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Loss of observations in a designed experiment is a common occurrence. It is prudent to 

identify designs that are resistant in a statistical sense to the loss of data. The main aim of 

the designs in this thesis is to compare of a set of treatments. The precision, or variance, 

of the individual pairwise treatment comparisons increases when data become unavailable. 

These alterations can be evaluated through the information matrix for treatment effects 

for block and row-column designs. 

In this thesis, the effect of different configurations of missing values on block designs, 

row-column designs, and diallel cross designs is investigated. The average variance of 

all pairwise treatment comparisons has been used as a measure of robustness by the 

majority of researchers. The maximum variance of comparisons is computed numerically, 

or developed theoretically, in this thesis for most patterns of missing data. The reduced 

normal equations can be solved with a suitable choice of generalised inverse, and formulae 

for the individual variances of pairwise treatment differences can also be derived. 

The effect of missing values on block designs, in particular randomised and balanced 

incomplete block designs is studied. It is shown that designs with a small number of 

treatments and a small number of blocks are severely affected by the loss of one, two, or 

three observations. Larger designs are not as seriously affected when the average variance 

is considered, but there are a small number of pairwise treatment comparisons that suffer 

a large loss of efficiency. 

Row-column designs have also been investigated for similar patterns of missing data. 

The lack of orthogonality introduced by the loss of data in many situations complicates 

the analysis and derivation of general expressions for the variances. The loss of efficiency 

for small Latin square designs is substantial after the removal of only one or two units. 

Constructing a design with multiple squares is shown to reduce the impact of the missing 

data. Youden square designs also suffer a similar loss of information after the loss of a few 

observations, and it is also shown that the structure of the design affects the distributions 

of efficiencies for a given number of missing values. 

The last class of designs considered in this thesis are diallel cross designs, where each 

experimental unit is a combination of two of the treatments. Diallel cross designs suffer a 

large reduction in efficiency, in general, for the loss of only one cross. This loss of efficiency 

is more serious when two or three crosses become unavailable. 
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Chapter 1 

Introduction 

The methodology of Design and Analysis of Experiments has been developed to maximise 

the statistical information gathered from a planned experiment. In many situations, it 

is possible that data may become unavailable for reasons unconnected with the starting 

design, which may result in the ruination of the experiment. Designs which are optimal, 

in a statistical sense, when complete may become inefficient after the loss of only a small 

number of observations. It would therefore appear sensible to identify designs that are 

robust in some sense to the loss of data. 

The aim of many experiments is to compare a set of treatments. The precision of 

the estimates of differences between pairs of treatments decreases when data become 

unavailable, and the overall effect of drop-out is summarised by computing the average 

variance of all pairwise treatment comparisons. The majority of recent research has 

concentrated on calculating this average for various distinct configurations of missing 

observations. It is also useful to consider the maximum of the individual variances, because 

a small number of badly affected comparisons may be concealed if only the average is 

computed. 

1.1 Block Designs and Missing D a t a 

In designed experiments, the loss of data is a frequent occurrence. In a medical situation, 

patients may leave a clinical trial for reasons unconnected with the treatment received. 

For example, if a patient moves to another part of the country, then it may not be possible 

to measure the efficacy of the treatment. The aim of many experiments is to compare a 
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set of treatments, e.g. in a clinical trial new drugs versus the current standard. 

There is frequently non-response in sample surveys. Sensitive personal information 

such as the income of the household or political afRliation may be undisclosed by the 

respondent. Another mechanism for missing data is censoring, where the event of interest 

does not occur before the completion of the experiment. The various drop-out processes 

can be classified as follows: 

1. Completely random drop-out, where the drop-out and measurement processes are 

independent. 

2. Random drop-out, in which the drop-out process is dependent on the observed 

measurements, i.e. those preceding drop-out. 

3. Informative drop-out. In this case the drop-out process depends on the unobserved 

measurements, i.e. those that would have been observed if the unit had not dropped 

out. 

It is unlikely in practical applications that the experimenter will have any control over 

the particular observations that become unavailable. It is, therefore, useful to have an 

overall measure of how badly a design is affected by the loss of one or more observations 

scattered throughout the starting design. 

There are a variety of techniques for handling missing data, which are summarised by 

Little and Rubin (1987). Three main approaches to analysing an experiment with missing 

observations are 

1. Data are accepted as they stand and the analysis proceeds using the general normal 

equations. 

2. Missing plot values are estimated, and the data are then analysed as if there was 

no drop-out. 

3. Replace missing values with approximate values and make adjustments using the 

analysis of covariance. 

Early work concentrated on the loss of complete treatments from balanced incomplete 

block (BIB) designs. Hedayat and John (1974) classified these BIB designs into three 

categories - susceptible, locally resistant, and globally resistant. Variance balance of the 



resulting design was used as the criterion of robustness. The degree of resistance of a 

given design identifies the number of complete treatments that can be removed while 

the resulting design remains variance balanced. Conditions for these classifications were 

derived by Hedayat and John (1974), who also showed that the structure of the starting 

design as well as the design parameters influenced the robustness of a given BIB design. 

Most (1975) extended this work from one missing treatment, and showed that for a design 

to be resistant to the loss of all observations relating to more than one treatment, all the 

subdesigns formed using the missing treatments must be BIB designs. 

Shah and Gujarathi (1977) extended one of the results of Hedayat and John (1974) 

to produce a theorem outlining the construction of locally resistant BIB designs of degree 

one with respect to two of the treatments in the starting design. Shah and Gujarathi 

(1983) gave necessary conditions for BIB designs to be globally resistant of degree two, 

identified by considering the form of successive sub-designs generated by the sequential 

removal of treatments. 

John (1976) derived a lower bound on the efficiency after the removal of one treatment 

from a BIB design, and showed that symmetric BIB designs attained this bound. Dey and 

Dhall (1988) studied the robustness of augmented BIB designs, where the new treatment is 

added to every block of a BIB design, in terms of the A-efficiency of the resulting design. 

They derived upper and lower bounds for the average variance of pairwise treatment 

comparisons. 

The loss of complete blocks of observations has been investigated by Bhaumik and 

Whittinghill (1991), Gupta and Srivastava (1992), and Das and Kageyama (1992). These 

studies used the average variance of pairwise treatment differences as the measure of 

robustness. Bhaumik and Whittinghill (1991) derived the eigenvalues of the information 

matrix for treatment effects, and used majorisation on the vectors of these eigenvalues to 

compare the different ways of losing complete blocks of obser\^ations. They showed that 

the best case was the loss of blocks with disjoint sets of treatments, and the worst was 

the removal of identical blocks. Bhaumik and Whittinghill (1991) also illustrated the loss 

of two blocks from a BIB design. The loss of a single block from binary balanced block 

designs and augmented BIB designs was investigated by Gupta and Srivastava (1992), 

and it was shown that the reduction in e&ciency for the average variance was in general 

small. Daa and Kageyama (1992) used the efficiency of the residual design to consider 



the loss of a block from BIB, extended BIB, and Youden square designs. 

Many investigations have considered the removal of speciGc patterns of observations, 

for example the loss of complete treatments or blocks of observations. In practice, it is 

likely that the missing data will be scattered throughout the starting design. Whittinghill 

(1995) considered the effects of missing data on block designs, and showed that the loss of 

observations from the same block of the starting design, or single observations from blocks 

with disjoint treatment sets, are the least severely affected cases. The worst case occurred 

when it is possible to lose the same treatment from identical blocks. The eigenvalues of 

the information matrix for treatment effects were used to calculate the average variance of 

pairwise treatment comparisons. When more than one observation becomes unavailable, 

there are different configurations of missing values with different properties that need to 

be considered separately. Whittinghill (1995) ranked all cases of two missing observations 

using majorisation theory on the vectors of eigenvalues of the information matrices for 

treatment effects. It will be shown in Section 3.5.3 that this technique cannot be extended 

to resulting designs with more than two missing observations. The maximum variance of 

pairwise treatment comparisons is also computed for the configurations of missing values 

for the different designs studied in the thesis. The loss of efficiency for the average variance 

is frequently small, but the maximum variance may suffer a large reduction in efficiency 

for only a small number of observations. 

Duan and Kageyama (1995) considered augmented BIB designs, and computed the 

efficiency of designs resulting from the loss of any number of observations in a single 

block or any configuration of two missing values. They showed that these designs are 

fairly robust to the loss of data when the average variance is the measure of robustness. 

Lai et al. (2001) considered the robustness of block designs against the loss of up to three 

observations. The A-efficiency of the resulting designs was evaluated for different patterns 

of missing data, and a lower bound was derived for the loss of t observations. Srivastava 

et al. (1996) investigated the loss of a single observation from block designs used to make 

treatment-control comparisons by calculating the efficiency of the average variance. 

The effect of missing observations in the final period of cross-over designs based on 

Latin squares, has been studied by Low et al. (1999). In the study, it was shown that 

it is sensible to construct designs from different Latin squares rather than replicates of 

the same square, when there is the possibility of missing data. When the use of multiple 
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Latin squares is considered in Chapter 5 it can be seen that the choice of square does not 

influence the overall properties of the starting design, because carry-over is not included 

in the model. 

Another class of designs considered for the effect of missing observations are diallel 

cross designs. The effect of the loss of a block from complete diallel cross experiments 

has been investigated by Ghosh and Biswas (2000), and the average variance of pain^'ise 

treatment comparisons is considered. These designs were shown to be robust to the 

unavailability of one block. Ghosh and Desai (1999) considered the loss of a single block 

from complete diallel cross designs where there was unequal replication of the crosses, and 

concluded that these designs were fairly robust to this pattern of missing values. 

1.2 Aims and Outline of the Thesis 

The aim of this thesis is to assess the impact of missing observations on experimental 

designs with one or two blocking factors. Some specific objectives are to 

1. investigate different patterns of missing data on a variety of block, row-column, and 

diallel cross designs. 

2. derive theoretical results for variances of all pairwise treatment diEerences for all 

configurations of t missing values and to compare these cases of resulting designs. 

3. use the maximum variance as well as the average to assess the robustness of these 

designs to missing data. 

The structure of the thesis is as follows. 

Chapter 2 covers the underlying theory used to compare a set of treatments in designs 

with blocking factors. The reduced normal equations for treatment effects are derived for 

complete block and row-column designs, and are also given more generally for situations 

where data are unavailable. 

In Chapter 3, the influence of missing observations on block designs, and in particular 

randomised block and BIB designs, is studied in detail. The loss of all observations in 

one or more blocks, and up to three observations scattered throughout the starting design 

is considered theoretically. These formulae are also evaluated for a large range of design 



parameters. It is shown that, for the majority of designs, the increase in average variance 

is minimal representing a small loss of efBciency, but when the maximum is calculated a 

few of the treatment comparisons are severely affected by the missing observations. 

The effect of drop-out on row-column designs, and in particular single replicate Latin 

squares, is the focus of Chapter 4. There are three patterns of missing data considered in 

this Chapter, and it is shown that the structure of the starting design does not influence 

the distribution of configurations of two and three missing values. Small squares suffer a 

substantial loss of efficiency when a small number of values become unavailable, but the 

loss of efficiency is reduced as the size of the square increases. 

Chapter 5 considers the use of more than one Latin square to reduce the effect of 

missing observations. It is seen that the choice of squares does not affect the overall 

properties of the design when data become unavailable, which is different from the cross-

over situation covered by Low et al. (1999). The results suggest that the use of multiple 

squares reduces the impact of drop-out. 

In Chapter 6, Youden square designs are investigated to determine the effect of missing 

observations on the initial design. Loss of complete treatments is considered briefly at 

the start of the Chapter and it appears that Youden squares constructed by removing a 

single column from a Latin square design are variance balanced after the removal of any 

treatment from the starting design. The loss of a block of observations from the BIB 

component of the Youden square is also studied and the variances of pairwise treatment 

comparisons are derived theoretically and evaluated for a range of Youden square designs. 

The unavailability of one or two missing observations has also been considered to assess 

the impact on the starting design. 

Diallel cross designs are introduced in Chapter 7 and the effect of missing values is 

also investigated. There are differences from conventional block designs because each plot 

corresponds to a cross, which is composed of two treatments, allocated to it at the design 

stage. The loss of blocks of crosses and one, two, or three missing crosses are studied 

numerically for a range of different diallel cross designs. It is shown that the efficiencies of 

some pairwise treatment differences are substantially reduced by the loss of only a small 

number of crosses. 

The conclusions of this thesis are given in Chapter 8, and some recommendations for 

future work are suggested. 



Chapter 2 

Background to Designed 

Experiments 

In many experiments, where the aim is to compare a set of treatments, there are one 

or two sources of variation that can be accounted for at the design stage. Blocking is 

a technique used in these situations, and it can reduce the variances of the estimated 

pairwise treatment differences. When there is a single blocking factor, a randomised 

block design (RBD) can be used if all treatments can be accommodated in the blocks of 

the starting design. An incomplete block design is required when there are insufficient 

plots in the blocks, and the balanced incomplete block (BIB) design is the optimal design 

in this situation, but such designs exist for only a small number of design parameter 

combinations. 

There are two popular designs employed when the experiment has two blocking factors, 

often referred to as row-column designs. These designs are constructed using Latin squares 

and Youden squares respectively. The rows and columns can be considered individually 

as block designs and these designs are covered in Section 2.2. 

2.1 The General Block Experiment 

Consider an experiment where a set of u treatments is allocated to n units (or plots) in 

b blocks. Suppose that the jth block of the design contains kj plots, and let denote 

the number of times the ith treatment is applied to a plot in the jth block. An additive 

model is assumed for the responses which corresponds to the application of the ith 



treatment to the jYA block for the time. The model is described by 

Vijk — + Ti + I5j + Cijk (2.1) 

{i = 1, - • • ,v,j — 1, - • • ,b-,k = 1, • 

where /i represents the overall mean, the effect of the ith treatment is given by r^, I3j is the 

effect of block j, and is random error. It is assumed that the errors are uncorrelated 

normal random variables, with E{eijk) = 0 and Var(eijk) = cr̂ . This linear model can be 

expressed in matrix form as 

y = Xa + e (2.2) 

where y is a vector of the n observations, a = (/j, Ti, - - - , T,,, A , - - , /̂ i,)' is the vector of 

V + b + 1 model parameters, and X is the design matrix for the experiment. In general, 

the matrix X is not of full rank so that X'X is a singular matrix, and consequently the 

normal equations cannot be solved uniquely. 

2.1.1 Der ivat ion of t h e Normal E q u a t i o n s 

To solve the normal equations and estimate the treatment effects and variances of pairwise 

treatment comparisons, a generalised inverse can be used. First, partition the vector of 

model parameters and design matrix for the experiment, such that a = (^|r'|/3')' and 

X = (l„|X^|X/3). Note that 1„ is an n dimensional vector of ones, and X^ and X^ are 

design matrices for treatments and blocks in the design with dimensions n x v and n x b 

respectively. Equation (2.2) can be rewritten in the form 

y = In/̂  + XT-t + X^^ + e (2.3) 

The model parameters are estimated using ordinary least squares, where the error sum of 

squares, e'e, is minimised with respect to the vector of model parameters. The error sum 

of squares can be expressed as 

e'e = (y — Xa)'(y — Xa) = y'y — 2y'Xa + a'X'Xa (2.4) 

To minimise this expression, the full normal equations (X'X)a = X'y need to be solved 



for a. If ^ is the grand total of the observations, 7" the vector of treatment totals, and 5 

a vector of block totals, then, for the general block experiment, the matrices involved in 

the full normal equations can now be written as 

(X'X) x ; 

x% 

X , X , 

i : , x . lnX/3 

x : i » x ; x . x : x ^ (2.5) 

X^ln x ^ x . x ^ x ^ 

and 

K 

X'y = x; y = r 
X^ B 

(2.6) 

To simplify the solution of the normal equations, it is practical to define additional vectors 

and matrices. Let the number of plots in each block of a design d be stored in a vector 

h = {ki, • • • ,kby, and the number of replicates of the v treatments be the elements of the 

vector r = (ri, • • • , r^)'. The incidence matrix of the design is a w x 6 matrix N = {riij}, 

where the (i,j)th element is the number of times that the ith treatment occurs in the 

jth block of the design. Let = diag{r) and = diag{k) be diagonal matrices with 

elements obtained from the vectors r and k respectively. The matrix X'X can now be 

expressed using these vectors and matrices as 

n r' k' 

(X'X) = r N (2.7) 

k N' k' 

This matrix is not of full rank in general, but non-unique solutions to the normal equations 

can be found using generalised inverses. Estimates of the treatment effects are of primary 

interest, so the nuisance block and mean parameters, jj. and /3, can be eliminated from 

the normal equations initially. The full normal equations for a general block design are 

njj, + r'r + k'/3 = Q 

vjl 4- r^f + N/3 = T 

k// + N'f + k'^ = 5 

(2.8) 

(2.9) 

(2.10) 



To estimate the treatment effects, the block parameters and overall mean are eliminated 

from Equation (2.9). Subtract times Equation (2.10) from Equation (2.9) to leave 

(r - Nk- 'k) / / + (r"̂  - Nk-'^N')f + (N - Nk'-^k')^ = T - Nk''^^ (2.11) 

In Equation (2.11) the vector of block parameters is removed because k'^k'^ — I, and 

the overall mean is eliminated because k"'^k = and N l ^ = r. The reduced normal 

equations for treatment effects simplify to 

(r' - N k - ' N ^ f = (T - Nk-"^^) (2.12) 

or, more concisely, to 

C f = Q (2.13) 

where C = (r"̂  — Nk"'^N') is the information matrix for treatment effects, and Q = 

( T — Nk^'^B) is the vector of treatment totals adjusted for block effects. The information 

matrix is not of full rank, so a generalised inverse, O, of C can be used to solve the reduced 

normal equations, such that the estimates of treatment eSFects are given by f = OQ. The 

matrix SI has the property that C O C = C. The Moore-Penrose generalised inverse is a 

common choice used to solve the reduced normal equations, and is defined in terms of 

the non-zero eigenvalues and their corresponding eigenvectors of the information matrix 

for treatment effects. Let = 1, - - - , u — 1 be the non-zero eigenvalues and be their 

corresponding orthonormal normalised eigenvectors of C . The Moore-Penrose generalised 

inverse of a singular matrix is defined as 

O = (2-14) 

An alternative generalised inverse for deriving general expressions for the variances of 

pairwise treatment comparisons will be discussed in Chapter 3. 

2.1.2 Compar i son of T rea tmen t s 

The aim of an experiment is to compare the effects of a set of treatments. Treatments 

can be compared directly if they appear together in one or more blocks of the starting 
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design, or indirectly if there is at least one treatment common to the set of blocks in which 

the two treatments occur. A design is connected if all pairs of the v treatments can be 

compared directly or indirectly, and the design is disconnected if this is not possible. 

In the general block experiment the difference between the and jY/i treatments is 

estimated by f, - f j . There are v{v - l ) / 2 pairwise treatment comparisons which may be 

expressed in a contrast matrix F. Note that F r is estimable if and only if FOC = F. In 

this case the variances of the pairwise treatment comparisons are the diagonal elements 

of Ff2F'. The average variance of all the pairwise treatment differences is now given by 

-(race(rnr') (2.15) 
2;(u — 1) 

To compare the merits of two competing designs, a set of efRciency factors are computed. 

These factors are the ratios of variances of estimated treatment contrasts for a completely 

randomised design to variances of the same contrasts for the block design. The variance 

of the treatment difference in a randomised block design with r replicates is 2cr^/r, so 

that pairwise efficiency factors ê - for the ith and jth treatments in a general block design 

are given by 

= VaT{f!- f j ) 

Another important property associated with the estimation of treatment comparisons is 

balance, which has also been referred to as variance balance. A design is variance balanced 

if all elementary pairwise treatment comparisons are made with the same precision (i.e. 

if all variances of pairwise treatment differences are equal). In this case ê - = e for all i,j. 

When the design is variance balanced it may be shown that the information matrix for 

treatment effects of a balanced design can be written in the form C = Cil + C2J, where 

ci and C2 are constants. 

2.1.3 Randomised Block Design 

In a randomised block design the treatments in the experiment are replicated the same 

number of times within each block. Treatments are assigned to the plots within the blocks 

at random to avoid the introduction of systematic error. In the designs studied in later 

Chapters there are treatments replicated r times in 6 equally sized blocks of A; plots. 

11 



Therefore r"̂  = rl^, k"̂  = /clt, and N = because every treatment occurs once in each 

block of the design. The information matrix for treatment effects can be expressed as 

C = rly 3 t,̂V — ~ĵ 3v,v (2.17) 

To solve these reduced normal equations and estimate the differences between any pair of 

treatments, a generalised inverse can be used. A simple generalised inverse is I„/r, and 

consequently all variances of pairwise treatment comparisons, f j — f j , are 2cr^/r. 

2.1.4 Balanced Incomplete Block Des ign 

When an incomplete block design is required, there is only a small set of design parameters 

where a balanced incomplete block design may be selected. There are three conditions 

that need to hold for an incomplete block design to be a BIB design; these are 

1. every treatment label occurs at most once in each block, 

2. every treatment occurs exactly r times, and 

3. each pair of treatments occurs together in A blocks of the starting design. 

There are five parameters for a BIB design. The number of treatments v, the number of 

blocks b, treatment replication r, block size k, and the pairing parameter A. There are 

three relationships based on the parameters, vr = bk, X{v — 1) = r{k — 1), and k < v. A 

BIB design is symmetric if the number of treatments is equal to the number of blocks in 

the starting design, i.e. v = b. Symmetric BIB designs are useful for constructing Youden 

square designs which are discussed later in this Chapter. Equal block sizes and treatment 

replication simplifies the information matrix for treatment effects to 

C - - ^ N N ' (2.18) 
k 

The matrix N N ' is the concurrence matrix, which records the number of times that two 

treatments occur together in a block for a binary design. All treatments are replicated r 

times in the initial design, and every pair occurs together in A blocks of the design. The 
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concurrence matrix of a complete BIB design can be expressed as 

N N ' = (r — A)I^ + (2.19) 

Substitute Equation (2.19) into Equation (2.18) and, after simplification, the information 

matrix for treatment effects is 

C = —{fit, — (2.20) 

To solve the normal equations a generalised inverse of the form 

O = —-I^ (2.21) 

can be used. The variances of all pairwise treatment comparisons are e = 2A;cr̂ /t;A. The 

efficiency of a complete BIB design relative to a completely randomised block design is 

vX/kr. The effect of missing data on BIB designs is studied in detail in Chapter 3. 

2.2 Row-and-column Designs 

When there are two orthogonal blocking factors, a row-column design can be used. The 

plots are arranged in a rectangular array. The two blocking systems are referred to as 

rows and columns, and a standard additive model for the data from a row-column design 

with V treatments with r rows and c columns is 

%(/) = + Pi + 7; + T'(() + (2.22) 

(% = 1,-- - , r ; j = l , - - - ,c) 

where the model parameters //, p,, 'yj, and T(() are the overall mean, the effect of the 

row, the effect of the jth column, and the effect of the Ith treatment applied to the plot 

in the row and column of the row-column design respectively. The experimental 

error is represented by and the model can be written in matrix form 

y = X a + e (2.23) 

where y is a vector of the n = r x c observations, a = (/̂ , , Pr, Ti, ' , Tc ^i, " , r^)' 
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is the vector of model parameters, and X is the design matrix. 

2.2.1 Reduced Normal Equat ions 

To estimate the treatment effects, the row and column parameters need to be eliminated 

from the full normal equations. The design matrix and vector of model parameters can be 

partitioned appropriately to simplify the elimination of the row and column parameters. 

The components of the full normal equations can therefore be written as 

(X'X) 

InX^ InXT 

x; ,x^ x ; , x . 

x ; x . x ; x ^ x ; x . 

X'^Xp x ; x ^ x;.Xr 

(2.24) 

and 

X'y = A P 7 T (2.25) 

To estimate the treatment means, the row and column effects are eliminated from these 

normal equations. The number of observations in a given design is 1^1„ = n, and the 

number of units in each row and column and treatment replication are given by the vectors 

r, c, and t respectively. These three vectors can be expressed using the treatment, row, 

and column design matrices, i.e. r = X^l^, c — X^l„, and t = X^l„. 

To simplify the normal equations, define three diagonal matrices = X^Xp, = 

X^X^, and = Xi^X^ whose elements are the number of units in each row, the number 

of units in each column, and the number of replicates of each treatment respectively. 

Let N i = X'^Xp and Ng = X^X^ be the incidence matrices for the row and column 

components of the design. The (i,j)th element of the matrix Ni records the number of 

occurrences of the ith treatment in the jth row, and similarly, the (i,j)th element of the 

matrix Ng records the number of occurrences of the ith treatment in the jth column of the 

starting design. The (i,j)th element of Ng = X'^Xp is equal to 1 if there is an observation 

in the column and row of the design and 0 otherwise. The full normal equations 

14 



can therefore be written as 

nfi + r ' p + c'7 + t ' f = Q (2.26) 

r/l + r'p + (2.27) 

c/i + Nsp + c^7 + Ngf = C (2.28) 

t// + N i p + N27 + t'̂ T = 7" (2.29) 

To estimate treatment effects, the row parameters p need to be eliminated from Equations 

(2.28) and (2.29). Premultiply Equation (2.27) by and by to get 

c/l + Nsp + N s r - ' N ^ i + Ngr-'N^f = Ngr-'Te (2.30) 

t/1 + N i p + Nir - 'N^7 + N i r - ' N ^ f = (2.31) 

where Nir"'^r = Ni l^ = t and Ngr '̂̂ r = Nalg = c. Subtract Equation (2.31) from 

Equation (2.29) and Equation (2.30) from Equation (2.28) to leave a set of simultaneous 

equations in the column and treatment parameters 7 and T, given by 

(Nz - Nir- 'N^)7 + (t' - N i r - ' N ; ) f = T - (2.32) 

(c' - N3r-'N^)7 + (N^ - N3r- 'N; ) f = C - (2.33) 

After the column parameters, 7, are removed from these equations, the information matrix 

for treatment effects is given by 

C = t ' - N i r - ' N ; - (Nz - Nir- 'N^)(c' - N3r-'N^)"(N^ - Nsr-'N^) (2.34) 

where D" represents a generalised inverse, and this expression can be used for situations 

where data are missing. 

2.2.2 Lat in Square Design 

In a Latin square design, all r treatments occur exactly once in every row and column 

and are all replicated the same number of times, r. When this class of design is complete, 
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the information matrix for treatment effects simplifies substantially to 

C = rlr - Jr,r (2.35) 

where Ir is a r x r identity matrix and Jr_r is a r x r matrix of ones. A simple generalised 

inverse O for a complete single rephcate Latin square design is Ir/r, and all pairwise 

treatments comparisons are measured with the same variance, 2cr^/r. The effect of missing 

data on Latin square designs is investigated in Chapter 4. It is also possible to use multiple 

squares to construct row-column designs. If there are k complete Latin squares, then the 

information matrix for treatment effects is given by 

C = - Wr.r (2.36) 

and the variances of all pairwise treatment comparisons are 2cr̂ /A;r. The inSuence of 

missing data on these designs is considered in Chapter 5. 

2.2.3 Youden Square Design 

A Youden square is an amalgamation of a symmetric BIB design and a RED and can be 

used to construct a row-column design when all treatments cannot be accommodated in 

the rows. The information matrix for treatment effects, when the design is complete, can 

be written as 

C = - y J,, , (2.37) 

Two common ways to construct Youden squares are (a) rearrangement of the treatments 

within the blocks of a symmetric BIB design, and (b) the removal of one column from a 

Latin square. Missing data in Youden square designs is investigated in Chapter 6. 
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Chapter 3 

Robustness of Block Designs to 

Missing Observations 

This Chapter considers the effect of missing data scattered throughout a binary variance 

balanced block design. Whittinghill (1989, 1995) and Prescott and Mansson (2001b) 

studied the situation where one, two, or three observations are removed from a BIB 

design in detail. Majorisation theory was used by Whittinghill (1995) to identify the 

best and worst conGgurations of a fixed number of missing values. A complete ordering 

of all potential configurations of two missing observations in a BIB design was given by 

Whittinghill (1995), using the average variance of pairwise treatment comparisons as the 

criterion. Prescott and Mansson (2001b) demonstrated that, although the majorisation 

approach gave the best and worst configurations for t missing values in general, a complete 

ordering of all cases was not always possible. 

The different measures of robustness used to study block designs are covered in the 

next Section, and the loss of all observations in a block of a RB or BIB design is considered 

to extend the work of Bhaumik and Whittinghill (1991) and Das and Kageyama (1992). 

Expressions for the variances of pairwise treatment differences, as well as the average 

variance and relative efficiency of the resulting designs are derived. The normal equations 

are solved to compute these formulae, and a generalised inverse (g-inverse), denoted by O, 

is necessary because the information matrix for treatment effects is singular. Although the 

estimates of treatment effects, f , are not unique, the variances of elementary treatment 

contrasts are invariant to the choice of generalised inverse. Derivation of the variance 

formulae will be shown to be simplified by a sensible selection of g-inverse. 
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The theoretical results for the RED are applied to starting designs with a range of block 

sizes and number of treatments. A detailed example will conclude the Chapter using a 

particular BIB design to illustrate the theoretical results of Prescott and Mansson (2001b) 

and the limitations of the majorisation approach for ordering different configurations of t 

missing values. 

3.1 Measures of Robustness 

In a block design, the aim is to compare a set of v treatments. The precision of any 

pairwise comparison, between treatments Tj and Tj say, is measured by the variance of the 

estimate of the treatment difference, given by f, — tj. To investigate the robustness of a 

particular starting design to missing observations, the alterations to the (i; x i;) information 

matrix for treatment effects need to be considered. For a general block experiment, this 

information matrix is given by 

C = / - N k - ' N ' (3.1) 

The average variance of pairwise treatment differences is commonly used in assessing the 

A-efficiency of different designs. It can be defined using the non-zero eigenvalues of the 

information matrix for treatment effects. For a design d, the average variance is given by 

(3.2) 

where are the v — 1 non-zero eigenvalues of the information matrix for treatment 

effects. The sum of these eigenvalues is v{v — l)X/k — t for any design resulting from the 

removal of t observations. The configuration of missing values dictates the form of the 

affected eigenvalues, and consequently the average variance. Two designs, and (̂ 2 say, 

can be compared by calculating the ratio of their average variances, which is known aa 

the relative efficiency of the two designs. If the relative efficiency is expressed as 

v-l 1 Ev—i 
t=:l R.E.(di to (fg) = (3.3) 

Ei;—i 
( = 1 Hi(di) 

then (fi is less (more) efiBcient than if the ratio is less (greater) than one. The universal 

optimality result used by Whittinghill (1995) implies that the relative efficiency of and 
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(̂ 2 is greater than or equal to one if 

v—l v—\ 
<: (:3.4) 

i=p 

(p = 1, • • • , f — 1) 

If the design o(i is less e@cient then 0(2, the vector of eigenvalues for di majorises the 

vector of eigenvalues for dg-

To study the effect of drop-out on a given design, it may be practical to express the 

information matrix as a sum of block information matrices, i.e. 

b 
(] == (32 - - 4- == (:3.5) 

where Cj is the information matrix for the jth block of the starting design. Blocks are 

considered separately to assess the impact of the missing data, and are combined to 

derive the overall form of the information matrix. The different robustness criterion are 

calculated from the information matrix for treatment effects. In general, let t observations 

be removed from the initial design, with tj removed from the jth block. Suppose that 

is the information matrix for block j after the removal of the tj missing observations. Let 

Aj be the difference between the matrices Cj and representing the impact of losing 

tj observations from the jth block. Therefore, the information matrix of the resulting 

design, is given by 

b b 
Cd(() = c - ^ ( C , . - cj")) = C - ^ A j = C - A j (3.6) 

j=i j=i 

where A j = Yl^j=i A j . Adjustments to the non-zero eigenvalues of the information matrix 

can be found by investigating the alterations to the eigenvalues of the adjustment matrices, 

Aj. Whittinghill (1995, page 25) gave the next result for a single block adjustment matrix. 

Lemma 3.1 Let t scattered observations be removed from the first bo blocks of d , a 

1. The mth eigenvalue of Aj is such that fijn{Aj) = 1 for 1 < m < tj and ^rn{Aj) = 0 
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/ o r + 1 < m < %;. T'Aere/ore zg aemWeyzm^e, on(f ( r o c e ( A j ) = ( j , 

1 < ; < 60. 

A j %s pogî iue semWe^nz^e, ond (roce(Aj) = (. 

These results were used by Whittinghill (1995) to identify the best and worst cases of ^ 

missing values. For some designs, however, these configurations of missing values are not 

realisable. These cases are given in the next Lemma of Whittinghill (1995, page 26). 

L e m m a 3 . 2 The bounding cases are 

1. The worst situation is where one observation is removed from each of t identical 

OMcf eacA mzagmg co?Tegponc(s (o (Ae aome ^ere (Ae 

gum 0/ (Ae (feno^ed A^, ancf ore 

/^i(Aj) = ( and //m(Aj) = 0 m = 2, - - - , 

One 0/ Âe (u;o 6egf c&sea occ?/rg tuAen t o6gerfa(%ona are remo%;e(f /rom (Ae game 

6ZocA;. Eipenfa/ueg 0/ (Ae aum 0/ fAe ao(;twfmem( mo^rzceg, cfenofecf Aj", are 

/im(Aj) = 1 m = 1, - • • ,t and /^^(Aj") = 0 otherwise 

TAe ô Aer 6eg( cage za wAere one obaerua^zon remowecf /rom eacA 0/1 6ZocA;g wAzcA 

Aat;e (fzajoW ge(g 0 / frea(men(g. TAe e2^en%;aZtiea 0 / A ^ , (Ae ô eraZZ a( '̂«g(menf 

ma^nr, are aZgo 

//m(A*) — 1 m = 1, - " , ( and / /^(A^) = 0 o^Aerwzse 

The information matrices of all connected resulting designs have a common form, and 

their eigenvalues are given by a result from Das and Kageyama (1992). 

L e m m a 3 . 3 Let u, Ci, • • • , c„ be positive integers, ai, • • • , Uu, 6%, - - - , 6^ real constants, 
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consWer (Ae (c x c) 

A 

Gllci + 611 Jci,ci bi23ci,C2 

2̂1 Jc2 ,ci 2̂ Ic2 + 622 J C2 ,C2 

Jcu,Cl bu2^Cu,C2 

blu^Cl,Cu 

2̂u Jc2,Cu 

^vXc.,, "1" ÛU J 
UU^Cu,Cu 

(3.7) 

wAere c = ci + H oncf (it x rnafTii B = (6^) zg g^mme(nc. TAe ezpeM îo/iies 

of the matrix A are a, with multiplicity q — 1 together with the eigenvalues of A = 

Da + where — diag{ai,--- ,a„), = diag{ci,--- ,c„); and — 

When the eigenvalues of the information matrix are known, it may often be possible to 

use majorisation to rank different configurations of t missing observations. • Individual 

variances of pairwise treatment comparisons can also be computed theoretically. These 

will give the range of possible variances, and the maximum shows how badly the initial 

design is affected by a given configuration of t missing values. To derive these formulae, 

a generalised inverse, Q, of the information matrix for t reatment effects is required. A 

suitably defined contrast matrix F can then be used to select the appropriate elements of 

f2 to generate the variances of all pairwise differences. A useful result for this approach is 

Theorem 3.1 Given a singular matrix then for any constant a ^ 0, 

H - = (H + aJ)-^ (3.8) 

o mferge 0/ H, lu/iere J za o 0/ orzea. 

A sensible choice of a will simplify the form of the particular inverse, and the derivation 

of the variances of pairwise treatment comparisons. It is prudent to choose the constant 

a to eliminate a many of the elements of the information matrix. The following Theorems 

concerning inverses of patterned matrices, given by Graybill (1983), will be useful in 

determining a generalised inverse of the information matrix for different configurations of 

missing values. 
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Theorem 3.2 Let D be a {m + n) x (m + n) matrix defined 

D 
Glim ^2^771 

^2^n,m Ggly; 
(3.9) 

wAere <13 ̂  0, ancf n > 0. 7Ae m^̂ erse 07i(f onZ?/ %/' ^ 0 OMcf <21 ̂  mndg/os. 7/" 

63725(5, (A6n 25 ẑ?;en 61/ 

D 
— Im + biJr, 

2̂ Jn,m 
03 

2̂ Jm,n 

In + &3Jn,n 

where 

MOo 
ai(7?ina2 — 01(13) 

02 

[mna% 01(23) 

mo;; 

03(771)202 — 0103) 

Theorem 3.3 Given a non-singular matrix of the form 

D 
C^llm Pll^m,m Pl2^m,n 

/̂ 21 Jn,m 0̂ 2In 4" f^22^n,T, 

then there exists an inverse D ^ with a similar form 

D -1 '̂ llm ~l~ 1̂1 Jm,m 1̂2 Jm,n 

2̂1 Jn.m Ogln + 2̂2 

w/̂ ere Oi = 02 = (3:2 (iM(f 

CK2A1 + )T'Al A2 — )T'/)l2,̂ 21 
m 

ai(0:10:2 + MO!i;822 + mO!2/)ll + 77^7lAl/̂ 22 - ?T̂ M/3i2Al 

/̂ 12 
1̂2 

m 

(0!i0!2 + 72ai/322 + MT'CK2Al + ^ 2 " m)2/)i2Al) 

2̂1 
(0!l0!2 + 720:i/322 + y)̂ 0:2Al + 771M,9iî 22 "" )TT')̂ /)l2̂ 2l) 

(3.10) 

(3.11) 

(3.12) 
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, Of; .922 + A2 — 
O22 — 

0:2(aiQ!2 + )̂ Q!l/;22 + ^0^2^! + n^^AlA2 " 7?%7lA2/)2l) 

3.2 Loss of Complete Blocks 

There are situations where all the observations within one or more blocks of the starting 

design are lost. Bhaumik and Whittinghill (1991) considered the removal of complete 

blocks from binary, variance balanced incomplete block designs, and used the vector of 

eigenvalues of the information matrix for treatment effects, C, to compare the different 

situations. The average variance of a design is larger than that of another design dg, 

if the vector of eigenvalues of di is majorised by the corresponding vector of eigenvalues 

for the other design dg. 

When ( blocks are removed from the starting design, there are possible resulting 

designs. Bhaumik and Whittinghill (1991) concentrated on the best and worst of these 

configurations, and showed that the loss of t identical blocks was the worst (largest average 

variance of treatment comparisons) case and that the best (smallest average variance) 

situation was where the treatment sets of the t blocks were mutually disjoint. 

Das and Kageyama (1992) considered the loss of any number of observations from 

a single block of a BIB design and extended BIB designs. The measure of robustness 

was the relative efficiency of the resulting design. Their special case corresponded to the 

removal of one block from the starting design. 

In this section, variances of the individual pairwise treatment comparisons are derived 

for some of the situations covered by Bhaumik and Whittinghill (1991) and Das and 

Kageyama (1992). These provide more detailed information about the effect of losing 

blocks, because the maximum increase in variances may be concealed when the average 

variance is used for comparison. 

3.2.1 Loss of blocks f rom a R B D 

A simple design is the RBD, introduced in Section 2.1.3, where there are v treatments 

allocated one to a plot in each of the 6 blocks. There are r = 6 replicates of every treatment 

and k = V units in all blocks of the starting design. When one block is removed, the 

23 



Table 3.1: Average variance and relative efficiency for RBDs after the loss of one or two 

3 4 
Replicates, r = b 

5 6 7 8 

t = 1 block 
A.V. 0.667(7^ 0.500(7^ 0.400(7^ 0.333(7^ 0.286(7^ 
R.E. (0.667) (0.750) (0.800) (0.833) (0.857) (0.875) 

t = 2 blocks 
A.V. (7̂  0.667(7^ 0.500(7^ 0.400(7^ 0.333(7^ 
R.E. (0.333) (0.500) (0.600) (0.667) (0.714) (0.750) 

information matrix for treatment effects is altered to 

(r -- 1) 
Cd = (r - 1)1% (3.13) 

and the average variance of pairwise treatment differences increases to 2cr^/(r—1), because 

all of the v{v — l)/2 individual variances are 2o^/{r — 1). The average is dependent only 

on the number of replicates of each treatment in the design. Table 3.1 shows these values 

for different replication in RBDs. More generally, when t blocks, which are all necessarily 

identical, are removed, the information matrix for the resulting designs corresponding to 

every realisable combination of lost blocks is given by 

C d = ( r - ( ) L - J (3.14) 

The average variance increases from jr in the complete design to 2(7^/(r — t), and the 

efficiency relative to the complete design is (r — t)/r. Although the resulting designs when 

^ blocks are lost are always variance balanced, the loss of complete blocks correspond to 

the most serious way to lose observations, as shown by Bhaumik and Whittinghill (1991). 

3.2.2 Loss of blocks f rom a B I B design 

The adjustments to the information matrix when a single block is lost from a BIB design 

were derived by Bhaumik and Whittinghill (1991) and Das and Kageyama (1992). If 

we assume that the missing block contained the first k treatments, then the information 
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Table 3.2: Formulae for the variances of pairwise treatment comparisons in a BIB design 
when a single block, assumed to contain the first k treatments, is removed from the initial 
design. 

Individual Pairwise Variances 
Treatment i Treatment j Variance Number 

(i) 1, - - - , A: 1, • • • ,k 
\v—k 

(ii) + 

(iii) /c + 1, • • • ,u k + 1, - • • ,v 

Xv[k—\v) 

k{k — l ) /2 

— A) 

{v — k){v — k — l ) /2 
Average Variance 
2k{k^—vk+\v'^—\v) 2 

Xv{\v—k){v—l) 

Relative Efficiency 

1 -
(^~i) 

b{k—l)—v+k 

matrix is given by 

(Xv—k) T 
u ^k 

(A-1) 
k • 't.t 

A T —T , 
u ̂ v—k 

A T , , 
t.i/—K 

(3.15) 

The non-zero eigenvalues of are Xv/k and \v/k — l with multiplicities v — k and k — 1 

respectively. To find a generalised inverse, fl , of C^, add f to the information matrix 

Cd- The inverse of the resulting non-singular matrix is a generalised inverse of Cj . This 

particular generalised inverse is given by 

O (Xv—k) ^ 

o„_ 

k T M 

v—k,k \v Lv-k 

(3.16) 

The variances of the individual pairwise treatment comparisons using this generalised 

inverse are given in Table 3.2. There are three forms for these variances depending on 

whether the two treatments being compared were in the affected block. 

Table 3.3 shows the effect on variances of the pairwise treatment differences after the 

loss of a block from a selection of BIB designs. The first two designs in the Table have four 

treatments, each with three replicates. One has six blocks of two plots, and the other four 

blocks of three plots. The average variances for the complete designs are and 0.75cr^ 
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respectively. When a single block is lost from these two starting designs, the eSciencies 

of the resulting designs are 75% and 71% respectively, although the Erst design loses two 

units and the other three. However, the maximum of the variances for the Grst design 

increases to 2(7̂ , whereas the maximum is only 1.2(7^ for the second starting design. In 

the second design, all treatments occur together in two blocks of the starting design. 

Comparing the two symmetric BIB designs with seven treatments and three or four 

replicates shows that the larger design loses less eSiciency. This is because the second 

design has A = 2, so that all pairs of treatments are always compared directly regardless 

of which block is lost. The average variance of a complete BIB design is 2A:(7̂ /Au, so the 

larger design has a substantially lower average variance. 

Bhaumik and Whittinghill (1991) also considered the loss of two blocks from BIB 

designs, and the same approach could be used to derive expressions for the variances of 

treatment diSFerences. The loss of efficiency will depend on the number of treatments 

common to the pair of missing blocks. They concluded that blocks should have as few 

treatments in common as possible to minimise the impact of losing two blocks. 

3.3 Randomised Block Designs and Missing Values 

The effect of drop-out on a randomised block design (RED) is covered in this Section. 

Properties of the designs, resulting from the removal of ^ observations depend on 

the configuration of the missing values. All distinct configurations of one, two, or three 

missing observations are considered, and the different resulting designs are denoted by 

d{t; c), where t is the number of missing values and c is the sub-case corresponding to a 

particular configuration. 

The average and maximum variances of pairwise treatment differences are derived 

theoretically in terms of some or all the design parameters, and numerically for all ways 

of losing up to three observations. 

3.3.1 Loss of one plot f rom a R B D 

The variances that are increased after the loss of a single observation depend on the actual 

treatment that has been lost. However, the average and maximum variances are the same 

for any configuration produced by removing one of the plots in the starting design. 

26 



Table 3.3: Average and pairwise variances 
complete block of observations become unav 
by cr̂ . 

(and efRciencies) for BIB designs where a 
'ailable. The variances need to be multiplied 

Parameters Average V ariances of pairwise comparisons 
V b r A; A Variance (i) num (ii) num (iii) num 

4 6 3 2 1 1.3333 2.0000 1 1.2500 4 1.0000 1 
(0.7500) (0.5000) (0.8000) (1.000) 

4 4 3 3 2 1.0500 1.2000 3 0.9000 3 
(0.7143) (0.6250) (0.8333) 

5 10 4 2 1 0.9333 1.3333 1 0.9333 6 0.8000 3 
(0.8571) (0.6000) (0.8571) (1.000) 

5 5 4 4 3 0.6788 0.7273 6 0.6061 4 
(0.7857) (0.7333) (0.8799) 

5 10 6 3 3 0.4500 0.5000 3 0.4333 6 0.4000 1 
(0.8889) (0.8000) (0.9231) (1.000) 

6 15 5 2 1 0.7333 1.0000 1 0.7500 8 0.6667 6 
(0.9091) (0.6667) (0.8889) (1.000) 

6 10 5 3 2 0.5667 0.6667 3 0.5556 9 0.5000 3 
(0.8824) (0.7500) (0.8889) (1.000) 

6 6 5 5 4 0.5044 0.5263 10 0.4605 5 
(0.8261) (0.7918) (0.9049) 

6 15 10 4 6 0.2389 0.2500 6 0.2326 8 0.2222 1 
(0.9302) (0.8888) (0.9553) (1.000) 

7 7 3 3 1 1.0714 1.5000 3 1.0714 12 0.8571 6 
(0.8000) (0.5714) (0.8000) (1.000) 

7 7 4 4 2 0.6857 0.8000 6 0.6571 12 0.5714 3 
(0.8333) (0.7143) (0.8696) (1.000) 

7 21 6 2 1 0.6095 0.8000 1 0.6286 10 0.5714 10 

(0.9375) (0.7143) (0.9090) (1.000) 
7 7 6 6 5 0.4020 0.4138 15 0.3724 6 

(0.8529) (0.8287) (0.9208) 
7 21 15 5 10 0.1502 0.1538 10 0.1473 10 0.1429 1 

(0.9512) (0.9291) (0.9701) (1.000) 
8 28 7 2 1 0.5238 0.6667 1 0.5417 12 0.5000 15 

(0.9545) (0.7500) (0.9230) (1.000) 
8 14 7 4 3 0.3619 0.4000 6 0.3583 16 0.3333 6 

(0.9211) (0.8333) (0.9302) (1.000) 
8 8 7 7 6 0.3343 0.3415 21 0.3130 7 

(0.8723) (0.8542) (0.9319) 
9 12 4 3 1 0.7500 1.0000 3 0.7778 18 0.6667 15 

(0.8889) (0.6667) (0.8572) (1.000) 
9 36 8 2 1 0.4603 0.5714 1 0.4762 14 0.4444 21 

(0.9655) (0.7777) (0.9332) (1.000) 
9 18 8 4 3 0.3156 0.3478 6 0.3156 20 0.2963 10 

(0.9388) (0.8519) (0.9388) (1.000) 
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Table 3.4: Variances of pairwise treatment comparisons in a RED design where a single 
observation, assumed to correspond to the first treatment, is lost from the design. 

Treatment i 
Individual Pairwise Variances 

Treatment j Variance Number 

1 2, - 2{bv~b—v+2) 2 
b(6-l)(r-l) ° (%, - 1) 

2, - - 2, - - ,2; - ! ) ( ? , - 2 ) / 2 
Average Variance 

2(vb—b—v+2) 2 
fa{b—1) 

Relative Efficiency 
1 1 

{vb—b—v+2) 

Given a complete randomised block design, the f — 1 non-zero eigenvalues, denoted 

by (% = 1, - — 1), of the information matrix for treatment effects are all equal 

to 6. When one observation is removed from the starting design, one of the eigenvalues 

decreases to 6 — 1 for all resulting designs o!(l). To derive expressions for the variances of 

pairwise treatment differences, a generalised inverse of the information matrix is required. 

Setting a = (6 — 1)/?; in Theorem (3.1), and computing the inverse of the resulting matrix 

gives a generalised inverse 

Q 
OL (6-1) 

0,;-! + l,{b-l)iv-l) 

(3.17) 

This generalised inverse is used to generate the variances given in Table 3.4. To assess 

the effect of losing a single observation, the average and maximum variances are given in 

Table 3.5 for a range of design sizes, with efficiencies for both the values compared with 

those in the complete design. A starting design with three treatments and two blocks 

is seriously affected by the loss of one of its six plots. Assuming that one replicate of 

the first treatment is removed, then the average variance increases from in the initial 

design, to l.Scr ,̂ and the largest of the pairwise variances is 1.75<7 .̂ This design incurs 

a 33% reduction in overall efficiency. If an extra block were included in the design, then 

the loss of efficiency would be 20%. Additional blocks would reduce this loss further, but 

the benefits become smaller as the total number of blocks increases. The difference in 

robustness between designs with two and three blocks are noticeable for any number of 
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Table 3.5: Average and maximum variances of pairwise differences, and their relative 
efBciencies in parentheses for one missing value in RBDs with various combinations of 
treatments and blocks. All variances to be multiplied by cr̂ . 

Number of Blocks 
Treatments 2 3 4 5 6 7 8 

3 1.5000 0.8333 0.5833 0.4500 0.3667 0.3095 0.2679 
(0.6667) (0.8000) (0.8571) (0.8889) (0.9091) (0.9231) (0.9333) 
1.7500 0.9167 0.6250 0.4750 0.3833 0.3214 0.2768 

(0.5714) (0.7273) (0.8000) (0.8421) (0.8696) (0.8889) (0.9032) 
4 1.3333 0.7778 0.5556 0.4333 0.3556 0.3016 0.2619 

(0.7500) (0.8571) (0.9000) (0.9231) (0.9375) (0.9474) (0.9545) 
1.6667 0.8889 0.6111 0.4667 0.3778 0.3175 0.2738 

(0.6000) (0.7500) (0.8182) (0.8571) (0.8824) (0.9000) (0.9130) 
5 1.2500 0.7500 0.5417 0.4250 0.3500 0.2976 0.2589 

(0.8000) (0.8889) (0.9231) (0.9412) (0.9524) (0.9600) (0.9655) 
1.6250 0.8750 0.6042 0.4625 0.3750 0.3155 0.2723 

(0.6154) (0.7619) (0.8276) (0.8649) (0.8889) (0.9057) (0.9180) 
6 1.2000 0.7333 0.5333 0.4200 0.3467 0.2952 0.2571 

(0.8333) (0.9091) (0.9375) (0.9524) (0.9615) (0.9677) (0.9722) 
1.6000 0.8667 0.6000 0.4600 0.3733 0.3143 0.2714 

(0.6250) (0.7692) (0.8333) (0.8696) (0.8929) (0.9091) (0.9211) 
7 1.1667 0.7222 0.5278 0.4167 0.3444 0.2937 0.2560 

(0.8571) (0.9231) (0.9474) (0.9600) (0.9677) (0.9730) (0.9767) 
1.5833 0.8611 0.5972 0.4583 0.3722 0.3135 0.2708 

(0.6316) (0.7742) (0.8372) (0.8727) (0.8955) (0.9114) (0.9231) 
8 1.1429 0.7143 0.5238 0.4143 0.3429 0.2925 0.2551 

(0.8750) (0.9333) (0.9545) (0.9655) (0.9722) (0.9767) (0.9800) 
1.5714 0.8571 0.5952 0.4571 0.3714 0.3129 0.2704 

(0.6364) (0.7778) (0.8400) (0.8750) (0.8974) (0.9130) (0.9245) 
9 1.1250 0.7083 0.5208 0.4125 0.3417 0.2917 0.2545 

(0.8889) (0.9412) (0.9600) (0.9697) (0.9756) (0.9796) (0.9825) 
1.5625 0.8542 0.5938 0.4562 0.3708 0.3125 0.2701 

(0.6400) (0.7805) (0.8421) (0.8767) (0.8989) (0.9143) (0.9256) 
10 1.1111 0.7037 0.5185 0.4111 0.3407 0.2910 0.2540 

(0.9000) (0.9474) (0.9643) (0.9730) (0.9783) (0.9818) (0.9844) 
1.5556 0.8519 0.5926 0.4556 0.3704 0.3122 0.2698 

(0.6429) (0.7826) (0.8438) (0.8780) (0.9000) (0.9153) (0.9265) 
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treatments given in Table 3.5. When there are a large number of treatments and blocks, 

the beneAts of including another block in the starting design are small. 

3.3.2 Two missing values in a R B D 

There are three distinct classes of resulting design, denoted by c((2; 1), <̂ (2; 2), and o((2; 3), 

when two observations are lost from a RBD. The structure of a RBD ensures that these 

three configurations of missing values can be investigated using only the 6rst two blocks 

and treatments of the design, because other conHgurations can be adjusted by relabelling 

the treatments and/or the blocks to be the same as these three classes. The three caaes 

occur when 

1. the missing values are for different treatments and occur in the same block of the 

starting design, d{2; 1), 

2. two observations are lost from different blocks and they correspond to different 

treatments, d{2]2), and 

3. two replicates of one treatment are removed from different blocks, d{2;3). 

In all of these three cases, two of the non-zero eigenvalues of the information matrix for 

treatment effects are altered, and can be written in the form 

/iiy_2 = & — 1 + a: and = 6 — 1 — re (3.18) 

where x is dependant on the configuration of missing observations. Majorisation can be 

used on the vectors of eigenvalues corresponding to these three situations to show that 

the best class of resulting designs is (f(2; 1), and that the worst conBgurations correspond 

to d(2;3), when average variance or relative eKciency is used to compare the resulting 

designs. 

The values of x for these configurations of missing values are given in Table 3.6. For 

(i(2; 2), z is greater than zero for any number of treatments, and is strictly less than one if 

there are three or more treatments in the starting design. Formulae for the variances of the 

pairwise treatment comparisons are also given in Table 3.6, and these or the eigenvalues 

of the information matrix can be used to derive the average variance formulae shown in 
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Table 3.6: Formulae for all distinct variances of pairwise treatment comparisons when two 
observations are lost from a RBD. 

Treatments 
Case 7̂  7j 

Pairwise 
Variance 

Number of 
Comparisons 

(f(2;l) 1 2 1 

1,2 3, - u {2bv—4b—v+3) 2 
6(6-l)(r-2) ^ 2(i; - 2) 

3, - 3, - - 'y ( ? , - 2 ) ( ? ; - 3 ) / 2 

Value of T 0 

Average Variance {vb—v—b+3) 

6(6-1) 

Relative Efficiency («—1)(6—1) 
{vb—v—b+3) 

No of Configurations bv{v—l) 
2 

4 2 ; 2) 1 2 1 

-1 ri Q (26̂ ?;̂ -4ĥ ii+26̂ —36D̂ +76t)—46+1)̂ —3u) 2 n(„, n\ 
1,Z d , 6 ( 6 u - 6 - u + 2 ) ( h , - 6 - i , ) / 

3 , " 3 , -

Value of X 

(v-2)(v-S)l2 

1 
r— 1 

Average Variance 

Relative Efficiency 

No of ConGgurations 

{v^ b'^ —2v^ b—3v'^ +8v'^b+3vb^ — lOvb+v^ —b'^ +'lb+6v) 2 ^2 
b{vb—b—v){vb—v—b+2) v—1 

{v—l){vb—b—v){vb—v—b+2) 
(v^b^—2v^b—3v'^b^+8v'^b-\-3vb'^ — 10vb+v^ —5v^—b'^+Ab+6v) 

bv(v—l){b—l) 

2_ 
cg(2;3) 1 2 , . . . , 2 ; 

2, - - , f 2, - - - , u 

Value of a; 

Average Variance 

Relative Efficiency 

Configurations 

2{bv—b-v+2) 2 

0 

- 1 ) 

( u - 2)/2 

(vb—2v—b+4) 2 2 
6(6-2) 

(r-lX6-2) 
{vb—2v—b+i) 

bv{b—l) 
9. 
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the Table. All formulae are shown in terms of the number of blocks and treatments in 

the initial design only, because the number of replicates of each treatment and the block 

sizes are related to these two parameters. The number of configurations corresponding to 

each case is also given to show the distribution of average variances under the assumption 

of drop-out completely at random. 

Tables 3.7 - 3.12 contain numerical values for the measures of interest for RBDs based 

on a range of different design parameters. Designs where there are only a small number of 

treatments and blocks are seriously affected by the removal of two observations. The best 

configuration of two missing values in a design with three treatments and three blocks 

suffers a reduction of 33% in efficiency. This loss of efficiency is reduced if there are more 

blocks in the starting design. The loss is 12.5% when the design haa three treatments 

and eight blocks, but there are now 24 rather than 9 plots in the starting design. In the 

worst situation, where two replicates of one of the treatments are missing, the smallest 

tabulated design with three treatments and three blocks, loses 50% of its efficiency. The 

maximum variance of pairwise differences increases from 0.667cr^ in the complete design 

to 1.667(7 .̂ 

The reduction in efficiency due to the worst configuration of two missing observations 

is less severe when there are more treatments and/or blocks in the initial design. An eight 

treatment RED in three blocks loses approximately 23% of its eSciency in the worst case, 

but the maximum variance of pairwise comparisons is 1.4286<7^ compared to 0.667(7^ for 

all comparisons in the complete design. 

3.3.3 Three missing values 

In the situation where three values are removed from a RBD, the many resulting designs 

correspond to one of six distinct configurations of missing values, labelled d(3; i) {i = 

1, • • • ,6). The properties of these six cases of resulting design are studied separately to 

derive the average variance of the pairwise treatment differences. The six sub-cases can 

be investigated using the first three treatments and blocks of the starting design. Any 

configuration of three missing observations can be rearranged by switching the treatment 

labels and blocks to correspond to one of these six sub-cases. The configurations of missing 

values for these six cases are 
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Table 3.7: Average variance, individual variance of pairwise comparisons, and relative 
efBciencies for RBDs with three treatments and a variety of blocks. All variances to be 
multiplied by 

Case d(2;l) 
Blocks Var(EE) No. 

Case d(2;2) 
Var(Eff) No. 

Case d(2;3) 
Var(Eg) No. 

3 
1.0000 
1.0000 

(0.6667) 
(0.6667) 

1 
2 

1.3333 
0.9333 

(0.5000) 
(0.7143) 

1 
2 

1.6667 
0.6667 

(0.4000) 
(1.0000) 

2 
1 

Average 
Number 

1.0000 
9 

(0.6667) 1.0667 
18 

(0.6250) 1.3333 
9 

(0.5000) 

4 
0.6667 
0.6667 

(0.7500) 
(0.7500) 

1 
2 

0.8000 
0.6286 

(0.6250) 
(0.7955) 

1 
2 

0.8750 
0.5000 

(0.5714) 
(1.0000) 

2 
1 

Average 
Number 

0.6667 
12 

(0.7500) 0.6857 
36 

(0.7292) 0.7500 
18 

(0.6667) 

5 
0.5000 
0.5000 

(0.8000) 
(0.8000) 

1 
2 

0.5714 
0.4762 

(0.7000) 
(0.8400) 

1 
2 

0.6000 
0.4000 

(0.6667) 
(1.0000) 

2 
1 

Average 
Number 

0.5000 
15 

(0.8000) 0.5079 
60 

(0.7875) 0.5333 
30 

(0.7500) 

6 
0.4000 
0.4000 

(0.8333) 
(0.8333) 

1 
2 

0.4444 
0.3838 

(0.7500) 
(0.8684) 

1 
2 

0.4583 
0.3333 

(0.7273) 
(1.0000) 

2 
1 

Average 
Number 

0.4000 
18 

(0.8333) 0.4040 
90 

(0.8250) 0.4167 
45 

(0.8000) 

7 
0.3333 
0.3333 

(0.8571) 
(0.8571) 

1 
2 

0.3636 
0.3217 

(0.7857) 
(0.8882) 

1 
2 

0.3714 
0.2857 

(0.7692) 
(1.0000) 

2 
1 

Average 
Number 

0.3333 
21 

(0.8571) 0.3357 
126 

(0.8512) 0.3429 
63 

(0.8333) 

8 
0.2857 
0.2857 

(0.8750) 
(0.8750) 

1 
2 

0.3077 
0.2769 

(0.8125) 
(0.9028) 

1 
2 

0.3125 
0.2500 

(0.8000) 
(1.0000) 

2 
1 

Average 
Number 

0.2857 
24 

(0.8750) 0.2872 
168 

(0.8705) 0.2917 
84 

(0.8571) 
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Table 3.8: Average variance, individual variance of pairwise comparisons, and relative 
efficiencies for RBDs with four treatments and a variety of blocks. All variances to be 
multiplied by cr̂  

Blocks 
Case d(2;l) 

Var(Efr) No. 
Case d(2;2) 

Var(Eg) No. 
Case d(2;3) 

Var(Eg) No. 

3 
1.0000 
0.9167 
0.6667 

(0.6667) 
(0.7273) 
(1.0000) 

1 
4 
1 

1.2000 
0.8952 
0.6667 

(0.5556) 
(0.7447) 
(1.0000) 

1 
4 
1 

1.5556 
0.6667 

(0.4286) 
(1.0000) 

3 
3 

Average 
Number 

0.8889 
18 

(0.7500) 0.9079 
36 

(0.7343) 1.1111 
12 

(0.6000) 

4 
0.6667 
0.6250 
0.5000 

(0.7500) 
(0.8000) 
(1.0000) 

1 
4 
1 

0.7500 
0.6125 
0.5000 

(0.6667) 
(0.8163) 
(1.0000) 

1 
4 
1 

0.8333 
0.5000 

(0.6000) 
(1.0000) 

3 
3 

Average 
Number 

0.6111 
24 

(0.8182) 0.6167 
72 

(0.8108) 0.6667 
24 

(0.7500) 

5 
0.5000 
0.4750 
0.4000 

(0.8000) 
(0.8421) 
(1.0000) 

1 
4 
1 

0.5455 
0.4671 
0.4000 

(0.7333) 
(0.8563) 
(1.0000) 

1 
4 
1 

0.5778 
0.4000 

(0.6923) 
(1.0000) 

3 
3 

Average 
Number 

0.4667 
30 

(0.8571) 0.4690 
120 

(0.8529) 0.4889 
40 

(0.8182) 

6 
0.4000 
0.3833 
0.3333 

(0.8333) 
(0.8696) 
(1.0000) 

1 
4 
1 

0.4286 
0.3780 
0.3333 

(0.7778) 
(0.8819) 
(1.0000) 

1 
4 
1 

0.4444 
0.3333 

(0.7500) 
(1.0000) 

3 
3 

Average 
Number 

0.3778 
36 

(0.8824) 0.3790 
180 

(0.8796) 0.3889 
60 

(0.8571) 

7 
0.3333 
0.3214 
0.2857 

(0.8571) 
(0.8889) 
(1.0000) 

1 
4 
1 

0.3529 
0.3176 
0.2857 

(0.8095) 
(0.8997) 
(1.0000) 

1 
4 
1 

0.3619 
0.2857 

(0.7895) 
(1.0000) 

3 
3 

Average 
Number 

0.3175 
42 

(0.9000) 0.3181 
252 

(0.8981) 0.3238 
84 

(0.8824) 

8 
0.2857 
0.2768 
0.2500 

(0.8750) 
(0.9032) 
(1.0000) 

1 
4 
1 

0.3000 
0.2739 
0.2500 

(0.8333) 
(0.9129) 
(1.0000) 

1 
4 
1 

0.3056 
0.2500 

(0.8182) 
(1.0000) 

3 
3 

Average 
Number 

0.2738 
48 

(0.9130) 0.2742 
336 

(0.9116) 0.2778 
112 

(0.9000) 
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Table 3.9: Average variance, individual variance of pairwise comparisons, and relative 
efBciencies for RBDs with five treatments and a variety of blocks. All variances to be 
multiplied by 

Blocks 
Case d(2;l) 

Var(Eff) No. 
Case d(2;2) 

- Var(Eff) No. 
Case d(2;3) 

Var(Eff) No. 

3 
1.0000 
0.8889 
0.6667 

(0.6667) 
(0.7500) 
(1.0000) 

1 
6 
3 

1.1429 
0.8783 
0.6667 

(0.5833) 
(0.7590) 
(1.0000) 

1 
6 
3 

1.5000 
0.6667 

(0.4444) 
(1.0000) 

4 
6 

Average 
Number 

0.8333 
30 

(0.8000) 0.8413 
60 

(0.7925) 1.0000 
15 

(0.6667) 

4 
0.6667 
0.6111 
0.5000 

(0.7500) 
(0.8182) 
(1.0000) 

1 
6 
3 

0.7273 
0.6049 
0.5000 

(0.6875) 
(0.8266) 
(1.0000) 

1 
6 
3 

0.8125 
0.5000 

(0.6154) 
(1.0000) 

4 
6 

Average 
Number 

0.5833 
40 

(0.8571) 0.5857 
120 

(0.8537) 0.6250 
30 

(0.8000) 

5 
0.5000 
0.4667 
0.4000 

(0.8000) 
(0.8571) 
(1.0000) 

1 
6 
3 

0.5333 
0.4627 
0.4000 

(0.7500) 
(0.8644) 
(1.0000) 

1 
6 
3 

0.5667 
0.4000 

(0.7059) 
(1.0000) 

4 
6 

Average 
Number 

0.4500 
50 

(0.8889) 0.4510 
200 

(0.8870) 0.4667 
50 

(0.8571) 

6 
0.4000 
0.3778 
0.3333 

(0.8333) 
(0.8824) 
(1.0000) 

1 
6 
3 

0.4211 
0.3751 
0.3333 

(0.7917) 
(0.8886) 
(1.0000) 

1 
6 
3 

0.4375 
0.3333 

(0.7619) 
(1.0000) 

4 
6 

Average 
Number 

0.3667 
60 

(0.9091) 0.3672 
300 

(0.9078) 0.3750 
75 

(0.8889) 

7 
0.3333 
0.3175 
0.2857 

(0.8571) 
(0.9000) 
(1.0000) 

1 
6 
3 

0.3478 
0.3155 
0.2857 

(0.8214) 
(0.9055) 
(1.0000) 

1 
6 
3 

0.3571 
0.2857 

(0.8000) 
(1.0000) 

4 
6 

Average 
Number 

0.3095 
70 

(0.9231) 0.3098 
420 

(0.9222) 0.3143 
105 

(0.9091) 

8 
0.2857 
0.2738 
0.2500 

(0.8750) 
(0.9130) 
(1.0000) 

1 
6 
3 

0.2963 
0.2723 
0.2500 

(0.8438) 
(0.9179) 
(1.0000) 

1 
6 
3 

0.3021 
0.2500 

(0.8276) 
(1.0000) 

4 
6 

Average 
Number 

0.2679 
80 

(0.9333) 0.2680 
560 

(0.9327) 0.2708 
140 

(0.9231) 
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Table 3.10: Average variance, individual variance of pairwise comparisons, and relative 
efficiencies for RBDs with six treatments and a variety of blocks. All variances to be 
multiplied by 

Blocks 
Case d(2;l) 

Var(Eff) No. 
Case d(2;2) 

Var(Efr) No. 
Case d(2;3) 

Var(Eg) No. 

3 
1.0000 
0.8750 
0.6667 

(0.6667) 
(0.7619) 
(1.0000) 

1 
8 
6 

L l l l l 
(X8687 
0.6667 

(0.6000) 
(0.7674) 
(1.0000) 

1 
8 
6 

1.4667 
(X6667 

(0.4545) 
(1.0000) 

5 
10 

Average 
Number 

0.8000 
45 

(0.8333) 0.8040 
90 

(0.8291) 0.9333 
18 

(0.7143) 

4 
0.6667 
0.6042 
0.5000 

(0.7500) 
(0.8276) 
(1.0[)00) 

1 
8 
6 

0.7143 
0.6004 
0.5000 

(0.7000) 
(0.8327) 
(1.0000) 

1 
8 
6 

0.8000 
0.5000 

(0.6250) 
(l.OClOO) 

5 
10 

Average 
Number 

0.5667 
60 

(0.8824) 0.5679 
180 

(0.8805) 0.6000 
36 

(0.8333) 

5 
0.5000 
0.4625 
0.4000 

(0.8000) 
(0.8649) 
(1.0000) 

1 
8 
6 

0.5263 
0.4602 
0.4000 

(0.7600) 
(0.8693) 
(1.0000) 

1 
8 
6 

0.5600 
0.4000 

(0.7143) 
(1.0000) 

5 
10 

Average 
Number 

0.4400 
75 

(0.9091) 0.4405 
300 

(0.9081) 0.4533 
60 

(0.8824) 

6 
0.4000 
0.3750 
0.3333 

(0.8333) 
(0.8889) 
(l.OClOO) 

1 
8 
6 

0.4167 
0.3734 
0.3333 

(0.8000) 
(0.8927) 
(l.OClOO) 

1 
8 
6 

0.4333 
0.3333 

(0.7692) 
(1.0000) 

5 
10 

Average 
Number 

0.3600 
90 

(0.9259) 0.3603 
450 

(0.9253) 0.3667 
90 

(0.9091) 

7 
0.3333 
&3155 
0.2857 

(0.8571) 
(0.9057) 
(1.0000) 

1 
8 
6 

0.3448 
0.3143 
0.2857 

(0.8286) 
(0.9090) 
(l.OClOO) 

1 
8 
6 

0.3543 
0.2857 

(0.8065) 
(1.0000) 

5 
10 

Average 
Number 

0.3048 
105 

(0.9375) 0.3049 
630 

(0.9370) 0.3086 
126 

(0.9259) 

8 
02857 
0.2723 
0.2500 

(0.8750) 
(0.9180) 
(1.0000) 

1 
8 
6 

0.2941 
0.2714 
0.2500 

(0.8500) 
(0.9210) 
(l.OClOO) 

1 
8 
6 

0.3000 
0.2500 

(0.8333) 
(1.0000) 

5 
10 

Average 
Number 

(12643 
120 

(0.9459) 0.2644 
840 

(0.9456) 0.2667 
168 

(0.9375) 
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Table 3.11: Average variance, individual variance of pairwise comparisons, and relative 
efficiencies for RBDs with seven treatments and a variety of blocks. All variances to be 
multiplied by 

Blocks 
Caae d(2;l) 

Var(Eg) No. 
Case d(2;2) 

Var(Eff) No. 
Case d(2;3) 

Var(Eff) No. 

3 
1.0000 
0.8667 
0.6667 

(0.6667) 
(0.7692) 
(1.0000) 

1 
10 
10 

1.0909 
0.8625 
0.6667 

(0.6111) 
(0.7730) 
(1.0000) 

1 
10 
10 

1.4444 
0.6667 

(0.4615) 
(1.0000) 

6 
15 

Average 
Number 

0.7778 
63 

(0.8571) 0.7801 
126 

(0.8546) 0.8889 
21 

(0.7500) 

4 
0.6667 
0.6000 
0.5000 

(0.7500) 
(0.8333) 
(1.0000) 

1 
10 
10 

0.7059 
0.5975 
0.5000 

(0.7083) 
(0.8368) 
(1.0000) 

1 
10 
10 

0.7917 
0.5000 

(0.6316) 
(1.0000) 

6 
15 

Average 
Number 

0.5556 
84 

(0.9000) 0.5562 
252 

(0.8989) 0.5833 
42 

(0.8571) 

5 
0.5000 
0.4600 
0.4000 

(0.8000) 
(0.8696) 
(1.0000) 

1 
10 
10 

0.5217 
0.4584 
0.4000 

(0.7667) 
(0.8725) 
(1.0000) 

1 
10 
10 

0.5556 
0.4000 

(0.7200) 
(1.0000) 

6 
15 

Average 
Number 

0.4333 
105 

(0.9231) 0.4336 
420 

(0.9225) 0.4444 
70 

(0.9000) 

6 
0.4000 
0.3733 
0.3333 

(0.8333) 
(0.8929) 
(1.0000) 

1 
10 
10 

0.4138 
0.3723 
0.3333 

(0.8056) 
(0.8954) 
(1.0000) 

1 
10 
10 

0.4306 
0.3333 

(0.7742) 
(1.0000) 

6 
15 

Average 
Number 

0.3556 
126 

(0.9375) 0.3557 
630 

(0.9371) 0.3611 
105 

(0.9231) 

7 
0.3333 
0.3143 
0.2857 

(0.8571) 
(0.9091) 
(1.0000) 

1 
10 
10 

0.3429 
0.3135 
0.2857 

(0.8333) 
(0.9113) 
(1.0000) 

1 
10 
10 

0.3524 
0.2857 

(0.8108) 
(1.0000) 

6 
15 

Average 
Number 

0.3016 
147 

(0.9474) 0.3017 
882 

(0.9471) 0.3048 
147 

(0.9375) 

8 
0.2857 
0.2714 
0.2500 

(0.8750) 
(0.9211) 
(1.0000) 

1 
10 
10 

0.2927 
0.2708 
0.2500 

(0.8542) 
(0.9230) 
(1.0000) 

1 
10 
10 

0.2986 
0.2500 

(0.8372) 
(1.0000) 

6 
15 

Average 
Number 

0.2619 
168 

(0.9545) 0.2620 
1,176 

(0.9543) 0.2639 
196 

(0.9474) 
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Table 3.12: Average variance, individual variance of pairwise comparisons, and relative 
efEciencies for RBDs with eight treatments and a variety of blocks. All variances to be 
multiplied by 

Blocks 
Case d(2;l) 

Var(Eff) No. 
Case d(2;2) 

Var(Eff) No. 
Case d(2;3) 

Var(Eff) No. 

3 
1.0000 
0.8611 
0.6667 

(0.6667) 
(0.7742) 
(1.0000) 

1 
12 
15 

1.0769 
0.8581 
0.6667 

(0.6190) 
(0.7769) 
(1.0000) 

1 
12 
15 

1.4286 
0.6667 

(0.4667) 
(1.0000) 

7 
21 

Average 
Number 

0.7619 
84 

(0.8750) 0.7634 
168 

(0.8733) 0.8571 
24 

(0.7778) 

4 
0.6667 
0.5972 
0.5000 

(0.7500) 
(0.8372) 
(1.0000) 

1 
12 
15 

0.7000 
0.5955 
0.5000 

(0.7143) 
(0.8397) 
(1.0000) 

1 
12 
15 

0.7857 
0.5000 

(0.6364) 
(1.0000) 

7 
21 

Average 
Number 

0.5476 
112 

(0.9130) 0.5481 
336 

(0.9123) 0.5714 
48 

(0.8750) 

5 
0.5000 
0.4583 
0.4000 

(0.8000) 
(0.8727) 
(1.0000) 

1 
12 
15 

0.5185 
0.4572 
0.4000 

(0.7714) 
(0.8749) 
(1.0000) 

1 
12 
15 

0.5524 
0.4000 

(0.7241) 
(1.0000) 

7 
21 

Average 
Number 

0.4286 
140 

(0.9333) 0.4288 
560 

(0.9329) 0.4381 
80 

(0.9130) 

6 
0.4000 
0.3722 
0.3333 

(0.8333) 
(0.8955) 
(1.0000) 

1 
12 
15 

0.4118 
0.3715 
0.3333 

(0.8095) 
(0.8974) 
(1.0000) 

1 
12 
15 

0.4286 
0.3333 

(0.7778) 
(1.0000) 

7 
21 

Average 
Number 

0.3524 
168 

(0.9459) 0.3525 
840 

(0.9457) 0.3571 
120 

(0.9333) 

7 
0.3333 
0.3135 
0.2857 

(0.8571) 
(0.9114) 
(1.0000) 

1 
12 
15 

0.3415 
0.3129 
0.2857 

(0.8367) 
(0.9130) 
(1.0000) 

1 
12 
15 

0.3510 
0.2857 

(0.8140) 
(1.0000) 

7 
21 

Average 
Number 

0.2993 
196 

(0.9545) 0.2994 
1,176 

(0.9544) 0.3020 
168 

(0.9459) 

8 
0.2857 
0.2708 
0.2500 

(0.8750) 
(0.9231) 
(1.0000) 

1 
12 
15 

0.2917 
0.2704 
0.2500 

(0.8571) 
(0.9245) 
(1.0000) 

1 
12 
15 

0.2976 
0.2500 

(0.8400) 
(1.0000) 

7 
21 

Average 
Number 

0.2602 
224 

(0.9608) 0.2602 
1,568 

(0.9607) 0.2619 
224 

(0.9545) 
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1. three necessarily different treatments lost from one block of the starting design, 

(f(3; 1), 

2. missing observations removed from two blocks which correspond to three distinct 

treatments, <j(3;2), 

3. two plots removed from one block, and the third from another block corresponding 

to one of the two treatments in the Hrst block, (i(3; 3), 

4. three different treatments lose one replicate from three separate blocks, d(3;4), 

5. missing values spread over three blocks, and two replicates of one treatment are 

removed, o((3; 5), and 

6. three replicates of the same treatment lost from different blocks of the initial design. 

Table 3.13 shows the three affected eigenvalues of the information matrix for treatment 

effects for these six caaes. The other non-zero eigenvalues are all equal to 6, and for the 

cases where only one (two) treatments are involved, one (two) of the affected eigenvalues 

shown are also equal to 6. Table 3.14 shows the average variance formulae and the relative 

efficiencies compared to the complete starting design for the six cases calculated using 

these eigenvalues. The Table also shows the number of configurations corresponding to 

each case. 

A range of starting designs was considered for the loss of three observations. Tables 

3.15 - 3.20 show the average variances and relative efficiencies for the six cases of realisable 

resulting designs and the corresponding number of configurations for the given starting 

designs. The values in these Tables illustrate the large reduction in efficiency suffered by 

small starting designs after the loss of three of their plots. Designs with more blocks, 

and consequently more replicates of each treatment, suffer a smaller loss of efficiency. 

However, a three treatment design with eight blocks has a relative efficiency of 77% in 

the worst situation when three replicates of one treatment are missing. 

Best and worst configurations confirm the results of Whittinghill (1995) and Prescott 

and Mansson (2001b). Resulting designs with three different treatments removed from 

one block have the smallest average variance, and designs where three replicates of the 

same treatment are removed from separate blocks have the largest average variance. 

39 



Table 3.13: The three adjusted eigenvalues of the information matrix for the different 
configurations of three missing values, d{3; 1) - d{3; 6), in a RBD with v treatments and 
b blocks. 

Case Eigenvalues 

(i(3; 1) b — 1 b — 1 b — 1 

d(3;2) (t - 1) + ( » - ! ) -

(i(3; 3) b b — 1 b — 2 

^ (6 - 1) -c((3;4) ( 6 - 1 ) + ^ ( 6 - 1 ) - 7 ^ ( 6 - 1 ) - ^ 

4 3 | 5 ) 6 ( 6 - | ) + 4 ^ ( 6 - 1 ) - " % % ^ 

d(3; 6) 6 6 6 — 3 

3.4 BIB designs and the loss of ^ observations 

Whittinghill (1995) and Prescott and Mansson (2001b) showed that the properties of the 

designs resulting from the removal of t observations from balanced block designs depend on 

the specific configuration of the missing values. It is possible, see Whittinghill (1995), to 

identify the best and worst case scenarios for a fixed number of missing plots, but these 

do not completely summarise the effect of the loss of t observations on a BIB design. 

An experimenter would probably be more concerned about how many of the potential 

realisable designs were close, in a statistical sense, to the best and worst configurations 

of missing values. The influence of missing data on BIB designs is studied in this Section 

using the same approach as for RBDs, both through majorisation theory and derivation 

of the variances of pairwise treatment differences. 

Some or all of the variances of the pairwise treatment comparisons are increased, while 

the others remain unchanged when t observations are lost from the starting design. The 

magnitude of these increases depends on the size and structure of the initial design, and the 

number and configuration of the t missing values. The robustness of a given BIB design 

could be investigated by studying the distribution of the variances of pairwise treatment 

differences for all possible configurations of t missing observations. This approach becomes 

computationally complex rapidly, because many thousands of configurations are realisable. 
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Table 3.14: Average variance, relative efficiency and number of resulting designs in the 
six cases of three missing values from a RBD. 

Average Variance 
Case Relative Efficiency 

Number of Configurations 

43; 1) 
(d—l)(b—1) 

(^vb—v—b+4) 

bv{v — l)(u — 2) /6 

o\ — v ^ — b~12v+31vb-\~5vb^ —126+126̂ —25̂  2 2 
\ ' / b(v̂  -\-v̂ b̂  —2v̂  b—3v+&vb—3vb̂  —46+26̂ ) (6—1) f — 1 

~\'V^b'^~2v'^b—3v+6vb^3vb'^ ~4b~\-2b^){b—l) 
—v^'\-3v^b-^v^b^~Sv^b'^+7v^ —4v^ b^ -j-15v'^ b'^ -—ISv^ b--12v+31vb-\-5vb^ —24vb^ — 12b-\-12b'^ —2b^ 

bv(b — l)(f — l)(w — 2)/2 

j / q . q \ b^{v-l)+3b{2-v)+2v-6 2 _ 2 
6(6-l)(6-2) 

(v-l)(b-l){b-2) 
6 2 ( „ - l ) + 3 b ( 2 - « ) + 2 i , - 6 

bv{b — l){v — 1) 

V ' / b{vb~b—v){vb~v—b-\-3) v—l 
{v—l){vb—b—v){vb—v~b-\-3) 

[v^b^ •—2v^b—3v^b^ + 10v^b-i-3vb^~14vb-j-v^~7v'^ —6̂ +66+12?;) 
— 1)(6 — 2)(?; — IX?; — 2)/6 

7/q. r:\ {v̂ b̂ —3v̂ b—3v̂ b'̂ +12v'̂ b+2v̂ ~lQv̂ ~\-3vb̂ ~l5vb-\-12v—b̂ -j-Qb) 2 2 
\ ' / b{v̂ b'̂ ~3v'̂ b—2vb'̂ -\-6vb-\'2v̂  —4v-hb̂  —36) v—1̂  

{v—l){v'^ b'^—3v^ b—2vb'^ +6vb-\-2v'^ —4i;+6̂ —36) 
{v^ b^ ~-3v^b—3v^ b^ -\-12v^ b-^2v^ — lOv'^ -i-Svb^ — 15vb-{'12v--b^ -j-6b) 

1)6(6- 1)(6- 2)(t)- l)/2 

4 3 ; 8) 

(lib—3i>—f>+6) 
k;(6 — 1)(6 — 2) /6 
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Table 3.15: Average variance, and relative efRciencies for RBDs with three treatments 
and a variety of blocks when three observations become unavailable. Variances to be 
multiplied by cr̂ . 

Cases 
Blocks 43; 1) 43; 2) 43 ; 3) 4 3 ; 4) 4 3 ; 5) (f(3; 6) 

0.7500 0.8333 0.8333 0.8000 0.9091 1.2500 
4 0.6667 0.6000 0.6000 0.6250 0.5500 0.4000 

4 36 72 24 72 12 
0.5500 0.5833 0.5833 0.5714 0.6087 0.7000 

5 0.7273 0.6857 0.6857 0.7000 0.6571 0.5714 
5 60 120 60 180 30 

0.4333 0.4500 0.4500 0.4444 0.4615 0.5000 
6 0.7692 0.7407 0.7407 0.7500 0.7222 0.6667 

6 90 180 120 360 60 
0.3571 0.3667 0.3667 0.3636 0.3729 0.3929 

7 0.8000 0.7792 0.7792 0.7857 0.7662 0.7273 
7 126 252 210 630 105 

0.3036 0.3095 0.3095 0.3077 0.3133 0.3250 
8 0.8235 0.8077 0.8077 0.8125 0.7981 0.7692 

8 168 336 336 1,008 168 

Table 3.16: Average variance, and relative efficiencies for RBDs with four treatments 
and a variety of blocks when three observations become unavailable. Variances to be 
multiplied by cr̂  

Cases 
Blocks o!(3; 1) 43; 2) 43 ; 3) (i(3; 4) 4 3 ; 5) d(3; 6) 

0.6667 0.6838 0.7222 0.6818 0.7436 1.0000 
4 0.7500 0.7312 0.6923 0.7333 0.6724 0.5000 

16 144 144 96 144 16 
0.5000 0.5071 0.5222 0.5065 0.5296 0.6000 

5 0.8000 0.7888 0.7660 0.7897 0.7553 0.6667 
20 240 240 240 360 40 

0.4000 0.4036 0.4111 0.4034 0.4145 0.4444 
6 0.8333 0.8259 0.8108 0.8264 0.8042 0.7500 

24 360 360 480 720 80 
0.3333 0.3354 0.3397 0.3353 0.3415 0.3571 

7 0.8571 0.8518 0.8411 0.8521 0.8366 0.8000 
28 504 504 840 1,260 140 

0.2857 0.2870 0.2897 0.2870 0.2908 0.3000 
8 0.8750 0.8710 0.8630 0.8712 0.8598 0.8333 

32 672 672 1,344 2,016 224 
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Table 3.17; Average variance, and relative efficiencies for RBDs with five treatments and a 
variety of blocks when three observations become unavailable. Variances to be multiplied 
b y a ^ 

Cases 
Blocks d(3;1) 43; 2) (f(3;3) 43 ; 4) 4 3 ; 5) 43; 6) 

0.6250 0.6313 0.6667 0.6315 0.6755 0.8750 
4 0.8000 0.7920 0.7500 0.7918 0.7402 0.5714 

40 360 240 240 240 20 
0.4750 0.4776 0.4917 0.4778 0.4947 0.5500 

5 0.8421 0.8375 0.8136 0.8372 0.8085 0.7273 
50 600 400 600 600 50 

0.3833 0.3847 0.3917 0.3848 0.3931 0.4167 
6 0.8696 0.8665 0.8511 0.8663 0.8480 0.8000 

60 900 600 1,200 1,200 100 
0.3214 0.3222 0.3262 0.3223 0.3270 0.3393 

7 0.8889 0.8868 0.8759 0.8866 0.8739 0.8421 
70 1,260 840 2,100 2,100 175 

0.2768 0.2773 0.2798 0.2773 0.2802 0.2875 
8 0.9032 0.9016 0.8936 0.9015 0.8921 0.8696 

80 1,680 1,120 3,360 3,360 280 

Table 3.18: Average variance, and relative efficiencies for RBDs with six treatments and a 
variety of blocks when three observations become unavailable. Variances to be multiplied 
by (7̂ . 

Cases 
Blocks 43; 1) d(3;2) 4 3 ; 3) 4 3 ; 4) 4 3 ; 5) (f(3; 6) 

0.6000 0.6030 0.6333 0.6034 0.6378 0.8000 
4 0.8333 0.8292 0.7895 0.8287 0.7839 0.6250 

80 720 360 480 360 24 
0.4600 0.4613 0.4733 0.4614 0.4749 0.5200 

5 0.8696 0.8672 0.8451 0.8669 0.8423 0.7692 
100 1,200 600 1,200 900 60 

0.3733 0.3740 0.3800 0.3741 0.3807 0.4000 
6 0.8929 0.8913 0.8772 0.8911 0.8755 0.8333 

120 1,800 900 2,400 1,800 120 
0.3143 0.3147 0.3181 0.3147 0.3185 0.3286 

7 0.9091 0.9080 0.8982 0.9078 0.8971 0.8696 
140 2,520 1,260 4,200 3,150 210 

0.2714 0.2717 0.2738 0.2717 0.2740 0.2800 
8 0.9211 0.9203 0.9130 0.9201 0.9123 0.8929 

160 3,360 1,680 6,720 5,040 336 
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Table 3.19: Average variance, and relative efficiencies for RBDs with seven treatments 
and a variety of blocks when three observations become unavailable. Variances to be 
multiplied by 

Cases 
Blocks 43; 1) d(3,2) d(3,3) 4 3 , 4 ) c((3; 5) (i(3; 6) 

0.5833 0.5850 0.6111 0.5853 0.6137 0.7500 
4 0.8571 0.8547 0.8182 0.8543 0.8147 0.6667 

140 1,260 504 840 504 28 
0.4500 0.4507 0.4611 0.4508 0.4620 0.5000 

5 0.8889 0.8875 0.8675 0.8872 0.8658 0.8000 
175 2,100 840 2,100 1,260 70 

0.3667 0.3670 0.3722 0.3671 0.3726 0.3889 
6 0.9091 0.9082 0.8955 0.9080 0.8945 0.8571 

210 3,150 1,260 4,200 2,520 140 
0.3095 0.3097 0.3127 0.3098 0.3129 0.3214 

7 0.9231 0.9225 0.9137 0.9223 0.9130 0.8889 
245 4,410 1,764 7,350 4,410 245 

0.2679 0.2680 0.2698 0.2680 0.2700 0.2750 
8 0.9333 0.9329 0.9265 0.9328 0.9260 0.9091 

280 5,880 2,352 11,760 7,056 392 

Table 3.20: Average variance, and relative efficiencies for RBDs with eight treatments 
and a variety of blocks when three observations become unavailable. Variances to be 
multiplied by 

Cases 
Blocks 43; 1) 43 ; 2) 43; 3) 43 ; 4) (Z(3; 5) ^(3; 6) 

0.5714 0.5724 0.5952 0.5727 0.5969 0.7143 
4 0.8750 0.8735 0.8400 0.8731 0.8377 0.7000 

224 2,016 672 1,344 672 32 
0.4429 0.4433 0.4524 0.4434 0.4529 0.4857 

5 0.9032 0.9024 0.8842 0.9021 0.8831 0.8235 
280 3,360 1,120 3,360 1,680 80 

0.3619 0.3621 0.3667 0.3622 0.3669 0.3810 
6 0.9211 0.9205 0.9091 0.9204 0.9084 0.8750 

336 5,040 1,680 6,720 3,360 160 
0.3061 0.3062 0.3088 0.3063 0.3090 0.3163 

7 0.9333 0.9329 0.9251 0.9329 0.9247 0.9032 
392 7,056 2,352 11,760 5,880 280 

0.2653 0.2654 0.2670 0.2654 0.2671 0.2714 
8 0.9423 0.9420 0.9363 0.9420 0.9360 0.9211 

448 9,408 3,136 18,816 9,408 448 

44 



even for relatively small initial designs and as few as three missing values. It is necessary 

in these circumstances to consider summary measures, e.g. the average variance and 

efficiencies, when comparing the robustness of different designs. It is also sensible to 

compute the maximum of the variances of pairwise treatment differences, because this 

varies more between different configurations of t missing observations. Also, if there are 

only a small number of comparisons that have the largest variance, consideration of the 

average only will not provide all relevant information. 

Whittinghill (1995) used a majorisation relationship based on two ordered vectors, 

whose elements were the eigenvalues of the information matrix for treatment effects, to 

identify the best and worst configurations of two missing values and also to order all 

these cases. This method is valid because the sum of the eigenvalues of the information 

matrix, when any t observations are removed, is v{v — 1)X/k — t, and only the t smallest 

eigenvalues, excluding fiy which is always zero, are affected. The particular configuration 

of missing values determines the alterations to these eigenvalues and the difference between 

the two affected eigenvalues will be shown to be an indicator of the magnitude of the 

increase in the variances of pairwise treatment comparisons when two observations are 

unavailable. In the numerical example which follows the theoretical results, the maximum 

of the individual variances is also computed, and this highlights that some cases have 

smaller average variances, but that the maximum variance of the pairwise treatment 

differences is larger. When more than two plots are lost, it is possible for more than 

two eigenvalues to decrease. Therefore the majorisation principle does not permit a 

complete ordering of all configurations of missing values for t > 3 in general, which 

will be demonstrated for the numerical example in Section 3,5. It will also be shown 

that the average variance can be expressed as a function of the three altered (smallest) 

non-zero eigenvalues of the information matrix for treatment effects, and the behaviour 

of this function can be studied. 

3.4.1 One or two missing observat ions 

In the case of one missing plot, the important summary measures under consideration for 

the resulting design d{l) are the same irrespective of the position of the missing value in 

the starting design and the affected treatment. Assuming, without loss of generality, that 

the first treatment loses one replicate from a block containing the first k treatments, then 
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Table 3.21: Eigenvalues that are altered when one or two observations are remô êd from 
a BIB design. 

(a) One missing value ( t = l ) 
Changed 

Eigenvalue 
Average 
Variance 

Relative 
Efficiency 

_L 
vX v{v-l)X{v\—k) 

(7 1 + {v-l){v\—k) 

(b) Two missing values (t=2) 
Changed 

Eigenvalues 
Average 
Variance 

Relative 
Efficiency 

1 ± x 2k 2 I 4k^{v\-k+kx^) 
v\ v{v—l)\{{vX—ky^—k^x^} 

1 + 2k{vX—k+kx^) 

(ii— 

Case 

1 

2 

3 

4 

Value of X 

t(t-i) 

0 

, g — 0, • • • , k 1 

k{k-i)' 9 — 1, ' 1 

2fc—g 
k[k—l) 

k^-2k~^ 
k{k~l) 

Efi, g = 2,---,k 

S = l , 

ConEgurations 

6A;(A; - l ) / 2 

29(A: - g) 

- 1) 

9 

the information matrix for treatment effects of the resulting design d(l) is given by 

d̂(i) 

rM _ 1 _ (^-1) (A-1) 1' 

(A-1) l/c—l 

If—fc 

(k — l) 

A T 

— ̂ 'Jv-k,k-l 

k-1 

— - 1 ' J. 

k v-k 

A T 

Awt , _ A T 
^ i-v—k f.'J v—k,v—k 

(3.19) 

The eigenvalue that is changed for this information matrix is given in Table 3.21. To 

solve these reduced normal equations and derive formulae for variances of the individual 

pairwise treatment comparisons, a generalised inverse needs to be chosen. A sensible 

choice will simplify the information matrix and lead to a simplified generalised inverse. 

Add to Cd(i) and invert the resulting non-singular matrix to generate a particular 
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Table 3.22: Variances of the individual treatment comparisons when one observation is 
removed from a BIB design. It is assumed that the first A; treatments occurred in the 
affected block. 

One missing values ( t= l ) 
Treatment i Treatment j \^ariance Number of Comparisons 

1 

1 

2, " , A: 

k{2\vk—2\v+2k~k-) 2 
^ Xv{Xvk — \v—k^+k) 

A; + 1, - " 

2, • • • ,k 

k(2Xv—k—l) 2 
Xv{Xv—k) 

k - 1 

V — k 

2, • • • , k k 

A; + 1, - - - A; + 1, - " , u 

k{2Xvk-2Xv-2k^ +2fc+l) 2 

Xv{Xvk—Xv—k'^-\-k) 

{k-l){k-2)/2 

(A; - !)(?; - A:) 

[v — k){v — k — 1)/2 

generalised inverse, denoted by f2. The form of this matrix is 

i l = 

k{Xv—l) 

Xv(Xv—k) 

k 
Xv{Xv—k) 

11 

Lfc-l At/ i t - i + 

0 v—A; 

Xv{Xv~k) k—1 

k 
Xv(Xvk~Xv—k'^~\-k) 

Ov—k,k—l 

Ok—l,v—k (3.20) 

Table 3.21 shows the formulae for the average variance and relative efficiency of these 

resulting designs. The average variance for one missing value is expressed as the average 

variance for the complete design and the increase due to losing data. Variances of the 

individual pairwise differences are shown in Table 3.22. There are five comparisons created 

by the loss of one plot from the starting design. The treatment that loses a replicate can 

be compared with another treatment from the affected block or one that does not occur 

in this block. The other A; — 1 treatments in the block can be compared against each other 

or against a treatment not in the block. The last comparison is between two treatments 

that do not occur in the block that loses a plot. 

When two observations are unavailable, the situation is more complex because there 

are five types of configuration, all with different eigenvalues and average variances, that 

need to be considered individually. Four of these configurations have sub-cases based 

on the number of treatments that are common to the pair of blocks with the missing 

values. The cases, which are also given in Whittinghill (1995, page 28), are 
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1. two observations corresponding to different treatments in the same block of the 

starting design, 

2. diH'erent treatments in two separate blocks, where neither of the a%cted treatments 

are common to the pair of blocks, 

3. different treatments in different blocks, with one of the two treatments common to 

the blocks, 

4. both treatments are different and are both common to the two different blocks, and 

5. two replicates of one treatment are lost from different blocks. 

The form of the information matrices for each of the five cases is complicated, but the two 

eigenvalues affected by the removal of two plots in any configuration can be expressed as 

Hv-2 = 1 + X and = ^ — 1 — x (3.21) 
k k 

The value of this adjustment x, and the average variances and relative efficiencies of the 

different resulting designs are given in Table 3.21. Derivation of algebraic generalised 

inverses of the information matrices for treatment effects in the different cases is a non-

trivial task, and the maximum of the pairwise variances will therefore only be calculated 

numerically for an example of a BIB design with 8 treatments in 14 blocks of 4 plots in 

section 3.5. Configurations corresponding to Case 1 suffer the smallest loss of efficiency 

if the average variance is compared to the complete design, and the sub-case of Case 2 

where g = 0 also has the same reduction in efficiency, because z = 0 in this case and the 

two affected eigenvalues are the same as for Case 1. The resulting design with the lowest 

efficiency and the largest average variance occurs when two replicates of one treatment 

are removed from different blocks, which is denoted Case 5. 

The results in this Section confirm the Theorem of Whittinghill (1995), where the 

different cases of two missing values in a BIB design were ordered based on the vector of 

eigenvalues of their information matrices. However, the real consequences of losing two 

observations are illustrated by considering the distributions of summary measures, e.g. 

the average or maximum variance of pairwise comparisons, instead of concentrating on 

the best and worst cases. In addition, the range of variances of the pairwise treatment 
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A^-3 2 A -̂1 

Figure 3.1: Graphical representation of o and z in terms of the three altered eigenvalues 
of the information matrix for treatment effects when three observations are lost from a 
BIB design. 

differences should also be studied with a view to selecting designs where variances do not 

increaae beyond a specihed threshold for any configuration of one or two missing values. 

It will be shown that the average variance of pairwise treatment comparisons does not 

vary as substantially as the maximum of these variances for the different configurations 

of ( missing values. 

3.4.2 Three observations missing f rom t h e s t a r t ing design 

The situation when three observations are lost from the starting design is complicated 

because there are 25 potential cases that need to be considered separately. These cover the 

many different ways that three missing values may be configured for different treatments 

in either one, two, or three blocks. Sub-cases correspond to the number of treatments 

that are common to the pairs and triples of blocks containing the missing values. The 

properties of the resulting designs are also different, so only the average variance will be 

considered in general. For any of the resulting designs, denoted by d{3), there are one, 

two, or three eigenvalues of the information matrix for treatment effects altered by the 

loss of three observations. 

Let // = ' = 0) he an ordered vector of the eigenvalues of the 

information matrix for one of the resulting designs, where /ii > > • • • > Define z 

as the difference between two of the eigenvalues, and and let oz(0 < a < 1) 

be the difference between //„_3 and jJ,v-2- This is shown graphically in Figure 3.1. Let 

y = uA/A: — 1. The eigenvalues of the information matrix for any design (f(3) can now be 

expressed as 

® Ml = • • • = fJ-y — 4 = -jT 
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• f^v-2 

Figure 3.2: Range of values for variables o and z. 

( f - 1 ) + 

l^v-l — ( x ~ 

(l-2a)z 

(a—2)z 

y + 

y + 

(l-2a)z 
3 

(q—2)z 

= 0 

Note that < Au/A; and > 3 for any configuration of three missing observations, 

and the three affected eigenvalues sum to 3{vX/k — 1) for any resulting design. The 

variables a and z are non-negative and depend on the configuration of the missing values. 

The range of permissible values for a and z is shown by the region defined in Figure 3.2. 

The best and worst cases can be identified by examining alterations to these three 

eigenvalues. A strict ordering of all possible resulting designs using the average variance 

of pairwise treatment comparisons, or their relative efHciencies, does not necessarily follow. 

This is because the majorisation principle of Whittinghill (1995) does not apply in every 

situation. This will be illustrated in the numerical example in Section 3.5. 

When three observations become unavailable, it is possible to express the average 

variance of pairwise treatment differences using the alternative general expressions for 

the eigenvalues, with the variables o and z, as 

V — 1 

A;(2; — 4) 1 
y + (l+a)z 

3 

(l-2a)z 
3 

(a-2)z 
3 

a (3.22) 
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for any of the resulting designs, c((3). The behaviour of this average variance function 

can be simplified by ignoring the additive and multiplicative constants, and the average 

variance is considered as a function of the two variables a and z given by 

•*''' = { 7 7 5 ^ + 7 7 1 ^ 5 1 + ^ 5 7 7 ^ } 

where V = Aw/A: — 1 as defined earlier. This function can be studied to locate the values 

of a and z which correspond to the best and worst cases, in terms of average variance of 

pairwise treatment comparisons, of three missing observations. The partial derivative of 

this new function AV with respect to z is 

r — ( 2 - " ) "I 
(3.24) 

r (l+gj (1—2a) (2—g) \ 

" I { y + { y + { y + 

Thus for any fixed a, AV is an increasing function of z. The maximum value of AV, and 

also the maximum average variance, occurs when z reaches its largest potential value, 

i.e. z = 3 and a = 0. At this point of the region in Figure 3.2, the eigenvalues are 

/i^_3 = /i^_2 = Xv/k and = Xv/k — 3. This situation corresponds to the loss of 

three replicates of the same treatment from three identical blocks, which is not possible 

for a single replicate BIB design. Consider the right hand boundary in Figure 3.2, where 

z = 3 / ( l4 -a) . On this line, the three affected eigenvalues are given by 

2;A fA ;̂A 
^ //„-2 = ^ + z - 3 = -; z 
A K A 

and for these configuration of missing observations, the function AV becomes 

^ ; + lA—z (^.25) 

The partial derivative of the function AV along the boundary line with respect to z is 
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A y is an increasing function of z along the right hand boundary line z = 3/(1 4- a). The 

function AV, and hence the average variance function, takes its maximum value when 

a = 0 and z = 3, with adjusted eigenvalues ^,,-2, and stated earlier. If the 

function AV is partially differentiated with respect to a, then 

2z z 
+ 3 

z r -1 2 -1 
_ J + 

3 I /^u-3 Mv-2 MV-1 
Z C/ 1 1 \ / I 

3 V L i /^L2 
(3.27) 

This partial derivative is equal to zero when z = 0, or for some value of a in [0,1] for 

z ^ 0. When z ^ 0 and o is increasing, the function AV decreases to a minimum before 

increasing as o approaches its maximum value for the given value of z. The best situation, 

which corresponds to the smallest values of the average variance function, occurs when 

z = 0, where the three eigenvalues are all equal to vA/k — 1. This is the case if three 

observations are lost from the same block of the initial design. 

Certain combinations of a and z are possible for a particular BIB design. In general, 

the larger the distance between the extreme affected eigenvalues, the greater the average 

variance and consequently lower eSiciency of the resulting design when compared to the 

starting design. In the following Section, an example is used to illustrate the reduction 

in efficiencies caused by losing up to three observations from a BIB design with eight 

treatments in blocks of four plots. Loss of efficiency is examined, and the efficiencies and 

number of configurations corresponding to each case for t = 2 and 3 are given. 

3.5 Detailed BIB design Example 

Consider a BIB design with the layout shown in Table 3.23. There are 8 treatments in 

the starting design, which are arranged in 14 blocks of 4 treatments per block. Each 

treatment has 7 replicates, and every pair of treatments occurs together in three blocks 

of the starting design. When the design is complete, the average variance of pairwise 

treatment comparisons is cr^/3, and its efficiency relative to a completely randomised 

design with 8 treatments and 7 replicates is 85.71%. The seven non-zero eigenvalues of 
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Table 3.23: Layout of the BIB design used for illustrative purposes in §3.5. 
Block Treatments Block Treatments 

1 1 2 3 5 8 8 2 3 5 
2 2 3 4 6 9 8 3 4 6 
3 3 4 5 7 10 8 4 5 7 
4 4 5 6 1 11 8 5 6 1 
5 5 6 7 2 12 8 6 7 2 
6 6 7 1 3 13 8 7 1 3 
7 7 1 2 4 14 8 1 2 4 

the information matrix for treatment effects are all equal to 6. 

3.5.1 One missing value 

When one observation is missing, one eigenvalue of the information matrix for treatment 

effects is reduced from 6 to 5, irrespective of which particular observation is removed 

from the starting design. The average variance of pairwise treatment differences for the 

resulting designs is computed using the formula in Table 3.21 to be 

2 x 4 ^ 2 x 4 x 4 2 / I 1 ^ 2 2 
+ % = ; -(7^ = % + — ( % = —(7 8 x 3 8 x 7 x 3 x ( 8 x 3 - 4 ) \ 3 105/ 35 

and the relative efRciency is 97.22%. The reduction in efEciency is less than 3% after 

the loss of one of the 56 units in the starting design, which is not a serious reduction. 

Variances of the individual pairwise treatment comparisons can be calculated from the 

formulae in Table 3.22 to determine the maximum of these variances, which is equal to 

0.378(7^ for any of the resulting designs, and there are 3 comparisons out of the total 28 

with this value. 

3.5.2 Two missing values 

In this BIB design it is not possible to realise all of the sub-cases of Whittinghill (1995) 

for two missing values. The possible situations for this design are listed in Table 3.24 with 

the average variance for each case and the corresponding efficiencies relative to the initial 

design. The number of configurations for each case are also shown. 

The Table also shows the two eigenvalues that are affected by the missing data, and 
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Table 3.24: Eigenvalues of the information matrix for all possible configurations of two 
missing observations. Variances are multiplied by 

Average Relative Number of Maximum 
Case Eigenvalues X variance efficiency designs variance 

1 g=0 5 5 0 0.352381 0.94595 84 0.4000 
2(b) g = l 5.0833 4.9167 1/12 0.352413 0.94586 189 0.3825 
2(b) g=2 5.1667 4.8333 1/6 0.352508 0.94560 252 0.3817 
2(c) g=3 5.25 4.75 1/4 0.352667 0.94518 7 0.3818 
3(a) g=3 5.0833 4.9167 1/12 0.352413 0.94586 42 0.4039 
3(b) g=2 5.1667 4.8333 1/6 0.352508 0.94560 504 0.4051 
3(c) g = l 5.25 4.75 1/4 0.352667 0.94518 126 0.4063 
4(b) g=3 5.4167 4.5833 5/12 0.353178 0.94381 42 0.4303 
4(c) g=2 5.5 4.5 1/2 0.353535 0.94286 126 0.4321 
5(b) g = l 5.75 4.25 3/4 0.355012 0.93894 21 0.4146 
5(b) g=2 5.8333 4.1667 5/6 0.355646 0.93726 126 0.4400 
5(c) g=3 5.9167 4.0833 11/12 0.356356 0.93539 21 0.4422 

the values of a; for the different configurations of two missing observations. The variable a; 

is used in the majorisation approach to rank the different cases based on their vectors of 

eigenvalues. The results in Table 3.24 confirm the ordering given by Whittinghill (1995, 

page 29). The best configuration, where two observations are lost from the same block, has 

a relative efficiency of 94.59%, so the minimum reduction in efficiency is approximately 

5%. The worst case is 5(c), where the efiRciency is reduced by over 6%, when two replicates 

of one treatment become unavailable, e.g. treatment 2 from blocks 1 and 8 where there 

are 3 treatments common to the pair of affected blocks. There are, however, only 21 

configurations corresponding to this situation. 

There are 1,540 possible designs resulting from the loss of two plots, and frequencies 

of all the cases and their sub-caaes are given in Table 3.24. The maximum variance of the 

pairwise treatment comparisons is also shown in the Table for every situation. It may be 

seen that the maximum of these occurs for Case 5(c), the configuration with the largest 

average variance. Whittinghill (1995)'s majorisation approach provides an exact ordering 

of the cases by their relative efiSciencies for this number of missing observations. The 

ordering is illustrated in Figure 3.3, where the efficiency of the resulting designs is plotted 

against the distance between the two eigenvalues. The reduction in efficiency increases 

as the distance between these eigenvalues increases. The table shows that although the 

differences between average variances occurs in the third decimal place, the maxima of 
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Pv-2-Mv-l 

Figure 3.3: EfBciencies relative to the complete BIB design for all ways of losing two 
observations plotted against the difference between the eigenvalues that change. 

I 1 1 1 1 ^ I 
0.936 0.938 0.940 0.942 0.944 0.946 

Efficiency of Average Var iance 

Figure 3.4: Histogram of efficiencies relative to the complete BIB design for all ways of 
losing two observations. 
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the variances differ substantially between the five cases and their sub-cases. It can also 

be seen that the ranking based on the vector of eigenvalues does not concur with ranking 

the cases based on the maximum variance. 

A histogram of the relative efBciencies is shown in Figure 3.4. The majority of the 

configurations give rise to resulting designs with efficiencies that are close to the smallest 

reduction in efficiency for two missing values. There is only a small probability of obtaining 

the most severely a&cted resulting designs. 

3.5.3 Three missing values 

There are 27,720 ways that three observations can be lost from the BIB design. There are 

in general 25 specific cases, although these are not all available for this design. Best and 

worst cases can be identiSed for this example, but a complete ordering of all the cases 

using majorisation is not possible. 

Table 3.25 illustrates the different configurations involving missing observations in one 

or two blocks of the initial design. The number of treatments common to the two blocks, 

g, is used to identify the different sub-cases. A particular example of each configuration 

is given with the average variance, relative efficiency, number of similar configurations, 

and the maximum of the variances of pairwise treatment comparisons. 

The best configuration occurs when three observations, which necessarily correspond 

to different treatments, are lost from the same block of the starting design. Three of 

the non-zero eigenvalues of the information matrix for treatment effects are equal to 5, 

and the relative efficiency of this configuration of missing values is 92.11%. The worst of 

these situations covered by Table 3.25 corresponds to the removal of two replicates of one 

treatment and one of a different treatment, where three treatments are common to the 

pair of blocks. In this case, both of the affected treatments occur once in both blocks. 

The relative efficiency is reduced to 91.09% for this resulting design, and the maximum 

variance of pairwise comparisons increases to 0.4663(7^. 

When the three missing observations occur in different blocks, various sub-cases are 

possible, based on three values of p, the number of treatments that are common to the 

three pairs of blocks. Examples of the three blocks in which the missing observations 

occur, the maximum average variance, mean average variance and eHiciencies relative to 

a completely randomised design and the complete BIB design, are also shown in Table 
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Table 3.25: Average and maximum variances 
relative efficiencies when three observations are 
design. Variances are to be multiplied by 

of pairwise treatment comparisons, and 
lost from one or two blocks of the starting 

Cases and Missing Values Average Relative Number of Maximum 
Sub-cases (treatment,block) variance efficiency configurations Variance 

One Block (1.1) (2,1) (3.1) 0.361905 0.92105 56 0.4000 
Two Blocks 
S=1 (a) (1.1) (2,1) (8.9) 0.362000 0.92081 378 0.4000 

(b) (1.1) (2,1) (3,9) 0.362768 0.91886 126 0.4138 

w (1.1) (3.1) (8,9) 0.362191 0.92032 378 0.4063 
(d) (1.1) (3.1) (3,9) 0.364535 0.91441 126 0.4368 

g=2 (a) (1.1) (5.1) (4,2) 0.362287 0.92008 252 0.4000 
(b) (1.1) (2.1) (4,2) 0.362096 0.92057 1,008 0.4051 
(c) (1.1) (5.1) (2,2) 0.362287 0.92008 252 0.4119 
(d) (2,1) (3.1) (4,2) 0.362287 0.92008 252 0.4052 
(e) (1.1) (2,1) (3.2) 0.363645 0.91664 504 0.4404 
(f) (1.1) (2.1) (2.2) 0.365237 0.91265 504 0.4465 
(g) (2.1) (3.1) (2.2) 0.365439 0.91214 252 0.4660 

g=3 (a) (1.1) (2.1) (8.8) 0.362191 0.92032 42 0.4040 
(b) (1.1) (2.1) (3,8) 0.362962 0.91837 84 0.4376 

w (1.1) (2.8) (3,8) 0.362000 0.92081 42 0.4039 
(d) (2,1) (3,1) (5,8) 0.364336 0.91490 42 0.4408 
(e) (1.1) (2.1) (2.8) 0.366152 0.91037 42 0.4497 
( f ) (2,1) (3.1) (2.8) 0.365948 0.91088 84 0.4663 

Table 3.26: Average variances of pairwise treatment comparisons when three observations 
are lost from different blocks. All variances are multiplied by 

Three blocks Blocks Max average Mean average Relative Number of 
variance variance eGciency configurations 

g= l , l , 2 1,9,10 0.36546 0.36313 0.9179 2,688 
g=l,2,2 1,9,11 0.36551 0.36349 0.9170 8,064 
g=l,2,3 1,8,9 0.37421 0.36400 0.9158 2,688 
g=2,2,2 1,2,3 0.37415 0.36393 0.9159 7,168 
g=2,2,3 1,8,11 0.37516 0.36436 0.9148 1,344 
g=2,2,3 1,8,2 0.37516 0.36446 0.9146 1,344 

Total number of ways of losing three observations 
Overall average variance 

Overall average efficiency relative to C R D 
Overall average efficiency relative to BIB design 

Maximum variance of pairwise treatment difference 

27,720 
0.3637 
0.7857 
0.9166 
0.5367 
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Figure 3.5: EfRciencies relative to the complete BIB design for all ways of losing three 
observations. 

3.26. 

One of the worst conRgurations is the loss of three replicates of one treatment, where 

the missing values occur in the three blocks in which the affected treatment is paired with 

one of the other seven treatments. For example, if treatment 1 is removed from blocks 1, 7, 

and 14, then there is no direct comparison of treatments 1 and 2. The affected eigenvalues 

in this configuration are reduced from 6 to 5.9167, 5.0862, and 3.2772 respectively, and 

the relative efficiency compared to the starting design is 88.85%. 

The majorisation approach of Whittinghill (1995) cannot be extended to provide a 

complete ordering of the cases of three missing observations. This may be demonstrated 

by comparing the loss of treatments 5, 2, and 7 from blocks 1 ,2 , and 3, with the loss 

of treatments 2, 6, and 1 from blocks 5, 6, and 14. In the first situation, the affected 

eigenvalues are 5.1667, 5.1667, and 4.6667, compared with 5.4466, 4.8333, and 4.7201 for 

the second. Neither of the two vectors of eigenvalues majorise each other, and the average 

variances for the two cases need to be calculated for a comparison. The efficiencies are 

92.01% and 91.93% respectively, although the first situation has the smallest affected 

eigenvalue. 

58 



Figure 3.6: EfBciencies relative to the complete BIB design for all ways of losing three 
observations, plotted against o and z. 

Figure 3.5 shows the distribution of relative efficiencies for the 27,720 configurations 

of three missing observations for the BIB design. The histogram shows that only a small 

number of conEgurations give rise to efRciencies as low as 89%, while the majority of the 

realisable designs have efficiencies between 90% and 92%. 

Figure 3.6 shows the efficiencies plotted against the variables a and z, which also 

shows the small cluster of resulting designs with the largest loss of efficiency. These 

badly affected configurations correspond to large values of z, that is, situations where the 

distance between //^_3 and is as large as possible. 

3.6 Discussion 

The e&ct of missing observations on a block design has been examined extensively in this 

Chapter. Randomised block and BIB designs have been considered to derive theoretical 

results for two patterns of missing data. The loss of complete blocks of observations was 

investigated initially and the effect of drop-out was measure by the average and maximum 

variance of the pairwise treatment differences. This extends the work of other authors 
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who concentrated on the efficiency of the average variance as a measure of robustness to 

missing data. 

The form of the information matrix for treatment effects has been derived and is given 

in this Chapter when a single block of observations becomes unavailable from a RED or 

a BIB design. In the case of a RED, the variances of pairwise treatment differences all 

increase from 2cr^/r to 2cr^/(r - 1) which is equivalent to an eSciency of (r - l)//", which 

is a serious loss of efficiency when the starting design has a small number of replicates of 

each treatment. When a single block is lost from a BIB design there are three types of 

treatment comparisons. 

The other situation that has been studied is the loss of observations scattered through-

out RBDs and BIB designs. Robustness of these designs is investigated by considering 

the adjustments to the information matrix for treatment effects caused by a variety of 

configurations of missing values. Previous work concentrated on the overall efficiency of 

the resulting design, which was deSned using the non-zero eigenvalues of the information 

matrix. In this Chapter it has been shown that the variances of the pairwise comparisons 

can be derived algebraically with a suitable choice of generalised inverse. The maximum 

of the variances can also be found for various configurations of missing observations which 

provides more information on the effect of the loss of data, because the average reduces 

the impact of a small number of seriously affected t reatment comparisons. 

In the last Section of the Chapter, the aim was to extend the work of Whittinghill 

(1995) to consider the loss of three observations from a BIB design. When i = 1 or 2, it is 

possible to use majorisation to rank the different cases based on the average variance and 

to produce a complete ordering of the efficiencies based on the vectors of eigenvalues of 

the information matrices for treatment effects. The approach cannot be extended to the 

distinct cases of three or more missing observations. This was illustrated using two cases 

in the detailed example. In these cases it is still possible to identify the best and worst 

theoretical cases to provide the range of potential efficiencies, but a complete ordering of 

all cases cannot be made using the vector of eigenvalues. EGiciencies have to be computed 

for all of the configurations and this is a computationally expensive task even for only 

three missing values. 

The example identified the best cases as those where observations are removed from 

the same block. Whittinghill (1995) showed that the worst conhguration corresponds to 
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the loss of the same treatment from identical blocks, which is not available for a single 

replicate of a BIB design, but it is possible for RBDs because of their structure. The most 

severely affected configurations in the BIB design example had more treatments common 

to the affected blocks than the other cases. Based on these results, it would appear prudent 

to select BIB designs where there are as few treatments common to blocks as possible to 

reduce the chance of substantial loss of efhciency due to only a small number of missing 

observations. This conclusion agrees with the results of Bhaumik and Whittinghill (1991). 

It is also sensible for pairs of treatments to occur together as often as possible, or there 

is the possibility that no direct comparisons between particular treatments can be made. 

This situation is one of the most severe for a BIB design. 

61 



Chapter 4 

The effect of missing data on Latin 

Square designs 

Although the effects of the loss of complete rows or columns, or of complete treatments 

from Latin square designs were investigated by Yates and Hale (1939), the majority of 

recent research has been concerned primarily with block designs, see previous Chapters 

for a detailed discussion. Low et al. (1999) investigated cross-over designs constructed 

using Latin squares to determine the effect of dropout on the variances of treatment 

comparisons. These designs had extra complications introduced by a carry-over term in 

the model. 

The analysis of row-column designs is more complicated than block designs because 

there are two orthogonal blocking factors that need to be incorporated into the model, 

and adjusted for during the estimation of treatment effects. The full normal equations 

given by (X'X)Q: = X'Y can be simplified by eliminating the overall mean /i, and the 

row and column parameters which are denoted by p and 7 respectively. The reduced 

normal equations are general expressions that can also be used when there are missing 

values in the row-column design. The information matrix for treatment effects, after the 

elimination of the row and column parameters, for a general row-column design is given 

by 

C = - N i r - ' N ; - ( N g - N i r - ' N ^ ) ( c ' - N 3 r - ' ^ N ^ ) - ( N ^ - N s r - ' N ^ ) ( 4 . 1 ) 

where is a diagonal matrix with elements equal to the number of replicates of each 
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treatment in the design, is a diagonal matrix whose elements are the reciprocals of 

the number of plots in each row of the design, and is also a diagonal matrix with 

elements equal to the number of plots in the columns of the design. The matrices N i and 

N2 are incidence matrices for the row and column block designs, and A" is a generalised 

inverse of the matrix A, with the property A A ~ A = A. The matrices Ni and Ng are 

binary for the designs in this Chapter, because they are based on single Latin squares, 

where all treatments occur exactly once in every row and column of the starting design. 

Ng is a (c X r) matrix, where the (i,j)th element is equal to one if an observation is 

available for the plot in the ith column and jth row of the design, and zero otherwise. 

When the row-column design is complete, the information matrix for treatment effects 

simplifies to 

C = t ' - - Ngc-'N^ -H ̂ t t ' (4.2) 

There are two conditions that need to be satisfied if Equation (4.2) is correct for the 

reduced normal equations. The necessary relationships are 

tr'/n = Ngc'^Ng and tc'/n = (4.3) 

These two identities are satisfied for a complete row-column design, and also for some 

of the restrictive patterns of missing observations. It will be shown that when complete 

treatments, or complete rows or columns become unavailable, these two conditions are 

satisfied and Equation (4.2) is used to derive the information matrix for treatment effects. 

The orthogonality of a row-column design is lost when there are missing data, and 

Equation (4.1) is appropriate for deriving the reduced normal equations. To compare 

the different designs resulting from the loss of data, the variances of pairwise treatment 

differences need to be calculated. These can be found theoretically for a Latin square 

design of side r, by the generalised inverse method used in Chapter 3 with block designs. 

Estimates of the treatment differences are invariant to the choice of generalised inverse, 

and a convenient generalised inverse, which was also used in the block design Chapter, is 

given by 

n = (C + aJr,r)"^ (4.4) 

where a is a suitably chosen non-zero constant. Variances of the estimates of treatment 
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diSFerences are the diagonal elements of FOr', where T is a matrix of all elementary 

contrasts between the r treatments. There are r(r - l ) / 2 pairwise treatment comparisons 

that have variances to be computed for a given resulting design. The increased variances 

depend on the actual conSguration of missing observations. 

The next two sections cover the loss of all plots related to one or more treatments, 

and the removal of every plot in one row or column of a Latin square design. In these two 

situations, the configuration of missing values ensures that Equation (4.2) can be used 

to derive the information matrix for treatment effects. Consideration of these restrictive 

situations of missing data is followed by an investigation into the effect of missing data 

scattered throughout the Latin square. Theoretical results are enumerated for a range of 

different sized squares in the various sections to quantify the impact of the loss of data 

on the starting design, which is measured using relative e^ciencies of the variances of 

pairwise treatment comparisons. 

4.1 Loss of a complete treatment from the starting 

design 

Assume that all of the observations on one of the treatments in a design based on a Latin 

square of side r, become unavailable. The regular structure of Latin squares, where every 

symbol (treatment) occurs exactly once in every row and column, ensures that the form 

of the information matrix for treatment effects is the same, regardless of which particular 

treatment becomes unavailable in the starting design. Note that the remaining r — 1 

treatments have r replicates, and that there are exactly r — 1 plots in every row and 

column of the resulting design. Denoting all the resulting designs (fi and, using Equation 

(4.2), it can be shown that the information matrix for treatment effects is now given by 

rp y 2 
,r-l Cj, - rlr_l -

— -Jr-lr—l (4 5) 
r — 1 

This formula is correct for this configuration of missing values because there are — r 
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observations in the resulting design and 

tr' tc' 1 

n n r(r — 1) 

0 

rlr-l 
- 1) (r -

and 

N i r - ' N ' = NzC-'Ns = 
Oi 1 

r — 1 
- 1 , ) = 

o; 

Jr—l,r 

o; 
Jr—l.r 

(4.6) 

(4.7) 
Jf—l,r 

All complete row-column designs based on Latin squares are variance balanced. The 

resulting design remains variance balanced after the loss of any treatment, because the 

information matrix can be expressed in the form Cil + CgJ. Following the terminology 

of Hedayat and John (1974), all Latin square designs of side r are classified as globally 

resistant of degree one. More generally, if s < (r — 2) treatments are lost from the starting 

design, the information matrix of treatment effects for any subset of a treatments, is 

Crf, — rlr_,, — 
r — s 

Jr—s,r (4.8) 

Examination of the variances of the pairwise treatment differences shows that, although 

the loss of one or more complete treatments affects the information matrix, the variance 

of any individual comparison is unchanged as jr. Any Latin square design with r 

treatments is globally resistant up to degree r — 2 using the criterion of Hedayat and 

John (1974). This contrasts with the results for BIB designs, where the structure of 

the starting design, rather than only the design parameters, determined whether it was 

globally resistant, locally resistant or susceptible. Hedayat and John (1974) gave an 

example of a BIB design with these properties. 

4.2 Unavailability of observat ions in a row or column 

The results in this section are related to those for Youden square designs given by Das 

and Kageyama (1992). The layout of a Latin square ensures that the loss of a complete 

row of observations has the same effect on the initial design as the removal of a complete 

column. When a single row (column) is lost then one replicate of every treatment is lost, 

and every column (row) has r — 1 plots remaining. Assuming that the observations are 
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removed from one row (column) of the starting design, every pair of treatments occurs 

together in the remaining r — 1 rows (columns) and in r — 2 columns (rows) of the resulting 

design, denoted by cT. Equation (4.2) is used to derive the normal equations because 

and 

tr' 1 
n r(r — 1) 

W _ 1 
M r(r — 1) 

( r - 1) 

( r — l)lr-l 
0 r i : r—1 Or Jr,r—1 

(r — l) lr(r — 1)1^ = - J 

1 
= (J,,, - I,) - I , 

r — 1 
OY JY- r—X 

NgC-'Na Or Jr,r—1 
0 o: r—1 

Or-l ^Ir-l 
Or Jr,r—1 

Or Jr,r—1 

r — 1 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

The two conditions in Equation (4.3) are satisfied for this resulting design. The important 

matrices in Equation (4.2) are given by 

t" = (r - 1)1 

(r - 1) 
r 

1 

-tt' 

(r - 1) 
(r - 1) 

Jr,r 

{Ir + (r — 2) Jr,r} 

J 
n 

Substituting these in Equation (4.2) gives the information matrix for treatment eEects 

Cjr = (r - 1)1, - r,r 
1 fr - 1) 

{Ir 4- (r — 2)Jr,r} H J 
(r - 1) r,r 

r(r - 2) _ (r - 2) 
( r - 1 ) ' ( r - l ) ' ' ' 

(4.13) 

after the loss of a row (column) of observations. The resulting design is variance balanced 

after the loss of any row or column of observations from the starting design. The non-zero 

eigenvalues of this information matrix are r ( r — 2)/(r — 1) with multiplicity r — 1. The 
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Table 4.1: Average variances and efBciencies for Latin squares where r = 3,4, - - ,10 after 
a complete row (or column) is lost. Average variances are multiplied by 

r 3 4 5 6 7 8 9 10 

A.v. Complete 
A.V. Block Missing 

R.E. 

0.667 
1.333 
0.500 

0.500 
0.750 
0.667 

0.400 
0.533 
0.750 

0.333 
0.417 
0.800 

0.286 
0.343 
0.833 

0.250 
0.292 
0.857 

0.222 
0.254 
0.875 

0.200 
0.225 
0.889 

average variance of all pairwise treatment comparisons for this design is 

x (r - 1) x (4.14) 
( r — 1) r ( r — 2 ) r ( r — 2 ) 

and when compared to the average variance for a complete Latin square design, the 

relative efficiency of any resulting design cT is (r — 2)/(r — 1). Table 4.1 shows the relative 

efficiencies of Latin square based designs of side r = 3, - - , 10, when a single row or column 

of observations becomes unavailable. A design with ten treatments suffers a reduction in 

efBciency of just over 11%, but small designs are very seriously affected by the removal of 

a complete row or column, e.g. a five treatment Latin square design loses 25% efBciency 

when a row of data is lost. 

4.3 Missing observations sca t t e r ed th roughou t t he 

initial design 

In most situations, the actual pattern of missing observations will be unknown to the 

experimenter at the outset. Suppose that the t missing plots are scattered throughout the 

starting design. In this section, the case of t < 3 missing observations will be examined in 

detail and results will also be provided for t > 3. The potential resulting designs for these 

configurations of missing data will be analysed by evaluating the average variance of the 

pairwise treatment differences, and the corresponding efficiencies relative to the complete 

design. For t > 1, a variety of configurations of missing values, which result in different 

information matrices, need to be considered, and the average variances and efBciencies are 

calculated to compare the distinct resulting designs for t missing observations. This will 

give an overview of the range of efficiencies due to the unavailability of ( observations. It 

will also be shown that the distribution of variances is independent of the particular Latin 
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square of side r that is selected. Individual variances of pairwise treatment differences are 

derived for all configurations of one and two missing values, using generalised inverses of 

the information matrices for treatment effects and the matrix of all elementary pairwise 

contrasts, F. The maximum of these variances will also be used as an extra measure of 

robustness of the designs to missing observations. 

Denote the planned design cf, and suppose that the loss of ( observations, scattered 

randomly throughout the starting design, produces a resulting design denoted by 6 D, 

where d is the set of all possible resulting designs. The size of D increases for increasing 

r and (, and there are available designs when ( observations become unavailable, 

because there are plots in a single replicate of a Latin square. The properties of all 

dit) € Dioxt = 1,2, and 3 will be examined in the following subsections, theoretically and 

numerically for given Latin squares. The cases of < missing values will be distinguished in 

subsequent Sections by an extra number, e.g. c((2; 1) corresponds to Case 1 of two missing 

observations. 

4.3.1 One missing value 

When one plot becomes unavailable from the starting design, there are possible resulting 

designs in D, and one of these resulting designs is denoted by (f(l). The e&ct on the 

form of the information matrix for treatment effects and the properties of the resulting 

design is the same whichever observation is lost. Assume, without loss of generality, that 

the missing observation is the plot in the first row and first column of the starting design 

and that it corresponds to the first treatment. The components of the information matrix 

for treatment effects in Equation (4.1) are now 

t*̂  = 
( r - 1 ) 

Or —1 — \ 

{4.15) 

and 

Ni = N2 = N3 
0 1: r—1 (4.16) 

Ir—1 Jr—l,r—1 

Substitution of these matrices into Equation (4.1), and simplification of the resulting 
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algebra gives the form of the information matrix for treatment e&cts of (f(l) as 

Cd(i) = 
2) 

- 2 ) il 

k - 2 ) . 
L (r-l)-Lr-l r l r —1 

(r-1) r-1 
(r^-2r+2) 

(r-l)2 ')—l,r—1 
(4.17) 

where Ip is a p dimensional vector of Is. The elements of Cd(i) can be rearranged to derive 

the information matrix when a different plot is lost from the design. Variances of pairwise 

treatment comparisons that are increased by the loss of an observation will depend on 

the actual treatment missing from the initial design, but the average and maximum of 

the variances are the same for all resulting designs, c((l). A generalised inverse of the 

information matrix Cd(i) is necessary to express these variances in terms of the number 

of treatments in the starting design. Letting a = (r^ — 2r + 2) / ( r — 1)^ in Equation (4.4) 

and inverting the non-singular matrix gives 

r2 = r(r̂ —4r̂ 4-6r—4) 

1 

( r - 1 ) 
11. r(r̂ —4r̂ -|-6r—4) r—1 

r(r̂ —4r̂ +6r—4) 1 ^ r(r—l)(r̂ —4r̂ -h6r—4)*̂ ^ ^ 

(4.18) 

The average variance of pairwise treatment comparisons is the same for all resulting 

designs d(l) E D, and when the Latin square is of side r, is given by 

2(r2 - 3r + 3) g 

r(r — l)(r — 2)°^ 
( 4 . 1 9 ) 

The (r — l)(r — 2)/2 pairwise treatment comparisons that do not involve the aSected 

treatment, which is treatment one for illustrative purposes, are unaltered by the loss of 

data, and their variances remain at 2cr^/r, but the variances of all differences between 

treatment one and the other r — 1 treatments increase to 

(2r^ — 5r + 4) 

r(r — l)(r — 2) 
a (4.20) 

Average and maximum pairwise variances, and the efficiencies of designs of side r = 

3, • • • ,10 after the loss of a single observation, are shown in Table 4.2. Reduction in 

efficiency for a design with three treatments is approximately 33%, which is a serious 

loss of accuracy resulting from the unavailability of one of the nine observations in the 

initial design. This loss of efficiency decreases rapidly as the number of treatments in the 
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Table 4.2: Average variances, maximum 
and relative efficiencies for Latin squares 
observations are missing. Also shown are 
two missing values. 

variances of pairwise treatment comparisons, 
of side r = 3, - - ,10 when either one or two 
the frequencies for the three diEerent cases of 

One missing Two missing 
r d(l) d(2;1) count d(2; 2) count 42; 3) count 

l.OOOOcr̂  1.3333(7^ 2.0000(7^ 

3 
(0.6667) 
1.1667(7^ 
(0.5714) 

(0.5000) 
1.3333(7^ 
(0.5000) 

18 Disconnected 9 
(0.3334) 
2.6667(7^ 
(0.2500) 

9 

0.5833(7^ 0.6667(7^ 0.7083(7^ 0.7500(7^ 

4 
(0.8571) 
0.6667(7^ 
(0.7500) 

(0.7500) 
0.7500(7^ 
(0.6667) 

48 
(0.7059) 
1.0000(7^ 
(0.5000) 

48 
(0.6667) 
1.0000(7^ 
(0.5000) 

24 

0.4333(7^ 0.4667(7^ 0.4714(7^ 0.4889(7^ 

5 
(0.9231) 
0.4833(7^ 
(0.8276) 

(0.8571) 
0.5333(7^ 
(0.7500) 

100 
(0.8485) 
0.6000(7^ 
(0.6667) 

150 
(0.8182) 
0.6222(7^ 
(0.6429) 

50 

0.3500(7^ 0.3667(7^ 0.3677(7^ 0.3750(7^ 

6 
(0.9523) 
0.3833(7^ 

(0.9089) 
0.4167(7^ 180 

(0.9064) 
0.44440-2 360 

(0.8888) 
0.4583(7^ 90 

(0.8696) (0.8000) (0.7500) (0.7273) 
0.2952(7^ 0.3048(7^ 0.3051(7^ 0.3086(7^ 

7 
(0.9678) 
0.3190(7^ 
(0.8957) 

(0.9373) 
0.3429(7^ 
(0.8332) 

294 
(0.9364) 
0.3571(7^ 
(0.8001) 

735 
(0.9258) 
0.3657(7^ 
(0.7813) 

147 

0.2560(7^ 0.2619(7^ 0.2620(7^ 0.2639(7^ 

8 
(0.9766) 
0.2738(7^ 

(0.9546) 
0.2917(7^ 488 

(0.9542) 
0.3000(7^ 1,344 

(0.9473) 
0.3056(7^ 224 

(0.9131) (0.8570) (0.8333) (0.8181) 
0.2262(7^ 0.2302(7^ 0.2302(7^ 0.2313(7^ 

9 
(0.9823) 
0.2401(7^ 
(0.9255) 

(0.9654) 
0.2540(7^ 
(0.8749) 

648 
(0.9652) 
0.2593(7^ 
(0.8570) 

2,268 
(0.9607) 
0.2630(7^ 
(0.8450) 

324 

0.2028(7^ 0.2056(7^ 0.2056(7^ 0.2063(7^ 

10 
(0.9862) 
0.2139(7^ 
(0.9350) 

(0.9730) 
0.2250(7^ 
(0.8889) 

900 
(0.9729) 
0.2286(7^ 
(0.8749) 

3,600 
(0.9697) 
0.2313(7^ 
(0.8647) 

450 
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Case 1 

Caae 2 

Case 3 

1 2 X X 

1 X X X 
X 2 X X 

1 X X X 
X 1 X X 

Figure 4.1; Potential configurations of two missing values in a Latin square design. The 
letter X refers to any other possible treatment in the design. 

design increases, because the total number of observations in the experiment increases 

substantially as the number of treatments increases. The difference between the maximum 

and average variance is large when the initial design has a small number treatments, but 

becomes smaller for large Latin squares. 

4.3.2 Two values missing f rom a La t in squa re design 

When two observations become unavailable, the many resulting designs, denoted by d{2), 

fall into three distinct sub-cases, each of which needs to be considered separately to 

identify the properties of these designs. Sub-cases of d correspond to the particular 

configuration of two missing observations. Rows, columns, and treatment labels of the 

design may be interchanged, so the configurations corresponding to these three sub-cases 

will be identified in terms of treatments 1 and 2, and the rows and columns in which 

the missing observations occur. An example of a configuration of missing values for each 

of these three cases, listed in order of increasing average variance of pairwise treatment 

comparisons, is given in Figure 4.1. The regulated structure of a Latin square ensures 

that Case 1 includes the situation where two different treatments are lost from the same 

column. 

Table 4.3 shows the number of configurations corresponding to each of the three sub-

cases, and also important measures of robustness - variances of the individual pairwise 

treatment comparisons, the numbers of each of the comparisons, and the overall average 

of these variances. 

Derivation of the results for the sub-case with the largest average variance, (i(2;3), 

is illustrated below, and the same approach can be used to produce the many formulae 

shown in Table 4.3 for the other two sub-cases. There are six matrices in Equation (4.1), 
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Table 4.3: Average and pairwise variances for Latin square designs of side r for the three 
configurations of two missing observations. The number of configurations corresponding 

Case 
Treatment 

i 
Treatment 

j 
Pairwise 
Variance Number 

d ( 2 ; l ) 1 2 1 

1,2 3, - - ( 2 r Z - 7 r + 7 ) 2 
r ( r - 2 ) 2 2(r - 2) 

3,- " ,r 3, • • • k ' ( r - 2 ) ( r - 3 ) / 2 

Average Variance 2 ( r ^ - 3 r + 4 ) 2 
r ( r — l ) ( r - 2 ) 

Configurations - 1 ) 

4 2 ; 2) 1 2 2 ( 7 - 2 ) ^ 2 
r ( r - 3 ) " 1 

1,2 3, • • • ( 2 r = - l l r 2 + 2 3 r - 2 2 ) 2 
r ( r—3)(r2—3r+4) ^ 2(r - 2) 

^ - ,r 3, - - ( r - 2 ) ( r - 3 ) / 2 

Average Variance 

ConHgurations 

2(r—2)(r^—5r^ + l l r—11) 9 
r(r—l)(r—3)(r2—3r+4) 

r^(r — l)(r — 2)/2 

(f(2;3) 1 2, - ,r 2 ( r : ' - 3 r + 4 ) 2 
7-(r^—4r+4) 

( r - 1 ) 

2, - ,r 2, - ,r ( r - l ) ( r - 2 ) / 2 

Average Variance 2 ( r ^ - 4 r + 6 ) 2 
r(r^—4r+4) 

Configurations - l ) /2 

and for conSgurations of missing values in sub-case c((2; 3), under the assumption that a 

replicate of treatment one is lost from row 1, column 1 and also from row 2, column 2, 

these can be shown to be 

t ' = ( ^ - 2 ) OLi 

Or—1 1 

(r — 1)I2 02,r-2 

O r - 2 , 2 

(4 21) 
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and 

Ni = N s 
O2 IL2 

r —1,2 Jr—l,r—2 
N , 

^2,2 — I2 J2,R-2 

Jr—2,2 Jr—2,r—2 
(4.22) 

The information matrix for treatment effects is found by substituting the expressions in 

Equations (4.21) and (4.22) into Equation (4.1) to give 

/d(2;3) 
r r(r̂ —2r+2) { 2 ( r - 2 ) _ r - 2 - | -i / 

r{r^ — 2r+2) r J r—1 

{ 2(r-2) 
r(r2—2r+2) 

r—2 
r—1 fir-l — + r - 2 + 2(r-2) 

r(r — l)(r^—2r+2) }Jr- l , r - l 

(' .23) 

for a resulting design corresponding to sub-case (f(2; 3). One particular generalised inverse 

that can be used to find the variances of pairwise treatment comparisons is given by 

n 
(r̂ -2r+2)̂  

r(r̂ —6r̂  + 16r̂ —24r+16) 
2(r -̂2r+2) 

'r(r4-6r3+lGr2-24r+16) 

2(r^-2r+2) 
r(r''—6r® + 16r2 —24r+16) r—1 

+ r(r̂ —6r3 + 16r2—24r+16)' 'r—l,r—1 
(4.24) 

Variances of all the individual pairwise treatment differences can be found by selecting the 

appropriate elements from this generalised inverse. These are listed in Table 4.3, which 

also shows the average of these individual variances. The relative efficiency is calculated 

simply by comparing the average variance formula for a given case to the average for the 

complete design, which is 2a^/r for a Latin square design with r treatments. 

Table 4.2 shows that a small square with three treatments incurs a 66% reduction 

in efficiency and a corresponding large increase in average and maximum variance for 

the nine ways of achieving the worst configuration of two missing values, (f(2; 3). Loss 

of efBciency for larger starting designs is smaller, e.g. it is less than 5% when there 

are 9 or more treatments in the initial design, which is partly due to the large number 

of observations in these situations, 81 and 100 respectively for nine and ten treatments 

respectively. The difference in efficiency between the best case, when two observations 

are removed from the same row or column, and con6gurations corresponding to the worst 

case decreases as the size of the square increases. The increased size of the starting design 

reduces the impact of losing any two observations. 
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Case 1 

Case 3 

1 2 3 X 

1 X X X 
X 2 X X 
X 3 X X 

Case 2 

Case 4 

1 2 X X 
X 3 X X 

X 
X 

X 

X 

X 
X 

Case 5 1 2 X X Case 6 1 X X X 
X 1 X X X 1 X X 

X 2 X X 

Case 7 1 X X X Case 8 1 X X X 
X 1 X X X 1 X X 
X X 2 X X X 1 . . . X 

X 
X 
X 

Figure 4.2: Potential conSgurations of three missing values in a single replicate Latin 
square design. The letter X refers to any other possible treatment in the design. 

4.3.3 Three missing values 

The loss of three observations from a Latin square is a more complicated situation. There 

are eight distinct configurations of three missing observations, each producing a sub-case 

of resulting designs with different properties, in particular, the average and maximum 

variance of pairwise treatment differences. Best and worst cases, in terms of the relative 

eHiciency of the sub-case of designs, can be identified by considering these eight sub-cases 

separately. The situation is more straightforward than for a BIB design, where there are 

twenty-five cases, many with sub-cases, to be considered individually. Once again, because 

rows and columns may be interchanged in a Latin square and treatment labels may be 

permuted without altering the properties of the resulting design, the eight configurations 

of missing observations can be studied using the first three treatments and first three rows 

and columns of the Latin square. The 8 cases are illustrated in Figure 4.2 and the number 

of configurations of each of these cases is shown in Table 4.4 in terms of the size of the 

square, r. 

For each of the eight sub-cases of resulting designs, denoted by c((3), the effect on the 

information matrix for treatment effects, C, is investigated by considering the changes to 

the elements of Equation (4.1). After the form of C has been determined, the variances 

of individual pairwise treatment diEerences, their average, and the relative efficiency for 

the particular resulting design in the sub-case may be found using a suitable generalised 

inverse O of C. The derivation of the theoretical formulae for the variances of pairwise 
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Table 4.4: The number of conhgurations corresponding to each case of three missing 
observations. 

Case Configurations 

c((3;l) r ^ ( r - l ) ( r - 2 ) / 3 

d(3; 2) — l)(r — 2) 

d(3;3) l)(r —2)(r —3) 

(:f(3;4) —l)(r —2)(r^ —6r + 10)/6 

(f(3;5) r ^ ( r - l ) 

c((3;6) 2r^(r —l)(r —2) 

d(3;7) r^(r —l)(r —2)(r —3)/2 

d(3; 8) r^(r — l)(r — 2) /6 

treatment comparisons and their efficiencies, is illustrated for a resulting design in the 

first sub-case only, and corresponding results for the other seven sub-cases may be found 

using the same approach. Numerical results are calculated for different square sizes at 

the end of the subsection to illustrate the possible effect of three observations becoming 

unavailable. 

Assume, without loss of generality, that three observations corresponding to the first 

three treatments are lost from the same row (column) of the design, and that they occurred 

in the first three columns (rows) of the starting design. To compute the form of the 

information matrix for treatment effects, the following matrices are required 

and 

Ni = N , 
0, 

ij ~ l)l3 Os r-S 

Or-3,3 

h , r - l 

(r - 3) 

Or—1 1 
(4.25) 

Ir—3 Jr—3,r—1 
No (4.26) 

Ja.r-S 

Jr—3,3 Jr—3,r—3 

On substitution of the matrices in Equations (4.25) and (4.26) into Equation (4.1), and 
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after simpliHcation, the information matrix for treatment effects is given by 

- ; ( ; ^ } J r - 3 , 3 rlr_3 - {(;33) + + r ( r - l ) ( T - 3 ) } J ' - - 3 , r - 3 

(4.27) 

A sensible choice of generalised inverse for this information matrix is given by 

(4.28) S7 = 
(r-l) -r Q 
r(r—2) ^ 3,r—3 

Or-3,3 ;Ir-3 + r(r-2)(r-3)^r-3,r-3 

Variances of differences between treatments that do not lose a replicate remain unchanged 

at 2cr^/r. For comparisons that involve treatments 1, 2, and 3, the variances are increased 

to 2(r — l)cr^/r(r — 2). The comparisons between one of the 6rst three treatments and 

any of the other r — 3 treatments have variances equal to (2r — 5)i7^/r(r — 3). The average 

variance of pairwise treatment differences for designs in this sub-case is given by 

2(r2 - 3r + 5)_^, (4.29) 

r ( r — l ) ( r — 2) 

for a Latin square of side r. Table 4.5 shows average and maximum pairmdse variances, 

and relative efficiencies for Latin square designs with between four and ten treatments for 

all 8 cases given in Figure 4.2. These results suggest that, for smaller designs with four 

or five treatments, there is a large range in relative efBciencies over the different cases, 

and that, even for the best case with three missing observations, there is a reduction 

of over 30% for a Latin square of side r = 4. The maximum pairwise variances are 

increased substantially for the smallest design of four treatments, which could lead to 

ruination of the experiment. In the worst case for this design, the efficiency drops to 

40%. As the size of the design increases, the eSFects of losing any three observations 

decrease as expected due to the larger number of plots in the starting design. The range 

of variances of pairwise treatment comparisons also decreases as the size of the square 

increases. A design constructed from a Latin square with ten treatments is not severely 

affected when the average variance is considered, but the maximum variance of pairwise 

treatment comparisons increases from 0.2(7^ to 0.2536(7^, corresponding to a reduction in 

eGciency of 21%. 
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Table 4.5: Average and maximum variances of pairwise treatment comparisons, and rela-
tive efficiencies (in parenthesis) for Latin squares where r = 4, • • • , 10 for the eight cases 
of three missing values. Variances are multiplied by cr̂ . 

CASE 
r d(3;l) d(3;2) d(3;3) d(3;4) (i(3;5) d(3;6) (f(3;7) d(3;8) 

0.7500 0.7833 0.9167 0.8500 0.9167 0?8500 1.0833 1.2500 
(0.6667) (0.6383) (0.5455) (0.5882) (0.5455) (0.5882) (0.4616) (0.4000) 

4 0.7500 1.0000 1.2500 1.0000 1.2500 1.2000 2.0000 2.0000 
(0.6667) (0.5000) (0.4000) (0.5000) (0.4000) (0.4167) (0.2500) (0.2500) 
0.5000 0.5033 0.5133 0.5125 0.5333 0.5233 0.5400 0.6000 

(0.8000) (0.7947) (0.7792) (0.7805) (0.7500) (0.7644) (0.7407) (0.6667) 
5 0.5333 0.6000 0.6233 0.6000 0.6667 0.6933 0.8100 0.9000 

(0.7500) (0.6667) (0.6417) (0.6667) (0.6000) (0.5770) (0.4938) (0.4444) 
0.3833 0.3840 0.3859 0.3861 0.3944 0.3918 0.3949 0.4167 

(0.8695) (0.8680) (0.8637) (0.8632) (0.8450) (0.8506) (0.8441) (0.7999) 
6 0.4167 0.4444 0.4503 0.4444 0.4722 0.4984 0.5385 0.5833 

(0.7999) (0.7501) (0.7402) (0.7501) (0.7059) (0.6688) (0.6190) (0.5715) 
0.3143 0.3145 0.3150 0.3151 0.3190 0.3181 0.3190 0.3286 

(0.9090) (0.9085) (0.9070) (0.9066) (0.8955) (0.8981) (0.8957) (0.8695) 
7 0.3429 0.3571 0.3593 0.3571 0.3786 0.3923 0.4111 0.4357 

(0.8332) (0.8001) (0.7952) (0.8001) (0.7547) (0.7283) (0.6950) (0.6558) 
0.2679 0.2679 0.2681 0.2682 0.2702 0.2699 0.2701 0.2750 

(0.9333) (0.9331) (0.9325) (0.9323) (0.9251) (0.9264) (0.9255) (0.9091) 
8 0.2917 0.3000 0.3010 0.3000 0.3167 0.3248 0.3351 0.3500 

(0.8570) (0.8333) (0.8306) (0.8333) (0.7894) (0.7697) (0.7460) (0.7143) 
0.2341 0.2342 0.2342 0.2343 0.2354 0.2353 0.2354 0.2381 

(0.9491) (0.9490) (0.9486) (0.9485) (0.9437) (0.9445) (0.9440) (0.9332) 
9 0.2540 0.2593 0.2598 0.2593 0.2725 0.2777 0.2840 0.2937 

(0.8749) (0.8570) (0.8554) (0.8570) (0.8155) (0.8002) (0.7825) (0.7566) 
0.2083 0.2083 0.2084 0.2084 0.2091 0.2090 0.2091 0.2107 

(0.9600) (0.9599) (0.9598) (0.9597) (0.9564) (0.9568) (0.9566) (0.9492) 
10 0.2250 0.2286 0.2289 0.2286 0.2393 0.2428 0.2470 0.2536 

(0.8889) (0.8749) (0.8737) (0.8749) (0.8358) (0.8237) (0.8097) (0.7886) 
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Table 4.6: Average variance, maximum pairwise variance, and relative eHiciencies (in 
parenthesis) of the best and worst configurations of t missing values for Latin squares 
with r = 5, • • • ,10 treatments. All variances are multiplied by 

Number of Missing Values (t) 
4 5 6 7 

r Best Worst Best \\brst Best Worst Best Worst 

0.5333 0.9333 - - - - - -

(0.7500) (0.4286) - - - - - -

5 0.5333 1.7333 - - - - — 

(0.7500) (0.2308) 
0.4000 0.5000 0.4167 0.7500 - - - -

(0.8333) (0.6667) (0.8000) (0.4444) - - - -

6 0.4167 0.8333 0.4167 1.5833 - - - -

(0.7999) (0.4000) (0.7999) (0.2105) 
0.3238 0.3619 0.3333 0.4286 0.3429 0.6286 - -

(0.8823) (0.7894) (0.8571) (0.6667) (0.8332) (0.4545) - -

7 0.3429 0.5524 0.3429 0.7857 0.3429 1.4857 - -

(0.8332) (0.5172) (0.8332) (0.3636) (0.8332) (0.1923) 
0.2738 0.2917 0.2798 0.3194 0.2857 0.3750 0.2917 0.5417 

(0.9131) (0.8570) (0.8935) (0.7826) (0.8750) (0.6667) (0.8570) (0.4615) 
8 0.2917 0.4167 0.2917 0.5278 0.2917 0.7500 0.2917 1.4167 

(0.8570) (0.6000) (0.8570) (0.4737) (0.8570) (0.3333) (0.8570) (0.1765) 
0.2381 0.2476 0.2421 0.2619 0.2460 0.2857 0.2500 0.3333 

(0.9332) (0.8974) (0.9178) (0.8484) (0.9033) (0.7777) (0.8889) (0.6667) 
9 0.2540 0.3365 0.2540 0.4008 0.2540 0.5079 0.2540 0.7222 

(0.8749) (0.6604) (0.8749) (0.5544) (0.8749) (0.4375) (0.8749) (0.3077) 
0.2111 0.2167 0.2139 0.2250 0.2167 0.2375 0.2194 0.2583 

(0.9474) (0.9231) (0.9351) (0.8889) (0.9231) (0.8421) (0.9116) (0.7743) 
10 0.2250 0.2833 0.2250 0.3250 0.2250 0.3875 0.2250 0.4917 

(0.8889) (0.7060) (0.8889) (0.6154) (0.8889) (0.5161) (0.8889) (0.4068) 

4.3.4 Extens ion to more t h a n t h r ee miss ing values 

When more than three observations are lost from a Latin square design, there is a large 

number of distinct configurations leading to different sub-cases, that need to be considered. 

Full enumeration of these would be a computationally expensive task for many designs. 

However, based on the results of this section, it would appear reasonable to assume that 

(1) the best of these cases is the removal of ^(< r) plots from the same row or column of 

the starting design, and that (2) the worst situation would occur if t replicates of one of 

the treatments become unavailable. 

The form of the information matrix could be derived theoretically for these cases, but 

in this subsection, the results will be calculated numerically for different Latin square 
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Table 4.7: Distribution of eight cases after the loss of three values for Latin squares where 
r = 4, • • • ,10 treatments. 

CASE 
r 43; 1) d(3; 2) d(3;3) 43 ; 4) d(3; 5) d(3;6) 43; 7) d(3; 8) 

4 0.0571 0.1714 0.1714 0.0571 0.0857 0.3429 0.0857 0.0286 
5 0.0435 0.1304 0.2609 0.1087 0.0435 0.2609 0.1304 0.0217 
6 0.0336 0.1008 0.3025 0.1681 0.0252 0.2017 0.1513 0.0168 
7 0.0266 0.0798 0.3191 0.2261 0.0160 0.1596 0.1596 0.0133 
8 0.0215 0.0645 0.3226 0.2796 0.0108 0.1290 0.1613 0.0108 
9 0.0177 0.0532 0.3190 0.3278 0.0076 0.1063 0.1595 0.0089 
10 0.0148 0.0445 0.3117 0.3711 0.0056 0.0891 0.1558 0.0074 

designs and different numbers of missing values. Table 4.6 shows the relative efficiencies 

for these two situations when t = 4,5,6 or 7 observations are lost from Latin square 

designs with r = 5, • • • , 10. There is large variation between the efficiencies in the eight 

cases for the smaller designs, which again highlights the severity of losing data from a 

Latin square design. Relative efficiencies are very low for the worst case for many of the 

designs. The efficiencies for the maxima of the variances of pairwise treatment comparison 

are reduced more than those of the averages. For example, the loss of seven replicates 

of one treatment for a design of side r = 10 is very serious, representing a reduction in 

efficiency to 77%. The variances of all comparisons involving the affected treatment are 

much larger than those of the other comparisons, 0.4917(7^ compared with the average 

0.2583(7^. 

4.4 Observat ions missing comple te ly at r a n d o m 

Suppose that drop>-out from a Latin square design can be assumed to occur completely 

at random, see Diggle and Kenward (1994). Under these circumstances it is possible to 

produce a distribution of relative efficiencies for the loss of t observations from a Latin 

square of side r. Formulae for the number of configurations in each sub-case and hence 

the probabilities for these cases, when ^ = 2 and 3 observations are lost, have been given 

in Sections 4.3.2 and 4.3.3. The expected average variance given two missing values can 

also be expressed theoretically using the derived formulae as 
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0.84 
Relative Efficiency 

Figure 4.3: Distribution of relative efficiencies for the eight subclasses of three missing 
observations for a Latin square of size 6. 

The distribution of efficiencies relative to the starting design have been calculated for 

Latin squares of side 4, • • • ,10 for three missing observations and are tabulated in Table 

4.7. Probabilities of obtaining the best (Case 1) and worst (Case 8) sub-cases decrease as 

the number of treatments in the initial design increases. The most common configurations 

of three missing values become Cases 3, 4, and 7 as the size of the square increases. 

Figure 4.3 shows the distribution of efficiencies for i = 3 missing observations for a 

Latin square design with six treatments. The figure shows that while a small proportion 

of the configurations give rise to efficiency losses of nearly 20%, the majority (over 96%) 

of resulting designs have a reduction in efficiency of under 16%. It is possible to produce 

similar graphs for other sizes of square and/or numbers of missing values to investigate 

the robustness of the initial design to any configuration of t missing observations. 

4.5 Discussion 

The results in this Chapter illustrate the eEect of data becoming unavailable in a Latin 

square experimental design. Loss of complete treatments, rows or columns, and missing 

values scattered throughout the starting design have been considered. A complete design 

with three or four treatments suffers a large reduction in efficiency when one or two 

80 



observations are missing. Large designs are affected less seriously by the loss of a small 

number of observations, but as the number of missing values increases, the reduction in 

efficiency increases correspondingly. The structure of Latin square designs ensures that 

the overall properties of the resulting designs are the same regardless of the square that is 

selected. The results suggest that the use of replicate squares to construct a design may 

be beneGcial if the experiment has a small number of treatments, to minimise the effect 

of missing data. 
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Chapter 5 

Missing values in Repl icate Latin 

Squares 

The results in the previous Chapter indicated the benefits of constructing designs based on 

more than one Latin square. Small designs where there are only three or four treatments 

were found to suffer a large reduction in efficiency, when one or two observations became 

unavailable from the starting design. In this Chapter, designs based on any number 

of Latin squares, where k is used to denote the number of squares, are examined for 

their robustness against the loss of up to three observations scattered throughout the 

starting design. The results presented in this Chapter are reported in Mansson and 

Prescott (2001b). It will be seen that the overall distribution of resulting designs when t 

observations are lost is independent of the choice of squares used to construct the starting 

design. For example, when A: = 2, there is no difference in the effect of missing data if 

two identical squares or two different squares were chosen to construct the design. 

The information matrix for the treatment effects is used to evaluate the variances 

of pairwise treatment differences for each resulting design, and is expressed in terms of 

the number of missing values and the size of the initial design. The resulting averages 

of these variances are used to assess the overall robustness of the designs to the loss 

of up to three observations. There are many similarities in potential configurations of 

missing values between single and multiple square designs, with the main differences 

being extra configurations introduced by the increased number of plots in the columns 

of the chosen designs, and the multiple replicates of each treatment in the column block 

design. In general, there are 5 and 16 different situations for the cases of two and three 
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missing values respectively when there are at least three Latin square replicates in the 

starting design. It is possible to determine algebraic expressions for the variances for all 

possible configurations, which has been done for all cases of two missing observations, 

but only best and worst cases are given in detail for three missing values. A numerical 

illustration is provided with the average variances, relative efficiencies, minimum and 

maximum variances, and the frequencies of the distinct configurations of ^ = 2 and 3 

missing observations, showing the effects of the missing observations for Latin squares of 

side r = 4 and up to four squares. 

The results in this Chapter can be compared with those in the previous Chapter as 

reported by Mansson and Prescott (2001c) by setting A: = 1, which is equivalent to a 

design based on a single Latin square. In the next Section, the theory used to identify 

the properties of the resulting designs and to compare the different realisable designs is 

covered briefly. 

5.1 Designs constructed with multiple Latin Squares 

In practice, the small designs based on single squares studied in Chapter 4 can be ex-

tended either by using several squares or by allocating several subjects to each treatment 

sequence (row) of the Latin square. The aim of this approach is to reduce the increases to 

the variances of pairwise treatment comparisons caused by missing data. Following this 

approach, suppose that a row-column design is constructed using up to k replicates of a 

(r X r) Latin square, or alternatively of k different Latin squares of the same size, so that 

the complete design with r periods (columns) applied to a group of kr patients (rows) is 

such that each patient receives a sequence of the r treatments. An additive model with 

row, column, and treatment effects is assumed, and there are n = kr'^ observations in 

the starting design. When the design is complete, the information matrix for treatment 

effects is given by C j = krir — A;Jr,r. 

Assume that t observations are removed from the start ing design, and that they are 

scattered throughout the design. The general form of the information matrix for treatment 

effects when f values are missing, shown in Chapter 2, is given by 

- t ' - N i r - ' N ; - (Ng - Nir-'^N^)(c'' - N3r-''N^)-(N^ - Nsr-'N^) (5.1) 
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where the main diSFerences between the incidence matrices for the replicated square and 

single square designs are the dimensions of the matrices Ni and N3, and the elements 

of the column incidence matrix, Ng. For a complete design constructed from A: Latin 

squares, there are k plots corresponding to every treatment in each of the columns of the 

starting design, so that N2 is a (r x r) matrix of elements all equal to A;. The elements of 

N i are all equal to 1 when the design is complete as all treatments occur exactly once in 

every row of the starting design. 

In the next section, the properties of designs resulting from the loss of up to three 

observations are developed. Formulae for the average of the variances are determined 

under all configurations for either one or two missing values, and the best and worst 

cases are given in detail for three missing values. The theoretical section is followed 

by a numerical example to illustrate the potential benefits of replicate squares for a four 

treatment experiment. The minimum and maximum of the variances of pairwise treatment 

differences are also computed to assess the most severely affected treatment comparison, 

which is not provided when the average variance is used as a measure of robustness. 

5.2 Changes to the variances of pairwise treatment 

differences when observations are lost 

The effect of missing observations on the information matr ix for treatment effects may 

be investigated by evaluating the alterations to the six components of the right-hand side 

of Equation (5.1). Different configurations of the missing values may arise, which are 

dependent on the rows, columns, and treatments that are affected by the loss of data. As 

discussed in earlier Chapters, configurations are not regarded as essentially different, when 

the variances of pairwise treatment comparisons are analysed, if one can be obtained from 

another by simply rearranging the rows, columns, and t rea tment labels appropriately. In 

each of the cases, the properties of a basic configuration of t missing value are determined 

using specific row, column, and treatment labels, and subsequently deriving the number 

of similar situations for k replicates of a (r x r) Latin square. 

The increase in variances of the individual pairwise t reatment comparisons will depend 

on which specific treatments are affected by the given configuration of missing values. 
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Except for the case of a single missing value, which is relatively trivial, the changes to 

the individual components of Equation (5.1) will be identified, and then these will be 

combined appropriately to produce all possible conEgurations of two missing values for 

row-column design constructed from k Latin squares of side r. Only the best and worst 

cases, measured by their average variance, are investigated for the situation where three 

plots become unavailable. 

5.2.1 One value missing f rom t h e s t a r t i n g design 

The removal of a single observation from the initial design gives rise to one of a possible 

kr'^ resulting designs, all of which are identified by (i(l) say, where the information matrix 

has a basic structure which is common to all the resulting designs. Assuming that the 

plot in the first row and first column of the starting design, which corresponds to the 

first treatment, is lost, the six components in the formula for the information matrix for 

treatment effects in this case are given by 

t^ = 
(A;r - 1) 

0 r—1 

o; 

A:rlr-i 

1) Ofcr-l 

1 1 

(Air - 1) 

Or_l krlr-l 

(5.2) 

and 

Ni 
0 l L _ i 

Ir—1 J?—l,ki—1 

N o = 
(A: - 1) 

1 Ĵr—1,7"—1 
N , = 

0 l l r - l 

Ir—1 ^ r—l,kr—l 

(5.3) 

The form of the information matrix is found by substi tut ing these six expressions into 

Equation (5.1), and after simplification, is 

1 11/ 
I r r(kr — l) J ^ — ^ 

- { 
(kr—1) 

r } l r - l k r i r - i — {7—TT + 
1 I (kr-1) 

r r ( / c r — 1 ) ^ /i-/j-r i I (r—1) ' r ' r(r—l)(/cr—1) ^ ^ ̂  ^ 
(54) 

These reduced normal equations can be solved by selecting a generalised inverse. One 
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complicated generalised inverse of this information matrix is given by 

n 
{r-l){kr-lf fcr-1 -i / 

kr{k^r^—kr'^(k+3)+2r(2k+l)-4) kr{k'^r^—kr'^(k+3)+2r{2k+l)-4) r—1 

kr-l 1 J_T I 1 T 
A:R(T2R3-TR2(T+3)+2R(2T+L)-4)-^R-L TR(R-L)(A:2R3-A:R2(T+3)+2R(2A:+L)-4)'^R-L,R-L_ 

(5 .5 ) 

The average variance of pairwise treatment comparisons for a general design based on A; 

squares can be found using either the non-zero eigenvalues of this information matrix or 

the generalised inverse and matrix of all pairwise treatment contrasts. The formula for 

the average variance of a design based on A: Latin squares of side r is 

" - t , " « 

Variances of individual treatment comparisons will depend on the treatment associated 

with the missing plot, but the average and maximum are the same for all kr'̂  resulting 

designs. Equation (5.6) can be simplified for a design based on a single square, where 

A: = 1, to 

Â V. = (5.7) 

which corresponds to the result derived in Chapter 4. Variances of the r — 1 pairwise 

treatment comparisons which involve the affected treatment are increased to 

(2/cr^ - 2A:r - 3 r -I- 4) g , . 

and the other variances all remain unchanged as 2cr̂ /A;r. 

5.2.2 Two missing values 

In a design based on a single Latin square there are three distinct configurations of two 

missing observations that may occur, as discussed in greater detail in Chapter 4. This 

increases to five cases when the starting design is constructed from more than one square. 

These missing values can occur in either the same or different squares of the starting 

design, and in the same or different rows and columns. It is also possible to lose two 

replicates of the same treatment, or one replicate of each of two different treatments. The 

design can be considered to have A:r rows rather than differentiating between observations 
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Case 1 

Cage 2 

Case 3 

Case 4 

Case 5 

1 2 X X 

1 X X X 
X 2 X • • • X 

1 X X X 
2 X X X 

1 X X X 
X 1 X X 

1 X X X 
1 X X X 

Figure 5.1: Potential configurations of two missing values in a A: replicated Latin square 
design. The letter X refers to any other possible treatment in the design. 

in the different squares to identify distinct configurations of missing observations. The 

five cases are shown in Figure 5.1 using only the first two treatments, and the first two 

rows and columns of the starting design. When there is only one square, the properties 

of Case 3 are similar to those of Case 1, and Case 5 is not possible because there is only 

one replicate of each treatment in all the columns of the starting design. 

The average variance of pairwise treatment differences for these five cases can be found 

by considering the changes to the components of the information matrix for treatment 

effects, as given in Equation (5.1). Although there are five different situations, the forms 

of some of the matrices are similar for the different cases of missing values. These are 

illustrated using the first two treatments, the first two rows and columns of the starting 

design. For example, the matrix takes only two forms, identified by (a) and (b) below. 

{kr — l)l2 02,r-2 

0 r - 2 , 2 krlr-2 
(b) 

{kr — 2) 

0 r—1 

o; 

krlr-i 
(5.9) 

The expression in (a) corresponds to one replicate of two different treatments becoming 

unavailable, while (b) occurs when two replicates of the same treatment are lost from the 

starting design. There are also two different forms for and that are based on the 

number of plots removed from one or two rows or columns of the initial design. These 
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matrices are given by 

(r - 2 ) 

Ofcr—1 Î/cr—1 
{b) 

(r — l)l2 02,tr-2 

Ofcr—2,2 '^lkr—2 

[5.10) 

where (a) occurs when the 2 plots are in the same row, and (b) is the loss of plots from 

different rows, and 

(kr — l)l2 02,r-2 

Or_2,2 A;rlr_2 
(b) 

(/:r - 2) 

L r - l 

i ; 

krlr-i 
(5.11) 

where (a) corresponds to observations in different columns, and (b) is two observations 

from one column of the starting design. There are three situations to be considered 

for the form of Ni , the incidence matrix for treatments and rows. The three situations 

correspond to different treatments in the same row of the starting design, denoted I(r), 

different treatments in different rows, II(r), and the same treatment in separate rows, 

Ill(r). The forms of the matrix Ni in the three situations are given in Equations (5.12), 

(5.13), and (5.14), assuming without loss of generality that the two missing observations 

occurred in the first two rows and columns of the starting design and correspond to the 

first two treatments. 

O2 J2,fcr-1 
I(r) : Ni 

Lr—2 "r—2,fcr—1 

n(r) N, 
' 2 ,2 ' 2 , t r - 2 

' r - 2 , 2 J r -r—2,kr—2 

(5.12) 

(5.13) 

Ill(r) : Ni = 
0; J-

(5.14) '2 •^kr-2 

J r - 1 , 2 J r —l,fcr—2 

The extra replicates of each treatment in the columns of the designs imply that there are 

four situations to be considered for the columns. The four cases for the incidence matrix 

N2 of the column component correspond to different treatments in different columns, 1(c), 

different treatments in a single column, 11(c), the same treatment in separate columns, 

III(c), and the same treatment in one column of the starting design, IV(c). Equations 

(5.15) - (5.18) show the forms of the incidence matrix Ng for the four situations. It is 



Table 5.1: The five cases of two missing observations from designs constructed using 
multiple Latin squares and the components of their respective information matrices 

Case t ' r T Ni No N , 

1 a a a I(r) 1(c) I(n^ 
2 a b a 1(c) II(rc) 
3 a b b 11(c) Il^ir) 
4 b I) a Ill(r) III(c) Il(rc) 
5 b b b Ill(r) IV(c) Ill(rc) 

again assumed that the missing values correspond to the first two treatments and the first 

two columns of the starting design. 

1(c) N , 
^^2,2 — I2 k32,r-2 

^Jr-2,2 kjr-2,r-2 
(5.15) 

11(c) : 

III(c) : 

No 

No = 

(k — l)l2 A:J2,r-l 

k ' l . j -^2 AyJy.—2,r —1 

{k - 1)1.2 2 

kJ r - 1 , 2 A:J r — l,r—2 

IV(c) : No 

(5.16) 

(5.17) 

(5.18) 
Qk--2) ^^r-l 

A-ly—% kj'p—% r—1 

The final component of the information matrix for treatment effects is N3, and there are 

three different situations. Figure 5.1 illustrates possible locations of missing observations 

in the rows and columns of the initial design. The first is where observations are in the 

same row and different columns, I(rc), the second is different rows and columns, Il(rc), 

and the last is different rows but the same column, Il l(rc). In these three circumstances 

the forms of the matrix N3 are given by 

I(rc) ; N , 
O2 J 2 , f c r - 1 

Ir—2 3 r—2,kr — l 

(5.19) 

Il(rc) : N , 
J2,2 ~ I2 J2,FCR-2 

J r - 2 , 2 3 r - 2 , k r - 2 

(5.20) 
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Ill(rc) : N3 
O2 1L_2 

(5.21) 
Jr—1,2 Jr—1,/c)—2 

These components can be combined in an appropriate manner to obtain the information 

matrix, for the various configurations of two missing observations. Table 5.1 shows 

the combinations of matrices needed for the five distinct configurations of missing values 

given in Figure 5.1. Corresponding expressions for the average variances of the pairwise 

treatment differences are given in Table 5.2. Variances of the individual pairwise treatment 

comparisons are shown in this Table, together with the number of ways of achieving each 

of the Ave cases for a design constructed with /c replicates of a Latin square of side r. 

5.2.3 Three missing values 

There are only eight distinct configurations involving three missing values in a single 

Latin square design, see Chapter 4 and Mansson and Prescott (2001c) for details. This 

increases to fifteen when the design is composed of two squares, and a further case arises 

if the design is based on three or more squares. This additional case occurs when three 

replicates of the same treatment become unavailable in one column of the starting design, 

which requires three or more squares, i.e. fc > 3. Configurations of missing values in 

these sixteen cases are displayed in Figure 5.2 using the labels 1, 2, and 3 to identify the 

treatments corresponding to the missing observations. The missing observations are also 

in the first three rows and columns of the design for illustrative purposes only. Similar 

configurations can be compared by a rearrangement of the rows and columns of the 

starting design and by switching the treatment labels. Comparing Cases 6 and 10, for 

example, shows that the properties of the resulting designs are the same when the starting 

design is constructed from only one square. 

The form of the information matrix for treatment effects, and the alterations to the 

variances of pairwise treatment differences, can be determined for ail cases by considering 

the various ways that the three observations can be lost over the rows, columns, and 

treatments of the design. The algebra involved in finding some of the general expressions 

is heavy, and many of the final equations are quite complicated. The procedure for 

deriving these formulae will be illustrated for the best and worst cases of three missing 

values, but all cases will be considered numerically for the example in Section 5.3. 
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Table 5.2: Variances of pairwise treatment comparisons for Latin squares of side r for the 
five configurations of two missing observations. 

Case 
Treatment Treatment 

i j 
Pairwise 
Variance Number 

dK2;l) 2 ( / c r - l ) T " 
kr(kr—2) 1 

1 , 2 2r^fc —37-—4fcr+7 2 
A : r ( t r - 2 ) ( r - 2 ) 

2(r - 2) 

3, - ,r ( r - 2 ) ( r - 3 ) 
2 

A.V. 
Frequency 

2 ( r ^ f c - f c r - 2 r + 4 ) 9 

kr{kT—2){T—l) 

— l ) /2 

d(2i 2) 1 

1 , 2 3, - ,r 

2{kr-k-l} 2 
kr[kr—k—2) 

2/(:^r^—4fc^r^—7fcr^+2fc^r+15fcr+6r—8fc—14 „ 2 
kr{kr—k—2)(kr^ — kr—2r+i) 2(r - 2) 

3,- 3, ' ,r ( r - 2 ) ( r - 3 1 
2 

A.V. 
Frequency 

2(16+6/:—16A:r—16r—3A:̂ r®+3fĉ r̂ —/ĉ r+14A:r̂ +4r̂ —4fcr®+fê r̂ ) 2 
kr(i— l){kr—k—2)(kr'^—kr—2r+A) a 

kr (r — l){kr — k — l ) / 2 

(f(2;3) 1 

1 , 2 

Ar-l) ^2 

3, - ,r 

r{kr — k—l) 

2fc^r^ —7fcr^—4fc^r^ + 15fcr+2fc^r—8fc+4i—6 „ 2 
kr{kr—k—l){kr^—3i—fcr+4) 

(7̂  2(r - 2) 

3, - - ,r 3, - ,r 
( r - 2 ) ( r - 3 ) 

2 

A.V. 
Frequency 

2(6A:+10—16fcr—llr—/c^r+3A:^7-^—3fc^r^ + 14fcr^+3r^+A;^r^—4/C7'^) 2 

kr{r—l){kr—k—l)(kr' — 3r—kr+4) ^ 

— l ) /2 

4 2 ; 4) 1 2, 2(fer^ —/cr —2r+4) 9 
/:r(A:r^--/cr—3r+4) 

( r - 1) 

2, - " .T" 2,-- ( 7 - - l ) ( r - 2 ) 
2 

A.V. 
Frequency 

2(fcr^ —fcr—3r+6) 2 

A:r{fcr^—A:r—3r+4) 

— l ) /2 

(f(2;5) 2," 
2(fer^—3r—A:r+4) 2 

kr{kr—A){r—l) 
(r - 1) 

2, " ,r 
( r - l ) ( r - 2 ) 

2 

A.V. 
Frequency 

2{kr'^—kr—Ar+G) 2 
kr{kT—i){r — l) ^ 

A;r̂ (A: — l ) /2 
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Case 1 

Case 3 

Case 5 

Case 7 

1 X X X 
1 X X X 
1 X X X 

1 X X X 
X 1 X X 
X X 1 X 

1 X X X 
1 X X X 

X 2 X X 

1 X X X 
X 1 X X 
X X 2 X 

Case 2 

Case 4 

Case 6 

Case 8 

1 X X X 
1 X X X 
X 1 X X 

_1_ 
2 

X 
X 
X 

X 
X 
X 

1 X X X 
2 X X X 
X 1 X X 

1 X X X 
1 2 X X 

X 
X 
X 

Case 9 

Case 11 

Case 13 

1 X X X 
2 1 X X 

1 X X X 
2 X X X 
3 X X X 

Case 10 

Case 12 

X 

X 

X 

X 
X 

X 

X 
X 
X 

1 X X X Case 14 1 2 X X 
X 2 X X 

Case 14 
X 3 X X 

X X 3 X 

X 
X 

X 
X 
X 

Case 15 1 2 X X 
X X 3 X 

Case 16 1 2 3 X 

Figure 5.2: Potential conEgurations of three missing values in a A: replicated Latin square 
design. The letter X refers to any other possible treatment in the design. 
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The loss of one replicate of any three different treatments in a single column is the 

least badly affected configuration in terms of the average variance of pairwise treatment 

comparisons. For A; = 1, this is not essentially di%rent from the loss of one replicate of 

three treatments from one row of the starting design. Assuming, without loss of generality, 

that the first three treatments lose an observation in the 6rst column of the design (Case 

11), and the plots are also lost from the 6rst three rows, the six components of the 

information matrix for treatment effects become 

and 

(A:r - l ) l 3 03,r_3 

Or—3.3 

(r — l)l3 03,tr-3 

Ofcr—3,3 '"Ifer—3 

(A:r - 3) 

0 r—1 

o; 

krlr-i 

(5.22) 

Ni 
^3,3 — I3 J3,tr-3 

Jr—3,3 Jf—3,fcr—3 

No = 
(k — 1)13 kJs^r-l 

k1-r—3 3,r—1 

N , = 
O3 •̂ fcr-3 

Jr _ l , 3 J r—l,A:r—3 

(5.23) 

The information matrix for treatment effects, denoted Cd(3;ii), is given by substituting 

these matrices in Equation (5.1) to give 

^d(3 ; l l ) 

r(kr—k—l) J k^r^—k'^r—5kr+6k+r T 
(r—1) 3 (r—l)(A:r—3) 

/c(fcr̂ —fcr—4r+6) t 
(r —l)(fer—3) r-3,3 

k(kr^—kr—4r+6) t 
( r - l ) ( A : r - 3 ) 

l-rt k^r^—k^r^—3kr^+6kr—18 j 
^rlr^3 r{r-l)(kr-3) J r - 3 , r - 3 

(5.24) 

One sensible choice of generalised inverse of this information matrix that can be used to 

compute the variances of the treatment differences is 

O 
(r-l) T (fc-l)(r-l) -r 

r{kr—k—l) ^ kr{kr—k — l){kr^—kr—4r+6) 03,r-3 

0 r - 3 , 3 
1 T 

kr^-^ kr{kr^—ki—4r+6) 'r—3,r—3 

(5.25) 

Variances of comparisons between two treatments that do not lose a replicate remain 

unchanged as 2a'^/kr, while the variances for the pairwise differences between any two 
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treatments that lose one of their replicates increase to 

2 ( r - 1) 
r{kr — k — 1) 

(5.26) 

and the differences between treatments 1,2, and 3 and any of the other r — 3 treatments 

have variances given by 

(2A;̂ r̂  — + 21A;r + 2A;̂ r — 12A; + 5r 
kr{kr — k — l){kr'^ — kr — 4r + 6) 

-a (5.27) 

The average variance (A.V.) over all these comparisons for a design based on k Latin 

squares of side r is given by 

2(9A; + — 23A;r + 21 — 19r + 19A;r̂  — — 5A;r̂  + + 4r^) g 
A.V. = :—— : — ttt:—;; : : — (T 

kr{kr — k — l){r — l){kr'^ — kr — Ar + Q) 
(5.28) 

The worst situation is where three replicates of one treatment are lost from the same 

column of the starting design. This configuration is only possible when there are three 

or more squares used to construct the design. To compute the information matrix for 

treatment effects, the following matrices are needed 

(A;r — 3) 0(._i 

Or_i krlr-i 

(r — l)l3 03,kr-3 
(5.29) 

and 

N i = N , 
0^ iL_3 

r—1,3 Jr—1,/cr—3 

N o = 
k — 3 kl'j._-^^ 

k'x'p—A; J r—l.r—1 
(5.30) 

These six expressions are substituted into Equation (5.1), and after simplification, the 

information matrix for treatment effects of configurations of three missing values for the 

resulting designs (f(3; 1) is given by 

'd(3;l) — r (tr-3) _ 9 1 -I 
L r r(/ci—3) J 

( f c r - 3 ) 
r r ( fc r -3) 

( t r - 3 ) _ 9 1 -I , krir-i — ̂  ^ _L_ 
{ r r(/cr—3) / 1 

(r-1) + r(r—l)(fcr —3) } J ) — l , r — 1 

(5.M) 

To find a generalised inverse of this information matrix, let the constant a = (A:r — 3)/r — 

9/r{kr — 3) in Theorem 3.1. The resulting non-singular matrix is then inverted yielding 
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the generalised inverse 

O = 
t r - 3 n' 

kr{kr-6) "r-1 
n J_T I 3 T 

' 1 kr ''"1 tr(Ar—6)(r —1) "r—l , i 1 

(5.32) 

Assuming that three replicates of the 6rst treatment are lost, the comparisons between 

treatment one and the other r — 1 treatments all have an increased variance equal to 

{2kr'^ — 2kr — 9r + 12) ^ 
(7̂  (5.33) 

kr{kr — 6)(r — 1) 

and the average variance of all pairwise treatment differences is given by 

2(A;r̂  — — 6r + 9) 
Ar(A;r — 6)(r — 1) 

-a (5.34) 

because the variances of all other pairwise treatment comparisons are unchanged at 

jkr. These theoretical results are illustrated for a design based on Latin squares 

of side r = 4, for up to four replicates, in the next Section to demonstrate the advantages 

of constructing designs with multiple squares. 

5.3 Numerical Illustration 

To illustrate the eSFect of missing observations on the variances of pairwise treatment 

comparisons in a Latin square based design, consider a design with four treatments and 

four periods (columns). To investigate any benefits introduced by replication, designs 

constructed from a single replicate and up to four Latin squares will be examined in 

detail. Replicated designs can be formed from the same square used A: times or from 

A; different squares, because all treatments will occur exactly once in every row of the 

complete design, and exactly A: times in each of the columns (periods). For the complete 

designs, the average variances of pairwise treatment differences, with A; = 1,2,3, and 4, 

are 0.5cr ,̂ 0.25cr ,̂ 0.167(7^, and 0.125cr^ respectively. 

Results for a single missing value, obtained using Equation (5.6), are listed in Table 5.3, 

which also shows the relative efficiency, minimum and maximum variances for a treatment 

difference and the frequency of the particular configuration. For a single replicate the 
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Table 5.3: The average variance, relative efBciency, and the minimum and maximum 
pairwise variances for up to four replicates of a Latin square of side 4, when there is one 

Average Relative Minimum Maximum Relative 
k Variance Efficiency Variance Variance Efficiency Count 

1 0.5833(7^ 0.8571 0.5000(7^ 0.6667(7^ 0.7500 16 
2 0.2639(72 0.9474 0.2500(7^ 0.27780-2 0.8999 32 
3 0.1722(7^ 0.9677 0.1667(7^ 0.17780-2 0.9376 48 
4 0.1280(7^ 0.9767 0.1250(7^ 0.1310O-2 0.9542 64 

loss of a single observation incurs a reduction in efficiency of over 14%. The benefit of 

replicating the squares for such a small design is quite evident - the efficiency increases to 

over 94% as soon as two or more squares are used. The difference between the maximum 

variances is also obvious, for a single square there is an increase from 0.5<ĵ  to 0.667(J^ 

and when A: = 2, the increase is from 0.25cr^ to 0.278(7^. There are, of course, more 

plots in the starting design, but the inclusion of these extra observations appears to offer 

more protection against drop-out. Consideration of the efficiency of the maximum of the 

variances of pairwise treatment differences provides further support for the use of multiple 

squares. When the design is constructed from a single square of side r = 4, the maximum 

variance increases from 0.5<7̂  to 0.667(7^, which represents a reduction of 25% e@ciency. 

The loss of efficiency is reduced to 10% when there are two squares. 

The computations for two missing observations obtained from the expressions in Table 

5.2 are shown in Table 5.4. Recall that Case 5 is not possible with a single square design, 

and that Case 3 is equivalent to Case 1 in terms of the analysis for a single Latin square. 

For a single square there is a minimum reduction of 25% in efficiency, and more than 

30% in Case 4, which is the worst case for a design where /c = 1. Even when two squares 

are used, the efficiency loss is more than 10%, and is almost 15% in Case 5, corresponding 

to a configuration where the same treatment loses two replicates from one column. In 

the worst case, the maximum variance increases to 0.33cr^ from 0.25cr^ for the complete 

design, which corresponds to a loss of 25% in efficiency. The maximum variance is doubled 

from 0.5(7^ to cr̂  for over half of the configurations of two missing values for the single 

square design. The loss of efficiency is severe for designs constructed from one or two Latin 

squares of side r = 4. The probabilities associated with the occurrence of these situations, 

under the assumption that the observations are missing completely at random, can be 
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Table 5.4: Summary of the variances and efRciencies 
for Latin squares of side r = 4. Data are given for 
the squares. Efficiencies are in parenthesis. 

for the Sve cases of two missing values 
one, two, three and four replicates of 

Average Klinimum Maximum 
k Case Variance Variance Variance Count 

1 1 0.6667(7^ 
(0.7500) 

0.5000(7^ 0.7500cr2 
(0.6667) 

48 

2 0.7083(7^ 
(0.7059) 

0.5000(7^ 1.0000(7^ 
(0.5000) 

48 

4 0.7500(7^ 
(0.6667) 

0.5000(7^ 1.0000(7^ 
(0.5000) 

24 

2 1 0.2778(7^ 
(0.9000) 

0.2500(7^ 0.2917(7^ 
(0.8570) 

48 

2 0.2792(7^ 
(0.8955) 

0.2500(7^ 0.3125(7^ 
(0.8000) 

240 

3 0.2771(7^ 

(0.9023) 
0.2500(7^ 0.3000(7^ 

(0.8333) 
96 

4 0.2813(7^ 
(0.8889) 

0.2500(7^ 0.3125(7^ 
(0.8000) 

96 

5 0.2917(7^ 
(0.8571) 

0.2500(7^ 0.3333(7^ 
(0.7501) 

16 

3 1 0.1778(7^ 
(0.9375) 

0.1667(7^ 0.1833(7^ 
(0.9094) 

72 

2 0.1781(7^ 
(0.9359) 

0.1667(7^ 0.1905(7^ 
(0.8751) 

576 

3 0.1776(7^ 

(0.9385) 
0.1667(7^ 0.1875(7^ 

(0.8891) 
216 

4 0.1786(7^ 

(0.9333) 
0.1667(7^ 0.1905(7^ 

(0.8751) 
216 

5 0.1806(7^ 
(0.9231) 

0.1667(7^ 0.1944(7^ 
(0.8575) 

48 

4 1 0.1310cr2 
(0.9545) 

0.1250(7^ 0.1339(7^ 
(0.9335) 

96 

2 0.1311(7^ 
(0.9538) 

0.1250(7^ 0.1375(7^ 
(0.9091) 

1,056 

3 0.1309(7^ 
(0.9551) 

0.1250(7^ 0.1364(7^ 
(0.9164) 

384 

4 0.1313(7^ 
(0.9524) 

0.1250(7^ 0.1375(7^ 
(0.9091) 

384 

5 0.1319(7^ 
(0.9474) 

0.1250(7^ 0.1389(7^ 
(0.8999) 

96 
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Table 5.5: Average variances of pairwise treatment comparisons, and relative eBiciencies 
for the sixteen distinct configurations of three missing values, illustrated for one, two, and 
three replicates of a Latin square of side r = 4. 

k = 1 2 k = 3 
A.V. A . V . A .V. 

Case (R.E. ) Count (R .E . ) Count (R.E. ) Count 

(1) - — - - 0 .1944(7^ 16 
( 0 . 8 5 7 5 ) 

(2) - - 0 . 3 1 7 3(7^ 9 6 0 .1882(7^ 4 3 2 
( 0 . 7 8 7 9 ) ( 0 . 8 8 5 8 ) 

(3) 1.2500(7^ 16 0 . 3 0 3 6(7^ 1 2 8 0 .1859(7^ 4 3 2 
( 0 . 4 0 0 0 ) ( 0 . 8 2 3 5 ) ( 0 . 8 9 6 7 ) 

(4) - - 0 . 3 0 4 5(7^ 9 6 0 .1857(7^ 4 3 2 
( 0 . 8 2 1 0 ) ( 0 . 8 9 7 7 ) 

(5) - - 0 . 3 1 0 9(7^ 1 9 2 0 . 1 8 7 0(7^ 1 , 0 0 8 
( 0 . 8 0 4 1 ) ( 0 . 8 9 1 4 ) 

(6) 0 .8500(7^ 1 9 2 0 . 2 9 5 5(7^ 9 6 0 0 .1842(7^ 3 , 4 5 6 
( 0 . 5 8 8 2 ) ( 0 . 8 4 6 0 ) ( 0 . 9 0 5 0 ) 

(7) 1.0833(7^ 4 8 0 . 2 9 8 8(7^ 7 6 8 0 . 1 8 4 8(7^ 3 , 0 2 4 
( 0 . 4 6 1 6 ) ( 0 . 8 3 6 7 ) ( 0 . 9 0 2 1 ) 

(8) - - 0 . 3 0 5 6(7^ 9 6 0 .1861(72 2 8 8 
( 0 . 8 1 8 1 ) ( 0 . 8 9 5 8 ) 

(9) 0.9167(7^ 4 8 0 . 2 9 5 9(7^ 1 9 2 0 .1842(72 4 3 2 
( 0 . 5 4 5 4 ) ( 0 . 8 4 4 9 ) ( 0 . 9 0 5 0 ) 

( 1 0 ) Part of Case (6 ) 0 . 2 9 5 3(7^ 3 8 4 0 .1842(72 8 6 4 
( 0 . 8 4 6 6 ) ( 0 . 9 0 5 0 ) 

(11) 0 .7500(7^ 3 2 0 . 2 8 9 3(7^ 1 2 8 0 .1827(72 4 3 2 
( 0 . 6 6 6 7 ) ( 0 . 8 6 4 2 ) ( 0 . 9 1 2 4 ) 

( 1 2 ) 0 .9167(7^ 9 6 0 .2940(72 7 6 8 0 .1838(72 3 , 0 2 4 
( 0 . 5 4 5 4 ) ( 0 . 8 5 0 3 ) ( 0 . 9 0 7 0 ) 

( 1 3 ) 0 .8500(7^ 3 2 0 .2955(72 4 4 8 0 .1842(72 1 , 8 2 4 
( 0 . 5 8 8 2 ) ( 0 . 8 4 6 0 ) ( 0 . 9 0 5 0 ) 

( 1 4 ) 0 .7833(7^ 9 6 0 . 2 9 2 2(7^ 3 8 4 0 .1834(72 8 6 4 
( 0 . 6 3 8 3 ) ( 0 . 8 5 5 6 ) ( 0 . 9 0 8 9 ) 

( 1 5 ) Part of Case ( 1 2 ) 0 .2959(72 2 8 8 0 .1842(72 7 2 0 
( 0 . 8 4 4 9 ) ( 0 . 9 0 5 0 ) 

( 1 6 ) Part of Case (11) 0 . 2 9 1 7(7^ 3 2 0 .1833(72 4 8 
( 0 . 8 5 7 0 ) ( 0 . 9 0 9 4 ) 



aasessed from the frequency count values given in Table 5.4. The advantages of replicating 

the design four times are evident from the results given in Table 5.4 for A; = 4. The loss 

of efBciency is less than 6% for all Ave configurations of two missing observations. 

Table 5.5 covers the many cases of three missing values and their average variances. 

For a single square, there are only 8 possible cases and Case 1 is not possible for a design 

based on two squares. The average variances of pairwise treatment differences for A; = 1,2, 

and 3 are 0.5(t^, 0.25cr^, and 0.167cr^ respectively when the design is complete. The results 

in Table 5.5 for a single square represent a reduction in efficiency of between 30% and 

60%. When the design consists of two replicates, the efficiencies are reduced by between 

14% and 22%, and for A; = 3 the loss in efBciency due to three missing observations varies 

between 8% and 15%. Evidently, if there is the possibility that some observations might 

be lost in the experiment, replication of the Latin squares, particularly small squares, is 

advisable to minimise the impact of the missing data. The relative efficiencies for the 

resulting designs in the sixteen cases shows the severity of the loss of three observations 

from the starting design. 

5.4 Discussion 

The effect of losing observations from designs formed from k Latin squares has been 

considered by evaluating the alterations to the information matrix for the treatment 

effects. Designs resulting from all possible configurations of up to three missing values 

have been investigated and formulae for the pairwise and overall average variances of 

the treatment differences for some cases have been determined. These results extend 

work from Chapter 4 in which a single replicate of a Latin square was considered. The 

advantages of using replication to overcome the considerable loss of efBciency encountered 

when observations are lost from small designs, has been supported by the numerical 

example used to illustrate the results for up to four replicated squares. 
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Chapter 6 

Youden Square designs and the loss 

of data 

If a balanced incomplete block (BIB) design for v treatments in h blocks (rows) with h = v 

and A; < f plots per row, can be arranged such that each column contains every treatment 

once, then it is called a Youden square. In this case A;, the number of plots in each row, is 

equal to r, the number of replicates of each treatment. A Youden square can be used as 

a row-column design with the row component a BIB design and the column component 

a RED. The design has three parameters v{= b), k{= r ) , and A, the number of times 

each pair of treatments occurs together in the same row (or block) of the starting design. 

These three design parameters satisfy the relationship A = A:(A: — l)/('u — 1). 

A Youden square is a row-column design, and consequently the general form of the 

information matrix for treatment effects is similar to the Latin square based designs 

covered in Chapters 4 and 5, and is given by 

C = t ' - N i r - ' N ; - ( N z - N i r - ' N ^ ) ( c ' - N 3 r - ' ^ N ^ ) - ( N ; , - N s r - ' N ^ ) ( 6 . 1 ) 

where the individual matrices have been defined in previous Chapters. The robustness of 

a Youden square design to the loss of data is investigated using the same approach as for 

block designs and Latin square designs. Das and Kageyama (1992) considered the removal 

of a complete row, i.e. one block of the BIB component, from a Yonden square design, 

and derived the form of the information matrix for treatment effects. They obtained the 

average variance of the pairwise treatment diEerences and the relative efBciency using 

100 



the non-zero eigenvalues of this information matrix. The results of Daa and Kageyama 

(1992) are complemented in this Chapter with formulae for the individual variances of 

pairwise treatment comparisons. These expressions are used to calculate the effect of 

losing a single block from a wide range of Youden square designs. It will be shown that 

the loss of efficiency is substantial for small starting designs, especially when the number 

of treatments is less than eight. 

The case of one missing value is studied theoretically for designs based on a single 

Youden square. Formulae for the variances of individual treatment comparisons and the 

number of each (g/pe of comparison are derived using the generalised inverse approach 

and are expressed in terms of the three design parameters. Numerical results are given 

when two observations are missing from a variety of different Youden squares. It is shown 

that frequencies of the eight cases of two missing values depend on the form of the initial 

design as well as the design parameters. The results for the loss of a complete block of 

observations and missing data scattered throughout the starting design are reported by 

Prescott and Mansson (2001a) and Mansson and Prescott (2001a) respectively. 

6.1 Loss of complete treatments 

Hedayat and John (1974) and Most (1975) considered the construction of BIB designs 

that were robust to the loss of all observations corresponding to one or more treatments. 

The necessary conditions for robust designs to exist were derived, where robustness was 

defined as variance balance of the resulting design. The ideas in these papers and others 

can be applied to designs based on Youden squares. 

Let the design d be a Youden square design, where the row component is a symmetric 

BIB {v, k, A) design, and the column component is a randomised block design with v 

treatments in k blocks of v plots. Consider the loss of one treatment, and denote the 

missing treatment by x. The column component now has v — 1 treatments in k blocks, 

but it remains a RBD with f — 1 treatments independent of the treatment that becomes 

unavailable. The row component can be partitioned into two sets of blocks using the 

missing treatment. Let the set of blocks that contain the missing treatment x be denoted 

by (f(a;), and the set of the remaining blocks be (f(f). Denote the design formed by 

removing the occurrences of the treatment a; by d'(a;). Hedayat and John (1974) gave two 
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necessary conditions based on the form of the information matrix for treatment effects 

for a BIB design to be variance balanced. It must be possible to express the information 

matrix in the form Cil + CgJ, and the non-zero eigenvalues of this matrix are consequently 

all equal. A design is classiAed as locally resistant of degree n if the resulting design is 

variance balanced with respect to some of the subsets of treatments only. The design 

is globally resistant of degree n if all resulting designs formed by the loss of any subset of 

n, treatments are variance balanced. A susceptible design is one that is neither locally or 

globally resistant of any degree. 

To investigate the eEect of losing a complete treatment, consider the two subdesigns 

of the row component of the resulting design, and separately. The part of 

Equation (6.1) that relates to the information matrix for treatment effects of the row 

component is — Nir^'^N^, and this remains variance balanced after the removal of 

one treatment when all elementary contrasts are estimated with the same precision. The 

information matrices for d!{x) and d{x) can be derived individually and then added to 

find the form of for a particular resulting design. 

Consider a Youden square design d with seven treatments replicated four times, where 

all pairs of treatments occur together in two of rows of the initial design. One particular 

layout of this design is shown below, and the two subdesigns formed by the removal of 

treatment 1 are also given. 

d 1 2 3 5 2 3 5 (f(^) 2 3 4 6 

2 3 4 6 4 5 6 3 4 5 7 

3 4 5 7 6 7 3 5 6 7 2 

4 5 6 1 7 2 4 

5 6 7 2 

6 7 1 3 

7 1 2 4 

All pairs of treatments do not occur together the same number of times in either of the 
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subdesigns. If the information matrix for treatment ejects is computed, its forms is 

0 0 0 0 0 0 0 

0 2.8137 -0.5833 -0.5833 -0.5833 -0.4804 -0.5833 

0 -0.5833 2.8137 —0.4804 -0.5833 -0.5833 -0.5833 

C = 0 -0.5833 -0.4804 2.8137 -0.5833 —0.5833 -0.5833 (6.2) 

0 -0.5833 -0.5833 -0.5833 2.8137 -0.5833 -0.4804 

0 —0.4804 -0.5833 -0.5833 -0.5833 2.8137 -0.5833 

0 -0.5833 -0.5833 -0.5833 -0.4804 -0.5833 2.8137 

and the partition of the matrix relating to treatments two to seven cannot be expressed 

as C1I4-C2J, because the off-diagonal elements are not all equal. This design is not locally 

resistant to the loss of treatment 1. An example of a design that is variance balanced is 

the Youden square formed by removing the last column from the standard (6 x 6) Latin 

square. The structure of the row component of this design and the two subdesigns created 

by the loss of the first treatment are 

1 2 

6 1 

5 6 

4 5 

3 4 

2 3 

3 4 5 

2 3 4 

1 2 3 

6 1 2 

5 6 1 

4 5 6 

2 

6 

5 

4 

3 

3 

2 

6 

5 

4 

4 

3 

2 

6 

5 

5 

4 

3 

2 

6 

d(%) 2 3 4 5 6 

When the design is complete, the information matrix for treatment effects can be written 

in the form 4.816 — O.SJe.e- The information matrix for the reduced design d'{x) U d[x) 

is 4.7368I5 — 0.9474J5_5, and the design is locally resistant of degree one to the loss 

of treatment 1. The two subdesigns and are both balanced block designs 

when considered individually. Their information matrices can therefore be expressed as 

a combination of an identity matrix and a matrix of ones. It can also be shown that 

this design is locally resistant to the loss of any of its six treatment, so the design is also 

globally resistant of degree one. 

Conjecture 6.1 The row component of a Youden square design, which is a symmetric 
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and d{x) are balanced designs. 

Proof: The starting design is a symmetric BIB design, so a pair of treatments occurs 

together in A rows of the initial design d. The subdesign d'{x) has v — I treatments 

allocated to the A; — 1 plots of k blocks, and all these treatments have A replicates. The 

other subdesign d{x) also has v — 1 treatments arranged in u — A blocks of k plots, and 

every treatment in d{x) is replicated k — X times. 

Consider the two subdesigns separately. A pair of treatments, say h and i, occurs 

together in Xhi{d'{x)) of the set of blocks that used to contain the missing treatment, and 

in Xhi{d{x)) of the remaining blocks of the starting design. If these pairing parameters 

are both independent of h and i then the two subdesigns are pairwise balanced, and 

consequently the off-diagonal elements of the concurrence matrices are the same for both 

subdesigns. The information matrix for treatment effects of the resulting design d'(x) U 

d{x) can also be expressed in the form Cil + C2J. • 

The subdesign d'{x) is a BIB {v — 1, k, X,k — 1, X{k — 2)/{v — 2)) design if the original design 

d is locally resistant to the loss of a given treatment x. A consequence of this condition 

is that k > V — 1 and A > 1, which substantially reduces the number of designs that may 

be locally/globally resistant. When A — 1, it is impossible for both of the subdesigns 

to have all treatment comparisons within their blocks. All Youden square designs where 

k = V — 1 can be constructed by removing one column from a Latin square of side v. 

There are k blocks in d{x), and, after a complete treatment is lost there are k — 1 

plots and {k — !)(& — 2)/2 treatment comparisons within every block. Hence there are 

k{k — l){k — 2)/2 comparisons over the k blocks of the subdesign. The resulting design 

has v — 1 treatments, so that there are now {v — l)(v ~2)/2 elementary pairwise contrasts 

involving the treatments. The number of available comparisons in d'{x) must be a positive 

multiple of the total number of pairwise treatment comparisons for the design to be 

variance balanced. 

The column component also needs to be studied to decide whether a given design is 

resistant to the loss of a treatment. This component corresponds to the remainder of 

Equation (6.1), which is given by 

( N g - N i r - ' N ^ ) ( c ' - N 3 r - ' N ^ ) - ( N ^ - N g r - ' N ; ) ( 6 . 3 ) 

1 0 4 



Conjecture 6.2 The Youden square design d is variance balanced after the loss of a 

i/ giiWesipn, and are baZoncecf a/id w o B7B ("u — 1, A:, A, A: — 

1, A(A; — 2)/(u — 2)) 

Proof: Consider the middle matrix (c"̂  — Ngr^'^Ng) separately. For any Youden square 

design after the removal of the first treatment, assumed without loss of generality to occur 

once in each of the first k rows of the initial design, the three matrices in this expression 

are given by 

i)i» 

(t-i) Ifc ^k,v-

N , 

^v—k,k f^^v—k 

Jt.U-

The matrix (c^ — Ngr ^Ng) can therefore be expressed as 

- 1) - - i A - l f c + I 7 I - 4 t + MM 
A: — 1 (k -1) k 

( 6 . 4 ) 

A generalised inverse is necessary, and the choice is arbitrary once the generalised inverse 

is pre- and post-multiplied by (Ng — Nir^^Ng) and (Ng — Nsr^'^N'^) respectively. A 

sensible choice of generalised inverse is [v — I — {k — With this generalised 

inverse. Equation (6.3) reduces (apart from a multiplier (v — 1 — {k — 1)""̂ ) "*) to 

( N z - N i r - ' N ^ ) ( N ^ - N g r - ' N ^ ) = N g N ^ - 2 N 2 N 3 r - ' ^ N ^ + N i r - ' ^ N ^ N g r - ' ^ N ; ( 6 . 5 ) 1S.T 

The column component of the resulting design is a randomised block design with v — 1 

treatments and k blocks of w — 1 plots. Therefore, the matr ix N2N2 can be written in the 

form 

01 k 

Jtl—l.fc 
Ofc Jfc,?;—1 

0 o;,_i 

On—1 1 

and for any Youden square design, the second term of Equation (6.5) is given by 

(6.6) 

NzNsr- 'N; = 
0 0: V—1 

O-y— 1 %/—1 

( 6 . 7 ) 

1 0 5 



The last part of the expression depends on the structure of the two subdesigns, d'{x) and 

d{x). In general, it can be shown that 

r'-^N^Nsr-
' wit + JA 

'^^v—k,k 

l^k,v-
(6.8) 

and when this is pre- and post-multiplied by the matrices Ni and N'̂  respectively, the 

resulting matrix can be written as 

0 o: r—1 
0 v—1 (t-i) 

T I k'^—2k^+k^—k+kX—X^ -r 2J-V-1 I 
(6.9) 

if the pairing parameters Xhi{d'{x)) and Xhi{d{x)) of the two subdesigns are independent 

of the treatments h and i. If all the preceding matrices are combined and the resulting 

matrix simplified, the expression (N2 — Nir^^Ng)(c^ — Ngr'"'^Ng)'"(N2 — Nsr^'^N'J is 

given by 

0 0! 1/—1 
n 1 T I Afe-A^—fc T 

When this is combined with the information matrix for treatment effects for the row 

component, it can be seen that it has the required form for the design to be locally 

resistant to the loss of treatment 1. The same argument can be used for any of the other 

treatments. • 

The conditions in this Section indicate that for a Youden square design to be locally or 

globally resistant of degree one, the blocks have no fewer than w — 1 plots, i.e. k > v — I. 

Therefore a globally resistant design can be constructed by removing a column from any 

Latin square design. 

(6.10) 

6.2 Loss of a row 

Das and Kageyama (1992) derived the information matrix for treatment effects when a 

row of k observations becomes unavailable in a Youden square design. Equation (4.2) 

can be used in this situation, because the two identities tr'/n = and tc'/n = 

Nir^'^Ng are both satisfied for this configuration of missing data. Assuming, without loss 
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Table 6.1: Variances of pairwise treatment comparisons in a Youden square design when 
a single block containing treatments 1, • • • ,k is removed from the initial design. These 
results are the same for the loss of any block in the start ing design, but the individual 
treatments in the comparisons will vary based on whether they were in the affected block. 

Individual Pairwise Variances 
Treatment i Treatment j Variance Number of Comparisons 

(a) 1, • • • ,k 1, - - , A; 2 
i,(t-2) ̂  k{k -- l ) / 2 

(b ) 1, • • • ,k A; + 1, • • • ,v A;(u -A:) (b ) 1, • • • ,k A; + 1, • • • ,v vk{k-l)(k-2) ^ A;(u -A:) 

(c) /c + 1, • •• ,v k + 1, - • • ,v 2 
v(k—l) (f — A;) (f -A; - l ) / 2 

Average Variance 
2(vk—2v+l) 2 

Relative EfBciency 

(vk—2v+l) 

of generality, that the first row contains one replicate of each of the first k treatments, 

the information matrix for treatment effects, as given by Das and Kageyama (1992), can 

be expressed in the form 

C 
r ̂  
I k (r-1) -

— ̂ Jv-k,k 

k(v-l) — ̂ Jk,v-k 

A T 
(6.11) 

The eigenvalues of this information matrix can be found using Lemma (3.3), and they are 

given in Das and Kageyama (1992). A generalised inverse can be identified to solve the 

reduced normal equations and to derive the variances of pairwise treatment comparisons. 

The choice of generalised inverse is arbitrary, and after adding to the information 

matrix and inverting the resulting non-singular matrix, we obtain a particular generalised 

inverse of C as 
k(v—l) J to T ri 

{Xv^—\v—vk) ^ \v{Xv^—\v—vk) k,v—k ^2) 

0, 'v—k,k ^y-^v—k 

Table 6.1 shows particular variances of the pairwise treatment comparisons in terms of u, 

the number of treatments, and k, the number of plots in each row, for the three separate 

types of comparisons depending on whether the two treatments occurred in the missing 

row (or block) of the starting design. The comparisons are based on losing one replicate 
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Table 6.2: Average variances (A.V.) and relative efficiencies (R.E.) of pairwise treatment differences for a variety of Youden square 
designs after the loss of one row (block) of observations containing treatments 1, • • • ,k. 

Parameters Pairwise treatment differences 
v = b k = r A A.V.(R.E.) (a) (b) (c) 

o 
00 

4 
5 
6 
7 
7 
8 
9 
10 
11 
11 
13 
13 
15 
15 
16 
16 
19 
19 
21 
23 
25 
27 
31 
31 
31 

3 
4 
5 
3 
4 
7 
8 
9 
6 
10 
4 
9 
7 
8 
6 
10 
9 
10 
5 
11 
9 
13 
6 
10 
15 

2 

3 
4 
1 
2 
6 
7 
8 

3 
9 
1 
6 
3 
4 
2 
6 
4 
5 
1 
5 
3 
6 
1 
3 
7 

1.2500(7^ (0.6000 
0.7333^2 ^L7273 
0.5278(7^ (0.7895 
1.1429e2 ^17500 
0.7143^2 (0.8000 
0.3417(7^ (0.8537 
[h2910a2 (0.8727 
[X2536r2 ^^8873 
0.4091(7^ (0.8889 
0.2247?: ^X8989 
0.6923(7^ (0.8889 
0.2527(7^ (0.9130 
0.3378f2 ^).9211 
0.2889(7^ (0.9231 
[X4062?2 ^19231 
0.2240^2 ^).9302 
0.2519Gr2 )̂ 9403 
0.2237^2 ^19412 
0.5079(7^ (0.9375 
0.2010(7^ (0.9519 
0.2514(72 (0 9545 
0.1672(72 (0.9597 
0.4032(72 (0.9600 
0.2231(72 (0.9639 
0.1432(72 (0.9653 

1.5000(72 (0.5000 
0.8000(72 (0.6666 
0.5556(72 (0.7500 
1.7143(72 (0.5000 
0.8571(72 (0.6667 
0.3500(72 (0.8334 
0.2963(72 (0.8572 
0.2571^2 ^X8751 
0.4545a2 ^X8000 
0.2273(72 (0.8887 
0.9231p2 ^16667 
0.2637(72 (0.8752 
0.3733(72 (0.8334 
0.3111e2 ^h8573 

0.4688^2 (0.7999 
0.2344^2 ^18887 
0.2707cr2 ^) 8748 
0.2368^2 ^X8889 
0.6349(72 (0.7500 
0.2126(72 (0.8998 
0.2743(72 (0.8750 
0.1751(72 (0.9166 
0.4839(72 (0.8000 
0.2419(72 (0.8892 
0.1489(72 (0.9281 

1.0000(72 (0.7500 
0.6333(72 (0.8421 
0.4722(72 (0.8825 
1.1429(72 (0.7500 
0.6786(72 (0.8420 
0.3167(72 (0.9211 
0.2725(72 (0.9321 
0.2393^2 ^19402 
0.4015(72 (0.9056 
0.2134^2 ^19466 
0.7308^2 ^).8421 
0.2454(72 (0.9405 
0.3378(72 (0.9211 
(X2861or2 ^).9322 
0.4141(7^ (0.9056 
0.2201(72 (0.9464 
&2519f2 ^X9401 
0.2224^2 ^19465 
0.5397(72 (0.8823 
0.2010(72 (0.9517 
0.2552(72 (0.9404 
0.1672(72 (0.9599 
0.4274(72 (0.9057 
0.2272(72 (0.9467 
0.1432(72 (0.9653 

0.8571(72 (1.0000) 
0.5714(72 (1.0000) 

0.3636(72 (1 0000) 

0.6154(72 (1.0000) 
0.2308(72 (1.0000) 
0.3111(72 (1.0000) 
0.2667(72 (1.0000) 

0.3750(7^ (1.0000) 
0.2083(72 (1.0000) 
0.2368(72 (1.0000) 
0.2105(72 (1.0000) 
0.4762^2 (1.0000) 
0.1913^2 QLOOOO) 
0.2400(72 (1.0000) 
0.1605*2 (1.0000) 
0.3871(72 (1.0000) 
0.2151(72 (1.0000) 
0.1382(72 (1.0000) 



of the first k treatments. Table 6.2 shows these variances computed for a range of Youden 

square designs based on some of the symmetric BIB designs listed by Raghavarao (1971, 

Table 5.10.1). The pairwise treatment diSerences (a), (b), and (c) in Table 6.2 correspond 

to the particular treatment comparisons listed in Table 6.1. When v = k+1, corresponding 

to Youden square designs constructed by removing a single column from a Latin square 

of side V, only comparisons (a) and (b) are possible, because there is only one treatment 

that does not lose a replicate. 

6.3 Loss of one observation 

The effect of the loss of one plot from a Youden square design can also be studied by 

considering the alterations to the components of the information matrix for treatment 

effects. When the design is based on a single Youden square, there are vk units and 

consequently vk potential realisable designs each with one missing value. The overall 

effect of the missing data is the same for each of the realisable resulting designs, but 

the variances of particular treatment comparisons vary. The derivation of the normal 

equations is similar for all of these possible resulting designs, so we may assume that 

the missing observation corresponds to treatment 1 in the first column and first row of 

the starting design. The following four matrices are required to derive the form of the 

information matrix for treatment effects corresponding to Equation (6.1). 

(A: - 1) 

0 v-l 

o; 

1 
(6.13) 

N i r - ' N ; = 
k 

k 
- 1 u 

k ^k-l 

Nz - Nir- 'N^ = 

A T 

f.'f v—k,k—l 

{1 

(t-1) 
k 

A T 
k v-k 

A T 
1 k—l,v—k 

(FC-A)T . I A f. Ill—A; v—k,v—k 
(6"l4) 

1 

(t-1) 

0L_ v—k 

p, —l,k—l 

Ov—k,k—l 

(6.15) 
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Ngr-'N' = 
("-!) 

A 1 ' 
k -"-t-i 

1 I («-l)' 
(k-l) k 

(6.16) 
- 1 ) 

These expressions, when substituted into Equation (6.1), give the adjusted information 

matrix for treatment effects Cj(i) as 

(*: _ 1) _ M 
(k'^—k—v) 
k{v—l) 

_ _ (t-1) 
k{v—l) 

Ifc—1 

(k^—k—v) 1 / 
k{v-l) A:-l 

1) T {k^-2k'^+k+v) 

JU -^v—k 
A T 

— - 1 ' 

k v-k 
A T 

— T:ok-l,v-k 
v(k-l) y 
{v-1) 

ILT 
, V- •k.v—k 

( 6 . 1 7 ) 

To solve these reduced normal equations, a suitable generalised inverse is required. One 

practical choice is obtained by adding A/A; to every element of Cj(i) and inverting the 

resulting non-singular matrix. This particular generalised inverse O of Cj(i) is given by 

O 

(k^—k—l)(v—l) 

(^-1) Ifc-I 

Of—k 

( ^ J - 1 ) T 

( ^ - 1 ) - I ? 

vk{k — l)(k—2) k—1 
I (̂ -1) 

^v—k,k—l 

' k—l,k—l 

%-k 

Ok—l,v—k 

«(*—!) I.-

(6.18) 

The variances of individual pairwise treatment differences can be identified using this 

generalised inverse. These are shown in Table 6.3 for a Youden square with one replicate 

of the first treatment missing, where the row from which the observation was removed 

contained the first k treatments. It is possible to show tha t Youden square designs created 

by removing a column from a Latin square have no pairwise comparisons corresponding 

to Case (e) when a single observation becomes unavailable, because u = fc + 1 in this 

situation. 

The average variance of pairwise treatment comparisons for a Youden square with 

treatments with a single value missing is given by 

2(^vk — 2,v — k 3^ 2 
%;(/: — 1)(A: - 2) 

( 6 . 1 9 ) 

Table 6.4 shows individual variances of pairwise treatment comparisons, the number of 

each type of comparison, and the average of all these variances, when one observation on 

treatment 1 is missing for the range of Youden squares tabulated by Raghavarao (1971) 

and used in Table 6.2. The pairwise comparisons (a) to (e) correspond to the treatment 
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Table 6.3: Variances of the individual treatment comparisons when the observation on 
treatment 1 is removed from a block containing the first k treatments in a Youden square 
design. 

One missing value ( t = l ) 
Treatment i Treatment j Variance Number of Comparisons 

(a) 1 2. •••,!= 

(b) 1 k + lr--,v " - k 

(c) ( f c - l ) ( f c - 2 ) / 2 

(d) 2 , • •• . ( : ^ k - - l ) ( v - k ) 

(e) fc 4- 1, • • • ,1; fc + 1, • • - ,"0 {v — k){v ~ k — l ) / 2 

differences listed in Table 6.3. The comparisons (c) and (e) can be combined into a single 

column in this Table because the numerical values are the same for these two types of 

comparisons. The loss of efficiency is more than 5% for only the first five Youden square 

designs in Table 6.4. The majority of the designs are relatively robust to the loss of a 

single observation. 

6.4 The unavailability of two or m o r e values 

In Chapter 4 it was shown that when two observations are removed from Latin square 

based designs with v treatments, the distribution of the average variances of pairwise 

treatment differences is not related to the structure of the initial design. There are three 

distinct configurations of missing values for a single Latin square, and five for designs 

based on two or more squares. When the design is based on a Youden square different 

cases of resulting designs, all with different properties, also occur. The number of each 

type of design resulting from the loss of two observations depends on the structure of the 

starting design, even for designs with the same design parameters. These configurations 

are based on whether the missing values occur in the same or different columns, which 

treatments are affected, and when the two observations occur in different rows, the number 

of treatments common to the aSFected rows of the initial design. 
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Table 6.4: Variances of pairwise 
variety of Youden square designs 

treatment diEerences and their efRciencies, frequencies, and the overall average variance (A.V.) for a 
after the loss of one observation on treatment 1. 

Parameters Variances of pairwise treatment differences (R.E.) 
V k A A.V.(R.E.) (a) (c,e) (b) (d 
4 3 2 l.OOOOa^ ( 0 . 7 5 0 0 ) 1.3125(7^ ( 0 . 5 7 1 4 ) 2 1.0000(7^ ( 0 . 7 5 0 0 ) 1 0.7500(7^ ( 1 . 0 0 0 0 ) 1 0 . 8 1 2 5 o ^ 0 . 9 2 3 1 ) 2 
5 4 3 0.6000(7^ ( 0 . 8 8 8 9 ) 0.7111(7^ ( 0 . 7 5 0 0 ) 3 0.6333(7^ ( 0 . 8 4 2 1 ) 1 0.5333(7^ ( 1 . 0 0 0 0 ) 3 0 . 5 4 4 4 ^ 2 0 . 9 7 9 6 ) 3 
6 5 4 0.4444(7^ ( 0 . 9 3 7 5 ) 0.5035(7^ ( 0 . 8 2 7 6 ) 4 0.4722(7^ ( 0 . 8 8 2 4 ) 1 0 . 4 1 6 7 ^ 2 QLOOOO) 6 0 . 4 2 0 1 ^ 2 0 . 9 9 1 7 ) 4 
7 3 1 1.0000(7^ ( 0 . 8 5 7 1 ) 1.5000(7^ ( 0 . 5 7 1 4 ) 2 1.1429(72 ( 0 . 7 5 0 0 ) 4 0.8571(72 ( 1 , 0 0 0 0 ) 7 ( 1 9 2 8 6 ^ 2 0 . 9 2 3 1 ) 8 
7 4 2 0.6190(7^ ( 0 . 9 2 3 1 ) 0.7619(7^ ( 0 . 7 5 0 0 ) 3 0.6786(7^ ( 0 . 8 4 2 1 ) 3 0.5714(72 ( 1 0 0 0 0 ) 6 0.5833(72 0 . 9 7 9 6 ) 9 
8 7 6 0.3000(7^ ( 0 . 9 7 2 2 ) 0.3257(7^ ( 0 . 8 9 5 5 ) 6 0.3167or2 ^ X 9 2 1 1 ) 1 0.2917(72 ( 1 . 0 0 0 0 ) 15 0.2924(72 0 . 9 9 7 6 ) 6 
9 8 7 0.2593(7^ ( 0 . 9 7 9 6 ) 0.2782(7^ ( 0 . 9 1 3 0 ) 7 0.2725(72 ( 0 . 9 3 2 0 ) 1 0.2540(7^ ( 1 . 0 0 0 0 ) 21 0.2543(72 0 . 9 9 8 5 ) 7 
10 9 8 0.2286(7^ ( 0 . 9 8 4 4 ) 0.2431(7^ ( 0 . 9 2 5 6 ) 8 0.2393(72 ( 0 . 9 4 0 3 ) 1 0.2250(72 ( 1 . 0 0 0 0 ) 2 8 0 .2252(72 0 . 9 9 9 0 ) 8 
11 6 3 0.3727(7^ ( 0 . 9 7 5 6 ) 0.4182(7^ ( 0 . 8 6 9 6 ) 5 0.4015(72 ( 0 . 9 0 5 7 ) 5 0.3636(72 ( 1 . 0 0 0 0 ) 20 0.3652(72 0 . 9 9 5 9 ) 2 5 
11 10 9 0.2045(7^ ( 0 . 9 8 7 7 ) 0.2160(7^ ( 0 . 9 3 5 1 ) 9 0.2134(7^ ( 0 . 9 4 6 7 ) 1 0.2020(7^ ( 1 . 0 0 0 0 ) 3 6 0 .2022(72 0 . 9 9 9 3 ) 9 
13 4 1 0.6410(7^ ( 0 . 9 6 0 0 ) 0.8205(7^ ( 0 . 7 5 0 0 ) 3 0 .7308(z2 ( 0 . 8 4 2 1 ) 9 0.6154(72 ( 1 . 0 0 0 0 ) 3 9 0 .6282(72 0 . 9 7 9 6 ) 27 
13 9 6 0.2335(7^ ( 0 . 9 8 8 2 ) 0.2493(7^ ( 0 . 9 2 5 6 ) 8 0.2454(72 ( 0 . 9 4 0 3 ) 4 0.2308(72 ( 1 . 0 0 0 0 ) 3 4 0 .2310(72 0 . 9 9 9 0 ) 3 2 
15 7 3 0.3156(7^ ( 0 . 9 8 5 9 ) 0.3474(7^ ( 0 . 8 9 5 5 ) 6 0.3378(72 ( 0 . 9 2 1 1 ) 8 0.3111(72 ( 1 0 0 0 0 ) 4 3 0 .3119(72 0 . 9 9 7 6 ) 4 8 
15 8 4 0.2698(7^ ( 0 . 9 8 8 2 ) 0.2921(7^ ( 0 . 9 1 3 0 ) 7 0.2861(72 ( 0 . 9 3 2 0 ) 7 0.2667(72 ( 1 . 0 0 0 0 ) 42 0.2671(72 0 . 9 9 8 5 ) 4 9 
16 6 2 0.3812(72 (0.9836) 0.4313(7^ (0.8696) 5 0.4141(7^ (0.9057) 10 0.3750(7^ (1.0000) 55 0.3766(7^ 0 . 9 9 5 9 ) 50 
16 10 6 0.2101(72 (0.9917) 0.2228(7^ ( 0 . 9 3 5 1 ) 9 0.2201(7^ ( 0 . 9 4 6 7 ) 6 0.2083(72 ( 1 . 0 0 0 0 ) 51 0.2085(72 0 . 9 9 9 3 ) 5 4 
19 9 4 0.2387(7^ ( 0 . 9 9 2 1 ) 0.2559(7^ ( 0 . 9 2 5 6 ) 8 0.2519(72 ( 0 . 9 4 0 3 ) 10 0.2368(72 ( 1 . 0 0 0 0 ) 73 0.2371(72 0 . 9 9 9 0 ) 8 0 
19 10 5 0.2120(7^ ( 0 . 9 9 3 1 ) 0.2251(7^ ( 0 . 9 3 5 1 ) 9 0.2224(72 ( 0 . 9 4 6 7 ) 9 0.2105(72 ( 1 . 0 0 0 0 ) 72 0.2107(72 0 . 9 9 9 3 ) 8 1 
21 5 1 0.4841(7^ ( 0 . 9 8 3 6 ) 0.5754(7^ ( 0 . 8 2 7 6 ) 4 0.5397(72 ( 0 . 8 8 2 4 ) 16 0.4762(72 ( 1 . 0 0 0 0 ) 1 2 6 0 .4802(72 0 . 9 9 1 7 ) 6 4 
2 3 11 5 0.1923(7^ ( 0 . 9 9 5 0 ) 0.2030(7^ ( 0 . 9 4 2 4 ) 10 0.2010(^2 ( 0 . 9 5 1 9 ) 1 2 0 .1913(72 ( 1 . 0 0 0 0 ) 111 0.1914(72 0 . 9 9 9 5 ) 1 2 0 
2 5 9 3 0.2414(7^ ( 0 . 9 9 4 1 ) 0 .2593(72 ( 0 . 9 2 5 6 ) 8 0.2552(72 ( 0 . 9 4 0 3 ) 1 6 0 .2400(72 ( 1 . 0 0 0 0 ) 1 4 8 0 .2402(72 0 . 9 9 9 0 ) 1 2 8 

2 7 13 6 0.1611(7^ ( 0 . 9 9 6 5 ) 0.1684(7^ ( 0 . 9 5 3 1 ) 12 0.1672(72 ( 0 . 9 5 9 7 ) 14 0.1605(72 ( 1 . 0 0 0 0 ) 1 5 7 0 .1605(72 0 . 9 9 9 7 ) 1 6 8 

31 6 1 0.3903(7^ ( 0 . 9 9 1 7 ) 0.4452(7^ ( 0 . 8 6 9 6 ) 5 0.4274(72 ( Q _ 9 0 5 Y ) 2 5 0 .3871(72 ( 1 0 0 0 0 ) 3 1 0 0 .3887(72 0 . 9 9 5 9 ) 1 2 5 

31 10 3 0.2159(7^ ( 0 . 9 9 5 9 ) 0.2300(7^ ( 0 . 9 3 5 1 ) 9 0 . 2 2 7 2 ( 7 2 ( Q 9 4 6 Y ) 21 0.2151(72 ( 1 . 0 0 0 0 ) 2 4 6 0 .2152(72 0 . 9 9 9 3 ) 1 8 9 

31 15 7 0.1386(7^ ( 0 . 9 9 7 4 ) 0.1439(7^ ( 0 . 9 6 0 4 ) 14 0.1432(7^ ( 0 . 9 6 5 3 ) 1 6 0 .1382(72 (1 0 0 0 0 ) 2 1 1 0 .1383(72 0 . 9 9 9 8 ) 2 2 4 



Table 6.5: Two examples of constructing a Youden square design with five treatments in 
blocks of four plots, where all pairs of treatments occur together in three blocks of the 
starting design. 

Design 6.5(a) 1 2 3 4 Design 6.5(b) 1 2 3 4 
5 1 2 3 2 1 4 5 
4 5 1 2 3 4 5 2 
3 4 5 1 4 5 1 3 
2 3 4 5 5 3 2 1 

Table 6.5 shows two Youden square designs with v — h = b,k = r — and A = 3, 

identified as Designs 6.5(a) and 6.5(b). For both complete designs, the average variance of 

pairwise treatment differences is 0.5333c7^. Each design consists of 20 plots, so there are 20 

possible resulting designs when only one observations is unavailable. For both designs and 

for each of the 20 resulting designs with one missing observation, the average variance 

of pairwise treatment comparisons increases to 0.6a^, corresponding to a reduction in 

efficiency of 11%. The maximum variance is 0.7111a^, which corresponds to a 25% loss 

of efficiency. 

The situation is more complicated when two values are missing. For each design there 

are 190 ways in which these two observations might be lost, but there are two different 

distributions for the average and maximum variances for the designs. For Design 6.5(a), 

there are seven distinct configurations of resulting design with two missing values, but 

there is an extra case to be considered for Design 6.5(b). Table 6.6 shows average variances 

of pairwise comparisons, relative efficiencies, maximum variances, and the frequencies of 

the seven/eight configurations for all of the realisable situations when two observations 

are unavailable for these two designs. Although the distributions of configurations are 

different for the two designs, the variances of pairwise treatment comparisons are the 

same for the seven cases/sub-cases that are common to the resulting designs when two 

values are unavailable. 

The single configuration that occurs only in Design 6.5(b) corresponds to the loss of 

treatment 2 from row one, column two, and the loss of treatment 5 from row four, column 

two. In this configuration, the two missing values correspond to different treatments 

that occur in the same column of the initial design, and neither of the two treatments is 

common to the pair of rows. Consideration of every other pair of rows shows that there is 
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Table 6.6; Distinct configurations of two missing observations for the Designs 6.5(a) and 
6.5(b), and the average and maximum variances for the cases. The number of configura-
tions of each case for the two different designs are given in the last two columns. 

Cage A.V.(R.E.) M.V.(R.E.) 6.5(a) 6.5(b) 

1 0.666667^2 (0.800000) 0.800000^2 (0.666667) 30 30 
2(^^ (1733333a2 ((1727273) 0.844444&2 (0.631579) 0 1 
2(a)ii (L679167f2 ^1785276) 0.779167^2(0.684492) 20 18 
2(a)iii 0.660952^2 00.806916) 0.838095^2 (0.636364) 20 21 

2(Wi 0.666667o^ (0.800000) 0.733333^2 (0.727273) 10 9 
2(b)ii 0.672381^2 017932O1) 0.864762^2 (0.616740) 40 42 
2(b)iii 0.704167^2 (0.757396) 1.066667^2 (0.500000) 40 39 
2(c) 0.729167?2 (&731429) 1.066667^2(1X500000) 30 30 

no pair of treatment labels that has a similar configuration of treatments within Design 

6.5(b), and also that there are no such configurations in Design 6.5(a). This particular 

resulting design has the largest average variance of pairwise treatment comparisons, but 

not the largest individual pairwise variance. 

In general, there are a maximum of eight distinct configurations or classes of resulting 

design with two missing values for any Youden square based design. Within these eight 

classes, different members can be transformed into any other member of the class by 

rearranging the rows, columns, or treatment labels of the starting design. These eight 

classes for two missing observations are described below, firstly by identifying two cases 

with the missing values occurring in the same row (Case 1), or in different rows (Case 

2), and then subdividing Case 2 into a series of different Sub-cases 2(a), 2(b), and 2(c), 

depending on which treatments are missing and where they are positioned within the 

starting design. There are three further sub-cases corresponding to 2(a) and 2(b) that 

depend on whether the missing treatments are common to both the affected rows. 

Cases and sub-cases of two missing obse rva t ions f r o m a general 

Youden square design 

Case 1 Same row of the initial design, necessarily different columns, and also different 

treatments. There are vk{k — l)/2 configurations of this kind for a single replicate 

Youden square design. 
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Case 2 Different rows of the starting design. 

(a) Same column necessarily different treatments. The number of configurations 

of two missing observations in this case is — l)/2. Sub-caaes correspond 

to the situations where 

i. neither affected treatment occurs in bo th rows, 

ii. one affected treatment occurs in both rows, 

iii. the two affected treatments occur in bo th rows. 

(b) Different columns with different treatments. There are vk{k — l)(i) — 2)/2 

resulting designs of this type. The sub-cases correspond to the situations 

where 

i. neither affected treatment occurs in bo th rows, 

ii. one affected treatment occurs in both rows, 

iii. the two affected treatments occur in bo th rows. 

(c) Different columns, but the same treatment. There are a total of vk{k — l ) /2 

configurations for this sub-case. 

Different Youden squares may lead to different frequencies of occurrence of resulting design 

within these eight classes, as shown by Designs 6.5(a) and 6.5(b). In particular, for a 

Youden square with A = 1 (only one treatment common to all pairs of rows), two of these 

eight cases, 2(a)iii and 2(b)iii, are not attainable. This is because it is not possible for 

both of the affected treatments to appear in both of the two rows when A = 1. 

6.5 Influence of the structure of a Ybuden square on 

its robustness to missing values 

In this section, we consider a family of Youden squares with similar parameters to illustrate 

the effect of the structure of the design on the distributions of the designs resulting from 

the loss of two observations. Consider Youden square designs with seven treatments 

allocated to the units of seven blocks of four plots, where all treatments are replicated 

four times. There are six essentially different Youden square design with these parameters 
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Table 6.7: Representative members of the six isotropy classes of (7 x 4) Youden squares 
given by Preece (1995). 

Design 1 

Design 4 

1 2 3 5 
2 3 4 6 
3 4 5 7 
4 5 6 1 
5 6 7 2 
6 7 1 3 
7 1 2 4 

Design 2 

1 2 3 5 
6 3 2 4 
5 7 4 3 
4 6 5 1 
2 5 7 6 
3 1 6 7 
7 4 1 2 

Design 5 

1 2 3 5 
2 4 6 3 
5 3 4 7 
6 1 5 4 
7 5 2 6 
3 6 7 1 
4 7 1 2 

Design 3 

1 2 3 5 
6 3 2 4 
5 4 7 3 
4 5 6 1 
2 6 5 7 
3 7 1 6 
7 1 4 2 

Design 6 

1 2 3 5 
6 4 2 3 
5 3 7 4 
4 5 6 1 
2 7 5 6 
3 6 1 7 
7 1 4 2 

1 2 3 5 
6 3 2 4 
5 4 7 3 
4 5 6 1 
2 7 5 6 
3 6 1 7 
7 1 4 2 

which may be constructed from (7 x 7) Latin squares. Table 6.7 shows representative 

members of the six main classes of Youden squares as described by Preece (1966,1995). To 

study the effect that two missing observations have on these six designs, the distributions 

of average and maximum variances of pairwise treatment comparisons were computed for 

all possible configurations of two missing observations for all the six designs. 

All the eight cases and sub-cases described earlier are possible for each of these six 

designs, but the frequencies of occurrence of these cases and sub-cases are different except 

for Designs 1 and 4 which have identical results. Table 6.8 shows the average variances, 

relative efficiencies, and maximum variances of pairwise treatment differences for each 

case/sub-case and also the frequencies for each design. 

Although the distributions of the average variances are different for these designs, the 

numbers of configurations in total corresponding to Cases 2(a) and 2(b) are the same 

for all six designs. The distributions within these two cases depend on the structure of 

the Youden square. Design 2 has the largest number of configurations with the smallest 

average variance, 0.6667(7^, but it also has the largest number of resulting designs where 

the average variance is 0.6964(7^. Design 5 has fewest configurations corresponding to 

the smallest average variance, 2(a)ii, 2(a)iii, and 2(b)i, bu t also fewer resulting designs in 

Sub-case 2(b)iii with an average variance of 0.6964cr^. The mean values of the average and 
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Table 6.8: Average pairwise variances, relative efficiencies, maximum pairwise variances 
and frequencies of occurrence for the eight cases/subcases produced when there are two 
observations missing from the six (7 x 4) Youden squares. Variances are to be multiplied 
bv 

Two missing values (t-= 2 ) 
Case A.V.(R.E.) IVI.V.(R.E.) 1/4 2 3 5 6 

1 0.6667 (0.8571) 0.8571 (0.6667) 42 42 42 42 42 
0.6845 (0.8348) 0.8348 (0.6845) 21 9 19 27 25 

2(a)ii 0.6667 (0.8571) 0.8286 (0.6897) 42 66 46 30 34 
2(a)iii 0.6667 (0.8571) 0.9524 (0.6001) 21 9 19 27 25 
2(b)i 0.6667 (0.8571) 0.7857 (0.7273) 63 75 65 57 59 
2(b)n 0.6721 (0.8502) 0.9265 (0.6167) 126 102 122 138 134 
2(b)iii 0.6964 (0.8205) 1.1429 (0.5000) 21 33 23 15 17 

2(c) 0.7083 (0.8067) 1.1429 (0.5000) 42 42 42 42 42 
Mean average variance 0.6758 0.6758 0.6758 0.6757 0.6758 

Mean maximum variance 0.9169 0.9151 0.9166 0.9177 0.9174 

maximum variances of pairwise treatment comparisons for the distributions of two missing 

values are given in Table 6.8 for the six designs. Although the frequencies are different, 

the means of the distributions are similar. Ordering the designs from the smallest mean 

average variance to the largest gives 5, 6, 1/4, 3, and 2, but the ordering is reversed 

when the mean maximum variance is used. When an experimenter is concerned about 

the magnitude of the maximum variance of pairwise t reatment differences, it is prudent to 

avoid using Design 2, because it has the largest proportion of resulting designs attaining 

the maximum variance of 1.1429cr^, which has an efficiency of only 50%. 

All the six designs have the same set of four treatments in each of their seven rows 

(blocks). The differences in distributions of average variances between the designs are due 

to the position of the treatments within the columns of t he starting design. The sub-cases 

of Cases 2(a) and 2(b) are defined by whether the affected treatments are common to the 

pair of blocks in which the two observations occur. To investigate the differences between 

the distributions of these cases, consider Designs 1 and 2 and the number of configurations 

in each of the Sub-cases 2(a) and 2(b) for every pair of blocks in the starting designs. 

Table 6.9 shows these distributions, and it can be seen that for Design 1, the numbers 

of configurations corresponding to each sub-case is the same for every pair of rows. For 

each pair of rows (blocks) in Design 1 there are 4 resulting designs in Sub-case 2(a) and 
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Table 6.9: Distribution of configurations within Cases 2(a) and 2(b) for Designs 1 and 2 
of the (7 X 4) Youden square designs. This identifies where the differences in the numbers 
of each case occur based on all pairs of rows. 

Design 1 Design 2 
Row 
i j (i) 

2(a) 

("0 0%) (i) 
2(b) 
(ii) (iii) (i) 

2(a) 
(ii) (iii) (i) 

2(b) 
(ii) (iii) 

1 2 1 2 1 3 6 1 0 4 0 4 4 2 
1 3 1 2 1 3 6 1 0 4 0 4 4 2 
1 4 1 2 1 3 6 1 0 4 0 4 4 2 
1 5 1 2 1 3 6 1 1 2 1 3 6 1 
1 6 1 2 1 3 6 1 1 2 1 3 6 1 
1 7 1 2 1 3 6 1 0 4 0 4 4 2 
2 3 1 2 1 3 6 1 1 2 1 3 6 1 
2 4 1 2 1 3 6 1 0 4 0 4 4 2 
2 5 1 2 1 3 6 1 1 2 1 3 6 1 
2 6 1 2 1 3 6 1 0 4 0 4 4 2 
2 7 1 2 1 3 6 1 1 2 1 3 6 1 
3 4 1 2 1 3 6 1 1 2 1 3 6 1 
3 5 1 2 1 3 6 1 1 2 1 3 6 1 
3 6 1 2 1 3 6 1 0 4 0 4 4 2 
3 7 1 2 1 3 6 1 0 4 0 4 4 2 
4 5 1 2 1 3 6 1 0 4 0 4 4 2 
4 6 1 2 1 3 6 1 1 2 1 3 6 1 
4 7 1 2 1 3 6 1 0 4 0 4 4 2 
5 6 1 2 1 3 6 1 0 4 0 4 4 2 
5 7 1 2 1 3 6 1 0 4 0 4 4 2 
6 7 1 2 1 3 6 1 1 2 1 3 6 1 
Totals 21 42 21 63 126 21 9 66 9 75 102 33 
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Table 6.10: Two examples of (13 x 4) Youden square designs that are given by Preece 
(1966). 

Design 1 1 3 4 8 Design 2 1 3 4 8 
2 4 5 9 
3 5 6 10 
4 6 7 11 
5 7 8 12 
6 8 9 13 
7 9 10 1 
8 10 11 2 
9 11 12 3 
10 12 13 4 
11 13 1 5 
12 1 2 6 
13 2 3 7 

1 3 4 8 
4 2 5 9 
5 6 3 10 
6 4 7 11 
8 7 12 5 
9 8 13 6 
7 10 9 1 

10 11 8 2 
12 9 11 3 
13 12 10 4 
11 5 1 13 
2 1 6 12 
3 13 2 7 

10 in Sub-case 2(b). These divide into 1, 2, and 1 occurrences of Sub-caaes 2(a)i, ii, and 

iii respectively, and into 3, 6, and 1 occurrence of Sub-cases 2(b)i, ii, and iii respectively. 

Although this also happens for some of the pairs of rows of Design 2, for some pairs (rows 

1 and 2 for example) the partition of the 4 and 10 resulting designs in Sub-cases 2(a) 

and 2(b) produces 0, 4, and 0 for Sub-cases 2(a)i, ii, and iii and 4, 4, and 2 resulting 

designs for Sub-cases 2(b)i, ii, and iii respectively. Thus Design 2 has a greater number 

of occurrences of 2(a)ii and fewer of 2(a)i and 2(a)iii than Design 1, and also a greater 

number of resulting designs in Sub-cases 2(b)i and 2(b)iii. 

Preece (1966) gave two (13 x 4) Youden square designs, for which A = 1, as shown in 

Table 6.10. From the earlier considerations of such designs, only six of the eight cases/sub-

cases of resulting designs with two missing values are possible. The distributions of the 

average and maximum variances of pairwise treatment differences for the six cases/sub-

cases for these two 13 treatment designs are as shown in Table 6.11. The number of 

configurations corresponding to each case/sub-case is the same for these two designs. The 

loss of efhciency varies between 8% and 11% when considering the average variance, but 

the loss is greater for the maximum variance in all situations. 

Preece (1966) also gave three examples of Youden squares with 11 treatments in blocks 

of 5, all with A = 2, see Table 6.12 for details of the structure of these designs. The 

distributions of average and maximum variances of pairwise treatment comparisons for 
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Table 6.11: Average variances of pairwise treatment differences, relative e&ciencies, maxi-
mum pairwise variances, and frequencies of the cases/sub-cases of two missing observations 
for the designs in Table 6.10. 

Two missing values ( t=2) 
Case A.V.(R.E.) IVI.V.(R.E.) 1 2 

1 0.66667(7^ (0.92308) 0.92308(7^ (0.66666) 78 78 
2(a)i 0.668860-2 (0.92004) 0.85714(72 (0.71795) 156 156 
2(a)ii 0.66667(7^ (0.92308) 0.93590(7^ (0.65753) 156 156 
2(a)iii N/A (N/A) N/A (N/A) 0 0 
2(b)i 0.66667(7^ (0.92308) 0.84615(7^ (0 .72728) 546 546 
2(b)ii 0.67033(7^ (0.91803) 0.99780(72 (0.61674) 312 312 
2(b)iii N/A (N/A) N/A (N/A) 0 0 
2(c) 0.68750(7^ (0.89510) 1.09135(72 (0.56387) 78 78 

Table 6.12: Three examples of (11 x 5) Youden square designs given by Preece (1966) 
Design 1 1 2 3 5 8 

2 3 4 6 9 
3 4 5 7 10 
4 5 6 8 11 
5 6 7 9 1 
6 7 8 10 2 
7 8 9 11 3 
8 9 10 1 4 
9 10 11 2 5 
10 11 1 3 6 
11 1 2 4 7 

Design 2 1 2 3 5 8 
4 6 2 3 9 
3 5 10 7 4 
5 8 4 6 11 
9 7 6 1 5 
8 10 7 2 6 

11 3 9 8 7 
10 9 8 4 1 
2 11 5 9 10 
6 1 11 10 3 
7 4 1 11 2 

Design 3 1 2 3 5 8 
4 3 2 9 6 
3 5 4 10 7 
6 4 11 8 5 
5 6 7 1 9 
8 7 6 2 10 
7 8 9 3 11 
10 9 8 4 1 
9 10 5 11 2 
11 1 10 6 3 
2 11 1 7 4 
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Table 6.13: Average variances of pairwise treatment differences, relative efficiencies, maxi-
mum pairwise variances, and frequencies of the cases/sub-cases of two missing observations 
for the designs in Table 6.12. 

Two missing values ( t=2) 
Case A.V.(R.E.) IVI.V.(R.E.) 1 2 3 

1 0.48485(7^ (0.93750) 0.60606(7^ (0 .75000) 110 110 110 
2(a)i 0.48623(7^ (0.93483) 0.56234(7^ (0.80831) 110 68 105 
2(a)ii 0.48468(7^ (0.93783) 0.59822(7^ (0 .75983) 110 194 120 
2(a)iii 0.48485(7^ (0.93750) 0.64394(7^ (0 .70588) 55 13 50 
2(b)i 0.48485(7^ (0.93750) 0.57576(7^ (0 .78947) 385 427 390 
2(b)ii 0.48544(7^ (0.93635) 0.62365(7^ (0 .72885) 550 466 540 
2(b)iii 0.48779(7^ (0.93184) 0.68182(7^ (0 .66666) 55 97 60 
2(c) 0.49374(7^ (0.92062) 0.70707(7^ (0 .64286) 110 110 110 

these three (11 x 5) designs when two observation become unavailable are diKerent, and 

are shown in Table 6.13. It may be seen that the total number of configurations for the 

sub-cases corresponding to Case 2(a) and Case 2(b) for the three designs are the same, 

but the distributions within the cases are different. Design 2 has the largest number of 

configurations that give rise to resulting designs with maximum variance of 0.68182(7^, 

but it also has the smallest number of configurations corresponding to Sub-case 2(a)iii 

which has the largest maximum variance within Case 2(a). 

6.6 Discussion 

Das and Kageyama (1992) derived the information matrix for treatment effects after the 

loss of a complete block (row) from a Youden square. The eigenvalues of this matrix were 

used to derive an expression for the average variance of pairwise treatment differences in 

the incomplete design. Their results for the case of a missing block have been extended 

by identifying a simple generalised inverse of the information matrix, and using it to 

obtain expressions for the variance of any individual pairwise treatment comparison, and 

consequently the average of these variances. These formulae have been used to produce 

numerical results for the loss of a block from a range of Youden square designs with 4 to 

31 treatments. It can be seen that small designs are those most seriously aSected by the 

loss of data when the efficiencies are computed. 

The effects of losing ^ observations from a Youden square based design have also been 
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considered. For ( = 1, the reduced normal equations were derived in general terms and 

variances of pairwise treatment differences were determined for a wide range of Youden 

square using the design parameters v, b, and k. The loss of two plots is shown to lead to 

up to eight possible resulting incomplete designs whose properties need to be considered 

separately. Not all of these situations can be achieved for all designs. In particular, 

designs in which pairs of treatments occur together in the same block only once cannot 

have resulting designs belonging to Sub-cases 2(a)iii and 2(b)iii. It was also shown that 

for some Youden squares, the structure of the starting design dictates the number of 

configurations corresponding to certain sub-cases of resulting designs. 

Youden squares representing those available for certain numbers of treatments and 

block sizes, have been investigated in detail in this Chapter. The first set of designs had 

Gve treatments in blocks of four units, four replicates of each treatment, and every pair of 

treatments occurred in three of the blocks of the starting design. It was shown that there 

were seven cases of two missing values for one design, but there was an extra case for 

the other (5 x 4) design and the frequencies of occurrences of the sub-cases were slightly 

different. The class of six representative (7 x 4) Youden squares, derived from (7 x 7) 

Latin squares, has also been considered and shown to give generally different distributions 

of resulting designs when two observations are missing. 

Larger designs have also been compared, and large average variances correspond to 

cases where the missing observations are for two different treatments in different rows 

and in different columns. Therefore it is desirable to choose an initial design in which 

pairs of treatments occur in the same two rows and two columns as often as possible. For 

example, in Design 5 of Table 6.7 there are nine pairs of treatments with this property so 

that there are only 15 resulting designs in Sub-case 2(b)iii whereas for Design 2 there are 

none, so that this sub-case contains 33 resulting designs with average variance 0.696(7^. 
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Chapter 7 

Diallel Cross Designs and the 

unavailability of data 

In a genetic or mating experiment, an investigator studies the general combining ability 

of p lines (parents) to identify the best combination of parentage. In general, there are 

p"^ potential crosses between the p lines, but in this Chapter we do not consider the effect 

of combining an individual line with itself (e.g. 1 x 1 ) , and reciprocal crosses such as 

1 x 2 and 2 x 1 are assumed to be the same in the analysis. Consequently, there are 

p{p — l ) /2 pairs of lines (or crosses) that are investigated in the diallel cross experiment. 

An overview of designs used for genetic experiments is provided by Hinkelmann (1975). 

A complete diallel cross (CDC) design is an experiment in which all potential crosses 

occur at least once, although they do not have to be replicated the same number of times. 

Ghosh and Desai (1998) constructed CDC designs using BIB designs, and Ghosh and 

Desai (1999) considered constructing CDC designs with unequal replication of the crosses. 

G u p t a a n d K a g e y a m a ( 1 9 9 4 ) a l s o c o n s i d e r e d c o n s t r u c t i n g o p t i m a l c o m p l e t e d ia l l e l cross 

designs, and Agarwal and Das (1987) gave a method for constructing diallel cross designs 

from two incomplete block designs. When the number of lines is large, there may be 

only enough experimental units to accommodate a subset of the p{p — l ) /2 crosses in 

the starting design. In these situations, a partial diallel cross (PDC) design involving 

fewer crosses may be chosen to estimate the general combining ability of the p lines. The 

methods for constructing diallel cross designs, both complete and partial, use partially 

balanced incomplete block designs - both triangular and group divisible designs, and are 

c o n s i d e r e d in d e t a i l i n t h e n e x t S e c t i o n . 
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T h e los s of a b l o c k o f c r o s s e s is s t u d i e d in S e c t i o n 7 .3 for par t i cu lar dia l le l cross 

d e s i g n s . Var iances o f p a i r w i s e l ine d iEerences are c a l c u l a t e d t o assess t h e i m p a c t o f t h e 

missing observations. This work complements Ghosh and Desai (1998, 1999) and Ghosh 

and Biswas (2000), where the loss of one block from complete diallel cross designs was 

c o n s i d e r e d . T h e e f f ec t of m i s s i n g crosses s c a t t e r e d t h r o u g h o u t t h e s t a r t i n g d e s i g n is 

studied for the same designs in Section 7.4. 

7.1 Cons t ruc t ion of Diallel C ros s Designs 

Agarwal and Das (1987) considered the construction of balanced n-ary designs, which can 

subsequently be used as CDC designs by combining a BIB design and a two associate 

p a r t i a l l y b a l a n c e d i n c o m p l e t e b lock ( P B I B ) t r i a n g u l a r d e s i g n . T h e f irst d e s i g n i s a B I B 

design with p treatments where there are p{p — l)/2 blocks of two units s u c h that every 

pair of treatments occurs in one block of the BIB design. The blocks of the BIB design 

are then considered to contain crosses of the two treatments in them, e.g. if block one 

has treatments 1 and 2 then these now correspond to the cross 1 x 2 . The other design 

i s a P B I B d e s i g n w i t h p ( p — l ) / 2 t r e a t m e n t l abe l s , a n d t h e s e l a b e l s are r e p l a c e d by t h e i r 

corresponding block f r o m the BIB design to produce a CDC design. Each observation in 

the PBIB design is replaced by a cross, e.g. all plots corresponding to treatment 1 are 

replaced by the cross 1x2, treatment 2 is replaced by 1 x 3, etc. The designs generated by 

t h i s approach are n o t in general binary, because although no cross occurs more than once 

in any block of t h e CDC design, the lines can occur more than once in a given block and 

consequently the elements of the incidence matrix are not a l l zero or one. For example, 

line 1 could occur in two crosses, say 1 x 2 and 1 x 3, of one block of the starting design. 

G u p t a a n d K a g e y a m a ( 1 9 9 4 ) a l so c o n s t r u c t e d d i a l l e l c r o s s d e s i g n s u s i n g s y m m e t r i c 

BIB designs. Their series of designs are formed by cyclically developing an initial block 

of crosses. When there is an odd number of lines in the experiment, the following steps 

will generate a CDC design. 

1. Consider a BIB (w = 2t + 1, 6 = 2t + 1, A: = 2t, r = 2i, A = 2t — 1) design, 

2. t a k e a n in i t i a l b l o c k ( 1 , 2 ( ) , ( 2 , 2 ( — 1) , - - , ( f , t + 1 ) , a n d 

3. d e v e l o p t h i s s e t o f l ine s c y c l i c a l l y moc( (2 ( + 1) . 
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Table 7.1: Example of a cyclically generated design with an odd number of lines using 
the method of Gupta and Kageyama (1994). The rows of the array correspond to blocks. 

1 X 6 2 x 5 3 x 4 
0 x 2 3 x 6 4 x 5 
1 X 3 0 x 4 5 x 6 
2 x 4 1 X 5 0 x 6 
3 x 5 2 x 6 0 X 1 
4 x 6 0 x 3 1 X 2 
0 x 5 1 X 4 2 x 3 

Table 7.2: Example of a cyclically generated design with an even number of lines using 
the method of Gupta and Kageyama (1994). The rows of the array correspond to blocks. 

1 X 4 2 x 3 0 x 6 
0 x 2 3 x 4 1 X 6 
1 X 3 0 x 4 2 x 6 
2 x 4 0 X 1 3 x 6 
0 x 3 1 X 2 4 x 6 

To demonstrate this method, consider t = 3, which gives a BIB (7,7, 6,6, 5) design. The 

initial generating block of the design has the crosses 1 x 6 , 2 x 5 , and 3 x 4 . The second 

block of the design has three crosses 0 x 2, 3 x 6, and 4 x 5 . The other five blocks are 

generated similarly and the resulting diallel cross design is shown in Table 7.1, where the 

rows correspond to blocks. 

Gupta and Kageyama (1994) gave a procedure for generating an optimal diallel cross 

with p — 1 blocks and p/2 crosses in each block, when there is an even number of lines in 

the proposed design. 

1. The lines are coded 0,1, • • • ,p — 2,p, 

2. the elements of the p — 1 blocks are {j + l,p — 1 — j + I), {l,p)] j = 1, - • • ,p /2 — 1; 

I = 0, - • • ,p -2, and 

3. the first p/2 — 1 crosses of each block are developed mod{p — 1). 

An example of a six line design in five blocks of three crosses, generated using this method, 

is given in Table 7.2. 
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PBIB designs were used by Ghosh and Divecha (1997) to construct PDC designs. 

There are k treatments in every block of the PBIB design, and to construct the PDC, all 

of the distinct pairs of treatments within each block are generated. This yields k{k — l ) /2 

crosses per block of the resulting PDC design. For example, if the first block of the PBIB 

design had treatments 3, 5, and 8 then the corresponding block in the PDC design has 

t h r e e c r o s s e s 3 x 5 , 3 x 8, a n d 5 x 8 . T h e p a r t i a l b a l a n c e o f t h e i n c o m p l e t e b l o c k d e s i g n 

creates the partial completeness of the diallel cross. Table 7.3 shows two PDC designs 

generated from PBIB designs with two association classes, which are investigated in later 

Sections to assess the impact of missing data. 

7.2 Analysis of Diallel Cross Designs 

To describe the data collected from a diallel cross design, an additive model is assumed, 

where the efi'ect of the ith line under investigation in the planned experiment is represented 

by gfji = 1, • • • ,p. The model can be expressed as 

Viji = 1^' + gi + 9j + /3i + eiji ( 7 . 1 ) 

( i = 1 , 2 , " - , p ; J = 1 , 2 , - - ^ Z = 1 , 2 , - , 6 ) 

where is the response due to the ith and jth lines being crossed in the Ith block, /i 

is an overall mean e f f e c t , g , and gj are the effects of the ith and jth lines respectively, [3i 

is the effect of the Ith block, and is random error. The usual least squares analysis 

is performed to derive the full normal equations to estimate the model parameters. The 

design matrix X — ( l ( X g | X ^ ) for all model parameters can be partitioned into a column 

of ones, and design matrices for the line and block effects respectively. The design matrix 

for lines is different from the usual design matrix for treatments in the general block 

experiment. Each observation in a diallel cross design is composed of two lines so there 

are two non-zero elements in each row of the design matrix for lines, which is denoted by 

Xg. Consider Design (b) given in Table 7.3. The first row of the design matrix Xg, which 

corresponds to the allocation of the cross 1 x 9 to the first unit of the first block of the 

d e s i g n , i s g i v e n b y ( 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) . 
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Table 7.3: (a) 12 line PDC design of Ghosh and Divecha (1997) and (b) PDC generated 
using the same method from a group divisible design with 9 lines in 9 blocks. 

Design (a) 

Design (b) 

1 X 2 1 X 3 1 x 4 2 x 3 2 x 4 3 x 4 
7 x 1 0 5 x 7 4 x 7 5 x 1 0 4 x 1 0 4 x 5 
6 x 1 1 6 x 9 4 x 6 9 x 1 1 4 x 1 1 4 x 9 
1 X 7 1 X 6 1 X 8 6 x 7 7 x 8 6 x 8 

5 x 1 1 2 x 1 1 8 x 1 1 2 x 5 5 x 8 2 x 8 
9 x 1 0 3 x 1 0 8 x 1 0 3 x 9 8 x 9 3 x 8 
1 x 1 1 1 x 1 0 1 x 1 2 1 0 x 1 1 1 1 x 1 2 1 0 x 1 2 
2 x 9 7 x 9 9 x 1 2 2 x 7 2 x 1 2 7 X 12 
3 x 5 5 x 6 5 x 1 2 3 x 6 3 x 1 2 6 x 12 

1 X 9 2 x 9 1 x 2 
3 x 4 3 x 5 4 x 5 
6 x 7 6 x 8 7 x 8 
3 x 9 6 x 9 3 x 6 
1 x 4 1 X 7 4 x 7 
2 x 5 2 x 8 5 x 8 
4 x 9 8 x 9 4 x 8 
1 x 5 1 X 6 5 x 6 
2 x 3 2 x 7 3 x 7 

The reduced normal equations for line effects after the removal of block effects is 

C = R - NK-'N' (7 .2 ) 

where R is not a diagonal matrix. The off-diagonal elements of R record the number of 

times that any two lines occur as a cross in the starting design. is defined as a diagonal 

matrix whose elements are the number of crosses, and not the number of occurrences of 

the lines, in each of the h blocks of the starting design, and is the inverse of K^. N 

is the incidence matrix for the lines in the blocks of the diallel cross design. The elements 

of N, {riii}, are not necessarily 0 or 1, because any line can occur in more than one of the 

crosses in a given block. 

7.2.1 Comple te diallel cross designs 

Consider the balanced n-ary designs of Agarwal and Das (1987), which are formed by 

c o m b i n i n g a BIB (^o = P, 6o = p ( p — l ) / 2 , ro = p — 1, /co = 2 , Ao = 1) d e s i g n a n d a t w o 
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a s s o c i a t e P B I B (u' = p ( p - l ) / 2 , 6 ' , r' , A^, Ag) d e s i g n . T h e r e s u l t i n g C D C d e s i g n h a s p 

lines in h' blocks of 2k' lines or k' crosses, and each line is replicated rVo times as crosses 

with other lines in the starting design. The treatments in the PBIB have r' replicates, 

so that all p{p — l ) /2 crosses are replicated r' times in the resulting CDC design. The R 

matrix component of the information matrix for line effects can be expressed in the form 

R 

rVo 

r ' (ro - l ) I p + / J ( 7 . 3 ) 

and the diagonal matrix of block sizes simplifies to = k'ly^ because there are k' crosses 

in all blocks of the starting design. The ith diagonal element of the concurrence matrix, 

NN' , is 5* = nfi and the (i,j)th off-diagonal element of this matrix is A = ym=i 

The structure of the CDC designs of Agarwal and Das (1987) ensures that these two values, 

S and A, are independent of i and j, so that the concurrence matrix for the complete 

design with p lines can be simplified to 

N N ' 

g . . . A 

A . . . ^ 

{S — A ) I p + A J p,p ( 7 . 4 ) 

Combining Equations (7.3), (7.4), and K ^ gives the information matrix for line effects 

in the complete design as 

C = { / ( r o - 1) - ( ^ - A ) / A : ' } I p + { / - A / A : ' } J p,p ( 7 . 5 ) 

A generalised inverse can be used to solve these reduced normal equations to estimate 

(non-uniquely) the line effects. A suitable choice of generalised inverse to simplify the 

expressions for the variances of treatment differences, using Theorem (3.1), is derived by 

subtracting (r' — A/A:') from all the elements of C and inverting the resulting non-singular 

m a t r i x t o g i v e 

n = { / ( r o - l ) - ( ^ - A ) / A : ' } - ^ I p ( 7 . 6 ) 

For the CDC design when there are no missing values, all variances of pairwise line 
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differences are equal to 

2 ( 7 2 { / ( r o - 1) - ( g - ( 7 .7 ) 

G u p t a a n d K a g e y a m a ( 1 9 9 4 ) g a v e p r o c e d u r e s for c o n s t r u c t i n g C D C d e s i g n s w i t h a n e v e n 

or odd number of lines. These are generated from symmetric BIB designs with + 1 

treatments with 2t plots in every block. The lines of the CDC design are replicated 2t 

times and occur once as a cross with every other line. The information matrix for line 

effects is given by 

c = (2t — 1 — l/t)l2t+l + ( 1 / t — 1) J2i+l,2t+l (7-8) 

and all pairwise line comparisons are estimated with a variance of 2ta^/{2t^ — t—1). In 

the case where there are an even number of lines, there are in general p lines allocated to 

p — 1 blocks of p/2 crosses. The information matrix for line effects in this situation can 

be expressed in the form 

C = {p — 2 ) I p + ( 1 — 2{p — l ) / p ) J p , p ( 7 - 9 ) 

where the variances of pairwise line differences are 2a^/(p — 2). 

7.2.2 Par t ia l diallel cross designs 

Ghosh and Divecha (1997) considered constructing PDC designs using PBIB designs. The 

initial design had p treatments replicated r times, allocated to the k plots of b blocks. The 

association scheme for the PBIB design was (Ai, A2, n i , 722,]?}̂ ; i = j = k = 1,2), where 

one of the two pairing parameters, Ai or A2, was assumed to be zero. In each block of the 

PBIB design all distinct pairs of treatments are produced, and there are k{k — l ) /2 crosses 

within each block of the diallel cross design. The PDC design has p lines replicated in 

r{k — 1) of the crosses, and k{k — l ) /2 crosses within each of the b blocks of the starting 

design. The association parameters of this new PDC design are Ai = Ai(A: — 1)^ and 

Ag = X2{k — 1)^ for the members of the two associate classes. 

To derive the elements of the information matrix for line effects, consider the matrices 

R, K'^, and N N ' of Equation (7.2) individually. Note that = k(k — l)/2Ib, because 

all blocks have the same number of crosses when the design is complete. The elements of 

R depend on whether pairs of lines are first or second associates, and are consequently 
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g i v e n b y 

r{k — 1) i = j 

\ Ai z ^ j and lines i and j are first associates (7-10) 

Ag i ^ j and lines i and j are second associates 

and the elements of the concurrence matrix, NN', can be similarly separated into three 

g r o u p s a s 

( N N ' ) , j = 

r{k — 1)^ i = j 

Xi{k — Vf i ^ j and lines i and j are first associates (7-11) 

A2(A: — 1)^ i ^ j and lines i and j are second associates 

Combining these expressions and K ^ gives the form of the elements of the information 

matrix for line effects. They are 

= < 

r{k — l)(k — 2)/k i = j 

—Xi{k — 2)/k j where lines i and j are first associates 

—\2{k — 2)/A; % ^ j where lines i and j are second associates 

( 7 . 1 2 ) 

which depend on the number of times the crosses occur in the design. Some of the entries 

are zero because Ghosh and Divecha (1997) made the assumption that one of Ai and Ag 

is zero. 

Consider a particular class of PBIB designs, group divisible designs, where the p 

treatments are divided into m2 groups of mi treatments. Two treatments in the same 

group occur together in the same block Ai times and two treatments in different groups 

occur together Ag times. The information matrix for line effects can be partitioned into 

matrices relating to different groups of mi lines for the designs under consideration, 

a n d , a f t e r r e l a b e l l i n g a n d r e a r r a n g e m e n t t h e m a t r i x c a n b e e x p r e s s e d u s i n g E q u a t i o n 
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( 7 . 1 2 ) a s 

C 
( A : - 2 ) 

Gl lmi -̂ 2 ^2^mi,mi 

O'Zlmi — AgJ mi -^2 ,mi 

'^2lmi '^2Jmi,mi 0-2 Imi -^2Jmi,mi 

^2^1711,7711 

Oglmi '^2Jmi,mi 

Gllmi •^2'^ mi,mi 

( 7 . 1 3 ) 

w h e r e 

di — T'(k — l) + A2 ( 7 . 1 4 ) 

and 

02 •— A2 — Aj ( 7 . 1 5 ) 

To identify a g e n e r a l i s e d inverse of this information matrix, add AgJ^,,; a n d invert the 

resulting non-singular matrix to give 

O = 
( A : - 2 ) 

^2^mi ^ l^mi 

0^2 Imi 

^2^mi 

0!2lmi 0:2 Imi • • • Ckll mi 

( 7 . 1 6 ) 

where 

a n d 

Cti 

0!2 

Oi + (12(7^2 - 2 ) 
[ai + 02(7712 — l ) ] [ o i — (Z2] 

-02 

( 7 . 1 7 ) 

( 7 . 1 8 ) 
[ai + 0 2 ( ^ 2 — l ) ] [ o i — ^2] 

There are two types of pairwise line comparison based on whether the lines are first or 

second associates. If two lines are first associates, i.e. they occur together in Ai blocks 

of the original Group Divisible design and as Ai crosses, the variance of the pairwise line 

difference is given by 

2&:(a i— 2A: 
(k — 2) (A; — l^irk — r + A^) 

a ( 7 . 1 9 ) 
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Table 7.4: Five treatment CDC design given by Agarwal and Das (1987). 
1 X 3 4 x 5 2 x 4 2 x 5 
4 x 5 1 x 2 1 X 3 2 x 3 
2 x 5 1 x 4 3 x 4 1 x 3 
2 x 4 1 x 3 3 x 5 1 x 5 
1 x 2 3 x 5 4 x 5 3 x 4 
2 x 3 1 X 5 1 x 4 4 x 5 
3 x 4 2 x 5 1 x 5 1 x 2 
1 x 4 2 x 3 2 x 5 3 x 5 
3 x 5 2 x 4 1 X 2 1 x 4 
1 X 5 3 x 4 2 x 3 2 x 4 

and when two lines are second associates, the variance of their pairwise line difference is 

-u 
2k[r{k — 1) + A2 + (A2 — A i ) ( m 2 — 2)] 

rcr ( 7 . 2 0 ) 
{k — 2) (A; — 2)[r{k — 1) + A2 + (A2 — Ai)(m2 — l)][r(A: — 1) + Ai] 

7.3 Removal of blocks from a Diallel Cross Design 

Consider the five line CDC design given by Agarwal and Das (1987), which is shown in 

Table 7.4. There are ten crosses in the starting design, and these are allocated to the four 

units of the ten blocks. All lines are replicated 16 times and appear in four crosses with 

each of the other four lines in the starting design. Variances of pairwise line comparisons 

for the complete design are given by Equation (7.7), and, for this CDC design with five 

lines, are all equal to 0.1778cr^. 

The loss of all four crosses in any of the ten blocks in the starting design leads to 

the same overall average variance of pairwise line differences. The variances of individual 

pairwise line comparisons depend on the crosses that are lost, and the replicates of each 

line that become unavailable. One of these variances remains unchanged at 0.1778(7^, three 

increase to 0.1951cr^, and the other six increase to 0.2047(7^. As an illustration, consider 

the loss of the first block of four crosses from the starting design. In this situation, lines 

1 and 3 occur once in the missing block and the variance of the comparison between lines 

1 and 3 remains unchanged as 0.1778cr^. A direct comparison of these two lines does not 

occur in this block because their effects are indistinguishable within the cross. The other 

three lines lose two replicates in the remaining three crosses of the block. The variances 
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o f t h e t h r e e pa i rwi se l ine d i f ferences i n v o k i n g t h e s e t h r e e crosses , 4 x 5, 2 x 4, a n d 2 x 5 

respectively, are increased to 0.1951cr^, and the other six pairwise line comparisons that 

do not relate to crosses in the missing block are all increased to 0.2047cr^. The losses in 

e f f i c i e n c y for t h e s e t w o t y p e s o f c o m p a r i s o n are 9% a n d 1 3 % respect ive ly . T h e a v e r a g e 

variance of pa i rwi se line differences is 0.1991cr^, which corresponds to a reduction in 

e f f i c i e n c y of 11%. 

Ghosh and Desai (1999) considered constructing diallel cross designs from singular 

group divisible (SGD) designs. The crosses in the blocks of the new CDC design are 

formed by considering every pair of treatments within the blocks of the original SGD 

design. Ghosh and Desai (1999) derived the normal equations for these diallel cross 

designs generally, and expressions for the variances of pairwise line comparisons. These 

are CDC designs but the number of replicates of each cross is unequal in the starting 

d e s i g n . A n e x a m p l e of a d e s i g n w i t h e i g h t l ines in t w e l v e b l o c k s o f s i x crosses is g i v e n 

in Table 7.5. The majority of the crosses have two replicates, but four of them are 

r e p l i c a t e d s i x t i m e s in t h e s t a r t i n g d e s i g n . W h e n t h i s d e s i g n is c o m p l e t e , t h e a v e r a g e 

variance of pairwise line differences is 0.2024cr^. The crosses 1 x 5, 2 x 6, 3 x 7, and 4 x 8 

are all replicated six times and consequently the variances of comparisons between these 

four pairs of lines are 0.1667(7 .̂ The variances of all other pairwise line comparisons are 

0.2083(7^. 

Consider the loss of a single block of crosses, which in this situation corresponds to s i x 

crosses. The average variance of pairwise line comparisons for this CDC design increases to 

0.2238(7^, and the maximum variance of pairwise line differences is 0.2667cr^, representing 

a loss in efficiency of 22%. Now consider removing block one from the starting design, 

which involves lines 1, 3, 5, and 7 and the six crosses formed from these four lines. There 

are five distinct variances of pairwise line comparisons. The variance of any comparison 

involving one treatment from the missing block and one of the other four, e.g. 1 x 2 , 

increases from 0.2083a^ to 0.2271cr^, representing a reduction in efficiency of 8%. The 

comparisons involving crosses 1x5 and 3x7 , which are replicated six times in the starting 

design, have an increased variance of 0.2cr^, corresponding to a loss of 1 7 % in efficiency. 

Pairwise line differences corresponding to the other four crosses in the affected block have 

a n i n c r e a s e d v a r i a n c e of 0.2667cr^, r e p r e s e n t i n g a r e d u c t i o n o f 2 2 % i n e f f i c i ency . V a r i a n c e s 

of all the pairwise comparisons involving lines 2, 4, 6, and 8 remain unaltered. 
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Table 7.5: Complete diallel cross design with an unequal number of crosses taken from 
G h o s h a n d D e s a i ( 1 9 9 9 ) . Four of t h e crosses , 1 x 5, 2 x 6 , 3 x 7, a n d 4 x 8 are r e p l i c a t e d s i x 
times and the other 24 crosses are all replicated twice. The design has 12 blocks, which 
correspond to the rows of the diagram, each with six crosses. 

1 X 5 1 X 3 1 X 7 3 x 5 5 x 7 3 x 7 
2 x 6 2 x 4 2 x 8 4 x 6 6 x 8 4 x 8 
3 x 7 1 X 3 3 x 5 1 X 7 5 x 7 1 x 5 
4 x 8 2 x 4 4 x 6 2 x 8 6 x 8 2 x 6 
1 x 5 1 x 2 1 X 6 2 x 5 5 x 6 2 x 6 
3 x 7 3 x 4 3 x 8 4 x 7 7 x 8 4 x 8 
2 x 6 1 x 2 2 x 5 1 x 6 5 x 6 1 X 5 
4 x 8 3 x 4 4 x 7 3 x 8 7 x 8 3 x 7 
1 x 5 1 x 4 1 X 8 4 x 5 5 x 8 4 x 8 
2 x 6 2 x 3 2 x 7 3 x 6 6 x 7 3 x 7 
4 x 8 1 x 4 4 x 5 1 X 8 5 x 8 1 X 5 
3 x 7 2 x 3 3 x 6 2 x 7 6 x 7 2 x 6 

Table 7.3 gives two examples of PDC designs constructed from group divisible designs 

using the approach of Ghosh and Divecha (1997). The first, labelled Design (a) in the 

table, has twelve lines allocated to the crosses of nine blocks of six observations, and 

each line has nine replicates in the initial design. All the lines appear in crosses w i t h 

nine of the other lines, but do not occur as a cross with the remaining two lines. For 

example, line 1 does not appear in a cross with lines 5 and 9. When this PDC design has 

no missing values, the variances of the pairwise line comparisons are either 0.4074(7^ or 

0.4444(7^. These depend on whether the cross corresponding to the particular comparison 

occurs in the starting design, e.g. lines 1 and 5 or 9 are compared with a variance of 

0.4444(7 .̂ The average variance of all 66 pairwise line differences is 0.4141(7^. When 

a block of six crosses becomes unavailable, the average variance increases to 0.4918(7^ 

and the maximum variance of the individual pairwise line differences is 0.6875cr^. The 

overall effect, in terms of average and maximum variance, is the same irrespective of 

the block that is missing from the starting design. This corresponds to a reduction of 

approximately 16% in efficiency for the average and approximately 36% for the maximum 

of t h e var iances , w h i c h is a s evere loss o f accuracy . 

Design (b) from Table 7.3 is also constructed using a group divisible design. In this 

case there are nine lines in nine blocks of three crosses, and every line occurs in a cross 
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with six of the other eight l i ne s . The variances of p a i r w i s e line comparisons are either 

0.8889(7^ or w i t h a n a v e r a g e o f 0.9167(7^ for t h i s d e s i g n w h e n t h e r e are n o o b s e r v a t i o n s 

missing. If a block of crosses is lost, the average variance of pairwise line differences 

i n c r e a s e s t o w i t h r e l a t i v e e f B c i e n c y o f 83%, a n d t h e m a x i m u m of t h e v a r i a n c e s i s 

1.6cr^ (62% efficiency). Although only three crosses are lost from the affected block, the 

l o s s o f e fRc i ency i s s u b s t a n t i a l , e .g . 38% for t h e w o r s t c a s e . T h e overa l l e f f e c t is t h e s a m e 

regardless of the block that becomes unavailable. 

Consider the situation where a block of crosses becomes unavailable from a PDC design 

of Ghosh and Divecha (1997), similar to those shown in Table 7.3. Assuming that the 

first k lines occurred in the missing block, all crosses between the k lines are lost. The 

information matrix for line effects can now be expressed as 

dilk d2^k — — d23k,k 

d-2xk — d23k,k d2lk — d23k,k 

d2jk,k — d23k,k d^t-k ~ 

( 7 . 2 1 ) 

where 

= (r — 1)(A: — 1)(A; — 2)/A; 

(̂ 2 = A2(A: — 2)/A; 

ds — {r — 1 Ag) (A; — T)jk 

( 7 . 2 2 ) 

( 7 . 2 3 ) 

( 7 . 2 4 ) 

A particular generalised inverse is found using the same approach as for the starting 

design. In this situation, is added to the singular information matrix and the 

resulting non-singular matrix is inverted to give 

vl 

5lljt + (̂ 2Jyfc,fc ^s^k + 5i3k,k + ^4 JA:,fc 

( 7 . 2 5 ) 

where the expressions f or 6%, - - - ,5^ are complicated, and are given in Table 7 . 6 in terms 

of di, d2, and d̂ ,. There are four cases for the variance of the pairwise line comparisons, 

w h i c h d e p e n d o n w h e t h e r t h e a f f e c t e d l i n e s a p p e a r e d i n t h e m i s s i n g c r o s s e s a n d w h e t h e r 
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Table 7.6: General expressions for 5i, • • • ,65 when a block of crosses becomes unavailable 
in a PDC design. 

Element Formula 

^2 
53 

did2'i-did3~2d'^ 

^2(^2+^3)^ 
[2d2—did2—didz)(d\ d2+'^i'i3+fcd|+/cd2d3—Sdj) 

A 
did2+didz—2d% 

r d2(d2+'^3) 
^ {2d2—did2—didz){d\d2+did3-'rkd2+kd2 ds—2^1) 

'5 
d\—didz 

{d2~d:i){2d2 ~di d2 —did^) 

X <^2 
® (2d^ -d i d2-dids,){did2+d\ ds+tdg+tdg da -2d| ) 

^7 
& 

(d2—di)d2 
{d2 —dz){2d2 —did2 —dids) 

{2dl-did2-did3){did2+di d3+kd'^+kd2d3-2d'^) 

the two lines are first or second associates. The first case corresponds to two lines in 

the missing block, with a variance of 2Sia'^. The second case occurs if only one line 

occurred in the affected block, and if the two lines are first associates, the variance is 

((5i + 2̂ — 2(̂ 3 — 2(̂ 4 + (̂ 5 + whereas it is 4- 2̂ — 2,6^ + <̂5 + 5q)o'^ when they are 

second associates. The third case corresponds to two unaffected lines that are second 

associates, and the variances of any pairwise line comparison of this type are 2^5(7 .̂ The 

l a s t i s w h e r e t h e t w o l i n e s are first a s s o c i a t e s a n d d o n o t l o s e a n y r e p l i c a t e s . H e r e t h e 

v a r i a n c e i s 2(65 — = 2 W ^ / ( r — 1) . 

7.4 Missing observations s ca t t e r ed t h roughou t t h e 

starting design 

Consider the situation when t crosses, scattered throughout the starting design, become 

unavailable for the analysis. The number of distinct configurations of t missing values 

a n d t h e p r o p e r t i e s o f t h e s e c a s e s d e p e n d o n t h e p a r t i c u l a r C D C d e s i g n , i . e . w h i c h c r o s s e s 
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Table 7.7: CDC design with five treatments used by Ghosh and Biswas (2000) 
1 x 2 3 x 4 
1 x 2 3 x 5 
1 X 2 4 x 5 
1 x 3 2 x 4 
1 X 3 2 x 5 
1 X 3 4 x 5 
1 X 4 2 x 3 
1 X 4 2 x 5 

1 x 4 3 x 5 
1 X 5 2 x 3 
1 X 5 2 x 4 
1 X 5 3 x 4 
2 x 3 4 x 5 
2 x 4 3 x 5 
2 x 5 3 x 4 

are lost and the number of replicates of the lines in the starting design, the number of 

crosses common to the pairs/triples of blocks, etc. Numerical results, i.e. the average and 

maximum variances of pairwise line differences, for the loss of one, two, and three crosses 

are presented for the designs discussed in the previous Section. The efficiencies of these 

measures have also been computed to quantify the impact of the missing data. 

7.4.1 One observat ion missing f rom t h e s t a r t i ng design 

The design in Table 7.4 constructed by Agarwal and Das (1987) has two distinct ways 

of losing one observation that lead to resulting designs with different properties. In all 

ten blocks of the starting design there are two replicates of three different lines which 

compose three of the crosses in the block, and the fourth cross is a combination of the 

other two lines. In the first block of the design there is the cross 1 x 3 , and the other 

three observations correspond to all distinct pairs of lines 2, 4, and 5, i.e. the crosses 

2 X 4, 2 X 5, and 4 x 5 . For example, if the cross 1 x 3 is lost from the first block, the 

average variance of pairwise line comparisons increases to 0.1905cr^, and the maximum 

variance is equal t o 0.1989(7^. The efficiencies for these variances are 93.3% and 89.4% 

respectively. There are two distinct types of line comparison in the resulting design. The 

four comparisons between lines that occur as crosses in the block are unchanged, while 

the other six are increased. When one of the other three crosses becomes unavailable, e.g. 

4 x 5 , t h e average v a r i a n c e is 0.1829(7^, a n d t h e m a x i m u m of t h e v a r i a n c e s o f p a i r w i s e 

line differences increases to 0.1895(7^. The efficiencies are 97.2% and 93.8% respectively. 

Comparisons between lines 1 and 2 and between 4 and 5 remain unchanged. Comparisons 

b e t w e e n t h e l ine s r e p l i c a t e d o n c e in t h e b lock , 1 or 3 , a n d l i n e 2 sufiFer a s m a l l l o s s of 
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T a b l e 7 .8: S u m m a r y o f t h e e f f e c t o f one , t w o , a n d t h r e e m i s s i n g o b s e r v a t i o n s o n t h e C D C 
design given by G h o s h and Biswas (2000). Average variances, maximum variances of 
pairwise line differences a n d relative efficiencies are given for the distinct cases of missing 
values, with an example of each configuration. 

Missing Values 
B l o c k (s) C r o s s (es ) A.V.(R.E.) IVI.V.(R.E.) 

N u m b e r 
of C a s e s 

( a ) O n e m i s s i n g v a l u e 
1 1 x 2 0 .29091(7^ ( 0 . 9 1 6 6 8 ) 0 . 3 1 5 1 5(7^ ( 0 . 8 4 6 1 7 ) 3 0 

(b) Two missing values 
1 1 1 x 2 3 x 4 0 .29091(7^ ( 0 . 9 1 6 6 8 ) 0 . 3 1 5 1 5(7^ ( 0 . 8 4 6 1 7 ) 15 
1 4 1 x 2 1 x 3 0 .31515(7^ ( 0 . 8 4 6 1 7 ) 0 . 3 6 3 6 4(7^ ( 0 . 7 3 3 3 4 ) 6 0 
1 5 1 x 2 1 x 3 0 .31667(7^ ( 0 . 8 4 2 1 1 ) 0 . 3 7 3 3 3(7^ ( 0 . 7 1 4 3 0 ) 2 4 0 
1 2 1 x 2 1 x 2 0 . 3 2 9 7 6(7^ ( 0 . 8 0 8 6 8 ) 0 . 4 0 0 0 0(7^ ( 0 . 6 6 6 6 8 ) 1 2 0 

(c ) T h r e e m i s s i n g v a l u e s 
1 1 4 1 x 2 3 x 4 1 x 3 0 .31515(7^ ( 0 . 8 4 6 1 7 ) 0 . 3 6 3 6 4(7^ ( 0 . 7 3 3 3 4 ) 6 0 
1 1 5 1 x 2 3 x 4 1 x 3 0 .31667(7^ ( 0 . 8 4 2 1 1 ) 0 . 3 7 3 3 3(7^ ( 0 . 7 1 4 3 0 ) 2 4 0 
1 1 2 1 x 2 3 x 4 1 x 2 0 . 3 2 9 7 6(7^ ( 0 . 8 0 8 6 8 ) 0 . 4 0 0 0 0 ( 7 2 ( 0 . 6 6 6 6 8 ) 1 2 0 
1 4 7 1 x 2 1 x 3 1 x 4 0 . 3 3 9 3 9(7^ ( 0 . 7 8 5 7 3 ) 0 . 3 6 3 6 4(7^ ( 0 . 7 3 3 3 4 ) 4 0 
1 4 8 1 x 2 1 x 3 1 x 4 0 . 3 4 2 4 5(7^ ( 0 . 7 7 8 7 1 ) 0 . 3 8 6 5 5(7^ ( 0 . 6 8 9 8 7 ) 4 8 0 
1 5 9 1 x 2 1 x 3 1 x 4 0 .34359(7^ ( 0 . 7 7 6 1 3 ) 0 . 3 8 5 6 4(7^ ( 0 . 6 9 1 5 0 ) 4 8 0 

1 5 14 1 x 2 1 x 3 2 x 4 0 .34444(7^ ( 0 . 7 7 4 2 1 ) 0.44444(7^ ( 0 . 6 0 0 0 1 ) 1 6 0 
1 2 4 1 x 2 1 x 2 1 x 3 0 . 3 5 5 7 7(7^ ( 0 . 7 4 9 5 6 ) 0 . 4 6 1 9 2(7^ ( 0 . 5 7 7 3 1 ) 9 6 0 
1 2 8 1 x 2 1 x 2 1 x 4 0 . 3 5 6 1 4(7^ ( 0 . 7 4 8 7 8 ) 0 . 4 1 2 2 8(7^ ( 0 . 6 4 6 8 2 ) 4 8 0 
1 2 6 1 x 2 1 x 2 1 x 3 0 . 3 5 9 0 3(7^ ( 0 . 7 4 2 7 5 ) 0 . 4 1 6 3 9(7^ ( 0 . 6 4 0 4 3 ) 4 8 0 
1 2 9 1 x 2 1 x 2 1 x 4 0 .37826(7^ ( 0 . 7 0 4 9 9 ) 0 . 5 2 1 7 4(7^ ( 0 . 5 1 1 1 2 ) 4 8 0 
1 2 3 1 x 2 1 x 2 1 x 2 0 . 4 0 9 5 2(7^ ( 0 . 6 5 1 1 8 ) 0 . 4 9 5 2 4(7^ ( 0 . 5 3 8 4 7 ) 8 0 

efficiency. The four pairwise line differences 1-4, 1-5, 3-4, and 3-5 h a v e the same variance, 

but the comparisons 2-4 and 2-5 are different because lines 4 and 5 have lost one of their 

replicates from the affected block. There are 10 configurations corresponding to t h e more 

s e v e r e l y a f f e c t e d f irst c a s e a n d 3 0 t o t h e s e c o n d c a s e . 

G h o s h a n d B i s w a s ( 2 0 0 0 ) i n v e s t i g a t e d t h e e f f e c t o f l o s i n g a b l o c k o f c r o s s e s o n C D C 

d e s i g n s , a n d g a v e a n e x a m p l e o f a f ive l i n e d e s i g n w h e r e t h e t e n c r o s s e s a r e r e p l i c a t e d t h r e e 

times, which is shown in Table 7.7. The effect of missing observations scattered through-

out the starting design is illustrated in Table 7.8. When a single observation becomes 

u n a v a i l a b l e , the average variance of pairwise line differences increases from 0 .2667cr^ to 

0.2909(7^, representing an 8% loss of efficiency. The maximum of the individual variances 

of pairwise line comparisons is substantially increased to 0.3152cr^, which is approximately 

a r e d u c t i o n o f 15% i n e f f i c i ency . For t h i s d e s i g n , t h e l o s s o f o n e o b s e r v a t i o n i s e q u i v a l e n t 
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t o t h e l o s s of a c o m p l e t e b lock b e c a u s e t h e r e are o n l y t w o crosses in e a c h b lock o f t h e 

starting design. This is similar to the situation for the block and row-column designs 

discussed in earlier Chapters. 

The CDC design with an unequal replication of crosses constructed by Ghosh and 

Desai (1999) has different properties from other CDC designs considered. For example, 

for t h e d e s i g n in T a b l e 7 .5 t h e r e are t w o t y p e s of r e s u l t i n g d e s i g n w i t h d i f ferent var iances , 

depending on the particular cross that is lost. When the missing value corresponds to 

one of the four crosses (e.g. 2 x 5 ) that is replicated six times in the starting design, the 

a v e r a g e var iance o f p a i r w i s e l ine c o m p a r i s o n s increases t o 0.2087cr^, r e p r e s e n t i n g a loss 

of 3% in efficiency, and the maximum variance increases to 0.2304(j^, which corresponds 

to approximately 10% reduction in efficiency. In the other case, where one of the 24 

c r o s s e s (e .g . 1 x 3 ) r e p l i c a t e d t w i c e b e c o m e s u n a v a i l a b l e , t h e a v e r a g e v a r i a n c e i n c r e a s e s 

t o 0.205(7^, a n d t h e m a x i m u m var iance is 0.2176cr^, r e p r e s e n t i n g e S c i e n c i e s of 9 8 . 7 % a n d 

9 5 . 7 % respec t ive ly . 

The two PDC designs given in Table 7.3 have a l s o been investigated to assess the 

impact of one or more missing observations on the variances of pairwise line comparisons. 

T h e r e are 5 4 p o t e n t i a l r e s u l t i n g d e s i g n s w h e n a s i n g l e o b s e r v a t i o n i s l o s t f r o m D e s i g n 

(a), and 27 for Design (b). In all of the 54 configurations for the first design, the average 

v a r i a n c e is i n c r e a s e d t o 0.4263(7^, c o r r e s p o n d i n g t o a r e d u c t i o n of l e ss t h a n 3% in efRciency, 

and t h e maximum variance increases to 0.4733(7^. When the pairwise line comparisons 

are considered individually for one missing value, there are eight different variances which 

are summarised using the average and maximum variances. When there is a single value 

missing from Design (b), the average variance increases to l.OOScr̂  (a 9% loss of efficiency), 

a n d t h e m a x i m u m v a r i a n c e is 1 .422a^. T h e l a t t e r i s v e r y s e r i o u s as i t c o r r e s p o n d s t o a 

r e d u c t i o n of 30% i n e f f i c i e n c y c o m p a r e d t o t h e in i t i a l d e s i g n . 

7.4.2 Two or more observations missing 

T h e d e s i g n of A g a r w a l a n d D a s (1987) ( see T a b l e 7 .4 ) h a s a l s o b e e n i n v e s t i g a t e d t o a s s e s s 

the effect of the loss of t w o crosses on the starting design. There are fifteen different 

configurations of two missing crosses that can occur, and these are listed in Table 7.9 

w i t h a par t i cu lar e x a m p l e of each c o n f i g u r a t i o n . D i f f e r e n t c o n f i g u r a t i o n s o f t w o m i s s i n g 

values occur w h e n the crosses are in the same or different blocks and depend on the 
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Table 7.9: An example of each 
the CDC design of Agarwal and 
pairwise line comparisons. 

of the fifteen configurations of two missing values for 
D a s ( 1 9 8 7 ) , a n d t h e a v e r a g e a n d m a x i m u m v a r i a n c e of 

Missing Values N u m b e r 
Block Cross Block C r o s s A . V . ( R . E . ) IVI.V.(R.E.) o f C a s e s 

9 1 X 2 10 2 x 4 0 .18807(7^ 0 . 9 4 5 2 9 ) 0 . 1 9 6 2 9 ( 7 ^ 0 . 9 0 5 7 0 ) 1 2 0 
1 4 x 5 2 1 X 3 0 .18817a'^ 0 . 9 4 4 7 8 ) 0 . 1 9 1 4 5 0 - 2 0 . 9 2 8 6 0 ) 1 5 
1 4 x 5 3 1 X 4 0 .18817(7^ 0 . 9 4 4 7 8 ) 0 . 1 9 6 7 5 ( 7 ^ 0 . 9 0 3 5 8 ) 6 0 
9 1 X 2 10 2 x 3 0 .18823(7^ 0 . 9 4 4 4 8 ) 0 . 2 0 2 3 0 ( 7 ^ 0 . 8 7 8 7 9 ) 6 0 
1 4 x 5 2 1 x 2 0 .18850(7^ 0 . 9 4 3 1 3 ) 0 . 1 9 7 3 9 ( 7 ^ 0 . 9 0 0 6 5 ) 6 0 
9 1 x 2 10 3 x 4 0 .18889(7^ 0 . 9 4 1 1 8 ) 0 . 2 0 3 6 4 ( 7 ^ 0 . 8 7 3 0 1 ) 6 0 
1 4 x 5 1 2 x 4 0 .18895(7^ 0 . 9 4 0 8 8 ) 0 . 1 9 8 2 9 ( 7 ^ 0 . 8 9 6 5 7 ) 3 0 
9 2 x 4 10 2 x 4 0 .18922(7^ 0 . 9 3 9 5 4 ) 0 . 1 9 8 2 7 ( 7 ^ 0 . 8 9 6 6 6 ) 3 0 
1 1 X 3 1 4 x 5 0 .19481(7^ 0 . 9 1 2 5 8 ) 0 . 2 0 4 7 2 ( 7 ^ 0 . 8 6 8 4 1 ) 3 0 
1 1 X 3 2 1 X 2 0 .19562(7^ 0 . 9 0 8 8 0 ) 0 . 2 1 0 7 0 ( 7 ^ 0 . 8 4 3 7 6 ) 6 0 
1 1 X 3 5 3 x 5 0 .19583(7^ 0 . 9 0 7 8 3 ) 0 . 2 1 2 1 6 ( 7 ^ 0 . 8 3 7 9 5 ) 1 2 0 
1 1 X 3 5 4 x 5 0 .19754(7^ 0 . 8 9 9 9 7 ) 0 . 2 1 5 5 6 ( 7 ^ 0 . 8 2 4 7 4 ) 6 0 
1 1 X 3 2 1 X 3 0 .19909(7^ 0 . 8 9 2 9 6 ) 0 . 2 1 7 5 4 ( 7 ^ 0 . 8 1 7 2 3 ) 3 0 
1 1 x 3 5 1 x 2 0 .20343(7^ 0 . 8 7 3 9 1 ) 0 . 2 2 2 2 2 ( 7 ^ 0 . 8 0 0 0 2 ) 3 0 
1 1 X 3 2 4 x 5 0 .20748(7^ 0 . 8 5 6 8 5 ) 0 . 2 3 0 0 7 ( 7 ^ 0 . 7 7 2 7 2 ) 15 

lines that are lost. Table 7.9 shows that there are differences in average and maximum 

variances of pairwise line comparisons between these fifteen cases. In the best case, the 

average variance increases to O.lSBlcr^, a reduction in efficiency of 5.5%, and in the worst 

case the average variance is 0.2075c7 ,̂ which corresponds to approximately a 15% loss of 

efficiency. In the worst situation, the two affected crosses are common to both of the 

affected blocks in the starting design. 

There are four distinct configurations of two missing observations for the design of 

Ghosh and Biswas (2000), whose properties are shown in Table 7.8. The case with the 

smallest reduction of efficiency corresponds to the loss of both observations in one of the 

blocks of the initial design. The other three cases are equivalent to losing two blocks from 

the starting design, because when one observation is lost from a block in this CDC design, 

the increase in average variance is equivalent to losing both observations in the two blocks. 

R e d u c t i o n in e f f i c i e n c y r a n g e s f r o m 8% t o 1 9 % for t h e s e f o u r c a s e s . T h e m a x i m u m v a r i a n c e 

is also substantially increased, especially when two replicates of the same cross become 

unavailable from two different blocks of the starting design. The maximum variance 

increases to 0.4cr^ for this configuration of missing values corresponding to a reduction in 
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Table 7.10: Summary of the effect of one and two missing observations on the PDC 
designs given in Table 7.3. Average and maximum variances of pairwise line comparisons 
are given with their efficiencies relative to the starting design for all distinct configurations 
of one and two missing values. The number of configurations corresponding to each case 
is also given, as well as an example of how each configuration occurs. 

Missing Values 
B l o c k ( s ) C r o s s ( e s ) A.V.(R.E.] IVI.V.(R.E.) 

Number 
of C a s e s 

Design (a) 
(i) O n e M i s s i n g V a l u e 

1 1 x 2 
(ii) Two Missing Values 

1 2 1 x 2 4 x 7 
1 2 1 X 2 7 X 10 
1 1 1 x 2 3 x 4 
1 1 1 x 2 1 x 3 

0.42632(7^ ( 0 . 9 7 1 4 3 ) 0 .47331(7^ ( 0 . 8 6 0 7 6 ) 5 4 

( 0 . 9 4 3 8 9 ) 
( 0 . 9 4 2 6 6 ) 
( 0 . 9 4 1 1 6 ) 

0.44034(7^ ( 0 . 9 4 0 5 0 ) 

0 .43876(72 
0 . 4 3 9 3 3(7^ 
0 . 4 4 0 0 3(7^ 

0.49074(7^ ( 0 . 8 3 0 1 9 ) 
0 .49998(7^ ( 0 . 8 1 4 8 4 ) 
0 .54745(7^ ( 0 . 7 4 4 1 9 ) 
0 .58667(7^ ( 0 . 6 9 4 4 4 ) 

4 3 2 
8 6 4 
2 7 

108 
D e s i g n ( b ) 
( i ) One Missing V a l u e 

1 1 X 2 1 .00833(7^ ( 0 . 9 0 9 0 9 ) 1 . 4 2 2 2 2(7^ ( 0 . 6 2 5 0 0 ) 2 7 
( i i ) T w o M i s s i n g V a l u e s 

1 1 1 x 9 2 x 9 1 .10000(7^ ( 0 . 8 3 3 3 4 ) 1 . 6 0 0 0 0 ( 7 2 ( 0 . 5 5 5 5 5 ) 2 7 
1 4 1 x 9 3 x 9 1 .10025(7^ ( 0 . 8 3 3 1 5 ) 1 . 5 7 1 4 3 ( 7 2 ( 0 . 6 3 6 3 6 ) 5 4 
1 2 1 x 9 3 x 4 1 .10150(7^ ( 0 . 8 3 2 2 0 ) 1 . 4 3 8 6 0 ( 7 2 ( 0 . 6 1 7 8 9 ) 5 4 
1 2 1 x 9 3 x 5 1 .10606(72 ( 0 . 8 2 8 7 7 ) 1 . 6 6 6 6 7 ( 7 2 ( 0 . 6 0 0 0 0 ) 2 7 
1 4 1 x 9 6 x 9 1 .11979(72 ( 0 . 8 1 8 6 1 ) 1 . 6 0 5 9 0 ( 7 2 ( 0 . 5 5 3 5 1 ) 5 4 
1 4 1 x 9 3 x 6 1 . 1 2 6 6 7(7^ ( 0 . 8 1 3 6 1 ) 1 . 8 5 7 7 8 ( 7 2 ( 0 . 4 7 8 4 7 ) 1 0 8 
1 6 1 x 9 5 x 8 1 .23333(7^ ( 0 . 7 4 3 2 5 ) 2 . 3 2 2 2 2 ( 7 2 ( 0 . 3 8 2 7 8 ) 2 7 

e f f i c i e n c y o f 3 3 % . 

When three observations are lost from this design, there are twelve potential realisable 

resulting designs, all listed with an example of the configuration of three missing crosses in 

T a b l e 7 .8 . T h e l o s s o f e f f i c i e n c y i n t h e s i t u a t i o n is 1 5 % , w h e r e t h e a v e r a g e v a r i a n c e 

has increased to 0.3152(7^, which is less serious than two of the configurations of two 

missing observations. The most severely affected configurations o c c u r when the three 

missing values are in different blocks of the starting design, which in this example is 

e q u i v a l e n t t o t h e l o s s o f t h r e e b l o c k s . I n t h e s e c a s e s , t h e l o s s o f e f f i c i e n c y i s over 2 0 % , 

and the maximum of the average variances increase to over 0.4(7^ representing a loss of 

3 5 % i n e f f i c i ency . 

The PDC designs shown in Table 7.3 have also been studied to assess the influence of 

t w o m i s s i n g o b s e r v a t i o n s . F o r b o t h o f t h e s e d e s i g n s , a l l c o n f i g u r a t i o n s c o r r e s p o n d i n g t o 
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Table 7.11: Example of a CDC design with unequal replication of crosses constructed by 
Ghosh and Desai (1999). The effect of one or two observations becoming unavailable is 
summarised using the average and maximum variances of pairwise line differences, and 
the number of configurations corresponding to the distinct cases. 

M i s s i n g V a l u e s 
B l o c k (s) C r o s s (es) A.V.(R.E.) IVI.V.(R.E.) 

Number 
of Cases 

One Missing Value 
1 1 X 3 0 .2050(72 0 . 9 8 7 1 ) 0 . 2 1 7 6 ( 7 2 0 . 9 5 7 4 ) 4 8 
2 2 x 6 0.2087(7^ 0 . 9 6 9 8 ) 0 . 2 3 0 4 ( 7 2 0 . 9 0 4 3 ) 24 

) Two Missing Values 
1 1 1 X 3 5 X 7 0.2071(7^ 0 . 9 7 7 0 ) 0 . 2 2 5 0 ( 7 2 0 . 9 2 5 9 ) 2 4 
1 2 1 X 3 2 X 4 0 . 2 0 7 7 ( 7 ^ 0 . 9 7 4 5 ) 0 . 2 1 7 6 ( 7 2 0 . 9 5 7 4 ) 2 4 0 
1 5 1 X 3 1 X 2 0 .2078(72 0 . 9 7 3 7 ) 0 . 2 2 0 5 ( 7 2 0 . 9 4 5 0 ) 7 6 8 
1 1 1 X 3 1 X 7 0 .2079(72 0 . 9 7 3 2 ) 0 . 2 1 8 1 ( 7 2 0 . 9 5 5 3 ) 4 8 
1 3 1 X 3 1 X 3 0 .2083(72 0 . 9 7 1 4 ) 0 . 2 2 9 2 ( 7 2 0 . 9 0 9 1 ) 4 8 
1 2 1 X 5 2 X 4 0 .2113(72 0 . 9 5 7 7 ) 0 . 2 3 0 4 ( 7 2 0 . 9 0 4 3 ) 1 9 2 
1 5 1 X 3 1 X 5 0 .2113(72 0 . 9 5 7 7 ) 0 . 2 3 2 7 ( 7 2 0 . 8 9 5 3 ) 7 6 8 
1 3 1 X 5 1 X 3 0 .2113(72 0 . 9 5 7 7 ) 0 . 2 3 9 7 ( 7 2 0 . 8 6 9 3 ) 9 6 
1 1 1 X 5 1 X 3 0 .2118(72 0 . 9 5 5 4 ) 0 . 2 4 8 3 ( 7 2 0 . 8 3 9 1 ) 9 6 
1 1 1 X 5 3 X 7 0 .2143(72 0 . 9 4 4 4 ) 0 . 2 5 0 0 ( 7 2 0 . 8 3 3 3 ) 12 
1 2 1 X 5 2 X 6 0 .2150(72 0 . 9 4 1 4 ) 0 . 2 3 0 4 ( 7 2 0 . 9 0 4 3 ) 4 8 
1 5 1 X 5 1 X 5 0 .2156(72 0 . 9 3 8 5 ) 0 . 2 3 8 1 ( 7 2 0 . 8 7 5 0 ) 1 9 2 
1 3 1 X 5 3 X 7 0 .2177(72 0 . 9 2 9 7 ) 0 . 2 6 1 9 ( 7 2 0 . 7 9 5 5 ) 2 4 

the loss of one observation have the same overall effect on the variances of pairwise line 

differences. There are four distinct configurations of two missing values for Design (a), 

and these are listed in order of increasing average variance in Table 7.10. The average 

variances of pairwise line comparisons are very similar for these cases, corresponding 

to a loss of approximately 6% in efficiency, but there are substantial differences in the 

maximum of the individual pairwise line variances. In the best situation, the maximum 

variance is 0.4907a^, a reduction of 17% in efficiency, while the worst situation has a 

maximum variance of 0.5867cr^, which is an efficiency loss of approximately 31%. 

The second PDC plan, Design (b), with nine lines has seven cases of two missing 

values to be computed separately. These are also shown in Table 7.10, ordered by average 

v a r i a n c e , a n d it c a n b e s e e n t h a t t h e r e i s a s u b s t a n t i a l l o s s o f e S c i e n c y c a u s e d b y t h e 

unavailability of two observations. The worst case corresponds to an average variance 

of 1.2333(7^ and a maximum variance of 2.3222a^, which is disastrous when compared t o 

t h e s t a r t i n g d e s i g n . T h e r e l a t i v e e f B c i e n c i e s for t h e s e t w o v a r i a n c e s a r e 7 4 . 3 % a n d 3 8 . 3 % 
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r e s p e c t i v e l y . 

T h e r e are 13 d i s t i n c t conGgurat ions o f t w o m i s s i n g o b s e r v a t i o n s w h e n t h e C D C d e s i g n 

of Ghosh and Desai (1999), see Table 7.5, is considered. These cases correspond to missing 

c r o s s e s in t h e s a m e or d i f ferent b locks o f t h e s t a r t i n g d e s i g n , a n d t h e n u m b e r of crosses 

c o m m o n t o t h e pair of a f f e c t e d blocks . T h e var ious c a s e s a n d a n e x a m p l e of h o w e a c h of 

t h e c a s e s o c c u r s are g i v e n in T a b l e 7 .11 . It c a n b e s e e n t h a t t h e loss of e fRciency varies 

b e t w e e n 2% a n d 7% for t h e average v a r i a n c e , b u t t h e r e i s g r e a t e r v a r i a t i o n b e t w e e n t h e 

maximum of the variances of pairwise l ine comparisons. 

7.5 Discussion 

In genetic experiments, the use of diallel cross designs f or crossing lines or parents is 

increasing. As in other practical situations, these designs are subject t o missing values. 

The loss of blocks from diallel cross designs has been considered in terms of the average 

variance of pairwise line comparisons by other authors, and in this Chapter it has been 

shown that many designs suffer a small reduction in efficiency, but that some of the 

individual comparisons may incur a substantial loss of efficiency. For PDC designs, the 

variances of pairwise line differences are derived algebraically for a subset of these designs. 

The loss of observations s c a t t e r e d throughout the initial design has been considered in 

this Chapter. The distribution of average and maximum variances have been enumerated 

n u m e r i c a l l y for d i f f erent t y p e s of d ia l le l c ros s d e s i g n s . I t i s s h o w n t h a t t h e l o s s of e G c i e n c y 

is frequently substantial after the loss of one, two, or three crosses. 
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Chapte r 8 

Summary and Future W o r k 

In this final Chapter, there are two questions to be considered. Firstly, what conclusions 

may be drawn from the research in the thesis. Secondly, how can the research be extended 

and/or be applied to different designs. 

8.1 Conclusions 

The aim of the thesis has been to consider the impact of missing data on different classes 

of designed experiments. To assess the influence of drop-out on the starting designs, the 

increases to the variances of pairwise treatment comparisons are calculated numerically or 

developed theoretically. Three patterns of missing data have been investigated extensively 

to study the effect on block and row-column designs. 

Treatment effects are estimated using ordinary least squares with general formulae for 

the reduced normal equations. These equations can be used when the design is complete 

or when there are missing observations. The variances of p a i r w i s e treatment comparisons 

can be derived and expressed algebraically for most patterns of missing data, and also 

e v a l u a t e d n u m e r i c a l l y for m a n y se t s of d e s i g n p a r a m e t e r s . T h e a v e r a g e o f t h e s e v a r i a n c e s 

is considered as an overall measure of robustness to missing data, but the maximum should 

also be calculated because a small number of comparisons may be severely affected by the 

l o s s of d a t a . 

When blocks of observations become unavailable in block designs, it has been shown 

t h a t s m a l l s t a r t i n g d e s i g n s suffer t h e l a r g e s t r e d u c t i o n i n e fBc iency . L o s s o f i d e n t i c a l 

blocks is the worst situation, which occurs for RBDs. Less severe is the loss of blocks 
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with a disjoint set of treatments, which may occur for incomplete block designs. The 

analysis is more involved for BIB designs because all treatments do not occur in every 

block of the starting design. Loss of a row or column of observations from a Latin square 

design has also been studied, and it has been shown that the efficiency of the resulting 

designs are in general substantially reduced. For a Latin square of side r = 10, the 

e f f i c i e n c y is 8 8 . 9 % w h e n c o m p a r e d t o t h e s t a r t i n g d e s i g n . Y o u d e n s q u a r e d e s i g n s were 

also investigated for the loss of a row of observations, and it was shown that small designs 

suffer a large reduction in efficiency in this situation. 

More general patterns of missing observations have also been considered, where the 

m i s s i n g values are scattered throughout the starting design. When considering a BIB 

design, it appears prudent to choose a design where blocks have as few treatments common 

to each o t h e r as possible. It is also sensible to have pairs of treatments occurring together 

in b l o c k s as f r e q u e n t l y as is pract ica l . 

The average variance of pairwise treatment comparisons is substantially increased 

when a Latin square with five or fewer treatments loses one or two observations. This 

loss of efficiency is reduced when there are larger starting designs, although the efficiency 

of the maximum variance of all pairwise comparisons is always substantially reduced. For 

a ten treatment Latin square design there are 45 pairwise comparisons, and only nine of 

these are affected in the worst case which is concealed if the average and not the maximum 

i s c o m p u t e d . 

To reduce the impact of drop-out on row-column designs constructed from Latin 

s q u a r e s , i t m a y p o s s i b l e t o u s e m u l t i p l e s q u a r e s w h e r e t h e c h o i c e of s q u a r e s d o e s n o t 

affect the overall robustness properties of the design. Consider a four treatment design 

with up to four squares. When one value becomes unavailable, the loss of efficiency is 25% 

for a single square which decreases to 10% if there are t w o squares used to construct the 

design. If two observations become unavailable then the loss of efficiency is only small if 

three or more squares are used, and the situation is even more serious when three values 

are lost. 

T h e e f fec t of t h r e e p a t t e r n s of m i s s i n g d a t a o n s i n g l e r e p l i c a t e Y o u d e n s q u a r e d e s i g n s 

has also been studied. Conditions for these designs to remain variance balanced after the 

l o s s of al l o b s e r v a t i o n s c o r r e s p o n d i n g t o o n e of t h e t r e a t m e n t s h a v e b e e n d e r i v e d . It w a s 

s h o w n t h a t Y o u d e n s q u a r e s g e n e r a t e d b y r e m o v i n g o n e c o l u m n f r o m a L a t i n s q u a r e are 
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g l o b a l l y r e s i s t a n t o f d e g r e e one . 

T h e la s t c lass o f d e s i g n s c o n s i d e r e d are d ia l le l cross d e s i g n s u s e d in m a t i n g e x p e r i m e n t s , 

w h e r e a s e t of l ines are cros sed t o d i scover t h e b e s t c o m b i n a t i o n . W h e n a b lock of crosses 

is lost, the efficiency of the average variance is not substantially reduced. The maximum 

variance does suffer a large reduction in efficiency. 

8.2 Future Work 

Theoretical results were provided for the loss of a complete block of c ros ses from PDC 

designs. Ghosh and Desai (1998) used BIB designs to construct CDC designs, a n d it may 

be possible t o derive formulae for the variances of pairwise line comparisons when a single 

cross is los t . 

T h e work in C h a p t e r 7 c o n c e n t r a t e d o n a s s e s s i n g t h e i n f l u e n c e of m i s s i n g d a t a o n 

d ia l l e l cros ses in b lock d e s i g n s . G u p t a a n d C h o i ( 1 9 9 8 ) p r o v i d e d four ser ies of o p t i m a l 

row-column designs t h a t could be used for diallel cross experiments. It would be beneficial 

to consider the impact of drop-out on these designs using the same approach. 
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