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NON-LINEAR NUMERICAL SCHEMES IN GENERAL RELATIVITY 

by Ulrich Sperhake 

This thesis describes the apphcation of numerical techniques to solve Einstein's held equations 
in three distinct cases. 
First we present the Erst long-term stable second order convergent Cauchy characteristic match-
ing code in cylindrical symmetry including both gravitational degrees of freedom. Compared 
with previous work we achieve a substantial simphhcation of the evolution equations as well 
as the relations at the interface by applying the method of Geroch decomposition to both the 
inner and the outer region. We use analytic vacuum solutions with one and two gravitational 
degrees of freedom to demonstrate the accuracy and convergence properties of the code. 

In the second part we numerically solve the equations for s ta t ic and dynamic cosmic strings 
of inhnite length coupled to gravity and provide the hist fully non-hnear evolutions of cosmic 
strings in curved spacetimes. The inclusion of null inhnity as pa r t of the numerical grid allows us 
to apply suitable boundary conditions on the metric and the mat te r helds to suppress unphysical 
divergent solutions. The resulting code is checked for internal consistency by a convergence 
analysis and also by verifying that static cosmic string initial d a t a remain constant when evolved. 
The dynamic code is also shown to reproduce analytic vacuum solutions with high accuracy. We 
then study the interaction between a Weber-Wheeler pulse of gravitational radiation with an 
initially static string. The interaction causes the string to oscillate with frequencies proportional 
to the masses of its scalar and vector held. After the pulse has largely radiated away, the string 
continues to ring but the oscillations slowly decay and eventually the variables return to their 
equilibrium values. 

In the hnal part of the thesis we probe a new numerical approach for highly accurate evolu-
tions of neutron star oscillations in the case of radial oscillations of spherically symmetric stars. 
For this purpose we decompose the problem into a static backgTOund governed by the Tolman-
Oppenheimer-VolkoE equations and time dependent pertmbations. In contrast to conventional 
treatments, the fuUy non-hnear form of the resulting perturbative equations is used. In an Eu-
lerian formulation of the problem the movement of the surface of the star relative to the hxed 
numerical grid leads to diGiculties in the numerical as well as the algebraic analysis. In order 
to alleviate the surface problem we use a simphhed neutron s tar model to study the non-hnear 
coupling of eigenmodes. By virtue of the high accmacy of our numerical method we are able 
to analyse the excitation of eigenmodes over a wide range of initial amphtudes. We End two 
distinct regimes, a weakly non-linear regime where the coeSBcients of higher order eigenmodes 
increase quadraticaUy with the initial amplitude and a moderately non-hnear regime where this 
increase steepens and an initially present mode of order j/' couples more e&ciently to modes of 
order 2_;, 3,; and so on. 

We conclude this work with the development of a fully non-hnear perturbative Lagrangian 
code. We demonstrate how the difhculties at the surface of t he star that arise in an Eulerian 
framework are naturally resolved in the Lagrangian formulation. This code is used to study the 
formation of discontinuities near the surface for initial data of low amplitude. 
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Notation 

Unless stated otherwise, the following conventions apply. Greek indices run from 0 to 3, whereaa 

Latin indices are used for 3-dimensional quantities. We will generally represent vectors and ten-

sors of higher rank with boldfaced letters (e.g. T). Sometimes we will denote vectors, i.e. tensors 

of rank (1,0), by partial di&rential operators (e.g. If we need to distinguish between a 

one-form and a vector, the one-form will be marked with a t i lde (e.g. u). If a one-form is the 

exterior derivative of a scalar function / , it wiU be denoted by d / and the tilde wiH be omitted. 

If V is a vector, then v is the associated one-form, i.e. v = g(v , . ) . In coordinate free language 

the contraction of a one-form u with a vector v wiU be wr i t t en as (u,v). The 4-dimen8ional 

Riemann tensor and its contractions wiU be denoted by the s t a n d a i d R. For the 3-dimensional 

Riemeinn tensor we always use %. We will use square brackets to denote the commutator as 

is done in quantum mechanics, so for example [V^, V^] = Vo:V^ — Throughout this 

work we will use natural units with c = 1 = G and the sigTi convention "— + + + " for the metric. 
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1 Introduction 

In 1915 Albert Einstein published a geometrical theory of gr avitation: TAe GeneroZ ^TAeon/ 

o/ He presented a fundamentally new description of gravity in the sense that the 

relative acceleration of particles is not viewed as a consequence of gravitational forces but 

results from the curvature of the spacetime in which the particles are moving. As long as no 

non-gravitational forces act on a particle, it is always moving on a "straight line". If we consider 

curved manifolds there is still a concept of straight lines which are called but these 

will not necessarily have the properties we intuitively associate with straight lines from our 

experience in Hat Euchdean geometry. It is, for example, a well known fact that two distinct 

straight lines in 2-dimensional Eat geometry will intersect each other exactly once unless they 

are parallel in which case they do not intersect each other at all. These ideas result from the 

Efth Euclidean postulate of geometry which plays a special role in the formulation of geometry. 

It is a well known fact that one needs to impose it separately from the hrst four Euclidean 

postulates in order to obtain Eat Euchdean geometry. It was not realised until the work of 

Gauss, Lobachevsky, Bolyai and Riemann in the 19th century that the omission of the fifth 

postulate leads to an entirely new class of non-Euchdean geometries in curved manifolds. A 

fundamental feature of non-Euclidean geometry is that straight lines in curved manifolds can 

intersect each other more than once and correspondingly diverge from and converge towards 

each other several times. In order to illustrate how these properties give rise to eSects we 

commonly associate with forces such as gravitation, we consider two observers on the earth's 

surface, say one in Southampton and one in Hambmg. We assume that these two observers 

start moving due south in "straight lines" as for example guided by an idealised compass exactly 

pointing towards the south pole. If we follow their separate pa ths we will discover exactly the 

ideas outlined above. As long as both observers aie in the northern hemisphere the proper 

distance between them will increase and reach a maximum when they reach the equator. Prom 

then on they will gradually approach each other and their pa ths will inevitably cross at the 

south pole. In the framework of Newtonian physics the observers will attribute the relative 

acceleration of their positions to the action of a force. It is clear, however, that no force is 

acting in the east-west direction on either observer at any stage of their journey. In a geometric 

description the relative movement of the observers Ends a qualitatively new interpretation in 

terms of the curvature of the manifold they are moving in, the curvature of the earth's smrface. 

With the development of general relativity Einstein provided the exact mathematical foundation 

for applying these ideas to the forces of gravitation in 4-diinensional spacetime. One may ask 
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why such a geometrical interpretation has only been developed for gravitation. Or in other 

words which feature distinguishes gravitation from the other three fundamental interactions? 

The answer hes in the "gravitational charge", the mass. It is a common observation that the 

gravitational mass which determines the coupling of a particle to the gravitational held is 

virtually identical to the inertial mass mi which describes the particle's kinematic reaction to 

an external force. High precision experiments have been undertaken to measure the diEerence 

between these two types of masses. All these results are compatible with the assumption that 

the masses are indeed equal. The mass will therefore drop ou t of the Newtonian equations 

governing the dynamics of a particle subject exclusively to gravitational forces ma = 

where o is the acceleration of the particle, G the giavitational constant, M the mass of an 

external source and r the distance from this source. The paiticle mass m can be factored out so 

that the movement of the particle is described in pmely kinematic terms. The redundancy of 

the concept of a gravitational force is naturally incorporated into a geometric theory of gravity 

such as general relativity. It is important to note that this behaviour distinguishes gravity from 

the other fundamental interactions which are associated with diSerent types of charges, such 

as electric charge in the case of electromagnetic interaction. It is not obvious how and whether 

it is possible to obtain similar geometric formulations for the electromagnetic, weak and strong 

interaction. The unihcation of these three fundamental forces wi th gTavity in the framework of 

quantum theory is one of the important areas of ongoing research. 

In order to formalize the ideas mentioned above, general relativity views spacetime as a 4-

dimensional manifold equipped with a metric of Lorentzian signature where the Greek 

indices range from 0 to 3. At any given point in the manifold the signature enables one to 

distinguish between time-like, space-hke and null directions. The metric further induces a 

whole range of higher level geometric concepts on the manifold. It dehnes a scalar product 

between vectors which leads to the measurement of length and the idea of orthogonality. Prom 

the metric and its derivatives one can derive a connection on the manifold which facilitates 

the dehnition of a coiianant (fenfafiiie. The notion of a derivative is more complicated in a 

curved manifold than in the common case of Sat geometry and Cartesian coordinates because 

the basis vectors wiU in general vary from point to point in the manifold. It is therefore no 

longer possible to ident i^ the derivative of a tensor with the derivative of its components. 

Instead one obtains extra terms involving the derivatives of the basis vectors. In terms of a 

covariant derivative these terms are represented by the connection. In general relativity one 
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uses a metric-compatible connection deEned by 

^ 7(5 

where the auTnma^wn con^enhon, according to which one sums over repeated upper 

and lower indices, has been used. These connection coefEcients are also known as the C/i,ns(o_g^e( 

sym6oZs and dehne a covariant derivative of tensors of arbitrary rank by 

where represents the standard partial derivative with respect to the coordinate a;"̂ . So for 

each upper index one adds a term containing the connection coe&cients and for each lower 

index a corresponding term is subtracted. With the definition of a covariant derivative we can 

hnally write down the exact definition of a "straight hne" in a curved manifold. A geodesic is 

dehned as the integral curve of a vector held v which is paiallel transported along itself 

= 0 . 

Baaed on the covariant derivative we can also give a precise deSnition of curvature. For this 

purpose the jZzemann fengor is defined by 

R"«7S = + r - r j j - rg,r!;j , . 

If we use a coordinate bcisis, i.e. this definition can be shown to imply that for 

any vector held v"' 

which is commonly interpreted by saying that a vector v is changed by being parallel transported 

around a closed loop unless the curvature vanishes (see for example Misner, Thorne, and Wheeler 

1973). In order to describe the efTect of the matter distribution on the geometry of spacetime 

one defines the ^engor aa the of the Riemann tensor where again 

the Einstein summation convention for repeated indices has been used. The geometry and the 

matter are then related by the Einstein held equations 

Gag '.= Rq/3 — 1/2 A ~ afi 
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where B = R'^a is the A%cc; smZar and the energ?/ momeM^wm kngor. The interaction 

between the matter distribution and the geometry of spacetime can be summed up in the words 

of Misner, Thorne, and Wheeler: "6'^ace on Aow mo%;e. in maf^er 

reacts 6acA: on apace, (eZZmg Aow ô cur^e". 

Although the 5eld equations look rather neat in the compact notation we have given above, 

this should not hide the fact that the ^engor iw in fact a comphcated function of 

the metric and its Erst and second derivatives. Due to the symmetry of the Einstein tensor 

and the energy momentum tensor the held equations represent 10 coupled, non-hnear partial 

diSerential equations, which written explicitly may contain of t he order of 100,000 terms in the 

general case. It therefore came as quite a surprise when Kaii Schwaizschild found a non-trivial, 

analytic solution to these equations just some montha after their publication. Since then many 

analytic solutions have been found and a whole branch of the studies of general relativity is 

concerned with their claasihcation. Enormous insight into the s t ruc tme of general relativity has 

been gained from these analytic solutions, but due to the complexity of the held equations these 

solutions are normally ideahzed and restricted by symmetry assumptions. In order to obtain 

accurate descriptions of astrophysically relevant scenarios one may therefore have to go beyond 

purely analytic studies. A particularly important aiea of resear ch connected with general rela-

tivity that hag emerged in recent years concerns the detection of ^rafz(a^%onoZ wof eg. In analogy 

to the prediction of electromagnetic waves by the Maxwell equations of electrodynamics, the 

Einstein held equations admit radiative solutions with a characteristic propagation speed given 

by the speed of light. Due to the weak couphng constant of the gravitational interaction, which 

is a factor of 10^° smaller than the electromagnetic coupling constant, gravitational waves will 

have an extremely small eSect on the movement of matter and are correspondingly di&cult to 

detect. If one considers for example a metal bai" of a length of several kilometres, estimates 

have shown that the detection of gravitational waves requires one to measure changes in length 

orders of magnitude smaller than the diameter of an atomic nucleus. Even though attempts to 

detect gravitational radiation go back to the work of Joe Weber in the early sixties, it is only the 

recent advance of computer and laser technology that provides scientists with a realistic chance 

of success. The current generation of gravitational wave detectors GEO-600, LIGO, TAMA and 

VIRGO that have been constructed for this pmpose are complex multi-national collaborations 

and have recently gone onhne or are expected to go online in the near future. Due to the 

extreme smallness of the signals, the accumulation of data over several years is expected to 

improve the chances of a positive identihcation of signals hom extra-galactic sources. 

Conhdence in the existence of gravitational waves has been significantly boosted by the Nobel 
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prize winning discovery of the binary neutron star system PSR1913+16 (Hulse and Taylor 1975, 

Taylor and Weisberg 1989). The spin-down of this system has been foimd to agree remarkably 

well with the energy-loss predicted by general relativity due t o the emission of gravitational 

waves and is generally accepted as indirect proof of the existence of gTavitational radiation. 

In order to simplify the enormous task of detecting gravitational waves, it is vital to obtain 

information about the structure of the signals one is looking for. I t is necessary for this purpose 

to accurately model the astrophysical scenarios that aie considered likely sources of gravita-

tional waves and extract the corresponding signals from these models. According to 

(1923) (Aeorem the Schwarzschild solution, which describes a s ta t ic , spherically symmetric vac-

uum spacetime, is the only spherically symmetric, asymptotically Hat solution to the Einstein 

vacuum held equations. As a consequence a spherically symmetric spacetime, even if it contains 

a radially pulsating object, will necessarily have an exterior s ta t ic region and be non-radiating. 

It is necessary, therefore, to use less restrictive symmetry assumptions in the modelling of as-

trophysical sources of gravitational waves. In fact the most promising sources of gravitational 

waves currently under consideration are the in-spuahing and merger of two compact bodies 

(neutron stars or black holes) and comphcated oscillation modes of neutron stars that increase 

in amplitude due to the emission of gravitational waves by extract ing energy from the rotation 

of the star. Even though a great deal of information about these scenarios has been gained 

from approximative studies, such as the formalism or the use of 

(ecAnzgues, a detailed simulation will require the solution of t h e Einstein equations in three 

dimensions. The complicated structure of the corresponding models in combination with the 

enormous advance in computer technology has given rise to nttmencaf the computer 

based generation of solutions to Einstein's held equations. 

In order to numerically solve Einstein's held equations it is necessary to cast the equations in 

a form suitable for a computer based treatment. Among the formulations proposed for this 

purpose by far the most frequently apphed is the canonical "3+1" decomposition of Arnowitt, 

Deser, and Misner (1962), commonly referred to as the ADM formahsm. In this approach 

spacetime is decomposed into a 1-parameter family of 3-dimensional space-like hypersurfaces 

and the Einstein equations are put into the form of an initial value problem. Initial data is 

provided on one hypersurface in the form of the spatial 3-metric and its time derivative and 

this data is evolved subject to certain constraints and the speciEcation of gauge choices. It is 

a known problem, however, that the ADM formahsm does not result in a strictly hyperbohc 

formulation of the Einstein equations and in combination with its complicated structure the 

stability properties of the ensuing hnite diSerencing schemes remain unclear. These difSculties 
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have given rise to the development of modiEed versions of the ADM formulation in which the 

Einstein equations are written as a hyperbohc system. These a n d similar modifications of the 

canonical ADM scheme have been successfully tested, but an optimal "3+1" formulation has 

yet to be found and it may well be possible that an optimal "3+1"-strategy depends sensitively 

on the problem that needs to be solved. 

An entirely diEerent approach to the held equations is based on the decomposition of spacetime 

into families of nuU-surfaces, the characteristic surfaces of the propagation of gravitational ra-

diation. The Einstein held equations are again formulated as an initial value problem and by 

virtue of a suitable choice of characteristic coordinates one obtains a natural classihcation of the 

equations into evolution and hypersurface equations. The characteristic initial value problem 

was hrst formulated by Bondi et al. (1962) and Sachs (1962) in order to facihtate a rigorous 

analysis of gravitational radiation which is properly described at null inhnity only. It is a generic 

drawback of "3+1" formulations that null inhnity cannot be included in the numerical grid by 

means of compacti:^ing spacetime and instead outgoing radiation boundary conditions need 

to be used at hnite radius. Aside from the non-rigorous analysis of gravitational radiation at 

hnite distances these artificial boundary conditions give rise to spurious numerical rejections. 

A characteristic formulation resolves these problems in a natural way but is itself vulnerable to 

the formation of caustics in regions of strong curvature. It is these properties of "3+1" formula-

tions and the characteristic method that resulted in the idea of Coi/cAy mafcAmp 

(COM), i.e. the combination of a "3+1" scheme applied in the interior and a characteristic 

formahsm in the outer vacuum region. This allows one to make use of the advantages of both 

methods as we will illustrate in more detail below. 

This thesis consists of four parts. First we wiU investigate t he Einstein held equations from 

the numerical point of view. This includes a detailed description of the ADM and the char-

acteristic Bondi-Sachs formahsm as well as a general discussion of hnite diEerence methods 

and numerical concepts such as stability and convergence. Section 3 is concerned with Cauchy 

characteristic matching as a numerical tool to solve the held equations. In particular we present 

a long term stable CCM code for cylindricaUy symmetric vacuum spacetimes containing both 

gravitational degrees of freedom. In section 4 we investigate the behaviour of static and dy-

namic cosmic strings in cylindrical symmetry. The numerical codes developed for the analysis 

are described together with a detailed study of the oscillations of a cosmic string excited by 

gravitational radiation. Finally in section 5 we present a fully non-hnear perturbative approach 

to study non-linear radial oscillations of neutron stars. The per tmbat ive formulation enables 

us to study non-linear oscillations over a large amphtude range with high precision. In an 
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Eulerian formulation, however, the smface of the star gives rise to numerical diSculties which 

leads us to investigate a simpliSed neutron star model instead. The section is concluded with 

the development of a Lagrangian formulation of dynamic spherically symmetric stars in which 

the surface problems are resolved in a natural way. We use the exact treatment of the surface 

for the analysis of shock formation near the surface for initial d a t a of low amplitude. 
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2 The field equations from a numerical 

point of view 

We have already mentioned that the Einstein held equations have to be put into an appropriate 

initial value form before they can be integrated numerically. In this section we will describe in 

detail the "3+1" decomposition of Arnowitt, Deser, and Misner (1962) and the characteristic 

formahsm introduced by Bondi et al. (1962) and Sachs (1962). The section is completed by a 

discussion of general numerical aspects and the description of some hnite diSerencing schemes 

used later in this work. 

2.1 The "3+1" decomposition of spacet ime 

2.1.1 T h e fol ia t ion 

Following York (1979) we start the discussion of the "3+1" formahsm with a 4-dimensional 

manifold M with coordinates Then a suitable function t(a;'^) dehnes a 1-parameter family 

of 3-dimensional hypersurfaces by 

^(z°^) = const. (2.1) 

We will refer to these hypersurfaces as Geometrically they are represented by the one-form 

d(. Next we consider a 3-parameter family of cmves threading the family of hypersurfaces. By 

threading we mean 

(1) the curves do not intersect each other, 

(2) the tangent vectors v of the curves are nowhere tangent to i.e. (dt, v) ^ 0 

everywhere. 

In this case the curves are parameterized by < and the tangent vector with respect to this 

parameterization is which satishes (dt, = 1. This foliation is illustrated graphically in 

Fig. 1. We are now in the position to construct basis vector helds in the manifold Af. For each 

slice 2 we choose three vector helds 6^, so that they are lineaily independent at each point of Z 

and sa t i s^ the condition (d(, Ci) = 0. Then at each point f of Af, the set of vectors is 

a basis of the tangent space Tp at this particular point. We note that no use of a "metric ' has 

been made so far. All we have done is to foliate Af into a 1-parameter family of 3-dimensional 

slices and to choose suitable basis vectors at each point. 
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= A 

^(a;°') = 0 

Figure 1: Two hypersurfaces of the fohation of spacetime in t h e "3+1" formahsm. 9* is the 
tangent vector Held to the curves threading the foliation and n the hypersurface orthogonal 
vector held. The relation between these vectors is deEned by the lapse function a and the shift 
vector p. 

2.1.2 G a u g e f r e e d o m 

Without a metric, the concepts of length and orthogonality are not dehned. It will, therefore, 

be an essential step in the construction of a metric to give meaning to these notions. We let g 

be a symmetric rank two tensor field, choose a vector held n with (d(, n) ^ 0 and demand 

g(n, n) = —1 (n is a unit vector), 

Vig(ei,n) = 0 

g(ej, Cj j — Yij-

(n is orthogonal to Z), 

(2.2) 

(2.3) 

(2.4) 

where is a positive dehnite metric inside the hypersurfaces Z. At this stage the 3-metric y 

is unknown and below we shall see that its components are the dynamic variables of the ADM 

"3+1" scheme and thus need to be specihed on the initial shce (subject to certain constraints). 

It is important to note the minus sign in Eq. (2.2). It is this choice in combination with the 

positive dehniteness of the 3-metric y which determines the spatial nature of the 3-dimensional 

hypersurfaces and the time-like character of the normal vector n. To what extent we have 

now specihed the metric will become clearer if we use the basis {9(,ei}. Furthermore we will 
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introduce the lapse function a and the shift vector P' dehned by 

a( = an + P'ei, (2.5) 

" = (^-G) 

Then the components of the metric become 

9oo = 9(^<, = 9(«n + P'e,, an + p"e,;) 
(2.7) 

(2.8) 
90i = 9(^<,e^) = 9(an + P^ej,ei) 

= Pt-

Sij — Yijj (2.9) 

which corresponds to the canonical "3+1" line element 

= ( — ( 2 - 1 0 ) 

Prom this equation we can see that the metric component will be negative unless a large 

shift vector is chosen. In the remainder of this discussion we will assume a suSciently small 

shift vector and therefore consider t the time-hke coordinate. In contrast the positive deBnite 

nature of the 3-metric y implies that the are space-like coordinates. 

In order to investigate the remaining gauge freedom we will now consider the imphcationg of a 

diSerent choice of lapse a and shift p. According to Eq. (2.5) such a diEerent choice would result 

in a modihed relation between n and i.e. a diSerent family of curves threading the fohation. 

This, however, merely corresponds to a coordinate transformation (relabelling of the points in 

the manifold) and we see that lapse and shift represent the coordinate or gauge freedom of 

general relativity. They can in principle be chosen arbitrarily without aSecting the resulting 

spacetime. 

The lapse can be interpreted as the proper time measmed by an Eulerian observer, that is an 

observer moving with 4-velocity n. If we consider two hypersurfaces the dlEerence in 

coordinate time is by definition (df:, - 9^) = An illustrative way of describing this result 

is to say that points from S* to St+at. On the other hand we know from Eq. (2.6) that 

(d ,̂ n) = 1/a . So the vector connecting the two hypersmfaces in the normal direction is a n. 

The proper length of this vector is given by and the proper time experienced by 

travelling along the integral curve of n from to is « - In this sense, the lapse allows 



2 T g E f l B l D E Q L / A T f O N S F R O M A N L r M E R I C A I P O f N T O F W E W 11 

us to measure the length of vectors pointing outside the hypersmfaces. In numerical relativity 

the lapse can be used to control the advance of proper time in different regions of spacetime as 

the numerical code is evolved into the future. Suitable choices for a and p will be discussed in 

section 2.1.6. 

The shift vector on the other hand introduces the concept of orthogonality relative to the spatial 

hypersurfaces 2 . For this purpose it is necessary to define the scalar product between the spatial 

basis vectors and vectors pointing out of the hypersurface. The shift vector which is given 

by Pi = g(^t ,ei) introduces this scalar product. As a result is orthogonal to 2 in the 

sense that its scalar product with any vector tangent to S vanishes. We can then use the lapse 

function to rescale this vector to unit length and thus recover Eq. (2.3). 

2.1.3 Ex t r in s i c c u r v a t u r e K a n d t h e 3 -met r i c y 

Even though we have determined a basis adapted to om- fohation of spacetime, it is convenient 

to describe the Cauchy initial value problem in a general basis. Following York (1979), we 

introduce the projection operator _L and a shorthand notation for the projection of a tensor of 

arbitrary rank _LT by 

+ n/'n,,, (2.11) 

— I I ^ I /.if/ _LT\^ = (2.12) 

We can use this deEnition to write the 3-metric y as the projection of the 4-metric g onto Z 

(2.13) 

which in the "3+1" baais reduces to 

Yij = (2-14) 

Yô  = 0. (2.15) 

The 3-metric y completely describes the intrinsic properties of the 3-dimensional manifold 2 . 

In particular, the cormection on Z which for a vector v tangent to the slice is dehned by 

(2.16) 
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Figure 2: Illustration of the eEect of a non-zero extrinsic curvature on the embedding of the 
hypersurface S. In the left plot we see that n points in diEerent directions at digerent points of 
2 . In the right plot distances increase or decrease as an observer moves from one hypersurface 
to another. 

with obvious extension to general tensors, turns out to be the Christoffel connection of yij if we 

restrict ourselves to spatial quantities and use the "3+1" basis Furthermore we deSne 

the 3-dimensional Riemann tensor % by 

%(e^,e^)n = 0. 

(2.17) 

(2.18) 

Again, this amounts to the usual deGnition in terms of Yi, if the "3+1" basis is used. 

In order to describe the embedding of 2 into M, we dehne the extrinsic curvature 

= -_LV^n,/. (2.19) 

This can be shown to be equivalent to 

K r 9 Y//„ (2.20) 

where /2n is the Lie-derivative along the unit normal vector held n. In particular this equation 

imphes that K is a symmetric tensor. The effect of a non-vanishing extrinsic curvature is 

schematically illustrated in Fig. 2 by the following two examples. 

(1) At different points of S, the unit normal vector n points in diSerent directions 

because of the embedding: _LVn ^ 0. 

(2) Due to the extrinsic curvatme an observer moving along n hom one hypersurface 

to another observes an increase or decrease in distance between points with hxed 

spatial coordinates. This corresponds to a change of t h e 3-metric y: Y 7̂  0-

In section 2.1.5 we will see that the extrinsic curvature K and the 3-metric y are the dynamic 

variables of the ADM scheme and need to be specified on an initial hypersurface So- With an 
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appropriate choice of lapse function and shift vector we will then be able to evolve the 4-metric 

over some region of the manifold. 

2.1.4 T h e p ro j ec t i ons of t h e R i e m a n n t enso r 

In order to derive the equations that will GnaUy determine the evolution of the metric, we follow 

Stachel (1962) and look at the projections of the Riemann tensor. Given the 3-dimensional 

hypersurfaces and the unit normal vector Held n there aie thiee non-trivial projections of 

(1) aH four components are projected onto S: 

(2) three times onto S, once onto n: 

(3) twice onto 2 , twice onto n: 

These are all non-trivial projections we can construct since projecting three or more components 

onto n yields zero because of the symmetry properties of R. It is a remarkable fact that the 

Erst two projections are entirely determined by the initial data according to the Gaugg-Coffocc* 

K I I . (2.21) 

(2.22) 

These equations determine 14 of the 20 independent components of the 4-dimensional Riemann 

tensor. The remaining 6 components are contained in the thi rd projection of R according to 

the 

-t- (2.23) 

If we assume that the 3-metric y and the extrinsic curvature K aie given on some initial slice 

we are able to derive 14 of the 20 components of the 4-dimensional Riemann tensor from these 

initial data. The Lie derivative of the extrinsic cmvature however, is not known at 

this stage and as a consequence we cannot determine the remaining 6 components of R̂ K̂cr nor 

can we evolve the extrinsic curvature and the 3-metric forward in time. We therefore need an 

additional source of information that relates the Lie-derivative i.e. the time derivative 

of the extrinsic curvature, to the initial data. In general relativity this extra information is 
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given in the form of the held equations 

(2.24) 

where the jZzccz ^enaor R^;, = and the jZicc; acaZar A = describe the geometry and 

the energy-momentum tensor is determined by the distribution of matter in spacetime. 

The terms on the left hand side of this equation are often combined into the Emafem fensor 

Gyfii/-

2.1.5 T h e role of t h e field equa t ions 

It is important to note that the held equations have not been used so far. We have seen that 

the initial data K and y determine a substantial part of the 4-dimensional Riemann tensor, 

but 6 components, or put another way, the second time derivatives of the 3-metric y remain 

unknown. It is Einstein's held equations that allow us to express the undetermined projections 

of the Riemann tensor in terms of the other projections -LR î/̂ A and _LR^^K(rn'̂  and 

the matter distribution on 2 . That allows us to calculate the 4-dimensional Riemann tensor 

R/if/KA on the initial shce So. Furthermore we can calculate the t ime derivatives of y and K and 

evolve the variables onto the next slice Then the process is repeated on each new shce 

and eventually we have (in principle) determined the geometry of the whole spacetime. Lapse 

and shift provide the remaining information for the components of the 4-metric g. Before we 

look at the held equations in more detail, however, we have to t u rn our attention to the matter 

distribution. 

We have already mentioned that the energy-momentum tensor represents the matter distribu-

tion in spax^etime. We illustrate this by considering the components of T in a coordinate system 

One can then interprete the component as the //-component of Sux of //-momentum as 

measured by an observer at rest in the coordinate system. In the case of spatial components 

this is commonly referred to as the (/j,i/)-component of the "stress". The concept extends to 

the time component, so that describes the hux of //-momentum across surfaces ^ = const 

which is just the density of /(-momentum. As a special case represents the energy density. 

Similarly is the energy Aux across surfaces = const. I t can be shown that the energy 

hux is equal to the momentum density and that the stress components are sym-

metric (see for example Misner et al. 1973). As a consequence the energy momentum tensor is 

symmetric: 
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Below we will see that projecting the Einstein equations in the same way as the Riemann tensor 

wiU naturally divide the equations into two diSerent gioups, t h e constraints and the evolution 

equations. In the previous section we have studied the projections of the Riemann tensor, 

which determines the left hand side of the Geld equations (2.24), onto n and the hypersurfaces 

2 . It remains therefore to calculate the corresponding projections of the right hand side of the 

equations given by the energy-momentum tensor. For this purpose we dehne the energy and 

momentum density and the stress tensor by 

p = (2.25) 

(2.26) 

(2.27) 

The evolution of the matter variables follows from the conservation of energy and momentum 

= 0 

^dtP ~ ^CiDui^ + a{S^''^K+ p t r K) — 2\'^Dua + Cpp, (2.28) 

+ a(2K''''j^ + f tr K) - + vCpj''. (2.29) 

In order to determine the time derivatives of S extra information is required which usually 

comes in the form of an equation of state. 

With the projections of the Riemann tensor given by Eqs. (2.21)-(2.23) and those of the energy-

momentum tensor given by Eqs. (2.25)-(2.27) we are now in a position to project the Seld 

equations onto Z and n. First we consider the projection of b o t h components onto S 

= 87rJ_T,.^. (2.30) 

Inserting the projections of T and G and solving for the time derivative of K, we obtain 

- 2K^pK''^ + tr K - 47r (2S^^ - tr S 

(2.31) 

^dt^l\xv — ~~2o;K^^ + (2.32) 
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where the evolution equations for the 3-metric aie simply the deHnition of the extrinsic curva-

ture. It is this set of equations which forms the core of the ADM-evolution of the metric. Given 

appropriate initial data on some initial slice So for the extrinsic curvature K,;,, and the 3-metric 

Y,:;, we can evolve these functions into the future. The 4-dimensional Riemann tensor and thus 

the geometry of the spacetime is determined at any time according to Eqs. (2.21)-(2.23). The 

appearance of Greek indices in the evolution equations should no t hide the fact that there are 

only six components each for the extrinsic curvature and the 3-nietric y. This becomes clear 

when we use the adapted baais e^} in which case all Greek indices can be replaced by Latin 

indices in Eqs. (2.31), (2.32). We can also see then that there are no evolution equations for 

or, put another way, in this basis the held equations do not contain second time derivatives of 

the go^. In this sense the problem is under-determined. 

Cy) TAe 

If we consider the remaining projections of the held equations, we find that they can be expressed 

in terma of the initial data only 

^ + (tr K)^ - = 87r/), (2.33) 

tr K = gTrf. (2.34) 

These equations impose conditions that need to be satished by the hypersmface data for all 

values of t. They are called the energy or Hamiltonian constraint (2.33) and the momentum 

constraints (2.34). In this sense, the problem is over-determined. However, it can be shown 

that by virtue of the contracted Bianchi identities = 0 t h e constraints are satished for 

all values of f if they are satisfied by the initial data. 

The problem we are facing now is to End initial data for y and K that satis:^ the constraint 

equations. A systematic approach to solving this problem is given in O Murchadha and York 

(1974). We wiH illustrate their method in the vacuum case with "maximal slicing" (cf. section 

2.1.6), where the vanishing of tr K leads to a decoupling of the constraint equations. O Mur-

chadha and York start by introducing a conformal 3-metric and extrinsic curvature according 
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to 

Yu = (2.35) 

(2.36) 

In the caae of maximal slicing the constraint equations can then be written in the form 

A,^ - = 0, (2.37) 
b 6 

= 0, (2.38) 

where D is the covariant derivative with respect to y and A = is the conformal Laplace 

operator. The conformal transformation of the 3-dimensional curvature scalar ia given by 

% = (2.39) 

One can further spht the traceless Kij according to 

+ D W : ' + (2.40) 

Here A* is the transverse traceless part of the conformal extrinsic curvature K sat is^ing 

f ) jAy = t r A l ^ = 0 , (2.41) 

and the vector is to be determined by Eq. (2.38) which in the case of maximal slicing can be 

written as 

AM^' + = 0. (2.42) 

In this formulation of the initial data problem the conformal 3-metric y and the transverse 

traceless part A* are regarded as given. Then the momentum constraint (2.40) has to be solved 

to obtain and the conformal factor results from the energy constraint (2.37). By means of 

the conformal decomposition we have thus isolated and as the four variables determined 

by the constraint equations on the initial hypersurface. 

Much of the work that has gone into the calculation of initial data has been based on the 

conformally Sat approach of Bowen and York (1980). In this approach one assumes the spatial 

3-metric to be conformally Hat, so that yij = However, recent work has cast doubt 
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on the suitability of this approach in the case of black hole initial data. The diSculties arise 

from the fact that there exist no conformally Hat space-hke slices of the Kerr spacetime (Garat 

and Price 2000). The initial data resulting from the conformally Hat approach will therefore 

represent distorted Kerr black holes which generally radiate off a burst of gravitational waves 

which contaminates the evolution of binary black holes or per turbed Kerr spacetimes ("close 

limit" calculations). Recent efforts have therefore gone into t h e calculation of more realistic 

initial data which is not based on the conformally Hat approach (see for example Marronetti 

and Matzner 2000). 

A comprehensive description of the general initial value problem and more details on solving 

the constraint equations can be found in York (1983). 

2.1.6 T h e k i n e m a t i c degrees of f r eedom: lapse and s h i f t 

In the previous section we have seen that there are no evolution equations for the components 

90^ of the metric if we use the adapted basis The line element (2.10), however, shows 

that the go^ are completely determined by the lapse o; and the shift vector p and these can 

be chosen arbitrarily without aEecting the metric. Nevertheless the choice has a substantial 

impact on the performance of a numerical scheme. For example a poor choice of coordinates 

can result in a code which runs into a singularity before interesting results are computed. A 

large number of gauge choices have been suggested in the past, some of which we will describe 

below. A more comprehensive discussion can be found in Piran (1983). 

T h e lapse f u n c t i o n 

In geodesic slicing a is set to 1 everywhere. This means that the coordinate time is identical 

to the proper time of Eulerian observers. Although this slicing condition appears to be quite 

natural it does not lead to any significant simpllGcations of the equations and, worse, it is 

singularity seeking. We illustrate this behaviour in the case of the Schwarzschild spacetime in 

Kruskal coordinates (Smarr and York 1978), by considering an Bulerian observer close to the 

black hole. An Eulerian observer does not initially move in the spatial hypersurface and will 

fah into the singularity on a time scale TrM, where M is the mass of the black hole. Choosing 

the orthogonal time of an Eulerian observer as coordinate time will therefore cause the code to 

crash on a coordinate time scale of vrM. Far away from the black hole, however, where Eulerian 

proper time is close to the proper time of an astronomical observer we would basically hke the 

code to advance up to t oo. One way to accomplish this is to slow down the advance of 
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' t 

t "f~ 2j(it 

t -f- dt 

& = an 

Figure 3: In order to avoid the code entering a singularity t ha t forms after a finite amount of 
time (the shaded region indicates an associated horizon) the advance of proper time is delayed 
in the central region by use of an appropriate lapse function. For convenience we have set the 
shift vector (5 = 0. 

proper time near the formation of a singularity as illustrated in Fig. 3. This, however, implies 

a different choice for the lapse function a . 

An alternative way of avoiding the code to encounter singularities consists in cutting oS the 

singularity from the calculation assuming that it is liidden inside an apparent horizon and thus 

no information is lost in the excision (Thornburg 1987, Seidel and Suen 1992). This approach 

has attracted a lot of attention in recent years and has been successfully implemented in the 

evolution of black holes (see Alcubierre et al. 2001 for example). In this work, however, we will 

not make use of these methods and therefore restrict this discussion to conventional techniques 

for avoiding singularities. 

The restrictions arising from geodesic slicing were recognised long ago by Lichnerowicz (1944) 

who showed that a much more suitable choice for a is obtained if one requires that the trace 

of the extrinsic curvature vanishes: tr K = 0. This choice has been termed maximal slicing 

since the volume of an arbitrary region (1 of a hypersmface E wiH be maximal with respect to 

all other hypersurfaces that are identical with 2 outside (1 if t r K = 0 (see for example York 

1979). If we insert the energy constraint (2.33) into the evolution equation for t rK [obtained 

from Eq. (2.31)] we obtain the following condition for « 

A a = a + 47r(tr S + p)] (2.43) 
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A number of useful properties have made maximal slicing one of the most popular choices in 

numerical relativity. 

(1) It avoids singularities. 

(2) The constraint equations in the initial data problem are decoupled (cf. section 

2.1.5). 

(3) It leads to some simplihcation of the evolution equations. 

The major drawback is that we have to solve the elliptic par t ia l diEerential equation (PDE) 

(2.43) on each time shce. 

Hyperbolic shcing is a generahsed version of maximal slicing. T h e trace of the extrinsic curva-

ture is required to be constant but not necessarily to vanish: tr K = const. The major diSerence 

is that the hypersurfaces asymptotically extend to future or past null inhnity, depending on the 

sign of tr K, instead of spatial inRnity as in the case of maximal slicing. This property makes it 

an interesting choice for the analysis of gravitational radiation. 

Another slicing condition where the lapse function is determined by enforcing a condition on 

the extrinsic curvature is polar slicing (see Bardeen and P h a n 1983 for a detailed discussion). 

Using polar coordinates (r, ^, (^), one demands that 

tr K = K r ^ = 0. (2.44) 

This condition leads to a parabohc PDE for the lapse function a which, in general, is easier 

to solve than the elliptic PDE that appears for example in maximal slicing. Furthermore 

polar slicing is strongly singularity avoiding as we will illustrate in the evolution of a spherically 

symmetric dust sphere in Lagrangian gauge and polar slicing in section 5.4. The main drawback 

of polar slicing is the irregular behaviour of the lapse function in the non-spherically symmetric 

case (Bardeen and Piran 1983). This problem can be overcome by using an alternative condition, 

for example maximal slicing, near the origin and implementing a gradual transition to polar 

slicing outside a finite radius r. 
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^ormonzc afzcmg 

In harmonic slicing one requires that ^ is a harmonic time coordinate 

= 0. (2.45) 

In terms of the lapse function a this condition results in equations similar to those of maximal 

shcing 

harmonic si. maximal si. 

= - t r K = V ^ n ^ = 0 , 

— 0, 

Harmonic slicing is another singularity avoiding condition and was used by Bona and Massd 

(1992) to write the Einstein equations as a hyperbolic system of balance laws. The same authors 

and coworkers have shown that many other slicing conditions su i t this purpose as well (Bona 

et al. 1997). 

coortfmafe (fntier concfifwMg 

The suggestion of so-called driver conditions by Balakrishna et al. (1996) arises from the fact 

that one is normally interested in the ensuing properties of the numerical evolution rather than 

the exact shape of the lapse (or shift) function. In this respect one has to note that the Eeld 

equations are intrinsically coordinate independent and thus there is no need to implement a spe-

cihc coordinate condition exactly if an approximate implementation leads to a stable evolution. 

Balalcrishna et al. illustrate this eSect in the case of maximal slicing tr K — 0, where the impor-

tant property is the vanishing of the trace of the extrinsic curvature. They demonstrate how 

this condition is actually satished with higher numerical accuracy if one imposes the "K-driver" 

slicing condition 8t(tr K) + c tr K = 0 where c is a positive constant. This condition will result 

in an exponential decay m any deviation from tr K = 0, whereas the original implementation of 

maximal slicing has no such built-in correction mechanism. The lapse function a is determined 

in this case by an elliptic equation similar to Eq. (2.43) in maximal shcing. The only diSerence 

is the appearance of the term c tr K on the right hand side of t h e equation. Balakrishna et al. 

demonstrate the superior performance of the "A'-driver" condition in the cases of Hat space and 

a self-gravitating scalar held. 

A related proposal by Balakrishna et al. concerning elhptic coordinate conditions in general is 

also based on the suitabihty of approximate implementations of coordinate conditions. Instead 

of solving the elUptic equation directly, which in general is computationally expensive, they 
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suggest "evolving the elhptic equations" by rewriting them in parabolic form which is similar 

to the relaxation method of solving elliptic PDBs (see for example Press et al. 1989). 

We have listed these methods under the heading of slicing conditions, but the same principles 

apply to the shift vector. 

In recent work on 3-dimensional black hole excision Alcubierre et al. (2001) have achieved 

substantial progress in terms of stability and accuracy by using a new type of evolution equation 

for the lapse function in combination with "Gamma fieezing" conditions for the shift vector 

(see below). Alcubierre et al. propose to evolve the lapse a according to 

8^a = -a^/ (o : )^ t ( t rK) , (2-46) 

where / ( a ) is a positive function of a which they normally set to 2/cK. The key feature of this 

choice is that the trace of the extrinsic curvature becomes t ime independent for the hnal state 

of a stationary black hole (see their paper for details). 

T h e shi f t vec to r 

In normal coordinates the shift vector is set to zero 

P' = 0, (2.47) 

which implies that the coordinate vector is normal to the hypersurfaces 2 . Normal coordi-

nates have the advantage that they do not become singular as long as the hypersurfaces have 

a regular intrinsic and extrinsic geometry (Bardeen 1983). They do not, however, facilitate a 

substantial simplihcation of the held equations. 

Mmz'maZ aAear gauge 

The minimal shear condition suggested by Smarr and York (1978) leads to elliptic equations 

for the components of Smarr and York End this gauge choice particularly useful for the 

description of gravity in the wave zone. The major drawbacks are the complexity of the elliptic 

equations for and the fact that it barely simpHhes the held equations. 
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(̂Cy) gauge cAozceg 

This is actually a whole class of gauge choices. The idea is to impose algebraic relations on the 

metric components on the initial shce 

/(Yu,3;') = g(a;'), (2.48) 

and to choose the shift vector so that these algebraic relations hold on all future hypersurfaces. 

The three components of the shift vector allow us to impose three relations of this kind. In 

particular, we can choose up to three metric components to vanish identically. Solving the 

resulting equations for however, is non-trivial and it caimot even be guaranteed that such a 

solution does exist. Popular examples of this gauge choice are 

(1) Didgonof gauge, where the 3-metric y is diagonalized. 

(2) gauge, which employs polar coordinates (r. (^) and imposes the condi-

tions = 0 Emd sin^ Radial gauge simplihes the Eeld 

equations signihcantly and results in paiabolic equations for the 

(3) fgofAermof gauge is similar to radial gauge, except that the third condition on the 

metric components is now y'"'' = The simphhcations are not as substantial 

as in radial gauge, but isothermal gauge can be used for a more general class of 

physical scenarios. 

"Gamma 

We have already mentioned the substantial improvements tha t Alcubierre et al. (2001) have 

achieved in their S-dimensional black hole evolutions using new gauge conditions. In combi-

nation with the shcing condition mentioned above under they relate the shift vector to 

the evolution of the conformal connection functions T' introduced by Baumgarte and Shapiro 

(1999) and Shibata and Nakamura (1995). In their simulations they use a condition of the form 

(2.49) 

where A; = 0.75, = 3/M, M is the initial ADM mass of the system and is the conformal 

factor introduced in the discussion of the initial value problem in section 2.1.5. Alcubierre et al. 

call these conditions "Gamma freezing" because they are related to the eUiptic operator for p' 

in the "Gamma freezing condition" = 0. 

A more detailed description of diEerent gauge choices can be found in Piran (1983). 
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2.1.7 T h e c u r r e n t s t a t e of " 3 + 1 " fo rmula t ions : r e c e n t p rogress a n d l imi ta t ions 

The standard "3+1" decomposition we have described above was Erst formulated by Arnowitt, 

Deser, and Misner (1962). In the course of time numerous codes have been developed on the 

basis of this formulation. The structure of the ADM evolution equations (2.31), (2.32), how-

ever, has been a constant cause of concern. It is well known tha t these equations do not satis:^ 

any known hyperbohcity condition and the stability properties of the corresponding numerical 

implementations remain obscure. In the course of the 1990s attention shifted towards modi-

^ i n g the canonical ADM-formalism in order to obtain strictly hyperbolic formulations of the 

Einstein equations (see for example Bona et al. 1995, Riedrich 1996, Anderson et al. 1997). 

The question to what extent these formulations result in a superior numerical performance and 

thus whether the difhculties encountered in the ADM formalism aie entirely due to a possible 

non-hyperbohcity has not yet been answered. 

An alternative modihcation of the ADM-formulation which has attracted a great deal of atten-

tion recently is baaed on a conformal decomposition of the original ADM-equations (Shibata 

and Nakamura 1995, Baumgarte and Shapiro 1999). In this "BSSN"-formulation one starts 

with a conformal transformation analogous to that used in the initial-value problem in section 

2.1.5 The 3-metric yij is decomposed into the conformal metric yi, and the conformal factor 

^ according to Bq. (2.35). Similarly the extrinsic curvatme is split up into the trace trK and 

the conformal traceless extrinsic curvature A,) . The set of fundamental variables is completed 

by the conformal connection coefhcients In terms of these variables Baumgarte 

and Shapiro have obtained signihcantly improved stability properties as compared with the 

standard ADM-equations. The "BSSN"-formalism has also been successfully implemented by 

Alcubierre et al. 2001. 

Signihcant progress in "3+1" numerical relativity has been achieved by the implementation of 

new slicing conditions and shift vectors in 3-dimensional evolutions of black holes (Alcubierre 

et al. 2001). We have included these new gauge conditions in the hst in the previous section. 

In spite of the progress achieved in recent years, there remain some difhculties intrinsic to any 

"3+1" formulation. These are generally concerned with the restriction to a finite grid in numer-

ical computations. A lot of interest in the modelling of complicated astrophysical scenarios in 

the framework of general relativity is motivated by the advent of highly sensitive gravitational 

wave detectors. One of the fundamental requirements of a numerical simulation is therefore the 

extraction of gravitational waves and the generation of predicted gravitational wave templates. 

It is a well known fact, however, that gravitational waves are unambiguously deEned at null 

infinity only. Penrose (1963) has shown how it is possible to describe inhnity in terms of hnite 
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coordinate values which enables one to incorporate null inAnity in a Gnite coordinate grid. In 

numerical relativity, however, this "compactihcation" is only practical if the coordinates are 

adapted to the characteristics of the underlying equations a n d it is not entirely clear how to 

implement this technique in "3+1" formulations. Consequently approximating techniques are 

used to interprete gravitational waves at finite radii. Fmthermore outgoing radiation boundary 

conditions need to be specihed at the outer grid boundaiies. These will normally give rise to 

spurious rejections which contaminate the numerical evolution. 

The diEculties concerning the interpretation of gravitational waves in "3+1" formulations have 

been known for a long time ajid motivated the development of alternative decompositions of 

spacetime as early as the early sixties (Bondi et al. 1962, Sachs 1962). In the next section 

we will discuss this in more detail. A generic problem of this ap-

proach, however, arises from the fact that light rays are deflected by matter. In regions of 

strong curvature the focusing of light rays may give rise to so-called caustics. If that is the case 

the characteristic foliation of spacetime which is baaed on the nuU-geodesics will break down. 

Regions of strong curvature are generally restricted to small regions aiound the astrophysical 

sources. In this sense the "3+1" and the characteristic formalisms complement each other which 

has given rise to the idea of CawcAgz-cAamcfensfzc mak/zmg, i.e. the use of a "3+1" scheme for 

an interior region containing the astrophysical somce and a cliaiacteristic method in the outer 

vacuum region including nuH infinity. In section 3 we wiU discuss these ideas in more detail and 

develop a Cauchy-characteristic matching code in cylindrical symmetry. 

2.2 The characteristic initial value problem 

In section 2.1 we have seen how one can decompose spacetime into a 1-parameter family of 

3-dimensional space-like hypersurfaces. An alternative way to foliate spacetime is based on the 

characteristic surfaces of the vacuum held equations which can be shown to be the nuU surfaces 

of the underlying spacetime (Pirani 1965). Gravitational waves will as a matter of course travel 

along null geodesies and the characteristic approach is thus particularly suitable for the analysis 

of gravitational waves. It is this property which provided the main motivation for the ground 

breaking work by Bondi et al. (1962) and Sachs (1962) wliich we wiU follow in our description 

of the characteristic formahsm. In this discussion we will consider the vacuum case of the held 

equations = 0. In the case of Cauchy-characteristic matching this is normally no restriction 

since matter is assumed to be present in the inuer Cauchy region only. 
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2.2.1 C h a r a c t e r i s t i c coord ina tes 

We start our discussion with a 4-dimensional manifold M and assume that M is equipped with a 

metric g of signature +2. In the Bondi-Sachs formalism the gauge fieedom of general relativity 

is used to impose the following conditions on the coordinates. 

(1) It is assumed that there exists a scalar function with the property g(du,dw) = 0, 

which means that the surfaces — const are null smfaces. Such nuU surfaces will always 

exist if the Held equations admit wave-like solutions since t h e corresponding characteristic 

surfaces can be shown to be null (Pirani 1965). 

(2) A normal direction to these surfaces is deEned by k := dw. I t follows that (k, k) = 0 and 

Vkk ' 0, i.e. the tangent curves of k are null-geodesics. T h e y are normal to the surfaces 

tz = const [any vector v in that surface satisfies g(k,v) = 0] and lie in these surfaces 

((dw, k) = 0). 

(3) In order to eliminate coordinate irregularities, the normal vector k^ is assumed to sa t i s^ 

the conditions 

p := V^k/" 0, (2.50) 

k l ' := ^(V^k^)(V"k/') - (2.51) 

where p can be interpreted as the expansion and as the sheai' of the congruences of null 

geodesies. 

(4) The next step consists of labelling the geodesies. For this purpose we will use standard 

angular coordinates 0 and These can always be chosen so that 

(dg, k) = (di^, k) = 0, (2.52) 

^ := 908 ' 9 # - 90,/, 7̂  0. (2.53) 

The Erst condition implies that the coordinates 0 and ^ are constant along a geodesic and 

the second condition ensures a non-degenerate 2-dimensioiial volume element det (g/^g) 7̂  0, 

where upper case Latin indices run from 2 to 3 corresponding to the coordinates ^ and 1̂ . 

(5) Finally the null geodesies labelled by w, ^ aie parametrized by a function r(u, 0, (^). In 

order to obtain a regular pazametrization it is necessary that the Jacobian matrix of r 
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Figure 4: Characteristic coordinates in the case of a iiuH time-hke foliation. 

vanish nowhere. The conditions imposed in (3) on the expansion and shear ensure that 

this will be the case. Bondi and Sachs fmther require the coordinate r to sa t i s^ the 

relation 

r :=D(sin'6)) . (2.54) 

As a consequence the area of the 2-spheres defined by w, /- = const is given by 47rr^ and 

r is the so-called areal radius. This condition corresponds to the radial gauge condition 

discussed in section 2.1.6. 

The coordinate lines it = const and r = const are schematically illustrated in Fig. 4 in the case 

of a time-like 8,, and a null vector -

2.2.2 T h e Bondi -Sachs l ine e lement 

With the coordinate conditions of the previous paragi aph the gauge freedom of general relativity 

has been used to constrain the form of the metric. This process is analogous to specifying lapse 

and shift in the formahsm. The result can be shown to be the Bondi-Sachs line element 

— 2e^^dudr -|- (2.55) 
r 

where upper case Latin indices again run from 2 to 3 and / i / g is dehned by 

= (e '̂̂  4- -t- 4sin0sinh(''y — -|- sin'^ 4- 6"^"^)^^^. (2.56) 
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We note that the metric g as a geometric object is still completely undetermined. This is 

represented by the six unknowns which correspond to the six unknown functions 

Yi; in the "3+1" decomposition. We shall see below that the characteristic formulation leads 

to a natural classiBcation of the held equations and the two gravitational degrees of freedom 

are contained in the functions 'y and The remaining quantities aie determined on each 

hypersurface irrespective of their history. 

2.2.3 I n t r o d u c t i o n of a t e t r a d 

In order to classi^ the held equations, it is convenient to introduce basis vectors k, I, m, ni, where 

I is a real and m, m are complex null-vectors and k is the null-vector held introduced above. 

These vectors are required to satisfy the relations 

k . I = 1, (2.57) 

m • m = 1, (2.58) 

I • I = k • k = m • m = I • m = k • m = 0. (2.59) 

If we use the complex conjugate of the last equation we fmthe r obtain 

m • m = I • ifi = k • m = 0. (2.60) 

With the corresponding one forms the metric can now be wri t ten as 

g = k ® I + r(g)k + m(gim4-m(g)m. (2.61) 

We note that in spite of the use of complex vectors eventually all results wiU be real. In fact 

if we write the complex vector aa m = + iv, it follows directly hom the conditions imposed 

on m, that and v are space-like vectors orthogonal to the null-vectors k and I. We conclude 

that k represents the null-surfaces u = const, I determines a unique null-direction out of these 

hypersurfaces and the complex vector m dehnes two spatial directions orthogonal to both k 

and I. The only remaining freedom is the phase of m which is normally hxed by relating m 

to the shear cr (see Sachs for details). The beneht of this particulai' basis is that it provides a 

convenient way to create linear combinations of the vacuum held equations that can be classihed 

in a natural way. 
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2.2.4 T h e field equa t ions 

We have already mentioned that the two gravitational degrees of fieedom are contained in 

the metric functions and It is a remarkable property of t h e characteristic formalism that 

it naturally leads to a classiGcation of the Geld equations which reflects the isolation of the 

gravitational degrees of freedom. As originally shown by Bondi the Geld equations can be 

grouped into 

(i) 6 main equations: 

(a) 4 hypersurface equations: = 0, 

(b) 2 evolution equations: = 0, 

(ii) 1 trivial equation: R^i,k^l'̂  = 0, 

(iii) 3 supplementary equations: = 0. 

The reasoning for this classiGcation is as follows. If we suppose that the main equations are 

satisGed, it can be shown that 

(1) The trivial equation is satisGed: R^̂ /Î k"̂  = 0. 

(2) vanishes along a null-geodesic (integral curve of k) either everywhere or 

nowhere. 

(3) If all equations except = 0 are satisGed, it follows from the Bianchi 

identities that = 0-

We conclude that the trivial equation is an algebraic consequence of the main equations. The 

supplementary equations are satisGed everywhere if they are satisGed at some value r — const 

and the main equations are satisGed. As far as the main equations are concerned, we note that 

(1) the hypersurface equations do not contain any derivatives of the metric functions 

with respect to if, 

(2) the evolution equations contain the derivatives ^ and (although in several 

forms, e.g. 

2.2.5 B o u n d a r y condi t ions 

The boundary conditions are determined by the requirements that 

(1) the spacetime has Euclidean topology at large distance hom the source, 

(2) the spacetime is asymptotically Gat, 
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r = const M = Ui 

prescribed on. it = ^o, )' = const 

?' = const 11 = 1(0 

'y(r, 1̂ ), <̂ (r, 0, (;6) speciGed on u = uo 

Figure 5: Evolution of the initial data in the chaiacteiistic formalism. 

(3) gravitational radiation obeys an outgoing radiation boundary condition. 

As shown by Sachs (1962) these requirements are necessaiily satisfied if the following boundary 

conditions are imposed. 

(1) For any choice of one can go to the hmit 7 —oo along each ray. 

(2) For this u and any choice of we have 

limr_»oo = —1 

liniy'—yoQ [3 ~ ^ — limy—^00 ^ — 0-

(3) For itQ < It < ^1, < r < 00, 0 < 0 < TT, 0 < (̂  < 27r all metric components and 

quantities of interest can be expressed as a series in with at most a Snite 

pole at r = 00. 

2.2.6 In i t ia l d a t a a n d t h e in t eg ra t ion of t h e field e q u a t i o n s 

The evolution of the metric variables y , "x and J can b e split up into four steps. In the 

discussion of these steps it will become obvious what type of initial data we need to specif in 

order to start the evolution of the metric. We have graphically illustrated the integration of the 

Eeld equations from time slice to iti in Fig. 5. 

1.) We start by providing initial data for -j and J on a hypersuiface 'u = wo- This means that 

we need to specif two functions of (r, 0, 
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eaith 

light cone w = uq 

Figure 6: Information on a past light cone is ingnScient to determine the future of the earth. 

2.) Next the hypersurface equations are integrated along y- t o obtain /), F , on the ini-

tial hypersurface. For this purpose we need to specify three funct ions of integration 

A potential fourth function of integration for ^ is Gxed by the boundary condition hnir^oo ^ = 0. 

3.) We use the evolution equations in order to calculate a n d ^ on the future hypersurface 

K = Ml- The evolution equations contain the it-derivatives of'y a n d in the form ^,ur- Con-

sequently the solution requires in principle the integration over r to obtain the corresponding 

if-derivatives. For this purpose we need to specify two functions of (w, as functions of in-
3c 

tegration. These functions aie commonly introduced as the complex newg /unction i^). 

Below we will illustrate the meaning of news function in more detail. 

4.) Finally, the supplementary equations are used to evolve t h e onto the hypersurface 

u — . 

We complete the description of the characteristic formalism w i t h an explanation why the news 

function needs to be specihed for all values of it. For this purpose we consider the pa th of an 

object, e.g. the earth, in spacetime as illustrated in Fig. 6. Even if we have complete data 

on the past hght cone t 4- r = itQ, we can still not determine the future of the earth. There 
dc 

may be waves outside 2/ = 'Uo, that have not yet reached the planet . — (w,^, <̂ ) provides this 

extra information and is, therefore, called the news function. T h i s is to be contrasted with the 

"3-1-1" decomposition discussed above, where the initial data on a slice < = const completely 

determines the evolution up to the specification of boundaiy conditions. 

In sections 3 and 4 we will use a similar characteristic formulation with a diSerent gauge choice 

to evolve cylindricaHy symmetric vacuum spacetimes and dynamic cosmic strings. The presence 

of matter in the latter case does not result in any signihcant complications compared with the 
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dt 

dx 

Figure 7: A 2-dimen8ional grid with constant spacing. We note that the domain does not have 
to be rectangular and diSerent values for and da; may be used. 

vacuum case described in this section. 

2.3 Numerical methods 

In order to numerically solve a set of di&rential equations, t he equations have to be cast into 

a form suitable for a computer based treatment. The most common method used for this 

purpose is which replaces derivatives with finite difference expressions and 

thus converts diSierential equations into large sets of algebraic equations. Alternative methods, 

as for example gpecfmZ or have been used successfully in various cases. 

In this thesis, however, we will use finite diEerence methods throughout and therefore restrict 

our description to this approach. In particular, we will concentrate on Unite diSerencing in the 

case of two dimensions, time and one spatial dimension, which we will label by the coordinates 

^ and a;. 

2.3.1 T h e numer i ca l gr id 

Given a system of dlEerential equations, our aim is to determine the solution / in a subset 

n C R^. In Enite diEerencing the domain of / is replaced by a set of discrete grid points as 

illustrated in Fig. 7 and the numerical scheme will provide values for / at these grid points 

only. If information of the function / is required between the giid points we will derive the 

corresponding values from interpolation. 

Throughout this work, we will only use uniform grids which means that the distance (fz between 

neighbouring grid points is independent of position and t ime At any given value of t the 
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interval [a;o, will therefore be replaced by the set of points (zg, 3=0 + da;, a:o + 2(^3;,.. 

with 

6 = (2.62) 

In section 5 we will demonstrate how a coordinate transformation to a new spatial coordinate 

^ can be used to simulate an inhomogeneons grid in terms of the original coordinate a; without 

abandoning the concept of a uniform gTid. 

For the presentation of hnite difference expressions it is convenient to introduce a short hand 

notation for the function values at the grid points. For this purpose we define := 

If the meaning is obvious we may omit either index. 

2.3.2 Der ivat ives and f ini te differences 

We describe the approximation of derivatives with hnite di&rences in the case of spatial deriva-

tives. The same ideas apply to time derivatives. Suppose a function / is given at positions 

a;o,.. - for Exed time and we want to calculate at For this purpose we expand 

/ in a Taylor series about which allows us to express / t , A - i , A+i,- - - terms of / and 

its derivatives at a;^. Next the derivative that needs to be calculated is expressed aa a hnear 

combination of the function values at neighbouring grid points. The required Enite diEerence 

expression is then obtained from inserting the Taylor expansions for the / t , A - i , A+l , - - -

comparing the coeScients on both sides of the equations. The number of grid points that needs 

to be included in this calculation depends on the degree of the derivative and the order of 

accuracy to be achieved. 

We illustrate these ideas by calculating the second derivative with second order accuracy. 

We assume that the function / is known at the grid points and 37^-3. By Taylor 

expanding / around a;̂  we can relate the function values to / and its derivatives at a:̂  

A = A , (2 63) 

= A — ^ + ^(da;^), (2.64) 

yA:-2 = — /t^da; + -yj[,'4(fa;^ — + ^(da;^), (2.65) 

A - 3 = + -/j(.'9da:^ — -yj(."27d.T^ + ^((fa;^). (2.66) 
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Next we write as a linear combination of the function values 

= A/ t + B A - i + CA_2 + (2.67) 

If we insert Bqs. (2.63)-(2.66) for the function values /A:-3, - - , f t compare the coe&cients 

of both sides of the equation, we obtain the system of linear equations 

A + B + C + D = 0, 

B + 2C + 3D = 0, 
(2.68) 

B + 4C + 9D = 2, 

B + 8C + 27D = 0. 

The solution is vl = 2, _B = —5, C = 4, D = —1 and we can approximate the derivative with 

second order accuracy by 

y,/ ^ 2/*: - 5 / ^ - 1 ^ 4 ^ - 2 - A - 3 ^ 2̂ gg) 

In general, a one sided calculation aa used in this example yields less accurate estimates of 

the derivative and two sided approximations aie to be preferred. In our case the centred Enite 

diSerence expression is given by 

^ A+i - y t + . / t - i ^ ) (2.70) 

If we substitute expressions corresponding to (2.69) or (2.70) for all derivatives, the diSerential 

equation is replaced by a large set of algebraic equations. 

2.3.3 T h e l eapf rog scheme 

The ^eap/rog scheme is a second order in space and time hiiite diEerencing scheme in which 

three successive time-levels are used at each integration step. If we assume that the diSerential 

equation can be written in the form 

= (2.71) 
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n+l 

n-1 

o 

k-1 k k+l X 

Figure 8: The leapfrog scheme: In the evolution one slice is leapt over. 

the right hand side can be evaluated on the time slice. T h e time derivative, on the other 

hand, is approximated by 

,9̂  
/ ?i4-l / 7 , -1 

(2.72) 

and the diSerence equation can be explicitly solved for Because of the centred Enite 

diEerence approximation for /1 , three time slices aie involved in the calculation. As an example 

we consider the special case where At the spatial position the Enite difference 

equation is then given by 

fn+l 
•h 

fn—1 _ L f \ 
4 

(2.73) 

The value of / is taken on slice n, — 1 and we "leap" across slice n, to calculate This 

property is schematically illustrated in Fig. 8 and has given t h e scheme its characteristic name. 

The need to store the function values of two time slices makes this scheme more memory 

intensive than 2-level schemes such as the McCormack scheme discussed in the next section. 

Second order accurate two-level schemes, on the other hand, involve more complicated Snite 

diEerence expressions and are therefore more CPU-intensive. 

A potential problem of the leap-frog scheme is its vulnerability to the so-called 

eSect, an instabihty that results from the decoupling of o d d and even mesh points. This 

instability can often be cured by evolving some of the vaiiables on a separate grid translated 

with respect to the original one by half a grid step (g^aggerecf leap-frog) or introducing artiBcial 

dissipation which couples odd and even grid points. In om- application of this scheme in section 



2 THE FJEI/D EQUATIONS FROM A NLTMERICAL P O I N T OF VIEW 36 

3, however, we do not encounter this problem and have no need to use either of the remedies. 

We hnally note that in Eq. (2.73) the function value on the new slice is expressed exphcitly 

in terms of known function values on previous slices. Finite digerencing schemes with this 

property are called schemes. In section 2.3.6 we wiU, by contrast, introduce an impZiczf 

scheme where this is in general not possible for non-linear par t ia l diEerential equations and 

iterative methods or linear solvers are used to determine the 

2.3.4 T h e M c C o r m a c k scheme 

The McCormacA; scheme is another second order accurate explicit Snite diSerencing method. 

In contrast to the leapfrog scheme it is a two-level method, i.e. requires storage of one previous 

slice only. However, this comes at the expense of two computation steps in the calculation of 

the new values, a and a corrector step. We illustrate this method by considering the 

partial differential equation 

/,t = (2.74) 

In the hrst step preliminary values on the new time slice are calculated according to 

7;-+' + (2-75) 

where is the source term evaluated to second order accuracy at by using 

and This predictor step itself is a hrst order accurate scheme, but the terms of first order 

truncation error are ehminated in the corrector step 

' = ft + ^ . (2'™) 

where ĵ . is the source term evaluated from the preliminary values and The 

extension to systems with more functions is obvious. 

2.3.5 R e l a x a t i o n 

is a method for solving so-called pomt that is ordinary 

diSerential equations (ODBs) where boundary conditions are given at different locations on the 

grid. A straightforward integration to obtain the solution is not possible in these caaes and one 

needs to resort to more sophisticated techniques. One such technique, of which we will make 
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extensive use in this work is numerical relaxation. In the case of ordinary differential equations 

only one independent coordinate is present which can be visualised in Fig. 7 by suppressing 

the time dimension so that we have only one row of giid points. It is straightforward to see 

that any ordinary diSerential equation can be written as a Erst order system. Without loss of 

generality we will therefore restrict our discussion to this case. Suppose for example that we 

have a system of 4 ODBs for 4 functions A(z), .8(2), 0(2) and Z)(,T) given by 

G ' , ( A , A , , , g , B , , C , 0 ^ , D , D j = 0 , 7: = 1 . . . 4 . (2.77) 

A numerical solution consists of 4jR7 function values Ai, Bi, C i , Di , Ag, .82 and so on. It is 

convenient to introduce a vector to label these values, i.e. := Ai, ^2 := ajid so on. For 

each pair of grid points A; — 1 we apply centred hnite differencing according to 

A = \{At + A,,-,), (2.78) 

(2.79) 
Aa; 

and likewise for the other functions. In combination with Eq. (2.77) this amounts up to 4(IiL' — 1) 

algebraic equations for the 4K variables . This set is completed by 4 boundary conditions for 

A, B, C and D and we arrive at 4K algebraic equations which we write in the form 

FX/ j ) = 0. (2.80) 

In general these equations are non-linear and we have to resort t o iterative techniques to obtain 

a solution . For this purpose we aasume that is a solution of (2.80) and / j ' is a suSciently 

close guess. Then 41^-dimensional Taylor expansion yields 

0 = F,(y,) F , ( /° ) + ^ (2.81) 

where A/^ = This is simply a system of linear equations which we can write as 

AAf = b, (2.82) 
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r72+l rn-Hl 
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Figure 9: The numerical stencil used in the Crank Nicholson scheme to obtain centred second 
order accurate expressions for / , and /,t at position + Acc/2,(" + At/2). 

where 

^ ^7" ' (2.83) 

b, = (2.84) 

Even though the Jacobi matrix A is a 4A' by 4ji[' matrix, it is a sparse matrix which greatly 

simpliGes its inversion. If the equations Fl = 0 aie ordered appropriately, A has block diagonal 

structure and can be inverted by standard methods (see for example Press et al. 1989). Start-

ing with an initial guess / j ' , we can calculate the correction A / ^ which leads to an improved 

approximation / j and the process is repeated until the norm ||Ayy|| satishes some convergence 

criterion. This iteration scheme is the Newton-Raphson method generahzed to 4^" dimensions 

and usually converges fast. 

2.3.6 T h e Crank-Nicho l son scheme 

The Cran^-jV%cAo/son scheme is a two-level evolution scheme for partial diSerential equations 

and can be considered a generalization of the relaxation scheme. Again the system of equations 

is rewritten aa a hrst order system by introducing auxiliary variables. For convenience we will 

illustrate the scheme for one equation and one function / only. The extension to more functions 

is obvious. Consider the PDB 

G ( / , / , t , y , i , . T , t ) = 0 (2.85) 

on a grid of the type shown in Fig. 7 with points ou each slice t = const. We can use a stencil 

of the type shown in Fig. 9 to obtain second order centred finite dlEerence expressions for the 
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functions and their derivatives according to 

/ = ^ ( / r + ' + / ; • - ; + / ; : ' + / ; : - i ) - p w ) 

ra+l I fn. _ /-n 
f "//c "/A;—1 "//c "/A: — 1 /n o7\ 

t,. = ^ ( 2 - 8 7 ) 

ft*'+/a* - .g - f t 
2A7; 

(2.88) 

Inserting these relations into Bq. (2.85) we obtain A" - 1 algebraic equations for the AT unknown 

values in terms of the known The set is completed by the boundary condition for / 

and we are in exactly the same situation as in Eq. (2.80) in t h e relaxation scheme. Note that 

each algebraic equation involves two unknown values , so it is in general not possible 

to obtain explicit expressions similar to Eq. (2.73) in the leapfrog-scheme. Therefore methods 

like the Crank-Nicholson scheme are called and a solution is obtained by using iterative 

methods. The initial guess for the values on the new slice is usually taken from the previous 

slice. 

An explicit variation of the Crank-Nicholson scheme which has at t racted a good deal of attention 

recently is the so-called method. There one calculates intermediate 

values on the new time shce according to the unconditionally unstable 

gpace method and averages these values with the data on the old shce M to obtain = 

({6"̂ +̂  -|-'u")/2. These averaged values are then used to calculate the source terms in the partial 

diSerential equation at time and can be used to evolve the data with centred Snite 

diEerencing of the time derivatives in a second order scheme. In fact this iteration process 

can be repeated arbitrarily often and the number of iterations signiScantly aSects the stability 

properties of the scheme. In particular Teukolsky (2000) has shown that the smallest number 

of iterations required for a stable method is two and that any further iterations do not lead to 

any superior performance in terms of stability and accuracy. 

Before we apply these numerical schemes to general relativistic scenarios, we discuss some 

general properties of numerical evolution schemes. 

2.3.7 Cons i s t ency 

If we take the diEerence equations and calculate the as a Taylor series about some 6xed 

grid-point, we will again arrive at a diEerential equation for / . The diSerence between this 

diEerential equation and the original one is the error. The numerical scheme is 
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said to be consw^enf if the truncation error vanishes in the l imit dz, dt — 0 (see for example 

Le Veque 1992). Assuming that (fa: and diSier by a constant factor in the hmit 0, the 

scheme is of or^er accumc?/ if the leading term of the truncation error vanishes as da;". 

2.3.8 S tab i l i ty 

The concept of stabihty is concerned with an exponentially increasing deviation of the numerical 

solution from the solution of the underlying diSerential equation. If such a deviation is present 

either due to the initial data or round off errors, it wiD quickly swamp the entire numerical 

solution and make the code practically useless. The stability of a code can depend on many 

properties. Often changing the grid parameters d i , dt has a substantial eSect on the stability. 

In the case of linear partial diEerential equations one can use the 'uon anafyaza 

in order to test Snite diSerencing schemes for stability. For th i s purpose we assume that the 

numerical grid is uniform, i.e. da; and dt are constant. The solution of the diSerence equation 

can then be expanded as a Fourier series 

(2.89) 

where K is a spatial wave vector (1-dimensional in om case). It is suScient to consider one 

mode /"(K)e^'^^ which can be written as 

y : = ^(K)"e- ' \ (2.90) 

if the coefEcients of the difference equations show sulEciently weak variation in space and time 

and can be considered nearly constant. The important aspect is that the amplitude at some 

time is obtained from that of the preceding time step by multiplication with a (zme mdepemden( 

factor ^(fc). If |i^(K)| > 1 the scheme is unstable. In practice, Eq. (2.90) is inserted into the 

drEerence equations which then is solved for For many applications, the result is the well 

known Couranf-fHedncAa-jLew?/ (CFL-condition) 

- d^ 

da; 
< 1, (2.91) 

where the A; are the slopes of the characteristics of the underlying system of PDBs. An intuitive 

interpretation of this result is that the numerical domain of dependency of the point where / 

is to be calculated must contain the physical one. Indeed this condition was recognised as a 

necessary stabihty condition for ani/ numerical scheme by Courant, Fiiedrichs, and Lewy (1928) 
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(See Courant et al. 1967 for an English translation). The CFL condition is therefore commonly 

used in non-hnear codes to determine the permissible Conrant factor d(/da;. We will illustrate 

the use of this criterion in the evolution of non-lineai' radial oscillations of neutron stars in 

section 5.3.5. 

2.3.9 Convergence 

It is necessary to carefully distinguish between and of a code. 

The convergence of a numerical method is a stronger requirement than consistency or stability. 

It is quite obvious, for example that a consistent method will not be convergent if it is unstable. 

In order to dehne convergence, we consider a solution / of the system of diEerential equations 

and a solution F of the corresponding diEerence equations. We note that F is never obtained 

in practice due to round oS errors. A scheme is said to if 

(2.92) 

In the case of linear equations convergence can be ensmed by the FguwaZence Theorem 

which states: Gwen o proper/;/ pogecf Zmeor mzfza/ wafue proWem a approa;-

zmafwn to (/le conaigkncy confiitzon, fAe a necegaan/ ancf 

conAtzon /or coniiergence (see for example Richtmyer and Morton 1967). 

In the case of non-linear equations there is no corresponding theorem but in some cases we will 

be able to check our codes for convergence by comparing the results with known analytic solu-

tions. If such analytic solutions are not available, we need to use reference solutions obtained 

for high resolutions instead. We will thus be able to ensme the convergence of the 

numerical scheme. This is, however, a weaker statement than Eq. (2.92) and does not strictly 

guarantee convergence to the solution of the diSerential equations. 
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3 Cauchy characteristic matching in 

cylindrical symmetry 

3.1 The idea of Cauchy characteristic match ing 

Cauchy characteristic matching (COM) is a method that sinmltaneously makes use of the ben-

eScial properties of the "3+1" and the characteristic formalism. In section 2.1 we have seen 

that in the "3+1" caae spacetime is decomposed into S-dimensional space-like hypersurfaces 

threaded by a one parameter family of curves. The dynamic variables are the components Yij 

of the 3-metric of the hypersurfaces. A complete set of initial d a t a consists of values for and 

their time derivatives on some initial hypersurface. The second order evolution equations then 

determine the 4-metric of the spacetime up to gauge transformations. This type of initial value 

problem is known as a CoucAy and has been extensively used for the numerical solution 

of Einstein's held equations. It is however not suitable for the analysis of gravitational radiation 

since it is not clear how to incorporate null inanity into a finite numerical grid via conformal 

Initial 

slice 

Interface 

Source 

Outgoing 

radiation 

No incoming 

radiation 

Interface 

Vacuum 

Figure 10: In this conformal diagram Cauchy characteristic matching is schematically illus-
trated. In the inner region matter is evolved with a "3+1" scheme whereas characteristic coor-
dinates dehned by the null geodesies are used in the outer vacuum region. The two formalisms 
are matched at the interface at finite radius. 
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compactiScation. Instead one uses approximating techniques t o extract information about the 

gravitational radiation at hnite radii and imposes oufgomg boundon/ in 

order to prevent incoming gravitational waves. Unfortunately attempts to implement these 

boundary conditions give rise to spurious reflected numerical waves. Characteristic formalisms 

solve this problem in an elegant way. Spacetime is decomposed into a 2-parameter family of 

2-dimensionaI space-like surfaces threaded by two 1-parameter families of curves. At least one 

of these famihes consists of null geodesies, the of the propagation of radiation. 

The spacetime can be compactiSed by standard methods, exact boundary conditions can be 

applied at future or past null inGnity and gravitational radiation can be properly analysed. In 

regions of strong curvature, however, caustics can form and t h e fohation along null geodesies 

breaks down. 

A possible remedy for this problem consists in using both a "3+1" and a characteristic formu-

lation, each in its preferred region. Normally an astrophysical scenario is approximated as a 

Enite inner region containing all the matter (a neutron star, for example) and the outer vacuum 

region with an observer located at future null infinity. In CCM a "3+1" scheme is used for the 

evolution of the interior and a characteristic formulation for the evolution of the exterior region. 

At a finite radius an interface facilitates the transfer of information between these two regions. 

The method is illustrated in Fig. 10 where the dark shaded area represents the cistrophysical 

source. Gravitational waves emitted from this somce travel along null geodesies which are given 

by straight hnes at an angle of 45 degrees in this Egme. In t h e outer region the null geodesies 

are used to de&ne the characteristic coordinate eixis. 

The feasibihty of combining Cauchy algorithms with characteristic methods in order to evolve 

the gravitational held was Erst studied by Bishop (1992). The hrst attempts at obtaining nu-

merical evolutions have been carried out in one spatial dimension. The work of the Southamp-

ton CCM-group in cylindrical symmetry will be discussed in detail in the next section. The 

Pittsburgh relativity group studied CCM in spherical symmetry by evolving the Einstein-Klein-

Gordon system (Gomez et al. 1996). They have demonstrated second order convergence and 

found no indications of back rejection or instabilities at the interface. After the demonstration 

of the viabihty of CCM in one dimension attention shifted towards higher-dimensional prob-

lems. The Southampton relativity group focused their studies on the axisymmetric case. After 

laying the theoretical foundations (d'Inverno and Vickers 1996, d'Inverno and Vickers 1997) a 

great deal of work has gone into the development of an axisymmetric CCM code (see PoUney 

2000 for details). This code has now been completed and is currently being evaluated and 

tested. In contrast the Pittsburgh group haa immediately turned their attention towards the 
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general 3-dimensional case. Bishop et al. (1996) and Bishop et al. (1997) have probed the use of 

Cauchy-characteristic matching in three dimensions by evolving non-linear scalar waves in a Eat 

space-time. The application of these ideas to S-dimensional problems in general relativity has 

resulted in a module for the combination of Cauchy and chaiacteristic codes for the evolution 

of a binary black hole (Bishop et al. 1998). A more comprehensive overview of the ongoing 

research using Cauchy-characteristic matching can be found in Winicour (2001). 

3.2 The Southampton CCM-project 

The Southampton CCM-project is a long term project devoted to the study of Cauchy-charac-

teristic matching in scenarios of decreasing symmetry assumptions (d'Inverno 2000). The Srst 

step was to demonstrate the viabihty of the approach. That was done by Clarke and d'Inverno 

(1994) by evolving the wave equation in Eat spacetinie. Attention then turned towards gravi-

tational waves in cylindrical symmetry. The theoretical foundations were laid by Clarke et al. 

(1995) and the resulting code of Dubai et al. (1995) showed good agreement with analytic 

solutions containing one gravitational degree of freedom. Furthermore Dubai et al. demon-

strated the superior performance of the CCM-method as compared with the use of arti&cial 

outer boundary conditions in "3-1-1" schemes. d'Inverno et al. (2000) presented a generalisa-

tion of this code to also include the rotational degree of freedom. They End, however, that the 

convergence of the code drops to Erst order level in later stages of the evolutions. In this work 

we wiU present a new code that allows us to include the rotational degree of freedom in terms 

of natural geometrical variables with regular behaviour at null inEnity. This reformulation re-

sulted in improved accuracy, long term stabihty and ensmes second order convergence over long 

evolution times. We will demonstrate the improved quality by comparing the numerical results 

with analytic solutions possessing both gravitational degiees of freedom. 

The Southampton CCM-project has continued meanwhile with the development of the axisym-

metric code mentioned in the previous section. 

3.3 The original code 

In this section we will describe the cylindrically symmetric Cauchy characteristic matching 

code developed by the Southampton Relativity Group (Claike et al. 1995, Dubai et al. 1995). 

This code was used to reproduce the analytic solution by Weber and Wheeler (1957), which 

possesses one gravitational degree of freedom, with high accmacy and second order convergence. 

d'Inverno et al. (2000) presented an extension of this code based on the formulation of Clarke 



3 CALTCBY CHARACTERISTfC MATCHING IN CYMNDRICAL SYMMETRY 45 

et al. to also include the rotational degree of freedom. Their difEculties in obtaining a long term 

stable second order convergent code motivated the reinvestigation of the problem described in 

this thesis. 

In their derivation of the equations Clarke et al. End it necessaiy to decompose spacetime 

according to the methods of Geroch (1970) in order to eliminate irregularities of the equations 

in the characteristic region. The Geroch decomposition plays a crucial role in our reformulation 

and will also be used in section 4 when we numerically simulate cosmic strings. Before we turn 

our attention to the cylindrically symmetric CCM code, we will therefore describe the Geroch 

decomposition in more detail. 

3.3.1 T h e G e r o c h decompos i t ion 

A problem generally faced in cylindrical symmetry is that the spacetime is not asymptotically 

Eat due to the infinite extension in the z-direction. The decomposition of Geroch (1970) solves 

this problem by factoring out the Kilhng direction and reformulating the 4-dimensional problem 

in terms of two scalar Eelds on an asymptotically Eat 3-dimeiisional spacetime. Suppose, the 

spacetime admits a Killing Eeld which in the caae of cylindrical symmetry simply is Then 

we deEne the norm of the Killing vector 

(3-1) 

and the Geroch twist 

ta = (3.2) 

where is the completely antisymmetric Levi-Gevita tensor. These Eelds are well deEned 

on the 3-dimensional space given by z = const with the resulting metric 

(3'^) 

If D,; denotes the covariant derivative associated with the 3-metric h, one can show that 
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In vacuum the right hand side vanishes so that is cm] free and can be expressed in terms of 

a potential 

tq. = DcrT. (3.5) 

It is a remarkable fact that the right hand side of Eq. (3.4) will also vanish in some non-vacumn 

cases. In the discussion of cosmic strings in section 4 we will encounter such an example. 

Geroch has then shown that the Einstein equations for the metric g of the 4-dimensional 

spacetime can be written in terms of the two scalai- helds -r a n d z/ and the 3-metric h 

-t-87rha°ht^(Ta^ — -Sa^gT), (3.6) 

- :/"X'DmT)(D""'r) + 167r(Ta^ - ^90,̂ 7)%"^% ,̂ (3.7) 

= ^i/-^(D^T)(D'"i/) , (3.8) 

where Latin indices run from 0 to 2 and is the Ricci teiiaor associated with the 3-metric h. 

Note that even in the caae of a vanishing energy-momentum tensor T, the scalar Selds 1/ and T 

present source terms in the held equations (3.6) for the 3-metric h. 

In the vacuum case = 0, Sjodin et al. (2000) have shown how it is possible to reformulate 

the Einstein-Hilbert Lagrangian in terms of z/, T and the conformal 3-metric hob = z/haf,. This 

leads directly to the 3-dimensional energy-momentum tensor 

7^6 = - ^h^h"^(D,T)(DjT) + - ^h»6h'''(Az/)(DdZ/)], (3.9) 

where is the covariant derivative associated with the conformal 3-metric h. Since the Weyl-

curvature vanishes identically in three dimensions, the cmvatuie is completely determined by 

the Ricci tensor i.e. the energy-momentum tensor which in turn is determined by z/ 

and T. Thus the gravitational degrees of freedom of the original 4-dimensional spacetime are 

represented by the scalar helds z/ and T. If matter is present in the 4-dimen8ional spacetime, 

there are extra terms on the right hand side of (3.9). 
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3.3.2 T h e equa t ions of t h e original code 

We will now turn our attention to the original cylindrically symmetric CCM code of the 

Southampton relativity group. An extensive description of th is code and the derivation of 

the equations can be found in Clarke et al. (1995) and Dubai et al. (1995). In order to illus-

trate the eEects of our reformulation, we will include here a ra ther detailed description of their 

equations and choice of variables. They start with the metric in Jordan, Ehlers, Kundt and 

Kompaneets (JBKK) form (Jordan et al. 1960, Kompaneets 1958) 

- g2('y-v')(_df^ + (wd(^ + dz)^, (3.10) 

which describes a general cylindrically symmetric vacuimi spacetime. The metric functions 

w and 'y are functions of (r, t) only. In terms of the gauge heedom discussed in section 2.1.2 

this choice imphes a vanishing shift vector and the lapse is determined by the requirement that 

= — Qrr- As a consequence the nuH geodesies are given by the simple relations = const. In 

the outer characteristic region, the line element is rewritten by transforming to the coordinates 

u ^ t — r. (3.11) 

1 
y (3.12) 

and the regions are matched at r = 1 = Clarke et al. End, however, that the compactiSed 

Eeld equations cannot be made regular in this way. Therefore they factor out the z-direction 

in the outer region according to the Geroch decomposition described above. This leads to a 

reformulation of the problem in terms of the var iables 

, (3.13) 

lu = —. (3 14) 
y 

where T is the Geroch potential and z/ the norm of the z-Killing vector. These are related to 

the metric functions i/' and w by Eqs. (3.1) and (3.2) which in this particular case become 

= (3.15) 

T ̂  = 2/ e ' 2.4V,„ (3.16) 
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With this choice of variables one obtains two evolution equations for and w in the interior 

Cauchy region and a constraint equation for "y. Dubai et al. write this set of equations as a 

Erst order system 

r 

%,r = - V',r + 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

where % = 7 — V'- The corresponding set of equations in the characteristic region is given by 

two evolution equations for m and w and a hypersuiface equation for "y which is again written 

aa a Erst order system 

m u = i/M, 

= z/PF, 

(3.22) 

(3.23) 

1 1 
- ,̂3/ = - - ( 2 / ^ ) , ! / ^ + ^ -2/(m + 

(3.24) 

-%/(w + + 3^W,2/ 

(3.25) 

T.y = 8:/^ 
+ 22/(mm,^ + m'tu,,,) + (3.26) 
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The transformation between the two pairs of variables (i/', w) a n d (m, w) and their derivatives 

is implemented at the interface at r = 1 = ^ according to the relations 

i = (3.27) 

1 

(3.28) 

m = (3,29) 
y 

(2/^),!/ = (3.30) 

The problematic relations are (3.28) and (3.30) which involve the spatial derivative of w and w. 

The presence of spatial derivatives in combination with the interpolation techniques apphed at 

the interface make the implementation of these relations a rather subtle issue. 

The code of Dubai et al. formed the starting point for om' investigation of the problem. This 

code has been well checked in the non-rotating case but did not include the implementation of 

Eqs. (3.28) and (3.30) for the rotational variables w and w at the interface. In this work we 

therefore started with the addition of these missing modules to the original code. In order to 

describe our implementation it is necessary to hrst discuss the numerical techniques, in par-

ticular those underlying the transmission of information from the Cauchy to the characteristic 

region and vice versa. 

3.3.3 T h e n u m e r i c a l i m p l e m e n t a t i o n 

We will now discuss the numerical implementation of Eqs. (3.17)-(3.30). The numerical grid 

used for the evolution consists of an inner Cauchy region which covers the range 0 < r < 1 

and the outer characteristic region extending from r = 1 to infinity which corresponds to the 

range 1 > ^ > 0. The evolution equations in these regions aie discretized in a straightforward 

way using the leapfrog scheme described in section 2.3.3 while second order centered Enite 

diEerencing is used for the constraints. If we aasume that all functions are known on the time 

slices M — 1 and n, — 2, a full evolution cycle consists of the following steps. 

(1) Evolution of w, 2 and at the interior grid points of the Cauchy region 

according to Eqs. (3.17)-(3.20). 

(2) Update of these variables at the origin according to the inner boundary conditions 

r — — 0. 
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(3) Evolution of i/; and w at the outer boundary of the Cauchy grid (r = 1) according 

to Eqs. (3.17), (3.18). 

(4) Extraction of and cu from the interface at 1 + dr on the Cauchy grid on time 

slice 7%. 

(5) Evolution of 2 , 1,% at the outer boundary of the Cauchy grid (r = 1) according 

to Eqs. (3.19), (3.20). 

(6) Calculation of % on the Cauchy grid via quadrature according to Eq. (3.21). 

(7) Evolution of m and w in the characteristic region according to Eqs. (3.22), (3.23). 

(8) Extraction of m and w from the interface at 1 + d;/ on the characteristic grid on 

time slice n + 1. 

(9) Calculation of M, and -y on the chaiacteristic gyid via quadrature according 

to Eqs. (3.24)-(3.26). 

The crucial steps which provide the Sow of information through the interface are (4) and (8). 

These steps together with the start up procedure required to get the leap-hrog scheme running 

will now be discussed in more detail. We start with the interface. 

We hrst note that the interface is lixed at the radial position r = 1 = ^. Since we always have the 

freedom to rescale the radial coordinate r by a constant factor, this imphes no loss of generality. 

From a numerical point of view the need of an interface arises from the calculation of spatial 

derivatives at r = 1 on the Cauchy grid and ^ = 1 on the characteristic grid. The centred Enite 

diSerencing used for the leapfrog scheme as illustrated in Eq. (2.73) requires knowledge of the 

Cauchy variables at r = 1 + dr and the characteristic variables at = 1 + for this purpose. 

In order to obtain these values, they need to be calculated with interpolation techniques using 

Eqs. (3.27)-(3.30). We wiU describe this process in the case of the direction "char—^Cauchy" 

corresponding to step (4). The reverse direction in step (8) works in complete analogy. The 

situation is graphically illustrated in Fig. 11. The derivatives of a function / at r = 1 can be 

calculated to second order accuracy by centred hnite diEerencing 

(3.31) 
2dr 

y 1^ = + (3.32) 

if is obtained from interpolation to fourth order accuracy in the characteristic region. For 

this purpose -i/ and ivf are calculated in terms of the characteristic variables according 

to Eqs. (3.27)-(3.30) at the 12 points of the characteristic region (including 3 points at the 
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Figure 11: The interface in the direction Grom the chaiacteristic to the Cauchy region. See the 
text for details. 

interface) indicated by Elled circles in Fig. 11. These values can then be used to obtain the 

function values a']:id at location with the required accuracy. 

An alternative to this method consists in using the same interpolation technique to calculate 

the r-derivatives &]id grid point 1(7 + 1 instead of t h e function values and w. We 

can then calculate the r-derivatives at the interface &om 

/ . rr\K 

/,r |K+l + /,r|Ar-

/,r |K+l - /,r|/C-l 
2dr 

(3.33) 

(3.34) 

Even though this alternative looks natural for the transformation between w and w because 

these variables are related via their derivatives according to Eq . (3.28), it does not lead to any 

improvement of the performance of the code. 

The second point we need to discuss is the so-called start-up problem. It is an intrinsic diSculty 

of 3-level schemes such as the leap-frog algorithm that the specihcation of initial data on one 

time shce will not be suKcient to start the numerical engine. Instead diSerent techniques need 

to be used to obtain data on auxiliary time slices. Due to the requirements of the fourth-order 

interpolation at the interface we need information on two additional slices. The data on these 
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auxiliary slices are calculated in three steps. 

(1) The Srst order Buler scheme (see for example Press et al. 1989) is used to 

calculate data at t — d(/2. 

(2) This auxihary time shce is then used to determine the variables at t 

according to the leapfrog scheme. 

(3) In another leapfrog step, this time using the fuU time s tep data is calculated 

cit to — . 

An alternative treatment at the interface is required for this s tar t -up procedure, because the 

necessary three time-slices are not available at this stage. For this purpose the Cauchy grid 

is extended into the characteristic region by 10 grid points. The derivatives of the Cauchy 

variables can thus be calculated at r = 1 using centred finite differencing and the derivatives of 

the characteristic variables follow from chain-rule. The treatment of the outer boundary of the 

Cauchy grid is irrelevant for the numerical evolution, since the spurious signal cannot travel 

across the additional 10 grid points during the three evolution steps at the start-up procedure 

and these points are not used in the remaining evolution. 

3.3.4 Inc lud ing t h e ro t a t i ona l degree of f r e e d o m w 

In our Erst attempt to include the rotational degree of &eedom we have made use of the set 

of variables of section 3.3.2, namely w aad % in the inner and m, lu and 'y in the outer 

region. For this purpose we have extended the interface of the original code to also include the 

transformations between w and w as described in the previous section. In order to test the code 

we use the analytic solution from Xanthopoulos (1986) which we will discuss in more detail in 

section 3.5.2. In Eqs. (3.55)-(3.68) we give analytic expressions for this solution in terms of the 

Killing vector i/, the Geroch potential T and the metric function 'y. The corresponding results 

for the variables m, and w are obtained straightforwardly f rom their dehnitions (3.13)-(3.15). 

The transformation into values for the function w is more complicated. The result is given by 

Sjodin et al. (2000) 

w((, r) = Va" -K 1(% + Q - 2) , (3.35) 

where the auxihary functions Q, %, Y and Z are dehned in Bqs. (3.55)-(3.58). We have not 

been able, however, to obtain a long term stable evolution in this formulation of the problem. 

For 300 grid points in each region instability set in after less than 1000 time steps and from 

the pattern of the noise it is clear that the problems originate at the interface. In our attempts 
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to overcome the instability we have varied the obvious parameters such as the Courant factor 

and the number of grid points over a large range, but no improvement has been achieved. We 

have also used the alternative implementation of the interface according to Bqs. (3.33), (3.34). 

Even though this alternative looks quite natural at least for t he transformation between w and 

w which are related via their derivatives according to (3.28), vye did not achieve a signlBcantly 

better performance with this method. Finally we have changed the start time of the numerical 

evolution and, thus, the initial data. The obvious choice t = 0 is not possible because some 

derivatives of Xanthopoulos' solution are discontinuous at ^ = 0, but any positive value large 

enough to ensure that the start-up procedure does not extend to negative times can be chosen. 

Again the code became unstable after less than 1000 time steps. We have therefore decided to 

restart the investigation of this problem by looking for alternative sets of variables. 

3.4 A reformulation of the problem 

A striking peculiarity of the formulation described above is the drastically diEerent treatment 

of the Cauchy and the characteristic region. In view of the numerical subtleties associated with 

the interface one may question the wisdom of factoring out t h e z-direction in one region and 

work in the framework of the 4-dimensional spacetime in the other . It rather seems natural to 

look for as homogeneous a description of the whole spacetime as possible. In this context it is 

worth noting that the restriction of the Geroch decomposition to the characteristic region was 

a voluntary choice and not enforced at any stage of the derivation of the equations. We have 

therefore decided to factor out the z-direction in the Cauchy region as well and thus Geroch 

decomposed the whole spacetime. This enables us to use the same set of fundamental variables 

throughout spacetime and thus obtain almost trivial interface relations. A closer investigation 

of the equations suggests that aside from the metric function "y the geometric variables i/ and 

T are the natural variables to describe the cylindrically symmetric spacetime. With this choice 

the equations in the Cauchy region can be written as 

+ ''",r " (3.36) 

2 1 
T.w = — — T.rZ .̂r) + T,rr + (3.37) 

^ (z/,r + t). (3-38) 

In practice we use and Tt as auxiliary variables in order to write Eqs. (3.36), (3.37) as a 6rst 

order system. If we transform to the new set of variables the equations in the characteristic 
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region become 

T , u = 

i k f , , — —-— 
y_ 

4z/ 
z/ 

7,1/ 

(2/̂ ,3/3/ + ,̂3/ - 2^^,;/) + 

^ ( 4 + 4 ) 

Finally the non-trivial relations at the interface are now given by 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

!/,( = 2/z/M, 

T f = 2/z/W. 

(3.44) 

(3.45) 

We have developed a code using the numerical techniques of section 3.3.3 based on these evo-

lution equations and interface relations. 

3.5 Testing the code 

In order to test the performance of the new code, we will check it against analytic solutions 

with one and two gravitational degrees of freedom. Furthermore we will demonstrate its inter-

nal consistency with a time dependent convergence analysis. 

We have ahready mentioned the vacuum solution by Weber and Wheeler (1957) that was suc-

cessfully used by Dubai et al. to test their CCM code. A solution with both gravitational 

degrees of freedom was derived by Xanthopoulos (1986). Both these solutions can be rewritten 

in terms of our variables z/, T and 'y and thus compared with the numerical results. 

3.5.1 T h e W e b e r - W h e e l e r w^ave 

The analytic solution by Weber and Wheeler describes a gravitational pulse of the polar-

ization mode that moves in from past null inEnity, implodes on the axis and emanates away to 

future null inSnity. The analytic expressions in terms of // and "y have been derived in Sjodin 
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et al. (2000). In the Canchy region it is convenient to introduce the auxihary quantities 

% = - 7̂ ,̂ (3.46) 

Y = %^ + 4a^(^, (3.47) 

and the Weber-Wheeler wave can be written as 

= exp 26l 
'2(% + V Y ) 

y 

7 2o2 
1 - 2o^r^ 

y2 

(3.48) 

(3.49) 

where a and 6 are constants representing the width and ampli tude of the pulse. The corre-

sponding result in terms of the characteristic coordinates if, is 

% = — 2^, 

Y = + 4o^(u^^ + 1), 

1/ = exp 26i/i 
'2(% + \ / f ) 

Y 

7 = 2o2 
1 - 2a: 

2%^ - 4a^(u^^ -I- 1)̂  
Y2 

-t- 2« 

V T 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

The initial values for t/ and its time derivative are prescribed according to these equations 

whereas on the initial shce is calculated via quadiatuie fiom the constraint equations (3.38) 

and (3.43). In order to plot the solution for 0 < r < oo we introduce the radial variable 

for 0 < 7 < 1 

3 & for r > 1. 
(3.54) 

In Fig. 12 we show the numerical results for z/ and 'y and their deviation from the analytic 

values obtained for o = 2 and 6 — 0.5 using 1200 grid points in each region and a Courant 

factor of 0.45. As in the case of the original code fiom Dubai et al. we End that a Courant 

factor < 0.5 is required for a stable evolution. The plots show the incoming pulse in z/ which 

is rejected at the origin and then moves outwards to null inf nity. The relatively large number 

of grid points is required to achieve a high accuracy at early times in modelling the steep 
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Ai/lO" 

Ay 10̂  

Figure 12: The numerical solutions for i/ and -y of the Weber-Wheeler wave for o = 0.5, 6 = 2 
obtained with 1200 grid points in each region (left panels). In the right panels the corresponding 
deviation from the analytic result is ampliSed by 10^ and 10^, respectively. For presentation 
purposes r/ and are viewed from di&rent angles. 

gradients of the incoming pulse. If the calculation staits at a later time or a smaller parameter 

a for the width of the pulse is used, the same accuracy is obtained with significantly fewer grid 

points. We also see that longer runs do not reveal any new features as the metric variables 

approach their Minkowskian values after t % 5. This solution, however, does not provide a test 

for the rotational degree of freedom. For that purpose we need an analytic solution with both 

gravitational degrees of freedom. 

3.5.2 X a n t h o p o u l o s ' r o t a t i n g so lu t ion 

The next solution we consider is one due to Xanthopoulos (1986) which has a conical singularity 

on the z-axis and therefore describes a rotating vacuum solution with a cosmic string type 

singularity. The solution has been rewritten in terma of our variables by Sjodin et al. (2000). 
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Again it is convenient to introduce auxiliary quantities 

Q = ^ 1, (3.55) 

% = + 4̂ 2̂  (356) 

y = + 1)% + Q] + 1 - o y 2 ( % - Q), (3.57) 

^ = —[(2a^ + 1)-^ 4" Q] 1) (3.58) 

where a is a free parameter which can take on any non-zero value. The solution derived by 

Xanthopoulos then becomes 

'4t,p) = §. (3.59) 

T(t .p) = - t _ Q , (3.60) 

In the outer region where we use the coordinates (w, ^) the result is 

Q = - 2?/, (3.62) 

% = +4(^2/2+ 1)2^ (3,63) 

y = ^[(2a^ + l ) f + Q] + !/̂  - G!/)/2(% - Q), (3.64) 

Z = ^[(2a" + 1)% + Q ] - ! / ^ (3.65) 

^(^,2/) — (3.66) 

. ( « . , ) = (3.67) 

7(^,2/) = (3-68) 

In Fig. 13 we show the numerical results and the deviation from the analytic values obtained 

for o = 1 and a Courant factor of 0.45. In this solution no steep gradients are present and 300 
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Ai/10" 
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Tl6 1.0T 

O-sj 
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ATlO^ 

A y 10^ 

Figure 13: The numerical solutions for z/, T and 'y of Xanthopoulos' spacetime for o = 1 obtained 
with 300 grid points in each region (left panels). In the right panels the corresponding deviation 
from the analytic result is ampliEed by 10^ and 10^, respectively. The spatial coordinate w is 
dehned in Bq. (3.54). 

grid points in each region are sufEcient to reproduce the analytic values to within a relative 

error of about 10"^. Again longer runs do not reveal any fui-ther features as the metric settles 

down into Minkowskian values. We conclude that the code reproduces analytic solutions with 

one or two gravitational degrees of freedom with high accuracy over the dynamicaUy relevant 
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lg(AT*»)/lg(AT«») 

t 
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0.0 2 0 

Figure 14: The convergence factor is plot ted as a function of time for the 
variables i/, T and 'y. For our second order scheme we obtain a constant convergence factor of 
4 expected for doubling the grid resolution. 

time intervals. 

3.5.3 T i m e d e p e n d e n t convergence analysis 

Even though the accuracy and long term stability of the code hag been demonstrated in the 

previous sections, we stiU have to make sure that it is also second order convergent. In particular 

the start-up procedure described in section 3.3.3 and the use therein of the Euler scheme to 

calculate the auxiliary time shce at —df/2 might raise questions in this respect. 

For the convergence analysis we deSne the ^2-norm of the deviation of a numerical solution 

as a function of time 

(3.69) 

K 
(3.70) 

Here is the exact and the numerical value at gTid point A; obtained for a total of 

grid points. We have calculated the ^2 norm for the Xanthopoulos solution of the previous 
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section using 300 and 600 grid points in each region. In Fig. 14 we plot the quotient as a 

function of time. Corresponding to the increase of the grid resolution by a factor of 2 we expect 

a convergence factor of 4 for the second order scheme. In spite of the use of the Erst order 

Euler method for the start-up, second order convergence is clearly maintained throughout the 

dynamically relevant evolution. 



4 NI/MBRICAI, EVOI/C/TION OF EXCITED COSMIC STRINGS 61 

4 Numerical evolution of excited cosmic 

strings 

4.1 Introduct ion 

According to the standard "big bang" model of cosmology, t h e universe is continuously ex-

panding and cooling and was extremely hot and dense in its eaiiy stages. The grand uniGed 

theories (GUT) of elementary particle physics predict phase transitions to occur as a result of 

this cooling process in the early universe. These result in topological defects, regions with the 

"old symmetry" surrounded by "new symmetry". The topology of the defects depends on the 

symmetry groups characterising the involved Eelds before and after the symmetry breaking. 

Cosmic strings are a l-dimensional, "string-like" version of these topological defects. The type 

of strings usually considered from the astrophysical point of view has a mass per unit length 

% 10"^ in natural units (Tt = C = c = 1). The corresponding phase transitions are predicted 

to have occurred at the GUT energy scale 10^^ GeV. Strings with signiEcantly higher mass 

created at higher energy scales cannot be ruled out, however, a n d their treatment can no longer 

be achieved in the weak-6eld limit. 

Numerical simulations by Vachaspati and Vilenkin (1984) show that cosmic strings Eire created 

in the form of a network of inhnitely long or loop like strings. In this work we will focus on 

infinitely long strings which are modelled in the framework of cylindrical symmetry. 

Cosmic strings have caught the interest of astrophysicists and relativists for several reaaons. 

Most importantly the suggestion that cosmic strings be seeds for galaxy formation by Zel'dovich 

(1980) haa given rise to intense eSbrts to understand the evolution of the resulting density per-

turbations (see e.g. Turok and Brandenburger 1986). Cosmic strings are also thought to be 

sources of gravitational radiation (Vilenkin and Shellard 1994). Below we will study the in-

teraction of an inEnitely long cosmic string with a wave pulse with one gravitational degree of 

freedom. Cosmic strings have also been considered of astrophysical relevance because of the 

bending of hght rays that arises from the conical structure of the resulting spacetime. It has been 

shown by Vilenkin (1981) that the geometry around an isolated cosmic string is Minkowskian 

minus a wedge, the "dehcit angle", and consequently cosmic strings may act as gravitational 

lenses. 

Even though static cosmic strings in cylindrical symmetry have been studied extensively in the 

past either in Minkowskian or curved spacetime (see e.g. Laguna-CastiUo and Matzner 1987, 

Garhnkle 1985), no solution has been obtained, to our knowledge, for a dynamic cosmic string 
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coupled to gravity via the fully non-linear Einstein equations. Below we will present a numerical 

solution of this scenario and investigate the behaviom- of a cosmic string excited by gravitational 

radiation. After presenting the mathematical description of a cosmic string in the next section 

we wiU derive the equations of a dynamic cosmic string coupled to gravity. In section 4.4 we 

will describe the numerical treatment of these equations. The simple scenario of a static cosmic 

string in Minkowski spacetime presents already most of the subtleties involved in solving the 

general problem and is therefore suitable for illustrating om- numerical methods. Subsequently 

we address a static string in curved spacetime and Enally present the dynamic code. This code 

is extensively tested in section 4.5 before we investigate the t ime evolution in section 4.6. 

The results and techniques presented in this section can also b e found in Sperhake et al. (2000). 

We conclude this introduction with some comments on the numerical formulations used in this 

section. We have seen above how the combination of an interior Cauchy evolution with a char-

acteristic evolution in the exterior region leads to a stable accurate simulation of cylindricaUy 

symmetry vacuum spacetimes. In a natural extension of this project we studied the inclusion of 

matter in the form of a cylindrically symmetric cosmic string. Such an extension of the CCM-

code of the previous section has been developed, but no long te rm stable evolutions have been 

achieved with that code. Consequently we have restarted the investigation. For convenience 

this has been done in a purely characteristic framework and finally resulted in the long-term 

stable, accurate code described below. In the course of this work we have isolated the existence 

of exponentially diverging solutions and the corresponding difEculties at the outer boundary aa 

the source of the problems. We will describe how these diScult ies can be naturally controlled 

with the use of implicit numerical techniques. The use of such techniques, however, is by no 

means restricted to characteristic methods and we have no reason to beheve that an implicit 

Cauchy-characteristic matching code would perform less satisfactorily. Such an implicit COM 

code has been tested in the simple case of a cylindrically symmetric vacuum spacetime with 

vanishing rotation and has lead to an accurate long-term stable evolution of the Weber-Wheeler 

wave. From this point of view the choice of a characteristic formulation for the work described 

in this section is merely a consequence of the chronology in which progress has been achieved. 

4.2 Mathemat ical description of a cosmic str ing 

In the following work we will use cylindrical coordinates f , z. Here z is the KiUing direction 

corresponding to cyhndrical symmetry and r, are standaid polar coordinates. In 4-dimensional 

spacetime the time coordinate is t, but we wiU apply a characteristic formahsm for the numerical 
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solution and therefore also use the retarded time it = t - r . T h e simplest model of a cosmic 

string consists of a scalar Held $ coupled to a (7(l)-gauge held A^. The Lagrangian for these 

coupled helds is given by 

W = - | ( V ^ + (4.1) 

Here e is a constant, which describes the couphng between the scalar and the vector held. The 

self-coupling potential y ( $ ) haa the "Mexican-hat" shape predicted by the standard model of 

elementary particle physics and is the held tensor 

^ fiu — — VjyA^j, (4.2) 

y ( $ ) = 2A($^ - (0)^)^, (4.3) 

where A is the self-coupling constant of the scalar held. It tu rns out to be useful to introduce 

the Higgs vacuum expectation value of the scalar held as a parameter 7/ = 2(0)^. Generahzing 

the notation of Garhnkle (1985) we write the helds as 

$ = (4.4) 
\ /2 

A^ = l ( f - l ) V , , < ^ , (4.5) 

where f , S and ^ are functions of w, r , (̂ . Prom now on, however, we will make the simplifying 

assumption of cylindrical symmetry. Then f and S are functions of tz, r only and 

where n, is the winding number. In this work we will only consider the case H = 1, so 

We can calculate the energy momentum tensor from the Lagrangian according to 

(4.6) 
V 9 

where is the Lagrange density. Summaiising the variables and parameters, we 

have 

(1) the amphtude of the scalar held S(i(, r), 

(2) the amphtude of the (7(1) gauge held _P(w,r), 

(3) the constant e which describes the couphng between the scalai- and vector held, 

(4) the self-coupling constant A of the scalar held. 
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(5) the vacuum expectation value of the scalai' Held 

If we substitute Bqs. (4.4), (4.5) in (4.1) we obtain the Lagrangian and the energy momentum 

tensor in terms of these quantities 

= - ^ 9 ' ' " ( V ^ ^ ) ( V , g ) - ^g"g^"(V^^ + eA^)(V,,^ + eA^) - A(^2 -7?^)^ -

(4.7) 

= (V^5')(V;/5') + 5'^(V^i^ + eA^)(Vi,^ + eA,,) + . (4.8) 

4.3 The field equations 

We start again with the hne element in Jordan, Ehlers, Kundt and Kompaneets (JBKK) form 

(3.10) for a cylindrically symmetric spacetime. This form of the metric, however, is not compat-

ible with the cosmic string energy momentum tensor so we follow Marder (1958) by introducing 

an extra variable into the metric 

^ f ( w d i ; ^ + dz)^, (4.9) 

where the tilde is used to reserve the names ^ and r for rescaled coordinates below. This choice 

enables us to compare our numerical solutions with the results of the Cauchy-characteristic 

matching code described in section 3. We have aheady noted tha t this metric haa a zero shift 

vector and the lapse is determined by the requirement = g^f. The function /i, however, 

introduces the extra gauge &eedom of relabelling the radial nul l surfaces: {(—>/({() and 

g(u). We may Hx this by speci^ing the initial values for a n d either its time derivative in a 

"3+1" formalism or its boundary conditions in a characteristic formahsm. We wiU follow the 

second approach and below we wiU see that the function /u is uniquely determined in the static 

case and the boundary conditions follow from regularity assumptions of the metric. The further 

requirement that the dynamic results reduce to the static ones in the caae of vanishing time 

dependence therefore fixes the gauge. 

It turns out that we can ehminate one of the free paiameters and simphfy the equations if we 
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introduce rescaled quantities according to 

( = VATyf, (4.10) 

r — (4.11) 

% = - , (4.12) 
•q 

,2 

I 
a = (4.13) 

Thus a represents the relative strength of the coupling between scalar and vector Eeld compared 

to the self-coupling. Furthermore we use the retarded time u = t — r so that the line element 

becomes 

p 2 ( ' y — 0 — 2 1 / ; 
- 2dWr) + ^ g + (fz)^. (4-14) 

In section 3.3.1 we have described the Geroch decomposition which can be used to factor out t he 

Killing direction even if the Killing held is not hypersurface-orthogonal. It is a remarkable 

fact that the right hand side of equation (3.4) still vanishes for spacetimes with a cosmic string 

energy-momentum tensor (4.8) (Sjddin et al. 2000), so that the Geroch twist can be described 

by a potential according to Eq. (3.5). The other geometrical variable, the norm of the z-Killing 

vector (3.1) becomes 

^ = (4.15) 

and the 3-dimensional line element (3.3) is 

\ —2dWr)+r^e '^^(f^^ . (4.16) 

Xrf^u I J 

With the energy momentum tensor given by (4.8) and the 3-dimensional line element (4.16) 

we are now in a position to calculate the Seld equations according to equations (3.6)-(3.8). We 
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obtain 

Ot/ = Z/rA(,r + 
V 

+ STTT/ 
o p p _ p2 

T lyjy -y 
[HT = TrMjT ~ 2 — — T ~ T,rl'l',u ~(~ 2 

W 

O/^ = /̂ ^ + ^ - ^ - 2/̂ ,u)U,r + STTT/̂  
g2('y+//) 

- 1)^ + ê T' 
j^2j32 

0 = 2%r + Zr^r/^.r - r/^,rr + ^ STTTŷ  

where we have introduced the Hat-space d'Alembert operator 

1 ^ a a 

1 

a r 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

This set of equations is supplemented by the matter evolution equations obtained either from 

conservation of energy-momentum = 0 or variation of the Lagrange density with 

respect to the matter helds f and %. The result is 

• P — 2 — P,rl^,r + f , r — h P,rl^.u + P.ul^,r 
z/ z/ 

a % = - 4i/-^e2(T+^)%(%^ - 1) -
,,.2 • 

(4.22) 

(4.23) 

Note that in equations (4.17)-(4.20) the matter terms exclusively appear with a factor 77̂ . 

Consequently 7; describes the eSect of the string on the spacetime geometry and, thus, represents 

the string's mass. There are two further Einstein equations which can be shown to be a direct 

consequence of (4.17)-(4.23) and their derivatives. These equations have only been used to 

provide a check on the accuracy of the code. Finally we have to supplement the equations by 

boundary conditions on the axis. For the 4-dimenaional metric variables the simplest condition 

ig to require the metric to be C^ on the axis so that we have a well dehned curvature tensor. 
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The resulting boundary conditions are (Sjodin 2001) 

= ai(^) + (4.24) 

T(^, r) = ^(r^) , (4.25) 

//(^, r) = 02(<) + ^(r^) , (4.26) 

'y(^, r) = ^ ( r ) . (4.27) 

The boundary conditions for 5" and f are (Garhnkle 1985) 

f ( ^ , r ) = l + ^(r^) , (4.28) 

%(t , r ) = ^ ( r ) . (4.29) 

The numerical implementation of these boundary conditions as well as regularity requirements 

at null inEnity will be discussed in section 4.4.3. 

4.4 Numerical methods 

In order to solve the above held equations we have developed two independent codes. The 

hrst is based on the Cauchy characteristic matching code described in section 3. This code 

performs well in the absence of matter and has been used to study several cyhndrically sym-

metric vacuum solutions (see also Sjddin et al. 2000). However, this CCM code performed less 

satisfactorily in the evolution of the cosmic string. This is due to the existence of unphysical 

solutions to the evolution equations (4.17)-(4.23) which diverge exponentially as r —oo. Con-

trolling the time evolution near null infinity by means of a sponge function enabled us to select 

the physical solutions with regular behaviour at i''", but the sponge function itself introduced 

noise which eventually gave rise to instabilities. We therefore implemented a second imphcit, 

purely characteristic, code which allows us to directly control the behaviour of the solutions at 

the boundaries and thus suppress diverging solutions. The main problem with the system of 

diSerential equations is the irregularity of the equations at bo th the origin and null inhnity. It 

is the implicit nature of the scheme that provides a simple way of implementing the boundary 

conditions and thus circumventing all problems with these hregularities. A purely characteristic 

formulation has been used for the second code for convenience rather than numerical necessity 

and we believe that an imphcit CCM scheme would produce simllai- accuracy, convergence and 



4 NC/MERICAl EyOLUTION OF EXCITED COSMIC STRINGS 68 

long term stability. It is interesting that the irregularity problems are already present in the 

calculation of the static cosmic string in Minkowski spacetime. We will, therefore, hrst describe 

the numerical scheme used in the static Minkowskian case where the equations are fairly sim-

ple. We then present the modihcations necessary for the stat ic and dynamic case coupled to 

the gravitational Seld. 

4 .4 .1 T h e s t a t i c cosmic s t r ing in Minkowski s p a c e t i m e 

In Eqs. (4.17)-(4.23) we set the metric variables to then- Minkowskian values and all time deriva-

tives to zero to obtain the equations for the static cosmic s t r ing in Minkowski spacetime (cf. 

Garfinkle 1985) 

r — (4.30) 
dr \ dr y 

' ' t ( " f " ) = - 1)] . (4.31) 

The boundary conditions are (see GarEnkle 1985) 

f (0) = 1, lim f (r) = 0, 
r— 

% ( 0 ) = 0 , h m % ( r ) = l . (4.32) 
r— 

In order to cover the whole spacetime with a hnite coordinate range, we divide the computational 

domain into two regions in the same way as in section 3.3.3. In the inner region (0 < r < 1) we 

use the coordinate r , while in the outer region we introduce the compactihed radius ^ dehned 

by equation (3.12) which covers the range 1 > ^ > 0. Tins corresponds to the region 1 < r < oo 

with infinity mapped to ^ = 0. Again we combine r and ^ into the single radial variable w 

dehned by (3.54). In terma of the coordinate ^ Bqs. (4.30), (4.31) take the form 

= 4 a ^ , (4.33) 

f - 1 ) 
H 4 ^ (4.34) 

The number of grid points in each region may dlEer, but each half-grid is uniform. Thus we use 

a total of uRr := liTi -t-1(72 grid points where the points labelled KTi and liTi -t-1 both correspond 

to the position r = 1 = ^. The points ITi, ITi -t-1 form the interface between the two regions 

(see Pig. 15). One point will contain the variables in terms of r , the other in terms of With 
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inner region outer region 

r = 0 r = l 

k=l 2 3 ... Ki 

X X X X X X X 

i ^ i + l Ki+2 i i 'x+S ... K1+K2 

2/=l ;/=0 

Figure 15: The combined grid of the inner and the outer region. Note that both grid points, 
ATi and jiTi + 1, correspond to the position r = 1 4* 1/ = 1. These points form the interface of 
the code and facilitate transformation of the variables from the coordinate system using r into 
that using y. 

the computational grid covering the whole spacetime, we now face a two point boundary value 

problem. Due to the existence of unphysical solutions diverging a t ^ 0 we have chosen to solve 

the equations with a numerical relaxation scheme as described in section 2.3.5 which allows us 

to directly control the behaviour o f f and X at inhnity. The form of Eqs. (4.30), (4.31) suggests 

that in order to write them aa a Grst order system we should introduce the auxiliary variables 

Q = r and The equations may then be written in the form 

f r = rQ, (4.35) 

X , = - . (4.36) 
r 

Q,r = (4.37) 

p2 
— + 4 r ( % ^ - l ) 
r 

(4.38) 

The corresponding equations in the outer region are given by 

f y = "^"5 ) (4.39) 

-̂ ,3/ ^ (4.40) 

Q,^ = - 2 a ^ , (4.41) 

/ p2 — 1 \ 
Ay = - 2 % — + 4 ^ . (4.42) 
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Standard second order centred Snite diSerencing according t o Bqs. (2.78), (2.79) results in 

4(A' — 2) non-linear algebraic equations which are supplemented by the 4 boundary conditions 

(4.32) and 4 interface relations 

-F'A:i+i = -PKi, (4.43) 

-^Ki+i—-X/Ci, (4.44) 

0;'ri+i = QA'i, (4.45) 

AKi+i=-RA'i. (4.46) 

We then start with piecewise linear initial guesses for f and ^ (and the corresponding deriva-

tives Q and I() and solve the 4j(' algebraic equations as described in section 2.3.5. 

In order to check the code for convergence, we vary the grid resolution liT (using liTi = 1^2 

points in both regions) from 150 to 2400, halving the grid spacing each time. Since we do not 

have an analytic solution, the results are compared against the high-resolution case (I^ — 2400). 

For doing this we calculate the ^2 norm according to Eq. (3.70). In this case the function ^ 

in Bq. (3.70) stands for f , Q or and the norm does not depend on time because of the 

static nature of the problem. For second order convergence we expect the ^2 norm to decrease 

by a factor of 4 each time we increase the grid resolution by a factor of 2. However, we do not 

compare our results against the exact solution but against a h igh resolution result which itself 

haa a finite truncation error, so that 

- (4.47) 

Therefore we do not expect the factor to be exactly 4. Using a grid resolution liT the truncation 

error is given by 

rA" ^ / 1 A ^ , (4.48) 

where ^ is the exact and the numerical solution. For simplicity we will assume that the 

truncation error is either — l/Iir^ or +1/1^^. If we use a reference solution obtained for 4IC grid 
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Table 1: Convergence test for the cosmic string in Minkowski space-time for a = 1. The norm of 
the deviation is deSned by Eq. (4.47). As the grid resolution is increased, the deviation 
from the high resolution result decreases qnadratically to a good approximation (see text for 
details). 

P X Q R 

5.77-10-^ 2.84 . 10-^ 5.86 -10"^ 8.89 -10-'^ 

^2(A^^5")/^2(A^300) 4.05 4.05 4.04 4.05 
4.20 4.20 4.20 4.20 
5.00 5.00 5.00 5.00 

points and compare solutions and the ratio of the corresponding ^g-norms becomes 

/ E M ' - f f " ' ) ' ) ' ' ' f ± 

I e ( ± 

1 \ 2 1/2 

4- i 

±16 ± 1 

±4:L 1 
(4.49) 

Considering the extreme cases, we expect a convergence factor between 3 and 5^. The trunca-

tion error of the high resolution result will have significantly less inSuence on the comparison 

of lower resolution results and the factors should be closer to 4. Table 1 shows our results for 

the cosmic string in Minkowski space-time and clearly indicates second order convergence. In 

Fig. 16 we show the string variables F and % for various values of a as a function of w. Due 

to the rescaUng (4.10)-(4.12) the equations for the cosmic string in Minkowski spacetime (4.30) 

and (4.31) do not explicitly contain the parameter so the shape of the cosmic string Eelds 

P(w). X(w) 
1.0 

0.8 

0.4 

0.2 

0.0 1.0 2.5 3.0 

Figure 16: The cosmic string variables F and % aie plotted for a = 10, 1, 0.1, 0.01 (from "left 
to right"). The two families are labelled in the plot. As a increases, both, F and % become 
more concentrated towards the origin. Note that w = 3 corresponds to r —oo [cf. Bq. (3.54)]. 
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expressed in terms of the rescaled variables is independent of Below we will see that this is 

no longer true in curved spacetime where 7;, representing the mass of the string, determines the 

strength of its coupling to gravity. Fig. 16 does, however, reveal a signihcant variation of the 

profiles of the scalar and vector held with the couphng ratio a . As the scalar-vector couphng 

becomes more dominant with respect to the self coupling of t h e scalar held (larger a), both f 

and % become more concentrated towards the origin. 

4.4.2 T h e s t a t i c cosmic s t r ing coupled t o gravi ty 

The equations governing a static cosmic string in curved spacetime are obtained from the 

general equations (4.17)-(4.23) by setting all time derivatives t o zero. If we combine hrst and 

second spatial derivatives in a single operator as in equations (4.30), (4.31), we can write these 

equations as 

+ r - + STTT; 
Pi 

2e^(T+^)r(%^ - 1)' (4.50) 

/ \ fL ^ 7" ̂  T" (4.51) 

(r^/^ ,.),. = _ ^ - 1)^ 

2(r//,r + 1) 
l^,rr (Lt ' I + —e 

a 

I f ^ 4. 
ri/ 

+ ae 

P 
+ 4e^(')'+/')7y-4 (%^ - 1) 

(4.52) 

, (4.53) 

(4.54) 

(4.55) 

After completing the code, we realised that in the case of vanishing rotation T the held equations 

(4.50)-(4.55) imply a simple relation between z/, and 'y. An appropriate linear combination of 

these equations and their spatial derivatives can be written as 

('Y + — lnL/)_rr + (7 + ^ ^),r — 0, (4.56) 

which after some manipulation becomes 

('y + // - lnz/),r = C- (4.57) 
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Here C is a constant that has to vanish in order to ensure f in i te derivatives at the origin. In 

the static case we adjust the functions oi and (12 in the boundary conditions (4.24), (4.26) so 

that z/ — 1 and /̂  = 0 at the origin and consequently 

7 + — In 1/ = 0, (4.58) 

for all values of r . Even though T will be zero in the analysis in this section, we will numerically 

solve the original system of equations (4.50)-(4.55) and use (4.58) as a test for the code. 

In order to numerically solve the equations of a cosmic string coupled to gravity, we rewrite 

them again as a hrst order system. The diEerential operators appearing on the right hand side 

suggest that we introduce the auxiliary quantities TV = ^ = rT_r, M = Q = r 

and ^ - The system can then be written in the form 

_ 
',7- — , 

r 
(4.59) 

T,r = ^ , (4.60) 

(4-61) 

f r - rQ, (4.62) 

(4.63) 

- 167r7^^e^^+^^r(%^ - 1)^ + (4.64) 

= 2 — - ™ , (4.65) 

^ ^ - 1)^, (4.66) 

2(r + M)'y^ = M , - 2 — - ^ (4.67) 
' r r"' 2z/-̂  a 

Q ^ ^ ^ (4 68) 
' rz/ r 

_R^ = + 4e^T+^''z/-4%(%^ - 1) + (4.69) 
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The corresponding equations in terms of the compactihed radial coordinate ^ are 

N 
y ' (4.70) 

'̂ ,1' ^ ' (4-71) 

(4.72) 

f y = ^ , (4.73) 

-y,. = f , (4^74) 

Ny = _ ypfM _ 64T.)'e'' '+-" T ^ - + 8 , — ( 4 . 7 5 ) 

T^ = 2 ^ - 2/TM, (4.76) 

^2n2 ry2 i\2 
- 327r7;^e^T^^ - 647r77^e^^+^^i/-i , (4.77) 

/\̂ 2 I fTig D2 _2 ^2 
2(^^M - 2)'y y = + 4^M - -I —^ 1- 87r?)^— + S f r — , (4.78) 

Q . = i/QM - ^ + 4ae^7+2 /^ :v - i f ^ . (4.79) 
2/:/ 2/ 

Ay = -2/AM + (4.80) 
^ 2/ 

From the numerical point of view, the problem of solving these equations is virtually identical 

to that of a static string in Minkowski spacetime. The only difference is the much higher degree 

of complexity of the equations due to the appearance o f T , /i and 'y as extra variables. We will 

discuss the numerical implementation of the boundary conditions at the origin and at inGnity 

in the next section when we consider the case of a dynamic cosmic string. The boundary 

conditions are given by equations (4.104), (4.105). In the static case we replace the conditions 
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Table 2: Convergence test for the static cosmic string in curved space-time for a = 1. The 
norm of the deviation is dehned by Eq. (4.47). As the grid resolution is increased, the 
deviation from the high resolution result decreases quadratically to a good approximation (see 
text for details). 

V 7 P % 

^2(A$l^™) 1.28 . 10-"^ 2.51 . 10-G 2.39-10-(^ 5.95 - 10-^ 4.16 .10-'^ 

^2(A^1^»)/^2(A$^™) 3.56 3.59 3.58 4.04 3.37 
3.76 3.79 3.78 4.19 3.60 

^2(A^G00)y^g^^^l200) 4.58 4.61 4.60 4.98 4.44 

for jV, T and M in (4.104) by 

z/ = 1, 

T = 0, (4.81) 

/̂  = 0, 

but otherwise use the same boundary conditions. The solution is then obtained using the relax-

ation method described in the previous section. As our initial guess for the metric variables we 

use Minkowskian values, and for the string variables % and f we use the previously calculated 

values for a Minkowskian string with the same string parameters. Due to the appearance of 

T or its derivatives in all terms of (4.51) the Geroch potential wiU stay zero in the relaxation 

process and our solution has no rotation. 

We have checked the code for convergence in the way described in section 4.4.1. We have cho-

sen the unphysically large value = 0.2 here in order to guaiantee convergence even for strong 

coupling between matter and geometry, oi is set to 1 as in the Minkowski case. The results are 

given in Table 2. For convenience we only display the results for the fundamental variables z/, 

//, 'y, jP and %. Since we do not incorporate rotation, the result for T is, as expected, exactly 0 

and we do not include it in Table 2. Again the code is shown to be second order convergent. 

In Fig. 17 and 18 we plot the results obtained for = 2400 grid points. In all these plots the 

relative couphng strength is a = 1, but quahtatively similar results aie obtained for diSerent 

values of a . We have already mentioned that the eEect of the string on the spacetime geometry 

is determined by ?). Therefore we have compared the deviation of both the string variables and 

the metric from the Minkowskian case for = 0.001, 0.01, 0.1 and 0.2. In Fig. 17 we plot the 

string variables f and % for the two extreme values and the deviation from the Minkowskian 

string rescaled by 7)̂  for all four values. For small we see that A f a n d is essentially 
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X(w) 

AP(w)/if AX(w)/7; 

Figure 17: a) In the upper two panels we plot the string variables for 7/ = 0.001 (dotted) and 
0.2 (solid) as a function of the radial variable w. b) In the lower panels we have plotted the 
deviation from the Minkowskian values rescaled by 7)̂  for = 0.001 (dotted), 0.01 (dashed), 0.1 
(long dashed) and 0.2 (solid). Note that the curves for 0.001 a n d 0.01 almost exactly coincide, 
which indicates the validity of the hnear regime. For larger 7y, however, the deviation shows a 
more comphcated behaviour. 

independent of ?/. In this case the deviation from Minkowskian values can be treated as a small 

perturbation and a linear dependence of A f and A% on is to be expected. In the range 

= 0 .1 . . . 0.2 on the other hand, we clearly leave the hnear regime and the deviation depends 

on in a much more comphcated way. These values, however, a ie 2 orders of magnitude larger 

than the value 10"^ predicted in current GUT theories (Vilenkin and Shellard 1994). The de-

viation of the metric variables z/, and 'y is plotted in the Erst three panels of Fig. 18. Again 

we see the linear behaviour for small and the transition to the non-linear regime at 7; % 0.1. 

In the fourth panel of Fig. 18 we check Eq. (4.58) for = 0.1. We clearly see that 'y + /̂  + Inz/ 

is approximately zero. Indeed (4.58) is satished to within % 10"^ as compared with the order 

of magnitude of the individual terms 10"^. 

4.4.3 T h e d y n a m i c cosmic s t r ing 

In the dynamic caae all variables i/, T, //, 'y, f and % are functions of it, r and we have to solve 

the system (4.17)-(4.23) of partial diEerential equations. In order to control the behaviour of 
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(i/(w)-l)/?' Xv)/fr 

1 0 . 0 -

5X) -

7. u, mv 

7+ii—Ini' 

10.0 -

Figure 18: The deviation of the metric variables z/, and -y from Minkowskian values rescaled by 
7/̂  is plotted as a function of w for = 0.001 (dotted), 0.01 (dashed), 0.1 (long dashed) and 0.2 
(solid). The dotted and the dashed curves almost exactly coincide indicating the linear regime. 
As in the case of the string variables we End a more comphcated dependence for y; > 0.1. In 
the lower right panel we plot 'y Ini/ and their sum for ?) = 0.1 which vanishes in accordance 
with Bq. (4.58) to high accuracy. 

the solution at inEnity, we need a generalisation for PDEs of t h e relaxation scheme applied to 

ordinary differential equations. In view of the characteristic feature of the relaxation scheme, 

namely the simultaneous calculation of new function values at all grid points, this generalisation 

leads directly to imphcit evolution schemes as used for hyperbolic or parabohc PDBs. Therefore, 

the dynamic code is based on the implicit, second order in space and time Crank-Nicholson 

scheme described in section 2.3.6. For this purpose we rewrite the dynamic equations (4.17)-

(4.23) as a first order system. These equations involve radial derivatives which may be written 

in terms of second order operators exactly as in the static case (4.50)-(4.55). This naturally 

leads to the auxihary quantities introduced in Eqs. (4.59)-(4.63). In terms of these variables the 
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equations for the dynamic cosmic string become 

N 
U r =-

T 

M 

(4.82) 

(4.83) 

(4.84) 

f r = r Q , 

X.. 

(4.85) 

(4.86) 

ATM _z/„ ,7V-T„r 

rz/ 
-AT/, , 

+ 87r7; 2e2(7+fi)r(^2 _ ^^2 ^ _g-2A^2(2f «Q - rQ^) 
a 

= r r - 2 + 2 
TAT ^T.AT + z/^T T M 

ri/ r-
r„ TfJ, uj 

u =Af_r -l 2 — 2 / / — 2r/^ ^ + 87r7ŷ  

2(r + M)Tr = M , _ 2 — - ^ g 2 

g2^;^2p2 ^ 2 ! ^2^;^2 _ 1)2 

j^2 ^ _g-2,2^^^2Q2 
a 

(4.87) 

(4.88) 

(4.89) 

(4.90) 

2 0 , . = o „ - ^ + 0 , , „ + + ^ + 2 ' ' "t ^ 1 
2/ r^i/ rz/ z/ r 

(4.91) 

2A^ = A . r — 
A M ^2('y+fi) 

+ ^ - - 4 : r ; ^ ( % " - 1) - e 27 (4.92) 
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The corresponding Erst order system in the outer region is given by 

— - 2—, 

- - 2— 

N 
y 

T 

y' 

X , 

- 2 ^ . 

- 4 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

ZATu = ( " , - 2 . . ™ - 2 - — ^ 4" 2-
- T,.T 

- + STT)?̂  262(7+,/) A f ^ 

2 T . = 
1 / TN\ 

2/̂  Tg, - 2^TM + 4 - T;/,» - + 2-
T . jV + i/,uT 

2Mu = 

2̂ ^ \ ' 2/1/ y ' ' 1/ 

L ^ ( M ^ - 22/M") - 2 ^ - 2/,,^M 
^ 2/ 

87r?) 
z/ 2/ 

AT^+T^ 

(4.98) 

(4.99) 

(4.100) 

2(2/^M + l)'y_y - + 4^M + 2i/^M^ — 16777)̂  
2/;/̂  

1 
-I—e ^^1/-

121 

L 2/ a 

2Q,« = - ^2/' f Q,, + 23/QM - 2 ^ ^ + 
z/ z/ 

(4.101) 

(4.102) 

2A 
1 

^ ^ _ 2 ^ ^ M ) - - A//,,, - " 

_ 4g2(7+/^)^-i^(^2zLl) _ 

(4.103) 

The derivation of these equations and a number of other calculations in this work have been 

carried out with the algebraic computing package GRTensorll (Musgrave, Pollney, and Lake 
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1996). In order to solve these equations we must supplement them by appropriate initial and 

boundary conditions. We have already mentioned the boundary conditions on the axis (4.24)-

(4.29). In general we Gnd that the dynamic code performs bet ter if one imposes boundary 

conditions on the radial derivatives rather than the variables themselves. For the variables 

z/, T, f and % we therefore impose the required boundary conditions on the initial data 

according to (4.32) and (4.81). In the subsequent evolution we impose the weaker condition 

that the radial derivatives T and are finite on the axis. This ensures that the evolution 

equations propagate the axial conditions given on the initial da ta . For the variable we impose 

the condition that M is zero on the axis which is equivalent to the rather weak condition that 

vanishes there. The inverse power of r in the definition of Q makes it unsuitable to spec i f 

the value of this quantity at r = 0 so in this case we work with the variable directly and require 

that f = 1 on the axis. Finally the variable 'y is given by a purely radial equation and in this 

case we speci:^ the value on the axis where -y vanishes by vi r tue of Eq. (4.27). Therefore at 

r = 0 we require 

7V = 0, 

T = 0, 

M = 0. 
(4.104) 

7 = 0, 

P = l, 

IZ = 0. 

For the boundary conditions at null infinity we know that regular solutions of the cylindrical 

wave equation have radial derivatives that decay faster than 1 / r so that we may take the 

variables AT, T, aad IZ, which sa t i s^ a wave type equation, to vanish at ?/ = 0. The asymptotics 

of are slightly diSerent due to the additional power of r in the radial derivative (similar to 

the spherically symmetric wave equation) but for a regular solution vanishes at nuU infinity. 

The equation for f does not satisfy a wave type equation due to the inverse power of r but 

has asymptotic behaviour given by a modified Bessel function. The physically relevant hnite 

solution has exponential decay so in this caae one may impose the condition that Q = 0 at 
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2/ = 0. Hence we require the solution to satisfy the following boundary conditions at ^ = 0 

Ar = 0, 

T = 0, 

^ (4.105) 

Q = 0, 

A = 0. 

These boundary conditions are suGcient to determine the solution of the hrst order system 

(4.82)-(4.103) while suppressing the unphysical solutions which are singular on the axis or null 

infinity. Note that 'y is determined by the constraint equation (4.20), which is a Erst order 

ODE, and thus only needs one boundary condition. 

We Hnally note that all variables are related at the interface in the form analogous 

to Eqs. (4.43)-(4.46) in the case of a static string in Minkowski spacetime. 

4.5 Testing the dynamic code 

In this section we will describe four independent tests of the imphcit code for the dynamic 

cosmic string, namely 

(1) reproducing the non-rotating vacuum solution of Weber and Wheeler (1957), 

(2) reproducing the rotating vacuum solution of Xanthopoulos (1986), 

(3) using the results for the static cosmic string as initial data and veri^ing that 

the system stays in its static configuration, 

(4) convergence analysis for the string hit by a Weber-Wheeler wave. 

Two additional tests arise in a natural way from the held equations and the numerical scheme. 

As described above there are two additional held equations which are consequences of the 

other equations. We have verihed that these equations aie satisfied to second order accuracy 

(r^ Ar^). Furthermore the numerical scheme calculates the residuals of the algebraic equations 

to be solved, which have thus been monitored in test runs. They are satished to a much higher 

accuracy (double precision machine accuracy), so the total error is dominated by the truncation 

error of the second order diEerencing scheme. Another independent test is the comparison with 

the explicit COM code which yields good agreement as long as the latter remains stable. The 

four main tests are now described in more detail. 
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A!/(ii,w)10^ Ai/(u.w)iO^ 

Figure 19: The deviation of the numerical z/ and "y from the Weber-Wheeler solution ag a 
function of u and iz; obtained for 1920 grid points (jiTi = 320, = 1600). The wave parameters 
are a = 2, 6 = 0.5. Note that the error is ampliGed by 10^ and 10 ' respectively. 

4 .5 .1 T h e W e b e r - W h e e l e r wave 

In the first test we evolve the analytic solution given by Weber and Wheeler (1957), which 

describes a gravitational pulse of the polarisation mode. We have given the analytic 

expressions in section 3.5.1 in terms o f t , r [Eqs. (3.46)-(3.49)] a n d in terms of ti, ^ [Bqs. (3.50)-

(3.53)]. The corresponding equations in characteristic coordinates u, r in the inner region are 

easily obtained from the coordinate transformation < = -I- r . We prescribe z/ aa initial da ta 

according to the analytic expressions obtained for a = 2 and 6 = 0.5 and set the other free 

variables to zero, while "y is calculated via quadrature from the constraint equation (4.20). In 

Fig. 19 we show the deviation of the numerical results from the analytic one for — 1920 grid 

points (320 points in the inner, 1600 points in the outer region) a n d a Courant factor of 0.5 with 

respect to the inner region. The convergence analysis (see below) shows that this number of 

points provides suKcient resolution in the outer region while still keeping computation times at 

a tolerable level. All computations presented in the remainder of section 4 have been obtained 

with these grid parameters, unless stated otherwise. The code s tays stable for much longer time 

intervals than shown in the Egure, but does not reveal any fu r the r interesting features as the 

analytic solution approaches its Minkowskian values and the error goes to zero. 

4 .5.2 T h e r o t a t i n g so lu t ion of X a n t h o p o u l o s 

Xanthopoulos (1986) has derived an analytic vacuum solution for Binatein's held equations 

in cyhndrical symmetry containing both the and "x" polarisat ion mode. Its analytic 

form in terms of our metric variables is given by Eqs. (3.55)-(3.68) in section 3.5.2. Again the 
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Ai/(u,-nr)10® At(U,W)-10̂  

4.0 2.0 

A7(U,W)10® 

Figure 20: The deviation of the numerical i/, T, "y from Xanthopoulos' analytic solution as a 
function of u and w obtained for 1920 grid points = 320, <̂72 = 1600). Note that the error 
is amphhed by 10^ and 10^ respectively. 

transformation to coordinates 2/, r in the inner region results straightforwardly &om ( = u + r . 

The solution has one free parameter a set to one in this calculation. The error of our numerical 

results is displayed in Fig. 20, where we have used the same grid parameters as in the Weber-

Wheeler case. Again we have run the code for longer times and found that the error approaches 

zero. We conclude that the code reproduces both analytic vacuum solutions with excellent 

accuracy comparable to that of the COM code and exhibits long term stabihty. 

4.5.3 Evo lu t i on of t h e s ta t i c cosmic s t r i ng 

The tests described above only involve vacuum solutions, so the matter part of the code and the 

interaction between matter and geometry has not been tested. A n obvious test involving matter 

and geometry is to use the result for the static cosmic string in curved spacetime as initial data 

and evolve this scenario. AU variables should, of comse, remain at their initial values. We have 

evolved the static string data for our standard grid and the parameter set, a = 1 and z; = 0.2, 

which corresponds to a strong back-reaction of the string on t h e metric. The results are shown 
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Ai/(u,-w)10® A/U.(U,W)10° 

A7(U,W)10® AP(u.w)10S 
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Figure 21: The deviation of the metric and matter variables f rom the initial data in the caae 
of evolving a static cosmic string with a = 1, = 0.2. For our standard grid with 1920 points, 
the conEguration stays static to an accuracy of % 10"^ over a range of more than 30000 time 
steps. 

in Fig. 21. The system stays in its static conhguration with high accuracy over a time interval 

which is significantly longer than the dynamically relevant timescale of the vacuum solutions 

discussed above. 
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Figure 22: The convergence factor is plotted as a function of u. We 
expect a convergence factor of 2.25 since the number of grid points is multiphed by 1.5. Even 
though our results show wealc variability at later times, second order convergence is maintained 
throughout long runs (more than 30000 time steps with jiT = 1920). 

4.5.4 Convergence analysis 

Our investigation of the interaction between the cosmic string and gravitational waves will focus 

on the string being hit by a wave of the Weber-Wheeler type. In order to check this scenario 

for convergence we have run the code for the parameter set 7̂  = 0.2, a — 1, a = 2, 6 = 0.5 

for diSerent grid resolutions, where a and 6 are again the width and amphtude of the Weber-

Wheeler wave. In our case it is of particular interest to investigate the time dependence of the 

convergence to see what resolution we need in order to obtain reliable results for long runs. We 

calculate the convergence rate again according to equation (3.70). The high resolution reference 

solution hag been calculated for = 4320 grid points. In Fig. 22 we show the convergence factor 



4 NC/MERfCAI, EVOl t /T ION OF EXCITED COSMIC STRJjVGS 86 

P(w), X(w). i/(w)—1 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.5 1.0 1.5 2.0 2.5 

Figure 23: The initial data for %/, f and % at itQ = — 20 for t h e standard parameters o; = 1, 
7) = 0.001, o = 2, 6 = 0.5. The gravitational wave pulse is located in a region where the string 
helds f and X have almost fallen oE to their asymptotic values. 

as a function of for z/, 'y, f and %. T h e initial data for T is identically 

zero for this scenario and stays zero during the evolution. The number of grid points is increased 

by a factor of 1.5 here (instead of the more commonly used 2) to reduce the computation time. 

Only points common to all grids have been used in the sum in equation (3.70). For second 

order convergence we would expect a convergence factor of 1.5^. Although the results in Fig. 22 

show weak variations with second order convergence is clearly maintained for long runs. 

In each case the outer region contains 5 times as many grid points as the inner region (e.g. 

liTi = 320, = 1600 for the A" = 1920 case). The reason for this is that in the dynamic 

evolutions % and especially f exhibit signihcant spatial vaiiations out to large radii. Due to 

the compactiEcation, the spatial resolution of our grid decreases towards null inhnity and in 

order to resolve the spatial variations of the string variables ou t to sufficiently large radii we 

therefore have to introduce a large number of grid points in the outer region. No such problems 

occur in the inner region. If signihcantly fewer grid points are used in the outer region for this 

analysis, the convergence properties of the string variables can deteriorate to roughly Erst order 

level. 

4.6 Time dependence of the string variables 

4.6.1 S t a t i c cosmic s t r ings exc i ted by g rav i t a t iona l w a v e s 

The scenario we are going to investigate in this section is an initially static cosmic string hit 

by a gravitational wave of Weber-Wheeler type. For this purpose we use the static results 
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Figure 24: The metric and string variables are plotted as functions of w at = —20 (dotted), 
If = —10 (long dotted), u = 0 (dashed), = 2 (long dashed) and it = 10 (solid line). For 
clarity the graphs of f are distributed over two panels. The wave pulse (in z/) initially moves 
inwards. It excites the string, is rejected at the origin and travela outwards. After u = 10 
only f diSers signihcantly from the static conBgmation as t he oscillations slowly decay and 
propagate towards larger radii (cf. Fig. 25). 

with two modiScations as initial data. Firstly the static metric function i/Q is multiplied by 

the exact Weber-Wheeler solution to simulate the gTavitational wave pulse. Thus we guarantee 

that initially the cosmic string is indeed in an equilibrium configuration provided the wave pulse 

is located suSciently far away &om the origin and its interaction with the string is neghgible. 

Ideally the numerical calculation would start with the incoming wave located at past null in&nity. 

In order to approximate this scenario, we found it was sufhcient to use the large negative initial 

time UQ = —20. The second modihcation is to calculate 'y f rom the constraint equation (4.20) 
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Figure 25: The cosmic string variable f is shown as a function of radius and time for a = 0.2 
(left) and a = 1 (right) (all other parameters have standaid values). Note that we use the radial 
variable r out to r = 50 here. The ringing can cleaiiy be seen a n d shows a lower frequency for 
smaller a. 

to preserve consistency with the Einstein Seld equations. In Fig. 23 the corresponding initial 

data for z/, _P and % are shown for the parameter set 7̂  = 0.001, (% = 1, o = 2 and 6 = 0.5. Prom 

now on we will refer to these values aa "standard parameters" and only specify parameters if 

they take on non-standard values. The time evolution of the "standard conBguration" is shown 

in Fig. 24 where we plot z/, 'y, f and % as functions of lu a t times —20, —10, 0, 2 and 10. 

While the wave pulse is still far away from the origin, its interaction with the cosmic string is 

negligible (dotted lines). When it reaches the core region it excites the cosmic string and the 

scalar and vector held start oscillating (daahed cmves). After being rejected at the origin, the 

wave pulse travels along the outgoing characteristics and the metr ic variables z/, // and 'y quickly 

settle down into their static configuration which is close to Minkowskian values for — 10"^. 

The vector and scalar held of the cosmic string, on the other hand, continue ringing albeit 

with a diEerent character. Whereas the oscillations of the scalar held % are dominant in the 

range r < 2 and have signihcantly decayed at iz = 10 as shown in the hgure, the vector held 

oscillations propagate to large radii and fall off very slowly (solid curves). This behaviour is 

also illustrated in the right panel of Fig. 25 which shows a contour plot of f as a function of 

(iz, r) out to r = 50. We shall see below, that the oscillations of f will also decay eventually 

and the cosmic string wUl asymptotically settle back into its equilibrium conhguration. 
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4.6.2 F r e q u e n c y analysis 

We will now quantitatively analyse the oscillations of the scalar and vector Held of the cosmic 

string. Since we are working in rescaled coordinates, physical t ime and distance are measured 

in units of l/VX)? and frequency in its inverse. To avoid complicated notation, however, we will 

omit the units from now on unless the meaning is unclear. In order to measure frequencies, we 

Fourier analyse the time evolution of the scalar and vector held for hxed radius r . Fig. 26 shows 

f and % for standard parameters aa functions of time at r = 1 together with the corresponding 

power spectra. In each Fourier spectrum we can see three peaks. Those very close to / = 0 

are merely due to the oEset of the data ajid the giadual change of the helds over long times. 

We therefore do not attribute these peaks to the oscillations of the Relds and will not consider 

them in the ensuing discussion. We have calculated similai- power spectra for a large class of 

parameter sets and in most cases found two peaks at non-zero frequencies. In order to interprets 

the frequencies, it is convenient to plot them as functions of t h e relative coupling strength a . 

The result is shown in Fig. 27. In this hgure the solid lines show the frequency values calculated 

for the scalar and vector held from the linearised equations (see Sjodin and Vickers 2001) 

, (4.106) 
TT 

/ P - (4.107) 

We can thus associate the constant frequency / = 0.45 with the scalar held % and the a 

dependent frequency with the vector held f . We will refer to these frequencies as / x and 

from now on. The a-dependency of is also illustrated in Fig. 25 where we show contour plots 

of f obtained for a = 0.2 and a = 1. The oscillation frequency is significantly larger for a = 1. 

In Fig. 27 we can see that the frequencies associated with the scalar and vector held become 

similar near a = 8. For this value it can be shown that the masses associated with the scalar 

and vector held become equal (see for example Sjodin and Vickers 2001). The frequencies are 

di@cult to resolve in these cases and we have only found one peak in the Fourier spectra. The 

resulting values are shown as hHed lozenges in the hgure. In this context it is worth mentioning 

that the accuracy of the measurements of the frequencies is limited by the resolution of the 

Fourier spectra which again is hmited by the time intei-val covered in the evolution. In Fig. 26 

we can see however, that the oscillations of both f and % gradually die out in later stages of 

the evolutions, so that it becomes increasingly difhcult to extract more information about the 

frequencies by using larger integration times. The evolutions used for this analysis provide an 

accuracy A / % 0.01 which corresponds approximately to one b in in the frequency spectra. 
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Figure 26: Upper panels: The variables F and % at ?- = 1 are plotted as functions of u for 
a = 1, 7/ = 0.001, a = 2 and 6 = 0.5. Lower panels: The corresponding power spectra show 
three peaks each. That near / = 0 is merely due to a constant offset and the variation of 
the Eelds on long time scales and thus not associated with the oscillations. Prom the linear 
equations one can infer that the peaks at / = 0.45 can be identified with the oscillation of the 
scalar held, the peaks at / = 0.16 with those of the vector held. Note that due to our rescaling 
of the coordinates, is measured in units of l / \ /A^. 

It is interesting to see that in the non-linear evolution the distinction between the oscillations of 

the vector and the scalar held is not aa clear as in the hnear case which is demonstrated by the 

presence of two peaks in the Fourier spectra. We attribute this feature to the interaction between 

the scalar and vector component of the cosmic string. Concerning the radial dependence of the 

spectra we have in general found that the characteristic mode of % resulted in stronger peaks 

at smaller radius, that of F was stronger at larger radii. This variation of the relative strength 

of the oscillations with radius confirms the corresponding observation in Fig. 24. In order to 

investigate the dependency of the oscillations on 7̂ , o, 6 and the radial position r, we have varied 

each parameter over at least two orders of magnitude while keeping the other parameters at 

standard values. We have found the following dependencies: 

(1) The frequencies of both % and F do not show any variations with 7) for 7; < 0.1. 

(Note that does, however, appear in the units). For larger values of 7/, the 

non-hnear interaction between string and geometry becomes dominant and we 

did not detect a simple relation between hequency majcima and parameters. 
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Figure 27: The frequencies obtained from the Fomier analysis of the oscillations of the scalar 
and vector Eelds aze plotted as functions of a . The cm ves show t h e fiequencies of the scalar and 
vector held predicted by an analysis of the linearised equations. For 5 < a < 8 the predicted 
values for f and % are similar and we End only one frequency. These values are plotted as 
hlled lozenges. 

(2) The variation of the parameters a and 6, the width and amplitude of the Weber-

Wheeler pulse, has no measurable eEect on the frequencies of % and f , but only 

determined the amplitude of the oscillations. A nairow, strong pulse leads to 

larger amphtudes. 

(3) For small r the oscillations in % are stronger, whereas those for f dominate at 

large r. The frequency values, however, do not depend on the radius. For radii 

greater than 10 the oscillations in % had decayed so strongly that we could no 

longer measure its frequency. 

We have also checked the empirical relation between the coupling constant a and the frequencies 

/ x and / p . For this purpose we have performed a lineai- regression analysis of the double 

logarithmic data of Fig. 27 excluding the cases where only one frequency is observed. We 

obtain power law indices = 0.00 and o-p — 0.50, so that 

/ x const. (4.108) 

(4.109) 
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which agrees with Bqs. (4.106), (4.107). If we transform this result back into physical units 

using CK = e^/A, we arrive at the following relations for the physical variables 

V^?7, (4.110) 

/ f ^ e?7. (4.111) 

As shown in SheUard and Vilenkin (1994) up to constant factors -v/A;; and e?; are the masses of 

the scalar and the vector held, and mp, so that % and f have characteristic frequencies 

m x , (4.112) 

^ TTlf. (4.113) 

Since the frequencies for % and f seem only to depend upon the respective masses we have 

attempted to confirm these results by considering the oscillations of a cosmic string in two 

further scenarios. Firstly since the frequencies do not depend upon the shape of the Weber-

Wheeler pulse we take as initial data the static values for the metric variables but excite the 

string by adding a Gaussian perturbation to either the % or f static initial values. The 

evolution is then computed using the fully coupled system. Secondly since the frequencies 

do not seem to depend upon the strength of the coupling to the gravitational Eeld we have 

completely decoupled the gravitational held and considered t h e evolution of a cosmic string 

in Minkowski spacetime. The initial data is taken to be that for a static string in Minkowski 

spacetime with a Gaussian perturbation to either the % or _P values. The evolution is then 

computed using the equations for a dynamical string in a Minkowskian background [equations 

(4.22) and (4.23) with the metric variables set to Minkowskian values]. In both cases we obtain 

the same frequencies, to within an amount A / = 0.01, that we find in the original case of the 

fuUy coupled system excited by a Weber-Wheeler pulse. Furthermore the frequencies did not 

depend on the location or shape of the held perturbation nor upon the choice of % or f as the 

perturbed held. 

4.6.3 T h e long t e r m behav iou r of t h e d y n a m i c s t r i ng 

The time evolution shown in Figs. 24 and 25 indicates that the oscillations of the cosmic string 

excited by gravitational waves gradually decay and metric and string settle down into an equi-

hbrium state. In order to investigate the long term behaviour in detail we have evolved the 

variables for a much longer time (—20 < < 410) than in the numerical evolutions discussed 
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Figure 28: The upper four plots show the diSerence between the evolved functions i/, /i, 'y and 
% and their corresponding static results. For f a similar 3-dimensional plot is not suitable since 
it fails to resolve the oscillations of the vector Eeld. Therefore we plot the (dashed line) 
and the maximum (solid line) of A f as a function of time. z/. "y and % quickly settle down in 
their equilibrimn conBguration to numerical accuracy. The decay of the oscillations of f takes 
signiScantly more time but eventually f also approaches its equilibrium state. 

above. The unphysicaUy large value of y; = 0.1 is chosen for this calculation in order to guar-

antee a strong interaction between spacetime geometry and the cosmic string. In Fig. 28 we 

show the diSerence A / := /gyoi — /gtat between the time-dependent /z, "y and % and their 

corresponding static results obtained for the same parameters. For the vector Seld f a similar 
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3-dimensioiial plot would require au extreme resolution to properly display the oscillations of 

the vector Eeld (cf. Fig. 24). For this reason we proceed differently and calculate the ^2-iiorm 

and the maximum of A f for each slice it = const. Both functions are plotted versus time in 

Fig. 28. The incoming wave pulse can clearly be seen as a strong deviation of z/ from the static 

function. The pulse excites the cosmic string and is rejected at t h e origin at = 0. The metric 

variables and the scalar held % then quickly reach their equilibrium values. The oscillations 

in f decay on a signlhcantly longer time scale which is ako evident in Figs. 24 and 25 and the 

^2-norm of A f slowly approaches 0. Signihcantly longer runs t h a n shown here are prohibited 

by the required computation time, but the results indicate that f will also eventually reach its 

equilibrium conhguration. 

4.7 Discussion 

In the previous two sections we have studied numerical problems in cyhndrical symmetry with 

particular emphaais on the use of characteristic methods and the compactihcation of spacetime. 

This work has completed the l-dimensional stage of the Southampton Cauchy-characteristic 

matching project by presenting for the Erst time a long-term stable second order convergent 

code for general cyhndrically symmetric vacuum spacetimes with both the + and x polarisation 

mode. In order to obtain long-term stabihty it was crucial t o formulate the problem in a 

way that simplihes the relations at the interface where information is transferred between the 

interior Cauchy and the exterior characteristic region. In this particular case we achieved the 

simphhcation by applying the Geroch decomposition to both regions which contrasts with the 

less successful previous attempts where the Kilhng direction was factored out in the exterior 

region only. In view of the numerical subtleties involved with the interpolation techniques 

at the interface the importance of a suitable choice of variables may not be too surprising. 

Nevertheless we stress the signihcance of this result concerning Cauchy-characteristic matching 

codes in higher dimensions. The structure of the null geodesies will inevitably become much 

more comphcated if the restriction of cylindrical symmetry is dropped and the physical variables 

are allowed to depend on the angular coordinates. Correspondingly the transformation between 

variables at the interface will also be more comphcated. In view of our results it seems important 

to carefully choose the variables describing the spacetime in bo th regions and aim for "simple" 

transformation laws. 

The inclusion of matter in the form of cosmic strings resulted in qualitatively new numerical 

problems that hnally were solved by the use of specially adapted numerical methods. The 

incorporation of null inhnity proved to be important here for the specihcation of outer boundary 
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conditions on the matter variables. It was the existence of nnphysical exponentially diverging 

solutions of the equations for a cosmic string that required a special numerical treatment. We 

were able to suppress the unphysical diverging solutions by solving the equations for a cosmic 

string with a relaxation scheme in the static case and an imphcit evolution scheme in the 

dynamic case. We have thus been able to develop the hrst fully non-linear simulation of a static 

and a dynamic cosmic string coupled to gravity which implements the exact boundary conditions 

at both the origin and infinity. The resulting codes have been used to study the interaction 

between a cosmic string and a gravitational wave pulse. We have found that the gravitational 

wave pulse excites the cosmic string which then starts oscillating with frequencies proportional 

to the particle masses associated with the scalar and vector Seld. The same frequencies have 

been observed if we excite the cosmic string with a Gaussian per turbat ion to the scalar or vector 

Eeld. 

From a numerical point of view an interesting result of the numerical solution of the equations 

for a dynamic cosmic string concerns the transfer of information at the interface. We have 

illustrated this in Fig. 15 where two grid points .fTi, jiTi + 1 have been used for the spatial 

position r — 1. The grid point .RTi contains the variables of the interior region at r = 1, 

whereas the variables of the exterior region are specihed at t h e same position on grid point 

jiCi + 1. The corresponding implementation of the interface is remarkably simple as illustrated 

by Eqs. (4.43)-(4.46) which represent the interface for the s ta t ic cosmic string in Minkowski 

spacetime. The corresponding equations in the dynamic case coupled to gravity are equally 

trivial. Even if diEerent variables are used in the interior and exterior region, one is still able 

to transform the variables locally at the grid points and TiTi + 1 and there is no need to use 

interpolation techniques as in the case of the explicit numerical methods used in section 3. We 

attribute the possibihty of using this simple implementation of the interface to the fact that all 

function values are calculated simultaneously on the new time slice in an imphcit scheme, so 

that there is no hierarchical order according to which the function values have to be calculated. 

We have probed such a "local interface" in an implicit Cauchy-characteristic matching code 

for cyhndrically symmetric, non-rotating vacuum spacetimes and achieved a long term stable 

evolution with an accuracy comparable to the explicit code described in section 3. Even though 

an interface based on interpolation performs satisfactorily in cylindrical symmetry this may no 

longer be the case in higher dimensional problems where the interpolation techniques wiU be 

significantly more complicated. On the other hand we can see no obvious reason why a "local 

interface" in combination with an implicit numerical scheme should d i&r signiGcantly from 

that used in the l-dimensional case. 
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5 Non-linear oscillations o f spherically 

symmetric stars 

5.1 Introduct ion 

In this section we will turn our attention towards the study of compact stars in the framework 

of general relativity. The discovery of stars signiGcantly more compact than the sun goes back 

to observations of the binary star Sirius in the middle of the 19th century. Sirius is the brightest 

star in the sky as viewed from the earth. From an astrophysical point of view, however, the faint 

companion of the bright main star, Sirius B has provoked much more interest. The astronomer 

Bessel was the 6rst to infer the existence of an unseen companion of Sirius from a wobble in 

the motion of the main star. It took another twenty years before Alvin Clark managed to 

optically resolve Sirius B. By the early twentieth century it became clear &om the analysis 

of its electromagnetic spectrum that Sirius B has a rather high surface temperature of about 

25,000 A". In view of this result the extraordinarily low luminosity of Sirius B lead to the 

conclusion that the star is very small, about the size of the eaith. This type of high density star 

was consequently named a wAik (fwcy/. It was understood at t h e time that white dwar6 mark 

the hnal stage in the evolution of stars, but it remained a puzzle how such compact objects were 

able to support themselves against gravitational contraction. T h e answer was Erst provided by 

Eddington and Fowler who suggested that the star is supported by the degenerate electron 

pressure, a quantum eSect arising from the Pauli-exclusion principle. When Chandrasekhar 

worked out the corresponding theory for a relativistic electron gas he made the remarkable 

discovery that the degenerate electron pressure will never be sufScient to support white dwarfs 

above a mass of about 1.4 M@. In his words: a o/ gmaH maga fAe wAik jwof / 

is an A o/ Zorge mogg pogg 

(iwaz/ g(age one zg gpecuJa^mg OM ofAer poggz^iiZztyeg." It did not take long before 

such speculations were directed towards the existence of neutron stars. 

The Erst suggestion that stars made up of nucleons may exist came from Landau in 1932 just 

two years after the discovery of the neutron. Two yeais later Baade and Zwicky proposed 

the idea that neutron stars may be the product of supernova explosions and thus mark the 

hnal stage in the evolution of stars of large mass. The first theoretical models of neutron 

stars were calculated in 1939 by Tolman, Oppenheimer and Volkoff. It took another thirty 

years, however, before neutron stars were actually discovered observationally. Furthermore 

this discovery came in a completely unexpected way. In 1967 the then Cambridge graduate 
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student Jocelyne Bell and her supervisor Antony Hewish were looking for scintillations of radio 

sources produced by the interstellar medium. On the 28th of November 1967 they discovered 

a source with an exceptionally regular pattern of radio pulses v/hich at the time even gave rise 

to the speculation of an extra-terrestrial, intelligent origin. These speculations were quickly 

abandoned, however, when three more "pulsars" were found within the next few weeks. The 

extremely short duration of the pulses and the high pulse frequencies lead to the conclusion 

that these sources must be signiBcantly smaller than white dv^arfs. An explanation for this 

phenomenon was Snally found when a pulsar was detected at the centre of the crab nebula. 

Prom historical records it is known that the crab nebula maiks a supernova explosion that was 

observed in the year 1054. Pulsars are therefore identihed with neutron stars, the remnants of 

supernova explosions. In the same way that the degeneracy pressure of the electrons supports 

white dwark against gravitational collapse, the internal pressure in neutron stars arises from 

the degenerate nucleons. A great deal of work has gone into t h e observational and theoretical 

study of these compact objects. From these studies it is known tha t neutron stars have masses 

of about 1.4 solar masses and radii of about 10 km. Neutron s tars are believed to have a solid 

crust in which the density increases from about lO^g/cm^ to a few times lO^^g/cm^. In this 

density range the matter is assumed to consist of a degenerate electron gaa and atomic nuclei 

that form a crystal-hke structure. At larger densities the atomic nuclei gradually dissolve and 

at about 2 -10^^ g/cm^ the matter largely consists of a highly incompressible neutron Buid with 

small amounts of protons and electrons. An interesting property of this Suid arises from the 

thermal temperature which is commonly believed to be smaller than 10^ K. Compared with 

the Fermi-temperature of the nucleons of about 3 -10^^ jiT this implies that the matter behaves 

like a fluid at zero temperature and becomes superEuid and, in the case of the protons, super-

conductive. The structure of matter and the resulting equations of state at higher densities 

become increasingly unclear and are subject to ongoing research. Near the centre of a neutron 

star the density is assumed to be of the order of 10^^ g/cm'^ and the matter may at least partly 

consist of hyperons, pions or quarks, so-called 

The extreme compactness of neutron stars makes them particularly interesting from a relativistic 

point of view. We have already mentioned the signihcance of neutron stars in the context of the 

search for gravitational waves. In this respect the importance of neutron star oscillations arises 

from the discovery of secularly unstable oscillation modes that increase in amplitude due to the 

spin down of the neutron star while energy is radiated away in the form of gravitational waves. 

If the attempts to measure gravitational waves are indeed successful, a whole new window 

for astrophysical observations may be opened and facilitate a unique opportunity to directly 
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observe the interior of astrophysical objects such as neutron stars. In this work, however, 

we will not directly study neutron star oscillations in the context of gravitational radiation. 

Instead we use the simpler case of spherically symmetric dynamic neutron stars in order to 

probe a new numerical approach which enables us to numerically evolve non-hnear oscillations of 

arbitrary amphtude with high accuracy. While these evolutions wiU not lead to the generation of 

gravitational waves because of the spherical symmetry, the numerical results, the new techniques 

and the discussion of numerical diEculties encountered in the course of this work may still be 

relevant for numerical simulations of more general types of neu t ron star oscillations. 

The use of oscillations aa a diagnostic tool to obtain information about the interior structure of 

an object ia an old idea and by no means restricted to the realm of distant stars. For example the 

same technique has been applied to the earth where the study of artihcially induced oscillations 

and, in particular, earthquakes has lead to invaluable insight in to the internal structure of our 

planet. In the same way a great deal of knowledge has been obtained about the sun and more 

distant stars by investigating their oscillations which reveal themselves in the electromagnetic 

spectra of these objects. Whereas Newtonian theory is perfectly adequate for studying "normal" 

stcirs, i.e. stars that gain their energy from continuous nucleai" burning of hydrogen and other 

light elements, accurate modelling of compact objects hke neutron steirs requires a general 

relativistic description. 

The Erst type of neutron star oscillations to be studied extensively were linear radial oscillations 

(see for example Chandrasekhar 1964a, 1964b) which today represent a weU understood problem 

that is described in the standard literature. The same is no t true, however, for nonlinear 

radial oscillations which lead to qualitatively new problems. We have already mentioned that 

spherically symmetric spacetimes do not admit radiative solutions. Instead the generation of 

gravitational waves requires a time varying quadrupole or higher multi-pole (/ > 2) moment 

of the neutron star inertia. Prom that point of view, the s tudy of radial oscillations is not 

immediately interesting. There are, however, several other important aspects associated with 

radial oscillations. In the work mentioned above, Cliandrasekhai" first revealed the existence 

of relativistic instabihty. In the framework of radial oscillations this instability manifests itself 

in the instabihty of the fundamental radial oscillation mode. If the frequency of this mode 

becomes imaginary, an exponential growth of physical quantities results and the star collapses 

or evaporates. A fully non-hnear evolution code based on spectral methods has been developed 

by Gourgoulhon (1991) and has been used to study various aspects of the stabihty of neutron 

stars and their coUapse into black holes (Gourgoulhon and Haensel 1993, Gourgoulhon et al. 

1994). Radial oscillations have also been considered fiom the point of view of astrophysical 
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observations. The discovery of quasi-periodic radio sub-pulses in the spectra of pulsars and 

periodicities in X-ray sources has lead to the suggestion that rad ia l oscillations of neutron stars 

may give rise to these features (BoriakoS 1976, van Horn 1980), which in turn has stimulated 

further research in this direction (see for example Marti et al. 1988, Vath and Chanmugam 

1992). Furthermore the infuence of radial oscillations on t h e electromagnetic spectrum of 

neutron stars and their dependence on the structure of matter a t super-nuclear densities may 

provide valuable information about the equation of state in the high density range (Glass and 

Lindblom 1983). The study of radial oscillations is frequently carried out in the linear regime, 

where all physical quantities have a harmonic time dependence / = / ( r ) e^^ and the radial 

prohles / (r) are determined by an eigenvalue problem. In this work we will present exphcit t ime 

evolutions of the physical variables in the fully non-linear case. These evolutions will serve two 

purposes. First we wiU be able to study deviations from the known linearized behaviour, such 

as mode couphng and shock formation. Secondly the spherically symmetric case can be used to 

investigate numerical di@culties that are also expected in the more comphcated time evolutions 

in two or three spatial dimensions. A detailed analysis in the computationally less expensive 

1-dimensional case may lead to the development of new advantageous numerical techniques or 

other types of solutions to these problems. The work of Gouigoulhon (1991) for example has 

shown among other results that the use of momentum densities as fundamental variables may 

lead to computation errors in passing from the momentum densities to the velocity Eelds which 

can be avoided if velocity variables are used in the Grst place. 

In our discussion we wiU start with a static spherically symmetric star which is governed by 

the Tolman-Oppenheimer-VolkoE equations (Tolman 1939, Oppenheimer and VolkoS 1939). In 

section 5.2 we will investigate these equations and describe the numerical methods we use to 

calculate the resulting neutron star models. In section 5.3 we wiU use the static results in 

order to obtain a fully non-linear perturbative formulation of dynamic spherically symmetric 

stars. As a subclass we will discuss the hneEirized limit of these equations in section 5.3.3 and 

numerically calculate the corresponding eigenmode solutions. I t is interesting to see that the 

surface of the star turns out to be a problematic area even in this comparatively simple case. 

After a more detailed discussion of the general problems one faces at the surface in an Bulerian 

formulation we describe the numerical implementation of the code. Even though the code is 

shown to perform well in the hnear regime for a large vaiiety of neutron star models in section 

5.3.6, the surface problem is shown to give rise to spurious results in some special cases. In order 

to circumvent these problems we use a simplified neutron star model in section 5.3.9 to test 

the code in the non-linear regime and to investigate the non-linear coupling of eigenmodes. We 
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conclude this work with the development of a fully non-linear perturbative Lagrangian code in 

section 5.4. We demonstrate how the diGculties at the smface a re resolved in such a formulation 

and extensively test this code in the hnear and non-lineai' regime. We use this code to address 

the question whether non-linear eSects are present near the surface of the neutron star models 

in the case of low amplitude oscillations. 

5.2 Spherically symmetric static stars 

In the fuUy non-linear perturbative approach to the study of radial oscillations we will de-

compose the time dependent physical quantities into static background contributions and time 

dependent perturbations. The background quantities will obey the corresponding static set of 

equations which will then be used to remove terms of zero order from the fully non-hnear evolu-

tion equations in the time dependent case. In our studies we have two principal choices for the 

static background: vacuum Sat space in which case we recover the standard non-perturbative 

formulation of the problem and a static self-gravitating perfect Su id in spherical symmetry which 

is described by the Tohnan-Oppenheimer-VolkoS equations. It is the second case which enables 

us to obtain highly accurate numerical solutions for any given amphtude of the oscillations. We 

will therefore first discuss in detail the Tolman-Oppenheimer-VolkoBF (TOV) equations as well 

as their numerical solution. 

5.2.1 T h e T o l m a n O p p e n h e i m e r VolkofF equa t ions 

In the framework of the "3+1" formahsm described in section 2.1, we start by choosing coor-

dinates r , ^ on each spatial hypersurface S. 0 and ^ aie s tandard angular coordinates and 

the radius r is deEned by the radial gauge condition, so that t h e area of a surface r = const is 

47rr^. The 3-dimensional line element is then given by 

+ sin^ (5.1) 

where in spherical symmetry is a function of r only. If we label the hypersurfaces S by the 

coordinate t we can apply the polar slicing condition which combined with radial gauge can 

be shown to imply a vanishing shift vector in spherical symmetry. The 4-dimensional metric is 

then given by 

+ sin^ (5.2) 
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Here the lapse function A is also a function of r. Alternatively t h i s metric can be described by 

the variables m and dehned by 

' (5.3) 

(5.4) 

In the Newtonian limit ^ becomes the gravitational potential a n d m the gravitating mass. 

Our description of the matter is based on three simpli:^ing assumptions, which we wiU discuss 

in order. 

1) We wiU describe the matter as a single component perfect Enid. This means that the Suid 

is seen as isotropic by a comoving observer. In particulai- no heat conduction, no shear 

stresses, anisotropic pressures or viscosity must be present. T h e deviation from the perfect 

Huid equihbrium due to anisotropic stresses resulting from t h e sohd crust are found to be 

< 10"^ even for rotating stars (Friedman and Ipser 1992). It is, however, not entirely clear 

to what extent the treatment of the neutron stai' matter as a amg/e perfect Suid is too 

restrictive. It was suggested as early as 1959 by Migdal that nncleons might be present in 

the form of superEuids in the interior of neutron stars. In order to obtain more realistic 

descriptions of neutron stars it might therefore be necessary to describe the matter as 

a multicomponent Suid. These issues are subject to ongoing research (see for example 

Andersson and Comer 2001) and their investigation would exceed the scope of this work. 

We wiU therefore focus our discussion on single component perfect Suids in which case we 

can write the energy-momentum tensor in the form 

T'"'' = (p + f )u''u'' + f (5.5) 

where p is the energy density and f the pressme measured by a comoving observer. In the 

static spherically symmetric case p and _P are functions of the radius r and the 4-velocity 

has a non-vanishing time component only. The normalisation condition — —1 then 

imphes 

u / ' = [ A - \ 0 ,0 ,0] . (5.6) 
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2) The neutron star matter is assumed to be at zero temperature. This is justihed by compar-

ing the thermal temperature of the stellar interior, which is assumed to be smaller than 

10^ K in mature neutron stars, with the relevant temperature scale given by the Fermi 

temperature of the matter. Even though the thermal temperature is large compared with 

terrestrial standards, it is orders of magnitude below the Fermi temperature of matter at 

nuclear density (%: 3 - 10^^ K), so that the thermal degrees of freedom are frozen out. As 

a consequence the single component perfect Huid is described by a 1-parameter equation 

of state which is commonly chosen to be of the form f = f (p). 

3) The equation of state (EOS) is assumed to be given by a polytropic law 

f (5.7) 

where jiT and are constants. Instead of the polytropic exponent sometimes the poly-

tropic index n, is used which is deEned by 

^ = 1 -I—. (5-8) 
n 

The suitability of such an EOS is certainly a debatable issue and the determination of 

realistic equations of state of matter at super-nuclear densities represents an entire branch 

of physical research. Conclusive answers have yet to be obtained, however, and by using 

polytropes with diEerent indices M one is able to study the qualitative diEerences in the 

behaviour of neutron stars with equations of state of varying stilfness. Furthermore poly-

tropes are given in analytic form so that no additional numerical error arises from their 

use. 

We have got all ingredients now to derive the equations governing the static spherically sym-

metric neutron star model. Starting with the metric (5.2) and the energy-momentum tensor 

given by Eq. (5.5) with the 4-velocity (5.6) the Einstein Held equations — STrT î, result in 

two independent equations 

H 47rr/i^_P, (5.9) 
A zr 

— = — ^ -I- 47rr/2^p. (5.10) 
jU 2r 

AU other 6eld equations are consequences of these two equations, their derivatives and the 
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matter equation (5.12). In terms of the alternative variable 77i(r) deEned by Eq. (5.3), the 

equation for can be rewritten as 

= 47rr^p. (5.11) 

From now on we will therefore refer to m, as the "mass" or "mass function" of the neutron star. 

Conservation of energy and momentum = 0 results in a single equation describing the 

hydrostatic equilibrium 

f r = ^{p- \ -P) . (5.12) 

The system of ODEs (5.9), (5.10), (5.12) was Erst derived by Tolman (1939) and Oppenheimer 

and VolkoS (1939) and is thus known as the Tohnan-Oppenheimer-VolkoE or TOV equations. 

Together with an equation of state which we choose to be the polytropic law (5.7) they describe 

a self-gravitating perfect Suid in spherical symmetry. 

We Enally need to specif appropriate boundary conditions for these equations. The condition 

for the radial component of the metric is = 1 at the origin r = 0 in order to avoid a conical 

singularity. This is also illustrated by the requirement of a finite energy density p at the 

centre which according to Eq. (5.11) implies that m, ̂  = ^ ( r^) near the centre. Consequently 

M = ^( r^) and Eq. (5.3) leads to /̂  = 1. The lapse function A o n the other hand appears in the 

equations in the form A_r/A and is therefore only dehned up to a constant factor. Normally this 

factor is chosen so that A takes on the value \ / l — 2m/r at t h e stellar surface which matches 

the interior metric (5.2) to an exterior Schwarzschild metric 

= — ^1 — + (̂ 1 — sin^ (5.13) 
r y \ r y 

where M = m,(R) and R is the radius of the star. Finally t h e surface of the star is deEned 

by the vanishing of the pressure f which for the polytropic equation of state is equivalent to 

p = 0. We note that for some equations of state the Euid extends to infinity and the energy 

density will vanish nowhere. In this work, however, we wiH restrict ourselves to equations of 

state which lead to stars of hnite size. We therefore summarise the boundary conditions as 

= 1 (5-14) 
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at the origin r = 0 and 

2m 1 
1 = - , 5.15) 

r // 

p = 0 (5.16) 

at the surface r = R, i.e. three boundary conditions for the three Erst order ODBs (5.9), (5.10), 

(5.12). At Erst glance this seems to completely specif the physical scenario. We have to note 

one subtlety however: the location of the stellar surface, i.e. t he extension of the numerical 

grid, is not determined at this stage. For any given equation of state we therefore expect a 

l-parameter family of solutions parameterised by the radius As we wiU see below we can 

alternatively parameterise the family of solutions by the central density pc of the star. Which of 

these parameters we choose and therefore have to specify in addition to the boundary conditions 

(5.14)-(5.16) depends on the numerical approach we take towards solving the TOV-equations. 

There are two main approaches to this problem. 

5.2.2 T h e numer i ca l t r e a t m e n t of t h e T O V - e q u a t i o n s 

The problem we have to solve numerically is given by the TOV equations (5.9), (5.10), (5.12), the 

boundary conditions (5.14)-(5.16) and the prescription of the f iee parameter. From a numerical 

point of view this is a two-point boundary value problem and should be solved accordingly with 

shooting or relaxation methods. This is the Erst of the two approaches we mentioned in the 

previous section. Here we will discuss a relaxation algorithm. In this case we set up a numerical 

grid, thus specifying the free parameter in the form of the stellar radius, and Hnite diEerence 

the equations as described in section 2.3.5. The three boundary conditions then provide the 

remaining three algebraic equations and having specihed an initial guess the code relaxes to the 

solution of the TOV-equations. The main advantages of this approach are: 

(1) all boundary conditions are exactly satished, 

(2) a neutron star model with a specihed radius is obtained straightforwardly by 

appropriately setting up the numerical grid. 

This code suEers from some drawbacks, however, which can be summarized as foUows: 

(1) the speciEcation of initial data is non-trivial and the convergence of the code 

depends on a "good" initial guess, 

(2) obtaining high accuracy via a higher (> 2̂ ^̂ ) order Enite diEerencing scheme 

results in more comphcated coeScient matrices and inversion routines, 
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(3) it is not clear how to obtain a neutron star model with a specihed central density, 

It is quite remarkable that the second numerical approach has exactly the opposite properties in 

that the advantages and drawbacks are reversed. In this approach the outer boundary conditions 

are ignored initially and instead one starts with three boundary conditions at the centre 

/, = 1, (5.17) 

A = l, (5.18) 

P = Pc- (5.19) 

The TOV-equations can then be integrated outwards straightforwardly until the energy density 

becomes negative and the out-most grid point will define the surface of the star. Even though 

the energy density wiU not vanish exactly at this point but take on a small positive value, the 

accuracy thus obtained is good enough for most practical purposes. The remaining freedom 

to multiply the lapse function A with an Eirbitrary constant is used to enforce the boundciry 

condition (5.15). Alternatively one can hrst integrate Eqs. (5.10), (5.12) for and f which 

decouple from A and afterwards obtains A from inwaid integration of Eq. (5.9). 

In a sense the two methods complement each other and for example we use the quadrature 

approach to obtain an initial guess for the relaxation scheme. Throughout this work we will 

use both numerical methods and specify in each case how the T O V solutions were calculated. 

Before we investigate the solutions thus obtained, however, we have to discuss two technical 

issues, the choice of physical units and a transformation to a new radial coordinate which will 

provide higher resolution near the surface of the stai: Below we will see that suEcient resolution 

in this region can be crucial for an accurate numerical evolution in the time dependent case. 

5.2.3 Phys ica l un i t s 

Throughout this work we have worked with natural units, i.e. c = 1 = G. This choice can be 

written in the form 

1 s = 2.9979 .10^" cm, (5.20) 

l g = 7.4237 -10-^^ cm. (5.21) 

In astrophysics energy density is commonly measured in g/cm'^ and pressure in dyne/cm^, where 

1 dyne=l erg/cm. However, we prefer to measure all quantities in km or corresponding powers 
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thereof. Using Eqs. (5.20) and (5.21) we can calculate that 

1 km-^ = 1.3477 - 10^^ (5.22) 
cm':' 

1 km-^ = 1.2106 .10^° = 1.2106 - 10^° — ( 5 . 2 3 ) 
cm'̂  cm s'' 

The metric variables and A are dimensionless and it is obvious then from Eqs. (5.3) and (5.10) 

that radius r and mass m are measured in km. For example a typical central density for neutron 

stars is lO^'' g/cm^ which in our units becomes 0.000742 km"^. We can also compare our results 

for radius and mass with the solar values 

M0 = 1.4766 km, (5.24) 

R e = 6.960 - 10^ km. (5.25) 

In contrast to these values typical radii and masses of neutron s t a j s are given by 

M N S ^ 2 k m , (5.26) 

R N S - l O k m . (5.27) 

It is a well known result that relativistic correction terms to a Newtonian description of stars 

generally appear in terms of the ratio M/A, so that this quotient describes the importance of 

relativistic eSects. In view of this result and the quotient M g / A g = 2.1 -10"^ it is immediately 

obvious why a Newtonian description of the sun and other "normal" stars is perfectly adequate. 

In contrast we find M/_R % 0.2 for neutron stars, so that relativistic effects will play an important 

role in their behaviour and accurate models need to be developed in the framework of general 

relativity. 

5.2.4 T r a n s f o r m a t i o n t o a n e w rad ia l coo rd ina t e 

We have already mentioned that the surface of the staj- is dehned by the vanishing of the pressure 

which in the case of a polytropic equation of state is equivalent to a zero energy density. A 

dependent quantity frequently introduced in the study of neutron stars is the speed of sound 

dehned by 

(5.28) 
dp 
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which in the polytropic case (5.7) becomes 

= (5.29) 

Consequently the speed of sound will also vanish at the smface if > 1 as will always be the 

case for a star of Snite mass. In particular we will show below that the asymptotic behaviour 

of the speed of sound near the surface is given by 

C - (5.30) 

Taking into account the vanishing of the propagation speed of sound waves at r = _R we now 

consider the qualitative behaviour of a localized pulae travelling towards the surface. As a 

result of the decreasing sound speed C the front of the pulse will in general travel more slowly 

than its tail and we would expect the pulse to narrow. In particular' the numerical resolution 

near the surface might be inadequate to accurately evolve the p u k e in this region and it might 

be benehcial to work with a radial coordinate in terms of which the propagation speed is by 

and large independent of the position within the star. In order to study the implications of a 

locally vanishing propagation speed we consider the simpler scenazio of the 1-dimensional wave 

equation with variable propagation speed 

— 0(7')'^ (5.31) 

on a physical domain 0 < r < A. Without loss of generality we will set A = 1 for the rest of 

this discussion. Eq. (5.30) then suggests to choose a propagation speed of the form 

c(r) = \ / l — r. (5.32) 

For the numerical implementation we introduce the auxihaiy variables F = and G = 

and rewrite Eq. (5.31) as a system of two Erst order PDEs 

(5.33) 

(5.34) 



v.t + Am , = 0 
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and impose the bomidary conditions u = 0, _F = 0 at both bomidaries. The system (5.33), 

(5.34) is linear and can be written in vectorial form 

(5.35) 

(5.36) 

(5.37) 

The characteristics of the PDE are then given by 

- = A ,̂ (5.38) 

where Ai = c, A2 = —c are the eigenvalues of the matrix A. A t the outer boundary the slopes 

of the characteristics collapse because of the vanishing of the wave speed c. 

This system has been evolved with the second order in space and time McCormack finite 

digerencing scheme described in section 2.3.4 using a giid of 500 points. In Fig. 29 we show 

the time evolution of w obtained for initial data in the form of a Gaussian pulse. Snapshots 

of If are plotted at = 0.00, 2̂ = 0 48, (3 = 0.72, 4̂ = 1.44, ^5 = 2.52, = 3.40, = 4.44, 

tg = 4.60, tg = 5.60, <10 = 6.56, = 7.20 and 1̂2 = 8.00. In order to shed hght on the 

quahty of the numerical evolution we analyse the convergence properties of the code. For this 

purpose we have performed the same runs using 1000 and 2000 grid points and calculated the 

time dependent convergence factor according to the method described in section 3.5.3. Again 

we use a high resolution reference solution obtained for 2000 grid points in place of the analytic 

solution. The results shown in Fig. 30 demonstrate that the convergence of the code drops to 

first order at about t = 2.5 which coincides with the snapshot at when the pulse is rejected 

at the outer boundary for the Erst time. This result is conErmed by high resolution runs in 

which no broadening of the pulse similar to that shown in Fig. 29 is observed after reBectiona 

at either boundary. We conclude that a naive numerical evolution can lead to spurious results 

in regions with a vanishing propagation speed and that this problem is due to an insuScient 

spatial resolution. 

A solution to this problem is obtained by transforming to a new spatial coordinate in terms of 

which the slopes of the characteristics do not vary as drastically over the numerical domain and 

in particular do not vanish at the boundary. A simple recipe is to define this new coordinate 
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u ( t , , r ) , u ( t , , r ) , u( l . , r ) u(%,r) , u ( l„ r ) , u(t, ,r) 

u ( t , , r ) , u ( t „ r ) , u ( t „ r ) "(Irn.r). u(l,z,r) 

Figure 29: The numerical evolution of an initial Gaussian pulse according to the wave equation 
in terms of the coordinate r as obtained for the varying propagation speed given by Eq. (5.32) 
which vanishes at r = 1. The Snapshots are shown for the times , 1̂2-

Figure 30: The convergence factor obtained for 500 and 1000 grid points as a function of time. 
At ( % 2.5 the convergence drops to Erst order. 

by 

rr 2 

" = I dFi'"- (5.39) 
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which imphes 

a 1 8 , , 

dr = c(f2/. (5.41) 

In the special case where the propagation speed is given by Eq . (5.32) the coordinates r and 

are related by 

2/ = 2 — 2-\/l — r, (5.42) 

r = (5.43) 

so that the interval r G [0,1] is mapped to y E [0,2]. In te rms of the new coordinate ^ the 

system (5.33), (5.34) can be rewritten as 

f t = (5.44) 

„ (5.45) 

and the characteristic curves are given by 

= ±1. (5.46) 
(ft 

In order to compare the new scheme with the original approach, we evolve the same initial 

data as above using the system (5.44), (5.45) on a !/-grid again with 500 grid points and the 

same boimdary conditions. The result is shown in Fig. 31 where we plot the same snapshots 

as in Fig. 29. For comparison purposes the plots show if as a function of the coordinate r 

but as a result of the computation on the ^-grid, the density of grid points is higher towards 

r = 1 in Fig. 31 whereas the grid points are distributed homogeneously in Fig. 29. In contrast 

to the above evolution no broadening of the pulse after reflection at the outer boundary is 

observed. The time dependent convergence analysis shown in Fig. 32 demonstrates second 

order convergence throughout the run even though small vaiiations in the convergence factor 

are visible when the pulse is rejected at either boundary. We conclude that a transformation 

of the type (5.39) provides the necessary resolution in a region of vanishing propagation speed 

and leads to satisfactory results at reasonable grid resolutions. 
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u ( t , , r ) , u ( tg , r ) , u { l „ r ) u(t̂ ,r). u(l,,r), u(t,r) 

u ( t , . r ) . u ( t „ . r ) , u ( t , , r ) u(t,o,r), u(l„,r), 

Figure 31: The same evolution as in Fig. 29, but obtained wi th the new coordinate ^ which 
results in a higher density of grid points near the outer boundary r = 1. 

Figure 32: The time dependent convergence factor obtained for the numerical evolution of the 
wave equation on a 2/-grid with 500 and 1000 grid points. Second order convergence is clearly 
maintained throughout the evolution. 

We now have to apply this idea to the case of a static, spherically symmetric neutron star. The 

role of the wave speed c is now assumed by the speed of sound C dehned in Bq. (5.28) and we 
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introduce the new radial coordinate 

y = I (5-47) 

This transformation has also been successfully used by Ruoff (2000) in the linearized time 

evolution of radial oscillations for more realistic equations of s ta te . The asymptotic behaviour 

of the sound speed in the Tolman-Oppenheimer-Volkoff case given by Eq. (5.30) is identical to 

that of the wave speed in the toy problem. Consequently the radia l interval r E [0, R] of the star 

will be mapped to a hnite interval ?/ E [0, Y]. In order to obtain a formulation which includes 

both possible choices of the radial coordinate, we introduce t h e variable a: in terms of which 

the TOV equations are written as 

r 1 if a; = r 

— 1 , ^ 2 
A \ ^ 2 r ^ 

) , (5.50) 
\ 2r 

f z = - ^ ( p + f ) . (5.51) 

In the numerical code we are thus able to switch between the two alternative modes of calculation 

by assigning the derivative according to either possibihty of Eq. (5.48). In either caae the 

boundary conditions are given by Eqs. (5.14)-(5.16) supplemented with the requirement that r 

and a; vanish simultaneously at the origin 

r = 0 at a; = 0. (5.52) 

One subtlety concerning the relaxation method of calculating TOV solutions hag to be men-

tioned. In this case we need to specify the radius of the star. If we use the rescaled radial 

coordinate, however, the surface value a;g is not a priori known. In practice we therefore specify 

the free parameter in the form of the central density and solve the TOV equations via the 

quadrature method 6rst. This provides us with the outer boundary value of the coordinate a; 

for the stellar model in question and we can solve the TOV equations in a second step with the 

relaxation method. 



5 NON-MNEAR OSCflI,ATfONS OF SPHEMCAZvLY S Y M M E T M C STARS 113 

5.2.5 A s y m p t o t i c p r o p e r t i e s of t h e T O V equa t ions 

The asymptotic behaviour of the solutions of the TOV equations (5.48)-(5.51) at the surface 

of the star has serious implications for the simulation of dynamic neutron stars with certain 

equations of state in a strictly Bulerian framework. We will therefore discuss the asymptotic 

behaviour hrst and then compare the results with the numerically obtained solutions. Since 

the introduction of the rescaled radial coordinate resulted from, numerical requirements only, 

we use = 1 i.e. the original system (5.9)-(5.12) for the asymptotic analysis. We start with 

the behaviour at the origin, where we assume that 

(1) the energy density and thus the pressure are finite a n d positive, 

(2) the lapse function A is hnite and positive. 

We have aheady seen that the central value of the energy density is a free parameter and the 

pressure foUows from the equation of state. The central value of the lapse function, on the other 

hand, is determined by matching A to an exterior Schwarzschild metric. We also know from 

section 5.2.1 that our assumptiona imply = 1 and m at the origin. From Eq. (5.3) we 

therefore conclude that /̂  = 1 + Inserting this result into Eq. (5.9) and using the second 

assumption we End that r and thus A = Ac + ^ ( r^ ) . Using this result in Eq. (5.12) 

leads to f r r , i.e. f = + ^(r^) and the equation of s t a t e then shows that the energy 

density has the same behaviour. In summary the results near the origin are 

A( r )=Ac + ^(r^) , (5.53) 

/2(r) = 1 + ^(r^) , (5.54) 

P ( r ) = p c + ^(r^) , (5-55) 

f ( r ) = ] r p j + ^(r^) . (5.56) 

The corresponding analysis for the surface is more complicated and the results will later prove 

to be of more signihcance. For this analysis it is convenient to work with the radial variable 

z := R - r. (5.57) 

We start with the following assumptions. 

(1) The metric function is hnite at the surface and also satisfies the inequality 

/̂  > 1. This follows from Eq. (5.3) and the requirement that the mass satishes 
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the condition 0 < 2m,(R) < R. The Erst inequality follows from Eq. (5.11) for 

any non vacuum model and the second implies that the neutron star extends 

beyond its Schwarzschild radius. 

(2) The lapse A is Unite and positive at the surface. 

(3) The energy density and the pressure vanish at the smface and their leading order 

terms are given by some positive powers of z. 

We write these assumptions as 

)U = //g + ^(z^y , (5.58) 

A = As + ^(z '^) , (5.59) 

p = psz'' + ^ (z ' '+ ' ' ) , (5.60) 

f = + ^(z^+'^), (5.61) 

where a , and e i , . . . ,64 are positive constants we have yet t o determine and /^s, Ag, ps and 

are non vanishing constants subject to the restrictions mentioned above. We Erst insert the 

expressions for p and f into the equation of state (5.7). Comparison of the leading order terms 

then leads to 

— CK'Y, (5.62) 

Eg = 64, (5.63) 

where 'y is the polytropic exponent. Similarly the leading order in Eq. (5.10) results in 

ei = 1. (5.64) 

We then combine Eqs. (5.9) and (5.12) to eliminate the lapse function and insert (5.58)-(5.61). 

The result of comparing the two leading orders is 

CK + 1 = (5.65) 

€4 = 1. (5.66) 
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This provides a second condition for a and /9 and with Eq. (5.62) we conclude that 

a = ^ ^ (5.67) 

M + 1, (5.68) 

where M is the polytropic index defined in (5.8). Finally we use these results in Eq. (5.9) for the 

lapse function and obtain 

62 = 1- (5.69) 

We summarise the asymptotic behaviour at the smface: 

— /̂ g + ^(z) , (5.70) 

A = As + ^(z) , (5.71) 

p = p,z" + ^(z"+^), (5.72) 

f + ^(z"+^). (5.73) 

As a consequence we wiU not be able to Taylor expand p and _P about the surface z = 0 

unless a polytropic equation of state with integer index M is chosen. Indeed a more extensive 

analysis carried out with the algebraic computing package GRTensor 11 shows that higher order 

terms containing the polytropic index % also appear in the expansions of A and // so that these 

functions are subject to the same hmitations regarding Taylor expansion. 

The most important result of the asymptotic analysis concerns the behaviour of the energy 

density p near the surface given by Eq. (5.72). In particular we note that for a polytropic index 

M < 1 or exponent 'y > 2 the gradient of p with respect to the areal radius r will be inEnite at 

the surface. The case n, = 1, i.e. 'y = 2 is the hmiting case where p has a hnite gradient. This 

special case also imphes that no fractional powers appear in the series expansions of A, p and 

f . 'y = 2 is considered to provide a quahtatively good description of the average stiShess of the 

equation of state of neutron stars and thus a populai- choice for the polytropic exponent. For 

M > 1 or 'y < 2 the energy density wiU have a vanishing gTadient at the surface. 

It remains to check the asymptotic behaviour in terms of t he rescaled radial coordinate 

Prom the dehnition of the speed of sound (5.28) and the results above we conclude that near 
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Table 3: The parameters for Gve diSerent neutron star models. We wiU refer to these as models 
1-5 in this work. 

model 7 K Pc [km"^] R [km] 
1 1.75 25 km^^ 0.00125 1.506 12.593 
2 2.00 100 km^ 0.0015 1.130 9.653 
3 2.00 150 km^ 0.0015 1.554 10.828 
4 2.00 200 km^ 0.0015 1.878 11.646 
5 2.30 1800 km^^ 0.0010 1.756 11.710 

the surface 

C M (5.74) 

which imphes that 

^ = C — % 
71—1/2") (5.75) 

AU other functions have vanishing gradients with respect to ^ near the surface. Consequently 

the rescaled coordinate allows us to calculate neutron stai' models for polytropic exponents up 

to 'y = 3 without encountering inhnite gradients and the corresponding numerical inaccuracies. 

5 .2.6 S o l u t i o n s of t h e T O V e q u a t i o n s 

In view of the results of the asymptotic analysis we have numerically solved the TOV-equations 

for neutron star models with dlEerent polytropic exponents "y < 2, "/ = 2 and 'y > 2. The 

corresponding models are hsted in Table 3 where we have included two further models with 

'y — 2 but diEerent polytropic factor liT, which we wih use to also study the variation of the 

solutions with liT. In the remainder of this work we will refer t o these steDar models as models 

1-5. The code we have used for the calculation is based on the quadra ture method described in 

section 5.2.2 and uses a fourth order Runge-Kutta scheme for t h e integration (see for example 

Press et al. 1989). We note, however, that the results of the relaxation method agree with those 

of the quadrature scheme with high precision and the corresponding plots are indistinguishable 

from those we show in this section. For the calculations in th i s section we use the rescaled 

coordinate 2/ and set = C in Eq. (5.48). The code has been checked for convergence by 

calculating models 1-5 for diSerent grid resolutions staiting with 250 gTid points. The resulting 

convergence factors Q for the variables A, // and p obtained for doubling the grid resolution is 

shown in Table 4 for all 5 models. The high resolution reference solution has been calculated 
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Table 4: The convergence factors obtained for doubling the grid resolution in a fourth or-
der Runge-Kutta scheme for solving the TOV-equations via quadrature. The high resolution 
reference solution has been calculated for 2000 grid points. 

model QA Q/2 0/) 
1 14.23 15.55 9.69 
2 12.85 13.72 16.23 
3 17.98 18.40 18.76 
4 17.81 18.14 17.94 
5 11.64 16.51 21.13 

for 2000 grid points in all cases. For the fourth order Runge-Kutta scheme we would expect a 

convergence factor of 16. Even though the results show some variation around this value they 

are compatible with fourth order convergence. 

The numerical results obtained for the 5 stellar models we will now discuss have all been 

calculated by using about 600 grid points. In Fig. 33 we plot the metric functions A, //, the 

energy density the pressure f , the mass m and the sound speed C as functions of the areal 

radius r for models 1, 3 and 5. We note that the diSerent central densities of these models have 

no impact on the qualitative behaviour of the solutions and have only been chosen to obtain 

neutron star models of similar size. The results demonstrate t h e dependence of the behaviour 

of the star near its surface on the polytropic exponent According to the asymptotic analysis 

we expect the gradient of the energy density to be zero for "y = 1.75 in model 1, Suite for the 

critical case 'y = 2 in model 3 and inRnite for model 5 where 'y = 2.3. This result is compatible 

with the plots of p(r) in the middle left panel of Fig. 33. The pressure gradient on the other 

hand vanishes at the surfaces for any equation of state with positive M according to Eq. (5.73) 

which agrees with the numerical results in the middle right panel. The speed of sound shows 

the opposite behaviour and has an inSnite gradient independent of the polytropic index which 

is in agreement with the asymptotic result given by Bq. (5.74). With respect to the metric we 

note that the radial component has a local maximum, while the lapse A is monotonically 

increaging in the stellar interior. This behaviour becomes clear if we look at the corresponding 

equations for A and /^. We already know that vanishes at the centre. If we differentiate 

Eq. (5.10) with respect to r only one term on the right hand side is non zero at the centre, so 

that 

/^,rr|r=0 ~ (5.76) 

and become positive as r increases. At some point in the star, however, the negative 
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Figure 33: The metric functions A, the energy density p, t h e pressure F , the mass m and 
the speed of sound C are plotted as functions of radius for different polytropic indices 'y = 1.75 
(model 1), 'y = 2.00 (model 3) and "y = 2.3 (model 5). 

Erst term on the right hand side of Eq. (5.10) will dominate the positive second term which goes 

to zero at the surface and will become negative. Since Eq. (5.10) admits only one positive 

solution for // if ^ = 0, /z wiU monotonically decrease beyond this point. We have already 

seen, however, that it cannot decrease to 1 or below inside the star since this conBicts with the 

nonzero mass m in Eq. (5.3). Consequently /i > 1 inside the star and the right hand side of 

Eq. (5.9) will be positive throughout the star which explains the monotonic behaviour of A. 

In order to study the dependence of the solutions on the polytropic factor .K" we compare the 
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Figure 34: The metric functions A, //, the energy density p. t he pressuie _P, the mass m and 
the speed of sound C are plotted as functions of r for different polytropic factors ^ = 100 km^ 
(model 2), jiT = 150 km^ (model 3) and = 200 km^ (model 4). 

numerical results for models 2, 3 and 4 in Fig. 34. In contrast to the polytropic exponent, a 

variation of jiT does not qualitatively change the results. A larger factor leads to a larger 

mags and radius of the neutron star model if all other parameters are kept fixed. This behaviour 

hag been observed for various polytropic models and central densities and can be attributed to 

the larger pressure that follows from a larger according to Eq . (5.7). The star will thus be 

able to support more mass against self gravitation and extend t o larger radii. 

We conclude the analysis of the TOV equations by studying the l -parameter families of solutions 
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Figure 35: The 1-parameter families of static spherically symmetric neutron star models corre-
sponding to models 1, 3 and 5 are graphically illustrated by plott ing the relations between the 
total mass, the central energy density and the radius of the star. The locations of neutron star 
models 1, 3 and 5 are indicated by crosses. 

corresponding to the Eve stellar models. For this purpose numerous solutions of the TOV 

equations with equations of state as given in Table 3 have been calculated for various central 

densities. In Fig. 35 we plot the results in the form of relations between central density pc, total 

radius R, and total mass M of the star. One obvious result is t he maximum of the mass curves 

M(R) and M(pc) in the upper panels of the hgure. It is a well known result that these maxima 

separate the stable and unstable branches of the neutron star families for a given equation of 

state (see for example Shapiro and Teukolsky 1983). The stable branches consist of models with 

central densities below the critical value i.e. larger radii and the unstable branches correspond 

to larger central densities and smaller radii. In this context instability means that the frequency 

of the fundamental radial oscillation mode of the neutron star becomes imaginary and thus its 

amplitude will grow exponentially in time and the neutron star is unstable against arbitrarily 

smaU radial perturbations. The eigenmode spectrum of radial oscillations will be discussed in 

the next section when we look at dynamic spherically symmetric stars. 

Another interesting result is shown in the lower panel of Fig. 35 where we plot the radius as a 

function of the central density. The polytropic exponent 'y = 2 again appears as a critical value 
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for which the radius converges to a hnite value as the central density goes to zero. For smaller 

exponents the radius diverges in this limit whereas it goes t o zero for exponents 'y > 2. We 

also discover this behaviour in the upper right panel where t h e mass is plotted as a function 

of radius. For "y < 2 a unique value of M can be assigned t o any suSciently large radius _R. 

In the critical case "y = 2 equilibrium models are only found for radii below a maximal value, 

but the relation M(R) is stiU one to one near this maximum. For "y > 2 this is no longer the 

case and for radii just below the maximal equilibrium radius we End two models with diSerent 

mass. No such qualitatively diSerent behaviour haa been found when the polytropic factor jiT 

is varied instead of 'y. It is interesting to compare the mass-radius relation for "y = 2 with the 

Newtonian caae, where "y = 2 is also a critical value and leads to the relation R ^ = const 

(Shapiro and Teukolsky 1983). The results in Fig. 35 indicate t h a t relativistic eEects break this 

kind of degeneracy. 

This completes our analysis of static spherically symmetric s tars and in the next section we 

turn our attention to the dynamic case. The equations and results of this section wiU then be 

used to derive a fully non-linear perturbative formulation of radial oscillations on a static TOV 

background. 

5.3 Spherically symmetric dynamic s ta rs in Eulerian coordi-

nates 

In this section we will develop an Bulerian formulation of a dynamic spherically symmetric neu-

tron star. For code testing purposes it is interesting to also look at the corresponding scenario 

in the Cowling approximation, i.e. with the metric frozen at its equilibrium values. We will 

then use the results of the previous section to obtain a fully non-linear perturbative formula-

tion of the problem. In this new approach to studying non-lineai' neutron star oscillations we 

eliminate terms of zero order in the perturbations but keep all higher order terms and thus 

obtain a formulation of the dynamic star which is equivalent to the original non-perturbative 

set of equations. Prom the non-linear perturbative formulation it is easy to derive the linearized 

equations which we wiU use to investigate the eigenmode spectrum of radial neutron star oscil-

lations. After describing the numerical methods used to evolve the dynamic neutron star in the 

non-linear case we have to discuss the "surface problem" which is intrinsic to any Eulerian for-

mulation of non-linear oscillations that involve a radial displacement of the stellar surface. The 

numerical methods we have used to circumvent this problem will then be tested by comparing 

the numerical results obtained in the linear regime with the analytic solution of the linearized 
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equations. By using vacuum Hat space as the background, we can emulate a non-perturbative 

"standard" approach to the numerical evolution and compaie t h e results with the perturbative 

scheme using the TOV background. Even though the perturbative scheme leads to highly ac-

curate results for most stellar models, we have not been able to End a perfectly satisfactory 

solution to the surface problem. We have therefore decided to follow a more cautious approach 

and use a simph&ed neutron star model to investigate non-linear efFects in the evolution of 

radial oscillations. This model has also been used to fmther tes t the performance of the code. 

The surface problem will be re-addressed with a LagTangian approach in section 5.4. 

5.3.1 T h e equa t i ons in t h e d y n a m i c case 

We start the Bulerian formulation of the dynamic case with t h e line element in radial gauge 

and polar slicing 

-t- -I- + sin^ (5-77) 

where A and /I are now functions of ^ and r and the "hat" has been introduced to distinguish 

them from their static counterparts. As in the static case we describe the matter as a perfect 

Guid at zero temperature with a polytropic equation of state. As we have seen in section 5.2.1 

this enables us to write the energy momentum tensor in the form 

T'''' = (p + f f (5.78) 

where again the "hat" on the functions p, _P means that they are functions of f and r. The time 

dependent pressure and energy denaity are related by the polytropic law 

f (5.79) 

where the polytropic parameters "y and AT are the same as in the static case. The time dependent 

speed of sound is dehned in analogy to Eq. (5.28) by 

(5.80) 

In contrast to the static case the 4-velocity wiU now have a non-vanishing radial component 

u^ = ('u,w,0,0), (5.81) 
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where i; = i;(r, and w = 10(7-, (). We have not denoted these quantities by a "hat" since we do 

not use static counterparts in their case. The normahsation condition = — 1 relates these 

functions by 

— 1 + (5.82) 

With the line element (5.77) and the energy momentum tensor (5.78) the Einstein Held equations 

= 87rT,̂ i, result in two independent constraint equations 

^ ^ + 47rr/l^ f + (^ + f , (5.83) 
A 2r 

- 1 

+ 47rr/l A,r — ^ .2 
A 2r 

p + (p + . (5.84) 

It is a weU known result that there are no gravitational degrees of freedom in spherical symmetry 

and we therefore expect to be able to determine the metric functions on each time slice without 

knowledge of their history. This is compatible with the result tha t the Seld equations can be 

given in the form of constraint equations only. The degrees of freedom of the scenario are thus 

entirely contained in the matter variables, whose evolution is determined by the equations of 

hydrodynamics = 0. In our case we can write these equations as a quasi hnear system 

of PDEs 

P,t + aiiP,r + 6i2 'u; , ,=6i, (5.85) 

W ( + r + <^11 ,̂r — ^2, (5.86) 
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where the coefEcients are given by 

i l l = (5.88) 

= ( T T i ^ -

= JJTPWi-

(5.91) 

62 = - — ^ + 4 : - - ( 7 ^ + 2 - 4 ^ I (5.92) 

In practice we calculate the derivatives of the metric functions tha t appear in these coeGcients 

from the constraint equations (5.83), (5.84) and a third Held equation 

^ = —47rr/l^A^i'w(p + f ) , (5.93) 

which is an automatic consequence of the two constraints, their derivatives and the matter 

equations. We therefore calculate the coe&cients and 6% without approximating any deriva-

tives with hnite diSerence expressions. 

We have already mentioned in the discussion of the static case that a numerically superior 

performance is obtained if we transform to a new radial coordinate 1/ de&ned by Bq. (5.47). 

We note however that we need to calculate the corresponding static model Hrst to obtain the 

static sound speed C. In the perturbative approach which we will discuss below that is done 

as a matter of course. There we will provide a formulation of the perturbative equations that 

includes both choices for the radial coordinate analogous to Eqs. (5.48)-(5.51). In the Cowling 

approximation the set of equations corresponding to (5.85)-(5.92) describes a dynamic, spher-

ically symmetric perfect Huid in a Gxed gravitational potential. We obtain these equations by 

the following modlGcations: 

(1) the constraint equations for the dynamic metric functions (5.83), (5.84) are replaced 

by the corresponding TOV equations (5.9), (5.10) which have to be solved only at the 

start of the evolution, 
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(2) in the coeGcients a n , 0:12, 6:21 and 5i all occurrences of /i, A, A_r/A and /(,r/A 

replaced with their static analogues A, A ^/A and ^,7 / / / respectively and is set 

to zero, 

(3) the coeScient function ^ is replaced with the slightly modihed version 

62 = ^ ^ ^ j ^iT ^ f /̂ 2"\ 2 ^̂ 2 
/i2 

(5.94) 

These modihcations are rather simple so that we incorporate b o t h options, the evolution with 

time dependent metric and the Cowling approximation in one code. A user specihed initial 

parameter determines which version is to be run. Before we describe the numerical implemen-

tation, we need to rewrite the equations of this subsection in a perturbative form. 

5.3.2 A ful ly non- l inear p e r t u r b a t i v e fo rmu la t i on 

In this section we wiU decompose the time dependent quantities A, /I and p into static back-

ground contributions and time dependent perturbations. We will see that the TOV equations 

are still present in the dynamic equations, for example in the terms a2iP,r — (̂ 2 in Eq. (5.86). 

It is the elimination of these zero order terms and the ensuing numerical inaccuracies which 

provides the motivation for our perturbative formulation. We s ta i t by decomposing the time 

dependent functions into a static background plus a time dependent perturbation 

A(t,r) = A(r) + gA(t,r), (5.95) 

/}(^ , r )=^(r)- | -^ ; / (<, r ) , (5.96) 

p(f : , r )=p(r) - | - Jp(<, r ) , (5.97) 

f ( ( , r ) = f ( r ) + (^f(t , r) . (5.98) 

The radial velocity component 1/; vanishes in the static limit and therefore represents a pertur-

bation in itself. The time dependent functions f , (7 and 1; are dependent variables and thus 

considered functions of the fundamental variables A, /l, p and w according to Bqs. (5.79), (5.80) 

and (5.82). We stress that the perturbations are &nite and that no assumption with regard to 

their size haa been made. 

We start rewriting the dynamic equations with the constraint equation for A. If we insert 
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Eqs. (5.95)-(5.97) into (5.83) and multiply with A we obtain 

A ^ ^ A f — A 
— 1 

2r 
+ 47rrA/^^f + 47rrA/̂ ^ + (p + f A 

— 1 

+ ^A— 1- 47rr [A(2/̂ (̂ /̂  + + ^A/i^] f + (p + f 

(5.99) 

2r 
^2..,2 

The crucial terms are the Erst on the left and the 6rst two terms on the right heind side. We know 

that these terms will cancel each other identically according to E q . (5.9) if a solution of the static 

equations is chosen as a background. Numerically, however, th i s will not be the case because 

of truncation errors. This residual error will inevitably contaminate the numerical evolution 

of the dynamic scenario. In other words the numerical accuracy we will obtain is limited by 

the numerical accuracy of the static background and not by t h a t of the dynamic signal we are 

interested in. The severeness of this eSect will depend on the relative size of the perturbations 

with respect to the background. For very large perturbations t h e numerical contamination will 

be less signihcant and for very small perturbations we may satisfy ourselves with a hnearized 

code. For perturbations of intermediate strength, however, w^hich are still smaller than the 

background but are large enough to give rise to non-lineai' eSects, the numerical contamination 

will severely aSect the evolution and may give rise to spurious phenomena. 

We return to Eq. (5.99) and continue the perturbative formulation of the dynamic case. Since 

we know that the zero order terms cancel each other, we can simply subtract them from the 

equation. The perturbative equation for A then becomes 

(̂ A 
= A % h OA 

2r 2r 

+ 47rr [A(2/i^/^ + (̂ /̂ )̂ + ĉ A/}̂  

+ 47rrA/̂ ^ + (p + /̂3 4-f) / l^w^ 

f + (p + f 

(5.100) 

where we have also implemented the transformation to the generahsed radial coordinate a:. 

Proceeding in the same way we rewrite the constraint equation for 

2.,.2 + (p + + f ) / ( W 
2r 2r 

+ 47rr(3//^^/i + + ( /̂/̂ ) p + (p + f 

(5.101) 
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The reformulation of the matter equationa (5.85) and (5.86) is particularly simple due to their 

quasi linear nature. We obtain 

lu f + an iu , ! = ('2, 

(5.102) 

(5.103) 

with the coeScient functions 

D = r I 1 — C 
-2 2 

2,n2 ; ' 

w 
an = 

« 1 2 = 

0(21 

6% — 

1 

(1 - c " ) 

r z D ' 

p + f 

(1 + jU '̂w^)r ' 

(p + (̂ p + f ) / l 2 r ^ D ' 

(p + f ) 
1 

D 

D 
w 2 f A 

\ 1 + r 

2 , o ^ 

+ P,r'W (̂l — C"̂ ) 

+ ^ - - C " + 2 - : : ^ 
A r ^ A y A^(p + f ) 

(C^ - C^)pr + + ^ ( p + f ) + ^ ( . ^P + ) 
A A A 

(5.104) 

(5.105) 

(5.106) 

(5.107) 

(5.108) 

(5.109) 

Except for the coeSicient 62 where background terms have been eliminated by using the TOV-

equations we note the similarity with the coeScients given in Bqs. (5.87)-(5.92) in the non-

perturbative formulation. 

In order to derive the equations in the Cowling approximation we have to proceed in analogy 

to the previous section. 

(1) The metric perturbations and ^A are set to zero. 

(2) All occurrences of \ r / A and Eire replaced with ^ind which are given 

by the TOV equations (5.9), (5.10). 

(3) is set to zero. 
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(4) The coefBcient 62 is replaced by 

1 , 1 I 2 
0 2 = — — s w 

D 
4 : + ^ j ( i - C ' ^ ) - ^ c 2 + 2 2 & 

A / r w /l 
+ 

(5.110) 

(C2 _ ^2)^^ + + ^ ( ^ + f ) 
A A A 

This completes our derivation of the equations for a dynamical spherically symmetric neutron 

star. In later sections we wiU numerically investigate the system of partial diSerential equations 

(5.100)-(5.103) with the coeScient functions (5.104)-(5.109) a n d the corresponding system in 

the Cowling approximation. Before that, we will turn our at tention towards the hnearized 

equations and the resulting eigenmode spectrum. These results wiU not only be used as initial 

data, but also provide one of the fundamental test beds for t h e code. 

5.3.3 T h e l inear ized equa t ions a n d t h e e igenmode s p e c t r u m 

In this section we will discuss the linearized equations for a dynamic spherically symmetric 

neutron star. For this purpose we will exphcitly assume that t h e background is given by a non-

vacuum solution of the TOV equations. If we further assume tha t all perturbations are small 

compared with their background values and the radial velocity w is small compared with the 

speed of light, i.e. w 1, the higher order terms in Eqs. (5.100)-(5.109) become negligible and 

can be omitted from the equations. It is convenient to follow e.g. Misner, Thorne, and Wheeler 

(1973) and introduce the variable ^ which measures the displacement of the Euid elements. An 

observer who is comoving with the fluid and is located at ro in the equilibrium case will End 

herself at position ro + 6(^, )"o) during the evolution. The displacement vector ^ is therefore 

related to our variables by 

( ( = Aw. (5.111) 

We note that the background value of the lapse function is used in this equation because 

higher order terms have been neglected. Another var iable which facilitates a particularly simple 

formulation of the resulting equations is the rescaled displacement deEned by 

( = (5.112) 
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If we insert this dehnition into the hnearized form of equation (5.103) and use the linearized 

versions of Bqs. (5.100)-(5.102) to eliminate the pertuibations and we obtain the 

second order in time ajid space differential equation 

f I + 0C, 
r T \ r 

where the auxiliary functions n and Q are dehned by 

n = C^(p + f ) 
.2 ' 

= (p + f ) A , 

Q = + + 4 ^ — 
A / rA 

(5.113) 

(5.114) 

(5.115) 

(5.116) 

These equations describe the dynamics of a spherically symmetric neutron star in the linearized 

limit. If we insert the ansatz ((f,a:) = C(a:)y(f:) into Eq. (5.113) we And that the solution has 

harmonic time dependence 

((^,a;) = ( ( z ) e ^ ^ (5.117) 

and the spatial proEle is determined by the ordinary differential equation 

— ^ ) + (w^M^ + Q)C — 0- (5.118) 

For the ensuing discussion it is convenient to work with the areal radius r and therefore set 

r = 1. The ordinary differential equation (5.118) can then be written in the form 

'CC = (, (5.119) 

where the diSerential operator is dehned by 

C 
1 

Q (5.120) 

This type of ODE is called an proAZem and the pazticulcir structure of the diSer-

ential operator /I classihes it as a if the function ( satisEes so-called 

homogeneous boundary conditions (see for example Simmons 1991). Due to the asymptotic be-
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haviour of the background solutions the functions H, and Q will either diverge or vanish at 

the boundciries, however, and the problem we are facing is a gwpuZar proMem. 

An important subclass of this type of problems is the ezgeMfoZue pro5fem which is 

deSned by the requirement that 

(/lit, i;) = It), (5.121) 

for all solutions u, 'U. Here the inner product is deGned by the W^(r) 

( / , 9 ) = / ' ; F ( r ) / ( r ) g ( r ) d r , (5.122) 
J a 

where a and 6 are the boundaries, i.e. the centre and surface of the steir in our case. A 

short calculation shows that condition (5.121) is ensured if the solutions sa t i s^ the self-adjoint 

boundary condition 

n ( w r — 0. (5.123) 
a 

Below we shall see that any solution ( of the eigenvalue problem (5.118) will be ^(r^) at 

the origin and be Unite at the surface. In combination with the asymptotic behaviour of 

the TOV solutions determined in section 5.2.5 we can see that Eq. (5.123) is satisBed so that 

the differential equation (5.118) represents a self-adjoint eigenvalue problem. For this type of 

equations one can show the following properties (see for example Coddington and Levinson 

1955) 

(1) There exist an infni te number of solutions ( i(r) , C2()"), C3(r), - - which are called 

eigenfunctions and the corresponding eigenvalues are real and can be ordered 

(w^)i < (w^)2 < (w^)3 < (5.124) 

We note that in our case the real eigenvalues are and the corresponding frequencies 

wiU be imaginary if < 0. 

(2) After appropriate normahsation the eigenfunctions form an orthonormal set, i.e. 

(5.125) 

(3) The eigenfunctions form a complete set, i.e. any funct ion / ( r ) which satisEes the 
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self-adjoint boundary conditions (5.121) can be expanded in a series of eigenmodes 

/ W = (5.126) 
i 

where the eigenmode coeScients of the function / a re given by 

^^ = (y,W. (5.127) 

Before we investigate Bq. (5.118) numerically, we consider t h e asymptotic behaviour of the 

solutions. At the origin the displacement vectors ^ and ( have t o vanish because of the spherical 

symmetry. If we therefore assume (^(r) ^ near the origin where a > 0, insert this ansatz into 

Eq. (5.118) and use the asymptotic behaviour of the TOV solution, we obtain the leading order 

( ( r ) - ^(r^) . (5.128) 

At the surface we only require ^ and ( to be Suite but allow for non-zero displacements 

C(z) - ^(z'^). (5.129) 

It is of particular interest to consider the impact of these results on the asymptotic behaviour 

of the energy density perturbation which is related to the displacement by the linearized 

version of Bq. (5.102) 

= — ^ [ ( p 4 - f ) ( , , -!-p^rC]- (5.130) 

At the centre the behaviour of the displacement ( results in 

- ^ ( / ) , (5.131) 

so that the condition we imposed on ( also guarantees a finite energy density perturbation at 

the origin. At the surface, however, the leading term on the right hand side of Eq. (5.130) is 

the term involving the derivative of the background energy density. This term is respongible 

for the asymptotic behaviour of at the surface 

- ^ (z" -^) . (5.132) 
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Consequently the energy density perturbation is zero at the surface for M > 1, hnite for n = 1 

and it diverges for n, < 1 i.e. 'y > 2. Even worse we also obtain the result 

^ (5.133) 

independent of the polytropic index. The energy density perturbat ion wiU therefore necessarily 

be larger than the background p in a hnite interval around the surface. This is in obvious conSict 

with the initial assumption p we used in the linearisation process and raises doubts about 

the validity of the results. Below we will see, however, that the linearized equations can be 

derived without any implicit contradiction &om the fully non-linear Lagrangian formulation of 

the problem. This is aheady illustrated by a closer investigation of Eq. (5.130) which can be 

rewritten as 

= A/) — r- (5.134) 

Here Ap is the Lagrangian energy density perturbation measured by an observer moving with 

the Euid and is given by 

A p = : — ^ ( / ) + f)(^,.. (5.135) 

[cf. Bq. (5.217)]. The asymptotic behaviour of Ap is perfectly regular Ap a;" and the diKcul-

ties purely originate from the term on the right hand side of Eq. (5.134). This correction 

term which facilitates the transformation between the Eulerian and Lagrangian perturbations 

is based on a Taylor expansion of p which, as we have already seen above, is not generally per-

missible. For polytropic indices m < 1 the derivative of p does indeed diverge and Eq. (5.134) is 

not a valid relation between the Eulerian and Lagrangian quantities. This is the Erst indication 

that a Lagrangian formulation is a somewhat more natural way of describing radial oscillations 

of neutron stars. Prom this point of view it is a remarkable fact that the linearisation of the 

Eulerian case leads to the "correct" equations in spite of the internal inconsistency of the deriva-

tion. Finally it is worth pointing out that the hregular behaviour of is not merely down 

to a poor choice of dependent variables. It is certainly possible to formulate the problem in 

Eulerian coordinates in terms of regular variables such aa or We have seen, however, that 

such a regular formulation of the problem still leads to the unphysical result of a diverging total 

energy density p + if the equations of state has an asymptotic power law behaviour f p" 

with M < 1. In view of these difhculties one may ask the question why we have decided to use 
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an Bulerian rather than a Lagrangian formulation in the Erst place. Our main motivation for 

studying Bulerian schemes is to probe a method in spherical symmetry which enables one to 

accurately model a wide range of digerent types of non-linear neutron star oscillations. Below 

we shall see that the Lagrangian approach is a very powerful tool for the study of dynamic 

stars in spherical symmetry. However, it is a generic problem of Lagrangian methods that it is 

not clear how to generalise them to two or three spatial dimensions, where the paths of Euid 

elements may intersect and give rise to caustics. The vast major i ty of neutron star oscillations 

on the other hand will only be present if one drops the assumption of spherical symmetry, so 

that their numerical simulation requires the use of two or three spatial dimensions. In default 

of higher dimensional generalisations of Lagrangian techniques these simulations are generally 

performed in an Eulerian framework. 

We wiH now turn our attention towards the numerical solution of the linearized equations. Prom 

the asymptotic behaviour, we expect, however, that the results we obtain for M < 1 will diverge 

at the surface and thus not represent a physical solution. Prom a numerical point of view it 

turns out to be beneScial to reformulate Eq. (5.118) in terms of t he displacement vector This 

is due to the asymptotic behaviour of ( at the origin given by Eq. (5.128). Below we wiU use 

the numerically calculated eigemnodes as initial data for the fully non-linear evolutions and for 

that purpose the solution for would have to be converted into da ta for w or in the Lagrangian 

code discussed in section 5.4 for The corresponding division by combined with the second 

order accuracy of the numerical eigenmode solutions results in poor accuracy of these initial 

data near the origin. We therefore rewrite Eq. (5.118) in terms of ^ and introduce the auxiliary 

variable A to write the result as a Erst order system 

n£ X — A — 0, (5.136) 

+ (r,3;) 
r 

r4 \ 
n 

A 
+ + Q / 6 = 0- (5.137) 

We note that the occurrence of r-derivatives in equation (5.136) is purely a convenient notation. 

In practice all these derivatives are eliminated via the TOV equations. If we use the rescaled 

radial coordinate, we have = C and the r-derivative of r z; can be calculated from the relation 

= (? - 1) (5.138) 

which is a consequence of the equation of state and the definition of the sound speed. The 

only derivatives in Eqs. (5.136), (5.137) that have to be represented by finite diEerencing are 
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t h e 2;-derivative8 of ^ a n d A . 

In the Cowling approximation all these results remain unchanged except for the function Q 

which has to be replaced by 

0 - A^(p + f ) A' —y + A/̂  
9 f ^ I 9 f ' I 9 

/ r W / r \ r / rJ 

(5.139) 

and the relation between displacement and energy density per turbat ion which becomes 

= - ( p + f ) ^ ^ P,rC. (5.140) ^2 

It is an interesting fact that in both cases the results are simpler due to the cancellation of 

terms if gravity is included. 

We have numerically calculated solutions of the eigenvalue problem (5.136), (5.137) using a 

relaxation method. For this purpose we introduce an additional differential equation for the 

eigenvalues 

(w"),z = 0, (5.141) 

which states that the eigenmode frequency is constant throughout the star. The value of w is 

not known at this stage but will result from the relaxation algorithm. In order to solve the 

system (5.136), (5.137), (5.141) we need to supply three boundary conditions. At the centre we 

require that 

^(0) = 0, (5.142) 

A(0) = const ^ 0. (5.143) 

The vanishing of the displacement ^ at the origin is a necessary condition in spherical symmetry. 

The value of A at the origin is allowed to take on any non-zero value because an eigenfunction 

is only deEned up to a constant factor. At the outer boundary we have the condition 

A — 0, (5.144) 
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Table 5: The convergence factors obtained for doubling the grid resolution in the relaxation 
code for calculating the eigenmodes of the neutron star models 1 - 5 . Grid resolutions of 500, 
1000 and 2000 points have been used. 

model fundamental mode 10*^ eigenmode 
1 4.75 5.05 
2 4.76 4.8S 
3 4.80 3.97 
4 4.75 4.82 
5 4.75 4.82 

Table 6: Radius, mass and frequencies of the lowest three eigenmodes for three randomly chosen 
models of Kokkotas and RuoS have been recalculated with our codes and agree weU with their 
values. 

7 K Pc R M 1/2 z/3 
[10^^ g/cm^] [km] [Mo] [kHz] [kHz] [kHz] 

Kokkotas &: Ruoff 2.00 100 km^ 5.000 7.787 1.348 1.129 7.475 11.365 
this work 2.00 100 km^ 5.000 7.788 1.348 1.128 7.470 11.355 

Kokkotas &: RuoS 2.25 700 km^^ 4.000 8.199 1.600 1.455 7.610 11.573 
this work 2.25 700 km^^ 4.000 8.200 1.600 1.443 7.594 11.544 

Kokkotas &: RuoS 3.00 2 . 10^ km^ 2.200 9.419 1.988 2.716 8.305 12.516 
this work 3.00 2.10^ km"̂  2.200 9.419 1.988 2.637 8.215 12.389 

which follows from the dehnition of A and the vanishing of the energy density at the surface of 

the star. An initial guess for w enables us to calculate the initial functions ^ and A by integrat-

ing Eqs. (5.136), (5.137) outwards. The solution including the eigenvalue is then obtained 

by relaxation as described in section 2.3.5. 

co(fe 

For suBciently low eigeiunodes both alternative choices of t he radial coordinate lead to good 

agreement between the predicted frequencies up to the fomth signihcant digit. As we wiU see 

below high order eigerunode proEles show rapid oscillations near the surface of the star which 

may not be well resolved if we work with the areal radius r . The frequencies deviate more 

signiEcantly in these cases. In the rest of this section we will therefore work with the rescaled 

coordinate and set r a; = C. The resulting code has been checked in four independent ways. 

First we have computed the eigenfunctions of the fundamental and the tenth mode for the 

neutron star models listed in Table 3 and checked for convergence using 500, 1000 and 2000 
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Ikble 7: The critical central densities corresponding to the neutron star models 1-5 are given to 
four signihcant digits together with the frequency of the fundamental mode just below and above 
the critical point. Above the critical density the frequencies become imaginary as expected. 

model Pc,crit z ^ ( / ) c , c r i t - 1 0 ^ ) k m ^ '^(Pc.crit + i O ^ ) k m ^ 

[km-^] [kHz] [kHz] 

1 0 . 0 0 2 1 7 9 0 . 0 2 9 4 0 .0477% 

2 0 . 0 0 4 2 0 5 0 . 0 5 7 8 0 . 0 4 2 9 ; 

3 0 . 0 0 2 8 0 4 0 . 0 6 2 9 0 . 0 3 5 0 % 

4 0 . 0 0 2 1 0 3 0 . 0 4 0 9 0 .0592% 

5 0 . 0 0 2 2 3 3 0 . 0 5 9 1 0 . 0 6 2 7 % 

grid points. The results shown in Table 5 clearly demonstrate second order convergence as 

expected for the second order Snite diSerencing scheme applied in the relaxation algorithm. 

Next we have randomly chosen three of the stellar models listed in Kokkotas and RuoS (2001) 

and recalculated radius, mass of the neutron stars as well as the frequencies of the lowest three 

eigenmodes. The results are compared in Table 6 and show good agreement. 

For the third test we recall the 1-parameter famihes of neutron stars shown in Pig. 35. We 

have already mentioned that the maxima in the mass vs. central density plots separate the 

stable and unstable branches of neutron star models and that t he frequency of the fundamental 

eigemnode becomes zero at the critical point and imaginary on the unstable branch. We have 

therefore determined the critical central densities for the Eve neutron star models of Table 3 and 

calculated the frequency of the fundamental modes just below and above the critical densities. 

The numerical results are shown in Table 7 and confirm this picture. The frequencies of the 

fundamental mode are very small but real for central densities jus t below the critical value and 

become imaginary for larger densities. 

A further test for the eigenmode frequencies arises from a relation between the period of the 

fundamental mode of a neutron star model and the deviation of the radius R from the critical 

radius _Rc that has been suggested by Harrison et al. (1965) [see their Eq. (155)] 

(R - Rc) - = const. (5.145) 

In Table 8 we show the results obtained for neutron stai" models identical to model 1 and 3 

with central densities as indicated. Even though a deviation from Bq. (5.145) up to 20% is 

observed for both models, this is rather small if one considers the variation of the frequency 

over several orders of magnitude. 
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Table 8: Equation (5.145) is checked for neutron stai- models 1 a n d 3 for various central densities. 

model 1 model 3 
Pc Ul (j? - Pc (A - Bcrit)/C^f 

[km"^] [km-^] [km^] [km"^] [km"^] [km^] 
0.0021785 0.000187 187.96 0.0028035 0.000172 97.55 
0.0021780 0.000616 192.72 0.0028030 0.000773 85.21 
0.0021775 0.000850 192.34 0.0028025 0.001080 84.89 
0.0021750 0.001563 192.59 0.0028020 0.001317 84.77 
0.0021700 0.002424 193.00 0.0028000 0.002002 84.87 
0.0020000 0.010939 207.93 0.0027000 0.010838 86.97 
0.0015000 0.020261 236.69 0.0020000 0.029622 106.64 
0.0011775 0.023606 235.61 0.0015000 0.036427 128.95 

rAe e:'genmo(fe 

We wiH now turn our attention to the eigenmode profiles of t h e physical variables. We have 

already noted that the eigenvalue problem has an enumerable inhnite set of solutions which 

can be ordered with respect to their eigenvalues. This order is also rejected in the spatial 

proEles of the corresponding eigenfunctions. We have numerically calculated the Erst four 

eigenmodes in terms of the displacement vector ^ for model 3 wi th polytropic exponent 'y = 2. 

The velocity w, the rescaled displacement ( and the energy density perturbation <̂ ,0 then follow 

from Eqs. (5.111) where we use harmonic time dependence, (5.112) and (5.130). The results 

are shown in Fig. 36, where we have also included the solution for ^ corresponding to the tenth 

eigenmode. Since the eigenmode solutions are determined u p to a constant factor only, we 

have rescaled them to about unit amplitude. For all variables we see that the number of nodes 

is given by the order of the mode and the number of local maxima or minima is given by the 

order minus one. This behaviour remains valid for higher modes and is characteristic of the 

eigenmode solutions. In order to illustrate the signihcance of t h e transformation to the rescaled 

radius ;/ we have plotted ^ as a function of r as well. In the upper panels of Fig. 36 we can see 

that the oscillations in the spatial prohle of the eigenmodes become more concentrated towards 

larger radii r the higher the order of the mode. In terms of the rescaled radius %/, however, 

the oscillations are evenly distributed over the entire interval. This behaviour is reminiscent 

of the narrowing of the wave pulse we observed in section 5.2.4 and illustrates why a superior 

numerical performance is obtained when using the coordinate %/, especially when higher order 

modes are present in the evolution. 

The corresponding eigenmodes obtained for the other stellar models look qualitatively similar 

in all variables except for the energy density perturbation We have already noted that the 
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Figure 36: The displacement ^ as a function of the areal radiua r and the rescaled radius ^ as 
weH as the velocity lu and the energy density as a function of i/ are shown for the Erst four 
eigenmodes of model 3. For ^ we have also plotted mode 10 to illustrate the concentration of 
oscillations towards larger r . 

Figure 37: The energy density perturbation obtained for t h e first four eigenmodes of stellar 
model 1 (left panel) and 5 (right panel) is plotted as a function of 

asymptotic behaviour of depends on the polytropic exponent 'y. This is conhrmed by the 

numerical solutions shown in Fig. 37 where we plot the profiles of the energy density perturbation 

obtained for the stellar models 1 and 5 with polytropic exponents 'y = 1.75 and 2.3 respectively. 

For model 1 the energy density perturbation goes to zero at t he surface, although with a non-

zero gradient. In comparison the gradient of the background density of the same model vanishes 

in Fig. 33 and the quotient can indeed be shown to diverge in agreement with Bq. (5.133). 
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Figure 38: The energy density proSle of an oscillating neutron star is schematically plotted at 
three diSerent stages of one oscillation. Initially the stellar radius is at its equihbrium value, 
at the later time the star has expanded and at 2̂ it has shrurLk below its initial radius. The 
vertical line indicates the extension of the numerical grid. 

For the larger polytropic index 2.3 the perturbation itself diverges at the surface as expected 

from Eq. (5.132). 

The corresponding results obtained in the Cowling approximation are very similar to those 

shown above. The only notable difference is the frequency of t he fundamental mode which does 

not decrease towards zero as the central density approaches the critical value but instead remains 

real and positive. This result is to be expected since a Suid wih not become gravitationaUy 

unstable if the gravitational held is kept 6xed. 

The eigenmode solutions obtained in this section wiU be used extensively as initial data in the 

non-linear evolutions. We have seen, however, that the stellai" surface represents a problematic 

area even in the hnearized case. The diGculties aie more pronounced in the non-linear case 

and need to be investigated in more detail before we can study the fuUy non-linear numerical 

evolutions. 

5.3.4 T h e su r f ace p r o b l e m 

When we formulated the description of non-linear radial oscillations of neutron stars in sec-

tion 5.3.1 we consciously omitted the issue of boundary conditions. The diSculties involved in 

specii^ing outer boundary conditions in an Eulerian code are so complex that we dedicate a 

whole subsection to this topic. We have already mentioned t h a t the surface is dehned by the 

condition f = 0 which is equivalent to = 0 for a polytropic equation of state. With respect 

to the Bxed numerical grid, however, the surface of the star is moving and we cannot apply this 
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condition at the outer grid boundary. This is a further indication that one may have to emulate 

a Lagrangian treatment of the surface in order to accurately model neutron star oscillations 

involving radial displacements of the surface. The situation is graphically illustrated in Fig. 38 

where the total energy density proEle is schematically plotted as a function of radius. At time 

to an equihbrium star (sohd curve) is perturbed with a velocity held that causes the star to 

expand. The initial conhguration also determines the extension of the numerical grid indicated 

by the vertical line. At a later time the star has expanded (long dashed curve). The outer 

part of the star has therefore moved out of the numerical grid (dotted part of the curve) and 

the corresponding information would be lost in a non-linear numerical evolution. At time 2̂ the 

star has shrunk and is completely contained inside the numerical grid. Outside of the star the 

energy density will be zero. In general, therefore, the energy density prohle or its derivatives 

will have a discontinuity at the stellar surface. Worse hom a numerical point of view is the 

region between the stellar surface and the outer grid boundary. Even though the energy density 

wUl be zero at these points theoretically, numerically this will not exactly be the case. At 

some of these points the total energy density wiU have small negative values due to numerical 

noise, unless the values are manipulated in some form. A negative energy density, however, 

means that the pressure can no longer be calculated from the equation of state which normally 

terminates the evolution. There are several possibihties for dealing with these diGculties. We 

will discuss four methods and implement two of them in the course of this work. 

1.) The first method consists in embedding the star in an atmosphere of low density. In 

this method the numerical grid extends well beyond the size of the neutron star and no 

information is lost at any stage of the evolution. The boundary conditions are then apphed 

to the atmosphere whereas the star will always be conhned to the interior numerical grid 

and the surface of the star is entirely described by the interior numerical evolution, for 

example by shock capturing methods. It is a non-trivial question, however, to what extent 

the atmosphere and the numerical treatment of the surface discontinuities will aEect the 

evolution of the neutron star. For this reason it seems plausible to use an atmosphere of 

low density. A low density, however, will in general be accompanied by a small speed of 

sound and we have already seen in the discussion of the wave equation in section 5.2.4 that 

such regions require a careful numerical treatment. An insuBcient resolution may result 

in spurious phenomena. In terms of a rescaled radius such as the coordinate ^ dehned in 

Eq. (5.47) we have been able to obtain a suGicient resolution, but a large number of grid 

points would be required to simulate an atmosphere of signihcant spatial extension. 
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An interesting variation of this method consists in viewing the surface of the star as 

an interface to an exterior vacuum region and explicitly tracking the movement of the 

interface. Sophisticated techniques such as and morcAmg 

have been developed for these purposes (see for example Sethian 1999) and may provide 

an answer to the surface problem in Eulerian formulations. One may even go a step 

further and recall the strikingly similar concept of Cauchy-characteristic matching and, 

thus, consider a combination of these ideas. It is, however, well beyond the scope of this 

work to investigate these methods in more detail and we wiU therefore focus on simpler 

techniques. 

2.) The second method is a modihed version of the atmosphere approach discussed above. 

Instead of using an external atmosphere, we modify t h e equation of state of the neu-

tron star at low densities and thus view the outer layers of the neutron star itself as an 

atmosphere. For that purpose we use an equation of s t a t e given by 

f = i f / ) > m , (5.146) 

f = d i p + i f ^ P t ; ( 5 . 1 4 7 ) 

where og, ^3 04 are coefEcients determined by the continuity of f and its 6rst two 

derivatives with respect to p. The coeGcient oi and t h e transition density pt are free 

parameters that are specihed by the user. A consequence of this deSnition is that f p 

at low densities and the behaviour wiU be similar to t h a t of a 'y = 1 polytrope in this 

region, i.e. extend beyond the surface of the original purely polytropic model. The low 

density part of the neutron star can thus be viewed as a n atmosphere smoothly attached 

to a polytropic neutron star truncated at Whenever the energy density faUs below a 

threshold value pxnm during the evolution, it is set to this threshold value. The parameter 

Pmin also needs to be speciEed by the user. This requirement avoids the occurrence of 

negative total energy densities, but introduces ad hoc discontinuities in the Jp pro&le. We 

take care of these discontinuities by introducing artihcial viscosity of the modihed von 

Neumann-Richtmyer form (see for example Fox 1962) 

if < 0 
(5.148) 

.0 if > 0, 

where 6 is the viscosity parameter. In many cases 6 = 2 leads to satisfactory results. This 
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viscosity term is added to the pressm-e pertm-bation wherever it occurs in the equa-

tions. With careful choices of the free parameters ai, p t , Pmin and 6 we have obtained 

long term stable evolutions of localised wave pulses. T h e particular values we have to 

choose for a stable evolution, especially the density values arid /)min, do however de-

pend sensitively on the initial data. Furthermore the manipulation of the energy density 

perturbation in cases of a negative total energy density leads to a contamination of the 

evolution of eigenmodes in the low density range. The resulting disturbances then travel 

into the stellar interior within a few oscillation periods. In view of these diSculties we 

have decided to use a different treatment of the stellar surface. 

3.) A fully satisfactory solution to the surface problem in one spatial dimension can be ob-

tained with a Lagrangian formulation either of the surface or the whole star. In the hrst 

case this can be implemented by rescaling to a new radial coordinate 

(5.149) 

where R is the time dependent total radius of the star. Th is transformation leads to a few 

extra terms in the equations in the radial gauge, but is more complicated to implement in 

terms of the rescaled coordinate i/. For this reason and because of the wider range of ap-

plications we have chosen instead to reformulate the non-lineai' radial oscillations entirely 

within a Lagrangian framework. Combined with the singularity avoiding properties of the 

polar slicing condition the resulting code can not only be used for the simulation of radial 

oscillations but also allows high resolution studies of spherically symmetric gravitational 

collapse. This code and the corresponding testing wiU b e discussed in detail in section 

5.4. 

Even though Lagrangian methods represent a formidable tool for l-dimensional problems, 

we have already mentioned that there is no straightforward generalisation to two or three 

spatial dimensions, where the paths of Suid elements may intersect and give rise to caus-

tics. 

4.) The method we will be using in the remainder of tliis section can be considered the 

inverse of the atmospheric treatments discussed above. Instead of adding matter in the 

form of an atmosphere the outer layers of the star aie removed. In this context it is 

worth remembering that the solution of the TOV equations via quadrature does not go 
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all the way out to p = 0 and a fully non-linear perturbative code working with such a 

background intrinsically describes a truncated neutron s ta r . The percentage of mass that 

we will remove from the star will be very small in most cases (<K 1%). We will see below 

that the resulting code behaves well in the linearized l imit in most cases. 

5.3.5 T h e numer i ca l i m p l e m e n t a t i o n in Eu le r i an c o o r d i n a t e s 

In section 5.3.2 we have derived the equations for a fully non-linear perturbative formulation of a 

dynamic spherically symmetric star in terms of the generalised coordinate a;. In the remainder 

of the Eulerian discussion we will restrict ourselves to the rescaled version and set = C 

and z = 2/. In order to numerically solve these equations, we also have to specify appropriate 

boundary conditions. We start with the origin and recall t h a t the displacement ^ of a Huid 

element at the centre of a spherically symmetric star vanishes. As a consequence the radial 

velocity will also vanish at the origin. As far as the energy energy density is concerned, we note 

that p is a component of a rank 2 tensor and therefore the spat ial derivative will vanish in 

spherical symmetry. The same is true for the background density p and therefore we obtain the 

inner boundary condition = 0. Finally we require the vanishing of to avoid a conical 

singularity. 

At the outer boundary we match the lapse function to an exterior Schwarzschild metric as in the 

static case which results in the condition A /I = 1. As fai as the matter variables are concerned, 

the situation is a bit more complicated. For the velocity we use the regularity condition = 0. 

In view of the deBnition of the radial coordinate ^ this is equivalent to demanding that the 

velocity has a hnite gradient with respect to r at the surface. This condition is satisEed by 

the eigenmode solutions obtained in section 5.3.3. In Fig. 36 we cem see that the gradient lu,,, 

vanishes for all three polytropic exponents "Y = 1.75, 2.00 and 2.3. In contrast to the velocity 

gradient the derivative of the energy density perturbation wiU in general not vanish at the 

surface. If we consider the steUar models hsted in Table 3 it can be shown that will only 

vanish in the case "y = 2 which is also illustrated in Pigs. 36 and 37. In summary the boundary 

conditions are 

= 0, (5.150) 

w = 0, (5.151) 

= 0. (5.152) 
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at the origin and 

= 0, (5.153) 

A . /I = 1 (5.154) 

at the surface. 

In this context it is worth mentioning a subtlety concerning second order Snite diEerencing 

schemes used for evolution equations such as (5.102), (5.103). I n general this system of equations 

haa one ingoing and one outgoing characteristic at each boundaj-y and physical information haa 

to be specihed in the form of one condition for either or a t either boundary. The centred 

hnite digerencing scheme (or variation thereof) used in second order techniques, however, cannot 

be apphed at the grid boundaries and the variables must be evolved in an alternative way. The 

physical boundary conditions do not necessarily provide enough information for this. In our 

case, for example, we have two variables lu that need t o be updated at two grid points 

respectively which requires four conditions, but only two conditions are required to provide 

information for the characteristics entering the numerical grid. The remaining boundary values 

not determined by these two conditions have to be obtained in alternative ways, for example by 

extrapolation or the use of one sided derivatives in the evolution equations. We have obtained 

optimal performance in the evolution of and lu by using conditions (5.150) and (5.151) 

at the centre and (5.153) at the surface. The outer boundary value of is then obtained 

by extrapolation on each new time slice. It is worth pointing out that this problem is not 

apparent in the implicit hnite difference methods apphed to the cosmic string in section 4 or 

the Lagrangian code in section 5.4. 

Before we schematically outline the computational steps involved in the time evolution we need 

to discuss one Enal numerical issue, the CFL stability condition. We have mentioned in section 

2.3.8 that the stability criterion of Courant, Priedrichs and Lewy requires the physical domain 

of dependence to be included in the numerical domain of dependence. A standard method 

to ensure that this criterion is met in a hydrodynamical evolution is based on calculating the 

slopes of the characteristics at each point on the numerical grid. In our case we consider the 

system of evolution equations (5.102), (5.103). The quasi-linear nature of this system enables 

us to calculate the characteristics from 

= A ,̂ (5.155) 
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where A, are the eigenvalues of the coeGcient matrix and are defined by the equation 

- A . 1 = 0. (5.156) 
0̂:21 a n y 

The solution for the coe&cient functions (5.105)-(5.107) is given by 

A = —— I w(l — C^) d: — ^ ) . (5.157) 

If the characteristics are straight lines, the Courant-Priedrichs-Lewy condition is satisEed if the 

time step dt obeys the inequality 

(ft < — . (5.158) 
max I Ail 

We therefore calculate the eigenvalue helds Ai, A2 on each time slice and determine the value of 

max |Ai|. Even though the characteristics will in general not b e straight lines, the deviation is 

small on time scales of d/ and we allow for this eEect by multiplying the resulting time step by 

a factor of 0.9. With that choice and about 500 grid points we have obtained stable evolutions 

over several 100000 time steps which corresponds to more than 0.1 s of proper time as measured 

by an observer at inRnity. 

We have got all ingredients now to summarise the individual steps involved in the fuUy non-

linear numerical evolution. 

(1) A static background model is calculated according to t h e TOV equations (5.48)-

(5.51), where we set = C. For this purpose the polytropic exponent 'y, the 

polytropic factor A", the central density pc a-nd the surface density ps need to 

be speciHed by the user. A non-zero surface density will result in a truncated 

neutron star model. The results are given in the form of data Hies containing 

the background variables A, //, p and r as functions of ?/. 

(2) If initial data is required in the form of eigenmode proEles, the eigenmode solu-

tions can be calculated according to the method described in section 5.3.3. The 

order of the eigenmode is determined by the initial guess for the frequency which 

needs to be specihed. The amplitude of the eigenmode is a free parameter in the 

evolution code. 

(3) There are several eilternative choices for the initial da ta . Among these are lo-

calised perturbations of Gaussian shape and linear combinations of diEerent 
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eigenmodes. 

(4) With the initial velocity w and energy density speciSed, the metric pertnrbar 

tions follow from the constraint equations (5.100) a n d (5.101). These equations 

are numerically integrated with a fourth order Runge-Kutta scheme. 

(5) The initial data is evolved according to the second order in space and time 

McCormack scheme described in section 2.3.4. One evolution cycle consists of 

the following steps. 

a) Calculation of the Courant factor, 

b) predictor step for and w, 

c) application of the inner boundary conditions for and tu, 

d) integration of the constraint equations to obtain preliminary values for 

and on the new time slice, 

e) corrector step for and lu, 

f) application of boundary conditions for and w, 

g) integration of the constraint equation on the new slice to obtain the hnal 

values of and 

5.3.6 T h e p e r f o r m a n c e of t h e code in t h e l inear r e g i m e 

We will now investigate the performance of the code in the linear regime, where we know the 

exact solution with high accuracy. If initial data is provided in the form of an eigenmode proSle 

Wi(^) and zero we know that the time dependent solution in the linear regime is given by 

6p((,^) = -^pi(i/)sinwi^, (5.159) 

W(t, !/) = W;(^) cos (5.160) 

For hnite amplitudes this solution is not exact, but for sufBciently small amphtudes the deviation 

of the exact solution from (5.159), (5.160) is negligible compared with the truncation error of 

the numerical scheme. We have therefore calculated the fundamental mode for stellar model 3 

of Table 3 using 1600 grid points and a truncation density ps = 1.0 - 10"^ km"^. This density 

corresponds to the removal of about 3 - 10"^ of the neutron star mass which is one order of 

magnitude smaller than the accuracy of the numerically calculated total mass. The amplitude 

of the eigenmode corresponds to an oscillation of the stellai- radius of about 10 cm, i.e. a relative 

displacement of about 10"^. In Fig. 39 we show the time evolution of and w together with 

the deviation from the analytic solution (5.159), (5.160). The numerical evolution reproduces 
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Figure 39: The left panels show the time evolution of and w obtained for neutron star model 
3 with 'y = 2.00. The initial perturbation is given in the form of the fundamental mode in the 
velocity Eeld w. The right panels show the deviation from the exact solution of the hnearized 
equations. 

the expected harmonic time dependence with high accmacy. Because of its low frequency the 

fundamental mode is particularly suitable for this graphical illustration. The code reproduces 

the sinusoidal evolution of higher modes with comparable accuracy, but the large number of 

oscillations is not well resolved in plots similar to Fig. 39. For the same reason we have shown 

the earlier stages of the evolution up to ^ = 600 km only in the Sgure. The whole run lasts more 

than ten times longer and shows no signiHcant loss of accuracy. It is worth mentioning that the 

accuracies obtained here are limited not only by the evolution code but also by the results for 

the static background, the eigenmode proEles and, most importantly, the eigemnode frequencies 

used in the calculation of the analytic solution. The same long term stability and high accuracy 

has been observed in similar evolutions for a variety of diSerent neutron star models with 

polytropic indices < 2. Below we will see, however, that the code does not perform equally 

satisfactorily if we use a larger truncation density in combination with a marginally stable 

neutron star model with a central density just below the critical value. 
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Figure 40: The power spectra of the time evolution of the central density for neutron star 
models 1 and 3. The vertical bars indicate the frequencies predicted by the linear analysis. 

For neutron star models suGciently far away from the stability limit, we can also check the 

performance of the code in the hnear regime by comparing the frequency spectrum of the 

time evolution with the values predicted by the eigenmode calculations of section 5.3.3. For 

this purpose initial velocity fields have been calculated for models 1 and 3 by adding the Grst 

ten eigenmode prohles whereas the initial density perturbation is set to zero. The combined 

amplitude of the perturbations is similar to that used above for determining the deviation 

from harmonic time dependence. In Fig. 40 we show the Fourier spectra for the corresponding 

time evolutions of the central density perturbation 0). The frequencies predicted by the 

eigenmode analysis are indicated by vertical bars and show good agreement with the peaks in 

the Fourier spectra. 

Next we compare the performance of the perturbative approach with that of a "standard" 

non-perturbative method. We have already mentioned that we can simulate a non-perturbative 

approach by using vEicuum Hat space for the background vaiiables. In this case we only use the 

TOV-model to determine the numerical grid as well as the aieal radius r and the sound speed C 

as functions of i/. The background variables, however, are specified as A = 1, // = 1 and p = 0. If 

we insert these values into the perturbative equations (5.100)-(5.109) they will become identical 

to the non-perturbative system (5.83)-(5.92) (after transformation to the radial coordinate i/) 

with A, p and f replaced by 1 + ^A, 1 + and . The occurrence of the constant 1 in 

the metric variables has no implications on the numerical performance. We have thus evolved 

initial data in the form of a fundamental eigenmode profile in the velocity held w for neutron 

star model 3. First we have used the TOV-background and a resolution of 600 grid points. We 

have then repeated the evolution with a hat space background using 600 and 1200 grid points 

in order to check the dependence of the non-perturbative results on the spatial resolution. It is 

important to note that the same code and the same evolution algorithm has been used in both 
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Figure 41: The central density perturbation corresponding to the fundamental oscillation mode 
of model 3 as obtained with a perturbative method for 600 grid points (dotted curve) and 
a non-perturbative method for 600 (solid) and 1200 giid points (dashed curve). See text for 
details. 

cases. The amplitude of the perturbation corresponds to an oscillation of the surface of several 

metres. For this amplitude we still expect the evolution to be dominated by the harmonic time 

dependence, although the results of section 5.3.9 below indicate the presence of weak non-linear 

eSects. The numerical results are shown in Fig. 41, where the central density perturbation is 

plotted as a function of time. We clearly see that the perturbative evolution results in the 

expected sinusoidal time dependence. In the non-perturbative case the central density shows 

similar oscillations but simultaneously the mean value decreases significantly. In longer runs 

this decrease is revealed to be exponential and thus indicates a starting evaporation of the star. 

Neutron star model 3, however, is located on the stable branch as we can clearly see in Fig. 35 

and no collapse or evaporation is expected. Indeed the higher resolution run indicates that 

the non-perturbative scheme converges to the harmonic solution. In order to understand this 

behaviour of the non-perturbative scheme we recall the presence of background terms in the 

evolution equation for lu (. If we consider the coefBcients 62 &21 given by Bqs. (5.90), (5.92), 

we can see that the evolution equation (5.86) contains the background in the form 

e(!/) 
1 C'p, 

A (/) -I- f ) 
(5.161) 

We know that this term vanishes by virtue of the TOV equation (5.12) and it has been removed 

from the equations in the perturbative formulation. In the non-perturbative case, however, it 

will manifest itself in the form of a residual numerical error. This error is shown in Fig. 42 
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Figure 42: The source terms of the evolution equation for tz; (5.103) at the Erst computational 
step are shown for the perturbative (solid curve) and the non-perturbative scheme (dashed 
curve). The dotted curve shows the numerical error of the background terms and demonstrates 
the signiScance of the spurious source terms. 

for the Erst step in the evolution with 600 grid points together with the entire source terms 

of as given by Eq. (5.86) in the non-perturbative and Eq. (5.103) in the perturbative case. 

Because of the cosine time dependence of the velocity the source terms should nearly vanish at 

^ = 0. It can be seen, however, that the source terms aie dominated by the residual numerical 

error in the non-perturbative scheme which is particularly large at the centre and the surface. 

On the time scale of one osciUation period, about 150 km, the spurious acceleration of up to 

10"^ km^^ will have a signiEcant impact on the oscillation of several metres of the star. A 

closer investigation of the velocity Held reveals that the integral eSect of the residual error is an 

increase in the velocity &eld near the surface. We attribute the gradual evaporation of the star 

to this disturbance in the velocity held which gradually radiates matter oS the numerical grid. 

Considering that the same code has been used for the comparison just described, it is necessary 

to check the perturbative scheme for similar spurious eEects. After all the main advantage of 

the perturbative scheme lies in higher accuracy which may postpone the onset of a spurious 

collapse or evaporation but not necessarily avoid it. We have already mentioned, however, that 

no signiGcant deviation from the harmonic time dependence has been observed in the case of 

model 3 and initial data in the form of eigenmodes over very long times. In order to avoid even 

longer integration times and the associated computational costs, we have chosen an alternative 

way of testing the code for this behaviour. We use a stellai- model identical to model 3 but with 

a central density of pc = 0.002802 km"^ which is just below the critical value given in Table 7. 
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Figure 43: The central density resulting from the evolution of the fundamental eigenmode of 
a neutron star corresponding to model 3 with a central density just below the critical value 
is plotted for a truncation density of 5 - 10"^ km"^ (dashed curve) and 2.5 - 10"^ km"^ (solid 
curve). 

The initial data consist of the fundamental velocity mode with an amphtude corresponding to 

a surface displacement of about 10 cm and we use a numerical grid with 600 grid points. In the 

Srst calculation we have imposed a truncation density of = 5 - 10"^ km^^ and in a second 

run the intrinsic value of the TOV code = 2.5 - 10"^ km"^ is used. In Fig. 43 we show the 

resulting central density perturbation as a function of time. For the small truncation density 

we obtain the expected sinusoidal time dependence whereas the larger value signifcantly aSects 

the evolution, even though only a fraction of 10"^ of the stellar mass has been neglected in 

this case. This result demonstrates the limitations of the code in its current form. For larger 

truncation densities it does not necessarily guarantee mass conservation which we attribute to 

the boundary condition (5.153) which is strictly valid only if the numerical grid extends to 

p = 0. For sufBciently small truncation densities the resulting numerical error is negligible 

and has no signiScant eSect on the evolution. For larger truncation densities, however, it can 

result in spurious phenomena similar to those observed in the non-perturbative case. This is 

particularly problematic since the investigation of non-hnear effects will require perturbations 

of larger amplitudes and consequently larger truncation densities are necessary in order to avoid 

total negative energy densities. From here on we will therefore proceed in two diSerent ways. 

In the remainder of section 5.3 we will investigate a simpllGed neutron star model for which the 

code ensures mass conservation for arbitrary amplitudes and negative energy densities are stiU 

avoided. This model will necessarily provide a less realistic description of a neutron star, but 
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the general stnictnre of the eigenmodes remains the same and it ig not nnrealistic to expect tha t 

non-linear eEects such as mode coupling will be qualitatively similar in more realistic models. 

Considering the sensitivity of the numerical evolutions to the treatment of the surface, it is, 

however, desirable to develop a formulation of the dynamic neut ron star which unambiguously 

provides a correct treatment of the surface. This will be done in section 5.4 where we develop 

a fully non-linear perturbative Lagrangian code. 

5.3.7 A simplif ied n e u t r o n s t a r m o d e l 

In the previous section we have seen that a suKciently large truncat ion density in combination 

with the boundary condition (5.153) may result in a continuous loss or gain of mass. In order 

to avoid total negative energy densities, however, we have to use suSciently large truncation 

densities when we study non-linear eSects in the time evolution of large amplitude pertmrba-

tions. We have therefore decided to ensure mass conservation by using the alternative boundary 

condition 

w = 0 (5.162) 

at the surface instead of Eq. (5.153). This means that the surfa.ce of the star remains at a 

Exed position in space and only Euid elements in the interior of the star are displaced during 

the evolution. It is the 6xed location of the surface which avoids the main problems we have 

encountered with the Bulerian formulation so far. The model we use for the following ajialysis 

has the same equation of state as model 3 of Table 3 and a central density pc = 1.224 10"^ km"^ 

which implies a radius R = 11.34 km and a total mass M = 2.18 km. The truncation density 

is Exed at pg = 2.0 - 10"^ km"^ which means that the simplified model contains 90 % of the 

mass of the original star and extends to 84% of the original radius. Apart from changing 

the truncation density in the calculation of the TOV-backgiound and implementing the new 

boundary condition in the evolution code only one further modification in the numerical setup 

described in section 5.3.5 is required. The outer boundaiy condition (5.144) in the calculation 

of the eigenmodes is replaced by 

((A) = 0. (5.163) 

The resulting eigenmodes can be ordered in the same way as described in section 5.3.3 and the 

evolution of eigenmodes in the linear regime again results in harmonic time dependence as in 

the original case with the frequencies predicted by the eigenmode calculation. The Erst four 
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Figure 44: The proSles of the lowest four eigenmodes in a n d w for the simplihed neutron 
star model. 

eigenmode prohles of and w for the model mentioned above are shown in Fig. 44. The plots 

show that the number of local maxima and minima of the proxies stiU corresponds to the order 

of the mode. 

5.3.8 Tes t ing t h e code w^ith t h e new m o d e l 

The only modihcation of the code that needed to be implemented for the new model is the 

outer boundary condition (5.162). The performance of the code in the hnear regime is thus 

weU estabhshed by the results of section 5.3.6 and we merely have to demonstrate that no 

spurious results are obtained for larger truncation densities. This is the only case where we 

will depart from the model parameters listed in the previous section and use a central density 

jOc = 0.002802 km"^ instead. We thus recover the parameters of the model which lead to a 

spurious evaporation of the star in Fig. 43. For this model we have again evolved initial data 

in the form of the fundamental mode of the velocity with an ampli tude of 10 cm using 600 grid 

points. In Fig. 45 we show the resulting central density Jpc together with the deviation from the 

6p [km 

I ' I I ' I I 
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UnL'Uljllllllk'L' 
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Figure 45: The evolution of the central density for initial d a t a in the form a fundamental 
eigenmode in the velocity held for model 3 with a central density = 0.002802 km"^. 
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Figure 46: The convergence factor obtained for evolving the second eigenmode with an ampli-
tude of 70 m ig shown for the variables w, and 

harmonic solution of the linearized cage. For presentation pmposes we only show the evolution 

up to t = 6000 km. The harmonic time dependence is reproduced with reasonable accuracy 

as the deviation increases linearly up to about 1 %. In general we have found the eigemnode 

frequency the quantity most vulnerable to numerical error as can be seen for example by varying 

the resolution. Because of this observation and the oscillatory character of the deviation in the 

Egure we attribute the error mainly to the limited accuracy of the frequency rather than the 

numerical error of the time evolution itself. The increasing phase shift between the numerical 

and the analytic solution arising from the hmited accuracy of the frequency wiU result in a 

linear increase of the deviation as observed in Pig. 45. In spite of the small deviation this 

calculation is in sharp contrast with that shown in Fig. 43, where a much smaller truncation 

density resulted in an exponential decay of the central density. We conclude that using a large 

truncation density in combination with the boundary condition (5.162) the code performs weU 

in the hnearized regime. 

We now return to the model parameters of the previous section and use pc = 0.001224 km^^. 
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In order to test the code for convergence in the non-hnear regime we have evolved the second 

eigenmode with an amphtude corresponding to a maximal displacement of Enid elements of 

70 m. The calculation has been carried out with 400, 800 and 1600 grid points and the resulting 

convergence factors are shown in Fig. 46. In spite of vaiiations around the expected value 4, 

the results for all variables are compatible with second order convergence. 

For the next test we will use the code in the Cowling approximation, since the static metric 

provides a straightforward recipe to calculate conserved quantities. We have seen in section 

5.3.2 that only minor modihcations are required to switch betw^een the Cowling approximation 

and a dynamic metric. The conservation properties with a Gxed metric wiU therefore represent 

a good test for the matter evolution in the general case. The Srst step in the derivation of a 

conserved quantity is to End a time-like Killing held. The existence of such a vector held follows 

from the static nature of the metric in the Cowling approximation. The Killing vector can be 

found by looking at the Killing equation 

= 0. (5.164) 

The resulting 10 diEerential equations can be solved rather easily and dehne the solution up to 

a constant factor. We choose this factor so that the Killing held can be written as 

0 ,0 ,0] . (5.165) 

The conserved quantity then follows from contraction of the Killing held with the energy mo-

mentum tensor 

(5.166) 

By virtue of conservation of energy momentum this vector satisfies the condition 

= 0. (5.167) 

With the metric (5.2) and the energy momentum tensor (5.78) this equation can be written in 

conservative form 

(A/^r^J*) 4- = 0, (5.168) 
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Figure 47: The numerical evolution of the function obtained in the Cowling approximation. 
The quantity is conserved with an accuracy better than 10^'^. 

where the ( and r components of J are given by 

J = (1 + lu )p + (5.169) 

w 
r = - ( i + / , V ) ( p + f ) . (5 170) 

If we consider a general conservation law in one dimension 

+ F(^i),r = 0, (5.171) 

we obtain after integration over < and r 

/ [ii(T, r) - u(0, r)]dr + / [F(t, A) - F ( t , 0)]dr = 0. (5.172) 
Vo Vo 

In our case the flux function is given by F = and vanishes at r = 0 and r = R because 

the velocity w vanishes at both boundaries. Consequently 

R 

F = / A//r J dr 
/ o 

(5.173) 

is a conserved quantity. 

In order to test the conservation properties of the code we have evolved the same initial data as 
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in the convergence analysis with the metric Exed at the background values. In Fig. 47 we show 

E as a function of time as calculated with 800 grid points. T h e quantity is conserved with a 

relative accuracy better than 10"^. Even higher accmacy is obtained for smaller amphtudes of 

the initial data. We have thus demonstrated that the code performs well in the hnear as weU 

as the non-linear regime. The applicability of the code to a wide range of amplitudes will be 

crucial when we study non-linear eSects in the evolution of eigenmodes in the next subsection. 

5.3.9 Non- l inea r m o d e coupl ing 

Meogunng (Ae ezgenmof/e coe^czen^g 

We will now use the simpliSed neutron star model described in section 5.3.7 to study the couphng 

of eigemnodes in non-linear evolutions of radial oscillations. In order to measure the presence of 

the individual eigenmodes in the evolution we recall the proWem (5.118) which 

determines the eigenmode solutions in terms of the rescaled displacement vector ( . In section 

5.3.3 we have seen that the solutions form a complete oithonormal system with respect to 

the inner product deSned in Bq. (5.122). This property enables us to quantify the contributions 

of the diEerent eigenmodes in the evolution at any given t ime. We need to calculate the 

displacement C ( ^ , o f ^ fully non-linear evolution hom the fundamental variables and w. 

For this purpose we ehminate ^ from Bqs. (5.111) and (5.112) a n d obtain 

(5.174) 

The initial values of foUow &om the initial data which we provide in the form of an eigenmode 

in the velocity Seld w and zero energy density pertmbation We can see from Bq. (5.130) 

that the initial displacement ( vanishes as a consequence. At any time t we can then expand 

the non-linear displacement C( ,̂ )̂ ) terms of the eigenmodes 

( ( t , r ) = ^ A ( ^ ) 0 ( r ) , (5.175) 
i 

where the time dependent coeScients are given by the inner product 

A,(^) = ( ( (^ , r ) ,0( r ) ) . (5.176) 
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Figure 48: The sum of the first ten has been calculated for evolving the second eigenmode 
with an amphtude of 70 m. 

In practice we prefer to calculate the eigenmode coeScients f rom the time derivative of this 

equation 

( 0 , 0 ) , (5.177) 

where we have dropped the f and r dependence for convenience. If we substitute Eq. (5.174) 

for we obtain the hnal result 

= (r^w,0). (5.178) 

We can thus calculate the time derivative of the coeSicients and use the initial values to obtain 

the coe@cients at any given time In our case all coefEcients are zero initially because of the 

vanishing of The integral appearing in the dehnition of the inner product is calculated with 

the fourth order Simpson method (see for example Press et al. 1989). 

It is also interesting to consider the relative coe&cients defined by 

-Ri(^) = ( C W 

( ( , ( ) ' 
(5.179) 

whenever ( is a non-zero function. If we multiply this equation by and sum over we can 
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Table 9: The inner product between the Eve lowest eigenmodes. 

Cl C2 Cs ( 4 Cs 
Ci 1.0 - 2 . 1 . 1 0 --6 - 6 . 3 -10-^ - 1 . 2 . 10--6 -2 .6 .10--6 

(2 -2 .1 .10-G 1.0 -8 .0 -10-^ —1.5 • 10 -5 - 6 . 3 -10-̂ 6 

(3 -6 .3 .10-G - 8 . 0 . 1 0 --6 1.0 - 1 . 8 . 10--5 - 2 . 7 - 10--5 

(4 - 1 . 2 - 10-G - 1 . 5 -10--5 - 1 . 8 - lO-'^ 1.0 - 3 . 2 - 1 0 --5 

( s -2 .6 - 10-G - 6 . 3 10--6 - 2 . 7 - 10-'' - 3 . 2 . 10--5 1.0 

use Eq. (5.175) to obtain the relation 

^ R , = l , (5.180) 

which can be used to check the completeness of the numerically calculated eigenmodes. For 

this purpose we have evolved the second eigenmode with a large amplitude corresponding to 

a maximum displacement of 70 m and calculated the sum of t h e hrst ten weighted coeScients 

using 600 grid points. The result is shown in Fig. 48 and demonstrates that Bq. (5.180) is 

satisfied to within less than one per cent. This does not only conhrm the completeness of the 

system of eigenmodes, but also indicates that the energy essentially remains within the lowest 

ten eigenmodes. In order to check the orthonormality we have calculated the inner products of 

the eigenmodes. The results for the lowest hve eigenmodes are shown in Table 9 and demon-

strate that the orthonormality condition (5.125) is satisfied wi th high accuracy. 

(̂ 6̂  coupZmg e*genmoc(es 

In order to study the coupling of modes due to non-hnear effects we have provided initial data 

in the form of one velocity eigenmode. The order of the eigenmode and the amplitude of 

the initial data jiCj are free parameters that determine the physical setup. We will specif the 

amplitude of the initial perturbation by the maximum value of the eigenmode proEle of the 

displax:ement vector ^ corresponding to the initial velocity perturbation. This is a measure for 

the maximum displacement a Suid element of the interior of t he star wiU undergo. During the 

evolution we calculate the eigenmode coeScients Ai(() with 1 < % < 10 or 15 according to the 

method described above. Due to the oscillatory character of the modes, the coeScients wiU 

also oscillate during the evolution. This is shown in Fig. 49 where we plot the coeScients A2(t) 

and A4(t) for evolving the second eigemnode. A large amplitude corresponding to a maximum 

displacement of 70 m has been used for this calculation and we can clearly see the transfer 

of energy between the second and the fourth mode. It is interesting to see that the energy 
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Figure 49: The coeScients A2(^) obtained for initial da ta in the form of the second 
eigenmode with an amplitude of 70 m. 

transferred to the fourth mode does not remain there but instead is periodically passed back 

and forth between the two modes. We observe a quahtatively similar behaviour for the other 

eigenmodes, although these are excited less efhciently. If we want to investigate this coupling 

between eigenmodes more systematically, we need to quantify t h e degree to which a particular 

mode has been excited in an evolution. For this purpose we will use the maximum value of 

the corresponding coe@cient obtained during that evolution. We wiU refer to these maxima 

by Ai as opposed to used for the time dependent coefficients. We have thus evolved 

the eigenmodes % = 1, 2 and 3, referred to as case 1, 2 and 3 from now on, with amphtudes 

ranging between 1 cm and 100 m. At some stage in the range between about 50 m and 100 m 

we observed the onset of shock formation. The accuracy of the eigenmode coeGcients resulting 

from these evolutions is not clear. In this discussion we have therefore only used amplitudes for 

which no discontinuities are observed. For the numerical runs we have used 3200 grid points 

and an integration time of 1500 km. Test runs over signiAcantly longer times did not lead to 

signiGcantly different results for the which is compatible with the periodic exchange of en-

ergy shown in Fig. 49. The high grid resolution on the other hand enables us to measure small 

eigenmode coeScients with good accuracy. 

Case j." 

We start our analysis with case 1, where the fundamental mode is excited initially. In Fig. 50 

we plot the coeSicients as a function of the initial amplitude ATi for the &rst ten eigenmodes. 

We End that the coeScient increases linearly with the amplitude -RTi as expected. A closer 

investigation of the higher eigenmode coeElcients, however, reveals the presence of two distinct 

regimes. 

(1) In a weakly non-linear regime for amplitudes up to about 10 m all coeScients 
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Figure 50: The eigemnode coeGcients for the Erst ten eigenmodes are shown as a function of 
the amphtude for initial data in the form of the fundamental velocity mode. 

A2,. • • Aio increase quadratically with the amplitude Kj . Deviations from this 

quadratic power law at very small amplitudes are due to the hmited numerical 

accuracy in calculating the coeGcients. 

(2) At larger amphtudes all eigenmode coe&cients except for A2 show a transition 

to power laws with larger exponent which marks a moderately non-linear regime. 
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Figure 51: The excitation of eigenmodes has been htted with quadratic power laws in the range 
between jiTi = 1 m and 10 m. 

We have illustrated this behaviour in Fig. 51 where the eigenmode coefBcients have been ap-

proximated with quadratic power laws 

vli = Q - (5.181) 

The coupling coeScients which represent the couphng strength in the weakly non-linear 

regime have been obtained from least square hts of quadratic power laws to the eigenmode 
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Figure 52: The eigemnode coeScients VI2, A3 and ^4 are Gtted with linear combinations of 
power laws according to Eqs. (5.183)-(5.185). 

coeScients in amphtude ranges between 0.1 m and 10 m. It is interesting to investigate the 

dependence of the coupling coeScients on the order of the eigenmodes. This is shown in the 

upper left panel of Fig. 53, where we plot Q over the order % — 1. The solid line in this hgure 

shows a power law ht for these coupling coeGcients given by 

c. 3.2 -10-'^ . ( 2 - 1 ) - ^ (5.182) 

This result is compatible with the expectation that > 0 as % — 0 0 . Otherwise an infinite num-

ber of modes would each be excited with a Enite amount of energy. In the moderately non-linear 

regime the eigenmode coefEcients Ag, . . . ,Aio show a higher order growth with the amphtude 

-RTi. For the most eSciently excited modes 2, 3 and 4 we have been able to approximate the 

eigenmode coeSicients with the following combinations of power laws 

A2 = 3.6 .10-^ . 

As = 3 .4 .10 -^ . j r? + 9 .7 .10-^° . , 

A4 = 1.0 . 10-^ . + 1.2 . 1 0 - " -

(5.183) 

(5.184) 

(5.185) 

Here the higher order power laws have been obtained from ht t ing the eigenmode coe&cients 

after subtracting the quadratic contributions. The resulting fits are shown in Fig. 52. The 
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Figure 53: The coupling coe&cients Q deEned in Bq. 5.181 aie plot ted as a function of the mode 
number % — 1 for case 1 in the upper left panel. In the upper r ight and lower panel we plot the 
corresponding coeGcients for case 2 and 3 as a function of the mode number % — 3 and i — 6 
respectively. In ah cases the coeGcients can be approximated wi th inverse cubic power laws as 
indicated by the solid hnes. 

higher order contributions for the higher eigenmodes is rather weak so that it is diGcult to 

obtain accurate measurements of the corresponding power law exponents. It is thus not clear 

whether the regular pattern suggested by Eqs. (5.183)-(5.185) remains vahd for higher modes. 

The steepening of the curves in the moderately non-linear regime, however, can be clearly seen 

in Fig. 51. 

Case 2; 

We will now address the question to what extent these results remain valid if we initially excite 

higher modes. For this purpose we have repeated the numerical analysis by providing initial 

data in the form of the second velocity mode. The resulting eigenmode coeSicients are shown 

as a function of the amplitude ICg in Fig. 54. The presence of t h e two distinct regimes is again 

clearly demonstrated by the hgures and a closer investigation confirms the quadratic growth 
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Figure 54: The eigemnode coe@cients for the hrst ten eigenmodes are shown for initial data in 
the form of the second velocity mode. 

of the eigenmode coeScients in the weakly non-hnear regime. This is demonstrated in Fig. 55 

where the corresponding quadratic power law hts aie shown for the eigenmodes. We also observe 

a similar dependence of the quadratic coupling coeGcients Q on the mode number. In case 1 

we observed a power law relation given by Bq. (5.182) between the coe&cients Q and the mode 

number % — 1. In case 2 we can also approximate the coefBcients Q reasonably well with an 

inverse cubic power law if we use the number i — 3 inatead which is demonstrated in the right 

panel of Fig. 53. The lower order modes 1 and 3 do not ht into this pattern and we shall 
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Figure 55: The excitation of eigenmodes in case 2 has been h t ted with quadratic power laws in 
the range between jiCi = 0.1 m and 10 m. 

readdress their behaviour in the quadratic regime below when we discuss case 3. 

Apart from these similarities there are some interesting diSerences between case 1 and case 2: 

(1) The transition from the weakly to the moderately non-lineai' regime occurs at smaller 

amplitudes than in case 1. This is particularly pronounced in the case of mode 6 (see 

Fig. 5S). 

(2) The regular pattern observed in case 1 in the moderately non-linear regime for the strongly 

excited modes 2, 3 and 4, which is expressed in Eqs. (5.183)-(5.185), is now being observed 
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Figure 56: In the upper panel we show the higher order power law contributions of Eqs. (5.186)-
(5.189) which fit the even eigenmode coefEcients rather well in t h e moderately non-linear regime. 
The lower panel shows the resulting hts obtained from the sum of the quadratic and the higher 
order power laws according to the same equations. 

for the eigenmodes of even order 271. We obtain excellent fits for the data if we model the 

even eigenmode coeScients with the following hnear combinations of power laws. 

v44 = 1.9 .10-^ . 

^6 = 2.5 .10-^ . jiT? + 8.7 .10-^ . jiTf, 

(5.186) 

(5.187) 
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Table 10: The quadratic coupling coeGcients for t h e lower modes in case 3. 

i Ci 

1 2.0 • 10" - y 

2 1.2 • 10-- 7 

4 6.7 • 10--8 

5 3.0 . 10-- 8 

v48 = 4.9 .10-^ . + 6.2 .10-^^ . jirf, (5.188) 

^10 = 1.8 .10-^ . + 4.9 .10-^^ . j r f . (5.189) 

In Fig. 56 we show the curves resulting from the higher order power laws as weH as 

those corresponding to the hnear combinations. For t h e odd modes the higher order 

contributions are rather small so that we cannot accurately measure the corresponding 

power law indices. The steepening of the curves and thus the onset of the moderately 

non-linear regime, however, is clearly visible. 

(3) Whereas the quadratic coupling coe@cients Q shown in the right panel of Fig. 53 show a 

continuous decrease with the order of the mode starting with mode 4, a clear preference 

of the second mode to couple to modes of even order 2?T, is observed in the moderately 

non-linear regime. This is indicated by the rather e@cient coupling to mode 4 and the 

signiBcantly steeper increase of the eigenmode coefBcients Ag, Ag and ^ lo for larger 

amplitudes 7^2 in Fig. 55. 

(4) A small flattening of the even eigenmode coeScients at large amplitudes in Fig. 56 may 

indicate the onset of saturation eSects. A possible mechanism for saturation is the forma-

tion of discontinuities. As we have already mentioned we have chosen an amplitude range 

in which no shock formation is observed. At the high end of our amplitude range, it may 

be possible, however, that similar dissipative eSects due to the strong non-linearity start 

having an eEect on the coupling of eigenmodes. 

Caae 3; 

Next we consider case 3 where we perturb the star with the thi id velocity mode. The fun-

damental observations we have made in the previous two cases are conSrmed by the results 

in this case. In the weakly non-linear regime all eigenmode coeScients (except for Ag) grow 

quadratically with the amphtude jiTg. The corresponding quadratic coupling coeScients can 
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Figure 57: The eigenmode coeScient Ag, vie,.. .,Ai5 are shown for case 3 together with the 
resulting fits according to Eqs. (5.190)-(5.193). 

once more be approximated with a power law with exponent —3. We End, however, that the 

relevant mode number is now % — 5. This behaviour is graphically illustrated in the lower panel 

of Fig. 53 where the coupling coe@cients are shown together with the power law approximation. 

The results of this Egure suggest the following regular' pattern: For initial data in the form of 

eigenmode j the quadratic coupling coeGicients starting with mode are weU approximated 

by an inverse cubic power law of a relative mode number 2 + 1—2^ which is 1 for mode 2j, 2 

for mode 2j + 1 and so on. 

We stiU have to analyse the quadratic couphng coe&cients of the modes below 2_;. In case 1 and 

2 we did not have enough data to derive any results for these modes. For case 3 we have hsted 

the corresponding coeScients Cj in Table 10. The coefEcients Q are approximately reduced by a 

factor of 2 each time the mode number is increased which may indicate an exponential decrease 

of the quadratic coupling coeScients for the low order modes. This is only a vague conclusion 

from a small data set, however, and needa to be conhrmed by studies of higher eigenmodes. 

In the moderately non-hnear regime we have seen for case 2 a preferred coupling to modes with 

an even order 2%. In analogy we End that the third eigenmode couples more eSciently to modes 

of order 3m for larger amplitudes. Again we can approximate the results with good accuracy 
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with combinations of two power laws analogous to Eqs. (5.186)-(5.189) 

A6 = 1 .2 .10 -G . j{ | , (5.190) 

Ag = 0.9 .10-^ . + 6.5 . 10-^ . (5.191) 

Ai2 = 2.2 . 10-^ . + 4.6 - 10-^^ . (5.192) 

Ais = 7.8 .10-^° . + 4.5 -10"^^ - (5.193) 

We recognise the same pattern of increasing integer power law indices in the higher order terms 

that we have already found in case 1 and 2. These results aie graphically illustrated in Fig. 57. 

Again the higher order contributions in the other eigenmodes is clearly present but too weak 

to facilitate an accurate measurement of the exponents. 

We conclude the study of non-linear mode coupling with a summary of the key results. 

(1) We clearly observe two distinct regimes in the non-linear couphng of eigenmodes. In the 

weekly non-linear regime, normally up to amplitudes of several metres, aU eigenmode 

coef&cients grow quadratically with the amplitude In the moderately non-linear 

regime we observe a steeper increase of the coe@cients 

(2) In the quadratic regime the couphng coeGcients Q generally decrease with increasing 

order of the eigenmodes. If the initial perturbation is given in the form of mode , we can 

model the behaviour of the quadratic coupling coefficients with an inverse cubic power 

law of the mode number starting with mode 2^ . The coupling to lower modes does not 

obey the same pattern, but we also observe a decrease of the Q with increasing mode 

number for these modes. This decrease may have exponential character. 

(3) In the moderately non-linear regime an initially present mode shows a preference to 

couple to modes of order M j where M > 2 is an integer number. In these cases we can 

accurately model the dependence of the eigenmode coeScients on the amplitude with 

the sum of a quaxlratic and a higher order power law with exponent A, = Q 

for i = n • j. 

(4) In some cases we observe a flattening of the eigenmode coefficients at amphtudes of about 

50 m which may indicate the onset of saturation. 
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5.3.10 Discuss ion of t h e non- l inear mode-coup l ing 

In the previous section we have studied the coupling of eigenmodes due to non-hnear eEects by 

evolving a single eigenmode with varying amplitude. Concerning the transfer of energy to other 

modes we have found two distinct regimes, a weakly non-linear regime where the excitation 

of modes grows quadratically with the initial amphtude and a moderately non-hnear regime, 

where this increase can be reasonably well described by power laws of higher order. 

In the analytic study of non-linear mode coupling one normally views the eigenmode coeGicients 

as harmonic oscillators and the non-hnear interaction between eigenmodes is represented in the 

form of driving terms which are quadratic or of higher order in the amphtudes (see for example 

Van Hoolst 1996) 

-t- + . . . , (5.194) 

where the . . . are the quadratic, cubic and higher order coupling coe&cients and 

summation over t , Z is assumed. In our analysis the initial data consists in one isolated 

eigenmode j , so that the right hand side can be approximated by In analytic 

studies this series expansion is normally truncated at second or third order. In view of our 

results the omission of higher order terms seems to be justiGed in the weakly non-linear regime, 

where our fully non-linear simulations conBrm that quadratic terms in the initial amplitude 

dominate the coupling between eigemnodes. This is no longer t rue, however, in the moderately 

non-hnear regime, where higher order terms are more important. In particular the regular 

pattern suggested for example by Eqs. (5.186)-(5.189) indicates that the excitation of higher 

order modes is dominated by increasingly higher order powers of the initial amphtude. It is not 

clear how this behaviour can be modelled in the framework of a hnite series expansion of the 

type (6.194). It rather seems that the use of fully non-hnear methods such as the numerical 

technique described in this work is necessary in order to obtain a comprehensive description 

of the couphng between eigenmodes in the moderately non-linear regime. In terms of the 

maximum displacement of Enid elements in the star- this corresponds to initial amplitudes as 

low as a couple of metres. 

We have also observed that given an initial mode the coupling to modes M ^ is particularly 

eScient in the moderately non-linear regime. We interprete this as a resonance eSect, which 

we illustrate in the simple case of a forced oscillator 

^ = E sin (5.195) 
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where is the frequency and F the amphtude of the external force. The particular integral of 

this ordinary differential equation is 

F 
= (5.196) 

which implies resonance if = f). If we assume that resonance occurs for any integer multiple 

of the frequency in the general non-linear case, we can schematically write the eigenmode 

coeScients in the form 

= (5-197) 

where the may depend on the frequencies. The analytic s tudy of non-linear mode coupling 

up to cubic order leads to eigenmode coeScients which resemble this pattern [see for example 

Eqs. (18), (19) of Van Hoolst 1996]. In our caae the external force is provided by the non-hnear 

coupling to the initial mode so that . We therefore obtain resonance in Bq. (5.197) 

if Wi = mwj. As can be seen for example in Fig. 40, the eigenfrequencies of radial neutron 

star oscillations are fairly equally spaced in the frequency domain with the exception of the 

fundamental mode and we can reasonably well approximate % (zcu^)/ '̂ for > 2. The 

condition for resonance then becomes 

^ = 71.;, (5.198) 

which is exactly the relation we have observed in section 5.3.9. 

From the relativistic point of view the non-linear coupling of eigemnodes in the weak and mod-

erately non-linear regime is of particulcir interest in the discussion of unstable modes of rotating 

neutron stars. The underlying principle of these unstable oscillation modes is the increase in 

amphtude of the oscillation due to the emission of gravitational waves. The increased amplitude 

in turn gives rise to stronger gravitational radiation and so on. The conservation of energy is 

ensured in this caae by the spin-down of the neutron star and the resulting decrease of rota-

tional energy which sets a natural upper limit on this run-away eSect. The physical mechanism 

which facilitates this remarkable instability is known as the CFS-instability (Chandrasekhar 

1970, Friedman and Schutz 1978). In order for a neutron star oscillation mode to be subject 

to the CFS-instability two conditions must be satisGed: (1) the mode must be retrograde with 

respect to the star but prograde with respect to a distant inertial observer and (2) the energy 

loss in the rotating frame due to dissipative eSects must be smaller than the amount of energy 
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gained from the gravitationally driven instabihty. The pait icular importance of the so-called 

r-modes in this respect arises from the fact that the dominating Z = m = 2 r-mode satisfies 

the Erst CFS-condition for arbitrarily small values of the angular frequency of the neutron star 

(Andersson 1998). One of the most important questions raised in connection with the r-modes 

concerns the eSciency with which energy is dissipated for example due to viscosity or non-linear 

effects. 

Considering the gradual increase in the oscillation amplitude, it is important to understand 

how the instability of the mode is aEected in the weakly non-linear regime. To our knowledge 

the numerical studies presented in this work provide the Hist fully non-linear time evolutions 

of neutron star oscillations with high accuracy for amphtudes going all the way down to the 

weakly non-linear regime. Our results may therefore pave some of the way towards under-

standing non-linear eSects in a wider class of neutron star oscillations. In particular we have 

managed to quantify the transfer of energy from low into higher eigenmodes. The picture that 

emerges from these evolutions is that only a rather small fraction of energy is shifted away from 

the low eigenmodes. In particular the results shown in Fig. 49 indicate that the energy shifted 

towards higher eigenmodes does not accumulate in time but is rather transferred back and 

forth between the initially present and the higher mode. Correspondingly we do not observe 

an eSicient cascade of energy into higher modes. It is not clear, however, to what extent this 

picture will change if the energy residing in the higher order modes is gradually dissipated. In 

the context of r-modes it is expected that the energy in higher order modes is dissipated on a 

much shorter timescale than that of the dominating Z = m = 2 mode. The numerical techniques 

and the code developed in this work may facilitate a corresponding study in the framework of 

radial oscillations by introducing an artl&cial damping of higher order modes and an external 

force which drives the fundamental mode. One may then look for steady state situations arising 

&om this model, where the amount of energy transfered to higher modes and thus dissipated 

equals that gained from the external driving mechanism. 

From a numerical point of view we emphasise the new perturbative approach which enabled 

us to obtain highly accurate fully non-linear evolutions over a large range of amplitudes. This 

technique can be applied for any physical problem where there exists a non-trivial static limit. 

The dynamic evolution can always be considered a Unite perturbation of the static caae and a 

corresponding perturbative formulation will provide a numerical accuracy that is determined by 

the amplitude of the perturbation rather than the static background. We expect this method 

to be particularly elective in higher dimensional evolutions where the grid resolution is rather 

limited by computational costs and the ensuing residual error arising from background terms 



in a non-perturbative formulation will be more signiEcant. 
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5 . 4 R a d i a l o s c i l l a t i o n s i n a L a g r a n g i a n f o r m u l a t i o n 

In the previous section we have seen that an Eulerian description of radial oscillations encoun-

ters di&culties at the steUar surface for several reasons. For certain equations of state the 

eigenmode proBles predicted by the hnearized theory result in a diverging energy density per-

turbation. A purely numerical problem arises from the movement of the steUar surface with 

respect to the numerical grid. Highly sophisticated techniques may be required to adequately 

describe the surface of a neutron star in Eulerian coordinates a n d it is not clear to what extent 

these will lead to a fully satisfactory performance in the linear regime where the exact solution 

is known to high accuracy and facilitates a quantitative test for the code. It is interesting to 

see that these problems vanish immediately once the problem is described in a formalism where 

the coordinates foHow the movement of the Huid elements. Even though it is not obvious how 

to generalise a Lagrangian approach to scenarios in two or th ree spatial dimensions, it still 

seems to be the natural choice for the 1-dimensional case. Lagrangian codes have often been 

baaed on the formulation of May and White (1966) and (1967) who following Misner and Sharp 

(1964) use a vanishing shift vector and dehne the radial coordinate in terms of the interior rest 

mass. In order to facihtate a simple comparison with the Eulerian code discussed in section 

5.3, however, it wiU be convenient for us to use as similai- a gauge choice to the Eulerian case 

as possible. For this purpose we will follow Schinder et al. (1988) and use a Lagrangian gauge 

in combination with the polar shcing condition which is also implemented in the Eulerian code 

(cf. section 5.3.1). As a particularly useful consequence the singularity avoiding properties of 

this condition in combination with the Lagrangian gauge m a t e this code highly suitable for 

studying spherically symmetric gravitational collapse. We will no t exhaustively study this type 

of scenarios in this work, but will use the analytic solution by Oppenheimer and Snyder (1939) 

which describes the collapse of a homogeneous dust sphere for testing the code. 

5.4.1 T h e e q u a t i o n s in t h e Lag rang ian f o r m u l a t i o n 

The derivation of the Lagrangian equations for a dynamic spherically symmetric neutron star 

was largely inspired by the work of Schinder et al. (1988). We will, however, shghtly deviate 

from their approach and work with a diSerent set of variables and equations. 

We start by considering the line element of a spherically symmetric space time in polar slicing 

and Lagrangian gauge. As a result of the polar shcing condition, we aie able to choose the same 

time coordinate f as in the Eulerian case. The radial coordinate a; will label the Euid elements 

and generally diSier from the areal radius r which is intrinsically not comoving with the matter. 
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Finally we choose standard angular coordinates ^ and as above. Below we wiU see that the 

polar slicing condition implies a non-vanishing shift vector so t h a t the hne element becomes 

j da; + + sin^ (5.199) 
.X / r 

It turns out to be convenient for our discussion if we introduce the variables 

(5.200) 

= (5.201) 

m = ^ ( l - f ) , (5.202) 

where the velocity is identical to that used in the Euleiian case. As before we use the "hat" to 

distinguish between the time dependent variables and their counterparts in the static case. We 

note that we need to distinguish between the time dependent areal radius f and the static value 

r, since the areal radius corresponding to the position of a fluid element is a dependent variable 

and will generally vary with time. In the Eulerian case the areal radius was a coordinate and 

therefore intrinsically independent of time. If we compaie the Lagrangian hne element (5.199) 

with the Eulerian one given by Eq. (5.77) we therefore have to use the time dependent f in the 

latter line element instead of r . The coordinate transformation relating the two line elements 

is described by 

f = f((,a;). (5.203) 

The transformation law for the metric components corresponding to the transformation from 

coordinates = (^, a;, ^) to = (^, r, 0, ^) is given by 

and leads to the two non-trivial equations 

,8 = r . r (5.205) 

f = 1^. (5.206) 
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As a consequence the shift vector /3 is related to the components of the Lagrangian metric by 

^ ^ (5.207) 

In terms of the extrinsic curvature defined in Eq. (2.19) this relation can be written as = 

= 0 and we have recovered the polar shcing condition. The non-vanishing shift vector 

(5.207) is the price we have to pay for keeping the polar slicing condition in the Lagrangian 

gauge. 

As far as the matter is concerned, we use again a single component perfect Huid and thus the 

energy momentum tensor given by Bq. (5.78). Since the fluid elements do not move with respect 

to the radial coordinate a;, the 4-velocity has zero spatial components and is determined by the 

normalisation = - 1 

u ' ' = ^ ^ , 0 , 0 , 0 j . (5.208) 

The resulting field equations = 87rT^y can be written aa 

^ = (5.209) 
A f r y r n-' y 

(5.210) 

= —47rf^A'u;f. (5.211) 

Similarly the conservation of energy and momentum = 0 leads to two evolution equations 

for the matter variables 

+ + = 0 , (5.212) 

A 
7 ^ + (7 - 2w^) + 4 7 r f f ^ — n (5.213) 

and the system is closed by the polytropic equation of state (5.79). It is worth pointing out 

that the appearance of the time derivative in the field equation (5.211) does not contradict 

the absence of gravitational degrees of freedom in spherical symmetry. This equation can be 

shown to be a consequence of the constraints (5.209), (5.210) a n d the matter equations (5.212), 

(5.213). In this sense the degrees of freedom stiU reside in the ma t t e r variables ajid the metric is 
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determined at each time irrespective of its history. In practice, however, we will use the rather 

simple equation (5.211) to evolve the variable m instead of evolving p via the matter equation 

(5.212). 

If we consider the static limit of the system of equations (5.209)-(5.213) we expect to recover the 

Tolman-Oppenheimer-VolkoS equations (5.48)-(5.51). That this is indeed the cage can be seen 

if we set all time derivatives including the velocity w to zero a n d assume that a; is identical to 

the coordinate a; we used in the static case. The second condition can always be satished since 

the Huid elements are not moving and can be labelled by the areal radius of their position or 

the rescaled coordinate ^ deEned in Eq. (5.47). Then Eq. (5.210) directly reduces to Eq. (5.11) 

or the transformed version thereof expressed in terms of the coordinate ?/. From Eq. (5.206) 

we conclude that T = 1//^^ and the constraint (5.209) becomes identical to (5.49). Finally the 

matter equation (5.213) reduces to Eq. (5.51) and the evolution equations (5.211) and (5.212) 

vanish identically. 

5.4.2 T h e l inear ized evolut ion equa t ions 

We have seen that the static limit of the evolution equations (5.209)-(5.212) is given by the 

TOV equations. We can therefore linearise the dynamic equations around this background and 

compare the results with the Eulerian case described in section 5.3.3. In order to distinguish 

between Eulerian and Lagrangian perturbations we wiU use a capital A in the Lagrangian case. 

The only exception is the radial displacement which is identical in both formulations so that 

we keep the variable name 

We start the linearisation with the deSnition of the radial velocity w (5.200). In terms of the 

radial displacement this equation becomes 

(5.214) 
A 

We note that the background value of the lapse A appears in the denominator instead of the 

time dependent A. In the same way we will neglect higher order terms in the other equations. 

If we substitute this expression for w in the evolution equation (5.211) for m and integrate over 

time, we obtain 

Am = —47rr^f (5.215) 

The constant of integration vanishes because a zero displacement of the fluid elements implies 

Am = 0. We can use this expression for Am in the dehnition (5.202) to obtain the result for 



5 NON-MNEAR OSCIIylATIONS O f SPgEAICAZvLY SYMMETRIC ST4RS 179 

the auxiliary variable T 

A r = gyrrf^ + ^(1 - T). (5.216) 

The energy density perturbation then follows from substituting Eqs. (5.214)-(5.216) in the evo-

lution equation (5.212) and integrating over time. With the constant of integration vanishing 

as before the result is 

From the definition of the speed of sound we can calculate the pressure perturbation 

A f - C^Ap. (5.218) 

If we substitute the results (5.214)-(5.218) in the evolution equation (5.213) we get exactly the 

second order diSerentiai equation (5.113) of the Eulerian case with the coefBcient functions 

(5.114)-(5.116). No substitution for AA is necessary here, because aU terms containing AA 

drop out by virtue of the TOV background equations. Writing the displacement as a product 

^(3;)y(() we obtain again harmonic time dependence and 6nally arrive at the ordinary diSerential 

equation (5.118) so that we can use the whole machinery developed in section 5.3.3 to calculate 

the eigenmodes. It is interesting, however, to contrast Eq. (5.217) for the Lagrangian Ap with 

the Eulerian analogue Eq. (5.130). We have seen in section 5.3.3 that the extra term in the 

Eulerian relation leads to the problematic asymptotic behaviour of at the surface. No such 

problem occurs in the Lagrangian case which thug provides a self-consistent way of deriving the 

linearized equations. 

5.4.3 T h e e q u a t i o n s for t h e numer ica l i m p l e m e n t a t i o n 

The Lagrangian evolution of a dynamic neutron star in spherical symmetry is described by 

the system of equations (5.200), (5.209)-(5.211), (5.213), where the auxiliary variables f and 

fZ are dehned by Eqs. (5.201) and (5.202). This choice of variables and equations, however, 

did not lead to an entirely satisfactory performance of the code. This became most obvious 

in the simulation of the Oppenheimer-Snyder dust coUapse where the energy density showed 

an increasing deviation from the analytic solution near the centre of the star. When the dust 

sphere had collapsed close to its Schwarzschild radius, the deviation was larger than 10%. In 

order to understand this inaccuracy, we consider Eq. (5.210) which relates the energy density to 
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the mass. If we solve this equation for p we see that the mass appears in the form which 

will be of the order ^(1) near the origin. The second order accuracy of the Snite diSerencing 

scheme we have used, however, implies that the variable m is known with a local error 

only and consequently the numerical derivative has an error ^(Aa;^). Near the origin the 

radius f is of the same order of magnitude as Aa; and the error of ^ and thus the energy 

density p is large. This problem is a consequence of the behaviour of the mass m near the 

origin combined with the strong variation of the variables in t h e dust coUapse and persists in a 

perturbative formulation. In the numerical evolution we therefore use the variable 

N (5.219) 

instead of the mags m. The Lagrangian equations (5.200), (5.209)-(5.211), (5.213) then become 

f i ^ # + 47rf(w^p + f f ) 

— 47rff_3;(fp + W^f) = 0, 

fAr,^ + 2Aw UV + 27rff = 0 

f t — Aw = 0, 

A f ^ ^ f ^ + f t + f ^ ( p + f ) + A ( f - 2 w ^ ) ( A r + 4 7 r f f ) 

(5.220) 

(5.221) 

(5.222) 

(5.223) 

(5.224) 

where f is now dehned by 

r = 1 - 2 # f . (5.225) 

In the static limit these equations reduce to the TOV equations 

rA,3 - r 3;A(jV + 4'n-rf), 

r A T z + r a; ( 2 ] V - 47rr/)) = 0 , 

r f + r,^(p + f )(Ar + 47rrf) = 0, 

r = 1 - 2 # r . 

(5.226) 

(5.227) 

(5.228) 

(5.229) 
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In order to derive a fully non-linear perturbative formulation, we decompose the time dependent 

quantities into static background contributions and time dependent perturbations 

= r(a;) +^(<, a;) 

A(t, a;) = A(a;) + AA(^, z) 

r(^,:r) = r W +Ar ( ( , a ; ) 

%) = p(a;) + Ap((, a:) 

(5.230) 

(5.231) 

(5.232) 

(5.233) 

(5.234) 

With these deEnitions the fully non-hnear perturbative version of Eqs. (5.220)-(5.224) becomes 

f^AA,:, + A r ( 2 r + Ar)A,^ - (^,^Ar + f ^AAr + f ^AAr)(A^ + 47rrf) 

+ w f A,̂  + f 3;A(7V - 47rfp) - f .̂AF [A7V + 47r((f + f A f ) ] = 0, 

(5.235) 

- w^(f;v,a: + 2f,^;v + 47rff ,^f) + Ar(f]V,^ + 2f,^jV - 47rff,^p) 

+ r + f AÂ â; 4- 2̂ _2;7V + 2f_i;AjV — 47r(^pr_3; + 4- ff^a;Ap)] — 0, 

(5.236) 

f -t- 2Aiu(jV + 27rff) = 0, 

^ — Aw = 0, 

(5.237) 

(5.238) 

A ( - 2 r ? ^ ^ -I- w ^ ) f ^ + f ( + (p + f )f ^ r w , ( - 2A?^^(A^ + 4 7 r f f ) 

+ (AAF + AAr) [ f f ^ + (p + f )f,^(jV + 47rff)] + AP { A P f ^ -K f A f 

+ (Ap -H A f )r,^ + (p + f )^ J (AT + 47rrf) + (p + f )r,^(AA/- + 47r(f + 47 r fAf ) j = 0 

(5.239) 

This is the Snal system of equations used in the numerical implementation. 
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5.4.4 In i t ia l d a t a a n d b o u n d a r y condi t ions 

In order to numerically evolve the system of partial differential equations (5.235)-(5.239) we 

have to specif initial data and boundary conditions. We will s tar t with the initial data. 

In the Eulerian case we have determined the physical setup by providing initial data for the 

matter variables p and w. This gave us energy density and velocity at each radial position 

f . In order to provide the same information in the Lagrangian case it is not suScient to give 

initial data in the form of p(a:) and w(a;) because the meaning of the spatial coordinate a; is 

not determined at this stage. Indeed it can easily be seen that the system of equations (5.220)-

(5.224) is invariant under any transformation a; —^(a:) which corresponds to a relabelling of 

the Huid elements. Consequently we also need to establish a relation between the Lagrangian 

coordinate a; and the areal radius f on the initial slice. The initial data for r(3;) serve this 

purpose. Alternatively this additional requirement becomes obvious if we consider the structure 

of the system (5.220)-(5.224). These equations contain the t ime derivatives of f , w, and f . 

In addition to the lapse function A only one of these quantities is determined by the constraint 

equations (5.220), (5.221). The remaining three variables follow from the time evolution and 

thus require the specihcation of initial data. In the perturbative formulation the ba/Ckground 

functions r(a;), /)(a;), jV(3;) and A(2;) foUow from the solution of the TOV equations and we 

prescribe initial data for the perturbations w and Ap. The values of AJV and A A are then 

calculated from the constraint equations (5.235) and (5.236). For this purpose we use an imphcit 

second order scheme based on the Hnite differencing given for these equations in appendix A. 

The specification of boundary conditions, in particulai- at the steUar surface, turned out to be 

the most problematic part in the Eulerian formulation of the dynamic star. In contrast the 

boundary conditions are weD deSned in the Lagrangian case. At the centre we demand 

^ = 0, (5.240) 

lu = 0, (5.241) 

AjV = 0. (5.242) 

The Erst two conditions guarantee that the centre of the star does not move which immediately 

follows from the spherical symmetry and the third condition avoids the appearance of a conical 
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Eqs. (5.235), (5.236) Eqs. (5.237), (5 238) Bq. (5.239) 

A: A; A; + 1 A; 
M + 1 # O # n + 1 X O # O H + 1 # 0 # 

M X X 7 1 X 0 # 0 71 # O # 
k h \ k /u 1 k k 1. 

Figure 58: The stencils used for the finite diSerencing of Eqs. (5.235)-(5.239). 

singularity. At the surface we require 

Ap = 0, (5.243) 

= 1 - 2;Vf, (5.244) 

which follows from the deEnition of the surface and the matching to an exterior Schwarzschild 

metric. If jiT is the number of grid points used, the finite diEerencing of the evolution equations 

(5.235)-(5.239) results in 5^" — 5 algebraic relations between the SiiT function values. The 

boundary conditions (5.240)-(5.244) provide the remaining 5 relations to determine the evolution 

and no additional treatment of boundary values is required. 

5.4.5 T h e f in i te d i f ferencing of t h e equa t ions 

We numerically solve the system of partial differential equations (5.235)-(5.239) by using an 

imphcit second order in space and time hnite differencing scheme. The particular choice of 

stencils has been guided by the presence of derivatives in the individual diEerential equations. 

This is illustrated in Fig. 58 where the grid points A; and A; + 1 are shown for the time levels n 

and M + 1. The SUed circles indicate grid points that have been used for the 6nite diSerencing, 

the crosses those points which have not been used. The constraint equations (5.235) and (5.236) 

contain spatial derivatives only. It is therefore suitable to use two neighbouring grid points on 

the new time slice + 1. In contrast Eqs. (5.237) and (5.238) contain time derivatives only 

and we use two grid points at spatial position A; + 1 on neighbouring time slices for the hnite 

diSerencing. Both kinds of derivatives are present in Eq. (5.239) and we need to use all four 

grid points as a consequence. Fig. 58 also illustrates an extra option that has been included 

in the hnite diSerencing. In the case of the Oppenheimer-Snyder dust collapse it turns out 

to be necessary to interpret the values of the energy density as cell averages and 

correspondingly use a staggered grid for these variables. This is indicated by the empty circles 

in Fig. 58. In the hnite diSerencing equations we will therefore introduce a parameter <7 which 
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allows us to switch between a staggered and the "normal" grid for p and Ap. The staggering, 

however, is only needed for the dust collapse and will not be used when we simulate neutron 

stars. 

The resulting Enite difference equations are hsted in appendix A together with the additional 

relations we use to calculate auxihary functions and derivatives of the background variables. 

The parameter a wiU be zero in all cases except for the simulation of the Oppenheimer-Snyder 

dust collapse, where we will use the staggered grid for the energy density and set a = 1. Before 

we turn our attention towards solving this system of algebraic equations, we need to comment 

on some of its properties. 

(1) If we use the staggered grid to calculate the energy density, the outer boundary 

condition (A.35) is only a formal condition because decouples from the 

remaining SA" — 1 variables. In the analysis of the dust collapse we will therefore 

use the interior values Ap* for A; = 1 , . . . , .K" — 1 only. 

(2) We also note that the finite diGFerence expression (A.25) for Ap is only a Erst 

order accurate approximation if the staggered grid is used for the energy density. 

This does not aSect the accuracy of the numerical scheme, however, since this 

derivative appears in the form of the pressme gradient A f ^ only in Bq. (5.239). 

The only scenario where we use the staggering is the dust collapse, where the 

pressure and thus its gradient vanish identically. 

(3) Finally we note that the hnite drSerencing scheme used here slightly diSers from 

that used for the evolution of cosmic strings in section 4.4.3. The scheme used 

here was partly inspired by the work of Schinder et al. (1988) and partly re-

sulted from attempts to ehminate numerical noise tha t we encountered during 

the development of the code. It turned out, however, t ha t this noise originated 

from the numerical inaccuracy associated with the behaviour of the variable 

m we discussed above. We have no reason therefore to question the apphcabihty 

of the Crank-Nicholson scheme described in section 2.3.6. 

In order to solve the system of SA" non-hnear algebraic relations we use the Newton-Raphson 

method described in section 2.3.5. The initial guess is given by the values on the previous time 

slice and convergence is typically achieved after three iterations. 

5.4.6 Tes t ing t h e code 

In order to check the performance of the code we subject it t o three independent tests. As 

in the Bulerian case, we will compare the numerical results wi th the approximative analytic 
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solution obtained from the hnearized equations of a dynamic spherically symmetric neutron star. 

Secondly we will test the convergence properties of the code in the non-linear regime. Finally 

we calculate the deviation of the numerical results from the analytic solution by Oppenheimer 

and Snyder (1939) which describes the collapse of a homogeneous dust sphere. 

We start by testing the performance of the code in the linear regime. In the Eulerian analysis 

we have seen that the eigenmodes for stellar models with polytropic indices 'y > 2 lead to a 

diverging energy density perturbation at the surface and thus could not be used for a time 

evolution. We have seen, however, that this divergence results from a coordinate singularity 

at the stellar surface and the Lagrangian energy density perturbat ion is well behaved for any 

polytropic index. It is tempting therefore to use a stellai- model with a large polytropic index 

to test the performance of the Lagrangian code in the lineai- regime. We choose a model 

with polytropic exponent 'y = 3.0, polytropic factor .AT = 2 - 10^ km"^ and central density 

Pc = 2.2 -10^^ g/cm^. This is the third model of Table 6 where we compared our results of the 

eigenmode frequencies with those of Kokkotas and Ruoff (2001). 

In general we have achieved better performance with the Lagrangian code if the outer boundary 

condition /) = 0 is satisfied exactly. In the remainder of the Lagrangian discussion we will 

therefore use the relaxation method described in section 5.2.2 to calculate the TOV background. 

Unless speciBed otherwise we wiU use the rescaled coordinate for this calculation and the time 

evolution and thus set = C. 

The next step consists in calculating the eigenmode proGles for t h e variables w and A/). These 

results enable us to specif initial data and calculate the analytic solutions. In this case the 

initial perturbation of the star consists in a displacement of t h e Buid elements corresponding 

to the fundamental mode with a surface amplitude of about 5 cm. The initial velocity is set 

to zero and the energy density corresponding to this eigenmode follows from Bq. (5.217). The 

remaining initial variables are calculated from the constraint equations (5.235), (5.236). The 

resulting data on the initial slice are then evolved in time according to the method described in 

the previous section. The analytic solution for the fundamental variables w, Ap is given by 

^(^, a;) = (z) cos (6.245) 

tu((, $) = —'u;i(z;)sinw^, (5.246) 

Ap = Api (a;) cos wt, (5.247) 
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Ap(t,y)10® A(A^)(t.y)10^ 

((t,y)10= A(f)(t,y)10= 

A(w)(t,y)10^ 

Figure 59: The left panels show the time evolution of Ap, ^ and w obtained for 1600 grid points. 
The initial perturbation is given as the fundamental mode in the displacement vector The 
right panels show the deviation from the exact solution of the linearized equations. 

where w is the frequency derived from the eigenmode calculation. In Fig. 59 we show the nu-

merical results obtained for 1600 grid points together with their deviation from the harmonic 

solutions. These results show that the code reproduces the analytic solution with a relative ac-

curacy of about 10"^. For presentation purposes the time evolution is shown up to ^ = 500 km 

only. No signihcant loss of accuracy has been observed for longer evolutions. 

We have also compared the frequency spectrum resulting from time evolutions with the corre-

sponding predictions by the eigemnode calculation. For this purpose we have used the same 

steUar model as in the previous test as well as model 1 of Table 3 which has a polytropic index 

'y = 1.75. In both cases the initial perturbation is given by the sum of the Erst ten eigenmodes 
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model 1. YW1.7S Y-3.0, K-2.0'10', p.-2.2'10" g/cm' 
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Figure 60: Frequency spectra obtained for stellar models with polytropic indices "y = 1.75 (left) 
and 3.0 (right). The initial data consists of a displacement ^ given by the sum of the Srst 10 
eigenmodes. The vertical bars indicate the frequencies predicted by the eigenmode calculations. 

in the displacement The combined amplitude is about 10 cm in both cases, so that the 

deviation from the hnear approximation should again be very small. In Fig. 60 we show the 

Fourier spectra of the central energy density perturbation Ap(t , 0) obtained for time evolutions 

over 1500 km using 600 grid points. The vertical bars indicate t h e frequencies predicted for the 

first 10 eigenmodes and coincide well with the peaks in the power spectra. 

In order to test the performance of the code in the non-hnear regime we have performed a 

convergence analysis for an initial displacement with the profile of the second eigenmode and 

an amphtude of about 50 m for the steUar model with 'y = 3 and = 2.0 - 10^ km"^. In this 

amphtude range non-hnear eSects are present, but shock formation is not yet expected for ini-

tial data with suGciently weak spatial variation. We have evolved these initial data using 400, 

800 and 1600 grid points and have calculated the time dependent convergence factor according 

to the method described in section 3.5.3. Since the exact solution is not known, we use the 

reference solution for 1600 grid points in its place. The result obtained for the variables w, 

AA^, A/) and AA is shown in Fig. 61 and demonstrates second order convergence throughout 

the evolution. 

Finally we have tested the code with the analytic solution by Oppenheimer and Snyder (1939) 

which describes the coUapse of a homogeneous spherically symmetric dust cloud. Petrich et al. 

(1986) have expressed this analytic solution in polar slicing combined with radial or isotropic 

gauge. Even though we Eire using a Lagrangian gauge condition here, we can use their results 

for a comparison with our numerical simulation. 

In their calculation of the analytic solution Petrich et al. use a Lagrangian coordinate % and 

a time pEirameter 7/ which varies from — vr to 0 as the dust sphere collapses from initial radius 

to f = 0. On a given time shce ^ = const, where t is the time coordinate dehned by the polar 
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/,(A4 y/.ĉ x ) /.(Aw y/,(Aw 

UA(Ap) -]//_[A(Ap) /JA(AN)-n//Ĵ (AN)'-n 

/JA(AX)̂ /. A(A%) 

[km] 

Figure 61: The convergence factor for w, A ^ , Ap and AA obtained for 400 and 800 grid 
points. The reference solution has been calculated for 1600 grid points. 

slicing condition, y; is given aa a function of % by 

cos cos (5.248) 

where % Emd %8 are the values of 7; and % at the surface of the dust cloud. If we label the initial 

slice by % = —7r, this equation implies that = —vr everywhere on the initial slice. At any 

given time ( the areal radius is then shown to be related to the coordinate % by 

sm-" %s cos% 
(5.249) 
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where M is the Schwarzschild mass of the dust cloud. If we consider the special case of this 

equation at the surface and on the initial shce we can calculate %g from 

8in^%s = ^ , (5.250) 

where R is the initial radius of the dust sphere. For reasons t h a t will be given below we will 

iden t ic the radial coordinate a; with the areal radius of the initial location of the Suid elements. 

We can therefore set % = —;r and f = a; in Eq. (5.249) and use the result to calculate x(a;) 

on the initial slice. Since both coordinates are comoving with the Suid elements, this relation 

between % and z remains valid at any time In order to calculate 7;(a;) at a given time ( we 

stiU need to End the value %. This is done by inverting the relation 

< = M j(^g _ 8in%) + 2sin^%g % - 2 t a n % s t a n h " ^ ( ^ t a n % s C o t ^ ] ) , (5.251) 
sm'^ %s I L \ 2 / J J 

for which we use a Newton-Raphson method. Once % has been calculated, we can use Eq. (5.248) 

to calculate ?y(a:) on that time slice. The physical variables f , p, f and A then follow from 

Eq. (5.249) and further relations by Petrich et al. which we write in the form 

^ cos^ % - cos^ ^ 

COS % — cos^ ^ 
(5.253) 

A = - ,5 254) 
2 X ~ COS- ^ 

where Ac is the central value of the lapse function and oo ^nd a are given by 

«o = - 4 — , (5.255) 
sm'' Xs 

a = oo(l —cos??). (5.256) 

In practice we specify the initial energy density and radius of the dust sphere and set the velocity 

to zero. The functions N and A are then calculated from the constraint equations and the total 

mass of the sphere follows from the definition (5.219). 

Prom the numerical point of view the dust collapse is a special case in several aspects which 

restricts our choice of the available options of the code. 
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r(t,x) A(r)(t,x)10® 

p(t,x)10® A(p)(t.x)10= 

Figure 62: The numerical simulation of the Oppenheimer-Snyder dust collapse for a dust sphere 
of 10 km radius and initial density 2 -10"^ km"^. The left panels show the numerical results for 
the radius f and the energy density the right panels the deviation from the analytic solution. 

(1) By deEnition the pressure vanishes in the dust sphere. As a result there is no 

static configuration analogous to the static neutron s ta r governed by the TOV 

equations. We therefore need to use vacuum Eat space as the background and 

run the code in the non-perturbative mode. 

(2) The vanishing of the pressure also implies that the speed of sound is zero through-

out the dust sphere so that it cannot be used to rescale the radial coordinate 

according to Eq. (5.47). The radial coordinate z is therefore deSned by the areal 

radius of the initial positions of the Huid elements and we use the condition 

— 1 in the code. 

(3) The surface of a neutron star with a polytropic equation of state is de&ned by the 

vanishing of the energy density p which provided the outer boundary condition 

in the numerical evolution. For the dust sphere this relation is not valid any 

more and the energy density is hnite at the outer boundary. The exact value, 
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r ( t , x ) A(r)(t.x)ios 

X(t.x) A(A)(t.x)10= 

Figure 63: Same aa Fig. 62 for the metric variables T and A. 

however, is not known, so that we cannot use it to derive an alternative boundary 

condition. The boundary condition f = 0 is trivially satisSed in the case of a 

dust sphere and does not provide any extra information either. If we consider 

the structure of equations (5.220)-(5.224), however, we can see that aU spatial 

derivatives of the energy density appear in the form of pressure gradients. These 

terms are identically zero in this case and disappear f rom the equations. We can 

therefore use the staggered grid for the energy density and thus eliminate the 

need of a boundary condition for p. For this purpose we set the parameter to 

1 in the evolution of the dust sphere. 

In Figs. 62 and 63 we show the results obtained for a dust sphere with initial density po — 

2 - 10"'^ km"^ and radius Ko = 10 km which corresponds to a to ta l mass of M = 0.838 km. A 

grid resolution of 800 points has been used for this calculation. The results demonstrate the 

good accuracy with which the code reproduces the analytic solution. Near the surface of the 

dust sphere, however, the numerical error increases significantly as the sphere approaches its 

Schwarzschild radius. We attribute this behaviour to the steep gradient of the lapse function 
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near the surface that arises in the late stages of the evolution. 

This simulation also illustrates the singularity avoiding properties of the polar slicing condition. 

As the dust sphere collapses towards its Schwarzschild radius, the lapse function decreases 

towards zero and the evolution is practically frozen. This effect, the so called 0/ (Ae 

Zapae, is responsible for the apparent slow down of the coUapse of the radial function r that can 

be seen in the upper left panel of Fig. 62. It is this property t h a t makes polar slicing a popular 

choice for the numerical analysis of 1-dimensional gravitational coUapse. 

5,5 Do shocks form at the surface for low ampli tude oscilla-

tions? 

We wiU now address a question that implicitly arose in the discussion of the linearized equations 

in the Bulerian formulation. We have seen in Eq. (5.133) that t he linearized equations predict 

a diverging ratio at the surface. For polytropic indices -y > 2 we know that the divergence 

of is a result of the Taylor expansion used to relate the Bulerian energy density perturbation 

to the Lagrangian one in Eq. (5.130) and thus a non-physical result. For polytropic exponents 

'y < 2, however, Bq. (5.130) represents a valid relation to first order in the perturbations, so 

that the Bulerian density perturbation will indeed be large compared with the background value 

near the surface. This behaviour raises the question whether non-linear eSects wiU aSect the 

evolution near the surface and give rise to the formation of discontinuities. Prom a different 

point of view one may consider the speed of sound which vanishes at the surface for a polytropic 

exponent 'y > 1 and the particle speed lu which is hnite because of the movement of the stellar 

surface. Consequently the velocity of the Suid elements wiU exceed the speed of sound and one 

may again ask whether this leads to shock formation. We will investigate this by using the 

exact treatment of the surface provided by the Lagrangian code. 

For this purpose we consider the neutron star model 3 of Table 3 and provide initial data in 

the form of a displacement ^ corresponding to a single eigenmode. For reasonably low order 

eigenmodes and amplitudes up to several metres we have not observed any signiEcant deviation 

from the expected harmonic time dependence. For eigenmodes of very high order, however, this 

picture changes. We illustrate this in the case of an initial displacement of the Huid elements 

corresponding to a high order eigenmode (about 50) and an amphtude of about 1 m at the 

surface. The high resolution of 3200 grid points has been used for this calculation to adequately 

resolve the high order mode. We stress that this evolution is only possible because of the high 

resolution near the surface provided by the rescaled variable In Fig. 64 we show snapshots 
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Figure 64: The numerical evolution of the energy density per turbat ion Ap as a function of ?/ 
obtained for an initial displacement corresponding to about t h e 50th eigenmode with amplitude 
1 m. Snapshots are shown at times . . . , . 

of the time evolution of the energy density perturbation at t imes = 0.0, 2̂ = 0.5, (3 — 1.0, 

4̂ = 1.5, ^5 = 2.0, 6̂ = 2.5, 7̂ = 3.0 and tg = 3.1 km. We note that only the small radial range 

28km < ^ < 31.7km is shown in the figure. In terms of the areal radius this corresponds to 

a range of about 120 m below the surface. We can see that for this small amplitude a steep 

gradient forms near the surface after about t = 3.1km which corresponds to less than two 

oscillation periods of the eigenmode. This indicates the formation of a discontinuity. At later 

times than shown here the code fails to converge which we at t r ibute to the numerical noise 

caused by the shock formation and the extreme sensitivity of the code near the surface of the 

star. In order to demonstrate that this result is not merely due to numerical inaccuracies, we 

have evolved the same initial data with the smaller amphtude of 1 cm. In Fig. 65 we show the 

same snap shots for this evolution as in Fig. 64. In this case we obtain harmonic time dependence 

as expected in the linear limit. By using eigenmodes with even higher order we have observed 

shock formation at the surface for smaller amphtudes. In view of the results for low order 

modes where no signiEcant non-linear eEects are observed for similar amplitudes, we conclude 

that the magnitude of non-linear eEects is not only determined by the size of the perturbations 

relative to the background variables, but also by the length scale on which the perturbations 
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Figure 65: The same as Fig. 64 but for an amplitude of 1 cm. 

Vciry signihcantly. We Anally note that the surface of a neutron star is too complicated to be 

accurately described by the polytropic equation of state used for these evolutions. It is not clear 

whether discontinuities will form in the same way for more realistic descriptions of neutron stars. 

Nevertheless our results demonstrate that the surface requires a careful numerical treatment. 
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6 Conclusions 

In this work we have presented the application of different numerical techniques to solve Ein-

stein's held equations. We have laid the foundation for oui" discussion by describing in detail 

the ADM "3+1" and the characteristic Bondi-Sachs formulation of the held equations together 

with various aspects of numerical analysis. 

In the framework of "3+1" formulations of the Einstein held equations the restriction to a S-

nite grid in numerical computations results in diSculties concerning the specihcation of outer 

boundary conditions and the interpretation of gravitational waves. These problems are nat-

urally resolved in a characteristic formulation, but the fohation of spacetime based on the 

characteristic surfaces may break down in regions of strong curvature due to the formation of 

caustics. The combination of the two schemes in the framework of Cauchy-characteristic match-

ing enables one to make use of the advantages of both methods while avoiding the respective 

drawbacks. In this work we have completed the cylindrically symmetric stage of the Southamp-

ton Cauchy-characteristic matching project by providing a new long term stable CCM code 

including both gravitational degrees of freedom. A Geroch decomposition of the 4-dimen8ional 

spacetime allows us to reformulate the problem in terms of t h e norm of the axial KiUing vec-

tor z/ and the Geroch potential T on an asymptotically hat 3-dimensional quotient spacetime. 

These geometrical helds describe the gravitational degrees of freedom in simple terms and ap-

pear to be a natural choice of variables for the description of a cyhndrically symmetric vacuum 

spacetime. The conformal compactihcation of the resulting 3-dimensional spacetime allows us 

to impose exact boundary conditions at null inhnity. In contrast to the previous work we have 

also applied the Geroch decomposition to the interior Cauchy region and thus been able to use 

the same variables throughout the numerical grid. This leads t o a substantial simplihcation of 

the interface and the evolution equations and facihtates a long term stable evolution with both 

gravitational degrees of freedom present. The eSectiveness of t h e code has been demonstrated 

by reproducing the analytic Weber-Wheeler solution and the vacuum spacetime with two de-

grees of freedom due to Xanthopoulos. The code has been shown to be second order convergent 

over the dynamically relevant time intervals. Our results demonstrate the importance of a 

"good" choice of variables in order to obtain a stable, accurate code even in the l-dimensional 

case. For higher dimensional problems the structme of the null-geodesics wiU be much more 

complicated because of the angular dependence. As a consequence the transformation between 

the Cauchy and the characteristic variables at the interface will also be more complicated and 

thus more vulnerable to instabilities. In view of our results it seems preferable to search for 
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natural variables, such as the Geroch variables in the cylindrically symmetric case, to describe 

the two regions rather than follow the "brute force" calculations which arise for example from 

a direct apphcation of the ADM-formulation in the Cauchy region. 

Next we have derived a characteristic formulation of the equations governing a dynamic cosmic 

string in cylindrical symmetry. A feature of the cosmic string equations is that they admit 

exponentially diverging unphysical solutions. By using the Geroch decomposition it is again 

possible to reformulate the problem in terms of Helds which describe the string on an asymptot-

ically Sat 2 -I- l-dimensional spacetime and the two auxihary Eelds z/ and T. As well as avoiding 

the need to introduce artiScial outgoing radiation boundary conditions the inclusion of null 

inSnity as part of the numerical grid has the advantage that we can enforce outer boundary 

conditions for the string variables which rule out the unphysical solutions. As special cases 

of the dynamic equations we also obtain the equations for a stat ic cosmic string in curved or 

Minkowski spacetime. These sets of equations have been solved by using a relaxation scheme 

in the static cases and an implicit method for the dynamic scenaiio. 

A convergence analysis for all codes demonstrates clear second order convergence. The dynamic 

code hcis also been shown to reproduce the results of the two exact vacuum solutions by Weber 

Wheeler and Xanthopoulos. Finally the dynamic code reproduces the results for the static 

cosmic string in that initial data corresponding to a static solution do not change signiScantly 

when evolved in time. For both the exact vacuum solutions and the static initial data the code 

shows excellent long term stabihty. 

After demonstrating the reliability of the code we have used it t o analyse the interaction between 

aji initially static cosmic string and a Weber-Wheeler type pulse of gravitational radiation. We 

have found that the gravitational wave excites the string and causes the string variables % 

and f to osciUate. In terms of unphysical rescaled variables we End that the frequencies of 

the oscillations are essentially independent of the strength of the coupling between string and 

gravity described by vy and of the width and amplitude of the Weber-Wheeler pulse. We have 

also found that the frequency of % is independent of the relative coupling constant a while 

that of f is proportional to When this result is translated back into the physical units 

we End that the frequency of the scalar Eeld is proportional to the mass of the scalar held and 

the frequency of the vector held is proportional to the mass of the vector held as predicted by 

the linearized theory. This result is conhrmed by investigating two further scenarios. Firstly 

we consider the evolution of static initial data for the string coupled to the gravitational held, 

but with a Gaussian perturbation to one of the string variables, and secondly we consider the 



6 C0NCf,(7SI0NS 197 

same scenario but in a Minkowskian background with the gravitational Geld decoupled. In both 

cases we obtain the same relationship between the frequencies and the mass. 

An interesting numerical result arising from the use of an implicit numerical scheme concerns 

the structure of the interface between the interior and the compactiEed outer region. In contrast 

to the rather complicated interpolation techniques that were necessary to transform between 

the Cauchy and characteristic variables in the explicit vacuum CCM-code, we have been able to 

"localise" the interface in the implicit scheme by using two gTid points for the spatial position 

r = 1, one containing the variables of the inner region, one containing those used in the outer 

region. The interface then merely consists in relating these variables and their derivatives by 

using their deEnitions and applying the chain-rule. In om' case the resulting relations were 

trivial and could easily be incorporated into the main evolution algorithm. We attribute this 

substantial simphBcation to the simultaneous calculation in implicit schemes of aU function 

values on the new time-shce. In explicit schemes, on the other hand the calculation of the new 

function values is normally subject to a certain hierarchical order. 

In the Snal part of this work we have presented a new numerical approach which enables us 

to evolve radial oscillations of neutron stars over a laige amplitude range with high accuracy. 

In radial gauge and polar slicing the dynamic star is described by two constraint equations 

for the metric and a quasi-linear system of two evolution equations for the matter variables. 

The crucial step in our approach is to decompose the dynamic valuables into static background 

contributions which are determined by the Tolman-Oppenheimer-VolkoS equations and time 

dependent perturbations. We have used this decomposition to rewrite the system of equations 

in a perturbative form. We do, however, keep all terms of higher order in the perturbations 

and thus obtain a formulation equivalent to the original set of equations. The motivation for 

our approach is given by the fact that background terms (terms of zero order) eire in general 

present in the dynamic equations. These terms cancel each other analytically by virtue of the 

background equations. Numerically, however, this is generally satished up to a residual numeri-

cal error only which wiU constitute a spurious source term in t h e evolution of the perturbations 

and contaminate the numerical results. In order to avoid this eEect, we use the background 

equations to remove all zero order terms from the perturbative equations. We thus ensure that 

the numerical accuracy is determined by the perturbations instead of the static background. 

We have compared the resulting perturbative code with a "standard" non-perturbative method 

by evolving the fundamental eigemnode of a dynamically stable neutron star using an amplitude 

of several metres. Whereas the perturbative scheme reproduces the expected harmonic oscil-
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lations with high accuracy, the non-perturbative scheme leads to an exponential decay of the 

central energy density perturbation after a few oscillations which we attribute to the numerical 

contamination caused by the background terms. 

Even though the perturbative code performs well in the linear regime for a wide variety of 

neutron star models, we have observed a spurious exponential growth of the physical variables 

in the evolution of marginally stable neutron star models if we truncate the neutron star at a 

suGiciently large density and thus omit the outer low density layers from the numerical evo-

lution. The need to truncate the neutron star at Enite densities arises from the occurrence of 

negative energy densities near the surface of the star due to numerical inaccuracies. In a purely 

Bulerian formulation the outer grid boundary does not coincide with the surface of the star in a 

non-hnear evolution. When the star shrinks inside the numerical grid negative energy densities 

will occur because the numerical evolution is not able to accurately model the vacuum region 

between the stellar surface and the outer grid boundary. It is interesting to see that the surface 

represents a problematic area even in the comparatively simple linearized case. For equations of 

state with an asymptotic behaviour f and -y > 2 the Eulerian energy density perturbation 

diverges at the surface of the star. We have shown how this problem arises from the trans-

formation between Lagrangian and Eulerian perturbations and is not present in a Lagrangian 

formulation. 

In order to alleviate the surface problem in the Eulerian case in a simple manner we have used 

a Exed boundary condition by setting the radial velocity = 0 at the outer grid boundary. 

Furthermore we have truncated the outer layers of the neutron star , so that the resulting model 

contains 90 % of the original mass. We have thus demonstrated second order convergence of the 

code in the non-linear regime and checked the consei-vation properties of the code in the Cowling 

approximation. We have finally used the simplihed neutron s t a r model to study the coupling 

between eigenmodes due to non-hnear e&cts. For this purpose we have provided initial data in 

the form of an isolated eigenmode and quantised the excitation of other modes in terms of the 

inner product, deGned by the self-adjoined eigenvalue problem of the linearized case, between 

the non-linear data and the eigenmode solutions. The high accuracy of the perturbative scheme 

enables us to vary the amplitude of the initial data over a wide range corresponding to a maxi-

mum displacement of Huid elements between several cm and about 50 m. For signifcantly larger 

amplitudes we observe the formation of steep gradients which makes the accm-ate measurement 

of the eigenmode coeSicients problematic. 

In our study we have provided initial data in the form of either of the Erst three eigenmodes 

in the velocity Seld while the energy density perturbation has been set to zero. We have then 
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measured the maximum coeGcients for the Erst 10 or 15 eigenmodes. Our results clearly show 

the existence of two distinct regimes. In the weakly non-hnear regime with amplitudes up to 

several metres aH eigenmode coeScients increase quadratically with the amphtude. If the or-

der of the initially excited mode is we have also found that the coupling coeScients in the 

weakly non-linear regime decrease with increasing order of the eigenmodes starting with mode 

2_y. This decrease can be approximated well with an inverse cubic power law. In the moderately 

non-linear regime we have observed a diEerent behaviour' of t h e modes. An initially present 

mode j has been found to couple more e&ciently to the eigenmodes - jf, where % = 2, 3, 4 

and so on. For these modes we can model the resulting eigenmode coe@cients with a sum of a 

quadratic power law and a power law of index M with good accuracy. The remaining eigenmode 

coeGcients also show a steeper increase with amphtude than in the weakly non-hnear regime, 

but the power law contribution with exponent larger than two is generally too small to facihtate 

an accurate measurement. 

Finally we have developed a fuUy non-hnear Lagrangian code for the evolution of spherically 

symmetric dynamic neutron stars. We have demonstrated how the numerical difSculties encoun-

tered in the Eulerian case are resolved in the Lagrangian formulation. The code has been shown 

to accurately reproduce the analytic solution of the hnearized equations for low amplitudes and 

the analytic solution of Oppenheimer and Snyder describing t h e collapse of a spherically sym-

metric homogeneous dust sphere. We have furthermore demonstrated second order convergence 

of the code. The code has been used to investigate non-linear e&cts near the stellar surface 

arising in low amphtude oscillations. Whereas we do not observe a signihcant deviation from 

the linear regime for low order eigenmodes and amphtudes of several metres, high order eigen-

modes of the order of 50 with amphtudes of 1 m lead to the formation of steep gradients near 

the surface due to non-linear eEects. We conclude that the magnitude of non-hnear eEects is 

not only determined by the relative size of the perturbations with respect to the background 

but also on the length scale on which the perturbations vary signihcantly. The high resolution 

at the surface required for these evolutions has been obtained by the use of a rescaled radial 

coordinate which naturally takes into account the vanishing of t he speed of sound at the surface 

and facilitates a formulation of the equations in terms of wliich the slopes of the characteristics 

are by and large independent of the position in the staj. 
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A The finite differencing of the 

Lagrangian equations 

We use an implicit second order in space and time Enite differencing scheme for the numer-

ical evolution of the fully non-linear perturbative Lagiangian equations (5.235)-(5.239). The 

parameter cr enables us to use the energy density p, Ap on t h e "normal" grid (a = 0) or the 

staggered grid (i? = 1). The staggering, however, aSects the energy density only. It is therefore 

suitable to describe the hnite diEerencing for a general function / , A / and the energy density 

/), Ap. The function / always represents the background variables r , TV and A. Similarly A / 

stands for the perturbations w, A # and AA. 

In that notation Eqs. (5.235) and (5.236) are converted into hn i te differences by using 

y = 2 + A+i), (-̂ -1) 

P = 2 [(1 + cr)/)A: + (1 - , (-A -̂̂ ) 

A / = ^ ( A / r ' + A / S ) . (A-3) 

Ap — 2 + (i - ' (^ '4) 

A / . . = i ( A / % ; - A / r " ) . {A.5) 

In order to calculate the derivatives of the background variables we use the TOV equations to 

express them in terms of undiSerentiated variables 

= —2 1- 47rp, (-A -̂6) 

/\,a: = p (AT -t- 47r r f ) . (A.7) 
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The remaimng auxiliary variables follow from the deAnitions 

{1 if a; = r 

(A.8) 
C if a; = ?/, 

r = 1 - 2Nr, (A.9) 

A r = - 2 ( N ^ + rAN) , (A.IO) 

f = I T / , (A. l l ) 

F = liTpT, (A.12) 

A F = F - F, (A.13) 

AP 
== — = (A.14) 

d/) 
The hnite diSerence expressions used for Eqs. (5.237) and (5.238) are given by 

/ = A+i , (A.15) 

/) = 2 (cpt + (2 — cr)p^_|_i), (A.16) 

A / = ^ + A / l V i ) , (A.17) 

Ap - + ^ P t ) + (2 - , (A.18) 

A/ , . = i ( A / ? ; ' - A / , \ , ) . (A-19) 
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where the total pressure F is deEned by Eq. (A. 12). Finally we Rnite diSerence Eq. (5.239) 

according to 

/ = 2 /k+i) , (A.20) 

P = ^ [(1 + o-)PA: + (1 - o-)/)t+i], (A.21) 

^ f = \ ( ^ / r ' + A / ? + A/,?+; + A / r + i ) , {A.22) 

A / , . = ^ [M'itl - A / r ' + A / ; L i - N't) . (A.23) 

A/,< = ^ ( A / - + ' - A / ? + N t S - A / f + i ) . (A.24) 

A f , = ^ (Ap;+; - A p ; + ' + - A,4) . (A.25) 

AR( — [(1 + c^](ApJ!^^ - A/jjJ) + (1 - - Api^^i) . (A.26) 

The auxiliary variables are again deSned by Eqs. (A.8)-(A.14). We also use the relations 

(A.27) 

(A.28) 

A F ^ = - C")p,^ + (A.29) 

A F t = C^Ap,(, (A.30) 

^ = ( ^ - 1 ) ^ . (A.31) 

The last relation is needed for the Newton-Raphson method we use to solve the resulting system 

of non-linear algebraic equations (cf. section 2.3.5). 

These hnite diEerence equations result in S-K" — 5 algebraic relations, where IC is the total 

number of grid points. In order to determine the SAT variables ATV ,̂ Ap;k and AAt we 
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also need the 5 boundary conditions (5.240)-(5.244) which we now write as 

6 = 0, (A.32) 

wi = 0; (A.33) 

ATVi = 0, (A.34) 

= 0, (A.35) 

— A/l — = 0. (A.36) 
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