is obtained 

/(/)) cx 

oc 

a(%) 

rr. 
1 Izr' ^ 

This distribution is the conditional Dirichlet distribution for the specified 

model. In order to show the equi\'alence of this distribution and the hyper 

Dirichlet distribution, it is necessary to define a one to one relationship between 
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the log-linear model parameters and a set of conditional probabilities. This may 

be done as foHows: 

As the model is a decomposable log-linear model, it may be represented 

by a directed or undirected graph. Let us construct the directed version of the 

graph which represents this model, and obtain a perfect numbering of vertices (as 

explained in section 1.2.3). The set of faxztors is denoted by F, and for each factor 

"-y E r, Zy is the set of levels of this factor. Ŵ e may obtain a perfect numbering 

of r, which assigns an order to this set, which without loss of generality will now 

be denoted by T = ( 1 , 2 , . . . , where m = |r| . 

As the model is decomposable, we know that any ceU probabihty may be 

directly expressed as a function of the marginal probabilities of the chques of 

the model. This definition is directly applicable to an undirected graphical rep-

resentation of a log-linear model. However, in this case, having constructed a 

directed representation of this model, and an associated perfect ordering, we can 

use an equivalent expression of a cell probability in terms of conditional 

probabilities, given by 

P(̂ ) = ][% -P(l' = = Va(7)) 
7=1 

where max {po(i')} < 'y for all "y. Note that, for clarity, throughout this proof bold 

type will not necessarily be used to represent vectors; the levels and dimension 

of quantities should be apparent by subscripts, where necessary. 

Any log-linear model term corresponds to a subset of F. A one to one corre-

spondence between the log-linear model terms and the logits of the probabilities 

defined above may now be explicitly defined. For each log-linear model term, 

T C r , let t = max(T'). There are two possible cases, and each one admits a 

slightly diEerent association. 
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(i) If T \ ^ associate with the logit of the conditional proba-

bility P(t = 

(ii) If T \ < C then associate with the logit of the probability 

f (t = = 1). 

The relationship defined above can be seen to be a one to one relationship 

by the following argument: 

There are clearly the same nimiber of parameters in each case, as we have the 

same model correctly parameterised in two different ways. It remains to show 

that the conditional probabilities to which we are associating are all appropriate 

for the decomposable model concerned. This is a direct consequence of the 

conditional independences imphed by log-linear models. It is clear that 

must be a subset of - otherwise, there is some s ^ pa'(t), such that s < t 

and t and g are not conditionally independent, given 

We shall now define the logits of the conditional probabihties. It was shown 

in section 1.3 that, using logit transformation, a cell probability may be written 

in general as 

Now consider the reference-cell logit with respect to 'y = 1 of the conditional 

probabihty p('-y = 2̂ |po('-y) = %pa('y)), which we shall denote by %pa('y)). Using 

the above equation, this is given by 

— log 

log 

E 
> J p a { T ) = ' ' p a ( 7 ) 

^ exp{(X/))(j)} 

E X;, ' ' ) 
i7 —1 Jpa(7)— 0̂(7) 

lOE exp{(X/3)(j)} 
7̂ —1 Jpa(7)—'pa(7, 
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The prior distribution corresponding to the conditional Dirichlet case is pa-

rameterised in terms of the log-linear model parameters and written 

Using the expression 

= r i ^ 41^(^(7) = W-y)) 

we obtain 

JW a n ] ] [ f (-y = 2̂  1^0(7) = W-y)) 
c,(%) 

i ^ 

7 7̂'̂ pa{7) 

still as a fmiction of /3. This may be written in terms of the logits %pa('y)), 

and is written as a function of these parameters 

f(rh\ fY TT TT exp Ig-i^pai-y){i-y, Zpo('y))} 
^ ^ ' l i 11 / r , , . ,-,\°7,po(7) 

7 4,W-y) 
!J| (3.4) 

where | J| is the Jacobian for the transformation from /3 to We hypothesise 

that I J| is independent of model parameters. Indeed, we hypothesise that J is 

upper triangular, and that all the terms on the diagonal are equal to 1, hence 

that \J\ = 1. 

DiEerentiating the logits 2pa('y)) with respect to log-linear model param-
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eter corresponding to the levels of the log-linear model term T gives 

T, A:̂ ) exp(X^)(;) 

:r, exp(%/?)(;) 

= F(T' = A:Th—4'P(^(7)—W?))" 

f (T = Airh = l,pa(7) = 

as z(j, T, /û r) = 1 if = /cT-, or 0 otherwise. 

In order to show that J is upper triangular, we must determine the value of 

(3.5) for a given T. We shall consider various cases for the model term T. 

Dehne two sets yl,y and as follows: let the set be those variables 'below' 

"X in the perfect ordering, and the set be those variables above "y, but not par-

ents of Then the set of all possible terms in the model is {''y,pa('y), Ay, . All 

terms in this set are distinct by deAnition. T lies in at least one of these following 

sets, and we shall consider each T in the 6rst set on the list to which it corre-

sponds. Hence for example when we consider Ay U we are only considering 

T including elements of both v4 and B. 

1- 7 

2. 

3. Ay 

4. B-y 

5. Upo('y) 

6. 1 U 

7. ^UB.y 
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8. U ,4. 

9. pa('y) U 

10. 

IL "Y Upa('y) U 

12. "-y Upo('-y) U 

13. "y U U 

14. po('')') U U 

15. "x U pa(i') U U B.y 

This is an exhaustive hst, however it is possible to eliminate several of these 

sets. By the definition of a directed graph for a log-linear model, it is impossible 

to have a log-linear model term that includes 'y and any variables which are not 

either parents or descendants of') (i.e. A). This excludes cases 6, 11, 13 and 15. 

Also, as the aim is to show that J is upper triangular, and then to determine the 

entries on the diagonal, terms which include any elements of B are of no interest, 

thus eliminating cases 4, 7, 9, 10, 12, and 13. The remaining hve sets of interest 

are given below: 

1. 7 

2. pa('y) 

3. A.-f 

4. Upa(')) 

5. "x Upa(')) 
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Let us now consider the form of the probability corresponding t o ^ (expression 

(3.5)) in each of these cases: 

In case (3), this probabihty is equal to zero, as model term T is a subset of vl 

and therefore T _LL i Ipa('y) by dehnition of the perfect ordering, hence the two 

terms of expression (3.5) cancel. 

In case (2), we also obtain zero, as T C po('y), and hence both terms are 

equal to one if = %po('y), or zero if 7̂  p̂o('Y) -

Similarly, we obtain zeros in caae (4) by combining the previous two cases. 

In this case, T Ti U 72, where C 4̂ and T2 ^ pa(^), and we may re-write 

(3.5) aa 

P{T\ = kxi,T2 = I? — ~ Va(7)) ^ 

PiTi = kxj- T2 = I = ipa{-Y)] 

= P(T!2 = AiTgl"/ = % ,̂pa('y) = (7i = = W-y)) ^ 

f (Tz ^ /cTTgl? = l,pa(?) = = A;2̂ JP(T:i = /cnl? ^ = W?)) 

The second and fourth terms in this expression are equal, since A J1 'y|pa('y). 

The first and third terms are either equal to 1 if = 2pa('y), or 0 if 7̂  %pa('y) -

Hence the expression is zero. 

Prom these three cases, all the blocks below the diagonal are equal to zero, 

and hence J can be said to be block upper triangular. It remains to determine 

the form of the blocks on the diagonal - ie . corresponding to cases (1) and (5). 

In case (1), the probabiHties take the form 

f = S ' M h ) = ^paw) - f ( l ' = = l,pa(?) = Zpow) 

The second term is zero, by definition of the logits and hence the expression 

is equal to 1 if = z-y, and 0 otherwise. Similarly, in case (5), the expression 



3. Priors for Log-Linear Model Pa ramete r s 48 

becomes 

p(l' = = Wv)) -

f (7 = = l,Po(?) = W?)) 

which is also equal to 1 if and = p̂a('y), and 0 otherwise. We may 

therefore order the terms within these blocks so that Ts appear on the diagonal, 

with zeros elsewhere. 

The Jacobian is therefore upper triangular, and all entries on the diagonal 

are equal to 1, so that | J| = L 

We may now re-write expression (3.4) using | J| = 1, and obtain 

This may now be written as a function of conditional probabilities 

/(P) %% ]][ f (7 = I J| 

where now \J\ is the Jacobian of the transformation from (p io p. A set of logit 

parameters exists for each 7,%pa('y), and hence the Jacobian is block diagonal, 

with the determinant of each sub-block equal to f (') = 2̂ |pa(''y) — 

The Jacobian is therefore given by 

^ n n 1 1 ^ ( 7 = 4 i M 7 ) = w 

7 

and hence we obtain 
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/(P) (x 1% n (3-6) 

7 •^7'Va(7) 

The aim of this proof was to show the equivalence of the conditional Dirich-

let and hyper Diriclilet prior distributions for decomposable log-linear models. 

We have showm the existence of a one to one correspondence between the two 

parameterisations of the model corresponding to these two distributions, and 

have shown that the Jacobian, | J|, of the transformation between these two 

parameterisations is equal to 1. Expression (3.6) gives the distribution for the 

conditional probabilities equivalent to the conditional Dirichlet distribution for a 

particular log-hnear model. This distribution is clearly a product of Dirichlet dis-

tributions, and is the distribution obtained by marginalising from the saturated 

model, and hence is hyper Dirichlet. 

It can therefore be concluded that for a particular decomposable log-linear 

model, the induced conditional Dirichlet distribution is identical to the equivalent 

hyper Dirichlet distribution. 

3.4 Discussion 

The conditional Dirichlet distribution has been introduced in this Chapter, and 

this distribution has been shown to be equi\'alent to a hyper Dirichlet distribution 

for a decomposable log-linear model. The conditional Dirichlet distribution is an 

attractive prior distribution as its parameters may be interpreted as prior data, 

and inference using this prior is straightforweird by considering the equivalent 

hyper Dirichlet distribution, which is tractable. 

A further ad\'antage of the conditional Dirichlet distribution is that it is 

defined for any log-linear model, and its relationship to the hyper Dirichlet dis-

tribution allows it to be considered as a natural extension of this distribution to 

non-decomposable models. 



Chap te r 4 

Poster ior Sampling 

In Bayesian statistics, our interest lies in the analysis of the posterior distribu-

tion. This is often a highly multivariate distribution, and so we require meth-

ods to summarise it, typically involving calculating appropriate marginal sum-

maries. However, we frequently find the posterior distribution to be analytically 

intractable, and the marginal distributions of interest are not available analyti-

cally. In such caaes, we can use Monte Carlo methods to obtain a (hypothetical) 

sample from the posterior distribution, from which it is then straightforward 

to obtain a sample from a particular marginal distribution. Methods of sum-

marising the posterior, such as integrating to obtain expectations, may then be 

replaced by equivalent methods using our sample, for example calculating sample 

means to estimate expectations. 

This Chapter introduces the method of Gibbs sampling in order to obtain a 

sample from a potentially intractable distribution. This technique is especially 

useful when applied to conditional Dirichlet distributions, as the priors which we 

have described result in intractable posterior distributions for non-decomposable 

models. Such apphcations will be considered in section 4.2. Note that such 

methods are not necessary when using a hyper Dirichlet distribution (%.e. when 

the model is decomposable), as this distribution is a product of independent 

50 
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Dirichlet distributions, and so it is possible to sample directly from the posterior 

(described in section 3.2.2). 

4.1 Gibbs Sampling 

4.1.1 In t roduc t ion 

The theory of Markov chain Monte Carlo methods was introduced in Chapter 1; 

Gibbs sampling is a particular application of this theory, widely used in Bayesian 

analysis. For example, Dellaportas and Smith (1993) apphed the method to a 

wide class of generalised linear models. 

Using the same notation as previously, suppose we require a sample from the 

distribution with density function y(^), where 0 is p-dimensional, and let the 

(-th iterate generated be denoted by The fimdamental principle of Gibbs 

sampling is to generate each component of ^ one at a time from a imivariate 

conditional distribution. This algorithm, as applied to obtaining a sample from 

the distribution with density /(^), is simimarised below: 

# Choose starting value 0̂ °) = i possibly by maximising 

/(^). 

e Generate from 

# Generate from , p̂°̂ )-

# . . . 

# Generate from . . . , 

A 'new' observation has now been generated. Successive application of 

the process results in a sequence . . . of observations of 0. 
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Note that we do not usually have the conditional densities required in a 

closed form and hence we use the result that the conditional densities are pro-

portional to suitable joint densities (which we have in an im-normalised form), 

and then generate from these densities. For example, 

/(^i, . . . , It is (relatively) straightforward to sample from un-normahsed 

densities, using methods such as rejection sampling. For this apphcation, a mod-

ified version of rejection sampling, kno%m as adaptive rejection sampling (Gilks 

and Wild, 1992) will be used. This is described below. 

Adaptive Rejection Sampling 

Rejection sampling is a common method of sampling independent points from a 

density. A particular advantage of the method is that the normalising constant 

for the density is not required. 

Suppose we require a sample of points from a density /(a:), with domain 

D; and let the im-normalised function be denoted g(a;) (so that / ( i ) — 

Define an envelope function gu(a;) such that Pu(a;) > g(z) for all a; E D, and 

de6ne a squeezing fimction (̂(z:) such that p/(z) < g(z) for all a; E D. The 

sampling algorithm then proceeds as follows 

1. Sample a value z* from gu(a;), and sample a value w from a [/m/orm(0,1) 

distribution. 

2. If lu < then accept a;*. Repeat from 1 imtil the required sample size 

is achieved. 

3. If w < then accept z*. Otherwise, reject a:*. Repeat from 1 until 

required sample size is achieved. 

Clearly, it is only worthwhile using such a sampling method if it is easier to 

obtain a sample from gu(z) than from /(z) . A disadvantage of this method is 
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the diSiciilty in determining a suitable and further work is also needed to 

locate the mode of p(z), often using a standard optimisation method. 

Gilks and Wild (1992) presented a modification of rejection sampling, called 

adaptive rejection samphng, which may be applied to those densities which are 

log-concave (a density function / is log-concave if log / is twice continuously dif-

ferentiable, and its Hessian matrix of second deri\'atives is negative semi-deSnite). 

Their method has two distinct advantages. Firstly, because of the log-concavity, 

it is unnecessary to locate the mode of /(z) . Secondly, fewer evaluations of 

are necessary, as the probability of needing a further evaluation is reduced after 

each rejection by updating the envelope fimctions and squeezing functions to take 

into accoimt all the available information about /(a;). These fimctions are cre-

ated using the fact that any concave function can be bounded by piecewise linear 

upper and lower bounds, constructed by using tangents at, and chords between, 

evaluated points of the function. They converge to /(z) as sampling proceeds. 

Alore detailed explanation of the method of adaptive rejection samphng is given 

by Gilks and Wild (1992). The use of a Gibbs sampler for generalised linear 

models based on the method of adaptiv e rejection sampling was presented by 

Dellaportas and Smith (1993). 

The method of Gibbs sampling based on adaptive rejection samphng is ap-

phed in the next section to the conditional Dirichlet distribution. 

4.1.2 Applicat ion to Condit ional Dirichlet Dis t r ibut ion 

The conditional Dirichlet distribution is, in general, analytically intractable. It 

was therefore necessary to use a computational method to obtain samples hrom 

such distributions. The chosen method was to use Gibbs samphng, and the 

approach is described here. This method may be used to obtain samples from 

both prior and posterior conditional Dirichlet distributions. 

In order to obtain a Gibbs sample from a conditional Dirichlet distribution. 
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it is necessary at each step to sample from the relevant univariate conditional 

distribution. However, as explained in the previous section, this is not often 

available in closed form and indeed this is true here. In order to sample from the 

(readily available) un-normalised joint density, the adaptive rejection sampHng 

approach was chosen. 

The conditional Dirichlet distribution was described in section 3.2.1, and its 

density function given by 

/(/3) oc l l Z G / ^ 

for a model with (n x p) design matrix where p is the number of parameters 

in the log-linear model which sets 9 = X(3, and a is the vector of parameters. 

Note that a: may represent either prior or posterior parameters, with a: —̂  a:+?T, 

in the posterior. 

As the only assumption required for adaptive rejection sampling is that of log-

concavity of the univariate density functions, this is the only check we must make 

before proceeding. A density is log-concave if the second derivative of its log is 

negative de&nite. Hence, we must determine the matrix of second derivatives: 

We may write the density /(/3) as 

log/ = ^ ^ a , z , , / 3 ^ . - a l o g ^ e x p j ^ T , , / 3 ^ . I 
i j i I J J 

= E - a log ^ exp j ^ 
j i t L j 

Note that for the sake of clarity, subscript notation is used in this peirt, as opposed 

to the notation used for the majority of the thesis; subscript z replaces i as an 

argument, and a:(2, j) is replaced by 
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The next step is to obtain the Arst and second derivatives: 

= E Ck 

E.< ixp{E 

-a 

exp < ^ 

^ V ] exp { ^ 

^ exp j ̂  A j E exp j ̂  j 

-Q' - 1 

52 -a 
^ exp j ̂  A j ^ exp j ^ 

E i exp 

37;̂  exp ^ ^ ^ I f ^ exp .{ ^ 

= —a E :c%A:P2 2 ^ a;̂ zpi 

We can now re-express log/(/^) iii matrix form as 

a' 

a/3/3 
log/(/3) = -Q:^^diag(p(^))X-(%^p(^))(X^p(/3)) 

= -0;%^ ^diag(p(/3))-p(/3)p(/3)^^ X 

T 

Hence, in order to prove log-concavity of the whole distribution, we must have 

a X^(diag(p) — pp )̂.YcK > 0 for all a; ^ 0 
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This is equal to the condition 

(A'a:)^(diag(p) — pp^)(A'cK) > 0 for all a ^ 0 

However, (Xa:)^(diag(p) — pp^)(%a:) is the variance of a discrete distribution 

with sample space {(%(%).;% = 1,. . . ,7)1,} , and where and so 

this condition is satisfied and we have log-concavity of the whole density. Log-

concavity of each univariate density is a direct consequence. 

The method of Gibbs sampling using the adaptive rejection method was ap-

plied to the conditional Dirichlet distribution by coding a suitable program in 

C. The program requires the following information as part of an input file: 

# The design matrix X for the log-linear model. 

e The vector of parameters a, representing the cell counts. Note that the 

multinomial-Dirichlet conjugacy, which allows prior parameters to be in-

terpreted as a 'prior sample', means that a is a vector of prior parameters 

in order to sample from the prior distribution. Alternatively, to sample 

from the corresponding posterior distribution, ii-t-CK is used. 

# The required l\Ionte Carlo sample size, expressed as a number of complete 

sample vectors. 

In order to generate the design matrix for a particular log-linear model, an-

other program was written in C. The input to this program is the pattern of 

interactions for the model, expressed in binary form, and the output is the cor-

responding design matrix. 

The Gibbs sampler outputs a sample from the conditional Dirichlet distri-

bution for the specihed model, either in terms of the cell probabilities p (useful 

for the next section) or in terms of the log-linear model parameters (used in a 

later Chapter). 
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4.2 Conditional Dirichlet Samples 

The method of Gibbs samphng from a conditional Dirichlet distribution was 

described in the previous section. As mentioned, this was Erst designed as a way 

to validate the hypothesis of equivalence of the hyper Dirichlet and conditional 

Dirichlet distributions for decomposable models, although its major use in this 

thesis is in bridge sampling, described in Chapter 5. Samples were generated 

from a large number of conditional Dirichlet distributions, and an example of 

this (Example 1) is presented here. The Gibbs sampler is then applied to data 

from a 2̂  table under several log-hnear models (Example 2). 

4.2.1 Example 1 

Consider the 2 x 2 x 2 model which may be represented graphically as 

This model has cliques {A, and {B, C} , and may be parameterised as 

f (B) f (v4|B)P(C|B). A design matrix for such a model is given by 

X = 
1 

7 8 

/ 1 1 1 1 1 

- 1 1 1 - 1 1 

1 - 1 1 - 1 - 1 

- 1 - 1 1 1 - 1 

1 1 - 1 1 - 1 

- 1 1 - 1 - 1 - 1 

1 - 1 - 1 - 1 1 

- 1 - 1 - 1 1 1 

\ 
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The prior chosen for this example is the diAise prior with parameters ^ 

for all i (Perks' prior). 

The hyper Dirichlet distribution may be constructed from the 'full' Dirichlet 

distribution as follows. The distribution for is obtained first, then the 

conditional distributions P(v4|B = 1), f (v4|B = 2), = 1), and f (C|B = 

2) are obtained in such a way that they are consistent with the distribution 

for P(B). In this example, f ( B ) is distributed as a and all the 

conditional densities follow distributions. As is clear from the model 

parameterisation, there are five independent distributions in this example. 

The Gibbs sampler was used to generate samples from this prior, and the 

graphs below (figure 4.1) show kernel density estimates for the five independent 

distributions produced by the sampler, overlaid with the true Dirichlet density. 

All graphs are on the logit scale. 

As can be seen from the graphs, there is excellent agreement between the 

kernel density estimates from the Gibbs samples and the true densities. This is 

to be expected, and validates the quality of the Gibbs sampling code. The sample 

size used throughout is 10000, and the computation time for such a sample is 

negligible (a few seconds). 



4. Posterior Sampling 59 

0 

P(B) 

0 

P(AjB=2) 

P(A|B%1) P(qB=1) 

P(C|B«2) 

Gibbs Sample 
True Density 

Figure 4.1: Plots showing kernel density estimates from Gibbs samples overlaid 
with the true density fimctions 

4.2.2 Example 2 

The Gibbs sampler was used to produce a posterior sample for some data con-

cerning incidence of coronary heart disease. The data was presented by Edwards 

and Havranek (1985), and analysed further by Madigan and Raftery (1994) and 

Dellaportas and Forster (1999). 

The data (presented in table 4.1) concerns 1841 men, who have been cross-

classified in a 2̂  table by six factors for coronary heart disease. The six factors 

are: - Smoking (no or yes); B - Strenuous mental work (no or yes); C -

Strenuous physical work (no or yes); D - Systohc Blood pressure ( < 140 or 

> 140); E - Ratio of a and lipoproteins (< 3 or > 3); F - Family anamnesis 
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of coronary heart disease (negative or positive). 

B No Yes 
No Yes No Yes 

F 
Negative 

Positive 

E D C 
< 3 < 140 No 44 40 112 67 

Yes 129 145 12 23 
> 140 No 35 12 80 33 

Yes 109 67 7 9 
> 3 < 140 No 23 32 70 66 

Yes 50 80 7 13 
> 140 No 24 25 73 57 

Yes 51 63 7 16 
< 3 < 140 No 5 7 21 9 

Yes 9 17 1 4 
> 140 No 4 3 11 8 

Yes 14 17 5 2 
> 3 < 140 No 7 3 14 14 

Yes 9 16 2 3 
> 140 No 4 0 13 11 

Yes 5 14 4 4 

Table 4.1: Risk factors for coronary heart disease 

Posterior samples were obtained for this data iising the Gibbs sampler, for the 

most probable (hierarchical) models identified by Dellaportag and Forster (1999). 

These models have posterior probabihties of > 0.05. The prior parameters were 

set to cki — jYi = 0.015625 for a diffuse prior. The sets of graphs below show the 

distributions of the 2-way interaction parameters - each single graph corresponds 

to a particular interaction parameter, and each set to a particular model. 
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Figure 4.2: Model AC 4- BC + AD + AE + CE + DE + F (posterior probability 
0.28) 
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^ .1 

BE 

Figure 4.3: Model v4C + BC + AD + AE + B E + DE 4- F (posterior probability 
0 .16 ) 
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# ^ ^ 3 16 10 a a % a a » 

M 05 10 ^ 20 25 30 35 40 M M ^ ^ 20 25 30 35 40 

45 3̂ C5 0̂ 5̂ 0̂ 45 00 05 M 05 ^ 15 ^ 25 M 35 

Figure 4.4: Model AC + BC + AD + AE + BE + CE + DE + E (posterior 
probability 0.07) 
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05 ^ 15 ^ 25 M 35 ^ 00 05 1 0 1 5 20 25 30 ^ ^ 

0̂ 40 0̂ ^ 00 M &0 ^ 10 ^ 20 ^ 30 M 

Figure 4.5: Model .4C + BC + ^D + .4E + CE + DE + BF (posterior probability 
0.07) 
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4.2.3 Convergence of Gibbs Sampler 

Repeated use of the Gibbs sampler leads to the conclusion that samples produced 

are not highly dependent, as the sampler appears to mix well. For the samples 

in Example 1, the autocorrelations at lag 1 are 0.2, and drop below 0.05 after 

lag 4. 

Figure 4.6 shows time series plots for the data in Example 1. For the sake of 

clarity, the Erst 4000 observations only are plotted in each case. 

P(B) P(A|B=1) 

1000 2000 3000 4000 

P(A|B=2) 

1000 2000 3000 

P(C|B=1) 

2000 

P(C|B=2) 

Figure 4.6: Time series plots for Gibbs samples in Example 1 

The plots show that the Gibbs sampler is mixing very well, and so the ob-

servations are not highly dependent. Scafterplots for each pair of variables are 

shown in figure 4.7. There is clearly no distinct correlation between variables. 

Time series plots for the data presented in Example 2 are all similar. The 
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-30 .10 0 10 20 30 .30 -10 0 10 20 

P(B) #1 
| # P(A|B=1) # # # 
# P(A|B=2) # # 
# # ' ' # P(C|B=1) 

# { 

# : # : P(C|B=2) 

.10 0 10 -30 -20 -10 0 10 20 -40 -20 0 20 

Figure 4.7: Pairwise scatterplots for Gibbs samples in Example 1 

graphs in figure 4.8 show the plots for the most probable model, AC + BC + 

AD + AE' + CE + D E + F, though again only the first 4000 observations are 

plotted. 

Again, these plots show the observations are not highly dependent, and that 

the sampler is mixing well. 

4.3 Discussion 

In this Chapter, a Gibbs sampler has been developed, based on an adaptive 

rejection sampling method, which will produce samples from densities based on 

the conditional Dirichlet distribution. The convergence of this sampler is quick. 
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Figure 4.8; Time series plots for Gibbs samples corresponding to model AC + 
BC + AD + AE + CE + DE + F in Example 2 

allowing large reliable samples to be obtained quickly. 

The integrity of the samples, and moreover the agreement with the theoretical 

results on the hyper Dirichlet and conditional Dirichlet from Chapter 3, was 

checked by application to examples, one of which was presented in section 4.2.1. 

Samples were then obtained from a large 2̂  dataset for several models, and 

graphs presented of the 2-way interaction parameters. 

The major use of the Gibbs sampler will be presented in the next Chapter, 

as it is an important component in the method of bridge sampling. 



Chap te r 5 

Poster ior Distr ibutions: Model 

De te rmina t ion 

The focus of Chapter 3 was the conditional Dirichlet distribution, and its rela-

tionship with the hyper Dirichlet distribution. One of the problems encountered 

was the intractability of the conditional Dirichlet distribution and in particular, 

the inability in general to %rrite down the normalising constant for such a dis-

tribution in a closed form. It is, however, possible to obtain samples from such 

distributions using a Gibbs sampler (described in Chapter 4) as the method of 

rejection sampling does not require a normalised form of the conditional distri-

bution. 

The focus of this Chapter is the determination of normalising constants for 

conditional Dirichlet prior distributions, and for resulting posterior distributions, 

using Laplace's method and bridge sampling to approximate integrals. This is 

motivated by the problem of model selection. Note that such approximation 

methods are not necessary when using the hyper Dirichlet distribution (ie. when 

the model is decomposable), since this density is conjugate to a multinomial 

likelihood and may be written in closed form and so exact results are possible. 

68 



5. Posterior Distributions; Model Determination 69 

5.1 Introduction 

Suppose there are a set of competing models by which it is believed the data may 

have been generated. Model determination involves the selection of a particular 

statistical model, or identifying multiple plausible models, based on both the 

data and the knowledge of which models were considered plausible a prion. The 

basic theory of this was introduced in section 1.4.2, where we showed that the 

posterior probability of a particular model m may be found exphcitly from 

and that, if we have two competing models, mi and m2, the problem reduces to 

the calculation of a Bayes Factor, which is the ratio of the posterior odds to the 

prior odds: 

_ /(mi) 

7712 

Note the Bayes Factor is the second term on the right hand side, which we refer to 

as Bi2. The Bayes factor is in fa<;t the ratio of two margmaZ Zz/jeZz/iooda, 

and /(n|m2), z.e. 

and this represents the weight of evidence in the data in favour of model m,i over 

7712. 

As mentioned in section 2.4.1, the integrals in (5.1) and (5.2) may be ana-

lytically intractable. In this thesis we in\ estigate the conditional Dirichlet dis-

tribution, and posterior conditional Dirichlet densities are indeed analytically 

intractable in general. Hence, numerical methods are required to obtain approx-

imations for the normalising constants. 
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Note that normahsed versions of the prior densities are needed in 

expression (5.2), though where these densities are intractable (as for the con-

ditional Dirichlet distribution), numerical methods are also required to obtain 

these. In such cases, it is useful to re-write the log Bayes factor, given by the 

expression 

logBi2 = log / / /(M|m2,^m2)/(^m2|77l2)(f0 ?7l2 

in terms of un-normalised prior densities 

1 / /(7l|)7l2, 

'7712 

= log y - log y 

log / /(7i|m2,6m2)p(0m2|n:2)d0m2+log / ^(em2|ni2)d^ 

Numerical methods may then be applied to each integral in turn in order to 

obtain the approximation to the log Bayes factor. The density fimctions may 

be of high dimension, which can cause difEculties with such methods. Three 

methods for evaluating these integrals are investigated in this Chapter, and we 

focus on Laplace's method, which is described in section 5.3, and bridge sampling, 

which is considered in section 5.4. 

5.2 Schwarz Approximation 

The difhculties involved in calculating the Bayes factor are mainly those of cal-

culating the integrals invoh'ed, and these are not generally tractable. However, 

an alternative to this is to avoid altogether the introduction of prior densities 
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and and approximate B12 by the expression 

logBi2 % 5'i2 = log/(7%|?71i,a^J -log/(?%|m2,^m2) " 

where cfi is the dimension of minimises the (log) hkelihood function 

mider and n is the total sample size. This quantity is called the Schwarz 

criterion (Schwarz, 1978), and can be used as an approximation to the log Bayes 

factor in model selection problems where the true marginal likelihood is diGicult 

to evaluate. 

The Schwarz criterion is related to the Bayes Information Criterion (BIG -

Raftery, 1986) through the equation —2S = BIC. Note that BIG is defined for a 

single model using the expression 

BIG = —2(log maximised likelihood) + logn x number of parameters 

where this is minimised by the most probable model. However, BIG and the 

Schwarz criterion are used interchangeably in the literature to compare models, 

so in this thesis we shall use the term Schwarz criterion where a Bayes fac-

tor is approximated, and Schwarz approximation where we are approximating a 

marginal likelihood alone. 

The Schwarz criterion approximation to the log Bayes factor satisGes 

5*12 — log -B12 Q 
log gi2 

as M + 00. This is a suGicient condition for the Schwarz criterion to provide 

a consistent estimate of the Bayes factor, though the approximation of log B12 

provided by 5'i2 is only accurate to an error of 0(1), and so allows 

exp(^i2) 
- i B 12 
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This means that, particularly for certain prior distributions, the Schwarz criterion 

can be a poor approximation to the log Bayes factor, even if the sample size is 

large. 

5.3 Laplace's Method 

5.3.1 Derivat ion 

The most frequently used approximation to the integrals in (5.1) is found by a 

technique known as 'a 

Tierney and Kadane (1986) presented an approximation for integrals of the 

form The approximation is based on the principle that, provided Z, 

has a unique maximimi or is at least dominated by a single mode then, for 

large n, the value of the integral is dependent solely upon the value of Z, near 

the maximum. The Taylor expaiision of Z, about its maximum is 

z:(g) = z:(g) + (^-^)2:'(g) + ^(g-^)^r'(g) + c)(g-g)3 

= z:(g) + ^(^ - ^)^r%g) + o(g - )̂3 

and application of this expansion yields the result 

y^exp{al,(^)}d0 = exp^MZ/(0)j exp^ —^—^—^(—n.L"(^))+0(^ — )̂̂  

e''^(^)(l + 0(n-^)) (5.3) 
27r ' ' 

as the integrand is the kernel of a Normal ^ density. 

Suppose we require an approximation to the normalising constant of a multi-

variate posterior distribution. The prior may be in an un-normalised form, so we 

shall denote this by p(^) = c/(^). The likelihood function is denoted /(n,|0). The 



5. Posterior Distributions: Model Determination 73 

above result is then easily generalised to tliis multivariate situation as follows. 

Let 1,(0) = ^ log^(0|n) = ^ (logp(0) 4- log/(?2|0)), and suppose the dimen-

sion of these functions is d. Then expression (5.3) leads to the approximation 

(27r)#e 
d S2 

-(l + 0(»- ' ) ) 

where 0 is the posterior mode, and so 

log / ^ log 27r + ni^(0) — ^ log - - l o g a + (9(M ) 

where .Zif(0) = is the Hessian matrix of second derivatives. Writing 

this directly in terms of the prior and hkelihood gives 

log y /(^)/(M'|^)c(^ = ^log27r + log/(0)+log/(?%|0)-^log - .^(0) +0(n-^) 

(5.4) 

log/(0) + log/(7%|0) , equivalent to the expression given 92 where ;f(g) = 

by Tierney and Kadane (1986). Note that the use of this form of Laplace's 

method is restricted to cases where we may obtain the Hessian matrix of second 

derivatives, and also that application to cases where the tails of the integrand 

vary considerably from the Normal distribution will produce inaccurate results 

(this is considered later in the Chapter). 

In a model selection problem, the marginal hkelihood is required for the 

calculation of the Bayes Factor. 

/(?T22|?l) 
/(nil) / 

/(̂ Tlz) 
X B 12 

where B12 is the Bayes factor, comparing models mi and m2. It is clear that, 
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as expression (5.4) provides an order approximation to the marginal 

likelihood, an order approximation to the log Bayes factor is given by 

the expression 

Bl2 = l o g / ( n | e m i ) + l o g / ( ^ m i ) - 2 ^ o g - - ^ ( ^ m j - l o g / ( 7 l | 0 m 2 ) 

log/(em2) + ^log + 
((fl 

log27r + 0 (n ) 

where is the dimension of model %. 

The form of the Laplace approximation derived above provides an order 

O(nr^) approximation to the log marginal likelihood, and is based on the hkeli-

hood and prior densities evaluated at the posterior mode, and the Hessian matrix 

of second derivatives. However, a modified version of the approximation is avail-

able which does not require the Hessian, instead using the Fisher information 

matrix. 

Let us apply a result from Kass and Wasserman (1995), namely 

-71-^^(0) - 2 ( 0 ) = 0(n-^/^) 

where z(0) = n-^(^) is the Fisher information matrix for a single observation. 

and I{9) — E 82 !{y\e) . Note that care must be taken in the dehnition 

of a 'single observation'. For example, in a contingency table, the numbers of 

units of information is the number of classihed objects, not the number of cells. 

Rearranging, we obtain 

-72-^^(0) 0(n-^/^) + 2(g) 

-n-^7^(6)) 0(n.-^/^) + 2(e) 

%(8) [1 + 0(n-^/^)] 
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and so 

where is the dimension of Taking logs, we have 

log — = dlogn + Iog 

= d log n + log 

2(0) 

2(0) 

+ log |l + 0 (a /̂̂ )| 

+ 0(n-^/^) 

Formula (5.4) may now be re-written in terms of the information matrix: 

/(72|0)g(e)(fe=log/(7%|0)+logp(0)+^log27r-^logn-^log 2(0) +0(n-^/^) 

This expression yields an approximation to the marginal likelihood which is 

correct to order 0(?T,'^), which is the result derived by Kass and Wasserman 

(1995). 

5.3.2 Applicat ion to General ised Linear Models 

The standard application of Laplace's method for approximating Bayes factors 

requires both the posterior mode and Hessian matrix 7f(0m), though it was 

shown that it is possible to re-write the approximation in terms of the expected 

Fisher information matrix. Raftery (1996) considered the problem of using 

Laplace's method to approximate Bayes factors for generalised linear models. 

He pointed out that, although standard statistical software does not usually pro-

duce the posterior mode and Hessian matrix, it does often give the maximimi 

likelihood estimator the likelihood ratio statistic and the observed or ex-

pected Fisher information matrix He presented two approximations based 

on these quantities for generalised linear models. 

Suppose the prior mean and variance of are given by E [0^] — and 
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[0m] = I'Kn. Then the first approximation is 

21ogi?i2 ~ Li2 + {El — E2) (5.5) 

where Z/12 = 2 ^log/(?i|0mi) — j , which is the standard hkehhood 

ratio test statistic for nested models, and where is given by 

E, '77% 2 log/(0m) — log \ Fyn + log 27r + 

_d_ 
80 

-iT ^ 
log/(0m) (fm + MC')-' [2 - &.(fL + M^')] ^ log/(0rn) 

This approximation is closer to the standard Laplace approximation when is 

the observed Fisher information, with error of order 0(n~'^). Arguments similar 

to those in section 5.3 and by Kass and Vaidyanathan (1992) showed that this 

error increases to order 0(n"2) when the expected Fisher information is used. 

Raftery's second approximation was based on the assumptions that 0^ % 0^ 

and E^" (̂0m) —-FL (the observed information matrix). This resulted in the 

expression 

21ogi?i2 ~ Li2 + {E^ — E2) 

where 

-Gm = -logjf^nl +21og/(0m) + (Llog27r 

This approximation is less accurate than that given in (5.5), although Raftery 

(1996) found it to perform well in several situations, and found the separate 

terms for the prior and likelihood appealing. He applied both approximations to 

a simple Normal example, where analytic results are available, and found them 

both to give errors of order 0(n"^), though the second approximation was in 

general worse than the first. 

Raftery applied his approximations to the problem of calculating Bayes fac-

tors for generalised linear models, where the posterior mode and Hessian matrix 
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are not, in general, available. The approximations were found to be of good 

quality. His methods are applicable to cases where the dispersion parameter 

is unknown, where there is overdispersion. to compare hnk fimctions, and to 

compare error distributions emd variance fimctions. 

Raftery suggested Normal prior distributions for use in the approximations, 

for cases where little prior information was available. A criticism of his priors 

is that they depend on the observed data, and as such would seem to violate a 

fundamental principle of the interpretation of a prior distribution. He emphasised 

the use of a reference set of proper priors in model selection, as opposed to a 

single (possibly improper) prior, an idea consistent with the rest of this thesis. 

Diciccio, Kass, Raftery and Wasserman (1997) compared several methods 

of estimating the Bayes factor when it is possible to obtain a sample from the 

posterior distribution. They presented a modified version of Laplace's method 

based on this, and a Bartlett adjustment to Laplace's method which improved 

the Laplace estimate by an order of magnitude. They also considered impor-

tance sampling and reciprocal importance sampling, two special cases of bridge 

sampling, which is described in detail in section 5.4. 

5.3.3 Applicat ion to Condi t ional Dirichlet Dis t r ibu t ion 

One of the main prior famihes investigated throughout this thesis is the con-

ditional Dirichlet distribution. However, this distribution can be analytically 

intractable, hence the normalising constant is not (in general) known. The ap-

plication of Laplace's method to this problem is described here. 

As detailed in section 3.2.1, the conditional Dirichlet distribution has the 

general form 

/(/3)(x 
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Define p(/3) to be the nn-normalised fimrtion, so that 

g(/3)= 
z 

The p-dimensional conditional Dirichlet distribution is specified by the de-

sign matrix linking 0 to through 0 and vector of parameters a . 

Note that, due to the conjugacy of the conditional Dirichlet prior to the multi-

nomial distribution, ct may represent either prior or posterior parameters, with 

o: —+ a+Ti in the posterior. In order to obtain the Laplace approximation to the 

normalising constant it is necessary to determine an expression for the Hessian 

matrix of second derivatives for this function. Details of this derivation are given 

in section 4.1.2, and the resulting expression is 

logg(/3) = 
a/3/3 

where p is a function of /3 through the expression = expe(t) Therefore, 

the Laplaxze approximation, based on expression (5.4) is 

y ^ log 27r - ^ log |o:X^(dmg(p) - + 

logp(^) + 0(o;-^) (5.6) 

This expression is applicable for the estimation of both prior and posterior 

normalising constants, where p(/3) is replaced by p(/3|n,) = /(f%|/3)/(/3) in the 

posterior case. 

However, we know that a nimiber of equivalent design matrices exist for 

any given log-linear model. In this instance, since % appears in the Laplace 

approximation, it is clear that diEerent choices of X lead to different values of 

the normalising constant, so practical application of equation (5.6) requires a 
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consistent choice of design matrix to be used across models. 

Code was written in S-Plus to apply the Laplace approximation to the prob-

lem of determining the normalising constant for a conditional Dirichlet density, 

specified by design matrix X and parameter vector ex. Code was also written 

to produce the design matrix X for a particular log-hnear model, specihed by 

a binary representation of variables and interaction terms. The program has a 

single output - the approximation to the log normalising constant. 

It was pointed out in the previous section that for a function / to be reliably 

approximated using Laplace's method, it must be highly peaked about its maxi-

mum so that the main contribution to the function is within a neighbourhood 

of The approximation is of error so the approximation wiU be good 

for large sample sizes, though approximation of vague prior distributions with 

small values of 0(2) are unlikely to produce good results. 

This problem is exacerbated as the tails of the conditional Dirichlet distribu-

tion are lighter than those of the Normal distribution, and so Laplace's method 

is likely to imderestimate normalising constants when is small. The condi-

tional Dirichlet distribution has the form 

/(/3) OC — 

Now consider this density as a function of a single only, so that 

OC 

This may be re-written as 

E Q: 

1 + 
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and this expression tends to some constants c and c' 

which depend on ex. Hence this distribution decays exponentially with respect 

to However a Normal approximation would decay exponentially with respect 

to so would have heavier tails. This means that Laplace's method is likely to 

produce approximations which underestimate the conditional Dirichlet normal-

ising constants. 

5.3.4 Numer ica l Results f rom Laplace's M e t h o d applied 

t o Condit ional Dirichlet Dis t r ibut ions 

The aim of applying Laplace's method to the Conditional Dirichlet distribution 

is to obtain the normalising constant for the (mostly) analytically intractable 

density fimction which results by conditioning on a particular log-linear model. 

However, in order to check the quality of the approximation, and any dependence 

on the dimension and complexity of the log-linear model, it is Srst necessary to 

apply the method to certain conditional Dirichlet distributions resulting from 

several log-linear models which are of a tractable form and so have known nor-

malising constants. 

As the approximation is of order 0(a"^), it is clear that the accuracy of 

the approximation will improve for large sample sizes. This was investigated by 

obtaining Laplace approximations for increasing sample sizes, using a selection 

of models, and these results are summarised below. 

Figure 5.1 contains 8 plots representing 8 diSerent log-linear models. Each 

plot is of the error in the log of the Laplace approximation (given as the log of 

the approximate value minus the log of the true value), against the vahie of the 

cell parameter a(%) (the hypothetical 'sample' in each cell). The parameters are 

equally distributed throughout the cells in each case. The cell parameter rims 

from 0.25 to 25 in each case. The 8 models are 
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Cell Parameter 

CW ParmmmWr Cell Parameter 

C#X Pymmw Cell Parameter 

C## Cell Parameter 

Figure 5.1: Plots showing convergence of Laplace estimates for various models 
with equal samples in each cell 

(a) B [2] (e) v4 + B + C + D [4] 

(b) AB + BC [5] (f) [16] 

(c) [8] (g) A(3)g(3)C(3)D(3) [81] 

(d) A(3)g(3)C(3) [27] (h) [256] 

All variables have 2 levels, except where indicated, and the numbers in square 

brackets give the number of model parameters in each case. 

It is clear that for sample sizes greater than about 10 in each cell, the error of 

the approximation is negligible, and so the Laplace approximation is excellent. 

This is true for all the models. However it is also clear that, for certain models, 

the Laplace approximation for small \'alues of cell parameters is poor, and so may 
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not be reliably used to determine the normalising constant for (reference) prior 

distributions. Indeed, with all cell parameters equal to 0.5, the approximation 

for the 4-way saturated model where all \ ariables have four le '̂els has an error of 

-39, which is huge. Examination of Egure 5.1 shows that the error of the Laplace 

approximation increases significantly with increasing numbers of parameters in 

the model. 

The approximations presented in figure 5.1 are all based on equal parameters 

in each cell. This is fine for prior distributions (where it seems that the Laplace 

approximation is of little use any%ray), but is unrealistic for posterior distribu-

tions. In order to consider the unbalanced situation, Laplace approximations 

were obtained for posterior distributions where all the data was in a single cell. 

The results are presented graphically in figure 5.2 below. In each case, the 'Cell 

Parameter' refers to the data in the single cell. All other cells have a parameter 

of 0.25, representing a prior distribution based on a Dzr2c/iZe((^l) distribution. 

The graphs in figure 5.2 show that, when the data is distributed as described 

above, there is a considerable error in the Laplace approximation for all but 

the simplest model. It is therefore clear that the Lapleice approximation to the 

normalising constant for conditional Dirichlet distributions is only reliable when 

there are at least a few observations in each cell. Exhaustive use of the Laplace 

approximation leads to the 'rule of thumb' that the approximation produced 

acceptable results when there are at least 5 observations in 80% of the cells, 

though note that the accuracy of the approximation improves with greater total 

sample size and decreases with increasing numbers of model paramaters. 

In all the approximations presented above, note that the error in the logs is 

negative, which implies that the approximation of the normalising constant is 

too small, as expected. 

In the next section, an alternative method of approximation will be intro-

duced, which leads to accurate approximations even for small parameter values. 
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Cell Parameter Ceil Parameter 

10 15 20 25 

Cell Parameter 

10 15 20 25 

Cell Parameter 

Cell Parameter Cell Parameter 

C## CW 

Figure 5.2: Plots showing convergence of Laplace estimates for various models 
with unbalanced cell counts 

5.4 Bridge Sampling 

The aim of this Chapter is to investigate methods of approximating the normal-

ising constants for both prior and posterior conditional Dirichlet distributions. 

The Laplace approximation derived in the previous section waa found to be un-

suitable, in general, for application to conditional Dirichlet prior distributions. 

In this section, the method of Bridge Sampling is applied to this problem. 

5.4.1 In t roduc t ion 

The class of techniques known as bridge sampling were introduced by Bennett 

(1976), although they were studied in depth by Mcng and Wong (1993) and 
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DiCiccio et al (1997). The method allows the estimation of the ratio of two 

normalising constants, though it can be modified to allow the estimation of a 

single normalising constant. 

Suppose we have two densities and 1̂ 2, and write these as 

= -

c. 

where Q = / tt, for % — 1,2. Now let "y be a fimction which satisfies 

0 < < 0 0 

Then we may write 

Now let onr nn-normalised density be denoted by g(^), the associated normalising 

constant by C and the normalised density by so that C = and 

/(^) — Suppose we have a sample from / , and denote this by ^1,... 

Let g(^) be some density from which we may easily obtain a sample, and denote 

that sample by ^1,... Now, in expression (5.7), let ifi = g, ci = C, t/g = g 

and C2 = 1. Then 
s gjeymmdo 

Sq(e)-mmde 

Using om: samples, the bridge estimator of C introduced by Meng and Wong is 

given by 

C = 

Clearly, a choice has to be made for the fimction 'y. Several obvious choices 

are available - for example, "y = ^ or "y = .̂ These reduce the bridge estimate 

to the commonly used estimates based on Importance Samphng and Reciprocal 
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Importance Sampling. However, it is interesting to consider the choice of'y based 

on a familiar optimality criterion - that of minimising the mean squared error. 

Meng and Wong found the optimal choice of 'y in tliis case to be 

l'(^) cx ^ + M m 
(6.9) 

This would appear to be of httle practical use, as it requires the normalising 

constant, C, in its calculation. However, it is possible to use an estimate of C 

produced by an alternative approximation method, and substitute this value in 

the expression (5.9). For example, an estimate based on Laplace's method may 

be used, and indeed this is a technique which DiCiccio oZ found produced 

a discernible increase in the accuracy of the approximation compared to other 

bridge samplers (for example importance sampling). 

In practice, repeated applications of the bridge sampler may be used to it-

eratively update the approximation, using the previous value of C each time. 

This is the method which will be applied in the next section to the conditional 

Dirichlet distribution. 

5.4,2 Appl icat ion to t he Condit ional Dirichlet Dist r ibu-

t ion 

The general theory of the bridge sampler was introduced in the previous section. 

A general expression (5.8) was presented, which gives the bridge estimate for 

a normalising constant for a particular distribution. The expression allows the 

size of the samples from densities g and ^ to differ, though for this application 

they will be equal, and denoted by m. In this apphcation, we shall choose g to 

be a Normal density with mean equal to the mode of the conditional Dirichlet 

distribution, and variance matrix equal to the inverse of the Hessian matrix of 

second derivatives. 
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Let the (un-normalised) conditional Dirichlet density be denoted by 

the sample from this be denoted and the Normal sample 
— — (l) —̂ (2) '—' (ttz ) 

from density g(/3) be denoted , /3 , . . . , ^ . The bridge sampler will be 

applied iteratively, with the z-th iteration denoted Q. Then the bridge estimate 

is given by the expression 

E.9(3"')7(3'") 

where 

"/(/B) = 

and Co is the estimate for the normalising constant by Laplace's method.. 

Code was written in S-plus to implement this procedure. The inputs to the 

function are the vector of cell parameters (counts), the design matrix for the 

log-linear model, and the required number of iterations, together with a sample 

from the density /(/3) obtained using the Gibbs sampler (see section 4.L2). The 

bridge sampler estimate is output at each iteration. 

5.4.3 Numer ica l Examples 

In this section, the bridge sampler will be used to obtain prior and posterior 

normalising constants for a set of log-linear models where the true value is also 

available, as in section 4.2.1 (Laplace approximations). Successive runs of the 

bridge sampler produce values which, after about 3 iterations, seem to fluctuate 

shghtly about a common value. Hence, to produce the estimates below, the 

bridge sampler is run iteratively 10 times, taking the Laplace estimate as a 

starting value, and the result presented is the mean of the final 7 iterations. 

Table 5.1 gives the bridge sampling estimates for the log of the prior nor-

malising constants, together with the error (expressed aa the estimate minus the 

true value), and the value of the prior parameters, which are the same for each 
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cell. All variables have 2 levels, except where indicated 

Hierarchical Prior Bridge Error in 
Log-linear Parameter Approximation Bridge 

Model Approximation 
A B 0.25 2.29 0 

0.125 9.16 0 
0.125 16.15 0.01 

0.5 -5.86 -0.05 
v4 + B + C + D 0.0625 4.57 -0.01 

0.0625 43.94 0.11 
ŷ (3) 0.5 -61.78 0.33 

Table 5.1: Bridge estimates, and their respective errors, of normalising constants 
for various models 

It is clear from the table that the bridge sampling approximation is extremely 

good, even for distributions where the prior parameter is small. It therefore 

represents a huge improvement over the Laplace estimates, where the errors 

were of a much higher order. Such accuracy is also evident when the parameters 

in each cell are not equal (the unbalanced case). 

The approximations in table 5.1 were all obtained using Gibbs sample sizes 

of 10000. Tliis choice was motivated by the desire for the bridge estimate to vary 

by less than 0.1 about its limit, and for the sample to be produced reasonably 

quickly using the Gibbs sampler. Smaller sample sizes are adequate for simpler 

models. 

5.4.4 Normalis ing Cons tan ts for Non-Decomposable Model 

The results in the previous section demonstrate the accuracy of the method 

of bridge samphng to determine the normalising constants for the conditional 

Dirichlet prior for several decomposable models (where exact results are possi-

ble). However, there is one graphical model with up to and including 4 variables 

which is not decomposable. This is the model represented by the graph 
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Table 5.2 gives the normalising constants for the conditional Dirichlet distri-

biitions for this model, with varying numbers of levels of the variables. The prior 

parameters in each case are symmetric, with a single observation split throughout 

the table (i.e. o:(2) — iYj)-

Levels of A, B, C, D log(Normalising Constant) 
2,2,2,2 1.45 
3,2,2,2 2.75 
2,3,2,2 3.67 
3,3,2,2 6.64 
3,3,3,2 10.09 
3,3,3,3 12.78 

Table 5.2: Normalising constants for model AB + BC + CD + DA 

Note that many other non-graphical log-linear models exist for which this 

approach is required, for example the model AB -t- BC -|- AC. 

5.5 Risk Factors for Coronary Heart Disease 

In section 4.2.2, the Gibbs sampler was used to obtain posterior samples from 

a number of models fitted to some data concerning incidence of coronary heart 

disease, originally presented by Edwards and Havranek (1985), and analysed 

further by Madigan and Raftery (1994) and Dellaportas and Forster (1999). 

Recall hrom section 5.1 that the Bayes factor for comparing models and 
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mz is given by the expression 

B mi 
12 

7712 

where is the likelihood under model nz, and is the prior 

under model mi, and that this may be written in terms of un-normalised prior 

densities as 

loggi2 = log y /(M'|mi,^mi)F(^mi|)71i)-log 

log / /(n,|m2,0^Jp(0m2|?'^2)+log / 

In this application, the prior approximations log ̂  will be ob-

tained using the bridge sampler, and the posterior approximations 

obtained using Laplace's method. This is sensible 

as the sample size is large, with cell coimts of at least 5 in 80% of the cells. 

The results are presented in table 5.3, which gives the estimated log Bayes 

factors for several models, taken against the most probable hierarchical model 

v4C + BC + AD + ytE + CE + DE + F, for a prior where 0(2) = A sample 

size of 5000 was used for the prior estimates. 

Hierarchical Log Bayes Log Bayes 
Log-linear Factor Factor 

Model Estimate (D&F) 
AC 4- BC + AD + AE + BE + DE + F 0.49 0.57 

AC + BC + v4D + vlE + BE + CE + DE + F 1.35 1.34 
AC + BC + AD + AE + CE + D F + B F 1.79 1.42 

BC + ACE + ADB -K F 8.25 > 6 

Table 5.3: Estimated Bayes factors for Heart Disease data 

The top three models in the table are the most probable hierarchical mod-

els (identiHed by Dellaportas and Forster), and the fourth is the most prob-

able decomposable model. There is a good deal of agreement between the 
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bridge/Laplace estimates and those obtained by Dellaportas and Forster. Note 

that we are nsing different prior densities here, so don't expect exact agreement 

with their results. 

5.6 Discussion 

The aim of this Chapter was to develop a method of approximating the nor-

malising constants for conditional Dirichlet distributions, as these are often in-

tractable. Laplace's method was applied in section 5.3, and the approximations 

were shown to converge to the true values in certain known situations for increas-

ing sample sizes. Indeed, a rule of thumb is that Laplace's method will furnish a 

good approximation to the normalising constant when the cell count is at least 

5 in 80% of the cells. Bridge samphng was introduced in section 5.4, and this 

method of approximation was shown to provide excellent accuracy in all cases. 

The methods were both applied in section 5.5 to some real data, in order to 

estimate Bayes factors for several models. The results were compared with those 

obtained by Dellaportas and Forster (1999), and foimd to be similar. 

To conclude, the methods presented may be apphed to obtain the normal-

ising constants for both prior and posterior conditional Dirichlet distributions 

for any log-linear model, aad hence Bayes factors may be calculated to compare 

competing models. 



Chap te r 6 

Jeff reys ' Pr ior 

6.1 Introduction 

Priors based on the Normal and, in particular, Dirichlet distributions have been 

discussed in previous Chapters, focussing on the use of these priors as reference 

priors. The formulation of these priors as reference priors is done by suitable 

choice of distribution parameters. Another popular choice of distribution for use 

in reference analysis is Jeffreys' prior (Jeffreys 1946), which is a reference prior 

by definition. 

Several properties of Jeffreys' prior make it an attractive distribution for refer-

ence analyses. One of these is the invariance to reparameterisation of the model, 

a feature which may be exploited here as log-linear models admit a number of 

equivalent parameterisations. Many authors have liighlighted other properties 

of JeSreys' priors. For example. Box eind Tiao (1973) argued Jeffreys' prior to 

be approximately noninformative with respect to certain criteria, and Bernardo 

(1979) found that the prior which maximises the missing information is Jeffreys' 

prior, though only under regularity conditions and when there are no nuisance 

parameters. Kass (1989) discussed the geometric interpretation of Jeffreys' prior, 

and both he and Bernardo looked at the advantages of this prior by focussing on 

91 
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its interpretation in an information metric, with respect to which it is a uniform 

measure. 

However, there are also some disadvantages with Jeffreys' prior, which limit 

its effectiveness as a reference prior in certain situations. It has been pointed out 

by Bernardo and others that if a JeEreys' prior is derived on all the parameters 

in a multiparameter situation, then the priors on the margins will not necessarily 

be noninformative (this will be highhghted with an example in a later section). 

This is a particular problem when we are interested in a subset of the parameters, 

with the others being nuisance parameters. 

Jeffreys' prior is investigated in detail here since, on balance, it is still con-

sidered a useful prior in reference analyses, and is widely used. In particular, it 

may be a useful distribution for model selection problems in situations where a 

noninformative prior is required. 

6.1.1 Formal Definit ion 

Jeffreys' prior is dehned as being proportional to the square root of the determi-

nant of the Fisher information matrix 7(0), where 1(0) is given by 

f (0) = E 

for hkelihood function /(?T,|0). Hence JeSreys' prior, /(0), is defined as 

E T /(?l|0) (6.1) 
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6.2 Jeffreys' Prior for Log-Linear Models 

Ibrahim and Laud (1991) investigated the use of Jeffreys' prior in the reference 

analysis of generalised linear models, emd in particular gave two theorems sup-

porting the use of Jeffreys' priors in certain cases. 

An expression for Jeffreys' prior for generalised linear models in terms of 

canonical parameters, scale parameter, weights and design matrix is given by 

/(/3) oc (6.2) 

where X is the design matrix and W is a diagonal matrix of weights. Further, 

y(/3) and A(/3) are diagonal matrices with z-th diagonal elements 

and ^ respectively, where ^ is the canonical parameter and is 

the linear predictor (zi is the z-th row of the design matrix X). 

In the case of a Normal linear regression model, the use of Jeffreys' prior 

results in a tractable posterior distribution, and this is also true of a linearised 

nonhnear regression model. However, Ibrahim and Laud discovered that, in 

general, the posteriors resulting &om generalised hnear models are not tractable, 

apart from some special cases for certain models. Nevertheless, they showed that 

Jeffreys' prior does, for most models, lead to proper posterior distributions. This 

provides motivation for our derivation of Jeffreys' prior for log-linear models. 

6.2.1 Derivat ion 

In this section, the JeSreys' prior for any given log-linear model with design ma-

trix % will be derived. The Hessian matrix of second derivatives for a conditional 

Dirichlet density was shown in section 4.1.2 to equal 

<9/3,8 T 



6. Jeffreys' Prior 94 

The conjiigEicy of the conditional Dirichlet distribution to the multinomial 

likelihood allows us use this expression to obtain the Hessian for the likelihood 

function: 

52 
log/(?%|p(/3)) - (dmgp(/3)-p(/3)p(^)-' ) % T 

T 

<9/3/3 

This equation may now be used in conjunction with expression (6.1) to define 

Jeffreys' prior for a log-linear model 

/(/3) cx E 
52 

(X 

oc 

((fmpp(/3)-p(/3)p(/3)'' ) X 

(dmpp(/3)-p(/3)p(/3)^) X (6.3) 

Hence we have a general expression for the Jeffreys' prior for any log-linear 

model, given by design matrix It is of a similar form to that obtained by 

Ibrahim and Laud (expression 6.2). However, although this expression seems 

straightforward, extensive investigation and application of the formula to a range 

of models did not, in general, result in any further simplification. 

6.2.2 Jef f reys ' Pr ior for Sa tu ra t ed Log-Linear Models 

Although expression (6.3) does not, in general, aUow the Je&eys' prior to be 

expressed in a tractable form, it may be used to derive Jeffreys' prior for any 

saturated model. Although this is a widely known result, this derivation is 

presented here to illustrate the use of (6.3). 

Let the design matrix X be such that — (-̂ n-il — 1), ^ 6- an (n — 1) x 

(n — 1) identity matrix augmented with a colimm of — I's (for a symmetric logit 

parameterisation, where /3 = 0^ )̂- consider G = ^'here J is 
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a matrix of I's. 

= (G | l ) In—l Jn—1 
n n 

Then 

GA-^ (rf!as(p(/3))-p(/3)p{/3)' ) XG ( / | 0 ) — — ( J | l ) 
n 

X 

1 
(/|0) -

n 

T 

(7|0)^ ((f%og(p) - pp^) (/|0) 

as (J|l)(diag(p) — pp^) = 0. Hence 

((Zzap(p) - pp^) XG = - p\^ (p\^) 

where p^^ is vector p with the lagt element removed. Now, we know that for 

vectors a, b and c 

diag{a) + bc^ = a, f 1 + ^ 

Hence 

|GX^(dmp(p) -pp^)XG| = ] ^ p ( % ) l l + ^ - p ( 2 ) 

AL \ AL 

n p(̂) I / 
nx̂ ) 

where p(in) is the final element of vector p. 
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However, 

XG| = |G| |G| 

(c(mg(p) - pp^) X| 

So 

(dmg(p) - pp^) ]][p(%) 

hence 

/(/3) oc ]Jp(%,/3)2 

i 
is the Jeffreys' prior for /3 and 

/(p) oc X IJ| 
i 

Multiphcation by the Jacobian, |J|, of the transformation from /3 (which is 

equal to where 0 is the symmetric logit) to p, found earher to be equal to 

gî 'es 

/(p) oc 
i 

Hence, the JeEreys' prior for a saturated log-hnear model follows, aa expected, 

a Dirichlet(|l) distribution. 

Note that for a multiway table with a saturated model, and hence with a 

Dirichlet(^l) Je&eys' distribution, the marginal probabilities may have marginal 

distributions which are not obviously noninformative. For example, using the 

standard notation, the distribution of the margin corresponding to variable C 

would follow Dirirhlet(2j^l), and of course may be large. This is one of the 

well-known disadvantages of JeSreys' prior as a reference prior. 
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6.3 Jeffreys' Prior for Decomposable Log-Linear 

Models 

In the previous section, an expression was derived (6.3) for the Jeffreys' prior 

for a log-hnear model. However, the form of this expression did not, in general, 

admit distributions which were obviously tractable. In this section, an alternative 

derivation for Jeffreys' prior will be developed for decomposable models. 

6.3.1 Derivat ion 

As defined in section 6.1.1, JeSreys' prior is proportional to the square root of 

the determinant of the Fisher information matrix 7(0), where 

7(a) - E 
(9̂  

for hkelihood function /(?i|0). 

In this derivation, the parameterisation based on logits of conditional prob-

abilities resulting from the directed representation of the log-linear model will 

be used, as it was in the proof in section 3.3. Note, however, that because of 

this these results are restricted to those models that are decomposable. As in 

section 3.3, for clarity, bold type will not necessarily be used to represent vectors; 

the levels and dimension of quantities should be apparent by subscripts, where 

necessajy. 

Let the model be represented by a directed graph, and suppose that a perfect 

numbering of vertices has been obtained. The set of factors is denoted by P, 

and for each factor 'y E F, is the set of levels of this factor. We may obtain a 

perfect numbering of F, which assigns an order to this set, which may be written 

F = {1 ,2 , . . . ,n i } . 
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The model is decomposable, and so the cell probability may be expressed as 

7 

The log-likelihood function under multinomial sampling is given by 

log/ = log]Jp(z)"(^) 
i 

i 

which for the decomposable model may be written as 

log / = ^ ^ log 
i 

= ^ Y ] log 
i 1 

- ^ ^ w^)) i°g slpo(7) = w?) ) 
7 S,pti(7) 

We now apply the reference cell logit parameterisation used in section 3.3, 

where is deEned by 

• J ' 

with inverse trajisformation 

exp 10̂ (2̂ 1 j-
f ('y — |pa,('y) — %pa('Y)) — 

where |7 |̂ is the number of levels of factor -y. Note that = 0 for any 
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The log-hkehhood may now be re-written as 

log / ^ ^ ^ Va{7)) log 

7 '7,pa(-,) 

e x p { < ^ . Y ( % ' y | ^ p a ( ' y ) ) } 

Z; , exp 

^ 7̂ '(̂ 7i Va(7)) 
7 ®7,pa(T) 

<^^(4lW7)) - log ^exp{<^^(;^|2p^(^))} 

J7 

In order to determine the JeSreys' prior, we must evaluate the full set of 

second-order partial derivatives with respect to the parameters. The Erst 

derivative is given by 

^ log / 
— )T'(2'y,2pa(̂ )) 

exp I ''̂ '(̂ 71̂ 0(7)) 

Ej^exp{(p^(j^|2pa(7))} 

exp j •̂('̂ pa(7)) 

for a particular "y, and 2pa(̂ ). Several sets of second derivatives must be calcu-

lated in order to construct the Fisher information matrix. First of all, note that 

if ?i 7̂  ?2 second derivative term 

log / 

(̂ 7l (̂ 72 Mpa(72)) 
: 0 

Hence, the matrix is block diagonal, with major blocks corresponding to each 

variable "y. Within each of these blocks, further sub-blocks exist - these will be 

described below. 

For a particular variable "y, let us first consider the second derivative 

(which wiU correspond to the terms on the diagonal in this major block): 
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log/ d 

d(f)^ (̂ 7 Kpa(7) 
exp (̂ 7 Mpa(7)) } •̂('̂ pa(7)) 

exp { 0-̂ .(̂ 71̂ pa(7))j' ^ (̂ pa(7)) ^ ^ GXp {'/'-y (̂ 7 |̂ pa(7)) } ^ 
J7 

{ ̂ 7 (H Npa(7)) } '̂(Va(7)) / 

exp{(̂ (̂%7Mpa(7))} 

^exp{(^^(;^|2p^(^))} 

exp {(p-yiijl^pa^-y))} 

= ~n '(^mh)) ['̂ ('7 = 4lP^(7) = ^paw) - -^(7 = 4lP(^(7) = ^pâ ))̂ ] 

The terms above correspond to a particular term "y, as well as a specific level of 

this variable (i^) and the set of levels of the parents (2̂ 3(7)). Within the major 

block, consider the second derivative term 

log/ d 
n(^ij, ipa{j)) 

exp {0'y(̂ 7|̂ pa{7)) } ?T'(̂ po(7)) 

<̂̂ 7î 7l̂ pa(7))<9̂ 7(̂ 7|jpa(7)) <9(̂ 7(̂ 7bpo(7)) 

= 0 if jpa(7) f %pci(7) 

Hence, the block corresponding to a particular "y is itself block diagonal, with 

sub-blocks corresponding to each set of 2pa(7). Within each sub-block, we may 

evaluate the second derivative terms: 

log/ exp (z-. ) j- exp { (J7 |̂ pa(7)) } (̂̂ pa(7)) 

= f (? := 41^0(7) Zpa(7))f (7 = j7|pa('y) = p̂a(7)) X 

(̂̂ pa(7)) 

The next step in the construction of Jeffreys' prior is to take the expectations 
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of the second-order derivatives above. This produces 

log/ 
E 

^ [-^(7 " 1̂ (̂ (7) — p̂aW) -^(7 ^ " p̂a(7)) ] ^ 

E [?1'(^pa(7))] 

(X [ f (/y = 2 |̂pa('y) = 2po(̂ )) - P(3' = 2^|pa(7) = Zpow)̂ ] x 

f (po(g/) = p̂o('y)) 

" [^(7 " '̂y|P<̂ (7) — p̂o(7)) ^ -^(7 " '̂y|P(̂ (7) — p̂a(''y)) ] X 

EM') 
p̂a(7) 

^ [-^(7 ^ ^ -^(7 ^ 7̂lP<̂ (7) — p̂a('y)) ] X 

Y% f (7 — |p<̂ (7 ) — p̂a(7')) 

where pa('y) — F \pG('y) (so note that -y E pa(i')), and using the expansion 

= H-y -̂ (̂7 = 4lP'^(7) ^ ^paw). Furthermore, 

E 
log/ 

= (7 = 4 W ( 7 ) = W?)) X 

P{l — h\P'^{l) ~ p̂a(')))] 

= —^ [̂ (̂ pa('y))] -^(7 ^ '̂ 'ylf'̂ (7) — ^pa^) X 

-^(7 — ~ p̂a('y)) 

CX - f (/) = 2̂ |pa(n̂ ) = ^ P(i) X 
*̂ (T) 

-^(7 — 1̂ (̂ (7) — p̂aW) 

^ -P('y = 2̂ |pa(T̂ ) = 2pa(T)) X 

-^(7 = j'rlPG('y) — 2pa(')')) X 

JJ-P(7 ~ |pa(7 ) — ipa{-y')) 
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It, is now possible to construct the Fisher information matrix, defined as 

/((^) = E — . As described above, this matrix is block diagonal, 

with a major block corresponding to every model term "y, and sub-blocks of size 

(|Zy| — 1) X (|7^| — 1) for each set of Hence is equal to the product 

over all blocks of the sub-block determinants. 

Within a sub-block, note that the term 

Hy ^(Y = = %pah')) is a constant 

factor for each non-zero entry, and so this may be taken outside the determinant 

and raised to the power — 1. The remainder of the sub-block may now be writ-

ten in the form (dm^(a) -t- bc^) , where a = b — —c = ( f (7 = %'y|pG('-y) = Zpo('y))) 

are vectors of length — 1. We now apply the expression 

|4os(a) + bc^ = A + 

141 \ 141 
1 - ^ P(7 = 4|PG(7) = f (7 = 4lP^('7) = 

2-y=2 J i'y=2 

141 
= -P(7 ~ ~ p̂a('y)) J[ ~ ^ ipaif)) 

i'y=2 

— P{ l = 1̂ (̂ (7) = ipa[-̂ )) 
i-f 

Hence the determinant of the sub-block corresponding to 7, is given by 

= W-y)) 

where Hy -^(Y = 4'IP^(Y) ^ Therefore, the determi-

nant of the major bloc k corresponding to a particular model term 'y is 

n ^ 41^^(7)=^po(T)) 
p̂a('y) 
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It is now possible to ^Tite down the Fisher information matrix, 

oc E 92 

n n n = w ? ) ) 
7 ' p a { 7 ) 

1 2 H - ^ h ' = h ' l f h " ) = V{1')) n n 
7 ' p a ( - y ) 

%% f (7 - 41^^(7) = w?) ) 

'pa{7) 7 

1-̂7 I " 1 

X 

Jeffreys' prior /((^) is proportional to the square root of this determinant, though 

in order to obtain a prior for the conditional probabilities, rather than the con-

ditional logits, we must multiply by the Jacobian | J| of the transformation from 

^ to = 2 |̂pa('y) = %po('y))} . This was shown in section 3.3 to equal 

1̂ 1 YI n n ~ 2^|pa(7) — ipa{-f)) 
7 p̂a(7) 

= n -^(7 "=41^(^(7)=^ 

-1 

7,*7,*pii(7) 

This expression is now applied to determine Jeffreys' prior for a decomposable 

log-linear model, where p is now a collection of conditional probabilities such as 

-P(?|̂ pa('y)) rather than cell probabilities ^(t): 

/(p) (X |/((^)|^ |J| 

0( n n 
7 p̂a(7) 

JJ[-P(7 — 7̂'IP'̂ (7 ) — p̂a(Y)) 
' ^ ( 7 ) 7 ' 

IAI-1 

X 

-^(7 "" ~ Va(7)) X 
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-^(7 — — ̂ pa(-y)) 
0 ' ; ^ ^pai-y ) 

n n z% ~ h'lp^ii)=^pa(Y)) 
7 p̂a(7) ^̂ {7) 

] ^ f (7 = 2^|po(7) = W?)) 

n n ^ ^paw) 
7 i~n̂ pa-{~i) 

X 

-1 

/ 

/ (p) (X n n 
7 p̂a(?) 

]^-P(7 — ̂ 7'I-P®(7 ) — ipa{-i')) 

%% ]j[ -^(7 = 1̂ (̂ (7) — Va(7)) ^ 

\ 

X 

7 ^'Y:^pa("Y) 

|/-̂  | —1 
(X n n n n 1^0(7) - zpa(̂ )) % (6.4) 7î pa(7) 

7 p̂a(7) / 7 7̂!̂ pa(7) 

where — ^(^0(7) — %po('Y)) — 11^ -^(7' — VlP'^(7') — p̂o(7'))-

It is possible to use this result to express the Je&eys' prior for any decom-

posable log-linear model in terms of conditional cell probabilities. This will be 

applied to a range of models in the next section. Note that the Jeffreys' prior 

consists of two parts - a Dirichlet part, where each P(7|po(7) = Zpa('y)) follows an 

independent D%r2c/zZê (̂ l) distribution, multiplied by a part which is a product 

of summation terms. 

6.4 Examples of Je f f reys ' P r io r s 

In this section, the Jeffreys' priors for various decomposable log-linear models, 

including all those with up to and including four variables, will be derived. 
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6.4.1 Sa tu ra t ed Models 

Equation (6.4) is applied here to derive a general expression for the Jeffreys' 

prior for a saturated log-hnear model, parameterised using conditional probabil-

ities. Suppose we have A; variables, denoted A, B, C, D,. . . Such a model ad-

mits the decomposition f (v4)f (C|A, (D|v4, B, C).. . The expression 

for the Jeffreys' prior (6.4) is 

/(p) (x n I I ) n n - 4iPG(?) - ^ 
\ T ^pah) ) T 

where [jy -^(Y = vlpa(Y) = W f ) ) 

The term may be calculated for each 'y : 

^̂ (7) 7' 

= H ^(Y = 4'lp(^(Y) = ^pah')) ^ H -^(Y - 4'lp^(Y) - WY)) 
Y6pa('y) YÊ ('Y') 

= jQ̂  P(7 = iy |pa(7 ) = ipa(̂ ')) (6.5) 
Y6po('Y) 

where the term Hy6^3(7)-^(Y = taken outside the 

summation in this case, because for the saturated model the set of variables 

which preceed any 7 in the perfect ordering is exactly po(7). 

It is therefore straightforR'̂ ard to write down expressions for any , for 

example 

^C,iA,iB ~ H f (7 = 2y|pa(7 ) = 2pa(y)) 

— f ( A — %x)-P(^=^B|^ = /̂l) 

An expression for JeEreys' prior may now be derived, by substituting (6.5) 
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into (6.4): 

/ (p) n n 
7 p̂a(7) 

X 

2 X 

2 X 

%% f (Y = %y|pa(Y) = ipa(Y)) 

H ^(7 — ^7' |p®(7 ) ~ ̂ pa{j')) ^ 
7 7̂' '̂ pa(7') 

= n n n f h ' = v M y ) = w y , ) ^ 
7 ipa(T) 7'Gpa('Y) 

f S ' ' « p a ( Y ) 

= %% %% %% P(Y - = WY)) 
-y Yepa(i)ipa(̂ ) 

n n f h ' = v i p » ( Y ) = w - , ' ) ) " ^ 

= -^(7 = V 1P®(7 ) ~ p̂a(7')) 
1 7'epo(7)ipa(y),iy 

n n ^(Y=vip^(Y)=W))'' 
Y V''pa(7') 

where w ,̂y := and %( ) is the indicator function. 

We now use the notation 7' < 7 to denote those variables "y' which preceed 7 in 

the perfect ordering, and write 

X 

/(p) H n n -^(Y=vwY)=wY)) 
T 7 ' < ' Y i p a ( y ) , V 

n n ^ ' ( t ' = v i p < » ( 7 ' ) = w ) ) " ' 

7' S'i®pa{7') 

X 

H H H ^ ZY|pa(Y) = WY)) 
Y T>Y'p(.h'),S' 

n n M 7 = : ( i ' H ( y ) = w i ' ) ^ 
Y S'''p.h') 

X 
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n %% %% f (7 ~ ) — Va(7')) 
'Y>'Y' ' p a h ' ) . V 

%% P(7 = ij' |pa(7 ) = Zpa(Y)) ^ 
S' '̂ 1(7') 

X 

= n %% P(7 — z^'jpa(7 ) — Zpa(Y)) 
®pa(7')i'7' 

E T)-;' 

%% = vlp^(Y) = W f ) ) " 

^ n n ^(Y ^ 4 ' i f ° ( Y ) = W f ) ) ^ 
7' 7̂'i®po{7') 

Finally, we note that 

E 
7>7' 

niA |7(ye[pa('y)\{pa(Y)UY}|) I A" I — ^ 
1 Tl ir |x(?''G[r\{'YUpo(7)}]) 
1 _ 117* r-y' I - 1 

which follows directly from the result a — l+a(6 — 1) +a6(c— l)+o6c(d— 1)+.. 

o6c(f We may now write down Jeffreys' prior for the satm-ated model 

/(P) (x %% H 
p7" |x(7*6[r\{7Upa(7)}j) 

(6.6) 

7 p̂a("Y) 

giving a product of independent Dirichlet distributions. It is straightfoiivard 

to show that this distribution is equivalent to that obtained in section 6.2.2, 

/(P) n i P W " " -

As an example, this expression will be applied to the four variable saturated 

model. In this caae. we obtain 

7 1 | r | X ( ' Y ' 6 ( r \ { A U p a ( A ) } | ) 

1 i y H-y' I 1 

2 
2 17- |x(yi6[r\{v4upa(/i)}|) I r |x(8e|r\{/iupoM)}]) 
- l-(v4 M B 

|ĵ |X(C6[r\{AUpa(.4)}]) ,ĵ |x(D6(r\{/lUpa(.4)}|) 



6. Jeffreys' Prior 108 

2 

Kal l-̂ cl l-̂ l̂ 

rr IT- |x(i"G|r\{')Upah)}]) , j, , 
il-y'ri'l l-ZclMcl 

2 2 

rr 17- |x('y''G[r\{'YUpa('Y)}]) , 
ii-Y' I-'?"! M. D\ 

2 2 

rr |r |X(7''G[r\{'YUpa('Y)}]) 
ii-y* Hi' I -I-

so that 

f ( A = 2,̂ )̂  (D = = 2 /1 , B — C = zc)"^ 

Expression (6.6) may be used to write down the JeEreys' prior for the single 

variable model represented by the graph 

This is given by 

/(p) (X ] ^ f ( y l = 
i.A 

which is a well-known result. 

6.4.2 Block Independence 

The JeEreys' prior for a model which is represented graphically by a number of 

disconnected components is available directly from the separate JeGreys' priors 

for each of the disconnected components. This follows from expression (6.4), 



6. Jeffreys' Prior 109 

which may be written 

/(p) oc i n 1 1 ' ^ % ^ ) i n n p ( 7 = 4 M 7 ) - W ' y ) ) ' 
p̂a 
/ 

',̂ pa('y) 
7 Va(7) ) 7 ,'̂ pa('Y) 

n p.h), II ' 
\Va(7) / 'TVa(7) 

n « . . 

n n 
J -yEAj 

n '7,̂ pa(T) H -P(7 = -= W7)) " 

where each is a disconnected component of the graph. For % ^ j, if E A, 

and 'Yg ^ then '/g ^ po(?i) aJid uzce fersa. Hence the contribution of each 

disconnected component A_; to the Jeffreys' prior will be identical to the Jeffreys' 

prior for Aj as a model in its own right. 

Application of this concept is straightforward. For example, in the model 

with A; variables, all independent, there are A; discoimected components, each 

containing a single variable. As stated in the previous section, Jeffreys' prior 

for the model for a single variable v4 is /(p) = P(v4 = Therefore the 

JeSreys' prior for the model with k independent variables is given by 

/(p)o<nn^'h=%)"' 

which is the product of the Jeffreys' priors on the cell margins. This confirms 

the expected result that the Jeffreys' prior for an independence model places 

Dirichlet(^l) distributions (which are Beta(^,^) for the 2-level case) indepen-

dently on each margin. 

In the remainder of this section, the JeEreys' priors for models with up to 

and including four variables, which are distinct up to graph isomorphism (ie. 

equivalent under permutations of variables), are considered in detail. Expressions 

for many other JeSreys' priors are also given, obtained using the above results. 
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6.4.3 Two Variable Models 

There are 2 distinct, models with two variables - the independence model and the 

saturated model. Their Jeffreys' priors are directly obtained using the results on 

independence and saturated models respectively, and are given by 

/(p) K n = u ) - : n = w " ' 
' , 1 I B 

and 

/ ( p ) ( X ] ] % % f ( B = 

)/l (.4,If 

6.4.4 Three Variable Models 

There are 4 distinct graphical log-linear models with three variables, all of which 

are decomposable. Jeffreys' priors for three of these are obtainable using the 

previous results, and the other is derived here. 

Independence Model 

This model has JeSreys' prior 

/(p) 0( f (v4 = 2.4)-^ n 

'a ic 

One Edge Model 

This model represents the independence of one of the variables from the other 

two. Without loss of generality, consider the model which can be represented by 

the graphs 
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A 
# 

The graph is composed of two disconnected components, and so the theory 

on block independence may be used to provide the JeEreys' prior in this case. 

The two components represent a saturated model with 2 variables and a single 

variable model, and so we obtain 

/(p) oc (B = (A - %% f (C = 

producing another Dirichlet prior. 

Two Edges Model 

This model represents the conditional independence of two of the variables, given 

the other. Without loss of generality, we shall consider the model with the 

undirected graph 

The directed version admits two distinct decompositions - one is f 

and the other is f (v4)F(B|v4)f These are represented graphically below 
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These two parameterisations will be considered in turn. 

Parameterisation One Suppose the model is parameterised using the decom-

position f Then we have 

7 

A B A , C 

B 0 A , g , C 

C B ;4 ,C 

Hence the terms m&y be calculated for each "y: 

'B, 'pa(B) 

^ f (g = Zg)?(A - = %g)P(C = = 2 )̂ 

1 

and 

(̂ c,ig = <5/1,ig = ^ P(Y = zy |pa(Y) = WY)) 
y 

= ^ = zg)f (C = 2c|B = zg) 

= P(B = 2B) 
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Application of equation (6.4) yields the Jeffreys' prior 

/(p) - f n n n n ^ { - r = = v w ) -7)̂ pa(7) 
7 Va(7) J 7 •̂ 7'̂ pQ.(7) 

= Y[P(B = n HA = : , | 8 = x 
is 

= YI_P{B = is)^ 2 JJ p(^A = iA\B = 2g)"2 JJ P(C = ic\B = is)' 

1 , 4 , I B 'B.lC 

and so the distribution is, once again, a product of independent Dirichlet dis-

tributions on the conditionals. Note however that the distribution is not hyper 

Dirichlet, as the distribution of f (B) is not consistent with the distributions of 

f (v4|B) and P(C|g). 

Parameterisation Two Now let the model be parameterised using the de-

composition P{A)P{B\A)P{C\B). Then we have 

7 m ( ? ) 

A 0 

B A B , C 

C B A,C7 

This time, the terms equal to 

= 1 
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' ' ' - 4 E H ^ i P G ( 7 ' ) = W f ) ) 
Ig,«c 7' 

P(/l = (B = 2g|v4 = (C = zcl-B = ig) 

ta.tc 
P(v4 = 

i/l.'C 7' 
= ^ 2 ^ = 2g|A = 2yi)P(C = icI-B = ^g) 

i.4 ,ic 

'A 

Note that this last term, ^c.ig, may be ^nritten as f ( B = zg), but this is not 

part of the required parameterisation, and so cannot be directly included in the 

expression for JeSreys' prior. 

Application of equation (6.4) in this case gives 

f'̂ pah) 
7 p̂a{7} j 7 ,̂̂ pfl('y) 

l̂ c|-i 

- n 
tB 

P{A = iA)P{B = %g|A = {A) 

iA 

JJ P{B = islA = ?4)~2 JJ P{C = ic\B = 
«B,ic 

and so in this instance, the distribution is not a product of independent Dirichlet 

distributions. Note however that this distribution is equivalent to that obtained 

previously using parameterisation one, and so it is clear that a careful choice of 

parameterisation for a model may produce a JeEreys' prior which is easier to 

manipulate. 
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Saturated Model 

The final model with three variables is the saturated model, as represented by 

the graphs 

Application of equation (6.6) yields the JeSreys' prior 

/(p) 0( %%f(A = 2 ^ ) M ^ - : ] ] [ P ( B = 7g|A = 2 )̂ 

6.4.5 Four Variable Models 

There are 11 graphical models with four variables, though one of these is not 

decomposable, and six are obtained from previous priors using the block inde-

pendence theory. The Je&eys' priors for all the models are presented in this 

section, and four are considered in detail. 

Independence Model 

The Jeffreys' prior for this model is given by 

/(p) oc f (A = 2^)-i %% f (B - 2B)-| %% P(C = 2c)-^ n 
ic io 

One Edge Model 

There is one distinct model with 1 edge, represented by the graphs 
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A B A B 

@ 9 @ • — @ 

# e # @ 

C D C D 

Application of the block independence theory gives the Je&eys' prior for this 

model 

2/) (X tC 

^D 

Two Edge Models 

There are two distinct models in this section. The first of these is 

A B A B 
@ 0 0 ^ 0 

The Jeffreys' prior for this model is 

, l W _ i -rr T - , / ^ . \k&i_ 

ic 

f (D = 2a|C — %c) 

__ 2 X 
' / I i x . i a 

:c,«D 

The second model is 
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The Jeffreys' prior is again obtained iising the block independence theory. 

Note here that because of the similarity to the three variable model detailed 

previously (model /IB + BC), it is important to choose the parameterisation 

carefully in order to admit a straightforward Jeffreys' prior. This prior is given 

by 

'a ix 
Y] B(C - = / g ) 4 ]][ P(D = 2^)4 

1-D 

Three Edge Models 

Three distinct models exist in this section. 

The hrst model hag a graphical representation 

The Jeffreys' prior for this model is 

/(p) oc f ( B = %g|v4 = 2/i,C = zc) 2Y%f(v4 = zx) 
\'B\\'C\ 

X 

M 

n F{C = ic\A = i ^ ) ' ^ - ' ^ P ( D = IB) 
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The second model with three edges is the 'star-shaped' model which may be 

represented by the graphs 

e 
D 

This model represents the conditional independence of C and D given v4. 

The parameterisation admitted by this graph is f (yl), f(C|X), and 

Application of expression (6.4) gives 

/(P) (X ] ] [ f ( A = 2A) 2 ^ 2 ^ 2 

0( 

M I D 

f (B - (D = 

= f ( C = 2c|;l = (4)-^ X 

%% f ( g = ]][ f ( D = = 2^)-3 

1,4,If) 

Note that, unlike the other four variable models considered thus far, this model 

cannot be separated into lower order models. The prior here is again Dirichlet 

on the marginal and conditional probabilities, though not hyper Dirichlet. 

The third model with three edges may be described as the 'straight line 

model', and has graphical representation 

@ > # ^ @ > # 

D A 

The parameterisation for this model implied by the directed graph is P(A), 
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f (B|v4), P(C|g), f (D|C), giving the table 

7 pa('y) ^ ( 7 ) 

A 0 A, B, C, D 

B A B , C , D 

C B A , C , D 

D C A , B , D 

The terms are equal to 

8/\ — 1 

^ = 'ig|;4 = Z/i) 

<5 ̂,«c f-^"((7 = 2c|B — tg) ^ f ( j 4 = Zyi)P(g = j 
'B \ i.A J 

Here, two of the 6 terms are gi\'en as sums of the probabilities which comprise 

the parameters, hence the JeSreys' prior will not be Dirichlet. The JeSreys' prior 

is given by the expression 

/ (p) (x n 
«c 

X 

n 
?.4 

2 X 
«.4 

]]^ [f(.4 = 2,i)f(B = %B|/l = (4) X 

f ( C = %c|-8 = %B)f(-D = %D|C' = ^c)] ^ 
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DC n 
^C 

f -P(C' = 2c|-8 = Zg) ^ f (v4 = (B == 2g|v4 = 

n 
IB 

2.4 

X 

4̂ 
%% P(B = 2B|v4 = 2^)-i YI = zc|B = Zg) 

iB,ic 

n P ( C - t c | C - . ! c ) - i 

• • > ¥ - > X 

2 X 

The only alternative distinct parameterisation for this model is f (B), f 

P(C|B), P(D|C), as represented by 

This gives the table 

A B c 

7 po('y) ^ ( 7 ) 

B 0 

A B A , C , D 

C B v4,C,D 

D C A , g , D 

The terms are equal to 

= 1 

= -^(-8 = 2g) 

ĉ,ib = f (-B = 

= Z ( = '(^1^ = 'a) Z f (B = 2g)PM = 2y,|B = Zg) 
'B \ '.4 / 
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The resulting JeSreys' prior is 

/ (p) n ^ (C = 2c|B = ^ f (B = 2g)f M = %.4|B = Zg) j 
. is V '.4 / 

(B = zg)' P(v4 = = 2 )̂ X 
ig 

— 2c|B = Zg) Y% -P(-D = Ẑ IC" — Zc)"^ 

X 

*B,'C 

which again is not a Dirichlet prior. Hence, here, it is not possible to choose a 

parameterisation such that the JeSreys' prior may be expressed as a product, 

without summation terms. 

Four Edge Models 

Two distinct four variable models exist which have four edges. However, one of 

these is the model which is represented by the graph 

This model is clearly not decomposable (it is not triangulated), and so ex-

pression (6.4) cannot be used to determine the JeEreys' prior in this case. 

The other four edge model can be represented by the graphs 
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This modelmaybeparameterisedby f ( B ) , P(v4|B), f (C|B) andf(D|B,C), 

and represents the conditional independence of A and {C, D} given B. Calcula-

tion of the terms and application of expression (6.4) gives 

f (D = = zg,C 
ia 

%% ( f (C - zc|B = 2g)P(B = 
»B,ic 

= %% P{C = ic\B = JJ P{A = iA\B = is) 

/̂ll + l̂ c|-3 
X 

2 X 

:B,«C 
H/tl + i-'ciKDhs 

This prior is again Dirichlet, but not hyper Dirichlet. 

Five Edge Model 

The single model in this category may be represented by the graphs 
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The parameterisation which is used to express this model is f (B), 

f C) and f (D|B, C). Calculation of the terms enables us to derive 

the Jeffreys' prior for this example, which is 

K.4I-1 I Kd|-I 
2 X 

IB «B,'C 
%% ( f (B = (C - 2c|B = 2g)f M = C = 2c))"^ X 

JJ P{D = iolB = tB,C = ic)~^ 

= n P{B = -1 p(c = ,c]B = X 

'B ig,ic 

f (y l = 2yi|B = 'ig,C —2c)"2x 

f ( D —2f)|B = zg,C — 

This prior is a Dirichlet prior on the conditional probabilities, but note that the 

choice of parameterisation here is crucial to ensure this. For example, the alterna-

tive parameterisation P(v4)P(B|v4)P(C|A, B ) f (D|B, C) wiH involve summation 

terms in the Jeffreys' prior. 

Saturated Model 

The saturated model with four variables has the graphical representation 

A 

The decomposition used for this model is f (v4)f (B|v4)f (C|A, (D|v4, B, C), 
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and the Jeffreys' prior is 

/(P) = .%% = = = — = 2 
ix.ig 

i/l ix,iB,:c,iD 

6 . 4 . 6 D i s c u s s i o n 

The JeSreys' priors for all decomposable models with up to and including four 

variables have been derived above. Most of these distributions are products of 

independent Dirichlet distributions, and hence the normalising constant (which 

will be required for the use of the prior in applications such as model selection) 

is readily available. Such normalising constants may be calculated by repeated 

application of the equation 

^ %% -^(7 = ^ ^mw) = '̂ 71̂ (̂ (7) = '̂ pa('Y)) = 

where |7.y| is the number of levels of "y. 

As an example, consider the Jeffreys' prior for the model with three variables 

v4, B, C where A and C are conditionally independent given B. This prior waa 

determined earlier to be of the form 

/(p) (X ] ] [ f ( g = 2 6 ) : n n = ' '=1^=w"' 
if) 6̂;̂c 

The normalising constants are obtained using the previous equation, and we 

obtain 

rflfml T - r l/.4l+|;cl-3 

r/ilil 1 \ 

r(|)i/ . i 
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IB\ 

4,:c 
UB] 

%% f (/I = 2.|B = 4 ) - : n P(C - = 4)"^ 

X 

ôî b 6̂)̂ c 

It was shown in section 6.4.5 that there is one model which does not admit a 

product Dirichlet Jeffreys' prior - this is the four variable 'straight-line' model. 

The reason for this can be observed by considering the form of for each 

i". It was shown in section 6.3.1 that , , may be written 

<^7,V(7)—^2 n ~ vip®(7)=V(7')) 
' ^ ( t ) 'y' 

The Jeffreys' prior for a particular model will not be expressible as a product 

of independent Dirichlet distributions unless, under a particular ordering of the 

variables, for all -y this term may be written aa a conditional probability which 

is part of the parameterisation. 

Consider a model where a particular 'i, has a grandparent who is not them-

selves a parent of 'y, and suppose ') is the 'lowest' variable in the ordering with 

this property. The sum in is taken over and we may always sum 

recursively over each for 'y' below -y in the ordering, starting from the lowest 

y . These sums are possible as each Y depends only on pa(Y), and so we sum to 

1 each time. 

Now consider a Y and Y' below 'y, for which Y G pG('y) and Y' G p(i(Y), ^ 

po('y). We do not sum over as Y ^ However, summing over zy/ will not 

result in terms in the parameterisation, as depends on 'y'' through f ('y'|po,(Y)). 

Hence will not be expressible as a conditional probability which is part 

of the parameterisation, and must be left as a sum of model parameters. 
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For the foiir variable 'straight-line' model, parameterised by P(A), 

P(C|B) and f (D|C), the variables which cause such problems are C and D, as 

C has a grandparent who is not themselves a parent of C (the same is true for 

D). Hence and 6c cannot be expressed as a product of model parameters. 

In general, the Jeffreys' prior for any decomposable model may be obtained 

from expression (6.4), and this distribution will be a product of independent 

Dirichlet distributions provided that the model may be parameterised such that 

no variable has a grandparent who is not themselves a parent. Graphically, a 

sufficient condition is that for each disconnected component of the graph, all 

cliques have a common intersection. For those distributions which are products 

of Dirichlets, it is then possible to write down the normahsed form of this prior. 

The problem of calculating the normalising constant for models which do 

satisfy this condition will be addressed in the next section. 

6.5 Calculation of Normalising Constants 

6.5.1 Br idge Sampl ing 

A bridge sampler has already been used in Chapter 5 to determine the normalis-

ing constant for any given conditional Dirichlet model. However, this particular 

implementation of the bridge sampling algorithm cannot be used here as the Jef-

freys' priors given by expression (6.4) are not conditional Dirichlet distributions. 

Because of this, it is necessary to derive a new method specihcally for JeSreys' 

priors. 

The method of bridge sampling was described in detail in section 5.4. As 

part of the bridge sampling method, it is Hrst necessary to generate a sample 

from the target distribution. In the previous bridge sampler, a Gibbs sampler 

was used together with adaptive rejection sampling. However, this relies upon 

the log-concavity of the distribution, and since the priors based on expression 
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(6.4) do not seem to be log-concave it is necessary to use an alternative method 

in this instance. 

The method employed is the Aletropohs Hastings algorithm, apphed itera-

tively to blocks of parameters as a Aletropolis within Gibbs sampler. 

Metropolis Hastings Method 

This is a Markov chain Monte Carlo (MCAIC) method (see section 2.4.4), 6rst in-

troduced by Metropohs et al (1953) and generalised by Hastings (1970), whereby 

a sequence of samples is generated from the target density by simulating a Markov 

chain. The method may be summarised as follows: 

1. Let be the current sample from target density /(0). 

2. Generate a candidate 0* from proposal density (̂0*10^ )̂). 

3. Evaluate the ratio r = . Accept candidate 0* and set = 

with probability min{l,r}. Otherwise set = gW. 

Note that the normalising constant for the target density / is not required in 

the algorithm, as it is cancelled out in the calculation of ratio r. 

A special case of this algorithm is applied here - this is known as an Inde-

pendence Sampler. In this, the density g(0*|0(^)) is independent of so that 

g(0*|^(^)) = ^(0"). Step 3 therefore becomes 

3. Evaluate the ratio r = Accept candidate 0* and set = 0* 

with probability min{l,r}. Otherwise set 

Although in theory am' proposal density ^ which has the same support as / 

will work, the km' to the Independence Sampler is choosing a proposal density p 

which is both easy to sample from, and is close to the target density / . If a poor 

choice of g is made, then ratio r will often be very small and few updates will be 

accepted. 



6. Jeffreys' Prior 128 

The aim here is to generate samples from JeSreys' priors given by the expres-

sion 

/ 
/(P) (x n n 

7 Va(7) 
H ^ = W f ) ) 

p̂a("Y) 

X 

%% JJ -^(7 — — p̂a(7)) 
7 •̂ 7'̂ pa(7) 

(6.7) 

In many instances the expression on the top line of (6.7) may itself be expressed 

as a product and we obtain a product of independent Dirichlet distributions. 

However, the cases of interest for this section involve those priors where summa-

tion terms appear, and the top line of (6.7) may not be expressed as a product. 

Because of the form of this distribution, the choice made for proposal density ^ 

is 

g(p) (x n n 

7 '7î po(7) 

For any model, this wiU be a product of Dirichlet distributions, each having all 

parameters equal to .̂ 

A C program was developed to implement the Ad̂ etropolis Hastings algorithm 

to the problem of generating a sample from the JeEreys' prior for a particular 

decomposable log-linear model. This program needs the following inputs: 

1. The (un-normalised) density / . 

2. The total MCMC sample size required. 

3. The mmiber of independent Dirichlet distributions into which the proposal 

density factorises, and the dimensions of each of these densities. 

4. The parameters for each proposal density. Although for prior samples all 

parameters are equal to for posterior sampling more general proposals 

will be required. 
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An observation is then generated in turn from each of the Dirichlet distribu-

tions, and the Metropohs Hastings algoritlim apphed at each stage to determine 

whether this observation is accepted or rejected. This whole process is iterated 

to provide the required sample size. 

Bridge Sampler 

The method of bridge sampling was described in detail in section 5.4. Slight 

modifications were made to the S Plus code used there in order to apply the 

method of bridge samphng for Jeffreys' priors derived from equation (6.4), us-

ing samples produced using the Metropohs Hastings algorithm. Note that the 

starting value for the bridge sampler is no longer obtained from a Laplace ap-

proximation, but instead an arbitrary value of 1 is used and the bridge sampler 

is then run iteratively until convergence (typically less than 10 nms). 

6.5.2 Resu l t s 

We hrst check the method by applying it in cases where the normalising constants 

are known. 

The model represented by the (imdirected) graph above admits two distinct 

paranieterisations, and it was shown in section 6.4.4 that, whereas one of these 

results in a Jeffreys' prior which is a product of independent Dirichlet distribu-

tions, the other is not of this form and so is a suitable candidate for the bridge 

sampler. Table 6.1 summarises several results obtained for this model, compar-

ing the values obtained using the bridge sampler with those true values obtained 
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using the Dirichlet parameterisation. Sample sizes of 50000 were used. 

Levels Levels Levels log Bridge log True Error in 
of of of Estimate Value Bridge 

Variable A Variable B Variable C Estimate 
2 2 2 3.64 3.64 0 
2 2 3 4.12 4.17 .05 
2 2 4 4.20 4.26 .06 
2 3 4 3.41 3.62 .21 
3 2 4 4.78 4.85 .07 
3 3 4 2.95 3.16 .21 

Table 6.1: Estimated JeEreys' normalising constants, together with their respec-
tive errors 

As can be seen from the table, the approximations to the normalising con-

stants given by the bridge sampler are very good. A time series plot for the 

Aionte Carlo sample corresponding to margin f (B) is given in figure 6.1. 

Similar plots are obtained for the other model parameters, and we conclude 

that the Metropohs Hastings sampler mixes well, producing samples which are 

not highly dependent. The autocorrelations drop to negligible values after lag 4. 

Table 6.2 shows rejection percentages for both prior sampling (where n = 0), 

and for posterior sampling with equal cell counts. As expected, the percentages 

drop markedly with increasing sample sizes, since the data only updates the 

second part of the JeSreys' distribution, from which we generate the proposal 

density. The rejection percentages all fall within acceptable limits, which further 

validates the quality of the sampler, in particular for posterior sampling. The 

sampler was applied to several other models, and similar results were obtained. 

Therefore, the bridge sampler may be used with confidence to determine the 

normalising constant for the Jeffreys' prior (as given by expression (6.4)) for any 

decomposable model, and so whether or not the prior may be expressed as a 

product of independent Diriclilet distributions is no longer a consideration for 

the use of Jeffreys' priors. 
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Figure 6.1: Time series plot for Metropolis Hastings sample corresponding to 

6.6 Conclusion 

The focus of this Chapter has been Jeffreys' prior for log-linear models. A 

general expression (6.4) has been derived which enables us to write down the 

Jeffreys' prior for any decomposable log-linear model, and this expression has 

been applied for all models with up to and including four variables, and the 

resulting distributions presented. It is often possible to parameterise the model so 

that the distribution obtained is a product of independent Dirichlet distributions, 

in which case the normalising constant is straightforward to determine. However, 

in the instances where this is not possible, a bridge sampler has been developed 

to give a good approximation to the normalising constant. 
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Sample Rejection 
Size Percentage 

n 
0 32.3% 
8 19.1% 

40 6.9% 
80 4.1% 
160 2.2% 
400 0.8% 

Table 6.2: Rejection percentages for Metropolis Hastings Sampler 

The problem of determining the Jeffreys' prior for non-decomposable models 

was considered, although the expression obtained does not, in general, result in 

a tractable form for this distribution. However, the expression was applied to 

determine the JeSreys' prior for a saturated model. 



Chapter 7 

Choosing A Prior Distr ibution 

The main focus of this thesis is on prior distributions suitable for use in refer-

ence analyses of log-linear models. Several potential reference priors have been 

introduced, though the choice of the parameters for these distributions has not 

been considered. In this Chapter, we consider the problem of model selection, 

specifically methods of approximating the Bayes factor, and the eEect of the 

choice of prior distributions and prior parameters on such approximations. 

7.1 Laplace's Method and the Schwarz Crite-

rion 

Laplace's method of approximating integrals was introduced in section 5.3, and 

the Laplace approximation to the (log) marginal likelihood was shown to be 

log y /(?%|0)/(0)d0=log/(?i|0) + l o g / ( g ) - ^ l o g - ^ ( 0 ) +^log27r + 0(n-^) 

where 0 is the posterior mode, is the hkelihood, is the prior, cf 

is the dimension of 0, and ^(0) is the Hessian matrix of second derivatives 

(ie. This approximation is correct to order 

133 
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where n is the total sample size. 

This expression was re-written in terms of the information matrix and max-

imum likelihood estimator 0 

y/(ft|^)/(^)G^^=log/(?i|^)+log/(^)+^log27r-^logn,-^log 2(0) 

(7.1) 

to give an approximation to the marginal likelihood which is correct to an or-

der 0 (n '2 ) . Similarly, the Bayes factor comparing models mi and mg may be 

approximated using the expression 

logBi2 = log/(?i|emJ + log/(g^J + log27r _ _ 

1 
log i{6. l0g/(n|^m2) - l0gy(gm2) + ^ log 2(0^2) + 0(n 

However, this approximation requires a normahsed form of the prior density. 

As has been discussed previously, it may be difficult or impossible to obtain the 

normalising constant for prior distributions analytically, as such distributions are 

often intractable. Hence it is sometimes convenient to omit the term log/(0), 

to give an expression which is only correct to an error of order 0(1). 

As ^((fi —(f2)log27r and log z(0mi) are also 0(1), they can be absorbed into the 

0(1) term to give the Schwarz criterion 

5'i2 =logy(?%|mi,0mi) -log/(?2|m2,0mj - -(di -d2) logn 

Although the Schwarz criterion is only generally correct to order 0(1), an 

interesting consideration is whether it is possible to choose a particular prior 

distribution such that the order of such an approximation may be improved. The 

focus of the remainder of this Chapter is whether it is possible to choose / (0) 

such that the terms ^(di — 6(2) log 27r and log 2(0mJ disappear (or may be easily 

evaluated). As noted by Kass and Wasserman (1995), Jeffreys (1961) chose the 
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Caiichy prior density for use in Normal location testing problems, in which case 

the terms above were replaced by a constant, dependent only on the dimensions 

of the models under the null and alternatî ^e hypotheses. This corrected form of 

the Schwarz criterion allowed the Bayes factor to be approximated to an error 

of order 

7.2 Unit Information 

7.2.1 Un i t I n f o r m a t i o n N o r m a l P r io r s 

This is an idea introduced by Kass and Wasserman (1995), based on work by 

Kass and Vaidyanathan (1992), which they applied in particular to the problem of 

Bayesian hypothesis testing. It allows a choice to be made for prior /(^) so as to 

allow the log marginal hkelihood to be approximated to an error of C)(n"2) using 

the Schwarz approximation, and hence requiring only the maximised likelihood. 

Their theory may be summarised as follows: 

Suppose we have a set of i.i.d. obser\:ations . . . , from a family param-

eterised by (/3, ̂ ), and that we wish to test the hypothesis .ffo : lA = lAo against 

the general alternative Kass and Wasserman proposed that the amount of 

information in the prior under .ffi should be chosen to be equal to the amount of 

information in a single observation, an idea which is intuitively appealing. Here 

information is in the sense of Fisher information. The concept is best illustrated 

by a simple one-dimensional example. 

Let c^), with cr known, and suppose we want to test .ffo : i/; = i/iQ 

against ^ E %. Then z(Y') = and the prior distribution on i/i imder 

with r = (7 has the same amount of information about as there is in a single 
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observation, since the variance of a single observation is also <7̂ . This is then 

called the unit information prior for 

This theory may be extended to the multivariate case, though this requires 

two important simphfying assumptions. We assume that and i/; are null orthog-

onal, and hence that the Fisher information matrix (which we shall write 

is block diagonal for null hypothetical parameter values - ie. = 0 for 

all /3. Indeed, Kass and Vaidynathan argued that the parameters may always be 

transformed so that (3 is null orthogonal to i}). We also assume that the marginal 

prior distribution of /3 is identical under both hypotheses. 

Suppose the prior on i/; under .ffi is elliptically symmetric with location pa-

rameter i/)o scale matrix 2 ,̂,, and has density of the form 

T*(V) = / ( W - » - v-o)) 

Then a unit information prior for if) may be defined by choosing to satisfy 

the expression 

Î V'I = V'o)! (7.2) 

so that the amount of information in the prior is equal to the amount contained 

in one observation. (Note that is the block of corresponding 

to 

Kass and Wasserman (1995) showed that, for those prior distributions satis^-

ing expression (7.2), exp(6'i2) —» B12 as n —» 00, with an error of order 0(n'^/^), 

and that for samples of only moderate size the Bayes factor may be reasonably 

approximated in this way. This is a particularly useful result, as it allows the ev-

idence in favour of a model to be readily calculated without the need for complex 

integration or other, more time-consuming, approximation methods. 

Kass and Wasserman applied the results to several simple examples, and 

showed that the resulting approximation furnished by the Schwarz approximation 
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to the log marginal likelihood was good, even for small sample sizes. 

7.2,2 Uni t I n f o r m a t i o n and t h e Logistic N o r m a l Dis t r i -

bu t ion 

The concept of unit information introduced by Kass and Wasserman was applied 

by Dellaportas and Forster (1999) to the logistic Normal distribution, and this 

work is described below. 

The log-normal distribution was introduced in section 3.1, and when ex-

pressed as a distribution for the cell means was shown to have the form 

l o g M ~ A ' ( M . ^ a 2 r a ) (7,3) 
aCC 

where 7^ are projection matrices deEned in (3.1). 

Choices must be made for each dispersion parameter and for the prior 

mean of /Sg, 6. The problem considered by Dellaportas and Forster was to choose 

the parameters so that the prior distribution can be interpreted as vague without 

being excessively diSuse. These parameters may be interpreted as represent-

ing the prior knowledge about with large values representing vague prior 

knowledge. A vague, but proper, distribution may be obtained by using large 

but finite values for 

Dellaportas and Forster chose values for the parameters by considering 

hypothetical 'prior samples'. They showed that Jeffreys prior is equivalent to 

setting = 7r̂ /2, and Perks' (1947) prior is equivalent to choosing j 

(where T/)' is the trigamma fimction). 

Under a multinomial sampling scheme, a distribution is required for logp 

instead of log/i. The equivalent distribution to that derived above is logistic 

normal, and is best expressed as a prior for where 0 is the symmetric logit 
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defined in section 1.3. This gives 

/ \ 
0 N 0, E 

\ aCr;of0 y 

Dellaportas and Forster showed that the value of ag has little effect on poste-

rior analysis, so chose to make this arbitrarily small, also setting 6 = 0 in (7.3). 

They suggested that a reasonable choice for was to set = A: | / | , showing 

that I is interpretable as the number of units of prior information at the prior 

mean, and that the prior information away from this is less than Hence, for a 

unit information prior, k must be at least one. Consideration of several examples 

lead to a choice A; = 2, hence setting = 2 |7|. 

7.2.3 Un i t I n f o r m a t i o n a n d t h e Schwarz Cr i t e r i on 

Kass and Wasserman introduced the concept of unit information as a way of 

choosing a prior distribution such that the marginal likelihood may be reasonably 

approximated by the Schwarz approximation. 

In section 7.1, it was shown that the difference between the Laplace and 

Schwarz approximations is given by the expression 

6 = log /(^) + ^ log 27r - ^ log 

Suppose we have a Normal prior distribution, with mean and variance E, with 

density function 

log/(e) - -^log27r - ^log|E| - (0 - eo)"^E-Xe - Oo) 

So, if we choose E"̂  = 2(^0), t̂ ben for — ôl = O(n^^%(eo)) we obtain 
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6 = log/(eo) + ^log27r-^log|%(ao)| 

= log27r + ^ log |i(9o)| - (8 - - ^o) + ^ log27r - ^ log |%(eo)| 

= - ( 0 - 0o)^i(0o)~^(^ - ^o) 

= 0(n"2) 

Hence, provided the maximum likelihood estimator 9, in terms of units of 

information, is close to the prior mean, the Schwarz approximation will furnish 

a good approximation to the marginal likelihood. However, the approximation 

will not be close in general. 

7.3 Unit Information for Dirichlet Based Priors 

7.3.1 I n t r o d u c t i o n 

The focus of much of this thesis has been on priors based on the Dirichlet distri-

bution. However, the concept of a unit information prior as described in section 

7.2 caimot be applied directly to priors &om the Dirichlet family. As introduced 

in Chapter 2.1, this prior has the form 

/(p) oc Y I X t 

for the saturated model, or in the more general conditional Dirichlet case has 

the form 

for a model with design matrix X which sets 0 The problem is whether it is 

possible to choose a suitable set of ex parameters to make this a 'unit information 
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prior'. 

7.3.2 Cond i t iona l Dir ichlet P r i o r 

The main criterion for a unit information prior distribution is that the amount of 

information which it contains should be equal to the amount of information in one 

observation. In the case of Normal based priors, this was achieved by a suitable 

choice of the variance matrix. However, the conditional Dirichlet distribution 

does not admit such a simple solution, as the variance may not be expressed in 

such a tractable form. 

As there is a direct correspondence between observations in a contingency 

table and the parameters of the conditional Dirichlet distribution, an alternative 

definition of unit information is apparent as the prior parameters a: may be 

interpreted as prior cell counts. Suppose a single observation is divided between 

all cells, ie. let the 'prior cell count' ^ where s is the number of cells in the 

table (Perks' prior). The Schwarz approximation was investigated empirically 

for such priors to see if accurate approximations to log marginal likelihoods 

resulted. However, the results were disappointing. Indeed, it proved impossible 

to find any set of a. parameters such that the Schwarz criterion offered a good 

approximation to the log Bayes factor, even allowing for a constant correction 

term to the Schwarz formula. 

For example, in the simple 2 x 2 case, using a prior which sets a!(t) = ^ 

(ie. a single observation 'split' between the cells), the Schwarz approximation 

approximates the (log) marginal likelihood for a sample size of 2000 split evenly 

through the table with an error of —1.01. The corresponding error for a sample 

of 20000 is the sanie, so the error clearly does not tend to zero. Furthermore, 

we failed to determine an expression by which this error could be calculated in 

general. 
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7.3.3 Je f f reys ' P r i o r 

In section 7.1, it was shown that the terms which represent the difference between 

Laplace's approximation and the Schwarz approximation are 

^ d 1 
log/(e) + - log27r- - log 2(0) (7.5) 

Now, Jeffreys' prior was defined in Chapter 6 by 

/ (0) oc E 
<9̂  

T /(?l|e) 

or, equivalently, 

where c is the normalising constant. Comparison of this expression with (7.5) 

provided moti\'ation to investigate whether the marginal likelihood based on 

Jeffreys' prior may be reasonably approximated by the Schwarz formula, possibly 

with the addition of a correction factor. Wasserman (1997) used Jeffreys' prior 

to obtain an order 0(n"5) approximation to the marginal likelihood, though he 

defined Je&eys' prior using a Sxed normalising constant (27r)"2, applied to cases 

where Jeffreys' prior is improper and such an arbitrary constant may be chosen. 

However, the JeSreys' priors used in this Chapter are not improper, and so such 

an approach is not appropriate here. 

In section 6.3.1, the (unit) information matrix z(p) for a decomposable log-

linear model parameterised using a perfect ordering gave 

|2(p)| X n n 
y 7 Va(7) 

X 

/ 
r r ~~ Va(7)) 

7 

- 1 
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and Jeffreys' prior is then given by 

/ 
/(P) n n 

7 '̂ pa(-y) 

y ^ jQ^P(7 — Zy|pa(7 ) — ipa{j')) ^̂ (7) 7' 
X 

n II = = w?))' 
7 ^7'Va(7) 

where ^ is the normalising constant for the distribution. The diSerence between 

the Laplace and Schwarz approximation, equation (7.5), then becomes 

6 = log/(p) + ^log27r-^log|2(p)| 

= ^ log N(P)I - log c + ^ log 27r - ^ log |2(p)I 

log 27r — log c 

Hence we have an expression for the difference between the Laplace approxi-

mation and the Schwarz approximation to the marginal likelihood for a decom-

posable log-linear model which depends only on the normalising constant of the 

JeSreys' prior. Hence, it is possible to write down a corrected Schwarz approxi-

mation 

Sc = log /(?%) = log /(Ti|p)- d , 1 r , 1 

n + - log ZTT — log c 

which is correct to order 0(n 2). This corrected approximation will be apphed 

in the next section to several examples. 
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7.4 Application of Corrected Schwarz Approx-

imat ion 

An expression was derived in the previous section which may be used to provide 

a correction term to the Schwarz approximation, and the resulting approxima-

tion will then provide a approximation to the marginal likelihood for a 

decomposable log-linear model with Jeffreys' prior. Two examples are presented 

in this section which demonstrate the relative merits of the uncorrected and 

corrected Schwarz approximations to the marginal likelihood, based on Jeffreys' 

prior. 

The true marginal likelihood is given by the expression 

c 
C 

and so 

log/(n,) = logC - logc 

where c is the normalising constant for the prior density and C is the normalising 

constant of 

In general, c and C may not be available without the use of an approximation 

method such as Laplace's method or bridge sampling. Hence, a computational 

saving may be made by using the corrected Schwarz approximation, as only c is 

needed for this. 
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7.4.1 E x a m p l e 1 

Here, we consider JeSreys' prior and resulting posterior for a saturated model, 

where normalising constants are always easy to compute. 

The (uncorrected) Schwarz approximation to the marginal likelihood is de-

rived from 

l o g / W =log/(?%|p)-^logn + 0 ( l ) (7.6) 

where (f is the number of parameters in the model and n is the total sample size. 

For this example, expression (7.6) becomes 

logy(n.) - log/(T%|p)-^logTi + 0 ( l ) 

= ( n / r w i ) ) - 5 i ° g " + 0 ( i ) 

ynzr(M(t))-^^^ 71 y 2 

log r(n) — ^ log r(?i(i)) + ̂  n(t) log n,(z) — n log n — - log + 0(1) 

The correction factor for this expression, as derived in section 7.3.3, is given 

by 

6 = - log 27r - log c 

where c is the normalising constant for the Jeffreys' prior for the log-hnear model. 

For the saturated model, the JeSreys' prior is of well-known form 

/(p) oc []p(2) ^ 
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and the normalising constant is therefore 

r m 

where +1 in this case is the number of cells in the table (as we have a saturated 

model). The correction term is therefore 

C 1 r, (d + 1) . / ( i + 1 
5 = - log 27t — log TT + log r 

2 ° 2 ° ° 2 

:2-^log7r + logr^'^^^ 
2 ° 2 ° ° 2 

Hence the corrected Schwarz approximation is given by 

log/(7i) — log r(n) — log r(n(%)) + 72(2) log 77(2) — n log n — - log n, + 
% z 

^log27r- ((i+ l ) logr ^ 0 + l o g r + 0 ( n - 2 ) 

= log r(n,) — ^ log r(n(2)) + ^ 71(2) log n,(i) — n log n — - log n 4-
i i 

^log2-^log7r + l o g r ^ ^ ^ ^ + 0 ( n - 2 ) (7.7) 

For the saturated model, it is also easy to calculate the true marginal likeli-

hood. The value of C (as defined above) in this instance is given by 

C = y F(p)/(:t|p)G(p 

_ Hi r (71(2) + 1) 

r [ n + ^ ] 

Eind so the marginal likehhood log/(?%) is 
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log/(n) = l o g r ( n ) - ^ l o g r ( n ( z ) ) + 
X 

d + 1 

n[i 

logr 
d+l 

n 
2 

log TT + log r 

1 
2̂  

Application of Stirling's approximation, given by the expression 

logr(z) = (z - ^)logz - z + ^log27r + to (7.8) yields 

(7.8) 

l o g / W logr(M) 

E 

^ log r(n(2)) + ^ n,(i) log 

o;+ 1 
9 

log 27r n log I n + m 
logr(n) 

d \ 1 d-\-\ , _i. 
n -I : 1- - log 27r — log TT + log r I —^— I + 0(n j 

r 
2 2 ' ° 2 

log r(n(%)) + ^ 72(2) log mi 

+ 1 d + 1 
n log27r 

d 
n log ^ 

^ ^ ^ - ^ l o g 2 7 r - ^ ^ - ^ l o g 7 r + l o g r ^ ^ ^ 

log r(M) — ^ log r(n(z)) + ^ n(i) log n(%) 
1 

+ 2 

log - l̂ogTT + logr 

which is equal to expression (7.7) aa n(z) —> 00. This vahdates the corrected 

Schwarz approximation for this model, and shows that in this instance it ap-

proximates the marginal likelihood with error of order O(nr^). 
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7.4.2 E x a m p l e 2 

This example involves the 3 variable model with one conditional independence 

represented by the graphs 

The Je^reys' prior wiH be based on the parameterisation nsing the conditional 

probabilities from the directed version of the graph. The (uncorrected) Schwarz 

approximation to the marginal likelihood is derived from 

log/(ii) = l o g / ( n | p ) - ^ l o g n + 0 ( l ) (7.9) 

where of is the number of parameters in the model and n is the total sample size. 

For this example, expression (7.9) becomes 

log/(7i) ^ log/(7%|p)-^logM + 0 ( l ) 

= log r(n) 
mr(M(2)) 

^Y%p(i)''(^) - - l o g n + 0 ( l ) 

r(n) 
m r(7i(2)) 

logr(n) - ^ l o g r ( n ( z ) ) + ^n(%a,2b)log^2(„4) + 

^n(%6,2jl0gp(26,2j - ^n(26) l0gp(4)- - l0gM + 0(1) 

log r(n) - ^ log r(M(%)) + ^ n(2a, 4) log + 
i 

n(26, z j log ^ n(4) log log n + 0(1) 
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= logr(n) - ^logr(n(%)) + ^n(2a,Z6)logn(i^,4) + 
i 

logri(ib,ic) - - n logn-

^logm + 0( l ) (7.10) 

The correction factor for this expression when we use the Jeffreys' prior, as 

derived in section 7.3.3, is given by the expression 

6 = ^ log 27r - log c 

where c is the normalising constant for the Jeffreys' prior for the log-linear model. 

The Je&eys' prior in this instance puts independent Dirichlet distributions on 

the parameters. SpeciAcally, follows a IA4l + |/c|-l 1) distribution, 

and f (v4|B) and P(C|B) follow distributions. We may therefore 

calculate c 

r 2 

l/gl 

r 1(1/4 l + l-/c|-l) 
2 

r 1 \ l̂ /ll + |/cl 

r M 
2 r lid 

2 

l/al 

where and |fc| are the numbers of levels of variables /I, B and C 

respectively. Hence 

(5 — - log 27r — log c 

i""-27r - |7g|logr r 

logr + l-̂ cl " 1) \ l-̂ al + Ksl l-̂ cl 

l/allogT 

2 

M 
2 

TT + 

+ 1/ a r |/r I 
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^ UaI |/b| + |/.4n/c| - |/.4l - 1 + Ucl - I 

LOGR _ I^BI M + I^BI \'C\ ^ ^ 

I^B|iogr(^l^) + |/B|iogr(^i|!) 

The corrected Schwarz approximation is therefore given by 

log /(?%) = log r(n) - ^ log r(M(%)) + ^ 4) l o g 4 ) + 
i 

^ 2c) log n,(4, %c) - ^ ".(it) log ̂ (zb) - n log n -

I^Bliogr - i/fiiiogr + 

l o g r f l M t M l i M z L i l j _ i M E i l ± M L M i o g ^ + 

| / B | l o g r ( ' J ^ ^ + 0 ( n - i ) 

In this instance, the true marginal likelihood is also available without the use 

of computational approximations. The value of C is given by 

c = J g{p)f{n\p)dp 

n. r (riih) + l i l t i f c t l ) ^ ^ n , . r ( i + n{zM) 

j j f riic r(| + n(ic|4)) 
.. x r ( i f i + E „ " . ( v l « ) , 

It is therefore possible to evahiate the marginal likelihood log / (ft) = log C — 

log c for a particular data set. Table 7.1 shows the true marginal likehhood (ML), 

together with the corrected and imcorrected values of the Schwarz approxima-

tion, for a variety of sample sizes using the above model with varying numbers 
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of levels of A, B and C. The data is spread such that there is an equal sample 

in each cell. 

Levels Sample True Uncorrected Error in Corrected Error in 
of Size M L Schwarz Uncorrected Schwarz Corrected 

n Schwarz Schwarz 
2,2,2 8 -12.74 -13.31 -0.57 -12.36 0.38 
2,2,2 16 -11.55 -12.30 -0.75 -11.35 0.20 
2,2,2 24 -10.97 -11.79 -0.82 -10.84 0.13 
2,2,2 40 -10.32 -11.19 -0.87 -10.24 0.08 
2,2,2 80 -9.52 -10.43 -0.91 -9.48 0.04 
2,2,2 160 -8.78 -9.71 -0.93 -8.76 0.02 
2,2,2 400 -7.83 -8.77 -0.94 -7.82 0.01 
2,2,3 12 -19.24 -21.01 -1.77 -18.75 0.49 
2,2,3 120 -13.33 -15.54 -2.21 -13.28 0.05 
2,2,4 16 -25.54 —28.94 -3.40 -24.93 0.61 
2,2,4 160 -16.92 -20.87 -3.95 -16.86 0.06 
2,4,2 16 -26.41 -31.71 -5.30 -25.49 0.93 
2,4,2 160 -19.82 -25.95 -6.13 -19.73 0.09 
4,4,4 64 -98.20 -121.30 -23.10 -97.06 1.14 
4,4,4 640 -51.08 -75.20 -24.12 -50.96 0.12 

Table 7.1: Errors in Schwarz approximations for Example 2 

Table 7.1 shows that, as expected, the error of the corrected Schwarz approxi-

mation (expressed as approximation minus true value) reduces considerably with 

increasing sample size, consistent with the previous assertion that the error is 

of order 0(n''2), and it would appear that this behaviour is independent of the 

number of levels of the variables. Also, the order 0(1) error of the uncorrected 

Schwarz approximation is apparent from the table, as this approximation does 

not improve with increasing sample size. Indeed, for the Snal entry, the error of 

this approximation is 24.12 on the log scale - a huge discrepancy. The results 

for the 2 x 2 x 2 table are presented graphically below, showing closer agreement 

for increasing sample sizes. 

Table 7.2 shows the true marginal likelihood, together with the Schwaiz ap-
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Figure 7.1: Plot of error in corrected Schwarz approximation against sample size 
for Example 2 

proximations, for data in a 2 x 2 x 2 table where there is a single observation in 

all but one cell, and the remainder of the data is in the 5nal cell. As the results 

do not seem to depend upon the numbers of levels of the variables, all variables 

haA'e 2 levels in this case. 

Again, this table demonstrates the quality of the corrected Schwarz approx-

imation to the marginal likelihood corresponding to the 3 variable model with 

one conditional independence. 
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Sample True Uncorrected Error in Corrected Error in 
Size Marginal Schwarz Uncorrected Schwarz Corrected 
n Likelihood Approximation Schwarz Approximation Schwarz 
17 -14.46 -15.20 -0.74 -14.24 0.22 
27 -15.99 -16.78 -0.79 -15.83 0.16 
37 -17.06 -17.87 -0.81 -16.92 0.14 
57 -18.54 -19.38 -0.84 -18.43 0.11 
107 -20.72 -21.58 —0.86 -20.63 0.09 

Table 7.2: Errors in Schwarz approximations for Example 2 — unbalanced case 

7.4.3 E x a m p l e 3 

This example concerns the 4 variable 'straight-line' model which may be repre-

sented graphically by 

As discussed in section 6.5, it is not possible to obtain the normalising con-

stant for the Je@reys' prior corresponding to this model, and the marginal like-

lihood is therefore only available by using a computational approximation such 

aa bridge sampling. In this section, the quality of the corrected Schwarz ap-

proximation to the marginal likelihood will be assessed by comparing this to the 

approximation derived using the bridge sampler. Note that it is necessary to use 

the bridge sampler once and only once to obtain the correction factor for the 

Schwarz approximation for a particular model structure, whereas direct approx-

imation of the marginal likelihood requires a further rim of the bridge sampler 

for each data set. 

The corrected Schwarz approximation to the marginal likelihood is given by 

+ ^log27r c + 0(n-2) 

where cf is the number of parameters in the model, n, is the total sample size, 

and c is the normalising constant for the Jeffreys' prior for the log-linear model. 
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The number of parameters, d. in this model is I/4I \IB\ + \IB\ \IC\ + L^CL \ID\ ~ 

— l̂ cl — 1- Using the bridge sampler, for a model with all binary variables, 

the value of logc was foimd to be 4.98 (\'alues for diSFerent numbers of levels are 

presented later), and the number of parameters is 7. Hence 

log/(?%) = log/(n, |p)-^log7i+^log27r-logc + 0(n"2) 

= log r(n) - ^ log r(7%(%)) + ^ %&) log + 
i 

2c) log n,(2b, 2c) + ^ "'(Zc, %j) log M(Zc, d̂) -

^(4) log n.(2b) - ^ n(4) log n(4) - n log n -

T T 1 
- log n + - log 2% — 4.98 + ) 

The true marginal likehhood may be evaluated using the expression log /(?%) = 

log C—log c, where C = / p(p)p(?T,|p)dp is again obtained using bridge sampling. 

Table 7.3 shows the true marginal likelihood together with the corrected 

Schwarz approximation, for a variety of sample sizes using the above model with 

A, B, C and D each having 2 levels. The data is spread such that all ceU counts 

are equal. 

Sample True Uncorrected Error in Corrected Error in 
Size Alarginal Schwarz Uncorrected Schwarz Corrected 
n Likelihood Approximation Schwcirz Approximation Schwarz 
16 -25.01 -26.17 -1.16 -24.71 0.30 
32 -21.46 -22.76 -1.30 -21.31 0.15 
64 -19.57 -20.93 -1.36 -19.47 0.10 
80 -17.31 -18.70 -1.39 -17.25 0.06 
160 -14.38 -15.80 -1.42 -14.34 0.04 
240 -12.70 -14.13 -2.03 -12.68 0.02 

Table 7.3: Errors in Schwarz approximations for Example 3 

As in the previous example, the table demonstrates the accuracy of the cor-

rected Schwarz approximation, consistent with the O(nri) error, against the 

much poorer uncorrected approximation. The results are summarised graphi-
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cally in %iire 7.2. 

100 150 

Sample Size 

250 

Figure 7.2: Plot of error in corrected Schwarz approximation against sample size 
for Example 3 

Additional correction terms for different numbers of levels of the variables 

in this model may be calculated by further runs of the bridge sampler. The 

normalising constants (logc) for various cases are presented in table 7.4. The 

equation 
d 

^ - log 27r — log c 

is then used to determine the appropriate correction term, where d = |7g| + 

l-̂ al l-̂ cl + Kc| Kcl — l-̂ gl — l-̂ cl — 1-
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Levels of A, B, C, D logc Correction term, 6 
2.2,2,2 4.98 1.45 
3.2.2,2 5.52 2.75 
2,3,2,2 5.52 3.67 
3,3,2,2 5.31 6.64 
3,3,3,2 5.53 10.09 
3,3,3,3 5.60 12.78 

Table 7.4: Schwarz approximation correction terms for model AB + BC + CD 

7.4.4 F u r t h e r E x a m p l e s 

The previous examples present the correction factors for all saturated models, 

one 3 variable model and one 4 variable model. In this section, the correction 

terms for the remaining distinct models with up to and including 4 variables are 

given. Note that where a graph consists of several disconnected components, 

each one analogous to a model considered here, then that model will not be 

treated separately; such correction terms follow directly from these results. 

Single Variable Model 

The correction term, 6, for this model is 

6 = ^ log 27r - log 
r(J 

Model AB + AC + AD 

The correction term for this model, represented graphically by 

B c B c 
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IS 

(5 = - log 2-k — log r( |/g| + |/cl + |/ol 
2 

1)1/. 
|//ll(|/g| + |/cl + |/Dl) 

|/A|l/Bl + |/,lN-rcl + l / 4 i | / D l - 2 l / 4 | - l 

p^iy/fii+i/ci+i/Di 

I/4I) V r ( ^ ) r ( ^ ) r ( ^ ) 

log 27r 

log r( j/fll + l/cl + l/pl 
2 

\IA\ 

l/Al' 

Model AB + BCD 

This correction term for this model, represented graphically by 

IS 

6 = - log 27r — log 
p |̂/yll+|/cl+|/c|-ly/Rlp |̂/Dly7r?ll/mlp^iy/^ll/Rlp^iy/Rll7:7ll/nl 

p̂  l/aKI/xl+l/cl+l/pl-

I-^aI \IB\ + \IB\ \IC\ \ID\ — \IB\ — 1 
log 277 

log r( |/.4l + |/cl + |/£l|-l ' 
2 

r( ^Bl(|/4l + |/cl + |/D|-
2 

Model v4gC + BCD 

This correction term for this model, represented graphically by 
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IS 

6 = - log 2?: — log r( r( LLil+lZohll M/ciI/BI 
2 / 

P ̂  ^ p ̂  |/cl(IA4l + |/D|-l) ̂  I /g I X 

r ( i ) 
l-fgll/cl 

l - ^ ^ l l-̂ sl \Ic\ + \IB\ K d \ID\ — I-^bI \IC\ — 1 log 27r 

log r( I A 4 l | / c l + l ^ c l | / D | - | / c ! ' ^ l / m l p ^ | / . 4 l + | / g j - l ' i l J r l l / n 

p^ |/g|(K.4lKcl + Kcl|/D|-|/cl) p̂̂  + |̂fp| 

\IB\\IC\ 

X 

P^l)|/Al + |/Dl 

r ( ^ ) r ( ^ ) 

7.5 Discussion 

The focus of this Chapter has been to investigate the choice of parameters for 

prior distributions for log-linear models. The concept of unit information has 

been discussed. Using Normal priors with variances determined using unit infor-

mation considerations, it is possible to choose a prior distribution such that the 

Bayes factor based on this prior may be approximated by the Schwarz criterion 

with an error of order (9(n"2). Moreover, this prior is easily interpretable, as it 

contains as much information as is present in a single observation. 

It was not possible to find a set of o: parameters for the conditional Dirichlet 

distribution such that the Schwarz formula, with or without a correction term, 
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may be used to approximate the marginal likelihood. However, it was found that 

Jeffreys' prior, which in the case of many log-linear models using multinomial 

samphng is based on Dirichlet distributions, offered a good approximation. In-

deed, the marginal likelihood based on a JeSreys' prior may be approximated 

by the Schwarz formula, with the addition of a correction term. This correc-

tion term consists of a constant (^log27r) plus the normalising constant for the 

JeSreys' distribution, which is either obtained analytically or using a bridge sam-

phng method, though only decomposable log-linear models have been considered 

here. In principle, the corrected Schwarz approximation could be applied to non-

decomposable models, provided that normalising constants for the JeSreys' priors 

for such models could be determined. 

The corrected Schwarz approximation provides an error of order 0(n"2), 

and the two examples demonstrated improving accuracy with increasing sample 

size. The approximation involves the majdmised likelihood (easy to determine 

analytically for decomposable models), and the Jeffreys' normalising constant, for 

which the bridge sampler may be used if necessary. The alternative calculation 

of marginal likelihoods potentially requires two applications of bridge samphng, 

which represents a more awkward and time-consuming method. Alternatively, 

direct apphcation of Laplace's method is possible, but requires the calculation 

of the information matrix and its determinant. 

Thus, if one is prepared to accept Jeffreys' prior aa a suitable reference 

prior, the corrected Schwarz approximation provides an easy method of obtaining 

the corresponding marginal likehhood. Correction terms for all distinct models 

(within disconnected components) with up to and including four variables have 

been presented in section 7.4. 



Chapter 8 

Fur ther Examples 

Throughout this thesis, several prior distributions have been discussed and var-

ious methods of obtaining normalising constants have been developed. This 

Chapter contains two examples, which have been analysed using appropriate 

methods for different prior distributions. Note that the use of the bridge sampler 

to analyse data from Ekiwards and Havranek (1985) was presented in Chapter 5. 

8.1 Example 1 

This example concerns 30 patients suEering from lymphocytic lymphoma, and 

cross-classifies their type of lymphoma 1/ (nodular or diffuse) against their re-

sponse to combination chemotherapy E and their sex 5". The data (presented 

in table 8.1) is analysed, using various diSuse prior distributions, in order to 

determine the posterior model probabilities for the 8 potential graphical models. 

Four priors are used: 

The first is the conditional Dirichlet distribution with parameters o:(%) = 

corresponding to conditioning on Jeffreys' prior for the saturated model. The 

second is the conditional Dirichlet distribution with paiameters &(%) = which 

corresponds to a single observation distributed evenly between all cells (Perks' 

159 
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Remission 
Cell Type Sex No Yes 

Male 1 4 
Nodular 

Female 2 6 

Male 12 1 
Diffuse 

Female 3 1 

Table 8.1: Chemotherapy and lymphoma 

prior). Note that the equivalence of the hyper Dirichlet and conditional Dirichlet 

distributions is used to ease the calculations. Elsewhere the methods described in 

previous chapters, such eis bridge sampling using Monte Carlo samples, are used. 

The third prior distribution is Jeffreys' prior, and the fourth is a log-Normal prior 

with parameters chosen using the same considerations as Dellaportas and Forster 

(1999). The posterior model probabilities are presented in table 8.2 (models with 

probability less than 0.01 are excluded). 

Model Conditional Conditional Jeffreys' Log-Normal 
Dirichlet Dirichlet Prior Prior 
0!(%) = ^ 

EC + C5 0.48 0.42 0.43 0.48 
EC + S 0.19 0.38 0.13 0.30 

EC-PES 0.22 0.18 0.19 0.17 
ECS 0.09 0.01 0.25 0.05 

Table 8.2: Posterior model probabilities for Cancer data using various prior 
distributions 

As expected, aU priors identify the most probable model EC -t- CS. Similar 

probabihties aie also obtained for the model EC-t-E^". However, the various priors 

diSer with respect to models EC -I- 5" and EC5. As expected, the conditional 

Dirichlet distribution with Q!(%) — g tends to favour the simpler model EC -t- 5". 

Jeffreys' prior favours the saturated model ECS. 



8. Further Examples 161 

8.2 Example 2 

The data analysed here involves 13384 pregnant women, cross-classified according 

to their social class (C - 5 levels), their smoking habit (5" - none, light or heavy), 

and whether or not they suffer from two toxaemic signs, hypertension (77) and 

proteinuria ( f ) . The data was collected in England between 1968 and 1977, and 

the aim of the analysis of the 2 x 2 x 3 x 5 contingency table (8.3) is to determine 

relationships between the variables, via the posterior model probabilities for all 

possible graphical models. 

Social Class Smoking 

Proteinuria 
Yes No 

Social Class Smoking 
Hypertension 
Yes No 

Hypertension 
Yes No 

None 28 82 21 286 
1 Light 5 24 5 71 

Heavy 1 3 0 13 

None 50 266 34 785 
2 Light 13 92 17 284 

Heavy 0 15 3 34 

None 278 1101 164 3160 
3 Light 120 492 142 2300 

Heavy 16 92 32 383 

None 63 213 52 656 
4 Light 35 129 46 649 

Heavy 7 40 12 163 

None 20 78 23 245 
5 Light 22 74 34 321 

Heavy 7 14 4 65 

Table 8.3: Toxaemia in pregnancy 

As in the Srst example, four prior distributions are used. These are the con-

ditional Dirichlet distribution with parameters a(t) = the conditional Dirich-
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let distribution with parameters (1(2) = Je&eys' prior and a log-Normal 

prior. Note that for Jeffreys' prior, the three models C5' + 5"77 + + PC, 

+ ^5" + 6"^ + PC and 05" + SP + P77 + .TifC are excluded from the analysis, 

as they are not decomposable. 

Under each of the distributions, a maximum of two models were identiEed as 

having posterior probabilities greater than 0.001. These are the models TfP + 

P̂ " + 6'C and + 5'C, and their respective probabilities are shown in table 

8.4. 

Model Conditional 
Dirichlet 
a:(t) = ^ 

Conditional 
Dirichlet 

Jeffreys' 
Prior 

Log-Normal 
Prior 

P + PS + SC 
f f P S + SC 

0.9950 
0.0050 

1.0000 
0.0000 

0.9877 
0.0123 

1.0000 
0.0000 

Table 8.4: Posterior model probabilities for Toxaemia data using various prior 
distributions 

These results are surprising, as the classical maximum likelihood approach 

selects model .ffP + P S + 5'C + C.Zf. However, each of the priors used here gives 

a posterior model probabihty < 10"^ to this model. 

Results based on the Schwarz criterion suggest model P + P5' + 5'C + Cff 

as the most probable. Comparing models 77P + P̂ " + 5'C + and P̂ " + 

using the Schwarz criterion results in a diEerence of 15.7 in favom: of model 

P + PS + SC + CJf, and comparison of models B'P + PS + SC + CH and 

P + PS + SC gives a diEerence of 4.4 in favour of model 77P + PS + SC + C77. 

However, since the Sch\A'arz criterion only approximates the log Bayes factor with 

an error of order 0(1), we have no real reason to be concerned about the results 

in table 8.4. 



Chapter 9 

Discussion and Extensions 

9.1 Discussion 

The aim of this thesis has been to fully investigate Bayesian methods for log-

linear models, with particular attention to the use of reference priors. Several 

prior distributions have been investigated, with particular focus on the condi-

tional Dirichlet distribution and JeSreys' prior. 

The conditional Dirichlet distribution, defined in Chapter 3, has the attrac-

tive property that its parameters may be interpreted as prior cell counts. This 

makes it useful for both reference analyses, where small prior values are used, 

and as an informative prior, where (hypothetical) prior cell counts may be avail-

able. The conditional Dirichlet was shown to be equivalent to a hyper Dirich-

let density (which admits straightforward analyses) for decomposable log-linear 

models. Hence a natural extension of the hyper Dirichlet distribution to non-

decomposable models has been obtained. 

The conditional Dirichlet distribution is not tractable in general, so Monte 

Carlo and other approximation methods are required. Gibbs samphng was ap-

plied in Chapter 4 to obtain samples from prior and posterior conditional Dirich-

let distributions. The sampler was foimd to mix well, producing sajnples which 

163 
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are 11 ,t highly dependent. 

Laplace's method for the approximation of integrals A\'as introduced and ap-

plied in Chapter 5, although it was foimd to perform poorly where prior pa-

rameters take small values. However, accurate results may be obtained for the 

posterior analysis of dataaets where cell counts are large. The method of bridge 

sampling was introduced, and applied to the problem of determining the normal-

ising constants for conditional Dirichlet distributions. The sampler was found 

to produce good results, even when prior parameters take small values, and this 

was illustrated by application to several examples. 

Jeffreys' prior, which is a reference prior by definition, was considered in 

Chapter 6. An explicit expression was presented for the Jeffreys' prior for a de-

composable log-linear model, and in many cases this waa found to be a product 

of independent Dirichlet distributions for the parameters of a particular decom-

position of the model. For other decomposable models, where the normalising 

constant for Jeffreys' prior is not directly available, the method of bridge sam-

phng was again applied, and found to produce accurate results. The Monte Carlo 

samples needed were obtained using Metropolis Hastings samphng. 

The choice of prior distribution was considered in further detail in Chapter 7. 

Unit information priors, for which easy approximations to marginal hkelihoods 

are available, were discussed, and the relationship between the Laplace approx-

imation for marginal likelihoods and the Schwarz criterion was investigated for 

log-linear models under multinomial sampling. It was shown that marginal hke-

lihoods using Jeffreys' prior may be approximated by a modified version of the 

Schwarz approximation, with error of order C)(n"2). This provides an easy ap-

proximation, in particular for models whose JeGreys' priors are intractable, where 

bridge sampling is only needed to determine the prior (and not posterior) nor-

malising constant. 

In Chapter 8, the \'arious ideas introduced in the thesis were applied to two 
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data analyses, and the results discussed. 

9.2 Extensions 

Several ideas investigated in this thesis gi\'e rise to possible a\'̂ ennes for additional 

research. 

The examples and applications presented throughout the thesis are for mod-

els with a maximum of six variables, although models with more variables are 

included implicitly. However, the methods are directly applicable to models with 

additional variables, the dimensionality of the model limited solely by computing 

power. JeSreys' priors for decomposable models with Eve or more variables may 

be written do^m in an explicit form by application of expression (6.4). 

An expression was given in Chapter 6 for the Jeffreys' prior for any log-hnear 

model. Although extensive application of this formula did not in general lead to 

distributions in tractable forms, we believe that it is possible to determine explicit 

expressions for the JeSreys' priors for non-decomposable models. Provided that 

the normalising constants for such distributions may be determined, it is then 

possible to apply the corrected Schwarz approximation derived in Chapter 7 to 

non-decomposable models. 

The method of bridge sampling was used to accurately approximate the nor-

malising constants for conditional Dirichlet distributions. However, the accuraxzy 

of the method decreases with increasingly complex models. A potential exten-

sion is therefore to apply path sampling to this problem. Path sampling is a 

method of approximating normalising constants which is a direct extension of 

bridge samphng. The method of bridge samphng to determine the normalising 

constant for density p involves the construction of a (single) bridging density 

between a sampling distribution g and g. Path sampling extends this idea to 

construct a path between g and ^ consisting of a finite number of intermediate 

bridging densities. Increases in accuracy may be possible using this method, fur-
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ther details of which are given by Conighajii and O'Hagan (2000) and Gelman 

and Meng (1998). 

It may be possible to implement MCAIC methods which have as their state 

space both models and model parameters, such as reversible jump MCMC, for 

model determination using conditional Dirichlet priors. However, since the nor-

malising constants for such distributions are not directly available, such an im-

plementation would not be straightforward. 

Finally, whereas the methods used throughout are suitable for the analysis of 

discrete data, it would be interesting to consider whether there is potential for 

similar methods in the analysis of continuous, or mixed discrete and continuous, 

data. 
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