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BAYESIAN INFERENCE FOR LOG-LINEAR MODELS
by Mark Edwin Grigsby

Inference for multivariate discrete data often concerns associations between variables
modelled using log-linear models. This thesis focuses on the Bayesian analysis of log-
linear models. Various prior distributions are investigated which are suitable for reference

analyses.

The conditional Dirichlet distribution, which has the attractive property that its
parameters may be interpreted as prior cell counts, is introduced. This prior is useful
for both reference analyses, where small prior values are used, and as an informative
prior, where (hypothetical) prior cell counts may be available. The conditional Dirichlet
is shown to be equivalent to a hyper Dirichlet density (which admits straightforward
analyses) for decomposable log-linear models. Hence a natural extension of the hyper
Dirichlet distribution to non-decomposable models is obtained.

The conditional Dirichlet distribution is not tractable in general, so Monte Carlo and
other approximation methods are required. Gibbs sampling is applied to obtain samples
from prior and posterior conditional Dirichlet distributions. The sampler is found to mix
well, producing samples which are not highly dependent.

Laplace’s method is used for the approximation of integrals, although it is found to
perform poorly where prior parameters take small values. However, accurate results may
be obtained for the posterior analysis of datasets where cell counts are large. The method
of bridge sampling is applied to the problem of determining the normalising constants for
conditional Dirichlet distributions. The sampler is found to produce good results, even
when prior parameters take small values, and this is illustrated by application to several
examples.

Jeffreys’ prior, which is a reference prior by definition, is considered, and an explicit
expression is presented for the Jeffreys’ prior for a decomposable log-linear model. In
many cases, this is found to be a product of independent Dirichlet distributions for the
parameters of a particular decomposition of the model. For other decomposable models,
where the normalising constant for Jeffreys’ prior is not directly available, the method
of bridge sampling is again applied, and found to produce accurate results. The Monte
Carlo samples needed are obtained using Metropolis Hastings sampling.

Finally, the choice of prior distribution is considered in further detail. Unit infor-
mation priors, for which easy approximations to marginal likelihoods are available, are
discussed, and the relationship between the Laplace approximation for marginal likeli-
hoods and the Schwarz criterion is investigated for log-linear models under multinomial
sampling. It is shown that marginal likelihoods using Jeffreys’ prior may be approximated
by a modified version of the Schwarz approximation, with error of order n-1.
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Chapter 1

Introduction

A contingency table is a collection of cells each containing counts of units cross-
classified according to a set of factors. The analysis of data which may be pre-
sented in contingency tables forms an important area in statistics. Contingency
tables are often highly structured, though this structure is not often immediately
obvious without detailed statistical analysis. However, the investigation of this
structure is extremely important as it enables us to understand the relation-
ships between variables, and also provides the key to estimation of quantities
of interest. The underlying structure of a contingency table is usefully repre-
sented by a formal statistical model, and a standard way of doing this is to use
a log-linear model, which linearly relates the logarithms of the cell means (or
cell probabilities) to a set of model parameters. The form of this linear relation-
ship depends on the structure of the data, i.e. on the relationships between the
variables represented by the contingency table.

Classical statistical analysis focuses on methods such as maximum likelihood
estimation to estimate model parameters, and so to obtain estimated cell counts
(or probabilities). However, this thesis is based on analysis within a Bayesian
framework, whereby the cell means or probabilities (or model parameters) are

all treated as random variables and hence must be given prior distributions de-
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scribing uncertainty about them before any data have been observed. The data
are then used to ‘update’ the prior distributions to form posterior distributions
which encapsulate all the knowledge about the parameters, given the data. The
utility of the Bayesian approach is that it enables us to obtain full posterior
summaries of uncertainty for any function of interest.

This thesis focuses on ‘reference’ prior distributions, where we have negligible
substantive prior knowledge, and on the computation of posterior quantities of
interest. This enables us to obtain estimates of quantities of interest, assess the
corresponding uncertainty, and also to investigate the structure of the underlying

statistical model.

1.1 Contingency Tables

Suppose we have a set of multivariate categorical data, where n units have been
cross-classified by a number of categorical variables and the counts of the result-
ing cross-classification presented in a contingency table. Let the set of categorical
variables or factors be I, resulting in a |['|-way contingency table.

Following the notation introduced by Darroch, Lauritzen and Speed (1980),
the set of cells in the table is the set [ = [[. . Z,, where I, is the set of levels of
factor . A particular cell will be denoted by 2 = (i, : v € I') , the corresponding
cell count by n(7), and the cell probability by p(¢), where this represents the
probability that a particular unit lies in cell <. The vector of all the cell probabil-
ities will be written p, and the cell counts n. The total cell count will be denoted
n, where n = >_; (7). The number of cells, m. in the tableis || = [, |[,|. This
Anotation is best illustrated by an example:

Suppose we have three variables A, B and C, where A is binary and B and C
have 3 levels, and that these variables cross-classify some data in a 3-way table.
In this case, I' = {A. B,C}, and a cell in the table is therefore ¢ = (ia,ip,ic)

where i4 can take values 1 and 2, and i and i¢ take values 1, 2 or 3. Hence the
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cell which contains the data for variables A and B at level 1 and variable C at
level 3is 7 = (1,1, 3), and the cell probability is p(%).

The typical model for data in a contingency table assumes that a known
number of individual units n are assigned at random to a particular cell ¢ with
probability p(2). Therefore the vector of cell counts n has a multinomial distri-

bution, which has probability function

n

7 n(i)
ftnlp) =nt [T 2

1.2 Log-Linear Models

One motivation for analysing contingency table data is modelling the associa-
tions between classifying variables. Such considerations typically include how
variables are conditionally independent or independent of one another. The
standard way of doing this is by representing the underlying statistical model
as a log-linear model. Different association structures, including independence
and conditional independence, result from models with different forms, and from
varying parameter values within a particular model. This section will introduce

general log-linear models, and also various special subsets of these models.

We assume that n(2) is an observation of a multinomial random variable with
corresponding vector of cell probabilities p(¢). Then, again following Darroch,

Lauritzen and Speed (1980) we denote the log-linear model
logp(d) =Y &,(4a) i€l (1.1)

where 1, is the marginal cell 2, = (i,.7 € a). As p(2) is a vector of cell probabil-
ities which sum to 1. a normalising constant £, is necessary in (1.1). Note that
certain constraints must be imposed on the terms £,(4,) (which we shall refer to

as the interaction terms) to ensure identifiability. These will be discussed later.
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A saturated model is parameterised by a full set of interaction terms, whereas
setting certain £, terms to zero defines a particular non-saturated log-linear
model. Hence the non-zero terms define the model, and may take arbitrary
values. It is straightforward to write down the number of possible distinct log-
linear models for a set of factors I'; there are 2/ possible a C T', giving rise to

22" different log-linear models.

1.2.1 Hierarchical Models

Commonly, we do not consider the full set of log-linear models, and instead
restrict attention to a smaller subset of these called the hierarchical log-linear
models. To obtain these, we impose restrictions on the £,(¢,), namely that
setting £, equal to zero means we must also set &, to be zero for all b D a.
For example, suppose that I' = {4, B,C}, and that £ 4,5 = 0. In this case, we
require € 45 = 0 in a hierarchical model. It is not possible to write an explicit,
expression for the number of such models, but this number is much smaller than
the total number of log-linear models.

Let us define the generators of a model as the maximal sets a such that £, is

non-zero. Then a hierarchical model is determined uniquely by its generators.

1.2.2 Graphical Models

The set of graphical models form a highly attractive subset of the hierarchical
models, both for ease of analysis and their obvious interpretation in terms of
conditional independence (an interpretation which is immediately obvious from
the graph). Graphical models may be either directed or undirected ~ the former
provide motivation for some of the work in this document, although it is the
latter which we shall define first, due to their relative simplicity.

A graphical log-linear model may be represented by a graph, with a set of

vertices V corresponding to the variables, and a set £ of edges representing
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the independence structure. The notation (X,Y’) is used to represent the edge
between variables X and Y. The absence of an edge between two vertices X and
Y means that X is conditionally independent of Y given all other variables. This
is equivalently written as: if (X,Y) ¢ &, then X 1L Y | V\{X,Y}. Variables
X and Y are (unconditionally) independent if no path of edges exists between
vertices X and Y, in which case X 1l Y.

A subset C of I is called a clique if the subgraph containing only elements
of C' has an edge connecting each element (i.e. is complete), and the inclusion
of another vertex from V in C would result in at least one pair of unconnected
vertices. A graph is triangulated if it contains no chordless cycles of length
greater than three, and the subset D is said to separate subsets A and B if every
path from any vertex in A to one in B must pass through a vertex in D. In such
a case, variables in A are conditionally independent from those in B, given D.

As mentioned above, a hierarchical model is determined by its generators, and
a model is graphical if its generators correspond to the cliques of its (undirected)
conditional independence graph. These models form a subset of the log-linear
models. We will assume throughout that all models include the intercept term
€p and all main effect terms (€, where |a|] = 1), since those without are of little
interest. Then the ({12“1> possible edges in each graph gives the total number of
possible graphical models to be 2(2),

A directed graph contains edges from one vertex to another, for example
X — Y denotes the presence on an edge from X to Y, and we call X a parent
of Y and Y a child of X. The edge from X to Y will be written (X,Y). The
set. of parents of YV is denoted by pa(Y'). For a subgraph A, pa(A) denotes the
set. of parents of vertices in A that are not themselves elements of A. A path of
length n > 0 from X to Y is a sequence X = Xj,..., X, =Y of distinct vertices
such that (X;_;, X;) € £ for all i = 1,...,n. If there is a path from X to Y we

write X »— Y. The set of vertices X such that X »— Y are the ancestors an(Y’)
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of ¥ and the descendants de(X) of X are the vertices Y such that X »—» Y. The
nondescendants of X are nd(X) =V \ (de(X)U{X}). A path which starts and
ends at the same point is known as a cycle, and a directed graph is acyclic if it
contains no cycles.

Note that any hierarchical model can be represented by an (undirected) condi-
tional independence graph, although such a graph does not necessarily represent
a single non-graphical model. However, these models will not be excluded from
our analyses, as they form a rich collection of models with many applications.
An example of such a model is the model containing the three variables A, B
and C with interaction terms AB, AC and BC though no 3-way interaction term
ABC. In this case, the 2-way interactions are homogeneous with respect to the
third variable; for example, the interaction between A and B does not depend
on the value of C. Although this model is clearly not graphical, real data may be

found to follow this pattern of association, so this model should not be excluded

from our analyses.

1.2.3 Decomposable Models

Another smaller subset of models within graphical models are decomposable mod-
els. These are defined as models whose joint cell probabilities may be directly
expressed as a function of the marginal probabilities of the cliques of the model.
An equivalence to this definition which is more useful in practice is that a model
is decomposable if its graph is triangulated.

For example, consider the model represented by the graph below.

B
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This graph is clearly triangulated (with cliques {A, B} and {B,C}), so the

model is decomposable and the joint cell probabilities p may be written as a prod-

uct of the marginal and conditional probabilities p?, p®M, p©1¥. Equivalently,

the cell probabilities may be directly expressed in terms of marginal probabilities
p(le) .
These models admit the most straightforward analyses, but clearly exclude

of cliques and separators as p(i)=

many potential (and useful) models, and there is often little justification to re-
strict attention to these models other than computational considerations.

One benefit of decomposable models which will aid certain parts of our anal-
ysis is that, if the model is decomposable, then we may use the undirected
conditional independence graph to construct a directed version with the same
Markov structure (Dawid and Lauritzen, 1993). We can use this directed graph
to obtain a perfect numbering of the variables in the graph, by numbering the
vertices so that those at the ‘top’ of the graph (i.e. the ones with no parents)
have the lowest numbers. The edges are hence necessarily directed from vertices
with low numbers to those with higher numbers. For directed graphs, the joint
probability may be expressed as

B
p(i) = [ [ P(y = iylpa(y) = dpais))

As an example of directed graphical representations, consider the model rep-
resented by the undirected graph above. Several possible directed versions of
this graph are possible:

B B

NN N
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Each of these graphs admit different perfect orderings of variables, and one
admits two orderings. Working from left to right, the first admits orderings
BCA and BAC, and the second and third admit orderings CBA and ABC
respectively. Each of these graphs and orderings is equivalent to the others, and
it is often the case that a single undirected graph can give rise to several different
directed versions.

Note that in this example, the only directed graph which is not equivalent to

the undirected version is

pd
(9]

An easy way to see why this graph represents a different model is by noting
that an equivalent undirected graph is obtained from the directed version by
moralising, whereby unjoined parents in the directed version are joined in the
undirected one. Hence, the directed graph shown above would be represented by

the undirected graph below, which corresponds to the saturated model.

B

p~3
O €

Throughout this thesis, directed and undirected graphical models will be used
interchangeably, as they may represent identical statistical models. However,
certain situations lend themselves more to one type than another, due to certain
implications of directed graphs; for example, an arrow from A to B may imply a

temporal effect, with event A preceeding event B. Whereas this may be desirable
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in some examples, an undirected representation may be more appropriate in
others. For example, a relationship between smoking and heart disease would be
suited to a directed graph, whereas a relationship between an individual’s hand

size and foot size would be better represented by an undirected graph.

1.3 Parameterisations

In order to admit more straightforward analyses and calculations involving the
log-linear models described above, it is helpful to consider a parameterisation
of (1.1) where the parameters are identifiable and linearly independent. To ob-
tain this parameterisation, we shall follow the same method as Dellaportas and
Forster (1999).

Let us define a |I]-dimensional vector ¢, as (, = {(,(i),7 € I}. Here, &,(iq)

is replicated so that (,(7) = &£, (ia) for all ip\,, so that

logp =Y ¢, (1.2)

alCT
We may now choose a linearly independent set of
do =TT ULI-1)
yea

components of (, for each a C I' as our model parameters. We make the usual

choice

By ={&.(3a),i, > 1 for all v € a}

where involving 7. = 1 for some ~ are defined by prespecified constraints.
a g1y Y Y Presp

The log-linear model is expressed in terms of log p, but since these cell prob-
abilities lie in a simplex space, where each p(3) satisfies 0 < p(4) < 1 and

> p(2) = 1, it is useful to consider a multivariate logit transformation. Through-
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out this document, two alternative definitions will be used for the vector of logit
parameters 8. Note. however, that a linear one to one transformation exists
between the two versions, and the choice of definition is made purely for ease of

calculations. The first definition of §(4) is given by

0(i) = log ( ;’8) (1.3)

where g refers to the cell with all factors at their lowest level. We call this the
reference cell logit, as each probability is contrasted with a reference probability
(in this case the first, p(4p)). Note that 6(¢p) = 0. This expression may be

inverted in order to write the probabilities in terms of the logits,

o0(2)

TS e

(1)

The alternative definition of 6(2) is the symmetric logit

0(z) = log <§—((;%> (1.4)

where g(p) is the geometric mean of the probabilities (g(p) = (I]; p(z))%) Here,

0 satisfies 178 = 0, where 1 is a vector of 1’s. This transformation admits the

L)

same inversion as the reference cell logit, namely p(¢) = it

The design matrix X of a log-linear model relates 6 to the model parameters
3. The form of this matrix depends on the logit chosen, though clearly in the case
of the symmetric logit, then X must satisfy 17X = 0. The model may therefore

be written

8 =Xp3
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Hence,

1.4 Bayesian Analysis

The fundamental principle of Bayesian analysis, as opposed to traditional clas-
sical methods, is that uncertainty is represented through probability. Bayesian
inference is based upon a probability distribution for the parameter vector given
observed data n, i.e. f(p|n), which we call the posterior distribution for p.
Bayes’ theorem states that, for variables @ and v,
faly)  f@R)@)
fy)

flylz)f(z)
[ f(ylz)f(z)da

Hence we use this to obtain the posterior distribution for p given n from the
likelihood function f(n|p) and the prior distribution for p, f(p), which represents

the uncertainty about p prior to observing data n.

_ Hnlp)f()
HPIn) = mlp) fip)dp

Since the integral in the above expression merely provides the constant so that

the posterior density f(p|n) integrates to 1, this is often omitted and we write

f(pln) < f(n|p)f(p)
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1.4.1 Prior Distributions

An important choice in the analysis of log-linear models is that of the prior
distribution f(p). The prior distribution encapsulates the previous information
about the cell probabilities p, which may be obtained from expert opinion, pre-
vious data, or some other source. However, this information, even if available, is
often difficult to express as a probability distribution. Hence it is often useful to
perform a ‘reference’ analysis, where the prior distribution is called a reference,
noninformative or diffuse prior. This enables us to examine the influence of
informative priors compared with the reference approach.

A number of priors exist which may be used for the log-linear model param-
eters, and which are suitable for a reference analysis. These distributions are

introduced in Chapter 2.

1.4.2 Model Choice

Suppose we have a set of models, A, one of which we believe has generated our
data n. In our case, these data are cell counts in a contingency table, so that
n=(n(i),2€l) are observations of random variables n = (N (i), € I). There
are several problems with classical approaches to choosing a particular model
to represent the data, and several authors have reported on this in detail (for
example Raftery, 1996). Classical methods are based on p-values, and difficulties
arise when comparing models which are not nested. Also, tests based on p-
values may reject acceptable models when the sample size is large, and in certain
cases with small sample sizes the asymptotics of such statistics may break down.
Model uncertainty is also ignored, selecting a single model in a situation where
several plausible models exist, each with reasonable probability. To counter such
problems, a Bayesian approach to model selection is proposed:

Each model m € M = {my,mo,...} specifies a distribution for n, f(n|m, 8,,),

with the 6,, an unknown vector of parameters for model m. We use Bayes’ the-
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orem to obtain the joint posterior distribution of my and 6,,,

f(m, Om|n) o f(n|m,6m)f(m,0m)
o f(nfm, 0n)f(Om|m)f(m)

Hence the posterior probability of model m may be found explicitly from

f(m|n) Somen f(m) [ f(n|m, 65,) f(6.,|m)dO,, €M (1.5)

where [ f(n|m,8,,) f(0m|m)db,, = f(n|m) is the marginal likelihood, sometimes
interpreted as the probability of observing the data calculated before any data

were observed.
If we have two competing models, m; and ms, the problem reduces to the

calculation of a Bayes Factor, which is the ratio of the posterior odds to the prior

odds, and we have

flmaln) _ f(m1) [ f(nlmi, O, ) f (O, [)d0rm,

flman)  f(ma) [ f(nlma, Om,) f(Omy|m2)dOm,
where the second term on the right hand side is the Bayes factor for model
1 against model 2. This may be referred to as Bis, and this notation can be
extended to the case where we have multiple plausible models, by writing B, as
the Bayes factor for model j against model k.

The Bayes factor is related to the classical likelihood ratio statistic, as when
the two models are distributions with no unknown parameters the two quantities
are equal. In the more general case, there is still a correspondence between Bayes
factors and likelihood ratio statistics, with Bayes factors obtained by integration
instead of maximisation.

Whereas model selection is the problem of using our data to select a single

model m from A, model averaging involves estimating our quantity of interest



1. Introduction 14

under each of the plausible models and then obtaining a model-averaged estimate
by placing weights on each individual estimate according to how likely each model
is. This is a useful tool when we have a number of competing models, none of
which has a dominant posterior probability. For example, suppose our quantity
of interest is ¢, which has an interpretation under every model, then we may

obtain the posterior distribution using the expression
fleln) =" f(lme, n)f(miln)
k

where f(my|n) is obtuined from expression (1.5)

1.5 Bayesian Computation

Many instances arise in Bayesian analysis where it is necessary to deal with prior
or posterior distributions whose density functions are analytically intractable. In
such cases, we need to resort to approximation methods. This area of (Bayesian)
statistics has expanded dramatically with advances brought about by increased
computing power. Various computation methods exist for addressing such prob-
lems, and these will be discussed at relevant stages in this thesis. In particular,
methods of obtaining samples from intractable densities are described in Chap-
ters 4 and 7, and methods of approximating normalising constants are described
in Chapter 5. Methods of obtaining samples from a specified probability distri-
bution are based on Markov chain Monte Carlo theory, which is described briefly
here.

It is difficult to generate independent observations from an arbitrary multi-
variate distribution; however, Markov chain Monte Carlo (MCMC) methods of
approximation make it possible to generate a dependent sample. Suppose we
require a sample 8, 63 ... from a p-dimensional density f(6). The Markov

chain Monte Carlo method involves setting up a Markov chain, which is a ran-
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dom mechanism whereby the distribution of #® depends on 8'~V. We know
from Markov chain theory that 8% will have a particular limiting ‘long run’
equilibrium (or ergodic) distribution. Therefore, for large enough T, if t > T,
6® 9+ can be considered to be identically distributed according to this
distribution, regardless of the value of 60 Hence, provided we can construct a
Markov chain whose equilibrium distribution is f(8), then we can simulate this
chain, and thus obtain a dependent sample from f(8).

The value of T at which the equilibrium distribution is reached is known
as the ‘burn-in’ length, and observations before this should be discarded. In
practice however, provided we start the chain at a plausible observation from
f(8) (for example at the mode) then the burn-in is zero and no observations
need be discarded.

Samples obtained using MCMC methods are by definition dependent. How-
ever, provided the parameter space is explored thoroughly by the sampler, then
it is said to be ‘mixing well’, and successive samples are not highly dependent.
If, however, there is high correlation between successive observations, then the
sampler is said to be ‘mixing poorly’ and a highly dependent sample will be
produced.

Two main methods exist for constructing suitable Markov chains with spec-
ified equilibrium distributions — Metropolis-Hastings sampling and Gibbs sam-
pling. Gibbs sampling will be described in Chapter 4 and applied to the condi-
tional Dirichlet distribution, and Metropolis Hastings sampling will be described
in Chapter 6 and applied to Jeffreys’ prior. NICMC methods may also be used in

calculating posterior model probabilities, and such work is reviewed in Chapter

2.
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1.6 Outline of the Thesis

Chapter 2 reviews previous Bayesian approaches to the analysis of log-linear
models. The Dirichlet prior distribution is considered, as is a Normal prior dis-
triution for log-linear model parameters, and graphical models are reviewed.
The Bayesian approach to accounting for model uncertainty is reviewed, includ-
ing model averaging and the use of a Markov chain Monte Carlo approach to
calculating posterior model probabilities.

The focus of Chapter 3 is the conditional Dirichlet distribution, whose param-
eters have the attractive interpretation as prior cell counts. Its relationship to
the hyper Dirichlet distribution is investigated. The conditional Dirichlet density
is shown to be equivalent to a hyper Dirichlet density for decomposable log-linear
models. This presents a natural extension of the hyper Dirichlet distribution to
non-decomposable models.

The use of Gibbs sampling, based on adaptive rejection sampling, to obtain a
Monte Carlo sample from prior and posterior conditional Dirichlet distributions
is described in Chapter 4. The performance of this sampler is assessed, and it is
found to mix well, producing samples which are not highly dependent.

Chapter 5 concerns model determination, and focuses on applications where
conditional Dirichlet prior distributions are used. The calculation of Bayes fac-
tors for comparing models requires both prior and posterior normalising con-
stants, and Laplace’s method for the approximation of integrals is introduced
and applied. However, it is found to perform poorly where prior parameters take
small values. The method of bridge sampling, which requires a Monte Carlo
sample, is introduced and found to produce good results, even for small prior
parameters.

Jeffreys’ prior is introduced in Chapter 6. An explicit expression is presented
for the Jeffreys’ prior for a decomposable log-linear model, and in many cases this

is found to be a product of independent Dirichlet distributions for the parameters
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of a particular decomposition of the model. For other decomposable models,
Monte Carlo samples can be obtained using Metropolis Hastings sampling, and
then bridge sampling applied to obtain the prior normalising constants.

In Chapter 7, the choice of prior distribution is considered in further detail.
Unit information priors, for which easy approximations to marginal likelihoods
are available, are discussed. The relationship between the Laplace approximation
and the Schwarz criterion is investigated for marginal likelihoods for log-linear
models under multinomial sampling. It is shown that marginal likelihoods us-
ing Jeffreys’ prior may be approximated by a modified version of the Schwarz
approximation, with error of order O(n_%)‘

Chapter 8 illustrates the various ideas introduced in the thesis on two data
analyses.

Finally, the results presented in the thesis are discussed in Chapter 9, and

suggestions are given for future work.



Chapter 2

Review of Previous Work

2.1 Dirichlet Distribution

The focus of this thesis is on the Bayesian analysis of log-linear models using
reference or vague prior distributions, for situations where little prior informa-
tion is available. We will pay particular attention to distributions based on the
Durichlet distribution. The Dirichlet distribution is a natural choice of prior dis-
tribution for cell probabilities p (which are positive and sum to one). Its density
has the form

— F(O[) i a(’l:)—l
f(p) () Hp( )

where o are parameters which control the location and dispersion of the distri-
bution, and a =), a(q).
Under multinomial sampling, the likelihood function for a saturated log-linear

model is given by

(T
f(nlp) o [T p(e)"®
1el
Hence the Dirichlet distribution is a conjugate prior distribution for a saturated

log-linear model, as it leads to a Dirichlet posterior distribution with density of

18
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the form

f(pln) [ p(a) @+ed-1 (2.1)
’LEI

Conjugacy is convenient in Bayesian statistical analysis as it may (as in this
case) result in tractable computation. Furthermore, prior specification may be
facilitated if conjugacy is a result of prior and likelihood having a similar form.
In such cases the ‘information content’ of the prior may be straightforward to
specify.

As may be seen from expression (2.1), the parameters a may be considered
as a ‘prior cell count’. Hence, for reference analyses, small common values of
a(2) seem sensible. Indeed, Lindley (1964) considered the limiting case where
a(z) = 0, producing an improper prior density (which does not integrate to 1).
The problem with this approach is that it will lead to an improper posterior
density if any cells have zero samples.

Setting a(z) = 1 results in a uniform prior (Lidstone, 1920), a conventional
choice for a noninformative prior density. Two other popular choices for a(%)
exist which are preferred in this thesis. The first is a(i) = 1 (Jeffreys, 1946),
which is known as Jeffreys’ prior, and will be considered in detail in Chapter 6.
The second is a(2) = ” (Perks, 1947), which has the appealing interpretation
of a single prior observation distributed throughout the table, and is applied to
various examples throughout the thesis.

This interpretation of a Dirichlet distribution, via prior samples, makes it
an attractive prior for use in the analysis of log-linear models. A natural ex-
tension of the Dirichlet distribution to decomposable graphical models is the
hyper Dirichlet distribution, where each vector of clique marginal probabilities
is distributed as Dirichlet. In this thesis, we consider another extension of the
Dirichlet distribution, the conditional Dirichlet distribution, obtained from a sat-
urated distribution by conditioning on constraints which determine a particular

log-linear model. Consideration of this distribution is a major component of
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Chapter 3.

2.2 Normal Distribution

As defined in section 1.2, the log-linear model parameters are unconstrained and
allowed to take any real value, so that 8 € RP. A natural prior distribution
for these parameters may therefore be multivariate normal, i.e. 8 ~N(u,X),
for suitable mean p and variance ». The use of such a distribution was first
investigated by Good (1956), though this approach was motivated by the desire to
obtain smoothed estimates for cell probabilities with small observed frequencies,
an idea further developed by Lenoard (1975) and Laird (1978). The purpose
of Knuiman and Speed (1988) was to use a Normal distribution to effectively
encapsulate prior information into the analysis of contingency tables.

Their approach used a multivariate Normal prior for all parameters together,
and as such allowed separate specification of prior information for each log-linear
model main effect or interaction term. However, they found the use of such a
prior resulted in a generally intractable posterior distribution, and so developed a
measure of posterior dispersion based on the curvature of the log of the posterior
density at its mode.

Posterior inference using Normal priors, based on Markov chain Monte Carlo
sampling, is possible following results by Dellaportas and Smith (1993). They
present a method for sampling from a wide range of generalised linear models
using Gibbs sampling. Their Gibbs sampler is based on the adaptive rejection
sampling method proposed by Gilks and Wild (1992), which is a technique for
sampling from any log-concave univariate probability density function, and is
described in detail in Chapter 4. Forster and Skene (1994) used a similar Gibbs
sampler to obtain posterior samples, for multinomial data, for prior distributions
from the A family. This is a class of distributions introduced by Aitchison (1985),

which includes the logistic Normal and Dirichlet distributions.
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The use of Normal distributions by Albert (1996) in a model selection context
will be reviewed later in this Chapter, and the use of Normal distributions by
Dellaportas and Forster (1999) is explained in Chapter 7 in the context of unit

information priors.

2.3 Graphical Models

The use of graphs to represent the pattern of associations in statistical models
was introduced in section 1.2.2. Such use dates back to Wright (1921), but
more recently it was Darroch, Lauritzen and Speed (1980) who used graphs
in contingency table analysis, defining the subset of the hierarchical log-linear
models known as graphical models.

Early adopters of methods within a Bayesian framework were Spiegelhalter
and Lauritzen (1990), and Dawid and Lauritzen (1993). Madigan and York
(1995) presented a comprehensive discussion on Bayesian graphical models for a
variety of discrete data problems. They first considered the problem of double
sampling, in particular an example analysed by Lie et al (1994), and analysed
within a Bayesian graphical model framework by York et al (1995). Graphical
modelling was shown to allow prior information to be effectively incorporated into
the analysis, and model uncertainty properly accounted for. Posterior analyses
were more straightforward than those of Lie et al, and complex models could be
considered without difficulty.

A second use of graphical modelling which they considered was in closed pop-
ulation estimation. They considered an example previously analysed by Fienberg
(1972) and Bishop et al (1975) using log-linear models. However, these analy-
ses failed to effectively deal with prior knowledge of the population size, and
prior knowledge about covariates was also difficult to encapsulate, in particular
with missing values. Decomposable undirected graphical models were shown to

lead to more effective analyses, allowing full use of prior knowledge based on
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well-understood quantities, and accounting for model uncertainty:.

One distribution defined solely for decomposable graphical models, the hy-
per Dirichlet distribution, admits straightforward inferences due to the easy im-
plementation of Monte Carlo methods in such cases. Marginal inference for a
particular model is straightforward, and described in section 3.2.2. Also, model
comparison may be performed using calculations local to single cliques (Madigan

and Raftery, 1994).

2.4 Model Uncertainty

2.4.1 Bayes Factors

The Bayes factor was defined in section 1.4.2 as a measure of evidence in favour

of model m; against model my. It is given by the expression

— ff(,n’]mlﬂ 9m1)f<9m1|m1)d9m1
ff(ntm% ng)f(GinmﬂdBmg

By (2.2)

In order to interpret a Bayes factor Bj, a commonly used method is to
consider the value of twice its natural logarithm, as this is on a similar scale
to the classical likelihood ratio (deviance) statistic. Indeed, the Bayes factor is
often seen is a Bayesian version of this classical statistic (Berger, 1985).

Several authors have offered suggestions as to how to interpret the value of
the Bayes factor. Table 2.1 is based on figures suggested by Raftery (1996) and
Kass and Raftery (1995), which are in turn based on suggestions of Jeffreys
(1961).

Note that the choice of prior distribution is especially crucial in a model-
selection problem with vague prior information, due to the sensitivity of the
Bayes factor in such cases. In general, prior distributions which are excessively

diffuse may tend to favour simpler models.
Y
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2log By Evidence for m,
<0 Negative (supports ms)
0to?2 Low
2to06 Positive
6 to 10 Strong
> 10 Overwhelming

Table 2.1: Interpretation of Bayes factors

An alternative to a vague proper prior is to choose an improper prior. For

example, in a multinomial analysis, we might consider the limiting form of the

Dirichlet distribution,

f(p) Hp(’i)”1

The problem with this is that the marginal likelihood (and hence Bayes factor)
is only defined up to an arbitrary constant, though a method of assigning a value
to this constant for certain examples is given by Spiegelhalter and Smith (1981).

A solution to this problem is to use partial Bayes factors, first introduced by
Lempers (1971). Such an approach avoids the appearance of arbitrary constants
(from improper priors) in the Bayes factor by partitioning the data n into two
parts n= (ny,ny). The first part n; (the training sample) is used to obtain a
posterior distribution for model parameters 8, and this is then used as a prior
distribution in a Bayes factor for n,. O'Hagan (1991) uses a proportion of the
data for training, whereas Berger and Pericchi (1993) use a training sample of
minimal size (defined as the smallest sample size mg which gives proper posterior
distributions under both models). The problem of which units to choose for the
training sample was considered by Berger and Pericchi, who suggested using all
possible training samples and averaging the results or, when there are a large
number of possible choices, averaging a random sample of choices. They call the
resulting partial Bayes factor an intrinsic Bayes factor.

A further refinement of the partial Bayes factor was offered by O’Hagan

(1995), and developed De Santis and Spezzaderri (1999). O’Hagan defines a

3
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fractional Bayes factor, which avoids the problem of choosing a training sample.

Instead, the only choice which must be made is what fraction 1 — b of the data to

use in the Bayes factor. O’Hagan advocates the choice b = n~! max {mg, logn}

for general use.

However, it seems imprudent to use improper priors, and unnecessary to
use fractional Bayes factors, when a rich collection of proper vague priors are
available, such as those based on the Dirichlet distribution, for log-linear models.
Bayes factors based on such priors have been researched by several authors, for
example Gunel and Dickey (1974) and Madigan and Raftery (1994), and such

priors are considered in this thesis.

2.4.2 Computation

The problem with the calculation of Bayes factors is that the integrals in (2.2) are,
in general, analytically intractable, though we note that exact results are possible
for exponential family distributions with particular conjugate priors (DeGroot
1970). Therefore we must, in general, employ numerical methods to evaluate
such integrals. Computation of marginal densities is a widely researched topic,
particularly in the context of Bayesian model selection (for example Kass and
Raftery, 1995) and many methods are available.

Albert (1996) presented a Bayesian procedure for the selection of Poisson
log-linear models using mixtures of multivariate Normal distributions to model
prior opinion. His method partitioned the parameter vector (3 into subsets
B=(M0...,0,), where the elements of n are non-zero, but the elements
of B4,...,8, may be zero. A Normal distribution was then assigned to 8 with
mean 0 and variance matrix ¥, where 37! has a block-diagonal structure of mul-
tiples of identity matrices, with zeros corresponding to n and a single dispersion
parameter F; for each 3,. Such prior distributions model prior beliefs for each of

the 2° possible models. Hypotheses setting 3, = 0 correspond to letting F; tend
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to infinity, whereas hypotheses for non-zero 3, values require a choice to be made
for P;. This choice is not arbitrary, as different values will have a pronounced
effect on the Bayes factor.

Albert’s proposal was to place a prior on F;, motivated by the approach of
Good (1976). Following applications to examples involving two- and three-way
contingency tables, he suggested that P; should have a gamma(%, %’i) distri-
bution, where the choice of b; depends on prior information, and v; may vary,
though his advocated choice v; = 1 corresponds to a set of Cauchy distributions.

For cases where the parameters P, are known, posterior model probabilities
are available using a Taylor series expansion and applying Laplace’s method for
integrals. The resulting approximation was found to be very accurate.

In the more general case where each F; has an associated probability distri-
bution, numerical integration techniques are needed to determine the posterior
model probabilities. This is reasonably straightforward for examples in small di-
mensions, and Albert gave an appropriate expression, together with an iterative
extension appropriate in the more general case. Both were found to produce
accurate results.

A more general application of Laplace’s method to generalised linear models
was investigated by Raftery (1996), and this work is reviewed in Chapter 5.
Alternative approaches for calculating marginal likelihoods are available which
use Monte Carlo samples, and a review of such work by Diciccio, Kass, Raftery
and Wasserman (1997) is also in Chapter 5. A particular example of such a
method used in this thesis is bridge sampling. which is applied in section 5.4.2 to
the conditional Dirichlet distribution. Methods of estimating model probabilities

using Markov chain Monte Carlo approaches are reviewed in section 2.4.4.
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2.4.3 Model Averaging

Model averaging was introduced in section 1.4.2, where the posterior distribution

of a quantity of interest, say ¢, was given by

fom) = T 29

This is a good way of accounting for model uncertainty, which involves the pos-
terior probabilities for each potential model. It allows all potential models to
be considered, rather than the seemingly ad hoc approach of conditioning on a
single model, selected using a sequence of pairwise model comparisons.

A solution proposed by Madigan and Raftery (1994), known as Occam’s
window, was to eliminate many of the models from (2.3). Their approach first
eliminates any model with probability much smaller than the most probable
model, then any model with probability lower than a model nested within it.
They gave two algorithms for identifying a set of potentially acceptable models.
Use of this strategy typically reduces the number of models to less than 100, and
often to under 10 (Hoeting, Madigan, Raftery and Volinsky, 1999).

Suggested prior distributions were given by Madigan and Raftery for appli-
cations to both directed and undirected decomposable models. Both these are
based on the Dirichlet distribution — specifically they used hyper Dirichlet distri-
butions. They also presented a method for elicitation of such priors, appropriate
for application in expert systems with a potentially large number of variables,
ensuring consistency between the directed and undirected approaches.

Application was made to identical datasets using both types of graphical
representation, and similar results obtained. However, in general, the undirected
approach was preferred as an ordering of the variables is then not needed a priori.
It is straightforward to proceed via this method as comparisons between models

differing by a single edge are possible using calculations local to single cliques.
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2.4.4 Markov Chain Monte Carlo Methods

An alternative (and more commonly used) approach to dealing with large num-
bers of competing models is to use Markov chain Monte Carlo methods. This
allows all possible models to be considered, as opposed to the ‘Occam’s window’
approach which excludes many models from the analysis. A Markov chain is
constructed so as to obtain a sample from f(m,8,,|n), and the posterior model
probabilities f(m|n) then estimated from this using the Monte Carlo sample
proportions.

The ‘reversible jump’ method of sampling was introduced by Green (1995).
He presented a general description of the method, together with a particular
implementation which may be adopted for log-linear models. This method was
adapted by Dellaportas and Forster (1999) and applied to several classes of log-
linear models. A brief description of Green’s method, and a review of the work
by Dellaportas and Forster is given below.

Suppose we have M models, and that m € M. Let the state of the Markov
chain at time ¢ be denoted (mm, 09) . At each step, there are different possible
types of move.

Suppose that move type p is a proposed move to m', a model with a single
additional term and with parameter vector B;n of higher dimension than 6.
This parameter vector is constructed by generating a vector u which has di-
mension equal to the difference in dimensions of the two models, using proposal
distribution g,(u), and setting ., = (6!, u). The ‘reverse’ method is used for
a move of type p to a model with a single term removed (i.e. discard u). Moves
are accepted with probabilities which take similar forms to those in Metropolis
Hastings sampling.

An alternative proposal is the ‘null’ move, where m*9 = m{_ Model pa-
rameters may, however, be changed. A Markov chain constructed using all the

above will have equilibrium distribution f(m,8,,|n).
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Dellaportas and Forster applied this method to the set of general log-linear
interaction models without hierarchical constraints. In this case, the model pa-
rameters 6, are those model parameters 3 which are non-zero in the model
concerned. Their implementation considers each of the model terms as possible
move types, so that log-linear model terms and their corresponding parameters
are continually added to, and removed from, the model. They allowed each non-
null move to be made with equal probability, which simplifies the expression for
the acceptance probabilities.

Dellaportas and Forster’s null move is to use a Gibbs sampling method to
obtain a sample for the elements of 6,,. They used a multivariate normal distri-
bution fur g,(u), whose mean and variance was chosen, by investigating a ‘pilot
chain’ of null moves, to optimise the performance of the procedure. They also
assumed all models to have equal probability a prior:i., and set the probability
of the null move r = 0.25. They found the method performed well in various
applications.

A further application of this theory was made to hierarchical log-linear mod-
els, by constructing the move probabilities so that only moves to neighbouring
hierarchical models are proposed. This is possible as any hierarchical model
may be reached from another via only models which are themselves hierarchical.
Models where any main effect is absent were also excluded. The method was
also applied to graphical models, by considering at each stage of the chain the
removal of, or addition of, an edge to the graph. Note that in this instance
multiple log-linear model terms may be added or deleted at each stage, depend-
ing on the edge. Finally, application was made to decomposable models, using
the same method as for graphical models but with zero probabilities f(m) for
non-decomposable models.

This application is similar to the method developed by Madigan and York

(1995), who used a hyper Dirichlet prior distribution for the model parameters,
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instead of a normal distribution. Their use of a hyper Dirichlet distribution
allows the Bayes factor to be exactly and easily computed at each step, using
calculations local to single cliques (Madigan and Raftery, 1994, Dawid and Lau-
ritzen, 1989). Markov chain Monte Carlo sampling may be performed for the
f(m) margin directly (z.e. there is no need to sample from 6,,). Their method
proved extremely effective, with runs of 10,000 or less typically adequate.

Alternative MCNC methods of calculating posterior model probabilities are
available, many of which can be formulated as special cases of the method of re-
versible jump. These include independence sampling, where the proposed model
is not allowed to depend on the current model, and a method developed by Car-
lin and Chib (1995) based on Gibbs sampling. However, the former does not,
in general, produce good results, and the latter has associated computational
difficulties (Dellaportas, Forster and Ntzoufras, 2001).

Raftery, Madigan and Hoeting (1997) applied both Occam’s window and
MCMC methods to model averaging for linear regression models, finding both to
provide satisfactory results. However, Occam’s window was better when the aim
was to investigate the relationships between the variables, and MCMC methods
better for predictive analysis and for obtaining the posterior distribution of a

particular quantity.



Chapter 3

Priors for Log-Linear Model

Parameters

An important choice in the analysis of log-linear models is that of the prior
distribution f(p). The choice of prior distribution is especially crucial in a model
selection problem, due to the sensitivity of the Bayes factor to the choice of
prior, whereby certain prior distributions may tend to favour particular models,
for example complex models, and others may favour simpler models.

The prior distribution encapsulates the previous information about the cell
probabilities p, which may be obtained from expert opinion, previous data, or
some other source. However, this information, even if available, is often difficult
to express as a probability distribution. Hence it is often useful to perform a ‘ref-
erence’ analysis, where the prior distribution is called a reference, noninformative
or diffuse prior, which also enables us to examine the influence of informative
priors compared with the reference approach.

A number of priors exist which may be used for the log-linear model parame-
ters, and which are suitable for a reference analysis. Several of these distributions

are considered in this Chapter.
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3.1 Distributions Based on the Normal Distri-

bution

As defined in section 2.2, the log-linear model parameters may be distributed as
multivariate normal. 7.e. 3 ~N(n,X), where 1 represents the prior belief about
the location of the parameters, and ¥ represents the strength of this belief. For
a reference analysis, the problem is whether it is possible to choose values for n
and X so that this prior distribution is noninformative.

The prior on B3 induces a prior distribution on log p (or equivalently on log ).
Forster (1999) showed that a multivariate normal prior for log g must have a
certain form in order for it to be invariant to permutations of the set of levels
L, of each factor (a sensible requirement for a reference prior). This distribution

takes the form
log gt ~ N (61, Z o2T,)

aCl’

where the T, are projection matrices given by

r=@{iea (1 - i) s 10 g0t e

~vel

and /; is a d x d identity matrix and J; a d X d matrix of 1’s. The prior distri-
butions for the model parameters 3,, with the exception of B, (corresponding

to the intercept term), are then given by
p g Y
B. M N(0,0}%)  aCT

where

Y =7 H|H®< (I]-1) — )])J(, ) aCT

yea yea
The prior for 3, is
By~ N(7,0p)
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for a specified value of 7. It is necessary to assume independence of the model

parameters, though this is not restrictive as it seems sensible to do so if we are

to perform a reference analysis.

3.2 Distributions based on the Dirichlet Distri-

bution

3.2.1 Conditional Dirichlet Distribution

An alternative choice of prior distribution is based on the Dirichlet distribution.

This was defined for the saturated model in section 2.1 as

1) = - g L0
ter
where o« = > _; o(2).
For this saturated model, a Dirichlet prior for the cell probabilities p implies
a prior for 3, any vector of log-linear model parameters. In order to determine
the form of this prior, it is useful to first transform the variables as follows.

Define the reference-cell logit in the standard way (as in section 1.3)
0(i) = log p(2) — log p(do)

The Jacobian, |J|, for the transformation from pyj, to 9\7:0 is easy to determine,

by applying the expression

00 _
6p_

1 1
diag | —— T
ZW(Mﬂ)*M%ﬂl
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A standard linear algebra result gives us

(2

|diag(a) + b | = 1+Z—b—% Ha,(j)
? J

and so, applying this, we have

a0 p(?) 1
%l - (HMOPW 70
1 = p(%o) 1

- <1+ p(io) >jgop(y)

= |

This Jacobian is for the reference cell logit 6,, but the Jacobian for the symmetric
logit 8 is easy to determine, as we know that 6, = M8, for some matrix M, so

that |J|, = |J|,|M]. It is straightforward to show that |M| = m, so that
=~ TTn6)
s = m L. pJ
J

It is now possible to write down the Dirichlet distribution for 8:

_ ['(a) ia(i)~1
/(9) niauﬂp”( )]
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where o = ) - of4).

I'a S ya(2) -1 .
ﬁﬂpwm) & T ple5)

tel Jel

I'(a) i a(?)
oo gpw( )

I'(a) H ee(i)a(i)
H’i (i) icr <Z ee(’i))a(z)

L'(a) Tlig Dl
[1; a(3) (Zeem)“

A particular log-linear model sets 8 = X 3, for suitable (n x p) design matrix

X, where p is the number of parameters in the model. Therefore, a distribution

for B in the saturated model is obtained by a simple linear transformation,

involving the ((n — 1) x p) matrix X* which is the design matrix X excluding

the row for 5. Note that this is possible since the @ vector is linearly dependent,

satisfying 0(4g) = 0.

We therefore obtain a distribution for 3

[1;., ef@8)a®
f(B) o« =HE—
(Zemm)
N [T;., ex® =08,

(3.2)

We shall define the Conditional Dirichlet distribution for a particular log-

linear model as that distribution obtained from expression (3.2) by conditioning

on certain §; terms to be zero. A more formal definition proceeds as follows.

To obtain a conditional Dirichlet distribution for a particular (non-saturated)

model, we first partition 3 into those effects in the model (8,) and those not in

the model (8,), and condition on B, = 0. We also partition X into X containing
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the columns corresponding to the parameters in 3,, and X, containing the others.
We may order the columns in X such that X; precedes Xy. Then the conditional
Dirichlet distribution for 3 is obtained from expression (3.2) by summing over

non-zero (3, only: . .
HZ €Q(Z> Zj133'¢0 z(2,5)8;
el

. oY
(Zz eZJ:BJ;fO I(z=j)’3j>

Extensive investigation of this distribution for a wide range of models showed

f(B) x

it to be analytically intractable in general. Normalising constants were difficult
(or impossible) to evaluate, and it also proved impossible (in general) to obtain
marginal likelihoods (necessary for the calculation of Bayes factors) from the
induced posterior distributions. Therefore, posterior analysis using this class of
priors is not straightforward. However, a hypothesised relationship between this
distribution and the hyper Dirichlet distribution is considered in the next section,
and such a relationship would enable this intuitively attractive distribution to

be more readily used in practice.

Borel Paradox

The method of conditioning used to obtain the conditional Dirichlet distribution
can be thought of as conditioning on a particular log-linear model. Care must be
taken, however, as the prior distribution obtained through conditioning on a set
of complex constraints is not invariant under general reparameterisation of those
constraints. This is known as the Borel paradox. However, the prior distributions
induced under various parameterisations may be shown to be related by the
Borel-Kolmogorov dependence formula (Gunel and Dickey, 1974):

Suppose we have two parameterisations of a model, 8 = (6,,60,) and 6 =
(51, 03), a submodel H which specifies 8; only, and an equivalent submodel H
concerning 51 only. Then the relationship between the priors for 6, under the

submodels obtained by conditioning is given by the Borel-Kolmogorov depen-
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dence formula
00,

1

£ (6:] H) <99>H>|

1S

Therefore the induced prior is the same if and only if the Jacobian ]-g—gl
1

constant in ;.
As an example, consider a 2x 2 contingency table. Under the saturated model,

the cell probabilities p are distributed as Dirichlet(c). The independence model

may be specified by a number of equivalent constraints. These include ﬂll%

p(2l) _ n pOLp(2+) _ p(1)p(22) _ T : — N,
von = O propen = 1 and Sesien = 1 (Note that p(1+) = ;. _, p(2).) Al-

though each of the constraints define the same independence inodel, the marginal

distributions obtained for p(1+) by conditioning on each constraint are not iden-
tical. Indeed, conditioning on g%% p(2+) 0, p—%)m%ﬁ) 1 and ——1%)2%% =1
in turn results in Beta(a(1+) — 1,a(2+) — 1), Beta(a(l+),a(2+) — 1) and

Beta(a(1+4), a(2+)) distributions respectively for p(1+).

Now consider the Bayes factor for comparing the saturated model (S) and
independence model (I), based only on marginal data n(1+). This is given by
the expression

fn(1)1S) _ [p(H)"p(24)" f(p(14)]S)dp(1+)
faH)) — [p(1+ ”)p? )OS (p(1+)|1)dp(1+)

Hence, for sensible inference, the marginal prior density of p(14) should be the
same under both models. We know that, under the saturated model, p(1+) is

distributed as Beta(a(1+), a(24)). We should therefore define the independence

model using the constraint £ 82;:’) gfg 1 to obtain a consistent marginal density

in this case. It will be shown that the conditional Dirichlet distribution results

in such consistent marginal densities.
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3.2.2 Hyper Dirichlet Distribution

A sub-class of models which admit straightforward analyses are decomposable
log-linear models. We may parameterise these models directly in terms of the
clique marginal cell probabilities. The hyper Dirichlet distribution was proposed
by Dawid and Lauritzen (1993) as a conjugate prior distribution for the parame-
ters of a decomposable log-linear model. A useful feature of this prior distribution
is that the resulting posterior is also hyper Dirichlet and so may be decomposed
by cliques, enabling straightforward analyses.

The hyper Dirichlet prior is defined for a decomposable model represented by
an undirected graph as follows: Each clique must have an independent Dirichlet
distribution, and the marginal distributions on overlapping portions of cliques
must be consistent regardless of the clique from which they are derived. One
way of generating such a distribution is by deriving the prior distributions on
the cliques as the marginal distributions from a Dirichlet distribution on the full
set of probabilities.

For a directed graph, we know that a cell probability may be written
p(i) = [T POy = islpa(y) = fpary)
b

The hyper Dirichlet distribution places independent Dirichlet distributions on
each set of conditional probabilities corresponding to a particular 7y, 2pa(,). In
order to ensure hyper-consistency in this instance, we require that if a variable
appears in multiple sets of conditional probabilities, then its marginal density is
the same regardless of from where it is derived.

Marginal inference from a hyper Dirichlet distribution is straightforward. Us-
ing the directed representation, we can write down the hyper Dirichlet distribu-
tion as a product of independent Dirichlet distributions. Monte Carlo samples

may then be obtained from each of these distributions in turn by sampling from
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independent gamma distributions and applying the result that if z1, 2o, ..2, are
independent samples from Gamma(a;,b) distributions, then lez— f’;, e

is a sample from a Dirichlet(ay,as, ..., a,) distribu ‘on.

3.3 Relationship between Conditional Dirichlet
and Hyper Dirichlet Distributions

In this section, the hypothesis that conditional Dirichlet and hyper Dirichlet dis-
tributions are equivalent for decomposable log-linear models will be investigated.
Although investigation of the form of the conditional Dirichlet density f(3) (as
determined in section 3.2) for specific models did not yield a generally tractable
expression, several models did in fact highlight the hypothesised relationship.
This is exemplified here, and these examples provide an introduction to, and
motivation for, the general proof which follows.

Consider the 2 x 2 independence model (7.e. the model with cliques {A} and
{B}) which is represented graphically below.

° °
A B

Substituting into equation (3.2), an expression for f(3) is obtained:

elal+1)—a(+2))8; pla(l+)—a(2+))8;
f(ﬁuﬁz’ﬁ?, = O) X (eﬁl + e—.ﬁl)a (6[32 n e-ﬁQ)a

where, for example, a(+1) = 3 ;. a(i). We therefore have a factorisation
into distributions on each clique. These distributions may then be used to derive

marginal distributions for p(1+) and p(+1):
F(p(+1) o p(+1)*CHTHL = (1))

Fp(14)) o p(1+)23H=11 — p(14))3H)~!
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which shows that the margins for A and B each have Beta distributions. For
example, the margin for B, p(1+), has a Beta(a(1+), a(2+)) distribution, which
is the same as the distribution obtained by marginalising from the saturated
model. Hence the conditional distributions produced by conditioning on the
model correspond to the marginal distributions for the cliques, which is consistent
with the hyper Dirichlet distribution. Thus for this particular log-linear model,
the conditional Dirichlet distribution is identical to the equivalent hyper Dirichlet
distribution.

A similar investigation was performed for the 2 x 2 x 2 model with cliques
{A, B} and {B, C}, represented graphically by

B

However, in this case, an expression was obtained for f(3) which does not
readily factorise. A transformation was therefore necessary, and a set of A;’s were
defined so that A; and A, correspond to the logits of P(A|B = 1) and P(A|B = 2)
respectively, A3 and A4 to the logits of P(C|B = 1) and P(C|B = 2), and ); to
the logit of P(B). Using these, an expression for f(A) is obtained:

ea(+21)/\1+a(+22)/\2+a(2+1)/\3+a(2+2))\4+a(++2)/\5

f(’\) x (1 + e)\l)a(‘i"f‘l)(l i eAg)a(++2)(1 + eAg)a(++1)(1 + e/\4)a(++2)(1 + e/\5>a(++1)

A factorisation into independent distributions is apparent, with each of P(A|B =
1), P(A|B = 2), P(C|B = 1), P(C|B = 2) and P(B) having independent
Dirichlet. distributions. Distributions for the clique margins may also be derived,
as follows:

Consider the clique {4, B}, and hence parameters A\;, Ay and As. From the
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above expression, we have

e(+21)M\ +a{+22)Ao+a{++2)As

(1 + 6)‘1)a(++1)(1 + e/\g)&(++2)(1 + ez\s)a(-i--i-l)

() e (5257)

may be used together with the definition of A\; to give p(11+) = ﬁ‘le_ﬁ Similar

f()‘la )\2, )\5) X

The identity

expressions may be obtained for p(12+) and p(21+). These may then be used to

obtain the marginal distribution

Fo(114),p(124), p(214)) o p(114)2H 7 p(124) 0020 p(21 )2~

(1= p(11+) = p(12+) = p(214))20))

A similar method results in a marginal distribution corresponding to the clique

{B,C}

F(p(+11), p(+12), p(+21)) o p(+11)>F D= Ip(12) 2D p(421)2 201
(1= p(+11) = p(+12) — p(+21))*+*2~!

Finally, the distribution for the margin corresponding to variable B may be

similarly obtained
F(p(+14)) o p(+1)*FHHL = p(414))2 20~

As can be seen above, the margin corresponding to variable B has a
Beta(a(+1+), a(+2+)) distribution, and the margins in cliques {A, B} and
{B,C} have Dirichlet(a(114), a(12+), a(21+), a(22+)) and Dirichlet{a(+11),
a(+12), a(+21), a(+22)) distributions respectively. These distributions, and

those presented earlier for the conditional probabilities, are equivalent to those
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obtained by marginalising from the saturated model. Hence, these results show
agreement with the hyper Dirichlet distribution, and so for this model the con-
ditional Dirichlet distribution is identical to the equivalent hyper Dirichlet dis-

tribution.

The motivation provided by these examples was further enhanced by using
Gibbs sampling to obtain prior samples corresponding to a wide variety of more

complicated models.

General Proof of the Equivalence of Conditional and Hyper Dirichlet
Distributions

The hypothesised equivalence of these two classes of distributions will be proved
by defining an association between two different parameterisations of the same

model.

As shown in section 3.2.1, using the reference-cell logit, a distribution for 6

results which is of the form
1(0) < [T lp(0 (i)™ (3.3)
el
and that, by conditioning on a particular log-linear model with design matrix X,

a distribution for 3 is obtained

1) o 6,80
1l
H'I.,EI ea('l:) Zj ‘r(izj)ﬂj

(Zi By m(i,jw])“

X

This distribution is the conditional Dirichlet distribution for the specified
model. In order to show the equivalence of this distribution and the hyper

Dirichlet distribution, it is necessary to define a one to one relationship between
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the log-linear model parameters and a set of conditional probabilities. This may
be done as follows:

As the model is a decomposable log-linear model, it may be represented
- by a directed or undirected graph. Let us construct the directed version of the
graph which represents this model, and obtain a perfect numbering of vertices (as
explained in section 1.2.3). The set of factors is denoted by I', and for each factor
v € I', L, is the set of levels of this factor. We may obtain a perfect numbering
of I', which assigns an order to this set, which without loss of generality will now
be denoted by I' = {1,2,...,m} where m = |I'|.

As the model is decomposable, we know that any cell probability may be
directly expressed as a function of the marginal probabilities of the cliques of
the model. This definition is directly applicable to an undirected graphical rep-
resentation of a log-linear model. However, in this case, having constructed a
directed representation of this model, and an associated perfect ordering, we can
use an equivalent expression of a cell probability p(¢) in terms of conditional

probabilities, given by

p(&) = [ P(v = islpa(y) = tpacs))
v=1
where max {pa(y)} < v for all 7. Note that, for clarity, throughout this proof bold
type will not necessarily be used to represent vectors; the levels and dimension
of quantities should be apparent by subscripts, where necessary.

Any log-linear model term corresponds to a subset of I'. A one to one corre-
spondence between the log-linear model terms and the logits of the probabilities
defined above may now be explicitly defined. For each log-linear model term,
T C T, let t = max(T). There are two possible cases, and each one admits a

slightly different association.
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(1) If T\ t = pa(t). associate Gp(ir) with the logit of the conditional proba-
bility P(t = (| T\t = ip\).

(i) If T\ t C pa(t), then associate 34.(iy) with the logit of the probability
P(t = 4,|T\t = ip, pa(t)\(T\t) = 1).

The relationship defined above can be seen to be a one to one relationship
by the following argument:

There are clearly the same number of parameters in each case, as we have the
same model correctly parameterised in two different ways. It remains to show
that the conditional probabilities to which we are associating are all appropriate
for the decomposable model concerned. This is a direct consequence of the
conditional independences implied by log-linear models. It is clear that T\t
must be a subset of pa(t) - otherwise, there is some s ¢ pa(t), such that s < ¢

and t and s are not conditionally independent, given pa(t).

We shall now define the logits of the conditional probabilities. It was shown
in section 1.3 that, using logit transformation, a cell probability may be written

in general as

_ e(XA(®)
p(’L, 9) = v
57 elXB)®)

Now consider the reference-cell logit with respect to v = 1 of the conditional
probability p(y = i, |pa(y) = ipa(y)), which we shall denote by ¢. (i, ipa(y)). Using
the above equation, this is given by

6 (isipay) = log | > p(4,0)] —log > p(.0)

LJH =1y,Jpa(~) =tpa(+) _j7:1=jpa(7):ipa(‘v)

—g| S ep{(XAG)} -

LI =t Jpa(v)=pa(q)

og| Y ep{(XA)G)

JIv=Ldpa()=ipas)



3. Priors for Log-Linear Model Parameters 44

The prior distribution corresponding to the conditional Dirichlet case is pa-

rameterised in terms of the log-linear model parameters 3, and written
8) < [ [ Ip(i. 8))

Using the expression

we obtain

a()

/(B H HP = 1y lpa(y) = ipa(v) )
x HHP (v = t4pa(y) = ipagy))® o()
> H H Py =i, paly) = ipa(y)) e

Y 1’17 pa('y)

still as a function of 3. This may be written in terms of the logits @, (i, ipa(y));

and is written as a function of these parameters

. H H exp {am%ah_)%(z%Zpa(vlzrzim) ]| (3.4)
Y iysipagy) (27 eXP{Q»,,v(Z"/:Zpa('Y))})

where |J]| is the Jacobian for the transformation from 3 to ¢. We hypothesise
that |J] is independent of model parameters. Indeed, we hypothesise that J is
upper triangular, and that all the terms on the diagonal are equal to 1, hence
that [J] = 1.

Differentiating the logits ¢. (i, %pa(y)) with respect to log-linear model param-
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eter (; corresponding to the levels kr of the log-linear model term T gives

a(pv(iwipa(v)) Ziv:iwﬂ'pa(w)ﬁ%ah) 2(3, T, kr) exp(X9)(5) _
6/6]‘ 235:15 Jpa(+)=ipa(y) exp(X3)(J)
Zjv.zl,jpah):ipah) z(j, T, kr) exp(X3)(7)
Zj‘r”—‘lvjpa(v):ipa(“/) eXp(X/B) (j)
= P(T =krly = iy.pa(7) = tpay) — (3.5)

P(T = krly = 1, pa(y) = tpa(y)

as z(j, T, kr) = 1 if jr = kp, or O otherwise.

In order to show that J is upper triangular, we must determine the value of
(3.5) for a given T. We shall consider various cases for the model term 7.

Define two sets A, and B, as follows: let the set B, be those variables ‘below’
7 in the perfect ordering, and the set A, be those variables above -, but not par-
ents of . Then the set of all possible terms in the model is {7, pa(y), 4., B, } . All
terms in this set are distinct by definition. 7' lies in at least one of these following
sets, and we shall consider each T in the first set on the list to which it corre-
sponds. Hence for example when we consider A, U B,, we are only considering

T including elements of both A and B.

(]
3
=R
=2

D
o

-
>

~J
2

C

vy
-
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8. pa(y) U A,
9. pa(y) U B,

10. A, U B,

11. yUpa(y)U A,

12. yUpa(vy)U B,

13. yUA,UB,

14. pa(y) U A, U B,

15. yUpa(y) U A, U B,

This is an exhaustive list, however it is possible to eliminate several of these
sets. By the definition of a directed graph for a log-linear model, it is impossible
to have a log-linear model term that includes v and any variables which are not
either parents or descendants of v (i.e. A). This excludes cases 6, 11, 13 and 15.
Also, as the aim is to show that J is upper triangular, and then to determine the
entries on the diagonal, terms which include any elements of B are of no interest,
thus eliminating cases 4, 7, 9, 10, 12, and 13. The remaining five sets of interest

are given below:

4. Ay Upa(y)

5. v Upa(y)
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: - . d .
Let us now consider the form of the probability corresponding toé%— (expression
M

(3.5)) in each of these cases:

In case (3), this probability is equal to zero, as model term T is a subset of A
and therefore T 1L ~|pa(y) by definition of the perfect ordering, hence the two
terms of expression (3.5) cancel.

In case (2), we also obtain zero, as T C pa(7y), and hence both terms are
equal to one if kp = iy4(y), Or zero if kp # ipq(y)-

Similarly, we obtain zeros in case (4) by combining the previous two cases.
In this case, T = Ty U Ty, where T} C A and T3 C pa(vy), and we may re-write
(3.5) as

P(Ty = kpy, Ty = kpy |y = iy, pal(y) = dpa(y)) —
P(Tl - le- TQ = kTgi’} = 1,pCL<"‘;) = iPa('Y))
= P(Ty = kp|y =1y, pa(y) = tpa(yy, Ty = by )P(Th = by |y = iy, pa(7y) = tpa(y)) —

P(TQ - kTQh = 1,pa(7) = Z.;Ull(’)f):Tl = le)P(Tl = kT1|’7 - lapa(/Y) = ipa(q'))

The second and fourth terms in this expression are equal, since A 1L v|pa(y).
The first and third terms are either equal to 1 if kp, = tpa(yy, Or 0 if kg, # ipa(y)-
Hence the expression is zero.

From these three cases, all the blocks below the diagonal are equal to zero,
and hence J can be said to be block upper triangular. It remains to determine
the form of the blocks on the diagonal - i.e. corresponding to cases (1) and (5).

In case (1), the probabilities take the form
Py = kyly = 15, pa(7) = ipay)) = P(v = byl = Lipaly) = tpary))

The second term is zero, by definition of the logits ¢., and hence the expression

is equal to 1 if k, = 7., and 0 otherwise. Similarly, in case (5), the expression
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becomes
Py = ky,pa(y) = Kpar) |7 = 1y, 0a(7) = tpaty)) =
P(’Y = kmpa('y) = kpa(v)}'y = 17pa(f7) = ipa(v))
which is also equal to 1 if k, = i, and Kpa(,) = tpay), and 0 otherwise. We may

therefore order the terms within these blocks so that 1’s appear on the diagonal,
with zeros elsewhere.

The Jacobian is therefore upper triangular, and all entries on the diagonal
are equal to 1, so that |J| = 1.

We may now re-write expression (3.4) using |J| = 1, and obtain

H H exp {O iy, zpa(y))} rpe)
~ &XP {va Z”r’zpa(v))}

8 1% pa(-))

This may now be written as a function of conditional probabilities

)< [T I1 POy =islpa(a) = dpaiyy) 0 1]

Y Yyiipa(y)

where now |J| is the Jacobian of the transformation from ¢ to p. A set of logit
parameters exists for each 7,1%p(,), and hence the Jacobian is block diagonal,
with the determinant of each sub-block equal to Hiv P(y =iy|pa(y) = ipag))~?

The Jacobian is therefore given by

() = tpagy) !

g = ILIT [T Pe =+

Y tpain) |

= H H P(y =1i,|pa(y) = tpary)) "

Y tsipa(s)

and hence we obtain
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) [T T PO =41pa(y) = ipagmy)®wee ™! (3.6)

Y tyiipaly)

The aim of this proof was to show the equivalence of the conditional Dirich-
let and hyper Dirichlet prior distributions for decomposable log-linear models.
We have shown the existence of a one to one correspondence between the two
parameterisations of the model corresponding to these two distributions, and
have shown that the Jacobian, |J|, of the transformation between these two
parameterisations is equal to 1. Expression (3.6) gives the distribution for the
conditional probabilities equivalent to the conditional Dirichlet distribution for a
particular log-linear model. This distribution is clearly a product of Dirichlet dis-
tributions, and is the distribution obtained by marginalising from the saturated
model, and hence is hyper Dirichlet.

It can therefore be concluded that for a particular decomposable log-linear
model, the induced conditional Dirichlet distribution is identical to the equivalent

hyper Dirichlet distribution.

3.4 Discussion

The conditional Dirichlet distribution has been introduced in this Chapter, and
this distribution has been shown to be equivalent to a hyper Dirichlet distribution
for a decomposable log-linear model. The conditional Dirichlet distribution is an
attractive prior distribution as its parameters may be interpreted as prior data,
and inference using this prior is straightforward by considering the equivalent
hyper Dirichllet distribution, which is tractable.

A further advantage of the conditional Dirichlet distribution is that it is
defined for any log-linear model, and its relationship to the hyper Dirichlet dis-
tribution allows it to be considered as a natural extension of this distribution to

non-decomposable models.



Chapter 4

Posterior Sampling

In Bayesian statistics, our interest lies in the analysis of the posterior distribu-
tion. This is often a highly multivariate distribution, and so we require meth-
ods to summarise it, typically involving calculating appropriate marginal sum-
maries. However, we frequently find the posterior distribution to be analytically
intractable, and the marginal distributions of interest are not available analyti-
cally. In such cases, we can use Monte Carlo methods to obtain a (hypothetical)
sample from the posterior distribution, from which it is then straightforward
to obtain a sample from a particular marginal distribution. Methods of sum-
marising the posterior, such as integrating to obtain expectations, may then be
replaced by equivalent methods using our sample, for example calculating sample
means to estimate expectations.

This Chapter introduces the method of Gibbs sampling in order to obtain a
sample from a potentially intractable distribution. This technique is especially
useful when applied to conditional Dirichlet distributions, as the priors which we
have described result in intractable posterior distributions for non-decomposable
models. Such applications will be considered in section 4.2. Note that such
methods are not necessary when using a hyper Dirichlet distribution (i.e. when

the model is decomposable), as this distribution is a product of independent
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Dirichlet distributions, and so it is possible to sample directly from the posterior

(described in section 3.2.2).

4.1 Gibbs Sampling

4.1.1 1ntroduction

The theory of Markov chain Monte Carlo methods was introduced in Chapter 1,
Gibbs sampling is a particular application of this theory, widely used in Bayesian
analysis. For example, Dellaportas and Smith (1993) applied the method to a
wide class of generalised linear models.

Using the same notation as previously, suppose we require a sample from the
distribution with density function f(@), where 6 is p-dimensional, and let the
t-th iterate generated be denoted by 6. The fundamental principle of Gibbs
sampling is to generate each Comp‘onent of 6 one at a time from a univariate
conditional distribution. This algorithm, as applied to obtaining a sample from

the distribution with density f(8), is summarised below:

e Choose starting value 8@ = (g , g0 R ,9<0) , possibly by maximisin
g 1 2 P g
f( )'

e Generate 951) from f(&ﬂQgO), 9&0), c 9570))-

o Generate 6{(21) from f(é?glé’(ll), ng), o ,9}(00))-

Generate (9;1) from f(prégl), o .. 61()1_)1).

A ‘new’ observation 8 has now been generated. Successive application of

. 0 VooA(2 .
the process results in a sequence 8%, 0% 0% of observations of 6.
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Note that we do not usually have the conditional densities required in a
closed form and hence we use the result that the conditional densities are pro-

portional to suitable joint densities (which we have in an un-normalised form),

and then generate from these densities. For example, f (91)99, ng), . ,92”) x
f(61, 9%0), 9@0), ce 01()0)). It is (relatively) straightforward to sample from un-normalised

densities, using methods such as rejection sampling. For this application, a mod-
ified version of rejection sampling, known as adaptive rejection sampling (Gilks

and Wild, 1992) will be used. This is described below.

Adaptive Rejection Sampling

Rejection sampling is a common method of sampling independent points from a
density. A particular advantage of the method is that the normalising constant
for the density is not required.

Suppose we require a sample of n points from a density f(z), with domain
D, and let the un-normalised function be denoted g(z) (so that f(z) = 7—-;]((3@).
Define an envelope function g,(z) such that g,(z) > g(z) for all z € D, and
define a squeezing function g¢;(z) such that g,(z) < ¢g(z) for all z € D. The

sampling algorithm then proceeds as follows

1. Sample a value z* from g,(z), and sample a value w from a Uni form(0, 1)

distribution.

2. fw< fi%—*% then accept z*. Repeat from 1 until the required sample size

is achieved.

3. w<L q‘i((z;,)) then accept z*. Otherwise, reject z*. Repeat from 1 until

required sample size is achieved.

Clearly, it is only worthwhile using such a sampling method if it is easier to

obtain a sample from g,(z) than from f(z). A disadvantage of this method is
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the difficulty in determining a suitable g,(z), and further work is also needed to
locate the mode of g(z), often using a standard optimisation method.

Gilks and Wild (1992) presented a modification of rejection sampling, called
adaptive rejection sampling, which may be applied to those densities which are
log-concave (a density function f is log-concave if log f is twice continuously dif-
ferentiable, and its Hessian matrix of second derivatives is negative semi-definite).
Their method has two distinct advantages. Firstly, because of the log-concavity,
it is unnecessary to locate the mode of f(z). Secondly, fewer evaluations of g(z)
are necessary, as the probability of needing a further evaluation is reduced after
each rejection by updating the envelope functions and squeezing functions to take
into account all the available information about f(z). These functions are cre-
ated using the fact that any concave function can be bounded by piecewise linear
upper and lower bounds, constructed by using tangents at, and chords between,
evaluated points of the function. They converge to f(z) as sampling proceeds.
More detailed explanation of the method of adaptive rejection sampling is given
by Gilks and Wild (1992). The use of a Gibbs sampler for generalised linear
models based on the method of adaptive rejection sampling was presented by
Dellaportas and Smith (1993).

The method of Gibbs sampling based on adaptive rejection sampling is ap-

plied in the next section to the conditional Dirichlet distribution.

4.1.2 Application to Conditional Dirichlet Distribution

The conditional Dirichlet distribution is. in general, analytically intractable. It
was therefore necessary to use a computational method to obtain samples from
such distributions. The chosen method was to use Gibbs sampling, and the
approach is described here. This method may be used to obtain samples from
both prior and posterior conditional Dirichlet distributions.

In order to obtain a Gibbs sample from a conditional Dirichlet distribution,
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it is necessary at each step to sample from the relevant univariate conditional
distribution. However, as explained in the previous section, this is not often
available in closed form and indeed this is true here. In order to sample from the
(readily available) un-normalised joint density, the adaptive rejection sampling
approach was chosen. ,

The conditional Dirichlet distribution was described in section 3.2.1, and its

density function given by

H’I;el ea(?:) Zj I(iaj)ﬁj
X

/(B)

for a model with (n x p) design matrix X, where p is the number of parameters
in the log-linear model which sets 8 = X3, and « is the vector of parameters.
Note that @ may represent either prior or posterior parameters, with « — a+n
in the posterior.

As the only assumption required for adaptive rejection sampling is that of log-
concavity of the univariate density functions, this is the only check we must make
before proceeding. A density is log-concave if the second derivative of its log is
negative definite. Hence, we must determine the matrix of second derivatives:

We may write the density f(83) as

log f = Z Z%Iijﬂj - alogZexp {Z iL‘z‘jﬁj}
j 7 J

= Zﬁj Za,—:cij — alogZexp {Z xijﬁj}
J : i J

Note that for the sake of clarity, subscript notation is used in this part, as opposed
to the notation used for the majority of the thesis; subscript 4 replaces ¢ as an

argument, and z(z, j) is replaced by z;;.
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The next step is to obtain the first and second derivatives:

%) o
3, Zalek - >, exp {Zj :137:]',35;} Zi:xzk o {zjzwwﬁj}

0* —a
g = 5 ex T, x?k ex i35 0 —

2
(Z Ty €XP {Z Iijﬁj})
. J

2
= Z:cfkpi— (Zl‘z’kpz‘)

i

0? —Q
- 5 ex T8, T T €X 3By ¢ —
0810, (Zl exp {Z] xij@}) {Z P {; } Z P {;x }

(pefea)) (pemfes),

= —« {Z TipTiPr — Z LikPi Z Iilpi:'

‘927 lo in matrix form as
BT 08

We can now re-express 7

62
il

log f(8) = —a [X"diag(p(8)X — (X"p(8)) (X"p(B))" ]

= —aXT (diag(p(8))-p(B)P(B)) X
Hence, in order to prove log-concavity of the whole distribution, we must have

o’ X7 (diag(p) — pp? )X > 0 for all e # 0
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This is equal to the condition
(Xa)" (diag(p) — pp” )(Ner) > 0 for all a # 0

However, (Xa)” (diag(p) — ppT)(Xa) is the variance of a discrete distribution
with sample space {(Xea);;¢=1,...,m}. and where P((Xa);) = p;, and so
this condition is satisfied and we have log-concavity of the whole density. Log-
concavity of each univariate density is a direct consequence.

The method of Gibbs sampling using the adaptive rejection method was ap-
plied to the conditional Dirichlet distribution by coding a suitable program in

C. The program requires the following information as part of an input file:

e The design matrix X for the log-linear model.

e The vector of parameters «, representing the cell counts. Note that the
multinomial-Dirichlet conjugacy, which allows prior parameters to be in-
terpreted as a ‘prior sample’, means that « is a vector of prior parameters
in order to sample from the prior distribution. Alternatively, to sample

from the corresponding posterior distribution, n+a is used.

e The required Monte Carlo sample size, expressed as a number of complete

sample vectors.

In order to generate the design matrix for a particular log-linear model, an-
other program was written in C. The input to this program is the pattern of
interactions for the model, expressed in binary form, and the output is the cor-
responding design matrix.

The Gibbs sampler outputs a sample from the conditional Dirichlet distri-
bution for the specified model, either in terms of the cell probabilities p (useful
for the next section) or in terms of the log-linear model parameters 3 (used in a

later Chapter).
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4.2 Conditional Dirichlet Samples

The method of Gibbs sampling from a conditional Dirichlet distribution was
described in the previous section. As mentioned, this was first designed as a way
to validate the hypothesis of equivalence of the hyper Dirichlet and conditional
Dirichlet distributions for decomposable models, although its major use in this
thesis is in bridge sampling, described in Chapter 5. Samples were generated
from a large number of conditional Dirichlet distributions, and an example of
this (Example 1) is presented here. The Gibbs sampler is then applied to data

from a 25 table under several log-linear models (Example 2).

4.2.1 Example 1

Consider the 2 x 2 x 2 model which may be represented graphically as

B

This model has cliques {A, B} and {B,C}, and may be parameterised as
P(B)P(A|B)P(C|B). A design matrix for such a model is given by
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The prior chosen for this example is the diffuse prior with parameters a(i) = é
for all ¢ (Perks’ prior).

The hyper Dirichlet distribution may be constructed from the ‘full’ Dirichlet
d:stribution as follows. The distribution for P(B) is obtained first, then the
conditional distributions P(A|B = 1), P(A|B =2), P(C|B = 1), and P(C|B =
2) are obtained in such a way that they are consistent with the distribution
for P(B). In this example, P(B) is distributed as a Beta(3,3), and all the
conditional densities follow Beta(s, 1) distributions. As is clear from the model
parameterisation, there are five independent distributions in this example.

The Gibbs sampler was used to generate samples from this prior, and the
graphs below (figure 4.1) show kernel density estimates for the five independent
distributions produced by the sampler, overlaid with the true Dirichlet density.
All graphs are on the logit scale.

As can be seen from the graphs, there is excellent agreement between the
kernel density estimates from the Gibbs samples and the true densities. This is
to be expected, and validates the quality of the Gibbs sampling code. The sample

size used throughout is 10000, and the computation time for such a sample is

negligible (a few seconds).
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Figure 4.1: Plots showing kernel density estimates from Gibbs samples overlaid
with the true density functions

4.2.2 Example 2

The Gibbs sampler was used to produce a posterior sample for some data con-
cerning incidence of coronary heart disease. The data was presented by Edwards
and Havranek (1985), and analysed further by Madigan and Raftery (1994) and
Dellaportas and Forster (1999).

The data (presented in table 4.1) concerns 1841 men, who have been cross-
classified in a 20 table by six factors for ’(-oronary heart disease. The six factors
are: A - Smoking (no or yes); B - Stremious mental work (no or yes); C -
Strenuous physical work (no or yes); D - Systolic Blood pressure ( < 140 or

> 140); E - Ratio of « and 3 lipoproteins (< 3 or > 3); F' - Family anamnesis

30
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of coronary heart disease (negative or positive).

B No Yes
A No Yes No Yes
F E D C

Negative <3 <140 No 44 40 112 67
Yes 120 145 12 23

> 140 No 35 12 80 33

Yes 109 67 7 9

>3 <140 No 23 32 70 66

Yes o0 80 7 13

> 140 No 24 25 73 57

Yes 51 63 7 16

Positive <3 <140 No 5 7 21 9
Yes 9 17 1 4

> 140 No 4 3 11 8

Yes 14 17 5 2

>3 <140 No 7 3 14 14

Yes 9 16 2 3

> 140 No 4 0 13 11

Yes 5 14 4 4

Table 4.1: Risk factors for coronary heart disease

Posterior samples were obtained for this data using the Gibbs sampler, for the

most probable (hierarchical) models identified by Dellaportas and Forster (1999).

These models have posterior probabilities of > 0.05. The prior parameters were

1
I

set to oy = = 0.015625 for a diffuse prior. The sets of graphs below show the

distributions of the 2-way interaction parameters - each single graph corresponds

to a particular interaction parameter, and each set to a particular model.
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4.2.3 Convergence of Gibbs Sampler

Repeated use of the Gibbs sampler leads to the conclusion that samples produced
are not highly dependent, as the sampler appears to mix well. For the samples
in Example 1, the autocorrelations at lag 1 are 0.2, and drop below 0.05 after
lag 4.

Figure 4.6 shows time series plots for the data in Example 1. For the sake of

clarity, the first 4000 observations only are plotted in each case.

0o 10 20
0 20 40

-20

0 1000 2000 3000 4000 [ 1000 2000 3000 4000

P(B) P(AIB=1)

0 20 40

-40

0 1000 2000 3000 4000 0 1000 2000 3000 4000

P(A]B=2) P(CiB=1}

0 20 40

-40

o] 1000 2000 3000 4000
P(CiB=2)

Figure 4.6: Time series plots for Gibbs samples in Example 1

The plots show that the Gibbs sampler is mixing very well, and so the ob-
servations are not highly dependent. Scatterplots for each pair of variables are
shown in figure 4.7. There is clearly no distinct correlation between variables.

Time series plots for the data presented in Example 2 are all similar. The
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Figure 4.7: Pairwise scatterplots for Gibbs samples in Example 1

graphs in figure 4.8 show the plots for the most probable model, AC + BC +
AD + AE 4+ CE + DE + F, though again only the first 4000 observations are

plotted.
Again, these plots show the observations are not highly dependent, and that

the sampler is mixing well.

4.3 Discussion

In this Chapter, a Gibbs sampler has been developed, based on an adaptive
rejection sampling method, which will produce samples from densities based on

the conditional Dirichlet distribution. The convergence of this sampler is quick,
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allowing large reliable samples to be obtained quickly.

The integrity of the samples, and moreover the agreement with the theoretical
results on the hyper Dirichlet and conditional Dirichlet from Chapter 3, was
checked by application to examples, one of which was presented in section 4.2.1.
Samples were then obtained from a large 2% dataset for several models, and
graphs presented of the 2-way interaction parameters.

The major use of the Gibbs sampler will be presented in the next Chapter,

as it is an Important component in the method of bridge sampling.



Chapter 5

Posterior Distributions: Model

Determination

The focus of Chapter 3 was the conditional Dirichlet distribution, and its rela-
tionship with the hyper Dirichlet distribution. One of the problems encountered
was the intractability of the conditional Dirichlet distribution and in particular,
the inability in general to write down the normalising constant for such a dis-
tribution in a closed form. It is, however, possible to obtain samples from such
distributions using a Gibbs sampler (described in Chapter 4) as the method of
rejection sampling does not require a normalised form of the conditional distri-
bution.

The focus of this Chapter is the determination of normalising constants for
conditional Dirichlet prior distributions, and for resulting posterior distributions,
using Laplace’s method and bridge sampling to approximate integrals. This is
motivated by the problem of model selection. Note that such approximation
methods are not necessary when using the hyper Dirichlet distribution (i.e. when
the model is decomposable), since this density is conjugate to a multinomial

likelihood and may be written in closed form and so exact results are possible.

68
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5.1 Introduction

Suppose there are a set of competing models by which it is believed the data may
have been generated. Model determination involves the selection of a particular
statistical model, or identifying multiple plausible models, based on both the
data and the knowledge of which models were considered plausible a priori. The
basic theory of this was introduced in section 1.4.2, where we showed that the

posterior probability of a particular model m may be found explicitly from

min) = F(m) [ f(n|m,8,,)f(8,,m)d6,, i
f(m|n) Smens M) [ f(nlm, 0y,) f(0m|m)dO,, eM (5.1)

and that, if we have two competing models, m; and ms, the problem reduces to

the calculation of a Bayes Factor, which is the ratio of the posterior odds to the

prior odds:

f(mlln) _ f(ml) < ff(nimlvHml)f(gmxlml)dgml

flmaln) — f(ma) = [ f(nlma, Om,)f (Om,|m2)d0m,

Note the Bayes Factor is the second term on the right hand side, which we refer to
as Big. The Bayes factor is in fact the ratio of two marginal likelihoods, f(n|my)
and f(n|m,), i.e.

ff(nlmla 9m1)f<9mllm1)d9m1 — f(niml) (5 2)
ff(n(m% 9m2>f<6m2‘m2)d9m2 f(ln"mQ) '

By =

and this represents the weight of evidence in the data in favour of model m; over
ma.

As mentioned in section 2.4.1, the integrals in (5.1) and (5.2) may be ana-
lytically intractable. In this thesis we investigate the conditional Dirichlet dis-
tribution, and posterior conditional Dirichlet densities are indeed analytically
intractable in general. Hence, numerical methods are required to obtain approx-

imations for the normalising constants.
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Note that normalised versions of the prior densities f(8,,.|m;) are needed in
expression (5.2), though where these densities are intractable (as for the con-
ditional Dirichlet distribution), numerical methods are also required to obtain
these. In such cases, it is useful to re-write the log Bayes factor, given by the

expression

log B12 = 1Og/f(nlm17 Oml)f(ﬁmlfml)d9m1~log /f f(n}mQ’ emz)f(ngImQ)dHWQ

in terms of un-normalised prior densities

ff(nlmlv gml)g(gmliml)
10 B = 10‘7 dGml -
B S T (B 1) dB,

ff(nlm% sz)g(gmzlmQ)
T 9O m2)d0m, 0

— log / £ (11, By )9 Oy |12 ) By — g / 9B |1} d6,, —

log

log / F (112, 01y 9(Brmy [ 2) By + log / 981, |112)d60,m,

Numerical methods may then be applied to each integral in turn in order to
obtain the approximation to the log Bayes factor. The density functions may
be of high dimension, which can cause difficulties with such methods. Three
methods for evaluating these integrals are investigated in this Chapter, and we
focus on Laplace’s method, which is described in section 5.3, and bridge sampling,

which is considered in section 5.4.

5.2 Schwarz Approximation

The difficulties involved in calculating the Bayes factor are mainly those of cal-
culating the integrals involved, and these are not generally tractable. However,

an alternative to this is to avoid altogether the introduction of prior densities
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f(Op |my) and f(6,,,|ms) and approximate B;, by the expression

1
e ‘2‘<d1 - dg) lOg n

log Bip = S = log f(n{ml,b\ml) — log f(n}mg,b\mz)
where d; is the dimension of 8,,,, @mi minimises the (log) likelihood function
under H;, and n is the total sample size. This quantity is called the Schwarz
criterion (Schwarz, 1978), and can be used as an approximation to the log Bayes
factor in model selection problems where the true marginal likelihood is difficult
to evaluate.
The Schwarz criterion is related to the Bayes Information Criterion (BIC -
Raftery, 1986) through the equation —25 = BIC. Note that BIC is defined for a

single model using the expression
BIC = —2(log maximised likelihood) + logn X number of parameters

where this is minimised by the most probable model. However, BIC and the
Schwarz criterion are used interchangeably in the literature to compare models,
so in this thesis we shall use the term Schwarz criterion where a Bayes fac-
tor is approximated, and Schwarz approximation where we are approximating a
marginal likelihood alone.

The Schwarz criterion approximation to the log Bayes factor satisfies

S1o — log By
—————— et ._.)
log B2
as n — oo. This is a sufficient condition for the Schwarz criterion to provide
a consistent estimate of the Bayes factor, though the approximation of log B

provided by S, is only accurate to an error of O(1), and so allows

exp(Sia) i
By
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This means that, particularly for certain prior distributions, the Schwarz criterion

can be a poor approximation to the log Bayes factor, even if the sample size is

large.

5.3 Laplace’s Method

5.3.1 Derivation

The most frequently used approximation to the integrals in (5.1) is found by a
technique known as Laplace’s Method.

Tierney and Kadane (1986) presented an approximation for integrals of the
form [ ™9 dg. The approximation is based on the principle that, provided L
has a unique maximum g’, or is at least dominated by a single mode then, for
large n, the value of the integral is dependent solely upon the value of L near

the maximum. The Taylor expansion of L about its maximum is

Lw)::Lwyue_%yﬁy+;e—%%%%+ow—éﬁ

= u@+%w-%%%@+0w_%3

and application of this expansion yields the result

/exp {nL(0)}d0 = exp {WL(E)} /exp {— (6 ;9)2 (—nL"(8)) + O(6 — 5)3} do

F

1

N 56”“5)1 O(n~1 5.3
<n(—L~(9))) (1+0(n™) (5.3)

as the integrand is the kernel of a Normal (6, L_,,l(é)) density.
n
Suppose we require an approximation to the normalising constant of a multi-
variate posterior distribution. The prior may be in an un-normalised form, so we

shall denote this by g(8) = c¢f(8). The likelihood function is denoted f(n|@). The
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above result is then easily generalised to this multivariate situation as follows.
Let L(0) = +1log g(8n) = % (log g(8) + log f(n|f)), and suppose the dimen-

sion of these functions is d. Then expression (5.3) leads to the approximation

; g nL(8)
/e”“g)dﬁ - lam)e —(1+0(n™"))
8 L(6)

N

ne | —

66867

where 6 is the posterior mode, and so

d ~ 1 ~ d
log/e”L(e)dH =3 log 2w + nL(6) — 5 log (——H*(B)‘ -5 logn + O(n™ 1)

where H(8) = aB%QBTL(E) is the Hessian matrix of second derivatives. Writing

this directly in terms of the prior and likelihood gives

log/f f(n|@)do dlog27r+lo g f(0 )+Iogf(n|5)—%log —H(é);JrO(n"l)

(5.4)
where H(@) = 59%297 log f(é) + log f(n[é)}, equivalent to the expression given
by Tierney and Kadane (1986). Note that the use of this form of Laplace’s
method is restricted to cases where we may obtain the Hessian matrix of second
derivatives, and also that application to cases where the tails of the integrand
vary considerably from the Normal distribution will produce inaccurate results
(this is considered later in the Chapter).

In a model selection problem, the marginal likelihood is required for the

calculation of the Bayes Factor.

flmln) _ fm) ] ol 00 (0 ) d0
Fraln) = flma) T f (g, O {8l miz) A6,
- fmy)
= Fm) "

where Bi, is the Bayes factor, comparing models m; and ms. It is clear that,
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as expression (5.4) provides an order O(n™!) approximation to the marginal
likelihood, an order O(n™!) approximation to the log Bayes factor is given by

the expression

- IOg f(nl’émz) -

log By = 1og /(nfBn,) +10g f(Br,) — 5 108 |~ H(Br)

d —d
+ (—1—72—) log 27 4+ O(n™")

log f(Bry) + 5 l0& |~ H (B

where d; is the dimension of model 1.

The form of the Laplace approximation derived above provides an order
O(n~!) approximation to the log marginal likelihood, and is based on the likeli-
hood and prior densities evaluated at the posterior mode, and the Hessian matrix
of second derivatives. However, a modified version of the approximation is avail-
able which does not require the Hessian, instead using the Fisher information
madtrix.

Let us apply a result from Kass and Wasserman (1995), namely

—n" H(8) —i(0) = O(n~?)

where 1(0) = 11(6) is the Fisher information matrix for a single observation,
and 1(6) = F {—%%f(ylg)} . Note that care must be taken in the definition
of a ‘single observation’. For example, in a contingency table, the numbers of
units of information is the number of classified objects, not the number of cells.

Rearranging, we obtain

—n'H(B) = O(n?) +i(6)
j—n-lH(é)j - ]0(n,'1/2)+¢(5)]
= i) [1+ 02|
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and so
i_H@w:nﬂu@M1+Om””N

where d is the dimension of 8. Taking logs, we have

logl—H(g)I = dlogn+log,i(5),+log[1+0(n_1/2)[
= dlogn—}—logii(a)]+O(n_1/2)

Formula (5.4) may now be re-written in terms of the information matrix:
£(n16)9(8)d6 =1log f(n[B)+log §(6)+ log 27— log n— log fz(e)fw(n )

This expression yields an approximation to the marginal likelihood which is

correct to order O(n‘%), which is the result derived by Kass and Wasserman

(1995).

5.3.2 Application to Generalised Linear Models

The standard application of Laplace’s method for approximating Bayes factors
requires both the posterior mode ém and Hessian matrix H(6,,), though it was
shown that it is possible to re-write the approximation in terms of the expected
Fisher information matrix. Raftery (1996) considered the problem of using
Laplace’s method to approximate Bayes factors for generalised linear models.
He pointed out that, although standard statistical software does not usually pro-
duce the posterior mode and Hessian matrix, it does often give the maximum
likelihood estimator gm, the likelihood ratio statistic and the observed or ex-
pected Fisher information matrix F,,. He presented two approximations based
on these quantities for generalised linear models.

Suppose the prior mean and variance of 8, are given by E [0,,] = w,, and
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Var[0,] = W,,. Then the first approximation is
21og Blg ~ L12 -+ (El - EQ) (55)

where Ly = 2 {log F(n|8m,) — log f(n[@m)}, which is the standard likelihood

ratio test statistic for nested models, and where F,, is given by

En = 2log f(6m) —log |Frn 4+ W3] + d log 27 +

T
L—% log f@m)} (Fr+ W) [2 = Fan( B+ W) 5% log f(6r)

This approximation is closer to the standard Laplace approximation when £, is
the observed Fisher information, with error of order O(n™!). Arguments similar
to those in section 5.3 and by Kass and Vaidyanathan (1992) showed that this
error increases to order O(n‘%) when the expected Fisher information is used.
Raftery’s second approximation was based on the assumptions that 5m ~ 5m
and H™1(0,,) ~ —F,, (the observed information matrix). This resulted in the

expression

2log B = Lig + (B — E3)

where

Er = —1og |Fy| + 21og f(Bm) + dim log 2

This approximation is less accurate than that given in (5.5), although Raftery
(1996) found it to perform well in several situations, and found the separate
terms for the prior and likelihood appealing. He applied both approximations to
a simple Normal example, where analytic results are available, and found them
both to give errors of order O(n™!), though the second approximation was in
general worse than the first.

Raftery applied his approximations to the problem of calculating Bayes fac-

tors for generalised linear models, where the posterior mode and Hessian matrix
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are not, in general, available. The approximations were found to be of good
quality. His methods are applicable to cases where the dispersion parameter
is unknown, where there is overdispersion, to compare link functions, and to
compare error distributions and variance functions.

Raftery suggested Normal prior distributions for use in the approximations,
for cases where little prior information was available. A criticism of his priors
is that they depend on the observed data, and as such would seem to violate a
fundamental principle of the interpretation of a prior distribution. He emphasised
the use of a reference set of proper priors in model selection, as opposed to a
single (possibly improper) prior, an idea consistent with the rest of this thesis.

Diciccio, Kass, Raftery and Wasserman (1997) compared several methods
of estimating the Bayes factor when it is possible to obtain a sample from the
posterior distribution. They presented a modified version of Laplace’s method
based on this, and a Bartlett adjustment to Laplace’s method which improved
the Laplace estimate by an order of magnitude. They also considered impor-
tance sampling and reciprocal importance sampling, two special cases of bridge

sampling, which is described in detail in section 5.4.

5.3.3 Application to Conditional Dirichlet Distribution

One of the main prior families investigated throughout this thesis is the con-
ditional Dirichlet distribution. However, this distribution can be analytically
intractable, hence the normalising constant is not (in general) known. The ap-
plication of Laplace’s method to this problem is described here.

As detailed in section 3.2.1, the conditional Dirichlet distribution has the

general form

)Y, 2(1,9)8;
. e j j
x H'Lg]

£(8) D
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Define g(83) to be the un-normalised function, so that

H. ea(i>2j I(’I’»J)ﬁ]
— el

9(8) (Zi eZﬂW)ﬁj)a

The p-dimensional conditional Dirichlet distribution is specified by the de-
sign matrix X, linking € to B through 6 =X/, and vector of parameters a.
Note that, due to the conjugacy of the conditional Dirichlet prior to the multi-
nomial distribution, ¢ may represent either prior or posterior parameters, with
a — a+n in the posterior. In order to obtain the Laplace approximation to the
normalising constant it is necessary to determine an expression for the Hessian
matrix of second derivatives for this function. Details of this derivation are given

in section 4.1.2, and the resulting expression is

82

S log g(8) = aX™ (diag(p) — pp") X

where p is a function of B through the expression p(¢) = %. Therefore,
)

the Laplace approximation, based on expression (5.4) is

1 . 2
log/g(ﬁ)dﬁ = glogZW— aloglaXT(dzag(p)~ppT)X‘1/ —+

log g(B) + O(a™) (5.6)

This expression is applicable for the estimation of both prior and posterior
normalising constants, where g(8) is replaced by ¢g(Bn) = f(n|3)f(8) in the
posterior case.

However, we know that a number of equivalent design matrices exist for
any given log-linear model. In this instance, since X appears in the Laplace
approximation, it is clear that different choices of X lead to different values of

the normalising constant, so practical application of equation (5.6) requires a
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consistent choice of design matrix to be used across models.

Code was written in S-Plus to apply the Laplace approximation to the prob-
lem of determining the normalising constant for a conditional Dirichlet density,
specified by design matrix X and parameter vector a. Code was also written
to produce the design matrix X for a particular log-linear model, specified by
a binary representation of variables and interaction terms. The program has a
single output - the approximation to the log normalising constant.

It was pointed out in the previous section that for a function f to be reliably
approximated using Laplace’s method, it must be highly peaked about its maxi-
mum 5, so that the main contribution to the function is within a neighbourhood
of . The approximation is of error O(a™!), so the approximation will be good
for large sample sizes, though approximation of vague prior distributions with
small values of a(7) are unlikely to produce good results.

This problem is exacerbated as the tails of the conditional Dirichlet distribu-
tion are lighter than those of the Normal distribution, and so Laplace’s method
is likely to underestimate normalising constants when «(%) is small. The condi-

tional Dirichlet distribution has the form

i, o) T 2(4.5)8;
X . =
f(B) <Zi o5, I(z,j)ﬁj>

Now consider this density as a function of a single 8, only, so that

IMEIOEIDIEN

<Z'L eZJ I(Z])ﬁj) “

f(By) o

This may be re-written as
r Ty a)a(th)

f(By) x
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and this expression tends to e ##(®=¢) a5 3, — o0, for some constants ¢ and ¢
which depend on «. Hence this distribution decays exponentially with respect
to §,. However a Normal approximation would decay exponentially with respect
to A2, so would have heavier tails. This means that Laplace’s method is likely to
- produce approximations which underestimate the conditional Dirichlet normal-

ising constants.

5.3.4 Numerical Results from Laplace’s Method applied

to Conditional Dirichlet Distributions

The aim of applying Laplace’s method to the Conditional Dirichlet distribution
is to obtain the normalising constant for the (mostly) analytically intractable
density function which results by conditioning on a particular log-linear model.
However, in order to check the quality of the approximation, and any dependence
on the dimension and complexity of the log-linear model, it is first necessary to
apply the method to certain conditional Dirichlet distributions resulting from
several log-linear models which are of a tractable form and so have known nor-
malising constants.

As the approximation is of order O(a™!), it is clear that the accuracy of
the approximation will improve for large sample sizes. This was investigated by
obtaining Laplace approximations for increasing sample sizes, using a selection
of models, and these results are summarised below.

Figure 5.1 contains 8 plots representing 8 different log-linear models. Each
plot is of the error in the log of the Laplace approximation (given as the log of
the approximate value minus the log of the true value), against the value of the
cell parameter a(z) (the hypothetical ‘sample’ in each cell). The parameters are
equally distributed throughout the cells in each case. The cell parameter runs

from 0.25 to 25 in each case. The & models are
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Figure 5.1: Plots showing convergence of Laplace estimates for various
with equal samples in each cell

(a) A+ B [2] () A+ B+ C+ D [4]
(b) AB + BC |5 (fy ABCD [16]

(c) ABC [8 [ ] (g) A C®DW [81]
(d) A®BBICG) 27]  (h) AWBWCH D® [256]

All variables have 2 levels, except where indicated, and the numbers in square

brackets give the number of model parameters in each case.

It is clear that for sample sizes greater than about 10 in each cell, the error of

the approximation is negligible, and so the Laplace approximation is excellent.

This is true for all the models. However it is also clear that, for certain models,

the Laplace approximation for small values of cell parameters is poor, and so may
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not be reliably used to determine the normalising constant for (reference) prior
distributions. Indeed, with all cell parameters equal to 0.5, the approximation
for the 4-way saturated model where all variables have four levels has an error of
-39, which is huge. Examination of figure 5.1 shows that the error of the Laplace
approximation increases significantly with increasing numbers of parameters in
the model.

The approximations presented in figure 5.1 are all based on equal parameters
in each cell. This is fine for prior distributions (where it seems that the Laplace
approximation is of little use anyway), but is unrealistic for posterior distribu-
tions. In order to consider the unbalanced situation, Laplace approximations
were obtained for posterior distributions where all the data was in a single cell.
The results are presented graphically in figure 5.2 below. In each case, the ‘Cell
Parameter’ refers to the data in the single cell. All other cells have a parameter
of 0.25, representing a prior distribution based on a Dirichlet( 2111) distribution.

The graphs in figure 5.2 show that, when the data is distributed as described
above, there is a considerable error in the Laplace approximation for all but
the simplest model. It is therefore clear that the Laplace approximation to the
normalising constant for conditional Dirichlet distributions is only reliable when
there are at least a few observations in each cell. Exhaustive use of the Laplace
approximation leads to the ‘rule of thumb’ that the approximation produced
acceptable results when there are at least 5 observations in 80% of the cells,
though note that the accuracy of the approximation improves with greater total
sample size and decreases with increasing numbers of model paramaters.

In all the approximations presented above, note that the error in the logs is
negative, which implies that the approximation of the normalising constant is
too small, as expected.

In the next section, an alternative method of approximation will be intro-

duced, which leads to accurate approximations even for small parameter values.
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Figure 5.2: Plots showing convergence of Laplace estimates for various models

with unbalanced cell counts

5.4 Bridge Sampling

The aim of this Chapter is to investigate methods of approximating the normal-

ising constants for both prior and posterior conditional Dirichlet distributions.

The Laplace approximation derived in the previous section was found to be un-

suitable, in general, for application to conditional Dirichlet prior distributions.

In this section, the method of Bridge Sampling is applied to this problem.

5.4.1 Introduction

The class of techniques known as bridge sampling were introduced by Bennett

(1976), although they were studied in depth by Meng and Wong (1993) and
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DiCiccio et al (1997). The method allows the estimation of the ratio of two
normalising constants, though it can be modified to allow the estimation of a

single normalising constant.

Suppose we have two densities d; and dy, and write these as

Uy
di:”“

&

where ¢; = [u; for i = 1,2. Now let v be a function which satisfies

0<

/v(ﬁ)dl(e)dg(e)de < o0

Then we may write
a _ [w(0)y(0)dx(0)df
ca [ua(0)v(0)di(0)db
Now let our un-normalised density be denoted by g(8), the associated normalising

constant by C and the normalised density by f(6), so that C = [ ¢(6)df and

(5.7)

fo) = 2%,9—) Suppose we have a sample from f, and denote this by 61,...,6,,.
Let g(6) be some density from which we may easily obtain a sample, and denote
that sample by 51, o ,EM. Now, in expression (5.7), let u1 =g, c; = C, us = ¢
and ¢o = 1. Then

C

_ J9(0)+(6)q(8)ds (5:58)
[ a(6)7(6)f(6)d8 '

Using our samples, the bridge estimator of C introduced by Meng and Wong is
given by

€= )6

Clearly, a choice has to be made for the function 7. Several obvious choices

are available - for example, v = % or y = % These reduce the bridge estimate

to the commonly used estimates based on Importance Sampling and Reciprocal
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Importance Sampling. However, it is interesting to consider the choice of v based
on a familiar optimality criterion — that of minimising the mean squared error.

Meng and Wong found the optimal choice of  in this case to be

1(8) {@6—@ + Mq(())} i (5.9)

This would appear to be of little practical use, as it requires the normalising
constant, C, in its calculation. However, it is possible to use an estimate of C'
produced by an alternative approximation method, and substitute this value in
the expression (5.9). For example, an estimate based on Laplace’s method may
be used, and indeed this is a technique which DiCiccio et al found produced
a discernible increase in the accuracy of the approximation compared to other
bridge samplers (for example importance sampling).

In practice, repeated applications of the bridge sampler may be used to it-
eratively update the approximation, using the previous value of C each time.
This is the method which will be applied in the next section to the conditional

Dirichlet distribution.

5.4.2 Application to the Conditional Dirichlet Distribu-
tion

The general theory of the bridge sampler was introduced in the previous section.
A general expression (5.8) was presented, which gives the bridge estimate for
a normalising constant for a particular distribution. The expression allows the
size of the samples from densities ¢ and g to differ, though for this application
they will be equal, and denoted by m. In this application, we shall choose ¢ to
be a Normal density with mean equal to the mode of the conditional Dirichlet
distribution, and variance matrix equal to the inverse of the Hessian matrix of

second derivatives.
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Let the (un-normalised) conditional Dirichlet density be denoted by g(83),
the sample from this be denoted M), B8®, ... 8™ and the Normal sample
from density q(B) be denoted B(l),ﬁ(g) ...,B(m). The bridge sampler will be

applied iteratively, with the i-th iteration denoted C;. Then the bridge estimate

is given by the expression

where

1(8) = [%W—) n mq<ﬁ>] B

and Cj is the estimate for the normalising constant by Laplace’s method..

Code was written in S-plus to implement this procedure. The inputs to the
function are the vector of cell parameters (counts), the design matrix for the
log-linear model, and the required number of iterations, together with a sample
from the density f(3) obtained using the Gibbs sampler (see section 4.1.2). The

bridge sampler estimate is output at each iteration.

5.4.3 Numerical Examples

In this section, the bridge sampler will be used to obtain prior and posterior
normalising constants for a set of log-linear models where the true value is also
available, as in section 4.2.1 (Laplace approximations). Successive runs of the
bridge sampler produce values which, after about 3 iterations, seem to fluctuate
slightly about a common value. Hence, to produce the estimates below, the
bridge sampler is run iteratively 10 times, taking the Laplace estimate as a
starting value, and the result presented is the mean of the final 7 iterations.
Table 5.1 gives the bridge sampling estimates for the log of the prior nor-
malising constants, together with the error (expressed as the estimate minus the

true value), and the value of the prior parameters, which are the same for each
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cell. All variables have 2 levels, except where indicated

Hierarchical Prior Bridge Error in
Log-linear Parameter | Approximation Bridge
NModel Approximation
A+ B 0.25 2.29 0
AB + BC 0.125 9.16 0
ABC 0.125 16.15 0.01
A®BEICEG) 0.5 —5.86 —0.05
A+B+C+D 0.0625 4.57 —0.01
ABCD 0.0625 43.94 0.11
A®BOCE D) 0.5 —61.78 0.33

Table 5.1: Bridge estimates, and their respective errors, of normalising constants
for various models

It is clear from the table that the bridge sampling approximation is extremely
good, even for distributions where the prior parameter is small. It therefore
represents a huge improvement over the Laplace estimates, where the errors
were of a much higher order. Such accuracy is also evident when the parameters
in each cell are not equal (the unbalanced case).

The approximations in table 5.1 were all obtained using Gibbs sample sizes
of 10000. This choice was motivated by the desire for the bridge estimate to vary
by less than 0.1 about its limit, and for the sample to be produced reasonably

quickly using the Gibbs sampler. Smaller sample sizes are adequate for simpler

models.

5.4.4 Normalising Constants for Non-Decomposable Model

The results in the previous section demonstrate the accuracy of the method
of bridge sampling to determine the normalising constants for the conditional
Dirichlet prior for several decomposable models (where exact results are possi-
ble). However, there is one graphical model with up to and including 4 variables

which is not decomposable. This is the model represented by the graph



5. Posterior Distributions: Model Determination 88

A B
D C

Table 5.2 gives the normalising constants for the conditional Dirichlet distri-
butions for this model, with varying numbers of levels of the variables. The prior

parameters in each case are symmetric, with a single observation split throughout

the table (i.e. a(¢) = ﬁ—l)

[ Levels of A, B,C, D | log(Normalising Constant)
2.2,2,2 1.45
3,2,2,2 2.75
2,3,2,2 3.67
3,3,2,2 6.64
3,3,3,2 10.09
3,3,3,3 12.78

Table 5.2: Normalising constants for model AB + BC' + CD + DA

Note that many other non-graphical log-linear models exist for which this

approach is required, for example the model AB + BC + AC.

5.5 Risk Factors for Coronary Heart Disease

In section 4.2.2, the Gibbs sampler was used to obtain posterior samples from
a number of models fitted to some data concerning incidence of coronary heart,
disease, originally presented by Edwards and Havranek (1985), and analysed
further by Madigan and Raftery (1994) and Dellaportas and Forster (1999).

Recall from section 5.1 that the Bayes factor for comparing models m; and
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my is given by the expression

ff(nam'lv 97711)f(9m1 )ml)deml
[ f(nma, 0m,) f(Ons|m2) A6,

By =

where f(n|m;, 6,,) is the likelihood under model m; and f(8.,,|m;) is the prior
under model m;, and that this may be written in terms of un-normalised prior

densities as

log Bz = 1og | £(nims, 0 )g(6umms) 105 [ (B )81, -
g [ (1}, 00)9(6alma) +10g [ 6(61, )6,
In this application, the prior approximations log [ g(6:m,|m;)d8,,, will be ob-

tained using the bridge sampler, and the posterior approximations

m;) obtained using Laplace’s method. This is sensible

log [ g(n|mi, 0m,)g(Om,
as the sample size is large, with cell counts of at least 5 in 80% of the cells.
The results are presented in table 5.3, which gives the estimated log Bayes
factors for several models, taken against the most probable hierarchical model
AC + BC + AD + AE + CE + DE + F, for a prior where a(z) = &. A sample

size of 5000 was used for the prior estimates.

Hierarchical Log Bayes | Log Bayes
Log-linear Factor Factor
Model Estimate (D&F)
AC+BCH+AD+AE+ BE+DE+ F 0.49 0.57
AC+BC+AD+AE+BE+CE+DE+F 1.35 1.34
AC+BC+AD+ AE+CE + DE+ BF 1.79 1.42
BC+ ACE+ ADE + F 8.25 > 6

Table 5.3: Estimated Bayes factors for Heart Disease data

The top three models in the table are the most probable hierarchical mod-
els (identified by Dellaportas and Forster), and the fourth is the most prob-

able decomposable model. There is a good deal of agreement between the
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bridge/Laplace estimates and those obtained by Dellaportas and Forster. Note

that we are using different prior densities here, so don’t expect exact agreement

with their results.

5.6 Discussion

The aim of this Chapter was to develop a method of approximating the nor-
malising constants for conditional Dirichlet distributions, as these are often in-
tractable. Laplace’s method was applied in section 5.3, and the approximations
were shown to converge to the true values in certain known situations for increas-
ing sample sizes. Indeed, a rule of thumb is that Laplace’s method will furnish a
good approximation to the normalising constant when the cell count is at least
5 in 80% of the cells. Bridge sampling was introduced in section 5.4, and this
method of approximation was shown to provide excellent accuracy in all cases.

The methods were both applied in section 5.5 to some real data, in order to
estimate Bayes factors for several models. The results were compared with those
obtained by Dellaportas and Forster (1999), and found to be similar.

To conclude, the methods presented may be applied to obtain the normal-
ising constants for both prior and posterior conditional Dirichlet distributions
for any log-linear model, and hence Bayes factors may be calculated to compare

competing models.



Chapter 6

Jeffreys’ Prior

6.1 Introduction

Priors based on the Normal and, in particular, Dirichlet distributions have been
discussed in previous Chapters, focussing on the use of these priors as reference
priors. The formulation of these priors as reference priors is done by suitable
choice of distribution parameters. Another popular choice of distribution for use
in reference analysis is Jeffreys’ prior (Jeffreys 1946), which is a reference prior
by definition.

Several properties of Jeffreys’ prior make it an attractive distribution for refer-
ence analyses. One of these is the invariance to reparameterisation of the model,
a feature which may be exploited here as log-linear models admit a number of
equivalent parameterisations. Many authors have highlighted other properties
of Jeffreys’ priors. For example, Box and Tiao (1973) argued Jeffreys’ prior to
be approximately noninformative with respect to certain criteria, and Bernardo
(1979) found that the prior which maximises the missing information is Jeffreys’
prior, though only under regularity conditions and when there are no nuisance
parameters. Kass (1989) discussed the geometric interpretation of Jeffreys’ prior,

and both he and Bernardo looked at the advantages of this prior by focussing on

91
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its interpretation in an information metric, with respect to which it is a uniform
measure.

However, there are also some disadvantages with Jeffreys’ prior, which limit
its effectiveness as a reference prior in certain situations. It has been pointed out
by Bernardo and others that if a Jeffreys’ prior is derived on all the parameters
in a multiparameter situation, then the priors on the margins will not necessarily
be noninformative (this will be highlighted with an example in a later section).
This is a particular problem when we are interested in a subset of the parameters,
with the others being nuisance parameters.

Jeflreys’ prior is investigated in detail here since, on balance, it is still con-
sidered a useful prior in reference analyses, and is widely used. In particular, it
may be a useful distribution for model selection problems in situations where a

noninformative prior is required.

6.1.1 Formal Definition

Jeffreys’ prior is defined as being proportional to the square root of the determi-

nant of the Fisher information matrix /(8), where I(0) is given by

10)= B |~ 5o o)

for likelihood function f(n|@). Hence Jeffreys’ prior, f(8), is defined as

A fnio)]| (6.1)

50067

6) x| |-
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6.2 Jeffreys’ Prior for Log-Linear Models

Ibrahim and Laud (1991) investigated the use of Jeffreys’ prior in the reference
analysis of generalised linear models, and in particular gave two theorems sup-
porting the use of Jeffreys’ priors in certain cases.

An expression for Jeffreys’ prior for generalised linear models in terms of

canonical parameters, scale parameter, weights and design matrix is given by
T 2 3
f(B) o [ XTWV(B)A*(B)X|? (6.2)

where X is the design matrix and W is a diagonal matrix of weights. Further,
V(B) and A(3) are diagonal matrices with i-th diagonal elements v; = %(—?—)
and §; = %7% respectively, where 0 is the canonical parameter and 7, = z! 3 is
the linear predictor (z; is the i-th row of the design matrix X).

In the case of a Normal linear regression model, the use of Jeffreys’ prior
results in a tractable posterior distribution, and this is also true of a linearised
nonlinear regression model. However, Ibrahim and Laud discovered that, in
general, the posteriors resulting from generalised linear models are not tractable,
apart from some special cases for certain models. Nevertheless, they showed that

Jeffreys’ prior does, for most models, lead to proper posterior distributions. This

provides motivation for our derivation of Jeffreys’ prior for log-linear models.

6.2.1 Derivation

In this section, the Jeffreys’ prior for any given log-linear model with design ma-
trix X will be derived. The Hessian matrix of second derivatives for a conditional

Dirichlet density was shown in section 4.1.2 to equal

2

0~ : T
5357 o8 F(8) = —eX" (diagp(B)~p(B)p(B)") X
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The conjugacy of the conditional Dirichlet distribution to the multinomial

likelihood allows us use this expression to obtain the Hessian for the likelihood

function:

5238;—7“ lg f(n[p(8)) = ~nX" (diagp(8)~p(B1p(B)") X

This equation may now be used in conjunction with expression (6.1) to define

Jeffreys’ prior for a log-linear model

1
2

18) % B[~ 2 rtnin(s))]

x |nx" (diegp(8)-p(B)p(8)") X

o |XT (diagp(ﬂ)—p(ﬁ)p(ﬂ)T> x|’

1
2

(6.3)

Hence we have a general expression for the Jeffreys’ prior for any log-linear
model, given by design matrix X. It is of a similar form to that obtained by
Ibrahim and Laud (expression 6.2). However, although this expression seems
straightforward, extensive investigation and application of the formula to a range

of models did not, in general, result in any further simplification.

6.2.2 Jeffreys’ Prior for Saturated Log-Linear Models

Although expression (6.3) does not, in general, allow the Jeffreys’ prior to be
expressed in a tractable form, it may be used to derive Jeffreys’ prior for any
saturated model. Although this is a widely known result, this derivation is
presented here to illustrate the use of (6.3).

Let the design matrix X be such that X7 = (I,_1] — 1), i.e. an (n — 1) x
(n — 1) identity matrix augmented with a column of —1’s (for a symmetric logit

parameterisation, where 3 = 0\71). Now consider G = [,_; — %Jn_l, where J is
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a matrix of 1’s.
x&)T =(G11) = ( |[Ino1 - 1 | — 1
- - n—1 n n—1 n
Then

GX" (diag(p(8))-p(B)p(B)") XC = @no)_%mn} [diag(p) — pp7] x

o)~ 2ow]

= (1|0)" (diag(p) — pp") (1|0)
as (J|1)(diag(p) — pp?) = 0. Hence
GXT (diag(p) — pp") XG = (diag(p\n) - P (p\n)T)

where p,,, is vector p with the last element removed. Now, we know that for

)

vectors a, b and ¢

diag(a) + bch = Hai (1 + Z b;éi

Hence

\GXT (diag(p) — pp") XG| = H p(?) (1 + Z "P(i))

W\ T\l

= (H p(i)) p(2n)
AU
= Hp(i)

where p(i,) is the final element of vector p.
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However,
|GXT (diag(p) — pp") XG| = |G| | X7 (diag(p) — pp") X| |G
_ |X" (diag(p) - pp") X|
So
|XT (diag(p) — pp”) X|? = n? Hp(i)%
hence

£(8) « [ p(i.8)2
i
is the Jeffreys’ prior for 3 and
f(p) o< [T p(#)% x 1]
i

Multiplication by the Jacobian, |J|, of the transformation from A3 (which is
equal to 6\,, where 6 is the symmetric logit) to p, found earlier to be equal to
[1; p(3)~", gives
flp) o [[ pli)
7

Hence, the Jeffreys’ prior for a saturated log-linear model follows, as expected,
a Dirichlet(31) distribution.

Note that for a multiway table with a saturated model, and hence with a
Dirichlet(% 1) Jeffreys’ distribution, the marginal probabilities may have marginal
distributions which are not obviously noninformative. For example, using the
standard notation, the distribution of the margin corresponding to variable C
would follow Diri(‘hlet(2%i 1), and of course % may be large. This is one of the

well-known disadvantages of Jeffreys’ prior as a reference prior.
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6.3 Jeffreys’ Prior for Decomposable Log-Linear
Models

In the previous section, an expression was derived (6.3) for the Jeffreys’ prior
for a log-linear model. However, the form of this expression did not, in general,
admit distributions which were obviously tractable. In this section, an alternative

derivation for Jeffreys’ prior will be developed for decomposable models.

6.3.1 Derivation

As defined in section 6.1.1, Jeffreys’ prior is proportional to the square root of

the determinant of the Fisher information matrix 7(8), where

10) = B |~ gz S(nl0)

for likelihood function f(n|8).

In this derivation, the parameterisation based on logits of conditional prob-
abilities resulting from the directed representation of the log-linear model will
be used, as it was in the proof in section 3.3. Note, however, that because of
this these results are restricted to those models that are decomposable. As in
section 3.3, for clarity, bold type will not necessarily be used to represent vectors;
the levels and dimension of quantities should be apparent by subscripts, where
necessary.

Let the model be represented by a directed graph, and suppose that a perfect
numbering of vertices has been obtained. The set of factors is denoted by T,
and for each factor v € I', L, is the set of levels of this factor. We may obtain a

perfect numbering of I', which assigns an order to this set, which may be written

I'={1,2,...,m}.
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The model is decomposable, and so the cell probability may be expressed as
H Py =1, |pa(v) = ipa())
The log-likelihood function under multinomial sampling is given by

log f = log ][ p(i)"®

= ) n()logp(i)

%

which for the decomposable model may be written as

logf = Z ) ZIOgP (v =iy [paly) = tpary))

Z Z ) log P(y = i4|pa(y) = tpa(y))
Z Z N1y, Tpa(y)) 10g P(v = 14|pa(y) = ipa(y))

¥ ty.paly)

We now apply the reference cell logit parameterisation used in section 3.3,

where ¢., is defined by

. 1o [ By = 4lpa(y) = tpey)
Orlilipui) = log (P(v = 1pa(y) = tpa(y)) >

with inverse transformation

‘ . exXp {%(ivtipa(v))} :
Py =iypa(y) = tpaty)) = 1. Ty
(’7 Y [p (7) ( )) ZL’__‘_l exp {@7(17!110(1(7))}

where |I,| is the number of levels of factor . Note that ¢_(1[iy(,)) = 0 for any

¥, pa(?y)-
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The log-likelihood may now be re-written as

exp {9, (i lipa(s)) }

logf = Y > n(iy,ipay) log >, exp {6, (o lipat) )

Y tvpaly)
= Z Z n(iy, Zpa('y) bey (Z.')/Iipa('y)) — log Z exp {¢7 (j’)"ipa(v))}
Y typaly) I

In order to determine the Jeffreys’ prior, we must evaluate the full set of
second-order partial derivatives with respect to the ¢ parameters. The first

derivative is given by

Olog f o exp { &, (is/ipay) }Z% (Jy: tpa())
ad’q(i'ytim(w)) N n(z’y,zpah)) N Zj exXp {@q >}
_ o _&Xp {¢7 'yl"pa(v)>} ’(%a(‘r))
TI»('l’YaZ;Da(’)’)> ij exp {(b,y(j‘—y}ipa(fy))}

for a particular v, i, and 4p,(,). Several sets of second derivatives must be calcu-
lated in order to construct the Fisher information matrix. First of all, note that

if v, # 7, the second derivative term

9?log f

— — =0
5%1 (Z'n fzpa(%))agbh (172 ’Zpa('h))

Hence, the matrix is block diagonal, with major blocks corresponding to each
variable v. Within each of these blocks, further sub-blocks exist — these will be
described below.

For a particular variable v, let us first consider the second derivative d(ﬁ—((?vllc?‘)g,?

(which will correspond to the terms on the diagonal in this major block):
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d?log f _ o} (i, i) — €Xp {¢qr(i'ylipa(v))} 1 (ipa())
5¢7(i7}z‘pa(7))2 (9q§q, (i'rlipa(‘r)) v ij €Xp {¢7 (j“/‘ipa(”)}

B {ekp{fb (i ltpac)) } 7(ipaty) Zexp{gb (G lipa) } =

Jv
2

exp {Qﬁy(i”yﬁpa(v))} (ipa(y) } Zexp {¢ (JlEpagy) }

exp {0, (iy|ipa()) } _( exp {@, (ix]pa(s)) } >2
> )}

= —nipa(y) 1 U
ij exp {¢7(]7'2pa(7))} 3y EXP {quf(]vlzpa(v)

_n(ipa('y)) [P(’Y = qupa(’y) = z.pa(”)/)) - P(ry = Z’Ylpa<7) = ?:Pa('Y))Q]

The terms above correspond to a particular term -y, as well as a specific level of
this variable (i,) and the set of levels of the parents (ipa(y)). Within the major

block, consider the second derivative term

0% log f _ 9 - exp {8, (i |ipa(y)) } 7(ipa(-))
EYSIEAT CYSCAT ) = 56 (i-17 ) N iy, Tpafy)) — . _—
Oty lipa())08 (45| Jpary) 7\Yy1Tpa(y) Z]v exp {(/ﬁ‘f(h!?”p“(”))}
= 0 if Jpa(y) 7 Ipa(y)

Hence, the block corresponding to a particular « is itself block diagonal, with
sub-blocks corresponding to each set of iy4(,). Within each sub-block, we may

evaluate the second derivative terms:

9% log f €Xp {Qﬁv(iv’ipa(v))} exp {¢’y (j’r[ipa(v))} N (1pa(y))
O0n(41lip2) 007 Unlipec) (525, &0 {6, Uirlinac)} )
= P(y= (™ ]pa(’Y) = ipa(v))P(’Y = j’y]pah’) = Z.pa(v)) X

(ipa())

The next step in the construction of Jeffreys’ prior is to take the expectations
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of the second-order derivatives above. This produces

?log f B . N . _ 2
b ’i— m} =k HP(V = iy [pa(y) = tpa) — P(v = iy[pa(v) = tpa(y) } X

n(ipa(y)]

= [P(y=iylpa() = tpa(y)) = P(7 = ialpaly) = ipar)?] X
E [n(ipa())]

o [Py =1islpaly) = tpaiy) — P(y = i4lpaly) = ipa))?] X
P(pa(y) = ipa(y)

= [Py =11pa(y) = tpa)) = Py = is]paly) = tpary))’]

> (i)

Fa(y)

= [P(7 = iy|pa(y) = Z.pa('y)) - Ply= iv]pa(’Y) = ipa('y)>2:‘ X

ZHP’Y—’LW’])& )—Zpa )

pagy)

where pa(y) = T'\ pa(y) (so note that v € pa(y)), and using the expansion
p(2) = I, P(v = iylpa(y) = tpa(y)). Furthermore,
9?log f

i “5%(%!@'pam))@%(jvlipa(w))} =~ BlnCra) Py = ihlpay) = tpan)

P(y = jylpa(v) = tpa))]

= —E [n(ipery)] P(v = i5[pa(7) = tpay)) X
P(y = jylpa(v) = tpaty)

& =Py = iy[pa(y) = ipa(y)) Y Pli

a(y)

P(v = jyIpa(y) = ipary))
= —P(y=islpa(y) = ipa(y)) X
P(y = jylpa(y) = tpas)) X

ZHP,Y"'Z“/}]?CL )_Zpa )

Baty) 7
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It is now possible to construct the Fisher information matrix, defined as
N N 82
](Q) - E[ 0¢B¢T

with a major block corresponding to every model term 7, and sub-blocks of size

f (n}qﬁ)J . As described above, this matrix is block diagonal,

(|I5] = 1) x (]1y] — 1) for each set of iyq(,). Hence |I(¢)]| is equal to the product
over all blocks of the sub-block determinants.
Within a sub-block, note that the term
ety = £ (Pa(Y) = ipa(y) Z%( | [I, P(v =iylpa(y') = ipe(y)) is @ constant
factor for each non-zero entry, and so this may be taken outside the determinant
and raised to the power |I,|—1. The remainder of the sub-block may now be writ-
ten in the form (diag(a) + bc”) , wherea = b = —c = (P(y = i,|pa(y) = ipa()))

are vectors of length |I,| — 1. We now apply the expression

|diag(a) + be™| = (1—{-2();—?)1_[%

! k
|1y 115
= |1=- ZP =1y |pa(y) = tpa(y) HP =1, |pa(y) = ipa(y))
Ty==2 iy =2
N
- P(7 = 1}])&(’)/) = ipa(v)) H P(/Y = ivipa(’)/) = 'I;pa('y))
iy=2

= HP = 1,|pa(y) = ipa(y))
Hence the determinant of the sub-block corresponding to 7, 7p4(,) is given by
-1
&) HP =i, |pa(y) = ipa(y)

where 6 o = >, [l P(Y = iylpa(y") = ipa(y). Therefore, the determi-

"pa(v) ipa(y)

nant of the major block corresponding to a particular model term -y is

g1
H ’y:pa('y H P - Z’Y’pa‘ ) - Zpa ’)))

tpa(~)
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It is now possible to write down the Fisher information matrix,

1(¢) x B |~ 52r f(n]9)]

x TTIT 4, TT P = ) =

Y ipa(y)

I11-1
=TI 11 | X I1 PO = ivlpaly’) = ipain) x
Y paly) | %) v

HP = i, [pa(y) = ipaia)

Jeffreys’ prior f(¢) is proportional to the square root of this determinant, though
in order to obtain a prior for the conditional probabilities, rather than the con-
ditional logits, we must multiply by the Jacobian |J| of the transformation from

¢ to {P(y = iy|pa(y) = tpa(y)) } - This was shown in section 3.3 to equal

=TT I T]1 PO = ivlpa(y) = ipaiy) ™

7 pa(y) v

= I POr=ipa(r) = ipar) ™"
Vriysipa(s)
This expression is now applied to determine Jeffreys’ prior for a decomposable

log-linear model, where p is now a collection of conditional probabilities such as

P(7|ipa(y)) rather than cell probabilities p(2):

f(p) o |I(e)]? ||

IL1-1

< (TTII | X_ 11 P = ivlpaly’) = dpaiar) x

Y tpa(vy |Fme(m Y

o=

HP (v = iylpaly) = tpay)) | X
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II POy=dlpaly) = ipar)) ™
Yty itpaly)
I1,-1

= ITII | >_ I1P0 = ivlpaly') = ipar) X

Y pa(y) |fpa(m) V'

[STE

HP =1i,[pa(y) = ipary)) | X

IT II Pty=ilpaly) = dpas))

Y Zyitpa(q)
Iy|=1
2
flp) HH ZHP’Y—Z,)}pa ") = tpa(y) X
Y tpa(n) | WwEw v
H H Py =1\|paly) = tpa(y)) "2
Y viipaly)
=t ' B
> H H 67’i§a(7) H H P(’y =1 pa(7> - Zpa(y)) 2 (64>
v iPa(’Y) aé i'y,ipa(-y)

[T, P(Y = iylpa(y') = tpay))-

It is possible to use this result to express the Jeffreys’ prior for any decom-

where 6., = P(pa(7y) = ipa(y)) = 2y

pa(y)

posable log-linear model in terms of conditional cell probabilities. This will be
applied to a range of models in the next section. Note that the Jeffreys’ prior
consists of two parts — a Dirichlet part, where each P(vy[pa(y) = ipa(y)) follows an
independent Dirichl et(%l) distribution, multiplied by a part which is a product

of summation terms.

6.4 Examples of Jeffreys’ Priors

In this section, the Jeflreys’ priors for various decomposable log-linear models,
) ys P P g

including all those with up to and including four variables, will be derived.
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6.4.1 Saturated Models

Equation (6.4) is applied here to derive a general expression for the Jeffreys’
prior for a saturated log-linear model, parameterised using conditional probabil-
ities. Suppose we have k variables, denoted A, B, C, D,...Such a model ad-
mits the decomposition P(A)P(B|A)P(C|A, B)P(D|A, B,C)...The expression
for the Jeffreys’ prior (6.4) is

MI»—A

HH ')zpa(‘y) H H P "'l”r!pa'( >_7'pa )

Y paly) Y tviipaly)

where & =),
The term 6, ;

FE(y) H Py = Ly lpa(v') = ipa("r’))

pay) THAY be calculated for each = :

by = X0 TLPO = i) = i)
atmy Y
= H P(y' =iylpa(y') = ipaiy)) Z H POy =iy lpaly) = tpa))
' €pa(v) “Fa() 7' €paly’)
= [I PO =iylpay) = ipai) (6.5)
v €paly)

where the term [[ . ) P(7" = iy|pa(y’) = tpar)) may be taken outside the

summation in this case, because for the saturated model the set of variables

which preceed any + in the perfect ordering is exactly pa(y).

It is therefore straightforward to write down expressions for any 6., ., for

example

0Ciig = H P(VI = Ly {pa('y’) = Z‘1011(","))
~'e{A,B}
= P(A=i4)P(B=iglA=1i,)

An expression for Jeffreys’ prior may now be derived, by substituting (6.5)
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into (6.4):

f(p) H H H Py = iy|pa(y) = tpa(y)) x

T ipaty) | VE€P(Y)

I1 II PG =iviea(y) = ipawy)”

Pl
7t tpaly’)

- HH H P(y = iylpa(y') = tpafy ))&I_ﬂ?-_}x

Y ipa(y) v E€Pa(Y)

H H P,Y"Zﬁlpa( )"Lpa ))%

Tty pa(a)

— I II I P0 =ivipely) = ipair) 7 x

Y ’YI GP“(’Y) ipa('y)

H H Py =iylpaly') = tpa(y))”

T tyitpa(y!)

B H H H Py = iylpa(y') = ipay ))[ 2 }w"*"'x

Y y'epaly) tpa(y!) ity

H H P(fyl = Z"Y’ {pa(”yl) = ipa(ry’))—%

P
Y Py tpaly’)

o=

[

where w, = [[.. J[T|XWELm(ﬁ”)\{pa(y)w/m and x(-) is the indicator function.
We now use the notation ~ < ~ to denote those variables v which preceed v in
vT<7 8 p Y

the perfect ordering, and write

=111 1 7 (7/:'%"519@(7')=7ipa<w/'>)[]’v2ﬁl}w”" X

TV <Y tpagy)ty

I TI PO =ivlpa(y) = ipapn)

Yty ipa(y!)

t\)[»—A

Iy|—1

HH H Py =iylpa(y') = ipagy )){ g }wm/x

Y>>y 2Pa(v) 5/

I I Po=o

Yy ipagyt)

1
pa(y') = ipag) "2




6. Jeffreys’ Prior 107

- H H H P(y = iy|pa(y’ >_Zpa'y)>{ : }w‘mlx

YL tpag)ty
I PO =iylpa(y) = tpair) 2

byt pa(y’)

= H H P(’Y’ — iv’ipa(’)") _ Z’pa(7'))27>7/[“5—]w7’7/ «

7 ety

. / . _1
[T PO =ivlpaly) = ipag)

yipa(y’)

- H H P = iylpaly’) = ipayy) %+Zﬁ>7'{j%iw_le”7’

v Aytitpay)

Finally, we note that

x(y €M\ {vUpa(v)}})
_ H’y* I]'Y*‘ 2 _ 1

DO

5[] (1]
! 2

¥>7 Lt
which follows directly from the result a—14a(b—1)+ab(c—1)+abe(d—1)+

abed. ... We may now write down Jeffreys’ prior for the saturated model

x{~* €M\ {vupa(7)}]
[ye]rse | )

) o H H P(y =1, [pa(y) = ipa(y)) 3 -1 (6.6)

7 ipa(v)

giving a product of independent Dirichlet distributions. It is straightforward
to show that this distribution is equivalent to that obtained in section 6.2.2,
N1
f(p) o< [];p(2)72.
As an example, this expression will be applied to the four variable saturated

model. In this case, we obtain

L. I *‘X(’Y*E{F\{AUPG(A)}D 1 i
a7 d |[A}X(A€[I\{‘4Upa(/1)}}) [IB{X(BE[F\{AUP‘L(A)}D v

2
]]C;X(C‘E[F\{AUPGM)}]) I]D}X(DE[F\{AUPH(A)}I)
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\L4)° | 15" e|! |Ip]"
2
\1s]|{c||{p|
2

IL,. 11,

x(vr e {vupal)}]) IIC[ l[D‘

()

P4

Q]

Hv* Iﬁ/*|x(7*€[1“\{vupa(7)}l) _ lth
2 2

L. Ix(v* e[\ {yupa(}H)

I,

2 2
so that
l
fp) [ PB=islAd=in) 52 P(C =iclA=is B =ip) F x
14,1B,1CHID
1! 1
PlA =) S p(D = ipld — iy, B = i5,C = i)}

Expression (6.6) may be used to write down the Jeffreys’ prior for the single

variable model represented by the graph

This is given by

which is a well-known result.

6.4.2 Block Independence

The Jeffreys’ prior for a model which is represented graphically by a number of
disconnected components is available directly from the separate Jeffreys’ priors

for each of the disconnected components. This follows from expression (6.4),
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which may be written

fo) < (TI1I 6%, | IT TI PO =islpa(y) = ipacy) 2

Y Zpa(y) Y taslpa(y)
Iy]-1 .
_ 2 5
o H H 57:ipa(7) H P(y =1y [pa(y) = tpa() 2
v ipa(y) ty1tpa(y)
. . _1
S IO [ TT 6, | T Por=ilpat) = b
j ’)’EA] pa(-\ i7’ipa('7)

where each A; is a disconnected component of the graph. For i # j, if v; € A,
and vy, € A; then v, ¢ pa(y,) and vice versa. Hence the contribution of each
disconnected component A; to the Jeffreys’ prior will be identical to the Jeffreys’
prior for A; as a model in its own right.

Application of this concept is straightforward. For example, in the model
with k variables, all independent, there are k disconnected components, each
containing a single variable. As stated in the previous section, Jeffreys’ prior
for the model for a single variable A is f(p) = [],, P(A = i4)"%. Therefore the

Jeffreys’ prior for the model with & independent variables is given by
NS
p) X HHP(’y =1,)72
Y iy

which is the product of the Jeffreys’ priors on the cell margins. This confirms
the expected result that the Jeffreys’ prior for an independence model places
Dirichlet(31) distributions (which are Beta(3, ) for the 2-level case) indepen-

dently on each margin.

In the remainder of this section, the Jeffreys’ priors for models with up to
and including four variables, which are distinct up to graph isomorphism (i.e.
equivalent under permutations of variables), are considered in detail. Expressions

for many other Jeffreys’ priors are also given, obtained using the above results.
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6.4.3 Two Variable Models

There are 2 distinct models with two variables — the independence model and the
saturated model. Their Jeffreys’ priors are directly obtained using the results on

independence and saturated models respectively, and are given by
N N
fp) = [ P(A=is) 2 [ P(B=is)2
ia i

and

fp) x [LPLa=i0) = T] P(B = isld=1a)

14,18

6.4.4 Three Variable Models

There are 4 distinct graphical log-linear models with three variables, all of which
are decomposable. Jeffreys’ priors for three of these are obtainable using the

previous results, and the other is derived here.

Independence Model

This model has Jeffreys’ prior
fp) < [T PA=ia) 2 [[P(B =ip) 2 [] P(C =ic) 2
14 1B ic

One Edge Model

This model represents the independence of one of the variables from the other
two. Without loss of generality, consider the model which can be represented by

the graphs
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A A

] e
® ® S
B c B C

The graph is composed of two disconnected components, and so the theory
on block independence may be used to provide the Jeffreys’ prior in this case.

The two components represent a saturated model with 2 variables and a single

variable model, and so we obtain

1B,iC

o\ el Syl . Nt
flp)x [[P(B=ip) s [[PA=ia)2 [ P(C=ic|B =ip)™
iB is
producing another Dirichlet prior.

Two Edges Model

This model represents the conditional independence of two of the variables, given

the other. Without loss of generality, we shall consider the model with the

undirected graph

The directed version admits two distinct decompositions - one is P(B)P(A|B)P(C|B),
and the other is P(A)P(B|A)P(C|B). These are represented graphically below
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These two parameterisations will be considered in turn.

Parameterisation One Suppose the model is parameterised using the decom-

position P(B)P(A|B)P(C|B). Then we have

v | pa(y) | Pa(v)
Al|B A,C
B0 A B.C
C|B AC

Hence the terms 6, ; , may be calculated for each :

6B, dpa(B) Z HP ’7 - Z’Y fpa ) - Zpa(v )

148.5C Y

- z:pw:%wm:mwzwww:ww=m)

= 1

and

0cipg = baip = Z HP Y =iy |pa(y’) = tpaty))
taic ¥
= Y P(B=ig)P(A=is|B=ip)P(C =ic|B=ip)
14,tC

= P(B=ip)
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Application of equation (6.4) yields the Jeffreys’ prior

-

f(p) x HH '“zm(v) H H “Zﬁlpa )—-Z‘pah))_i

Y pa(v) Y iviipa(y)
Al !
= [[PB=is) ralflc [ P(B= ig)”? [1 PA=islB = ip)7T x
ip iB 14,18
[] P(C=iclB=ip)%
1B,iC
— J[P(B=is) "% [ P(A=ialB=i5)} [] P(C =iclB =in)?
ig 14,18 1B,ic

and so the distribution is, once again, a product of independent Dirichlet dis-
tributions on the conditionals. Note however that the distribution is not hyper
Dirichlet, as the distribution of P(B) is not consistent with the distributions of
P(A|B) and P(C|B).

Parameterisation Two Now let the model be parameterised using the de-

composition P(A)P(B|A)P(C|B). Then we have

v | pa(y) | Pa(v)
A0 A B,C
B|A B,C
C|B A,C

This time, the terms 65, , are equal to

ba = Z HPV—'LHPG (V') = tpa(y))

taigic Y

— S P(A=ix)P(B = iplA=ia)P(C = ic|B = i)

7A 1B,1C

= 1
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0Bis = Z H P(’Y/ =1y JPG(“/> = Z'pa(’y’))

ig,ic v

= Y P(A=is)P(B=1iplA=is)P(C =ic|B=ip)

178 7]

= P(A=14)

bcip = Z H Py = Uyl \pa(v’) = Z.pa(v'))

iaiC 7/

= Y P(A=is)P(B=iplA=1i)P(C =ic|B =ip)

e= Z P(A=1i4)P(B =ig|A=14)

Note that this last term, 6¢,,, may be written as P(B = ig), but this is not

part of the required parameterisation, and so cannot be directly included in the

expression for Jeffreys’ prior.

Application of equation (6.4) in this case gives

Lj_ﬂ—_]
fio) o« [T 6.2, | 1T 1T POv=islpaty) = tpaen)”

Y lpaly) Y lysipa(y)

NI

= [IID.PA=ia)P(B =iplA=iy) HP(A:@A)“TB‘—IX

1B ia

[1 P(B=islA=1ia)"2 ] P(C=ic|B =ip)>

tAE 1B,iC

and so in this instance, the distribution is not a product of independent Dirichlet

distributions. Note however that this distribution is equivalent to that obtained

previously using parameterisation one, and so it is clear that a careful choice of

parameterisation for a model may produce a Jeffreys’ prior which is easier to

manipulate.
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Saturated Model

The final model with three variables is the saturated model, as represented by

the graphs

>
o
>
e}

Application of equation (6.6) yields the Jeffreys’ prior

flp) HP(Azz'A)“’B‘léuc‘Ll [T P(B =islad=ia) 5 x

14,18
[I P(C=iclA=isB=ip)'ss
14,1B,tC

6.4.5 Four Variable Models

There are 11 graphical models with four variables, though one of these is not
decomposable, and six are obtained from previous priors using the block inde-
pendence theory. The Jeffreys’ priors for all the models are presented in this

section, and four are considered in detail.

Independence Model

The Jeffreys’ prior for this model is given by
fo)x [[P(A=ia) 2 [[P(B=ip) 2 [[ P(C=ic) 2 [[P(D =ip)?
14 B 1 in

One Edge Model

There is one distinct model with 1 edge. represented by the graphs
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A B A B
® e ® @
Cc D Cc D

Application of the block independence theory gives the Jeffreys’ prior for this

model
14,18

fp) o T[PA=in) 7 ] PB =iald =ia) [ PC = ic) x

A
[[P(D=ip):
ip

Two Edge Models

There are two distinet models in this section. The first of these is

A B A B
° * ————>»— o
e ® e——>—@

D C D

The Jeffreys’ prior for this model is

Jp) x [[PA=in)F [ PC=ic)F [] P(B =isld=ia)"} x

1AB

[T P(D =iplC =ic)

1Cyip

The second model is
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A B
® ®
C D c D

The Jeffreys’ prior is again obtained using the block independence theory.
Note here that because of the similarity to the three variable model detailed
previously (model AB + BC), it is important to choose the parameterisation
carefully in order to admit a straightforward Jeffreys’ prior. This prior is given

by

HP = i) [[ P(A=islB =ip) % x

14,18

II P(C =ic|B = Hp = ip)~2

1B,iC
Three Edge Models

Three distinct models exist in this section.

The first model has a graphical representation

B
® @
c D C D
The Jeffreys’ prior for this model is
H [
f) « [] P(B=islA=isC HP ) P

14,18,1C

[T P(C =iold=ia) % HP(D —ip)”

14,iC ip

[N
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The second model with three edges is the ‘star-shaped’ model which may be

represented by the graphs
B c B o
\K Y
[ ]
D D
This model represents the conditional independence of B, and D given A.

The parameterisation admitted by this graph is P(A), P(C|A), P(B|A) and
P(D|A). Application of expression (6.4) gives

Upl-1_ lig]=1 |ip|-1 ) ) .
flp) = J[PA=ix) 2 T2 T2 ][ [P(A=ia)P(C =iclA=14

14,iB,1C 1D

D

P(B =iglA=1i0)P(D=ip|lA=1i4)]"
x J[PA=in" 522 T PiC

= Z(,*[A = Z"4>—% X
1Al
H P(B =iglA=1i4)"2 H P(D =ip|lA=1,)"2
14,1B 14,1D
Note that, unlike the other four variable models considered thus far, this model
cannot be separated into lower order models. The prior here is again Dirichlet
on the marginal and conditional probabilities, though not hyper Dirichlet.
The third model with three edges may be described as the ‘straight line

model’, and has graphical representation

The parameterisation for this model implied by the directed graph is P(4),
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P(B|A), P(C|B), P(D|C), giving the table

v | pa(y) | pa(y)
A0 A, B,C,D
B A B,C,D
C B A C,D
D C A B,D
The terms (5%%(7) are equal to
op=1

6pi, = P(A=14)

Sciy = ZP(A =i )P(B =ig|A=1i4)
ia

%m=Z%%W=ww=%Q:HA=MWB:%M=MO
i 14

Here, two of the § terms are given as sums of the probabilities which comprise
the parameters, hence the Jeffreys’ prior will not be Dirichlet. The Jeffreys’ prior

is given by the expression

Ipl-1
2

flp) o H

iB

> (P(C:iC‘BZiB)ZP(A:iA)P(B:z’B}A:iA))J

I

ig

[I (PA=inP(B=isld=is) x

14,1B,1C D

P(C =ic|B =i5)P(D =ip|C = ic)]”

N =
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Ip|-1
2

ip

x H {Z (P(C =ic|B =1igp) ZP(A —i4)P(B =ig|A= 1,4)”

JI_CQ[—_I
1T [ZP(Azz‘A)P(B:iB{A:z‘A) HP(A:iAﬂ%BLl X
1B T4 1A
[I P(B=isld=is)"2 [] P(C=ic|B=1ip)"% x
2A.LB 1BtC
[[ P(D=iplC=ic)?
1CyiD

The only alternative distinct parameterisation for this model is P(B), P(A|B),
P(C|B), P(D|C), as represented by

¢ —>—6— > —0

A B c D

This gives the table
v | paly) | pa(v)
B0 A B,C,D
A | B A,C,D
C|B A C, D
D\|C A B,D

The terms 6, , ., are equal to

bp=1

514,% - P(B - ZB)

B
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The resulting Jeffreys’ prior is

f(lp) H Z (P(C —i¢c|B =ip) ZP(B —i5)P(A=1i4B= z'B)H X
[1P(B =is) 5[] PlA=ialB =ia) x

T] P(C = ic)B = is) [[ P(D=inlC = ic)

igtc 1CiD

which again is not a Dirichlet prior. Hence, here, it is not possible to choose a
parameterisation such that the Jeffreys’ prior may be expressed as a product,

without summation terms.

Four Edge Models

Two distinct four variable models exist which have four edges. However, one of
these is the model which is represented by the graph

A B

This model is clearly not decomposable (it is not triangulated), and so ex-
pression (6.4) cannot be used to determine the Jeffreys’ prior in this case.

The other four edge model can be represented by the graphs
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This model may be parameterised by P(B), P(A|B), P(C|B) and P(D|B,C),
and represents the conditional independence of A and {C, D} given B. Calcula-

tion of the 6., terms and application of expression (6.4) gives
Tilpa(y) p &

flp) = H [P(A=1a|B =1i5)P(C =ic|B =1ip) x

14,25,1CiD

P(DZZ'D‘B:Z'B, —ZC

) IA+IC-3
HP X

II (Pl =iclB = im)P(B=i5))
[T P(C=iclB=is)F* ] P(A=ialB=is) "t x

1B,iC 1ALB

H P(D:iD’B:’ZB _ZC

1B,1CiD

HP JAI-HC Ip|~3

This prior is again Dirichlet, but not hyper Dirichlet.

Five Edge Model

The single model in this category may be represented by the graphs

B A
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The parameterisation which is used to express this model is P(B), P(C|B),
P(A

the Jeffreys’ prior for this example, which is

B,C) and P(D|B,C). Calculation of the 6,; = terms enables us to derive

flp) = HP<B = ip) [[ (P(C=ic|B=ip)P(B= ip)) A

iB,C
[] (P(B=i5)P(C=iclB=ig)P(A=i4slB=i5,C=ic)) % x
14,18,iC
] P(D=iplB=i5C=ic)2
1B,3C,iD
— [ P(B = in) A T P(C = ig]B = i) 52 &
B 1BiC
H P(AZZ'A‘B :iB,C’ :ic)’% X
14,18,iC
[l PO=ip|B=isC=ic)2
1B,iC\iD

This prior is a Dirichlet prior on the conditional probabilities, but note that the
choice of parameterisation here is crucial to ensure this. For example, the alterna-
tive parameterisation P(A)P(B|A)P(C|A, B)P(D|B, C) will involve summation

terms in the Jeffreys’ prior.

Saturated Model

The saturated model with four variables has the graphical representation

B A

The decomposition used for this model is P(A)P(B|A)P(C|A, B)P(D|A, B,C),
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and the Jeffreys’ prior is

f) = T PC=icla=ixB=is)F " [ P(B=isl4 =) " " x

1ABIC 1AiB

[[Pea=in™ 5= ]
14

1

P(D=iplA=1i4,B=1i5,C =1ic)"2

1A,1B,IC,ID
6.4.6 Discussion

The Jeffreys’ priors for all decomposable models with up to and including four
variables have been derived above. Most of these distributions are products of
independent Dirichlet distributions, and hence the normalising constant (which
will be required for the use of the prior in applications such as model selection)
is readily available. Such normalising constants may be calculated by repeated

application of the equation

/ T]P(v = islpa(y) = bpai)) AP (v = islpal(y) = tpas) = ?iliizr})kk)

where |I,| is the number of levels of 7.
As an example, consider the Jeffreys’ prior for the model with three variables
A, B,C where A and C are conditionally independent given B. This prior was

determined earlier to be of the form

Za,ip ipylc

£p) = [T P8 = i) 55 [[ P4 =il B i) [[ PIC =il B =)

The normalising constants are obtained using the previous equation, and we

obtain

[(|1p] Laltliel=l) L lalie]s

F( :]‘A]—HQ]C]_l)”B[

f(p)

ip

114] 5] |
(I?((ljifj|> HP(A =1q|B =1)72

2 o,y
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[

el [Is]
(%—)—l) [P =iclB = i)

ih:le

_ | (18]
T(|Ip| IIAlHIcJ 1) [F(f—%"—’)f‘(%—l)} HP B iy Lal4lie] -3
F(MM_E)HB:F( JallTzIT (1) lHelis] "

(33

[ P(A=idB =)t [[ P(C = icl B = )2
'iaaib ib:'ic
It was shown in section 6.4.5 that there is one model which does not admit a
product Dirichlet Jeffreys’ prior — this is the four variable ‘straight-line’ model.
The reason for this can be observed by considering the form of 5W~PQ(7) for each

~7y. It was shown in section 6.3.1 that ¢,, _ _, may be written

"/'Lpa(ﬂ Z HP ’7 _?”)’ L’Da( ) ZP“"/))

aty) v

The Jeffreys’ prior for a particular model will not be expressible as a product
of independent Dirichlet distributions unless, under a particular ordering of the
variables, for all  this term may be written as a conditional probability which
is part of the parameterisation.

Consider a model where a particular ~ has a grandparent who is not them-
selves a parent of v, and suppose 7 is the ‘lowest’ variable in the ordering with

this property. The sum in ¢,; is taken over izz(-), and we may always sum

pa()
recursively over each 4., for 7' below 7 in the ordering, starting from the lowest
7'. These sums are possible as each 7' depends only on pa(y'), and so we sum to
1 each time.

Now consider a 7" and 4" below =, for which 7' € pa(y) and 4" € pa(y'), v" ¢
pa(7y). We do not sum over i, as v € pa(~). However, summing over i,» will not
result in terms in the parameterisation, as ~' depends on 7" through P(+'|pa(+y)).
Hence (5751-}30(7) will not be expressible as a conditional probability which is part

of the parameterisation, and must be left as a sum of model parameters.
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For the four variable ‘straight-line’ model, parameterised by P(A), P(B|A),
P(C|B) and P(D|C), the variables which cause such problems are C' and D, as
C has a grandparent who is not themselves a parent of C' (the same is true for
D). Hence 6¢ and 6p cannot be expressed as a product of model parameters.

In general, the Jeffreys’ prior for any decomposable model may be obtained
from expression (6.4), and this distribution will be a product of independent
Dirichlet distributions provided that the model may be parameterised such that
no variable has a grandparent who is not themselves a parent. Graphically, a
sufficient condition is that for each disconnected component of the graph, all
cliques have a common intersection. For those distributions which are products
of Dirichlets, it is then possible to write down the normalised form of this prior.

The problem of calculating the normalising constant for models which do

satisfy this condition will be addressed in the next section.

6.5 Calculation of Normalising Constants

6.5.1 Bridge Sampling

A bridge sampler has already been used in Chapter 5 to determine the normalis-
ing constant for any given conditional Dirichlet model. However, this particular
implementation of the bridge sampling algorithm cannot be used here as the Jef-
freys’ priors given by expression (6.4) are not conditional Dirichlet distributions.
Because of this, it is necessary to derive a new method specifically for Jeffreys’
priors.

The method of bridge sampling was described in detail in section 5.4. As
part of the bridge sampling method, it is first necessary to generate a sample
from the target distribution. In the previous bridge sampler, a Gibbs sampler
was used together with adaptive rejection sampling. However, this relies upon

the log-concavity of the distribution, and since the priors based on expression
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(6.4) do not seem to be log-concave it is necessary to use an alternative method
in this instance.
The method employed is the Metropolis Hastings algorithm, applied itera-

tively to blocks of parameters as a Metropolis within Gibbs sampler.

Metropolis Hastings Method

This is a Markov chain Monte Carlo (MCNC) method (see section 2.4.4), first in-
troduced by Metropolis et al (1953) and generalised by Hastings (1970), whereby
a sequence of samples is generated from the target density by simulating a Markov

chain. The method may be summarised as follows:

1. Let 8 be the current sample from target density f(6).
2. Generate a candidate * from proposal density g(67|6™).

; _ f(67)g(6'16") ‘ * (t+1) __
3. Evaluate the ratio r = TRTRIRCEL Accept candidate 8" and set 0 =

6" with probability min {1, 7}. Otherwise set 8'+1) = 9®),

Note that the normalising constant for the target density f is not required in
the algorithm, as it is cancelled out in the calculation of ratio r.

A special case of this algorithm is applied here — this is known as an Inde-
pendence Sampler. In this. the density g(07|8"") is independent of 8, so that

9(67169) = ¢(67). Step 3 therefore becomes

" t)
3. Evaluate the ratio r = %. Accept candidate 6* and set 8¢+1) = 9

with probability min {1, 7}. Otherwise set 81 = (¥,

Although in theory any proposal density g which has the same support as f
will work, the key to the Independence Sampler is choosing a proposal density g
which is both easy to sample from, and is close to the target density f. If a poor
choice of g is made, then ratio r will often be very small and few updates will be

accepted.
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The aim here is to generate samples from Jeffreys’ priors given by the expres-
sion
Iy|~1
2

o) o [TTII 1D T1P0 = ivlpas') = tpaen) X

Y tpaly) |%a(y) Y

II IT PO=11pa(y) = ipa) 7% (6.7)

Y ivipa(y)
In many instances the expression on the top line of (6.7) may itself be expressed
as a product and we obtain a product of independent Dirichlet distributions.
However, the cases of interest for this section involve those priors where summa-
tion terms appear, and the top line of (6.7) may not be expressed as a product.

Because of the form of this distribution, the choice made for proposal density g

18

IR

gp) < [T TI POy =rilpa(y) = tpaiy)”

Y i‘Y?ipa('y)
For any model, this will be a product of Dirichlet distributions, each having all

parameters equal to 3.
A C program was developed to implement the Metropolis Hastings algorithm
to the problem of generating a sample from the Jeftfreys’ prior for a particular

decomposable log-linear model. This program needs the following inputs:

1. The (un-normalised) density f.
2. The total MCMC sample size required.

3. The number of independent Dirichlet distributions into which the proposal

density factorises, and the dimensions of each of these densities.

4. The parameters for each proposal density. Although for prior samples all
parameters are equal to %, for posterior sampling more general proposals

will be required.
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An observation is then generated in turn from each of the Dirichlet distribu-
tions, and the Metropolis Hastings algorithm applied at each stage to determine
whether this observation is accepted or rejected. This whole process is iterated

to provide the required sample size.

Bridge Sampler

The method of bridge sampling was described in detail in section 5.4. Slight
modifications were made to the S Plus code used there in order to apply the
method of bridge sampling for Jeffreys’ priors derived from equation (6.4), us-
ing samples produced using the Metropolis Hastings algorithm. Note that the
starting value for the bridge sampler is no longer obtained from a Laplace ap-
proximation, but instead an arbitrary value of 1 is used and the bridge sampler

is then run iteratively until convergence (typically less than 10 runs).

6.5.2 Results

We first check the method by applying it in cases where the normalising constants

are known.

The model represented by the (undirected) graph above admits two distinct
parameterisations, and it was shown in section 6.4.4 that, whereas one of these
results in a Jeffreys’ prior which is a product of independent Dirichlet distribu-
tions, the other is not of this form and so is a suitable candidate for the bridge
sampler. Table 6.1 summarises several results obtained for this model, compar-

ing the values obtained using the bridge sampler with those true values obtained
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using the Dirichlet parameterisation. Sample sizes of 50000 were used.

Levels Levels Levels log Bridge | log True | Error in
of of of Estimate | Value Bridge
Variable A | Variable B | Variable C Estimate
2 2 2 3.64 3.64 0
2 2 3 4.12 4.17 .05
2 2 4 4.20 4.26 .06
2 3 4 3.41 3.62 21
3 2 4 4.78 4.85 07
3 3 4 2.95 3.16 21

Table 6.1: Estimated Jeffreys’ normalising constants, together with their respec-
tive errors

As can be seen from the table, the approximations to the normalising con-
stants given by the bridge sampler are very good. A time series plot for the
Monte Carlo sample corresponding to margin P(B) is given in figure 6.1.

Similar plots are obtained for the other model parameters, and we conclude
that the Metropolis Hastings sampler mixes well, producing samples which are
not highly dependent. The autocorrelations drop to negligible values after lag 4.

Table 6.2 shows rejection percentages for both prior sampling (where n = 0),
and for posterior sampling with equal cell counts. As expected, the percentages
drop markedly with increasing sample sizes, since the data only updates the
second part of the Jeffreys’ distribution, from which we generate the proposal
density. The rejection percentages all fall within acceptable limits, which further
validates the quality of the sampler, in particular for posterior sampling. The
sampler was applied to several other models, and similar results were obtained.
Therefore, the bridge sampler may be used with confidence to determine the
normalising constant for the Jeffreys’ prior (as given by expression (6.4)) for any
decomposable model, and so whether or not the prior may be expressed as a
product of independent Dirichlet distributions is no longer a consideration for

the use of Jeffreys’ priors.
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0 5000 10000 15000

Figure 6.1: Time series plot for Metropolis Hastings sample corresponding to

P(B)
6.6 Conclusion

The focus of this Chapter has been Jeflreys’ prior for log-linear models. A
general expression (6.4) has been derived which enables us to write down the
Jeffreys’ prior for any decomposable log-linear model, and this expression has
been applied for all models with up to and including four variables, and the
resulting distributions presented. It is often possible to parameterise the model so
that the distribution obtained is a product of independent Dirichlet distributions,
in which case the normalising constant is straightforward to determine. However,
in the instances where this is not possible, a bridge sampler has been developed

to give a good approximation to the normalising constant.
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Sample | Rejection
Size | Percentage
n
0 32.3%
8 19.1%
40 6.9%
80 4.1%
160 2.2%
400 0.8%

Table 6.2: Rejection percentages for Metropolis Hastings Sampler

The problem of determining the Jeffreys’ prior for non-decomposable models
was considered, although the expression obtained does not, in general, result in

a tractable form for this distribution. However, the expression was applied to

determine the Jeffreys’ prior for a saturated model.



Chapter 7

Choosing A Prior Distribution

The main focus of this thesis is on prior distributions suitable for use in refer-
ence analyses of log-linear models. Several potential reference priors have been
introduced, though the choice of the parameters for these distributions has not
been considered. In this Chapter, we consider the problem of model selection,
specifically methods of approximating the Bayes factor, and the effect of the

choice of prior distributions and prior parameters on such approximations.

7.1 Laplace’s Method and the Schwarz Crite-
rion

Laplace’s method of approximating integrals was introduced in section 5.3, and

the Laplace approximation to the (log) marginal likelihood was shown to be
~ ~ 1 ~ 1 d 1
log | £(n|6)£(8)d6 =log f(n|B) +log f(B) - 5 log }-Hw)l + 5 log 27 +0(n”")

where 6 is the posterior mode, f(n|@) is the likelihood, (@) is the prior, d

is the dimension of 6, and H(0) is the Hessian matrix of second derivatives

(ie. H(O) =2+

. - . . s . _1
o097/ (110)f(8)). This approximation is correct to order O(n™"),

133
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where n is the total sample size.

This expression was re-written in terms of the information matrix and max-

imum likelihood estimator ]

i(9)]+0(m=1)
(7.1)

/f(niG)f(Q)dQ =log f(n[@)ﬂog f(§)+g log 27r—§ log n—;)l— log

P

to give an approximation to the marginal likelihood which is correct to an or-
der O(n"%). Similarly, the Bayes factor comparing models m; and my may be

approximated using the expression

)y s

logn —

log Biy = log f(n|6m,) +log f(Orm,) +

o~

i(Om,)| +0(n712)

~ ~ 1
— log f(n[6m,) — log f(Om,) + 5 log

However, this approximation requires a normalised form of the prior density.
As has been discussed previously, it may be difficult or impossible to obtain the
normalising constant for prior distributions analytically, as such distributions are
often intractable. Hence it is sometimes convenient to omit the term log f(80),
to give an expression which is only correct to an error of order O(1).

As 2(dy — dy) log 27 and log ‘z(@m ){ are also O(1), they can be absorbed into the

O(1) term to give the Schwarz criterion
—~ ~ 1
Sip = IOg f(n}mla Gml) - IOg f(n'm27 Omz) - E(dl - d?) IOg n

Although the Schwarz criterion is only generally correct to order O(1), an
interesting consideration is whether it is possible to choose a particular prior
distribution such that the order of such an approximation may be improved. The
focus of the remainder of this Chapter is whether it is possible to choose f(8)
i(O,n,)
evaluated). As noted by Kass and Wasserman (1995), Jeffreys (1961) chose the

disappear (or may be easily

such that the terms 5(d, — dy)log 27 and log
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Cauchy prior density for use in Normal location testing problems, in which case
the terms above were replaced by a constant, dependent only on the dimensions
of the models under the null and alternative hypotheses. This corrected form of

the Schwarz criterion allowed the Bayes factor to be approximated to an error

of order O(n™2).

7.2 Unit Information

7.2.1 Unit Information Normal Priors

This is an idea introduced by Kass and Wasserman (1995), based on work by
Kass and Vaidyanathan (1992), which they applied in particular to the problem of
Bayesian hypothesis testing. It allows a choice to be made for prior f(8) so as to
allow the log marginal likelihood to be approximated to an error of O(n'%) using
the Schwarz approximation, and hence requiring only the maximised likelihood.
Their theory may be summarised as follows:

Suppose we have a set of i.i.d. observations Y}, ..., Y, from a family param-
eterised by (3,), and that we wish to test the hypothesis Hy : ¥ = 1), against
the general alternative H;. Kass and Wasserman proposed that the amount of
information in the prior under H; should be chosen to be equal to the amount of
information in a single observation, an idea which is intuitively appealing. Here
information is in the sense of Fisher information. The concept is best illustrated
by a simple one-dimensional example.

Let Y; ~ N(1,0?), with o known, and suppose we want to test Hy : ¢ = 9
against H; : ¢ € R. Then i(¢)) = 02 and the prior distribution on v under Hj,

with 7 = ¢ has the same amount of information about ¢ as there is in a single
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observation, since the variance of a single observation is also ¢2. This is then
called the unit information prior for .

This theory may be extended to the multivariate case, though this requires
two important simplifying assumptions. We assume that 8 and 1 are null orthog-
onal, and hence that the Fisher information matrix (which we shall write 1(3, v))
is block diagonal for null hypothetical parameter values - i.e. gy (3, %,) = 0 for
all B. Indeed, Kass and Vaidynathan argued that the parameters may always be
transformed so that 3 is null orthogonal to 1. We also assume that the marginal
prior distribution of 3 is identical under both hypotheses.

Suppose the prior on 1 under H; is elliptically symmetric with location pa-

rameter 1, and scale matrix X,., and has density of the form
Ty (%) = 1Dl 72 F(( = o) B, (% — o))

Then a unit information prior for 1) may be defined by choosing %, to satisfy

the expression

S61 ™ = [Ty (B, 1) (7.2)

so that the amount of information in the prior is equal to the amount contained
in one observation. (Note that Iy, (8, ,) is the block of I(3, 1) corresponding
to ).

Kass and Wasserman (1995) showed that, for those prior distributions satisfy-
ing expression (7.2), exp(S19) — Bip as n — o0, with an error of order O(n~1/?),
and that for samples of only moderate size the Bayes factor may be reasonably
approximated in this way. This is a particularly useful result, as it allows the ev-
idence in favour of a model to be readily calculated without the need for complex
Integration or other, more time-consuming, approximation methods.

Kass and Wasserman applied the results to several simple examples, and

showed that the resulting approximation furnished by the Schwarz approximation
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to the log marginal likelihood was good, even for small sample sizes.

7.2.2 Unit Information and the Logistic Normal Distri-
bution

The concept of unit information introduced by Kass and Wasserman was applied
by Dellaportas and Forster (1999) to the logistic Normal distribution, and this
work is described below.

The log-normal distribution was introduced in section 3.1, and when ex-

pressed as a distribution for the cell means p was shown to have the form

log e~ N(61,) " oT) (7.3)
aCC
where T, are projection matrices defined in (3.1).

Choices must be made for each dispersion parameter o2, and for the prior
mean of B, . The problem considered by Dellaportas and Forster was to choose
the parameters so that the prior distribution can be interpreted as vague without
being excessively diffuse. These o parameters may be interpreted as represent-
ing the prior knowledge about [,, with large values representing vague prior
knowledge. A vague, but proper, distribution may be obtained by using large
but finite values for o?.

Dellaportas and Forster chose values for the a2 parameters by considering
hypothetical ‘prior samples’. They showed that Jeffreys prior is equivalent to
setting a2 = 72/2, and Perks’ (1947) prior is equivalent to choosing a2 = ¢/ <ﬁ>
(where ¢’ is the trigamma function).

Under a multinomial sampling scheme, a distribution is required for logp
instead of log . The equivalent distribution to that derived above is logistic

normal, and is best expressed as a prior for €, where 8 is the symmetric logit
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defined in section 1.3. This gives

O~N|0, Y T,
aCT';a50
Dellaportas and Forster showed that the value of oy has little effect on poste-
rior analysis, so chose to make this arbitrarily small, also setting § = 0 in (7.3).
They suggested that a reasonable choice for a2 was to set a? = k|I|, showing
that % is interpretable as the number of units of prior information at the prior
mean, and that the prior information away from this is less than —i— Hence, for a
unit information prior, k£ must be at least one. Consideration of several examples

lead to a choice k = 2, hence setting a2 = 2|1].

7.2.3 Unit Information and the Schwarz Criterion

Kass and Wasserman introduced the concept of unit information as a way of
choosing a prior distribution such that the marginal likelihood may be reasonably

approximated by the Schwarz approximation.

In section 7.1, it was shown that the difference between the Laplace and

Schwarz approximations is given by the expression
- d 1 .
6 =log f(0) + 5 log 27 — 5 log tz(g)’

Suppose we have a Normal prior distribution, with mean 8y and variance ¥, with

density function
d 1 _
log f(0) = —510g27r — ilog{E] —(60—06y)"' (6 —06y)

So, if we choose £7! = 4(6y), then for |6 — 6| = O(n“%i(Bo)) we obtain
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d 1
6 = log f(6o)+ 7 log2m — - log [¢(60)|
d 1 , T\t d 1 :
= -3 log 27 + 5 log |i(Bg)] — (8 — 60) i(60)" (0 — Bp) + 3 log 27 — 5 log |2(80)|
= —(8-00)"1(80)"1(6 — 6y)

= O(n™?)

Hence, provided the maximum likelihood estimator 8, in terms of units of
information, is close to the prior mean, the Schwarz approximation will furnish

a good approximation to the marginal likelihood. However, the approximation

will not be close in general.

7.3 Unit Information for Dirichlet Based Priors

7.3.1 Introduction

The focus of much of this thesis has been on priors based on the Dirichlet distri-
bution. However, the concept of a unit information prior as described in section
7.2 cannot be applied directly to priors from the Dirichlet family. As introduced

in Chapter 2.1, this prior has the form
f(p) o [ p(i)=®-?
1€l
for the saturated model, or in the more general conditional Dirichlet case has

the form _ )
[1;., €O T 2(Eas;

(Zi o z(i,j)ﬁj) “

for a model with design matrix X which sets @ =X 3. The problem is whether it is

(7.4)

[(B)

possible to choose a suitable set of a parameters to make this a ‘unit information
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prior’.

7.3.2 Conditional Dirichlet Prior

The main criterion for a unit information prior distribution is that the amount of
information which it contains should be equal to the amount of information in one
observation. In the case of Normal based priors, this was achieved by a suitable
choice of the variance matrix. However, the conditional Dirichlet distribution
does not admit such a simple solution, as the variance may not be expressed in
such a tractable form.

As there is a direct correspondence between observations in a contingency
table and the parameters of the conditional Dirichlet distribution, an alternative
definition of unit information is apparent as the prior parameters a may be
interpreted as prior cell counts. Suppose a single observation is divided between
all cells, i.e. let the ‘prior cell count’ a(%) = + where s is the number of cells in the
table (Perks’ prior). The Schwarz approximation was investigated empirically
for such priors to see if accurate approximations to log marginal likelihoods
resulted. However, the results were disappointing. Indeed, it proved impossible
to find any set of ax parameters such that the Schwarz criterion offered a good
approximation to the log Bayes factor, even allowing for a constant correction
term to the Schwarz formula.

For example, in the simple 2 x 2 case, using a prior which sets (i) = ;
(i.e. a single observation ‘split’ between the cells), the Schwarz approximation
approximates the (log) marginal likelihood for a sample size of 2000 split evenly
through the table with an error of —1.01. The corresponding error for a sample
of 20000 is the same, so the error clearly does not tend to zero. Furthermore,

we failed to determine an expression by which this error could be calculated in

general.
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7.3.3 Jeffreys’ Prior

In section 7.1, it was shown that the terms which represent the difference between

Laplace’s approximation and the Schwarz approximation are

@(5){ (7.5)

~ d 1
log f(8) + 5 log 27 — -2—10g

Now, Jeffreys’ prior was defined in Chapter 6 by

5° :
160) x| B |-z nio)]
or, equivalently,
log f(0) = %1og [1(0)| + ¢

where ¢ is the normalising constant. Comparison of this expression with (7.5)
provided motivation to investigate whether the marginal likelihood based on
Jeffreys’ prior may be reasonably approximated by the Schwarz formula, possibly
with the addition of a correction factor. Wasserman (1997) used Jeffreys’ prior
to obtain an order O(n_%) approximation to the marginal likelihood, though he
defined Jeffreys’ prior using a fixed normalising constant (27r)_§, applied to cases
where Jeffreys’ prior is improper and such an arbitrary constant may be chosen.
However, the Jeffreys’ priors used in this Chapter are not improper, and so such
an approach is not appropriate here.

In section 6.3.1, the (unit) information matrix i(p) for a decomposable log-

linear model parameterised using a perfect ordering gave

-1

li(p)|] x HH ZHP/—%|}9G( ) = pa(y) X

Y tpa(y) |fpacy) v

IT II PO =dlpa(y) = ipamy) ™

T tslpay)
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and Jeffreys’ prior is then given by

Iyl-1

HH ZHP’Y——Z,)IPOJ )_Zpa'y)) X

Y tpaty) LiEER(M Y
1
II II POr=ilpa(y) = ipa)
Y yilpaly)

where % is the normalising constant for the distribution. The difference 6 between

the Laplace and Schwarz approximation, equation (7.5), then becomes

. d 1,
6 = log f(p) + 5 log2m — 5 log [1(P)|
1 o d 1 o~
= 5 logli(p)| —logc+ 5 log2m — S logi(p)|

d
= §log27r—1ogc

Hence we have an expression for the difference between the Laplace approxi-
mation and the Schwarz approximation to the marginal likelihood for a decom-
posable log-linear model which depends only on the normalising constant of the
Jeffreys’ prior. Hence, it is possible to write down a corrected Schwarz approxi-

mation

. d d
Sc = log f(n) = log f(n}p)—ilogn + 510g27r —logec

which is correct to order O(n_%). This corrected approximation will be applied

in the next section to several examples.
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7.4 Application of Corrected Schwarz Approx-
imation

An expression was derived in the previous section which may be used to provide
a correction term to the Schwarz approximation, and the resulting approxima-
tion will then provide a O(n“%) approximation to the marginal likelihood for a
decomposable log-linear model with Jeffreys’ prior. Two examples are presented
in this section which demonstrate the relative merits of the uncorrected and
corrected Schwarz approximations to the marginal likelihood, based on Jeffreys’
prior.

The true marginal likelihood is given by the expression

sy = [ 1
(

and so

log f(n) =logC —logc

where c is the normalising constant for the prior density and C' is the normalising
constant of g(p) f(n|p).

In general, c and C may not be available without the use of an approximation
method such as Laplace’s method or bridge sampling. Hence, a computational
saving may be made by using the corrected Schwarz approximation, as only c is

needed for this.
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7.4.1 Example 1

Here, we consider Jeffreys’ prior and resulting posterior for a saturated model,
where normalising constants are always easy to compute.

The (uncorrected) Schwarz approximation to the marginal likelihood is de-

rived from

log () = log [ (n[p)— 3 logn + O(1) (7.6)

where d is the number of parameters in the model and 7 is the total sample size.

For this example, expression (7.6) becomes
. d
log f(n) = log f(n[p)—3 logn+O(1)

B (n) nl d

o I(n) n(@)" @\ d .
= log HiF(n(i))H . 5 logn+0(1)

= logI'(n) — Zlog I'(n(z)) + Zﬂ(l) logn(¢) — nlogn — glog n+O0(1)

)

1

The correction factor for this expression, as derived in section 7.3.3, is given

by
§ =

log2m —loge

Mo Q.

where ¢ is the normalising constant for the Jeffreys’ prior for the log-linear model.
g ys P g

For the saturated model, the Jeffreys’ prior is of well-known form

(S0

flp) Hp(i)‘
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and the normalising constant is therefore
T (%‘ d+1

d
L (%)

where d+ 1 in this case is the number of cells in the table (as we have a saturated

C =

model). The correction term is therefore

d d+1 d+1
6 = §log27r—( ; )loaw+logf‘< —; >
d 1 d+1
= 510g2—§10g7r+10gF< 5 )

Hence the corrected Schwarz approximation is given by

d
log f(n) = logl(n ZIOUF Z ) log n (i —nlogn———{)—logn—%

&

1

d
glogZTr— (d+1)logD <5> —HogI‘( ;—1> +0(n"2)

d

= logl(n) — Zlocr )+ Z 1) logn(i) — nlogn — alognJr
- 2

d+1

4

;ilogQ - ilogw +logD’ ( > + O(n_%) (7.7)

For the saturated model, it is also easy to calculate the true marginal likeli-

hood. The value of C (as defined above) in this instance is given by

c = / 9(p) f(nlp)dp
[1;T (n(3) + 3)

F[n—%‘%l}

and so the marginal likelihood log f(n) is
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log f(n) = log'(n Zlogf 1)) + Zlogf‘ <77(z) + =

d+1] d+1 d+1
bgFPr+ T }—v'+ bgw+kgr<-g;> (7.8)

2 2

P4}

Application of Stirling’s approximation, given by the expression

logT(z) = (z — 3)log z — z + 3 log 2m + O(z™1), to (7.8) yields
1
o = o ) — o (27 (2) loe | n{1 Bl
log f(n) log I'(n) Zloof(n(z))+2n(z) og [ﬂ(z)+2}
i i
L1 ci+11 0 al1 d+1
Z n(z)+5 + 5 log2m ~ n-{-é og|n+ 5 +
7

d-+1

P-4

d+1
n+——~—+—1 og2m —

2
= logI'(n ZlogF Z log{ %} _

d+1+d+11 L4l Ldr1y
— — ~7T_‘ mn (o] Ve’ —
[ o 08 2|8 2

d+1 1 d+1
n+_~;l__§1o Jr_dlelog'/r—f—logF( ; >+O(n”1)

1 d
= logI'(n Zloaf’ Z log[ 2}+510g2—

d d+1 1 d+1 .
{n+§}log<n+—7—> 2lobvr+logl“< 5 >+O(n )

which is equal to expression (7.7) as n(¢) — oo. This validates the corrected

1
log 7+ log T ( ) +O0(n™)

Schwarz approximation for this model, and shows that in this instance it ap-

proximates the marginal likelihood with error of order O(n™1).
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7.4.2 Example 2

This example involves the 3 variable model with one conditional independence

represented by the graphs

The Jeftreys’ prior will be based on the parameterisation using the conditional
probabilities from the directed version of the graph. The (uncorrected) Schwarz

approximation to the marginal likelihood is derived from
. d
log f(n) = log f(n|p)—7 logn + O(1) (7.9)

where d is the number of parameters in the model and n is the total sample size.

For this example, expression (7.9) becomes

log f(n) = logf(n[f))—glogn—f-O(l)

= log —F@—)(—,—)—Snﬁ(i)”(i) —(—ilogn+0(l)

[1; T(n(2)) *. 2
i

n(ia, 2b>p(7/b Zc) (ipy2c)

p Za,Zb d
= log H e —§logn+0(1)

= logl(n Zlocr (7)) + Zn i, 1) log D(ia, 1) +

Z (Zba )1ng(2b7 ) Z”(ib) logﬁ(ib)——;—llogn+0(1)
= logI'(n Z]Og (4)) + Zﬂ/(ia,ib) log 77(2; i) i

Zn(z’b,i ) log i be) _ Zn(ib) log n(;b) *g logn + O(1)

n
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= logl(n) - Zlog ['(n(i)) + Zn(z’a,ib) log n(ia, 1) +

Z n(ip, 1c) log n{ip, ic) — Z n(ip) log n(ip) — nlogn—
—;-Zlogn—!—O(l) (7.10)

The correction factor for this expression when we use the Jeflreys’ prior. as
)

derived in section 7.3.3, is given by the expression
d
b= 510g27r —loge

where c¢ is the normalising constant for the Jeffreys’ prior for the log-linear model.

The Jeffreys’ prior in this instance puts independent Dirichlet distributions on
the parameters. Specifically, P(B) follows a Dim’chlet(i‘i%]gl—'—ll) distribution,
and P(A|B) and P(C|B) follow Dirichlet(31) distributions. We may therefore

calculate ¢

c = /g(p)dp

gl
!1.4!+§Ic!—1) 1\ al+Ic]
D (Makeelt ()

r (Ilsi(!1.4i;ifc!—12> r (M> r (m)

5|

2 2

where |I4],|Ip| and |I¢| are the numbers of levels of variables A, B and C

respectively. Hence

N | R

6 = =log2m —logc

_ Uallls] +'|fAl2fICI =l =L o 1y llogT <|IA! +£fol - 1) .
log T (IIBt (174] j [Ie| - 1)) sl |14] i slllel ), -

4 L

Ig|log T (@) + g|logT (%C-')

_|_

L
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Lal[Ip| + Ll He] — [1a] — 1 Lal + [Ic| -1
5 < 1og27r—|]BUogF< OC )—%—

10g[1(xfBIUIA\+wzcw—-1>>__\JBHJAi+w131uc4logﬂ_+

2 2

4 4

[Ip|logT (I ;i> + |Ip|logT (%)

The corrected Schwarz approximation is therefore given by

log f(n) = logl(n Zlogf‘ 1))+ Zn(z‘a,z’b) log n(ig, 1) +

Z”(Zba ic) log n(ip, ic) — Zn(z’b) log n(iy) — nlogn—
—glogn + |Lal 5] + }]A,QIICI — | 14| —

Is|logT <|_24_’> pllogT <IIAI ﬂzfcl - 1) .

1
log 27 +

2 2

log T <|[Bf (174l + el = 1)) sl Al + s] [ Ic] o

raliogr (£21) + 06 H)

In this instance, the true marginal likelihood is also available without the use

of computational approximations. The value of C' is given by

c::/mmﬂmm@
[T, T (n() + faltlel= [T, T(2 + n(ialis))
( >H((1 )

r (Usi(UAHUcl—l) +n> + 3, nlialiy))
[T.. TG + n(clis))
1;1 ( (]‘I‘QC‘[ + Zic (ZCIZb)))

It is therefore possible to evaluate the marginal likelihood log f(n) = log C' —

log c for a particular data set. Table 7.1 shows the true marginal likelihood (ML),
together with the corrected and uncorrected values of the Schwarz approxima-

tion, for a variety of sample sizes using the above model with varying numbers

™+
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of levels of A, B and C. The data is spread such that there is an equal sample

in each cell.

Levels | Sample | True | Uncorrected Error in | Corrected | Error in
of Size ML Schwarz Uncorrected | Schwarz | Corrected
A B, C n Schwarz Schwarz
2,2,2 8 —12.74 —13.31 —0.57 —12.36 0.38
2,2,2 16 —11.55 -12.30 —0.75 —-11.35 0.20
2,2,2 24 —-10.97 —-11.79 —0.82 —10.84 0.13
2,2,2 40 —10.32 -11.19 —0.87 —10.24 0.08
2,2,2 80 —9.52 —10.43 —0.91 —9.48 0.04
2,2,2 160 —8.78 -9.71 —0.93 —8.76 0.02
2,2,2 400 —7.83 —8.77 —-0.94 —7.82 0.01
2,2,3 12 -19.24 —21.01 -1.77 —18.75 0.49
2,2,3 120 —13.33 —15.54 -2.21 —13.28 0.05
2,2,4 16 —25.54 —28.94 -3.40 —24.93 0.61
2,2,4 160 —16.92 —20.87 -3.95 —16.86 0.06
2,4,2 16 —26.41 —31.71 —-5.30 —25.49 0.93
2,42 160 —19.82 —25.95 —6.13 —19.73 0.09
4,4,4 64 —98.20 —121.30 —23.10 —97.06 1.14
4,4.4 640 —51.08 —75.20 —24.12 —50.96 0.12

Table 7.1: Errors in Schwarz approximations for Example 2

Table 7.1 shows that, as expected, the error of the corrected Schwarz approxi-

mation (expressed as approximation minus true value) reduces considerably with

increasing sample size, consistent with the previous assertion that the error is

of order O(n“%), and it would appear that this behaviour is independent of the

number of levels of the variables. Also, the order O(1) error of the uncorrected

Schwarz approximation is apparent from the table, as this approximation does

not improve with increasing sample size. Indeed, for the final entry, the error of

this approximation is 24.12 on the log scale — a huge discrepancy. The results

for the 2 x 2 x 2 table are presented graphically below, showing closer agreement

for increasing sample sizes.

Table 7.2 shows the true marginal likelihood, together with the Schwarz ap-
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Figure 7.1: Plot of error in corrected Schwarz approximation against sample size
for Example 2

proximations, for data in a 2 x 2 x 2 table where there is a single observation in
all but one cell, and the remainder of the data is in the final cell. As the results
do not seem to depend upon the numbers of levels of the variables, all variables
have 2 levels in this case.

Again, this table demonstrates the quality of the corrected Schwarz approx-
imation to the marginal likelihood corresponding to the 3 variable model with

one conditional independence.
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Sample True Uncorrected Error in Corrected Error in
Size Marginal Schwarz Uncorrected Schwarz Corrected
n Likelihood | Approximation Schwarz Approximation | Schwarz

17 —14.46 —15.20 —0.74 —14.24 0.22
27 -15.99 —16.78 —0.79 —15.83 0.16
37 —17.06 —17.87 —0.81 —16.92 0.14
o7 —18.54 —19.38 —0.84 —18.43 0.11
107 —20.72 —21.58 —0.86 —20.63 0.09

Table 7.2: Errors in Schwarz approximations for Example 2 — unbalanced case

7.4.3 Example 3

This example concerns the 4 variable ‘straight-line’ model which may be repre-

sented graphically by

As discussed in section 6.5, it is not possible to obtain the normalising con-
stant for the Jeffreys’ prior corresponding to this model, and the marginal like-
lihood is therefore only available by using a computational approximation such
as bridge sampling. In this section, the quality of the corrected Schwarz ap-
proximation to the marginal likelihood will be assessed by comparing this to the
approximation derived using the bridge sampler. Note that it is necessary to use
the bridge sampler once and only once to obtain the correction factor for the
Schwarz approximation for a particular model structure, whereas direct approx-
imation of the marginal likelihood requires a further run of the bridge sampler
for each data set.

The corrected Schwarz approximation to the marginal likelihood is given by
. d d _1
log f(n) = log f(nfp)~—§ logn + 7 log 27 —loge + O(n™2)

where d is the number of parameters in the model, n is the total sample size,

and c is the normalising constant for the Jeffreys’ prior for the log-linear model.
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The number of parameters, d, in this model is |I4| |Ig| + |Ig||Ic| + |Ic||Ip| —
|Ig| — |Ic| — 1. Using the bridge sampler, for a model with all binary variables,
the value of log ¢ was found to be 4.98 (values for different numbers of levels are

presented later), and the number of parameters is 7. Hence

log f(n) =
= logI'(n) = Y logT(n(i)) + > nlia,is)logn(ia,is) +

~ d d 1
log f(n[p)——Q— logn + 5 log2m —logc + O(n™2)

> " nliy, i) log n(ip, ic) + Y _ nlic, ia) log n(ic,4a) —
Z n(ip) log n(p) — Zn(ic) logn(i.) —nlogn —
logn + glog 2 —4.98 + O(n_%)

The true marginal likelihood may be evaluated using the expression log f(n) =
log C—log ¢, where C = [ g(p)g(n|p)dp is again obtained using bridge sampling.
Table 7.3 shows the true marginal likelihood together with the corrected
Schwarz approximation, for a variety of sample sizes using the above model with

A, B, C and D each having 2 levels. The data is spread such that all cell counts

are equal.

Sample True Uncorrected Error in Corrected Error in
Size Marginal Schwarz Uncorrected Schwarz Corrected

n Likelihood | Approximation Schwarz Approximation | Schwarz

16 —25.01 —26.17 —1.16 —24.71 0.30

32 —21.46 —22.76 —1.30 -21.31 0.15

64 —19.57 —20.93 —1.36 —19.47 0.10

80 -17.31 —18.70 -1.39 —17.25 0.06
160 —14.38 —15.80 —1.42 —-14.34 0.04
240 —12.70 —14.13 ~2.03 —12.68 0.02

Table 7.3: Errors in Schwarz approximations for Example 3

As in the previous example, the table demonstrates the accuracy of the cor-

rected Schwarz approximation, consistent with the O(n”%) error, against the

much poorer uncorrected approximation. The results are summarised graphi-
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cally in figure 7.2,

0.20 0.25 0.30
| I

Error : Corrected Schwarz minus True ML

0.05
L
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Sample Size

Figure 7.2: Plot of error in corrected Schwarz approximation against sample size
for Example 3

Additional correction terms for different numbers of levels of the variables
in this model may be calculated by further runs of the bridge sampler. The
normalising constants (logc) for various cases are presented in table 7.4. The
equation

d
o= ilogQW—logc

is then used to determine the appropriate correction term, where d = |I4| |Ig] +

|| lc|+ Ic||Ip] = |Is] = |Ic| = 1.
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Levels of A, B,C, D | log ¢ | Correction term, 6
9992 4983 1.45
3.2.2,2 5.52 2.75
2,3,2,2 5.52 3.67
3,3,2,2 5.31 6.64
3,3,3,2 5.53 10.09
3,3,3,3 5.60 12.78

Table 7.4: Schwarz approximation correction terms for model AB + BC + CD

7.4.4 Further Examples

The previous examples present the correction factors for all saturated models,
one 3 variable model and one 4 variable model. In this section, the correction
terms for the remaining distinct models with up to and including 4 variables are
given. Note that where a graph consists of several disconnected components,
each one analogous to a model considered here, then that model will not be

treated separately; such correction terms follow directly from these results.

Single Variable Model

The correction term, 6, for this model is

Model AB + AC + AD

The correction term for this model, represented graphically by

B C B C

I
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1s
5 dl | F(IIBH- IQC;I-HIDS . 1)[[_4[ ( (%> HIo|+ID] )[IA[
= —log2m —log s
2 F(IIAJ(JBHZUcH[[DD _ i]AD (%)F(U—QQ-I)F(%)

_ Halllg| + [Lal ol + Ua[Upl = 2|14 = 1 log 27 —
2

&~

I
P(![B]’HI;‘H‘UDI . 1){],4! ( F(%)!]BH‘HCH'[]DI ! Al
)
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This correction term for this model, represented graphically by
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7.5 Discussion

The focus of this Chapter has been to investigate the choice of parameters for
prior distributions for log-linear models. The concept of unit information has
been discussed. Using Normal priors with variances determined using unit infor-
mation considerations, it is possible to choose a prior distribution such that the
Bayes factor based on this prior may be approximated by the Schwarz criterion
with an error of order O(n”%). Moreover, this prior is easily interpretable, as it
contains as much information as is present in a single observation.

It was not possible to find a set of a parameters for the conditional Dirichlet

distribution such that the Schwarz formula, with or without a correction term,
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may be used to approximate the marginal likelihood. However, it was found that
Jeffreys’ prior, which in the case of many log-linear models using multinomial
sampling is based on Dirichlet distributions, offered a good approximation. In-
deed, the marginal likelihood based on a Jeffreys’ prior may be approximated
by the Schwarz formula, with the addition of a correction term. This correc-
tion term consists of a constant (£ log27) plus the normalising constant for the
Jeffreys’ distribution, which is either obtained analytically or using a bridge sam-
pling method, though only decomposable log-linear models have been considered
here. In principle, the corrected Schwarz approximation could be applied to non-
decomposable models, provided that normalising constants for the Jeffreys’ priors
for such models could be determined.

The corrected Schwarz approximation provides an error of order O(n'%),
and the two examples demonstrated improving accuracy with increasing sample
size. The approximation involves the maximised likelihood (easy to determine
analytically for decomposable models), and the Jeffreys’ normalising constant, for
which the bridge sampler may be used if necessary. The alternative calculation
of marginal likelihoods potentially requires two applications of bridge sampling,
which represents a more awkward and time-consuming method. Alternatively,
direct application of Laplace’s method is possible, but requires the calculation
of the information matrix and its determinant.

Thus, if one is prepared to accept Jeffreys’ prior as a suitable reference
prior, the corrected Schwarz approximation provides an easy method of obtaining
the corresponding marginal likelihood. Correction terms for all distinct models
(within disconnected components) with up to and including four variables have

been presented in section 7.4.



Chapter 8

Further Examples

Throughout this thesis, several prior distributions have been discussed and var-
ious methods of obtaining normalising constants have been developed. This
Chapter contains two examples, which have been analysed using appropriate
methods for different prior distributions. Note that the use of the bridge sampler

to analyse data from Edwards and Havranek (1985) was presented in Chapter 5.

8.1 Example 1

This example concerns 30 patients suffering from lymphocytic lymphoma, and
cross-classifies their type of lymphoma L (nodular or diffuse) against their re-
sponse to combination chemotherapy R and their sex S. The data (presented
in table 8.1) is analysed, using various diffuse prior distributions, in order to
determine the posterior model probabilities for the 8 potential graphical models.
Four priors are used:

The first is the conditional Dirichlet distribution with parameters a(z) = 1,
corresponding to conditioning on Jeffreys’ prior for the saturated model. The

second is the conditional Dirichlet distribution with parameters a(¢) = £, which

corresponds to a single observation distributed evenly between all cells (Perks’
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Remission
Cell Type  Sex  No Yes
Male 1 4
Nodular
Female 2 6
Male 12 1
Diffuse

Female 3 1

Table 8.1: Chemotherapy and lymphoma

prior). Note that the equivalence of the hyper Dirichlet and conditional Dirichlet
distributions is used to ease the calculations. Elsewhere the methods described in
previous chapters, such as bridge sampling using Monte Carlo samples, are used.
The third prior distribution is Jeffreys’ prior, and the fourth is a log-Normal prior
with parameters chosen using the same considerations as Dellaportas and Forster
(1999). The posterior model probabilities are presented in table 8.2 (models with

probability less than 0.01 are excluded).

Model | Conditional | Conditional | Jeffreys’ | Log-Normal
Dirichlet Dirichlet Prior Prior
ali) =1 ai) = 4
RC+CS 0.48 0.42 0.43 0.48
RC+ S 0.19 0.38 0.13 0.30
RC + RS 0.22 0.18 0.19 0.17
RCS 0.09 0.01 0.25 0.05

Table 8.2: Posterior model probabilities for Cancer data using various prior
distributions

As expected, all priors identify the most probable model RC + CS. Similar
probabilities are alsb obtained for the model RC'+ RS. However, the various priors
differ with respect to models RC + S and RCS. As expected, the conditional
Dirichlet distribution with «(¢) = % tends to favour the simpler model RC + S.

Jeffreys’ prior favours the saturated model RCS.
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8.2 Example 2

The data analysed here involves 13384 pregnant women, cross-classified according
to their social class (C - 5 levels), their smoking habit (S - none, light or heavy),
and whether or not they suffer from two toxaemic signs, hypertension (H) and
proteinuria (P). The data was collected in England between 1968 and 1977, and
the aim of the analysis of the 2 x 2 x 3 x 5 contingency table (8.3) is to determine
relationships between the variables, via the posterior model probabilities for all

possible graphical models.

Proteinuria
Yes No
Social Class Smoking

Hypertension Hypertension
Yes No Yes No
None 28 82 21 286
1 Light 5 24 5 71
Heavy 1 3 0 13

None 50 266 34 785
2 Light 13 92 17 284
Heavy 0 15 3 34

None 278 1101 164 3160
3 Light 120 492 142 2300
Heavy 16 92 32 383

None 63 213 52 656
4 Light 35 129 46 649
Heavy 7 40 12 163

None 20 78 23 245
5 Light 22 74 34 321
Heavy 7 14 4 65

Table 8.3: Toxaemia in pregnancy

As in the first example, four prior distributions are used. These are the con-

ditional Dirichlet distribution with parameters a(z) = £, the conditional Dirich-
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616’ Jeffreys’ prior and a log-Normal

prior. Note that for Jeffreys’ prior, the three models CS + SH + HP + PC,

let distribution with parameters a(¢) =

CH+HS+SP+PC and CS+ SP+ PH + HC are excluded from the analysis,
as they are not decomposable.

Under each of the distributions, a maximum of two models were identified as
having posterior probabilities greater than 0.001. These are the models H P +
PS + 5C and HPS + SC, and their respective probabilities are shown in table

8.4.
Model Conditional | Conditional | Jeffreys’ | Log-Normal
Dirichlet Dirichlet Prior Prior
a(i) =5 | ali) =g
HP+ PS+ SC 0.9950 1.0000 0.9877 1.0000
HPS + SC 0.0050 0.0000 0.0123 0.0000

Table 8.4: Posterior model probabilities for Toxaemia data using various prior
distributions

These results are surprising, as the classical maximum likelihood approach
selects model HP + PS + SC + CH. However, each of the priors used here gives
a posterior model probability < 107 to this model.

Results based on the Schwarz criterion suggest model HFP + PS+ SC+ CH
as the most probable. Comparing models HP+ PS5+ SC+CH and HPS+ SC
using the Schwarz criterion results in a difference of 15.7 in favour of model
HP + PS4+ SC + CH, and comparison of models HP + PS + SC + CH and
HP+PS+SC gives a difference of 4.4 in favour of model HP+ PS+SC+CH.
However, since the Schwarz criterion only approximates the log Bayes factor with
an error of order O(1). we have no real reason to be concerned about the results

in table 8.4.



Chapter 9

Discussion and Extensions

9.1 Discussion

The aim of this thesis has been to fully investigate Bayesian methods for log-
linear models, with particular attention to the use of reference priors. Several
prior distributions have been investigated, with particular focus on the condi-
tional Dirichlet distribution and Jeffreys’ prior.

The conditional Dirichlet distribution, defined in Chapter 3, has the attrac-
tive property that its parameters may be interpreted as prior cell counts. This
makes it useful for both reference analyses, where small prior values are used,
and as an informative prior, where (hypothetical) prior cell counts may be avail-
able. The conditional Dirichlet was shown to be equivalent to a hyper Dirich-
let density (which admits straightforward analyses) for decomposable log-linear
models. Hence a natural extension of the hyper Dirichlet distribution to non-
decomposable models has been obtained.

The conditional Dirichlet distribution is not tractable in general, so Monte
Carlo and other approximation methods are required. Gibbs sampling was ap-
plied in Chapter 4 to obtain samples from prior and posterior conditional Dirich-

let. distributions. The sampler was found to mix well, producing samples which
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are 1t highly dependent.

Laplace’s method for the approximation of integrals was introduced and ap-
plied in Chapter 5, although it was found to perform poorly where prior pa-
rameters take small values. However, accurate results may be obtained for the
posterior analysis of datasets where cell counts are large. The method of bridge
sampling was introduced, and applied to the problem of determining the normal-
ising constants for conditional Dirichlet distributions. The sampler was found
to produce good results, even when prior parameters take small values, and this
was illustrated by application to several examples.

Jeffreys’ prior, which is a reference prior by definition, was considered in
Chapter 6. An explicit expression was presented for the Jeffreys’ prior for a de-
composable log-linear model, and in many cases this was found to be a product
of independent Dirichlet distributions for the parameters of a particular decom-
position of the model. For other decomposable models, where the normalising
constant for Jeffreys’ prior is not directly available, the method of bridge sam-
pling was again applied, and found to produce accurate results. The Monte Carlo
samples needed were obtained using Metropolis Hastings sampling.

The choice of prior distribution was considered in further detail in Chapter 7.
Unit information priors, for which easy approximations to marginal likelihoods
are available, were discussed, and the relationship between the Laplace approx-
imation for marginal likelihoods and the Schwarz criterion was investigated for
log-linear models under multinomial sampling. It was shown that marginal like-
lihoods using Jeffreys’ prior may be approximated by a modified version of the
Schwarz approximation, with error of order O(n_%). This provides an easy ap-
proximation, in particular for models whose Jeffreys’ priors are intractable, where
bridge sampling is only needed to determine the prior (and not posterior) nor-

malising constant.

In Chapter 8, the various ideas introduced in the thesis were applied to two
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data analyses, and the results discussed.

9.2 Extensions

Several ideas investigated in this thesis give rise to possible avenues for additional
research.

The examples and applications presented throughout the thesis are for mod-
els with a maximum of six variables, although models with more variables are
included implicitly. However, the methods are directly applicable to models with
additional variables, the dimensionality of the model limited solely by computing
power. Jeffreys’ priors for decomposable models with five or more variables may
be written down in an explicit form by application of expression (6.4).

An expression was given in Chapter 6 for the Jeffreys’ prior for any log-linear
model. Although extensive application of this formula did not in general lead to
distributions in tractable forms, we believe that it is possible to determine explicit
expressions for the Jeffreys’ priors for non-decomposable models. Provided that
the normalising constants for such distributions may be determined, it is then
possible to apply the corrected Schwarz approximation derived in Chapter 7 to
non-decomposable models.

The method of bridge sampling was used to accurately approximate the nor-
malising constants for conditional Dirichlet distributions. However, the accuracy
of the method decreases with increasingly complex models. A potential exten-
sion is therefore to apply path sampling to this problem. Path sampling is a
method of approximating normalising constants which is a direct extension of
bridge sampling. The method of bridge sampling to determine the normalising
constant for density g involves the construction of a (single) bridging density
between a sampling distribution ¢ and g. Path sampling extends this idea to
construct a path between g and ¢ consisting of a finite number of intermediate

bridging densities. Increases in accuracy may be possible using this method, fur-
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ther details of which are given by Conigliani and O’Hagan (2000) and Gelman
and Meng (1998).

It may be possible to implement MCMC methods which have as their state
space both models and model parameters, such as reversible jump MCMC, for
model determination using conditional Dirichlet priors. However, since the nor-
malising constants for such distributions are not directly available, such an im-
plementation would not be straightforward.

Finally, whereas the methods used throughout are suitable for the analysis of
discrete data, it would be interesting to consider whether there is potential for

similar methods in the analysis of continuous, or mixed discrete and continuous,

data.
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